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Abstract

The success of a control policy highly relies by its feature representation,
i.e., the information set it is conditioned upon. In real world control
problems, defining an appropriate feature representation is a complex

task, given the coexistence of multiple interacting processes whose relevance
for the control task is often unclear. In this thesis, we address the control prob-
lemofwater resources systems, where a dam release policy is designed account-
ing for multiple water demands. This decisional problem is challenged by the
presence of non-linearities, strong disturbances, possible alternative problem
framings, and multiple conflicting objectives. Currently, the control rules of
most water reservoirs are conditioned upon basic information systems com-
prising reservoir storage and time index, however, the value of amore informa-
tive feature representation is generally undisputed. We capitalize on recent ad-
vances inmonitoring and forecastingwater availability to develop novel feature
representation learning strategies to enhance water systems resilience towards
their crucial vulnerabilities, including droughts, critical phases in reservoir de-
velopment (i.e., construction and filling), and multisectoral conflicts. Addition-
ally, inmulti-purpose systems, different control targetsmight be heterogeneous
in their dynamics and vulnerabilities, and likely benefit from a tailored feature
representation that varies across different objectives tradeoffs.

We revise current literature on feature representation learning, and propose
a taxonomy comprising a priori, a posteriori, and online approaches. For each ap-
proach, we propose novel contributions targeting the control problem of mul-
tipurpose water systems. Among the methodological contributions included
in this thesis, (1) we propose FRIDA, a feature extraction-based framework to
design basin-tailored drought indexes, and (2) we employ FRIDA index to in-
form water reservoir operations; (3) we extend the concepts of feature repre-
sentation learning beyond pure control applications to a problem of dam plan-
ning and filling; (4) we use Artificial Intelligence to capture the state of mul-
tiple climate signals to improve seasonal forecast in a framework named CSI;
(5) we propose an original multi-objective neuro-evolutionary algorithm, NE-
MODPS, that evolves tradeoff-tailored policy architectures, and (6) we combine
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it with a feature selection routine to learn a policy representation online and
tradeoff-dynamically.

A common thread of the outcomes generated in this collection of works is
that learning an appropriate policy information set is an asset to improve water
system performance, especially by targeting its most critical failures. Specif-
ically, by mitigating the damages associated with hydrological extremes (e.g.,
drought emergencies), critical stages reservoir development (i.e., construction
and filling), and social tensions deriving from conflicts between different users
and their demands.

Part of this research has appeared (or will appear) in the following journal
publications:

(1) Zaniolo,M., Giuliani,M., Castelletti, A.F., Pulido-Velazquez,M., 2018b. Au-
tomatic design of basin- specific drought indexes for highly regulated water
systems. Hydrology and Earth System Sciences 22, 2409-2424. (Chapter 2);

(2) Zaniolo, M., Giuliani, M., Castelletti, A., 2019. Data-driven modeling and
control of droughts. IFAC- Papers On Line 52, 54-60. (Chapter 3);.

(3) Zaniolo, M., Giuliani, M., Burlando, P., Castelletti, A., 2020a When timing
matters - misdesigned dam filling impacts hydropower sustainability. Na-
ture Sustainability (under review). (Chapter 4);

(4) Giuliani, M., Zaniolo, M., Castelletti, A., Davoli, G., Block, P., 2019. Detect-
ing the state of the climate system via artificial intelligence to improve sea-
sonal forecasts and inform reservoir operations. Water Resources Research
55, 9133-9147. (Chapter 5);

(5) Zaniolo, M., Giuliani, M., Castelletti, A., 2020b. Neuro-evolutionary di-
rect policy search for multi-objective optimal control. IEEE transactions
on neural networks and learning systems (under review). (Chapter 6);

(6) Zaniolo, M., Giuliani, M., Castelletti, A., 2020c. Dynamic retrieval of infor-
mative inputs for multi-sector reservoir policy design with diverse spatio-
temporal objective scales. EnvironmentalModeling and Software (in prepa-
ration). (Chapter 7).
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Sommario

Il successo di una politica di controllo dipende fortemente dalla sua rappre-
sentazione, ovvero dall’insiemedi variabili con cui è informata. In problemi
di controllo nelmondo reale, la definizione di una rappresentazione appro-

priata è un compito complesso, data la coesistenza di più processi interagenti la
cui rilevanza per il problema di controllo è spesso poco chiara. In questa tesi,
affrontiamo il problema di controllo dei sistemi di risorse idriche, in cui una
politica di rilascio della diga è progettata tenendo conto di molteplici domande
idriche. Questo problema decisionale è complicato dalla presenza di non linea-
rità , forti disturbi, possibili formulazioni alternative del problema, e molteplici
obiettivi contrastanti. Attualmente, le regole di controllo della maggior parte
dei bacini idrici sono condizionate su sistemi informativi basilari che conside-
rano l’invaso del serbatoio e un indice del tempo, d’altra parte, il valore di una
rappresentazione della politica più ricca e informativa è generalmente indiscus-
so. Sfruttiamo i recenti progressi nel monitoraggio e nella previsione della di-
sponibilità di acqua per sviluppare nuove strategie di apprendimento della rap-
presentazione della politica per migliorare la resilienza dei sistemi idrici rispet-
to a vulnerabilità cruciali tra cui siccità , fasi critiche nello sviluppo di serbatoi
(ad esempio costruzione e riempimento), e conflitti tra diversi settori. Inoltre,
nei sistemi caratterizzati da molteplici usi della risorsa idrica, diversi obiettivi
di controllo potrebbero essere eterogenei nelle loro dinamiche e vulnerabili-
tà, e dunque trarre vantaggio da una rappresentazione delle caratteristiche su
misura che varia a seconda dei diversi obiettivi.

Analizziamo la letteratura recente sull’apprendimento della rappresentazio-
ne della politica, e proponiamo una tassonomia che comprende approcci a prio-
ri, a posteriori, e online. Per ogni approccio, proponiamo contributi metodologi-
ci originali, mirati al problema del controllo dei sistemi idrici a molti-obiettivi.
Tra i contributi metodologici inclusi in questa tesi, (1) proponiamo FRIDA, una
procedura basata sull’estrazione di variabili per progettare indici di siccità di ba-
cino su misura, e (2) impieghiamo l’indice FRIDA per informare le operazioni
di gestione di una diga; (3) estendiamo i concetti di apprendimento della rap-
presentazione della politica oltre applicazioni di puro controllo a un problema
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di pianificazione e riempimento di un serbatoio idrico artificiale; (4) utilizzia-
mo tecniche di Intelligenza Artificiale per analizzare lo stato di diversi segnali
climatici per migliorare le previsioni stagionali, secondo una procedura origi-
nale chiamataCSI; (5) proponiamo un nuovo algoritmo neuro-evolutivo amolti
obiettivi, NEMODPS, che evolve un’ architettura della politica sumisura per gli
obiettivi e relativi compromessi; (6) combiniamoNEMODPS con una strategia
di selezione di variabili che apprende una rappresentazione della politica online,
e dinamica rispetto agli obiettivi.

Un filo conduttore dei risultati generati in questa raccolta di lavori è che
l’apprendimento di un adeguato set di informazioni per informare la politica
si configura come una valida risorsa per migliorare le prestazioni del sistema
idrico, in particolare rispetto alle sue vulnerabilità più critiche. Nello specifico,
mitigando i danni associati agli estremi idrologici (ad esempio le siccità), fasi
critiche di sviluppo del serbatoio (costruzione e riempimento), e tensioni sociali
derivanti da conflitti tra i diversi utenti idrici.

Parte della ricerca presentata in questa tesi è apparsa, o apparirà, nelle se-
guenti pubblicazioni:

(1) Zaniolo,M., Giuliani,M., Castelletti, A.F., Pulido-Velazquez,M., 2018b. Au-
tomatic design of basin- specific drought indexes for highly regulated water
systems. Hydrology and Earth System Sciences 22, 2409-2424. (Capitolo 2);

(2) Zaniolo, M., Giuliani, M., Castelletti, A., 2019. Data-driven modeling and
control of droughts. IFAC- Papers On Line 52, 54-60. (Chapter 3);.

(3) Zaniolo, M., Giuliani, M., Burlando, P., Castelletti, A., 2020a When timing
matters - misdesigned dam filling impacts hydropower sustainability. Na-
ture Sustainability (under review). (Capitolo 4);

(4) Giuliani, M., Zaniolo, M., Castelletti, A., Davoli, G., Block, P., 2019. Detec-
ting the state of the climate system via artificial intelligence to improve sea-
sonal forecasts and inform reservoir operations. Water Resources Research
55, 9133-9147. (Capitolo 5);

(5) Zaniolo, M., Giuliani, M., Castelletti, A., 2020b. Neuro-evolutionary di-
rect policy search for multi-objective optimal control. IEEE transactions
on neural networks and learning systems (under review). (Capitolo 6);

(6) Zaniolo, M., Giuliani, M., Castelletti, A., 2020c. Dynamic retrieval of infor-
mative inputs for multi-sector reservoir policy design with diverse spatio-
temporal objective scales. Environmental Modeling and Software (in pre-
paration). (Capitolo 7).

IV



Acknowledgements

Several people contributed to my PhD education, and the research presented in
this dissertation. First, I would like express my sincere gratitude to my super-
visor, Professor Andrea Castelletti, for giving me the opportunity to receive a
PhD eduction, and for guiding me every step of the way with dedication and
trust. I soon realized how lucky I was to be part of his mentoring vision, one
that exposes PhD students to many opportunities to take part in international
conferences, engage with other research groups, and disseminate their work. I
am thankful to Professor Matteo Giuliani, my co-advisor, always present, and
incredibly helpful. Thank you for the countless times you made yourself avail-
able to brainstorm ideas and discuss my doubts. My gratitute goes to Professor
Paul Block for collaborating with me during my visiting in the University of
Wisconsin, Madison, a time of intense professional and personal growth I hold
dear to my heart.

I’m very thankful to the reviewers of this thesis, Professor Patrick Reed and
Professor JulianneQuinn, for taking the time to readmywork andoffering their
suggestions. Their inputs have been essential to add value to the final version
of this dissertation, and their words of appreciation humbled me . My PhDwas
supported by DAFNE, an H2020 European project. Witnessing and contribut-
ing to the developent of such a large and ambitious project taught me a lot. My
gratitude goes to all DAFNEmembers, and Professor Paolo Burlando as project
leader.

Lastly, I would like to thank the members of the Environmental Intelligence
Lab, Alessandro, Angelo, Federica, Federico, Jazmin, Marco for sharing coffee
breaks, lunches, and the occasional aperitivo. I’m grateful for your friendship
and the supportive environment we created. I watched you and myself become
better researchers together, and you made every day in the office much better.

I will keep out of this page the immense gratitude I feel for the people I love
outside the academic world, but I here vow to thank each one of them person-
ally.

Marta

V





Contents

List of Figures XI

List of Tables XXI

1 Introduction 1
1.1 Feature Representation Learning . . . . . . . . . . . . . . . . . 3
1.2 Objective of the thesis . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I A Priori Feature Representation for Multi-Objective Reinforce-
ment Learning 13

2 Automatic design of basin-specific drought indexes for highly regu-
lated water systems 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Methods and tools . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Framework for Index-based Drought Analysis . . . . . . 23
2.2.2 Feature Extraction viaWrapper for Quasi-Equally Infor-

mative Subset Selection . . . . . . . . . . . . . . . . . . 25
2.3 Case Study: the Jucar river basin . . . . . . . . . . . . . . . . . 30
2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Identification of basin’s characteristics . . . . . . . . . . 32
2.4.2 Feature extraction via W-QEISS . . . . . . . . . . . . . 33
2.4.3 Drought Index Modeling . . . . . . . . . . . . . . . . . 38

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Data-driven Modeling and Control of Droughts 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Methods and Tools . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Data-driven drought index modeling . . . . . . . . . . . 47
3.2.2 Data-driven drought control . . . . . . . . . . . . . . . 50

3.3 Study Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

VII



Contents

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Data-driven drought index modeling results . . . . . . . 53
3.4.2 Data-driven drought control results . . . . . . . . . . . 56

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 When timing matters - misdesigned dam filling impacts hydropower
sustainability 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Behind filling controversy - the role of timing . . . . . . . . . . 63
4.3 Forecast-informed adaptive filling . . . . . . . . . . . . . . . . 68
4.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . 71
4.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Omo-Turkana Basin Model . . . . . . . . . . . . . . . . 73
4.5.2 Historical filling strategy . . . . . . . . . . . . . . . . . 74
4.5.3 Empirical derivation of climatic oscillations . . . . . . . 75
4.5.4 Performance of alternative timing of reservoir filling . . 75
4.5.5 Seasonal forecasts . . . . . . . . . . . . . . . . . . . . . 76

II A Posteriori Feature Representation for Multi-Objective Re-
inforcement Learning 79

5 Detecting the state of the climate system via artificial intelligence to
improve seasonal forecasts and inform reservoir operations 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Study site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Detection of climate teleconnections . . . . . . . . . . . 89
5.3.2 Seasonal precipitation forecasts . . . . . . . . . . . . . . 90
5.3.3 Hydrologic forecasts . . . . . . . . . . . . . . . . . . . . 91
5.3.4 Assessment of forecast operational value . . . . . . . . . 92
5.3.5 Data and experimental settings . . . . . . . . . . . . . . 93

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.1 Detection of climate teleconnections . . . . . . . . . . . 95
5.4.2 Precipitation and streamflow forecasts . . . . . . . . . . 96
5.4.3 Hydrologic forecast operational value . . . . . . . . . . 99
5.4.4 Operational value of precipitation forecast and observed

preseason SST . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.5 Analysis of the operating policies . . . . . . . . . . . . . 102

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

VIII



Contents

III Online Feature Representation for Multi-Objective Reinforce-
ment Learning 107

6 Neuro-Evolutionary Direct Policy Search for Multi-Objective Optimal
Control 111
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . 114
6.2.2 Extending the scope of DPS . . . . . . . . . . . . . . . . 117
6.2.3 NEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.4 NEMODPS . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.5 Metrics of Structural Analysis . . . . . . . . . . . . . . . 124

6.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4 Computational Experiment . . . . . . . . . . . . . . . . . . . . 127
6.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5.1 Benchmark analysis . . . . . . . . . . . . . . . . . . . . 129
6.5.2 Trends in policies architectural features . . . . . . . . . 130
6.5.3 Convergence analysis from a multi-objective perspective 132

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Dynamic retrieval of informative inputs for multi-sector reservoir pol-
icy design with diverse spatio-temporal objective scales 137
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . 143
7.2.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2.3 NEMODPS . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.2.4 Extraction of optimal decision from a Perfect Control

Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2.5 Termination criterion . . . . . . . . . . . . . . . . . . . 148

7.3 Case Study and Data . . . . . . . . . . . . . . . . . . . . . . . . 149
7.3.1 Experimental Settings . . . . . . . . . . . . . . . . . . . 151

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.6 Discussion: the role of competition in feature representation . . 158

8 Conclusions and future research 161

A Appendix A 167
A.0.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . 167

B Appendix B 177

IX



Contents

B.1 Lake Como integrated model and optimal control problem for-
mulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.2 The Nino Index Phase Analysis framework . . . . . . . . . . . 180
B.3 Comparison of seasonal meteorological forecast models . . . . 180
B.4 The Information Selection and Assessment framework . . . . . 180
B.5 Detection of teleconnections for multiple climate signals . . . . 181
B.6 Detection of ENSO and NAO teleconnections for all seasons . 181
B.7 Validation of the NIPA detection of climate teleconnections . . 182
B.8 Cross-validation of seasonal precipitation forecast . . . . . . . 184

C Appendix C 189

D Appendix D 191

Bibliography 193

X



List of Figures

1.1 Feature representation learning taxonomy, a priori approach:
feature extraction precedes policy design. . . . . . . . . . . . . 5

1.2 Feature representation learning taxonomy, a posteriori approach:
the optimal policy representation is selected based on the per-
formance of the policy conditioned upon it. . . . . . . . . . . . 6

1.3 Feature representation learning taxonomy, online approach: pol-
icy search is interleaved with feature extraction routines. . . . . 7

2.1 Development chain of droughts through time. Meteorological
drought, defined as a lack of precipitation over a region for a
certain period of time, develops in the short term. Agricultural
drought accounts for the plants and crops water stress; develops
in the medium term. Hydrological drought, defined as a period
of low streamflow in watercourses, lakes and groundwater level
below normal, develops in the long term. Operational drought,
defined as a period with anomalous supply failures in a devel-
oped water exploitation system, develops in the long term. Fig-
ure adapted from Spinoni et al. (2016) to include Operational
drought. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 FRamework for Index-basedDroughtAnalysis (FRIDA): 1. Iden-
tificationof basin characteristics, 2. FeatureExtraction, 3. Drought
Index modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 W-QEISS flowchart. Step 1: generate Pareto efficient solutions
with respect to the four objectives of relevance, redundancy, car-
dinality, and accuracy; Step 2: select high accuracy subsets; Step
3: eliminate inferior subsets. . . . . . . . . . . . . . . . . . . . 26

XI



List of Figures

2.4 Map of the Jucar Basin river network. The coloredmarkers rep-
resent the variables considered for the State Index calculation. S:
reservoir storage, F: streamflow, Pz: piezometer, Pl: pluviome-
ter. Streamflow and piezometers markers are located in corre-
spondence to the relative measurement station, while storage
and pluviometers markers are put in the center of the polygon
formedby connecting themultiplemeasurement points used for
their computation. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 SelectionMatrix: the left vertical axis represents the subset num-
ber and the right vertical axis the corresponding accuracy mea-
sured in SU. A colored marker is put in correspondence of the
variables, listed on the horizontal axis, selected by each subset.
The shade of gray is an indication of the cardinality of the sub-
set, lighter shades for lower cardinality. The highest accuracy
is reported in red and the corresponding variables, constituting
the most accurate subset, have a blue background. . . . . . . . . 36

2.6 Comparison between the FRIDA linear index (blue) and the state
index (green) in reproducing themonthly aggregated supply deficit
(red). FRIDA index presents an higher similarity with the deficit
and only requires 5 inputs instead of the 12 required by the state
index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Flowchart of the proposed framework for drought index design
and evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Selectionmatrix: the left vertical axis represents the subset num-
ber and the right vertical axis the corresponding accuracy mea-
sured in SU. A colored marker is put in correspondence of the
variable (horizontal axis) selected by each subset. . . . . . . . . 55

3.3 The designed Drought Index compared against target variable
and annual yield. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Pareto Fronts representing the performance of BCP, ICP, and
PCP in terms of water deficit (vertical axis) and flood days (hor-
izontal axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

XII



List of Figures

4.1 Geographyof theOmo-TurkanaBasin (OTB). TheOmoriver
collects the abundant rainfalls of the Ethiopian highlands and
streams southwards through theOmo valley contributing about
90% of annual inflow to Lake Turkana, where its outlet forms
a complex delta coincident with the Ethiopian-Kenyan border.
About 500 thousands pastors and farmers inhabiting the area
depend on theOmoorTurkanawaters for their livelihoods. The
Gibe-Koysha dam cascade regulates the river hydrology, com-
prising Gibe I and II, the recently completed Gibe III, and the
under construction Koysha dam. Marker area is proportional
to the dam’s installed hydropower capacity. . . . . . . . . . . . 64

4.2 Reconstructed historical filling strategy. Gibe III reservoir
reached its normal operating level within its first two years of
operations by impounding the near totality of the 2015 Kiremt
season inflow, and a significant fraction of 2016’s. In the two
following years, the Gibe III level oscillated around its opera-
tional level as a consequence of a release pattern that increased
low flows and reduced high flows with respect to natural Omo
hydrology. Simultaneously, Lake Turkana suffered a two meter
level drop with respect to a simulation of a scenario in which
Gibe III was not built. While the trajectory of observed Lake
Turkana levels is publicly available, the Gibe III level trajectory
was reconstructed fromSentinel 2 image classification (seeMeth-
ods). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Climatic oscillations can informa favorable timing for fill-
ing. A pattern of harmonic climatic oscillations governs the
magnitude of annual rainfall in the OTB (panel (a)). Filling the
Gibe III reservoir during an upwards phase of water availability
(e.g., 2013), instead of a downwards phase as historically, could
have resulted in a more efficient, and less contentious filling
(panels (b)). By projecting the harmonic trends into the future,
we advise to delay the filling of Koysha by one year and to be-
gin in 2022 instead of the planned 2021, as the additional stress
caused by a poorly timed filling stress could have detrimental
social and ecological consequences. . . . . . . . . . . . . . . . 69

XIII



List of Figures

4.4 Adaptive filling strategies can reduce filling impacts. The
seasonal forecasts of the Standardized Precipitation and Evap-
oration Index expressed in terms of dry, normal, and wet con-
ditions with respect to seasonal average (panel (a)) inform the
designed adaptive filling strategies (panels (b,c)). Different col-
ors correspond to adaptive strategies with different tradeoffs
between upstream and downstream competing interests, blues
for more environmentally inclined, and reds for hydropower-
inclined strategies, while the historical strategy is represented
in black. Adaptive strategies demonstrate the ability to signifi-
cantly reduce downstream impacts on Lake Turkana (panel(d))
and average river hydrology (panel (e), where the shaded areas
refer to the inter-annual variability) while remaining within a
contained range of historically produced hydropower (panel (f)).
The figure illustrates 4 different tradeoff solutions, while the
complete set of results is reported in Supplementary Figure A.3. 70

4.5 Futuredamsoverlap regionswitha strongENSOinfluence.
The blue points indicate the locations of medium-to-large fu-
ture hydropower reservoirs anddams, extracted from theFHReD
database published in (Zarfl et al., 2015). Dam height is gen-
erally employed to discern between small, medium, and large
dams, but in the absence of this information, we consider as
medium-to-large the hydropower projects with an installed ca-
pacity greater than 150MW, retaining a total of 642 dams of the
over 3700 reported in the database. A red shade highlights the
areas of the globe that are most affected by El Niño and La Niña
oscillations (Lindsey, 2016). Over 70% of medium-to-large fu-
ture dams are located in areas affected by the ENSO teleconnec-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Overview of the Climate State Intelligence (CSI) framework for
the generation of seasonal hydrologic forecasts based on global
climate oscillations and the assessment of their operational value.
The dashed lines represent the operational value assessment of
the outputs produced in the first two steps of the framework. . 86

5.2 Map of the Lake Como basin. . . . . . . . . . . . . . . . . . . . 88
5.3 Correlation maps between October, November, December SST

anomalies and January, February,Marchprecipitation in theLake
Comocatchment for the twophases of ENSO (panel a) andNAO
(panel b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Scatterplot between observed and predicted seasonal precipita-
tion over the full dataset. . . . . . . . . . . . . . . . . . . . . . 98

XIV



List of Figures

5.5 Scatterplot between observed and predicted Lake Como daily
inflows cumulated over a lead-time of 51 days over the full dataset. 99

5.6 Performance obtained by different Lake Como operating poli-
cies informed by streamflow forecasts (red circles), precipita-
tion forecasts (blue circles), or observed preseason SST (green
circles). The performance of these solutions is contrasted with
the baseline operating policies (gray circles) and with policies
informed by perfect forecast (black circles). The arrows indi-
cate the direction of increasing preference for the two objectives
and the cyan dashed line marks the performance of the histori-
cal lake regulation in terms of flood control. . . . . . . . . . . . 100

5.7 Analysis of the average Lake Como levels (measured with re-
spect to theMalgrate reference level at 197.37m.a.s.l.) simulated
under different selected operating policies (panel a) and corre-
sponding profit of the farmers in the Muzza irrigation district
(panel b). The yellow background in the top panel highlights the
crop growing period. . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Exemplification of the Generalized Shared Fitness computation
for two individuals in a generic algorithmic iteration. In the
top panel, the individual under evaluation is located in a rela-
tively empty region of the objective space, and scores a value of
GSF=26, equal to the non-dominating solutions (blue circles).
The individual evaluated in the bottom panel is instead located
in a crowded regionof the objective space, scoring a lowerGSF=17.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Metrics of structural analysis. Panel 1 presents the metric Pref-
erence for Deep Learning with two examples representative of
opposite configurations. Panels 2 and3 report examples of com-
putationof theNetworkComplexity, andNetworkHeterogene-
ity metrics, respectively. . . . . . . . . . . . . . . . . . . . . . 124

6.3 Control scheme of the considered case study. A non-linear re-
lease function R(·) converts the policy output (i.e., release deci-
sion) ut into a feasible release rt+1, which determines the state
transition according to function f(·). Stochastic disturbances
(i.e., lake inflow) εt+1 affect release and state transition of the
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

XV



List of Figures

6.4 Comparison of the control policies’ performance designed via
NEMODPS (blue circles), NEAT (black triangles), and traditional
DPSwith fixed structuresANNandGPnetworks (pink andgreen
diamonds). Policies are evaluated over a 10 years calibration pe-
riod (panel (a)), a 20 years validation horizon of recorded inflows
(panel (b)), and two5years extremevalidationhorizons (extreme
dry in panel (c), and extreme wet in panel (d)). . . . . . . . . . . 129

6.5 Pareto dependent structural analysis of optimal solutions result-
ing from 10 independent runs of NEMODPS, represented by
different line colors. The three metrics employed for structural
analysis are Preference for Deep Learning (top panel), Network
Complexity (middle panel), and Network Heterogeneity (bot-
tom panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6 Analysis of solution convergence with respect to multiple ob-
jectives. Each line represents the behavior of one of the 10 runs
of NEMODPS. First and second panels report, respectively, the
best value of the Flood and Irrigation objectives in the popu-
lation, across the 1000 generations of the evolution. The third
panel represents the value of the Hypervolume indicator during
the evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.1 AFS-NEMODPS flowchart. By looping through the building
blocks of this flowchart, the procedure complexifies the initial
population in terms of feature representation and policy archi-
tecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Digital ElevationModel of theLombardy region, Italy. Thehigh-
lighted elements are Lake Como and its Alpine basin, the sub-
lacual Adda River, the city of Como and the downstream irriga-
tion districts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3 Panel (a): Performance obtained by different LakeComooperat-
ing policies with respect to the two cost objectives of irrigation
deficit (vertical axis) and Flood days (horizontal axis). The black
square indicates the ideal performance of the PCP, white circles
the performance of efficient policies designed at round R1, tri-
angles refer to policies at round R2, and diamonds at round R3.
For rounds R2 and R3, the shape color is associated with the in-
formation added to the feature representation. Panel (b) shows
the improvements in the Hypervolume indicator across differ-
ent rounds, normalized to the value of hypervolume scored by
the PCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

XVI



List of Figures

7.4 Cyclostationary behavior of efficient policies across different
optimization rounds. The investigated policies are aligned along
the lilac line in the Pareto front of panel (a) and yield an average
number of flood days equal to 6.3, and different values with re-
spect to the irrigation objective. In panel (b), their cyclostation-
ary behavior is shown, and contrasted with the perfect control
policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.5 Conflict mitigation. Panels (a), (b), and (c) report the range of
lake levels yielded by all the Pareto efficient policies designed
at the given optimization round across different tradeoffs. The
average round-specific release range is quantified in the barplot
of panel (d), while the lake level range is shown in panel (e). . . . 157

7.6 Selection frequency of candidate variables in round R2 (panels
(a) and (b)), and round R3 (panels (c) and (d)) during the filtering-
and competition- based selection steps, respectively, for the 20
independent runs of AFS-NEMODPS. Green colored bars cor-
respond to variables that also appear in the feature representa-
tions of the resulting Pareto front that assembles the results of
the single runs. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.1 Classification of water, vegetation, bare soil, and clouds at Gibe
III reservoir location from Sentinel 2 satellite imagery. For the
months of June to September 2017, and May to July 2018, the
cloud cover was too persistent to allow composing a cloud free
image; the values of adjacent months were thus interpolated.
Additionally, a sensor failure temporarily interrupted Sentinel
data collection via B5 sensor in the month of June 2018. . . . . 171

A.2 SPEI forecast. Toppanel reports the ensemble of teleconnection-
based seasonal forecast for the Standardized Precipitation and
Evaporation Index. The ensemble average is then used to clas-
sify the SPEI forecast in dry, normal, and wet conditions; this
classification is correct for all the seasons. . . . . . . . . . . . . 173

XVII



List of Figures

A.3 Optimal adaptive filling policies. Left panel reports policies per-
formance in the objective space, in terms of Hydropower Pro-
duction (vertical axis, to be maximized), Downstream Impacts
(horizontal axis, to beminimized), and Final Gibe III level (circle
size, to bemaximized). The historical policy (black circle) attains
a comparable performance with respect to the designed policies
in terms of hydropower production and Gibe III final level, but
is associated to the highest downstream impacts demonstrating
that adaptive policies have the potential to contain downstream
alterations without impacting filling efficiency. The right panel
reports the optimal values of the scaling factors associated to
the three SPEI classes, which are lower for wet seasons than for
dry seasons, indicating that the adaptive filling policies will re-
lease a largerwater volumeswhen a dryer than average season is
expected to avoid magnifying drought impacts on downstream
activities, and will impound a larger fraction of inflows in case
of a wet spell as more abundant basin wide precipitations can
support downstream activities. . . . . . . . . . . . . . . . . . . 174

A.4 Topological Scheme of the OTB: comprising Gibe III reservoir,
lake Turkana, the Omo river stretch connecting the two water
bodies, and the external inflows. . . . . . . . . . . . . . . . . . 175

B.1 Schematic representation of the integrated simulation model of
the Lake Como basin. . . . . . . . . . . . . . . . . . . . . . . . 184

B.2 Illustration of the Nino Index Phase Analysis framework (Zim-
merman et al., 2016). . . . . . . . . . . . . . . . . . . . . . . . 185

B.3 Illustration of the Information Selection andAssessment frame-
work (Giuliani et al., 2015). . . . . . . . . . . . . . . . . . . . . 186

B.4 Illustration of the ISA metrics for assessing the value of infor-
mation in multiobjective problems (Giuliani et al., 2015). . . . . 186

B.5 Correlation maps between JFM precipitation anomaly over the
Como Lake region and SST anomalies for different lag-times
during the ENSO positive phase, with the correlation between
ONDSSTs and JFMprecipitations anomalies, which is thus equiv-
alent to the top-right panel of Figure 3 in the paper, shown in
panel (i). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.6 Scatterplot between observed and predicted seasonal precipita-
tion in leave-one-out crossvalidation. . . . . . . . . . . . . . . 188

XVIII



List of Figures

C.1 Violin plot showing the distribution of hypervolumes for dif-
ferent seeds in NEMODPS and DPS methods under calibration
dataset (panel a) and validation datasets (panels b-d). Within
each violin-shaped distribution, the white dot indicates the me-
dian, and the solid horizontal line the mean of the distribution.
NEAT was not included in this analysis as single objective al-
gorithms produce a single solution for each seed, preventing
the single-seed hypervolume computation. NEMODPS hyper-
volume distributions are shown for 10 independent algorithmic
runs, while DPS distribution comprise 10 runs for each prede-
fined architecture (from 1 to 6 nodes) evaluated independently
for the two activation functions considered (Sigmoidal for DPS-
ANN and Gaussian for DPS-GP). NEMODPS distributions re-
sultmuch less variable thanDPSacross all the considereddatasets,
and especially for the three validation datasets, indicating higher
consistency of NEMODPS solutions across independent ran-
dom seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

D.1 Validationof optimal policies for the three rounds ofAFS-NEMODPS
for a 20-year evaluation horizon (panel a1 and a2), and two 5-
year evaluation horizons composed of extreme dry (panels b1
and b2) and wet years (panels c1 and c2). Panels a1, b1, and
c1 show the entire objective space obtained for the policy re-
evaluation: while most solutions are located in a limited area
of the objective space (yellow boxes), few solutions produced
in round R1 appear very distant, and located in largely inef-
ficient areas of the objective space. Panel a2, b2, and c2 ex-
pand the yellow box to better compare the competitive solu-
tions produced by the three rounds. The most informed round
R3 consistently outperforms the other two in the 1977-1996
and wet-years datasets. In the dry years dataset, some R2 so-
lutions achieve slightly lower irrigation deficit compared to R3,
but with a fairly negligible difference. This analysis shows that
a minimally informed policy, i.e., the one produced in R1, can
incur in severe performance degradation when tested on new
hydrological conditions that differ from the dataset used for its
calibration. The addition of information in round R2 and R3
demonstrate the potential to greatly enhance the robustness of
control policies across highly diverse hydrological conditions. . 192

XIX





List of Tables

2.1 Set of candidate input features for the feature extraction step via
W-QEISS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Weights of the linear model calibrated on the optimal subset of
predictors. The predictor Moy (month of the year), providing
a seasonal information, is not directly included in the weights
optimization but it is accounted for by depurating the variables
of their annual cyclo-stationary mean. . . . . . . . . . . . . . . 39

2.3 Accuracy of the State Index, FRIDA linear, and FRIDA ELM
in reproducing the supply deficit, quantified in terms of coef-
ficient of determination R2, the Pearson correlation coefficient,
the RootMean Square Error (RMSE), and the fourth grade Root
Mean Square Error (R4MS4E). . . . . . . . . . . . . . . . . . . 40

2.4 State Index confusion matrix. . . . . . . . . . . . . . . . . . . . 41
2.5 FRIDA-Linear confusion matrix. . . . . . . . . . . . . . . . . . 41
2.6 FRIDA-ELM confusion matrix. . . . . . . . . . . . . . . . . . . 41

3.1 Set of candidate input features for WQEISS, comprehensive of
time information, observed variables, and indicators. Follow-
ing indicators’ name, in brackets, the variable(s) needed for their
computation are reported. . . . . . . . . . . . . . . . . . . . . 54

5.1 Pearson correlation coefficients betweenpredicted andobserved
winter precipitation PJFM with associated level of confidence
for each phase of NAO and ENSO (predictions depend on pre-
season SST anomalies). . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Operational value of the hydrologic forecast,meteorological fore-
casts, and observed preseason SST in terms of hypervolume in-
dicator (HV ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 Dataset of candidate policy inputs comprising perfect inflow fore-
casts in terms of cumulated inflows and anomalies at various
lead times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

XXI



List of Tables

A.1 Accuracy of the phase specific, univariate linear forecast mod-
els and associated significance score for the 16 tested climate
signals. Model accuracy in crossvalidation is measured via the
Pearson correlation coefficient. The Significance Score corre-
sponds to the percentage of Montecarlo random shuffling trials
that identify a smaller number of significantly correlated SST
grid points with respect to unshuffled data. . . . . . . . . . . . 172

B.1 Coefficient of determinationR2betweenpredicted andobserved
winter precipitation PJFM for different seasonal meteorological
forecast models in leave-one-out cross-validation. . . . . . . . 181

B.2 Pearson correlation coefficients betweenpredicted andobserved
winter precipitation PJFM with associated level of confidence
for each phase of five different climate signals (predictions de-
pend on preseason SST anomalies). . . . . . . . . . . . . . . . . 182

B.3 Pearson correlation coefficients betweenpredicted andobserved
seasonal precipitation (all 3-month periods) for each phase of
NAO and ENSO. . . . . . . . . . . . . . . . . . . . . . . . . . 183

XXII







1
Introduction

On August 6th, 2012, NASA’s Curiosity Rover landed on Mars as part of the
Mars Science Laboratory mission. Curiosity’s aim is to investigate Martian cli-
mate and geology, and search for possible past traces of water and planet hab-
itability in preparation for human exploration. Due to the long travel time of
signals between Earth andMars, the rover is not directly controlled by NASA’s
scientists, but is autonomous in the planet exploration. Curiosity is equipped
with a control unit that interacts with theMartian environment and learns how
to navigate it, trying to cover large portions of land, collect environmental sam-
ples, while maintaining stability, energy efficiency, and avoiding the planet’s
spots of soft soil (Welch et al., 2013). Unprecedentedly, Curiosity is also au-
tonomous in its target selection, and is able to identify, without any input from
Earth, the relevant rock and soil targets to collect and send back toNASA’s com-
puters (Francis et al., 2017).

Mathematically, the control problemofCuriosity canbedescribed as a highly
complexMarkovDecision Process (MDP) (Zilberstein et al., 2002; Huntsberger
et al., 2005) that would be infeasible to solve with a traditional exact control
problem formulation (e.g., Dynamic Programming). In these cases, Reinforce-
ment Learning (RL, Sutton et al., 1998) approaches have been established as
valid alternatives to handle peculiar challenges of the problem at hand, e.g., the
presence of numerous continuous state and control variables, uncertainty in
problem formulation, existence of significant disturbances, and multiple con-
flicting objectives.

Examples of control tasks characterized by one or more of these challenges
are numerous, and encompass different domains, e.g., autonomous robot con-
trol (Francis et al., 2017), self-learning artificial videogame players (Szita, 2012),
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self-driving cars (Shalev-Shwartz et al., 2016; Sallab et al., 2017), and the opera-
tion of data centers (Knight, 2017). A peculiar example of a control problem that
can comprise all the above challenges is the problem of designing a release pol-
icy for awater reservoir accounting formultiple water demands (e.g., Castelletti
et al., 2008a, 2010a, 2012, 2013), which will be the main focus of this thesis.

Albeit different in nature, the common characteristic of the cited control
problems is the presence of an agent whose goal is to learn an optimal action
policy via interactions with an environment. In particular, the agent performs
actions on the environment and collects the reward signals associated with the
environmental transition to a new state. By trials-and-errors, and continuous
collection of environmental samples, the agent’s aim is to learn an action policy,
or control policy, that maximizes its cumulated reward.

In the described learning mode, namely online learning, the agent becomes
proficient in the assigned task by trials-and-errors, directly performing actions
on an environment. Recently, there has been growing interest in deploying RL
algorithms to new, unconventional environments such as healthcare (Shortreed
et al., 2011), education (Mandel et al., 2014), or water management (Castelletti
et al., 2012). In these high-stakes situations, experimenting arbitrary actions
directly on the environment can easily generate unacceptable social costs. In-
stead, a dataset of information on the system is pre-collected or generated via
simulation, and employed to train the agent on a virtual environment until a
good policy is designed, namely offline learning (Mandel et al., 2016).

The most attractive characteristic of the RL framework is its highly autono-
mous nature in exploring the environment and discovering how to interactwith
it, yet, the computational time and number of interactions required to learn an
optimal control policy is exponential in the number of features that condition
an agent’s control policy. For instance, considering the control of a water in-
frastructure operating in a hydrological basin, the entire problem environment
comprises the water available in the whole basin under multiple forms: arti-
ficial and natural lakes, snow, groundwater, and topsoil water content. Addi-
tionally, part of the problem environment is also the atmospheric conditions
insisting on the watershed, including temperature, winds, air humidity, cloud
cover, and precipitation (Turner and Galelli, 2016; Denaro et al., 2017a). An
agent could potentially consider in its policy learning all signals detectable in
the environment, including derived spatial and temporal aggregations, indices,
modeled variables, and forecasts. Yet, likely, only a limited subset of features
are relevant for the task. On the one hand, overloading the agent with irrele-
vant or redundant information hampers the policy search process and results in
increased computational time and decreased policy quality. On the other hand,
the agent should have access to enough information to predict the environmen-
tal response to its actions, and learn a sufficiently complex policy (Hachiya and
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Sugiyama, 2010). The problemof defining an appropriate subset of features that
constitutes a low dimensional and highly informative policy input set is called
feature representation learning (e.g., Maillard et al., 2011). Specifically, a good
feature representation as defined by Böhmer et al. (2015) must be i) Markovian,
i.e., contain enough information to predict the expected state transition associ-
ated to an action, given the current state, ii) able to describe appropriately the
current state of the environment, iii) generalizable to unseen states, and, iv) suf-
ficiently low dimensional.

The recent breakthroughs in Deep RL techniques (i.e., employing deep neu-
ral networks in RL) has increased the capacity of controllers to interact with
high-dimensional feature spaces (e.g., Mnih et al., 2015; Lillicrap et al., 2015)
by autonomously learn directly from large datasets of raw observations, appar-
entlymitigating the need for feature representation (Si et al., 2017). However, in
order to produce reliable policies, suchmethods require a large amount of train-
ing data to discern true causal connections from the spurious ones thatmay ver-
ify in large datasets (Rusu et al., 2016). This data can be very costly to obtain, or
simply not available in real world control problems. Besides, without an infor-
mative and compact feature representation, it is unclear how the learning agent
is synthesizing the cloud of raw information into a policy, thereby producing
blackbox results that are strictly case-specific (Lesort et al., 2018). Besides, the
benefits of learning a reduced feature representation go beyond the simple con-
trol policy design. For instance, it can generate insights on the control problem
by identifying task-relevant features and drivers. Those insights can be gener-
alized to similar applications beyond the specific problem, and across domains
(deBruin et al., 2018), for instance by guiding feature representation learning on
related tasks, or even by informing the planning of a cost-effective monitoring
network in a new environment with similar characteristics. As a consequence,
for a more efficient and generalizable learning process, even Deep RL routines
can take advantage from operating on a compact and informative feature repre-
sentation, instead of a high-dimensional policy input space (Munk et al., 2016;
Lesort et al., 2018).

While being a defining topic since the earlier works on RL (Dominey, 1995;
Sutton et al., 1998), feature representation learning is still an open issue espe-
cially in real-world control applications. First, as the environments where au-
tonomous agents operate become more complex (i.e., contain more sensors of
increased diversity), the extraction of relevant features is increasingly challeng-
ing (Nouri and Littman, 2010). Additionally, real world control problems are
generally characterized by the coexistence of multiple conflicting objectives, a
major challenge for feature representation learning, given the need to identify
a policy representation that is optimal across objectives (Liu et al., 2014).

In the next section, we present a literature review of relevant past experience
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in feature representation for RL. Subsequently, Section 1.2 presents the aim of
the thesis, and Section 1.3 its structure.

1.1 Feature Representation Learning

The problem of feature representation in RL is generally tackled by pairing
Feature Extraction (FE) algorithms with Policy Search (PS) methods (Liu et al.,
2015; Lesort et al., 2018).

FE are a family of techniques that transform an original dataset into a more
compact, while still highly informative dataset (Cunningham, 2008). FE algo-
rithms arewidely used in supervised learning applications that aim at reproduc-
ing a given target variable. Three classes of FE algorithms are generally recog-
nized in supervised learning, namely filters, wrappers and embedded methods
(see, e.g., Cunningham, 2008, and reference therein). Filter algorithms evaluate
the relevance of a feature based on the intrinsic properties of the dataset, gen-
erally by computing an error metric between feature and target (e.g., Yang and
Pedersen, 1997; Sharma, 2000a). Wrappers evaluate the fitness of a variable en-
semble in reproducing the target given a learning machine (e.g., Taormina et al.,
2016). Embedded methods include dimension reduction as part of the learning
(e.g., Gashler et al., 2008). However, such taxonomy does not generalize well to
RL applications in the absence of a target variable.

In the following review, we consider the case of a complex control problem,
for which deriving an appropriate feature representation is not an obvious task,
and a good control policy must be learned offline, via a precollected dataset
of environmental signals that are considered as candidate policy inputs. This
dataset comprises heterogeneous andmulti-source observed andmodeled vari-
ables, disturbances, and their manipulations, e.g., linear and non-linear combi-
nations, forecasts, and aggregations, at a variety of time and spatial scales.

In the proposed taxonomy, we identify a priori, a posteriori, and online ap-
proaches to pairing FE and PS for feature representation and policy learning.

• A priori.
In the a priori approach, the FE step is antecedent and independent from
the PS step. The dimensionality of the dataset of candidate features is re-
duced on the basis of intrinsic properties of the controlled system, and
does not depend on the policy search process (Fig. 1.1). Three main a pri-
ori strategies can be identified.
The first strategy employs dimension reduction techniques to map the
dataset of candidate features into a lower dimensional latent space that
retains most of its information content, e.g., via autoencoders (e.g., Mori-
moto et al., 2008), or Principal Component Analysis (Nouri and Littman,
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Feature extraction:
1. Unsupervised dimension reduction on the dataset

2. Supervised dimension reduction using a given optimal control 
sequence as target 

3. Expert-based feature selection or extraction

Policy search

Feature 
representation

Control policy

A PRIORI

Dataset of 
candidate policy 

inputs

Figure 1.1: Feature representation learning taxonomy, a priori approach: feature
extraction precedes policy design.

2010). Such strategies are suitable for environments presenting high re-
dundancy, but, on the other hand, do not detect the presence of irrele-
vant variables that would add dimensionality and complexity to the fea-
ture representation without contributing to its information content.
In the second strategy, the optimal control sequence is known or can be
computed in advance for a given disturbance realization (e.g., via Deter-
ministicDynamic Programming). This sequence is used to derive themost
informative policy drivers by formulating the feature representationprob-
lem as a supervised FE problem, where the optimal control sequence is
employed as target variable (Kroon and Whiteson, 2009; Giuliani et al.,
2015; Denaro et al., 2017a).
The third strategy uses expert-based feature selection (e.g., Akrour et al.,
2012) or extraction (e.g., Sturtevant andWhite, 2006; Giuliani and Castel-
letti, 2019) to design a problem-specific representation. In some cases, the
expert-based representation can be rigorous and motivated by physical
characteristics of the controlled system. In the example of a water reser-
voir operated for flood control, the key information to the operations is
the time necessary to create a buffer volume for a possible incoming flood
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that can be derived from physical properties, e.g., reservoir or spillway ca-
pacity (Saavedra Valeriano et al., 2010; Raso et al., 2014).
In general, a priori feature representation is advisable whenever there is
sufficient knowledge on the system and the task to confidently devise a
dataset dimension reduction without needing any feedback from policy
design. This method, in fact, does not offer any guarantees on the opti-
mality of the chosen representation.

• A posteriori. This approach evaluates the suitability of a feature repre-

Feature extraction:
1. Exhaustive exploration of all possible features combinations

2. Hill climbing approaches
3. Identification of several promising representations

Policy search

Multiple feature representations

Alternative Policies

Choice of the best policy and information

Control policy

Policy search Policy search…

A POSTERIORI

Dataset of 
candidate policy 

inputs

Figure 1.2: Feature representation learning taxonomy, a posteriori approach: the
optimal policy representation is selected based on the performance of the policy
conditioned upon it.

sentation by assessing the performance of the policy conditioned upon it.
In general, multiple policies are designed with alternative feature repre-
sentations, and the desired representation is identified as the one produc-
ing the best performing policy (Fig. 1.2).
In principle, the entire combinatorial space of features subsets could be
exhaustively explored, yielding to an optimal solution. However, given a
subset of f features, the possible representations are 2f, which rapidly be-
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comes computationally intractable for non-trivial datasets (see, e.g.,Gaudel
and Sebag, 2010).
Alternatively, severalworks have developed strategies to navigate the com-
binatorial space of feature combinations guiding the exploration in the
direction of efficient subsets. For instance, hill-climbing approaches in-
crementally add features to the representation by testing a given minimal
input set with each additional candidate feature, and retaining the most
successful one (Wright et al., 2012). In some cases, this forward selection
is mixed with backward selection (Zhang, 2009; Tan et al., 2013).
Finally, an initial a priori reduction can be applied to select a limited num-
ber of candidate representations that are then exhaustively compared a
posteriori. Reduction techniques can once again be purely statistical, e.g.,
via autoencoders (Keller et al., 2006; Parr et al., 2007) or expert-based (Giu-
liani et al., 2016a; Castelletti et al., 2016).
In general, a posteriori feature representation is significantly more com-
putationally burdensome than the a priori counterpart, with a computa-
tional effort that grows exponentially with the dimension of the candidate
representation set. Yet, an exhaustive a posteriori search can be performed
with virtually no pre-existing knowledge of the task, and guarantees the
optimality of the derived feature representation.

• Online. In the on line approach, the FE step is simultaneous and code-
pendent from PS, and an efficient policy representation is learned in con-
junction to the policy (Fig. 1.3). In some cases, FE is completely em-
bedded and indistinguishable fromPS, which operates representation and
policy learning simultaneously and automatically. For instance, evolu-
tionary routines are employed to evolve populations of individual policies
with diverse representations by selecting and mating the most promising
ones until convergence (James and Tucker, 2004; Whiteson et al., 2005;
Tan et al., 2012). Other works approximate value function and informa-
tion set simultaneously (Kolter and Ng, 2009; Vigorito and Barto, 2009;
Tangkaratt et al., 2016). While this fully embedded approach is demon-
strated effective in some cases, the problem complexity it can handle is
generally limited (Loscalzo et al., 2015).
Alternatively, several authors suggest to separate representation and pol-
icy learning routines while maintaining interactions via a feedback loop
that allows information exchange between these routines, as a way to ligh-
ten the search (Wahlström et al., 2015; Munk et al., 2016; Shelhamer et al.,
2016; de Bruin et al., 2018; Lesort et al., 2018). This iterative online ap-
proach interleaves FE phases throughout the PS process, using progres-
sively refined feature representations to support policy learning. In these
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Supervised feature extraction

Policy design
(fully or minimally informed)

State, state transition 
space  or reward trajectory

Refined feature 
representation

Control policy

ONLINE

Dataset of candidate 
policy inputs

Figure 1.3: Feature representation learning taxonomy, online approach: policy
search is interleaved with feature extraction routines.

routines, the policy representation is either progressively complexified,
whenever it is possible to identify a meaningful minimal policy repre-
sentation (e.g., Castelletti et al., 2011a), or progressively simplified from
an initial representation comprising the entire input set (e.g., Van Hoof
et al., 2016). Representations are updated during the search via supervised
learning, by extracting features that approximate the state space (Curran
et al., 2016; Alvernaz and Togelius, 2017), state-transition space (Assael
et al., 2015; Van Hoof et al., 2016), or the reward trajectory (Munk et al.,
2016; Oh et al., 2017) of the policy learned thus far (for a comprehensive
review, see Lesort et al., 2018). The adjusted representation is then em-
ployed to refine policy search in a feedback loop between the two rou-
tines. While state-based feature extraction can identify variables that are
relevant for environmental transitions, these can sometimes be irrelevant
or distracting for the task, e.g., variables that change in response to exter-
nal drivers, with no relation with the control task (Loscalzo et al., 2012).
Reward-based selection is, instead, helpful to disentangle task-oriented
features, ultimately deriving a more task-tailored representation (Lesort
et al., 2018).
Computationally, iterative onlinemethods require the PS process to be re-
peated or adjusted multiple times with refined representations, making
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themmore expensive than a priorimethods. However, with respect to the
a posteriori approach, they can handlemuch larger information sets by em-
ploying supervised feature extraction that is significantly faster than test-
ing multiple policy input combinations.

1.2 Objective of the thesis

This thesis contributes to the literature of a priori, a posteriori, and online fea-
ture representation learning for the control problemofmulti-purpose reservoir
systems. The problem of defining optimal operating rules for water reservoirs
has long been the object of studies. Since the seminal work of Rippl (1883),
the field has been active for decades with several fundamental contributions
(e.g., Yakowitz, 1982; Yeh, 1985; Simonovic, 1992; Wurbs, 1993; Labadie, 2004;
Reed et al., 2013). However, this control problem still remains intellectually in-
triguing given the inherent difficulties emerging from its formulation and solu-
tion, ones that are rarely addressed in the broader literature of Reinforcement
Learning. Among them, (see, e.g., Castelletti et al., 2008a) 1) high non-linearities
emerge in the controlled system and the objective functions; 2) strong uncer-
tainties and disturbances affect the system and cannot be neglected; 3) the prob-
lem formulation and framing is often non-univocal (Quinn et al., 2017); 4) mul-
tiple and conflicting demands coexist; 5) water systems are facing new unprece-
dented pressures related to climate change and demand growth. Most exist-
ing water systems are currently operated with static rules conditioned on basic
feature representations including the day of the year and the reservoir storage,
although there has long been consensus around the fact that enriching the in-
formation set could enhance the system performance (e.g., Kelman et al., 1990;
Kim and Palmer, 1997a; Faber and Stedinger, 2001).

The coexistence of multiple control objectives is a major challenge to fea-
ture representation learning in multi-purpose water reservoir systems as com-
mon operating targets, e.g., flood protection and irrigation supply, can be vastly
heterogeneous in their dynamics and vulnerabilities. Flood events are gener-
ally caused by the onset of fast and intense wet meteorological extreme events,
while irrigation supply failures are the result of a prolonged period of water
shortage caused by slow-developing dry hydrological extremes, i.e., droughts.
In these systems, learning an appropriate feature representation becomes more
intricate. On the one hand, a flood-conservative policy benefits from short-
term information on the peak inflowmagnitude and timing, on the other, a wa-
ter supply-prone policy should be informed by the onset of a prolonged water
shortage to activate hedging strategies. Moreover, the tradeoff space between
these two opposite solutions is populated by an ensemble of policies that bal-
ances opposite control targets. One policy input set is thus inadequate to repre-
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sent the entire space of tradeoffs inmultipurpose systems, and feature represen-
tation should be searched tradeoff-dynamically, to appropriately characterize
the entire set of alternative control behaviors.

When the problem complexity is high, optimal feature representation might
become an elusive concept. In our contributions, instead of chasing optimality
per se, we identify a specific system criticality, and we search a feature repre-
sentation that has the potential to enhance the system resilience towards the
targeted failure. In the following collection of works, we improve water sys-
tem performance targeting drought emergencies, multisectoral conflicts, and
critical phases in dam development (i.e., filling).

This thesis is organized in three parts, following the taxonomy of a priori,
a posteriori, and online approaches. Each Part proposes novel methodological
contributions, discussed in the relative introduction, including:

• FRIDA, FRmework for Index-based Drought Analysis, that automatically
designs an index representing a surrogate of the drought conditions of a
basin, computed by selecting and combining relevant information about
thewater circulating in the systemvia feature extraction. FRIDA is specifi-
cally targeted tohighly regulatedwater systems, where naturalwater avail-
ability is conditioned by the operation of water infrastructures (e.g., dams,
diversions, pumping wells) and traditional drought indicators fail in de-
tecting critical events.

• A novel methodology that supports sustainable dam planning addressing
the critical initial filling phase of large dams. The core novelty of this work
consists in informing filling timing and operations anticipating hydrolog-
ical variability by analysing the climate oscillations that affect the region.

• CSI, Climate State Intelligence, a framework designed to capture the state
of multiple climate signals from global datasets of oceanic temperatures
to improve seasonal forecasts. These forecasts are designed and employed
to inform water system operations at the basin scale.

• NEMODPS, NeuroEvolutionary Multi-Objective Direct Policy Search, a
novel DPS routine that conjunctively searches the policy functional class
and its parameterization in a hyperspace containing policy architectures
and coefficients. NEMODPS specifically addressesMOproblemsproduc-
ing a tradeoff-dynamic architectural selection in one single run.

• AFS-NEMODPS, whereNEMODPS is combinedwith an Automatic Fea-
ture Selection routine to conjunctively and progressively refine feature
representation and policy design. Additionally, AFS-NEMODPS targets
MO problems, by tailoring feature representation and policy architecture
to different objective tradeoffs.
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1.3 Thesis structure

This thesis is organized as follows:

• Part 1. In this Part we explore via a priori feature representation the po-
tential of an unconventional feature representation that includes a mea-
sure of a basin’s drought state. In the first contribution, we develop a
framework for the automatic construction of basin-tailored drought in-
dices via feature extraction, namely, FRIDA (Chapter 2). In the second,
FRIDA is employed to design a drought index to inform the control of the
Lake Como dam, in an expert-based, a priori, fashion (Chapter 3). Lastly,
long term drought forecasts designed via big data analysis are applied to a
problem of water reservoir planning and initial dam filling, expanding the
concepts of informed problem representation beyond pure control appli-
cations (Chapter 4).

• Part 2. In Part 2 we compare, in a posteriori fashion, alternative feature
representations that comprise raw, processed, and highly processed data,
wherebyhighly processeddata represent amore immediately interpretable
information for policy design, but, on the other hand, are affected byhigher
modeling errors. The proposed analysis provides insights on how the level
of input data processing can affect the resulting policy performance (Chap-
ter 5).

• Part 3. This Part proposes a methodological contribution to iterative on-
line feature representation tailored to MO problems in two aspects. First,
we present a novel MO policy search routine that supports the online and
tradeoff dependent optimization of the policy architecture, namely NE-
MODPS (Chapter 6). NEMODPS is also applied in the second contribu-
tion in combination with an Automatic Feature Selection routine to ac-
comodate changes in the policy input set and learn a tradeoff-dynamic
feature representation (Chapter 7).

• Conclusions In Chapter 8, we summarize the achievements of this PhD
thesis, providing general conclusions, ideas and opportunities for further
research.
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This Part comprises three Chapters contributing to Multi-Objective (MO)
a priori feature representation learning for a problem of control, and planning
and control of multi-purpose water resources systems.

In the former, we explore the potential of enriching the information set con-
ditioning the control policy of a water reservoir by accounting for the basin
drought state. Droughts are responsible for water systems failures worldwide;
however, there is no universal consensus on how to define the indicesnomena,
or measure their duration and intensity. Additionally, in highly regulated wa-
ter systems, drought detection is challenged by the interplay of processes with
inconsistent dynamics and origins (natural or anthropic), making this indices-
nomenon basin-specific (Mishra and Singh, 2011).

The first work proposed here (Chapter 2) contributes a novel FRamework
for Index-basedDroughtAnalysis (FRIDA), for the designof basin-specific drought
tailored to highly-regulated water systems. The framework is validated with
a benchmark analysis against the successful institutional index-based drought
management system of the Spanish Jucar basin.

In the second work (Chapter 3), FRIDA is applied to the case study of the
Lake Como system, in northern Italy, and the resulting drought index demon-
strates good detection skills. Lake Como, operated for both flood protection
and irrigation supply, suffered unprecedented and recurrent drought events
in the last several years that disproportionately damaged the irrigation sector.
This situation is likely to worsen in the future as a result of an ongoing climate
change trend that amplifies dry extremes in the region. In an a priori expert-
based feature representation learning experiment, we re-designed the control
of the lake’s dam by including the drought index in the control policy repre-
sentation. While we have no guarantees of its optimality, a drought index is
a promising asset for policy design in the region, as it distills a multiplicity
of hydro-meteorological processes into a single value representing their con-
tribution towards droughts, and directly targets the cause of the system’s re-
cent failures. The performance of the drought-informed policy is contrasted
with that of a control policy relying on a basic representation, showing a Pareto
front-wide improvement that has the potential to inform drought management
strategies and reduce the conflicts between irrigation and flood sectors, yielding
cross-sectoral benefits.

The third work expands the concepts of feature representation beyond pure
control applications, to a problem of dam planning and initial filling. When
a new dam is built, the reservoir behind it is filled withholding a substantial
volume of water from downstream users, often generating critical water short-
ages and upstream-downstream tensions (Chapter 4). Previous studies on dam
filling considered standard non-adaptive strategies designed to impound (or re-
lease) a fixed reservoir inflow percentage or absolute volume (King and Block,
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2014; Wheeler et al., 2016). However, in climates that are highly affected by
climatic oscillations, hydrological variability plays a key role: if the filling oc-
curs during a drought, enhanced impacts are experienced by all sectors. The
novelty of our work consists in expanding the basic dam planning and filling
problem representations by considering information on long andmedium term
hydroclimatic variability. In particular, we consider the case study of the Omo-
TurkanaBasin, where the impacts of teleconnections have long been recognized
(e.g., Lanckriet et al., 2015). In a retrospective analysis of the recent filling of
Gibe III dam, we found how enriching the planning and filling problem repre-
sentation shows great potential in reducing basin-wide conflicts.

This Part contains the following works:

• Zaniolo, M., Giuliani, M., Castelletti, A.F., Pulido-Velazquez, M., 2018b.
Automatic design of basin- specific drought for highly regulated water
systems. Hydrology and Earth System Sciences 22, 2409-2424;

• Zaniolo, M., Giuliani, M., Castelletti, A., 2019. Data-driven modeling and
control of droughts. IFAC- Papers On Line 52, 54-60;

• Zaniolo, M., Giuliani, M., Burlando, P., Castelletti, A., 2020a When tim-
ing matters - misdesigned dam filling impacts hydropower sustainability.
Nature Sustainability (under review).
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2
Automatic design of

basin-speci�c drought indexes
for highly regulated water

systems

Abstract1

Socio-economic costs of drought are progressively increasing worldwide due
to undergoing alterations of hydro-meteorological regimes induced by climate
change. Although drought management is largely studied in the literature, tra-
ditional drought indexes often fail in detecting critical events in highly regu-
lated systems, where natural water availability is conditioned by the operation
of water infrastructures such as dams, diversions, and pumping wells. Here, ad-
hoc index formulations are usually adopted based on empirical combinations of
several, supposed-to-be significant, hydro-meteorological variables. These cus-
tomized formulations, however, while effective in the design basin, can hardly
be generalized and transferred to different contexts. In this study, we con-
tribute FRIDA (FRamework for Index-based Drought Analysis), a novel frame-
work for the automatic design of basin-customized drought indexes. In con-
trast to ad-hoc, empirical approaches, FRIDA is fully-automated, generalizable,
and portable across different basins. FRIDA builds an index representing a sur-

1This work has been published as: Zaniolo, M., Giuliani, M., Castelletti, A.F., Pulido-Velazquez, M., 2018b. Au-
tomatic design of basin- specific drought indexes for highly regulated water systems. Hydrology and Earth System
Sciences 22, 2409-2424
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rogate of the drought conditions of the basin, computed by combining all the
relevant available information about the water circulating in the system iden-
tified by means of a feature extraction algorithm. We used the Wrapper for
Quasi Equally Informative Subset Selection (W-QEISS), which features amulti-
objective evolutionary algorithm to find Pareto-efficient subsets of variables
by maximizing the wrapper accuracy, minimizing the number of selected vari-
ables, and optimizing relevance and redundancy of the subset. The preferred
variable subset is selected among the efficient solutions and used to formulate
the final index according to alternative model structures. We apply FRIDA to
the case study of the Jucar river basin (Spain), a drought-prone, highly regulated
Mediterranean water resource system, where an advanced drought manage-
ment plan relying on the formulation of an ad-hoc State Index is used for trig-
gering drought management measures. The State Index was constructed em-
pirically with a trial-and-error process begun in the ’80s and finalized in 2007,
guided by the experts from the Confederación Hidrográfica del Júcar (CHJ). Our
results show that the automated variable selection outcomes alignwithCHJ’s 25
years-long empirical refinement. In addition, the resultant FRIDA index out-
performs the official State Index in terms of accuracy in reproducing the target
variable and cardinality of the selected inputs’ set.

2.1 Introduction

A drought is a slowly-developing natural phenomenon that occurs in all cli-
matic zones and can be defined as a temporary significant decrease of water
availability (Tallaksen and Van Lanen, 2004; Van Loon and Van Lanen, 2012).
Drought impacts can propagate to virtually every water-related sector, such as
farming and livestock production, industry, power generation, and public wa-
ter supply (Spinoni et al., 2016). During the period 1976-2006, droughts in Eu-
rope affected more than 11% of the population, and their economic cost was
estimated to exceed €100 billion, considering damages endured by consumers,
tourism, industry, energy, and agricultural sectors. Moreover, climate change
is expected to produce longer, more frequent and severe drought events, es-
pecially in southern Europe (Giorgi and Lionello, 2008; Spinoni et al., 2016;
Marcos-Garcia et al., 2017). Recent drought cost trends show a significant in-
creasing tendency, reaching an average of €6.2 billion/year in the years 1991-
2006 (EU, 2007). These estimates, however, only account for the economic
damages, (i.e., situations in which a water deficit induced by droughts affects
production, sales and business in a variety of sectors), neglecting environmen-
tal and social costs (Spinoni et al., 2016). A comprehensive quantification of
drought impacts is, in fact, complicated by the considerable lag occurring be-
tween the realization of dry climatic conditions and the impacts on economy
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and society (Changnon, 1987; Stahl et al., 2016).
We can distinguish four types of droughts: meteorological, agricultural, hy-

drological, and operational (or anthropogenic) drought, depending on the time
horizon and the variable of interest. (Heim Jr, 2002; Mishra and Singh, 2010;
Pedro-Monzonìs et al., 2015; Spinoni et al., 2016). The development chain of
droughts through time is exemplified in Figure 2.1.

Precipitation	deficiency	
(amount,	intensity,	

timing)

High	temperature,	
winds,	low	humidity	and	
diminished	cloud	cover

Increased	evaporation	
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runoff,	percolation	and	
groundwater	recharge

Soil	water	deficiency

Plant	water	stress,	
reduced	biomass	and	

yield

Reduced	streamflow,	inflow	
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wildlife	habitats
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Figure 2.1: Development chain of droughts through time. Meteorological drought,
defined as a lack of precipitation over a region for a certain period of time, devel-
ops in the short term. Agricultural drought accounts for the plants and crops water
stress; develops in the medium term. Hydrological drought, defined as a period of
low streamflow in watercourses, lakes and groundwater level below normal, de-
velops in the long term. Operational drought, defined as a period with anomalous
supply failures in a developed water exploitation system, develops in the long term.
Figure adapted from Spinoni et al. (2016) to include Operational drought.

A meteorological drought is defined as a lack of precipitation over a region
for a certain period of time (Mishra and Singh, 2010). It develops over the short
term (1-3 months) and can extend on longer periods, and is usually associated
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with the global behavior of the atmospheric circulation (Pedro-Monzonìs et al.,
2015). Precipitation is always the core variable to characterize this drought type,
with most meteorological drought indexes based on precipitation only (Byun
and Wilhite, 1999; McKee et al., 1993). In some cases, especially in regions
where droughts can be strongly influenced by evapotranspiration, additional
variables such as temperature trends are also considered (Vicente-Serrano et al.,
2010; Lorenzo-Lacruz et al., 2010).

Agricultural drought affects, and is defined through, the state of soils and
crops in the medium term (3-6 months) (Pedro-Monzonìs et al., 2015). This
drought type manifests itself with dryness in the root zone and, although rain-
fall deficiency is a primary cause, precipitation alone is often not enough to de-
scribe it. Approaches to characterize agricultural droughts focus on monitor-
ing soil water balance and the subsequent deficit (Palmer, 1965; Narasimhan
and Srinivasan, 2005; Hao and AghaKouchak, 2013). The factors involved in
this case include vegetation type, soil water holding capacity, wind intensity,
evapotranspiration rate, and air humidity (Heim Jr, 2002). In regulated systems,
agricultural droughts can be usually restrained with irrigation (Keyantash and
Dracup, 2002).

Hydrological drought is defined as a period of exceptionally low flows inwa-
tercourses, and lakes and groundwater levels below normal (Dracup et al., 1980;
Van Loon and Van Lanen, 2012). Related indicators mainly focus on stream-
flow, as the by-product of every hydro-meteorological process taking place in
water catchments (Heim Jr, 2002; Vicente-Serrano and López-Moreno, 2005).
More comprehensive indexes can also include snowpack extent, reservoir stor-
age, and groundwater level (Shafer and Dezman, 1982; Keyantash and Dracup,
2004; Staudinger et al., 2014). This drought takes place after a prolonged time
of low precipitation and deficient soil moisture and its effects are witnessed in
the long-term (6-12 months) (Zargar et al., 2011).

These three categories refer to droughts as a natural hazard, i.e., a threat of
a naturally occurring event that negatively effects people or the environment
(Gustard et al., 2009; Van Loon and Van Lanen, 2013; Laaha et al., 2016). On the
other hand, particularly in highly regulated contexts, a dry spell may be caused
by natural scarcity of precipitation as well as inconsiderate overuse and/ormis-
management of water resources. Another interesting way to approach drought
analysis is, therefore, through the concept of operational (or anthropogenic)
drought. Operational drought is defined as a period with anomalous supply
failures in a developed water system (Pedro-Monzonìs et al., 2015). It is caused
by a combination of two factors: lack of water resources and excess of demand
(Mishra and Singh, 2010; AghaKouchak, 2015b). Moreover, it can be further
worsened by an inadequate design and management of the water exploitation
system and its operating rules (Mishra and Singh, 2010). Operational droughts
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indicators aim at comparing water availability to human water needs and serve
as ameasure ofwaterwell-being, rather than ameasure of natural fluctuation as
in the case of meteorological, agricultural, and hydrological indicators (Sullivan
et al., 2003; Rijsberman, 2006). In the computation of operational drought indi-
cators, the available water is often represented by the streamflow, or a fraction
of it, and the water need is usually quantified by a standard per capita or by a
fixed nominal demand (Falkenmark et al., 1989; Raskin et al., 1997). Depending
on the application scope, operational drought indicators are either river basin
specific (Garrote et al., 2007; Haro-Monteagudo et al., 2017) or used in studies
covering continental or global areas with an annual time resolution (Yang et al.,
2003; Oki and Kanae, 2006; Alcamo et al., 2007; Kummu et al., 2010).

When considering a highly regulated water system, i.e., a system where nat-
ural water availability is altered by the presence and operation of water in-
frastructures, traditional drought indicators (e.g., SPI, Standardized Precipi-
tation Index; SPEI, Standardized Precipitation and Evapotranspiration Index;
SRI, Standardized Runoff Index) present different shortcomings. On the one
hand, meteorological, agricultural, and hydrological indexes often fail in repre-
senting drought conditions when regulated lake releases and/or groundwater
pumping filter water availability and play a role in magnifying or smoothing
drought impacts. Anthropized systems have, in fact, a demonstrated ability to
endure meteorological droughts for months, or even years, without suffering
consequences, i.e., without incurring in a situation of water shortage perceived
by the users. An effective planning and management of water resources en-
ables such systems to wisely exploit the combined storage capacities of surface
and groundwater reserves and restrain drought (Rijsberman, 2006; Haro et al.,
2014a). On the other hand, operational drought indexes are often designed to
operate analysis over coarse spatiotemporal resolutions, thus resulting unsuit-
able for a real time basin level drought detection, characterization, and man-
agement. Highly regulated systems need ad hoc index formulations tailored
on basin characteristics (Wanders et al., 2010; AghaKouchak, 2015a), combin-
ing human-controlled variables (e.g., reservoirs and groundwater levels) with
uncontrolled hydro-meteorological variables (e.g., precipitation, temperature,
natural inflows) to reflect both regulation effects and natural fluctuations in the
basin.

A paradigmatic example of a practical and systematic policy for the iden-
tification and mitigation of operational droughts is provided by Spain, where
public River Basin Management authorities (Confederaciones Hidrográficas)
are bind by Law (Ministerio delMedio Ambiente, 2000) to design basin-specific
State Indexes associated with each main river basin (Ie, Índice de Estado). Most
of the basins in Spain are highly regulated and these State Indexes are com-
puted as a weighted average of relevant observed variables at selected control
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points, e.g., precipitation, streamflow, reservoir level, and groundwater level.
Each river basin authority has designed its customized formulation for the State
Index which reflects the hydroclimatic conditions and the water uses of the re-
gion (Estrela and Vargas, 2012). The value of the State Indexes is monitored
monthly and used to trigger water demand and supply measures when entering
a drought period, according to the district Drought Management Plan (DMP)
(Garrote et al., 2007; Gómez and Blanco, 2012; Haro et al., 2014a).

Each DMP and the relative State Index formulation is the result of a long
collaborative process including public participation, basin experts, and stake-
holders, and providing an effectivemulti-sector partnership approach forman-
aging drought risk (Carmona et al., 2017). State Indexes are the result of a long
trial-and-error process mostly begun in the eighties, through which the vari-
able choice and combination have been progressively adjusted to best suit the
basin drought management requirements. In the case of the Jucar basin, for
instance, the final form of the associated index was established in 2007 with a
report by the Confederación Hidrográfica del Júcar (CHJ, 2007b), after 25 years of
refinements. This long empirical process produced an index formulation tai-
lored for the Jucar system, which cannot be generalized to different contexts.
Similarly, other main Spanish river basins (e.g., Duero, Ebro, and Guadalquivir
river basins) underwent an analogous process and formulated their own State
Indexes (CHD, 2007; CHE, 2007; CHG, 2007).

Since their establishment in 2007, State Indexes have represented the most
consistent and extensively applied paradigm of index-based drought manage-
ment. Thus, Ies constitute the state of the art for basin-customized operational
drought indexes. A reasonable research question is whether the empirical pro-
cess leading to their design can be formalized, automated, and easily exported
to different water systems.

In this study, we contribute the FRamework for Index-basedDroughtAnaly-
sis (FRIDA),which allows the automatic constructionof basin-customizeddrought
indexes for highly regulated water systems. In contrast to traditional empiri-
cal approaches, FRIDA uses an advanced feature extraction method that com-
pletely automatizes and generalizes the variable selection process for the con-
struction of the index. The selected variables are then combined into a new in-
dex that can effectively represent the state ofwater resources in the basin aswell
as support the characterization of drought conditions. The feature extraction
step is key in FRIDA as it guides the construction of a skillful (highly accurate)
and parsimonious (with low input dimensionality) drought index by perform-
ing the selection of the best input subset to build a model of a predefined target
output representing the drought conditions in the basin.

Specifically, FRIDA is structured in three steps. First, we define a target vari-
able, an appropriately chosen water deficit acting as a proxy for the drought
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conditions of the consideredbasin (e.g., water supply deficit, soilmoisture deficit),
and a dataset of hydro-meteorological variables and traditional drought indi-
cators. Second, we identify Pareto optimal subsets of variables balancing pre-
dictive accuracy and parsimony. In this study, we employed the Wrapper for
Quasi-Equally Informative Subset Selection (W-QEISS) to perform this oper-
ation (Karakaya et al., 2015; Taormina et al., 2016). Traditional variable selec-
tion algorithms are conceived to select only one optimal subset of predictors,
while W-QEISS identifies one subset with the highest predictive accuracy, and
multiple subsets with similar information content, thus providing more infor-
mative results. Moreover, W-QEISS includes two metrics of relevance and re-
dundancy in the search process in addition to the commonly used objectives of
accuracy and cardinality, fostering the diversification among the provided so-
lutions (Sharma andMehrotra, 2014). Third, we choose the preferred predictor
subset among the non-dominated solutions based on accuracy, cardinality (i.e.,
dimensionality), and, possibly, additional factors, including cost and availabil-
ity of the variable observations. The subset is finally used to calibrate a chosen
model class with respect to the target variable, and the drought index is thus
completed.

The potential of the proposed framework is demonstrated on the highly reg-
ulated Mediterranean basin of the Jucar river, in eastern Spain, where the State
Index-based droughtmanagement systemprovides an ideal benchmark for test-
ing FRIDA index (Andreu et al., 2009; Haro et al., 2014b; Pedro-Monzonís et al.,
2014; Macian-Sorribes and Pulido-Velazquez, 2017; Haro-Monteagudo et al.,
2017;Carmona et al., 2017). The Jucar State Indexprovides guidelines for FRIDA
application. First, it facilitates the target variable choice and candidate variable
retrieval, and, second, it allows the validation of FRIDA predictors selection,
and index design steps. FRIDA and State indexes are compared in terms of ac-
curacy in reproducing the drought conditions of the basin, number of variables
required for their computation, and general reliability and portability of the
methods. The outcome of this analysis consists in demonstrating the validity of
a completely automated procedure (i.e., no information on system topology or
basin characteristics is required) in recognizing the main drought drivers, and
predicting a deficit with accuracy and limited computational effort.

2.2 Methods and tools

2.2.1 Framework for Index-based Drought Analysis

The FRamework for Index-based Drought Analysis (FRIDA) designs drought
indexes in three steps as reported in Figure 2.2.

The Identification of basin characteristics is a preliminary empirical process,
which consists in the selection of a target variable and the collection of candi-
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1)	Identification	
of	basin	
characteristics

2)	Feature	
extraction

Input	Variable	Selection	

Definition	of	several	Pareto	
efficient	predictors’	subset

3)	Drought	Index	
modeling

Choice	of	the	preferred	
subset

Calibration	of	the	selected	
model	class	

Drought	Index

Highly	regulated	basin	

Figure 2.2: FRamework for Index-basedDrought Analysis (FRIDA): 1. Identification
of basin characteristics, 2. Feature Extraction, 3. Drought Index modeling.
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date predictors. The target variable is an appropriately chosen water deficit,
representative of the actual drought conditions in the basin (e.g., water sup-
ply deficit, soil moisture deficit). The dataset of predictors contains the candi-
date features to reproduce the target variable and consists of observed hydro-
meteorological variables and composite drought indicators over different spatio-
temporal scales.

Target variable and candidate predictors constitute the input to the Feature
Extraction step, the second building block of the framework. This block em-
ploys an Input Variable Selection (IVS) algorithm that explores the space of can-
didate predictors to select Pareto efficient subsets of predictors with respect to
multiple assessment metrics. Most commonly, these metrics quantify the sub-
set accuracy in reproducing the target and the parsimony (i.e. the cardinality of
the subset), crucial characteristics for an operational index expected to balance
precision and ease-of-use. In some cases, also relevance and redundancy can
be considered in order to explore the input space more effectively. In partic-
ular, the metric of relevance favors highly informative subsets (i.e., constituted
by predictors that are highly correlated with the target), while the redundancy
metric ensures low intra-subset similarity. The objectives of relevance and re-
dundancy are essential to stimulate the search process towards the identifica-
tion of a diversified and comprehensive set of solutions, which would not be
achieved optimizing cardinality and accuracy only.

In this work, we use an advanced IVS algorithm called Wrapper for Quasi-
Equally Informative Subset Selection (W-QEISS). W-QEISS provides as output
a number of efficient subsets that are collected in a Selection Matrix.

In the Drought Index modeling block, the preferred efficient solution is se-
lected by the user, balancing the trade-off between competing objectives, and,
possibly, considering additional operative needs neglected in the IVS search
(e.g., cost and reliability of the variable monitoring). Lastly, an appropriate re-
gressor is fit to the sample data set of Pareto efficient inputs and the target vari-
able. The choice of model class is determined by the application of interest. In
general, highly non-linear learning machines like Artificial Neural Networks
(ANNs) provide a good balance between accuracy and flexibility. On the other
hand, such black-box models lack of intuitive interpretability and might result
unsuitable for applications that affect several stakeholders and require a wide
acceptance of the tool to be employed (Estrela and Vargas, 2012). In these cases,
a simpler model (e.g., a linear model) might be preferred, as it grants an im-
mediate understanding of the physical meaning, though at the price of poorer
approximation skills.
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2.2.2 Feature Extraction via Wrapper for Quasi-Equally Informative
Subset Selection

Feature extraction techniques, employed in the second block of FRIDA, are an
ensemble of data pre-processing algorithms that transform the original input
data set into a more compact, while still highly informative, subset (Cunning-
ham, 2008). Among the feature extraction algorithms, Input Variable Selection
(IVS) techniques specifically address the problem of the reduction of the in-
put space by identifying the relevant predictors to be used to calibrate a model
of the target variable (Bowden et al., 2005). There are two main classes of IVS
techniques: Filters andWrappers. Filters evaluate the relevance of each variable
separately, computing an errormetric on the features (Yang andPedersen, 1997;
Sharma, 2000a; Galelli and Castelletti, 2013). Wrappers, on the other hand,
assess the relevance of a variables ensemble, evaluating the prediction perfor-
mance of a given learning machine calibrated on the input set, and thus consid-
ering the interactions and dependencies between variables (Guyon, 2003). In
terms of performance, Wrappers are often more accurate than Filters, although
computationally more intensive (Galelli et al., 2014).

In this study, we used the Wrapper for Quasi-Equally Informative Subset
Selection (Karakaya et al., 2015; Taormina et al., 2016). TheW-QEISS algorithm
receives as input the set X of candidate predictors, i.e., X = {xi, . . . , xnX} and
the trajectory y of the target variable. The algorithm is composed of three main
steps (Karakaya et al., 2015), as synthesized in Figure 2.3:

• Step 1: a set A ⊆ X of Pareto-efficient solutions is built according to the
four-objective functions of relevance f1(·), redundancy f2(·), cardinality
f3(·), and accuracy f4(·). A global multi-objective optimization algorithm
is employed to explore the space of the possible subsets. In this study,
we use the self-adaptive Borg MOEA (Hadka and Reed, 2013), which has
shown to outperform other benchmark evolutionary algorithms in terms
of number of solutions returned, ability to handle many-objective prob-
lems, ease-of-use, and overall consistency across a suite of challenging
multi-objective problems (Reed et al., 2013). A learningmachine is used to
compute the predictive accuracy f4 of each set. In this study, we employ
theExtremeLearningMachines (ELMs) (Huang et al., 2006a), belonging to
the family of Artificial Neural Networks, which were shown to provide a
good performance in terms of accuracy and flexibility in a variety of prob-
lems while resulting up to thousand times faster than benchmark feed-
forward ANNs (Huang et al., 2012). ELMs, in fact, bypass the time con-
suming gradient-based search of optimal neurons parameters required by
traditional ANN techniques, by defining randomly parameterized hidden
nodes, and subsequently optimizing their output weights. Such optimiza-
tion is solved through a one-step matrix product and essentially amounts
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Generate	population	of	input	
subset

For	each	subset,	run	a	non-linear	
regression	using	ELM

1)	Generate	Pareto	
efficient	solutions

2)	Select	high	
accuracy	subsets

Discard	solutions	whose	accuracy	
is	lower	than	a	predefined	

percentage	with	respect	to	the	
highest	accuracy	solution

3)	Eliminate	
inferior	subsets

Eliminate	𝑆" if	it	is	a	superset	of	𝑆#
and	does	not	score	higher	

accuracy

Quasi-equally	
accurate	subsets

Evaluate	accuracy,	cardinality,	
relevance,	redundancy

Max	iteration	
reached?

no

Target	variable	 Candidate	predictors
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Figure 2.3: W-QEISS flowchart. Step 1: generate Pareto efficient solutions with
respect to the four objectives of relevance, redundancy, cardinality, and accuracy;
Step 2: select high accuracy subsets; Step 3: eliminate inferior subsets.
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to learning a linear model.
However, we do not expect the choice of the learning machine or MOEA
tobe crucial for the attainment of the result. A different benchmarkMOEA
(e.g., NGSAII, MOEAD, eps-MOEA) is likely to achieve a comparable re-
sult, although requiring a possibly significant effort in the manual cali-
bration of the evolution parameters, which is automated in Borg MOEA.
Similarly, otherANNtechniques could in principle be substituted toELM,
although incrementing the computational time to possibly unbearable lev-
els, given the multiple calibration and validation processes reiterated in
WQEISS.

• Step 2: Among the Pareto-efficient subsets, the maximum value of accu-
racy f∗4 is identified, associatedwith subsetSf∗4 ⊆ A. Then, solutions with
significantly lower accuracy are discarded and from ensemble A, obtain-
ing A‹. The ensemble A‹ contains quasi-equally informative subsets with
respect to Sf∗4 ⊆ A‹ ⊆ A, i.e., subsets that have (almost) the same pre-
dictive accuracy with respect to a given model class. When the dataset of
candidate variables presents significant correlation among features, nu-
merous subsets characterized by awide range of cardinalities are generally
available to achieve a relative small range of accuracies. This is often the
case in environmental problems, where spatial and temporal correlation
of hydro-meteorological variables and associated indicators is significant.
Therefore, at this stage, the accuracymetric is used to retain accurate solu-
tions only, provided that they feature different cardinalities and predictors
combinations.
Formally, on the basis of an predefined small value of δ, Si is δ-quasi
equally informative to subset Sf∗4 if

f4(Si) > (1 − δ)f∗4 for 0 6 δ 6 1 (2.1)

• Step 3: The final ensembleA∗δ is computed after the elimination of the in-
ferior subsets. The subset Sj is considered inferior to Si, if it is a superset
of Si, and does not score higher accuracy. Formally
Si ⊂ Sj and f4(Si) > f4(Sj).
In this step, all subsets contained inAδ are compared in order to find pos-
sible inferior subsets and eliminate them. By doing this, the final ensemble
of δ-quasi equally informative subsetsA∗δ is provided as output of the pro-
cedure and reported in a Selection Matrix.

The W-QEISS algorithm differs from a traditional IVS approach as it intro-
duces the consideration that, for a given cardinality, multiple subsets of vari-
ables can have almost indistinguishable accuracy performance. The outcome of
W-QEISS variable selection is thus not a single most accurate subset for each
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cardinality, but a pool of δ-quasi equally accurate solutions among which the
preference can be determined by other metrics not directly considered in the
optimization (e.g., cost and reliability of the variable observation).

Another innovative feature of the W-QEISS approach relies on the formu-
lation of a four objective optimization problem. Beside the two traditional ob-
jectives of accuracy ad complexity commonly employed inWrappers,W-QEISS
includes other two metrics of relevance and redundancy (Sharma and Mehro-
tra, 2014). The maximization of accuracy ensures a precise reproduction of the
data, while the minimization of cardinality aims at simplifying the final mod-
els. These characteristics are key for an operational index, expected to bal-
ance precision and ease-of-use. Relevance and redundancy optimization is in-
stead an asset for an effective subset search process, as it fosters the diversifica-
tion of the solutions explored within the MOEA algorithm, guaranteeing low
intra-subset similarity, and high information content of the solutions. A two-
objective search based on cardinality and accuracy only would, in fact, identify
optimal solutions, but at the same time disregard a number of quasi-equally
informative subsets with an almost identical operational behavior. The identi-
fication of such alternative solutions, nevertheless, grants flexibility and a mul-
tiplicity of options for the expert-based choice of the preferred subset, where
certain combinations of predictors can be favored according to case-specific
operative purposes, e.g., more robust or less costly data gathering process, en-
hanced acceptability or immediacy of the index.

Three of the four objectives formulationsmake use of the Symmetric Uncer-
tainty (SU), a measure of the dependence and similarity between two variables
(Witten and Frank, 2005). SU assumes values between 0 (independent variables)
and 1 (complete dependence) and is computed for two featuresA and B as:

SU(A,B) =

[
2 · (H(A) +H(B) −H(A,B))

H(A) +H(B)

]
(2.2)

where H(·) is the entropy of variable (·) (see for instance Scott (2012) for the
definition).

WQEISSbases its objectives formulationon information theory, as discussed
in Karakaya et al. (2015). Information theoretic criteria (e.g., SU, Mutual infor-
mation, and PartialMutual Information) do not assume any functional relation-
ship between the variables and thus result well suited to quantify the depen-
dence between two variables in any modeling context (MacKay, 2003). Other
objectives formulations could in principle be explored, for instance substitut-
ing the use of Symmetric Uncertainty with more traditional correlation coef-
ficients, although with the risk of losing generality by assuming linear depen-
dence between variables.

The four assessment metrics are formulated as follows:
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1. Relevance f1(S): to be maximized, is formulated as:

f1(S) =
∑

xi∈S⊆X

SU(xi, y) (2.3)

where the term SU(xi, y) represents the symmetric uncertainty between
the feature xi and the output y. The relevance is therefore a measure of
the explanatory power of the features with respect to the output.

2. Redundancy f2(S): to be minimized, is formulated as:

f2(S) =
∑

xi∈S⊆X

SU(xi, xj) (2.4)

where SU(xi, xj) represents the SU between two features xi and xj. High
redundancy thusmeans high similarity between the features. Byminimiz-
ing the redundancy the algorithm ensures that the search will be oriented
towards the selection of subsets with mutually dissimilar features.

3. Cardinality f3(S): to be minimized, is formulated as:

f3(S) = |S| (2.5)

where |S| is the number of predictors within the subset. Its minimization
guarantees that the resulting model will not be unnecessarily complex.

4. Accuracy f4(S): to be maximized, is formulated as:

f4(S) = SU(y, ŷ(S)) (2.6)

where SU(y, ŷ(S)) is the correlation, measured in SU, between the ob-
served output y and the prediction ŷ(S) obtained from the model.

2.3 Case Study: the Jucar river basin

The Jucar river basin occupies an area of 42,989 km2 located in the eastern part
of Spain (see Figure 2.4). The territory is mainly mountainous in the interior
part, while the center-eastern section shows a vast plain system ending into
the Mediterranean sea. The territory is characterized by various climatic con-
ditions of which sub-humid and semi-arid are largely dominating. The main
rivers of the area are Jucar, Mijares, and Turia, covering all together more than
80% of the total mean areal flow. The subterranean runoff is very relevant, pro-
viding 74% of the contribution to the river network (CHJ, 2007b).

Since the mean value of the total annual runoff (1,747 Mm3 from 1940 to
2009) almost equals the annual water demand (1,640 Mm3), water scarcity and
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droughts have long been perceived as primary issues for agricultural, social,
economic, and environmental reasons. On the other hand,meteorological droughts
in the Jucar basin can be endured for several years without suffering any con-
sequences, due to the highly regulated water system set in the area. There are
three main large surface reservoirs in the region: Alarcón, Contreras, and Tous
(maximum capacity: 1,118 Mm3, 444 Mm3, and 378.6 Mm3, respectively). In
addition, most aquifers in the basin are intensively exploited to support agri-
cultural supply and are currently experiencing a significant depletion due to
over-drafting, which, in turn, affects the rivers flow.

In such a highly regulated basin with long overyear storage, water scarcity is
not a necessary condition derived from a meteorological drought (CHJ, 2007b;
Carmona et al., 2017). Thus, traditional drought indexes fail in detecting the
timing and severity of the incidence of a drought, and an ad-hoc monitoring
system was conceived to properly capture the hydrological status of the catch-
ment. The monitoring system is based on the formulation of a basin specific
index, namely the State Index (Ie, Índice de Estado). The State Index was con-
structed empirically by the Jucar river basin authority (CHJ), with the intent of
highly correlate to water scarcity conditions in the basin, in order to support
drought management and the implementation of the actions considered in the
Drought Management Plan (CHJ, 2007b). For that purposes, the index is de-
veloped after identifying the water sources for every main demand in the basin
and the selection of representative variables to characterize the status of those
sources.

The total State Index Ie is computed as a weighted mean of 12 partial Ie.
Partial Ies are obtained by normalizing hydro-meteorological indicators (Vi)
belonging to the following categories (see Figure 2.4):

1. Themeanmonthly storage of one, or more reservoirs combined [Mm3] (2
storage indicators);

2. The mean streamflow contribution of the last 3 months [Mm3] (4 flow
indicators);

3. The mean monthly piezometric level [m] (3 piezometer indicators);

4. The areal precipitation of the last 12 months [mm], computed averaging
the values observed by multiple pluviometers (3 precipitation indicators).

Each indicator (Vi) is consequently normalized to obtain 12 partial Ie values:

Ie =


1
2

[
1 +

Vi− Vm

Vmax− Vm

]
if Vi > Vm

Vi− Vmin

2 (Vm− Vmin)
if Vi < Vm

(2.7a)

(2.7b)
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Figure 2.4: Map of the Jucar Basin river network. The colored markers represent
the variables considered for the State Index calculation. S: reservoir storage, F:
streamflow, Pz: piezometer, Pl: pluviometer. Streamflow and piezometers markers
are located in correspondence to the relativemeasurement station, while storage and
pluviometers markers are put in the center of the polygon formed by connecting the
multiple measurement points used for their computation.

32



2.4. Numerical results

where Vm, Vmax and Vmin are the mean, maximum, and minimum values of
each indicator time series. The storage and precipitation monthly time series
are normalized with respect to maximum and minimum values of the consid-
ered month, while piezometers and river flows are normalized with respect to
the complete historical time series. The partial Ies result as normalized indexes
between 0 and 1, where Ie > 0.5 indicate higher than average value of Vi. Once
the partial Ie have been computed, they are aggregated as a weighted sum to
obtain the total Ie. The weights are established according to the demand class
associated to the indicator, ranging from class A (demand > 100 hm3/year) to D
(demand < 10 hm3/year).

The Jucar river basin represents aMediterranean drought prone highly reg-
ulated basin, featuring one of the most innovative and effective drought man-
agement systems, relying on the formulationof an empirically constructed basin
specific drought index (Andreu et al., 2009;Haro et al., 2014b;Haro-Monteagudo
et al., 2017; Carmona et al., 2017). As a consequence, it represents the state of
the art for basin-customized operational drought indexes employed for drought
restraining purposes, and a remarkable benchmark to test and validate the pro-
posed FRIDA methodology.

2.4 Numerical results

For the presentation of the numerical results we follow the workflow proposed
inFigure 2.2 . The length of the dataset available for the experiments isN = 174
data points, corresponding to monthly values in the period 1986-2000, and
nx = 28 number of candidate predictors were used (Zaniolo et al., 2018a). The
parameterization of W-QEISS was adjusted using available guidelines given by
Huang et al. (2006a), Karakaya et al. (2015), and a trial-and-error process. For
Borg MOEA, we set the number of function evaluation (NFE) equal to 2 mil-
lions, while the number of hidden neurons in the ELM, presenting a sigmoidal
activation function, was set to 30. A k-fold cross-validation process (with k =
10) was repeated 5 times and the average resulting value was used to estimate
the predictive accuracy of eachmodel. TheW-QEISS experimentwith such set-
ting was run 20 times to filter out the random component of the process, and
the results presented below are obtained by merging the Pareto fronts obtained
by each repetitions into a final Pareto front of non-dominated solutions.

2.4.1 Identi�cation of basin’s characteristics

In the first report concerning the Ie development (CHJ, 2007a), the index was
validated for the time span from January 1986 to June 2000 against the supply
deficit recorded in the basin with respect to agricultural and urban water de-
mand, and the procedure for the State Index computation was approved. To
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ensure comparability between the Ie and the FRIDA constructed index, we de-
cided to employ the same supply deficit as target variable for the application
of FRIDA approach to the Jucar case study. The Jucar supply deficit employed
in this work was simulated via AQUATOOL model (Andreu et al., 1996). The
model can run in simulationmodewith amonthly time step, and it is conceived
in the form of a flow network with oriented connections reproducing water
losses, hydraulic relations between nodes, reservoirs and aquifers, and flow lim-
itations based on elevation. Within AQUATOOL, complex processes such as
evaporation and infiltration are effectively reproduced. The modeled supply
deficit, employed as target variable, represents the monthly nominal shortage
of water conveyed to the irrigation districts, and is only quantifiable a posteri-
ori, when the water shortage has already jeopardized the fields. On the other
hand, a drought index can be constantly monitored, and thus represents a valu-
able management tool for restraining drought impacts and identifying effective
drought management strategies.

Thedatabase of candidate input variableswas assembled retrieving the avail-
able observed variables in the basin and computing traditional drought indica-
tors at multiple time aggregations. The resulting candidate predictors, listed in
Table 2.1, are the following:

• 2 temporal features: date of the measurement, and month of the year;

• 12 monthly observed variables, current inputs to the Ie, reported in Fig-
ure 2.4: average monthly storage and groundwater levels, average three
months river runoff, and cumulated areal precipitation over 12 months;

• 8 additional observed variables in the basin: outflows from, and inflows
to, the main reservoirs, and mean monthly areal temperatures;

• 6 traditional drought indicators: Standardized Precipitation Index (SPI),
and Standardized Precipitation and Evapotranspiration Index (SPEI). SPI
and SPEI indicators are computed on mean monthly data over the entire
basin for 3, 6, and 12 months time aggregations. SPI requires as input the
precipitation, and SPEI requires precipitation and temperature, as it uses
the difference between precipitation and potential ET as reference vari-
able.

Their values express the water availability conditions of a basin in terms
of units of standard deviation from the mean: negative (positive) values
indicate drier (wetter) conditions than average (see McKee et al. (1993);
Vicente-Serrano et al. (2010) for details on definition and calculation of
these indicators).
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Table 2.1: Set of candidate input features for the feature extraction step viaW-QEISS.

Feature type Feature code Description

Time information Date Date of the measurement
Moy Month of the year

State Index Inputs

S1 Cumulated storage of Alarcón, Contreras and Tous
S2 Storage at Forata
F1 Flow measurement in the upper basin
F2 Flow measurement in the upper basin
F3 Flow measurement in the middle basin
F4 Flow at Jardín tributary
Pl1 Pluviometer measurement in Contreras reservoir
Pl2 Pluviometer measurement in Tous reservoir
Pl3 Pluviometer measurement in Bellús reservoir
Pz1 Piezometric level in the south-east
Pz2 Piezometric level in the center
Pz3 Piezometric level in the west

Observed variables

In A Inflow to Alarcón reservoir
In C Inflow to Contreras reservoir
In T Inflow to Tous reservoir
Out A Outflow from Alarcón reservoir
Out C Outflow from Contreras reservoir
T1 Temperature in the west
T2 Temperature in the center
T3 Temperature in the east

Indicators

SPI3 SPI at 3 months time aggregation
SPEI3 SPEI at 3 months time aggregation
SPI6 SPI at 6 months time aggregation
SPEI6 SPEI at 6 months time aggregation
SPI12 SPI at 12 months time aggregation
SPEI12 SPEI at 12 months time aggregation
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2.4.2 Feature extraction via W-QEISS

The result of the W-QEISS algorithm is not a single most-accurate set of vari-
ables for a given cardinality, but several quasi-equally informative subsets, whose
accuracy is lower than the best one by a small percentage δ · 100%. Figure 2.5
represents a Selection Matrix, which reports the composition of each alterna-
tive subset of predictors within 15% of accuracy with respect to the highest one.
The value δ = 0.15was chosen since it provides a reasonable trade-off between
the number of solutions and their accuracy. The accuracy is measured in sym-
metric uncertainty between the target variable and the ELM calibrated using
the reported subset.

The alternative subsets are sorted in ascending order of cardinality (from top
to bottom), and accuracy (within each cardinality level). A rectangular marker
is placed at the intersection between the row identifying a given subset and the
columns corresponding to the selected predictors. Themarker color varieswith
the cardinality of the subset, with lighter shades of gray indicating smaller sub-
sets. In this case the cardinality spans from 3 to 9 features. The highest accuracy
is reported in red and recorded for subset number 14. The 5 corresponding se-
lected predictors, marked on the horizontal axis with a blue background, are
the following:

• Moy: month of the year;

• S1: total storage aggregated for the reservoirs Alarcón, Contreras, and
Tous;

• F3: river flow measured in the Jucar middle basin, after the confluence
with smaller rivers Jardín and Lezuza coming from south-west;

• Pz2: groundwater level measured at the Piezometer situated in central
area of the basin, in correspondence of a rainfed agricultural area;

• SPEI6: SPEI at 6 month time aggregation computed with precipitation
and temperature data averaged for the whole basin.

From the analysis of the Selection Matrix, several insights can be gained
from a modeling and from a decision-making viewpoints. To begin with, in-
sights on predictors’ relevance can be obtained from the detection of the ver-
tical bars traced by joining markers across multiple rows. Uninterrupted bars
indicate strongly relevant predictors that cannot be substituted by other input
combinations without incurring into a substantial drop of predictive accuracy.
This is the case of the cumulated storage of the three main reservoirs Alarcón,
Contreras, and Tous (S1). This information is essential to the final model, as
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Figure 2.5: Selection Matrix: the left vertical axis represents the subset number
and the right vertical axis the corresponding accuracy measured in SU. A colored
marker is put in correspondence of the variables, listed on the horizontal axis, se-
lected by each subset. The shade of gray is an indication of the cardinality of the
subset, lighter shades for lower cardinality. The highest accuracy is reported in red
and the corresponding variables, constituting the most accurate subset, have a blue
background.
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the exclusion of such predictors highly affects the model performance. Increas-
ing gaps in the vertical bars are found when considering predictors with pro-
gressivelyweaker relevance, while irrelevant inputs are recognizable by isolated
markers or their total absence. The variables Moy, F3, and Pz2 are considered
relevant variables, as they are selected quite frequently, although high accuracy
solutions exist that do not make use of all of them. Finally, the variable SPEI6,
while included in the most accurate subset, is overall present in 4 subsets only,
whereas in other solutions with comparable accuracy it is replaced by different
predictors, mainly carrying a similar precipitation-based information, such as
pluviometer measures, or SPI, SPEI indicators at different time aggregations.

The presence of alternative subsets helps exploring the trade-off between
multiple measures of predictive accuracy with respect to other metrics not di-
rectly considered in the optimization routine, an the choice of the preferred
subset is determined by the index application. Given the cardinality, one can
decide to sacrifice a small amount of predictive accuracy for an easier-to-yield
(or more reliable) combination of predictors. For example, with a loss smaller
than 1% in accuracy, subset 13 selects SPI6 instead of SPEI6. This possible re-
placement is interesting from an point of view as SPI is easier to compute than
SPEI. In fact, SPI requires only the precipitation for its computation with re-
spect to precipitation and temperature or evapotranspiration needed for the
computation of SPEI. In addition, even after the preferred subset is chosen and
the system is operating, knowing that one specific predictor can be replaced
by one (or multiple) predictor(s) can aid the management in case of monitoring
networks maintenance or instrument failure. When the main predictor is not
observable, one can temporarily resort to alternative predictors incurring in a
minimum loss of accuracy.

An additional consideration is related to the possibility to effectively ad-
dress the uncertainty deriving from the choice of model inputs (Taormina et al.,
2016). When multiple alternative subsets are provided, it is possible to explore
the uncertainty related to the selection of predictors yielding similar accuracy.
For instance, in this case study, we can observe that almost all subsets carry a
groundwater and a rain information, but while the piezometric level is consis-
tently provided by Pz2, the source of the precipitation information highly varies
among the precipitation-based features (pluviometers or other SPI, SPEI indi-
cators).

Finally, through the selection matrix analysis we can contrast the features
selected by W-QEISS and the variables that constitute the State Index input
set. Apart from sporadic single selections, all the observed variables not in-
cluded in the State Index are consistently discarded by the W-QEISS as well,
suggesting that the algorithm comes to the same conclusion as the Spanish ex-
perts considering inflows, outflows, and temperatures as non-relevant for the
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description of the state of water resources in the Jucar river basin. Note that
this result is a consequence of the use of the nominal agricultural demand to
compute the target deficit. A temperature information is likely to become rel-
evant if a real, weather-influenced, agricultural demand is employed instead.
The feature month of the year is not explicitly an input to the State Index, nev-
ertheless, an analogous information is implicitly included in the Ie through the
normalization of the indicators described in equation 2.7. On the other hand,
several features are considered in the Ie, but generally neglected by W-QEISS
selection. Among them, two out of three piezometers, the river flows upstream
from the reservoirs, one pluviometer and the storage of Forata. These inputs
probably result redundant due to their spatial correlation. Spatial variability is
considered in the computation of Ie by including several spatially distributed
observations of the main information categories: 2 measures of reservoir stor-
ages, 4 of river flows, 3 groundwater levels, and 3 precipitation measures. Con-
versely, the selection matrix supports the gain of a deeper understanding of the
spatial interdependence of variables by identifying the best location for mea-
suring the variables, spearing the need for several distributed measures. The
highest accuracy-subset, in fact, selects only one variable out of each category:
1 storage, 1 river flows measure, 1 piezometer, and a spatially distributed pre-
cipitation information, i.e., SPEI6 which replaces three areal pluviometers.

2.4.3 Drought Index Modeling

Among the pool of solutions, the choice of the preferred subsets is driven by
the index application. For instance, an on-line use of the index that requires
its frequent computation may benefit from an agile, easy-to-observe subset.
With respect to the highest accuracy solution (subset 14), for instance, subset
number 7 neglects predictor F3 thus presenting lower cardinality with an ac-
curacy loss of only 3%. Similarly, the already mentioned subset 13 contains an
easier-to-compute indicator (SPI instead of SPEI)with a negligible performance
degradation. Nevertheless, for our methodological purpose we will employ the
most accurate subset 14, as we are interested in discussing the potential of the
method.

Concerning the model class choice, a highly flexible non-linear model is
likely to yield the highest accuracy in reproducing the target. However, strong
non-linearity and black-box behavior typically result in poor interpretability, a
feature that is detrimental to the use of the index for management purposes as
in the Jucar system, where restrictive measures in water use are activated when
certain threshold values of the State Index are reached. As a consequence, the
index outcome exerts a direct influence onmanywater-related activities requir-
ing an easily interpretable and widely acceptable tool.

The calibration of a linear model on the chosen 5 dimensional subset seems
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to be a good compromise between accuracy and transparency. As mentioned
above, the featureMoy represents the succession of the months in the year, and
is an expression of the seasonality of hydro-meteorological processes. Moy is
constructed as the repetition of an array of numbers from 1 to 12 for the length
of the considered time horizon, and thus presents a discontinuous shape: a slow
and steady increase followed by a steep decrease in correspondence to the onset
of a new year. While the non-linear models employed in the feature selection
can effortlessly handle such an intermittent vector, linear models struggle with
similar shapes. We therefore decided to account for the seasonality in the linear
model indirectly, i.e., excluding Moy from the predictors set, but, consistently,
considering seasonality by depurating the predictors of their annual cyclosta-
tionary mean.

The calibrated linear model representing the supply deficit is reported in
Figure 2.6 and provides a very satisfying result, with an accuracymeasuredwith
the coefficient of determination in crossvalidation of R2

FRIDA−linear = 0.904,
significantly higher than the R2

Ie = 0.739 scored by the State Index, and a set
of weights of immediate physical interpretability reported in Table 2.2. By in-
specting the weights, one can notice that those assigned to the predictors Flow
and SPEI6 are very low, although not null, and the index trajectory is mainly
determined by Storage and Piezometer values. S1 and Pz2, in fact, describe the
trajectories of the main water reservoirs of the region, lakes and groundwater,
whose fluctuations are the result of natural variability as well as human regula-
tion, mainly for irrigation purposes.

Table 2.2: Weights of the linear model calibrated on the optimal subset of predictors.
The predictor Moy (month of the year), providing a seasonal information, is not
directly included in the weights optimization but it is accounted for by depurating
the variables of their annual cyclo-stationary mean.

Predictor Weight
Moy /
Storage (S1) 0.721
Flow (F3) 10−9

Piezometer (P2) 0.278
SPEI6 10−9

As a further analysis, we reiterated the model calibration and crossvalida-
tion steps with a more complex, highly flexible model class, the ELM architec-
ture, which scored an accuracy of R2

FRIDA−ELM = 0.907. On the one hand, the
arguably insignificant 0.005% improvement in accuracy of ELM with respect
to the linear class, probably does not justify the loss of immediacy and trans-
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parency induced by the transition to a black-box model. On the other hand,
this experiment proves the robustness of the linear model in constituting the
model class of choice for this drought index. In table 2.3 we report a more
detailed comparison between State index, FRIDA-linear and FRIDA-ELM in-
dexes with several accuracy metrics. The analysis of other metrics seem to re-
inforce the conclusions drawn by considering R2 only: both FRIDA indexes
(linear and ELM) outperform the State Index quite significantly, while the dif-
ference among them is negligible, although the non-linear index is always the
top performing.

Table 2.3: Accuracy of the State Index, FRIDA linear, and FRIDA ELM in repro-
ducing the supply deficit, quantified in terms of coefficient of determination R2,
the Pearson correlation coefficient, the Root Mean Square Error (RMSE), and the
fourth grade Root Mean Square Error (R4MS4E).

Metric State Index Frida Linear Frida ELM

R2 0.7396 0.9036 0.9074
Pearson 0.8601 0.9506 0.9533
RMSE 0.2066 0.1135 0.1014
R4MS4E 0.2549 0.1475 0.1299

The reportedmetrics do not distinguish between errors above and below the
target deficit. Indeed, we consider these two error types of comparable impor-
tance. On the one hand, the underestimation of a deficit value may find the wa-
ter users unprepared to face a serious drought. On the other hand, the overes-
timation of drought conditions may ignite repeated false alarms that will com-
promise the index trustworthiness and its efficacy in triggering an alert state.
Therefore, rather than penalizing an error above or below the target trajectory,
we find more compelling to focus on errors in the most crucial drought situa-
tions i.e., at the maximum level of deficit recorded. One way of doing so is con-
sidering R4MS4E, as in Table 2.3, which penalizes errors in the deficit peaks.
Another specific assessment tool for analyzing the indexes performance during
critical droughts is the confusion matrix, reporting the classification perfor-
mance of critical droughts, here arbitrarily defined as months reporting deficit
values above the 85th percentile (Tables 2.4, 2.5, 2.6). The rows of the confusion
matrix represent the instances in a predicted class while the columns represent
the instances in an actual class. Consequently, the main diagonal reports the
number of correctly classified points. Cells outside the main diagonal specify
the errors: the value in the bottom-left cell (first column, second row) indicates
a situation inwhich the index does not recognize an ongoing drought, while the
value in the top-right cell (first row and second column) indicates the number
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of false alarms. FRIDA-ELMconfusionmatrix seems to significantly exceed the
competitors’ performances by erroring only 0,57% of the times, as opposed to
the 10,91% of Ie, and the 6,3% of FRIDA-linear.

Table 2.4: State Index confusion matrix.

SI-deficit critical drought normality

critical drought 131 18
normality 1 24

Table 2.5: FRIDA-Linear confusion matrix.

Frida Linear-deficit critical drought normality

critical drought 138 11
normality 0 25

Table 2.6: FRIDA-ELM confusion matrix.

Frida Linear-deficit critical drought normality

critical drought 147 2
normality 1 24

2.5 Conclusions

The purpose of this study is to contribute to the identification of drought man-
agement strategies able to improve the efficiency and resilience of drought prone
regulated water systems. This problem is considered urgent as the analysis of
climate trends shows that drought frequency and severity are intensifying all
over in Europe, particularly in the Mediterranean area.

This work explores the potential of drought indexes as a management tool
for the purpose of containing drought impacts. Since traditional indicators are
often inadequate to characterize water availability conditions in highly regu-
lated contexts, a novel framework for the construction of customized basin-
specific drought indexes is proposed. This framework relies on the employ-
ment of a feature extraction technique, the Wrapper for Quasi Equally Infor-
mative Subset Selection (W-QEISS). Given a set of information collected in the
basin, W-QEISS features a deep learning machine that automatically selects the
most suitable input set for the construction of a model reproducing the target
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Figure 2.6: Comparison between the FRIDA linear index (blue) and the state index
(green) in reproducing the monthly aggregated supply deficit (red). FRIDA index
presents an higher similarity with the deficit and only requires 5 inputs instead of
the 12 required by the state index.

variable, i.e., a ground truth representative for the state ofwater resources in the
basin. Specifically,W-QEISS performs the search process in a four-dimensional
metric space of predictive accuracy, cardinality, relevance, and redundancy. On
top of that,W-QEISS algorithm is designed to identify one subsetwith the high-
est predictive accuracy and multiple subsets with similar information content
(i.e., quasi equally informative subsets). This provides insights on the relative
relevance of the variables and a deeper understanding of the underlying phys-
ical processes taking place in the basin. The choice of the preferred input set
and model class balance accuracy and practicality of the index. The efficacy of
FRIDAmethodology is strongly dependent on data availability, in terms of pre-
dictors diversity and numerosity, and length of the time series. FRIDA is best
applicable in contexts where an extensive monitoring system has been in place
for long enough to allow a consistent and informative dataset for the index cali-
bration. However, while some hydro-meteorological variables are easy tomon-
itor and most often available (e.g., precipitation, temperature), the accessibility
of soil moisture, groundwater table level, snowpack extent, air humidity etc.,
may represent a problem. When a key drought-driving variable for the context
at hand is absent from the input set, the efficacy of FRIDA is undermined.

The application of the FRIDA in the Jucar river basin case study has success-
fully demonstrated the suitability of the framework to design a basin specific
drought index. Firstly, the automatic variable selection yields an immediate
and informative result, which presents strong similarities with the empirical
expert-based variable set employed by the CHJ, while involving a significantly
lower number of features (5 variables instead of the 12 required by the State In-
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dex). Secondly, the newly computed FRIDA linear index outperforms the offi-
cial Spanish State Index in terms of accuracy in reproducing the target variable,
while maintaining immediate interpretability.

However, one of the reasonswhy the Ie enjoyed suchwide acceptance among
the Jucar stakeholders is related to the widely comprehensive approach em-
ployed for its construction. All water users, in fact, feel represented in the index
through at least one variable being observed in the proximity of their water re-
lated activity, even if such variable is low-weighted or redundantwhen comput-
ing the basin-wide aggregated indicator. The FRIDA approach does not ensure
such representation of all water users, although it appears as a more rigorous
and efficient alternative to the inclusive CHJ approach. Moreover, FRIDA is a
portable methodology, suitable for the many drought prone contexts in need
of a drought management plan. In conclusion, the aim of arranging an effective
framework for the construction of basin customized combined drought indexes
can be considered achieved. The indexes constructed with FRIDA have proven
to be an asset for (i) representing drought conditions in highly regulated basins,
where traditional indexes tend to fail; (ii) gaining a deeper understanding of the
hydro-meteorological processes taking place in the basin; and (iii) constituting
a valid alternative to the Spanish approach for the State Index design, thus sup-
porting appropriate droughtmanagement strategies, such as triggering drought
restraining response measures.

The already valid results achieved by this study open new possibilities for
the use of basin-specific drought indexes. Further research efforts could be
addressed to exploring the potential of employing FRIDA indexes in directly
informing water management operations. Additionally, the possibility of fore-
casting such indexes can be tested in order to timely prepare for upcoming dry
seasons. We expect that the projection of a drought index fosters the adoption
of a proactive (as opposed to the current reactive) approach in facing a drought.
Proactivity promotes a shift from costly and often belatedmitigationmeasures,
to preventive actions that will grant flexibility to timely prepare to upcoming
droughts, while reducing costs associated to drought impacts and restrictions.

Ultimately, FRIDAcan represent an asset for improving the systemresilience
under a changing climate. Despite the fact that FRIDA is conditioned upon his-
torical data, one can imagine that in the short term, drivers’ interactions and
relative role in causing a drought hold unchanged. In this case, the index for-
mulation remains valid in the context of a changing climate. In the long term,
nevertheless, this hypothesis may cease to hold, we thus suggest a frequent reit-
eration of FRIDA procedure to monitor the evolution of drivers and dynamics
leading to a drought in the basin. For example, in a groundwater dominated
system as the Jucar basin, the piezometer information is likely to remain essen-
tial in a future climate, but, at the same time, we can expect evapotranspiration
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processes to increase their drought-propelling role, as climate change induces a
general increase of temperatures. In other contexts, e.g., snowdominated catch-
ments, the role of snowmay lose priority due to a diminishingwinter snowpack
reserve. FRIDAwill thus represent a valuable tool to support the analysis on the
dynamic role of drivers in drought evolution under a changing climate.

Code availability: The complete dataset employed for the feature selection step
canbedownloadedopen source fromhttp://doi.org/10.5281/zenodo.
1185084 (Zaniolo et al., 2018a). A detailed description of FRIDA, including
both data and codes, is available at https://www.ei.deib.polimi.
it/?page_id=779.
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3
Data-driven Modeling and

Control of Droughts

Abstract1

In highly regulated water systems droughts are complex, basin-specific phe-
nomena. The identification of drought drivers is challenged by the coexistence
of possibly relevant processes with inconsistent dynamics and origins (natu-
ral or anthropic). FRIDA is a fully automated data-driven approach developed
to extract relevant drought drivers from a pool of candidate hydrometeoro-
logical predictors at different time aggregations. Selected predictors are then
combined into a basin-specific drought index to monitor the state of water re-
sources in highly regulated contexts. The operational value of this index in im-
proving water systems operations is quantified by designing a control policy
informed by the index, and contrasting its performance with that of a baseline
policy conditioned on basic information only. The approach is demonstrated
on Lake Como, Italy, a multipurpose regulated lake operated for flood control
and irrigation supply. Results show that the designed index is accurate in rep-
resenting basin drought conditions, and the overall system performance can
improve by nearly 20% when operations are informed with the basin-tailored
drought index. The proposed framework is portable across different contexts,
where basin-specific drought indexes can support drought characterization and
control in a fully data-driven fashion.

1Thiswork has been published as: Zaniolo,M., Giuliani,M., Castelletti, A., 2019. Data-drivenmodeling and control
of droughts. IFAC- Papers On Line 52, 54-60
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3.1 Introduction

Droughts in highly regulated water basins are prolonged periods of anoma-
lous water supply failure (Pedro-Monzonìs et al., 2015). In these systems, the
presence of man controlled water infrastructures (e.g., dams, pumping wells)
can play a role in either magnifying drought impacts with inconsiderate water
use, or in restraining them, when the available storage is effectively operated to
hedge water shortages and distribute resources in space and time (Mishra and
Singh, 2010). In order to design effective drought management strategies, it is
key to timely recognize onset and severity of a dry spell. Nevertheless, drought
identification is a challenging task, due to the interplay of several hydrometeo-
rological phenomena characterized by disparate spatiotemporal dynamics, lev-
els of observability, and relevance to drought conditions (AghaKouchak, 2015a).
Traditional drought indexes (reviewed in e.g., Zargar et al., 2011) can contribute
to this task for natural systems, however, in highly regulated basins the concur-
rence of natural fluctuations (e.g., below-average precipitation, above-average
evaporation), and anthropic factors (excessive water demand, suboptimal man-
agement) results in basin specific dynamics where no single tool is suitable for
all contexts. FRIDA is a FRamework for Index-based Drought Analysis for
the automatic and fully data-driven design of basin-tailored drought indexes
specifically targeted for highly regulated basins (Zaniolo et al., 2018b). The
framework is based on a wrapper for feature extraction which selects relevant
drought drivers from a pool of available candidate hydro-meteorological pre-
dictors and traditional drought indicators as to predict in the most effective
way a target variable representative for the basin drought condition (e.g., water
deficit). The feature extraction technique employs a multi-objective evolution-
ary algorithm to find Pareto-efficient subsets of variables by maximizing the
wrapper accuracy, minimizing the number of selected variables (cardinality),
and optimizing relevance and redundancy of the subset.

In this work, we contribute a holistic framework for drought modeling and
control that combines FRIDA, for the construction of a customized drought in-
dex, with a data-driven control scheme (Formentin et al., 2013; Costanzo et al.,
2016; Smarra et al., 2018) that employs the designed index to inform water
reservoir control during droughts. The operational value of the proposed index
is assess by re-designing the control policy by including the index its inputs, and
contrasting the corresponding improvement with the performance of a policy
relying on basic information only. We demonstrate the proposed methodology
on Lake Como basin, Italy, where droughts have potentially severe implications
on downstream crop yield.
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1. BASIN	IDENTIFICATION
- Expert	based	identification	of	
target	and	candidate	predictors

2.	FEATURE	EXTRACTION
- Input	variable	selection	via	W-QEISS

- Extraction	of	Quasi-Equally	Informative	Subsets

3.	DROUGHT	INDEX	MODELING
- Selection	of	preferred	subset

- Calibration	of	selected	model	class

4.	POLICY	DESIGN	
- Design	of	Perfect	Control	Policy	(PCP)
- Design	of	Baseline	Control	Policy	(BCP)
- Design	of	Informed	Control	Policy	(ICP)

5.	QUANTIFICATION	OF	INDEX	OPERATIONAL	VALUE
Contrast	policies	performance	wrt system	objectives

Candidate variablesTarget

Highly informative subsets

Drought Index

Control policies performance

DATA-DRIVEN DROUGHT INDEX MODELING

DATA-DRIVEN DROUGHT CONTROL

Figure 3.1: Flowchart of the proposed framework for drought index design and eval-
uation.

3.2 Methods and Tools

The proposed data-driven method is composed of two building blocks (Fig.
3.1): the first block, namely, data-driven drought index modeling, employs the
Framework for Index-based Drought Analysis (FRIDA) for the automatic de-
sign of basin customized drought indexes in highly regulated basin (Zaniolo
et al., 2018b). FRIDA drought index is the input to the second building block,
which explores the operational advantage of using the index within a data-
driven control scheme to condition water management operations.

3.2.1 Data-driven drought index modeling

In the data-driven drought indexmodeling blockwe employ FRIDA, composed
of 3 steps. The first step is an empirical basin identification aimed at the def-
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inition of a target variable and a set of candidate predictors for the basin of
application. The target variable is a form of water deficit representative for
the drought conditions in a basin (e.g., supply deficit with respect to the de-
mand, soil moisture deficit). The set of candidate predictors is a collection of
hydro-meteorological variables and traditional drought indicators available for
the study site, at different time aggregations. The final drought index will be an
appropriate combination of a subset of predictors to best represent the target
variable, i.e., the basin drought conditions.
The second step is the Feature Extraction step, aimed at reducing the dimen-
sion of the predictors’ space into a subset of selected variables with a minimum
loss of information content. This step will define a number of highly infor-
mative subsets of predictors representing efficient inputs set for the Drought
Index. It is performed via Wrapper for Quasi-Equally Informative Subset Se-
lection (W-QEISS) (Karakaya et al., 2015). Unlike the more common filters for
feature extraction which evaluate the relevance of each candidate variable sep-
arately, wrappers assess the relevance of a variables ensemble, computing the
prediction performance of a given learning machine calibrated on the input set
(Guyon, 2003). Moreover, W-QEISS does not only return the most accurate
subset, but a set of quasi-equally informative subsets (i.e., with comparable ac-
curacy performance) in order to support a data-driven analysis on predictors
interactions and relative relevance (Karakaya et al., 2015).

Themajority ofwrappers solves a two-objectives optimizationproblem trad-
ing off regression accuracy andmodel complexity (Guyon, 2003). In the follow-
ing formulation,X is the pool of candidate predictors,y the output variable, and
S a subset ofX. SU (SymmetricUncertainty) is ameasure of howmuch informa-
tion is shared between two features relatively to the entire information content
of both features, and ranges between 0 (independent variables) to 1 (complete
dependence) (Witten and Frank, 2005).

• Predictive accuracy: f1(S) = SU(y, ŷ(S)); to bemaximized, defined as
the Symmetric Uncertainty between the observed output y and the pre-
diction ŷ(S) obtained from the model.

• Model complexity: f2(S) = |S|; to be minimized, counts the number of
predictors chosen, i.e., the subset cardinality. Its minimization guarantees
that the resulting model will not be unnecessarily complex.

Beside these two traditional objectives, W-QEISS adds the optimization of
two other metrics of relevance and redundancy concerning the degree of de-
pendence between variables. The adoption of these metrics ensures high infor-
mation content and low intra-subset similarity of the produced subsets (Sharma
and Mehrotra, 2014).

• Relevance: f3(S) =
∑
xi∈S SU(xi, y); to be maximized, computes the
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symmetric uncertainty between the feature xi and the output y. It mea-
sures of the explanatory power of the feature with respect to the output.

• Redundancy: f4(S) =
∑
xi,xj∈S,i<j SU(xi, xj); to be minimized, com-

putes the symmetric uncertainty among twopredictors, xi andxj. Itsmin-
imization guides the search towards the selection of mutually dissimilar
features.

The W-QEISS feature extraction is composed of three main steps. (1) A set
A of Pareto-efficient solutions is built according to the above defined four ob-
jective functions. A global multi-objective optimization algorithm is employed
to explore the space of the possible subsets, while a regression model is cali-
brated andused to compute the predictive accuracy f1 of each set. (2) Among the
Pareto-efficient subsets, the maximum value of accuracy f∗1 is identified. Then,
on the basis of a pre-selected arbitrarily small value δ, all the subsets whose
accuracy is lower than (1 − δ)f∗1 are eliminated from the ensemble A of the
non-dominated solutions, obtaining Aδ. (3) The final subset A∗δ is computed
after the elimination of the inferior subsets. The subset Sj is considered infe-
rior to Si if it is a superset of Si and does not score higher accuracy. Formally:
Sj ⊃ Si and f4(Sj) 6 f4(Si).

The implementation of W-QEISS requires the selection of the global multi-
objective optimization algorithm, and of the regressor to be employed. In this
study, we used Borg MOEA (Reed et al., 2013) as optimization algorithm, and
the Extreme LearningMachines (ELM) (Huang et al., 2006a) as regressor. Borg
MOEA is a sophisticated evolutionary algorithm which features a set of strate-
gies to contrast the main shortcomings of evolutionary algorithms. Among
them, the automatic adaptation of several evolutionary operators to promote
the generation of efficient solutions, the ε-box dominance archive to contrast
overfitting, and time continuation to avoid being trapped into search local min-
ima (Hadka and Reed, 2013). ELM is designed as a single-hidden layer feedfor-
ward neural network. Though unlike traditional ANN, ELM does not perform
a calibration of the nodes parameters, but randomly chooses hidden nodes and
analytically determines the output weights of the hidden layer, thus bypassing
the time-consuming calibration process of ANN (Huang et al., 2006a).

In the third step, one subset is selected among the quasi-equally informa-
tive, balancing the trade-off between competing objectives and, possibly, con-
sidering additional operative preferences neglected in the search (e.g., cost and
reliability of the variable monitoring). Lastly, an appropriate regressor is fit to
the chosen input set and the target variable, producing the Drought Index. The
regressor choice is determined by the application of interest. In general, highly
non-linear learning machines provide high accuracy and flexibility at the price
of poor intuitive interpretability. On the other hand, linear models partly sac-
rifice approximation skills but grant an immediate understanding of the index
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physical meaning.

3.2.2 Data-driven drought control

In the second building block of the framework, we investigate the potential of
the Drought Index in conditioning water system operations by directly inform-
ing the regulation policy about the basin drought conditions.

The control problem of a water reservoir is traditionally formulated as a
MarkovDecisionProcess (MDP)where the state of the systemxt is the reservoir
storage, while the decisionsut concerns the volumeofwater to be released from
the reservoir at each time step of the control horizon [0, h]. The state in t+ 1
is determined by state and decision at time t, and by stochastic disturbances
affecting the system εt+1, (e.g., reservoir inflows) and generally described with
a probability density function εt+1 ∼ φt in t ∈ [0, h). Formally:

xt+1 = ft(xt,ut, εt+1) t ∈ [0, h) where:
xt ∈ Rnx ; ut ∈ Ut(xt) ⊆ Rnu ; εt ∈ Rnε

(3.1)

In the adopted notation, the time subscript of a variable indicates the in-
stant when its value is deterministically known. The MDP described in Equa-
tion (3.1) is discrete-time, periodic, nonlinear, and stochastic. A water reservoir
control problem is generally multi-objective, and each objective (here assumed
to be a cost) is formulated as the sequence of immediate costsgmt+1(·) associated
with each state transition from time t to t+ 1 in [0, h], and a penalty function
gmh (xh) associated with the final state. The step cost trajectory is aggregated
over time with the operator Φ (e.g., the average Φ =

∑
/(h + 1) ) and the

disturbances noise is filtered with the operator Ψ (e.g., expected value Ψ = E)
as follows:

Jm = Ψε1,...,εh [Φ0,...,h (g
m
1 (x0,u0, ε1), . . . , gmh (xh))] (3.2)

Solving the optimal control problem for the systemdefined in (3.1) thus requires
to find the optimal control policy p∗ (i.e., the periodic sequence of control laws
ut = µ∗t(xt) in period T ) whichminimizes theM-dimensional objective vector
J, i.e.:

p∗ = arg min
p

J(p, x0, ε
h
1 )

=
[
J1(p, x0, ε

h
1 ), . . . , JM(p, x0, ε

h
1 )
] (3.3)

In step 4 of the framework, Problem 3.3 is solved three times for a Perfect,
Baseline, and Informed policy, differing for the information set given to the
policy.
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1. Perfect Control Policy (PCP): designed assuming to have full and perfect
information on the future at the moment at each decision step: ut =
p(t, xt, ε[0,H]).

2. BaselineControl Policy (BCP): designed relying on a basic information set,
e.g., time and state of the system: ut = p(t, xt).

3. Informed Control Policy (ICP): designed including the Drought Index as
additional input to the control policy, i.e. ut = p(t, xt, DIt).

The design of the Perfect Control Policy is a nonlinear deterministic opti-
mization problemwhich is traditionally solved viaDeterministic Dynamic Pro-
gramming (DDP) (Bellman, 1957). Baseline and Informed policies instead re-
quire a stochastic optimizationwhichdoes not assume anydeterministic knowl-
edge of future disturbances. The stochastic extension of DDP, namely Stochas-
tic Dynamic Programming (SDP) is in this case severely limited by the so-called
curse of modeling in designing control policies conditioned on exogenous infor-
mation (e.g., the Drought Index) (Tsitsiklis and Van Roy, 1996). We therefore
solve Problem (3.3) by means of Evolutionary Multi-Objective Direct Policy
Search (Giuliani et al., 2016b), an approximate dynamic programming approach
which allows to condition the control policy with non-modeled (exogenous) in-
formation in a fully data-driven fashion (Denaro et al., 2017a).

EMODPS performs a simulation-based optimization that directly operates
in the policy space by exploring the parameter spaceΘ seeking the best parame-
terization for the control policy pθ, defined within a given family of functions.
The parameters are chosen in order to optimize the expected long-term cost
defined by the objectives of the problem. Problem (3.3) thus becomes:

p∗θ = arg min
pθ

Jpθ s.t. θ ∈ Θ (3.4)

where the objective function Jpθ is defined as in Equation 3.2. Findingp∗θ there-
fore corresponds to finding the best parameters θ∗ for the class of policies pθ,
measured by the objectives Jpθ . As search algorithm, we employ again Borg
MOEA, which have been demonstrated to outperform other state-of-the-art
MOEAs on challenging reservoir control problems (Zatarain et al., 2016), while
for the choice of the control policy class we useGaussian Radial Basis Functions
networks (RBFs) given their demonstrated capacity to represent policies for a
large class ofMDPs (Busoniu et al., 2011). Finally, in step 5 of the procedure, the
operational value of exogenous information can be assessed as the difference in
system performance between a control policy based upon the exogenous infor-
mation (ICP) and a policy relying on traditional information only (BCP) using
the optimal policy (PCP) as reference. As suggested in Giuliani et al. (2015),
we use the hypervolume indicator (HV ), which captures both the convergence
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of the Pareto front under examination F to the optimal one F∗, as well as the
representation of the full extent of tradeoffs in the objective space. The hyper-
volumemetric allows set-to-set evaluations, measuring the volume of objective
space Y dominated (�) by the considered approximate set. HV assumes values
between 0 to 1, where Pareto fronts with higherHV are considered better. The
indicator is formally defined as:

HV(F,F∗) =

∫
αF(y)dy∫
αF∗(y)dy

where

αF(y) =

{
1 if ∃y ′ ∈ F such that y ′ � y
0 otherwise

(3.5)

3.3 Study Site

The proposed Framework is demonstrated on Lake Como, a multipurpose reg-
ulated lake in the southern Alpine belt (Italy). The main tributary, and only
emissary of the lake, is the Adda river, whose sublacual part originates in the
southeastern branch of Lake Como and feeds 4 agricultural districts, eventually
serving as a tributary for the Po river downstream. The southwestern branch
of the lake, where the city of Como is located, constitutes a dead end exposed
to flooding events. The hydrological regime is snow-rainfall dominated, char-
acterized by scarce winter and summer inflows, a large snowmelt peak in late
spring and and a secondary rainfall peak in autumn. The lake regulation has
the dual aim of guaranteeing flood protection to the lake shores and supply-
ing water to downstream users. Despite the regulation efforts, the late summer
water demand is not always met, leading to conflicts among water users and
negative impacts due to water shortage, which might be particularly critical in
drought years. The system is modeled as a discrete-time, periodic, non-linear,
stochastic MDP defined by a scalar state variable xt (i.e., Lake Como storage), a
control variable ut representing the release decision, a vector of stochastic dis-
turbancesεt+1 (net reservoir inflow), and a non-linear state-transition function
xt+1 = xt − rt+1 + εt+1, where the effective release rt+1 coincides with the
release decision unless a correction is needed to respect physical or legal con-
straints. The release decision is daily extracted from the control policy p(·).
On the basis of previous works (Anghileri et al., 2011), two sets of objectives are
defined:
Flooding: the average number of annual flood days, defined as days in which
the lake level is above the flood threshold h̄ = 1.24 m, i.e.,

Jflood =
1
Ny

H−1∑
t=0

gfloodt+1 ; gfloodt+1 =

{
1 if ht+1 > h̄
0 if ht+1 < h̄

(3.6)
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Irrigation: the daily average squared water deficit w.r.t. the daily down-
stream demandwt, subject to the minimum flow constraint qMEF = 5 m3/s to
guarantee environmental stakes, i.e.,

Jirr =
1
H

H−1∑
t=0

(βt ·max(wt − (rt+1 − q
MEF), 0))2 (3.7)

where βt is a time-varying coefficient accounting for the different impacts
of thewater deficit on the crop production depending on the growth stages, and
the quadratic formulation of (3.7) aims to penalize severe deficits in a single time
step, while allowing for more frequent, small shortages.

Among the irrigation districts served by the Adda river, the Muzza-Bassa
Lodigiana is the largest (700 km2) and associated with the highest water de-
mand. Within the district, themain crop ismaize. A large distributed-parameter
model is available for the district to perform the simulation of the irrigation
water distribution and the computation of the hydrologic balance in the crop
root zone, in a regular grid of cells with 250 m of side length. The effective soil
moisture of the crop is computed along with the required moisture, allowing
the detection of periods of water stress. A detailed description of the model can
be found in Giuliani et al. (2016c).

3.4 Results

In this chapter, wepresent the results of the applicationof the proposedmethod-
ology to the Lake Como case study, following the structure proposed in Fig. 3.1.

3.4.1 Data-driven drought index modeling results

The first step is the identification of a target variable, representative for the
basin drought conditions, and a dataset of candidate drought predictors. In
Lake Como system, droughts primarily affect the yearly crop yield of down-
stream irrigation districts. The target variable must be observable during the
irrigation season and a reliable proxy of the annual crop yield recorded at the
end of the season. The irrigation district model described in Section 3.3 can be
used to simulate the water requirement w̄rct of crops in cell c and the relative
effective soil water content swct . Their difference is thewater deficit of each cell
dct = max(w̄rci − sw

c
t , 0), later shown to be an effective proxy of crop yield

(Fig. 3.3). The estimated crop water requirements are only meaningful dur-
ing the 22 weeks of crop (maize) growth season, ranging from week of the year
numberWYbeg = 16 toWYend = 37, from mid-April to mid-September.
The target variable D employed for the feature extraction experiments is the
weekly cell deficit cumulated over the district spatial domain dSDt , smoothed
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with a moving window of semiamplitude s = 2 weeks to filter the effects of
conveyance and irrigation turns within the district units.

D =
1

WYend −WYbeg − 2s

WYend−s∑
w=WYbeg+s

[
1
2s

w+s∑
i=w−s

dSDi

]
(3.8)

Observational data and traditional drought indicators at different time ag-
gregations constitute the dataset of candidate variables, likely consisting in a
large collection of correlated variables. After a preliminary correlation analy-
sis between the candidate features and the ground truth, time aggregations that
scored very low correlations were discarded, resulting in a 30 features dataset,
reported in Table 3.1. The considered indicators belong to the family of the
Standardized Precipitation Index (SPI) and are reported in the table in brack-
ets. For a review of drought indicators see Zargar et al. (2011).

Feature Feature name Aggregation
type [weeks]

Time Week of the year -

Variables

Precipitation 4
Temperature 1
Lake level 1
Snow melt 4
SnowWater Equivalent (SWE) 4

Indicators

SPI (precipitation) 1, 2, 4
SPEI (precipitation, evaporation) 1, 2, 4
SMRI (Snowmelt and rain) 4, 12, 26
SWI (lake water level) 1, 2, 4
SRI_in (lake inflow) 1, 2, 4
SRI_out (lake outflow) 1, 2, 4
SSI_sup (superficial soil moisture) 12, 26, 52
SSI_tot (total soil moisture) 12, 26, 52

Table 3.1: Set of candidate input features for WQEISS, comprehensive of time infor-
mation, observed variables, and indicators. Following indicators’ name, in brackets,
the variable(s) needed for their computation are reported.

On this dataset, theW-QEISS algorithm is runwith the aim of extracting the
most accurate and parsimonious subsets, while optimizing their redundancy
and relevance. In particular, the W-QEISS routine was repeated 20 times for 2
millions function evaluations to filter out the random component of the algo-
rithm, and a comprehensive Pareto front of quasi-equally informative subsets
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Figure 3.2: Selection matrix: the left vertical axis represents the subset number
and the right vertical axis the corresponding accuracy measured in SU. A colored
marker is put in correspondence of the variable (horizontal axis) selected by each
subset.

was obtained by merging the fronts resulting from each seed. The outcome is
represented in the Selection Matrix in Fig. 3.2 reporting the composition of
each alternative subset of predictors within 15% of accuracy (measured in SU)
with respect to the highest one.

The alternative subsets (vertical left axis) are sorted in ascending order of
cardinality and accuracy. A rectangular marker is placed at the intersection be-
tween the row identifying a given subset and the columns corresponding to the
selected predictors. The marker color varies with the cardinality of the sub-
set, with lighter shades of gray indicating smaller subsets. We can observe that
11 out of 15 subsets have a cardinality of 3 variables, and the remaining sub-
sets include 2, 4, and 5 predictors. The highest accuracy is recorded for the
subset 13, reported in red, which selects as predictors Week of the year, Tem-
perature (i.e., meanweekly temperature), and SMRIwith an aggregation time of
26 weeks, equal to 6 months. Insights on predictors’ relevance can be obtained
from the observation of the vertical bars traced by joining the markers across
multiple rows. Long and uninterrupted bars are expected for strongly relevant
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predictors that cannot be substituted by other input combinations without in-
curring into a substantial drop of predictive accuracy. Increasing gaps are found
when considering predictors with progressively weaker relevance.We observe
that the information carried by the predictors Week of the year and SMRI 26w
is strongly relevant as it is selected by 15 and 12 subset, respectively. The tem-
perature information, despite belonging to the most accurate subset, is instead
replaceable by most of the predictors with a negligible loss of accuracy. If we
remove the snow information carried by SMRI 26w, SWE, orMelt, the wrapper
accuracy degrades of at least 10% and selects another low frequency informa-
tion, i.e., the soil water content over the entire year SSI_tot 52w. Despite the
accuracy drop, such alternative may be interesting given that acquiring snow
estimations is generally expensive and requires an extensive monitoring sys-
tem.

The choice of the preferred subset for index computation is driven by the
application, possibly considering additional objectives not explicitly included
in the search (e.g., cost and reliability of variable retrieval, index immediacy).
For our methodological purposes we select the most accurate subset (number
13) for the drought indexmodeling step. The resulting Drought Index (DI), ob-
tained calibrating an ELM on the selected subset, is reported in Fig. 3.3. The
figure background indicates the class of yearly yield recorded for the year, serv-
ing as an additional ground truth to validate the target variable. As expected,
low levels of deficit coincide with abundant yield (green background), and vice-
versa, indicating that the soil moisture deficit is an appropriate drought proxy
for the case study from the point of viewof the drought vulnerable stakeholders.
DI successfully reproduces the target variable, scoring a correlation coefficient
r=0.74, and symmetric uncertainty SU=0.44 over the growth season.

3.4.2 Data-driven drought control results

The optimal Lake Como operation is designed by solving Problem 3.3, where
the vector of objectives J is defined in Equations (3.6) and (3.7). Such problem
is solved three times for BCP, ICP, and PCP, employing different information
sets. The best performing policy is, as expected, the PCP, representedwith black
diamonds. The associated Pareto front is sharp cornered, implying that with a
perfect inflow foresight there is almost no conflict between the two operating
objectives. In the absence of such perfect future knowledge, however, the use
of additional information in the system operation has the potential to mitigate
existing conflicts. ICP completely outperforms BCP solutions, demonstrating
that the addition of theDI as an exogenous information for the policy design
is a viable option for the improvement of the lake baseline operations. The im-
provement is primarily observed in the values of the irrigation object, as the
ICP Pareto front appears to be a vertical shifted BCP front in the direction of
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Figure 3.3: The designed Drought Index compared against target variable and an-
nual yield.

Figure 3.4: Pareto Fronts representing the performance of BCP, ICP, and PCP in
terms of water deficit (vertical axis) and flood days (horizontal axis).
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lower deficit values. TheDI is indeed providing a crop state informationwhich
is particularly valuable to improve the water supply strategies.

The hypervolume indicator (HV ) (eq. 5.4) supports a quantitative estimation
of the operational improvement imputable to the Drought Index, by capturing
the proximity and the distribution of the solutions of the baseline and informed
Pareto fronts with respect to the reference (PCP). As PCP is considered the ref-
erence performance, itsHV value is equal to 1. TheHV of BCP is instead equal
to 0.327, confirming the large space for improving current operations with ad-
ditional information. The introduction ofDI in the policy produces a value of
HV for the ICP equal to 0.387, whichmeans a 18.3% improvement with respect
to the baseline solutions.

3.5 Conclusions

FRIDA is an automatic approach which can support drought analysis and char-
acterization in complex highly regulated basins, in a data-driven fashion, i.e.,
without requiring knowledge of the physical processes taking place in the sys-
tem.
Basin-tailored drought indexes can enhance water management skills in con-
trolling droughts by warning the operations on the onset, severity, and persis-
tency of a dry spell.
Exploiting available information in a data-driven control scheme can signifi-
cantly improve the overall system performance at no cost.

Code availability: A detailed description of FRIDA, including codes, and a com-
prehensive dataset for a test case study, is available at https://www.ei.
deib.polimi.it/?page_id=779. A code repository for the control
policy design of Lake Como can be found at
https://github.com/mxgiuliani00/LakeComo
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4
When timing matters -

misdesigned dam �lling impacts
hydropower sustainability

Abstract1

Decades of sustainable dam planning efforts have focused on containing dam
impacts in regime conditions, when the dam is fully filled and operational, over-
looking potential disputes raised by the filling phase. Here, we argue that filling
timing and operations can catalyze most of the conflicts associated to a dam’s
lifetime, which can bemitigated by adaptive solutions that respond tomedium-
to-long term hydroclimatic fluctuations. Our retrospective analysis of the con-
tested recent filling of Gibe III in the Omo-Turkana basin provides quantitative
evidence of the benefits generated by adaptive filling strategies, attaining levels
of hydropower production comparable with the historical ones while halving
the negative impacts to downstream users. Our results can inform a more sus-
tainable filling of the newmegadam currently under construction downstream
Gibe III, and are generalizable to the almost 500 planned dams worldwide in
regions influenced by global climate oscillations.

1This work is currently under review as: Zaniolo, M., Giuliani, M., Burlando, P., Castelletti, A., 2020 When timing
matters -misdesigned dam filling impacts hydropower sustainability. Nature Sustainability (under review). This Chap-
ter presents an unconventional structure with respect to the rest of the chapters in this thesis as required by Nature
Sustainability guidelines. In particular, the Case Study and Results sections are merged, and the Methods section is
located after the conclusions.
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4.1 Introduction

Hydropower is the dominating renewable electricity sourceworldwide, account-
ing for the largest share of energy production and investments allocated to new
projects (Zarfl et al., 2015). However, hydropower dam development does not
occur without environmental and social costs (Zarfl et al., 2019). Efforts to-
wards sustainable dam planning have addressed strategic dam sizing (Bertoni
et al., 2017), individual dam location (Jozaghi et al., 2018; Schmitt et al., 2018),
and basin wide siting of dam portfolios (Kondolf et al., 2018; Schmitt et al.,
2019) to minimize long term impacts of such infrastructures. Yet, before start-
ing electricity production, dam reservoirs must be filled, withholding a sub-
stantial fraction of the river streamflow from downstream users. The rapidity
at which a reservoir is filled has direct implications for potential conflicts be-
tween upstream and downstream interests. In this phase, precaution towards
downstream impacts requires transiting high percentages of inflow, resulting in
multi-years, even decadal, filling transients (Yihdego et al., 2017). Conversely,
upstream interests (e.g., hydropower production) favor fast impoundment of
water, albeit generating critical periods of minimal streamflow downstream.
Increasingly variable hydroclimatic regimes characterized by strong interan-
nual oscillations further challenge the design of filling strategies as the same
policy can yield very different results if it occurs during a wet or a dry spell.

Historically, the filling of large damshas generated serious international ten-
sion. In theMiddle East, threats of an armed conflict were raised in 1992, when
the filling of the Turkish Ataturk Dam on the Euphrates cut the water flow to
downstream Syria and Iraq by 75% (Carkoglu and Eder, 2001). In 2019, the fill-
ing of the Ilsu dam on the nearby Tigris reinflamed tensions in theMiddle East,
in the midst of their unprecedented water, and humanitarian, crisis (Kucuk-
gocmen, 2013). Similar transboundary tensions were generated by the filling of
Gibe III, the “most controversial dam inAfrica” (The Economist, 2016a), located
in the Omo-Turkana Basin (OTB) shared by Ethiopia and Kenya. After Gibe III
dam began impounding water (2015-2016), an upsurge of local and interna-
tional groups contested the insufficiency of the summer flood pulse necessary
to support downstream riparian activities, as well as a 2 meters level drop in
the downstream Kenyan lake Turkana (Roth, 2019; Avery, 2017). Perhaps the
most controversial case, given its global resonance, is the imminent filling of
The Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile. In 2020, at
the beginning of the tenth year of negotiations, there is still no international
filling agreement between Egypt, downstream, demanding guarantees on min-
imum GERD releases, and Ethiopia, upstream, resolved to maintain discretion
in its operations (Gebre, 2019; BBC, 2019; The Economist, 2016b).

State-of-the-art efforts in cooperative upstream-downstream filling strate-
gies have explored the effects of hydrological variability, climate change (King
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and Block, 2014; Zhang et al., 2016), and coordination between co-riparian
countries (Wheeler et al., 2016) on alternative filling strategies. However, these
studies considered filling strategies designed to impound (or release) fixed frac-
tions of inflowor absolutewater volumes. In general, even if a preventive agree-
ment is stipulated between the upstream and downstream parties, filling out-
comes are still largely dependent on hydroclimatic variability: if the filling oc-
curs during a drought, enhanced impacts are experienced by all downstream
sectors. Here, we argue that this limitation can be addressed by advancing dam
planning through the design of filling strategies that are adaptive to the alter-
nation of wet spells and drought emergencies (Spinage, 2012) driven by global
climate oscillations, aiming to minimize dam impacts during the critical initial
filling phase. Accordingly, we propose a retrospective analysis of the recent fill-
ing of Gibe III to identify both a favorable filling timing, i.e., when to start the
filling, and an effective filling policy, i.e., how to fill the reservoir. The reference
provided by the contested historical filling of the reservoir allows us to inves-
tigate the potential of these adaptive solutions to address the tradeoff between
upstream and downstream competing interests, and to quantify the role of hy-
droclimatic variability.

We find that Gibe III filling impacts were disproportionally amplified by an
ongoing drought, and show how amore favorable dam filling timing could have
been inferred in advance by observing long term climatic oscillations in the
basin. Once the optimal timing is established, adaptive filling policies can be de-
signed to better respond to natural hydroclimatic variability, thereby contain-
ing downstream alterations without damaging hydropower production. Since
a new megadam, Koysha, is currently under construction downstream of Gibe
III and is expected to begin filling in 2021 in correspondence with another ex-
pected multiyear dry spell, our results suggest the impacts of this new project
may be amplified by these unfavorable hydroclimatic conditions, further jeop-
ardizing regional activities and stability of the region.

4.2 Behind �lling controversy - the role of timing

In recent years, Ethiopia’s domestic electricity demand has witnessed a dra-
matic increase, propelled by an unprecedented growth in itsGDP (Mondal et al.,
2017) coupled with an increasing fraction of households connected to the na-
tional grid, from23% in 2011 to 44% in 2017 (World Bank, 2019). Yet, Ethiopia’s
plans for the electricity sector in the near future are even more ambitious. By
2025, the country is striving for 100% electricity access (International Energy
Agency, 2014), a 10-fold increase in power generation capacity since 2013 that
would not only cover internal demand, but also allow a substantial electricity
export (Asress et al., 2013) and a fully decarbonized economy (Paul andWeinthal,
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Figure 4.1: Geography of the Omo-Turkana Basin (OTB). The Omo river col-
lects the abundant rainfalls of the Ethiopian highlands and streams southwards
through the Omo valley contributing about 90% of annual inflow to Lake Turkana,
where its outlet forms a complex delta coincident with the Ethiopian-Kenyan bor-
der. About 500 thousands pastors and farmers inhabiting the area depend on the
Omo or Turkana waters for their livelihoods. The Gibe-Koysha dam cascade regu-
lates the river hydrology, comprising Gibe I and II, the recently completed Gibe III,
and the under construction Koysha dam. Marker area is proportional to the dam’s
installed hydropower capacity.
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2019).
The key to becoming the green battery of Africa is accessing its exceptional

renewable resource potential estimated around 60 GW of electric power pro-
ducible from hydropower, wind, solar, and geothermal sources (Tessama et al.,
2013), of which hydropower represents the largest share (45 GW) (Clapham,
2018). The Ethiopian Electric Power Corporation has thus embarked on an
ambitious dam building program intended to exploit its abundant water re-
serves. Among the mega-infrastructures recently built or under construction
we count the GERD, on the Blue Nile (Yihdego et al., 2017), along with Gibe
III and Koysha, on the Omo river. Gibe III, commissioned in 2015, doubled
Ethiopian hydroelectric installed hydropower capacity and has the potential to
significantly alter Omo’s streamflow regime with its massive reservoir volume
of 14.7 billionm3, corresponding to the average yearly river flow at the dam site.
Different from to the other mega-infrastructures, Gibe III is already completed
and currently operating at regime conditions, thus serving as a benchmark for
alternative filling strategies against historical operations.

The Omo river is one of the largest and steepest Ethiopian rivers, and was
a main target of dam expansion given its remarkable reserve of unharnessed
hydropower potential. It originates in the Ethiopian Shewan highlands, and
streams southwards through a mountainous area before slowing its pace as it
meanders through the lower Omo valley (Figure 4.1). At the Ethiopian-Kenyan
border, the river forms an extensive delta and contributes about 90% of the
inflow to Lake Turkana, an endorheic lake of the Kenyan Rift Valley, and the
world’s largest desert lake (Avery and Tebbs, 2018).

A three-seasonmeteorological year characterizes the regional climate: a rainy
Kiremt season (June-September) which contributes the bulk of the annual pre-
cipitation through intense convective storm events, a dryBega season (October-
January) carried byArabiandesertwinds, and amilderwetBelg season (February-
May) induced by a wet air mass coming from the Indian Ocean (Spinage, 2012).
In addition to seasonal variability, marked inter-annual climate variability af-
fects the region as a result of the influence of large scale oscillation patterns
in the atmospheric-ocean system (see e.g., Lanckriet et al., 2015; Degefu et al.,
2017, and reference therein). Such teleconnections are responsible for frequent
severe drought episodes recurring every 5 to 10 years that cause widespread
famines in the country, including the catastrophic Ethiopian famine of the mid
1980s (Block and Webb, 2001).

The Omo river hydrology is characterized by a late summer flow peak that
conveys the Kiremt rainfall, and reaching about 1000 m3/s in the lower valley.
Local ecosystems and activities largely depend on this flood pulse that enables
recession agriculture practices and replenishes grazing lands for livestock, sup-
porting the livelihoods of about 200,000 people in Southern Ethiopia. Reach-
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ing Lake Turkana, the flood pulse sustains a biodiverse delta, and produces lake
level oscillations that are vital to nutrient circulation, fish spawning, and the
regeneration of lake shores grazing area for livestock, a crucial protein source
for the 300,000 thousand people inhabiting the poorest region in Kenya (Avery,
2013).

A series of dams was built on the river, including Gibe I (187 MW), Gibe II
(420MW), andGibe III (1870MW). The dam cascadewill be concludedwith the
addition of Koysha (2160 MW), currently under construction and expected to
be completed in 2021. Gibe III received some opposition when the project was
made public (Avery and Eng, 2012), but an unprecedented upsurge of national
and international criticism erupted when the reservoir behind the dam started
to impound water (The Economist, 2016a). Reports say that in 2015 and 2016,
the flood pulse downstream of the dam did not occur or was severely damp-
ened, and thus inadequate to serve its functions (Human Rights Watch, 2017;
Avery, 2017), dramatically damaging the river-related ecosystems and down-
stream activities relying on it (UNESCO, 2018; IUCN, 2018). Simultaneously,
during the filling of Gibe III, the level of Lake Turkana dropped 1.7 meters, of
which over 1meter fell in the first year (Avery andTebbs, 2018). Were these dra-
matic impacts the inevitable price to pay for dam development, or was (more)
sustainable filling possible?

To address this question, we analyzed the historical filling strategy and ex-
plored alternative options by changing both filling timing and operations. Since
no official record of Gibe III operations during the filling is publicly available,
we first reconstructed the historical strategy using satellite imagery and a simu-
lation model of the OTB (seeMethods and Supplementary Figure A.1). Overall,
the reconstructed system dynamics (Figure 4.2) is coherent with news reports
(e.g., Human Rights Watch, 2017; Avery, 2017), showing the largely impounded
2015 and 2016 Kiremt season streamflow, a fast level increase in Gibe III, and
a steep drop in the level of Lake Turkana during the initial dam filling.

To understand the role of timing (i.e., when dam filling is initiated), we then
performed a retrospective analysis by simulating the reconstructed historical
filling policy, assuming this took place in different years featuring diverse hy-
droclimatic conditions. The annual cumulated precipitation in the basin from
1999 to 2018 shows a clear multiyear climatic oscillation that can be well ap-
proximated by the sum of three harmonics (Figure 4.3), associated with the
ocean-atmospheric interactions persisting in the region (see Methods). Gibe
III filling began in 2015, at the negative peak of a prolonged downwards phase
in precipitation abundance; intuitively, this represented an unfortunate timing
to immobilize a large water volume into a reservoir.

Looking at the climatic oscillations, we analyzed alternative timings corre-
sponding to upwards (2007 and 2013) and downwards (2009 and 2015, which

66



4.2. Behind �lling controversy - the role of timing

Gibe III inflow and release [m3/s]

01/15 05/15 09/15 01/16 05/16 09/16 01/17 05/17 09/17 01/18 05/18 09/18
0

500
1000
1500
2000
2500

in
flo

w
 a

nd
 re

le
as

e 
[m

3 /s
]

Bega
Belg
Kiremt
inflow
release

01/15 05/15 09/15 01/16 05/16 09/16 01/17 05/17 09/17 01/18 05/18 09/18
700

750

800

850

900

Le
ve

l [
m

as
l]

Gibe III level

observed
simulated
normal operating level
min-max operating level

01/15 05/15 09/15 01/16 05/16 09/16 01/17 05/17 09/17 01/18 05/18 09/18

363

364

365

366

Le
ve

l [
m

as
l]

Lake Turkana level
observed
simulated
no Gibe III

Figure 4.2: Reconstructed historical �lling strategy. Gibe III reservoir reached
its normal operating level within its first two years of operations by impounding the
near totality of the 2015 Kiremt season inflow, and a significant fraction of 2016’s.
In the two following years, theGibe III level oscillated around its operational level as
a consequence of a release pattern that increased low flows and reduced high flows
with respect to natural Omo hydrology. Simultaneously, Lake Turkana suffered a
twometer level drop with respect to a simulation of a scenario in which Gibe III was
not built. While the trajectory of observed Lake Turkana levels is publicly available,
the Gibe III level trajectory was reconstructed from Sentinel 2 image classification
(see Methods).
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is the historical starting date) phases in precipitation abundance. Results show
that the filling outcomes are strongly determined by the harmonic phase in
which the filling starts (panels b in Figure 4.3). According to all considered in-
dicators (see Methods and Supplementary Information for details about their
formulation) reflective of both upstream interests (i.e., hydropower production,
final Gibe III level) and downstream preservation (i.e., drop in Lake Turkana
level, flood pulsemagnitude), theworst timing to initiate dam fillingwould have
been 2009, which corresponded with the onset of a multi-year dry spell. Con-
versely, starting the filling in 2013would have benefited all sectors involved and
contained the sharp intersectoral conflict observed in 2015. In particular, 2013
would have favored upstreamwater users yielding an additional 124GWh/year
in hydroelectricity, corresponding to a revenue of 17.36 Million USD in elec-
tricity export in its first 2 years of life, assuming the excess energy was sold to
Kenya at the agreed upon price of 0.07 USD/kWh (Fitiwi Tekle, 2016). In ad-
dition, the drop in the level of lake Turkana could have been contained to 1 m
instead of 1.63 m, and the flood pulse magnitude increased by 42%with respect
to that actually observed.

This analysis shows that, in the future, the projection of the harmonic trends
of precipitations could preventively inform a forward-looking planning of the
timing of Koysha construction, in order to synchronize filling to a wet spell,
rather than aggravating the expected natural water scarcity situation following
a dry spell. Koysha filling is expected to start in 2021, again at the bottom of a
steep decline in precipitation foreseen in the 2 previous years, thus likelymagni-
fying the stress of a long running water shortage. Instead, beginning the filling
one year later, at the inversion of the precipitation trend, would significantly re-
duce the impact downstream and produce more benefits upstream during the
filling transient, however generating a one-year delay in hydropower produc-
tion.

4.3 Forecast-informed adaptive �lling

The historical filling operationswould not have been able to achieve a sufficient
flood pulse and still would have recorded a significant drop in the level of Lake
Turkana even if the filling timing had been favorable (Figure 4.3b.3-4). These
shortcomings motivate searching for alternative, adaptive filling strategies that
better respond to the interannual hydroclimatic variability.

Taking advantage of advancedMachineLearning anddatamining techniques,
we synthetize global datasets of climate oscillations (Supplementary Table A.1)
into a compact drought index forecast, namely the Standardized Precipitation
and Evaporation Index (SPEI), which is representative of upcoming hydrome-
teorological anomalies at the Omo-Turkana basin scale (see Methods and Sup-
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Figure 4.3: Climatic oscillations can inform a favorable timing for �lling. A
pattern of harmonic climatic oscillations governs the magnitude of annual rainfall
in the OTB (panel (a)). Filling the Gibe III reservoir during an upwards phase of
water availability (e.g., 2013), instead of a downwards phase as historically, could
have resulted in amore efficient, and less contentious filling (panels (b)). By project-
ing the harmonic trends into the future, we advise to delay the filling of Koysha by
one year and to begin in 2022 instead of the planned 2021, as the additional stress
caused by a poorly timed filling stress could have detrimental social and ecological
consequences.
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plementary Figure A.2). Adaptive filling policies use the forecasted drought in-
dex to speed up the filling process during wet spells, and, conversely, increase
releases during dry seasons to sustain downstream activities (see Methods).
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Figure 4.4: Adaptive �lling strategies can reduce �lling impacts. The seasonal
forecasts of the Standardized Precipitation and Evaporation Index expressed in
terms of dry, normal, and wet conditions with respect to seasonal average (panel (a))
inform the designed adaptive filling strategies (panels (b,c)). Different colors corre-
spond to adaptive strategies with different tradeoffs between upstream and down-
stream competing interests, blues for more environmentally inclined, and reds for
hydropower-inclined strategies, while the historical strategy is represented in black.
Adaptive strategies demonstrate the ability to significantly reduce downstream im-
pacts on Lake Turkana (panel(d)) and average river hydrology (panel (e), where
the shaded areas refer to the inter-annual variability) while remaining within a
contained range of historically produced hydropower (panel (f)). The figure illus-
trates 4 different tradeoff solutions, while the complete set of results is reported in
Supplementary Figure A.3.

A total of over one hundred adaptive filling strategies were designed to pro-
vide a thorough exploration of the basin sectoral trade-offs (see Methods and
Supplementary Figure A.3). In order to benchmark informed strategies with
historical operations, we considered begining the filling in 2015 for all alter-
natives. The SPEI seasonal forecasts (Figure 4.4a) confirm that Gibe III filling
started during a drought, but water availability conditions improved towards
mid-2017. Tradeoffs are evident between upstream and downstream interests,
whereby strategies attaining high hydropower production are also associated
with large negative impacts downstream. Notably, the Downstream Prefer-
ence policy ensures high Gibe III releases (panel (b)) especially in the first years
(2015-2016), nearly halving lake Turkana level drawdown with respect to ob-
served conditions (panel (d)) and preserving the natural flood pulse in the delta
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(panel (e)). However, this policy is estimated to produce a 9% lower hydropower
production with respect to the historical one, corresponding to lost revenue of
28.3 Million USD per year, in the first four years. Conversely, the Upstream
Preference policy surpasses the historical hydropower production (+30.9 Mil-
lion USD/year) by implementing a fast filling strategy that reaches the Gibe
III operating level within the first year, at the cost of significant alterations to
Lake Turkana levels. Finally, the Compromise-upstream policy achieves a his-
torically equivalent hydropower production, while maintaining a significantly
more natural hydrology downstream in terms of flood pulse, which is, on av-
erage, nearly 300 m3/s higher than historically observed during the expected
peak in late August.

The entire ensemble of adaptive policies produced (Supplementary Figure
A.3) thoroughly explores the space of compromises and trade-offs between the
conflicting interests coexisting in theOTB.Hydropower productionof the adap-
tive policies ranges from -12% below to 9.7% above historical production. The
drop in Lake Turkana levels measured between January 2015 and November
2018 ranges from 1.2 m (comparable to the historical 1.1 m) to just a few cen-
timeters across the adaptive policies. Interestingly, the averagemagnitude of the
flood pulse in late August, historically just over 500 m3/s, is considerably im-
proved by the entire ensemble of adaptive policies, which obtain a minimum of
720m3/s and amaximumof 1000m3/s. Overall, by considering the entire range
of adaptive strategies we notice the potential to largely contain environmental
alterations with a comparatively small to nonexistent loss in hydropower pro-
duction.

4.4 Discussion and Conclusions

Sustainable dam planning has paved the way towards more socially and envi-
ronmentally inclusive hydropower development that focuses on limiting dam-
induced socio-environmental costs during regular operations. Yet, the initial
filling phase of a dam can generate critical impacts by withholding in the reser-
voir a substantial fractionof the river’s streamflow, significantly reducingdown-
stream water availability. Hydrological variability can play a key role in magni-
fying or containing the stress of filling: if the filling occurs during a dry spell,
the basin is further exposed to water shortage and intersectoral tensions. This
is the case analysed in this paper, where an ongoing drought magnified the fill-
ing impacts of the Gibe III dam, thus inducing its association with the label of
“most controversial dam in Africa” (The Economist, 2016a). In the proposed
retrospective analysis, we demonstrate that consideration of climate oscilla-
tions could have informed a more favorable filling timing and operations, and
significantly contained the associated social and environmental costs. Koysha
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dam, located downstream of Gibe III, is again at risk of synchronizing its filling
with an upcoming drought, further endangering the already precarious socio-
environmental conditions of the Omo-Turkana Basin. While these quantitative
results refer to this specific case study, the novel approach and tools we pro-
pose in this work can be generalized to other river basins. Currently, of the
nearly 650 medium to large dams under construction in the world (Zarfl et al.,
2015), 70% are being built in regions under the influence of the El Niño South-
ern Oscillation, the prevalent global interannual signal of climate variability
(Ward et al., 2014a; Lee et al., 2018) (Figure 4.5). In these areas, teleconnec-
tion analysis has the potential to increase our predictive skills in anticipating
hydrological variability in the medium-to-long term, which can be exploited to
minimize filling impacts. operations during the critical initial filling phase.

El Niño Dec-Feb
La Niña Dec-Feb

El Niño Dec-Feb
La Niña Jun-Aug

El Niño Dec-Feb
La Niña Dec-Feb

La Niña 
Dec-Feb & June-Aug

El Niño Jun-Aug
La Niña Jun-Aug

El Niño Dec-Feb
La Niña Dec-Feb

El Niño & La Niña
Dec-Feb & June-Aug

El Niño Jun-Aug
La Niña Jun-Aug

Influence of ENSO
Future Dam

Figure 4.5: Future dams overlap regions with a strong ENSO in�uence. The
blue points indicate the locations of medium-to-large future hydropower reservoirs
and dams, extracted from the FHReD database published in (Zarfl et al., 2015).
Dam height is generally employed to discern between small, medium, and large
dams, but in the absence of this information, we consider as medium-to-large the
hydropower projects with an installed capacity greater than 150 MW, retaining a
total of 642 dams of the over 3700 reported in the database. A red shade highlights
the areas of the globe that are most affected by El Niño and La Niña oscillations
(Lindsey, 2016). Over 70% of medium-to-large future dams are located in areas
affected by the ENSO teleconnection.

It is, however, important to consider that, while on the one hand filling a dam
during a dry year can jeopardize water-related activities and overall basin sta-
bility, on the other hand, postponing dam filling will delay the project’s energy
generation, its expected economic returns, and the benefits of electrification to
its patrons. Additionally, inferring a favorable filling timing by projecting past
climatic trends in the future is associatedwith a level of uncertainty enhancedby
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ongoing climate change trends. It is thus recommended to consider a portfolio
of alternative renewable energy sources (e.g., solar, wind, geothermal, biomass,
and tides), in addition to hydroelectricity, that can compensate for the delay in
hydropower production possibly required by a sustainable filling strategy.

4.5 Methods

4.5.1 Omo-Turkana Basin Model

The model of the Omo-Turkana Basin relies on a combination of TOPKAPI-
ETH, a spatially distributed hydrological model, with a dynamic, conceptual
model of Gibe III, the lower Omo Valley, and lake Turkana.

TOPKAPI-ETH is a spatially distributed hydrological model that improves
the original TOPKAPI rainfall-runoff model (Ciarapica and Todini, 2002). The
model performs a spatio-temporal simulation of the main hydrological pro-
cesses at the basin scale, accounting for runoff generation, routing, and evap-
otranspiration, including snow and glacier dynamics when necessary (see e.g.,
Paschalis et al., 2014, and reference therein). Spatial heterogeneity of the OTB
basin is represented by discretizing the domainwith a regular grid of 1 km2 res-
olution, while the temporal dynamics are characterized at a daily time step. The
model inputs are daily values of precipitation, temperature, and cloud cover;
the model outputs are Gibe III inflows, lateral contributions in the Lower Omo
valley (between Gibe III and lake Turkana), and the additional inflows to lake
Turkana provided by the Turkwel and Kerio rivers in Kenya. Daily rainfall
estimates are available from the TAMSAT archive with a 4km resolution for
the African continent (Maidment et al., 2017), and satellite-based temperature
records fromMERRA-2 at a resolution of 0.5◦ x 0.625◦ (Rienecker et al., 2011).

The daily dynamics of Gibe III and lake Turkana are described by the mass
balance of their water volumes, where the release volume of Gibe III is deter-
mined by the simulated filling policies, followed by a regime policy activated
when the filling has completed (i.e., when the level ofGibe III reaches the normal
operating level equal to 851 masl). Geomorphological and technical character-
istics of Gibe III reservoir, dam, and power plant are published in the project’s
impact assessment (Ethiopian Electrical PowerCompany (EEPCO), 2009). Lake
Turkana, instead, is an endorheic lake, and the only water output is due to evap-
oration. According to the daily time-step adopted in the model, the reach of the
Omo river downstream fromGibe III is modelled as a plug-flow canal in which
the velocity and direction of flow are constant. A transit lag time of lag = 18
days from Gibe III to lake Turkana is estimated from the TOPKAPI-ETH sim-
ulations.

Different objective functions representing the main hydropower and envi-
ronmental interests were formulated through a participatory process involving
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key stakeholders active in the system, that participated in dedicated meetings
called Negotiation Simulation Labs held during the DAFNE research project
(http://dafne-project.eu/): maximization of hydropower production at Gibe III
and minimization of the average daily squared distance between the simulated
flow in the Omo delta and the annual hydrograph in natural conditions. More-
over, the maximization of the Gibe III level at the end of the filling transient is
included in the design of the filling strategy to design solutions that, for a given
hydropower and environmental performance, favor a fast rather than unneces-
sarily slow filling (see the Supplementary Information for the detailed mathe-
matical formulation of these objectives). The presence of such clearly conflict-
ing interests does not allow the design of a unique optimal solution, but rather
a set of non-dominated (or Pareto optimal) solutions. A policy is defined as
Pareto-optimal if no other solution gives a better value for one objective with-
out degrading the performance in at least one other objective.

The optimal operation of Gibe III in regime conditions (after the filling has
completed) is designed via Stochastic Dynamic Programming (SDP, Bellman,
1957) and is consistent across all policies. The selected tradeoff for the regime
policy is the one located at the Pareto front knee of the multi-objective SDP
optimization. Our proposed adaptive filling policy determines the dam release
in a given day as a function of the cyclostatonary average streamflow for that
day prior to dam construction. Specifically, the cyclostationary streamflow is
scaled proportionally to the expected hydrological conditions for the incoming
season according to the forecast of the Standardized Precipitation and Evapo-
ration Index (SPEI) (see Methods). In this formulation, the three scaling factors
associated with the three classes of SPEI (i.e., dry, normal, wet) are the decision
variables of the filling optimization problem; we searched the optimal value of
these factors with respect to hydropower production, environmental impact,
and filling duration by using the self-adaptive BorgMulti-Objective Evolution-
ary Algorithm (Hadka and Reed, 2013). The Borg MOEA has been shown to
be highly robust across a diverse suite of challenging multiobjective problems
where it met or exceeded the performance of other state-of-the-art MOEAs
(Hadka and Reed, 2012; Zatarain et al., 2016).

4.5.2 Historical �lling strategy

The historical Gibe III filling strategy (i.e., sequence of dam inflows and releases
during the first years) is not publicly available, and was thus reconstructed for
the purpose of this study. We derived the sequence of dam releases by assuming
that turbines were operated at full capacity (corresponding to maximum effi-
ciency), and that the release from the dam was maintained constant within a
season. The inflows were obtained from TOPKAPI-ETH hydrological simula-
tions. The simulation of this filling strategy allows the reconstruction of Gibe
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III and Lake Turkana levels (see Figure 4.2). While records of Lake Turkana lev-
els are available in the Database for Hydrological Time Series of Inland Waters
(DAHITI) (Schwatke et al., 2015), the observed Gibe III level was derived from
Sentinel 2 satellite images classification. Sentinel 2 images are available for the
area every 5 days at a 30 meters spatial resolution (Drusch et al., 2012). The im-
ages recorded in the samemonth are aggregated in the attempt of filtering cloud
occlusion. We then performed a land cover classification of the composite im-
ages using a combination of NDWI (Gao, 1996) andNDVI (Rouse Jr et al., 1974)
indexes, and derived an estimate of the reservoir surface area from the water
pixels count (see Supplementary Figure A.1). Using the reservoir bathymetry
we finally estimated the corresponding trajectory of the Gibe III level. The co-
efficient of determination of the simulated filling strategy with respect to the
historical observations are equal to R2

GibeIII = 0.9795, R2
Turkana = 0.9075

computed at a daily time step.

4.5.3 Empirical derivation of climatic oscillations

The influence of climate oscillations on Ethiopian meteorology can be decom-
posed into three contributing phenomena associatedwith the three oceans (Lanck-
riet et al., 2015). The climatic oscillations shown in Figure 4.3 are therefore em-
pirically derived by summing three single term Fourier series hi, i = 1, 2, 3 of
the form

hi(x) = a0 + a1 ∗ cos(x ∗w) + b1 ∗ sin(x ∗w) (4.1)

where a0, a1, b1 and w are the parameters to be calibrated, and x is the sig-
nal to be approximated. In particular, the first harmonic is specified as h1(p),
where the signal p is the monthly timeseries of the annual cumulated precip-
itation in the OTB. For the second harmonic h2(p ′) the signal to be approx-
imated is computed as the residual precipitation p ′ = p − h1(p) that is not
captured inh1(p), and analogously,h3(p ′′) is calibrated on the second residual
p ′′ = p ′ − h2(p ′). The resulting coefficient of determination is R2 = 0.5273.

4.5.4 Performance of alternative timing of reservoir �lling

We investigate the role of filling timing by assessing how the systemwould have
responded to the filling stress if it had started in different years. To do so, we
simulate the first 24 months of the filling subject to the hydrology of different
years. System performance is then evaluated in terms of 4 indicators (see the
Supplementary Information for the detailed mathematical formulation):

1. Mean annual hydropower production during the 24months filling period;

2. Final Gibe III level at the end of the 24 months;
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3. Final Turkana level drop relative to the initial lake level;

4. Flood Pulse defined as the maximum flow reaching the delta during the
flood season of August-September averaged across the alternative filling
years.

4.5.5 Seasonal forecasts

To develop season-ahead hydrological forecasts of water availability we use the
Climate State Intelligence (CSI) framework (Giuliani et al., 2019), an extension
of the Nino Index Phase Analysis (Zimmerman et al., 2016), which employs Ar-
tificial Intelligence tools to search relevant circulation patterns at the global
scale that serve as predictors for meteorological anomalies at the local scale.
The CSI framework is articulated in four steps:

1. Phase distinction: given a teleconnection signal, the associated teleconnec-
tion index is used to group the years in the time horizon into a specified
number of phases, that are then evaluated individually. For instance, con-
sidering the El Niño Southern Oscillation (ENSO), the Multivariate Enso
Index (MEI, Wolter and Timlin, 2011) is used to distinguish El Niño and
LaNiña years, uncovering possible asymmetries in the effect of a signal on
the local scale, e.g., if in a given region El Niño years are associated with a
wet spell, La Niña years are not necessarily associated with a dry spell.

2. Univariate linear forecast: For each phase of the climate signal, the proce-
dure identifies relevant correlations between a gridded dataset of presea-
son SSTs and the local variable, retaining SST regions correlated at 95%
significance level or above, assessed with the p-value test. Selected SST
regions are then spatially aggregated via Principal Component Analysis
(Jolliffe, 2002, PCA, see). As in previous applications (Zimmerman et al.,
2016; Giuliani et al., 2019), only the first, most informative, PC is retained
as a predictor for a linear forecast model of the local variable y:

ŷt = βPCt−1 +α (4.2)

A leave-one-out cross-validation is performed to calibrate model coeffi-
cients α and β.

3. Test of Correlation Significance: AMonteCarlo analysis is run to test the sta-
tistical significance of the obtained correlations by randomly shuffling the
time series of the local variable to be predicted and repeating the above de-
scribed steps with unshuffled SSTs and teleconnection index time series.
SST grids must be present at the 95% significance level 90% of the time to
be retained as predictors for the multivariate non-linear forecast.
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4. Multivariate non-linear forecast: The most informative climate signals for
the region of interest are then chosen based on their linearmodel accuracy
and significance. Amultivariate non-linearmodel (ExtremeLearningMa-
chine (Huang et al., 2006a)) is then cross-validated on the selected climate
signals to produce a data-driven seasonal forecast of the local variable.

In this analysis, we considered 16 teleconnection signals at different time
and spatial scales over the 21-year time horizon from 1998-2018 dictated by
the precipitation data availability. We obtainedGlobal Sea Surface Temperature
anomalies from the NOAA’s Extended Reconstructed SST (ERSST) Version 3b,
a global monthly gridded dataset with a spatial resolution of 2.5 degrees avail-
able at https://www.noaa.gov. From the same source we retrieved the
time series of teleconnection indexes. The local variable forecasted is the Stan-
dardized Precipitation and Evaporation Index (SPEI) drought index (Vicente-
Serrano et al., 2010), which has proven to be more effective than the Standard
Precipitation Index (SPI) to characterize hot and arid climates, where the evap-
otranspiration has a key role in depleting the soil moisture and becomes one of
themain drivers of a drought (Lorenzo-Lacruz et al., 2010). SPEI substitutes the
precipitation used for SPI computationwith a net precipitation, by substracting
the Potential Evapo-Transpiration (PET) estimated from temperature and lati-
tude via the Thornthwaite method (Thornthwaite et al., 1948). In this work, the
SPEI index with a 6 months cumulation span is used to characterize seasonal
water availability in three classes according to a classification commonly used
in the literature (Spinoni et al., 2014): dry (SPEI<-0.5), normal (-1<SPEI<1),
and wet (SPEI>0.5). The 6 months time span was selected as frequently used to
characterize medium-term hydrological conditions.

Phase specific accuracy of the univariate linear forecast models in cross-
validation is reported in Supplementary Table A.1, along with corresponding
statistical significance. Balancing accuracy and significance, we selected three
teleconnection signals, namely the NAO, related to a climatic oscillation that
originates in the Atlantic ocean, the PNA, which originates in the Pacific Ocean,
and SEIO, which originates in the Indian Ocean. This choice aligns with the
findings in Lanckriet et al. (2015) that demonstrates that three overlapping cli-
matic oscillations, eachoriginating in a different ocean, contribute to theEthiopian
climate. The first Principal Components related to these signals are the inputs
of the multivariate Extreme LearningMachine forecast model, which is used to
generate a 10-member forecast ensemble. The ensemble average is retained for
classifying the upcoming season (see Supplementary Figure A.2).
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The a posteriori approach to feature representation learning evaluates the op-
timality of a policy input set by assessing the performance of the policy condi-
tioned upon it. In this chapter, the application of such an approach is the vehicle
for a meta-analysis on the role of variable processing in conditioning a control
policy. Inflow forecasts constitute a very intuitive asset for a reservoir control
policy as they are a direct prediction of future system disturbance. However,
long term hydrological forecasts are generally conditioned upon Sea Surface
Temperatures (SSTs) in appropriate locations, processed through a multi-step
modeling chain that derives first a precipitation forecast and, through a hy-
drological model, a reservoir inflow forecast (Cloke and Pappenberger, 2009;
Sharma, 2000b; Block and Rajagopalan, 2007).

With the proposed Climate State Intelligence (CSI) framework, we design
three alternative policy representations comprising, in addition to a basic input
set, i) raw SSTobservations, ii) processed precipitation forecasts, and iii) highly-
processed lake inflow forecasts for the Lake Como control problem. In an a pos-
teriori comparison of policy performance it appears that the heavy processing
needed for inflow forecast design introduces modeling bias that ultimately de-
grades its policy representation skills, compared to less processed counterparts.

This Part contains the following work:

• Giuliani, M., Zaniolo, M., Castelletti, A., Davoli, G., Block, P., 2019. De-
tecting the state of the climate system via artificial intelligence to improve
seasonal forecasts and inform reservoir operations. Water Resources Re-
search 55, 9133-9147.
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5
Detecting the state of the climate
system via arti�cial intelligence
to improve seasonal forecasts

and inform reservoir operations

Abstract1

Increasingly variable hydrologic regimes combined with more frequent and in-
tense extreme events are challenging water systems management worldwide.
These trends emphasize the need of accuratemedium- to long-termpredictions
to timely prompt anticipatory operations. Despite in some locations global cli-
mate oscillations andparticularly theElNiñoSouthernOscillation (ENSO)may
contribute to extending forecast lead times, in other regions there is no consen-
sus on how ENSO can be detected and used as local conditions are also influ-
enced by other concurrent climate signals. In this work, we introduce the Cli-
mate State Intelligence framework to capture the state ofmultiple global climate
signals via artificial intelligence and improve seasonal forecasts. These forecasts
are used as additional inputs for informing water system operations and their
value is quantified as the corresponding gain in system performance. We ap-
ply the framework to the Lake Como basin, a regulated lake in northern Italy
mainly operated for flood control and irrigation supply. Numerical results show

1This work has been published as: Giuliani, M., Zaniolo, M., Castelletti, A., Davoli, G., Block, P., 2019. Detecting
the state of the climate system via artificial intelligence to improve seasonal forecasts and inform reservoir operations.
Water Resources Research 55, 9133-9147.
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the existence of notable teleconnection patterns dependent on both ENSO and
the North Atlantic Oscillation over the Alpine region, which contribute in gen-
erating skilful seasonal precipitation and hydrologic forecasts. The use of this
information for conditioning the lake operations produces an average 44% im-
provement in system performance with respect to a baseline solution not in-
formed by any forecast, with this gain that further increases during extreme
drought episodes. Our results also suggest that observed preseason SST anoma-
lies appear more valuable than hydrologic-based seasonal forecasts, producing
an average 59% improvement in system performance.

5.1 Introduction

Increasingly variable hydrologic regimes combined with more and more fre-
quent and intense extreme events are challenging water systems management
worldwide (Dai, 2011; Trenberth, 2011). Additional pressures generated by
global trends in population growth and rising economic prosperity are expected
to increase the demand for energy, food, andwater (Padowski et al., 2015; Rodell
et al., 2018). These variable and evolving conditions require further flexibility
of water systems operations to activate early actions and decisions, possibly in-
formed by accurate medium- to long-term predictions (Ziervogel et al., 2010;
Benson, 2016).

Most existing water systems are currently operated with static rules con-
ditioned on basic information systems including the day of the year and the
storage, and, in few cases, also the previous day inflow (Hejazi et al., 2008b).
Yet, the utility of forecasts in reservoir operations has long been recognized
(e.g., Kelman et al., 1990; Kim and Palmer, 1997a; Faber and Stedinger, 2001),
and recent studies illustrate promising applications using hydrologic forecasts
spanning variable time scales (e.g., Anghileri et al., 2016; Turner et al., 2017; Lu
et al., 2017; Nayak et al., 2018), possibly conditioned on global climate oscil-
lations (e.g., Gelati et al., 2011; Giuliani and Castelletti, 2019; Libisch-Lehner
et al., 2019). Hydrologic forecasts are typically generated via either dynamic,
process-based climatemodels (see Yuan et al., 2015, and references therein)with
outputs (e.g., precipitation and temperature) fed into hydrologic models (Cloke
and Pappenberger, 2009), or via empirical, data-drivenmodels (Sharma, 2000b;
Block andRajagopalan, 2007), which produce eithermeteorological forecasts to
feed hydrologic models or directly predict future streamflows. However, nei-
ther approach has been shown to consistently outperform the other, with dy-
namic models often limited by resolutions and initialization procedures (Geor-
gakakos et al., 2004) and empirical models constrained by short observational
records and stationarity assumptions (Block and Goddard, 2012).

Both dynamic and empirical forecast models generally rely on variability
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in sea surface temperature as the main source of predictability at seasonal or
longer lead-times (Palmer and Hagedorn, 2006). However, the contribution
of global climate oscillations to local predictability depends on the degree to
which local conditions are affected by these global climatic anomalies. The El
Niño Southern Oscillation (ENSO) is generally considered the dominant inter-
annual signal of global climate variability (McPhaden et al., 2006; Ward et al.,
2010, 2014b). ENSO is a coupled ocean-atmosphere phenomenon observed
over the tropical Pacific Ocean with a 2-7 years period, with El Niño repre-
senting the oceanic component and Southern Oscillation the atmospheric one
(Sarachik and Cane, 2010). In normal conditions the Walker circulation de-
termines the atmospheric circulation over the tropical Pacific with trade winds
blowingwestward andmovingwarmmoist air andwarm surfacewater towards
the western Pacific while keeping the central and eastern Pacific relatively cool.
During an El Niño event, trade winds weaken or may even reverse, allowing
the warm water from the western Pacific to move into the central and eastern
tropical Pacific. Droughts in Indonesia and eastern Australia become far more
common during El Niño events, while rainfall falls on the normally arid coasts
of Perù and Equador. La Niña events are characterized by an intensification
of the Walker circulation, with greater convection over the western Pacific and
stronger trade winds, usually associated with exceptionally warm and wet con-
ditions in the the western part of the tropical Pacific Ocean while the eastern
part turns cool and dry. The ENSO teleconnection is therefore well defined in
some locations, such as the United States (e.g., Kahya andDracup, 1993; Hamlet
andLettenmaier, 1999;Grantz et al., 2007), western SouthAmerica (e.g., Grimm
and Tedeschi, 2009; Poveda et al., 2011), or Australia (e.g., Sharma et al., 2000;
Chiew et al., 2003). Yet, little to no consensus exists on how ENSO influences
other regions, including Europe, where local conditions depend on the concur-
rent state of other climate signals (Zanchettin et al., 2008; Steirou et al., 2017),
particularly the North Atlantic Oscillation (NAO) (e.g., Kingston et al., 2006).

In this paper, we propose a novel framework called Climate State Intelli-
gence (CSI) which aims to use artificial intelligence for producing seasonal hy-
drologic forecasts based on multiple global climate signals and assessing their
value on operational decisions (Figure 5.1). The use of multiple climate signals
ensures the portability of this framework to different geographic locations, in-
cluding regions where traditional teleconnections are weak. The framework
extends the Nino Index Phase Analysis (NIPA) originally proposed by Zimmer-
man et al. (2016) to enable capturing the concurrent state of multiple climate
signals, such as ENSO and NAO. Adopting an empirical, data-driven approach
based onmultivariate Extreme LearningMachinemodels (Huang et al., 2006b),
we use the detected teleconnections and other observed preseason sea surface
temperature (SST) anomalies to forecast localmeteorological variables on a sea-
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sonal time scale. The resulting forecasts are subsequently transformed using a
dynamic hydrologic model into streamflow predictions, which are used as ad-
ditional inputs for informing water systems operations. Finally, we apply the
Information Selection and Assessment (ISA) framework proposed by Giuliani
et al. (2015) to compute the value of the generated hydrologic forecasts with
respect to a baseline solution that does not use any forecast information.

1) Detection of climate teleconnections

1a. Identification of climate oscillation phase using standard climate signal indexes
1b. Detection of relevant anomalies in preseason SST grids
1c. Spatial aggregation of SSTs via PCA
1d. Prediction of next season precipitation using a linear forecast model

2) Seasonal precipitation forecasts

2a. Identification of climate system state 
2b. Prediction of next season precipitation using a multivariate Extreme Learning 
Machine model

3) Hydrologic forecasts

3a. Temporal downscaling of predicted seasonal precipitation 
3b. Prediction of streamflow through hydrologic model 

4) Assessment of forecast operational value

4a. Design the informed operating policy dependent on the generated hydrologic 
forecast
4b. Design the baseline and upper-bound solutions
4c. Contrast the policies designed in 4a and 4b using the hypervolume indicator
4d. Analysis of policies informed by precipitation forecasts and preseason SST

Principal Components of preseason SST
for the detected teleconnections

Seasonal precipitation forecast

Streamflow forecast

Operating policies informed by 
hydrologic forecast, precipitation 
forecast, and preseason SST and

associated operational value 

Figure 5.1: Overview of the Climate State Intelligence (CSI) framework for the gen-
eration of seasonal hydrologic forecasts based on global climate oscillations and the
assessment of their operational value. The dashed lines represent the operational
value assessment of the outputs produced in the first two steps of the framework.

However, while hydrologic (i.e., streamflow) forecasts might be an intuitive
approach to improving water reservoir operations (e.g., Georgakakos and Gra-
ham, 2008; Block, 2011), they require a chain of models that also introduces
modeling errors and forecast biases, which may diminish the estimated oper-
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ational value. This prompts the following key questions: do we really need
forecast models to make better decisions? Do hydrologic forecasts necessar-
ily lead to superior reservoir operations? Can the original (observed) sources
of predictability (e.g., preseason SST) be as valuable as the hydrologic forecast
model outputs? To address these questions, we compare the operational value
of the hydrologic forecast with two alternative pieces of information produced
in the first two steps of our framework: (i) the seasonal meteorological fore-
casts, which only require the precipitation forecast model and eliminate the hy-
drologic model biases, and (ii) the observed preseason SSTs, which remove the
entire forecast model chain.

We apply the CSI framework to the Lake Como basin, a regulated lake in
northern Italy which is mainly operated for flood control and irrigation sup-
ply. The lake catchment, located in the Italian lake district, is characterized by
a mixed snow- and rain- dominated hydrology (Giuliani et al., 2016a). Despite
expected benefits to seasonal irrigated agriculture (Denaro et al., 2017b), the
lack of recognized teleconnections in this region has historically limited the
skill of seasonal forecasts (Li et al., 2017), precluding their integration into the
lake regulation which, today, is simply informed by the day of the year and the
lake level (Todini, 2014; Denaro et al., 2017b). A number of studies investigate
the correlation between NAO phases and snow dynamics in the Alpine region
(e.g., Beniston, 1997; Scherrer et al., 2004) and suggest that the negative phase of
NAO is typically associated with above average temperature and precipitation
in Southern Europe, leading to more liquid than solid winter precipitation and
acceleratedmelting processes. Other studies, however, conclude that the role of
NAO in the Alpine region is marginal (e.g., Durand et al., 2009; López-Moreno
et al., 2011). A lack of consensus also exists regarding ENSO teleconnections;
some studies suggest significant correlations in the region (e.g., Folland et al.,
2009; Brandimarte et al., 2011), while others find marginal ENSO influence
(e.g., Efthymiadis et al., 2007; Bartolini et al., 2009; Shaman, 2014).

In summary, this paper provides a three-fold contribution: (i) the applica-
tion to the Lake Como system advances the understanding of hydroclimatic
variability in the Alpine region and its dependency on global climate oscilla-
tions; (ii) the CSI framework introduces a formalized procedure to quantify
the role of the propagation of error introduced by forecast models with respect
to the forecast operational value; (iii) our framework provides an emblematic
demonstration for the potential of Artificial Intelligence tools in supportingwa-
ter management during extreme events (Rolnick et al., 2019).
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5.2 Study site

Lake Como is a sub-alpine lake in the Italian lake district, northern Italy (Fig-
ure 5.2). It is the third-largest lake in Italy and reaches a maximum depth of
410 m, which makes it the fifth-deepest lake in Europe. The lake is shaped like
an inverted ‘Y’ surrounded by mountains and primarily fed by the Adda River,
which also serves as the only exit point of the lake. The lake catchment has an
area of 4,733 km2, with approximately 90% in Italy and 10% in Switzerland.
The hydrologic regime is snow-rainfall dominated, characterized by relatively
dry winters and summers and high peaks of flow in spring and autumn, due to
snowmelt and rainfall, respectively.

Como Adda River

Milano

Lake Como

160 33 66 100 km

4000 m

8 

agricultural
districts

Figure 5.2:Map of the Lake Como basin.

The LakeComo system involves numerous economic activities and has been
actively studied since the 1980s (e.g., Guariso et al., 1984, 1986). The existing
regulation of the lake is driven by two primary, competing objectives: water
supply, mainly for irrigation, and flood control in the city of Como, which sits
at the lowest point on the lake shoreline. The agricultural districts downstream
prefer to store snowmelt in the lake to satisfy the peak summer water demands,
when the natural inflow is insufficient to meet irrigation requirements. Yet,
storing such water increases the lake level and, consequently, the flood risk,
which could instead be minimized by keeping the lake level as low as possi-
ble. On the basis of previous works (e.g., Castelletti et al., 2010a; Giuliani and
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Castelletti, 2016; Giuliani et al., 2016a; Denaro et al., 2017b), these two objec-
tives (both to be minimized) are formulated as follows:

• Flood control (JF): the average annual number of flooding days in the sim-
ulation horizon.

• Water supply deficit (JD): the daily average quadratic water deficit between
lake releases and downstreamwater demands, subject to aminimum envi-
ronmental flow constraint to ensure adequate environmental conditions
in the Adda River. This quadratic formulation aims to penalize severe
deficits in a single time step, while allowing formore frequent, small short-
ages (Hashimoto et al., 1982).

Further details about the Lake Como integrated model and policy design
problem formulation are provided in Section S1 of the Supporting Information.

5.3 Methodology

Our Climate State Intelligence framework is composed of four steps as illus-
trated in Figure 5.1:
1. The detection of relevant climate teleconnections is performed by means

of the Nino Index Phase Analysis (Zimmerman et al., 2016), which an-
alyzes independently multiple climate signals, categorizes the available
years looking at the climate oscillation phase and, for each phase, iden-
tifies preseason SST anomalies statistically significantly correlated with
local conditions.

2. The seasonal precipitation forecasts are generated by capturing multiple
climate signals using a nonlinear, multivariate Extreme LearningMachine
model (Huang et al., 2006b), which is conditioned on the preseason SST
for the relevant teleconnections detected in the previous step.

3. The hydrologic forecasts are produced through a temporal downscaling
procedure of the seasonal precipitation forecast to feed a hydrologicmodel.

4. The forecast operational value is assessed by using the Information Selec-
tion and Assessment framework proposed by Giuliani et al. (2015).

Details about each step of the framework are reported in the next subsections.

5.3.1 Detection of climate teleconnections

The first step of our framework relies on the Nino Index Phase Analysis, a sta-
tistical framework originally developed byZimmerman et al. (2016) for predict-
ing seasonal precipitation conditioned on prior season atmospheric-oceanic
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variables. In contrast to other studies that use the state of ENSO as a predic-
tor in their models, this technique expresses ENSO as a physical influence on
the “mean state” of the ocean-atmosphere system, in order to uncover possi-
ble asymmetric relationships (e.g., if in a given river basin El Niño is associated
with dry conditions, La Niña not necessarily associates with wet conditions)
thatmay be informative in a statistical prediction framework but are often over-
looked. TheNIPAmethodology groups the available years into different phases
(e.g., positive and negative if two phases are selected) according to the state of
a climate signal (e.g., ENSO or NAO) as measured by its corresponding index.
Subsequently phase-specific SST fields are identified and used as predictors in
a seasonal forecast model. Each phase is then evaluated individually, thus con-
structing as many predictive models as the number of phases.

The first step of the modelling procedure consists of identifying the most
significant SST predictor regions for each phase of the climate signal. For this
purpose, correlationmaps between the seasonalmean of local precipitation and
preseason SST anomaly patterns are used, and correlated regions at the 95% sig-
nificance level are identified for each phase. AMonte Carlo test is performed to
ensure that SST grids are not randomly selected (i.e., SST grids must be present
at the 95% significance level 90% of the time to be included). After identifying
the SST predictor regions, a Principal Component Analysis (PCA, (see Joliffe,
2002)) is conducted on the entire predictor field and the firstm resulting Prin-
cipal Components (PCs) are retained as predictors in the forecast model. As in
Zimmerman et al. (2016), we considered only the first Principal Component of
preseason SST for each phase (PC1

τ−1), as it generally explains most of the vari-
ance in the selected SST predictor regions. The linear forecast model is defined
as follows:

ŷτ = β ∗ PC1
τ−1 +α (5.1)

where ŷτ is the predicted seasonal local precipitation, β the regression coef-
ficient, and α the intercept. Given the low year-to-year persistence in precip-
itation data, a leave-one-out cross-validation procedure is then applied to the
linear model to avoid model overfitting and predictive skill is measured with
the Pearson correlation coefficient. Additional details on the NIPA framework
are provided in Section S2 of the Supporting Information.

5.3.2 Seasonal precipitation forecasts

The second step of our framework constructs an empiricalmultivariate forecast
model from theNIPA results. The teleconnections detected in the previous step
are used for grouping the years into distinct climate states defined as combina-
tions of the original phases of each climate signal. For example, the positive and
negative phases of ENSO and NAO would combine to four climate states (i.e.,
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positive-positive, positive-negative, negative-positive, and negative-negative).
Including a neutral phase is also possible, although this results in nine climate
states, and may create challenges due to the limited length of available data.

The multivariate forecast model is defined as a function of the first PC ex-
tracted from the preseason SST of each climate signal, along with a categor-
ical flag indicating the climate state. We tested different data-driven model
classes, including linear models, Artificial Neural Networks (ANNs), and Ex-
treme Learning Machines (ELMs). These latter is a model belonging to the
family of ANNs that by-pass the time-consuming gradient-based search of op-
timal ANNparameters by defining randomly parameterized hidden nodes, and
subsequently optimizing only their output weights through a one-step matrix
product (Huang et al., 2006b). Numerical results suggest that ELMs outperform
the other models (for details, see Table S1 in the Supporting Information). The
multivariate ELM forecast model is hence formulated as:

ŷτ = ELM(PC1,S1
τ−1 , PC

1,S2
τ−1 , γ) =

N∑
i=1

wiψi(PC
1,S1
τ−1 , PC

1,S2
τ−1 , γ, ξi) (5.2)

where ŷτ is the predicted seasonal local precipitation, PC1,S1
τ−1 and PC1,S2

τ−1 are
the first PCs of preseason SST for two climate signals (e.g., ENSO and NAO),
γ is a categorical climate-state flag,N is the number of nonlinear nodes in the
hidden layers ψi, each using a sigmoidal activation function characterized by
randomly generated (and thus not calibrated) parameters ξi, and wi are the
outputs weights to be calibrated.

5.3.3 Hydrologic forecasts

The third step of our framework generates hybrid hydrologic forecasts by trans-
forming the seasonal precipitation forecasts produced by the ELM model into
streamflow forecasts using a hydrologic model. This step requires temporal
disaggregation of the predicted seasonal precipitation to an appropriate res-
olution for running the hydrologic model. Similarly to Souza Filho and Lall
(2003), temporal disaggregation is performed bymeans of the k-NearestNeigh-
bor resamplingmethod (Nowak et al., 2010). This data-drivenmethod captures
the observed variability, is consistent with the lag correlation structures in the
observed data, and ensures mass conservation and continuity at the daily time
scale (Rajagopalan et al., 1997). The temporal disaggregation relies on the com-
putation of a seasonal proportionmatrixPτt , which distributes the seasonal pre-
cipitation volume over all days twithin season τ. Then, k nearest neighbors of
the seasonal precipitation are identified from the historical record. Finally, one
of the neighbors is randomly selected according to a probability distribution
that is proportional to the similarity of the historical season with the predicted
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one.
The disaggregated precipitation forecasts are used as inputs to a hydrologic

model. Specifically, we use the well known conceptual hydrologic model Hy-
drologiska Byrans Vattenbalansavdelning (HBV, see, Lindström et al., 1997),
originally developed for operational flood forecasting in Sweden, which relies
on four storage units, one for snow and the other three for different soil layers.

5.3.4 Assessment of forecast operational value

The last step of our framework assesses the operational value of the hydrologic
forecasts, defined as the difference in system performance between an operat-
ing policy that uses the forecast information It (e.g., the hydrologic forecasts),
and a baseline operating policy relying on more traditional information, such
as the day of the yeardt and the lake levelht, which in the case of Lake Como is
sufficient to reproduce 85% of the variance of the observed release time series
(Denaro et al., 2017b). According to the Information Selection and Assessment
framework (Giuliani et al., 2015), this analysis also includes an upper-bound
solution, designed assuming perfect foresight of future inflows, which allows
estimating the potential maximum improvement of baseline operations. Addi-
tional details on the ISA framework are provided in Section S4 of the Support-
ing Information.

The optimal operating policies are computed by solving a multi-objective
optimal control problem (Castelletti et al., 2008b) formulated as follows:

p∗ = arg min
p

J = |JF, JD| (5.3)

where the closed loop control policy p determines the release decision ut =
p(dt, ht, It) at each time step t over the simulation horizon and the operating
objectives are described in Section 5.2. Note that the problem in eq. (5.3) does
not yield a unique optimal solution but a set of Pareto optimal solutionsP∗. The
image in the objective space of the Pareto-optimal solutions is the Pareto front
F. To allow the direct use of hydrological forecasts as policy input, the problem
in eq. (5.3) is solved by using the Evolutionary Multi-Objective Direct Policy
Search method (Giuliani et al., 2016b), which implements a data-driven control
strategy by integrating direct policy search, nonlinear approximating networks,
and multi-objective evolutionary algorithms.

Given the Pareto optimal solutions of the problem in eq. (5.3), the opera-
tional value of the hydrologic forecast is quantified by the hypervolume indica-
tor (HV ), which captures both the convergence of the Pareto front conditioned
on forecast information F to the ideal one assuming perfect foresight of future
inflows F ′ as well as the representation of the full extent of tradeoffs in the
objective space (Zitzler et al., 2003). The hypervolume measures the objective
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space volume dominated (�) by the considered set of solutions andHV is cal-
culated as the hypervolume ratio betweenF andF ′, formally defined as follows
(for a visual representation, see Figure S4a in the Supporting Information):

HV(F,F ′) =

∫
αF(x)dx∫
αF ′(x)dx

where

αF(x) =

{
1 if ∃x ′ ∈ F such that x ′ � x
0 otherwise

(5.4)

Thismetric allows set-to-set evaluations, withHV assuming values between
0 to 1. Larger HV values imply superior Pareto optimal sets, with HV = 1
assigned to the set of upper-bound solutions relying on perfect forecast infor-
mation.

5.3.5 Data and experimental settings

The historical precipitation data used in this study are taken from Euro4M-
APGD (i.e., Alpine Precipitation Gridded Dataset) developed by MeteoSwiss
in the framework of the EURO4M (European Reanalysis and Observations for
Monitoring deliverables) project. The data consists of a quality controlled, grid-
ded dataset of daily precipitation from 1971 to 2008, which extends over the
entire Alpine region and is based on measurements from high-resolution rain-
gauge networks, encompassing more than 8,500 stations from Austria, Croatia,
France, Germany, Italy, Slovenia, and Switzerland. For more information, see
Isotta et al. (2014). Global Sea Surface Temperature anomalies were obtained
from the NOAA’s Extended Reconstructed SST (ERSST) Version 3b, a global
monthly gridded dataset with a spatial resolution of 2.5 degrees.

We consider five candidate climate signals for improving the seasonal pre-
dictionof the precipitation in theLakeComobasin, including theElNiñoSouth-
ern Oscillation, the North Atlantic Oscillation, the Pacific Decadal Oscillation,
the Atlantic Multidecadal Oscillation, and the Indian Ocean Dipole. To dis-
tinguish the phases of different signals, we use the Multivariate ENSO Index
(MEI) from NOAA, the Station-based Hurrell NAO Index from the National
Center for Atmospheric Resource, along with the PDO Index, the AMO Index,
and the Dipole Mode Index all from KNMI. The MEI is an index calculated
based on the six main observed variables over the tropical Pacific: sea level
pressure, zonal and meridional components of the surface wind, sea surface
temperature, surface air temperature, and total cloudiness fraction of the sky
(for details, see Wolter and Timlin, 1998). The NAO index is instead defined
as the difference between the normalized mean winter (December-March) sea
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level pressure anomalies at Lisbon (Portugal) and Stykkisholmur (Iceland) (Hur-
rell and Loon, 1997). The PDO Index is defined as the leading principal com-
ponent of North Pacific monthly sea surface temperature variability (poleward
of 20N for the 1900-93 period). The AMO Index is defined as the SST aver-
age over 0◦-60◦N, 0◦-80◦Wminus the SST average over 60◦S-60◦N. The DMI
Index is an indicator of the east-west temperature gradient across the tropical
Indian Ocean, which is calculated as the difference of the Western Tropical In-
dian Ocean SST index and the South Eastern Tropical Indian Ocean SST index.

To solve the policy design problem via EvolutionaryMulti-Objective Direct
Policy Search, the policies are defined as Gaussian radial basis functions, which
have been demonstrated to be effective in solving these types of multi-objective
policy design problems (Giuliani et al., 2016b). The policy parameters are opti-
mized using the self-adaptive Borg MOEA (Hadka and Reed, 2013), which has
been shown to be highly robust in solvingmulti-objective optimal control prob-
lems (Zatarain et al., 2016). Each optimization was run for 2 million function
evaluations over the simulation horizon1996-2008, whichwas selected because
it shows good variability in the local hydrological conditions including some in-
tense droughts events. This time horizon is used for both the optimization and
evaluation of the policy performance, which is hence likely overestimated as not
tested on out-of-sample observations. However, the Lake Como inflows have
already manifested a non-stationary trend over the last decades (see Giuliani
et al., 2016d). The droughts of 2003-2005-2006, all used for the optimization
of the policies as representative of extreme drought events, are therefore un-
precedented and prevent using the 1971-1995 horizon for validating the policy
performance as this latter is much wetter than the most recent years. To im-
prove solution diversity and avoid dependence on randomness, the solution set
from each formulation is the result of 20 random optimization trials. The fi-
nal set of Pareto optimal policies for each experiment is defined as the set of
non-dominated solutions from the results of all the optimization trials.

Finally, we provide amore tangiblemeasure of the forecast operational value
by converting the water supply deficit JD into monetary values by using a spa-
tially distributed agricultural model of theMuzza irrigation district, the largest
district served solely by Lake Como releases. This model simulates soil-crop
water balance (Facchi et al., 2004), crop growth stages as a function of the heat
units accumulated (Neitsch et al., 2011), and final crop yield accounting for the
effects of stresses due to insufficient water supply that may have occurred dur-
ing the agricultural season (Steduto et al., 2009). Further details about the dif-
ferentmodel components are provided in Section S1 of the SupplementaryMa-
terial.

Source code is available onGithub: NIPA (https://github.com/mxgiuliani00/CSI),
HBVmodel (https://github.com/mxgiuliani00/hbv), LakeComo simulation and
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Table 5.1: Pearson correlation coefficients between predicted and observed winter pre-
cipitation PJFM with associated level of confidence for each phase of NAO and
ENSO (predictions depend on preseason SST anomalies).

Climate Signal Phase Pearson correlation Level of confidence

NAO negative 0.50 89.00%
positive 0.52 69.70%

ENSO negative 0.41 32.00%
positive 0.51 96.20%

EMODPS implementation (https://github.com/mxgiuliani00/LakeComo).

5.4 Results

5.4.1 Detection of climate teleconnections

In the first step of the CSI framework (Figure 5.1), we run NIPA to detect the
presence of potential teleconnections betweenmultiple climate signals with the
local precipitation in the Lake Como basin. We report here only results for
ENSO and NAO related to wintertime precipitation (seasonal average precipi-
tation in January, February, March, mainly as snow, which is highly correlated
with spring inflows to the lake generated by themelting of the snow stored dur-
ing the winter months on the mountains) which provide the best predictions of
seasonal precipitation using the linear model in eq. (5.1). Results for other cli-
mate signals and other seasons are reported in the Supporting Information (see
Table S2 and Table S3).

Wintertime predictions from preseason SST anomalies conditioned on the
NAO negative phase and the ENSO positive phase independently result in high
Pearson correlation values and high levels of confidence (Table 5.1). In par-
ticular, the prediction of winter precipitation obtained with the NAO negative
phase has a correlation value of 0.50with a level of confidence equal to 0.89; the
positive phase of ENSOhas a correlation value of 0.51with a level of confidence
equal to 0.96. These values of correlation are significantly higher than a stan-
dard regression model that is constructed without separating NAO and ENSO
phases (Pearson correlation equal to 0.34), warranting the adoption ofNIPA for
the detection of climate teleconnectionswith asymmetric relationshipswith the
local hydroclimatic processes.

Figure 5.3 illustrates the preseason SST grids selected by NIPA when ex-
ploring ENSO and NAO teleconnections (i.e., running a global search for pre-
season SST anomalies correlated with the seasonal precipitation in the Lake
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Como basin splitting the data according to the positive and negative phase of
each climate signal). The selected spatial extent of SST patterns is larger for
the negative phase of NAO and the positive phase of ENSO than for the op-
posite phases, further indicating an asymmetric influence of the two climate
signals during these phases. In particular, SST anomalies negatively correlated
with winter precipitation during the negative phase of NAO are located in the
western equatorial and North Pacific Ocean, in the eastern equatorial Atlantic
Ocean, and in a small area in the central Indian Ocean. Positive correlations
are evident in the western South Indian Ocean along the coasts of Madagas-
car. Conversely, for the positive phase of NAO, the selected SST are located in
the central tropical Pacific Ocean, in a large area of the western Indian Ocean
and along the African coasts of the Atlantic Ocean, with a small positively cor-
related region identified in the western tropical Pacific Ocean. Similarly, SST
anomalies negatively correlatedwithwinter precipitation in the positive ENSO
phase are mainly located in the central tropical Pacific Ocean, along the coasts
of central America, and the Atlantic Ocean along the coasts of central Africa,
in the central North Atlantic Ocean, in the eastern Mediterranean Sea, and in
large parts of the IndianOcean. For the negative phase of ENSO, the correlation
map illustrates an area of positively correlated SST anomalies in the southern
Atlantic Ocean and a small region south ofMadagascar. A numerical validation
of these teleconnection patterns is reported in Section S7 of the Supporting In-
formation using a complementary dataset.

Two interesting insights are evident from this part of the analysis (Table 5.1
and Figure 5.3): first, teleconnections from both NAO and ENSO are signifi-
cant in the LakeComobasin but not equally active in the twophases considered;
second, the SST grids characterized by high correlation with Lake Como basin
precipitation are largely outside the areas of the Atlantic and PacificOceans tra-
ditionally considered for monitoring ENSO and NAO variability. These two
aspects certainly contribute to the challenge of discovering teleconnection pat-
terns in the Alpine region and the contrasting results reported in the literature,
motivating the need for further process-based analysis to fully understand the
physical drivers of these teleconnections.

5.4.2 Precipitation and stream�ow forecasts

In the second step of the CSI framework (Figure 5.1), we generate seasonal pre-
cipitation forecasts using the Extreme Learning Machine forecast model de-
scribed in Section 5.3.2 to capture the state of multiple climate signals and rep-
resent both their asymmetric relationships as well as their cross-influence with
the local hydroclimatic processes (Huang et al., 1998;Mariotti et al., 2002;Matya-
sovszky, 2003). These model prediction depends on the couple of first Princi-
pal Components extracted from preseason SSTs for the concurrent ENSO and
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(a) ENSO negative (left) and positive (right) phase

(b) NAO negative (left) and positive (right) phase

Figure 5.3: Correlation maps between October, November, December SST anomalies
and January, February, March precipitation in the Lake Como catchment for the
two phases of ENSO (panel a) and NAO (panel b).

NAO phases, where the average explained variance across signals and phases
is 30.4% for the first PC and 19.7% for the second PC. The performance of
all 3-month periods (e.g., JFM, FMA, MAM, etc.) predicted precipitation re-
initialized at the beginning of eachmonth is illustrated inFigure 5.4 anddemon-
strates high forecast accuracy: Pearson correlation coefficient betweenobserved
and predicted values is equal to 0.91 over the full dataset (i.e., calibration only),
and to 0.81 in leave-one-out cross-validation (see Figure S6 in the Supporting
Information).

The third step of the CSI framework (Figure 5.1) then transforms these sea-
sonal precipitation forecasts into hydrologic forecasts. This step is performed
by first disaggregating the seasonal precipitation forecast into a daily trajectory
via kNN resampling to match the concentration time of the basin (∼24 hours).
Subsequently, the HBV model is run with the disaggregated precipitation fore-
casts and climatological temperature based on 1990-2003 observations. These
simulations produce hydrologic forecasts of Lake Como inflows with a daily
temporal resolution for a lead-time of 3 months, re-initialized at the beginning
of each month as for the precipitation forecasts. The resulting hydrologic fore-
casts are cumulated over a lead-time of 51 days, a timeframe demonstrated by
Denaro et al. (2017b) to be valuable for improving Lake Como operations.

The performance of the resulting streamflow forecasts illustrated in Fig-
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Figure 5.4: Scatterplot between observed and predicted seasonal precipitation over
the full dataset.
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ure 5.5 is inferior to the precipitation forecasts (Pearson correlation coefficient
equal to 0.71 over the full dataset, results in cross-validation are reported in the
Supplementary Information), which is likely attributable to the fact that HBV
is run with climatological temperature rather than predicted temperature. Al-
though temperature is less important than precipitation for generating seasonal
hydrological forecasts, it however impacts on the daily streamflow dynamics
simulated by the HBV model to match the 24 hours concentration time of the
Lake Como catchment.
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Figure 5.5: Scatterplot between observed and predicted Lake Como daily inflows cu-
mulated over a lead-time of 51 days over the full dataset.

5.4.3 Hydrologic forecast operational value

In the final step of the CSI framework (Figure 5.1), the hydrologic forecasts pre-
sented in the previous section are used to inform Lake Como operations. The
resulting informed operating policies’ performance is illustrated in Figure 5.6
by the red circles, and is compared against an upper-bound solution designed
assuming a perfect forecast (black circles) and a baseline solution correspond-
ing to a traditional lake regulation conditioned on the day of the year and the
lake level (gray circles). The figure also shows the performance of solutions in-
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formed by the precipitation forecast (blue circles) and observed preseason SST
(green circles) which will be discussed in the next section. The two axes of the
figure represent the two operating objectives (to be minimized) and the arrows
indicate the direction of increasing preference, with the best solution located in
the bottom-left corner of the figure.
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Figure 5.6: Performance obtained by different Lake Como operating policies in-
formed by streamflow forecasts (red circles), precipitation forecasts (blue circles), or
observed preseason SST (green circles). The performance of these solutions is con-
trasted with the baseline operating policies (gray circles) and with policies informed
by perfect forecast (black circles). The arrows indicate the direction of increasing
preference for the two objectives and the cyan dashed line marks the performance
of the historical lake regulation in terms of flood control.

From the observation of the red, gray, and black Pareto fronts, a clear rank-
ing can be made as the three sets of solutions not surprisingly do not intersect.
The use of perfect forecasts outperforms other solutions as the (ideal) perfect
knowledge of future inflows enables perfect decisions at each time step. The
policies using the CSI forecasts, although inferior to the perfect-forecast solu-
tions, are clearly superior to the baseline policies. This gain in performance is
attributable to the information provided by the 51-day lead hydrologic fore-
casts, which result in a significant reduction in irrigation deficit. Conversely,
this lead time doesn’t positively contribute to improved flood control. Flood
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Table 5.2: Operational value of the hydrologic forecast, meteorological forecasts, and
observed preseason SST in terms of hypervolume indicator (HV ).

Policies HV ∆HV rel. ∆HV
baseline 0.32 - -
streamflow forecast 0.46 0.14 44%
precipitation forecast 0.50 0.18 56%
observed preseason SST 0.51 0.19 59%
perfect forecast 1.00 0.68 212%

dynamics are on the order of hours to days, requiring much shorter lead times,
whereas seasonal irrigation supply is more likely to benefit from seasonal fore-
casts. However, it isworthmentioning that the downward shift of the redPareto
front generated by the use of the CSI forecasts indirectly influence the perfor-
mance in flood control as this new set of operating policies allows identifying
better compromise altenatives. For example, if looking at the baseline solutions
we assume that an acceptable value of JD might be 2800 (m3/s)2, we can see
that the informed operating policies attain similar levels of deficit by improv-
ing the performance on JF from 12 to 6-8 flood days per year. The quantitative
assessment of the operational value of the hydrologic forecasts is provided by
the hypervolume indicator (HV , see eq. 5.4) reported in Table 5.2. The use of
streamflow forecasts increases the baselineHV from 0.32 to 0.46, correspond-
ing to a 44% gain in system performance, which is equivalent to about 20% of
the maximum improvement attainable using a perfect forecast.

5.4.4 Operational value of precipitation forecast and observed pre-
season SST

In addition to evaluating the performance of solutions informed by the stream-
flow forecasts, we assess the performance of operating policies conditioned on
seasonal precipitation forecasts (step 2 of theCSI framework) and observed pre-
season SST (step 1 of the CSI framework), illustrated by blue and green circles
in Figure 5.6, respectively. Interestingly, the direct use of seasonal precipitation
forecasts - skipping step 3 of CSI - results in a larger reduction of the irrigation
supply deficit compared to the streamflow forecast-based solutions. Moreover,
only using Principal Components of observed preseason SST values - skipping
both steps 2 and 3 of CSI - further improves the policy performance.

Numerically, the use of streamflow forecasts improves over the baseline so-
lutions by 44%; this gain increases to 56% and 59%when precipitation forecasts
or observed preseason SST are used, respectively. These results suggest that
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directly informing operational decisions with preseason SST observations se-
lected depending on the climate state (i.e., combination of climate indexes and
associated phases) as themain source of local predictabilitymay produce equiv-
alent or superior benefits than those from operational decisions relying on the
full CSI modeling chain.

5.4.5 Analysis of the operating policies

To better understand the contribution of streamflow forecasts, precipitation
forecasts, and observed preseason SST in improving Lake Como operations,
we analyze the dynamic behavior of the system under operating policies that
use distinct information. This analysis focuses on the solutions located along
the cyan dashed line in Figure 5.6, which marks the performance of the histor-
ical lake regulation in terms of flood control. The rationale of this choice is to
look at solutions that reduce the water supply deficit JD without degrading the
performance in JF, as the historical regulation itself cannot be used as a refer-
ence since it also includes additional objectives not accounted for in our model
(e.g., hydropower, navigation, fishing, tourism).

All simulated trajectories of the LakeComo level under each considered pol-
icy show a clear annual pattern, with the highest levels observed in late spring
due to the snowmelt contribution (Figure 5.7a). In this period, maximizing the
storage while avoiding floods is crucial for supporting the summer drawdown
cycle driven by high irrigation demands. The policy conditioned on perfect
forecast (black line) is able to maintain the highest level and delay the draw-
down. The baseline solution (gray line), which has no information about future
inflows, reaches the highest level at the beginning of May but subsequently the
level is maintained about 10 cm below the perfect forecast trajectory to have
space for buffering potential floods. A similar trajectory is followed by the pol-
icy informed byCSI streamflow forecasts (red line), although it is able to further
delay the drawdown and to maintain a higher level than the baseline at the end
of the agricultural season. Finally, the trajectories obtained under the policies
informed by the precipitation forecast (blue line) and observed preseason SST
(green line) are able to nearlymatch the perfect forecast trajectory until themid-
dle of July, further reducing the water supply deficit.

This physical analysis can be translated into economic terms by estimating
the agricultural profit for the farmers in theMuzza irrigation district served by
Lake Como releases under these operating policies (Figure 5.7b). Results show
the same ranking of solutions obtained in the space of the operating objective
(Figure 5.6) and in the hypervolume indicator (Table 5.2). All the forecast-based
policies increase farmers profit compared with the baseline, which falls shy of
about 900,000 e/year with respect to the perfect forecast-based solution. In-
forming the lake operations with hydrologic forecast produces a 1.0% increase
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Figure 5.7: Analysis of the average Lake Como levels (measured with respect to the
Malgrate reference level at 197.37 m.a.s.l.) simulated under different selected op-
erating policies (panel a) and corresponding profit of the farmers in the Muzza
irrigation district (panel b). The yellow background in the top panel highlights the
crop growing period.
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in average profits; this improves furtherwhen the precipitation forecast (+2.8%)
or observed preseason SST (+3.2%) are used. Interestingly, these benefits are
much larger when evaluated over extreme events, such as the drought recorded
in 2005, when baseline annual profits dropped to 4.87 Me. This performance
is about 20% of the 1996-2008 average baseline profit, and 6.5Me less than the
expected profits in 2005 under the perfect forecast-based solution. In 2005, the
value of the hydrologic forecast, precipitation forecast, and observed preseason
SST also grows, producing a 71%, 82%, and 95% increase in farmer profits, re-
spectively. These results suggest a large potential for directly using preseason
SST anomalies in predicting and managing extreme droughts.

5.5 Conclusions

In this paper, we introduce the Climate State Intelligence framework to capture
the concurrent state of multiple climate signals and produce seasonal forecasts
for informing water reservoir operations. The framework is applied to Lake
Como in the Italian lake district, a region where climate teleconnections are
still not well understood or completely recognized.

Results indicate the potential of the CSI framework in extending the origi-
nal Nino Index Phase Analysis to identify the combined ENSO–NAO climate
state, which successfully uncovers notable teleconnection patterns within the
Lake Como basin. These newly detected teleconnections are used to generate
accurate seasonal precipitation forecasts using multivariate Extreme Learning
Machines models, which subsequently feed a HBVmodel to produce skilful hy-
drologic forecasts of LakeComo inflows (Pearson correlation coefficients equal
to 0.91 and 0.71 for precipitation and streamflow forecasts, respectively). Fi-
nally, the forecast operational value is quantified by estimating the difference in
system performance between a baseline operating policy relying on traditional
information (i.e., day of the year and lake level) with respect to an operating
policy informed by the CSI forecasts. Numerical results show that streamflow
forecasts produce a 44% improvement in the resulting Pareto optimal solutions.
This gain transformed into farmers’ profit is, on average, equal to about 250,000
e/year (1% of farmers’ average profits), but increases to 3.44 Me for the ex-
treme drought recorded in 2005 (71% of farmers’ profit in that year). Although
we can expect this performance to degrade when simulated over out-of-sample
data, we believe the policies informed by the CSI forecast will maintain their
superiority with respect to the baseline solutions.

In addition, our results suggest that the CSI modeling chain provides in-
tuitive information to improve water system operations but, at the same time,
introduces modeling errors that negatively impact the final hydrologic forecast
operational value. Overall, the direct use of observed preseason SST anomalies,

104



5.5. Conclusions

as identified in the step 1 of the CSI framework, provide more value than the
precipitation or streamflow forecast in informing Lake Como operations, aver-
aging a 3.2% gain in farmer profit and a 95% improvement for the 2005 drought
as compared to the baseline solution.

These positive outcomes suggest a number of possible future research di-
rections. Both the precipitation and streamflow forecasts produced by the CSI
framework should be benchmarked against existing forecast systems, such as
the ECMWF System5 (Johnson et al., 2019) and the European Flood Awareness
System (Arnal et al., 2018). Additionally, the identified teleconnection patterns
dependent on ENSO and NAO phases motivates a process-based investigation
to better understand and clarify the underlying physical processes, perhaps by
drawing on global climate model simulations. Extending the CSI framework to
additional catchments in diverse hydroclimatic regimes with distinct manage-
ment challenges is also of interest for better comparing the operational value of
the multiple forecast approaches introduced in this paper. Finally, further im-
provements in system performance are likely achievable by properly combining
local hydrologic information with global teleconnections, rather than consid-
ering these as alternative sources of information.

Exploring the utility for applying CSI to water reservoir operations under a
changing climate is also warranted. In fact, the expected increase in frequency
and intensity of extreme events, perhaps resembling the 2005 drought in the
Lake Como basin, suggests that extending early actions and decision-making
from short to medium and long lead-times by means of better forecasts may be
increasingly valuable in the future (Turco et al., 2017).
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Online Feature Representation

for Multi-Objective
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In iterative online feature representation learning, policy search is intersper-
sedwith feature extraction routines to gradually refine the representationwhile
learning the policy. The implementation of such a framework requires the se-
lection of a feature extraction routine, a policy search method, and a strategy to
interface the two. Direct Policy Search (DPS) is emerging as a promising pol-
icy search method for MO real-world control problems given its flexibility in
problem and objectives formulation (Giuliani et al., 2016b). However, DPS tra-
ditionally defines the control policy within a prespecified rigid functional class
that does not allow online changes in the policy input set.

In this Part, we first contribute NeuroEvolutionary Multi-Objective Direct
Policy Search (NEMODPS), an original and highly flexible DPS technique that
evolves the policy architecture and its parameterization simultaneously (Chap-
ter 6). The findings of this work include that the implemented Pareto-dynamic
architectural selection results in more robust policies when tested on unseen
data. NEMODPS is firstly tested for a case study with a static input set, but
the flexible architectural search can accommodate online changes in the feature
representation dimensionality.

In the second work, NEMODPS is paired with a feature selection algorithm
in amethodological contribution to iterative online feature representation learn-
ing (Chapter 7). The crucial novelty of the proposed framework, named Auto-
matic Feature Selection-NEMODPS (AFS-NEMODPS), consists in supporting
a tradeoff-dynamic representation learning that appears capable of significantly
reducing conflicts between water users across different policy tradeoffs.

This Part contains the following works:

• Zaniolo, M., Giuliani, M., Castelletti, A., 2020b. Neuro-evolutionary di-
rect policy search for multi-objective optimal control. IEEE transactions
on neural networks and learning systems (under review);

• Zaniolo, M., Giuliani, M., Castelletti, A., 2020c. Dynamic retrieval of in-
formative inputs formulti-sector reservoir policy designwith diverse spatio-
temporal objective scales. EnvironmentalModeling andSoftware (in prepa-
ration).
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6
Neuro-Evolutionary Direct Policy

Search for Multi-Objective
Optimal Control

Abstract1

Direct Policy Search (DPS) is emerging as one of the most effective and widely
applied Reinforcement Learningmethods to design optimal control policies for
Multi-Objective Markov Decision Processes (MOMDPs). Traditionally, DPS
defines the control policy within a preselected functional class, and searches its
optimal parameterization with respect to a given set of objectives. The func-
tional class should be tailored to the problem at hand and its selection is cru-
cial, as it determines the search space within which solutions can be found. In
MOMDPsproblems, a different objective tradeoff determines a different fitness
landscape, requiring a tradeoff-dynamic functional class selection. Yet, in state-
of-the-art applications, the policy class is generally selected a priori, and kept
constant across the multidimensional objective space. In this work, we present
a novel policy search routine called Neuro-Evolutionary Multi-Objective Di-
rect Policy Search (NEMODPS), which extends the DPS problem formulation
to conjunctively search the policy functional class and its parameterization in
a hyperspace containing policy architectures and coefficients. NEMODPS be-
gins with a population of minimally structured approximating networks and

1Thiswork is currently under review as: Zaniolo,M., Giuliani,M., Castelletti, A., 2020b. Neuro-evolutionary direct
policy search for multi-objective optimal control. IEEE transactions on neural networks and learning systems (under
review).
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progressively builds more sophisticated architectures by topological and para-
metricalmutation and crossover, and selection of the fittest individuals with re-
spect tomultiple objectives. We testedNEMODPS for the problemof designing
the control policy of a multipurpose water system. Numerical results show that
the tradeoff-dynamic structural and parametrical policy search of NEMODPS
is consistent across multiple runs, and outperforms the solutions designed via
traditional DPS with predefined policy topologies.

6.1 Introduction

The coexistence ofmultiple heterogeneous conflicting objectives is amajor chal-
lenge to many complex real world control problems, which are often formal-
ized asMulti-ObjectiveMarkovDecision Processes (MOMDPs). In these prob-
lems, the optimal solution is an ensemble of Pareto optimal policies covering
the space of tradeoffs and compromises across different objectives. In the last
decades, Multi-Objective Reinforcement Learning (MORL) established as solid
approach to solve MOMDPs problems, but several open challenges remain in
real world applications characterized by large continuous spaces that are too
complex for a traditional optimal control formulation (for a review on MORL
and open challenges see Liu et al. (2014) and references therein). Direct Pol-
icy Search (DPS) (Deisenroth et al., 2013) is emerging as one of the most pop-
ular MORL methods for solving complex MOMDPs problems, given its ap-
plicability to diverse tasks, scalability, and lack of restrictions in problem and
objective formulation (Giuliani et al., 2016b). DPS defines the control policy
within a given functional parameterization, and explores the policy parameters
space by searching for the best solution with respect to a given set of objec-
tives. So far, most of the DPS literature has focused on improving the search
method (Heidrich-Meisner and Igel, 2008; Sigaud and Stulp, 2019), assuming
that the subspace defined by the policy parameterization includes the optimal
solution. This hypothesis, nevertheless, overlooks the impact that simplifica-
tions andmathematical assumptions in the problem formulation and the policy
parameterization can have on the representation of the search space (Studley
and Bull, 2007). Some DPS works apply a linear or piecewise linear policy pa-
rameterization, albeit conditioning the control decision on trivial monodimen-
sional state vectors (Celeste and Billib, 2009; Abdolmaleki et al., 2016). A non-
linear multi-input multi-output function, such as an approximating network,
provides a more flexible control policy shape (El-Fakdi et al., 2006; Rajeswaran
et al., 2016; de Broissia and Sigaud, 2016). Yet, approximating networks re-
quire the specification of a topology, which is crucial to determine the network
processing capability and training requirements. The a priori definition of the
optimal network topology for a given problem requires a full knowledge of
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the learning task that is generally unavailable, and, in practical applications, a
topology is selected among few options via trials-and-errors, balancing the net-
work approximation capacity, training costs, and overfitting tendency. Cru-
cially, when multiple objectives are considered, the fitness landscape changes
depending on the selected tradeoff, and the optimal network topology should
be set accordingly. Yet, in state-of-the-art applications of DPS, a single policy
class is selected to approximate solutions for every objectives tradeoffs.

This work contributes a novel policy search routine that addresses this chal-
lenge by evolving self-adaptive policy architectures responsive to changes in
tradeoffs, namely, Neuro-Evolutionary Multi-Objective Direct Policy Search
(NEMODPS). NEMODPS builds on a recent Reinforcement Learning branch
called Neuro-Evolution (NE) (Stanley and Miikkulainen, 2003; Floreano et al.,
2008), which employs Evolutionary Algorithms to generate optimal networks
in terms of topologies and parameters. Awell-knownNE algorithm is theNeu-
roEvolution forAugmentingTopology (NEAT, Stanley andMiikkulainen, 2002),
a Single-Objective (SO) techniquewhich beginswith a population of simple net-
works and progressively builds more sophisticated ones through a complex-
ification process driven by parametrical and topological evolutionary opera-
tors. A topological niching scheme is featured to protect newly emerged ar-
chitectures from premature disappearence. Several authors developed NEAT-
inspired alternatives to adapt it to a variety of machine learning tasks, mainly
for the fields of game playing and robotics (see e.g., Risi and Togelius, 2015,
and references within). Among them, NEAT was tailored to problems charac-
terized by highly discontinuous state-action mappings (RBF-NEAT, Kohl and
Miikkulainen, 2008, SNAP-NEAT, Kohl and Miikkulainen, 2012, CA-NEAT,
Nichele et al., 2018), little domain specific knowledge (Hausknecht et al., 2014),
deceptive environments (Novelty Search, Risi et al., 2010), visual tasks (Hy-
perNEAT, Gauci and Stanley, 2007, ES-Hyperneat, Risi et al., 2010), dynamic
problems with moving optimum (DynNEAT, Krčah, 2012, SOMNE, Jiau and
Huang, 2018), real-time adaptation of control policy (rtNEAT, Stanley et al.,
2005, ICONE, Rempis and Pasemann, 2012), and compact policy representa-
tion (SUNA Vargas and Murata, 2017).

However, all the above algorithms address SO problems, and their applica-
tion to aMulti-Objective (MO) problem requires its decomposition into several
SO sub-tasks, each characterized by a scalarized monodimensional objective
function. Sub-tasks are solved iteratively, each yielding onePareto-approximate
solution, causing a factorial growth of computational costs with the number of
objectives, and suboptimality in the Pareto Front approximations in its con-
vex regions (Vamplew et al., 2008). An attempt at developing an explicitly MO
version of NEAT (MO-neuroevolution, Schrum and Miikkulainen, 2008) re-
quired to sacrifice several crucial NEAT operators, as they are supported by the

113



6. Neuro-Evolutionary Direct Policy Search for Multi-Objective Optimal Control

inherently single-objective niching scheme.

In this work we propose a MO generalization of the niching routine which
allows to preserve all NEAT operators in aMOproblem. We testedNEMODPS
on a problem of designing a policy for a multipurpose water reservoir, typically
featuring multiple conflicting objectives, a complex decision space, continuous
domains, and a noisy input-output mapping. Currently, the state-of-the-art
policy architectures for these problems are single-layer, fully connected Arti-
ficial Neural Networks (Zoppoli et al., 2002; Baglietto et al., 2010; Castelletti
et al., 2013; Giuliani et al., 2016b).

NEMODPS implementation inherits NEAT basic structure for the dynamic
search of efficient policy architectures, and the literature of NEAT refinements
for problems presenting large decision spaces and noisy environments. In par-
ticular, inspiration came from the Evolutionary Acquisition of Neural Topolo-
gies (EANT) algorithm (Metzen et al., 2008) which addresses problems char-
acterized by a large decision space, continuous domains, and a noisy environ-
ment by coordinating the search in a dual timescale, optimizing the network’s
connection weights on a small timescale (exploitation phase), and the network’s
structure on a larger timescale (exploration phase) in order to give newly cre-
ated structures time to optimize their parameters. Other recent works deal-
ing with noisy environments and complex decision spaces experimented with
the activation functions of neurons. Applications to benchmark classification
(Basirat and Roth, 2018) and regression problems (Hagg et al., 2017) demon-
strate how heterogeneous networks characterized by a combination of activa-
tion functions can result in improved approximation capabilities, smaller net-
workswith fewer training requirements, and a significantly reduced overfitting
tendencywhen tested on noisy environments. Additionally, the niching routine
is generalized for MO problems with a novel strategy, as to support the explo-
ration of multidimensional tradeoffs in a single run of the algorithm.

In this application we run a benchmark analysis (Vamplew et al., 2011) com-
paring the policies produced byNEMODPS,NEAT, and traditional DPS, which
demonstrates that thePareto-dynamic structural andparametrical policy search
of NEMODPS produces reliable policies, highly robust when tested on unseen
data. Additionally, we perform a Pareto-dynamic convergence analysis of NE-
MODPS, andwe analyze how the efficient architectures change in response to a
change in the objective tradeoff, according to several metrics of structural anal-
ysis.
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6.2 Methods

6.2.1 Problem formulation

In this work we consider a discrete-time continuous MOMDP defined as a
tuple < X,U,T,G >where X ⊂ Rnx is the continuous state space, U ⊂
Rnu is the continuous action space, T(xt+1|xt, ut) is the probabilistic transi-
tion function defining the transition density between state xt and xt+1 under
action ut, G(xt, ut, xt+1) =

[
G1, . . . , GM

]
is aM-dimensional reward (or

cost) function that specifies the vector of instantaneous rewards (costs) gt =
[g1
t , . . . , gMt ] for each objective when state xt+1 is reached from state xt by tak-

ing action ut. Action ut is extracted from a control policy π, ut = π(xt, ut),
associated with a vector of expected returns J(ı) =

[
J1(π), . . . , JM(π)

]
de-

fined over the control horizon [0, H] as:

Jm(π) = E

{
H∑
t=0

(γm)tgm(t+ 1)|x0 ∼ µ

}
(6.1)

where γγγ = [γ1, . . . , γM] ∈ [0, 1] is the vector of discount factors relative to
each objective, and µ is the initial state distribution.

The solution of the RL problem defined above is the policyπ∗ that yields the
optimal value of objective J (here considered as a cost, to be minimized) in its
M dimensions:

π∗ = arg min
π

J(π, µ)

= arg min
π

[
J1(π, µ), . . . , JM(π, µ)

] (6.2)

In general, conflicts occur between different operating objectives, and it is
thus not possible to define a single optimal policy, representing the optimum
with respect to theM dimensions of J. The solution of a MO problem is in
general constituted by a set of non-dominated (or Pareto optimal) solutions
P∗ = {π∗|@π ≺ π∗}, which maps onto the Pareto front F∗ = {J(·)|π∗ ∈ P∗}.

Remark. Policyπ dominates policyπ ′, denoted byπ ≺ π ′, if: ∀m ∈ {1, . . . ,M},
Jm(π) 6 Jm(π ′)∧ ∃m ∈ {1, . . . ,M}, Jm(π) < Jm(π ′).

Algorithms designed for a SO optimization require to reformulate the MO
problem as a series of SO sub-tasks, by combining the M objectives with a
scalarization function Γ : RM → R. Traditionally, a convex combination
of the objectives is applied using weights λ = [λ1, . . . , λM] ∈ ΛM−1, where
ΛM−1 is the unit (M − 1)-dimensional simplex (so that

∑M
i=1 λi = 1 and
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λi > 0 ∀i). For a SO control routine, problem (6.2) is hence reformulated as:

π∗ = arg min
π

J(π, µ) =

Γ
(
[J1(π, µ), . . . , JM(π, µ)]

) (6.3)

The computational cost required by the solution of Problem (6.3) grows com-
binatorially with the number of objectivesM (Giuliani et al., 2014a), and is de-
fined by the following permutation:

S =

M∑
i=1

M!
i!(M− i)!

+M (6.4)

where S is the number of sub-tasks to be solved, equal to the number of Pareto
approximate points produced. The idea is to explore the Pareto front by com-
puting theM extreme solutions, obtained by setting to zero all weights except
one, and some compromise solutions by relaxing the extremes and assigning
the same weight to few objectives (Giuliani et al., 2014a).

Traditionally, the solution to Problem (6.2) is obtained by searching for the
optimal action-value functionQ∗(xt, ut), defined as the optimal cumulated fu-
ture cost associated with each pair (ut, xt), as follows:

Q∗(xt, ut) =
∫
X

[G(xt, ut, xt+1)+

γγγ min
ut+1∈U

Q∗(xt+1, ut+1)]T(dxt+1|xt, ut)
(6.5)

The exact complete estimation of the value function in itsM dimensions
is however possible only for a limited class of problems, while it quickly be-
comes computationally intractable for problems characterized by high dimen-
sional action or state spaces (i.e., curse of dimensionality Bellman, 1957) and
objective space (i.e., curse of multiple objectives Powell, 2007). Moreover, any
variable considered into the problem formulation must be explicitly modeled
in order to compute the value function (i.e., curse of modeling Tsitsiklis and
Van Roy, 1996).

In general, an approximated method is used when one or more curses pre-
vent reaching an exact solution. The approximation can regard the action-value
space (see e.g., Castelletti et al., 2011b, 2012), or the policy space, where the
search for the optimal control policy is restricted to a prespecified parametric
class of functions (Bertsekas, 2019). According to this second approach, the per-
formance of a given policy π is evaluated by collecting the sequence of states
and controls produced by applying the given policy over the horizon [0, H].
This sequence defines a trajectory τ employed in the calculation of the objec-
tive J(π) = E[G(τ)|π].
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Direct Policy Search belongs to this class, and according to the taxonomy
of Policy Search methods proposed in (Deisenroth et al., 2013) configures as
a stochastic, model-based and episode-based method. In particular, DPS ap-
proaches policy design as a problem of optimal functional parameterization,
defining the control policy πθ within a given function class, and then search-
ing the parameters’ spaceΘ to find the optimal parameterization θ∗ ∈ Θ with
respect to theM-dimensional set of objectives J. Hence, Problem (3.3) is refor-
mulated as:

π∗θ = arg min
πθ

J(πθ, τ) (6.6)

Selecting an appropriate functional class for πθ is critical, as DPS routines
can find, at most, the best parameterization within the predefined class. In
the absence of pre-existing knowledge of a (near-)optimal policy shape, highly
flexible function classes (e.g., nonlinear approximating networks) are preferred
(Zoppoli et al., 2002; Baglietto et al., 2010; Gong et al., 2015; Rajeswaran et al.,
2016; Zhu and Jin, 2019; Dutta et al., 2015), in order not to restrict the search
to a subspace of policies that, likely, does not contain the optimal one. Yet, opti-
mizing the parameters of approximating networks requires searching high di-
mensional spaces, that map to a noisy and multidimensional objective space.
MOEvolutionaryAlgorithms (MOEAs) are generally selected for this task given
their demonstrated ability to efficiently handle performanceuncertainties (Coello
et al., 2007; Reed et al., 2013; Busa-Fekete et al., 2014). In state-of-the-art ap-
plications of DPS, an appropriate network dimension is selected by trials-and-
errors, adjusting the number of neurons in a single-layer, fully connected, ho-
mogeneous network (Zoppoli et al., 2002; Baglietto et al., 2010; Castelletti et al.,
2013; Xu and Jagannathan, 2014; Wang et al., 2015; Giuliani et al., 2016b). This
architecture choice ismotivated by theoretical results, which demonstrated that
single- ormulti-layer feedforwardneural networkswith continuous, non-constant,
activation functions, could approximate any continuous bounded function to a
desired accuracy, given enough nodes (Hornik, 1989). The nominal capacity
of a neural network to absorb information is thus just limited by the number
of its processing units, where numerous units imply large flexibility and ap-
proximation capacity. The network topology does not influence the theoretical
expressiveness of a network; however, several studies show that, in practical
applications, it significantly affects its training requirements, and approxima-
tion capacity. Firstly, fully connected networks offer high flexibility, but tend to
force spurious connections that have no physical meaning, facilitating the over-
fitting of noise in training data (Srivastava et al., 2014; Liu et al., 2017; Jiang
et al., 2017). Secondly, the depth (i.e., number of layers) of a neural network
affects its behavior in solving high complexity learning tasks. While a shallow
(single-layer) network provides a direct input-output mapping described by the
single hidden layer, the global mapping provided by a deep (multilayer) net-
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work is the result of the composition of several layers, a valuable asset in prob-
lems presenting regularities in the input-output mapping (Gauci and Stanley,
2007; Bianchini and Scarselli, 2014; Chang, 2015). Thirdly, comparative stud-
ies have demonstrated that the choice of nodes’ activation functions plays a key
role in determining convergence time and network accuracy (Kamruzzaman
and Aziz, 2002; Laudani et al., 2015; Efe, 2008). An appropriate mix of activa-
tion functions generally reduces the number of processing units required for a
task, and, accordingly, its training requirements and overfitting tendency (Hagg
et al., 2017). Overall, these results indicate that in real-world applications, the
network’s topology plays a significant role in determining its suitability for a
given task, and it should not be dismissed in DPS applications. Moreover, in
MO problems, the multidimensional landscape defined by solutions mapped
into corresponding value of objectives (i.e., fitness landscape) changes depend-
ing on the tradeoff. Every possible tradeoff combination originates a different
sub-problem, and an efficient network topology should be set accordingly and
tradeoff-dynamically.

6.2.2 Extending the scope of DPS

In this work, we extend the DPS problem formulation to search optimal poli-
cies in terms of architectures and relative parameterization Pareto dynamically.
Accordingly, Problem (6.6) is reformulated as:

π∗ζ(θ) = arg min
πζ(θ)

J(πζ(θ), τ) (6.7)

whereπζ(θ) explicits the search for policy hyperparameters ζ defining a pol-
icy architecture as well as regular policy parameters θ, whose number and na-
ture depend on the hyperparameters as in ζ(θ). The policy search problem is
thus expanded to conjunctively search architectural and parametrical spaces,
enhancing DPS potential for single- and especially multi-objective problems.

6.2.3 NEAT

Problem (6.7) can be solved with Neuroevolution, a machine learning branch
which employs evolutionary algorithms to automatically generate efficient ar-
tificial neural networks. NEAT (NeuroEvolution for Augmenting Topology,
Stanley and Miikkulainen, 2002) is the first prominent neuroevolution algo-
rithm, and the benchmark for this field. It begins with a population of simple
networks and progressively builds more complex topologies through a com-
plexification process. In every generation of the evolutionary progress, the per-
formance of each individual is evaluated with respect to a fitness function, and
the fittest individuals survive onto the next generation. New derivative net-
works are created based upon the surviving networks by applying evolutionary
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operators (i.e., topological and parametrical mutation and crossover), to drive
the search for efficient topologies and connection weights.

As the evolution proceeds and individuals complexify, increasingly sophisti-
cated behaviors emerge. However, the addition of new structural elements with
unoptimized coefficients is at first detrimental for an individual, and the useful-
ness of a topological innovationmay become apparent only when given enough
iterations to optimize. NEAT implements a niching scheme with the dual aim
of protecting topological innovations from premature disappearance, and sus-
taining solution diversity. Topological innovation is protected by allowing in-
dividual competition only within niches of similar topologies. The population
is partitioned into niches (or species), by evaluating a metric of topological dis-
tance δ between couples of individuals Xi and Xj:

δ(Xi, Xj) =
c1Ei,j

NTE
+
c2Di,j

NTE
+ c3Wi,j (6.8)

where Ei,j is the difference in number of connections between Xi and Xj,Di,j
is the difference in number of nodes,Wi,j is the difference in average connec-
tion weights, c1, c2, c3 ∈ [0, 1] express the relative importance of each factor,
and NTE is the maximum Number of Topological Elements in the networks.
Individual Xi is assigned to species s if:

δ(Xi, Xj,s) < δ
∗ (6.9)

where δ∗ is a predefined speciation threshold, and Xj,s is the reference indi-
vidual for the species, extracted randomly from species s at each generation. A
new species is created if (6.9) is not verified for any existing one. Species are
initialized by speciating the initial population.

Species compete among each other for their ability to reproduce, so that a
larger offspring is assigned to well performing niches. However, a fitness shar-
ing mechanism is introduced to penalize populous species and prevent them
from taking over the entire population, thereby sustaining topological diver-
sity.

In particular, a species’ fitness is computed as the average shared fitness of its
components. The Shared Fitness of individualXi belonging to species s (SFXi,s )
is determined by normalizing its fitness fXi to the species’ numerosity ns with
the following:

SFXi,s =
fXi
ns

(6.10)

The allotted number of individuals n ′s to species s in the next generation is
determined by its average shared fitness normalized by the population average
SF and multiplied by population dimensionN.

n ′s =
1
ns

∑ns
i=1 SFXi,s

SF
(6.11)
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6.2.4 NEMODPS

Algorithm 1NEMODPS meta-algorithm
-Initialize-

pop = initializePopulation(N)
specThresh = δ

5: speciesNumerosity∗ = σ
probAddNode, probAddConnect, nExplore
-Evolution-
for gen = 1 tomaxGenerations do
-Evaluate individual �tness-

10: for n in pop do
fit = evaluateFitness(n)
n = updateIndividualFitness(n, fit)

end for
-Species competition-

15: pop ′ = {}

for n in pop do
fitSharingScore = countNonDominating(n, pop)
n = updateFitSharingScore(n, fitSharingScore)

end for
20: for s = 1 to numSpecies do

avgFit = averageFitSharingScore(pop,s)
allottedInd = computeAllotInd(avgFit,popSize)
elite = chooseSurvivingInd(pop,s)
referenceInd(s) = extractReferenceInd(elite)

25: add(pop ′, elite)

The implementation ofNEMODPS inherits NEAT’s structure, and the liter-
ature of NEAT improvements targeting complex control design problems, vast
decision spaces, and noisy environments. Additionally, we propose an original
strategy to extend the search toMOproblems. Themeta-algorithm forNEMO-
DPS is reported in Algorithm (1). Below, we discuss the additional elements that
differ from the original NEAT implementation.

First, NEMODPS assimilates the search dual timescale proposed in EANT
(Metzen et al., 2008). Parametrical mutations occur in every generation to ex-
ploit existing structures. Topological innovations are injected everynExplore
generations (see Alg. 1), performing the exploration of the architectural hyper-
space on a larger time scale (lines 33-40) with probability probAddNode and
probAddConnect.
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-Reproduction-
for i = 1 to allottedInd do
if rand< probabCrossover then

[p1, p2] = chooseParents(elite)
30: n ′ = crossover(p1, p2)

else
n ′ = chooseParent(elite)

end if
n ′ = paramMutation(n ′)

35:

if isnull(remainder(gen÷nExplore)) then
if rand< probAddNode then
n ′ = addNode(n ′)

40: end if
if rand< probAddConnect then
n ′ = addConnect(n ′)

end if
45: end if

add(n ′, pop ′)

end for
end for

50: -Speciation-

for n ′ in pop ′ do
n ′ = assignSpecies(referenceInd, specThresh)

end for
55: numSpecies = countSpecies(pop ′)

if numSpecies > speciesNumerosity∗ then
specThresh ++

else if numSpecies < speciesNumerosity∗ then
specThresh−−

60: end if
pop = pop ′

end for
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J1

J2

GSFX1 = 26

J2

J1

GSFX2 = 17

X:	Considered solution 
Solutions non dominating X
Solutions dominating X

Figure 6.1: Exemplification of the Generalized Shared Fitness computation for two
individuals in a generic algorithmic iteration. In the top panel, the individual under
evaluation is located in a relatively empty region of the objective space, and scores
a value of GSF=26, equal to the non-dominating solutions (blue circles). The indi-
vidual evaluated in the bottom panel is instead located in a crowded region of the
objective space, scoring a lower GSF=17.

122



6.2. Methods

Second, when new neurons are injected into a network (line 35), the acti-
vation function is randomly selected by the addNode operator among sigmoids
and gaussians, allowing the generation of heterogeneous networks.

Third, the speciation strategy is modified to reduce the criticality of the spe-
ciation threshold choice. An excessively low speciation threshold produces too
many species and an overly fragmented population with restricted interaction
between individuals, and weakened selection pressure. On the contrary, an ex-
cessively high speciation threshold produces overly homogeneous populations,
an unfavorable environment for new emerging topologies competing against
well optimized structures. Moreover, the appropriate speciation threshold can
vary significantly throughout the evolution as the population complexifies. Al-
ternative to trying to guess a fair compromise for the selection threshold, some
authors suggested to, instead, select an appropriate number of species to be
maintained, and adjust the threshold accordingly during the evolution (Jang
et al., 2009). NEMODPS implements the latter technique, initializing a thresh-
old for speciation specThresh = δ, and an appropriate number of species to
bemaintained relatively constant during the search, speciesNumerosity∗ =
σ (lines 3-4). In every generation, specThresh is incremented if the number of
species is above speciesNumerosity∗, and lowered if inferior (lines 49-53).

Lastly, NEAT supports SO optimization, and its application to a MO prob-
lems requires the iterated solution of several SO taskswith a scalarizedmonodi-
mensional objective as in Problem (6.3). In a previous attempt to define amulti-
objective neuroevolution routine, namedMO-neuroevolution, theNon-dominated
Sorting Genetic Algorithm II (NSGAII, Schoenauer, 2000) was embedded in
NEAT to perform the selection of the fittest individuals within niches in a mul-
tidimensional objective space (Schrum and Miikkulainen, 2008). The niching
scheme supported by the Shared Fitness defined in eq. (6.10), however, does not
seamlessly generalize toMOproblems, given the difficulty to compare fitnesses
with respect to multiple objectives, and therefore the MO-neuroevolution im-
plementation sacrificed the speciation and fitness sharing operators. In NE-
MODPS, we employ NSGAII for intra-species competition (line 21), and we
contribute an original definition of the fitness sharing operator for MO prob-
lems, thus restoring the speciation operator accordingly.

The Generalized Shared Fitness of individual Xi in species s, GSF(Xi,s),
assigns a score to Xi equal to the number of individuals Xj, j 6= i that are not
dominating Xi.

GSF(Xi,s) =
∑

j∈[1,...,N]:j 6=i
dj; dj =

{
0 if Xj ≺ Xi
1 else (6.12)

where N is the total number of individuals in the population. The top score
achievable isGSF(Xi, s) = N− 1, attained by individuals populating the best
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current approximation of the Pareto front. Solutions close to the approximate
Pareto front are assigned good scores if they are located in sparsely populated
regions, and lower scores if they are located in crowded areas, as they are more
likely to be (semi-)dominated. An example of GSF computation for 2 individ-
uals in a 2-objectives problem is presented in Fig. 6.1. Species grow or shrink
depending on whether the average generalized shared fitness of their individ-
uals is above or below the population average (lines 19-20), in accordance with
the NEAT implementation in eq. (6.11). Species competition is thus based on a
relative individual ranking, a strategy that is often featured in MOEAs, and has
been demonstrated to handle performance uncertainties more effectively than
relying on the estimation of absolute performance (Busa-Fekete et al., 2014).
Additionally, in this formulation, the fitness sharing operator penalizes indi-
viduals’ proximity in the objectives space, rather than in the topological space
as originally conceived in NEAT. This transition is encouraged by several au-
thors, who have observed that topological diversity does not necessarily induce
a behavioral diversity of solutions for every task (Moriguchi andHoniden, 2010;
Lehman and Stanley, 2010). This observation is key in MO problems: if a cer-
tain sector of the Pareto front can be approximated with a trivial solution, a
broad set of topologies will succeed in reaching a high performance. By re-
warding topological diversity, solutions will quickly concentrate in the trivial
region, resulting in a topologically diverse population, but a poor approxima-
tion of the Pareto front, which instead should be the ultimate goal ofMOpolicy
search. With the proposed generalized fitness sharing, species are encouraged
to achieve solution diversity intended as a good exploration of the tradeoffs in
the Pareto front, rewarding ensembles that arewell performing, and that occupy
relatively empty and non-dominated regions of the objective space.

6.2.5 Metrics of Structural Analysis

As argued in Section 6.2.2, the learning behavior of a network largely depends
on its topology, therefore, topological analysis of Pareto-approximate networks
could provide useful insights into the learning task. Neuro-optimized topolo-
gies are generally irregular, presenting sparse connections, hidden layers of dif-
ferent sizes, and heterogeneity in the activation functions. In order to char-
acterize their topology, we use three metrics of structural analysis that capture
critical network features, allowing us to compare and contrast different topolo-
gies.

The first metric, namely the Preference for Deep Learning (PDL), is mea-
sured as the ratio between number of hidden layers (L) and hidden nodes (H) in
a structure.

PDL =
L

H
(6.13)
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(1) PREFERENCE FOR DEEP LEARNING (PDL)

𝑁𝐶 = 𝐻 + 𝐶 + 𝑂 = 4 + 11+ 1 = 16

(2) NETWORK COMPEXITY (NC) (3) NETWORK HETEROGENEITY (NH)

𝑁𝐻 =
𝐺
𝐻
=
2
4
= 0.5

𝑃𝐷𝐿𝑎 =
𝐿
𝐻
=
1
4
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(a) (b)

Input/output node
Hidden node (H)

Connection (C)

Layer (L)

𝑃𝐷𝐿𝑏 =
𝐿
𝐻
=
4
4
= 1

Gaussian node (G)

Sigmoidal node

Figure 6.2:Metrics of structural analysis. Panel 1 presents the metric Preference for
Deep Learning with two examples representative of opposite configurations. Panels
2 and 3 report examples of computation of the Network Complexity, and Network
Heterogeneity metrics, respectively.

PDL ∈ (0, 1], tends to zero when hidden nodes are organized in one or few
very populated layers, and assumes value one when there are as many layers
as nodes. The first panel of Fig. 6.2 represent two examples of networks with
4 hidden nodes but a different distribution into layers. Network (a) has one
hidden layer, while network (b) is distributed into 4, resulting in different values
of PDL.

The second metric is a measure of Network Complexity (NC), defined as
the total number of parameters, namely connection weights and node biases,
needed for its description. The sum of the number of connections (C), hidden
nodes (H), and output nodes (O), determines the Network Complexity as fol-
lows:

NC = C+H+O (6.14)

Fig. 6.2 reports one example of NC computation in Panel (2), where connec-
tions and nodes present different line width as a visual representation of vary-
ing connectionweights and bias. HighNC values are representative of complex
networks, likely to reproduce sophisticated behaviors.

Lastly, the third considered metric of structural assessment is a measure of
Network Heterogeneity, computed as the ratio of Gaussian nodes (GN) to the
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total number of hidden nodes.

NH =
GN

H
(6.15)

By definition, NH∈ [0, 1] where NH = 0 indicates a homogeneous network
comprising only sigmoidal nodes, and NH = 1 indicates a homogeneous Gaus-
sian network. An even mixing of Gaussian and sigmoidal activation functions
is verified for NH = 0.5, as in the example of Panel (3) in Fig. 6.2.

6.3 Case Study

NEMODPS is tested for a problem of designing the optimal control of a multi-
purpose water resources system. Typical features of these problems are large
decision spaces, presence of noise, and multiple conflicting objectives.

Figure 6.3: Control scheme of the considered case study. A non-linear release func-
tion R(·) converts the policy output (i.e., release decision) ut into a feasible release
rt+1, which determines the state transition according to function f(·). Stochastic
disturbances (i.e., lake inflow) εt+1 affect release and state transition of the system.

In this application, we design the control policy of Lake Como, a multipur-
pose regulated lake situated in the southern Alpine belt (Italy). The main trib-
utary, and only emissary of the lake is the Adda river, whose waters are with-
drawn downstream of the lake to irrigate four agricultural districts. The south-
western branch of Lake Como constitutes a dead end, and exposes the city of
Como to flooding events.

The control scheme relative to this problem is reported in Fig. 6.3. The sys-
tem is modeled as a discrete-time, periodic, non-linear, stochastic process de-
fined by a scalar state variable xt (i.e., storage), a control variable ut represent-
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ing the release decision from the dam gates, stochastic disturbances εt+1 (net
reservoir inflow), and a state-transition function f(·): xt+1 = xt− rt+1 + εt+1
where the effective release rt+1 coincideswith the release decisionut corrected,
where appropriate, with a non-linear release function Rt(xt, εt+1) determin-
ing the minimum andmaximum releases feasible for the time interval [t, t+ 1)
to respect physical and legal constraints.

The Adda River is described by a plug-flowmodel, which simulates the rout-
ing of the lake releases from the lake outlet to the intake of the irrigation canals.
The adopted time step is 1 day, and the system is periodic with period T = 365
days (Giuliani et al., 2016c).

The lake regulation has two conflicting aims of minimizing flood risk on
the lake shores, and supplying water to downstream users by storing spring
snowmelt-driven inflow peak and releasing throughout summer when the ir-
rigation demand is highest. On the basis of previous works (Castelletti et al.,
2010b), these two objectives are defined as:
Flooding: the average number of annual flood days, defined as days in which
the lake level ht is above the flood threshold h̄ = 1.24 m, i.e.:

Jflood =
1
Ny

H−1∑
t=0

gfloodt+1 ; gfloodt+1 =

{
1 if ht+1 > h̄
0 if ht+1 < h̄

(6.16)

whereNy is the number of years in the simulation horizon. Irrigation: the daily
average squaredwater deficit with respect to the daily downstream demandwt,
subject to the minimum flow constraint qMEF = 5 m3/s to guarantee environ-
mental stakes. The quadratic formulation is selected with the aim of penalizing
severe deficits in a single time step, while allowing for more frequent, small
shortages. i.e.,

Jirr =
1
H

H−1∑
t=0

(max(wt − (rt+1 − q
MEF), 0))2 (6.17)

We hereby assume the considered simulation horizonH is sufficiently long
to not require the addition of a penalty function to the final state. Furthermore,
the release decision is not conditioned on time beyond its position within the
annual cycle, and thus the decision at the end of the time horizon is no different
than during the equivalent period of all previous years.

6.4 Computational Experiment

The problem of finding a set of Pareto approximate control policies for the Lake
Como system was solved via three policy search methods, NEMODPS, NEAT,
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and traditional DPS, respectively. In these experiments, the designed optimal
control policies provide the control ut as a function of a three-dimensional in-
put set It comprising the state of the system (i.e., the current reservoir storage)
and two transformations of the time index t with sine and cosine, to embed
time-variability and cyclostationarity in the control policy It = |xt, sin(2π ∗
t/T), cos(2π ∗ t/T)|.

NEMODPS solves Problem (6.7), specified for the case study as:

π∗ζ(θ) = arg min
πζ(θ)

[Jflood, Jirr] (6.18)

where Jflood and Jirr are formulated as in eq. (6.16) and (6.17), respectively. NE-
MODPS was run for 10 independently initialized and randomized seeds. Each
seed comprises a Number of Function Evaluations (NFE) equal to 600 thou-
sands. Individuals of the initial population consist of one hidden, one output
node, and 4 connections, for a total of 6 parameters. Connections link inputs to
the hidden node, and the hidden node to the output. Evolved individuals feature
different complexities, spanning from 10 to 31 parameters across the 10 runs.

NEAT solves a SO version of Problem (6.18) where the two objectives are
aggregated using a weighted mean:

π∗ζ(θ) = arg min
πζ(θ)

[λ1J
flood + λ2J

irr] (6.19)

Problem (6.19) is iteratively solved for 15 uniformly sampled combinations of
[λ1, λ2] in [0,1]. NEAT thus demanded the same computational effort of NE-
MODPS multiplied by the 15 tradeoff combinations considered.

Finally, the application of traditional DPS solves Problem (6.18) searching
only the policy parameters θ ∈ Θ for a pre-defined functional class:

π∗θ = arg min
πθ

[Jflood, Jirr] (6.20)

DPS requires the specification of a search algorithm, and of a policy structure.
As search algorithm we selected the ε-NSGAII MOEA (Kollat and Reed, 2005),
which demonstrated consistently high levels of performance on an extensive di-
agnostic benchmarking for challengingMO problems (Zatarain et al., 2016). ε-
NSGAII extends the original NSGAII by including epsilon dominance archiv-
ing, adaptive population sizing, and time continuation (for a detailed descrip-
tion of the algorithm, please refer to Kollat and Reed, 2005, 2006). Concerning
the policy structure, a single-layer, fully connected, homogeneous network was
selected, as in state-of-the-art applications (Castelletti et al., 2013;Giuliani et al.,
2016b). The experiment was repeated for differently sized networks, from 1
node (corresponding to 6 parameters), to 6 nodes (31 parameters), covering an
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interval of parameters which contains the range delimited by optimized NE-
MODPS networks. These networks were populated homogeneously with sig-
moidal activation functions, generating common Artificial Neural Networks
(ANN), and with Gaussian functions, generating Gaussian Perceptrons (GP).

Because Problem (6.20) only searches the parameters’ space, in contrast to
Problems (6.18) and (6.19) which search the hyperspace comprising networks’
parameters and topologies, the number of function evaluations had to be ad-
justed to ensure a fair comparison across methodologies. By inspecting the
search progression inNEMODPS, itwas determined that, on average, the struc-
tures populating NEMODPS Pareto fronts remained fairly constant for the last
300 thousands evaluations. As a result, each DPS experiment was run for 10
seeds, and for NFE = 300,000.

The above policy search experiments were performed on a 10 years cali-
bration horizon 1997-2006 comprising a mix of wet and dry years. Optimal
policies were then tested on three validation chunks: an extended 20-years val-
idation from 1977-1996, and combinations of extreme dry years (1949, 1962,
1990, 1994, 2007), and wet years (1951, 1960, 1977, 2008, 2014) selected by
searching the driest and wettest years from the available historical record of
inflows to Lake Como (1947-2014), discarding the calibration years.

6.5 Numerical results

6.5.1 Benchmark analysis

The first experimentwepresent is a benchmark analysis, contrasting the perfor-
mance of Pareto-approximate control policies produced viaNEMODPS,NEAT,
and state-of-the-art DPS. Figure 6.4 reports the solutions’ performance for the
calibration in panel (a) and validation periods in panels (b), (c), and (d), with
respect to the two objectives of irrigation deficit (Jirr, vertical axis) and flood
days (Jflood, horizontal axis), both to be minimized. Marker size is propor-
tional to network dimension (i.e., number of parameters, or topological ele-
ments). The solutions displayed in this figure are the non-dominated solutions
resulting from merging the Pareto front approximations of independent repe-
titions of the three policy search routines. State-of-the-art ANN and GP net-
works (pink and green diamonds, respectively) of every size (from 1 to 6 hidden
nodes) obtain the best calibration results, outperforming NEMODPS (blue cir-
cles), and NEAT (black triangles). However, when tested on unseen validation
datasets, their performance significantly deteriorates. Benchmark DPS archi-
tectures thus demonstrate a tendency to overfit noise patterns in training data,
which enables the attainment impressive calibration results, but without effec-
tively producing superior policies when compared to other policy search rou-
tines. On the contrary, NEMODPS control policies offer a much more stable
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Figure 6.4: Comparison of the control policies’ performance designed viaNEMODPS
(blue circles), NEAT (black triangles), and traditional DPS with fixed structures
ANN and GP networks (pink and green diamonds). Policies are evaluated over a
10 years calibration period (panel (a)), a 20 years validation horizon of recorded
inflows (panel (b)), and two 5 years extreme validation horizons (extreme dry in
panel (c), and extreme wet in panel (d)).
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validation/calibration ratio and consistently outperform benchmarkDPS on all
three validation datasets. Moreover, NEMODPS consistently offers an exhaus-
tive exploration of the Pareto front, with very limited gaps even when tested
on validation datasets. Conversely, solutions produced by fixed structure DPS
tend to concentrate in restricted portions of the frontier, (e.g., panel (c)).

NEAT policies almost overlap with NEMODPS solutions in the extremes
of the Pareto front; however, the central region of the front is poorly charac-
terized, presenting large gaps, and dominated solutions. Remarkably, selecting
evenly spaced set of weights to aggregate the two objectives does not guaran-
tee a uniform distribution of NEAT solutions in the Pareto front. The non-
uniformity in the distribution of solutions could be a consequence of concav-
ities in the real unknown Pareto front, which are impossible to capture with a
convex combination of objectives.

Intuitively, the higher reliability of neuro-evolved policies in contrast to tra-
ditional pre-defined structures against a suite of diverse validation experiments
can be explained by the fact that each topological element of neuro-optimized
networks was established as the result of a genetic selection. Consequently,
the added value of every element is tangible, otherwise simpler networks, with
lower calibration requirements, would have prevailed. On the contrary, by pre-
specifying a network structure, any superfluous element populating the net-
work (e.g., connections with no physical sense) will contribute to overfitting to
the noise patterns, ultimately undermining the network generalization capabil-
ity.

6.5.2 Trends in policies architectural features

The following analysis is aimed at exploring the NEMODPS topology selection
in more detail, by uncovering possible trends and regularities in the architec-
tural features of the Pareto-approximate solutions produced by the 10 inde-
pendent runs of NEMODPS. This analysis is supported by the three structural
metrics defined in Sec. 6.2.5, computed for every solution, and plotted against
their performance with respect to Jflood in Fig. 6.5. The flood objective is used
as a proxy to represent the solution tradeoff, as, for a given seed, lower Jflood
values correspond to higher Jirr values.

The first panel of Fig. 6.5 displays the Preference for Deep Learning (PDL),
defined in eq. (6.13). Each line represents one of the 10 independent runs of
NEMODPS. By inspecting the lines ensemble, a clear trend is visible: as Jflood
increases, (corresponding to moving the tradeoff in favor of good Jirr perfor-
mance) the values of PDL tend to increase as well, eventually reaching 1 in all
the iterations.

The second panel of Fig. 6.5 shows the values of NC with respect to in-
creasing values of Jflood. A visible trend persists in all 10 runs, indicating that
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Figure 6.5: Pareto dependent structural analysis of optimal solutions resulting from
10 independent runs of NEMODPS, represented by different line colors. The three
metrics employed for structural analysis are Preference for Deep Learning (top
panel), Network Complexity (middle panel), and Network Heterogeneity (bottom
panel).
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efficient architectures tend to simplify, on average, for high values of Jflood.
Also the range of complexities covered by the solutions is sensible to a change
in tradeoff. Low flood solutions display high variability in NC across different
seeds, spanning from12 to 41 parameters below20 flood days. On the other end
of the tradeoff curve, instead, solutions are confinedwithin the 10 to 15 param-
eters range except for one seed stabilizing on 20 parameters. The last indicator
of Network Heterogeneity (eq. 6.15) does not present any visible trend in re-
sponse to the change of the Jflood objective. However, except for very few cases,
Pareto-approximate networks select heterogeneous configurations comprising
a mix of sigmoidal and Gaussian functions. In this mix, generally, sigmoidal
functions constitute the greater portion (verified for NH< 0.5).

In summary, different runs of NEMODPS evolve independently to reach a
coherency in the architecture of Pareto-approximate networks, indicating ra-
tionality in the network generation. The optimization routine, moreover, re-
sponds to changes in tradeoff by consistently adapting the solution topology,
confirming thatmulti-objectives problems should be approachedwith a Pareto-
dynamic selection of optimal architectures.

6.5.3 Convergence analysis from a multi-objective perspective

The last experiment is aimed at verifying the convergence of the solutions pro-
duced via NEMODPS across its independent runs from a multi-objectives per-
spective. First and second panel of Fig. 6.6 represent the minimum value of
the two objectives, Jflood and Jirr, respectively, throughout the search until the
maximum generation is reached. These two objectives present a remarkably
different behavior: the best value of Jflood = 6.3 is consistently found at an
early stage of the search by every algorithmic iteration, represented by differ-
ently colored lines, indicating that policies that minimize flood days (irrespec-
tive of their Jirr value) are relatively trivial to obtain. Conversely, the quest for
an optimal irrigation deficit performance appears much more complex, given
the slower progression towards low values of Jirr. As opposed to Jflood, the best
Jirr solution obtained at the end of the search differs for every iteration, how-
ever, the final solutions place within a range of 5.19%with respect to the lowest,
indicating a contained inter-seed variation even in regions of the Pareto front
that appearmore difficult to approximate. Notably, amarkeddifference in com-
putational effort required by different objectives poses an additional challenge
to the use of SO policy search routines, as it complicates the selection of the set
of weights employed in the objective aggregations. An example of this is visible
in Fig. 6.4, where an evenly spaced set of aggregation weights for NEAT pro-
duces clusters of solutions scoring low values of Jflood and gaps in the Pareto
front.

The bottom panel of Fig.6.6 reports the hypervolume indicatorHV (Zitzler
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Figure 6.6: Analysis of solution convergence with respect to multiple objectives. Each
line represents the behavior of one of the 10 runs of NEMODPS. First and second
panels report, respectively, the best value of the Flood and Irrigation objectives in the
population, across the 1000 generations of the evolution. The third panel represents
the value of the Hypervolume indicator during the evolution.
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et al., 2003) scored by each seed during the search progression.HV accounts for
both convergence and diversity of an approximate set of solutions F capturing
the behavior in intermediate regions of the front, with respect to the best known
approximation Pareto optimal setF∗, constituted by the front resulted from the
combination of the 10 seeds approximation. The hypervolume measures the
volume of objective space Y dominated (�) by the considered approximate set,
withHV formally defined as:

HV(F,F∗) =

∫
αF(y)dy∫
αF∗(y)dy

where

αF(y) =

{
1 if ∃y ′ ∈ F such that y ′ � y
0 otherwise

(6.21)

Its generational growth somewhat mirrors the search for the best irrigation
solution, and by the end of the search, the worst solution covers over 90.5% of
F∗, remarking a satisfying convergence and a limited dependency of NEMO-
DPS solutions on initial conditions. Lastly, the NFE assigned to the evolution
appear more than sufficient to reach convergence, given that the Hypervolume
indicator does not significantly improve for any seed in the second half of the
search.

6.6 Conclusions

In state-of-the-art applications of Direct Policy Search, the control policy is a
priori defined as a fully-connected, single-layer, homogeneous neural network,
independent of the problem characteristics or the objectives tradeoffs. This
choice is motivated by theoretical results that assert the universal approxima-
tion capabilities of a wide range of network architectures. Many real-world
applications, however, demonstrate a key role of topology in determining a
network’s approximation skills and training requirements. Our results show
that traditional DPS with such predefined policy topology is prone to overfit-
ting in noisy environments, and does not offer enough flexibility in MO prob-
lems, where different tradeoffs should be associated with different network ar-
chitectures. By embedding NeuroEvolutionary (NE) techniques into the DPS
framework, we extend theDPS problem to search a hyperspace containing con-
trol policy architectures and parameters. Yet, existing NE techniques, most
notably NEAT and NEAT-inspired alternatives, are tailored to SO problems,
and demonstrate a limited capacity to produce a high-quality approximation
of the Pareto front in terms of solutions distribution and performance, while
also requiring a substantially higher computational effort when compared to
MO routines. This work contributes NEMODPS, a novel policy search algo-
rithmwhich features the structure of the neuroevolutionary benchmarkNEAT,
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several NEAT improvements proposed in the literature, and an original strat-
egy to extend the routine to MO problems, exploring a multidimensional ob-
jective space in a single run of the algorithm. Numerical results show signifi-
cant consistency in topological features of networks optimized across indepen-
dent runs of NEMODPS, suggesting that the generated control policy archi-
tecture is rational and depends on the characteristics in the fitness landscape.
Moreover, a change in objective tradeoff corresponds to a change in fitness
landscape, and the Pareto-approximate topologies adjust accordingly. Finally,
neuro-generated control policies demonstrate the ability to handle noisy en-
vironments featuring remarkable reliability, and generalization potential with
respect to benchmark fixed-structure DPS solutions when tested on a suite of
diverse validation experiments.
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7
Dynamic retrieval of informative
inputs for multi-sector reservoir

policy design with diverse
spatio-temporal objective scales

Abstract1

Advances in monitoring and forecasting water availability at various time and
spatial scales offer a cost-effective opportunity to enhance water systems’ flex-
ibility and resilience by anticipating hydrological extremes. Currently, most
reservoirs’ control rules are conditioned upon basic feature representations,
i.e., time index, reservoir storage, previous day’s inflow. However, the advan-
tage of enriching a policy’s feature representation is generally undisputed. Nu-
merous candidate hydro-meteorological variables and forecastsmay potentially
be included in operation design, and the best input set for a given problem is
not always evident. Additionally, in multi-purpose systems characterized by
multiple demands with varying temporal scales, the most appropriate infor-
mation set might change according to the objective tradeoff. In this work, we
contribute a novel feature representation learning approach that links a fea-
ture selection routine with a multi-objective Direct Policy Search framework
in order to retrieve the best policy input set online (i.e., while learning the pol-

1This work is currently in preparation as: Zaniolo, M., Giuliani, M., Castelletti, A., 2020c. Neuro-evolutionary
direct policy search for multi- objective optimal control. Environmental Modeling and Software (in preparation).
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icy) and tradeoff-dynamically. The selected policy search routine is the Neuro-
Evolutionary Multi-Objective Direct Policy Search (NEMODPS) which gener-
ates flexible policy shapes adaptive to changes in the input set. This approach
is demonstrated on the case study of Lake Como (Italy), where the operating
objectives are highly heterogeneous in their dynamics (fast and slow) and vul-
nerabilities (wet and dry extremes). We showhowvarying objectives, and trade-
offs therein, benefit from a different feature representation, ultimately yielding
remarkable results in terms of conflict mitigation between different users.

7.1 Introduction

Complex real world decision making problems are often approached via Rein-
focement Learning (RL) techniques (Sutton et al., 1998). Recent advances in RL
are expanding the boundaries of its domain beyond the native robotics and in-
dustrial applications to healthcare, (Shortreed et al., 2011), education (Mandel
et al., 2014), and several water resources control applications, such as schedul-
ing of water allocation networks (Abolpour et al., 2007), water-energy systems
(Giudici et al., 2019), and the control of water reservoirs (e.g., Castelletti et al.,
2011b). Real-world applications pose two main challenges to RL, namely, 1)
Defining an informative and compact set of features to condition the control
policy, i.e., Learning a Feature Representation; 2) The coexistence of conflicting
operating targets, i.e.,Multiple Objectives.

Learning a Feature Representation: Typically, a RL agent performs actions on a
dynamic environment and collects a reward signal as the environment transits
into a new state. By repeated interactions, the agent aims to learn an action
policy, or control policy, that maximizes its cumulated reward. The success
of a RL agent is determined by the subset of features conditioning its control
policy that allow the agent to interact with its environment (Bu et al., 2008).
Yet, in real-world RL applications, the environment is a sparse and heteroge-
neous entity comprising a number of processes and dynamics whose relevance
for the agent’s task is often unclear. For instance, considering the control of
a water infrastructure operating in a hydrological basin, the observable envi-
ronment comprises the water available in the basin under multiple forms, e.g.,
reservoirs, snow, groundwater, and topsoil humidity. Such water availability
is influenced by the atmospheric conditions in the watershed, including tem-
perature, winds, relative humidity, cloud cover, and precipitation (Turner and
Galelli, 2016; Denaro et al., 2017a). In addition to observable features, all their
possible manipulations can also be considered, including spatial and temporal
aggregations, indices, models, and forecasts. Yet, likely, only a subset of this
information set is relevant for the agent’s task, and considering redundant or
irrelevant information in the problem formulation will exponentially increase
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the policy learning computational time, and degrade its performance. On the
other hand, however, the control policy of a water reservoir is typicaly condi-
tioned upon very limited information systems comprising time index, reservoir
storage, and sometimes the previous day’s inflow (Hejazi et al., 2008a), and the
potential of including additional information to enhance the system flexibility
and resilience is generally undisputed and long recognized (e.g., Stedinger et al.,
1984; Kim and Palmer, 1997b;Maurer and Lettenmaier, 2004; Zhao et al., 2014;
Giuliani et al., 2015; Zaniolo et al., 2019). The problem of deriving a compact
and informative set of features to condition the control policy is called feature
representation learning, and will be the main focus of this work.

Multiple Objectives: The coexistence of Multiple Objectives (MO) is a ma-
jor challenge to many real world control problems. The result of a MO con-
trol problem is not a single optimal policy, but an ensemble of Pareto-efficient
policies that explores the tradeoff space of conflicts and compromises between
objectives. In the operation of multi-purpose water reservoirs, common op-
erating targets, e.g., flood protection and irrigation supply, can be vastly het-
erogeneous in their dynamics and vulnerabilities. Flood events are caused by
the onset of fast and intense wet meteorological extremes, while irrigation sup-
ply failures are the result of a prolonged period of water shortage caused by
slow-developing dry hydrological extremes, i.e., droughts (Quinn et al., 2019).
The tradeoff space between these two extreme strategies is populated by an en-
semble of policies that balance the relative preference between these opposite
control targets likely relying on a complexmixture of indicators. One policy in-
put set is thus inadequate in multipurpose systems, and feature representation
should be searched dynamically, to appropriately characterize the entire set of
alternative control behaviors.

In this work, we consider the control problem of a multi-purpose water
reservoir for which deriving an appropriate feature representation is not an
obvious task. The control problem will be solved offline, via simulation on
a virtual environment and using an available dataset of precollected environ-
mental signals as candidate policy inputs. While the issue of deriving an appro-
priate feature representation was identified since the early applications of RL
(Dominey, 1995; Sutton et al., 1998), the literature on this topic has been over-
whelmingly focusing on single-objective applications, and still remains a vastly
unexplored issue in MO RL problems (Liu et al., 2014). Here, we contribute a
novel automatic feature representation learning routine, namely the Automatic
Feature Selection for NeuroEvolutionaryMulti-Objective Direct Policy Search
(AFS-NEMODPS), specifically addressing feature representation learning for
MO control problems.

In the literature, feature representation learning is generally tackled by pair-
ing Feature Extraction algorithms with Policy Search methods (Liu et al., 2015;
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Lesort et al., 2018). Feature extraction techniques are an ensemble of data pro-
cessing tools used to transform theoriginal dataset into amore compact, but still
informative, feature set. Three main approaches can be identified when pairing
feature extraction and policy search for feature representation learning, namely
a priori, a posteriori, and online. In the a priori approach, the feature extraction
step is antecedent and independent from the policy search step, and the dimen-
sionality of the dataset of candidate features is reduced on the basis of intrinsic
properties of the controlled system (Morimoto et al., 2008; Nouri and Littman,
2010; Zaniolo et al., 2019). In general, a priori feature representation is advis-
able whenever there is sufficient knowledge of the task to confidently devise an
appropriate dimension reduction. This very low computationally demanding
approach, in fact, does not offer any guarantees on the optimality of the chosen
representation. The a posteriori approach evaluates the suitability of a feature
representation by assessing the performance of the policy conditioned upon it.
Multiple policies are designed with alternative feature representations, and the
desired representation is identified as the one generating the best performing
policy (Gaudel and Sebag, 2010; Giuliani et al., 2019). Both a priori, and a pos-
teriori approaches in general rely on heavy expert-based manual engineering in
defining potentially appropriate feature representations to implement or test
(Bengio et al., 2013). The online approach is, instead, fully automatic and is pre-
ferred when the dataset of candidate policy input is large, and the pre-existing
understanding of the task is not adequate for an appropriate input screening.
This method interleaves feature extraction phases throughout the policy search
process, using progressively refined representations to support policy learning.
In online routines, typically, feature representation is progressively refined by
extracting features that approximate the state space (Curran et al., 2016; Alver-
naz and Togelius, 2017), state-transition space (Assael et al., 2015; Van Hoof
et al., 2016), or the reward trajectory (Munk et al., 2016; Oh et al., 2017) of the
policy learned thus far (for a comprehensive review, see Lesort et al., 2018). The
progressively updated representation is employed to refine the control policy
in a feedback loop between feature extraction and policy search.

AFS-NEMODPS is the novel online feature representation learning routine
introduced in this work. Starting from a minimal feature representation and
policy architecture, AFS-NEMODPSprogressively builds amore informed con-
trol policy by complexifying its input set and processing capacity. The imple-
mentation of an online technique requires the selection of a i) feature extraction
routine, ii) a policy search routine, and iii) a strategy to interface the two. Below,
we comment on what routines are frequently chosen in the literature of online
methods, and we motivate the choices made in building AFS-NEMODPS.

i Feature extraction routine: most online applications reduce the dimensional-
ity of the policy representation by projecting the initial feature space into
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a lower dimensional latent space that preserves information content albeit
losing physical interpretability. Experiences in representation learningmake
wide use of these projection techniques, e.g., via auto-encoders (Goroshin
et al., 2015;Watter et al., 2015; Van Hoof et al., 2016; Alvernaz and Togelius,
2017), or PCA (Karakovskiy and Togelius, 2012; Curran et al., 2016). How-
ever, such an approach compresses the dataset of candidate policy inputs,
but does not guarantee that any candidate feature is actually excluded from
the problem formulation. In principle, all the variables constituting the ini-
tial dataset can contribute to the compressed representation, even to a neg-
ligible extent (Loscalzo et al., 2015). As a result, while the control policy can
actually benefit from a lower-dimensional representation, the actual prob-
lem size remains unchanged. In an operational setting, this implies that all
features must be retrieved continuously. Alternatively, Feature Selection
methods are a subset of the feature extraction techniques that reduces the
dataset size by identifying a subset of the initial features. Some authors sug-
gest the use of feature selection routines, rather than information encoders,
for representation learning (e.g., Loscalzo et al., 2012, 2015), in order to ef-
fectively restrict the number of candidate variables included in the problem
formulation. The representation obtained through variable selection,more-
over, highlights relevant policy drivers, is easily interpretable, and can thus
generate insights on the task at hand. Within Feature Selection techniques,
the iterative online framework can accommodate simple correlation-based
selection, as well as highly non-linear randomized models (e.g., extra-trees
Castelletti et al., 2010b). Information theoretic applications suggest the use
of entropy based metrics that estimate the mutual information content of
two variables (Hachiya and Sugiyama, 2010). Here, we use a normalized
version of the conditional mutual information, namely, the Symmetric Un-
certainty (Singh et al., 2014).

ii Policy Search: The application of exact RL methods for policy search be-
comes computationally intractable for non-trivial applications character-
ized by high-dimensional state spaces (curse of dimensionality, Bellman,
1957), the presence of multiple conflicting control objectives (curse of mul-
tiple objectives, Powell, 2007), and the need to explicitly model every vari-
able included inpolicy representation (curse ofmodeling, Tsitsiklis andVanRoy,
1996). Direct Policy Search (DPS) is an approximated RL method that has
emerged as a promising alternative to mitigate the three curses of exact
methods, thus scaling well to complex real world control problems (Giu-
liani et al., 2016b). DPS defines the control policy within a prespecified
class of functions and solves a problem of optimal functional parameteri-
zation with respect to the problem’s objectives (Salazar et al., 2017; Quinn
et al., 2018; Giuliani et al., 2019; Quinn et al., 2019). Flexible universal ap-
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proximators such as Neural Networks (NNs) are generally employed to pa-
rameterize the control policy in order not to restrict the parametrical search
to a small functional subspace that may not contain skillful solutions (Giu-
liani et al., 2014b, 2018). The architecture of a NN employed for policy de-
sign includes as many input nodes as the number of features in the policy
representation, and as many output nodes as the actions to be taken on the
environment. The internal NN complexity, (i.e., number of hidden nodes,
connections, and layers) is instead arbitrarily adjusted by the modeler, gen-
erally by manual trials and errors, based on the problem complexity. Given
this rigid prespecified policy structure, DPS techniques do not support dy-
namic changes in the dimensionality of the policy feature representation.
In fact, previous efforts in coupling an EvolutionaryMulti-Objective Direct
Policy Search (EMODPS) with feature selection, restart the policy search
from scratch every time the feature representation is updated with a new
input (Giuliani et al., 2015; Denaro et al., 2017a).
A promising alternative that obviates policy rigidity is represented by Neu-
roEvolution (NE), a set of techniques that employ evolutionary algorithms
to evolve neural networks structures and parameters. By pairing NE with
DPS, it is possible to derive policy search routines that support online changes
in policy architecture. Popular NE algorithms (e.g., NEAT Stanley and Mi-
ikkulainen, 2002) are, however, strictly applicable to single-objectives prob-
lems. The here-employed NeuroEvolutionary Multi-Objective Direct Pol-
icy Search (NEMODPS), is the firstNE routine specifically designed to solve
MO problems in one algorithmic iteration (Zaniolo et al., 2020).

iii Interfacing strategy: inmany applications, the selection of relevant features is
performed via supervised learning using as target the state, state-transition,
state-value spaces, or the reward trajectory produced by the policy learned
thus far (for a review, see Lesort et al., 2018). Reward-based selection is
generally recognized as more effective in identifying task-oriented policy
representations (Loscalzo et al., 2015), however, in MO RL problems, the
coexistence of multiple reward signals complicates the reward-based selec-
tion process. In AFS-NEMODPS, we propose a novel interfacing strategy
that is both task-tailored, and suitable for MO problems. In particular, we
use as reference a deterministic Perfect Control Policy (PCP) that assumes
full knowledge of future system disturbance. For a given state, we contrast
the actions extracted from the PCP to those extracted from the policy under
design. We assume that the difference in actions is due to the information
gap in the policies representations, and thus surrogates the information that
the designed policy would require to meet the PCP performance. The tra-
jectory of action residuals is used as an interfacing strategy, and employed as
target for feature selection. Such a target can be considered task-relevant, as
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it is a proxy of the policy information deficiency for a given task. Addition-
ally, it can be applied to MO problems by contrasting each Pareto efficient
policywith the corresponding perfect counterpart supporting a tradeoff dy-
namic feature selection.

To summarize, AFS-NEMODPS combines feature selection, neuroevolu-
tion and an original interfacing strategy. The choices made in the selection and
development of the building tools ofAFS-NEMODS target the overarching goal
of designing the first multi-objective feature representation learning routine
that automatically specifies an optimal policy representations for each tradeoff.
This framework is tested for the real-world case study of the multi-purpose
Lake Como, operated for the two conflicting and heterogeneous objectives of
flood protection and irrigation supply. The flood objective is characterized by
a fast dynamic and vulnerability towards wet extremes, while the seasonal ir-
rigation supply is characterized by a slow dynamic and vulnerability towards
dry extremes. Results show that a tradeoff-specific policy representation is ca-
pable of significantly reducing conflicts between water users, and that varying
objectives, and tradeoffs therein, benefit from different information.

This paper is organized as follows. The next section presents the methods
of this work, by formulating the Problem of MO feature representation for RL
7.2.1, presenting the methodological Framework 7.2.2, and expanding on the
key concepts and tools employed in the methodology, including NEMODPS
7.2.3. Section 7.3 is dedicated to the presentation of the case study and experi-
mental settings. Results are discussed in Section 7.4, and in the following Sec-
tion 7.5 we draw conclusions and introduce some discussion points.

7.2 Methods

7.2.1 Problem formulation

In this work, we consider a discrete-time continuous Multi-Objective Markov
Decision Process (MOMDP) defined as a tuple < X,U,T,G > where X ⊂
Rnx is the continuous state space, U ⊂ Rnu is the continuous action space,
T(xt+1|xt, ut, εt+1) is the transition function between xt and xt+1 under ac-
tion ut, and subject to disturbance εt+1, G(xt, ut, xt+1) =

[
G1, . . . , GM

]
is a

M-dimensional reward (or cost) function that specifies the vector of instanta-
neous rewards (costs) gt = [g1

t , . . . , gMt ] for each objective when state xt+1 is
reached from state xt by taking action ut. Action ut is extracted from a con-
trol policy π(xt), ut = π(xt, ut), associated with a vector of expected returns
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J(π) =
[
J1(π), . . . , JM(π)

]
defined over the control horizon [0, H] as:

Jm(π) = E

{
H∑
t=0

(γm)tgm(t+ 1)|x0

}
(7.1)

where γγγ = [γ1, . . . , γM] ∈ [0, 1] is the vector of discount factors relative to
each objective.

The solution of the RLproblemdefined above is the policyπ∗(xt) that yields
the optimal value of objective J (here considered as a cost, to be minimized) in
itsM dimensions:

π∗ = arg min
π

J(π, µ) = arg min
π

[
J1(π, µ), . . . , JM(π, µ)

]
(7.2)

In general, in MO problems, conflicts occur between different operating
objectives, and it is thus not possible to define a single optimal policy, repre-
senting the optimum with respect to theM dimensions of J. The solution of
a MO problem is in general constituted by a set of non-dominated (or Pareto
efficient) solutions πππ∗ = {π∗|@π ≺ π∗}, which maps onto the Pareto front
F∗ = {J(·)|π∗ ∈ πππ∗}.

The control policy π∗(xt) is searched in a nx dimensional state space, that
can in principle be very large for real-world systems, resulting in a computa-
tionally intractable MOMDP. We are interested in finding a low-dimensional
feature representation space XLD, subset of the original state X that retains its
task-relevant information, thus generating an approximately unaltered control
policy:

XLD ∈ X | πLD(xLDt ) ≈ π(xt) (7.3)

where XLD is defined in a low dimensional RnLDx making πLD(xLDt ) com-
putationally tractable.

We solve Problem 7.3 via DPS, which approaches policy design as an op-
timal functional parameterization, defining the control policy within a given
function class πLDθ , and then searching the parameters’ spaceΘ to find the op-
timal parameterization θ∗ ∈ Θ with respect to theM-dimensional vector of
objectives J.

Hence, Problem (7.3) can be reformulated for a givenXLD as:

πLD∗θ = arg min
πLDθ

J(πLDθ (xLD)) (7.4)

An appropriate XLD is however in general not known, and in this applica-
tion is searched online while learning the policy, requiring the functional class
to adapt to changes in the policy input set. We thus extend the DPS problem
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formulation to the dynamical search of policy architecture and their relative
parameterization ζ(θ). Accordingly, Problem (7.4) is reformulated as:

π∗ζ(θ) = arg min
πζ(θ)

J(πζ(θ)(x
LD)) (7.5)

whereπζ(θ) explicits the search for policy hyperparameters ζ defining a pol-
icy architecture (including number of policy inputs and internal network com-
plexity), as well as regular policy parameters θ, whose number and nature de-
pend on the hyperparameters as in ζ(θ). The policy search problem is thus
expanded to conjunctively search a reduced feature representation, policy ar-
chitecture, and parameters.

7.2.2 Framework

In this section, we present the flowchart of the proposedAFS-NEMODS frame-
work employed to approach Problem 7.5, reported in Figure 7.1. In the search
for the optimal policy representationXLD, we start from aminimal policy input
set and gradually enrich it with additional information.

As the procedure begins, in round R1, we initialize a population of simple
neural networks, with a basic input set XR1, a minimal architecture, and ran-
domweights. This ensemble is the input to the Policy Search building block that
employs NEMODPS. For a given input set, NEMODPS evolves policies’ archi-
tecture and parameters in a MO problem (more details in the dedicated Sub-
section 7.2.3). The output of this step is an ensemble of Pareto efficient control
policies πππR1(xR1

t ), where each policy is specified with a tailored architecture,
resulting in an architecturally heterogeneous population.

In the first round, the flowchart proceeds to the building block namedCom-
pute Residuals. In this step, we contrast the controls produced by each Pareto
efficient policy, with the controls given by a Perfect Control Policy (PCP) (more
details in the dedicated Section7.2.4) extracting the trajectories of control resid-
uals et.

Then, in the Feature selection step, we search a dataset of candidate policy
inputs to identify the input that shares the most information content with a
given residual trajectory, via the computation of the Symmetric Uncertainty
metric. Because the trajectory of residuals is computed independently for each
efficient policy, the inputs selected are policy-specific, and may vary across the
tradeoff space.

Each efficient policy is then updated by including the selected feature in
the input set, with a single input-output connection and a randomly initial-
ized weight. The population of policies is now heterogeneous in its feature
representation. In the second round R2, this population is further evolved via
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Figure 7.1: AFS-NEMODPS flowchart. By looping through the building blocks of
this flowchart, the procedure complexifies the initial population in terms of feature
representation and policy architecture.

146



7.2. Methods

NEMODPS. Individuals will appropriately complexify their architecture by ge-
netic evolution to adapt to the newly inserted input, and learn how to make use
of its information content. Neuro-evolutionary competition will further filter
feature representation, causing only the fittest representations to survive in the
efficient policies of round R2.

AFS-NEMODPS proceeds analogously until the Termination check is pos-
itive, namely when the efficient Pareto set at Round R does not significantly
dominate the Pareto set in the previous round: πππR ⊀ πππR−1. More details on
the termination criterion are presented in Section 7.2.5. Upon termination, we
retain as efficient solutions the Pareto set generated at the previous roundR−1,
as it achieves virtually the same performance as round R with a simpler repre-
sentation.

7.2.3 NEMODPS

In this section, we give an overview of themain components of the selected pol-
icy search routine. NEMODPS (Zaniolo et al., 2020) builds on a recent Rein-
forcement Learning branch called Neuro-Evolution (NE) (Stanley andMiikku-
lainen, 2003; Floreano et al., 2008), which employs Evolutionary Algorithms
to generate optimal networks in terms of topologies and parameters. NEMO-
DPS inherits themain features of aNEbenchmark,NEAT (Stanley andMiikku-
lainen, 2002), and the subsequent literature of NEAT improvements targeting
complex control problems, vast decision spaces, and noisy environments. Ad-
ditionally, NEMODPS contains an original strategy to extend the search scope
to MO algorithms.

Key elements of NEMODPS are (a) a process of evolutionary complexifica-
tion, (b) the use of parametrical and topological operators, and (c) an architecture-
based competition scheme that sustains solutiondiversity and avoids premature
convergence.

(a) NEMODPS begins with a population of uniform simple networkswith ran-
domly initialized weights, and gradually builds more complex architectures
by applying topological operators. As the evolution proceeds, increasingly
sophisticated behaviors emerge, and themore promising ones survive in the
following generations.

(b) Classic parametric evolutionary operators (i.e., mutation and crossover) are
interpreted from a topological perspective. The topological mutation oper-
ator performs a randomized addition of a node (sigmoidal or Gaussian) or
a connection to an individual, and assigns a unique historical marker to the
new element. Topological crossover takes place among two individuals by
aligning genes with the same historical markers and assigning the offspring
a mix of the parents’ genes, favoring those coming from the fittest parent.
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Parametrical evolution is instead performed via a classical mutation opera-
tor. NEMODPS coordinates the search in a dual timescale, optimizing the
network’s parameters on a small timescale, i.e., every generation (exploita-
tion phase), and the network’s structure on a larger timescale, every few gen-
erations (exploration phase).

(c) The addition of a new topological elementwith randomized coefficients can
be, at first, detrimental for an individual. As a result, simpler architectures
tend to prevail over a newly complexified one, even if the topological inno-
vation would prove beneficial if given enough iterations to optimize. NE-
MODPS thus implements a niching scheme to protect topological innova-
tions from premature disappearance. In particular, the population is parti-
tioned into niches (or species) of similar topologies by evaluating a metric
of topological distance. A dynamically adjusted threshold controls the cre-
ation of new species as the population complexifies. As a result of the nich-
ing scheme, individual competition is only allowed within niches of similar
topologies thereby protecting topological diversity. Species compete among
each other for their ability to reproduce, so that a larger offspring is assigned
to well performing ones. A fitness sharing mechanism penalizes populous
species preventing them from taking over the entire population causing loss
of topological diversity and premature convergence. NEMODPS general-
izes the fitness sharing strategy for MO problems, rewarding species that
perform well in a Pareto sense, while penalizing populous species and indi-
viduals in close proximity in the objectives space in order to encourage the
exploration of the entire tradeoff space.

7.2.4 Extraction of optimal decision from a Perfect Control Policy

The perfect control policy πPCP is designed by solving Problem 7.2 under the
hypothesis of deterministic knowledge of the trajectory εH1 of external drivers
over the entire evaluation horizonH at any given time step, and can be solved
via Deterministic Dynamic Programming (DDP). Note that the hypothesis of
designing the policy conditioned upon the future disturbance trajectory εH1 is
not equivalent to conditioning it on the entire, unreduced, state spaceXt. Rather,
it corresponds to considering the entirety of the present and future system states,
in all its deterministic, stochastic, and pure white noise components, perfectly
distilled in a single feature, which would never be available for real online op-
erations. Such a deterministic policy should be considered as a mathematical
object that constitutes the reference for improving a basic policy design, but
cannot be realistically implemented in a real-world system. For our purposes,
we consider the PCP as conditioned upon the minimal input set and the fu-
ture disturbance trajectory πPCPt (xMINt , εH1 ). In order to extract the trajectory
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of policy residuals, we compare the actions extracted from the πPCP with those
extracted from each efficient policy at a given round R,πR referring to the same
minimal state trajectory produced by the simulation of πR. The difference in
actions is assumed to be due to the information gap between the the policy un-
der design, and the perfectly informed policy. For well designed systems, as
the one considered in this study, operating with perfect knowledge of future
disturbance allows to contain conflicts between objectives, resulting in a sharp-
cornered PCP Pareto front. The corner solution represents the less conflictual
solution and can be employed as target reference. In case a PCP front presents
more than one corner solution with a substantial tradeoff, each efficient policy
at a given round R, πR can be associated the closest PCP policy. In particular,
policy proximity can be evaluated in a normalised objective space with respect
to maximum and minimum values assumed by the objectives at a given round.

7.2.5 Termination criterion

The framework terminates for rounds R > 1 when the efficient Pareto set at
Round R does not significantly dominate the Pareto set in the previous round:
πR � πR−1. Several metrics could in principle be used to express dominance
in a Pareto sense. Here, as suggested in (Giuliani et al., 2015), we use the hy-
pervolume indicator (HV ), which captures both the convergence of the Pareto
front under examination F to the optimal one F∗, as well as the representation
of the full extent of tradeoffs in the objective space. The hypervolume metric
allows set-to-set evaluations, measuring the volume of objective space Y domi-
nated (�) by the considered approximate set. HV assumes values between 0 to
1, where Pareto fronts with higherHV are considered better. The indicator is
formally defined as:

HV(F,F∗) =

∫
αF(y)dy∫
αF∗(y)dy

where

αF(y) =

{
1 if ∃y ′ ∈ F such that y ′ � y
0 otherwise

(7.6)

7.3 Case Study and Data

We consider the control problem of Lake Como, a multipurpose regulated lake
located in the southern Alpine belt, Italy (Fig. 7.2). Themain tributary, and only
emissary of the lake is the Adda river, whose sublacual reach originates in the
southeastern branch of Lake Como, crosses the Po valley, and eventually serves
as a tributary to the Po river downstream. In its course, part of its waters are
withdrawn to irrigate four agricultural districts. The southwestern branch of
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Lake Como constitutes a dead end, and exposes the city of Como to flooding
events. The Lake Como basin hydrological regime is snow-rainfall dominated,
characterized by scarce winter and summer inflows, a large snowmelt peak in
late spring, and a secondary rainfall peak in autumn.

The system is modeled as a discrete-time, periodic, non-linear, stochastic
process defined by a state variable xt, a control variableut representing the re-
lease decision from the dam gates, stochastic disturbances εt+1 (net reservoir
inflow), and a state-transition function f(·): xt+1 = f(xt, rt+1, εt+1)where the
effective release rt+1 coincides with the release decision ut corrected, where
appropriate, with a non-linear release function Rt(xt, εt+1) determining the
minimum and maximum releases feasible for the time interval [t, t+ 1) to re-
spect physical and legal constraints. The Adda River is described by a plug-flow
model, which simulates the routing of the lake releases from the lake outlet to
the intake of the irrigation canals. The adopted time step is 1 day, and the system
is periodic with period T = 365 days (Giuliani et al., 2016c).

Lake 
Como

Lake Como 
basin

Como

Irrigation 
districts

Figure 7.2: Digital Elevation Model of the Lombardy region, Italy. The highlighted
elements are Lake Como and its Alpine basin, the sublacual Adda River, the city of
Como and the downstream irrigation districts.

The lake regulation has two conflicting aims of supplying water to down-
stream users by storing spring snowmelt peak, and minimizing flood risk on
the lake shores by maintaining the lake level as low as possible. On the basis of
previous works (Castelletti et al., 2010b), these two objectives are defined as:
Flooding: the average number of annual flood days, defined as days in which
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the lake level ht is above the flood threshold h̄ = 1.24 m, i.e.,

Jflood =
1
Ny

H−1∑
t=0

gfloodt+1 ; gfloodt+1 =

{
1 if ht+1 > h̄
0 if ht+1 < h̄

(7.7)

whereNy is the number of years in the simulation horizon. Irrigation: the daily
average squaredwater deficit with respect to the daily downstream demandwt,
subject to the minimum flow constraint qMEF = 5 m3/s to guarantee environ-
mental stakes. The quadratic formulation is selected with the aim of penalizing
severe deficits in a single time step, while allowing for more frequent, small
shortages. i.e.,

Jirr =
1
H

H−1∑
t=0

(max(wt − (rt+1 − q
MEF), 0))2 (7.8)

We assume the considered simulation horizonH is sufficiently long to not
require the addition of a penalty function to the final state. Additionally, since
the policy is conditioned upon a cyclic representation of time, the decision to-
wards the end of the time horizon is based on similar conditions taking place in
previous years. For this application, we used Lake Como inflow data for a 10-
year simulation horizon from 1997 to 2007. This time span contains a diverse
range of hydrological conditions, including average and extreme years, from
the 2005 record drought to the late 2000 high inflow pulses. This time horizon
is used for both optimization and evaluation of the policy performance, thus
ensuring that the PCP represents the optimum in terms of system operations.

The set of candidate policy inputs employed in this analysis includes perfect
forecasts of the lake inflow computed over the historical timeseries at different
lead times, ranging from one day to over 6months (Table 7.1). The forecasts are
provided in terms of cumulative values of inflows as well as inflow anomalies
with respect to the inflow cyclostationarymean. As per previous works, the use
of perfect forecasts removes possible modeling biases in forecasts construction
(Zhao et al., 2011; Denaro et al., 2017a).

7.3.1 Experimental Settings

In these experiments, the minimal policy input set comprises the current reser-
voir storage and two transformations of the time index t with sine and cosine,
to embed time-variability and cyclostationarity in the control policy Xmint =
|xt, sin(t), cos(t)|.

AFS-NEMODPS was run for 20 independently initialized and randomized
seeds. As termination criterion, we set a threshold for HV improvement of 5%.
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Days ahead Feature name
Cumulated inflow Inflow Anomaly

1 C1 A1
2 C2 A2
3 C3 A3
5 C4 A5
7 C7 A7
14 C14 A14
21 C21 A21
28 C28 A28
51 C51 A51
62 C62 A62
75 C75 A75
90 C90 A90
120 C120 A120
145 C145 A145
200 C200 A200

Table 7.1: Dataset of candidate policy inputs comprising perfect inflow forecasts in
terms of cumulated inflows and anomalies at various lead times.

In each seed, the termination criterion is met at the 4th round, which is respon-
sible for no tangible advancement in the Pareto front, (lower than 5%), there-
fore, we retain as efficient solutions those generated at round 3. At each round,
NEMODPS is run for a Number of Function Evaluations (NFE) equal to 600
thousands, with populations of 600 individuals. When feature selection iden-
tifies new policy inputs, these are connected to the efficient population of the
previous round through an input-output connection. This set of individuals is
then replicated until the population dimension is equal to 600with randomized
connection weights, and constitutes the initial population of the new round of
NEMODPS optimization.

7.4 Results

Figure 7.3 reports the Pareto fronts resulting from 3 optimization rounds of
AFS-NEMODPS with respect to the two objectives of Irrigation deficit (verti-
cal axis) and Flood days (horizontal axis), both to be minimized as indicated by
the arrows. The black square in the bottom left corner of the graph represents
the ideal performance of the PCP. In accordance with other studies on the same
water system, we find that the conflicts between irrigation and flood objectives
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in Lake Como disappear under the assumption of perfect knowledge of future
inflow (Denaro et al., 2017a). A control policy with full foresight is able to guar-
antee a sufficient flood pool to buffer the peak inflow and avoid overflow when
physically possible, while storing in the lake any excess of water to be used for
irrigation purposes during the dry season. Therefore, the deterministic solution
of this MO problem does not yield a Pareto front of efficient solutions, but col-
lapses to a single optimal point into the objective space. However, in the absence
of a perfect future foresight, we expect that the addition of tailored information
can reduce conflicts between water users.

The first round of optimization, conditioned upon basic information only,
produces the Pareto front ofwhite circles that lays in the top right portion of the
objective space in Figure 7.3a, showing a sharp conflict between the two operat-
ing objectives. Additionally, a concavity can be recognized in the central region
of the Pareto front, for values of the Flood objective between 20 to 80. Con-
cave regions of the front are usually regarded as disadvantageous tradeoffs, as
one objectives degrades more than proportionally to the second objective’s im-
provement. The normalizedHV indicator (panel b) relative to round R1 scores
0.142, indicating a large space for improvement between PCP and R1.

In the second optimization round, indicatedwith colored triangles, themore
informed policies significantly outperform R1, scoring an over 3-fold increase
in theHV metric. The shape color corresponds to the new feature added to the
policy representation, and divides the R2 front in two, around its middle and in
correspondence to the persisting concavity in the Pareto front. If we analyze
the information selected, results may seem unexpected: flood-inclined poli-
cies do not select short term predictions of fast inflow peaks, but long forecasts
lead times (75 days). Vice versa, irrigation-inclined policies select, in compari-
son, shorter lead times (62 days) instead of preferring season-long look-ahead.
This behavior can be explained from the point of view of conflict mitigation.
A minimally-represented flood-inclined policy has, in fact, already developed
a solid strategy to prevent floods when physically possible, namely, keeping a
low lake level for the most part of the year to always count on a buffer pool to
accommodate incoming inflow peaks. This strategy is valid from a lakeshore
protection perspective, yet, comes at a remarkable price in terms of irrigation
supply. Such a policy, therefore, does not require any additional information on
upcoming inflow peaks, as the lake is virtually always ready to buffer them. On
the contrary, it can significantly benefit from a longer term information on how
to improve irrigation supply while still remaining strongly flood risk-averse,
thereby alleviating water supply deficits downstream, and mitigating conflicts
between water users. In fact, by comparing flood conservative policies of R1
and R2 (left region of the Pareto fronts), we notice that the added information
has the effect of improving the policies in the direction of a significantly lower
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Figure 7.3: Panel (a): Performance obtained by different Lake Como operating poli-
cies with respect to the two cost objectives of irrigation deficit (vertical axis) and
Flood days (horizontal axis). The black square indicates the ideal performance of
the PCP, white circles the performance of efficient policies designed at round R1,
triangles refer to policies at round R2, and diamonds at round R3. For rounds R2
and R3, the shape color is associated with the information added to the feature rep-
resentation. Panel (b) shows the improvements in the Hypervolume indicator across
different rounds, normalized to the value of hypervolume scored by the PCP.
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irrigation deficit, at no cost for the flood objective. The long lead time informa-
tion selected by flood oriented policies is thus employed tominimize objectives
conflicts, rather than further improve the flood objective. The other half of the
Pareto front selects a shorter lead time, which allows policies to move both in
the direction of a reduced flood and irrigation damage.

The third optimization round includes a second additional information source
as a policy input, generating further improvement in the HV indicator. The
Pareto front of round R3 not only dominates the fronts of the previous rounds,
but also resolves their concavity generating a fully convex front, where it is pos-
sible to identify a knee. Contrary to the previous round, the front shift between
R2 and R3 is mainly horizontal, i.e., contributing to a Flood objective improve-
ment rather than an irrigation improvement. Accordingly, the policy inputs
selected in this round have a much shorter lead time, between 1 and 4 weeks.
The solutions that at this round select the longer lead time, 4 weeks, are those
showing a diagonal improvement that unfolds in both objective directions.

In Figure 7.4 we explore how added information is employed by progres-
sively informed policies for a given tradeoff. This analysis focuses on the solu-
tions located along the lilac vertical line in panel (a), corresponding to an average
of 6.3 flood days per year. This tradeoff was chosen in order to compare the 4
Pareto fronts only in terms of the irrigation objective, for a given flood perfor-
mance. A common cyclostationary behavior emerges for different policy rep-
resentations in panel (b). The lake recharges in May, in correspondence to the
onset of the irrigation season, reaches a level peak around late June, followed by
an emptying phase lasting for the entire irrigation season until September/Oc-
tober, when abundant rains cause a new level increase. In the PCP, perfect fu-
ture foresight informs the policy on the exact onset of inflow peaks, allowing to
timely generate an adequate flood pool to contain them, while keeping, on aver-
age, a high lake level that ensures water availability to supply downstream irri-
gation demand. Whenever the full trajectory of future disturbance is not avail-
able, policies have to be more conservative towards flood events, thereby keep-
ing a lower lake level to buffer possible incoming inflow peaks, at the expense
of irrigation availability. This behavior is sharper in the minimally informed
round R1 (red line), while more informed policies can confidently maintain a
fuller lake during the summer, resulting in a smaller water deficit downstream,
without damaging the flood objective. Cyclostationary behaviors outside the ir-
rigation season are fairly divergent, however, the system’s winter downstream
demand is almost negligible with respect to summer demand, thereby not con-
tributing significantly to the irrigation objective performance.

Lastly, in Figure 7.5, we analyze how a refinement in policy representation
operationally modifies lake regulation towards conflict mitigation. The shaded
area in panels (a), (b), and (c) delimits the ensemble of lake level trajectories asso-
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Figure 7.5: Conflict mitigation. Panels (a), (b), and (c) report the range of lake levels
yielded by all the Pareto efficient policies designed at the given optimization round
across different tradeoffs. The average round-specific release range is quantified in
the barplot of panel (d), while the lake level range is shown in panel (e).
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ciated with the set of Pareto efficient policies produced in a given round, while
the central bold line represents the average behavior. The width of the shaded
area indicates the range of variability in operations spanned by the efficient
policies, where a thick area indicates that different tradeoffs are associated with
diverse operations, and a narrow area suggests similar operations even across
opposing tradeoffs. The plots show a visible narrowing in the operational vari-
ability from the first round to the following ones. Operationally, this translates
into amitigated conflict between water users, as different interests tend to con-
verge towards a common efficient policy. This convergence is quantified in the
barplots showing the average daily range in levels (panel e) and releases (panel d)
associated with different policies in the Pareto set resulting from a given round.
The addition of information in the policy representation shows a consistent re-
duction in release variability. Level variability significantly drops from round
R1, where Lake Como is operated at an average difference of more than 53 cm
for different tradeoffs, to about 35 cm in round R2. R3 shows a slight increase
in variability that is however below 2 cm, and can be considered negligible.

7.5 Conclusions

While Feature Representation Learning is widely addressed in the literature,
previous works do not specifically consider how defining one single policy rep-
resentation to characterize the entire tradeoff space of multi-purpose systems
might be inadequate. The coexistence of fast and slow process dynamics, and
different vulnerabilities requires the search of a tradeoff tailored policy repre-
sentation. In this work, we propose AFS-NEMODPS, a novel framework for
automatic, tradeoff-dynamic feature representation and policy learning. AFS-
NEMODPS startswith a populationofminimal policies and gradually complex-
ifies their feature representation by selecting variables that surrogate the policy
information deficit, measured by comparison to a perfect control policy. Poli-
cies’ architectures are adjusted accordingly, in order to accomodate new inputs
and support more complex behaviors. We apply AFS-NEMODPS to the case
study of LakeComo, characterized by conflicting heterogeneous objectives, and
we use a dataset of deterministic inflow forecasts at different lead times as can-
didate policy inputs.

Results show that different objective tradeoffs benefit from different infor-
mation setswith unexpected, but insightful, outcomes. Flood-conservative poli-
cies select forecasts with long lead times, thereby improving irrigation perfor-
mance without increasing flood failures. Irrigation-inclined policies select, in
comparison, shorter lead times achieving better flood and irrigation results.
Not only do we notice a trend in the information selected for different trade-
offs, but also across successive selection rounds. The first forecast included in
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the representation at the second round counts on a forecast with over 2months
lead time, and produces the largest improvement in the direction of a lowerwa-
ter supply deficit, and only partially, floodmitigation. In round three, lead times
are shorter than a month, enhancing primarily flood mitigation skills.

Overall, the search for a tradeoff-specific feature representationdemonstrates
the potential to significantly enhance the water system overall reliability, re-
silience towards both dry and wet extremes, while reducing conflicts across
conflicting water uses.

7.6 Discussion: the role of competition in feature repre-
sentation

The results presented in this chapter are being refined at the time of writing
this thesis. One aspect in particular seems to be worth further investigation i.e.,
the information selection process. In AFS-NEMODPS, the features eventually
composing the efficient representations undergo a two-fold selection. First, a
filtering process identifies promising features based on their correlation mea-
sured in Symmetric Uncertainty with the policy information gap. These fea-
tures are included in the representation of the previous efficient individuals.
Second, this newly initialized population, heterogeneous in its policy represen-
tation, is further evolved via NEMODPS and the fittest representations prevail
through evolutionary competition.

By contrasting the features selected in the filtering step and those surviving
after the competition, we can better comprehend the relative role of these selec-
tions. In Figure 7.6, panels (a) and (c) show the features selected in the filtering
step for the Pareto-efficient individuals produced by the 20 independent runs
of ASF-NEMODPS in rounds R2 and R3. The subset of representations sur-
viving the competition is reported in panels (b) and (d) for the Pareto efficient
individuals of the 20 runs. Green-colored bars correspond to features that are
also included in the final Pareto front derived from the combination of all the
independently optimized seeds.

In round R2, the filtering step identifies a larger number of features, with
some clearly prevailing for the frequency in which they are selected, i.e., Cumu-
lation andAnomalies at 28 and51day lead times. Interestingly, the competition-
based selection does not yield the same relative frequencies: 62 and 75 day-
ahead anomalies consistently overcome competition across multiple seeds, as
well as in the final assembled Pareto front. In round R3, the frequency dif-
ference between filter- and competition-based selections is not as sharp as in
round 2, but still notable.

These results seem to suggest that the filter-based selection frequency was
not a reliable indicator of the representation that was eventually established
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7. Dynamic retrieval of informative inputs for multi-sector reservoir policy
design with diverse spatio-temporal objective scales
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Figure 7.6: Selection frequency of candidate variables in round R2 (panels (a) and
(b)), and round R3 (panels (c) and (d)) during the filtering- and competition- based
selection steps, respectively, for the 20 independent runs of AFS-NEMODPS.Green
colored bars correspond to variables that also appear in the feature representations
of the resulting Pareto front that assembles the results of the single runs.
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7.6. Discussion: the role of competition in feature representation

as efficient, raising questions around the trustworthiness of the filtering pro-
cess. A first hypothesis is that the filtering step is at least helpful in reducing the
pool of policy inputs to a smaller set of stronger candidates, thereby reducing
the computational burden of a dataset-wide competition. The second hypothe-
sis, however, is that the filtering process is completely blind to the competition
skills of a variable, and is actually harmful to the feature representation learning
as it might exclude good candidates. While presenting the results of this Chap-
ter we operated under the first assumption, but we aim at testing the second
hypothesis in upcoming experiments, where instead of a filter-based selection
based on information gap, we will operate a randomized extraction of variables
from the dataset of candidate policy inputs. Given the dataset dimension we
will also increase the number of randomizes seeds and use larger NEMODPS
populations.
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8
Conclusions and future research

This thesis contributes to the literature of feature representation learning for
multi-objectiveRLproblems, specifically tackling the control ofwater resources
systems, a challengingdecisionproblemcharacterized bynon-linearities, strong
disturbances, possible alternative problem framings, and multiple objectives.
By conjunctively addressing the fields of water resources systems, feature se-
lection, and multi-objective control, we propose methodological innovations
in automatic selection of information and policy architecture in complex deci-
sion problems. Novel methods are tested on real-world case studies of water
resources conflicts in contentious river basins.

Across the six papers presented in this thesis, we advocate the need to more
carefully consider the breadth of available information sources to inform reser-
voir control policies, especially in contexts where climate and societal change
are exacerbatingwater conflicts. The existing literature of water resources con-
trol has rarely and sparely addressed the topic of selecting appropriate policy
inputs, and this thesis aims at filling this gap by calling attention to this promis-
ing line of research, demonstrating its potential, and structuring the conversa-
tion around a proposed taxonomy comprising a priori, a posteriori, and online
approaches.

Among the novel contributions of the thesis we include:

• the design and application of an unconventional feature representation
centered around a basin-specific analysis of the drought state,

• the reconstruction of climate oscillations to expand the concept of feature
representation to a problem of reservoir planning and filling,
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8. Conclusions and future research

• a meta-analysis on the role of variable processing in determining a fea-
ture’s representations skills,

• a fully automated and tradeoff-dynamic framework for the online selec-
tion of policy architectures and inputs, targeting multisectoral conflict
mitigation.

Among the most valuable outcomes of this collection of works, we highlight
that i) learning an appropriate feature representation goes beyond the control
policy performance improvement, but also generates insights on the learned
task by identifying relevant policy drivers and system vulnerabilities. ii) The
benefit of certain representations are especially noticeable in critical situations.
For instance the benefits of including the drought index of Chapter 3, and the
long term forecasts of Chapter 5 are mainly noticeable in dry years. iii) The
value of hydrological forecasts in informing reservoir operations, a very com-
mon choice to enhance water system resilience, might be afflicted by modeling
distorsions, and a less processed alternative could bringmore benefit to the con-
trol policy (see Chapter 5). iv) The concepts of feature representations can be
valuable beyond strictly control problems to applications of planning and filling
(Chapter 4). Lastly, v) in Chapter 7, we see how guiding representation learning
towards conflict mitigation determines a cross-sectoral information selection
that tends to improve the performance in the weaker objective.

The common thread in these outcomes is that, in an operational context,
the quest for an optimal feature representation might be an elusive concept. In-
stead of chasing optimality per se, we found several opportunities to mitigate
recurrent water systems failures, that catalyze the largest concentrated impacts
related to water management. As a consequence, our efforts were mostly con-
centrated at mitigating damages of drought emergencies, of critical phases in
reservoir development (i.e., construction and filling), and social tensions deriv-
ing from conflicts between different users and their demands.

The here proposed contributions are intended to lay the foundation of sev-
eral new promising research directions that can be further investigated. Among
them,

• NEMODPS should go through an extensive diagnostic analysis that can
shed more light on its potential. A direction of investigation could be the
reliability and consistency of the policy architecture selection in a series
of experiments targeted to test architectural convergence. For example,
we could operate randomized restarts by extracting efficient individu-
als from an evolving population to be placed in a different randomly ini-
tialized population to investigate architectural convergence. Orders-of-
magnitudes larger populations could also be used for the same purpose.
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• An additional direction of investigation for NEMODPS can test its scala-
bility to more complex control problem, for instance comprising multiple
control decisions and many-objectives. A many-objective application of
NEMODPS with 4 operating objectives is currently in the works.

• Lastly, new architectural and parametrical operators can be included in
NEMODPS to enhance its effectiveness in exploring the architectural-
parameteric hyperspace. Additional architectural operators can include
new activation functions like ReLu, linear, or step functions, or the re-
moval of existing nodes and connections. Newparametrical operators can
be included to target the investigation of a solution’s proximity, or, alter-
natively, of unexplored regions of the parameters space (see, e.g., Hadka
and Reed, 2013).

• In regards to feature representation learning, more challenging applica-
tions can be tested, including the control of multi-reservoir, and many-
objectives systems. A more challenging application of AFS-NEMODPS
is currently in the works. In particular, the framework is applied to the
control of Gibe III dam in southern Ethiopia, considering three operating
objectives and two control decisions, namely reservoir release and irri-
gation abstraction. Additionally, the dataset of candidate policy inputs is
in this case represented by real forecasts developed by searching relevant
anomalies in gridded global climatic datasets of sea-surface temperature,
sea-level pressure and geopotential height. A novel strategy is proposed
for situations in which water users’ conflict persist even in the assump-
tion of perfect future knowledge of the system disturbance.

• We plan to further investigate the efficacy of preliminary filtering promis-
ing candidate information to complement the evolutionary competition in
determining efficient feature representations, as motivated in the discus-
sion of Chapter 7.

• Unprecedented advances in monitoring technologies allow to character-
ize hydrological processes at finer spatial and temporal resolutions from
multiple sources, e.g., ground observations, remote sensing, and crowd-
sourcing, offering new opportunities to enhance feature representation.
As the volume of available information expands, however, new challenges
emerge regarding how to extract valuable and compact signals in large
heterogeneous datasets comprising a multiplicity of spatial and tempo-
ral resolutions, variables types, accuracies, and observability. To address
these new challenges, water resources management can take advantage of
state-of-the-art techiniques developed in the booming fields of big data
analysis, image recognition, and computer vision in order to navigate such
large and heterogeneous datasets extract relevant information.
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8. Conclusions and future research

• Feature representation inwater resourcesmanagement shouldnot be con-
sidered a crystalized concept, but should dynamically adapt in response to
variations in the ever evolving boundary conditions that coupled human-
natural systems are exposed to. In particular, we should monitor varia-
tions in socio-economic drivers e.g., a water user experiencing unprece-
dented and more frequent failures; climatic drivers, i.e., an increased like-
lihood of extreme events, or modification in their nature; and physical
drivers, e.g., when new water demands or infrastructures come online in
the system. When one or more of these drivers change, the previous fea-
ture representationmay not be adequate to represent the new system con-
ditions, and should be updated accordingly. Yet, a critical challenge yet to
address is to determine when and how to timely update the feature repre-
sentation by means of appropriate triggers.

• Dynamicity in feature representation can be also introduced in the short
term, by switching to alternative representations in response to specific
system conditions. For instance, the appropriate representation to con-
trol a water system during a drought may give more space to key drought
drivers that won’t be needed in average or wet conditions. Therefore, in-
stead of designing a single control policy with a single feature represen-
tation that is expected to be optimal in every possible hydrological condi-
tions, a pool of alternative policies may be designed for a given hydrolog-
ical condition (e.g., wet, normal, and dry), and activated in turns given the
current or forecasted system state. Again, proper triggers should be de-
fined to effectively and timely switch between policies, for instance basin-
specific drougth indices in real time observation or in forecast mode, or
teleconnection-based indices.

• Beyond single basin studies, a spatially explicit large scale comparative
analysis of relevant policy drivers across different basins may uncover in-
teresting trends in information relevance. Expected findings include the
identificationof correlationbetween relevant policy drivers andbasin char-
acteristics such as climate, basin size, morphology, and water uses.

• Lastly, more effort should be put into disseminating findings beyond the
theoretical research domain. The potential synergies between theory and
practice in the identification and retrieval of relevant information are ev-
ident: a well designed real-world monitoring system is essential to fea-
ture representation, as a feature can be recognized as valuable only if it
is observed. At the same time, feature representation learning can guide
the development and maintainance of monitoring systems by informing
targeted investments towards the retrieval of most valuable information.
Such virtuous collaborationbetween theory andpractice canonly be achieved
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with a deliberate dissemination effort, and a continuous engagment of de-
cision makers and stakeholders in contentious water systems.
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Appendix
A

Supporting Information for:
When timing matters -

misdesigned dam �lling impacts
hydropower sustainability

A.0.1 System Model

The conceptual model of the Omo-Turkana Basin comprises Gibe III reservoir
(GIII), lake Turkana (T ), and the Omo river stretch connecting them. A topo-
logical scheme representing the system is shown in Supplementary Figure A.4.

The dynamics of reservoir and lake storage st is modeled as:

sGIIIt+1 = sGIIIt + qGIIIt+1 − eGIIIt AGIIIt − rGIIIt+1 (A.1a)

sTt+1 = sTt + r
GIII
t+1−lag + q

lateral
t+1 + qTurkwelt+1 + qKeriot+1 − eGIIIt AGIIIt (A.1b)

where sit is the storage to the i-th water body (i = GIII, T), eit is the cyclostation-
ary daily evaporation rate, and Ait = a(sit) is the reservoir surface estimated
from sit given the biunivocal surface-level-storage relation. In the adoptednota-
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tion, the time subscript of a variable indicates the instantwhen its value is deter-
ministically known. The release fromGibe III is defined as rGIIIt+1 = f(sGIIIt , uGIIIt , qGIIIt+1 )

where f describes the nonlinear relation between the release decision uGIIIt
and the actual release Soncini-Sessa et al. (2007). The actual release at the end
of the time interval is generally equal to the release decision unless physical
constraints prohibit it (i.e., if the prescribed release lies outside the minimum
and maximum allowable releases, for instance as a result of insufficient wa-
ter volume in the reservoir, or exceedence of reservoir storage capacity). Lake
Turkana, instead, is an endorheic lake, and the only water output is due to evap-
oration. The lake total inflow is given by the sum of GIbe III release (rGIIIt+1 ), flow
of Turkwel (qTurkwelt+1 ) and Kerio rivers (qKeriot+1 ), and the lateral contributions in
the lowerOmo valley (qlateralt+1 ). According to the daily time-step adopted in the
model, the river reaches are modelled as plug-flow canals in which the velocity
and direction of flow are constant. A transit lag time of lag = 18 days is esti-
mated from streamflow data, and corresponds to the average time employed by
the water to transit between these two points.

Filling and regime policies are optimized with respect to the following ob-
jective functions, defined over the filling horizonHF from January 2015 to Oc-
tober 2018:

• Hydropower Production JHyd (to be maximized):

JHyd =
1

Nyears

[
HF∑
t=1

g
Hyd
t

]
(A.2a)

where
g
Hyd
t = ησγh̄GIIIt qturbt ; (A.2b)

withNyears being the number of years in the simulation horizon, η the
turbine efficiency, σ the gravitational acceleration, γ the water density,
h̄GIIIt the net hydraulic head, and qturbt the turbinated flow.

• Environmental deviation JEnv (to be minimized):

JEnv =
1
HF

HF−1∑
t=0

gEnvt (A.3a)

where
gEnvt =

(
qnaturalt − qdeltat

)2
(A.3b)

with qnaturalt representing the cyclostationary trajectory of natural in-
flow regime in the Omo Delta estimated from streamflow data prior Gibe
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III construction, and qdeltat the streamflow reaching the delta for the pol-
icy under evaluation. The objective is formulated as the average daily
squared distance between these two trajectories over the simulation hori-
zon, and is aimed at preserving natural flow conditions in correspondence
to theOmodelta, and consequently a natural inflowpattern in lakeTurkana.
According to the adopted squared formulation, smaller, and more fre-
quent deviations are preferred to large concentrated deviations with re-
spect to the target.

• Final Gibe III level JFill (to be maximized and considered in the optimiza-
tion of filling policies only):

JFill = hHF
GIII (A.4)

where hGIIIH is the reservoir’s level at the end of the filling horizonHF.

In the investigation of the role of filling timing, we simulated the first two
years of the reconstructed filling strategy assuming to start the reservoir filling
in different years. Historically, 2 years were necessary to achieve the normal
operating level and, subsequently, the reservoir level remained reasonably con-
stant apart from contained seasonal fluctuations.

To assess the resulting system performance, we used 4 evaluation indicators
assessed in a 2-years filling horizonH2y formulated as follows.

1. Annual average hydropower production (iHyd):

iHyd =
1

Nyears

[
H∑
t=1

ηgγh̄GIIIt qturbt+1

]
(A.5)

whereNyears=2 is thenumber of years in the simulationhorizon,η=0.34
is the turbine efficiency, g = 9.81 m/s2 is the gravitational acceleration, γ
= 1000 kg/m3 is the water density, h̄GIIIt is the net hydraulic head, and
qturbt is the turbinated flow.

2. Final Gibe III level (iGIII_L), evaluated at the end of the filling transient
H2y in meters above sea level [masl]:

iGIII_L = hGIIIH (A.6)

3. Final Turkana level drop (iT_Ld), evaluated in terms of absolute level drop
referred to the initial lake level hT0 :

iT_Ld = hTH − hT0 (A.7)
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4. Flood Pulse (iFP), defined as the average annual flood pulse magnitude
computed as themaximum inflow reaching the delta during the flood sea-
son of August-September:

iFP =
1

Nyears

Nyears∑
y=1

max
τ∈[Aug,Sept]

qdeltaτ,y

 (A.8)

where he flow in the Omo delta is given by qdeltat+1 = rGIIIt+1−lag+q
lateral
t+1 .
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Figure A.1: Classification of water, vegetation, bare soil, and clouds at Gibe III reser-
voir location from Sentinel 2 satellite imagery. For the months of June to September
2017, and May to July 2018, the cloud cover was too persistent to allow composing
a cloud free image; the values of adjacent months were thus interpolated. Addition-
ally, a sensor failure temporarily interrupted Sentinel data collection via B5 sensor
in the month of June 2018.
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Signal Crossvalidation Accuracy Significance Score (%) Location Period
negative positive negative positive

AMM 0.64 0.81 88.3 84.2 Atlantic 5-10 years
AMO 0.62 0.67 99.0 71.5 Atlantic Multi-decadal
NTA 0.58 0.57 97.4 67.0 Atlantic 2-4 years
CAR 0.57 0.56 96.2 82.4 Atlantic 5-10 years
NAO 0.71 0.47 95.7 71.0 Atlantic 2-4 years
BEST 0.17 0.46 91.7 73.9 Pacific 2-4 years
MEI 0.59 0.47 63.8 91.3 Pacific 2-4 years
WP 0.39 0.61 33.3 99.9 Pacific 1-3 years
PMM 0.52 0.41 91.0 90.3 Pacific Decadal
PNA 0.58 0.53 98.8 60.7 Pacific 2-5years
PDO 0.55 0.27 88.4 88.8 Pacific Decadal
EPNP 0.31 0.63 66.8 94.2 Pacific 3-6 years
NP 0.44 0.52 93.1 93.6 Pacific 3-6 years
WIO 0.62 0.52 99.9 81.3 Indian 2-5years
SEIO 0.80 0.51 98.7 55.2 Indian Decadal
DMI 0.61 0.55 98.5 97.0 Indian 2-5 years

Table A.1: Accuracy of the phase specific, univariate linear forecast models and as-
sociated significance score for the 16 tested climate signals. Model accuracy in
crossvalidation is measured via the Pearson correlation coefficient. The Signifi-
cance Score corresponds to the percentage of Montecarlo random shuffling trials
that identify a smaller number of significantly correlated SST grid points with re-
spect to unshuffled data.
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Figure A.2: SPEI forecast. Top panel reports the ensemble of teleconnection-based
seasonal forecast for the Standardized Precipitation and Evaporation Index. The
ensemble average is then used to classify the SPEI forecast in dry, normal, and wet
conditions; this classification is correct for all the seasons.
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Figure A.3: Optimal adaptive filling policies. Left panel reports policies performance
in the objective space, in terms of Hydropower Production (vertical axis, to bemaxi-
mized), Downstream Impacts (horizontal axis, to be minimized), and Final Gibe III
level (circle size, to be maximized). The historical policy (black circle) attains a com-
parable performance with respect to the designed policies in terms of hydropower
production and Gibe III final level, but is associated to the highest downstream
impacts demonstrating that adaptive policies have the potential to contain down-
stream alterations without impacting filling efficiency. The right panel reports the
optimal values of the scaling factors associated to the three SPEI classes, which
are lower for wet seasons than for dry seasons, indicating that the adaptive filling
policies will release a larger water volumes when a dryer than average season is
expected to avoid magnifying drought impacts on downstream activities, and will
impound a larger fraction of inflows in case of a wet spell as more abundant basin
wide precipitations can support downstream activities.
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Appendix
B

Supporting Information for:
Detecting the state of the climate
system via arti�cial intelligence
to improve seasonal forecasts

and inform reservoir operations

B.1 Lake Como integrated model and optimal control
problem formulation

The Lake Como integrated model is composed of three main components as
illustrated in Figure B.1 (further details can be found in (Giuliani et al., 2016d)):

• Catchment model - a conceptual hydrologic model Hydrologiska Byrans
Vattenbalansavdelning (HBV), which relies on four storage units, one for
snow and the other three for different soil layers.

• Lake Como operational model - the lake dynamics is described by a mass-
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balance equation assuming a modelling and decision-making time step of
24 hours, where the lake releases are determined by the lake operating
policy. According to the daily time step, the Adda River can be described
by a plug-flow model to simulate the routing of the lake releases from the
lake outlet to the intake of the irrigation canals. This diversion of thewater
from the Adda River into the irrigation canal is regulated by the water
rights of the agricultural districts.

• Agricultural districts model - the dynamic processes internal to the irri-
gation districts are described by three distinct modules devoted to spe-
cific tasks: (i) a distributed-parameterwater balancemodule (Facchi et al.,
2004) simulating water sources, conveyance, distribution, and soil-crop
water balance over a regular mesh of cells with a side length of 250 m.
Each individual cell identifies a soil volume which is subdivided into two
layers, where the upper one (evaporative layer) represents the upper 15 cm
of the soil and the bottomone (transpirative layer) represents the root zone
and has a time-varying depth, with the water percolating out of the bot-
tom layer that constitutes the recharge to the groundwater system; (ii) a
heat unit module (Neitsch et al., 2011) simulating the sequence of growth
stages (e.g., root length, basal coefficient, leaf area index), including the
sowing and harvesting dates, as a function of the temperature in terms
of cumulated heat units; (iii) a crop yield module that first estimates the
maximum yield achievable in optimal conditions and, then, reduces it to
take into account the stresses due to insufficientwater supply from rainfall
and irrigation happened during the agricultural season, where the yield
response to water stresses is estimated according to the empirical func-
tion proposed in the AquaCrop model (Steduto et al., 2009) and based on
the approach proposed by FAO (Doorenbos and Kassam, 1979). Finally,
the yield of the cultivated crops is used to estimate the farmers net profit,
which also depends on the crop price and cost alongwith the subsidies de-
rived from the EU’s Common Agricultural Policy (Gandolfi et al., 2014).

In particular, themass balance equation describing the regulated LakeComo
dynamics in the operational model is formulated as follows:

st+1 = st +nt+1 − rt+1 (B.1)

where st is the lake storage [m3], while nt+1 and rt+1 are the net inflow (i.e.,
inflow minus evaporation losses) and the outflow volumes in the time interval
[t, t+ 1), respectively. The release is defined as rt+1 = f(st, ut, nt+1), where
f(·) describes the nonlinear, stochastic relation between the release decision
determined by the operating policy (i.e., ut = p(·)), and the actual release rt+1
(Piccardi and Soncini-Sessa, 1991).
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B.1. Lake Como integrated model and optimal control problem formulation

The lake operations is driven by multiple objectives, primarily flood control
along the lake shorelines, water supply to four irrigation districts, and envi-
ronmental protection of ecosystems in the Adda River downstream from the
lake. This latter is accounted for by setting a minimum environmental flow
constraint on the lake releases qMEF = 5 m3/s. On the basis of previous works
(e.g., Castelletti et al., 2010a;Giuliani andCastelletti, 2016;Giuliani et al., 2016a;
Denaro et al., 2017b), we formulated the flood control objective and the water
supply objective as follows:

• Flood control: the average annual number of flooding days in the simula-
tion horizon H, defined as days when the lake level ht is higher than the
flooding threshold h̄=1.24 m:

JF =
1

H/365

H∑
t=1

Λ(ht) where

Λ(ht) =

{
1 if ht > h̄
0 otherwise

(B.2)

• Water supply deficit: the daily average quadratic water deficit between the
lake release rt+1 and the total water demand wt of the downstream sys-
tem, subject to the minimum environmental flow constraint qMEF. This
quadratic formulation aims to penalize severe deficits in a single time step,
while allowing formore frequent, small shortages (Hashimoto et al., 1982):

JD =
1
H

H∑
t=1

βt ×max
(
wt − max(rt+1 − q

MEF, 0), 0
)2

(B.3)

whereβt is a time-varying parameter which depends on the phenological
phases of the crops and is higher after germination to the beginning of
phenological maturity.

According to the EvolutionaryMulti-ObjectiveDirect Policy Searchmethod
(Giuliani et al., 2016b, 2018), the operating policy is formulated as a network of
Gaussian radial basis functions (RBFs) and the release decision is defined as

ut =

N∑
i=1

wiϕi(It) +α (B.4)

where N is the number of RBFs ϕ(·), wi is the non-negative weight of the i-
th RBF (i.e., wi > 0 ∀i), and α is a constant parameter. The single RBF is
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defined as follows:

ϕi(It) = exp

− M∑
j=1

((It)j − cj,i)
2

b2
j,i

 (B.5)

whereM is the number of policy inputs (It) and ci,bi are theM-dimensional
center and radius vectors of the i-th RBF, respectively. The policy parameter
vector θ is therefore defined as θ =

[
(c1, . . . , cM)N1 , (b1, . . . , bM)N1 , w

N
1 , α

]
.

The total number of policy parameters (i.e., decision variables) is therefore equal
toN(2M+ 1) + 1 = 29.

The optimal values of the policy parameters θ∗ are determined by solving
the following optimization problem:

θ∗ = arg min
θ

J(θ) (B.6)

where the decision variables are the policy parameters θ ∈ Θ, the objective
functions are the two operating objectives J defined in eqs. B.2-B.3 and the
problem is constrained by the dynamics of the system (eq. B.1). Finding θ∗ is
equivalent to finding the corresponding optimal RBF policy p∗θ (as in eq. 3 of
the main paper).

B.2 The Nino Index Phase Analysis framework

An overview of the Nino Index Phase Analysis (NIPA) framework originally
proposed by Zimmerman et al. (2016) for predicting the spring precipitation
over the LowerColoradoRiver Basin on the basis of the ENSO state is provided
in Figure B.2.

B.3 Comparison of seasonal meteorological forecast mod-
els

The comparison of alternative empirical, data-driven forecast models for step
2 of the Climate State Intelligence framework is reported in Table B.1.

B.4 The Information Selection and Assessment frame-
work

An overview of the Information Selection and Assessment (ISA) framework
originally proposed by Giuliani et al. (2015) for selecting the most valuable in-
formation to improve water systems operations is provided in Figure B.3. The
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B.5. Detection of teleconnections for multiple climate signals

Table B.1: Coefficient of determination R2 between predicted and observed winter
precipitation PJFM for different seasonal meteorological forecast models in leave-
one-out cross-validation.

Model Neurons R2
Linear - 0.3922

Artificial Neural Network
3 0.6043
4 0.6332
5 0.6334

Extreme Learning Machine

5 0.8143
7 0.8174
8 0.8179
9 0.8093
10 0.8374
15 0.8274
21 0.8005

first two steps of ISA for theLakeComo system, namely the quantificationof the
Expected Value of Perfect Information and the Information Selection in terms
of best inflow forecast lead time, are described inDenaro et al. (2017b). Building
on thiswork, we focus theClimate State Intelligence experiments on hydrologic
forecasts cumulated over a lead-time of 51 days. Among the different metrics
introduced in the ISA framework to quantify the value of the selected informa-
tion (see Figure B.4), in this work we focus on the hypervolume Indicator that
captures both the convergence and diversity of the baseline or informed oper-
ating policies with respect to the best known Pareto front (i.e., the set of Perfect
Operating Policies).

B.5 Detection of teleconnections for multiple climate sig-
nals

The results of the preliminary teleconnection detection analysis formultiple cli-
mate signals (step 1 of the Climate State Intelligence framework) are reported
in Table B.2. These results suggest that ENSO and NAO are the climate oscilla-
tions that provide most skilful precipitation forecasts in the Lake Como basin.
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Table B.2: Pearson correlation coefficients between predicted and observed winter
precipitation PJFM with associated level of confidence for each phase of five differ-
ent climate signals (predictions depend on preseason SST anomalies).

Climate Signal Phase Pearson correlation Level of confidence

NAO negative 0.50 89.00%
positive 0.52 69.70%

ENSO negative 0.41 32.00%
positive 0.51 96.20%

PDO negative 0.50 67.50%
positive -0.02 51.00%

AMO negative 0.32 19.90%
positive 0.28 35.00%

IOD negative 0.51 32.30%
positive 0.44 97.1%

B.6 Detection of ENSO and NAO teleconnections for all
seasons

The results of step 1 of of the Climate State Intelligence framework for all 3-
month periods are reported in Table B.3.

B.7 Validation of the NIPA detection of climate telecon-
nections

In order to get a validation of the correlations patterns presented in Figure 3,
we performed an independent test using a different precipitation dataset and
focusing on the relationship between JFM precipitation and ENSO, which cor-
responds to the results illustrated in panel (a) of the figure. The mean value
and the standard deviation of the MEI index over the 1950-2009 time period
are used to classify each year as positive, negative, or neutral. A year is consid-
ered “positive” if the November-December MEI index is greater than the mean
MEI value + 0.5 standard deviation; “negative” if the November-December in-
dex is lower than the mean - 0.5 standard deviations; “neutral” otherwise. The
precipitation dataset considered is the GPCC (Global Precipitation Climatol-
ogy Centre) Full Data Monthly Product Version 2018 at 0.5 degree resolution
(Schneider et al.), from which we constructed the mean JFM precipitation time
series over the basin for the same period 1951-2009. The Lake Como basin is
defined selecting the six grid points covering the portion of the Alpine region
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B.7. Validation of the NIPA detection of climate teleconnections

Table B.3: Pearson correlation coefficients between predicted and observed seasonal
precipitation (all 3-month periods) for each phase of NAO and ENSO.

Signal ENSO NAO
Phase positive negative positive negative
JFM -0.69 -0.6 -0.64 -0.64
FMA 0.72 0.79 0.55 -0.74
MAM 0.41 0.45 0.65 0.7
AMJ 0.67 -0.65 -0.69 0.82
MJJ 0.61 0.42 0.58 0.69
JJA 0.65 0.64 -0.61 0.59
JAS 0.75 0.66 -0.51 -0.56
ASO 0.76 -0.67 0.57 0.64
SON -0.63 -0.58 -0.53 -0.6
OND 0.61 0.65 0.63 nan
NDJ -0.62 0.65 0.61 0.61
DJF 0.68 0.58 0.51 0.72

the Como Lake belongs to (i.e., gridpoints in the box lat N 45.5 - 46.5; lon E
8.5 - 10.0). Global monthly SST anomalies are taken from the NOAA Extended
Reconstructed SST (ERSST) V5 dataset.

FigureB.5 reports the correlationpattern between JFMprecipitation anomaly
over the Como Lake region and SST anomalies in the previous months, at dif-
ferent time lags, for the positive ENSO years. Filled contours mean that the
statistical significance is >95%, non-filled contours mean significance >70%. In
each panel a different three-monthly mean of SSTs is considered, starting from
FMA of the previous year in the top-left panel. Moving from left to right and
from top to bottom, the three-months period is shifted one month forward in
time (i.e., FMA, MAM, AMJ, etc.), thus diminishing the time lag between SST
and precipitation anomalies. The correlation betweenONDSSTs and JFMpre-
cipitations anomalies, which is thus equivalent to the top-right panel of Figure
3 in the paper, is shown in panel (i). These results show how the OND situa-
tion is just a “snapshot” of the evolution of persistent anomalies of the climate
state over the months which are correlated with the precipitation in the Lake
Como basin. These correlations are high and significant over a large portion of
the Central Pacific particularly in spring and summer, both in the tropics and
at midlatitudes, and in both hemispheres. During the fall, correlations in the
tropical Pacific are less evident but are still present, while a signal appears in
the Eastern North Atlantic. Correlations over the Central Tropical Pacific and
in the Eastern North Atlantic persist during winter and appear as a signal of an
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existing teleconnection between the Pacific and the Atlantic sector driven by
the atmosphere, which influences the European hydroclimatic conditions ulti-
mately impacting on the Lake Como basin.

B.8 Cross-validation of seasonal precipitation forecast

The seasonal precipitation forecast model constructed in the second step of the
Climate State Intelligence framework is cross-validated using the leave-one-out
scheme. The model predictions obtained over the full dataset (in calibration
only) are illustrated in Figure 4 of the paper and attain a Pearson correlation
coefficient between observed and predicted values equal to 0.91. The scatter
plot with the cross-validated results is shown in Figure B.6; in this case, the
Person correlation coefficient between observed and predicted values decreases
to 0.81.
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B.8. Cross-validation of seasonal precipitation forecast

CATCHMENT MODEL

HBV model simulates the soil water balance and 
subsequent rainfall-runoff processes to estimate the 
daily Lake Como inflow.

LAKE COMO OPERATIONAL MODEL

The lake dynamics is described by the mass balance 
equation of the water storage subject to the human 
operations of the dam. 
The flow routing from the lake outlet to the irrigation 
district is described by a plug-flow model. It includes a 
minimum environmental flow constraint and the sluice 
gates diverting water from the main river to the 
irrigation canals are operated according to the water 
rights of the agricultural districts.

AGRICULTURAL DISTRICT MODEL

HEAT UNITS
Crops’ growth stages are simulated as a function of 
the accumulation of heat units.

WATER BALANCE
Water sources, conveyance, distribution, and soil-
water balance are simulated by a distributed-
parameters water balance model.

CROP YIELD
Crops’ yield at the end of the agricultural season is 
estimated by a crop yield model accounting for the 
effects of water stresses.

lake inflow

irrigation supply

Temperature and Precipitation

Figure B.1: Schematic representation of the integrated simulation model of the Lake
Como basin.
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Phase identification

Each ENSO phase is evaluated individually splitting the available 
data according to the preseason value of the Multivariate ENSO 
Index (MEI), thus resulting in distinct predictive models for each 
phase.

Selection of SST grid points

Using correlation maps between total seasonal precipitation and 
preseason gridded SSTs, regions correlated at the 95% 
significance level for each phase are identified.

PCA model

A Principal Component Analysis model is constructed on the 
selected SST grid points and a subset (generally the first) of the 
resulting PCs are retained as predictors in a linear regression 
model.

Crossvalidation

Model performance and forecast skill is evaluated via leave-one-
out crossvaligdation of the hindcast (prediction of historical 
years for which observations are available for comparison) 
against the observed precipitation data.

Monte Carlo test

The significance level of the model performance is verified by 
performing a Monte Carlo Test with the following routine:
⁃ Randomly shuffle only the precipitation data (MEI and SST 

unchanged).
⁃ Bin the shuffled precipitation data using the unshuffled MEI 
⁃ Generate correlation maps and extract significant grid points (SGs) 
⁃ Record number of SGs per phase, record total for all phases.
⁃ Run PCA model
⁃ Record the hindcast correlation.
⁃ Repeat 10,000 times. 

Figure B.2: Illustration of the Nino Index Phase Analysis framework (Zimmerman
et al., 2016).
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B.8. Cross-validation of seasonal precipitation forecast

1. Quantifying the Expected Value of 
Perfect Information (EVPI) 

a) Design the Basic Operating Policy (BOP); 
b) Design the Perfect Operating Policy (POP);
c) Determine EVPI as the difference in the 

system’s performance between BOP and POP.

2. Information selection

a) Build a set of exogenous variables;
b) Build a sample data set including variables at 

point 2.a, time, and current system conditions; 
c) Automatically select the most valuable 

variables to explain the optimal release 
decisions' sequence associated to the POP.

3. Assessing the Expected Value of Sample 
Information (EVSI)

a) Design an Improved Operating Policy (IOP) 
conditioned upon the information selected at 
step 2. 

b) Contrast the system’s performance of IOP and 
the references of BOP and POP.

c) Contrast IOP, BOP and POP using the metrics 
for the assessment of the value of information. 

 POP | EVPI

most valuable variables

EVPI termination 
test

EVSI

EVPI

no

yes

best IOP

Is EVPI big 
enough?

no

yes

use BOP

POP

J2

J1

J2 POP

BOP

- Multi objective
J

POP BOP

- Single objective

IOP

IOP

J1

POP

BOP

- Multi objective
J

POP BOP

- Single objective

Figure B.3: Illustration of the Information Selection and Assessment framework
(Giuliani et al., 2015).

J1 J1 J1

J2 J2 J2
POP POP POP

BOP/IOP BOP/IOP

TARGET TARGET

approximate solution
closest to the target

(a) Hypervolume indicator (b) Minimum distance from target (c) Average distance from target

BOP/IOP

Figure B.4: Illustration of the ISA metrics for assessing the value of information in
multiobjective problems (Giuliani et al., 2015).
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(a) lag 11 (FMA) (a) lag 10 (MAM)

(c) lag 9 (AMJ) (d) lag 8 (MJJ)

(e) lag 7 (JJA) (f ) lag 6 (JAS)

(g) lag 5 (ASO) (h) lag 4 (SON)

(i) lag 3 (OND) (l) lag 2 (NDJ)

(m) lag 1 (DJF) (n) lag 0 (JFM)

Figure B.5: Correlation maps between JFM precipitation anomaly over the Como
Lake region and SST anomalies for different lag-times during the ENSO positive
phase, with the correlation between OND SSTs and JFM precipitations anomalies,
which is thus equivalent to the top-right panel of Figure 3 in the paper, shown in
panel (i).
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B.8. Cross-validation of seasonal precipitation forecast
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Figure B.6: Scatterplot between observed and predicted seasonal precipitation in
leave-one-out crossvalidation.
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Figure C.1: Violin plot showing the distribution of hypervolumes for different seeds
in NEMODPS and DPS methods under calibration dataset (panel a) and valida-
tion datasets (panels b-d). Within each violin-shaped distribution, the white dot
indicates the median, and the solid horizontal line the mean of the distribution.
NEAT was not included in this analysis as single objective algorithms produce a
single solution for each seed, preventing the single-seed hypervolume computation.
NEMODPS hypervolume distributions are shown for 10 independent algorithmic
runs, while DPS distribution comprise 10 runs for each predefined architecture
(from 1 to 6 nodes) evaluated independently for the two activation functions con-
sidered (Sigmoidal for DPS-ANN and Gaussian for DPS-GP). NEMODPS dis-
tributions result much less variable than DPS across all the considered datasets,
and especially for the three validation datasets, indicating higher consistency of
NEMODPS solutions across independent random seeds.
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Figure D.1: Validation of optimal policies for the three rounds of AFS-NEMODPS
for a 20-year evaluation horizon (panel a1 and a2), and two 5-year evaluation
horizons composed of extreme dry (panels b1 and b2) and wet years (panels c1 and
c2). Panels a1, b1, and c1 show the entire objective space obtained for the policy
re-evaluation: while most solutions are located in a limited area of the objective
space (yellow boxes), few solutions produced in round R1 appear very distant, and
located in largely inefficient areas of the objective space. Panel a2, b2, and c2 ex-
pand the yellow box to better compare the competitive solutions produced by the
three rounds. The most informed round R3 consistently outperforms the other two
in the 1977-1996 and wet-years datasets. In the dry years dataset, some R2 so-
lutions achieve slightly lower irrigation deficit compared to R3, but with a fairly
negligible difference. This analysis shows that a minimally informed policy, i.e.,
the one produced in R1, can incur in severe performance degradation when tested
on new hydrological conditions that differ from the dataset used for its calibra-
tion. The addition of information in round R2 and R3 demonstrate the potential to
greatly enhance the robustness of control policies across highly diverse hydrological
conditions.
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