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Abstract

The main purpose of this thesis was the optimization of a workflow for
the radiomic analysis of Magnetic Resonance Images (MRI) acquired with
uncontrolled image acquisition protocols. The secondary aim was the ap-
plication of the optimized workflow to build prognostic models for Overall
Survival (OS) for Head and Neck Cancer (HNC) and Soft Tissue Sarcoma
(STS), in order to show the feasibility of using radiomics in multicentric
and/or multiprotocol datasets.

The first part of the work focused on a series of stability analyses per-
formed using a virtual phantom (BrainWeb). The aim of these studies was
two-fold: 1) to evaluate the effect of image preprocessing on the stabil-
ity to imaging-related variability; 2) to select the features that are stable
to such variations, in order to use them for the following analysis. Inten-
sity standardization, image denoising, voxel size resampling and bias field
correction were considered as potentially useful preprocessing steps. Intra-
class Correlation Coefficient (ICC) was used to quantify features stability,
and features with ICC>0.75 were considered stable. All the preprocessing
steps (Gaussian filtering, N4ITK Bias field correction, B-spline spatial re-
sampling and intensity standardization) had positive effects in increasing
the stability of radiomic features. When including all the previous pre-
processing step, 550 features, based on both T1-weighted (T1w) and T2-
weighted (T2w) MRI were identified as stable, out of a total of 1072 (536
per image type).

Stability to uncertainties of the region of interest (ROI) was also inves-
tigated. Two sources of variability were considered: multiple segmentation
and geometrical transformations of the ROI. Both tests were performed on
real images of STS and HNC, considering T1w, T2w and apparent diffu-
sion coefficient maps (ADC). In each test, features with ICC>0.75 were
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Chapter 0. Abstract

considered stable. In total, 701 and 1057 features out of 1608 were stable
for HNC and STS respectively. After properly combining these stable fea-
tures sets with the results previously obtained on the BrainWeb dataset, the
number of stable features was reduced to 410 and 617. These two sets of
features were used for successive studies.

The postprocessing of the features was also optimized. In particular,
features normalization and feature selection/dimensionality reduction were
optimized in order to maximize the performance of a Cox proportional haz-
ard regression model. Four different features normalization algorithms and
2 different features selection pipelines were tested. Harrell’s C-index was
used to quantify the models performance. It was found that the combina-
tion of Z-score normalization and a series of different features selection
(pairwise correlation and cross-validated Multivariate-Cox) lead to the best
performance in a retrospective multicentric HNC dataset (C-index 0.67).

After the optimization based on the results of the previous analyses, the
radiomic workflow was used to identify signatures that were prognostic of
OS in HNC and STS. In HNC, a five-features radiomic signature had a
good prognostic value in both cross-validation (C-index 0.67) and indepen-
dent validation (C-index 0.63) and in both cases the radiomic features im-
proved the prognosis when added to the clinical ones (from 0.67 to 0.69 and
from 0.69 to 0.72 for the cross-validation and independent validation re-
spectively). Similar results were found after cross-validation of a radiomic
model in STS (C-index 0.74, 0.74 and 0.78 for the radiomic, clinical and
combined model).

The results show that with the right processing, radiomic analysis from
non-standardized images is possible and provides a consistent improvement
in the prognostic performance of survival model for OS.

vi
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CHAPTER1
Introduction

In this chapter, an introduction to aims and structure of the thesis is pre-
sented, together with a brief outline on the clinical context in which this
thesis develops.

1.1 Personalized medicine and radiomics

Personalized medicine is a new paradigm in medicine which consists in
tailoring a therapy for a particular disease according to the characteristics
of the single patient, taking individual variability into account [1]. The
concept is not totally new: blood typing for transfusions is a first exam-
ple of personalized medicine. However, the prospect of applying this con-
cept broadly has been dramatically improved by the recent development
of large-scale biologic databases [1] and by the development of the so-
called "omics". "Omics" is a term referred to scientific disciplines in which
high throughput extraction of features from different biological sources (i.e.
genes, proteins, metabolites, etc...) is used to gather additional information
and to provide biological signatures that may further cluster the patients,
thus improving the efficacy of a treatment or the stratification of the prog-
nosis [2].

1
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Chapter 1. Introduction

Of particular interest for this thesis is the application of personalized
medicine in cancer treatment. As a matter of fact, cancer is still the first
cause of death worldwide [3] and, given the high heterogeneity of the dis-
ease, it is very difficult to treat it with standardized techniques. Application
of personalized medicine in oncology is therefore of primary importance
because it may lead to an improvement in cancer management and treat-
ment, with increasing life expectancy for the patients. Among the "omics",
genomics was the first to be used for stratifying patients in subgroups with
different prognosis [4].

Although very promising, biology-related omics such as genomics have
some limitations. The first limitation is that omics require biological sam-
ples as a starting point of the analysis and to get these sample biopsies are
required, which are typically invasive procedures [5]. The second limita-
tion is that the tumors are typically spatially heterogeneous and a local-
ized biopsy may not be enough for a complete characterization. Therefore,
multiple biopsies may be required, with increasing discomfort for the pa-
tient [5]. A further limitation is that omics are not currently part of the
clinical practice [5] and therefore their used is associated with an increas-
ing cost of cancer treatment.

The above mentioned issues led to the increasing interest in the field of
radiomics [6, 7]. Radiomics is a new field of research in medical image
analysis that involves the high-throughput extraction of quantitative imag-
ing features with the intent of creating mineable databases from radiologi-
cal images [6]. The underling hypothesis of radiomics is that the analysis of
quantitative features extracted from a Region Of Interest (ROI) inside the
image can provide more and better information than that of a physician, re-
vealing predictive or prognostic associations between images and medical
outcomes [6, 7].

Radiomics offers some advantages over the other omics. One advantage
is the fact that radiomic features are derived from non-invasive imaging
techniques, such as Magnetic Resonance Imaging (MRI), Computed To-
mography (CT) or Positron Emission Tomography (PET). This is in con-
trast with other omics, that require biopsies to get the tissue samples to be
analyzed. Another advantage over traditional omics is that radiomic fea-
tures, being extracted from the entire ROI of the tumor, account for tumor
spatial heterogeneity [8]. Last, radiomics requires only data that are already
part of the cancer management process and is therefore cost-free in terms of
data acquisition, unlike the other omics that require additional tests. These
are the reasons why radiomics has attracted so many attention in the last
decade and the number of works in radiomics has been growing exponen-

2
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1.2. Aims and objectives

tially [9].
Studies about the application of radiomics to clinical datasets have al-

ready been presented in literature for CT, MRI and PET [5, 10, 11]. How-
ever, the main limitation of these studies is the fact that the training of
the radiomic model is performed on datasets coming from the same center
and with strict image acquisition protocols [5, 10, 11]. The effect of im-
age acquisition conditions on the measured radiomic features is still under
investigation and understanding the effect of acquisition-related variability
on the performance of radiomic signatures is still an open challenge for ra-
diomics [6]. This is true in particular for MRI, in which the values of signal
measured may strongly depend on the conditions in which the signal was
acquired [6]. Radiomic features harmonization is of particular importance
for all those rare tumors (such as head and neck cancer and soft tissue sar-
coma, which are the focus of this thesis) for which the only way to collect
a large number of patients necessary to train a radiomic model is to put to-
gether data coming from difference centers or from different retrospective
studies, for which a strict standardization in the image acquisition parame-
ters is typically not available.

1.2 Aims and objectives

The aim of this thesis was to define a workflow to create MRI-based ra-
diomic signatures prognostic for Overall Survival (OS) for two categories
of rare tumors: Head and Neck Cancer (HNC) and Soft Tissue Sarcoma
(STS). The focus on MRI was due to the fact that, given the high inten-
sity contrast in soft tissues, MRI is a particularly suited techniques to pro-
vide informative images of the districts were HNC and STS usually appear
(head and neck for HNC and limbs for STS), but also to the fact that MRI
is the technique that is affected the most by variations in image acquisition
conditions, and in which the problem of features harmonization is more
challenging. However, the arguments treated in this thesis may be easily
transferred, with small variations, to other imaging techniques.

The creation of prognostic radiomic signatures is a multi-step process
that is schematically illustrated in Figure 1.1. To effectively apply such
workflow to real clinical datasets, the critical issues related to each step
must be properly addressed to avoid bias that may reduce the generaliz-
ability of the results. The studies performed for this thesis dealt with the
evaluation and design of proper solution to those critical issues. In particu-
lar, the objectives of the thesis were the following:

• The evaluation of the stability of radiomic features to variation in im-

3
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Chapter 1. Introduction

Figure 1.1: Workflow for the creation of the radiomic signatures.

age acquisition parameters.

• The evaluation of image preprocessing steps in reducing such vari-
ability.

• The evaluation of the stability of radiomic features to variations of the
ROI.

• The identification of a set of stable radiomic features that are robust to
the aforementioned sources of variability.

• The optimization of the postprocessing of the features, with focus on
the selection of best features normalization and features selection al-
gorithms.

• The validation of the results obtained with the optimized radiomic
workflow.

• The evaluation of the added prognostic value of radiomics with respect
to the models relying on established clinical variables.

4
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1.3 Outline of the thesis

The different chapter of the thesis try to achieve the objectives outlined in
the previous subsection. The main outline of the thesis is the following:

• Chapter 2 provides the minimal background about oncology, imag-
ing, radiomics and machine learning that is necessary to completely
understand the thesis. The reader which is already familiar with those
topics may skip the chapter.

• Chapter 3 describes the experiments with a virtual MRI simulator
(BrainWeb) performed to understand the effect of image preprocess-
ing on features stability and to find a set of features that is stable to
variations in image acquisition parameters.

• Chapter 4 describes the experiments performed on images of HNC ans
STS patients to identify a set of radiomic features to uncertainties of
the ROI.

• Chapter 5 covers the topic of features postprocessing. In particular,
features normalization and features selection are described.

• Chapter 6 describes a clinical application of the radiomic workflow
for the creation of a radiomic signature for OS in HNC.

• Chapter 7 describes a clinical application of the radiomic workflow
for the creation of a radiomic signature for OS in STS.

• Chapter 8 gives a wrap-up of the results obtained in the thesis, also
highlighting limitations and possible future developments and impact
of the research.

5
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CHAPTER2
Background

This chapter gives a general introduction on the field of radiomics. Ra-
diomics is a complex and multidisciplinary field involving oncology, med-
ical imaging, machine learning and medical statistics. Although it is not
possible to perfectly master all the pieces that make up a radiomic analy-
sis, any person working on radiomics should have a minimal background
in each, and the purpose of this chapter is to provide such background.

2.1 Radiomics: a general introduction

Radiomics is a new field of research in medical image analysis that in-
volves the high-throughput extraction of quantitative imaging features with
the intent of creating mineable databases from radiological images [6]. The
underling hypothesis of radiomics is that the analysis of quantitative fea-
tures extracted from a ROI inside the image can provide more and better
information than that of a physician revealing predictive or prognostic as-
sociations between images and medical outcomes [6,7]. If such hypothesis
was proven true, radiomics would become a valuable tool to reach the goal
of personalized medicine. That is the reason why the number of studies
focusing on radiomics have been increasing in the last years [9].

7
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Chapter 2. Background

The concept of radiomics gained particular importance after two studies
performed in the last decade [12,13]. In [12] a set of 14 qualitative imaging
features from CT was able to predict 80% of the gene expression pattern
in hepatocellular carcinoma. In [13], qualitative MRI features extracted
from glioblastoma were able to predict immunohistochemically identified
protein expression patterns. The modern concept of radiomics tries to ex-
tend those two studies by using high-number of quantitative image features
accounting for tumor shape, signal intensity and texture [6].

As mentioned in Chapter 1, radiomics has several advantages over other
omics. The first advantage is that does not require additional biopsies, since
it is typically based on non-invasive image acquisition techniques such as
CT, PET and MRI. The second advantage is that radiomics is low-cost,
since the material used for radiomic analysis (i.e. the clinical images) is al-
ready acquired as part of the clinical routine. The last advantage is that ra-
diomic can better characterize the spatial heterogeneity of the tumor, since
the analysis is usually performed on the entire tumor mass, rather than on a
small piece of it.

The process of radiomic analysis involves different steps, which are il-
lustrated in Figure 2.1:

Figure 2.1: Workflow of radiomic analysis and its four main steps: image acquisition;
image segmentation; features extraction; model building. Adapted from [14].

Image acquisition

The first step of radiomic analysis is to acquire the medical images of inter-
est. Although radiomic analysis could potentially be applied to any imaging
technique, most of research in radiomics focuses on non-invasive imaging
techniques such as CT, MRI, PET, which are the most used in the clini-
cal practice especially for oncology [14]. Other imaging techniques, like
ultrasonography, may also be used [14].
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2.1. Radiomics: a general introduction

Image preprocessing and segmentation

Radiomic features are typically not extracted from the entire image but
from a ROI including the organ or tissue to be studied (e.g. a tumor or
a metastasized lymph node). Segmentation could be semi-automatic, with
partial input from the radiologist, or manual, when completely performed
by the radiologist [14]. Although semi-automatic segmentation algorithms
lead to a reduced inter- and intra-observer variability [15], they are not
available for some districts and therefore manual segmentation is still widely
used.

Segmentation is not the only operation that can be performed on the im-
ages before radiomic features extraction. Denoise filtering, discretization of
the grey values, and resampling, for example, have been shown to improve
the repeatability of the extracted radiomic features [16, 17].

Features extraction

Once the images have been segmented, the radiomic features can be ex-
tracted. The number features may vary from a few to several thousands
depending on the study [18]. Typically radiomic features can be divided in
three main categories. Shape and Size (SS) features, like volume and largest
diameter, consider geometrical properties of the ROI. Intensity-based or
First Order Statistics (FOS) features account for the statistical distribu-
tion of the grey levels inside the ROI. Textural features also take into ac-
count the spatial distribution of the grey level inside the ROI. Textural
features are computed from different types of textural matrices, like Grey
Level Co-occurrence Matrix (GLCM) [19], Grey Level Run Length Ma-
trix (GLRLM) [20], Grey Level Size Zone Matrix (GLSZM) [21], Grey
Level Dependence Matrix (GLDM) [22], Neighbouring Grey Tone Differ-
ence Matrix (NGTDM) [23]. FOS and textural features can be extracted
from the original images but also from transformed images to get further
details. Image transforms typically used mainly include wavelet decompo-
sition [24] or Laplacian of Gaussian filtering [24], but other transformation
such as logarithm, exponential and square root filtering may be used [24].
A more detailed explanation of the different categories of radiomic features
is provided in Section 2.4.

Features processing and model development

Once the features have been extracted, they can be used to get further infor-
mation for tumor characterization, e.g. by developing prognostic models.
In order to do that, radiomic features have to undergo several processing
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Chapter 2. Background

steps, such as normalization, features selection or dimensionality reduc-
tion.

Once the best features set has been defined, it can be used to develop
models by traditional statistics or machine learning methods, using either
supervised or unsupervised approaches.

2.2 Clinical background

2.2.1 Tumors and cancer

A tumor is a disease that is characterized by an abnormal growth of a body
tissue that is caused when cells divide and grow excessively [25]. Tumor
cells typically spread from the original site to other areas or organs through
the lymphatic system, generating the so called metastasis (Figure 2.2), re-
ducing the functionalities of the host organ and producing damage to the
organism [26, 27]. Such tumors are called malignant (or cancerous), which
is in contrast with the benignant tumors that remain confined in a specific
region of the body [27].

According to the latest data provided by the World Health Organization
(WHO), 18.1 millions new cancers were diagnosed in 2018, and the number
of deaths due to cancer in the same year was 9.6 millions, making cancer
the leading cause of death worldwide (1 death out of 6 is caused by cancer)
[3,28], with men being the most affected (52% and 56% for occurrence and
deaths respectively) [3]. In Italy, around 365.000 patients (54% men) are
diagnosed with cancer every year and around 175.000 (54% men) people
die because of the disease (around 30% of the deaths in Italy) [29, 30].
Tumors and cancers can appear in many sites, but the ones that are most
frequently affected are lungs (11.6%), colon-rectum (10%), breast (11.6%
in women) and prostate (7.1% in men) [3].

2.2.2 Head and neck cancer

The term head and neck cancer (HNC) is referred to the tumors that begin in
the squamous cells that line the moist, mucosal surfaces inside the head and
neck [31]. These squamous cell cancers are often referred to as squamous
cell carcinomas of the head and neck (HNSCC). HNC can also begin in the
salivary glands, but salivary gland cancers are relatively uncommon [31].
The sub-sites that are affected by HNC are oral cavity, pharynx, larynx,
para-nasal sinuses, nasal cavity and salivary glands (Figure 2.3).

Worldwide, HNC accounts for more than 650,000 cases and 330,000
deaths annually, making it the sixth most common cancer [3, 32]. These
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2.2. Clinical background

Figure 2.2: Example of a cancer (colo-rectal) spreading through the lymphatic system
generating a metastasis in a distant region of the body (liver) [26].

cancers are more than twice as common among men as they are among
women [32]. HNC are also diagnosed more often among people over age
50 than they are among younger people [31]. The most significant causes
of all head and neck cancers are tobacco use and alcohol consumption, ac-
counting for 80% of such cancers [33]. HNC, especially oropharyngeal
cancer, may also be caused by infection with certain types of Human Pa-
pillomaVirus (HPV), especially HPV type 16 [34]. The number of cancers
caused by HPV (HPV+) has increased in the last years [34]. HPV+ can-
cers have in general better prognosis than cancers caused by other factors
(HPV-). Beside alcohol, smoke and HPV, there are other minor factors
contributing to the insurgence of HNC, such as genetics, oral hygiene, and
diet [31].

Although HNC is neither the most widespread or the most aggressive
type of cancer [35], the social and psychological status after treatment re-
mains a major concern [36]. As a matter of fact, the condition and its treat-
ment can affect breathing, eating and communicating, and cause a change
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Chapter 2. Background

Figure 2.3: Graphical representation of the districts that are part of the head and neck
region [31].

physical appearance, possibly leading to anxiety and depression [36]. The
optimization and improvement of HNC treatment is therefore of primary
importance.

2.2.3 Soft tissue sarcomas

Soft tissue sarcomas (STS) are a rare and heterogeneous group of tumors,
arising in connective tissues embryologically derived from the mesenchyme
[37]. There are dozens of subtypes arising from cartilage, muscle, blood
vessels, nerves, and fat [37]. As Figure 2.4 shows, approximately 50% of
sarcomas develop in the arms or legs with the remaining types originating
in the thorax or abdomens (40%) or the head and neck area (10%) [38].

STS are rare diseases (<1% of all the tumors), with an estimated inci-
dence of at most 4 people every 100,000, with a prevalence for men [37,39].
The median age of diagnosis for STS is 59 years. Risk factors for STS are
age, genetic predisposition, presence of concurrent pathologies, exposures
to chemicals and radiations, but the majority of the diagnosed STS is not
directly caused by one of these risk factors [39].

The rarity of STS often reflects in a delay of the diagnosis, because STS
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2.2. Clinical background

Figure 2.4: Districts of the body affected by soft tissue sarcoma [38].

may at first be mistaken as simple swelling due to injury. A late intervention
due to a mistaken diagnosis may lead to worst prognosis after treatment. In
case of limb STS it could even lead to amputation [40], with consequent
reduction of the quality of life of the patients. To avoid this, early screening
and proper clinical management of the pathology is required.

2.2.4 Cancer staging and grading

There are two main classification systems for tumors: tumor grading [41]
and tumor staging [42].

Tumor grade is an index of the differentiation of the tumor cells and is
determined through biopsy and subsequent analysis at the microscopy.Tumors
with highly differentiated cells grow and spread at a slower rate compared
to tumors with undifferentiated cells. The American Joint Committee on
Cancer (AJCC) defined a 4 grades classification system [41]:

• GX: Grade cannot be assessed (undetermined grade);

• G1: Well differentiated (low grade);
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• G2: Moderately differentiated (intermediate grade);

• G3: Poorly differentiated (high grade);

• G4: Undifferentiated (high grade).

Cancer stage refers to the size and/or extent of the original tumor and
whether or not cancer cells have spread in the body [42]. Cancer stage is
based on factors such as the location of the primary tumor, tumor size, re-
gional lymph nodes involvement (the spread of cancer to nearby lymph
nodes), and the number of tumors present. Stage can be evaluated by
biopsy, lab tests for body fluid (e.g. blood, urine, etc...) and via imag-
ing. The AJCC define the TNM classification system for cancer staging,
that evaluates the three elements characterizing a cancer (primary tumor,
involved lymph nodes, metastatic tumors) [41,42]. In the TNM system, the
T refers to the size and extent of the main (or primary) tumor, the N refers
to the the number of nearby lymph nodes that have cancer, and the M refers
to whether the cancer has metastasized. The letters T, N and M are accom-
panied by numbers that give more details about the cancer. The following
explains what the letters and numbers mean:

• Primary tumor (T):

– TX: Main tumor cannot be measured.
– T0: Main tumor cannot be found.
– T1, T2, T3, T4: Refers to the size and/or extent of the main

tumor. The higher the number after the T, the larger the tumor
or the more it has grown into nearby tissues. T’s may be further
divided to provide more detail, such as T3a and T3b.

• Regional lymph nodes (N):

– NX: Cancer in nearby lymph nodes cannot be measured.
– N0: There is no cancer in nearby lymph nodes.
– N1, N2, N3: Refers to the number and location of lymph nodes

that contain cancer. The higher the number after the N, the more
lymph nodes that contain cancer.

• Distant metastasis (M):

– MX: Metastasis cannot be measured.
– M0: Cancer has not spread to other parts of the body.

14



i
i

“output” — 2020/6/10 — 18:25 — page 15 — #27 i
i

i
i

i
i

2.2. Clinical background

– M1: Cancer has spread to other parts of the body.

Often the T, N and M combinations are grouped into five less-detailed
stages, that are described as follows:

• Stage 0: abnormal cells are present but have not spread to nearby
tissue. Also called Carcinoma In Situ (CIS); CIS is not cancer, but it
may become cancer.

• Stage 1-3: cancer is present. The higher the number, the larger the
cancer tumor and the more it has spread into nearby tissues.

• Stage 4:may refer to cancers that are locally very extensive (stage 4a),
regionally very extensive (stage 4b) or that present distant metastases
(stage 4c).

The TNM staging system has been refined over time and at present the
7th and 8th editions (TNM VII and TNM VIII respectively) are the ones
currently used for cancer evaluation [43]. TNM VII edition was introduced
by the AJCC in 2009 [43] and it has been the gold standard until 2017, when
the Union for International Cancer Control (UICC) introduced the TNM
VIII. In HNC, the main advantage of TNM VIII over TNM VII is that the
former downstages tumors that are virus-related (like HPV+ tumors) and
that usually have a better prognosis [44]. When making comparisons with
tumor staging, TNM VIII is the one that was used as a reference, given its
better prognostic performance in HNC, in particular in those sub-sites, like
oropharynx, where HPV+ tumors are the majority [44].

2.2.5 Cancer treatment and personalized medicine

Cancer may be treated successfully if the stage is not advanced. There are
several ways in which cancer could be treated and they are briefly described
here [45]:

• Surgery: consisting of the physical removal of the tumor mass; surgery
works best for solid tumors that are contained in one area, but fails
when the tumor is spread throughout the body.

• Radiotherapy: consisting of the use of high dose of ionizing radia-
tions to kill cancer or slow down its progression.

• Chemotherapy: consisting of the use of drugs to kill cancer cells; it is
the only options when cancer is spread all over the body, but has many
collateral effects, since it also affect the healthy cells and tissues.
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• Immunotherapy: consisting of the use of drugs to help the immune
system fighting cancer.

• Targeted therapy: consisting of the injection of specific molecules
targeting specific components of the cancer cells, reducing their func-
tionalities and causing their death; it is very effective but not very
applicable due to higher cost.

Usually tumors are not treated with just one type of therapy but with a
combination of them [46]. Moreover, while in the past the type of treat-
ment for a particular type of cancer was standardized, nowadays the best
combination of techniques for the treatment depends on the patient’s prog-
nostic group. Oncology is moving from a standardized approach to a more
personalized approach with the final aim of reaching the goal of person-
alized medicine, i.e. a paradigm in which the treatment is tailored to the
individual patients to maximize the efficacy [1]. Omics [2] may be a useful
tool in this process, since they could allow to stratify patients according to
their prognosis, providing additional information that the clinician can use
to optimize patients treatment and follow-up.

2.3 An introduction to medical imaging

In the current section, the main imaging techniques used in radiomic anal-
ysis will be described, with particular focus on MRI, which was used in
the thesis. The purpose of the current section is not to be completely ex-
haustive, but to provide the main characteristics of each imaging modality
and to provide the minimum level of detail to understand the content of the
next chapters. For more details on medical imaging the reader can refer
to [47, 48].

2.3.1 Medical imaging in oncology

Medical imaging plays and important role in oncology. As a matter of fact,
imaging, and non-invasive imaging techniques such as CT, PET and MRI,
are used in different steps of the cancer management pipeline [49]. For
example, medical imaging is used in tumor diagnosis and is the first way to
assess the presence of a tumor in patients that present suspect symptoms.
Also, during the surgery or radiotherapy planning, anatomical imaging (i.e.
imaging that show the anatomy of the districts of the body), such as CT or
MRI, is used to identify the region to operate/irradiate. Moreover, imaging
is used to evaluate the effectiveness of a treatment like chemotherapy or
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2.3. An introduction to medical imaging

radiotherapy. Last, imaging is used in follow-up exams to promptly detect
the recurrence of a tumor.

Given its predominant role in the whole cancer management process, it
is easy to understand why so much attention has been paid to non-invasive
medical imaging and radiomics lately [8].

2.3.2 Computed Tomography

Computed Tomography, or CT, is an imaging technique that uses X-ray ra-
diation to draw tomographic images (or slices) of the body [47, 48]. The
physical principle behind CT is the same of radiography, i.e. each tissue
has different absorption to the X-ray radiation and the different tissues can
be distinguished based on such differences [47, 48]. When a X-ray beam
or fan (Figure 2.5) is emitted by an X-ray tube, the attenuated signal can
be obtained by placing some X-ray detectors on the other side of the emit-
ter. By combining the attenuation signals from multiple projection taken
from different angles, a tomographic image of the original object can be
obtained (Figure 2.5). The mathematical explanation of how CT images
are reconstructed is beyond the scope of this thesis, but the reader may
refer to [47, 48, 50].

The value of intensity in each CT image is proportional to a measure
of attenuation, called Hounsfield Unit (HU), which is typically related to
tissue density (the higher the density, the higher the HU and the attenua-
tion). CT imaging allows to distinguish the tissues by their density and it is
therefore an anatomical imaging technique.

Figure 2.5: The acquisition of multiple attenuation signals obtained by moving the X-ray
source and detectors is used to reconstructed a Computed Tomography image. Adapted
from [48]
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Beside non-invasiveness, CT has many advantages like the velocity of
acquisition and the possibility of obtaining high resolution images. More-
over, the fact of being a quantitative imaging technique and the fact that CT
is one of the most used imaging techniques in clinical practice has made it
particularly suitable for radiomics.

2.3.3 Positron Emission Tomography

Positron Emission Tomography, or PET, is an imaging technique that uses
γ-rays and radioactive tracers to draw tomographic images of the body
showing regions with higher metabolic activity [51]. The physical phe-
nomenon which PET is based on is the radioactive decay of some isotopes
(like 18F) that are inserted in molecules called radio-tracers. When the ra-
dioactive atom decays. Every time an atom decays, it emits a positively
charged particle called positron, which, after annihilation with an electron
in tissues, result in the formation of two γ-rays [48], which have trajec-
tories 180◦ apart and strike solid-state detectors which are positioned in a
series of complete rings around the patient (Figure 2.6A). Given any two
detectors it is possible to track the initial position of the decaying atom (for
the mathematical details see [48]). By analyzing the number of decays per
second it is possible to obtain tomographic images (Figure 2.6B).

By adjusting the signal for patients weight and by quantity of radio-
tracer injected it is possible to compute a standardized metric called Stan-
dardized Uptake Value (SUV) [52] and use PET as a quantitative imaging
technique.

Figure 2.6: PET image acquisition. A) Example of Positron Emission Tomography (PET)
scanner showing how the PET signal is acquired. B) PET image showing the spatial
distribution of radioactive decays. The darker regions show higher tracer concentra-
tion and are associated with a more intense metabolic activity. Adapted from [53].
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The radioactive tracers used in PET (e.g. 18F-FlouroDeoxyGlucose or
FDG, which is the most common) are typically a modified version of molecules
that are part of the cellular metabolism and tend to flow more in the region
of the body with high metabolic activity, like for example cancer cells [51].
Therefore, PET imaging allows to recognize an organ by its activity rather
than by its physical properties. Therefore PET is defined as a functional
imaging technique [51], since it does not show the anatomy of the organs,
but shows which regions of the body are more active.

Since PET detects tumor metabolic activity rather than mass, it is useful
to diagnose tumors in early-stage, when they are still not visible to anatom-
ical imaging techniques such as CT or MRI. Disadvantages of PET include
lower resolution and higher cost compared to CT and MRI and use of ion-
izing radiations (γ-rays).

2.3.4 Magnetic resonance imaging

Nuclear Magnetic resonance

The physical principle behind MRI is the Nuclear Magnetic Resonance
(NMR), i.e. the synchronized precession of nuclei of some isotopes when
they are put inside a static magnetic field and are excited with energy of
proper frequency [48]. The isotope used for MRI is 1H due to its abun-
dance in the molecules of the body. The nucleus of 1H consist of a single
proton, so the term proton and nucleus will be used interchangeably in this
section.

At the atomic level, the 1H nucleus is a charged particle which spins
around an internal axis of rotation with a given value of angular momentum
(P), it also has a magnetic moment (µ), and therefore can be thought of as
a very small bar magnet with a north and south pole, as shown in Figure
2.7A. Each rotating nucleus is also called spin.

When considering a packet of spins in the absence of a magnetic field
(Figure 2.7B) the net magnetic moment (or the net magnetization) is zero
because the single spins are randomly oriented and their moments cancel
out each other. When an external magnetic field is applied (Figure 2.7C),
the spins tend to orient on the same direction of the magnetic field (called
z-direction for convention) with either the same verse (low-energy state)
or opposite verse (high-energy state). Spins in the low-energy state are
slightly prevalent and this causes the packet of spins to have a non-null
net magnetization M0 in the same verse of the magnetic field (longitudinal
magnetization).
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Figure 2.7: Magnetization of 1H nuclei in a static magnetic field. A) Single proton with
its magnetic moment (spin). B) Spins in the absence of an external magnetic field.
C) Spins in presence of external magnetic field. D) Vectors representing 3D magnetic
moment of the single spins. E) Net magnetization due to the sum of all the magnetic
moments: the transverse components cancel each other and only a net longitudinal
magnetization remains. Adapted from [48].

The spins also have a mote of precession around the direction of the
magnetic field, with an angle of precession of θ (Figure 2.7C) and a fre-
quency of precession f , called Larmor frequency, which can be computed
as follows:

f = γB0 (2.1)

where B0 is the magnitude of the external magnetic field (in T) and γ
is the gyromagnetic ratio of the spin (in MHz/T). For 1H the gyromagnetic
ratio is 42.575 MHz/T and the corresponding Larmor frequency with field
strength of 1.5 T (the most used in clinical practice) is around 64 MHz,
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in the band of the radio-frequencies. Due to this precession movement,
the single spins have also a component of the magnetization vector that
rotates in the plane perpendicular to the direction of the magnetic field,
called transverse magnetization (Figure 2.7D). However, since the rotation
of the spins are not in phase, macroscopically the packet of spin shows no
transverse magnetization, but only the longitudinal one is present (Figure
2.7E).

In this status, the longitudinal magnetization of the packets of spins
cannot be detected, since it is far smaller than the static magnetic field.
However, when an external sinusoidal magnetic field B1 varying with the
Larmor frequency (a Radio-Frequency pulse, or RF pulse) is applied per-
pendicularly to the z-direction (in the x-direction for example), two things
happen: 1) more spins switch from the low-level energy state to the high
level-energy state; 2) the precession of the spins synchronize to the same
phase. Macroscpically this results in the reduction of the longitudinal mag-
netization and in the generation of a non-null transverse magnetization. If
the RF pulse is applied for long enough, the number of high-energy spins
equals the ones of low-energy spins, reducing the longitudinal magnetiza-
tion to 0 and maximizing the transverse magnetization (Figure 2.8). This is
equivalent to a rotation of 90◦ around the x-axis and for this reason the RF
pulse is called 90◦ RF pulse. If the RF pulse is applied for an even longer
time all the protons will switch to a high-energy state causing the net mag-
netization to be opposite to the external magnetic fields. This is called 180◦

RF pulse.

Figure 2.8: Example of 90◦ pulse rotating the net magnetization vector [48].

The transverse magnetization that is generated by a 90◦ RF pulse can be
measured by a receiving coil that generates an electrical signal due to elec-
tromagnetic induction. Such signal is called Free Induction Decay (FID)
and is the oscillating signal visible in (Figure 2.9). If the signal is mea-
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sured with two perpendicular coils, it is possible to compute the module
and the phase of the transverse magnetization and to express it as a com-
plex number. Such transverse magnetization signal is the one that is used
to reconstruct the image of the object/patient put in the scanner.

Figure 2.9: The free induction decay (FID) measured by one coil after spins excitation
with the 90◦ radio-frequency (RF) pulse. The oscillating signal is the one measured
by the coil wile the envelope of the peaks of the FID is the modulus of the transverse
magnetization [54].

Magnetization relaxation

When the RF pulse stops, the spins tend to return to their resting posi-
tion [47]. Some of the high-energy spins start to emit energy and return
to the low-energy state. This causes a recovery of the initial longitudinal
relaxation (Figure 2.10A-B). The level of longitudinal magnetization as a
function of time t from the end of the RF pulse can be expressed by the
following relation:

M(t) = M0

(
1− e−

t
T1

)
(2.2)

where M0 is the original longitudinal magnetization and T1 is a time
constant that is dependent on the type of tissue in which the excited spins
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are placed in. This longitudinal recovery is also called spin-lattice relax-
ation or T1 relaxation [47].

Figure 2.10: Phenomenon of magnetization relaxation. A) 3D representation of the net
magnetization vector. B) Recovery of the longitudinal magnetization over time. C)
Decay of the transverse magnetization over time. Adapted from [48].

Another effect that can be observed after the end of the RF pulse (Fig-
ure 2.10A-C) is the decay in the intensity of the transverse magnetization,
which is due to the dephasing of the precession. Such decay in the signal
can be expressed as a function of time:

M(t) = M0e
− t

T2 (2.3)

whereM0 is the maximal transverse magnetization and T2 is a time con-
stant that is dependent on the type of tissue in which the excited spins are
placed in. This loss of signal is called spin-spin relaxation or T2 relax-
ation [47].

When the same magnetic field strength is used, T1 and T2 (also called
relaxation times) only depend on the properties of the tissues and can there-
fore be used to characterize and distinguish the different tissues inside an
MRI image. Table 2.1 provides values of T1 and T2 for some reference
tissues (in ms) for a static magnetic field of 1.5 T. It is important to see that
T1 is always larger than T2 and this is due to the fact that T2-relaxation
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only depends on the dephasing of the spins, while the recovery of the lon-
gitudinal magnetization also depend on the transition of the spin from high
to low energy state, which is a much slower process [47].

TISSUES RELAXATION TIMES (1.5 T)

Tissue T1 (ms) T2 (ms)

Water/Cerebrospinal fluid 4000 2000

Grey matter 900 90

Muscle 900 50

Liver 500 40

Fat 250 70

Tendon 400 5

Proteins 250 0.1-10

Table 2.1: Values of T1 and T2 relaxation times (at 1.5 T) for different tissues in the
body [55].

One last thing to know about MRI relaxation is that, in the case of spin-
spin relaxation, the real decay of the transverse magnetization is faster com-
pared to the ideal one computed using Equation 2.3 (Figure 2.11). This
happens because of inhomogeneities in the static magnetic field that accel-
erate the process of dephasing of the spins. This results in an exponential
decay that is described by another time constant called T2*, shorter than
T2 [48,56]. This issue causes a reduction in the signal to noise ratio (SNR)
of the images but it is typically solved by using alternative combinations of
RF pulses (called pulse sequences).

Spin-echo pulse sequence

The Spin-Echo (SE) pulse sequence is the most basic among the pulse
sequences that are used in the clinical practice to acquire the MRI sig-
nal [48, 57]. It was invented as a way to overcome the main flaws of the
FID, i.e the reduction in SNR due to the T2*-decay and its sensitivity to
local inhomogeneities [48].

In SE sequence an additional 180◦ RF pulse is added at time τ after
the initial 90◦ pulse has been applied (Figure 2.12). Such 180◦ RF pulse
causes a flip of the spins, but does not change the local magnetic field in-
homogeneities that caused the T2*-decay. This causes the spins to see an
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opposite local magnetic fields and the dephasing that has been accumulated
in the interval [0; τ ] is recovered in [τ ; 2τ ]. This causes a new increase
in the transverse magnetization, called echo, which peaks at time 2τ , when
the signal is equal to the one obtainable with the ideal T2-decay [47, 57].

Figure 2.11: Comparison of the decay of the transverse magnetization due to spin dephas-
ing (T2-decay) and the ones due also to magnetic field inhomogenities (T2*-decay).
Adapted from [58].

The value 2τ is typically called Time of Echo (TE), which is one of the
parameter used in the clinical practice to define an MRI acquisition [48,57].
The MRI signal is typically acquired only in the neighborhood of the TE
[TE-∆t; TE+∆t].

When acquiring an MRI image, the process described above is repeated
multiple times. Another important parameter that defines the SE pulse se-
quence is the Time of Repetition (TR), i.e. the time between one 90◦ RF
pulse and the next one [48, 57].

MRI signal localization and image reconstruction

When creating an MRI image, the packets of spins are grouped in small
portions of volume called voxels (pixels when referring to 2D images). In
order to get the MRI signal from each voxel, it is necessary to repeat the
RF pulse multiple times and each time, the location of the voxel of interest
must be encoded. A brief description of the localization process will be
given. For further details, refer to [48].

To localize the MRI signal coming from different voxels, MRI scanners
used additional linear magnetic fields to adjust the precessional frequency
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Chapter 2. Background

Figure 2.12: Spin-echo pulse sequence. The addition of a 180◦ radio-frequency pulse
at time τ after the initial 90◦ pulse causes a recovery in the transverse magnetization
called echo [48].

and the phase of the precession of the spins in the voxels of interest [57].
In particular, three types of gradients are applied, according to the axis of
imaging (x-, y-,or z-axis). The slice encoding gradient selects the section
to be imaged [57]. The phase-encoding gradient causes a phase shift in
the spinning protons so that the MR imaging system computer can detect
and encode the phase of the spin [57]. The frequency-encoding gradient
also causes a shift that helps the MR system to detect the location of the
spinning nuclei [57]. Because this shift of frequency usually occurs when
the echo is read, it is also called the readout gradient. Once the MRI system
processor has all of that information (i.e. the frequency and phase of each
spin), it can compute the exact location and amplitude of the signal. That
information is then stored in a row of a two dimensional matrix called k-
space (Figure 2.13) as a matrix of complex numbers. The application of a
2D inverse Fourier transform of the k-space [48], provides the final image
representing one slice of the MRI acquisition (Figure 2.13).
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2.3. An introduction to medical imaging

Figure 2.13: The 2D inverse Fast Fourier Transform (FFT) can be used to compute the
final magnetic resonance image. Adapted from [48].

Spin-echo imaging

Multiple repetitions of the SE pulse sequence and a proper use of encod-
ing gradients can be used to provide 3D MRI images. Unlike other imag-
ing techniques such as CT or PET, the signal is not directly related to just
one physical property of the tissue but rather depends on a combination of
several biological properties, such as T1, T2 and the Proton Density (PD)
inside each voxel, and image acquisition parameters, such as TR, TE and
the strength of the local magnetic field [47, 48].

Given a 2D slice I(x, y) the intensity measured at location (x, y) de-
pends on different parameters as defined by the following equation [48]:

I(x, y) = K(x, y)ρ(x, y)
(

1− e−
TR

T1(x,y)

)
e−

TE
T2(x,y) (2.4)

where ρ(x, y), T1(x, y) and T2(x, y) are respectively the mean PD, T1
and T2 of the pixel (x, y), TR and TE are the parameters used to define the
SE pulse sequence, and K(x,y) is a multiplicative term that depends on sev-
eral factors (static magnetic field, local inhomogeneities, and amplification
system of the scanner).

By looking at Equation 2.5, it is possible to see how, with fixed biolog-
ical properties, it is possible to control the signal and modify the contrast
among tissues just by modifying the TR and TE [57, 59]. As a matter of
fact, different types of MRI images can be obtained using the SE pulse se-
quence (Figure 2.14), each highlighting the differences due to a particular
biological property.

When a short TR (typically less than 700 ms) and a short TE (typically
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Chapter 2. Background

Figure 2.14: Examples of images obtainable with the spin-echo sequence. A) T1-weighted
image. B) T2-weighted image. C) Proton-density-weighted image.

less than 25 ms) are used the contrast between tissues is mainly due to dif-
ferences in T1. Images obtained in this way are called T1-weighted (T1w)
images (Figure 2.14A). When both a long TR (typically higher than 2000
ms) and a long TE (typically higher than 60 ms) are used T2-weighted im-
ages (T2w) are obtained (Figure 2.14B). Last, images highlighting differ-
ences in PD, or PD-weighted (PDw), can be obtained by using long TR and
short TE (Figure 2.14C). In this thesis, the focus will be more on the first
two image types, since they are part of the datasets that will be analyzed.

Spin-echo images (and MRI images in general) can be further customized
by using particular contrast agent (e.g. use of gadolinum to enhance con-
trast in T1-weighted images) or by using particular techniques such as fat-
suppression that allow to remove the bright signal from fat, therefore en-
hancing the contrast between the remaining tissues [59].

Diffusion-weighted imaging

Diffusion-Weighted Imaging (DWI) is another type of MRI that provides
images whose contrast gives information on the diffusion of hydrogen nu-
clei in the water molecules of the body [60]. It is a useful imaging tech-
nique in oncology as it can provide additional information compared to the
SE images. As a matter of fact, tumors are often made by dense masses of
tumor cells packed together, which have very different diffusion properties
compared to the surrounding tissues [60].

Figure 2.15 present a modified version of SE sequence that could be
used to obtain a DWI. The change consist in the application of a symmetric
pair of diffusion-sensitizing gradients around the 180◦ refocusing pulse. In
this situation, static molecules acquire phase information from the first dif-
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2.3. An introduction to medical imaging

fusion gradient, but information will be rephased by the second diffusion
gradient without a significant change in the measured signal intensity [60].
By comparison, moving water molecules acquire different phase informa-
tion from the first gradient, but because of their motion, their signal will
not be completely rephased by the second gradient, thus leading to a signal
loss [60]. The degree of water motion has been found to be proportional to
the degree of signal attenuation.

Figure 2.15: Modified T2-weighted spin-echo that can be used to obtain a diffusion
weighted image [60].

The sensitivity of the DWI sequence to water motion can be varied by
changing a parameter called b-value (measured in s/mm2) which is defined
as follows [61]:

b = γ2G2δ2
(

∆− δ

3

)
(2.5)

where γ is the gyromagnetic ratio of the 1H nuclei, G is the magnitude
of the sensitizing gradients, δ is the duration of the two gradients and ∆ is
the time between the beginning of the first gradient and the beginning of the
second one. The b-value is typically controlled by changing the values of
G, leaving the other parameters constant. An image with b-value 0 s/mm2

is a T2w image (typically performed with fat-suppression) and the higher
the b-value, the higher the signal attenuation due to diffusion. Tissues with
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Chapter 2. Background

high cellular concentration tend to maintain high signal in DWI even when
large b-values are used (Figure 2.16A-B).

Figure 2.16: Process of creation of an Apparent Diffusion Coefficient (ADC) map from
diffusion-weighted images (DWI). A) DWI image with a b-value of 0 s/mm2. B) DWI
image with a b-value of 500 s/mm2. C) Signal decay by b-value for tumor and normal
tissue. D) Map of ADC.

The relationship between signal decay and b-value can be modeled using
a single exponential [60]:

S(x, y, b) = S(x, y, 0)e−bADC(x,y) (2.6)

where S(x, y, 0) is the signal measured in pixel (x, y) using a b-value of
0 s/mm2 and ADC(x, y) is a property of the tissue called Apparent Diffu-
sion Coefficient.

Equation 2.7 can be modified and transform into a linear equation (Fig-
ure 2.16C):

lnS(x, y, b) = lnS(x, y, 0)− bADC(x, y) (2.7)
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2.4. Radiomic features description

Given two or more DWI images computed with different b-values, the
values of ADC can be computed pixel-wise to obtain maps of ADC (Fig-
ure 2.16D). In ADC maps, low intensity represents regions with lower dif-
fusion coefficients (e.g. tumors). Therefore, ADC maps can be used as
quantitative images, like CT or PET and unlike T1w or T2w MRI, since the
measured intensities have a physical meaning. This also makes ADC maps
more standardized across clinical centers and among scanners, as soon as
the same magnetic field and range of b-values is used [62, 63]. However,
ADC images typically have lower resolution compared to traditional MRI
images and cannot be used to detect fine details in the image [64]. Also,
longer acquisition times are required [64].

Fast MRI imaging

Although the pulse sequences that were previously presented could poten-
tially be used to obtain the T1w, T2w and DWI images, they are not used
in the clinical practice because they lead to long acquisition times (several
hours for a single diagnostic exam). Therefore, faster pulse sequences are
used.

Turbo Spin-Echo (TSE) [57], also called fast spin-echo, is a particular
type of SE in which multiple echos are acquired during the same iteration
(Figure 2.17). This allows to fill multiple lines of the k-spaces in one it-
eration. Besides TR and TE, the TSE pulse sequence is characterized by
Echo-Train Length (ETL), i.e. the number of echos acquired in the same
iteration. TSE is typically used in the clinical practice to acquire T1w and
T2w image [57].

Echo-Planar Imaging (EPI) is a pulse sequence that is used to substan-
tially reduce the acquisition time and that is used in particular for DWI
acquisition [57]. In EPI, the phase-encoding gradient and the frequency-
encoding (or readout) gradient are turned on and off very rapidly, a tech-
nique that allows the rapid filling of k-space in one iteration (Figure 2.18).
All the DWI acquired in the thesis were acquired using EPI.

2.4 Radiomic features description

As described in Section 2.1, different categories of radiomic features may
be extracted. The description of the features classes that is given in this sub-
section is not meant to be exhaustive, but will mainly refer to the ones that
are used in this thesis and in the majority of the works involving radiomic
analysis. The purpose of this subsection is to provide a general knowledge
of the different mathematical tools that are used to compute the features of
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Figure 2.17: Representation of turbo spin-echo pulse sequence. In the scheme, the tempo-
ral application of radio-frequency pulses (RF) is shown, as well as the one of encoding
gradients (slice, phase and readout gradients) [65].

Figure 2.18: Representation of echo-planar imaging pulse sequence. In the scheme, the
temporal application of radio-frequency pulses (RF) is shown, as well as the one of
encoding gradients (slice, phase and readout encoding gradients) [65].
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2.4. Radiomic features description

interest, but not to provide the complete list of all the radiomic features. For
that, the reader may refer to the documentation of Pyradiomics [66], which
is the software that was used to extract the radiomic features in this thesis,
or to the manual of the Imaging Biomarker Standardization Initiative (IBSI,
see [67]).

2.4.1 Shape and size features

Shape and Size features (SS) describe geometric aspects of a ROI, such as
area and volume. In order to calculate these features, different representa-
tion of the ROI may be used [67]:

• A collection of voxels with each voxel taking up a certain volume.

• A voxel point set that consists of coordinates of the voxel centers.

• A surface mesh.

SS features in Pyradiomics are typically computed using a surface mesh.
A surface mesh is a surface made of M adjacent triangular surfaces and N
vertices. Each mesh can be described using a Nx3 matrix with the 3D
coordinates of the points and a Mx3 matrix with the index of the points
that are used to define each surface.

SS features may be computed both in 3D and 2D but for this thesis, only
3D features were used.

2.4.2 First order statistics

First Order Statistics (FOS) are features that describe the distribution of
the different grey values inside the ROI. Features of this category may be
further classified in intensity-based or histogram-based features [67]. The
difference between the two is that to compute the latter, an histogram is
required. The computation of the histogram requires the discretization of
the distribution of the grey levels in bins. Two approaches can be used for
the histogram discretization [67]: fixed bin size and fixed bin number.

Intensity-based statistical features are not meaningful if the intensity
scale is arbitrary, like in MRI. So proper intensity standardization should
be made before any radiomic analysis (see Chapter 3).

2.4.3 Textural features and textural matrices

Textural features provide spatial information about the distribution of the
grey values inside the ROI [67]. Just as some FOS features are computed
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from an histogram, textural features are computed from textural matrices.
Like for histogram-based features, grey values discretization is usually per-
formed prior to the computation of the textural matrices.

Pyradiomics uses 5 different textural matrices [66]: Grey Level Co-
occurrence Matrix (GLCM); Grey Level Run Length Matrix (GLRLM);
Grey Level Size Zone Matrix (GLSZM); Grey Level Dependence Matrix
(GLDM); Neighbouring Grey Tone Difference Matrix (NGTDM).

The GLCM is a NgxNg matrix, Ng being the number of discrete grey
values in an image, and describes the second order joint probability func-
tion of an image region constrained by a ROI. Fixed a given positive dis-
tance δ and a direction θ the (i, j) element of the GLCM describes how
many times the element grey value j appears at a distance δ (e.g. one pixel)
from the grey value i in the direction θ (e.g. horizontal). An example of
GLCM computation is reported in Figure 2.19. The rules for GLCM com-
putation are analogous in 3D, with the only difference in the number of
possible θ directions.

Figure 2.19: Example of computation of a Grey Level Co-occurrence Matrix (GLCM). A)
Image I with the original grey values. B) Corresponding GLCM. The matrix P in B)
is computed using δ = 1 (1 pixel distance) and θ = 0 (horizontal direction, both left
to right and right to left). Adapted from [66].

The GLRLM is a matrix that quantifies grey level runs, which are de-
fined as the length of consecutive pixels that have the same grey level value.
Given a direction θ the (i, j) element of the GLRLM describes how many
times the element grey value i appears consecutively for j times. Therefore,
the dimension of the matrix is NgxNmax, Nmax being the maximum size in
the image. An example of GLRLM computation is reported in Figure 2.20.

The GLSZM quantifies grey level zones in an image. A grey level zone
is defined as a the number of connected voxels that share the same grey
level intensity. The (i, j) element of the GLSZM equals the number of
zones with grey level i and size j appear in image. An example of GLSZM
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Figure 2.20: Example of computation of a Grey Level Run Length Matrix (GLRLM). A)
Image I with the original grey values. B) Corresponding GLRLM. The matrix P in B)
is computed using θ = 0 (horizontal direction). Adapted from [66].

computation is reported in Figure 2.21. The GLSZM matrix displayed in
Figure 2.21B is displayed as a 5x5 for simplicity, but in general a GLSMZ
has size of NgxNp, where Np is the total number of pixels in the image.

The NGTDM quantifies the difference between a grey value and the
average grey value of its neighbours within distance δ. The NGTDM is
a Ngx4 matrix (Figure 2.22). The (i, 1) element of the matrix shows the
grey value i, the elements (i, 2) and (i, 3) represent its absolute and relative
frequency in the matrix and, given a size δ, the element (i, 4) is the mean
absolute difference in the grey values between each voxel with intensity i
and the average grey value in its neighborhood.

The GLDM quantifies grey level dependencies in an image. A grey level
dependency is defined as a the number of connected voxels within distance
δ that are dependent on the center voxel. Given a parameter α, a voxel
is said to be connected if |i − j| 6 α. The (i, j) element of the GLDM
describes the number of times a voxel with grey level i with j dependent
voxels in its neighbourhood appears in image. An example of GLDM is
presented in Figure 2.23.

2.4.4 Wavelet transform and wavelet features

In many of the radiomic studies of literature, radiomic features belonging
to FOS and textural groups are extracted not just from the original images,
but also from transformed versions, in order to provide additional insight
on the object that is being imaged (e.g. the tumor). In particular, in this
thesis, the wavelet decomposition was used.

Wavelet decomposition effectively decouples textural information by
decomposing the original image, in a similar manner as Fourier analysis, in
low âand high-frequencies [5]. A detailed mathematical detail of wavelet
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Figure 2.21: Example of computation of a Grey Level Size Zone Matrix (GLSZM). A)
Image I with the original grey values. B) Corresponding GLSZM. Adapted from [66].

Figure 2.22: Example of computation of a Neighbouring Grey Tone Difference Matrix
(NGTDM). A) Image I with the original grey values. B) Corresponding NGTDM.
Adapted from [66].

Figure 2.23: Example of computation of a Grey Level Dependence Matrix (GLDM). A)
Image I with the original grey values. B) Corresponding GLDM obtained by setting
α = 0 and δ = 1. Adapted from [66].
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theory is beyond the scope of this introductory material, and for that, the
reader may refer to [24]. The following explanation provides the minimum
knowledge to understand the applications of wavelet transform, in particu-
lar the 2D Discrete Wavelet Transform (DWT), in image processing and in
radiomics is given.

Essentially, the DWT of an image up to level (or scale) J is performed
through a cascade tree of low-pass and high-pass filters followed by down-
sampling by a factor of 2. For a 2D image, performing one level of a 2D
wavelet decomposition consists of filtering and down-sampling an image
I(x, y) both in the x and y directions, with both a 1D low-pass and high-
pass filters. This results in four sub-bands (Figure 2.24): LL, LH, HL,
HH. The LL band (upper-left in Figure 2.24) contains a coarse approxima-
tion of the original image, while the other bands contain information about
high frequency changes in intensity in the horizontal, vertical and diago-
nal direction respectively (upper-right, lower-left and lower-right of Figure
2.24). Extracting the radiomic features from those sub-bands will result in
new, potentially useful, information.

In case of 3D volumes, like in MRI exams, the combination of high and
low-pass filters will results in 8 different possible combinations (Figure
2.25), and the FOS and textural features will be extracted from each of the
sub-bands.

2.5 Machine learning and survival analysis

2.5.1 Machine learning: general introduction

Machine learning is a field of computes science that deals with the design
and creation of algorithms that perform a task without being explicitly pro-
grammed, but rather by learning it directly from data through some sort of
inference. The data that are given to the machine to make it learn (i.e. the
training data) may take different form but can usually be reduced to an ar-
ray of features describing the single instance or subject to be predicted [68].
Such features can be of different types: numerical (e.g. body weight), ordi-
nal (e.g. tumor grade) or categorical (e.g. patient gender). Different types
of machine learning exist and may be summarized as follows [68, 69]:

• Supervised machine learning in which each training datum (also
called instance) includes both the features and an expected outcome,
i.e a value (or an array of values) that should be obtained as a function
of the input features. The goal for this type of machine learning is to
automatically infer the best relationship between the features and the
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Figure 2.24: Example of first level 2D discrete wavelet decomposition of an image. The
upper-left corner represents the LL sub-band (an approximation of the original im-
age). The upper-right, lower-left and lower-right parts of the image represent the LH,
HL and HH sub-bands respectively. The latter have been thresholded for better visu-
alization.

Figure 2.25: Schematic representation of the 8 possible discrete wavelet decompositions
of a 3D image [5].
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outcome.

• Unsupervised machine learning in which the training data includes
only features without an outcome associated. The goal in this type of
machine learning is to identify groups and patterns within the data in
order to provide a better insight.

• Semi-supervised machine learning which is a type of supervised
learning in which the expected outcomes are available for only a por-
tion of the instances. The goals are the same of the supervised learn-
ing, but the partial lack of outcome variables requires the use of alter-
native methodologies.

• Reinforcement learning which is concerned with the problem of find-
ing suitable actions to take in a given situation in order to maximize a
reward. Here the learning algorithm is not given examples of optimal
outputs, in contrast to supervised learning, but must instead discover
them by a process of trial and error.

This thesis dealt with the first type of machine learning, and in particu-
lar with a subcategory of supervised learning called survival analysis. The
concepts of supervised machine learning and survival analysis, as well as
the relative workflows, will be described in details in the following subsec-
tions.

2.5.2 Supervised machine learning and survival analysis

As defined in Subsection 2.5.1, supervised machine learning is a type of
machine learning problem in which both features and an expected outcome
are available for each instance [68]. Different types of output variables
may be used in supervised machine learning and, depending on the output
variable, three main supervised learning problems may be identified.

In regression, the output variable is a continuous number [68]. In the
context of radiomics, an example of regression problem is predicting the
volume of a tumor after a particular treatment based on some quantitative
features extracted from the baseline imaging.

In classification, the output variable is a categorical value [68]. In gen-
eral, the models that are trained to solve a classification problem tend to as-
sign a scoring system or a rule that associates the features to the probability
of belonging to a specific class. Binary classification refers to the situation
in which there are only two classes, while when more than two classes are
present, the problem is called multi-class classification [68]. In the context
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of radiomics, a problem of classification may be to automatically distin-
guish a benign from a malignant tumor using quantitative imaging features.

Survival analysis is a particular type of supervised analysis used in med-
ical statistics in which features are used to predict a function S(t) represent-
ing the probability of not experiencing an event at a certain point in time
t [70].

S(t) = Pr{T > t} (2.8)

where T is the time of the event.
In the context of oncology, survival problems of interest are, for exam-

ple, the estimation of the OS probability (i.e. the probability of a patient
to be alive at a certain point in time after being diagnosed with cancer) and
Disease-Free Survival (DFS) probability (i.e the probability of a patient to
be alive without tumors at a certain point in time after the treatment). The
models used to predict S(t) are called prognostic models.

In case of survival analysis the values of the output variable in the train
data are not the value of S(t), which are unknown, but the time-to-event for
each patient, that can be used to estimate S(t) for the population [70]. The
estimation of S(t) from the time-to-event data is performed using a non-
parametric method called Kaplan-Meier method [70, 71]. The estimate of
survival function according to the Kaplan-Meier method may be computed
as follows [70, 71]:

SKM(t) =
∏
Ti6t

ni − ei
ni

(2.9)

where Ti is the time to the i-th event, ei is the number of events occurred
between Ti and Ti−1, and ni is the number of patients that are still in the
study between Ti and Ti−1.

Since the Kaplan-Meier estimates depends on the number of patients at
risk at time t and not on the initial number of patients, it can handle the
presence of right-censored patients, i.e. patients whose follow-up is shorter
than the duration of the study and for which the occurrence of the event is
not known [70]. However, in order to make a proper estimate, it is necessary
to specify which patients are censored [70]. Therefore, the outcome data
for survival analysis problem actually consist of two variables, the time-to-
event and a binary label indicating whether the patient is censored [70].

The Kaplan-Meier estimates of survival can also be visualized using the
Kaplan-Meier curves (Figure 2.26).

Another important concept in survival analysis is the concept of hazard
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2.5. Machine learning and survival analysis

Figure 2.26: Kaplan-Meier curve representing an estimate of survival probability, with
the Confidence Interval (CI).

function h(t), which is the instantaneous probability of experiencing the
event, mathematically defined as [72]:

h(t) = lim
dt→0

Pr{t 6 T 6 t+ dt|T > t}
dt

(2.10)

The hazard function can be also expressed as the negative derivative of
the natural logarithm of the survival function [72]:

h(t) = − d

dt
lnS(t) (2.11)

In survival analysis the initial condition necessary to solve the differen-
tial equation is known a-priori (since S(0) = 1) and therefore by estimating
the hazard rate is immediately possible to compute the survival function:

S(t) = e−
∫ t
o h(x)dx (2.12)

The output of the algorithms used in survival analysis is typically the
hazard function rather than the survival function, but one can easily derive
the latter from the former.
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2.5.3 Survival analysis: general workflow

Figure 2.27 depicts the general workflow used for the development of prog-
nostic models. The workflow is quite general and is applicable to other
types of supervised machine learning such as classification or regression.

Figure 2.27: Generic workflow for the development of prognostic models.

Given a set of training data, it is possible to fit a prognostic model on
those data such that a particular goodness-of-fit metric is maximized. In
the case of survival analysis, the main prognostic models that is used in the
literature is the Cox proportional Hazard regression model.

The features that are part of the training data may undergo a series of
postprocessing steps in order to make them more usable in the prognostic
models, for example by making the range of features uniform or by select-
ing a subset of features that is useful for the analysis.The postprocessing
steps that were used in this thesis are reported in Figure 2.27, but the list
is not exhaustive (see [68] for more). A detailed explanation of the post-
processing steps listed in Figure 2.27 is reported in Subsections 2.5.5 and
2.5.6.

Once the model is trained, some metrics can be used to quantify the per-
formance of the model. However, the computations of such metrics on the
same data that have been used to train the model provides a biased estimate
of the quality of the model [68]. To avoid this, a validation on a separated

42



i
i

“output” — 2020/6/10 — 18:25 — page 43 — #55 i
i

i
i

i
i

2.5. Machine learning and survival analysis

dataset must be performed. The validation data must undergo the same
or equivalent postprocessing of the training data and be evaluated by the
same model. The score evaluated on the validation data, which is unbiased,
can then be used to evaluate the performance metrics of interest [68]. The
ideal situation is the one in which an external, independent validation set is
available, but this is not always the case. Therefore, some methodologies
have been developed to overcome this issue and to perform model valida-
tion also when just one dataset is available (i.e. cross-validation, hold-out
and bootstrap).

2.5.4 Cox proportional hazard regression model

Cox proportional hazard regression is used to predict the hazard function
of a patient that is subjected to different risk factors [70,72,73]. According
to this model, the hazard function h(t) can be computed as follows:

h(t) = h0(t)e
∑n

i=1 βixi (2.13)

where xi are the risk factors, βi are the corresponding multiplicative co-
efficients and h0(t) is the baseline hazard function, i.e. the hazard function
that is observed when all the risk factors are not present. The baseline haz-
ard function is known a-priori or is non-parametrically estimated from the
training data [70, 72]. The problem can be re-written as a linear regression
problem:

ln

[
h(t)

h0(t)

]
=

n∑
i=1

βixi (2.14)

in which the output variable is the logarithm of the Hazard Ratio (HR),
i.e. the ratio between the hazard rate of the group at risk and the one of the
baseline group.

If the effect of the risk factors does not depend on time, which is an
hypothesis of Cox models [70, 72], the hazard ratio in Equation 2.14 will
only depend on the risk factors at t = 0 and so is his logarithm. The
linear combination of features and coefficient computed in Equation 2.14
will therefore provide a patient-specific risk score, that in the context of
radiomics is called radiomic signature or radiomic risk score.

The Cox proportional hazard regression model is a semi-parametric method,
because part of Equation 2.13 (h0(t)) is estimated non-parametrically or
known a-priori, while the exponent of e depends on some parameters βi
that are fitted on the training data. The βi coefficient are fitted in order to
maximize a quality metric which is typically the partial log-likelihood l.
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Chapter 2. Background

The partial log-likelihood is like a traditional likelihood but is computed
only using the patients that have experienced an event. In the case of Cox
proportional hazard regression, l can be computed as follows [73]:

l(βi) =
∑
i∈U

ln (HRi)−
∑

j∈{Tj>Ti}

ln (HRj)

 (2.15)

where Ti and Tj are the follow-up times for the i-th and j-th patient, U is
the set of uncensored patients (i.e. patients who experience the event during
the follow-up) and {Tj > Ti} is the set of patients that have a follow up
time longer than Ti. The inner summation is evaluated only on the patients
with a time to event that is larger then Ti and this ensures that invalid pairs
of time-to-event (i.e. pairs in which, due to censoring, the higher time to
event cannot be determined) are not used, making it the optimal metric for
right-censored data.

2.5.5 Feature normalization

Features normalization is the operation that ensures that all the features
have the same (or similar) range of values [68]. This operation is typically
performed because having features with similar ranges is a requirements
of some postprocessing and models [68]. Even, even when not strictly
required, features normalization may be advised because helps the conver-
gence of the optimization algorithms used in model fitting [74]. Different
methods of feature normalization exist [75], all with their pros and cons.

Z-score normalization [75] is one of the most frequently used method
to normalize the distribution of a feature x by subtracting the mean µ and
dividing by the standard deviation σ [75]:

xNorm =
x− µ
σ

(2.16)

The median-mad normalization [75] is a generalization of the previous
technique that is more suitable for non-normal distributions because it uses
the median value and the median absolute deviation:

xNorm =
x−median(x)

median(|x−median(x)|)
(2.17)

The min-max normalization [75] is a normalization technique that nor-
malizes the range of values of x between 0 and 1:
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2.5. Machine learning and survival analysis

xNorm =
x−min(x)

max(x)−min(x)
(2.18)

It is the best in terms of providing a fixed range, because it ensures that
the normalized values are always between 0 and 1, but it is very sensitive
to the presence of outliers.

Hyperbolic tangent normalization [75] is a non-linear modification of
the Z-score normalization in which the result of the normalization is put
inside a non-linear function (the hyperbolic tangent). The non-linearity
reduces the effect of the outliers. The formula describing the normalization
method is the following:

xNorm = 0.5

[
tanh

(
0.01

x− µ
σ

)
+ 1

]
(2.19)

2.5.6 Feature selection and dimensionality reduction

Survival models, and machine learning algorithms in general, are typically
designed to perform well in situations in which the number of instances
is much larger than the number of features used [68]. Also in the case of
Cox regression, it can be seen that the partial log-likelihood used to fit the
models coefficient depend on the patients that experience an event. In order
to uniquely fit an optimal model there must be a number of event larger or
equal to the number of features used [68]. The minimal events/features ratio
was defined to be around 10 [76]. If the events/features ratio is below that
threshold, the risk of overfitting, i.e. the training of a model that perform
very well on training data but poorly on the test data, increases [68].

One of the main issued of omics is that typically the number of ana-
lyzed features is much larger than the number of available patients [77], a
situation which is called "curse of dimensionality".

One of the most important steps in the processing of omics features is
features selection, i.e. the process of selection of a subset of meaningful
features from a much larger set. Another analogous task is performed with
the application of dimensionality reduction techniques, in which new fea-
tures are created from the original, so that almost all the information of
a dataset is maintained with a significant reduction in the features num-
ber [68].

There are countless different algorithms for features selection and di-
mensionality reduction and an exhaustive description is not possible. There-
fore, in this subsection, only the methodologies that were considered in the
thesis are explained.
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Correlation based feature selection

The correlation-based feature selection is based on the assumption that a
lot of the features in high-dimensional dataset are correlated [6]. There-
fore, taking only one out of two correlated features may be a preliminary
selection method.

Given any set of features and a correlation coefficient (either Pearson or
Spearman), it is possible to compute a correlation matrix with representing
the correlation between each pair of features. If the pairwise correlation
coefficient between two features has a magnitude above a certain threshold,
only one of the two is kept. The selection of the feature to keep may be done
in different ways, but the typical choices are to keep the feature with the
lower mean correlation coefficient with all the other features in the dataset,
or to keep the one with the higher correlation with the outcome of interest.
In this thesis, the former approach was used.

Significance-based features selection

Significance-based feature selection methods deal with the computation of
a performance metric [5, 6, 77]. Features are sorted based on this perfor-
mance metric and only the subset of the best features is selected. The cut-
off could be either a threshold in the metric or a number of features.

One example of significance-based feature selection (that was also used
in this thesis) consist in fitting a univariate Cox regression model for each
feature and using a z-test to test the hypothesis that that coefficient is signif-
icantly different from 0. A p-value if provided for each test. Features with
coefficients that are not significantly different from 0 (p>0.05) are then ex-
cluded.

If the number of univariate model considered is high, correction for mul-
tiple hypothesis testing must be performed [5, 6]. Several correction meth-
ods exist but the most used in case of large features set is the False Dis-
covery Rate or FDR approach [78] that adjusts each p-value based on the
distribution of p-values for all the features in order to remove the significant
values that are most likely to be false positives.

Wrapper feature selection

A wrapper feature selection method is a selection method that involves
the use of a machine learning algorithm and a performance metric. Such
methods could be classified in forward selection, backward selection algo-
rithms or hybrid [68]. In forward feature selection, features are progres-
sively added to the machine learning algorithm in order to maximize the
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2.5. Machine learning and survival analysis

performance metric of interest. In backward feature selection, the model
starts with all the features and features are progressively removed until the
performance metric is maximized. The hybrid features selection includes a
combination of features inclusion and removal.

Independently on the type of selection scheme that is used, there must
be a criteria defined a-priori to add or remove the features and to determine
the optimal set of features. Many different criteria can be used for the
purpose [68].

In the context of this thesis, a forward approach was applied to the data
and features were added to the model according to their C-index (see Sub-
section 2.5.7). The optimal number of features was identified by maximiz-
ing the C-index obtained by an internal validation of the data (performed
via bootstrap, see Subsection 2.5.8).

Principal component analysis

Principal Component Analysis (PCA) is a linear transformation that maps
the original features space to a new space called the component space [68].
The features of this new space are called components and each of them is a
linear combination of all the original features.

The properties of the components make the PCA an optimal choice for
dimensionality reduction. First of all, the components are linearly indepen-
dent vectors, so if the number of instances is N , the number of components
is at most N − 1, and this allows a first dimensionality reduction. Also,
the algorithm of PCA identifies the components in such a way that the first
component explains the majority of the variance, the second explains the
majority of the variance left and so on (Figure 2.28). Therefore, a large por-
tion of the variance in the data is explained by using the first components
(10-20 components usually explain more than 90% of the total variance in
datasets with hundreds of components). Considering only the first compo-
nents causes a large reduction in data dimensionality at the cost a relatively
small loss in the variance of the data [68].

The mathematical detail of how the components are computed is out of
the scope of the thesis, but the reader may refer to [68] for further details.

2.5.7 Performance metrics for survival models

There are different ways to evaluate the performance of a survival model,
but the ones that are used in clinical studies are mainly two: the Harrel’s
C-index [79, 80] and the log-rank test between risk groups [81].

The Harrel’s C-index [79, 80] of a prognostic score is defined as the
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Chapter 2. Background

Figure 2.28: Application of principal component analysis to a bi-dimensional dataset.
The first component (green line) explains the majority of the variance in the data and
the second component (blue dashed line) explains the remaining variance. It can be
seen that the first component explains more variance than each of the original feature
alone.

probability that a the patient with the higher risk score s has a shorter time-
to-event T :

C = Pr{Ti < Tj|si > sj} (2.20)

If all the patients in the dataset have experienced the event, Equation
2.20 can be used as it is. When some of the patients are censored, the
computation of the probability must be done only on the pairs for which
the concordance or discordance can be determined unambiguously [80].

Another way to evaluate the performance of a risk score is to define
subgroups of patients based on thresholds of the score and to compare the
Kaplan-Meier curves using the log-rank test [81]. An example is reported
in Figure 2.29.

In the context of this thesis, two risk groups (high and low risk) were
determined using the median value of the risk score in the training set as a
threshold and the log-rank test was performed to detect significant differ-
ences in respective Kaplan-Meier curves.
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2.5. Machine learning and survival analysis

Figure 2.29: High and low risk curves defined by thresholding of a risk score. Accord-
ing to the Kaplan-Meier test, the two curves are significantly different. In the figure,
censored patients are marked by crosses.

2.5.8 Model validation

As mentioned in Subsection 2.5.3, the evaluation of a prognostic model
must not be done on the same data that were used to train the model, be-
cause that may give an overestimation of the quality of the results, espe-
cially if the model uses a lot of features. The ideal way of evaluating the
performance of a prognostic model is to compute the risk score on a set
of unseen patients called validation set and to use the performance metrics
defined in Subsection 2.5.7 on that unbiased score.

The strongest validation of a model is provided when an independent
external dataset is used, but that is not always available in practice. When
just one dataset is available some techniques of internal validation (also
called resampling methods) may still be used in order to provide an unbi-
ased measurement of the performance of the model. Three main techniques
exist for the purpose [68]: train-validation split, K-fold cross-validation and
bootstrap.

Train-validation split

The train-validation split [68] approach consists in leaving a randomly se-
lected portion of the original dataset out of the training process, creating
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a separate train and validation sets. The percentage of left-out data may
vary but it is typically a minority of the data (10-40%). The split may be
stratified, meaning that the partition can be made in order to ensure that
the proportion of events in the train and test is as similar as possible. This
method is very simple but the results may depend on the particular split per-
formed and so multiple iteration of train test should be performed to get the
variance of the performance estimate [68]. Also, since machine learning
methods tend to perform worse when trained on fewer observations, this
suggests that the validation set performance metric may tend to underesti-
mate the performance metric that would be computed on an independent
dataset [68].

Bootstrap

Another way to perform internal validation is bootstrap [68]. Bootstrap
consist in the creation of artificial training set by resampling with replace-
ment of the original dataset (Figure 2.30). Each bootstrap training will have
a different combination of the training data, some instances may be over-
represented (i.e. appear more than once in the same training set) and some
other may not be present at all. Each of the bootstrap model may be vali-
dated using the unselected patients obtaining a performance metric for each
model. The array of performance metrics can be used to estimate a mean,
standard deviation and confidence interval.

Figure 2.30: Example of internal validation using bootstrap resampling. The training set
are a combination with replacement of the original dataset. The validation sets consist
of the left out instances for each iteration.

In the context of this thesis bootstrap was used to provide a estimates of
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the variance for the C-index for all the models that were tested.

K-fold cross-validation

In K-fold cross-validation [68], the initial dataset is divided in K partitions
with approximately the same number of subjects each, called folds. In each
of the K iteration of the algorithm, a different fold is used as the validation
set while the other K-1 are used as the train set. The performance metric is
evaluated K-times, every time on a different validation fold and the results
are averaged to get the final performance estimate (Figure 2.31).

Figure 2.31: Simple illustration of the K-fold cross-validation method.

The advantage of K-fold is that it allows to obtain a lower variance in
the estimate of the performance metric compare to train-test split [68]. An-
other advantage of K-fold cross-validation is that each subject in the initial
datasets gets a unique unbiased estimate of the model score/prediction [68].

When the number of events per fold is low, computing separate metrics
for each fold may lead to an overestimation of the variance of the results
(and consequently, of the confidence interval). Since at the end of K-fold
cross validation, an unbiased estimate of the model/prediction is available
for each patient, such array of unbiased estimate can be used to compute the
performance metric, and the confidence interval may be obtained through
bootstrap.
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CHAPTER3
Stability analyses on a virtual phantom

This Chapter describes a series of experiments performed using simulated
MRI to evaluate the stability of radiomic features to variations in image ac-
quisition parameters and to sources of random noise. Effect of image pre-
processing to features stability was also evaluated. Last, a set of radiomic
features stable to imaging-related variability is identified.

3.1 Introduction

One of the main limitations of radiomics, that so far prevented its use in
the clinical practice, is the dependence of radiomic features from image
acquisition parameters/conditions [6, 8]. Sources of heterogeneity include,
but are not limited to, systematic differences among scanners (e.g differ-
ent reconstruction algorithms, different sensitivity of the instruments) or
among centers (i.e. every center has its own image acquisition protocols),
differences in the parameters that may be specific for the single acquisition
(e.g. in order to increase signal-to-noise ratio or to reduce time of imaging
when possible), or image artifacts (e.g. magnetic field inhomogeneity in
MRI or metallic artifacts in CT). This heterogeneity may potentially affect
the usefulness of radiomic features because the imaging-related variability
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Chapter 3. Stability analyses on a virtual phantom

may mask the biology-related variability [6, 8]. This issue becomes par-
ticularly relevant for studies in which cohorts are multicentric or in which
data are collected from multiple retrospective cohorts. Also, it becomes
critical when MRI images are involved, since the measured signal is not
tissue-specific and may strongly vary from acquisition to acquisition due to
different acquisition parameters such as scanner, pulse sequence, TR/TE,
pixel spacing and slice thickness [82].

Image preprocessing may be a way to reduce heterogeneity in the im-
ages and, consequently, to reduce heterogeneity in the radiomic features
[16, 83–85]. Among these preprocessing techniques, the following may be
cited [67]: voxel spatial resampling; intensity discretization; denoising; in-
tensity standardization and intensity inhomogeneity correction (in MRI).
The effect of these preprocessing techniques on features stability has been
partially investigated in previous studies of literature [16, 83–85].

The assessment of feature stability is often performed through the use
of a phantom, i.e. an object with known properties that is scanned by one
or multiple machines in different conditions. Since the phantoms are typi-
cally described in the articles in which they are used (such in [86]), they are
useful and reproducible tools to assess variability to imaging conditions,
allowing to isolate the impact of the different acquisition parameters. To
further increase the reproducibility of phantom results, different online re-
sources have been provided, such as the open-source CT phantom described
in [87], or the virtual MRI simulators BrainWeb [88].

Many phantom-based variability analyses have been reported in litera-
ture [16, 82, 84–86, 89–91]. Part of those studies investigated the effect of
image preprocessing on features stability [16,84,85]. Most of the phantom
studies focused on CT and PET [16,84–86,89,90], with only a few studies
related to MRI instead [82, 91]. Among those few, none investigated the
effect of image preprocessing in the improvement of features stability.

The purpose of this chapter is to use virtual MRI simulations, obtained
using Brainweb, to test the stability of radiomic features to four differ-
ent sources of variability: a) intensity variations caused by modification
in TR/TE; b) changes in voxels size due to modification in slice thickness
and in-plane pixel spacing; c) image noise; d) intensity non-uniformity gen-
erated by inhomogeneity in the local magnetic field. The analysis focused
on T1w and T2w MRI obtained with SE pulse sequence (see Subsection
2.3.4). Those type of images, and variants obtained with TSE are routinely
performed in clinical practice for observation of both HNC and STS and
can be obtained using BrainWeb software. The experiments described in
the following sections were also part of publications [92, 93].

54



i
i

“output” — 2020/6/10 — 18:25 — page 55 — #67 i
i

i
i

i
i

3.2. Materials and methods

3.2 Materials and methods

3.2.1 BrainWeb simulated datasets

All the images dataset used in this chapter were obtained using the Brain-
Web [88,94], a virtual MRI simulator. Starting from 3 volumes map repre-
senting values of T1, T2 and PD (estimated using a 1.5 T Philips Gyroscan
scanner), the simulator allows to create customized volumes using signal
equations characterizing the different RF pulse sequences (Figure 3.1). By
defining the pulse sequence and the proper image acquisition parameters,
the user can define potentially infinite image acquisitions. Last, Brainweb
allows to set other parameters not strictly related to the pulse sequence,
such as the slice thickness, the level of noise and the level of intensity non-
uniformity.

Figure 3.1: Illustration of the process of creation of a virtual MRI using the BrainWeb
simulator.

In the context of this chapter, the pulse sequence used is the SE pulse
sequence, whose signal equation is listed in Subsection 2.3.4, equation 2.5.
The parameters that were varied for the creation of customized images were
the following: a) time of repetition; b) time of echo; c) slice thickness; d)
pixel spacing; e) noise level; f) intensity non-uniformities (INU).

The noise was modeled as a Gaussian with mean 0 and a standard devia-
tion controlled by the user using the noise level parameter. Such parameter
is the ratio (expressed in percentage) between the standard deviation of the
noise and the average intensity of a reference tissue in the phantom (by
default, the brightest tissue).

The type of non-uniformity is controlled by the INU field parameter,
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which allows to select among 3 different non-uniformity fields. Also, the
entity of the non-uniformity is controlled by the INU level parameter, which
is the ratio (in percentage) between the range of non-uniformity and the
intensity of a reference tissue (by default, the brightest tissue).

Brainweb was used to simulating 5 different datasets comprising both
T1w and T2w MRI obtained using SE pulse sequence. Each dataset was
used for a particular type of stability analyses as illustrated in Figure 3.2.
DS1 was used to perform analyses of stability to variations in TR/TE and to
select the best intensity standardization algorithm to increase stability. DS2
was used to evaluate the effect of voxel size resampling on features stabil-
ity. Analyses on the effect of image denoising on features stability were
performed on DS3. Effect of bias field correction was evaluated on DS4.
Last DS5 was used to select a set of features that were stable to random
variations of the aforementioned image acquisition parameters/conditions.
All the datasets could be created directly from Brainweb except for DS2.
As a matter of fact, Brainweb does not allow to control the pixel spacing,
which is set to a fixed value of 1 mm.Therefore, the in-plane resampling
was performed in MATLAB 2018a (Mathworks, Natick, MA, USA).

Tables 3.1-3.5 give details about the image acquisition parameters for
the individual datasets. Variations in the image acquisition parameters were
set in range similar to the ones observed in clinical practice. The maximum
value for noise and INU levels were set to 9% and 40 % respectively, which
were values higher or equal compared to the ones used in other studies of
literature involving images obtained with BrainWeb [95, 96].

3.2.2 Regions of interest

The stability analyses described in the following subsections were per-
formed on either one of two ROI datasets referred to as ROI-rect and ROI-
bio.

The ROI-rect set was composed by 3 rectangular ROIs (Figure 3.3A)
that were segmented on one of the acquisitions (TR=500 ms, TE=9 ms,
isotropic voxel size 1 mm) using the open source software 3D Slicer [97].
These regions were chosen in order to include areas of different levels of
heterogeneity and size, similarly to what was done in [82]. The ROIs were
segmented for 10 consecutive slices.

The ROI-bio set was obtained directly from the BrainWeb website [98].
In particular, 9 3D ROIs of different sizes representing different tissues
(cerebrospinal fluid, grey matter, white matter, fat, muscle, skin, skull, glial
matter and connective tissue) were considered. Since the ROIs were very
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large, to reduce the computational complexity of the radiomic features ex-
traction, only the 11 central slices of each ROI were used. An example of
segmented ROI (white matter) is reported in Figure 3.3B.

Since all the images simulated with BrainWeb shared the same physical
space, it was possible to use the same ROIs for all the MRI acquisitions,
without the need of repositioning them in each dataset.

Figure 3.2: Representation of the 5 dataset created with Brainweb and their purpose. TR:
time of repetition. TE: time of echo. INU: intensity non-uniformities.

3.2.3 Radiomic features extraction

In all the analyses performed with the virtual phantoms (and in general for
all the analyses described in the dissertation), the radiomic features extrac-
tion was performed using a MATLAB wrapper of the open-source software
Pyradiomics (version 2.1.0) [99].

57



i
i

“output” — 2020/6/10 — 18:25 — page 58 — #70 i
i

i
i

i
i

Chapter 3. Stability analyses on a virtual phantom

ACQUISITION PARAMETERS (DS1)

Image sequence T1w T2w

Number of images 42 48

Pulse sequence Spin-echo Spin-echo

Magnetic field 1.5 T 1.5 T

Time of repetition - Range: 350-650 ms
- Step: 50 ms

- Range: 2000-9000 ms
- Step: 1000 ms

Time of echo - Range: 5-15 ms
- Step: 2 ms

- Range: 80-130 ms
- Step: 10 ms

Slice thickness 1 mm 1 mm

Pixel spacing 1 mm 1 mm

Noise level 0 % 0 %

Intensity
non-uniformity None None

Table 3.1: Image acquisition parameters for the T1-weighted (T1w) and T2-weighted
(T2w) images of the DS1 dataset. Varying parameters are highlighted in red and ex-
pressed by their range of values and step.

The categories of features that were considered for analyses were shape
and size (14 features), FOS (18 features) and textural features (75 features).
Textural features were calculated from the following matrices: GLCM (24
features); GLRLM (16 features); GLSZM (16 features); NGTDM (5 fea-
tures); GLDM (14 features). Also, for FOS and textural features, the fea-
tures could also be computed for the 8 volumes resulting from the first level
wavelet decomposition. For a better description of the features refer to Sec-
tion 2.4 or [5, 24, 66].

Prior to performing the features extraction, the discretization of the his-
togram of the grey values is performed. Instead of the fixed bin size dis-
cretization (the default of Pyradiomics), which may not be the best choice
in case of images with arbitrary intensity units such as MRI [67], a fixed bin
number intensity discretization was used. In particular, a 32 bins histogram
discretization was used, as done in a previous study of MRI [100].

3.2.4 Metric for stability quantification

Before explaining the analyses performed on the different dataset it is im-
portant to clearly define the metric that was used to quantify the stability
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ACQUISITION PARAMETERS (DS2)

Image sequence T1w T2w

Number of images 28 28

Pulse sequence Spin-echo Spin-echo

Magnetic field 1.5 T 1.5 T

Time of repetition 500 ms 6000 ms

Time of echo 9 ms 100 ms

Slice thickness - Range: 1-7 mm
- Step: 1 mm

- Range: 1-7 mm
- Step: 1 mm

Pixel spacing - Range: 1-4 mm
- Step: 1 mm

- Range: 1-4 mm
- Step: 1 mm

Noise level 0 % 0 %

Intensity
non-uniformity None None

Table 3.2: Image acquisition parameters for the T1-weighted (T1w) and T2-weighted
(T2w) images of the DS2 dataset. Varying parameters are highlighted in red and ex-
pressed by their range of values and step.

ACQUISITION PARAMETERS (DS3)

Image sequence T1w T2w

Number of images 10 10

Pulse sequence Spin-echo Spin-echo

Magnetic field 1.5 T 1.5 T

Time of repetition 500 ms 6000 ms

Time of echo 9 ms 100 ms

Slice thickness 1 mm 1 mm

Pixel spacing 1 mm 1 mm

Noise level 9 % 9 %

Intensity
non-uniformity None None

Table 3.3: Image acquisition parameters for the T1-weighted (T1w) and T2-weighted
(T2w) images of the DS3 dataset. Varying parameters are highlighted in red.
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ACQUISITION PARAMETERS (DS4)

Image sequence T1w T2w

Number of images 4 4

Pulse sequence Spin-echo Spin-echo

Magnetic field 1.5 T 1.5 T

Time of repetition 500 ms 6000 ms

Time of echo 9 ms 100 ms

Slice thickness 1 mm 1 mm

Pixel spacing 1 mm 1 mm

Noise level 0 % 0 %

Intensity
non-uniformity

- 3 inhomogeneity fields
- 1 reference

- INU level: 40 %

- 3 inhomogeneity fields
- 1 reference

- INU level: 40 %

Table 3.4: Image acquisition parameters for the T1-weighted (T1w) and T2-weighted
(T2w) images of the DS4 dataset. Varying parameters are highlighted in red. INU:
intensity non-unifomity.

Figure 3.3: Examples of the two classes of region of interest (ROI) used for the analyses,
superimposed on a reference T1-weighted image. A) ROI-rect set. B) Segmentation of
the white matter belonging to the ROI-bio set.
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3.2. Materials and methods

ACQUISITION PARAMETERS (DS5)

Image sequence T1w T2w

Number of images 50 50

Pulse sequence Spin-echo Spin-echo

Magnetic field 1.5 T 1.5 T

Time of repetition 350-650 ms 2000-9000 ms

Time of echo 5-15 ms 80-130 ms

Slice thickness 1-7 mm 1-7 mm

Pixel spacing 1-4 mm 1-4 mm

Noise level 0-9 % 0-9 %

Intensity
non-uniformity 0-40 % (3 INU fields) 0-40 % (3 INU fields)

Table 3.5: Image acquisition parameters for the T1-weighted (T1w) and T2-weighted
(T2w) images of the DS5 dataset. Each of the 50 images is a random combination of
the parameter in the table within the listed ranges. INU: intensity non-uniformity.

in all the experiments: the Intra-class Correlation Coefficient (ICC) [101].
Given a n-by-k matrix of values representing one feature measured from
n different instances (e.g. the different ROIs) on k different conditions
(e.g. the different imaging conditions), the ICC quantifies the agreement
between corresponding measurements in the different conditions. If a fea-
ture has an ICC of 1, it means that the changes in the factor of interest
caused no changes in the features, otherwise the lower the value of ICC the
lower the stability of the feature.

There are different types of ICC [101]. The one used for all the analyses
of this dissertation was the one measuring the agreement in a two-way ran-
dom effects model, equivalent to the (A,1) model described in [101], and it
is computed as follows:

ICC(A, 1) =
MSR −MSE

MSR + (k − 1)MSE + k
n
(MSC −MSE)

(3.1)

Where MSR, MSC and MSE are the between-ROI (row), between-
acquisitions (column) and residual (else) mean squares respectively.

Although there is no clearly defined value of ICC to distinguish between
stable and unstable features, in [102] the threshold of 0.75 is used to define

61



i
i

“output” — 2020/6/10 — 18:25 — page 62 — #74 i
i

i
i

i
i

Chapter 3. Stability analyses on a virtual phantom

good stability, and thus this value was adopted for all the stability analy-
ses in this thesis. The computation of the ICCs, as well as other analyses
presented in the thesis, were performed in MATLAB.

3.2.5 Identification of the best intensity standardization algorithm

The purpose of this first analysis was to identify the best intensity standard-
ization to increase the stability of radiomic features to changes in TR/TE
[92]. The analysis was performed on the set of T1w images of the DS1
dataset using the ROIs of the ROI-rect set.

The following analysis was limited to FOS and textural features based
on GLCM and GLRLM, which are the most common categories of features
used for the radiomic analyses. SS features are not affected by TR and TE,
but only depend on the ROI, and were therefore excluded from the analysis.
In total, 58 features were considered.

Three different intensity standardization algorithms were tested: his-
togram stretching, Z-score normalization, and histogram matching. These
techniques were chosen because are widely known and have already been
used as a preprocessing step in MRI studies [103–105].

Histogram stretching consists in a linear mapping of an intensity range
[IMin; IMax], which is image-specific, to a new intensity range [INewMin;
INewMax], which is defined by the user and that is independent on the par-
ticular image. The mapping is performed according to the following equa-
tion [103]:

INorm = (I − IMin)
INewMax − INewMin

IMax − IMin

+ INewMin (3.2)

where I is the original intensity value of a specific voxel and INorm is
the same intensity after the normalization. The value IMin and IMax do not
need to be the maximum and minimum, but just a low and high intensity
reference. For the experiment, IMin and IMax were actually defined as the
quantiles 0.02 and 0.98 of the distribution of intensity. These quantiles were
used because they are less sensitive to image noise compared to maximum
and minimum. Values of INewMin and INewMax were set to 0 and 5000
respectively. This range was chosen so that it was larger than any other
range of intensities observed for the MRI images, in order not to cause any
loss of information due to quantization.

Z-score normalization (the deafault method in Pyradiomics) is another
linear intensity normalization technique which consist in standardizing the
distribution of grey values in the MRI image by subtracting the mean µ and
dividing by the standard deviation σ [105]:
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3.2. Materials and methods

INorm =
I − µ
σ

(3.3)

Histogram matching is a standardization techniques that consist in non-
linearly changing the grey values so that the histogram of the MRI image of
interest is made as close as possible to the one of a reference MRI image.
The detailed algorithm for histogram matching is described in [24]. In this
experiment, the histogram of the MRI displayed in Figure 3.3 was used as
the reference histogram.

Radiomic features were extracted for the 3 rectangular ROIs and for all
the same acquisitions of the phantom. This latter operation was performed
4 times, one for the original DS1 dataset and the other 3 for intensity-
standardized version of DS1 (one for each algorithm). By performing
stability analyses on all the datasets, it was possible to obtain 3 different
n-by-4 matrix of ICCs, one for each category of feature (FOS, GLCM and
GLRLM). In each of the matrix, the columns represented the arrays of ICCs
obtained with the 4 different standardization techniques (no standardiza-
tion, histogram stretching, histogram matching and Z-score).

In order to evaluate the presence of significant differences on features
stability due to the method of intensity standardization, a Friedman test was
applied to each ICC matrix. In order to evaluate which groups presented
significant differences between each other, post-hoc comparisons with two-
sided Wilcoxon signe-rank tests and Tukey-Kramer correction for multiple
testing were performed.

3.2.6 Effect of intensity standardization on features stability

The purpose of this analysis was to identify whether intensity standardiza-
tion could increase the stability of radiomic features to changes in TR/TE
[93]. The analysis was performed on both T1w and T2w MRI of the DS1
dataset using the ROIs of the ROI-bio set. FOS and all the textural features
were used for this analysis, for a total of 93 features.

In order to evaluate the effect of intensity standardization of features
stability to TR/TE variations, radiomic features were extracted for the 9
ROIs of the ROI-bio set, using both a standardized and a non-standardized
version of the DS1 dataset. The method that was chosen as the best based
on the previous analysis (Subsection 3.2.5) was used for intensity standard-
ization. At the end of the analyses, 4 different n-by-2 ICC matrices were
obtained, one for each combination of features category (FOS, and textural)
and image sequence (T1w and T2w).

In order to statistically evaluate the improvement on features stability
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Chapter 3. Stability analyses on a virtual phantom

due to the intensity standardization, a two-sided Wilcoxon signed rank test
was applied to each ICC matrix.

3.2.7 Effect of voxel size resampling on features stability

The purpose of the analysis performed on DS2 was to understand whether
voxel size resampling to a common isotropic resolution could be used to
increase the stability to differences in pixel spacing and slice thickness [93].
Figure 3.4 shows and example of T2w images from the DS2 dataset.

Figure 3.4: Axial slice of a T2-weighted image of DS2. A) high resolution image. B) Low
resolution image.

In total, 107 features belonging to FOS, textural and shape and size cat-
egories were extracted from each of the 9 ROIs of the ROI-bio set, and for
each image type (T1w or T2w). Features were extracted before and af-
ter resampling the voxel size to an isotropic resolution of 1 mm. B-spline
interpolation was used to resample the images.

At the end of the analysis, 6 different n-by-2 ICC matrices were ob-
tained, one for each combination of features category (FOS, textural, shape
and size) and image sequence (T1w and T2w), and a two-sided Wilcoxon
signed-rank test was applied to each matrix, to highlight statistically signif-
icant differences between ICC values before and after the resampling.

3.2.8 Effect of image denoising on features stability

Since the presence of random image noise may reduce the stability of ra-
diomic features, dataset DS3 was used to investigate whether image fil-
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tering could be used to increase the stability of radiomic features to such
noise [93]. Examples of noisy images in DS3 are illustrated in Figure 3.5.

Figure 3.5: Examples of nosiy MRI images from DS3 (noise level 9%). A) T1-weighted
image. B) T2-weighted image.

For this analysis, the same features set described in Subsection 3.2.6
was used, since image noise is not supposed to influence the shape features.
The ROI-bio set was used for the extraction. Features extraction and ICC
computation were performed twice (before and after the filtering). The
denoising of the images was performed by a 3D Gaussian filter 3x3x3 voxel
kernel and σ = 0.5 obtained by the imgaussfilt3 MATLAB function.

At the end of the analysis, 4 different n-by-2 ICC matrices were ob-
tained, one for each combination of features category (FOS, textural) and
image sequence (T1w and T2w), and a two-sided Wilcoxon signed-rank
test was applied to each matrix, to highlight statistically significant differ-
ences in the ICC due to Gaussian filtering.

3.2.9 Effect of bias field correction on features stability

The analysis performed on DS4 was used to investigate whether bias field
correction could be used to increase the stability of radiomic features to
INU caused by magnetic field inhomogeneities [93]. Example of images
with inhomogeneity fields are reported in Figure 3.6.

For this analysis, the features set described in Subsection 3.2.6 was used,
and the features were extracted from the ROI of the ROI-bio. Features
extraction and ICC computation were performed twice (before and after the
correction). The bias field correction was performed using N4ITK [106].
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Chapter 3. Stability analyses on a virtual phantom

Figure 3.6: Example of T1-weighted MRI images with the addition of intensity non-
uniformities (INU). The INU level was set to 40% of the brightest tissue. A) Reference
image without non-uniformities. B-C-D) Same T1-weighted MRI with different non-
uniformity fields.

N4ITK is an improvement of the popular N3 algorithm for inhomogeneity
correction [107] and it has been implemented using ITK framework [108].

At the end of the analysis, 4 different n-by-2 ICC matrices were obtained
and a two-sided Wilcoxon signed-rank test was applied to each matrix, to
statistically evaluate the effect of bias field correction in each category of
features and for each image sequence.

3.2.10 Stable features identification

The purpose of the analysis performed on DS5 was to investigate which
features are stable enough to be used even in situation in which the image
acquisition parameters may vary.

The set of 1072 radiomic features (536 per image type) used for this
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3.3. Results

analyses included the shape and size features, the FOS and some of the
textural features (GLCM and GLRLM based), computed for both the orig-
inal image and the wavelet transforms. These categories of features were
also the ones considered for the following chapters. The choice of this fea-
tures set is due to the fact that they are included in almost all the software
used for radiomic features extraction and so signature obtained with such
features could be easily reproduced.

Images of DS5 were acquired with random combination of image ac-
quisition parameters withing the range that can be encountered in the clin-
ical practice, and to reduce the imaging related variability the images were
preprocessed with the best combination of preprocessing steps, defined ac-
cording to the results of subsections 3.2.5-3.2.9. Radiomic features were
extracted from such preprocessed images. The ROIs of the ROI-bio set
were used.

After the stability analyses it was possible to obtain a value of ICC for
each feature and to classify it in stable (ICC>0.75) or unstable.

3.3 Results

3.3.1 Identification of the best intensity standardization algorithm

The boxplots in Figure 3.7 present the values of ICC for the different fea-
tures classes, grouped by type of intensity standardization algorithm used.
Asterisk and triangles represent significantly increases or decreases com-
pared to the baseline situation (no intensity standardization).From Figure
3.7A it can be seen that all the intensity standardization algorithm signif-
icantly improved the stability of the FOS features (p=8.12*10-6 for Fried-
man Test, p<0.02 in corrected post-hoc comparisons). Histogram matching
showed a higher median values but the difference with the other standard-
ization algorithm was non significant (p>0.16 in post-hoc comparisons).
From Figure 3.7B-C it can be seen that the intensity standardization had a
lower effect on the stability of textural features. However, histogram match-
ing, caused a small but sistematic reduction (p=8.36*10-9 in corrected post-
hoc comparisons) in the values of ICCs for GLCM features.

From these results it is clear how intensity standardization plays an im-
portant role in increasing the stability of FOS features. Also, histogram
matching reduced the stability of GLCM features and therefore should be
excluded from future analyses. The other two methods were equivalent. In
the following analyses, Z-score was used since it is the default method for
intensity standardization in Pyradiomics. This also helps increasing the re-
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Chapter 3. Stability analyses on a virtual phantom

producibility of the stability analyses shown in this and in the next chapters.

3.3.2 Effect of intensity standardization on features stability

Figure 3.8 shows the boxplots (grouped by features category and image
type) with the values of ICC for the features extracted from the origi-
nal and standardized images (light and dark blue boxplots respectively).
FOS features extracted from the ROI-bio set were more stable compared
to the features extracted from the ROI-rect set used in the previous exper-
iment. As a matter of fact, almost all the values of ICC computed were
above the threshold of 0.75 (dashed black line in Figure 3.8A). The effect
of intensity standardization however was the same: Z-score normalization
caused a significant increase in FOS features stability (T1w: median in-
crease 0.09 [0.06-0.11], p = 7.37*10-4; T2w: median increase 0.11 [0.05-
0.14], p=8.44*10-3). Intensity standardization also caused a significant de-
crease in stability to variations of TR/TE for the textural features (T1w:
median decrease 5.00*10-4 [2.30*10-5-1.50*10-3], p=3.67*10-7; T2w: me-
dian decrease 1.40*10-4 [3.21 *10-5-1.66*10-3], p=1.93*10-11). However,
the reduction in stability was very small and there was no change in the
number of unstable features.

3.3.3 Effect of voxel size resampling on features stability

Figure 3.9 shows boxplots representing the values of ICCs of the features
obtained when the same phantom was acquired with different voxel sizes.
Values are shown for both T1w and T2w MRI, and for both original and
isotropically resampled images. It can be seen that heterogeneity in voxel
size reduced the values of ICCs of textural features in particular, with al-
most all being below 0.75. SS and FOS features were also affected but most
of the values of ICCs were above 0.75.
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Figure 3.7: Boxplots showing the values of Intra-class Correlation Coefficient (ICC)
quantifying stability to variations in Time of Repetition (TR) and Time of Echo (TE) for
the different features categories and intensity standardization algorithms. Significant
improvements in stability compared to the original images are marked with asterisks,
while significant reductions are marked in triangles. A) First Order Statistics (FOS)
features. B) Textural features based on Grey Level Co-occurrence Matrix (GLCM). C)
Textural features based on Grey Level Run Length Matrix (GLRLM). The dashed line
represent the threshold of ICC=0.75

From Figure 3.9A it can be seen that harmonizing the voxel size signif-
icantly improves the stability of the extracted features (T1w/T2w: median
increase 0.02 [2.20*10-3-0.09], p = 1.22*10-4), for which the values of ICC
went back to 1. Resampling to uniform resolution also increased the sta-
bility of and textural features in both T1w and T2w MRI (Figure 3.9C).
The effect was statistically significant only for T1w MRI (median increase
0.14 [0.01-0.28], p = 1.87*10-7) but not in T2w MRI (median increase 0.01
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Figure 3.8: Boxplots showing the values of Intra-class Correlation Coefficient (ICC)
quantifying stability to variations in Time of Repetition (TR) and Time of Echo (TE) for
the different features categories and image types. Significant improvements due to Z-
score normalization are marked with asterisks, while significant reduction are marked
in triangles. A) First Order Statistics (FOS) features. B) Textural features. The dashed
line represent the threshold of ICC=0.75.

Figure 3.9: Boxplots showing the values of Intra-class Correlation Coefficient (ICC)
quantifying stability to variations in voxel size for the different features categories and
image types. Significant improvements in stability due to resampling to uniform voxel
size are marked with asterisks. A) Shape and Size (SS) features. B) First Order Statis-
tics (FOS). C) Textural features. The dashed line represent the threshold of ICC=0.75.
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[-0.11 to 0.18], p = 0.17). As seen in Figure 3.9B, stability of FOS features
is not improved by resampling (T1w median increase -0.01 [-0.03 to 0.01],
p = 0.21; T2w median increase -0.03 [-0.04 to 0.01], p = 0.29)

3.3.4 Effect of image denoising on features stability

Figure 3.10 shows boxplots representing the values of ICC of the features
when the same phantom is acquired with different random noise. Values are
shown for both T1w and T2w images, and for both original and Gaussian
filtered images.

From Figure 3.10 it can be seen that noise did not have much effect
on the stability of radiomic features. In fact, most of the features were
above the threshold of stability even before denoising. Gaussian filtering
caused a small but significant increase in ICC for both FOS (T1w: median
increase 7.76*10-4 [4.32*10-6-4.50*10-3], p = 1.96*10-4; T2w: median in-
crease 1.84*10-4 [5.80*10-6-7.90*10-3], p = 3.26*10-4) and textural features
(T1w: median increase 7.70*10-3 [5.17*10-5-0.03], p = 8.53*10-6; T2w:
median increase 2.10*10-3 [-1.00*10-3 to 9.30*10-3], p = 0.03).

3.3.5 Effect of bias field correction on features stability

Figure 3.11 shows boxplots representing the values of ICC of the fea-
tures when the same phantom was acquired with different intensity non-
uniformity fields. Values are shown for both T1w and T2w images, and
before and after the application of bias-field correction.

From Figure 3.11 it can be seen that the majority of features were above
the threshold of stability. In both T1w and T2w MRI, the non-uniformity
correction significantly increased ICC values of both FOS (T1w: median
increase 0.09 [6.40*10-3-0.18], p = 5.35*10-4; T2w: median increase 7.40*10-3

[5.50*10-3-0.02], p = 1.96*10-4) textural features (T1w: median increase
0.05 [0.02-0.15], p = 3.38*10-11; T2w: median increase 0.01 [4.90*10-3-
0.04], p = 2.48*10-11).

3.3.6 Stable features identification

After the images of the DS5 underwent the best preprocessing pipeline
(Gaussian filtering, bias-field correction, resampling and intensity standard-
ization, in this order), an ICC was computed for each features and was used
to classify the images in stable or unstable. Figure 3.12 show some pie
charts displaying the proportions of stable and unstable features (in blue
and orange respectively). It is possible to see that, for both image types,

71



i
i

“output” — 2020/6/10 — 18:25 — page 72 — #84 i
i

i
i

i
i

Chapter 3. Stability analyses on a virtual phantom

Figure 3.10: Boxplots showing the values of Intra-class Correlation Coefficient (ICC)
quantifying stability to image noise for the different features categories and image
types. Significant improvements in stability due to Gaussian filtering are marked with
asterisks. A) First Order Statistics (FOS). B) Textural features. The dashed line repre-
sent the threshold of ICC=0.75.

Figure 3.11: Boxplots showing the values of Intra-class Correlation Coefficient (ICC)
quantifying stability to intensity non-uniformities for the different features categories
and image types. Significant improvements in stability due to N4ITK algorithm are
marked with asterisks. A) First Order Statistics (FOS). B) Textural features. The
dashed line represent the threshold of ICC=0.75.
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only around half of the 536 radiomic features was considered stable (49.63
% and 52.99 % for T1w and T2w respectively).

Figure 3.12: Pie charts showing the proportion of stable radiomic features for T1-
weighted and T2-weighted images.

Figure 3.13 represents the same stable features, grouped by features
class. From the figure it is possible to notice how SS features were the
one with the best stability since all of them were selected. FOS features
also showed good stability properties, with 15 out of 18 features (83.33 %)
being classified as stable for both T1w and T2w images. The proportion
of stable textural features, although lower compared to FOS or SS, is still
high, with better results for T1w images compared to T2w images (31 and
26 features respectively). Wavelet are the features with the worst proper-
ties, with less than half of them being classified as stable (38.43 % and
42.72 % for T1w and T2w respectively).

3.4 Discussion

The goal of the analyses performed on the virtual phantom was to under-
stand whether and how much image preprocessing could help in increasing
the stability of radiomic features (quantified by ICC) to variations in quanti-
tative image acquisition parameters (TR, TE, voxel size) or to other random
sources of variability (image noise or magnetic field non-uniformities).
Looking at the results presented in Subsections 3.3.2-3.3.5, it is possible
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Figure 3.13: Pie charts showing the proportion of stable radiomic features for T1-
weighted and T2-weighted images, divided by class of features.
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to see how image preprocessing improved the stability of at least one cate-
gory of radiomic features.

Changes in TR/TE were observed to produce differences in radiomic
features especially in case of FOS features. It was found that intensity
standardization improves the stability of FOS radiomic features to changes
in signal intensity due to variations in TR/TE. In Subsection 3.3.1 the im-
provement was observed when using any of the 3 main intensity standard-
ization algorithm (histogram matching, histogram stretching and Z-score).
That result seems to suggest that that even studies involving different in-
tensity standardization algorithm (such as [103–105]) can be comparable.
However it is worth noting that histogram matching cause a low but signif-
icant reduction in the stability of GLCM-based features and should maybe
be avoided in future studies.

Differences in voxel size may affect the stability of radiomic features,
especially for textural features, as shown in Subsection 3.3.3. Our results
confirmed what was previously found in literature on different phantom
and non-phantom studies in CT and PET [16, 84, 85, 109, 110]. We found
that resampling to a common resolution improves the stability to variations
in voxel size. This effect was significant for shape and size features, but
there an effect on textural features, although not always significant, was
observed as well. The positive effect on stability provided by voxel size
resampling that was found in this study is in agreement with other studies
of literature [16, 84, 85].

From the results observed in Subsection 3.3.4, it seems that Gaussian
noise has little effect on the stability of radiomic features. This observations
were in apparent contrast with what is observed in other studies of literature
[111]. This may depend on the fact that larger ROIs were used in this study
compared to [111], which may contribute to reduce the effect of noise.
However, the increase in stability of the features due to smoothing is in
agreement with what has been found in other studies of literature [112].

To the knowledge of the authors, stability to INU has not been evaluated
in literature. In this study it was found that INU may reduce radiomic
features stability, especially for T1w MRI, and that bias field correction
may increase the ICC to values that are close to 1. This is particularly
important because INU are often present in MRI images and having a way
to successfully deal with this type of artifacts is a necessary step prior to
any quantitative image analysis.

Based on the results of Subsections 3.3.2-3.3.5 it is clear how the op-
timal preprocessing method should include all the four analyzed step. In
Subsection 3.3.6, stability of radiomic features was evaluated for images
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acquired with random acquisition conditions after they underwent optimal
preprocessing, and the proportion of stable radiomic features was calcu-
lated. The knowledge of stable and unstable features is important because
it is a first criteria that could be used to guide features selection.

Although some other studies investigated stability of radiomic features
to changes in MRI acquisition parameters, to the knowledge of the authors,
the collection of studies presented in this chapter was the most exhaustive
and it was also the first one to quantitatively observe the effect of image
preprocessing on radiomic features stability. Another advantage of the pre-
sented studies is that the experiments were performed using a virtual sim-
ulator (BrainWeb) that is freely available online. Therefore, the presented
results are completely reproducible.

The presented studies are not exempt from limitations. One limitation is
the fact that the custom MRI simulation was performed only on one phan-
tom, in one district (the brain) and without considering pathological tissue.
These limitations can be partially addressed. Since many different tissues
were considered for the stability analyses that were performed, it is rea-
sonable that the results on features stability can be translated also to other
district of the body and to pathological tissues, even though this assumption
has to be verified in future studies.

Another limitation is related to the fact that BrainWeb does not allow to
study the behaviour of other type of MRI images, such as contrast enhanced
or ADC images. However, we assume that image preprocessing, when
applicable, will lead to the same positive results.

Another limitation is the fact that, by using BrainWeb, it was not possi-
ble to evaluate the effect of preprocessing on harmonizing the differences
due to systematic source of variability, such as MRI scanner, which are
known to have an effect on the radiomic features [84, 113, 114].

The presented method provides a first example of using stability to per-
form an preliminary features selection. However, the knowledge of how
image acquisition parameters affect the radiomic features may be used al-
ternatively. A recent work [115] suggested the possibility to use the in-
formation of condition-dependency of the features for data augmentation
instead of feature selection, avoiding possible information loss due to the
removal of some features. Side studies are used to estimate the parameters
of the noise distributions that allow the generation of the augmented data
and BrainWeb could be an optimal framework to perform such side studies,
at least for as far as T1w and T2w MRI are concerned. The combination
of BrainWeb-based studies and data augmentation could definitely be an
interesting future development for studies of MRI radiomics.
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3.4. Discussion

In conclusion, with the experiments presented in this chapter it was pos-
sible to show that applying a correct preprocessing to MRI images helps
increasing the radiomic features stability even when the images are ac-
quired in different conditions. The preprocessing techniques analyzed in
the chapter will therefore be used as a part of the workflow to develop the
radiomic-based prognostic signature for survival analysis.
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CHAPTER4
Stability analyses for segmentation

uncertainties

This chapter describes the experiments performed to evaluate the stability
of radiomic features to variations in the ROI. The analysis was performed
separately on both STS and HNC. In particular, stability to multiple seg-
mentations and geometrical transformations of the ROI are evaluated as
possible sources of variability. The possibility to infer the results of mul-
tiple segmentations by ROI geometrical manipulation was also evaluated.
For each type of cancer, a set of features stable to ROI variability was iden-
tified. Last, the two sets of stable features were intersected with the one
identified in Chapter 3 to define the final lists of features to be used for the
future analyses.

4.1 Introduction

In the previous chapter the stability of radiomic features to variation in im-
age acquisition conditions have been investigated through experiments on
virtual MRIs. However, another source of variability may be encountered
after the image acquisition and it is related to the variability in the ROI seg-
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Chapter 4. Stability analyses for segmentation uncertainties

mentation that is used to define the mask to extract the features. As a matter
of fact, tumor segmentation is a process that is typically performed manu-
ally or semi-automatically and this leads to uncertainty in the segmentation
that eventually leads to uncertainties in the radiomic features [14].

The problem of ROI uncertainties is well known. Previous studies of
literature investigated this issue by using ICC to evaluate the stability of
radiomic features to multiple segmentations, performed by either one or
multiple radiologist [5, 116, 117] also using the information to perform a
preliminary feature selection. This is the most intuitive solution, but of-
ten unrealistic as the production of multiple segmentations by more than
one radiologist is very time consuming procedure which subtracts time to
the clinical routine and is typically not performed. Semi-automatic or au-
tomatic segmentation methods may reduce this variability [15], but such
methods are designed for specific body district and they are not available
for all the cases.

Another method to evaluate the stability of radiomic features to ROI un-
certainties is to use geometrical perturbation of the ROIs [118–121], which
is an attempt to mimic the effect of multiple segmentations without spend-
ing time to perform them. Such type of perturbation can also be used to
mimic the misalignment of the ROI that may happen due to bad image reg-
istration in multi-modality imaging studies.

In this chapter, a stability analysis to both multiple segmentation and
ROI geometrical transformation was performed. The purpose of the analy-
sis is to identify a set of stable features to ROI uncertainties. Such set is then
intersected with the set of stable features identified with the experiments of
virtual phantom in Chapter 3 to define the final set of features to be used for
the following analyses. Also, the possibility of using ROI transformation
(which is fast and semi-automatic) as a surrogate of multiple segmentations
(which is time-consuming) in stability analyses will be investigated

Also, a comparison of multiple segmentations and ROI perturbations,
was performed to try to compare the two types of test, to understand if the
latter method (that can be automatized and need only one set of ROI), can
be used to infer the results of the former (which is more time consuming).

4.2 Materials and methods

4.2.1 Image dataset

Two different image datasets were used for this experiment, one for each of
the types of cancer that were investigated for this thesis (HNC and STS).
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4.2. Materials and methods

The first dataset (called HNC dataset from now on) was made up of
MRI images from 15 different patients affected by HNC, scanned at Isti-
tuto Nazionale dei Tumori in Milan, Italy (INT). MRI images include T1w
and T2w images, as well as ADC maps (Figure 4.1). ADC images were
obtained as described in Subsection 2.3.4 by fitting an exponential decay
on DWI images acquired with different b-values in the range of 0-1000
s/mm2. Details on the image acquisition parameters for the HNC dataset
are reported in Table 4.1.

The second dataset (called STS dataset from now on) included MRI im-
ages from 15 different patients affected by STS, scanned at INT. The same
MRI sequences used for the HNC dataset were considered (see examples in
Figure 4.2). ADC images were obtained as described in Subsection 2.3.4
by fitting an exponential decay on DWI images acquired with different b-
values in the range of 0-1000 s/mm2. Details on the image acquisition
parameters for the STS dataset are reported in Table 4.2.

4.2.2 Regions of interest

For the images of the HNC and STS datasets, the main tumor was manually
segmented by two radiologist from INT, with at least 10 years of experience
each. Each radiologist performed his/her own segmentation on the T2w im-
ages. T2w images were used because the tumor can be easily distinguished
from the surrounding tissue. All the segmentations were performed using
the open source software 3D slicer [97]. Figure 4.3A displays an example
of double segmentation of the same tumor performed by the two radiolo-
gists.

Another set of ROIs was obtained by applying geometrical transforma-
tions to the segmentation performed by the most expert radiologist of the
two. ROIs were translated positively and negatively in both x and y direc-
tions (in-plane directions) as done in previous experiments on ADC images
from our research group [119, 120]. In particular, translations of 10 % of
the length of the bounding box of the tumor were considered, which is a
value similar or higher compared to the one obtainable with multiple seg-
mentation (compare Figures 4.3A and 4.3B). Only translations were con-
sidered, because they were found out to be the transformations that cause
larger changes in the radiomic features [67, 120]. For each patients, 5 dif-
ferent ROIs were available (the original segmentation and the 4 translated
versions).
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Chapter 4. Stability analyses for segmentation uncertainties

Figure 4.1: Images from a sample patient of the head and neck cancer (HNC) dataset. In
every image, the tumor mass is pointed by a yellow arrow. A) T1-weighted image. B)
T2-weighted image. C) Apparent diffusion coefficient map.

HNC DATASET ACQUISITION PARAMETERS

Image sequence T1w T2w ADC

Scanner Siemens Avanto Siemens Avanto Siemens Avanto

Number of images 15 15 15

Pulse sequence Spin-echo Spin-echo Echo-planar

Magnetic field 1.5 T 1.5 T 1.5 T

Time of repetition 359-650 ms 2950-7400 ms 3271-10127 ms

Time of echo 9-15 ms 75-124 ms 63-93 ms

Slice thickness 3-5 mm 3-5 mm 3-5 mm

Slice spacing 3.3-6.0 mm 3.3-6.0 mm 3.3-6.0 mm

Pixel spacing 0.31-0.90 mm 0.26-0.82 mm 0.94-2.18 mm

Table 4.1: Synthetic description of the head and neck cancer (HNC) dataset. Parameters
are shown by image sequence: T1-weighted (T1w), T2-weighted (T2w) and apparent
diffusion coefficient maps (ADC).
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4.2. Materials and methods

Figure 4.2: Images from a sample patient of the soft tissue sarcoma (STS) dataset. In
every image, the tumor mass is pointed by a yellow arrow. A) T1-weighted image. B)
T2-weighted image. C) Apparent diffusion coefficient map.

STS DATASET ACQUISITION PARAMETERS

Image sequence T1w T2w ADC

Scanner Philips Achieva Philips Achieva Philips Achieva

Number of images 15 15 15

Pulse sequence Spin-echo Spin-echo Echo-planar

Magnetic field 1.5 T 1.5 T 1.5 T

Time of repetition 497-746 ms 3000-5065 ms 5400-8011 ms

Time of echo 7-10 ms 80-132 ms 64-85 ms

Slice thickness 4-5 mm 4-5 mm 4-5 mm

Slice spacing 4.4-6.0 mm 4.4-6.0 mm 4.4-6.0 mm

Pixel spacing 0.38-1.02 mm 0.35-1.22 mm 1.34-2.08 mm

Table 4.2: Synthetic description of the soft tissue sarcoma (STS) dataset. Parameters
are shown by image sequence: T1-weighted (T1w), T2-weighted (T2w) and apparent
diffusion coefficient maps (ADC).
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Chapter 4. Stability analyses for segmentation uncertainties

Figure 4.3: Examples of modified regions of interests used for the radiomic stability anal-
ysis. A) T1-weighted image in which the tumor has been segmented by two radiologist.
B) Apparent diffusion coefficient map in which the segmentation has been translated
10% of the bounding box.

4.2.3 Image preprocessing

For T1w and T2w images, the optimized preprocessing defined in Chapter
3 was applied. First, a 3D Gaussian filter with a 3x3x3 voxel kernel and
σ = 0.5 was used to denoise the images. Then, the N4ITK algorithm [106]
was used for the correction of intensity-non uniformity. After that, intensity
standardization (Z-score) and voxel size resampling (with B-spline inter-
polation) were performed directly from Pyradiomics. The voxel size was
resampled to isotropic resolution of 2 mm. The value of 2 mm was used
instead of 1 mm (as in Chapter 3) for reasons of computational complexity
during the calculation of radiomic features. In fact, some images of the
STS dataset are very large in terms of field of view and the use of 1 mm
resolution led to large 3D matrices and excessive memory requirements.
The resolution of 2 mm was used in other studies of literature with good
results [122], so resolution was assumed to be sufficient to avoid the loss
of important information. This value of resolution was also used for all the
analyses of the next chapters.

ADC had a different preprocessing compared to T1w and T2w images.
Intensity standardization and inhomogeneity correction were not performed
on ADC maps, because the intensities in ADC maps represent a physical
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4.2. Materials and methods

quantity and have been shown to be consistent among acquisitions, pro-
vided some conditions, like long enough TR, same range of b-values and
same magnetic field strength [62, 63, 123]. Prior to features extraction, in-
tensity values were windowed between 0 and 4000*10-6 mm2/s, in order
to remove non-physiological values due to image noise in the DWI used to
fit the ADC maps. Inhomogeneity correction was not performed because,
even if inhomogeneities may be present in the original DWIs, ADC im-
ages depend on the difference in the DWI signal intensities and systematic
differences do not affect them.

4.2.4 Radiomic features extraction

A set of 536 features were extracted for each image type (T1w, T2w and
ADC) for a total of 1608 features. Detail of features categories and features
extraction parameters were described in Subsections 3.2.3 and 3.2.10.

4.2.5 Stability analysis for ROI uncertainties

The general workflow of the stability analysis for uncertainties in the ROI
is presented in Figure 4.4. Two separate tests were performed in parallel:
multiple segmentations and ROI geometrical transformation.

In both tests, radiomic features were extracted from each tumor, using
all the ROIs available (2 in the multiple segmentation test and 5 in the ROI
translation test). At the end of each test, a n-by-m matrix was available for
each feature, where n is the number of patients and m is the number of ROI
used for the features extraction of each patient. From such matrices it was
possible to compute two arrays of ICCs (one for each test) and identify the
stable features (ICC>0.75). Features that passed both tests were considered
stable to uncertainties of the ROI.

Two separate stability analyses like the one previously described were
performed for the images of HNC and STS dataset, because the stability of
radiomic features to ROI uncertainties may be district dependent [120,124].

4.2.6 Comparison of multiple segmentation and ROI transformations

The stable features sets obtained by the two tests (multiple segmentations
and ROI geometrical transformations) were compared. Pearson correla-
tion coefficients and scatter plots were used to evaluate correlation between
ICCs of corresponding features in the two tests. Also, a confusion matrix
was computed for both the STS and HNC datasets, in order to understand
if one test was more restrictive than the other.
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Chapter 4. Stability analyses for segmentation uncertainties

Figure 4.4: Workflow of the analysis of stability of radiomic features to segmentation
uncertainties. Features with Intra-class Correlation Coefficient (ICC) higher than 0.75
in both tests were considered stable. The analysis was performed separately for Head
and Neck Cancer (HNC) and Soft Tissue Sarcomas (STS) dataset.
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4.3. Results

4.2.7 Definition of the final stable features set

The final set of radiomic features to be used for an optimal radiomic anal-
yses should be stable to both uncertainties in the ROI and variations in the
image acquisition conditions. Therefore, for each image type and body dis-
trict, the intersection with the stable features set obtained from Chapter 3
was performed.

BrainWeb does not allow to simulated DWI and ADC images and so
those type of images could not be used for the stability analyses in Chapter
3. In general ADC images should be more stable compared to T1w and
T2w images, because they are less effected by changes in TR/TE and inho-
mogeneities in the magnetic fields [62,63,123], so it is reasonable to expect
a higher number of stable features. However, to go towards safety, only the
features that were stable for both T1w and T2w images (n=229) were used
as a surrogate of a stable features set for ADC.

4.3 Results

4.3.1 Stability analysis for ROI uncertainties

Figures 4.5-4.6 display the proportion of radiomic features that was found
stable to variations in the ROI due to both multiple segmentation and geo-
metrical transformations, for the HNC and STS dataset respectively. Fig-
ures 4.7-4.8 show analogous results divided by class of features.

The pie charts in Figures 4.5-4.6 show that the T1w-based features tend
to be less stable to variation in the ROI compared to T2w and ADC images
and this was true for both the STS and HNC dataset, even if the difference
is less evident in STS. It can be also observed that the number of stable
features was higher for the STS dataset compared to the HNC dataset, in-
dependently on the type of MRI considered.

By looking at the different classes of features (Figures 4.7-4.8) it is pos-
sible to see that in general, SS features are the most stable features, while
for the other features classes there is no clear ranking based on stability.

4.3.2 Comparison of multiple segmentation and ROI transformations

Figure 4.9 shows the scatter plots of the ICC of the two tests for both HNC
and STS datasets. It is possible to see that there is a significant (p<10-263)
correlation between the two metrics (Pearson correlation coefficient 0.73
and 0.81 for the HNC and STS respectively). The concordance between
the two types of tests can also be appreciated by looking at the confusion
matrices in Figure 4.10.
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Chapter 4. Stability analyses for segmentation uncertainties

Figure 4.5: Pie charts displaying the proportions of features stable to uncertainties in
the Region Of Interest (ROI) in the Head and Neck Cancer (HNC) dataset. Results are
grouped by type of MRI images: T1-weighted, T2-weighted and Apparent Diffusion
coefficient (ADC) maps.

4.3.3 Definition of the final stable features set

The total number of features stable to image acquisition parameters was
779 (266 T1w, 284 T2w and 229 surrogates features for ADC). When in-
tersecting these 779 features with the features that were considered stable
for variations in the ROIs (701 and 1057 for HNC and STS datasets respec-
tively), the final features sets were obtained. The numbers of features that
were stable to both imaging-related variability and ROI-related variability
were 410 and 617 for the HNC and STS datasets respectively. This is de-
picted in Figures 4.11-4.12, which also shows the distributions by image
type. The full list of features can be found in appendix A.

4.4 Discussion

The experiment presented in this chapter gave some insight on the stabil-
ity of radiomic features to different types of uncertainties in the ROI. In
particular, multiple segmentations and ROI translations were considered.

By looking at the results of Subsection 4.3.1 it may be inferred that
stability is district dependent, as it was found in previous studies of litera-
ture [120, 124]. In the context of multiple segmentations and ROI manip-
ulation, the observed difference in the values of ICC between tumor sites
may be explained in two ways: HNC are more difficult to see and segment
compared to STS and therefore higher inter-reader variability is expected;
STS are larger than HNC and so when similar perturbation are applied to
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4.4. Discussion

Figure 4.6: Pie charts displaying the proportions of features stable to uncertainties in the
Region Of Interest (ROI) in the Soft Tissue Sarcoma (STS) dataset. Results are grouped
by type of MRI images: T1-weighted, T2-weighted and Apparent Diffusion coefficient
(ADC) maps.

the ROI, the percentage of the ROI that is affected by the variation is lower.
Another finding of the experiment was the dependence of stability to

the particular imaging sequence considered. In particular, T1w features
presented a lower stability to ROI uncertainties compared to T2w and ADC
images. Such difference in stability among the different imaging sequences
was also reported in other studies of literature [125]. The phenomenon
may be explained by reasoning on the ICC metric. The ICC involves the
ratio between a a patient-related variability (MSR in Equation 3.1) in and
a condition-related variability (MSC in Equation 3.1). In T2w and ADC
images the heterogeneity of the tissues can be better appreciated compared
to T1w images. Therefore, in T2w and ADC the patient-related variability
is higher and consequently the values of ICC are higher when the same
entity of ROI-related variability is applied.

By looking at the scatter plots in Figure 4.9 it is possible to see how the
ICC for the two tests were correlated. This is reasonable since both tests
deal with small modifications of the ROIs. The correlation coefficients were
0.73 and 0.81 which means that one test explains around 50-65 % of the
variability observed in the other test. Also, by looking at Figure 4.10 it can
be seen that when it comes to select the stable features, only a minority of
features (around 4-5 %) that resulted stable to the ROI transformation test
was unstable to the multiple segmentation test. Therefore, this could be the
proof that, when it comes to select a set of stable features, ROI geometrical
transformation may be used as a good surrogate of multiple segmentation,
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Chapter 4. Stability analyses for segmentation uncertainties

Figure 4.7: Pie charts displaying the proportions of features stable to uncertainties in
the Region Of Interest (ROI) in the Head and Neck Cancer (HNC) dataset, grouped by
feature class and type of MRI image.
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4.4. Discussion

Figure 4.8: Pie charts displaying the proportions of features stable to uncertainties in
the Region Of Interest (ROI) in the Head and Neck Cancer (HNC) dataset, grouped by
feature class and type of MRI image.
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Chapter 4. Stability analyses for segmentation uncertainties

Figure 4.9: Scatter plot representing the correlation between the Intra-class Correlation
Coefficients (ICC) for the multiple segmentations and the ROI geometrical transfor-
mation tests. A) Head and neck cancers dataset. B) Soft tissue sarcomas dataset. Red
dashed line is the bisector of the first and third quadrant.

Figure 4.10: Confusion matrices with the four different combinations of features stability
for the two tests (multiple segmentations and ROI geometrical transformations). The
number in greens represents the features stable to variations of the ROI. A) Head and
neck cancer dataset. B) Soft tissue sarcoma dataset.
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4.4. Discussion

Figure 4.11: A) Intersection of the imaging-stable and ROI-stable features sets in the
Head and Neck Cancer datasets (HNC). B) Distribution of the common stable features
as a function of the image type.

Figure 4.12: A) Intersection of the imaging-stable and ROI-stable features sets in the Soft
and Tissue Sarcoma datasets (STS). B) Distribution of the common stable features as
a function of the image type.
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Chapter 4. Stability analyses for segmentation uncertainties

with an overall increase in the efficiency of the radiomic analysis (i.e. less
time spent for segmentation).

The two stability analyses presented in Chapter 3-4 were used to per-
form a first preliminary features selection, like previously done in litera-
ture [5,117]. When making an intersection between imaging-stable features
and ROI-stable features, 410 and 617 were found stable for HNC and STS
respectively. These features sets were used for the analyses in the following
chapters.

The stability based feature selection applied in the Chapters 3-4 are not
exempt from limitations. The first limitation is that no test-retest was con-
sidered, so there is no information available about the repeatability of ra-
diomic features. This was due to the fact that test-retest can be evaluated
only using a real phantom, which was not available. However, there seems
to be a correlation between the ICC for test-retest and for multiple segmen-
tations [116], and the most stable features for multiple segmentations are
also the ones with the highest test-retest repeatability. Also, test-retest vari-
ability affects has less impact on radiomic features compared to changes
in the image acquisition parameters [113]. Therefore, it is safe to assume
that the selected features set, which is stable to imaging-related variabil-
ity, will also be stable to test-retest. Another limitation is that bias in the
radiomic features due to systematic sources of variability, like in case of
acquisitions with different scanners, were not considered, even if they are
known to have a strong negative effect on stability [86, 113]. This is a lim-
itation due to the fact that batch-related variability (e.g. scanner related
variability) may be evaluated only with one or more real phantoms, which
were not available. One last limitation is that the threshold for ICC used
to define the stable features set is somehow arbitrary. When defining the
threshold of 0.75, [102] was used as a reference, but other values were used
in literature, either higher or lower [118, 121]. A low threshold removes a
lower number of features but also leads to results that are less reproducible.
A higher threshold increases the reproducibility of the results but may lead
to a larger loss of the total information contained in the original dataset and
to worse results for the prognostic models. Future studies may be required
to better understand the optimal trade-off between stability of the results
and performance of the final model.

In conclusion, the result of this chapter provided a a list of features stable
to ROI uncertainties was found, and demonstrated that most of this list
can be obtained just by using geometrical transformation of the ROI. The
results of this and Chapter 3 may help removing unstable features that will
negatively affect any radiomics-based model. The methodology is highly
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4.4. Discussion

recommended for all those situations, like multicentric studies or collection
of retrospective patients, in which the analyzed sources of variability are
present.
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CHAPTER5
Postprocessing optimization for radiomic

analysis

This chapter describes the analysis performed to optimize the postprocess-
ing for the radiomic features. The experiments were performed on a mul-
ticentric dataset of patients affected by HNC The combination of features
normalization algorithm (4 methods) and feature selection (2 pipelines) was
set in order to maximize the prognostic performance of a Cox proportional
hazard regression model for OS.

5.1 Introduction

In the context of radiomic analysis, features postprocessing refers to all
the steps that are performed on the extracted features before their used to
build the predictive or prognostic model. The focus of the experiment de-
scribed in this chapter was the optimization of a postprocessing pipeline, in
particular for features normalization and feature selection/dimensionality
reduction.

In radiomics, different approaches for features selection and dimension-
ality reduction are used, which may be divided in supervised or purely
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Chapter 5. Postprocessing optimization for radiomic analysis

unsupervised. Purely unsupervised algorithms reduce the number of fea-
tures without using any information about the endpoint that has to be pre-
dicted [126]. Those may include a-priori information based on features
stability (see Chapter 4 or [127]), reduction based on PCA (see Subsec-
tion 2.5.6 or [126]), features pairwise-correlation [122] or features clus-
tering [128]. Supervised feature selection methods use the information of
the outcome to evaluate the predictive or prognostic performance of dif-
ferent combinations of features and select the subset that maximize such
performance. Examples of supervised feature selection algorithms applied
to radiomics include the Least Absolute Shrinkage and Selection Opera-
tor (LASSO) [11], significance evaluation in univariate [5] or multivariate
Cox analysis , minimum redundancy maximum relevance [77], supervised-
PCA [129], and others (see [77,127]). Supervised feature selection methods
tend to perform better, but unsupervised method have the advantage of not
needing any label and to be less prone to overfitting when the number of
samples is low [126].

Features normalization is the operation that ensures that all the features
have the same (or similar) range of values [68]. This operation is typically
performed because having features with similar ranges is a requirements
of some non-scale invariant methodologies as k-nearest neighbors classi-
fier and PCA [68]. When those kind of models/operations are not used,
features normalization may be avoided and as a matter of fact, there are
studies in which it was not performed [5, 11]. However, even when not
strictly required, features normalization may be advised because it helps
the convergence of the optimization algorithms used in model fitting [74].
No study investigating the advantages or disadvantage of normalization for
radiomics has been proposed so far. Among the studies on radiomics that
performed features normalization, Z-score normalization [77, 103] and its
non-parametric equivalent [117] were the most used , but other methods ex-
ist [75]. A comparison of different normalization algorithms for radiomic
analysis has not been performed yet. Moreover, feature normalization may
affect the performance of the feature selection algorithms, and an analysis
trying to find the best combination of normalization and feature selection
has not been performed.

In the study presented in this chapter, the above mentioned steps of fea-
tures postprocessing were investigated. The impact of different combina-
tions of features normalization methods and feature selection/dimensional-
ity reduction algorithms on the performance of a Cox model prognostic for
OS were evaluated. The best combination that resulted from this analysis
was chosen as part of the designed pipeline for radiomic analysis.
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5.2 Materials and methods

5.2.1 Image dataset

The dataset used for this study (from now on called BD dataset) was part of
a larger database of patients with HNC collected for the European project
BD2Decide: Big Data and models for personalized Head and Neck Cancer
decision support funded through the H2020 research program [130], con-
taining clinical, genomic and imaging data of 1541 patients with advanced
HNC (stage III-IV accordin to TNM VII) from 4 different sub-sites (hy-
popharynx, larynx, oral cavity and oropharynx). Patients were acquired
from 7 different clinical centers across 3 countries (Germany, Italy and
the Netherlands): the Azienda Ospedaliero-universitaria di Parma (AOP),
in Parma, Italy; the Istituto Nazionale dei Tumori (INT), in Milan, Italy;
the Spedali Civili di Brescia (SCB), in Brescia, Italy; the Heinrich-Heine-
Universität Düsseldorf (UDUS), in Düsseldorf, Germany; the university
hospital of Ulm (ULM), in Ulm, Germany; the Maastricht Radiation Oncol-
ogy clinic (MAASTRO), in Maastricht, the Netherlands; the Vrije Univer-
siteit Medical Center (VUMC), in Amsterdam, the Netherlands. Follow-up
data (including death and cancer recurrences) were also acquired for each
patient of the dataset.

The dataset actually comprised two main subsets: one that was retro-
spectively collected (called BD-Retro from now on), containing 1086 pa-
tients, and one that was prospectively collected for the BD2Decide project
(called BD-Prosp from now on), containing 455 patients.

The dataset used in this study (called BD1 for short) included the group
of retrospective patients for the BD2Decide project, whose images satisfied
the following inclusion criteria: availability of MRI baseline examination
and availability of both T1w and T2w MRI acquired with SE or TSE pulse
sequences. In total, 262 patients from 4 different clinical centers (AOP,
INT, SCB and VUMC) were chosen. Clinical information about the pa-
tients of interest are reported in Table 5.1. Information about the image
acquired from each center are reported in Tables 5.2-5.5, where it is pos-
sible to see that most of the image acquisition parameters are in the range
defined during the experiments with Brainweb (compare with Table 3.5).
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Chapter 5. Postprocessing optimization for radiomic analysis

CLINICAL DATA (BD1 DATASET)

Number of patients 262

Age (median and IQR) 60 years [54-67]

Sex Female: 78 (30%)
Male: 184 (70%)

Stage TNM VII Stage III: 54 (21%)
Stage IV: 212 (79%)

Stage TNM VIII

Stage I: 26 (10%)
Stage II: 18 (7%)

Stage III: 79 (30%)
Stage IV: 139 (53%)

Subgroups

Hypopharynx: 14 (5%)
Larynx: 20 (8%)

Oral cavity: 126 (48%)
Oropharynx (HPV+): 71 (27%)
Oropharynx (HPV-): 31 (12%)

Treatment

Surge: 29 (11%)
Surge+Rad: 56 (21%)

Surge+Rad+Chem: 55 (21%)
Rad+Chem: 114 (44%)

Other: 7 (3%)
Unknown: 1 (<1%)

Follow-up time (median and IQR) 65 months [47-75]

Number of deaths 105 (40%)

Number of recurrences 155 (59%)

Table 5.1: Clinical and demographic characteristics of the 262 patients of the BD1
dataset. Age and follow-up time are displayed as median and inter-quartile range
(IQR).

5.2.2 Image segmentation

For each patient, the main tumor was manually segmented. Each clinical
center had his own radiologist performing the segmentation. The segmen-
tation was performed using the T2w MRI as the reference and the same
ROI was used also for T1w images (Figure 5.1). As a matter of fact, the
reference system was the same for both T1w and T2w and only small mis-
alignment between T1w and T2w are present, compatible with the ones
analyzed in Chapter 4 (compare Figure 4.3 and Figure 5.1).
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5.2. Materials and methods

BD1 IMAGING DETAILS (AOP)

Image sequence T1w T2w

Number of images 54 54

Scanner Philips Achieva Philips Achieva

Magnetic field 1.5 T 1.5 T

Pulse sequence Spin-echo Spin-echo

Time of repetition 450-984 ms 2220-9273 ms

Time of echo 7-12 ms 82-110 ms

Slice thickness 3-5 mm 3-5 mm

Slice spacing 3.4-7 mm 3.4-7 mm

Pixel spacing 0.43-0.65 mm 0.39-0.59 mm

Table 5.2: Synthetic description of the imaging acquisition parameters for patients of BD1
dataset acquired at the Azienda Ospedaliero-universitaria di Parma (AOP). Parame-
ters are shown by image sequence: T1-weighted (T1w) and T2-weighted (T2w).

BD1 IMAGING DETAILS (INT)

Image sequence T1w T2w

Number of images 182 182

Scanner Siemens Avanto Siemens Avanto

Magnetic field 1.5 T 1.5 T

Pulse sequence Spin-echo Spin-echo

Time of repetition 324-961 ms 2110-9141 ms

Time of echo 7-26 ms 80-134 ms

Slice thickness 2.7-7 mm 2.7-7 mm

Slice spacing 3.15-7.8 mm 3.3-8.05 mm

Pixel spacing 0.36-0.9 mm 0.29-0.98 mm

Table 5.3: Synthetic description of the imaging acquisition parameters for patients of BD1
dataset acquired at the Istituto Nazionale dei Tumori (INT). Parameters are shown by
image sequence: T1-weighted (T1w) and T2-weighted (T2w).
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Chapter 5. Postprocessing optimization for radiomic analysis

BD1 IMAGING DETAILS (UDUS)

Image sequence T1w T2w

Number of images 2 2

Scanner Siemens Avanto Siemens Avanto

Magnetic field 1.5 T 1.5 T

Pulse sequence Spin-echo Spin-echo

Time of repetition 573-645 ms 3400-3423 ms

Time of echo 11 ms 82 ms

Slice thickness 4 mm 4 mm

Slice spacing 4.4-4.8 mm 4.4-4.8 mm

Pixel spacing 0.38-0.63 mm 0.38-0.63 mm

Table 5.4: Synthetic description of the imaging acquisition parameters for patients of BD1
dataset acquired at the Heinrich-Heine-Universität Düsseldorf (UDUS). Parameters
are shown by image sequence: T1-weighted (T1w) and T2-weighted (T2w).

BD1 IMAGING DETAILS (VUMC)

Image sequence T1w T2w

Number of images 24 24

Scanner GE Signa HDxt GE Signa HDxt

Magnetic field 1.5 T 1.5 T

Pulse sequence Spin-echo Spin-echo

Time of repetition 440-780 ms 3440-8560 ms

Time of echo 9-17 ms 111-118 ms

Slice thickness 3-4 mm 4 mm

Slice spacing 3.3-4.4 mm 4.4-4.8 mm

Pixel spacing 0.45-0.59 mm 0.38-0.63 mm

Table 5.5: Synthetic description of the imaging acquisition parameters for patients of
BD1 dataset acquired at the Vrije Universiteit Medical Center (VUMC). Parameters
are shown by image sequence: T1-weighted (T1w) and T2-weighted (T2w).
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5.2. Materials and methods

Figure 5.1: Example of T1-weighted image (A) and T2-weighted image (B) from a patient
of BD1 dataset. Segmentation of the main tumor is performed on T2-weighted image
and used for both image types.

5.2.3 Image preprocessing

All the preprocessing techniques described in Chapters 3-4 for T1w and
T2w images were applied to the T1w and T2w MRI prior to the radiomic
features extraction. First, a 3D Gaussian filter with a 3x3x3 voxel kernel
and σ = 0.5 was used to denoise the images. Then, the N4ITK algorithm
[106] was used for the correction of intensity-non uniformities. Intensity
standardization was performed using Z-score. Voxel size resampling to an
isotropic resolution of 2 mm was performed using B-spline interpolation.

5.2.4 Radiomic features extraction

The set of 265 stable features for T1w and T2w (as described in Chapter 4
or Appendix A) was used. The extracted features are grouped as follows:
100 features for T1w MRI (13 shape, 7 FOS, 1 GLCM, 2 GLRLM and
77 wavelet); 165 features for T2w MRI (13 shape, 12 FOS, 9 GLCM, 12
GLRLM and 119 wavelet). A fixed bin number intensity discretization (32
bins) was used prior to the features extraction.

5.2.5 Methods for features normalization

Four different normalization algorithms were used to normalize the ranges
of the features, each with its own pros and cons [75]: Z-score normaliza-
tion, median-mad normalization, min-max normalization and hyperbolic
tangent normalization. For a better descriptions of the methods, refer to
Subsection 2.5.5.
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Chapter 5. Postprocessing optimization for radiomic analysis

5.2.6 Features selection pipelines

Two different pipelines for features selection were considered, comprising
both supervised and unsupervised selection (Figure 5.2).

Figure 5.2: Schematic description of the two feature selection pipelines used. A)
Significance-based selection. B) PCA-based selection.

Significance-based selection for simplicity, involved the use of the orig-
inal radiomic features (Figure 5.2A) and the algorithm works as follows:

1. Spearman correlation coefficients are calculated for each pair of fea-
tures. Whenever the absolute value of Spearman correlation coeffi-
cient of a is above 0.85, one of the two features is removed. In par-
ticular, the feature with the lowest mean correlation coefficient with
all the other n features (264 in this case) is kept while the other is
removed.

2. A training and a validation set are generated. The training set included
262 patients generated using bootstrap. The unselected patients from
the original dataset constitute the internal validation set.
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5.2. Materials and methods

3. A univariate Cox proportional hazard regression model (see Subsec-
tion 2.5.4 for further details) for prediction of OS is fitted on the train-
ing set using each of the features selected at step 1. Features that are
not significantly associated with OS (p>0.05 for log-rank test) are ex-
cluded. Correction for false discovery rate is performed using FDR
correction as described in [78] (see also Subsection 2.5.6). In case all
features presented a p>0.05, only one feature (the one with the lowest
p-value) is selected.

4. The features selected from step 3 are sorted by their Harrell C-index
(see Subsection 2.5.7) on the training set and they are progressively
added to a multivariate Cox proportional hazard regression model fit-
ted on the training data. The model is evaluated on the internal valida-
tion set and the validation C-index is computed. The combination of
features that maximizes the validation C-index of features is selected.

5. Steps 2-4 are repeated 100 times and for each iteration the optimal
radiomic feature set is stored. In total 100 different features sets are
available.

6. The N features that are selected more often throughout the 100 sets
are picked, N being the rounded average length of the 100 optimal
features sets.

PCA-based selection (Figure 5.2B), involves the use of PCA and there-
fore the resulting features are linear combinations of the original features.
The pipeline works as follows:

1. PCA is applied to the features.

2. A training and a validation set are generated, as explained for the
significance-based pipeline.

3. The components are ranked by explained variance and progressively
added to a Cox multivariate regression model.The model is evaluated
on the internal validation set and the validation C-index is computed.
The number of components that maximizes the validation C-index is
selected.

4. Steps 2-3 are repeated 100 times and for each iteration the best ra-
diomic features set is stored The first N components are picked for
the final model, N being the average number of components selected
throughout the 100 iterations.
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5.2.7 Comparison of features processing pipelines

In total, 8 different postprocessing pipeline, given by the combination of
the 2 features selection pipelines (Subsection 5.2.6) and the 4 features nor-
malization methods (Subsection 5.2.5), were evaluated. The features/com-
ponents obtained with the 8 pipelines were used to fit Cox proportional haz-
ard regression models for OS [73]. To evaluate the best features process-
ing pipeline, 10-fold cross-validation was used (as described in Subsection
2.5.8 and illustrated in figure 5.3). In each iteration, the parameters of the
features processing pipeline (e.g µ and σ for Z-score normalization, the list
of the selected features, etc...) and the coefficients of the Cox model were
learned from the training set and then used to predict the signature (i.e. the
linear combination of the selected features as defined by the Cox model) in
the patients of the validation set. In this way, a unique unbiased estimate
of the radiomic signature could be computed for each patient. The metric
used to evaluate the quality of the pipeline was the Harrell’s C-index [80]
between the OS and the cross-validated signature. Confidence intervals for
the C-indexes of the models were obtained through bootstrap. Statistical
comparison was performed using 2-way ANOVA for repeated measures,
with the factors being the normalization algorithm and the features selec-
tion pipeline. Repeated measure 2-way ANOVA also allowed to understand
if there is a significant interaction effects between the normalization algo-
rithm and the features selection pipeline. Two-sided unpaired t-tests with
post-hoc comparisons were used to identify significantly different pairs.
Tukey-Kramer method was used to correct for multiple hypothesis testing.

5.3 Results

Figure 5.4 shows the distributions of C-indexes obtained for each of the
8 different combinations of features normalization and feature selection
pipeline. By looking at the figure, it seems that an interaction effect be-
tween the two factors is present. As a matter of fact, the choice of the
best features selection pipeline depends on the normalization algorithm
used. When Z-score normalization was used, the significance based se-
lection is the one that gives the best performance, while the opposite hap-
pens if the hyperbolic tangent normalization is used. The 2-way ANOVA
for repeated measures identifies an interaction-term that is significantly dif-
ferent from 0 and confirms what has already been observed qualitatively
(p=8*10-14). Therefore, each combination of normalization and selection
has to be treated independently.
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5.4. Discussion

Figure 5.3: Schematics of the 10-fold cross-validation used to validate the performance
of a prognostic model for overall survival.

Among the 8 different combinations, the one that led to the best per-
formance was the combination of Z-score normalization and the significant
based pipeline (mean C-index: 0.67, 95% CI: [0.61-0.73]).

5.4 Discussion

In this chapter, an investigation on features normalization and features se-
lection was performed, in order to optimize the postprocessing for the ra-
diomic analysis.

One of the findings of this experiment was that there is an interaction
effect between the features normalization algorithms and the feature se-
lection algorithm, that has been statistically proven by a 2-way ANOVA
for repeated measures. This means that, whenever dealing with a radiomic-
based survival analysis, features selection and features normalization meth-
ods cannot be independently optimized, but all the possible combinations
must be tested and the best one must be chosen. A similar approach was
used in [77] to optimize the combination of feature selection and classifica-
tion algorithm.

By looking at Figure 5.4 it can be seen that significance-based feature
selection works better than PCA-based feature selection for the majority
of the normalization algorithms. This result may indicate that the use of
the original features may be preferable to the remapped features obtained
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Chapter 5. Postprocessing optimization for radiomic analysis

Figure 5.4: Distributions of C-indexes for the different combinations of features normal-
ization and feature selection.

after PCA. This may be due to the fact that a lot of the features are just
noise and are non informative, thus reducing the performance of the sin-
gle components of the PCA. The result was in line with what was reported
in literature for classification problems [126]. The best feature process-
ing pipeline consisted in the combination of Z-score normalization and the
significance-based feature selection (mean C-index: 0.67, 95% CI: [0.61-
0.73]).

Looking at Figure 5.4, it is possible to see that the significance-based
features selection is much more sensitive on the features normalization
method compared to the PCA-based feature selection (median C-index ranges
0.49-0.67 vs 0.58-0.60). The results may be explained by the fact that,
even though the original features are strongly affected by the normalization
methodology, the components obtained after PCA are more stable.

Based on the results of the experiment reported in this chapter and the
ones shown in Chapters 3-4, the final workflow for radiomic-based survival
analysis in multicentric studies can be completely defined. Such workflow
is schematically illustrated in Figure 5.5.

Although a first optimization of the postprocessing pipeline was per-
formed, the experiment is not exempt from limitations. One limitation is
that the analysis is not exhaustive since many more combinations of nor-
malization algorithms and feature selection pipeline could have been tested.
However, the analysis performed in this chapter provides some important
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5.4. Discussion

information (i.e. interaction between normalization and selection, best per-
formance using the original features). Future analysis may try to integrate
this information using new normalization/selection methods.

In this analysis (an in the final workflow) only Cox regression was used
to create the signatures, but some other survival models exist. The appli-
cation of just one survival model could be considered another limitation of
the study. However, almost all the studies of radiomics for survival analysis
used the Cox model and therefore the use of Cox models was a choice to
make the comparison with previous studies of literature easier.

One last limitation of the workflow described in Figure 5.5 is that some
postprocessing steps, like batch effect correction or missing data imputa-
tion, that may improve the performance of the final model, were not in-
cluded. Batch effect correction refers to the statistical correction of system-
atic differences that are observed in features coming from different batches
(e.g. different instrumentation, different hospitals, etc...). Among the batch
effect correction methods, ComBat is the most used for radiomic analy-
sis [131–133], with positive results. However, ComBat correction requires
to specify some clinical covariates to work properly and does not guarantee
optimal results when such covariates are confounded with the batches, as
could happen with the datasets presented in this thesis [134], an issue that
to date has not been resolved yet. Therefore, it was decided not to use Com-
Bat within the design of the workflow. Similarly, missing data imputation
was not included in the radiomic workflow, since missing data were not an
issue for the datasets analysed in the thesis, which was composed of images
sequences (T1w and T2w MRI) that, being part of the clinical routine, were
performed for all the patients with MRI imaging available.

In conclusion, in this chapter the optimization of postprocessing of ra-
diomic features (including features normalization and selection) was per-
formed. Although the results are non-exhaustive, they were useful to guide
the creation of the workflow for the development of radiomic-based prog-
nostic models for survival for HNC and STS, that are described more in
details in Chapters 6 and 7.

109



i
i

“output” — 2020/6/10 — 18:25 — page 110 — #122 i
i

i
i

i
i

Chapter 5. Postprocessing optimization for radiomic analysis

Figure 5.5: Block diagram describing the steps of the workflow for the creation of the
radiomic signature for survival analyses. Steps marked with asterisks are performed
only for T1-weighted and T2-weighted images.
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CHAPTER6
Radiomics-based survival models for head

and neck cancer

This chapter describes the application of an optimized radiomic workflow
for the development of an MRI-based prognostic signature for OS in pa-
tients affected by HNC. The signature was trained its prognostic power was
evaluated using both cross-validation and external validation. Evaluation
of the added prognostic power of radiomics was also performed.

6.1 Introduction

HNC is considered a rare pathology, as it accounts for only 3% of the total
cancers worldwide [135]. Despite this fact HNC is one of the most studied
types of cancer in terms of radiomics [9,136]. Among the possible applica-
tions of radiomics to HNC, the development of prognostic models (for OS,
DFS, etc...) is the one that has been explored the most.

Most of the studies related to the development of radiomic-based sur-
vival models for head and neck cancer was based on either CT or PET
[5, 10, 137–139]. Among those studies, the most important is the one de-
scribed in [5], where 4-features prognostic signature for OS trained on CT
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Chapter 6. Radiomics-based survival models for head and neck cancer

images was proven to be prognostic in two different HNC datasets with 136
and 95 patients respectively (Harrel C-index 0.69 in both). Further studies
confirmed the prognostic value of the same signature for CT on three addi-
tional datasets of oropharyngeal squamous cells carcinomas (OPSCC) with
more than 200 patients each [137], obtaining value of C-index of 0.63-0.65.

When it comes to HNC, studies on MRI-radiomics are less common
than studies on CT-radiomics, because of issue related to MRI signal, that
make it more difficult to use it to perform a quantitative analysis [9, 136].
However, MRI is more versatile than CT or PET and has excellent soft
tissue contrast, so it still holds a lot of potential for tumor characterization.
Therefore, more recent studies tried to create prognostic model for HNC by
MRI-radiomics. In [140] the value of ADC images for prognosis of DFS
was evaluated on a dataset of 175 patients and it was shown that ADChigh

(ADC computed using images with b-values>500 s/mm2) was an indepen-
dent prognostic factor and led to a C-index of 0.62. However, DWI and
ADC images are not part of the clinical routine for HNC in the majority
of the hospitals and therefore it would be difficult to use such model in the
clinical practice. MRI-based signatures based on contrast-enhanced T1w
images (CE-T1w) and T2w images (with or without fat suppression) were
developed for survival prognosis in nasopharyngeal carcinoma (NPC) from
large datasets (>100 patients each) obtained from hospitals of China, where
NPC is endemic [11, 141–143]. Limitations of the aforementioned studies
are the fact that they all used images acquired with the same protocols and
the same good performance is not guaranteed when heterogeneity in image
acquisition parameters is present. Moreover, signatures that perform well
for NPC do not necessarily perform well for HNC in general.

The purpose of the study presented in this chapter was to use the ra-
diomic workflow presented in Figure 5.5 to train a center- and parameter-
robust prognostic signature for OS in HNC. External validation of the sig-
nature was also performed and the addictive value of radiomics to the fea-
tures used in the clinical practice was evaluated.

6.2 Materials and methods

6.2.1 Image datasets

Two different datasets of HNC patients were used for this study, both com-
ing from the BD dataset introduced in Subsection 5.2.

The first dataset was the BD1 dataset introduced in Subsection 5.2, con-
taining 262 patients with advanced HNC from different sub-sites coming
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from 4 different clinical centers, for which both T1w and T2w MRI were
available. This dataset was used to train the radiomic signature and to per-
form a preliminary cross-validation. For further details on the dataset refer
to Section 5.2, in particular to Table 5.1 for clinical data and Tables 5.2-5.5.

The second dataset (called BD2 dataset from now on) was a subset of
the BD-Prosp dataset (see Section 5.2) which consisted of 232 patients
with HNC from various sub-sites with baseline T1w and T2w MRI avail-
able. BD2 dataset included patients coming from 4 different clinical centers
(AOP, INT, SCB and ULM).

Clinical information about the patients of BD2 are reported in Table 6.1,
where a comparison with the data of BD1 was also performed. χ2 tests and
Mann-Whitney test were used for perform statistical comparisons among
the clinical variables in the two sets, for the categorical and clinical vari-
ables respectively. Patients of the BD2 dataset had significantly shorter
follow-up and reduced number of events. Also, the percentages of the dif-
ferent types of treatments was not the same in the two sets.

Most of the image acquisition parameters used to acquire the patients
of the two datasets were in the range of values used to acquired the virtual
MRI used for the stability analyses of Chapter 3 (compare Tables 5.2-5.5
and Tables 6.2-6.5 with Table 3.5).

6.2.2 Image segmentation

For each patient, the main tumor was manually segmented. Each clinical
center had his own radiologist performing the segmentation. The segmenta-
tion was performed using the T2w MRI as the reference and the same ROI
was used also for T1w images, since only small misalignment between T1w
and T2w are present, to which the majority of radiomic features is stable
(as verified in Chapter 4).

6.2.3 Image preprocessing

The optimal preprocessing pipeline defined in Chapters 3-4 and listed in
Figure 5.5 was applied to the T1w and T2w MRI prior to the radiomic
features extraction. First, a 3D Gaussian filter with a 3x3x3 voxel kernel
and σ = 0.5 was used to denoise the images. Then, the N4ITK algorithm
[106] was used for the correction of intensity non-uniformities. Intensity
standardization was performed using Z-score. Voxel size resampling to an
isotropic resolution of 2 mm was performed with B-spline interpolation.
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CLINICAL DATA BD2DECIDE

Feature BD1 BD2 p-value

Number of
patients 262 232 -

Age
(median and IQR) 60 years [54-67] 61 years [54-69] 0.54

Sex Female: 78 (30%)
Male: 184 (70%)

Female: 71 (31%)
Male: 161 (69%) 0.84

Stage TNM VII Stage III: 54 (21%)
Stage IV: 212 (79%)

Stage III: 35 (15%)
Stage IV: 197 (85%) 0.11

Stage TNM VIII

Stage I: 26 (10%)
Stage II: 18 (7%)

Stage III: 79 (30%)
Stage IV: 139 (53%)

Stage I: 31 (13%)
Stage II: 15 (7%)

Stage III: 54 (23%)
Stage IV: 132 (57%)

0.29

Subgroups

Hypopharynx: 7 (4%)
Larynx: 24 (10%)

Oral cavity: 109 (47%)
Oropharynx (HPV+):

67 (29%)
Oropharynx (HPV-):

24 (10%)

Hypopharynx: 7 (4%)
Larynx: 24 (10%)

Oral cavity: 109 (47%)
Oropharynx (HPV+):

67 (29%)
Oropharynx (HPV-):

24 (10%)

0.45

Treatment

Surge: 29 (11%)
Surge+Rad: 56 (21%)
Surge+Rad+Chem: 55

(21%)
Rad+Chem: 114

(44%)
Other: 7 (3%)

Unknown: 1 (<1%)

Surge: 37 (16%)
Surge+Rad: 39 (17%)
Surge+Rad+Chem: 45

(19%)
Rad+Chem: 75 (32%)

Other: 14 (6%)
Unknown: 22 (10%)

0.04

Follow-up time
(median and IQR) 65 months [47-75] 28 months [24-33] 7.33*10-17

Number of deaths 105 (40%) 45 (19%) 6.08*10-7

Number of
recurrences 107 (41%) 71 (31%) 0.02

Table 6.1: Clinical and demographic characteristics of the Patients of both BD1 and BD2
dataset. Age and follow-up time are displayed as median and inter-quartile range
(IQR). p-values are obtained via χ2 tests (for categorical variable) and Mann-Whitney
tests (for continuous variables). Variables with different distributions between BD1
and BD2 are highlighted in red
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BD2 IMAGING DETAILS (AOP)

Image sequence T1w T2w

Number of images 45 45

Scanner Philipps Achieva Philipps Achieva

Magnetic field 1.5 T 1.5 T

Pulse sequence Spin-echo Spin-echo

Time of repetition 367-960 ms 1500-7299 ms

Time of echo 8-20 ms 60-120 ms

Slice thickness 3-4 mm 2-4 mm

Slice spacing 3.3-4.8 mm 3.3-6.4 mm

Pixel spacing 0.35-0.90 mm 0.27-0.78 mm

Table 6.2: Synthetic description of the imaging acquisition parameters for patients of BD2
dataset acquired at the Azienda Ospedaliero-universitaria di Parma (AOP). Parame-
ters are shown by image sequence: T1-weighted (T1w) and T2-weighted (T2w).

BD2 IMAGING DETAILS (INT)

Image sequence T1w T2w

Number of images 140 140

Scanner Siemens Avanto Siemens Avanto

Magnetic field 1.5 T 1.5 T

Pulse sequence Spin-echo Spin-echo

Time of repetition 371-896 ms 1400-13518 ms

Time of echo 8-26 ms 80-134 ms

Slice thickness 3-6 mm 2.5-6 mm

Slice spacing 3.3-6.6 mm 3.3-6.6 mm

Pixel spacing 0.34-1.00 mm 0.29-1.00 mm

Table 6.3: Synthetic description of the imaging acquisition parameters for patients of BD2
dataset acquired at the Istituto Nazionale dei Tumori (INT). Parameters are shown by
image sequence: T1-weighted (T1w) and T2-weighted (T2w).
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BD2 IMAGING DETAILS (SCB)

Image sequence T1w T2w

Number of images 43 43

Scanner Siemens Aera Siemens Aera

Magnetic field 1.5 T 1.5 T

Pulse sequence Spin-echo Spin-echo

Time of repetition 380-720 ms 2550-7320 ms

Time of echo 9-30 ms 99-128 ms

Slice thickness 2-3 mm 3-4 mm

Slice spacing 2.4-5.4 mm 3.3-6 mm

Pixel spacing 0.40-0.78 mm 0.35-0.78 mm

Table 6.4: Synthetic description of the imaging acquisition parameters for patients of
BD2 dataset acquired at the Spedali Civili di Brescia (SCB). Parameters are shown by
image sequence: T1-weighted (T1w) and T2-weighted (T2w).

BD2 IMAGING DETAILS (ULM)

Image sequence T1w T2w

Number of images 4 4

Scanner Siemens Skyra Siemens Skyra

Magnetic field 3 T 3 T

Pulse sequence Spin-echo Spin-echo

Time of repetition 592-821 ms 4800-6720 ms

Time of echo 9-20 ms 104 ms

Slice thickness 5 mm 5 mm

Slice spacing 5.5 mm 5.5 mm

Pixel spacing 0.60-0.65 mm 0.49 mm

Table 6.5: Synthetic description of the imaging acquisition parameters for patients of
BD2 dataset acquired at the university hospital of Ulm (ULM). Parameters are shown
by image sequence: T1-weighted (T1w) and T2-weighted (T2w).
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6.2. Materials and methods

6.2.4 Radiomic features extraction

A total of 265 stable features for T1w and T2w (Appendix A) was used.
The extracted features are grouped as follows: 100 features for T1w MRI
(13 shape, 7 FOS, 1 GLCM, 2 GLRLM and 77 wavelet); 165 features for
T2w MRI (13 shape, 12 FOS, 9 GLCM, 12 GLRLM and 119 wavelet). A
fixed bin number intensity discretization (32 bins) was used prior to the
features extraction.

6.2.5 Prognostic models training

The data of BD1 dataset were used to train 3 different prognostic models
for OS. An illustration of the training process for the 3 models is illus-
trated in Figure 6.1. Each source of data (radiomics or clinics) underwent
its own postprocessing pipeline, and at the end of the pipeline an optimal
set of features was selected. The features sets were used to train a radiomic
and clinical signature using multivariate Cox proportional hazard regres-
sion [73]. Last, a combined signature was obtained by training a Cox re-
gression model on the combination of the radiomic and clinical features
sets.

For radiomic features, the postprocessing pipeline is the one described
in Figure 5.5. Z-score normalization for the standardization of the ranges
of features. Then, the significance-based selection pipeline (described in
Subsection 5.2 and Figure 5.2A) was used to choose the optimal features
set.

The clinical variables of interest were the following (see also Tables 5.1
and 6.1): age at diagnosis, sex, stage TNM (version VIII), HPV status,
tumor sub-site. Categorical variables (such as tumor sub-site) were rep-
resented as dummy variables [68]. The features selection was performed
by selecting only the features that were significantly associated with OS in
univariate Cox regression.

6.2.6 Validation of the radiomic signature

To evaluate the prognostic performance of the radiomic signature both in-
ternal cross-validation on the BD1 dataset and external validation on the
BD2 datasets were performed. Internal cross-validation was performed us-
ing 10-fold cross validation, in order to obtain an unbiased estimate of each
signature for each patient (as previously illustrated in Figure 5.3). Such
estimates were used to compute the Harrell’s C-index for each model and
confidence intervals were obtained using bootstrap (100 iterations). More-
over, in both BD1 and BD2 datasets patients were split in high and low risk
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Chapter 6. Radiomics-based survival models for head and neck cancer

Figure 6.1: Schematic description of the process of the creation of the prognostic signa-
tures for overall survival from radiomic and clinical data.

groups and the Kaplan-Meier curves were drawn for each group. Log-rank
tests were used to compare the Kaplan-Meier curves for high and low risk
patients. The median value of the signature on the training dataset (BD1)
was used as a threshold to split the high and low risk groups.

6.2.7 Correlation between radiomic signature and clinical variables

The radiomic signature could potentially be highly correlated with other
clinical variables. To ensure this was not the case, the correlation of the
radiomic signature with the selected clinical features was evaluated. Statis-
tically significant associations were identified using Spearman correlation
coefficient and/or Kruskal-Wallis test. The analysis was performed on the
merged BD1 and BD2 dataset to maximize the sample size, and since it is
reasonable to think that the correlation with clinical variables is not dataset-
specific.

118



i
i

“output” — 2020/6/10 — 18:25 — page 119 — #131 i
i

i
i

i
i

6.3. Results

6.2.8 Radiomic signature dependency on vendor and center

The radiomic signature could also potentially be affected by factors non
related to tumor biology, like the MRI-scanner used or the center where
the acquisition have been performed. To ensure the radiomic signature was
not dependent from these factors, a 2-way ANOVA was performed. The
analysis was performed separately on dead and alive patients at the end of
the follow-up because it is reasonable to think that patients with the worst
outcome will have a significantly higher signature. Moreover, for this anal-
ysis, the data of BD1 and BD2 datasets were merged, in order to maximize
the number of samples in each subgroup, and since it is reasonable to think
that the batch effect due to MRI-scanner and center is not dataset-specific.

6.2.9 Evaluation of added prognostic value of radiomics

To evaluate the added prognostic value of the radiomic, three different anal-
yses were performed.

In the first analysis the prognostic power of the radiomic signature was
evaluated by looking at its HR and p-value in a multivariate Cox regression
model with the other selected clinical variables.

For the second analyses, the different subgroups defined by stage, HPV
and tumor sub-site were considered. The Kaplan-Meier analysis described
in Subsection 6.2.6 was repeated for each subgroup. This was done to
assess whether the discriminatory power of the radiomic classification was
high in each of the groups or was subgroup dependent.

For the third analyses, the C-indexes of the clinical, radiomic and com-
bined signature (trained as described in 6.2.6) was computed to assess
whether the prognostic performance of the radiomic or combined signature
was better than the one of the clinical signature alone.

6.3 Results

6.3.1 Prognostic models training

After the signature training pipeline, 5 and 4 features were selected and
used for the radiomic and clinical model respectively. Among the radiomic
features, one of them was tumor volume and the others were wavelet fea-
tures (1 related to texture and 3 related to FOS features). Table 6.6 lists
the mean and standard deviation of the radiomic features, which were used
for the Z-score normalization. Among the clinical features, one was TNM,
one was HPV and the others referred to tumor sub-site. This results is in
line with the fact that HPV, stage TNM and tumor location are prognostic
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Chapter 6. Radiomics-based survival models for head and neck cancer

factors for survival. Details of the signatures used for the 3 Cox regression
models (clinical, radiomics and combined) are reported in Table 6.7.

SELECTED RADIOMIC FEATURES DETAILS

Features names Mean Standard deviation

T1w-waveletLHL-
firstorder-

90Percentile
0.45 0.28

T2w-original
shape-VoxelVolume 16.58 cm3 17.54 cm3

T2w-waveletHHL-
glrlm-

GreyLevelNonUni-
formityNormalized

0.07 0.02

T2w-vaweletLLL-
firstorder-

InterquartileRange
1.33 0.56

T2w-vaweletLLL-
firstorder- Range 6.43 3.37

Table 6.6: Mean and standard deviation of the selected radiomic features. This values
were used to compute the Z-scored versions of the features. Numeric values are re-
ported up to the second decimal digit.
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6.3. Results

SELECTED FEATURES COEFFICIENTS

Features names Coefficient
(clinical)

Coefficient
(radiomic)

Coefficient
(combined)

T1w-waveletLHL-
firstorder-

90Percentile
- -0.27 -0.15

T2w-original
shape-VoxelVolume - 0.13 0.03

T2w-waveletHHL-
glrlm-

GreyLevelNonUni-
formityNormalized

- 0.08 0.11

T2w-vaweletLLL-
firstorder-

InterquartileRange
- 0.13 0.09

T2w-vaweletLLL-
firstorder- Range - 0.20 0.15

TNM VIII -0.80 - 0.74

HPV status 0.09 - 0.08

Oropharynx -0.10 - -0.18

Oral cavity 0.38 - 0.05

Table 6.7: Coefficients of radiomic and clinical features for the three models tested: clin-
ical, radiomic and combined. Coefficients values are displayed up to the second deci-
mal digit.

6.3.2 Validation of the radiomic signature

The C-index of the radiomic signature after the 10-fold cross-validation
in BD1 was 0.67 (95 % CI [0.61-0.73]) and the C-index computed in the
external validation on BD2 was 0.63 (95 % CI [0.53-0.73]).

The Kaplan-Meier curves for the high and low risk groups according to
radiomics are displayed in Figure 6.2. The curves are displayed for the first
60 months, in order to make the results of BD1 and BD2 comparable. By
looking at the p-values of the log-rank tests it is possible to observe that in
both BD1 and BD2 datasets the curves for high risk and low risk groups are
significantly different (p=0.001 and p=0.016 respectively). In particular,
high risk patients had the worst outcome.
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Chapter 6. Radiomics-based survival models for head and neck cancer

Figure 6.2: Kaplan-Meier curves for overall survival (OS) in high and low risk groups
according to radiomics. Sample sizes and p-values of log-rank tests are also indicated.
A) Cross-validation on the training set (BD1). B) External validation set (BD2).

6.3.3 Correlation between radiomic signature and clinical variables

Figures 6.3-6.5 illustrate the dependency of the radiomic signature on the
prognostic clinical features: Stage TNM VIII, HPV status and tumor sub-
site. Results are displayed for merged BD1 and BD2 datasets.

Figure 6.3 shows the distribution of the radiomic signature by Stage
TNM VIII. It can be seen that the values of signature were significantly
different across stage (p=1.31*10-11 for Kruskal-Wallis test). In particu-
lar higher stages corresponded to higher signature values, with stage I-II
presenting significantly lower value compared to stage III-IV (p<0.01 in
post-hoc comparisons).

Figure 6.4 shows the distribution of the radiomic signature by HPV sta-
tus. The radiomic signature was significantly lower for HPV+ patients
(p=7.00*10-8 for Mann-Whitney test).

Figure 6.5 shows the distribution of the radiomic signature by tumor
sub-site. There were significant differences among the distributions of the
radiomic signature across the different sub-sites (p=1.15*10-10 for Kruskal-
Wallis test), with significantly higher value for oral cavity compared to
oropharynx (p=3.98*10-9) and larynx (p=9.98*10-4). the signature for oral
cavity was the highest but the difference with hypopharynx was not signif-
icant (p=0.99).
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6.3. Results

Figure 6.3: Boxplots representing the distribution of radiomic signature across stages.
Signature is significantly higher for stage III-IV than for stage I-II, as highlighted by
the asterisk.

6.3.4 Radiomic signature dependency on vendor and center

The results of the 2-way ANOVA performed to evaluate the effect of scan-
ner and center are displayed in Table 6.8. According to the results, the
scanner vendor had no effect on the value of the radiomic signature. The
clinical center had an effect on the radiomic signature for both alive and
dead patients (p=0.0053 and p=0.0001 respectively). However, this effect
may depend on the fact that one of the clinical prognostic features that are
correlated with the radiomic signature (see Subsection 6.3.3) is confounded
with the clinical center. To account for this, a 3-way ANOVA accounting
for scanner, center and tumor sub-site was performed. In this new analysis,
whose results are shown in Table 6.9, no influence of the recording center
was observed.
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Chapter 6. Radiomics-based survival models for head and neck cancer

Figure 6.4: Boxplots representing the distribution of radiomic signature for HPV positive
and negative patients. The black asterisk highlights the significantly lower value of the
signature for HPV positive patients.

2-WAY ANOVA RESULTS

Factor p-value
(alive patients)

p-value
(dead patients)

Vendor 0.4912 0.9063

Center 0.0053 0.0001

Table 6.8: Significance of the effect of center and scanner vendor on the radiomic sig-
nature, as defined by a 2-way ANOVA. Results are displayed for both alive and dead
patients. Significant effect are highlighted in red.
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6.3. Results

Figure 6.5: Boxplots representing the distribution of radiomic signature across sub-sites.
Asterisk highlights significantly lower values compared to the oral cavity group.

3-WAY ANOVA RESULTS

Factor p-value
(alive patients)

p-value
(dead patients)

Vendor 0.6290 0.9260

Center 0.2920 0.5490

Tumor sub-site <0.0001 0.0130

Table 6.9: Significance of the effect of center and scanner vendor on the radiomic sig-
nature, as defined by a 2-way ANOVA. Results are displayed for both alive and dead
patients. Significant effect are highlighted in red.

6.3.5 Evaluation of added prognostic value of radiomics

Multivariate Cox analyses

The results of the multivariate Cox analyses are displayed in Tables 6.10
and 6.11 for BD1 and BD2 datasets respectively. In both tables the fol-
lowing prognostic variables are evaluated: radiomic signature; stage TNM
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Chapter 6. Radiomics-based survival models for head and neck cancer

VIII; HPV status; tumor sub-site. The tables display the values of HR for
the different variables and the associated p-values (p<0.05 if the HR is sig-
nificantly different from 1).

MULTIVARIATE COX ANALYSIS (BD1)

Feature Hazard ratio p-value

Radiomic signature 1.56 0.0050

Stage TNM VIII 1.84 0.0075

HPV status
(positive vs negative) 1.02 0.9653

Oral cavity vs
Hypopharynx 0.98 0.9497

Oropharynx vs
Hypopharynx 0.65 0.3323

Larynx vs Hypopharynx 0.43 0.1654

Table 6.10: Results on multivariate analysis on BD1 dataset.Results are displayed in
terms of hazard ration and corresponding p-value. Significantly prognostic features
are highlighted in red.

MULTIVARIATE COX ANALYSIS (BD2)

Feature Hazard ratio p-value

Radiomic signature 2.38 0.0118

Stage TNM VIII 1.24 0.5481

HPV status
(positive vs negative) 0.29 0.1548

Oral cavity vs
Hypopharynx 0.13 0.0025

Oropharynx vs
Hypopharynx 0.25 0.0067

Larynx vs Hypopharynx 0.11 0.0038

Table 6.11: Results on multivariate analysis on BD2 dataset.Results are displayed in
terms of hazard ration and corresponding p-value. Significantly prognostic features
are highlighted in red.
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6.3. Results

When put in a multivariate Cox model, the value of the signature main-
tained its significance in both BD1 and BD2 datasets (BD1: HR=1.56,
p=0.0050; BD2: HR=2.38, p=0.0118). The significance of the clinical vari-
ables depended on the particular dataset: in the BD1 dataset, stage was sig-
nificantly prognostic; in the BD2 dataset, tumor sub-site was significantly
prognostic. This may happen because in BD2 there is a non-uniform distri-
bution of stages in some tumor sub-sites (e.g. all the hypopharynx are stage
IV), so that the stage variable becomes confounded with the tumor sub-site
variables.

Stratified Kaplan-Meier analysis

Figures 6.6-6.14 show the results of the stratified Kaplan-Meier analysis.
Each figure displays the Kaplan-Meier curves for the high-risk and low risk
groups defined according to radiomics as explained in Subsection 6.2.6,
but in smaller, subgroups defined by the clinical variables of interest (stage,
HPV status and tumor sub-site).

The results of the Kaplan-Meier analyses for stage I-III and stage IV are
displayed in Figure 6.6 and Figure 6.7 respectively. The survival curves of
high and low risk groups were significantly different for stage IV patients
(log-rank test p-value 0.0001 and p=0.016 for the BD1 and BD2 patients
respectively), but for stage I-III patients, the split between the curves was
significant only in the training set (p=0.02).

The results of the Kaplan-Meier analysis stratified by tumor sub-site are
displayed in Figures 6.8-6.13. The survival curves of high and low risk
groups were significantly different for stage IV patients (log-rank test p-
value 0.0001 and p=0.016 for the BD1 and BD2 patients respectively), but
for stage I-III patients, the split between the curves was significant only in
the training set (p=0.02).

For the patients with oral cavity cancer (Figure 6.8), radiomic caused
a significant split in the survival in the BD1 dataset (log-rank p=0.026),
while for the BD2 dataset the difference was not significant, even though
the p-value of the log-rank test was close to 0.05 (p=0.074).

Figure 6.9 showed the results for patients affected by the oropharyn-
geal cancer. The high and low risk patients presented significantly different
survival curves in the BD1 dataset (p=0.0089), but not in the BD2 dataset
(p=0.15). After a further stratification in HPV+ and HPV- patients (Figures
6.10-6.11), no significant difference was found (p>0.065).

For the subgroups of patients with laryngeal (Figure 6.12) or hypopha-
ryngeal cancer (Figure 6.13), no significant split between the Kaplan-Meier
curves for high and low risk patients was observed (p>0.45).
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Chapter 6. Radiomics-based survival models for head and neck cancer

Figure 6.6: Kaplan-Meier curves for overall survival (OS) in high and low risk groups
according to radiomics. Results are displayed for patients with stage I-III tumors.
Sample sizes and p-values of log-rank tests are also indicated. A) Cross-validation on
the training set (BD1). B) External validation set (BD2).

Figure 6.7: Kaplan-Meier curves for overall survival (OS) in high and low risk groups
according to radiomics. Results are displayed for patients with stage IV tumors. Sam-
ple sizes and p-values of log-rank tests are also indicated. A) Cross-validation on the
training set (BD1). B) External validation set (BD2).
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6.3. Results

Figure 6.8: Kaplan-Meier curves for overall survival (OS) in high and low risk groups
according to radiomics. Results are displayed for patients with tumors of the oral cav-
ity. Sample sizes and p-values of log-rank tests are also indicated. A) Cross-validation
on the training set (BD1). B) External validation set (BD2).

Figure 6.9: Kaplan-Meier curves for overall survival (OS) in high and low risk groups ac-
cording to radiomics. Results are displayed for patients with tumors of the oropharynx.
Sample sizes and p-values of log-rank tests are also indicated. A) Cross-validation on
the training set (BD1). B) External validation set (BD2).
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Chapter 6. Radiomics-based survival models for head and neck cancer

Figure 6.10: Kaplan-Meier curves for overall survival (OS) in high and low risk groups
according to radiomics. Results are displayed for patients with HPV+ oropharyngeal
cancer. Sample sizes and p-values of log-rank tests are also indicated. A) Cross-
validation on the training set (BD1). B) External validation set (BD2).

Figure 6.11: Kaplan-Meier curves for overall survival (OS) in high and low risk groups
according to radiomics. Results are displayed for patients with HPV- oropharyngeal
cancer. Sample sizes and p-values of log-rank tests are also indicated. A) Cross-
validation on the training set (BD1). B) External validation set (BD2).
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6.3. Results

Figure 6.12: Kaplan-Meier curves for overall survival (OS) in high and low risk groups
according to radiomics. Results are displayed for patients with laryngeal cancer. Sam-
ple sizes and p-values of log-rank tests are also indicated. A) Cross-validation on the
training set (BD1). B) External validation set (BD2).

Figure 6.13: Kaplan-Meier curves for overall survival (OS) in high and low risk groups
according to radiomics. Results are displayed for patients with Hypopharyngeal can-
cer. Sample sizes and p-values of log-rank tests are also indicated. A) Cross-validation
on the training set (BD1). B) External validation set (BD2).
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Figure 6.14: Kaplan-Meier curves for overall survival (OS) in high and low risk groups
according to radiomics. Results are displayed for patients with HPV- cancer. Sample
sizes and p-values of log-rank tests are also indicated. A) Cross-validation on the
training set (BD1). B) External validation set (BD2).

The last analysis was performed by stratifying the patients by HPV sta-
tus. For this analysis, the HPV- group included HPV- oropharyngeal tu-
mors, but also all the patients with tumors in other sub-sites. The approxi-
mation of treating all non-oropharyngeal tumors as HPV- was done because
HPV+ status does not positively affect prognosis, and so, from a prognos-
tic point of view, they are closer to HPV- oropharyngeal cancer. For the
patients with HPV- tumors (Figure 6.14), the radiomics-based risk classi-
fication provided two groups with significantly different survival curves in
both BD1 and BD2 datasets (p-values 0.02 and 0.038 respectively). Differ-
ences in survival curves of patients with HPV+ tumors (all oropharyngeal
cancers) were not significant, as displayed in Figure 6.10.

Comparison of clinical, radiomic and combined signatures

The distributions of C-index obtained by the clinical, radiomic and com-
bined signature described in Subsections 6.2.5 and 6.3.1 are displayed in
Figures 6.15-6.16, for both BD1 and BD2 datasets. The features used in
the clinical, radiomic and combined model were the ones listed in Table
6.7.

In BD1 dataset, the radiomic and clinical signature performed similarly
(median C-index 0.67, 95% CI [0.61-0.73] for both the models), but the
best signature was the combined one (median C-index 0.69, 95% CI [0.63-
0.75]). In the BD2 dataset the performance of the radiomic signature was
lower compared to the clinical signature (median C-index 0.63 vs 0.69,
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6.4. Discussion

95%CI [0.53-0.73] vs [0.61-0.77]) but the combined signature was the best
in this case as well (median C-index 0.72, 95% CI [0.64-0.80]).

6.4 Discussion

The experiment performed in this chapter gave some insight about the use-
fulness of the developed pipeline in the creation of a radiomic signature for
OS in HNC.

The radiomic signature was composed of 5 features. Among those, one
was voxel volume, which confirms the role of volume in the prediction of
OS. The feature T1w-waveletLHL-firstorder-90Percentile is related to the
intensity of the high-pass filtered signal in T1w, while the features on the
T2w account for the differences in texture (the grey level non-uniformity
normalized) or for ranges of intensities (range and inter-quartile range).
This is in line with the fact that T2w images provide better contrast than
T1w images (which is the reason why T1w images are often contrast-
enhanced) and the tumor heterogeneity can be better appreciated in that
type of images.

The radiomics signature had a C-index of 0.67 and 0.63 in the training
and validation set respectively. This values are in line with other prognos-
tic signature for OS presented in other studies [5, 137, 138]. Unlike those
studies though, the signature presented in this chapter has been obtained by
training on a multicentric cohort. This is a further proof of the fact that an
adequate pre-processing of the images and a proper choice of the features
to use can lead to the application of radiomics in a multicentric context.

The multivariate Cox analysis showed how, in both BD1 and BD2, the
radiomic signature maintained a significant prognostic value, meaning that
it adds independent prognostic information. The added value of radiomic
features is also proved by the fact that the combined signature, obtained as
a linear combination of radiomics and clinical features, performed better
than the signatures based on clinical and radiomic features alone.

The radiomic-based classification of the patients in high and low risk led
to groups with significantly different survival curves in both BD1 and BD2
datasets. However, when considering the different subgroups (by stage,
HPV or sub-site) this significance in the survival curves of high and low
risk patients was not always maintained. Radiomic signature showed good
stratification of survival for stage IV, oral cavity cancers and HPV- patients,
but lower stratification power in the other subgroups. For some groups
(Larynx and oropharynx) the lack of significance may simply be related to
the low number of cases or events. A future development for this study
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Figure 6.15: Distributions of C-index for the cross-validated signature values in the
BD1 dataset. Distributions were obtained by bootstrap of the original values (100
iterations). The combination of radiomic and clinical features resulted in the model
with the best performance.

Figure 6.16: Distributions of C-index for the signatures in BD2 dataset. Distribution
were obtained by bootstrap (100 iterations). The combination of radiomic and clinical
features results in the model with the best performance.
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would be to increment the number of patients per dataset in order to start
using the optimized workflow to train a better model that allows a good
patient stratification for those sub-sites as well.

The positive synergy between radiomics and clinical was a recurrent re-
sults in many studies of radiomics [11, 138] and underlines the fact that
radiomics is a source of information that is independent from the one ob-
tainable with the routine clinical exams and it is therefore a useful tool to
support the decision of the clinicians in the treatment and monitoring of a
patient with HNC.

It must be noted though that the performance of the radiomics signature
reduced when moving from the training set (BD1) to the test set (BD2) and
that was not the case for the clinical and combined model. This may be due
to the fact that, although many precautions were taken to harmonize the fea-
tures as much as possible, a perfect standardization of the features has not
been reached yet. Of course in the future new methods to fatherly increase
the harmonization of the features coming from different centers/scanners
could be developed. Also, the addition of ADC maps, which are known to
have a low inter-scanner variability [62,63], could further improve the per-
formance of a signature in a more generalized context. However, the results
shown demonstrated that the developed workflow could reduce a sufficient
amount of variability to allow the creation of a prognostic signature that
can be used even in a more general context and that could be potentially
applicable in the clinical practice.

In conclusion, the optimized workflow for radiomic-based survival anal-
ysis displayed in Figure 5.5 was used on a real HNC dataset to train a prog-
nostic radiomic signature, which was successfully tested using both cross-
validation and external validation. The signature may provide a useful tool
to aid prognosis for advanced stage HNC patients.
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CHAPTER7
Radiomics-based survival models for

soft-tissue sarcoma

This chapter describes the application of an optimized radiomic workflow
for the development of an MRI-based prognostic signature for OS in pa-
tients affected by STS. The signature was trained its prognostic power was
evaluated using cross-validation. Evaluation of the added prognostic power
of radiomics was also performed.

7.1 Introduction

STS is a rare type of cancer accounting for less than 1% of the total cancers
worldwide, with an incidence of one third of that of HNC [144]. Given the
rarity of the tumor, it does not surprise that the number of studies involv-
ing STS is small compared to tumor of other districts. However, the use
of radiomics in STS has been explored for different applications includ-
ing tumor non-invasive characterization, metastasis prediction, treatment
response and survival model [100, 117, 145–148].

One of the most frequent application of radiomics in STS is non-invasive
identification of tumor grading which has been performed using both CT
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[117] and MRI [100, 146]. In the case of MRI, radiomics-based tumor
grading has been performed using mono-modality MRI, and previous stud-
ies have focused on T2w MRI [146] and ADC maps [100]. All the MRI
based models achieved good results (AUC>0.8 and accuracy>0.8), but have
the limitation of the small sample size. Studies involving CT-radiomics on
larger datasets [117] did not perform as well (AUC=0.64).

Another application of radiomics in STS is prediction of distant metasta-
sis. In [145] a fused PET/MRI model was developed to predict lung metas-
tasis by a radiomic analysis of the primary tumor (the STS). The results
of bootstrap cross-validation were excellent in terms of AUC, sensitivity
and specificity (0.984, 0.955 and 0.926 respectively). The limitations of
the model are that it requires both PET and MRI, which are not always
performed jointly, and that it was obtained using a well defined image ac-
quisition protocol, which reduces the possibility to extend the model to a
more generalized context.

In [148] MRI-radiomics of STS was used for prediction of response to
induction chemotherapy. In particular, a random-forest classifier on delta-
radiomics, i.e. difference between radiomic features at two different time
points, from T1w and T2w MRI was trained on 65 patients and validated
trough train-test split, obtaining high values of AUC and sensitivity (0.86
and 94% respectively) but low level of specificity (66%).

In terms of survival analysis, models based on both CT- and MRI-radiomics
were developed for STS, for both DFS and OS [117, 147]. In [117] CT-
radiomics was used to develop signatures survival models that showed high
C-index for OS, distant metastasis free survival and loco-regional recur-
rence free survival (0.73, 0.68 and 0.77) respectively. In [147], T1w-MRI
was used to create a prognostic signature for OS that significantly improved
the performance of a clinical model (up to a C-index of 0.74). The limita-
tion of this study is that the follow-up was limited to 3-years, so the perfor-
mance of the model on longer times could not be determined. Also, only
one imaging modality was explored and still leaves room for investigating
the additional power given by multi-modality MRI.

The experiment presented in this chapter deal with the creation of sur-
vival models for STS. In particular, ADC maps and different MRI sequences
(T1w pre- and post-contrast, as well as T2w) were used to develop prog-
nostic models of OS in STS.
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7.2 Material and methods

7.2.1 Image dataset

The experiment presented in this section was based on a monocentric retro-
spective dataset collected for the ongoing study Integration of radiOMics,
genomICS and immunoprofiling into predictive and prognostic models in
soft tissue SARComa patients (from now on called SARCOMICS for short),
funded by a research grant from the Italian Ministry of Health. The dataset
contained MRI images of patients with STS of the limbs that were acquired
between 2011 and 2015 at INT, using non-standardized image acquisition
protocols. Two different scanners were used to acquire the images and pa-
rameters such as TR, TE and image resolution were not controlled. The
dataset used for this experiment (called SAR1 from now on) was composed
of the patients of the SARCOMICS dataset that fulfilled the following in-
clusion criteria: availability of T1w MRI, both pre- and post-contrast, ac-
quired with TSE pulse sequence; availability of T2w MRI acquired with
TSE pulse sequence; availability of DWI images acquired using at least two
b-values in the range 0-1000 s/mm2, acquired using EPI pulse sequence.
In total, 91 patients were selected for the experiment. Main clinical and
follow-up data for the selected patients are reported in Table 7.1. Details
of the image acquisition parameters are listed in Table 7.2. By comparing
Table 7.2 and Table 3.5, it is possible to see that most of the acquisition
parameters were in the range used for the stability analyses of Chapter 3.
For the selected patients, ADC maps were obtained as described in Subsec-
tion 2.3.4 by fitting an exponential decay on DWI images acquired with the
different b-values.

7.2.2 Image segmentation

For each patient, the main tumor was manually segmented by a radiologist
with more than 10 years of experience. The segmentation was performed
using the T2w MRI as the reference and the same ROI was used also for
T1w images and ADC maps, since only small misalignment are present
(see Figure 7.1), and in Chapter 4 it has been shown that the majority of the
features to which the majority of radiomic features is stable to shifts of this
entity.

7.2.3 Image preprocessing

The optimal preprocessing pipeline described in Chapters 3-4 and Figure
5.5 was applied to the T1w and T2w MRI prior to the radiomic features ex-
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CLINICAL DATA (SAR1 DATASET)

Number of patients 91

Age (median and IQR) 59 years [46-71]

Sex Female: 40 (44%)
Male: 51 (56%)

Histological grade
Grade 1: 22 (24%)
Grade2: 21 (23%)
Grade 3: 48 (53%)

Treatment

Surge: 51 (56%)
Surge+Rad: 8 (9%)

Surge+Chem: 5 (5%)
Surge+Rad+Chem: 27 (30%)

Follow-up time (median and IQR) 54 months [42-72]

Number of deaths 16 (18%)

Number of recurrences 27 (30%)

Table 7.1: Clinical and demographic characteristics of the 91 patients of the SAR1
dataset. Age and follow-up time are displayed as median and inter-quartile range
(IQR).

traction. First, a 3D Gaussian filter with a 3x3x3 voxel kernel and σ = 0.5
was used to denoise the images. Then, the N4ITK algorithm [106] was
used for the correction of intensity-non uniformities. Intensity standardiza-
tion was performed using Z-score. Voxel size resampling to an isotropic
resolution of 2 mm was performed using B-spline interpolation.

ADC had a different preprocessing compared to T1w and T2w images.
For reasons that were explained in Subsections 2.3.4 and 4.2.3, intensity
standardization and inhomogeneity correction were not performed. Prior to
features extraction, intensity values were windowed between 0 and 4000*10-6

mm2/s, in order to remove non-physiological values due to image noise in
the DWI used to fit the ADC maps.

7.2.4 Radiomic features extraction

A set of 799 stable features was used for the analysis (see Appendix A). The
extracted features were grouped as follows: 182 features for pre-contrast
T1w MRI (13 shape, 12 FOS, 10 GLCM, 8 GLRLM and 139 wavelet); 182
features for post-contrast T1w MRI (the same as pre-contrast MRI); 242
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SAR1 DATASET ACQUISITION PARAMETERS

Image
sequence T1w/T1wCont T2w ADC

Scanner

Philips Achieva: 78
(87%)

Siemens Avanto: 13
(13%)

Philips Achieva: 78
(87%)

Siemens Avanto: 13
(13%)

Philips Achieva: 78
(85%)

Siemens Avanto: 13
(15%)

Number of
images 91 91 91

Pulse
sequence Spin-echo Spin-echo Echo-planar

Magnetic
field 1.5 T 1.5 T 1.5 T

Time of
repetition 411-745 ms 3000-6500 ms 3972-11145 ms

Time of echo 7-14 ms 80-153 ms 64-88 ms

Slice
thickness 3-5 mm 3-5 mm 4-5 mm

Slice spacing 3.9-6.5 mm 3.9-6.5 mm 4-6.5 mm

Pixel spacing 0.3-1.13 mm 0.34-1.22 mm 1.28-2.34 mm

Table 7.2: Description of the image acquisition details for the 91 patients of the SAR1
dataset.

features for T2w MRI (13 shape, 13 FOS, 10 GLCM, 11 GLRLM and 195
wavelet); 193 features for ADC (13 shape, 14 FOS, 9 GLCM, 13 GLRLM
and 144 wavelet). A fixed bin number intensity discretization (32 bins) was
used prior to the features extraction.

7.2.5 Prognostic models training

The data of SAR1 dataset were used to train 3 different prognostic sig-
natures for OS. An illustration of the training process for the 3 models
was previously illustrated in Figure 6.1. Each source of data (radiomics or
clinics) underwent its own postprocessing pipeline, and at the end of the
pipeline an optimal set of features was selected. The features sets were
used to train a radiomic and clinical signature using multivariate Cox pro-
portional hazard regression [73]. Last, a combined signature was obtained
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Figure 7.1: Examples of images available for the patients of the SAR1 dataset. A) Pre-
contras T1-weighted image. B) Post-contrast T1-weighted image. C) T2-weighted
image. D) Apparent diffusion coefficient maps. The segmentation of the tumor is also
shown.

by training a Cox regression model on the combination of the radiomic and
clinical features sets.

For radiomic features, the postprocessing pipeline is the one described
in Figure 5.5. Z-score normalization for the standardization of the ranges
of features. Then, the significance-based selection pipeline (described in
Subsection 5.2 and Figure 5.2A) was used to choose the optimal features
set.

The clinical variables of interest were the following (see also Table 7.1):
age at diagnosis, sex, histological grade. Sex was represented as a dummy
variable (1 for male, 0 for female) [68]. The features selection was per-
formed by selecting only the features that were significantly associated with
OS in univariate Cox regression.
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7.2.6 Validation of the radiomic signature

To evaluate the prognostic performance of the radiomic signature an inter-
nal cross-validation was performed using 10-fold cross validation, in order
to obtain an unbiased estimate of each signature for each patient (as previ-
ously illustrated in Figure 5.3). Such estimates were used to compute the
Harrell’s C-index for each model and confidence intervals were obtained
using bootstrap (100 iterations). Moreover, patients were split in high and
low risk groups and the Kaplan-Meier curves were drawn for each group.
Log-rank tests were used to compare the Kaplan-Meier curves for high and
low risk patients. The median value of the unbiased radiomic signature in
the SAR1 was used as a threshold to split the high and low risk groups.

7.2.7 Correlation between radiomic signature and clinical variables

The radiomic signature could potentially be highly correlated with other
clinical variables. To ensure this was not the case, the correlation of the
radiomic signature with the selected clinical features was evaluated. Statis-
tically significant associations were identified using Spearman correlation
coefficient and/or Kruskal-Wallis test.

7.2.8 Radiomic signature dependency on scanner

The radiomic signature could also potentially be affected by factors not
related to tumor biology. In the case of the SAR1 dataset the only possible
batch was the MRI-scanner (Philips or Siemens). To evaluate signature
differences in radiomic signature due to scanner a Mann-Whitney test was
used. The analysis was performed separately on dead and alive patients at
the end of the follow-up because it is reasonable to think that patients with
the worst outcome will have a significantly higher signature.

7.2.9 Evaluation of added prognostic value of radiomics

To evaluate the added prognostic value of the radiomic, three different anal-
yses were performed.

In the first analysis the prognostic power of the radiomic signature was
evaluated by looking at its HR and p-value in a multivariate Cox regression
model with the other selected clinical variables.

For the second analyses, the different subgroups defined by grade (I-II vs
III) were considered. The Kaplan-Meier analysis described in Subsection
7.2.6 was repeated for each subgroup. This was done to assess whether the
discriminatory power of the radiomic classification was high in each of the
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groups or was subgroup dependent.
For the third analyses, the C-indexes of the clinical, radiomic and com-

bined signature (trained as described in 7.2.6) was computed to assess
whether the prognostic performance of the radiomic or combined signature
was better than the one of the clinical signature alone.

7.3 Results

7.3.1 Prognostic models training

Only one feature was selected for the clinical and radiomic models. In par-
ticular, the clinical feature was tumor grade, while the radiomic feature was
T1-waveletHLL-firstorder-Median. Table 7.3 lists the mean and standard
deviation of the radiomic feature, which were used for the Z-score nor-
malization. The combined model was obtained by using both the features.
Table 7.4 show the coefficients of the features in the different models.

SELECTED RADIOMIC FEATURES DETAILS

Features names Mean Standard deviation

T1w-waveletHLL-
firstorder- Median 0.005 0.008

Table 7.3: Mean and standard deviation of the selected radiomic feature. These values
were used to compute the Z-scored versions of the feature. Numeric values are reported
up to the second decimal digit.

SELECTED FEATURES COEFFICIENTS

Features names Coefficient
(clinical)

Coefficient
(radiomic)

Coefficient
(combined)

T1w-waveletHLL-
firstorder- Median - -0.83 -0.52

Grade 2.21 - 1.91

Table 7.4: Coefficients of radiomic and clinical features for the three models tested: clin-
ical, radiomic and combined. Coefficients values are displayed up to the second deci-
mal digit.
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7.3.2 Validation of the radiomic signature

The C-index of the radiomic signature after the 10-fold cross-validation in
SAR1 dataset was 0.74 (95 % CI [0.64-0.84]).

The Kaplan-Meier curves for the high and low risk groups according to
radiomics are displayed in Figure 7.2. The p-value of the log-rank test was
p=3.94*10-4, highlighting a significant survival between the two groups. In
particular, high risk patients had the worst outcome, as expected.

Figure 7.2: Kaplan-Meier curves for overall survival (OS) in high and low risk groups
according to radiomics. Sample sizes and p-values of log-rank tests are also indicated.
Results are displayed for the cross-validation on SAR1 dataset

7.3.3 Correlation between radiomic signature and clinical variables

Figure 7.3 illustrates the dependency of the radiomic signature on histolog-
ical grade. There were significant differences among the grade (p=0.0021
for Kruskal-Wallis test). In particular, the median signature for grade 3
compared to of each grade is significantly higher compared to the ones for
Grade 1 and 2 (p=0.0107 and p=0.0144 in post-hoc comparisons respec-
tively).
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Figure 7.3: Boxplots representing the distribution of radiomic signature across grades.
Signature is significantly higher for grade 3 that for grade 1-2, as highlighted by the
asterisk.

7.3.4 Radiomic signature dependency on scanner

Figures 7.4A-B show the boxplots with the distribution of the radiomic
signature across scanners for the alive and dead patients respectively. No
significant difference was found between signature in the two scanners. The
p-value of the Mann-Whitney test were 0.4 and 0.93 for the alive and dead
patients respectively.

7.3.5 Evaluation of added prognostic value of radiomics

Multivariate Cox analyses

The results of the multivariate Cox analyses of the unbiased signature value
in SAR1 dataset are displayed in Table 7.5. In both tables the following
prognostic variables are evaluated: radiomic signature; tumor grade. The
tables display the values of HR for the different variables and the associated
p-values (p<0.05 if the HR is significantly different from 1).
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Figure 7.4: Boxplots representing the distribution of radiomic signature across scanners.
A) Alive patients. B) Dead patients.

MULTIVARIATE COX ANALYSIS (SAR1)

Feature Hazard ratio p-value

Radiomic signature 1.86 0.0479

Tumor grade 6.75 0.0376

Table 7.5: Results on multivariate analysis on SAR1 dataset.Results are displayed in terms
of hazard ration and corresponding p-value. Significantly prognostic features are high-
lighted in red.

When put in a multivariate Cox model, the value of the signature main-
tained its significance, although the p-values was close to the limit of sig-
nificance (HR=1.86, p=0.0479).

Stratified Kaplan-Meier analysis

Figure 7.5 of the Kaplan-Meier analysis, stratified by tumor grade (1-2 vs
3). For grade 3 patients, the Kaplan-Meier curves for the high and low
risk groups defined by radiomics were significantly different (p=0.043 for
log-rank test), with high risk patients showing the worst outcome. No sig-
nificant difference was found for Grade 1-2 patients (p=0.98).

Comparison of clinical, radiomic and combined signatures

Figure 7.6 shows the distributions of C-indexes for the three models ob-
tained after 10-fold cross-validation on dataset SAR1. The radiomic and
clinical model performed similarly (radiomic: median C-index 0.74, 95%
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Figure 7.5: Kaplan-Meier curves for overall survival (OS) in high and low risk groups
according to radiomics. Sample sizes and p-values of log-rank test are also displayed.
A) Grade 1-2 tumors. B) Grade 3 tumors.

CI [0.64-0.84]; clinical: median C-index 0.74, 95% CI [0.68-0.80]), while
the combined model performed better (median C-index 0.78, 95% CI [0.70-
0.86]).

7.4 Discussion

In this chapter, the usefulness of MRI-radiomics for the development of
prognostic models for OS in STS has been investigated. As observed in
Chapter 6 for HNC, the addition of radiomic features provides independent
prognostic information.

In the case of STS, the only radiomic features that was used in the ra-
diomic model was T1w-waveletHLL-firstorder-Median, which was asso-
ciated with a negative Cox coefficient (-0.52 and -0.83 for the radiomic
and combined model respectively, see Table 7.4). This means that tu-
mors that are iper-intense wavelet transform of the T1w images are asso-
ciated to a lower risk of death. This behaviour was in agreement with the
one observed for HNC, in which the feature T1w-waveletLHL-firstorder-
90Percentile, which has a behaviour that is similar to T1w-waveletHLL-
firstorder-Median, was associated to a negative Cox coefficient (-0.27 and
-0.15 for the radiomic and combined model, see Table 6.7).

When comparing the cross-validation C-index obtained from SAR1 with
the results presented in Subsection 6.3.5 for HNC, it can be seen that the
values obtained for STS are higher. This may suggest that, although MRI
could be used to identify phenotypic differences in both districts, it is par-
ticularly useful for STS. However, the better result could be also due to the
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Figure 7.6: Distributions of C-index for the cross-validated signature values in the SAR1
dataset. Distributions were obtained by bootstrap of the original values (100 itera-
tions). The combination of radiomic and clinical features resulted in the model with
the best performance.

fact that while the BD2Decide datasets only include patients with advanced
disease, the same cannot be said for the SARCOMICS dataset.

The results showed that the radiomic signature was correlated with his-
tological grade and was significantly higher for grade 3 tumors. However,
the multivariate Cox analysis showed that the radiomic signature added in-
dependent prognostic information. As a matter of fact, radiomic could fur-
ther stratify survival in the group of grade 3 patients. Also, the combined
signature showed a better cross-validation c-index compared to the clini-
cal and radiomic ones (0.79 vs 0.74). These results show the potential of
radiomic in the development of prognostic models for OS in higher grade
STS, but also in distinguishing lower grade from higher grade tumors (as
previously found by [100]).

Only two other studies investigated the prognostic performance of ra-
diomic features on OS. In [117], a gradient boosting based on radiomic
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features was used to develop a CT-based radiomic signature for OS. The
signature was trained on a monocentric dataset of 83 patients and validated
on two different validation datasets of 87 and 51 patients respectively, ob-
taining C-index of 0.72, 0.73 and 0.59 respectively. The addition of clin-
ical variables augmented the C-index up to 0.76. In [147], a LASSO-Cox
regression was trained on a dataset of 165 patients using different combina-
tions of radiomic features (from T1w MRI) and clinical features (age and
grade) and validated on an external dataset of 61 patients. The developed
models performed well on both datasets, with C-index up to 0.78. The
mean C-index obtained by cross-validation in the SAR1 dataset was 0.74
for the radiomic alone and 0.78 for the combined model, showing values
that are in the same range as the one of the above mention studies of litera-
ture. The result of the SAR1 dataset is particularly important because it was
obtained by training from images acquired with non-standardized parame-
ters. Also, while in [147], the C-index was calculated for a follow-up of
maximum 3 years, in the experiment presented in this chapter it was shown
that the same performance could be reached also for longer follow-ups (up
to 8 years).

The study still has some limitations and the main one is the lack of an
independent validation dataset. The acquisition of such dataset is part of
the SARCOMICS project but the enrollment of the prospective patients is
still ongoing and so no independent validation is available at the moment.
The only validation that was performed was provided by cross-validation
which is a first fundamental step when developing any statistical model but
is not enough to provide definitive results. The collection of the prospective
data is therefore the logical next step for this analysis.

In conclusion, in this chapter the radiomic workflow developed for this
thesis was applied to an STS cohort including MRI images acquired with
uncontrolled image acquisition parameters. Although an external validation
is missing the results obtained through cross-validation are promising and
comparable to the ones of previous studies of literature. This is a further
proof of the fact that a proper preprocessing of the data can make radiomics
applicable also for images acquired with different protocols.
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CHAPTER8
Conclusions

8.1 Summary of the main results

In this thesis, a workflow for MRI radiomic analysis that allowed to train
prognostic models using MRI images collected with non-standardized ac-
quisition protocols was developed. The workflow could be used to suc-
cessfully train a model starting from multicentric MRI cohorts, which is a
necessity when dealing with rare pathologies like HNC or STS, for which
large monocentric cohorts are often not available.

This section reports a summary of the main results of the thesis that are
reported with respect to the initial objectives as defined in Section 1.2.

Evaluation of features stability to imaging-related variability

In order to asses the stability of radiomic features to variation, a series of
experiments were performed using simulated MRI images (T1w and T2w)
obtained using a virtual phantom (BrainWeb) as described in Chapter 3.
Four main different sources of variability were considered: 1) variations
in TR/TE; 2) variations in voxels size; 3) image noise; 4) intensity non-
uniformities;

The results showed that the stability of the radiomic features to imaging
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related-variability was not dependent on the type of MRI used (T1w and
T2w), but was mainly related to the features category.

Variations in TR/TE affected the FOS features more than the textural
features. This is probably due to the fact that textural features depend on
the number of bins used for grey-level discretization (which was set at 32
bins in all the analysis of the thesis) and are not affected by linear transfor-
mations of the histogram (scaling or translation), unlike many FOS features
(like mean or standard deviation) that depend on the exact value of MRI
signal intensity.

Voxel size was the factor causing the largest variability in radiomic fea-
tures. In particular, textural features were the most effected. FOS and SS
features are also affected, but the majority of the values of ICC (used to
quantify stability) were higher compared to the ones of the textural fea-
tures. The low values of ICC for textural features underline how important
it is to either control the parameters that define voxel size (e.g. pixel spac-
ing, spacing between slices) or to correct for lack of standardization of the
parameters.

Random Gaussian noise had little effect on features values. The effect
of noise was more evident in textural features, presenting lower ICC values
compared to FOS. This may be due to the fact that FOS features, unlike
textural features, do not depend on the spatial distribution of the gray values
but only on the histogram of the grey values. Since the Gaussian noise used
was a white noise (null mean), only minor changes in the histogram may
occur, while the spatial distribution of the grey values may still be affected.

Intensity non-uniformity (INU) due to variations of the magnetic field
affected both FOS and textural features. As a matter of fact, INU may
introduce variations in both the spatial distribution of the grey values, but
also major changes to the histogram.

Effect of image preprocessing on imaging-related variability

The experiments described in Chapter 3 also allowed to evaluate whether
image preprocessing could help increasing the stability of radiomic fea-
tures to variations in the image acquisition parameters. Different prepro-
cessing techniques were investigated: bias-field correction via N4ITK al-
gorithm; image denoising via Gaussian filtering; intensity standardization
with different algorithms (Z-score, histogram stretching, histogram match-
ing); voxel size resampling with cubic B-spline. All the aforementioned
preprocessing steps seem to improve the stability of radiomic features to
variability in the images acquisition conditions and were therefore included
in the radiomic workflow.
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8.1. Summary of the main results

Intensity standardization had a positive effect on stability of the FOS
features to variations in TR/TE. Stability of textural features did not im-
prove after intensity standardization. This behaviour can be explained by
the fact that intensity standardization is equivalent to a rigid (linear) reg-
istration of the histogram. Such rigid transformation change the values
of FOS features but does not affect the textural features, since it does not
change the shape of the histogram or the spatial distribution of the dis-
cretized grey values. No significant differences were found among the in-
tensity standardization algorithms (histogram matching, histogram stretch-
ing and Z-score normalization). This is a positive aspect because it means
that other researchers that want to use intensity standardization may use the
method that they prefer. For the future analyses of this thesis it was decided
to use the default standardization method within pyradiomics (Z-score).

Spatial resampling with isotropic voxel size improved the stability of
the features, in particular for the SS and textural features. SS features only
depend on the geometrical properties of the ROI and therefore they stay
equal if the grid on which the ROI is interpolated (i.e. the image grid) does
not change. This explain why the ICC values of the features after the re-
sampling were 1. In case of textural features, ICC values increased after
resampling, probably because using the same resolution in all the 3 direc-
tion allowed to normalize the computation of the textural matrices from
which the textural features derive.

Gaussian filtering was used to reduce image noise and had a slight but
consistently positive effect on features stability, especially on textural fea-
tures. The N4ITK algorithm used for bias-field correction also had a pos-
itive effect on both FOS and textural features. This result highlights how
important it is to handle those type of noise prior to any image analysis.

Evaluation of features stability to ROI-related variability

Chapter 4 addresses the issue of stability of radiomic features to variations
in the ROI. In particular two different sources of variability in the ROI
were considered: 1) multiple manual segmentations (by two different radi-
ologist); 2) geometrical transformation of the ROI. The two analyses were
performed on a dataset of patients affected by either HNC and STS. For
the analyses T1w, T2w and ADC images were considered. The stability
analyses were performed for HNC and STS separately.

Features stability to variations in the ROI was dependent on the district
considered (HNC or STS). Features extracted from STS were more stable
compared to features extracted from HNC. This result may depend from
the fact that the volume of STS tumor is much larger compared to the one
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of HNC, meaning that a smaller portion of the ROI is modified, leading to
less variability in the features and higher ICC values.

Image type was also a factor influencing features stability, with T1w im-
ages showing lower ICC values compared to T2w images and ADC maps.
This may depend on the lower inter-tumor variability in T1w images. Since
it is reasonable to expect the same amount of ROI-related variability in all
the images, and since the values of ICC are proportional to the inter-tumor
variability, it is understandable that lower ICC may be observed.

From the analysis in Chapter 4 it was possible to see that there is a high
correlation, in terms of ICC values, between the results of multiple segmen-
tations and ROI geometrical transformations, with the latter being more re-
strictive than the former. This is a very important finding that suggests a
potential use of ROI geometrical transformation as a possible surrogate for
the test of multiple segmentations. Stability to multiple segmentation is
currently one of the most widely used method to asses the stability of ra-
diomic features, but is time consuming since requires the work of multiple
radiologists. On the other hand, ROI translations can be easily automatized
and implemented within a radiomic workflow, making the assessment of
stability to ROI-variations easier.

Selection of a set of stable radiomic features

After the analyses of Chapters 3 and 4 it was also possible to classify the
radiomic features in stable and unstable using an ICC of 0.75 as threshold.

For the imaging-related variability, only T1w and T2w images were con-
sidered and a set 536 features of different categories (FOS, SS, textural and
wavelet) was extracted for each image type, for a total of 1072 features. In
total, 550 features were stable to variations in image acquisition parameters
(266 T1w and 284 T2w). SS features were the most stable and wavelet
features were the least stable. The stability of the features was mainly in-
dependent from the image type with 229 images being stable for both T1w
and T2w images. This common features set was used as a surrogate of ADC
stable features, since no analysis on ADC could be performed in Brainweb.

Of the 1608 features considered (536 features for T1w, T2w and ADC),
701 and 1057 were stable to ROI-variability for HNC and STS respectively.
SS were the most stable features and wavelets were the least stable. T1w
images presented a significantly lower number of stable features compared
to T2w and ADC images.

A total of 410 and 617 features were stable to both imaging-related and
ROI-related variability in HNC and STS respectively. These features were
the ones used for all the features analyses performed in the thesis.
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8.1. Summary of the main results

Optimization of the radiomic postprocessing

Chapter 5 focused on the features postprocessing, i.e. the steps that are
performed after the features extraction. In particular, features normaliza-
tion and features selection were optimized in order to maximize the per-
formance of a Cox proportional hazard regression model for OS in HNC.
Combinations of four different features normalization methods and two dif-
ferent feature selection pipeline were compared.

According to a 2-way ANOVA for repeated measures, both normaliza-
tion algorithm and features selection pipeline had a significant effect on the
prognostic performance of the survival model, measured by the Harrel’s
C-index. Moreover, a significant interaction between the two factor was
identified meaning that is not possible to select one step of post-processing
without taking into account all the others.

The best postprocessing pipeline included Z-score normalization and
three feature selections steps based on features pairwise correlation and
prognostic performance, assessed using both univariate and multivariate
Cox regression models.

Training and validation of radiomic-based survival models

In Chapters 6 and 7, all the workflow designed in the first part of the thesis
was applied to two different datasets containing images acquired from mul-
tiple centers and/or with non-standardized protocols in order to develop
prognostic models for OS for HNC and STS. For each problem, a prog-
nostic radiomic signature was trained and a validation (either internal or
external) was performed to asses the ability of the radiomic features to be
prognostic for OS for unseen patients.

In the case of HNC, a five-features radiomic signature was trained on
262 patients. The signature performed well (Harrel’s C-index>0.6) on both
internal cross-validation (C-index 0.67) and external validation of 232 pa-
tients (C-index 0.63). The Kaplan-Meier curves of the high and low risk
groups as defined by radiomics were also significantly different in both
types of validation.

For STS, a 1-feature signature was trained on a dataset of 91 patients.
The cross-validation showed that the signature had a good prognostic per-
formance for OS (C-index 0.74).

The results of both Chapter 6 and 7 showed that the developed radiomic
signature had a prognostic performance that was similar to the one of sig-
natures trained on standardized datasets. This seems to prove that, with
the adequate pre- and post-processing, radiomics could be build prognostic
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model for OS. It is also reasonable to think that a similar workflow could
be used to train prognostic models for other types of outcome (e.g. disease-
free survival).

Added prognostic value of radiomic signatures

Since the identified radiomic signature are correlated to other prognostic
clinical variables, different analyses were performed to ensure that the sig-
natures included significant and independent prognostic information.

In HNC, multivariate Cox analysis confirmed that the radiomic signature
was a significantly prognostic factor and that was independent from other
variables like stage TNM, HPV status or tumor subsite. Similar results
was found for STS, for which the multivariate Cox model was built using
radiomic signature and tumor grade as prognostic factors.

In HNC, multiple Kaplan-Meier analyses were performed in the dif-
ferent subgroups stratified by clinical variables such as stage TNM, HPV
status and sub-site. The risk groups classified by radiomics corresponded to
significantly different curves for Stage IV patients and for HPV- patients.
In the other subgroups the differences were not significant but this could
be related to the low number of events. Similar results were found for the
STS dataset in which the radiomic signature could significantly separate
Kaplan-Meier curves in Grade 3 patients, while no significant differences
were found for grade 1-2. The two previous results indicate that radiomics
is particularly effective on more aggressive tumors.

For both STS and HNC, prognostic models trained using both clini-
cal and radiomic variables led to improved performance compared (higher
C-index) to the models obtained using the clinical variables alone (STS:
0.78 vs 0.74; HNC-cross-validation: 0.69 vs 0.67; HNC-validation: 0.72
vs 0.69).

All the previous results highlight how radiomics could provide addi-
tional prognostic information that is not obtainable by a traditional clinical
approach, even though the entity of this added value may vary depending
on the characteristics of the tumor (e.g. stage, grade sub-site).

8.2 Impact, limitations and future developments

Each of the analysis performed in the thesis had its own limitation that
could be the starting points for future analyses.

The stability to variations in the image acquisition parameters were per-
formed on simulated MRI using virtual phantoms (BrainWeb). On one
hand, virtual simulations are a powerful tool to simulate a large number of
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image acquisitions in a way that would not be feasible in the real world. On
the other hand, a few limitations are also present: Brainweb does not allow
to simulate some types of variability, such as test-retest or scanner-related
variability; also, DWI cannot be simulated using BrainWeb and therefore no
direct stability analysis could be performed for those type of images; last,
since there is no clear tumor in BrainWeb images, the selection of the ROI
was done somewhat arbitrarily. To address the aforementioned limitations,
simulations on real phantom with specific ROI could be performed, ana-
lyzing different types of imaging-related variability (imaging parameters
variations; inter-scanner variability; test-retest) on all the image sequences
of interest.

In the thesis, stability was used as a criteria for preliminary features se-
lection, using an ICC>0.75 for both imaging-related and ROI-related vari-
ability as a requirement. Although this preliminary selection tends to im-
prove the performance of the downstream classification/prognostic analy-
sis, the removal of the features may cause a loss of information leading to
a sub-optimal model [115]. An alternative approach to overcome this issue
could be to use the stability analysis to estimate the generated variability
(standard deviation) of each radiomic features and use this information to
perform data augmentation of the clinical datasets used to train the prognos-
tic models. Recent studies show the potential improvement that could be
provided by such approach [115]. Future analysis may test the robustness
of this kind of approach.

The textural features considered for most of the analyses were extracted
from specific textural matrices (GLCM and GLRLM). This was done since
GLCM and GLRLM are the ones that are used the most in radiomics stud-
ies and because they are available in any software for radiomic features
extraction. However, all the methodologies applied in this thesis (from sta-
bility analysis of the features to the development of prognostic models)
could also involve other textural matrices (such as GLCM, GLSZM and
NGTDM). Also, other image transform, such as Laplacian of Gaussian or
Gabor filtering could be consider to provide a more detailed description of
the ROI.

In the thesis a preliminary optimization was performed for feature selec-
tion and normalization methods. It was found that there was an interaction
effect between the features selection pipeline and the features normaliza-
tion. In the thesis 4 features normalization algorithm and 2 features se-
lection pipeline were analyzed for a total of 8 combinations. The analysis
performed in the thesis provide some information to guide the design of fea-
tures post-processing but the analysis was not exhaustive. The same can be
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said for the survival model, since alternative to the traditional Cox propor-
tional hazard regression used in this thesis (such as LASSO-Cox regression
or survival random forest) could be considered in future studies. Another
possible future developments is to automatize the optimization of features
postprocessing. Some frameworks to perform such task already exist, like
the Workflow for Optimized Radiomic Classification (WORC) [149], but
they are focused on classification. Unfortunately, to the knowledge of the
authors no such framework was developed for survival analysis.

Last, performing more and more external validations for the developed
radiomic signatures is a fundamental next steps in further ensuring their
prognostic performance in a more generalized context such as the clinical
practice. Also, by the results of Chapters 6 and 7, it was possible to see that
the signature has more prognostic power on specific subgroups (e.g. pa-
tients with high stage and grade). In order to enhance the prognostic power
of radiomics also for the other categories of patients, new data could be col-
lected and new, more-specific signatures could be created with a workflow
like the one developed in this thesis.

Radiomics may potentially have a huge impact in the clinical practice
because it could provide a non-invasive tool to provide additional infor-
mation that may help tumor prognosis, especially in those subgroups were
no clinical prognostic variables are available. Another possible applica-
tion, not treated in this thesis, could be to use radiomics to provide clinical
information, such as determining the grade of a tumor or its HPV status,
in a non-invasive and cheaper way, with huge advantage for both the pa-
tients (more comfort) and the healthcare system (lower costs). However,
the application of radiomics to the clinical practice is still a far goal. To
achieve such goal, it is necessary to test the consistency of results such
as the one presented in the thesis for more and more independent valida-
tion sets, and gradually increasing the variability in terms of both imaging
protocols (more and more centers and scanners should be considered) and
biological (early stage tumors as well as advanced stage tumors). In case
the results will not hold, the new validation set will be included in the train
set and new models will be iteratively updated and improved. Also, in this
thesis only STS and HNC were considered but other types of rare cancers
exists (e.g. bone tumors) and radiomic analyses for those cancers should be
performed as well.

Despite the results of this thesis were far from exhaustive. The results
shown were definitely a further step towards a successful application of
radiomics in the clinical practice, that will result in a better and cheaper
managment of cancer.
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APPENDIXA
List of stable features

In this appendix, the list of stable features, as identified after the experiments described in Chapter
4, is provided. First the features that are stable in both HNC and STS are listed. Then, the list of
features that are stable exclusively for HNC is given. Last, the features that are stable only for STS
are listed.

The code for the feature is the same as Pyradiomics except for the prefix that has been added,
indicating the type of image from which the feature has been extracted.

Stable features for both HNC and STS

– T1w-original-shape-Elongation

– T1w-original-shape-Flatness

– T1w-original-shape-LeastAxisLength

– T1w-original-shape-MajorAxisLength

– T1w-original-shape-Maximum2DDiameterColumn

– T1w-original-shape-Maximum2DDiameterRow

– T1w-original-shape-Maximum2DDiameterSlice

– T1w-original-shape-Maximum3DDiameter

– T1w-original-shape-MeshVolume

– T1w-original-shape-MinorAxisLength

– T1w-original-shape-SurfaceArea
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Appendix A. List of stable features

– T1w-original-shape-SurfaceVolumeRatio

– T1w-original-shape-VoxelVolume

– T1w-original-firstorder-Energy

– T1w-original-firstorder-InterquartileRange

– T1w-original-firstorder-Mean

– T1w-original-firstorder-Median

– T1w-original-firstorder-RobustMeanAbsoluteDeviation

– T1w-original-firstorder-RootMeanSquared

– T1w-original-firstorder-TotalEnergy

– T1w-original-glrlm-GrayLevelNonUniformity

– T1w-original-glrlm-RunLengthNonUniformity

– T1w-waveletLLH-firstorder-Entropy

– T1w-waveletLLH-firstorder-Mean

– T1w-waveletLLH-firstorder-Median

– T1w-waveletLLH-firstorder-Uniformity

– T1w-waveletLLH-glcm-ClusterProminence

– T1w-waveletLLH-glcm-ClusterTendency

– T1w-waveletLLH-glcm-Contrast

– T1w-waveletLLH-glcm-DifferenceAverage

– T1w-waveletLLH-glcm-Idmn

– T1w-waveletLLH-glcm-Idn

– T1w-waveletLLH-glcm-JointEntropy

– T1w-waveletLLH-glcm-SumEntropy

– T1w-waveletLLH-glcm-SumSquares

– T1w-waveletLLH-glrlm-GrayLevelNonUniformity

– T1w-waveletLLH-glrlm-GrayLevelNonUniformityNormalized

– T1w-waveletLLH-glrlm-GrayLevelVariance

– T1w-waveletLLH-glrlm-RunLengthNonUniformity

– T1w-waveletLLH-glrlm-RunLengthNonUniformityNormalized

– T1w-waveletLLH-glrlm-RunPercentage

– T1w-waveletLLH-glrlm-ShortRunEmphasis

– T1w-waveletLHL-firstorder-90Percentile

– T1w-waveletLHL-firstorder-Entropy

– T1w-waveletLHL-firstorder-Median

– T1w-waveletLHL-glcm-ClusterTendency

– T1w-waveletLHL-glcm-Contrast

– T1w-waveletLHL-glcm-DifferenceAverage

– T1w-waveletLHL-glcm-Idmn
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– T1w-waveletLHL-glcm-Idn

– T1w-waveletLHL-glcm-SumEntropy

– T1w-waveletLHL-glcm-SumSquares

– T1w-waveletLHL-glrlm-GrayLevelNonUniformity

– T1w-waveletLHL-glrlm-RunLengthNonUniformity

– T1w-waveletLHH-glrlm-GrayLevelNonUniformity

– T1w-waveletLHH-glrlm-RunLengthNonUniformity

– T1w-waveletHLL-firstorder-Entropy

– T1w-waveletHLL-firstorder-Median

– T1w-waveletHLL-glcm-DifferenceAverage

– T1w-waveletHLL-glcm-DifferenceEntropy

– T1w-waveletHLL-glcm-Id

– T1w-waveletHLL-glcm-Idm

– T1w-waveletHLL-glcm-Idn

– T1w-waveletHLL-glcm-SumSquares

– T1w-waveletHLL-glrlm-GrayLevelNonUniformity

– T1w-waveletHLL-glrlm-GrayLevelVariance

– T1w-waveletHLL-glrlm-RunLengthNonUniformity

– T1w-waveletHLL-glrlm-RunLengthNonUniformityNormalized

– T1w-waveletHLL-glrlm-ShortRunEmphasis

– T1w-waveletHLH-glrlm-GrayLevelNonUniformity

– T1w-waveletHLH-glrlm-RunLengthNonUniformity

– T1w-waveletHHL-glcm-ClusterTendency

– T1w-waveletHHL-glcm-SumSquares

– T1w-waveletHHL-glrlm-GrayLevelNonUniformity

– T1w-waveletHHL-glrlm-RunLengthNonUniformity

– T1w-waveletHHH-glcm-ClusterProminence

– T1w-waveletHHH-glcm-ClusterTendency

– T1w-waveletHHH-glcm-SumSquares

– T1w-waveletHHH-glrlm-GrayLevelNonUniformity

– T1w-waveletHHH-glrlm-RunLengthNonUniformity

– T1w-waveletLLL-firstorder-Energy

– T1w-waveletLLL-firstorder-InterquartileRange

– T1w-waveletLLL-firstorder-Mean

– T1w-waveletLLL-firstorder-Median

– T1w-waveletLLL-firstorder-RobustMeanAbsoluteDeviation

– T1w-waveletLLL-firstorder-RootMeanSquared

– T1w-waveletLLL-firstorder-TotalEnergy
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Appendix A. List of stable features

– T1w-waveletLLL-glcm-Contrast

– T1w-waveletLLL-glcm-DifferenceAverage

– T1w-waveletLLL-glcm-DifferenceEntropy

– T1w-waveletLLL-glcm-Idmn

– T1w-waveletLLL-glcm-Idn

– T1w-waveletLLL-glrlm-GrayLevelNonUniformity

– T1w-waveletLLL-glrlm-RunLengthNonUniformity

– T2w-original-shape-Elongation

– T2w-original-shape-Flatness

– T2w-original-shape-LeastAxisLength

– T2w-original-shape-MajorAxisLength

– T2w-original-shape-Maximum2DDiameterColumn

– T2w-original-shape-Maximum2DDiameterRow

– T2w-original-shape-Maximum2DDiameterSlice

– T2w-original-shape-Maximum3DDiameter

– T2w-original-shape-MeshVolume

– T2w-original-shape-MinorAxisLength

– T2w-original-shape-SurfaceArea

– T2w-original-shape-SurfaceVolumeRatio

– T2w-original-shape-VoxelVolume

– T2w-original-firstorder-90Percentile

– T2w-original-firstorder-Energy

– T2w-original-firstorder-Entropy

– T2w-original-firstorder-InterquartileRange

– T2w-original-firstorder-Mean

– T2w-original-firstorder-Median

– T2w-original-firstorder-RobustMeanAbsoluteDeviation

– T2w-original-firstorder-RootMeanSquared

– T2w-original-firstorder-Skewness

– T2w-original-firstorder-TotalEnergy

– T2w-original-firstorder-Uniformity

– T2w-original-glcm-Autocorrelation

– T2w-original-glcm-Id

– T2w-original-glcm-Idm

– T2w-original-glcm-JointAverage

– T2w-original-glcm-JointEnergy

– T2w-original-glcm-JointEntropy

– T2w-original-glcm-MaximumProbability
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– T2w-original-glcm-SumAverage

– T2w-original-glcm-SumEntropy

– T2w-original-glrlm-GrayLevelNonUniformity

– T2w-original-glrlm-GrayLevelNonUniformityNormalized

– T2w-original-glrlm-HighGrayLevelRunEmphasis

– T2w-original-glrlm-LongRunEmphasis

– T2w-original-glrlm-LongRunHighGrayLevelEmphasis

– T2w-original-glrlm-RunLengthNonUniformity

– T2w-original-glrlm-RunLengthNonUniformityNormalized

– T2w-original-glrlm-RunPercentage

– T2w-original-glrlm-RunVariance

– T2w-original-glrlm-ShortRunEmphasis

– T2w-original-glrlm-ShortRunHighGrayLevelEmphasis

– T2w-waveletLLH-firstorder-Mean

– T2w-waveletLLH-glcm-ClusterProminence

– T2w-waveletLLH-glcm-Imc1

– T2w-waveletLLH-glcm-Imc2

– T2w-waveletLLH-glcm-JointEnergy

– T2w-waveletLLH-glcm-MaximumProbability

– T2w-waveletLLH-glrlm-GrayLevelNonUniformity

– T2w-waveletLLH-glrlm-RunLengthNonUniformity

– T2w-waveletLLH-glrlm-RunLengthNonUniformityNormalized

– T2w-waveletLLH-glrlm-RunPercentage

– T2w-waveletLLH-glrlm-ShortRunEmphasis

– T2w-waveletLHL-firstorder-Entropy

– T2w-waveletLHL-firstorder-Uniformity

– T2w-waveletLHL-glcm-Contrast

– T2w-waveletLHL-glcm-DifferenceAverage

– T2w-waveletLHL-glcm-DifferenceEntropy

– T2w-waveletLHL-glcm-Id

– T2w-waveletLHL-glcm-Idm

– T2w-waveletLHL-glcm-Idmn

– T2w-waveletLHL-glcm-Idn

– T2w-waveletLHL-glcm-JointEnergy

– T2w-waveletLHL-glcm-JointEntropy

– T2w-waveletLHL-glcm-SumEntropy

– T2w-waveletLHL-glrlm-GrayLevelNonUniformity

– T2w-waveletLHL-glrlm-GrayLevelNonUniformityNormalized
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Appendix A. List of stable features

– T2w-waveletLHL-glrlm-GrayLevelVariance

– T2w-waveletLHL-glrlm-RunLengthNonUniformity

– T2w-waveletLHL-glrlm-RunLengthNonUniformityNormalized

– T2w-waveletLHL-glrlm-RunPercentage

– T2w-waveletLHL-glrlm-ShortRunEmphasis

– T2w-waveletLHH-glcm-Imc1

– T2w-waveletLHH-glcm-Imc2

– T2w-waveletLHH-glrlm-GrayLevelNonUniformity

– T2w-waveletLHH-glrlm-RunLengthNonUniformity

– T2w-waveletHLL-glcm-Imc1

– T2w-waveletHLL-glcm-Imc2

– T2w-waveletHLL-glrlm-GrayLevelNonUniformity

– T2w-waveletHLL-glrlm-LongRunEmphasis

– T2w-waveletHLL-glrlm-RunLengthNonUniformity

– T2w-waveletHLL-glrlm-RunLengthNonUniformityNormalized

– T2w-waveletHLL-glrlm-RunPercentage

– T2w-waveletHLL-glrlm-ShortRunEmphasis

– T2w-waveletHLH-glcm-Imc1

– T2w-waveletHLH-glcm-Imc2

– T2w-waveletHLH-glrlm-GrayLevelNonUniformity

– T2w-waveletHLH-glrlm-RunLengthNonUniformity

– T2w-waveletHLH-glrlm-RunLengthNonUniformityNormalized

– T2w-waveletHLH-glrlm-RunPercentage

– T2w-waveletHLH-glrlm-ShortRunEmphasis

– T2w-waveletHHL-firstorder-Uniformity

– T2w-waveletHHL-glcm-Id

– T2w-waveletHHL-glcm-Idm

– T2w-waveletHHL-glcm-Idn

– T2w-waveletHHL-glcm-Imc1

– T2w-waveletHHL-glcm-Imc2

– T2w-waveletHHL-glcm-InverseVariance

– T2w-waveletHHL-glrlm-GrayLevelNonUniformity

– T2w-waveletHHL-glrlm-GrayLevelNonUniformityNormalized

– T2w-waveletHHL-glrlm-LongRunEmphasis

– T2w-waveletHHL-glrlm-RunLengthNonUniformity

– T2w-waveletHHL-glrlm-RunLengthNonUniformityNormalized

– T2w-waveletHHL-glrlm-RunPercentage

– T2w-waveletHHL-glrlm-ShortRunEmphasis
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– T2w-waveletHHH-firstorder-Entropy

– T2w-waveletHHH-glcm-ClusterTendency

– T2w-waveletHHH-glcm-Contrast

– T2w-waveletHHH-glcm-DifferenceAverage

– T2w-waveletHHH-glcm-Idmn

– T2w-waveletHHH-glcm-Idn

– T2w-waveletHHH-glcm-Imc1

– T2w-waveletHHH-glcm-Imc2

– T2w-waveletHHH-glcm-SumSquares

– T2w-waveletHHH-glrlm-GrayLevelNonUniformity

– T2w-waveletHHH-glrlm-GrayLevelVariance

– T2w-waveletHHH-glrlm-RunLengthNonUniformity

– T2w-waveletHHH-glrlm-RunLengthNonUniformityNormalized

– T2w-waveletHHH-glrlm-RunPercentage

– T2w-waveletHHH-glrlm-ShortRunEmphasis

– T2w-waveletLLL-firstorder-90Percentile

– T2w-waveletLLL-firstorder-Energy

– T2w-waveletLLL-firstorder-Entropy

– T2w-waveletLLL-firstorder-InterquartileRange

– T2w-waveletLLL-firstorder-Mean

– T2w-waveletLLL-firstorder-Median

– T2w-waveletLLL-firstorder-Range

– T2w-waveletLLL-firstorder-RobustMeanAbsoluteDeviation

– T2w-waveletLLL-firstorder-RootMeanSquared

– T2w-waveletLLL-firstorder-Skewness

– T2w-waveletLLL-firstorder-TotalEnergy

– T2w-waveletLLL-firstorder-Uniformity

– T2w-waveletLLL-glcm-Autocorrelation

– T2w-waveletLLL-glcm-DifferenceAverage

– T2w-waveletLLL-glcm-Id

– T2w-waveletLLL-glcm-Idm

– T2w-waveletLLL-glcm-Idn

– T2w-waveletLLL-glcm-JointAverage

– T2w-waveletLLL-glcm-JointEnergy

– T2w-waveletLLL-glcm-JointEntropy

– T2w-waveletLLL-glcm-MaximumProbability

– T2w-waveletLLL-glcm-SumAverage

– T2w-waveletLLL-glcm-SumEntropy
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– T2w-waveletLLL-glrlm-GrayLevelNonUniformity

– T2w-waveletLLL-glrlm-GrayLevelNonUniformityNormalized

– T2w-waveletLLL-glrlm-HighGrayLevelRunEmphasis

– T2w-waveletLLL-glrlm-LongRunEmphasis

– T2w-waveletLLL-glrlm-LongRunHighGrayLevelEmphasis

– T2w-waveletLLL-glrlm-RunLengthNonUniformity

– T2w-waveletLLL-glrlm-RunLengthNonUniformityNormalized

– T2w-waveletLLL-glrlm-RunPercentage

– T2w-waveletLLL-glrlm-RunVariance

– T2w-waveletLLL-glrlm-ShortRunEmphasis

– T2w-waveletLLL-glrlm-ShortRunHighGrayLevelEmphasis

– ADC-original-shape-Elongation

– ADC-original-shape-Flatness

– ADC-original-shape-LeastAxisLength

– ADC-original-shape-MajorAxisLength

– ADC-original-shape-Maximum2DDiameterColumn

– ADC-original-shape-Maximum2DDiameterRow

– ADC-original-shape-Maximum2DDiameterSlice

– ADC-original-shape-Maximum3DDiameter

– ADC-original-shape-MeshVolume

– ADC-original-shape-MinorAxisLength

– ADC-original-shape-SurfaceArea

– ADC-original-shape-SurfaceVolumeRatio

– ADC-original-shape-VoxelVolume

– ADC-original-firstorder-10Percentile

– ADC-original-firstorder-90Percentile

– ADC-original-firstorder-Energy

– ADC-original-firstorder-Mean

– ADC-original-firstorder-Median

– ADC-original-firstorder-RootMeanSquared

– ADC-original-firstorder-Skewness

– ADC-original-firstorder-TotalEnergy

– ADC-original-firstorder-Uniformity

– ADC-original-glcm-Autocorrelation

– ADC-original-glcm-Id

– ADC-original-glcm-Idm

– ADC-original-glcm-Imc1

– ADC-original-glcm-JointAverage

178



i
i

“output” — 2020/6/10 — 18:25 — page 179 — #191 i
i

i
i

i
i

– ADC-original-glcm-SumAverage

– ADC-original-glrlm-GrayLevelNonUniformity

– ADC-original-glrlm-HighGrayLevelRunEmphasis

– ADC-original-glrlm-LongRunEmphasis

– ADC-original-glrlm-LongRunHighGrayLevelEmphasis

– ADC-original-glrlm-LowGrayLevelRunEmphasis

– ADC-original-glrlm-RunLengthNonUniformity

– ADC-original-glrlm-RunLengthNonUniformityNormalized

– ADC-original-glrlm-RunPercentage

– ADC-original-glrlm-RunVariance

– ADC-original-glrlm-ShortRunEmphasis

– ADC-original-glrlm-ShortRunHighGrayLevelEmphasis

– ADC-original-glrlm-ShortRunLowGrayLevelEmphasis

– ADC-waveletLLH-firstorder-Mean

– ADC-waveletLLH-glcm-Imc1

– ADC-waveletLLH-glrlm-GrayLevelNonUniformity

– ADC-waveletLLH-glrlm-LongRunEmphasis

– ADC-waveletLLH-glrlm-RunLengthNonUniformity

– ADC-waveletLLH-glrlm-RunLengthNonUniformityNormalized

– ADC-waveletLLH-glrlm-RunPercentage

– ADC-waveletLLH-glrlm-RunVariance

– ADC-waveletLLH-glrlm-ShortRunEmphasis

– ADC-waveletLHL-firstorder-Entropy

– ADC-waveletLHL-glcm-Contrast

– ADC-waveletLHL-glcm-DifferenceAverage

– ADC-waveletLHL-glcm-DifferenceEntropy

– ADC-waveletLHL-glcm-Id

– ADC-waveletLHL-glcm-Idm

– ADC-waveletLHL-glcm-Idmn

– ADC-waveletLHL-glcm-Idn

– ADC-waveletLHL-glcm-InverseVariance

– ADC-waveletLHL-glrlm-GrayLevelNonUniformity

– ADC-waveletLHL-glrlm-GrayLevelVariance

– ADC-waveletLHL-glrlm-RunLengthNonUniformity

– ADC-waveletLHL-glrlm-RunLengthNonUniformityNormalized

– ADC-waveletLHL-glrlm-RunPercentage

– ADC-waveletLHL-glrlm-ShortRunEmphasis

– ADC-waveletLHH-glcm-ClusterTendency
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– ADC-waveletLHH-glcm-Contrast

– ADC-waveletLHH-glcm-DifferenceAverage

– ADC-waveletLHH-glcm-Idmn

– ADC-waveletLHH-glcm-Idn

– ADC-waveletLHH-glcm-Imc1

– ADC-waveletLHH-glcm-Imc2

– ADC-waveletLHH-glcm-SumSquares

– ADC-waveletLHH-glrlm-GrayLevelNonUniformity

– ADC-waveletLHH-glrlm-GrayLevelVariance

– ADC-waveletLHH-glrlm-RunLengthNonUniformity

– ADC-waveletLHH-glrlm-RunLengthNonUniformityNormalized

– ADC-waveletLHH-glrlm-RunPercentage

– ADC-waveletLHH-glrlm-ShortRunEmphasis

– ADC-waveletHLL-glcm-Imc1

– ADC-waveletHLL-glrlm-GrayLevelNonUniformity

– ADC-waveletHLL-glrlm-GrayLevelVariance

– ADC-waveletHLL-glrlm-RunLengthNonUniformity

– ADC-waveletHLL-glrlm-RunLengthNonUniformityNormalized

– ADC-waveletHLL-glrlm-RunPercentage

– ADC-waveletHLL-glrlm-ShortRunEmphasis

– ADC-waveletHLH-glrlm-GrayLevelNonUniformity

– ADC-waveletHLH-glrlm-RunLengthNonUniformity

– ADC-waveletHHL-firstorder-Entropy

– ADC-waveletHHL-glcm-ClusterTendency

– ADC-waveletHHL-glcm-DifferenceAverage

– ADC-waveletHHL-glcm-Idn

– ADC-waveletHHL-glcm-JointEntropy

– ADC-waveletHHL-glcm-SumSquares

– ADC-waveletHHL-glrlm-GrayLevelNonUniformity

– ADC-waveletHHL-glrlm-RunLengthNonUniformity

– ADC-waveletHHL-glrlm-RunLengthNonUniformityNormalized

– ADC-waveletHHH-glcm-ClusterTendency

– ADC-waveletHHH-glcm-SumSquares

– ADC-waveletHHH-glrlm-GrayLevelNonUniformity

– ADC-waveletHHH-glrlm-RunLengthNonUniformity

– ADC-waveletLLL-firstorder-90Percentile

– ADC-waveletLLL-firstorder-Energy

– ADC-waveletLLL-firstorder-Mean
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– ADC-waveletLLL-firstorder-Median

– ADC-waveletLLL-firstorder-RootMeanSquared

– ADC-waveletLLL-firstorder-Skewness

– ADC-waveletLLL-firstorder-TotalEnergy

– ADC-waveletLLL-firstorder-Uniformity

– ADC-waveletLLL-glcm-Autocorrelation

– ADC-waveletLLL-glcm-DifferenceAverage

– ADC-waveletLLL-glcm-Id

– ADC-waveletLLL-glcm-Idm

– ADC-waveletLLL-glcm-Idn

– ADC-waveletLLL-glcm-JointAverage

– ADC-waveletLLL-glcm-JointEnergy

– ADC-waveletLLL-glcm-MaximumProbability

– ADC-waveletLLL-glcm-SumAverage

– ADC-waveletLLL-glrlm-GrayLevelNonUniformity

– ADC-waveletLLL-glrlm-HighGrayLevelRunEmphasis

– ADC-waveletLLL-glrlm-LongRunEmphasis

– ADC-waveletLLL-glrlm-LongRunHighGrayLevelEmphasis

– ADC-waveletLLL-glrlm-RunLengthNonUniformity

– ADC-waveletLLL-glrlm-RunLengthNonUniformityNormalized

– ADC-waveletLLL-glrlm-RunPercentage

– ADC-waveletLLL-glrlm-RunVariance

– ADC-waveletLLL-glrlm-ShortRunEmphasis

– ADC-waveletLLL-glrlm-ShortRunHighGrayLevelEmphasis

Stable features for HNC only

– T1w-original-glcm-InverseVariance

– T1w-waveletLLH-glrlm-LongRunEmphasis

– T1w-waveletLLH-glrlm-RunVariance

– T1w-waveletLHL-firstorder-10Percentile

– T1w-waveletLHL-glcm-ClusterProminence

– T1w-waveletHHH-glcm-Imc2

– T2w-original-firstorder-MeanAbsoluteDeviation

– T2w-original-glrlm-GrayLevelVariance

– T2w-waveletLLH-firstorder-Median

– T2w-waveletLLH-glrlm-LongRunEmphasis

– T2w-waveletLLH-glrlm-RunVariance

– T2w-waveletLHL-glrlm-LongRunEmphasis
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– T2w-waveletLHL-glrlm-RunVariance

– T2w-waveletLLL-firstorder-MeanAbsoluteDeviation

– T2w-waveletLLL-glcm-ClusterShade

– ADC-waveletLLH-firstorder-Median

– ADC-waveletLHL-glcm-DifferenceVariance

– ADC-waveletLHL-glcm-Imc1

– ADC-waveletLHL-glcm-Imc2

– ADC-waveletHLL-glcm-Imc2

– ADC-waveletHLH-glcm-Imc1

– ADC-waveletHLH-glcm-Imc2

– ADC-waveletHLH-glcm-MCC

– ADC-waveletHHL-glcm-ClusterProminence

– ADC-waveletHHL-glcm-Imc1

– ADC-waveletHHL-glcm-Imc2

– ADC-waveletHHL-glcm-InverseVariance

– ADC-waveletHHL-glrlm-GrayLevelVariance

– ADC-waveletHHH-glcm-ClusterProminence

– ADC-waveletHHH-glcm-Imc1

– ADC-waveletHHH-glcm-Imc2

– ADC-waveletLLL-firstorder-10Percentile

– ADC-waveletLLL-glcm-ClusterShade

Stable features for STS only

– T1w-original-firstorder-10Percentile

– T1w-original-firstorder-90Percentile

– T1w-original-firstorder-Entropy

– T1w-original-firstorder-Maximum

– T1w-original-firstorder-Uniformity

– T1w-original-glcm-DifferenceAverage

– T1w-original-glcm-DifferenceEntropy

– T1w-original-glcm-Id

– T1w-original-glcm-Idm

– T1w-original-glcm-Idn

– T1w-original-glcm-Imc1

– T1w-original-glcm-Imc2

– T1w-original-glcm-JointAverage

– T1w-original-glcm-JointEntropy

– T1w-original-glcm-SumAverage
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– T1w-original-glrlm-LongRunEmphasis

– T1w-original-glrlm-LongRunHighGrayLevelEmphasis

– T1w-original-glrlm-LongRunLowGrayLevelEmphasis

– T1w-original-glrlm-RunLengthNonUniformityNormalized

– T1w-original-glrlm-RunPercentage

– T1w-original-glrlm-ShortRunEmphasis

– T1w-waveletLLH-glcm-Imc1

– T1w-waveletLHL-firstorder-Uniformity

– T1w-waveletLHL-glcm-DifferenceEntropy

– T1w-waveletLHL-glcm-DifferenceVariance

– T1w-waveletLHL-glcm-Id

– T1w-waveletLHL-glcm-Idm

– T1w-waveletLHL-glcm-JointEnergy

– T1w-waveletLHL-glcm-JointEntropy

– T1w-waveletLHL-glrlm-GrayLevelNonUniformityNormalized

– T1w-waveletLHL-glrlm-GrayLevelVariance

– T1w-waveletLHL-glrlm-RunLengthNonUniformityNormalized

– T1w-waveletLHL-glrlm-RunPercentage

– T1w-waveletLHL-glrlm-ShortRunEmphasis

– T1w-waveletLHH-firstorder-Entropy

– T1w-waveletLHH-glcm-ClusterTendency

– T1w-waveletLHH-glcm-Contrast

– T1w-waveletLHH-glcm-DifferenceAverage

– T1w-waveletLHH-glcm-Idmn

– T1w-waveletLHH-glcm-Idn

– T1w-waveletLHH-glcm-SumSquares

– T1w-waveletLHH-glrlm-GrayLevelVariance

– T1w-waveletLHH-glrlm-RunLengthNonUniformityNormalized

– T1w-waveletLHH-glrlm-RunPercentage

– T1w-waveletLHH-glrlm-ShortRunEmphasis

– T1w-waveletHLL-firstorder-Uniformity

– T1w-waveletHLL-glcm-ClusterTendency

– T1w-waveletHLL-glcm-DifferenceVariance

– T1w-waveletHLL-glcm-JointEnergy

– T1w-waveletHLL-glcm-JointEntropy

– T1w-waveletHLL-glcm-MaximumProbability

– T1w-waveletHLL-glcm-SumEntropy

– T1w-waveletHLL-glrlm-GrayLevelNonUniformityNormalized
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– T1w-waveletHLL-glrlm-RunPercentage

– T1w-waveletHLH-firstorder-Entropy

– T1w-waveletHLH-glrlm-GrayLevelVariance

– T1w-waveletHLH-glrlm-RunLengthNonUniformityNormalized

– T1w-waveletHLH-glrlm-ShortRunEmphasis

– T1w-waveletHHL-firstorder-Entropy

– T1w-waveletHHL-firstorder-Uniformity

– T1w-waveletHHL-glcm-ClusterProminence

– T1w-waveletHHL-glcm-DifferenceAverage

– T1w-waveletHHL-glcm-Idn

– T1w-waveletHHL-glcm-JointEntropy

– T1w-waveletHHL-glrlm-GrayLevelNonUniformityNormalized

– T1w-waveletHHL-glrlm-GrayLevelVariance

– T1w-waveletHHL-glrlm-RunLengthNonUniformityNormalized

– T1w-waveletHHL-glrlm-RunPercentage

– T1w-waveletHHL-glrlm-ShortRunEmphasis

– T1w-waveletLLL-firstorder-10Percentile

– T1w-waveletLLL-firstorder-90Percentile

– T1w-waveletLLL-firstorder-Entropy

– T1w-waveletLLL-firstorder-Maximum

– T1w-waveletLLL-firstorder-Uniformity

– T1w-waveletLLL-glcm-Id

– T1w-waveletLLL-glcm-Idm

– T1w-waveletLLL-glcm-Imc1

– T1w-waveletLLL-glcm-JointAverage

– T1w-waveletLLL-glcm-JointEnergy

– T1w-waveletLLL-glcm-JointEntropy

– T1w-waveletLLL-glcm-MaximumProbability

– T1w-waveletLLL-glcm-SumAverage

– T1w-waveletLLL-glcm-SumEntropy

– T1w-waveletLLL-glrlm-LongRunHighGrayLevelEmphasis

– T1w-waveletLLL-glrlm-LowGrayLevelRunEmphasis

– T1w-waveletLLL-glrlm-RunLengthNonUniformityNormalized

– T1w-waveletLLL-glrlm-RunPercentage

– T1w-waveletLLL-glrlm-ShortRunEmphasis

– T2w-original-firstorder-Maximum

– T2w-original-firstorder-Range

– T2w-original-glcm-Imc1
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– T2w-waveletLLH-firstorder-Entropy

– T2w-waveletLLH-firstorder-Kurtosis

– T2w-waveletLLH-firstorder-Uniformity

– T2w-waveletLLH-glcm-ClusterTendency

– T2w-waveletLLH-glcm-DifferenceAverage

– T2w-waveletLLH-glcm-DifferenceEntropy

– T2w-waveletLLH-glcm-Id

– T2w-waveletLLH-glcm-Idm

– T2w-waveletLLH-glcm-Idmn

– T2w-waveletLLH-glcm-Idn

– T2w-waveletLLH-glcm-JointEntropy

– T2w-waveletLLH-glcm-MCC

– T2w-waveletLLH-glcm-SumEntropy

– T2w-waveletLLH-glcm-SumSquares

– T2w-waveletLLH-glrlm-GrayLevelNonUniformityNormalized

– T2w-waveletLLH-glrlm-GrayLevelVariance

– T2w-waveletLLH-glrlm-RunEntropy

– T2w-waveletLHL-firstorder-Kurtosis

– T2w-waveletLHL-glcm-DifferenceVariance

– T2w-waveletLHL-glcm-InverseVariance

– T2w-waveletLHL-glcm-MCC

– T2w-waveletLHL-glcm-MaximumProbability

– T2w-waveletLHH-firstorder-Entropy

– T2w-waveletLHH-firstorder-Kurtosis

– T2w-waveletLHH-firstorder-Uniformity

– T2w-waveletLHH-glcm-ClusterProminence

– T2w-waveletLHH-glcm-ClusterTendency

– T2w-waveletLHH-glcm-Contrast

– T2w-waveletLHH-glcm-DifferenceAverage

– T2w-waveletLHH-glcm-DifferenceEntropy

– T2w-waveletLHH-glcm-DifferenceVariance

– T2w-waveletLHH-glcm-Id

– T2w-waveletLHH-glcm-Idm

– T2w-waveletLHH-glcm-Idmn

– T2w-waveletLHH-glcm-Idn

– T2w-waveletLHH-glcm-JointEnergy

– T2w-waveletLHH-glcm-JointEntropy

– T2w-waveletLHH-glcm-SumEntropy
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Appendix A. List of stable features

– T2w-waveletLHH-glcm-SumSquares

– T2w-waveletLHH-glrlm-GrayLevelNonUniformityNormalized

– T2w-waveletLHH-glrlm-GrayLevelVariance

– T2w-waveletLHH-glrlm-RunLengthNonUniformityNormalized

– T2w-waveletLHH-glrlm-RunPercentage

– T2w-waveletLHH-glrlm-ShortRunEmphasis

– T2w-waveletHLL-firstorder-Entropy

– T2w-waveletHLL-firstorder-Kurtosis

– T2w-waveletHLL-firstorder-Uniformity

– T2w-waveletHLL-glcm-ClusterTendency

– T2w-waveletHLL-glcm-Contrast

– T2w-waveletHLL-glcm-DifferenceAverage

– T2w-waveletHLL-glcm-DifferenceEntropy

– T2w-waveletHLL-glcm-DifferenceVariance

– T2w-waveletHLL-glcm-Id

– T2w-waveletHLL-glcm-Idm

– T2w-waveletHLL-glcm-Idmn

– T2w-waveletHLL-glcm-Idn

– T2w-waveletHLL-glcm-JointEnergy

– T2w-waveletHLL-glcm-JointEntropy

– T2w-waveletHLL-glcm-MaximumProbability

– T2w-waveletHLL-glcm-SumEntropy

– T2w-waveletHLL-glcm-SumSquares

– T2w-waveletHLL-glrlm-GrayLevelNonUniformityNormalized

– T2w-waveletHLL-glrlm-GrayLevelVariance

– T2w-waveletHLH-firstorder-Entropy

– T2w-waveletHLH-glcm-MCC

– T2w-waveletHLH-glrlm-GrayLevelVariance

– T2w-waveletHHL-firstorder-Entropy

– T2w-waveletHHL-firstorder-Kurtosis

– T2w-waveletHHL-glcm-ClusterProminence

– T2w-waveletHHL-glcm-ClusterTendency

– T2w-waveletHHL-glcm-Contrast

– T2w-waveletHHL-glcm-DifferenceAverage

– T2w-waveletHHL-glcm-DifferenceEntropy

– T2w-waveletHHL-glcm-Idmn

– T2w-waveletHHL-glcm-JointEntropy

– T2w-waveletHHL-glcm-SumEntropy
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– T2w-waveletHHL-glcm-SumSquares

– T2w-waveletHHL-glrlm-GrayLevelVariance

– T2w-waveletHHH-glcm-ClusterProminence

– T2w-waveletHHH-glcm-DifferenceVariance

– T2w-waveletHHH-glcm-MCC

– T2w-waveletLLL-firstorder-Maximum

– T2w-waveletLLL-glcm-Imc1

– ADC-original-firstorder-Entropy

– ADC-original-firstorder-InterquartileRange

– ADC-original-firstorder-Maximum

– ADC-original-firstorder-MeanAbsoluteDeviation

– ADC-original-firstorder-RobustMeanAbsoluteDeviation

– ADC-original-glcm-ClusterTendency

– ADC-original-glcm-JointEntropy

– ADC-original-glcm-SumSquares

– ADC-original-glrlm-GrayLevelNonUniformityNormalized

– ADC-waveletLLH-firstorder-Entropy

– ADC-waveletLLH-firstorder-Uniformity

– ADC-waveletLLH-glcm-ClusterProminence

– ADC-waveletLLH-glcm-ClusterTendency

– ADC-waveletLLH-glcm-DifferenceAverage

– ADC-waveletLLH-glcm-Idmn

– ADC-waveletLLH-glcm-Idn

– ADC-waveletLLH-glcm-JointEntropy

– ADC-waveletLLH-glcm-SumEntropy

– ADC-waveletLLH-glcm-SumSquares

– ADC-waveletLLH-glrlm-GrayLevelNonUniformityNormalized

– ADC-waveletLLH-glrlm-GrayLevelVariance

– ADC-waveletLHL-firstorder-Uniformity

– ADC-waveletLHL-glcm-JointEnergy

– ADC-waveletLHL-glcm-JointEntropy

– ADC-waveletLHL-glcm-MaximumProbability

– ADC-waveletLHL-glcm-SumEntropy

– ADC-waveletLHL-glrlm-GrayLevelNonUniformityNormalized

– ADC-waveletLHL-glrlm-LongRunEmphasis

– ADC-waveletLHH-firstorder-Entropy

– ADC-waveletLHH-glrlm-LongRunEmphasis

– ADC-waveletHLL-firstorder-Entropy
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Appendix A. List of stable features

– ADC-waveletHLL-firstorder-Uniformity

– ADC-waveletHLL-glcm-ClusterTendency

– ADC-waveletHLL-glcm-DifferenceAverage

– ADC-waveletHLL-glcm-DifferenceEntropy

– ADC-waveletHLL-glcm-Id

– ADC-waveletHLL-glcm-Idm

– ADC-waveletHLL-glcm-Idn

– ADC-waveletHLL-glcm-JointEnergy

– ADC-waveletHLL-glcm-JointEntropy

– ADC-waveletHLL-glcm-MaximumProbability

– ADC-waveletHLL-glcm-SumEntropy

– ADC-waveletHLL-glcm-SumSquares

– ADC-waveletHLL-glrlm-GrayLevelNonUniformityNormalized

– ADC-waveletHLH-firstorder-Entropy

– ADC-waveletHLH-glrlm-GrayLevelVariance

– ADC-waveletHLH-glrlm-RunLengthNonUniformityNormalized

– ADC-waveletHLH-glrlm-ShortRunEmphasis

– ADC-waveletHHL-firstorder-Uniformity

– ADC-waveletHHL-glrlm-GrayLevelNonUniformityNormalized

– ADC-waveletHHL-glrlm-RunPercentage

– ADC-waveletHHL-glrlm-ShortRunEmphasis

– ADC-waveletLLL-firstorder-Entropy

– ADC-waveletLLL-firstorder-InterquartileRange

– ADC-waveletLLL-firstorder-Maximum

– ADC-waveletLLL-firstorder-MeanAbsoluteDeviation

– ADC-waveletLLL-firstorder-Range

– ADC-waveletLLL-firstorder-RobustMeanAbsoluteDeviation

– ADC-waveletLLL-firstorder-Variance

– ADC-waveletLLL-glcm-ClusterTendency

– ADC-waveletLLL-glcm-Imc1

– ADC-waveletLLL-glcm-Imc2

– ADC-waveletLLL-glcm-JointEntropy

– ADC-waveletLLL-glcm-SumEntropy

– ADC-waveletLLL-glcm-SumSquares

– ADC-waveletLLL-glrlm-GrayLevelNonUniformityNormalized
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