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Abstract
Optimized curvilinear path planning and pose estimation for a

programmable bevel-tip needle in keyhole neurosurgery

by Alberto FAVARO

Over the last decades, a great interest has been shown towards the develop-
ment of flexible steerable needles in minimally invasive surgery.
These needles feature complex kinematics that hinders the possibility to plan
the insertion trajectories unless with the aid of an automatic path planner. So-
lutions proposed in the literature for automatic steerable needle path planning
in 3D focus either on a fast computation to allow the interactive re-planning
or on path optimality at the expense of high computational time.
The needle motion plan can be executed by a robotically-assisted insertion
platform. During the needle insertion, the control system needs to know the
needle position and orientation in order to address for possible needle torsion
that has been experimentally proven to affect percutaneous needles under-
mining the insertion accuracy. Because of the thin needle diameter, current
tracking systems can not sense the torsion of the needle about its insertion
axis.
On this background, the overall goal of this PhD thesis is to describe a pre-
operative curvilinear path planner for steerable needles and to design a solu-
tion for estimating the needle tip position and orientation (i.e. the full pose)
during the insertion.
In particular, the contributions of this PhD work are:
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1. A pre-operative curvilinear path planner for steerable needles able to solve the
planning problem computing a kinematically-feasible path. The planner opti-
mizes the solution according to the criteria of minimum path length and max-
imum obstacle clearance keeping the computational time consistent with stan-
dard pre-operative planning algorithms.

To contextualize the planning problem with respect to the state of the art,
a literature review on path planning for steerable needles is reported,
with a focus on the widely used sampling-based methods.
A pre-operative curvilinear path planner is then presented. Through a
bespoke evolutionary optimization, the planner can maximize the obsta-
cle avoidance while minimizing the path length. In addition, by defin-
ing the subspace of reachability of the needle and confining the path
search within this region, the algorithm achieves a computational time
consistent with standard pre-operative planners. The solution was val-
idated through multiple simulated needle insertions in a neurosurgical
scenario.

2. An on-line pose estimation solution for a multi-segment steerable needle using
position measurement from sensors mounted on the needle tip.

A solution for the accurate estimation of the needle pose is presented,
based on the kinematic model of the needle and position tracking data.
The position of the needle segment tips are retrieved by electromagnetic
sensors and used by a kinematic-based prediction method to correct
the needle state estimation and infer the angle of needle torsion. The
method was tested on a two-segment steerable needle in simulation and
in phantom-brain gelatine. A reliable and robust estimation was demon-
strated with position and orientation errors consistent with the state of
the art. The solution was later extended to a four-segment needle. In-
gel validation shown the feasibility of the method although, in the latter
case, a long time of convergence was evidenced for the torsion angle.
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The Programmable Bevel-tip Needle (PBN) is a multi-segment steerable nee-
dle under development within the EU EDEN2020 project. It is composed of
four axially-interlocked slender sections, robotically actuated to develop spe-
cific tip configurations that allow the needle to steer in the space. In this PhD
dissertation, the PBN is considered as a case study for the presented methods.
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Chapter 1

Introduction

1.1 Problem statement and motivation

1.1.1 Steerable needles for minimally invasive surgery

Minimally invasive surgery (MIS) is widely adopted in the clinical and sur-
gical practice for its advantages with respect to the standard open surgery in
terms of patient safety, reduced tissue trauma and faster recovery time. Per-
cutaneous interventions are MIS techniques that involve the insertion of thin
devices (needles, catheters, electrodes, etc.) through the skin to reach a desired
target location in the patient’s body for therapeutic or diagnosis purposes
(Abolhassani, Patel, and Moallem, 2007). Examples of percutaneous interven-
tions are biopsies, brachytherapy interventions for radioactive seeds place-
ments, drug delivery, thermal ablation and Deep Brain Stimulation (DBS).
Percutaneous devices used in clinical practice generally consist of straight
tools, inserted following rectilinear trajectories. In the last decades, a great
interest has been shown towards the development of flexible steerable nee-
dles whose design allows them to steer in the tissues. This property can be
used to perform curvilinear insertion trajectories increasing the distance from
sensitive anatomical structures that must be preserved as well as enlarging
the number of possible insertion pathways in cluttered anatomical environ-
ments that would otherwise prevent the tool deployment if standard rectilin-
ear paths are used.
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1.1.2 The Programmable Bevel-tip Needle (PBN)

The Programmable Bevel-tip Needle (PBN) (Watts, Secoli, and Baena, 2019)
is a flexible needle under development within the EU EDEN2020 project de-
signed for percutaneous interventions in neurosurgery (drug infusion and in-
situ optical diagnosis). The PBN is manufactured with four axially-interlocked
slender sections, robotically actuated at the needle base so that to slide over
one another along the main needle direction. The needle has a diameter of 2.5
mm and each section features a 0.3 mm outer diameter hollow lumen which
can be used to perform drug delivery, cyst evacuation or optical-based diag-
nostic sensing (see Fig. 1.1a). The tip of each segment is ground in a way
to form a beveled profile with an angle of approximately 30° from the needle
neutral insertion axis. Further details about PBN manufacture can be found
in Watts, Secoli, and Baena, 2019. The needle tip changes according to the off-
set generated between adjacent sections and determines the steering direction
and the degree of curvature. A rendering of the PBN is shown in Fig. 1.1b.
The PBN is considered as a case study for the methods described in this PhD
dissertation.

1.1.3 Path planning

The increased dexterity shown by steerable needles with respect to their rigid
counterparts gives them the possibility to perform a larger number of path-
ways for the same planning problem. Also, in case of cluttered working sce-
narios, the ability to steer around the obstacles allows them to reach the target
in conditions where straight needles will have no chance of success.
The complex steerable needles kinematics hinders the possibility to plan the
insertion trajectories unless with the aid of an automatic path planner. Such
a planner should be able to account for the hard constraints related to the
needle’s kinematic as well as the constraints defined by the surgeon in terms
of anatomical obstacles to avoid during the insertion. This generally takes
the shape of a multi-objective planning problem where, in addition to the
hard constraints described above, other optimality criteria are generally in-
cluded: the minimization of the surgical path length and the maximization of
the clearance from anatomical obstacles can be considered as general axioms
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FIGURE 1.1: In a), the cross section of the PBN with the interlocking mecha-
nism is reported. The four needle sections are highlighted in different colors.

In b), a possible PBN configuration during needle insertion is presented.

in steerable needle path planning, aiming at reducing the tissue damage and
providing a safety margin in case the needle deviates from the planned path.
In neurosurgical applications, Essert et al., 2012 formalized these principles in
the shape of hard and soft constraints used by neurosurgeons in selecting the
best insertion path for DBS electrodes.
When coping with path planning, the majority of the solutions presented in
the literature focus either on a fast computation or on path optimality with
respect to specific criteria. In the first case, the quick planning allows the
intra-operative adjustment of the plan in case insertion errors arise because
of uncertainties in needle motion or in the environment (e.g. deformations,
obstacles and target movements) at the expense of a sub-optimal planning.
In the second case, path optimality can be found but the computational time
needed for its computation becomes unbearable in case of 3D environments.
Also, solutions are often tested in simulated environments with simplified ge-
ometrical obstacles (Duindam et al., 2010; Patil and Alterovitz, 2010; Torres
and Alterovitz, 2011) which are far from being representative of the complex-
ity of real anatomical scenarios. Liu et al., 2016 proposed a method suited
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for the PBN and based on fractal theory which exploits the architecture of
graphics processing units to achieve sub-optimal path planning but at an in-
teractive rate. The solution was then extended by Pinzi, Galvan, and Ro-
driguez y Baena, 2019 including optimized geometric Hermite curves to per-
form a path computation accounting also for the needle orientation at the tar-
get point. At the moment, no solution exists for the pre-operative computation
of optimized paths for the PBN.

1.1.4 Needle control and tracking

Precision is of paramount importance in needle insertion. The inability to ac-
curately reach the target can undermine the therapy outcome or lead to an
incorrect diagnosis while errors in following the planned path can drive the
needle against delicate anatomical structures (e.g. blood vessels, brain ventri-
cles) with risks for the patient.
Needle deployment can benefit from robotic-assisted insertion platforms com-
bined with needle tracking solutions able to inform the control system about
the current needle configuration in a closed-loop fashion (Cowan et al., 2011).
Tracking solutions include standard imaging techniques such as X-ray fluo-
roscopy (Ralovich et al., 2014), ultrasound (Vrooijink, Abayazid, and Misra,
2013; Chatelain, Krupa, and Marchal, 2013) and electromagnetic trackers (Sad-
jadi, Hashtrudi-Zaad, and Fichtinger, 2012).
Specific control methods have been proposed for the PBN needle. A first
closed-loop strategy was proposed in Secoli and Rodriguez Y Baena, 2013,
later extended in Secoli and Baena, 2016 to counteract unmodelled steerabil-
ity properties of the needle.
Some duty-cycling bevel-tip steerable needles rotate inside the tissue to cor-
rect the steering direction or, as the PBN, develop complex shapes on the tip to
bend. In doing so, these needles determine frictional and shear forces on the
tip or between the tissue and needle shaft (Reed, Okamura, and Cowan, 2009;
Secoli and Baena, 2016) that determine a torsion of the needle resulting in a
different rotation angle between the needle tip and the needle base. Torsion
adds to the deflections normally evidenced in percutaneous needles due to
the effect of tissue deformation and inhomogeneity (Misra et al., 2010). If not
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properly addressed by the control system, torsion and deflections can drive
the needle out of the planned insertion path and jeopardize the possibility to
reach an accurate targeting. Unfortunately, neither imaging nor electromag-
netic systems can track needle torsion as percutaneous needles are too thin for
visualize a rotation about the needle insertion axis or to accommodate a 6 de-
grees of freedom sensor (Cowan et al., 2011). Some research groups have ad-
dressed the lack of one degree of freedom orientation information by assum-
ing an infinite torsional stiffness of the needle (Vrooijink, Abayazid, and Misra,
2013; Shahriari et al., 2015; Abayazid, Kemp, and Misra, 2013; Abayazid et al.,
2015; Patil et al., 2014). This assumption does not hold for many types of steer-
able needles and, while for some specific needle designs bespoke solutions
have been proposed in the form of torsion model or state observers (Reed,
Okamura, and Cowan, 2009; Kallem and Cowan, 2009), for the PBN torsion
estimation represents still an open issue.

1.1.5 The PBN control framework

The different agents included in the PBN robot-assisted insertion framework
are presented in Fig. 1.2.
In the pre-operative phase, imaging data are acquired and the patient anatomy
is reconstructed through the segmentation of the relevant anatomical struc-
tures. The operator determines the planning query (i.e. the entry and target
location) as well as the sensitive structures to avoid. Data are then provided
to the path planner for the pre-operative plan computation.
In the intra-operative phase, the operator supervises the needle insertion and
can adjust the insertion path. The control system drives the needle along the
desired path and corrects for insertion errors on the basis of the PBN position
and orientation information provided by the pose estimation module.

1.2 Aim of the thesis

The aim of this PhD thesis consists of developing a pre-operative curvilinear
path planner for steerable needles and designing a solution for estimating the
needle tip position and orientation (i.e. the full pose) during the insertion. The
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FIGURE 1.2: In the schematic, the different agents included in the robot-
assisted PBN insertion framework are presented.

proposed methods consider the EDEN2020 PBN as a case study.
Starting form the open technical challenges, the research hypotheses that guide
the PhD work can be summarized as follows:

1. Hypothesis 1: The curvilinear path planner can solve the planning query
computing a kinematically feasible solution for the steerable needle.

(a) The path is computed in accordance with the optimization criteria
of minimum path length and maximum obstacle clearance (Hypothesis
1.1)

(b) The computational time can be kept consistent with standard pre-
operative planning algorithms (Hypothesis 1.2)

2. Hypothesis 2: the full pose of a multi-segment steerable needle can be
estimated using position sensors mounted on the needle tip

(a) the full pose of a two-segment PBN can be estimated (Hypothesis
2.1)

(b) the full pose of a four-segment PBN can be estimated (Hypothesis
2.2)
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To investigate the aforementioned hypotheses, specific research activities have
been performed, which are thoroughly discussed in this PhD dissertation.

To properly contextualize the research topics expressed in Hypothesis 1, in
Chapter 2 a literature survey was carried out by reviewing methods for steer-
able needles path planning. The survey focuses on sampling-based planning
methods as the most popular and promising approaches.

In Chapter 3, Hypothesis 1 is investigated and a new method for pre-operative
path planning is presented using the PBN as a case study. Hypothesis 1.1
is investigated by proposing a novel evolutionary path optimization solu-
tion while Hypothesis 1.2 is addressed implementing a redefinition of the
workspace considering needle kinematics to speed up the path computation.
The method was validated against solutions from literature in simulated neu-
rosurgical insertions.

Chapter 4 focuses on Hypothesis 2. A new method to estimate the pose of
a multi-segment needle from data provided by position sensors is presented.
The segment tips position are used as input for a kinematic-based predic-
tion method. To answer to Hypothesis 2.1 and Hypothesis 2.2, the solution
was provided for both a two-segment and a four-segment PBN. Validation
was performed through simulation trials and experiments in phantom-brain
gelatin.

In Chapter 5, the conclusions, the scientific implications and the future per-
spective of this PhD work are reported and discussed.

Appendices are reported in Chapter 6.

A graphical abstract of this PhD thesis is shown in Fig. 1.3.
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FIGURE 1.3: Graphical abstract of the PhD thesis. The research hypotheses
that guide this PhD work are presented, along with the performed activities

and the solutions employed to validate the proposed methods.
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Chapter 2

Sampling-based path planning solutions

for steerable needles in minimally invasive

surgery: a survey

Automatic path planners are a fundamental tool in the task of finding fea-
sible insertion pathways for steerable needles in minimally invasive surgery
because the complex needle kinematics. Many solutions were proposed in the
literature on this topic and most of them rely on sampling-based approaches.
In the present chapter, Hypothesis 1 is contextualized by proposing a survey
on the sampling-based planning algorithms presented in the literature in the
last two decades. The reported methods are first subdivided into single and
multi-query approaches and then reviewed in terms of the methodology used,
their efficiency and how the are experimentally validated. The possibility to
execute intra-operative replanning is also evaluated, along with their ability
to address uncertainties in needle motion and in the environment.

2.1 Introduction

In current clinical practice, a growing number of minimally invasive proce-
dures rely on the use of needles. Some examples are represented by biopsies,
brachitherapy for radioactive seeds placement, abscess drainage and drug in-
fusion. With respect to standard open surgeries, the small diameter of the
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needles allows to reach the targeted anatomy with limited tissue damage, re-
ducing the risks for the patient and speeding up the time for recovery.
Over the last two decades, different research groups have focused their efforts
on the development on needles able to steer inside the tissue. These needles
can perform curvilinear trajectories maximizing the distance from sensitive
anatomical structures and reaching targets otherwise inaccessible via rectilin-
ear insertion paths.
Different steerable needle designs and approaches have been proposed in
the literature (Berg et al., 2015), including base manipulators (Glozman and
Shoham, 2007), tissue manipulators (Torabi et al., 2009), bevel-tip needles
(Webster et al., 2006; Engh et al., 2010; Watts, Secoli, and Baena, 2019), pre-
curved stylet (Okazawa et al., 2005), concentric-tube needles (Gilbert, Rucker,
and Webster, 2016), tendons actuated needles (Berg, Dankelman, and Dobbel-
steen, 2015), active cannulas (Zhao et al., 2016) and magnetically controlled
needles (Petruska et al., 2016).
Differently from conventional straight needles, for which the insertion path
can be planned and performed by the clinician on the basis of the target lo-
cation and the patient anatomy, the complex kinematics of steerable needles
make the path planning unbearable, requiring the aid of an automatic path
planner. Automatic planners often require the definition of the starting and
target point as inputs from the clinician, as well as the reconstruction the pa-
tient anatomy. Standard imaging modalities as X-ray fluoroscopy, ultrasound
(US), computerized tomography (CT) or magnetic resonance imaging (MRI)
can be used to this end. Intra-operative imaging information can be used as a
feedback to correct possible insertion errors arising from tissue inhomogene-
ity, obstacles and target movements and errors in needle motion modelling.
Sampling-based planning is a type of path planner that produce a path by se-
quentially sampling different points in the robot’s workspace and gradually
constructing a data structure that represents collision-free paths. It features
probabilistic completeness, i.e. if a solution to the path planning problem ex-
ists, it will eventually find it. Sampling-based solutions are successfully used
in a wide range of problems, including the determination of a suitable path
for steerable needles.
To properly contextualize Hypothesis 1, in this chapter we propose a survey
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on the principal sampling-based algorithms proposed in the literature over
the last two decades for steerable needle path planning. In this review, the
focus will be on the sampling-based method at the base of the proposed solu-
tions, which can be either a single-query and multi-query approach, as from
the classification proposed by Kavraki and LaValle, 2016. The methods herein
reported can be further divided in classes depending on the planning algo-
rithm they use. An overview of these planning approaches is reported in Fig.
4.2.
The possibility for the methods to recompute the path intraoperatively will
be highlighted as well as the capability to address specific planning problems
such as uncertainties in the needle motion model or linked to unpredictable
obstacle or target movements. The approaches used by the authors to verify
the performance of the proposed solutions are also presented.
In Section 2.2, relevant concepts of the path planning problem are described.
In Section 2.3 and Section 2.4, single-query and multi-query planning solu-
tions are presented, respectively. Conclusions are presented in Section 2.5.

FIGURE 2.1: Schematic representation of the sampling-based planning meth-
ods.
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2.2 Problem formulation

We define the path planning problem as in Kavraki and LaValle, 2016; Kara-
man and Frazzoli, 2011.
The workspaceW = RN (with N = 2 or N = 3) represents the environment
where the robot R can move. We define O ⊂ W the part of the workspace
occupied by obstacles. The configuration space, or C-space, is the space of all
possible robot configurations defined considered the robot kinematics. With
R(q) ⊂ W we refer to the points in the workspace occupied by the robot in
the specific configuration q. The part of the configuration space occupied by
the obstacles can be defined as:

Cobs = {q ∈ C|R(q) ∩ O 6= ∅}

and the set of configurations that avoid obstacle collision is Cfree = C \ Cobs.

Definition 1: Path planning
Given a starting and goal configuration qI ,qG ∈ Cfree (i.e. a query), the path
planning problem consists in computing a continuous path τ : [0, 1] → Cfree
in a way that τ(0) = qI and τ(1) = qG.

Path planning and trajectory planning are two separate concepts. The first
one concerns the computation of a continuous curve in the configuration pace
from qI to qG while trajectory planning refers to the problem of taking the
result of the path planning algorithm and define how to move along this path
in terms of velocities and accelerations. A trajectory is thus a set of states as-
sociated with time (Yang et al., 2016).
In the present chapter, the problem of trajectory planning is not covered.
Definition 2: Optimal path planning
Given a planning query and a cost function c : Σ → R>0, where Σ represents
the set of all paths, the optimal path planner is the one able to compute a fea-
sible path τ∗ such that c(τ∗) = min{c(τ) : τ is feasible} . If no such path
exists, it reports a failure.
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Path planning in minimally invasive surgery

Path planning in minimally invasive surgery has to meet multiple require-
ments at the same time in order to achieve the proper level of safety and ef-
ficacy. These requirements can be the needle technical specifications or the
translation of clinical aspects into specific constraints.
Conceptually, the requirements can be divided in strict and soft constraints (Es-
sert et al., 2012). Strict constraints are conditions that must be satisfied (e.g.,
the needle should not intersect any obstacle, or the path curvature should not
exceed the maximum degree of curvature admissible by the needle) and de-
fine the available workspace for the path planning algorithms, limiting the
path search to regions where solutions can lie, excluding the unfeasible ones.
Soft constraints, instead, can be considered as the objectives of the optimiza-
tion and are included in the cost function to drive the path search toward the
best solution. The cost function to be minimized generally takes the following
form:

F (x) =

N∑
i=1

ki ∗ fi(x)

with fi representing a specific soft constraint opportunely weighted by a fac-
tor ki, which is often chosen empirically through multiple experiments or on
the basis of the clinicians’ suggestions.
Different planners include different objectives but, generally, one or more of
the following are included:

• minimization of the path length

• maximization of the distance from one or multiple anatomical obstacles

• maximization of the probability to reach the target

Sometimes, the minimization of the path curvature is also considered, to-
gether with the reduction of its standard deviation in order to provide a smoother
path and reduce the effort required to control the needle insertion.
The different objectives considered by the works reported in this survey will
be mentioned.
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2.3 Single-query planners

Single-query planners start from a query composed by the start and goal con-
figurations and perform an incremental search. They randomly sample the
robot configuration space to incrementally develop a tree data structure (Kavraki
and LaValle, 2016). The planners herein proposed exploit the Rapidly-exploring
Random Tree (RRT) structure (LaValle, 1998) or its derivatives.

2.3.1 Solutions based on RRT

The first implementation of an RRT path planner for steerable needles in 3D
with obstacles was proposed by Jijie et al., 2008 for a bevel-tip needle. The
planner randomly samples the space of control inputs obtaining a trade-off
between exploration complexity and completeness. The method is tested also
to define, given the target point, a feasible entry point for the needle within
a user-defined entry area, starting the search from the target rather than from
the start point in a backchaining fashion. The solution was tested in a simu-
lated undeformable environment with ideal spherical obstacles.
Patil, Van Den Berg, and Alterovitz, 2012 proposed a solution for bevel-tip
needles in 2D deformable environments by accounting for uncertainty in de-
formation model, noisy sensing data and unpredictable actuation. Firstly, an
RRT algorithm is used to generate a set of candidate motion plans, then the
plan with the highest estimated probability to successfully avoid obstacles and
reaching the goal region is selected. This method was verified in 2D simula-
tions, demonstrating a computational time in the order of minutes.
In the work of Seiler et al., 2012, a path correction algorithm is integrated into
an RRT planner for bevel-tip needles in 3D static environments. A fast path
correction is executed while preserving the characteristic of the initial trajec-
tory and eliminating the need for expensive replanning from scratch. Motion
uncertainties are considered while environment deformations are not covered.
Sun, Patil, and Alterovitz, 2015 proposed a high-frequency planner based on
multiple independent RRTs executed in parallel at every insertion step from
the current needle tip position to the target point. This allows to compute,
at every time step, a motion plan that asymptotically approaches the global
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optimum. At each iteration step, the best plan is estimated according to two
optimization objectives: the probability to successfully reach the target with-
out colliding with obstacles and the minimization of the path length. This
plan is adjusted considering sensory information and a liner feedback con-
trol. Uncertainty deriving from errors in needle kinematics, sensing noise and
obstacles motion are propagated over the next insertion steps to obtain an
estimation of the path uncertainty from the start to the goal position. The
feasibility of the proposed solution was tested in simulation in a liver biopsy
scenario, where the vasculature represents the sensitive anatomical obstacle,
using a duty-cycle bevel-tip needle as a case study.
Parallel path computation is used also in the Adaptive Fractal Trees (AFT)
proposed by Liu et al., 2016 for a Programmable Bevel-tip steerable Needle
(PBN). This method takes advantage of the fractal theory and the architec-
ture of graphics processing units (GPUs) to parallelize the planning process
and enhance the computation performance to achieve online replanning, as
demonstrated in simulated 3D liver needle insertions. AFT are the basis for
the Adaptive Hermite Fractal Tree (AHFT) proposed by Pinzi, Galvan, and
Rodriguez y Baena, 2019 where the fractal structure was combined with op-
timized geometric Hermite curves to perform a path computation accounting
for the target heading (i.e. the orientation) at both the start and the target
points. Although developed and tested only for a preoperative neurosurgical
scenario, AHFT is suitable for GPU parallelization for a rapid intraoperative
replanning.
RRT-based planners were also used in the context of design-optimization for
concentric-tube needles. These needles can feature different 3D curves de-
pending on the lengths, degree of curvature, number and stiffness of the tubes.
Baykal, Bowen, and Alterovitz, 2019 developed a design optimization method
to estimate design parameters the allows the concentric tube robot to reach as
many desirable target regions as possible guaranteeing the obstacle clearance.
In their work, they used a global optimization algorithm for the evaluation of
different robot designs. Subsequently, performance were verified in the con-
figuration space through an RRT-based motion planner to estimate the per-
centage of workspace the needle design is able to cover.
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2.3.2 Solutions based on RRT-Connect

The RRT-Connect (Kuffner and La Valle, 2000a) is a structure that incremen-
tally expands two RRTs rooted at the start and the target configurations. These
two RRTs explore the space advancing towards each other with a simple greedy
heuristic until they connect. Fauser, Sakas, and Mukhopadhyay, 2018 pro-
posed two methods accounting for needle tip position and orientation using
the RRT-Connect. The first method corresponds to an extension of Patil et
al., 2014 into RRT-Connect, where the requirement of matching the initial and
target needle pose is solved as a Dubins path problem. The second method
uses cubic Bezier-spline to interpolate in SE(3) achieving a second order tra-
jectory differentiability. From simulated insertions performed using real pa-
tients dataset and synthetic anatomies mimicking a temporal bone surgery
scenarios, the clear superiority of a specific algorithm was not evidenced even
though a larger anatomical clearance was shown for the solution based on
Bezier-spline at the expense of a lower number of estimated feasible paths.
This solution was also tested in other kinds of surgical interventions (Fauser,
Sakas, and Mukhopadhyay, 2018).
Later, it was included in a automatic preoperative pipeline for anatomical
structures segmentation and path planning and tested in simulated cochlear
implantation and vestibular schwannoma removal (Fauser et al., 2019b). More
recently, a further extension was proposed by translating the Bezier curves
into circular arcs (Fauser et al., 2019a) resulting in a further increase in the
distance from obstacles in simulated temporal bone surgery and intraluminal
catheter insertion scenarios.

2.3.3 Solutions based on RG-RRT and similar

Patil et al., 2014 proposed a solution for duty-cycling steerable needles able
to plan and control the needle motion in a closed loop fashion guaranteeing
obstacles avoidance and uncertainties compensation. Confining the search on
the subset of point in the workspace that meets the kinematic constraints of the
needle, this solution allows a path replanning suitable for online procedures
and ensures clinically acceptable error of less than 3 mm, assessed though
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experiments ex-vivo and in tissue samples. In this work, the RG-RRT was
used as planning method (Patil and Alterovitz, 2010). RG-RRT are a combina-
tion of RRT and a reachability-guided sampling heuristic that constructs the
path through a sequential connection of arcs with variable curvature bounded
within the maximum curvature achievable by the needle. A bespoke distance
metrics overlooks points of the configuration space that are not reachable from
a given state. Patil and Alterovitz, 2010 express the planning objective in terms
of minimizing the insertion length and maximizing the clearance from obsta-
cles.
RG-RRT was also at the base of the work of Vrooijink et al., 2014, where the
planner proposed by Patil and Alterovitz, 2010 was embedded in a needle
steering system and tested in a soft-tissue phantom. Needle tip tracking was
obtained through the use of US imaging so that the planner could intraoper-
atively re-plan the needle insertion path in a closed-loop manner to address
uncertainties in steering and perturbation in obstacles and target locations. A
2D implementation of the RG-RRT was proposed by Caborni et al., 2012 for
applications in the neurosurgical field.
The idea of connecting arcs with bounded curvature is at the base of the
geometric-based arc planner (Arc-RRT) proposed by Bernardes et al., 2011 for
2D intraoperative path planning, with a method that demonstrated robustness
in coping with modelling uncertainties, tissue deformation and inhomogene-
ity. This method, originally tested only in simulation, was later included in a
robotically assisted system for 2D needle steering combined with image feed-
back and tested through experiments in a gelatine phantom (Bernardes et al.,
2012). Performance has been later enhanced (Bernardes et al., 2013) by im-
plementing an Arc-RRT with sampling performed in the control inputs rather
than in the configuration space.
Zhao et al., 2015 proposed a fast computation of RG-RRT that features a greedy
heuristic strategy based on the Depth First Search. This search approach stresses
the search toward the target encouraging a connection through linear path
where possible rather than via arcs with a bounded curvature. The best solu-
tion is determined on the basis of a cost function that fosters, in addition to
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the paths length and the distance from obstacles, also both a reduced magni-
tude and a limited variation of the path curvature. This solution was later ex-
tended in a dynamic motion planner that addresses the uncertainty related to
the movement of the obstacles and the target (Zhao et al., 2016). This method
was developed for a novel flexible tool composed by a bevel-tip needle in-
serted into a flexible cannula. This design allows the needle to freely rotate
without the effect of torsional friction between the needle shaft and the tissue
and thus fostering a more precise control of the needle tip orientation. The
planner includes solutions for ensuring planning convergence and solving for
the large path detour problem that may arise in the presence of an unpredicted
motion of the target and/or the obstacles. When tested in a simulated scenario
with ideal spherical obstacles, the method resulted to be robust and suitable
for real-time replanning.
Kuntz et al., 2015 developed a hybrid approach to plan the motion of a multi-
lumen transoral lung access system designed to perform biopsies in the lung.
The system is composed of three serial stages: a broncoscope to access the
bronchial tubes, a concentric tube to enter the lung parenchyma and a bevel-
tip needle to steer in the parenchyma and reach the nodule avoiding lung
vessels. The motion plan consists of a sequence of collision-free configuration
of the multi-lumen system and associated control inputs. An initial sampling-
based approach defines the path of the first stage as a sequence of piece-wise
linear curves. The second stage is then actuated and a mechanic-based kine-
matic model (Rucker, 2011) is used to infer the tip position and the orienta-
tion of the concentric tube robot when it touches the parenchyma. Then the
third stage follows the path in the parenchyma estimated through the RRT
approach proposed by Patil et al., 2014. The system was tested in a simulated
lung biopsy scenario. The method has been successively extended by Fu et al.,
2018: from lung CT data, a cost map was introduced encoding the costs asso-
ciated with traversing the specific voxel determined as the probability for the
voxel to be part of the lung vessel tree. Over time, the planner estimates more
paths and minimizes the accumulated cost.
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2.3.4 Solutions based on RRT*

The RRT* (Karaman et al., 2011) represents an “anytime” variation of the orig-
inal RRT: it quickly identifies an initial feasible plan and then, as the plan
execution process, it improves the plan toward an optimal solution. This is
achieved by rewiring the RRT removing redundant edges and keeping the
shortest or the minimum-cost path. As with RRT, an initial feasible solution
is found quickly but, in addition, RRT* almost surely converges to an optimal
solution.
Hong et al., 2019 proposed an RRT*-based path planner for a magnetically
guided flexible needle for Deep Brain Stimulation (DBS) (Petruska et al., 2016)
minimizing the insertion length and maximizing the obstacle clearance.
Favaro et al., 2018b proposed a solution based on an RRT* approach that runs
within a dynamic subset of the original configuration space. This subset is
shaped as an ellipsoidal volume, heuristically defined so that to change ac-
cording to the planning phase in view of confining the search only where
better solutions can lie. This approach reduces the RRT* complexity and the
computational time. Path length, curvature and obstacle clearance are opti-
mized according to a cost function while control errors are included in the
planning phase by increasing the path uncertainty over the insertion length.
Simulated insertions were performed to test the method in complex DBS sce-
narios (Segato et al., 2019; Favaro et al., 2018a).
An evolution of Favaro et al., 2018b is reported in Chapter 3 of this PhD disser-
tation. The method, tested in simulated neurosurgical intervention scenarios,
relies on a new heuristic which limits the search space to a subset of reach-
able needle configuration considering the maximum degree of curvature of
the needle. In addition, path planning benefits from a novel optimization pro-
cedure intended to correct the final needle path minimizing the path length,
the magnitude and the variability of the path curvature while keeping the ob-
stacle avoidance as large as possible.
Bergeles and Dupont, 2013 proposed a path planning algorithm based on
RRT* and suited for a concentric tube robots with applications in neurosurgery.
The planner solves for a sequence of stable configurations to move the needle
from the start to the target configuration and avoid anatomical obstacles.
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2.4 Multi-query planners

Multi-query planners are intended for those conditions where it is required
to perform different planning queries in the same static environment. In this
case, the algorithm invests computational time in pre-processing the config-
uration space so that future queries can be answered efficiently. To this end,
a topological graph that captures the connectivity between different configu-
ration samples is build, taking the name of roadmap. Once the roadmap is
computed, paths can be easily computed by searching the graph through a
proper node-based search algorithm (e.g. Dijkstra). The general framework
consists in a sampling-based roadmap and was proposed by Kavraki et al.,
1996 under the name of probabilistic roadmaps (PRMs) .
Alterovitz, Siméon, and Goldberg, 2008 proposed a 2D motion planning frame-
work for a bevel-tip needle that addresses the uncertainty in the needle mo-
tion. This is performed by considering a stochastic motion model of the nee-
dle, which represents the probability to move from one state to another as
the result of a specific control action. A Stochastic Motion Roadmap (SMR)
is defined by initially sampling the configuration states in a random manner
to build a collision-free connectivity map. Then, for each sampled state i, the
planner computes the optimal action to be performed to maximize the prob-
ability of reaching the target being i the current needle state. This represents
a Markov Decision Process and it is solved using infinite horizon dynamic
programming (Smith, 1996). A sequence of optimal control actions that max-
imize the probability to reach the target without colliding with obstacles is
computed. The same SMR planned pre-operatively is used intraoperatively
for fast path re-computation. This approach tends to foster lengthy but safer
insertion paths. The method, originally tested in randomized simulations,
was later tested in combination with an integrated needle-steering system
composed by a needle pose estimator, a torsion compensator and a planar
controller (to guarantee the needle to move on the ideal insertion plane) and
evaluated in a brachitherapy scenarios with artificial and ex-vivo tissues (Reed
et al., 2008; Reed et al., 2011).
A Rapidly-Exploring Roadmap (RRM) was firstly proposed by Alterovitz,
Patil, and Derbakova, 2011 and consists in an optimal motion planning that
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perform a trade-off between random-sampling exploration of the configura-
tion space and refinement of the existing path according to a user-specified
parameter. It guarantees probabilistic completeness and asymptotic conver-
gence to the optimal solution sparing computational time by focusing the re-
finement procedure only on paths that can reach the target configuration. Tor-
res and Alterovitz, 2011 developed a preoperative motion planner built on an
accurate kinematic model and an RRM for a concentric tube needle able to
cope with needle actuation uncertainties. A directed graph is defined, having
different needle configurations as vertices and edges weighted according to
the cost linked to moving from one configuration to another. The path with
lower cost is selected over the RRM using the Dijsktra algorithm. An exten-
sion of the presented method was reported in Torres, Baykal, and Alterovitz,
2014 where the motion planner for concentric tubes achieved an interactive
rate. In this work a roadmap is computed pre-operatively using a variant
of rapidly exploring random graph (RRG). Once computed, the roadmap is
quickly explored through the A* search algorithm (Hart et al., 1968) to look
for the shorter motion plan in the roadmap any time the user defines a new
planning query. This planner, initially tested in simulation, was later imple-
mented in a tele-operated control framework in an environment with tubular
obstacles, achieving promising accuracy and an interactive execution speed.
Lobaton et al., 2011 developed an approach for optimal, collision-free path
planning to visit multiple goals in any order. The method builds a roadmap
by sampling circles of constant curvature and generates feasible transition be-
tween circles. The multiple goals objective takes the shape of a multi-query
planning problem, solved by the algorithm using a minimum directed Steiner
tree on the roadmap. The optimal path can visit all the target locations while
minimizing the extent of tissue cut, i.e. the path length. Simulations are per-
formed in 2D and 3D static environments ignoring possible tissue deforma-
tions.
A PRM is at the base of the works of Leibrandt et al. (Leibrandt, Bergeles, and
Yang, 2016; Leibrandt, Bergeles, and Yang, 2017), where it is used to define ac-
tive constraints for the definition of stable needle configurations to reach the
desired target. The PRM is computed off-line exploiting a parallel computer
architecture and it can be queried on-line whenever it is required to find the
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shortest path between the current and the target configuration.
Sudhakara, Ganapathy, and Sundaran, 2018 enhanced the classical PRM method
using shape preserving Piece-wise Cubic Hermite Interpolation technique to
generate smooth trajectories in 2D considering direction constraints on both
the start and the target positions. Simulation experiments were carried out in
a 2D environment with static geometrical obstacles.
Since PRM does not show a great performance in dynamic environments, a
combination of PRM and Reinforcement Learning was proposed by Baek et
al., 2018 for path planning in laparoscopic robotic surgeries. The method was
tested in a simulated laparoscopic surgery robotic system under the assump-
tions that the tissue moves constantly and the path is performed in 2D.

2.5 Conclusions

The complex kinematics of steerable needles require automatic solutions for
the path planning task. Planners are asked to find feasible paths solving a
multi-objective planning problem that requires to meet specific criteria such
as the maximization of the distance from anatomical obstacles and the mini-
mization of the path length. Many solution have been proposed in the litera-
ture, a great number of them rely on sampling-based approaches to find the
optimal path. In this chapter, we propose a survey of the sampling-based path
planning algorithms reported in the literature in the past two decades with the
aim of laying the foundation for addressing Hypothesis 1.
The methods herein reported are divided in single-query or multi-query solu-
tions depending on whether the computation they perform on the workspace
can be reused to solve multiple path planning queries. Solutions are analyzed
in terms of the methodology used, their efficiency as well as the possibility
to perform intra-operative replanning and deal with uncertainties in needle
motion and/or in the environment. The approaches used by the authors to
validate their solutions are also reported.
The great possibilities associated with steerable needles in terms of therapy
outcome and patient safety make path planning a topic of great interest for
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researches and engineers. Many solutions have been proposed to cope with
this task, including but not limited to the sampling-based solution reported in
this chapter.
A relevant aspect evidenced in several of the works herein reported consists in
the uncertainty associated to needle motion and tissue deformation that can
arise during needle deployment and jeopardise the insertion accuracy. De-
spite the remarkable performance and the level of readiness reached in sim-
ulations by many solutions reported in this survey, what is often missing is a
thorough evaluation of the planning performance in conditions that mimic a
real needle insertion through e.g., in-gel or ex-vivo experiments. This would
make possible to assess the feasibility of the proposed algorithm in presence
of tissue and modelling uncertainties which represents, in our opinion, one of
the big open questions in steerable needle path planning.
Recently, big efforts have been made to explore new optimization strategies
and methods, e.g. the use of Reinforcement Learning, but the high complexity
of needle kinematics combined with the uncertainties and the dynamic nature
of the environment in which they operate lead path planning open to further
relevant improvements.
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Chapter 3

An evolutionary-optimized surgical path

planner for a programmable bevel-tip

needle

Path planning algorithms for steerable needles in medical applications must
guarantee anatomical obstacle avoidance, reduce the insertion length and en-
sure the compliance with the needle kinematics. The majority of the solutions
from the literature focus either on fast computation or path optimality, the for-
mer at the expense of sub-optimal paths, the latter by making unbearable the
computation in case of high dimensional workspace.
In this chapter we investigate Hypothesis 1. We implemented a 3D pre-operative
path planner for steerable needles for neurosurgical applications which keeps
the computational cost consistent with standard pre-operative planning algo-
rithms guaranteeing the kinematic feasibility and the quasi-optimality of the
estimated pathways.
From a user-defined entry point, our method confines a sampling-based path
search within a subsection of the original workspace considering the curva-
ture admitted by the needle. Hypothesis 1.1 has been addressed by develop-
ing an evolutionary optimization procedure to maximize the obstacle avoid-
ance and reduce the insertion length. The pool of optimized solutions is ex-
amined through a cost function to determine the best path.
Simulations on one dataset showed the ability of the planner to compute the
path within a computational time consistent with pre-operative planning (Hypothesis
1.2) by exploiting the smart redefinition of the search space. The method
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proved to overcome the state of the art in terms of obstacle avoidance, inser-
tion length and probability of failure, proving this algorithm as a valid plan-
ning method for complex environments.
The application of the method resulted in a journal paper 1 currently under
review

3.1 Introduction

Flexible, small-scale catheters allow reaching deep regions inside the human
body. Continuous robots represent a category of robotic tools that provides
the required level of dexterity and reliability to perform delicate surgical pro-
cedures (Burgner-Kahrs, Rucker, and Choset, 2015). As they are flexible and
can be built in small-scale, they can be useful in neurosurgery for situations
where the access to anatomical structures is particularly challenging due to a
cluttered anatomical workspace.
The steering of a flexible robotic probe is achieved using a bevel-tip needle
with a fixed shape which rotates according to a duty-cycle that determines the
bending of the needle toward the desired direction ( Engh et al., 2010; Kallem
and Cowan, 2009; Reed et al., 2011). Glozman and Shoham, 2007 used an
external base to which the needle is anchored to drive the insertion and to fol-
low a desired trajectory. Pre-bent concentric elastic tubes use an axial rotation
and translation at the base to make the entire needle shape varies through
the interaction between the elastic tubes (Rucker, Jones, and Webster, 2010).
A bio-inspired, multi-segment programmable bevel-tip needle (PBN) is cur-
rently under development as core technology of the EDEN2020 project (Secoli
and Baena, 2016). PBN consists of a continuous robot manufactured with four
axially-interlocked sections. These segments are robotically actuated at the
base so that, sliding over each other, they can generate an offset on the needle
tip and determine a curvature in the 3D space. The kinematics of the probe
is still under investigation but a PBN control strategy is proposed in Secoli,
Rodriguez, and Baena, 2018.
The benefits in maneuverability exhibited by flexible manipulators give rise to

1A. Favaro, A. Segato, F. Muretti and E. De Momi, “An evolutionary-optimized surgical path
planner for a programmable bevel-tip needle”, IEEE Transaction on Robotics (TRO), under review
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an increased number of possible needle pathways that can be correctly han-
dled only by an automatic planner. Such a planner can be designed to tune
the pathway according to specific optimality criteria. Essert et al., 2012 and
Patil et al., 2014 formalized the implicit and explicit principles used by neu-
rosurgeons for the definition of optimal trajectories. The minimization of the
surgical path length and the maximization of the clearance from anatomical
obstacles can be considered as general axioms aiming at limiting the tissue
damage while providing a proper safety margin in case deviations from the
planned path occur.
In our previous work (Favaro et al., 2018b), we presented a neurosurgical
planner for PBN. The algorithm solves a single-query planning task, i.e. it
connects an entry point to a target, guaranteeing the clearance from anatomi-
cal obstacles and complying with PBN’s kinematic limits.
The present work aims at addressing Hypothesis1 by describing a novel ap-
proach that improves the performance of our previous method on different
aspects. Tailored to the PBN, the algorithm focuses the search using a smart
redefinition of the search space so that the desired target point can be reached
guaranteeing the compliance with the maximum degree of curvature admit-
ted by the needle. This approach permits to save time by examining only the
part of the workspace which will end up in providing feasible solutions, re-
ducing the computational cost correlated to this initial search phase and, in
this, addressing Hypothesis 1.2. Hypothesis 1.1 is investigated by proposing
a method that uses an innovative evolutionary procedure to optimize the path.
Optimality criteria provide for the path length minimization, the reduction of
the magnitude and the variability of the path curvature and the maximization
of the obstacle avoidance. A cost function fed to these parameters is designed
to provide an overall optimality index for each solution and ultimately to de-
fine the best one.
The chapter is structured as follows. In Section 3.2, an overview of the path
planning approaches proposed in the literature is presented. Section 4.2 out-
lines our planning method, with a focus on the redefinition of the search space
and on the evolutionary optimization. Section 3.4 describes the experimental
protocol. Section 4.4 presents the comparison between the presented solution
and other methods from literature. Discussion and conclusions are reported
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in Section 4.5 and Section 5, respectively.

3.2 Related works

In the context of path planning, a variety of approaches has been proposed in
the literature.
In Schulman et al., 2014, the non-convex path optimization problem is sub-
divided in convex sub-problems, solved via sequential convex optimization.
The method is feasible for underactuated non-holonomic systems as flexible
medical needles. Although the method does not guarantee to find a solution
if it exists, it can provide optimal locally collision-free paths.
Duindam et al., 2010 proposed a solution for estimating catheter pathways
totally described in geometric terms and inspired by the Paden-Kahan sub-
problem, an explicit solution to inverse kinematics used as alternative to the
implicit expression provided by the Denavit-Hartenberg parameters. The method
was tested in a simplified environment and showed a high speed in the path
computation with limited obstacle avoidance capabilities.
Potential field methods, based on the idea originally introduced by Khatib,
1986, compute a potential field similar to the one generated by electrical charges.
The potential field results by the interaction between the attractive effect of the
target contrasted by the repulsive action of the obstacles. This approach has
the drawback of generating local minima. To address this problem, Li et al.,
2014 proposed an artificial potential field method where a conjugate gradi-
ent algorithm was exploited and suggested an application of their solution for
brachytherapy. The clearance from anatomical obstacles was achieved but the
method, as such, does not comply with other requirements as the optimiza-
tion of the total path length or the catheter kinematics.
Other approaches fall back into two main categories:

3.2.1 Graph-based methods

Graph-search methods are based on the discrete approximation of the plan-
ning problem. They are “resolution complete” as they can determine in a fi-
nite time whether a solution exists, and “resolution optimal” since they can
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estimate the best path given a specific resolution.
Likhachev et al., 2005 proposed the incremental A* solution for 2D applica-
tions, which extended the original A* planning method so that to reuse previ-
ous information and drive the path towards optimality.
These methodologies show high computational time as the discretization of
the environment becomes finer. For this reason, they are not suitable for neu-
rosurgical applications as high-resolution 3D datasets are normally used (or-
der of magnitude: ∼ 107 points).
Leibrandt, Bergeles, and Yang, 2017 presented a multi-node computational
framework for fast path planning for concentric tube robots. The method
builds an undirected graph of possible transition of needle configurations and
queries the graph using A* search to extract the shortest path between the
current and the desired tip pose. To address the high computational effort
required by the graph search and achieve interactive rates, a parallel compu-
tation is used and the search is confined in a subset of needle configurations
close to the current one.

3.2.2 Sampling-based methods

Sampling-based methods are built on the random sampling of the workspace.
Rapidly-exploring Random Trees (RRT) and RRT-Connect (Kuffner and La
Valle, 2000b) are able to cope better with dense workspace than graph-based
approaches. RRT* (Karaman and Frazzoli, 2011) and bidirectional-RRT (Jor-
dan and Perez, 2013), are "probabilistically complete": as the number of sam-
ples tends to infinity the probability of finding a solution, provided that it
exists, tends to one. Moreover, they are also "asymptotically optimal" as they
can refine the initially-estimated raw path when new points are sampled and
compute the shortest pathway to connect the start and target point as the num-
ber of iterations tends to infinity. These sampling-based methods have been
widely used for steerable needles path planning, an overview of which is re-
ported in Chapter 2.
A combination of RRT and a reachability-guided sampling heuristic (RG-RRT)
was used in the work of Patil and Alterovitz, 2010 to compute motion plans
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for steerable needles in complex 3D environments by constructing the tree via
a sequential connection of arcs with bounded curvature. These solutions can
be used in real-time applications, but performance have been assessed only in
simplified workspaces. A neurosurgical 2D implementation of RG-RRT was
proposed by Caborni et al., 2012.
Patil et al., 2014 proposed a solution for duty-cycling steerable needles able
to plan and control the needle motion in a closed loop fashion, guaranteeing
obstacles avoidance and uncertainties compensation. Confining the search on
the subset of point in the workspace that meet the kinematic constraints of the
needle, this solution allows a path replanning suitable for online procedures
ensuring clinically acceptable error.
The planning approach proposed by Patil et al., 2014 has been used also by
Kuntz et al., 2015 for motion planning of a multi-lumen system for lung biopsy.
The system consisted in a concentric tube robot with a beveled tip steerable
needle. Simulations demonstrated the ability to quickly computes plans with
high clearance from obstacles.
Gammell, Srinivasa, and Barfoot, 2015 proposed the Batch Informed Tree (BIT*)
algorithm. BIT* confines the search within an ellipsoidal region whose size re-
lates to the cost of the current solution in a way that, any time a shorter path
is found, the search occurs within a subspace progressively smaller in size. In
our previous work (Favaro et al., 2018b), a similar approach has been imple-
mented for the developing of a steerable needles path planner where the cost
used to shape the search region is a function only of the length of the current
best path and includes parts of the workspace that cannot be reached by the
catheter due to its kinematic limits. Additionally, the path optimization was
hindered by the intrinsically limited flexibility of cardinal splines used in the
work for the path interpolation.

In the present work, we propose a new path planning solution where the
heuristic path search is confined within the region of the workspace that can
actually be reached by the needle, exploiting the capability of sampling-based
planner in dealing with dense workspace. This prevent the planner to sample
the workspace where no feasible solutions can be found, reducing the compu-
tational cost. Additionally, an innovative evolutionary procedure based on a
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different path interpolation method and supported by a bespoke cost function
is proposed to optimize the path in terms of path length, distance from rele-
vant anatomical structures and path curvature.

3.3 Methods

Our 3D path planner method consists of three main steps: Path planning (Sec-
tion 3.3.2, where a set of piece-wise linear paths is computed for the plan-
ning query), Path approximation and optimization (Section 3.3.3, where an
evolutionary optimization procedure generates smooth paths, reduces their
length and maximizes the obstacle avoidance) and Exhaustive search for the
best path (Section 3.3.4, where an exhaustive search is performed over the set
of paths for determining the best planning solution). The workflow of our
solution is reported in Fig. 3.1.

3.3.1 Surgeon’s input and patient’s data elaboration

In this section, the user input and how it is interpreted as input to the algo-
rithm is described.
As first step, the surgeon is asked to select the desired target point (TP) within
the brain and the entry point (EP0) on the cortex. The system delineates an
entry area (a) around the EP0 excluding the sulci due to the presence of blood
vessels, as in De Momi et al., 2014. A mesh decimation is performed over a
and a pool of feasible entry points EPi,a, i ∈ 1, ..., Na is defined, as in Favaro
et al., 2018a. The total number of entry points (Na) depends upon the radius
of the entry area and the decimation level.
The anatomical obstacles are segmented in the patient image dataset and a
distance map is computed Danielsson, 1980.
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FIGURE 3.1: Schematic representation of the workflow. The surgeon is asked
to define the entry (EP0) and the target point (TP) on the patient dataset. The
Entry Area (a) is then computed and the set of possible entry points EPi,a,
i ∈ 1, ..., Na is defined. Subsequently, for each EPi,a, the algorithm performs
the path planning (Section 3.3.2) and the Evolutionary Optimization Proce-
dure (Section 3.3.3). A number of feasible solutions ind

i,a
j are generated. For

each EPi,a, the best path ind
i,a

is computed and eventually provided to the
surgeon by running a cost function over the set of solutions generated by the

EOP (Section 3.3.4).
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3.3.2 Path planning

In the following, we describe our approach of minimizing the search space for
achieve fast path planning. Geometrical properties derived from needle kine-
matics are considered to design the search space.
The original workspace consists of the volume represented by the patient’s
brain. In order to obtain a uniformly-distributed set of 3D points, this volume
is intersected with an evenly-spaced grid featuring a distance between adja-
cent points equal to 1.3 mm3, empirically defined.
For each EPi,a, i ∈ 1, ..., Na, a Kinematics Search Volume (KSVi,a ∈ R3) is de-
fined, representing the “smart redefinition of the search space” for path plan-
ning. A schematic 2D description of the proposed approach is reported in Fig.
3.2.
The reason for defining the KSVi,a is to identify a 3D space (“feasible space"
in Fig. 3.2) where, considering the maximum curvature of the PBN (kPBN ),
its tip can be oriented at any θ ∈ [−π2 ,

π
2 ] without preventing the possibility

for the needle tip to reach the TP. The remaining workspace, referred as "un-
feasible space", would imply a curvature greater than kPBN to connect the
EPi,ato the TP. Case when θ 6∈ [−π2 ,

π
2 ] is not considered as far-fetched for the

intended application.

In a 2D view, the superior half-plane of the KSV consists in the combination
of two areas, A and B, defined by the coordinates (x, y), such that:

A = {(x, y) ∈ R2 : x2 + (y − yA)2 ≥ r2,

(x− xB)2 + (y − yB)2 ≥ r2, 0 ≤ y ≤ yP },

B = {(x, y) ∈ R2 : (x− xB)2 + (y − yB)2 ≤ r2, y ≥ 0}

while the circular area C is part of the unfeasible space and is defined as:

C = {(x, y) ∈ R2 : x2 + (y − yA)2 < r2}
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FIGURE 3.2: A 2D representation of the Kinematics Search Volume (KSV).
The insertion happens at the entry point (EP). Part C can not be reached by
the PBN due to the minimum bending radius and it is part of the unfeasible
area. KSV is represented in gray. Its superior half-plane derives from the
combination of two areas: A and B. These can be identified as the combina-
tion and intersection of the circumferences centered in A(xA = 0, yA = r ),
B(xB , yB) and the TP. The rest of the space is labelled as "unfeasible" as it
can not generate any feasible trajectory to reach the TP. The value r repre-
sents the minimum bending radius admitted by the PBN and θ the insertion

orientation.
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where r = 1
kPBN

. B(xB , yB) is the intersection between the r -radius circle cen-
tered in the TP and the 2r -radius circle centered in A(xA = 0, yA = r ). B
represents the center of a r -radius circle in the negative half-plane. The point
P(xP , yP ) is the intersection between the circle centered in B and the r -radius
circle with center A.
With a similar approach, it is possible to compute the inferior half-plane, rep-
resented in Fig. 3.2 in light grey. This method is applicable until the condition
‖TP − EP‖ <

√
8r is valid, i.e. until it possible to define the point B. For the

present application, this condition is satisfied unless the Euclidean distance
between EP and TP is greater than 202 mm, which is large enough to cover
the entire working volume.
For each EPi,a, i ∈ 1, ..., Na defined in Section 3.3.1, the smart redefinition of
the workspace is performed by considering, for the path planning, only the
uniformly-distributed points included in the KSVi,a, in 3D.
The planning is performed similarly to Favaro et al., 2018b: in a random fash-
ion, the samples included in the KSVi,a are sequentially provided to the plan-
ner, which builds a connected graph. The graph is composed by vertexes, P,
corresponding to samples in the free space of KSVi,a. Linear edges are used
to connect adjacent vertexes. When a new sample is probed, the vertex that
features the shortest path to EPi,a is identified and, as the obstacle clearance
of the new edge is verified, the connection is performed. The collision check
is carried out considering a minimum distance from obstacles equal to half
the PBN diameter for guaranteeing the practicability of the edge. The graph
keeps evolving following an RRT* approach until a piece-wise linear pathway
able to connect the EPi,a to the TP is found. A first raw path, soli,a1 , is thus
defined as a sequence of vertexes:

{soli,a1 } = {Pi,ak,1 ∈ R3, k = 1, ..., N i,a
P,1}
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where Pi,a1,1 = EPi,a and Pi,a
1,Ni,a

P,1
= TP. The length (l

soli,aj
pw ) is considered as an

index of goodness for a generic piece-wise linear solution soli,aj :

l
soli,aj
pw =

Ni,a
P,1−1∑
k=1

||Pi,ak+1,j − Pi,ak,j ||

and represents the sum of the distances between consecutive Pi,ak in the se-
quence from the EPi,a and the TP.
Every time a new sample is provided to the planning algorithm, the plan-
ner verifies whether the new sample allows to define soli,aj featuring a shorter
length.
This step ends when either all the samples in KSVi,a are provided to the plan-
ner or the number of computed soli,aj reaches a predefined threshold (Nmax

sol ).

3.3.3 Path approximation and optimization

In this section the objective is to generate smooth paths based on the previ-
ously computed way-points. We employed an evolutionary optimization pro-
cess to optimize the weights for the NURBS, used to represent the smooth
trajectory.
Each soli,aj defined in the previous section needs to:

1. be smoothed, to comply with the C2 continuity required by the PBN;

2. be checked for the obstacle clearance;

3. have minimum length.

Additionally, they have to comply with the maximum curvature achievable
(kPBN ). An Evolutionary Optimization Procedure (EOP) is then run for each
soli,aj . In the work of Jalel, Marthon, and Hamouda, 2015, a solution for path
optimization based on NURBS tuning in simplified 2D workspace is proposed.
In the present paper, a similar approach is used for defining C2 curves in
3D using the way-points discovered in the path planning phase and obtain
smooth, curvature-constrained paths with minimal length and minimal vari-
ations of curvature.
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A scheme of the EOP is reported in Fig. 3.3 and a simplified 2D depiction is
shown in Fig. 3.5.

Population initialization

A general pth-degree NURBS for soli,aj , is defined in parametric form as:

C(u)i,aj =

∑Ni,a
P,j

k=0 Bk,p(u)wj,i,ak Pk∑Ni,a
P,j

k=0 Bk,p(u)wj,i,ak

where Pk are the control points, wj,i,ak are the weights linked to each Pk and
Bk,p(u) are the pth-degree B-spline basis functions defined on u ∈ [0, 1] . If the
weightwj,i,ak coupled to a control point Pk is moved, this affects only a portion
of C(u)i,aj , allowing the local shape control: increasing (decreasing) the mag-
nitude of wj,i,ak pulls (pushes) the curve closer to (away from) Pk. For further
details about NURBS, the reader is referred to Piegl and Tiller, 1996.
The EOP generates a primitive population of Non-Uniform Rational Beta Splines
(NURBS) from soli,aj . Each NURBS is referred as “individual” (ind) and has
the vertexes Pk ∈ solj as control points. By randomly initializing the weights
wj,i,ak associated to Pk ∈ solj , the individuals in the population of NURBS are
obtained:

{indj,i,at } = {Pj,i,ak ∈ R3, wj,i,ak,t ∈ R, t = 1, ..., Nt}

where Nt represents a constant, pre-set number of individuals in the popula-
tion.

Objective function

the variable u ∈ [0, 1] used to define each indj,i,at in parametric form undergoes
a discretization, as explained in Appendix 6.1.
An objective function Fobj is defined, which is used by the EOP to rank the
performance of each indj,i,at , as in Jalel, Marthon, and Hamouda, 2015:

Fobj(indj,i,at ) = α · l(indj,i,at ) + β ·#Po + γ ·#Pc + δ · SD

which minimizes:
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FIGURE 3.3: In the diagram, the steps composing the EOP are depicted. The
initial piece-wise linear solution (soli,aj ) is provided to the EOP, and the initial
population of individuals is generated by providing random values to the
wj,i,a

k,t . Fobj is then run and the parent selection is carried out es explained
in Sec. 3.3.3. Then the crossover (Sec. 3.3.3) and the mutation (Sec. 3.3.3)
happen, according to each specific probability. The population is then up-
dated. The process continues until a predefined number of iteration (N iter

max)
is achieved and the fittest individual (ind

i,a
j ) is returned as output.
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• the length l: the integral of the derivative of indj,i,at over its length, cal-
culated as in Piegl and Tiller, 1996:

l(indj,i,at ) =

∫ TP

EPi,a

‖ind′
j,i,a
t (u)‖du

• #Po: the number of points ∈ indj,i,at intersecting an obstacle:

{Po} : {indj,i,at ∩ Ωobs}

where {Ωobs} ⊂ KSVi,a is the set of 3D points representing the obstacle
space.

• #Pc: the number of points ∈ indj,i,at to which a curvature (as the second
derivative of indj,i,at ) larger than kPNB is associated:

{Pc} = {ind′′
j,i,a
t > kPBN}

• SD: the standard deviation of the curvature of indj,i,at , associated to the
smoothness of the path whose reduction leads to a lower effort from the
needle control system:

SD =

√√√√ 1

Nsamp

Nsamp∑
(ind′′j,i,at − µind′′j,i,a

t
)2

where µind′′j,i,a
t

and Nsamp are the mean and the number of samples of
ind′′

j,i,a
t that depend upon the discretization of u ∈ [0, 1].

α, β, γ and δ values are reported in Table 3.1.

Parent selection method

Differently from the solution proposed in Jalel, Marthon, and Hamouda, 2015,
a linear Rank-based Roulette Wheel method (Razali and Geraghty, 2011) is
used for parent selection. This selection strategy prevents from the risk to fall
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FIGURE 3.4: The controlled mutation algorithm. In a), where part of the
curve results too close to an obstacle (red points over the grey line), i.e
{Po} 6= ∅, the weight of Pj,i,a

k that affects that part of the curve is de-
creased until obstacle avoidance is obtained (green line). In b), the weights

Pj,i,a
k ∈ indj,i,a

t are decreased in order to smooth the curve.

into a local minimum during the EOP. At any new generation, it assigns to
each indj,i,at in the population a probability p to be selected as a parent:

p(indj,i,at ) =
rank(indj,i,at )∑Nt

t=1 rank(indj,i,at )

where rank is defined as:

rank(indj,i,at ) = 2− SP +
2(SP − 1)(posj,i,at − 1)

Nt − 1

where posj,i,at is the hierarchical position of indj,i,at in the population accord-
ing to Fobj and SP represents the “selective pressure”, a favorable bias given to
individuals having low Fobj . With SP = 1, all the individuals of the popula-
tion have the same rank and thus the same probability to be chosen. If SP = 2,
high-performing parents (the ones with low Fobj) have a high rank and thus a
higher probability to be selected with respect to less-performing ones.

Crossover

Crossover consists in switching part of the weights between two parent indi-
viduals. In this work, a single-point crossover is used, with a cutting point (t)
randomly selected at each iteration. The crossover can happen according to a
predefined probability pcross. Due to its random nature, crossover can lead to
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offspring that do not meet the condition {Po} ∧ {Pc} = ∅. This possibility is
envisaged by the algorithm, and regardless if such a situation happens or not,
the offspring are stored.

Mutation

Mutation can happen at each iteration of the EOP according to a predefined
probability pmut. To avoid the definition of unfeasible path, we implemented
a controlled mutation method similar to Jalel, Marthon, and Hamouda, 2015,
using a supervised adjustment of the weights in the new individual of the
offspring as presented in Appendix 6.2 and shown in Fig. 3.4. If part of the
curve results too close to an obstacle, i.e {Po} 6= ∅, the weight of Pj,i,ak that con-
trols that part of indj,i,at is increased until the condition {Po} = ∅ is achieved
(Fig. 3.4a). If part of the curve shows {Pc} 6= ∅, the weights Pj,i,ak ∈ indj,i,at

are decreased until all the curve points meet the curvature limit. Addition-
ally, whenever possible, the weights Pj,i,ak ∈ indj,i,at are decreased in order to
smooth the curve but without voiding the condition {Po} 6= ∅ (Fig. 3.4b). In
case, as the result of the mutation, the new individual shows a higher value
of objective function than the original one, the new individual is rejected and
the original one restored.
The EOP stops when the number of generations reaches a predefined thresh-
old (N iter

max). For each solj , the individual of the NURBS population that fea-
tures the lower Fobj while guaranteeing the condition {Po}∧{Pc} = ∅ is stored
as ind

i,a

j :
ind

i,a

j = argminFobj(indj,i,at ) t = 1, ..., Nt.

If no individual meets the condition {Po}∧{Pc} = ∅, the algorithm returns no
solution for the specific solj .

3.3.4 Exhaustive search for the best path

In this section, the cost function used to perform an exhaustive study of the
paths discovered in the previous section is presented.
In order to define the optimal path for the specific EPi in the entry area a, the
algorithm performs an evaluation over ind

i,a

j ,∀j through a cost function Fcost
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defined as:

Fcost(ind
i,a

j ) = a
1

dmin + d̄
+ b

l − lmin
lmin

+ c
kmax
kPBN

where dmin represents the closest distance from an obstacle calculated over
the whole length l of ind

i,a

j , dsafe is a safety margin used to take into consid-
eration possible control errors that may happen during the PBN insertion and
that linearly increases as the insertion proceeds, as in Favaro et al., 2018b. The
mean value of the distance from the obstacles is d̄ , while lmin is the Euclidean
distance between EPi and TP and kmax = max(ind′′

i,a

j (u)).

With ind
i,a

we refer to the best curvilinear path corresponding to the one
among all ind

i,a

j that has the lower value of Fcost. A representation of the EOP
and the Exhaustive search for the best path is shown in Fig. 3.5.
As the EOP and the exhaustive search is performed for all the EPi belonging
to the entry area a, a number of best pathways (that, if the planning does not
fail, correspond to the number of EPi) are provided to the surgeon as output
of the algorithm. If no solution exists for the specific entry area a, the planner
returns a failure.

3.4 Experimental protocol

3.4.1 Input dataset

The dataset used for the experimental trials consists of one brain reconstructed
from Magnetic Resonance Imaging acquisitions performed at the Excellence
Centre for High Field MR (CERMAC), Vita-Salute San Raffaele University, Mi-
lano, Italy.
The anatomical obstacles were identified and segmented in the patient dataset
using 3D Slicer© and consist in blood vessels, ventricles, thalamus and globus
pallidus. The curvature of the brain cortex was computed using Freesurfer
Fischl, 2012.
10 entry areas of 10mm-radius (a dimension consistent with the one employed
in Scorza et al., 2017), were defined on the cortical surface resembling possible
entry areas in clinical practice, 5 on the left and 5 on the right hemisphere (Fig.
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FIGURE 3.5: In the uppermost figure, the EOP is presented. Three piece-
wise linear solutions are depicted in black (sol1,...,3), along with multiple
curvilinear approximations (indj,i,a

t ) in red. The best solution for each solj is
reported in green as ind

i,a
j . In the picture underneath, referred as “Exhaus-

tive search for the best path", the cost function described in Section 3.3.4 is

implemented to define, among the 3 ind
i,a
1,...,3, the best one: ind

i,a

.
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(A)
(B) (C)

FIGURE 3.6: In a) a picture of the 10 entry areas defined on the brain cortex
for the scope of the test (5 on the left and 5 on the right hemisphere) is pre-
sented. In b), the anatomical obstacles considered in the planning phase are
depicted in different colors: ventricles (blue), thalamus (yellow), globus pal-
lidus (green) and blood vessels (red). In c), an example of a planned curvilin-
ear path is proposed (sharp red). The entry and target points are labelled re-
spectively as EP and TP. The entry area is also shown in sharp green around

the EP.

3.6).
10 TPs were set (one for each entry area) in different location within the brain.
Using the method described in Section 3.3.1, the maximum number of 20 EPs
was been set for each entry area, resulting in a distance between EPs and TPs
having a median value of 78.02mm. The entire workflow described in Fig. 3.1
is run over all the entry areas.
All the relevant parameters used in the simulations for the presented method
are reported in Table 3.1. The maximum number of raw paths (Nmax

sol ) as well
as the parameters included in the cost functions were defined empirically.
Parameters included in the Evolutionary Optimization Procedure, including
those used in the objective function, were empirically adapted to values close
to the ones used in Jalel, Marthon, and Hamouda, 2015.
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3.4.2 Simulations and data analysis

Performance evaluation

In the first performance evaluation test, our solution was compared with two
sampling-based planning methods: the previous version of the planner (Favaro
et al., 2018b), referred as “Ellipsoidal", and the RG-RRT proposed by Patil at
al. Patil and Alterovitz, 2010. The latter consists in a combination of the RRT-
based search and a reachability-guided sampling heuristic.
The comparison between the different algorithms was carried out in terms of
mean distance from anatomical obstacles (d̄), the normalized path length (l̂)
as the percentage the path length exceeds the Euclidean distance between the
EPi,a and the TP, the minimum distance along the entire path from the closest
anatomical obstacle (dmin) and the value of Fcost. The maximum curvature
(kmax) was checked as a critical parameter which relates to a higher risk of
inaccuracies in the control of the PBN during the trajectory tracking (Ko, Fras-
son, and Rodriguez Y Baena, 2011). The failure rate (FR) was also evaluated,
defined considering the number of best solution computed by the planning
algorithm (#{inda}) and the number of original EPs defined over the entry
area a (#{EPi,a}), such that:

FRa =
#{inda}
#{EPi,a}

.

The maximum curvature value acheivable by the needle (kPBN ) was used in
the simulation and the nominal catheter thickness is considered for assess-
ing obstacles avoidance, as reported in Table 3.1. For all the algorithms, the
search is biased by providing the TP as new sample with a probability of 10%.
When analyzing a new sample, the maximum Euclidean distance between
the sample and the closest vertex in the graph is 40mm for the KSV and the
Ellipsoidal method. No maximum Euclidean distance is considered for arc
reachability in the RG-RRT. As foci for the Ellipsoidal method, the EP and TP
are considered. Variation in the ellipsoidal shape happens when a number
Nv = 5 ∗ k ∗Nreshape of new vertexes are added to the graph without reaching
the TP, where Nreshape is the number of reshape iterations and k = 1.5 is an
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increasing factor. Ellipsoidal shape variation is carried out by enlarging the
minor axis by a factor k, starting from a value of 10 mm. An upper limit of
1000 samples is considered for all algorithms before quitting the search.
A Friedman non-parametric statistical analysis was used (p < 0.05), followed
by a post-hoc Wilcoxon matched pairs test (p < 0.016, Bonferroni correction).
A second performance test have been conducted to compare the proposed
solution with an optimal planner. For this scope, an A* algorithm has been
implemented. Tests were performed on one insertion point, corresponding
to the centre point of the entry area 1 in Fig. 3.6. A total of 5 repetitions of
the KSV algorithm have been run. As a minimum distance from the obstacle,
the nominal catheter thickness is considered. As a terms of comparison, the
normalized path length, the minimum and mean distance from obstacles and
computational time are considered. The maximum curvature is disregarded
in the comparison as A* provides piece-wise linear paths.

Computational time

A further test has been designed for evaluating the benefit in terms of com-
putational time of associated to confining the path planning within a subset
of the original workspace where kinematically-feasible solutions can lie. To
this end, a path planning comparison was performed between the herein-
presented KSV and the Ellipsoidal method described in Favaro et al., 2018b.
In the test, only the time required to find the set of piece-wise linear raw paths
(soli,aj ) is measured as the subsequent steps of approximation and optimiza-
tion are independent of the workspace size and different between the two
algorithms. Results from the RG-RRT are not considered in this test as the
method does not include an intermediate step of raw paths estimation (as in
the KSV and Ellipsoidal method), but provides paths that are already curved.
10 trials were performed using the 10 EPs and the 10 TPs described in Sec-
tion 3.4.1. A pairwise comparison was performed via Wilcoxon matched pairs
tests (p < 0.05).

All simulation tests were performed using 3D Slicer© , on a MacBook Pro
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(MacOS 10.14.6, 2,7 GHz Intel Core i5, 8 GB of RAM) and the same parame-
terization has been used in the test of performance and computational time.

3.5 Results

Resuts from the first performance evaluation are presented in Fig. 3.7, where
the method herein presented is compared to the ellipsoidal solution of Favaro
et al., 2018b (“Ellips.") and the RG-RRT by Patil and Alterovitz, 2010. In Fig.
3.7a, the highest value of curvature reached along the path (kmax) shows re-
spectively a median value of 0.01 mm−1 (radius of curvature r=100 mm), 6.2× 10−3 mm−1

( r= 161.3 mm) and 6× 10−4 mm−1 (r= 1667 mm) for the RG-RRT, Ellipsoidal
and KSV algorithm, respectively (p < 0.01).
The median minimum distance from anatomical obstacles (dmin) resulted in
0.19 mm for the KSV, 0.63 mm for the RG-RRT and 0.34 mm for the Ellipsoidal
(Fig. 3.7b) while the mean distance (d̄) showed a median value of 9.1 mm for
the KSV, 6.06 mm for the RG-RRT and 7.26 mm for the Ellipsoidal (p < 0.01)
(Fig. 3.7c).
With regard to the normalized path length (̂l), its median values were equal
to 1.19 %, 2.92 % and 2.35 % for the KSV, RG-RRT and Ellipsoidal, respectively
(p < 0.01) (Fig. 3.7d).
For the KSV, Fcost demonstrates a median value of 0.017 , a value of 0.35 was
found for the RG-RRT and of 0.215 for the Ellipsoidal method (p < 0.01) (Fig.
3.7e).
For the last parameter analyzed, the failure rate FR, its median value for the
KSV was 5.2 % , for the RG-RRT was 33.7 % and for the Ellipsoidal was 21.1 %

(p < 0.05) (Fig. 3.7f).
From the comparison of the presented solutions with the A* algorithm, results
are presented in Table. 3.2, where the difference in term of normalized path
length, minimum and mean distance from obstacles and computational time
are reported.
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TABLE 3.2: Performance test between A* algorithm and the presented solu-
tion in term of normalized path length, minimum and mean distance from

obstacles and computational time as 25th, 50th and 75th percentiles.

A* - KSV performance comparison

A* KSV

25th 50th 75th

l̂ 1.017 1.0005 1.0015 1.0029

dmin [mm] 1.04 0.028 0.25 0.39

d̄ [mm] 4.89 5.43 5.94 6.17

comp. time [sec] 126 34.0226 45.2476 55.5795

TABLE 3.3: Results in term of computational time are shown for an ellip-
soidal and a KSV searching space as 25th, 50th and 75th percentiles. Statis-
tical significance effect of the type of search space has been found through a

Wilcoxon matched pairs test (p < 0.05).

Computational time

25th median 75th

ellipsoidal [sec] 89.58 96.75 107.95

KSV [sec] 4.19 4.28 5.29

Results from the computational time are shown in Table 3.3, where the dif-
ference between a KSV and an ellipsoidal search space are reported. In the
estimation of the initial raw paths, KSV showed a median value of 4.28 sec

while the ellipsoidal approach resulted in a median computational time of
96.75 sec (p < 0.01).
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(A) (B) (C)

(D) (E) (F)

FIGURE 3.7: Results from the comparison between the presented solution
(the KSV) and other two methods proposed in the literature: the ellipsoidal
search method proposed in Favaro et al., 2018b (referred as “Ellips.") and the
RG-RRT. The maximum curvature (kmax), the minimum and mean distance
from anatomical obstacles (dmin, d̄), the normalized path length (l̂) and the
overall cost (Fcost) are reported respectively in a,b,c,d and e. In f ), the failure
rate FR is also shown. Statistical significance between different algorithms is

highlighted (∗, p < 0.05).
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3.6 Discussion

This work presents a planning solution for computing pathways suitable for
being performed by a flexible catheter (PBN) in neurosurgical applications
and used combined with a bespoke control and actuating systems so that they
can be used as surgical trajectories.
A smart redefinition of the search space, i.e. the KSV, considers the curva-
ture limit of the PBN (kPBN ) and ignores those parts of working domain that
will give rise to unfeasible paths. This allows the algorithm to save time. By
looking at Table 3.3, where the KSV is compared to the ellipsoidal search vol-
ume used in Favaro et al., 2018b, a significant decrease of the computational
time (∼ 20 times) can be noticed. Furthermore, a new approximation method,
based on the use of NURBS, provides the C2 continuity required by the PBN
and a local control of the approximated path allowing, together with a be-
spoke evolutionary optimization procedure, to optimize each solution accord-
ing to several parameters. The combination of these two elements provides a
high level of flexibility thanks to the chance to modify the weight associated
to each control point in a way to privilege some aspects (e.g. the distance
from obstacles) more than others and at a level that was not achievable by
other approaches as those based on inverse kinematics (Duindam et al., 2010)
or potential fields methods (Li et al., 2014) that have, on the other hand, the
benefit of allowing a quasi-real-time path computation. The evolutionary op-
timization procedure, even if it cannot be expected assuredly to find the global
optimum (which can be, instead, obtained if a graph-based approach is used),
can generate an excellent quasi-optimal solution (Razali and Geraghty, 2011)
without the extreme computational payload that characterizes graph-based
approaches.
When compared with two other sampling-based planning solutions ( Favaro
et al., 2018b and Patil and Alterovitz, 2010), our method was able to outper-
form them in two relevant parameters: the distance from anatomical obstacles
and the normalized path length, as shown in Fig. 3.7. The obtained path was
also smoother, which represents a good starting point in the view of reduc-
ing the possible control error in trajectory tracking. The obtained overall cost
resulted smaller in our solution with respect to the other two algorithms and
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demonstrated a lower risk of failure in the path search: the KSV algorithm
failed respectively 4 times and 6 times less frequently than Favaro et al., 2018b
and Patil and Alterovitz, 2010.
Despite the proposed approach is intended for pre-operative applications, the
fast computation exhibited by the planner for the definition of the KSV and
the estimation of the raw path (soli,aj ) suggests the possibility to achieve com-
putational time compatible with intra-operative planning if implemented in
C/C++ (rather than in Python, as in this paper). Additionally, the introduction
of a bidirectional-RRT search (Jordan and Perez, 2013) would further speed up
the initial search for the raw paths by letting the graph evolving from the EPai

and the TP at the same time. To this end, benefits deriving from the use of
reinforcement learning approaches will be also evaluated. The real bottleneck
of the presented solution in terms of computational cost is represented by the
evolutionary optimization procedure, which may be speed up by reducing the
computational cost associated to the mutation of the individuals.
In terms of path optimality, our solutions demonstrated results that closely
resemble the one obtained by the A* algorithm, considered as our gold stan-
dard in terms of path optimality. The safer paths provided by the A* algorithm
in terms of minimum distance from obstacles were found at the expense of a
slightly longer path and longer computational time, as expected from a graph-
based planning method in 3D scenarios.
The quasi-optimal path estimated by the proposed solution assumes a kine-
matic model of motion for the PBN during insertion and a proper control
system exist. In Secoli, Rodriguez, and Baena, 2018, an adaptive controller
combined with a kinematic model of the PBN needle in Parallel Transport
Frame are proposed. Test performed in-vitro demonstrated the ability of the
controller method to perform curvilinear paths, provided that they meet the
PBN curvature limit. The test were performed over multiple curvilinear paths
comparable to the one estimated in this work in terms of insertion length and
curvature. This implies that the present solution can be considered as a fea-
sible path planner for such a control method. Further in-vitro tests will be
conducted using paths estimated by the present solution in order to evaluate
the system tracking error and determine the uncertainty margin.
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3.7 Conclusions

The chapter addresses Hypothesis 1 describing a solution for the definition of
feasible pathways for robotically-actuated flexible needles in a neurosurgical
scenario, which represents a typical example of dense environment character-
ized by narrow spaces.
A smart redefinition of the working space based on the maximum curvature
of a neurosurgical steerable needle (in the present case, the PBN) is used to
limit the sampling-based path search within a confined region where feasible
solutions can lie, guaranteeing a computational time consistent with standard
pre-operative planning (Hypothesis 1.2). This, combined with an optimiza-
tion based on a bespoke evolutionary procedure, results in providing a signif-
icant improvement of the performance in terms of a higher obstacle avoidance
and a reduced path length (Hypothesis 1.1). The planning solution could also
reduce the failure rate in finding a path for a specific query, augmenting the
pool of possible solution where to look for the best path. This lies the founda-
tion for a further enhancement in the quality of the estimated paths as well as
for a real-time path computation through the reduction of the computational
cost.
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Chapter 4

Model-based robust pose estimation for a

multi-segment, programmable bevel-tip

steerable needle

Bevel-tip steerable needles for percutaneous intervention are prone to torsion
determined by the interaction forces with the human tissue. If disregarded,
torsion can affect the insertion accuracy inducing a change in the needle tip
orientation, which is generally undetectable by tracking devices because of
the small diameter of the needle. In this chapter, we investigate Hypothesis
2 and present a method for estimating the tip pose (i.e. position and orienta-
tion) of a multi-segment needle. We initially address Hypothesis 2.1 with an
implementation of the method for a simplified version of the PBN (referred as
sPBN hereinafter) featuring two segments. Hypothesis 2.2 is then addressed
extending the proposed solution on the four-segment PBN needle, for which
a novel 3D kinematic model is developed. In the solution, a kinematic based
Extended Kalman Filter (EKF) is used. The tip position of the steering seg-
ments is tracked by electromagnetic sensors and used as input measurement.
Simulation trials and experiments in phantom-brain gelatin were performed
to prove the performance of the method and mimic real case scenarios. In the
case of the sPBN, the solution show state-of-the-art performances in pose es-
timation with a bounded position error of < 1 mm and orientation error of < 5
deg. Results obtained using the four-segment PBN demonstrated a small po-
sition error (RMSE<0.6 mm) and good accuracy in comparison to a bespoke
geometric pose reconstruction method.
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The application of the method on the two-segment PBN resulted in a journal
paper 1 currently under review.
The application of the method on the four-segment PBN resulted in a confer-
ence paper 2 currently under review.

4.1 Introduction

Percutaneous needle insertion is a common medical approach used for pro-
cedures such as biopsy, brachytherapy, drug delivery and thermal ablation to
achieve minimally-invasive access to different organs and body regions as the
breast, kidney, liver, prostate and brain (Cowan et al., 2011; Abolhassani, Pa-
tel, and Moallem, 2007). In these contexts, this approach is often preferred to
standard open surgery for the reduced tissue trauma and the faster recovery
time.
Nonetheless, percutaneous interventions can be challenging when the tar-
geted tissue is deep inside the body due to the presence of anatomical struc-
tures to be avoided and the onset of needle deflection caused by tissue inho-
mogeneity and deformation (Misra et al., 2010).
Recent effort has been applied to the design of steerable percutaneous needles,
the steering of which can be robotically controlled so as to perform nonstraight
paths, allowing the needle to avoid the anatomical obstacles and increase the
tip placement accuracy. An overview of steerable needle designs is reported in
Berg et al., 2015. These include the Programmable Bevel-tip Needle (PBN), a
multi-segment steerable needle composed of four axially-interlocked slender
sections, which are robotically actuated to develop specific tip configurations
that allow the needle to steer.
A significant component required to bring these robotically-actuated steer-
able needles into use is the development of appropriate control strategies to
achieve an accurate insertion. This can be obtained in a closed-loop fashion

1A. Favaro, R. Secoli, F. Rodriguez y Baena and E. De Momi, “Model-based robust pose esti-
mation for a multi-segment, programmable bevel-tip steerable needle”, Robotics and Automation
Letters, under review

2A. Favaro, R. Secoli, F. Rodriguez y Baena and E. De Momi, “Optimal pose estimation method
for a multi-segment, programmable bevel-tip steerable needle”, International Conference on Intelli-
gent Robots and Systems (IROS), under review
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if the position and the orientation of the needle (i.e. its full pose) are known.
An overview of the recent progress made in closed-loop needle steering is re-
ported in Rossa and Tavakoli, 2017. Still, with flexible needles, closed-loop
control is not trivial as the tip is not rigidly connected to the base. Nee-
dle tracking methods can thus be used, as X-Ray fluoroscopy (Ralovich et
al., 2014), ultrasound (US) (Vrooijink, Abayazid, and Misra, 2013; Chatelain,
Krupa, and Marchal, 2013) and electromagnetic (EM) tracking systems (Sad-
jadi, Hashtrudi-Zaad, and Fichtinger, 2012). However, imaging methods can-
not track the rotation of the needle about its insertion axis (the roll angle)
because of its small diameter (Cowan et al., 2011), which also precludes the
possibility to accommodate a 6 Degrees of Freedom (DoF) EM sensor.
In Vrooijink, Abayazid, and Misra, 2013, this limitation in needle tracking was
handled by considering the roll angle at the needle tip as equal to the one
measured at the base, assuming infinite torsional stiffness of the needle. This
assumption underlies several control systems and shape reconstruction meth-
ods (Shahriari et al., 2015; Abayazid, Kemp, and Misra, 2013; Abayazid et al.,
2015), as well as motion planners (Patil et al., 2014; Wooram Park et al., 2005)
and kinematic models (Webster et al., 2006).
For the PBN, closed-loop control was achieved by using adaptive control strate-
gies to compensate for unknown, nonlinear mechanical properties (Secoli and
Baena, 2016; Secoli, Rodriguez, and Baena, 2018). More recently, these non-
linearities were modelled by using finite-element techniques (Watts, Secoli,
and Baena, 2019), creating a new optimised control for the configuration of
the segments.
For most of the steerable needle designs, the effect of needle-tissue interactions
determines a significant torsional moment. In the case of PBNs, for some tip
configurations, experiments demonstrated the onset of an unmodelled needle
torsion during the insertion, ascribed to needle-tissue shear forces, which can
increase the error in tracking if not measured and subsequently compensated
for.
Reed, Okamura, and Cowan, 2009 proposed a solution to model the torsion
experienced by a bevel-tip needle controlled through base rotation. This model
was later expanded by Swensen et al., 2014 with a length-varying torsional dy-
namics component. They introduced it in a closed-loop control framework
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in combination with C-arm fluoroscopy imaging for needle position track-
ing. Kallem and Cowan, 2009 presented a feedback controller that stabilizes
a bevel-tip steerable needle to a desired 2-D plane. In their work, they used
the 3-D needle tip position and estimated the needle torsion applying a Lu-
enberger observer to the reduced and feedback-linearized Webster’s model
of the needle (Webster et al., 2006). These works, however, are designed for
a steerable needle that strongly differs from the PBN in terms of structure,
kinematics and steering mechanism (Secoli and Baena, 2016), making them
unsuitable for this type of needle.
A solution for the full pose tracking of a PBN was proposed by Khan et al.,
2019, where multi-core optical fibers with embedded Fiber Bragg Grating sen-
sors were used. Errors in pose reconstruction were identified since the fibers
are not bonded to the needle and can thus experience a different level of tor-
sion with respect to the needle body.
This chapter investigates Hypothesis 2. A solution for estimating the full pose
of a PBN during the insertion is proposed, which addresses the case of nee-
dle torsion. A simplified two-segment PBN (sPBN) (Hypothesis 2.1) and the
four-segment PBN (Hypothesis 2.2) are considered. For some configurations,
these PBN designs have shown experimentally to be affected by the onset of a
torsional effect around the insertion axis. The method involved an Extended
Kalman Filter (EKF) defined on the kinematic model of the needle. Solutions
based on Kalman Filters have been widely adopted in the literature for needle
tracking and pose estimation. In our work, we used a 2D model of the sPBN
and a 3D model of the PBN that originate from the one proposed by Ko, Fras-
son, and Rodriguez Y Baena, 2011 in 2D, properly extended to contemplate
the torsion of the needle and, in case of the PBN, a 3D steering. sPBN and
PBN respectively feature two and four axially-interlocked segments, roboti-
cally actuated at the base. Their steering direction is determined by the offset
at the needle tip between segments. For some configurations, such needle
designs have shown experimentally the onset of a torsional effect around the
insertion axis. As assumption for mimicking a real test scenario where con-
ventional imaging systems are used, to estimate the full 6 DoF pose only the
position of the tip of the needle segments is considered as measurement. Such
a solution can be used as a means to inform the PBN control system about the
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pose taken by the needle during the insertion process, allowing the controller
to compensate for the potential onset of needle torsion.
As the presented method is tested on two different needle designs (sPBN and
PBN), with the exception of the Conclusions presented in Section 4.6, the con-
tent of each section is first presented with regard to the sPBN design and then
to the PBN design.

4.2 Methods

4.2.1 Two-segment PBN (sPBN)

Kinematic model

The sPBN needle can generate a controlled steering in a plane according to the
relative offset between the two active beveled-tip segments, as shown in the
schematic representation of Fig. 4.1a. The two segments are identified as A
and B. Their local frames, XA and XB , are on the segment tips.
The needle kinematic model described in Ko, Frasson, and Rodriguez Y Baena,
2011 is the following: 

ẋ

ẏ

ψ̇

δ̇


=



cos(ψ)

sin(ψ))

k1(δ − εψ)

0


v1 +



0

0

0

1


v2 (4.1)

where x, y represent the x-axis and y-axis coordinates of the rear segment
frame (Xr) with respect to the global reference frame O. Based on the nee-
dle configuration, Xr can be either XA or XB , depending on which segment
(A or B) is the one ahead of the other. In Fig. 4.1a, Xr is XB while the leading
segment (Xl) is XA. The variable ψ represents the angle of rotation of the tip
around the z-axis and δ is defined as the relative offset between the two seg-
ments at the needle base (see Fig. 4.1a). The coefficient k1 is a constant defined
during the calibration described in Ko, Frasson, and Rodriguez Y Baena, 2011.
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v1 is the cruise speed, i.e. the forward velocity of the whole needle body, while
v2 is the offset velocity, i.e the rate of change of δ.
The sPBN is formed by two segments able to slide relatively to each other.
According to this principle, when the needle bends, the inner part of Xl is in
compression and the inner part of Xr is in tension, resulting in a difference
between the offset at the tip (δt) and the offset at the base (δ). As reported in
Ko, Frasson, and Rodriguez Y Baena, 2011, the relationship between the two
offsets is:

δt = δ − εψ (4.2)

with ε = (8Rn)/(3π) for a needle made by two segments, where Rn the radius
of the needle.
The rotational velocity ψ̇ is linked to the cruise speed v1 as follows:

ψ̇ = ρv1 (4.3)

where ρ is the instantaneous curvature that the needle tip follows. In Ko et al.
Ko, Frasson, and Rodriguez Y Baena, 2011, ρ is considered as proportional to
δt with a coefficient k1 as follows:

ρ = k1δt (4.4)

and, from (4.2), the expression of ψ̇ reported in (4.21) is obtained.
At each time step, δt defines the leading segment and the rear segment, such
as:

δt > 0

Xl = XA

Xr = XB

δt < 0

Xl = XB

Xr = XA.
(4.5)

When the offset of the tip is null, i.e. δt = 0, frames Xl and Xr coincide. Their
poses with respect to the world frame O are OTl =O Tr.
When δt 6= 0, a steering angle ξ is shown between Xl and Xr (Ko, Frasson,
and Rodriguez Y Baena, 2011), expressed as:

ξ = k1 δ
2
t sgn(δt). (4.6)
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The radius of curvature (Rc) associated with the angle ξ is defined as:

Rc =
δt
ξ

sgn(δt). (4.7)

The translation rPl from Xr to Xl (in Fig. 4.1a, respectively XB and XA) is
defined as:

rPl = [Rc sin(ξ), Rc(1− cos(ξ)), 0]T . (4.8)

The transformation rTl between Xr and Xl is defined as:

rTl =

 Rz(ξ) rPl

0 0 0 1

 (4.9)

where Rz(ξ) is the rotation between Xr and Xl due to the presence of ξ. The
transformation OTl between O and Xl can be computed as:

OTl =O Tr rTl. (4.10)

Torsion model

Differences in the roll angle (φ) between the tip and the base are a well-known
fact for needle that require rotation to steer (Reed et al., 2011; Kallem and
Cowan, 2009). In the case of the sPBN, the needle undergoes a torsion be-
cause of the interaction between the needle tip and the tissue when an offset
δt is generated, or for frictional components between segments. This torsion
determines a rotation by an angle φ about the x-axis that drives the needle
from an ideal 2D motion to a 3D displacement (see Fig. 4.1b) and an orienta-
tion discrepancy between the needle tip and the base, which does not rotate.
The poses of the two segment tips become:

OT′r = Rx(φr)
OTr (4.11)

and
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FIGURE 4.1: Needle kinematics: in a), a 2D representation of the two-segment
sPBN is reported. XA and XB represent the local frames of segment A and
segment B. In the case depicted, XA = Xl and XB = Xr . Rn is the nee-
dle radius and δ the offset at the needle base. ψ is the rotation of the needle
about the z-axis. The offset at the tip, δt, differs from δ because of the needle
bend, which generates a further curvature ξ associated to a radius Rc. In b),
the effect of needle torsion on the original 2D trajectory of segment A and
B, depicted on the x-y plane in light blue and light yellow, is reported. The
needle moves from planar steering to a spatial movement. The local refer-
ence frames of segment A and segment B are reported. The offset between
the leading segment (here the segment A) and the rear segment (here the

segment B) determines a different torsion on their tips, i.e φA 6= φB .
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OT′l = Rx(φl)
OTr rTl (4.12)

where φl and φr are the torsion angles on Xl and Xr, as depicted in Fig. 4.1b.

Pose estimation

The state vector x describes the needle status and is defined as follows:

x = [x, y, ψ, δ, k1, φA, φ̇A, φ̈A, φB , φ̇B , φ̈B ]T (4.13)

where the first 5 parameters come from (4.1). The torsion experienced by the
two segments enters in the state vector by φA and φB . Torsion is assumed to
have a second order dynamics: in the case study herein considered, the torsion
affecting the sPBN changes during the insertion as a function of the current
offset δt and can increase or reduce its speed according to the acceleration
determined by variations in δt during the insertion.
The extended kinematic model, is defined as:

x(k + 1) = f(x(k)) + b(u(k + 1)) + n(k + 1) (4.14)

where u is the vector of inputs made of the cruise speed and the offset velocity:

u = [v1, v2]T . (4.15)

The process noise n(k) is assumed to be drawn from a zero-mean normal dis-
tribution n(k) ∼ N (0,Qp) with variance Qp.
The function f(·) is defined as:
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f(x(k)) =


I[5×5] 0

A[3×3]

0 A[3×3]





x(k)

y(k)

ψ(k)

δ(k)

k1(k)

φA(k)

φ̇A(k)

φ̈A(k)

φB(k)

φ̇B(k)

φ̈B(k)



(4.16)

where I is the identity matrix and A describes a second-order dynamics:

A =


1 ∆t 1

2∆t2

0 1 ∆t

0 0 1

 (4.17)
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where ∆t is the sampling time.
The control-input function b(·) is defined as:

b(u(k + 1)) =



cos(ψ(k))∆t 0

sin(ψ(k))∆t 0

k1(δ(k)− εψ(k))∆t 0

0 ∆t

...
...

0 0


[11×2]

v1(k + 1)

v2(k + 1)

 . (4.18)

The proposed method makes use of the 3 DoF position of the two segment
tips. Such information can be obtained through embedded sensors, e.g. EM
sensors, or via a suitable imaging modality, such as ultrasound. In case of sen-
sors mounted on the segment tip, a further translation is included to link the
sensor local frame to the segment tip, as in Fig. 4.1b. The sensor local frames,
XA′ and XB′ , result from the transformation OTA′ and OTB′ , including trans-
lations ∆SAx,y,z , ∆SBx,y,z from the segment tip to the sensor positions. For the
sake of simplicity, no rotation is assumed in OTA′ and OTB′ . The observation
at time k is expressed as:

y(k) = h(x(k)) + v(k) (4.19)

where the measurement function h(·) is a non-linear function defined as:

h(x(t)) = [pA,pB ]T (4.20)

where p are the translation component of OTA′ and OTB′ and v(k) the mea-
surement noise. In this work, v(k) represents the noise over the EM mea-
surement, for which a zero-mean Gaussian nature is supposed, as in Navaei
Lavasani et al., 2020, i.e. v(k) ∼ N (0,Qm). Variance Qm is unknown a-priori
and has to be guess in the filter calibration on the basis of the experimental
data.
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At each time step, the pose of the segment tips XA and XB can be computed
from the parameters in the state vector x through (4.11) and (4.12).

4.2.2 Four-segment PBN

Kinematic model

We consider the four-segment PBN as the combination of 2 two-segment nee-
dle systems. These two systems are positioned orthogonally so that the first,
SH , controls the horizontal steering in the xy plane and the second, SV , the
vertical steering in the xz plane, as shown in Fig. 4.2a. The needle is oriented
as shown in the bottom-left part of Fig. 4.2b, corresponding to the configura-
tion in Secoli and Rodriguez Y Baena, 2013 twisted of π/4 about the x axis.
From Ko, Frasson, and Rodriguez Y Baena, 2011, the kinematic models of the
two systems can be written as:

SH :



˙xH

˙yH

ψ̇

˙δH


=



cos(ψ)

sin(ψ)

k(δH − εψ)

0


v1 +



0

0

0

1


v2,H

SV :



˙xV

˙zV

θ̇

˙δV


=



cos(θ)

−sin(θ)

k(δV − εθ)

0


v1 +



0

0

0

1


v2,V

(4.21)

Where xH , yH are the coordinates of the local frame Xr,H positioned on the
tip of the rear segment of SH . The variable ψ is the steering angle about the z
axis that defines the curvature on the xy plane. This angle is determined by the
offset δH between the two segments measured at the needle base. The same
considerations apply for SV , with xV , zV being the coordinates of the local
frame Xr,V on the tip of the rear segment and θ being the steering angle about
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the y axis, determined by δV . The coefficient k, estimated in Ko, Frasson, and
Rodriguez Y Baena, 2011, links the offsets with the steering angle. To address
the discrepancy between the offset shown at the needle base and the one at
the tip due to the needle steering, the components εψ and εθ are included,
with ε function of the needle radius (see Ko, Frasson, and Rodriguez Y Baena,
2011). The velocities v1 and v2 represent the cruise speed of the needle during
the insertion and the rate of change in δH and δV .Velocities δH and δV define
the radii of curvature RH and RV of the needle in the horizontal and vertical
planes, two virtual plane that rotate together with the current configuration of
the needle tip. RH and RV are expressed as:

RH =
1

k(δH − εψ)
,

RV =
1

k(δV − εθ)
.

(4.22)

The position and orientation of the leading segments, Xl,H and Xl,V , with
respect to Xr,H and Xr,V are defined as:

rTl,H =



RH sin(ξH)

Rz(ξH) RH(1− cos(ξH))

0

0 0 0 1


,

rTl,V =



RV sin(ξV )

Ry(ξV ) 0

−RV (1− cos(ξV ))

0 0 0 1



(4.23)

with R representing a rotation about the specified axis and ξV , ξH the angles
between Xr,H and Xl,H and between Xr,V and Xl,V , respectively, as in Fig.
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4.2a.

By merging the horizontal and vertical steering of SH and SV , the 4-segment
needle model is obtained. A schematic representation is presented in Fig. 4.2b.
The resulting kinematic model of the PBN is:

ẋ

ẏ

ż

θ̇

ψ̇

δ̇V

δ̇H



=



cos(θ)cos(ψ)

cos(θ)sin(ψ)

−sin(θ)

k(δV − εθ)

k(δH − εψ)

0

0



v1 +



0 0

...
...

0 0

1 0

0 1


v2. (4.24)

Similarly to (4.21), x, y, z, represent the coordinates of the rear segment Xr.
In the case presented in Fig. 4.2b, Xr = X1. The variables θ and ψ are the
steering angles while δV and δH are the offsets between segments 1 and 3
for the vertical displacement and between segment 2 and 4 for the horizontal
displacement. The correction factor ε is ε = 8rn

√
2/(3π) for a four-segment

needle, with rn the needle radius. Given l1, l2, l3, l4 as the insertion lengths of
the four segments, the vector of the offset velocities is:

v2 =

d(l1−l3)
dt

d(l2−l4)
dt

 (4.25)

and the cruise speed v1 is v1 = dlr
dt .

From (4.24), we define the pose of Xr as:

OTr = P(x, y, z)Rz(ψ)Ry(θ) (4.26)

where P represents a pure translation.
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We call δt,i the offset between the rear segment Xr and the tip Xi of segment
i, i ∈ 1, ..., 4, as in Fig.4.2b. The offset is defined as follows:

δti =


li − lr − εθ, if i = 1, 3 ∧ i 6= r

li − lr − εψ, if i = 2, 4 ∧ i 6= r

0, if i = r

(4.27)

where the εθ and εψ are the offset corrections due to needle steering. Any
variation in the length of the segments due to compression is considered neg-
ligible.
As in (4.23), for each segment i we define two angles (ξVi , ξHi ) between Xr

and Xi in the vertical and horizontal axes as:

ξVi
= δti/RV

ξHi
= δti/RH

(4.28)

with RV and RH coming from (4.22). As in (4.23), the transformation rTi
between Xr and Xi is:

rTi = P(xr,i, yr,i, zr,i)Rz(ξHi
)Ry(ξVi

) (4.29)

where the translation components are:

xr,i = max(RH sin(ξHi), RV sin(ξVi))

yr,i = RH(1− cos(ξHi
))

zr,i = −RV (1− cos(ξVi
)).

(4.30)

The transformation OTi between O and each Xi is:

OTi =O Tr rTi. (4.31)
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FIGURE 4.2: Needle kinematics: In a) the two 2D systems SH and SV are pre-
sented. The two segments composing SH are in blue and yellow, while the
two composing SV are in green and white. The rear segments Xr,V and Xr,H

as well as the leading segments Xl,V and Xl,H are shown. The two steering
angles (ψ, θ) defined by δH and δV are plotted, together with the curvature
radii and the angle ξV and ξH . The picture in b) shows the 3D representation
of the four-segment PBN during insertion. All four segments are presented,
identified by a unique number and color. The frames X1,...,4 are shown. In
this case, Xr = X1. ψ1 is the torsion affecting segment 1. The offsets δti
at the level of the needle tip are presented (as Xr = X1, δt1 = 0). On the
left and on the bottom of the picture, the respective ideal 2D projections are
depicted on the xz and xy planes. The angles ξvi and , ξhi can be identified
in the figure. The projections refer to the needle without torsion, moreover,

as Xr = X1, ξv1 = ξh1 = 0 .
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Torsion model

In the same way as for the sPBN, for each segment i of the actual PBN embod-
iment, the tip pose becomes:

OT′i = Rx(φi)
OTi. (4.32)

Pose estimation

The state vector x describes the needle status and is defined as follows:

x = [x, y, z, θ, ψ, φ1, φ2, φ3, φ4, δv, δh, δt1 , δt2 , δt3 , δt4 ]T (4.33)

where the first 5 parameters come from (4.24), δt1,...,4 from (4.27) and φ1,...,4 ex-
press the torsion experienced by the four segments. The state at time k evolves
according to:

x(k + 1) = f(x(k)) + b(u(k + 1)) + n(k + 1) (4.34)

where u is the vector of inputs, represented by the insertion and offset veloci-
ties:

u = [v1, l1, l2, l3, l4, lr]
T (4.35)

where lr = min(l1, l2, l3, l4). The process noise n(k) is assumed to be drawn
from a zero-mean normal distribution n(k) ∼ N (0,Qp) with variance Qp.
The update function f(·) is defined as:

f(x(k)) =[x(k), y(k), z(k), θ(k), ψ(k), φ1(k), φ2(k), φ3(k),

φ4(k), 0, 0,−ε θ(k),−ε ψ(k),−ε θ(k),−ε ψ(k)]T .
(4.36)
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The control-input function b(·) is defined as:

b(u(k + 1)) =



cos(θ(k))cos(ψ(k))∆t · v1(k + 1)

cos(θ(k))sin(ψ(k))∆t · v1(k + 1)

−sin(θ(k))∆t · v1(k + 1)

k1(δv(k)− εθ(k))∆t · v1(k + 1)

k1(δh(k)− εψ(k))∆t · v1(k + 1)

0

...

0

l1(k + 1)− l3(k + 1)

l2(k + 1)− l4(k + 1)

l1(k + 1)− lr(k + 1)

l2(k + 1)− lr(k + 1)

l3(k + 1)− lr(k + 1)

l4(k + 1)− lr(k + 1)



(4.37)

where ∆t is the sampling time.
The measurements are given by embedded sensors, e.g. electromagnetic sen-
sors, or via a suitable imaging modality. The observation at time k is expressed
as:

y(k) = h(x(k)) + v(k) (4.38)

where the measurement function h(·) is the results of a non-linear function
defined as:

h(x(t)) = [p1,p2,p3,p4]T (4.39)

with pi is the translation component of OT′i from (4.32). representing the x,
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y, z coordinates retrieved by the four sensors located in the needle segments.
The measurement noise v(k) is supposed to be a zero-mean Gaussian noise
v(k) ∼ N (0,Qm) with variance Qm.

4.3 Experimental Protocol

4.3.1 Two-segment PBN (sPBN)

Simulation study

The EKF has been tested over a set of simulated insertions. These tests aimed
at evaluating the accuracy of our pose estimation method with respect to the
noise on the measurement data in order to determine the maximum level of
noise that still guarantees acceptable estimation performance.This is done by
artificially adding a measurement noise in the simulated data.
A set composed of four variable offset velocities (v2), whose trend is shown
in Fig. 4.3a, was used in the 2D kinematic model described in Section 4.2.1 to
generate four simulated needle insertions.
Two 3 DoF position sensors were ideally mounted on the segment tips, located
at a known distance (∆SAx,y,z,∆SBx,y,z) with respect to the tip reference frames
(XA, XB). The insertions feature different values of k1, used to obtain different
steering responses. These dimensions and parameters are presented in Tab.
4.1.

To mimic the torsion of the needle during the insertion, at every time step
a rotation φ about the needle insertion axis is simulated to both needle seg-
ments.
We simulated φ on the leading segment with the following function:

φl(t) =



φl(t− 1) + ∆φ(δt(t))

if |φl(t− 1)| < φmax

φl(t− 1) + ∆φ(δt(t))e
−d|φl(t−1)−φmax|

if |φl(t− 1)| ≥ φmax

(4.40)
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FIGURE 4.3: In a) the evolution of the offset velocities (v2) for the four sim-
ulated insertions is shown over time. In b), the incremental step of needle
rotation is shown with respect to the offset at the tip. In c), the trend of φ
for one simulated insertion is depicted over the insertion length for segment
A and B. In d), the resulting 3D reconstruction of the needle shape. In d), a
schematic of the main entities coming into play in the geometric approach
is presented. In e), a representation of the geometric approach discussed in

Section 4.3.1 is shown.
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where ∆φ represents the incremental step of rotation affecting the leading seg-
ment. φmax is a maximum angle of needle torsion after which we assumed
the needle torsional compliance decreases. This limits further rotations and is
simulated by the exponential decay that multiplies ∆φ in the second case of
(4.40).
∆φ is defined as follows:

∆φ(δt) = sgn(δt) ·
[

a

1 + e(−b(δt−c))
− a

1 + ebc

]
(4.41)

we assumed ∆φ having a quasi-linear behaviour. Values of δt near to zero in-
duce a slow increase in the rotation angle; the slope of ∆φ rises for larger val-
ues of δt up to |δt| ≥ 15 mm, where the incremental step of rotation becomes
constant. The second addendum in (4.41) is required to have ∆φ(0) = 0 deg.
The slope ∆φ is symmetrical about the y axis, thus positive values of δt drive
the needle to twist toward positive values of φ and vice-versa. Such a be-
haviour, designed for the scope of simulation and presented in Fig.4.3b, rep-
resents an assumption based on experimental evidence (Watts, Secoli, and
Baena, 2019). Parameters of (4.40) and (4.41), presented in Tab. 4.1, have been
defined empirically on the basis of the expected needle behaviour and the ex-
perimental evidence.
We hypothesised a follow-the-leader condition for which, at a specific inser-
tion length l, the rear segment features an angle of torsion φr equal to the
one shown earlier by the leading segment at the same insertion length, i.e.
φr(l) = φl(l).
In Fig.4.3c, the torsion angle featured by segments A and B in one of the sim-
ulated insertions is presented. The resulting needle shape is shown by the 3D
reconstructions in Fig. 4.3d.
White noise with different levels of standard deviation (σ) were added on the
different simulations. As the lower value of noise, σ1 = 0.07 mm measured
in-gel during a static EM acquisition is considered (EM sensors: 5 DoF, 0.3
mm diameter, AuroraTM, NDI®, Waterloo, Ontario, Canada). As performance
metrics for needle position estimation, the Euclidean error (Et) between the
true segment position and the estimated one is used. The orientation error
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(Er) is computed individually for each Euler angle as the absolute error be-
tween the true angle and the estimated one. We consider as acceptance crite-
ria Et < 1 mm and Er < 5 deg, comparable with state of the art ( Kallem and
Cowan, 2009; Ralovich et al., 2014). With these criteria, an upper bound σ4 was
defined and it is reported in Tab. 4.1 along with two intermediate steps σ2 and
σ3 included in the test to evaluate the performance of the solution at different
levels of measurement noise. The EKF has been tested three times over each
insertion and each level of σ. In simulations, Qm was chosen empirically by
tuning the nominal accuracy of the EM sensors used in in-gelatin experiments
to the value that guarantees the best estimation performance. Similarly, Qp
was chosen as Qp = 10−j in the set j ∈ [0, ..., 10] as the value that provides the
best prediction accuracy. The values of Qm, Qp, the insertion speed (v1), the
insertion length (Li), the sample rate (f ) and further simulation parameters
are presented in Tab. 4.1.
Tests were performed using MATLAB® R2019a, on a MacBook Pro (MacOS
10.14.6, 2,7 GHz Intel Core i5, 8 GB of RAM).

Geometric approach for pose estimation

A geometric approach is used as a term of comparison for the proposed EKF
solution. This method, run offline, relies only on geometric relationships to
compute the pose of segment A and B and consists in the definition of a cross-
plane Qk at each time step, as shown in Fig. 4.3e. In the following, the de-
scription of the method for defining the pose of segment A at time k and point
PAk is presented.
At first, the insertion direction, v, is defined by finding the point P̄ as the
average of the n=25 future insertion points with respect to k:

P̄ =
1

n

n∑
1

(PAk+i) (4.42)

v =
P̄ − PAk
|P̄ − PAk |

. (4.43)
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For a sampling frequency of 2 Hz and a cruise speed v1 = 1 mm · sec−1, n=25
corresponds to 12.5 secs of acquisition and 12.5 mm of needle insertion.
The plane Qk is defined as follows:

a(x− PAk,x) + b(y − PAk,y) + c(z − PAk,z) = 0 (4.44)

where a = vx; b = vy; c = vz .
From the EM data of segment B, the closest point PB

ī
to Qk is found, where ī

is such that:
ī = argmin(

−−−→
PA,B · PAk ) ∀i ∈ [0, kend] (4.45)

where kend is the last sample of the EM acquisition and

−−−→
PA,B = PBi − PAk . (4.46)

The projection P̂ of PB
ī

on Qk is computed and the reference frame at PAk is
obtained as:

x =
v

|v|
; y =

P̂ − PAk
|P̂ − PAk |

; z = x× y. (4.47)

The performance of the geometric method has been evaluated in simulation
over different levels of noise σ. As this set includes the noise measured in
gelatin during static EM acquisitions (σ1), the test aims at demonstrating the
suitability of the method to be used as way to compare phantom-brain gelatin
experiments.
Similarly to the EKF, the geometric approach has been tested three times for
each simulated insertion and noise level.

In-gel experiments

Three needle insertions were performed on phantom-brain gelatin (10% by
weight bovine gelatin - Chef William Powdered Gelatin) to assess the perfor-
mance of the proposed solution in conditions which replicate real insertion
scenarios.
In-gel trials were performed using a four-segment PBN design, whose details
can be found in Watts, Secoli, and Baena, 2019. The PBN is formed by four
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segments featuring one lumens of 0.3 mm each, with a needle of an overall
outer diameter of 2.5 mm. To reproduce the sPBN model, the four segments
were coupled two by two. We can thus define two couples of segments, cplA
and cplB , with the first controlling the left steering and the second controlling
the right steering. In such a way, we transform defacto the four-segment PBN
design into a two-segment design with cplA and cplB representing segment A
and segment B.
The EKF requires the tip position of segment A and B as measurement data.
This is obtained by accommodating an EM AuroraTM sensor (5 DoF, 0.3 mm
diameter, Northern Digital inc.) inside a lumen of cplA and a lumen of cplB .
Only the 3 DoF position of each segment was used as measurement input in
the proposed method. This approach was chosen to make the solution fea-
sible also for applications where the orientation cannot be measured. As for
simulation trials, Qp and Qm were set through a tuning process to values that
provided the best prediction results, namely Qp = 1 · 10−3 and Qm = 1 mm2.
The experimental setup is presented in Fig. 4.4 and described hereinafter. The
insertion of the needle was driven by a robotic system composed of four linear
actuators (one per each PBN segment, linear pitch 1mm/rev). Each segment
of the needle is linked to the linear actuator by a flexible transmission made
of a nitinol wire. Per each segment, a rotational encoder at the motor (Maxon
motor DC16XS - Res 1200 pulse/rev) assures the precision motion of each seg-
ment. The needle is inserted for 20mm in the gelatin with all four segments
aligned, then the desired offset is generated by pushing a couple of adjacent
segments ahead (e.g. cplA if δ > 0). The needle is then inserted at a constant
cruise speed of 1mm ·sec−1 as in previous studies (Ko, Frasson, and Rodriguez
Y Baena, 2011; Watts, Secoli, and Baena, 2019), resembling the speed of man-
ual insertion of a standard deep brain stimulation electrode performed by an
expert neurosurgeon. Encoders record the insertion length of the segments,
from which the cruise speed v1 and the offset velocity v2 can be computed. A
sample rate of 2 Hz was used, which was assumed as appropriate, considering
the low magnitude of v1. A desktop PC with Linux Ubuntu 16.04 operating
system running the Robotic Operating System (ROS) was used to control the
needle insertion and for data storage.
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FIGURE 4.4: Experimental setup: the PBN is inserted into gelatin and tracked
by the EM field generator through the EM sensors mounted on the needle.
An actuation box controls each segment of the PBN and encoders measure
their insertion length. On the bottom left, a magnification of the needle in-

sertion.
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4.3.2 Four-segment PBN

In-gel experiments

As for the sPBN, 3 needle insertions were performed in a 10% by weight
bovine gelatin (Chef William Powdered Gelatin) using a medical-grade, 2.5
mm outer diameter PBN (Watts, Secoli, and Baena, 2019).
The PBN working channels were used to embed 4 EM AuroraTM sensors (5
DoF, 0.3mm diameter, Northern Digital inc.). Only the 3 DoF sensor positions
have been used as measurement data but, differently from the in-gel exper-
iments conducted on the sPBN (4.3.1), the position of each PBN segment is
considered individually.
The process variance (Qp) and the measurement noise variance (Qm), have
been set as the ones that provide the best prediction results, namely Qp =

1 · 10−2 and Qm = 1 mm2.
The insertion of the needle was driven by a robotic system. Details about the
robotic insertion setup are presented in 4.3.1.

Geometric approach for pose estimation

The estimated needle position was compared with the EM measurement in
terms of RMSE to verify the filter accuracy. As no orientation data is used, a
geometric approach is exploited to compute the orientation of the needle and
as term of comparison for the EKF.
The geometric approach used for PBN validation differs from the one used for
the sPBN validation. For each time step, a plane orthogonal to the insertion
axis is defined. A centerline point is computed by averaging the position of
the 4 points corresponding to the intersection of the EM traces with the plane.
The local frame is centered on the centerline point. The x axis is defined as the
needle insertion direction and the y and z axes are defined along the conjunc-
tions between the origin of the local frame and the intersection points between
the trace of sensor 4 and 1 with the orthogonal plane.
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4.4 Results

4.4.1 Two-segment PBN (sPBN)

Simulation study

The results of simulated trajectories at the different levels of measurement
noise are presented in Fig. 4.5 for the EKF and the geometric approach. As
no significant difference has been detected from segments A and B and from
different simulated insertion profiles, results have been combined. In the top
row, the Euclidean error (Et) with respect to the reference trajectory is pre-
sented for both the estimation methods. This shows a positive linear trend
over the increasing of σ still maintaining the position error far lower than the
1 mm margin of acceptability.
The orientation errors (Er) are presented in the rows below. As a yardstick,
the 5 deg error considered to be acceptable is shown in the graphs, except for
θ and ψ in the EKF results, where it was omitted to improve readability, as Er
was found to be particularly small.
For the EKF, the φ angle shows the largest error. The 5 deg yardstick is reached
for a measurement noise (σ4) equal to four times the one evidenced in static
in-gelatin EM acquisitions (σ1). This value can be considered the upper bound
accuracy for a tracking system to be used with the presented solution.
The geometrical approach guarantees Et < 1 mm and Er < 5 deg for the level
of noise σ1, which is the one evidenced in-gel during static EM measurements,
confirming the feasibility of the method to be used as comparison for the ex-
periments in gelatin.

In-gel experiments

In Tab. 4.2, the results in terms of Et and Er from the 3 in-gel insertions are
presented as the 25th, 50th, 75th quantiles.
The results from one of the three sPBN insertions in gelatin are shown in Fig.
4.6 (Trial 1 in Tab. 4.2). On the top, the original position data retrieved by the
two EM sensors embedded in the PBN are presented, along with the needle
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FIGURE 4.5: Simulation results: the graphs show the Euclidean and orienta-
tion errors (Et, Er) from the simulation trials at different values of noise σ.
Results from the EKF and the geometrical approach are shown respectively
in the left and right columns. As a yardstick, the 5 deg error tolerance is
plotted, with the exception of the θ and ψ angles of the EKF where Er is too
small. Please note that the span of the y axis is different between the two

methods for the θ and ψ angles.
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FIGURE 4.6: In-gel results: on the top, the original position data from the
EM sensors are shown for Trial 1, along with the needle reconstruction ob-
tained from the EKF pose estimation. In the graphs below, on the left side
the comparison between the original EM position and the one estimated by
the EKF is presented. The graphs on the right, instead, allow to compare
the estimated orientation with respect to the one calculated by the geometric
approach, considered as gold standard. A close look at the angles estimated
by the two methods is possible through the three magnification windows.
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reconstruction obtained from the EKF pose estimation. From the graphs be-
low, it is possible to compare the estimated position with respect to the values
from the EM sensors and the estimated orientation with respect to the geo-
metric approach, used as gold standard. In the graphs, the EM data and the
geometric results have been under-sampled respectively by a factor 25 and 15
to improve the readability of the results. From the magnification windows in
Fig. 4.6, a close look to the Euler angles estimated by two methods over the
insertion length is possible.
EKF results show an initial phase of orientation convergence, particularly evi-
dent for the roll angle. This phase is measured as the insertion length required
to stabilize the needle within the 5 deg error margin with respect to the angles
provided by the geometric approach, neglecting the initial insertion offset be-
tween segments. In Fig. 4.6, the convergence phase for Trial 1 can be measured
on segment B as equal to 8 mm. The convergence phases measured for Trial
2 and Trial 3 are 7.5 mm and 10 mm, respectively. The convergence phase is
overlooked in the computation of the position and orientation errors of Tab.
4.2.

4.4.2 Four-segment PBN

In-gel experiments

The results from the 3 insertions in gelatin are presented in the graphs of Fig.
4.7.
In the left part of the figure, the original position measurements from the 4 EM
sensors are shown along with the reconstruction of the needle obtained from
the EKF position and orientation estimation. The CAD model used for the
reconstruction of the needle shaft is shown on the top-left corner of Fig. 4.7,
along with its local reference frames. The reconstruction is performed step-
wise, i.e. at every time step a new portion of the needle shaft is added to each
segment in accordance to the position and orientation estimated by the EKF.
In the right part of the figure, the graphs report the resulting position and ori-
entation for each insertion over time. A comparison between the measured
and estimated position is possible by looking at the graphs in the left column
where the x-y-z coordinates are plotted for each segment over time. For the
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FIGURE 4.7: In-gel results: In the figure, the results from 3 PBN insertions in
gelatin are presented. In the left part, the raw position measurements from
the 4 EM sensors are plotted. Nearby, the reconstructions of the needle ob-
tained from the position and orientation estimated by the EKF are presented.
In the top-left corner, the CAD model used for the reconstruction is shown.
On the right, the graphs report the estimated position and orientation for
each insertion along with the original EM data and the orientation resulting

from the geometric pose computation
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sake of readability, the EM measurement data are presented under-sampled
by a factor 20.
In the right column, the roll, pitch and yaw angles (φ, θ, ψ) are presented. For
insertion 1 and 2, the comparison with the geometrical pose reconstruction
method is possible by comparing the estimated segment orientation with the
one calculated geometrically at the centerline. The lack of data in insertion 3
and in the last part of insertion 1 and 2 is due to the impossibility to define the
geometrical pose when the 4 segments are not completely paired side by side,
and thus the computation of the needle centerline is not possible.

4.5 Discussions

4.5.1 Two-segment PBN (sPBN)

Simulation trials on the EKF demonstrate less accurate estimation of the roll
with respect to the other orientation angles. In the EKF, the roll and its deriva-
tives are unreachable states. For these states, the initial prediction based on
model inputs is not possible and, for their estimation, the EKF relies solely
on the noisy measurement data, which leads to a higher estimation error. In
gelatin, where modeling inaccuracies come into play, the error in pitch and
yaw angles becomes similar to the one in the roll.
Compared to the EKF, a faster worsening in pose reconstruction accuracy was
evidenced in simulation for the geometric approach over the raise of the mea-
surement noise. Indeed, by filtering the measurement data with the state pre-
diction provided by the needle kinematic model, the EKF can increase the ro-
bustness of the estimation in the presence of measurement noise. In addition,
the main drawback of the geometric approach consists of the impossibility to
compute the needle pose in the parts of the insertion where the needle cross-
plane cannot be defined, i.e. in the offset between segments. In the in-gelatin
trial shown in Fig. 4.7, this is represented by the final part of the insertion of
segment B, which is the leading segment that defines the steering direction
and the pose of which is essential for the sake of needle control. This draw-
back prevents the geometric approach from being used as a means for pose
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estimation in real insertion scenarios.
The soundness of the proposed solution is confirmed by the EKF performance
in gelatin. A significantly lower position error is achieved with respect to the
tracking methods proposed by Khan et al. Khan et al., 2019 and Vrooijink et al.
Vrooijink, Abayazid, and Misra, 2013 (∼30% reduction in the mean position
error). Relative to the latter, a comparable orientation error is achieved, even
though in Vrooijink et al. the roll angle was overlooked.

4.5.2 Four-segment PBN

Results obtained in the 3 insertions in gelatin demonstrated the ability of the
filter to follow the position tracked by the EM sensors and estimate the full
pose of each segment of the PBN needle.
The filter demonstrated a fast convergence in position tracking for all seg-
ments and in all the 3 insertions. The Root Mean Square Error (RMSE) calcu-
lated over the x, y, z position between the estimated segment tip position and
the one measured by the EM sensors results RMSExyz =(0.57 mm, 0.04 mm,
0.07 mm).
With regard to the orientation, fast convergence can be noticed for the pitch (θ)
and yaw (ψ) angles. The accuracy of the estimation of pitch and yaw angles
can be appreciated by comparing the data with the geometric approach and
by looking at the CAD reconstructions. It is worth emphasising that, as the
geometric approach computes a unique frame on the needle centerline, a one-
to-one comparison with each specific needle segment is not possible and no
RMSE has been computed for the orientation. The trends followed by the roll
angles (φ) are less easy to evaluate as a longer time for convergence is needed.
For insertions 1 and 2, the comparison with the geometric approach suggests
a correct estimation of the roll angle.
For insertion 3, the fact that the segments are never fully paired makes impos-
sible to use the geometric pose computation method. Still, despite the initial
rise, at the end of the insertion the roll angle of segment 1 decreases to values
similar to the ones of segments 2 and 3 at the start of the insertion. This sug-
gests that, for the same insertion depth, the segments show the same level of
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torsion.
The comparison among the roll angles exhibited in the 3 different insertions
is not straightforward. In insertion 1, the PBN performs a deeper insertion in
the gelatin with respect to insertion 3, also achieving a larger steering, as evi-
denced by the higher displacement in the Cartesian axes. Nonetheless, the roll
angles exhibited by the PBN segments at the end of insertion 1 are confined
within few positive angles with respect to the roll angles in insertion 3, which
are in the range between -10 deg and -23 deg. This can be explained by the
different configurations featured by the needle that determines a larger or a
smaller torsion effect on the needle shaft according to the specific case. In fact,
in insertion 1, the needle takes an helical shape, which may promote larger
torsion with respect to other configurations. This evidence, along with the
magnitude of the roll angles estimated experimentally, contradict the assump-
tion of infinite torsional stiffness for the PBN and validate the importance of a
solution able to estimate the full pose of the needle during the insertion.

4.6 Conclusion and future developments

In percutaneous intervention, the ability to track the needle position and ori-
entation (i.e. the full pose) is of paramount importance for a robotic steering
system to perform an accurate needle insertion and address needle torsion.
The method presented in this chapter aims at investigating Hypothesis 2 by
proposing a solution for the on-line estimation of the full pose of a multi-
segment needle, including the rotation of the needle tip about its insertion
axis, i.e. the roll angle. The solution, based on an EKF, uses the position mea-
surement of the needle tip to correct the needle state prediction obtained from
a kinematic model and to infer the roll angle. In this chapter, we address Hy-
pothesis 2.1 and Hypothesis 2.2 by evaluating our solution on a simplified,
two-segment PBN (sPBN) and a four-segment PBN, which accommodate a
sensor for position tracking on the tip of each segment.
The method has been tested on the sPBN in simulation over different inser-
tion trajectories and levels of measurement noise to assess the performance,
demonstrating reliability in terms of estimation accuracy and robustness against
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measurement noise. In experiments conducted in gel, the solution showed to
be able to estimate the needle pose for the entire length of the insertion with
a position error < 1 mm and an orientation error < 5 deg, consistent with the
state of the art. When tested in gel on the four-segment PBN, the solution
demonstrated its feasibility in estimating the position of the tips of each seg-
ment (RMSE < 0.6 mm) and in estimating the needle orientation when tested
against a bespoke geometric approach, even though long time of convergence
was evidenced for the torsion angle. The pose estimated by the filter could
thus be safely used by a control system to drive the needle insertion and ad-
dress potential needle torsion.
In this work, to make the proposed solution suitable for applications where
only the needle position can be tracked (e.g. where tracking is performed via
X-ray fluoroscopy or US), only the 3 DoF position of the needle segment tips is
considered as tracking data from the 5 DoF EM sensors. Benefits in terms of es-
timation performance arising from the inclusion of pitch and yaw angles from
the 5 DoF EM sensors as measurement data will be the object of forthcoming
investigations. Future studies will focus also on improvements derived from
the use of different filtering approaches, as the Unscented KF and particle fil-
ters. Additionally, an adaptation to other types of steerable needles will also
be evaluated. A possible candidate is the bevel-tip needle with base rotation,
the kinematic model of which is presented in Kallem and Cowan, 2009. The
needle tip position could be tracked and, similarly to the method herein pre-
sented, a state variable representing the torsional mismatch between the tip
and the base of the needle could be included in the EKF to correct the needle
pose estimation.
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Chapter 5

Conclusions

Path planners for steerable needles in 3D focus either on a fast computation or
on path optimality. A quick planning allows the intra-operative adjustment of
the plan in case insertion errors arise because of uncertainties in needle mo-
tion or variations in the environment (e.g. deformations, obstacles and target
movements) at the expense of a sub-optimal planning. In the second case,
path optimality can be found but the time needed for its computation is un-
bearable in case of 3D environments.
Some types of steerable needles show the onset of frictional and shear forces
that determine an unwanted torsion of the needle. This results in a discrep-
ancy in terms of angle of rotation along the insertion axis between the needle
tip and the needle base. Only if the control system is aware of this discrep-
ancy it can counteract to keep the needle on the correct insertion path. Unfor-
tunately, imaging techniques and electromagnetic tracking cannot sense the
needle torsion and, currently, no solution exists for pose estimation of multi-
segment steerable needles.
In this PhD dissertation, a pre-operative curvilinear path planner for steerable
needles is presented. The algorithm can find optimized paths coping with the
needle kinematics and the complexity of a neurosurgical working scenario
with a computational time consistent with standard pre-operative path plan-
ners. A solution for estimating the full pose of a multi-segment steerable nee-
dle based on partial tracking information is also proposed.
The solutions were developed and tested considering the Programmable Bevel-
tip Needle (PBN) as case study. The latter consists of a multi-segment steerable
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needle under development within the EU EDEN2020 project and designed for
percutaneous intervention in neurosurgery (drug infusion and in-situ optical
diagnosis).
In Chapter 2, the planning problem (Hypothesis 1) is contextualized with a
review of the sampling-based methods proposed in the literature for the com-
putation of curvilinear paths. In Chapter 3, a new pre-operative planner for
optimized paths computation is proposed. The solution is validated through
simulated insertions in neurosurgical scenarios demonstrating improvements
in terms of path length and obstacle avoidance with respect to the state of the
art (Hypothesis 1.1) as well as a computational time suitable for pre-operative
planning (Hypothesis 1.2). Chapter 4 addresses the problem of pose estima-
tion for a multi-segment needle (Hypothesis 2) by providing a solution based
on a Extended Kalman Filter and data from position sensors. The method was
tested on a two-segment (Hypothesis 2.1) and on a four-segment (Hypothesis
2.2) PBN through simulation and in-gel experiments.

5.0.1 Thesis contribution

The PhD research created:

• A new curvilinear path planner able to compute, in a time consistent with stan-
dard pre-operative path planners, a kinematically feasible path for a steerable
needle in accordance with the optimization criteria of minimum path length
and maximum distance from obstacles.

The majority of the path-planning solutions focus either on a fast com-
putation or on path optimization with respect to specific criteria. Ad-
ditionally, solutions from the literature are often validated in scenarios
that do not catch the complexity of a real human anatomy (Duindam et
al., 2010; Patil and Alterovitz, 2010; Torres and Alterovitz, 2011). A pre-
operative curvilinear path planner for steerable needles is presented able
to keep the computational time consistent with standard pre-operative
planning guaranteeing the quasi-optimality of the computed path. This
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is obtained by confining the search within the region of reachability of
the needle built upon its kinematic limits and performing an evolution-
ary optimization procedure resulting in larger obstacle avoidance and
shorter path length with respect to solutions from literature. Addition-
ally, a higher success rate in finding a path has been evidenced using the
presented method, which was validated through simulated insertions in
a real neurosurgical scenario.

• A solution for the on-line full pose estimation of a multi-segment steerable nee-
dle using position sensors mounted on the needle tip and applicable to a two-
segment and four-segment PBN.

Percutaneous needles can be affected by torsion due to the frictional and
shear forces exerted between the needle and the tissue. The possibility
to track this torsion would allow the control system to correct its com-
mand allowing the needle to perform a correct insertion. The resolution
of standard imaging techniques does not allow the visualization of nee-
dle rotation about the insertion axis and electromagnetic systems do not
feature 6 DoF sensors small enough to be mounted on the thin steerable
needles.
A solution for the accurate pose estimation of a multi-segment needle
on the basis of the available tracking data and a kinematic model is pro-
posed. The method, based on an Extended Kalman Filter, uses the posi-
tion measurement of the needle segment tips retrieved through electro-
magnetic sensors to correct the needle state prediction obtained from a
kinematic model and infer the needle roll angle about its insertion axis.
The method was developed initially for a simplified, two-segment PBN
in simulation and in phantom-brain gelatine demonstrating reliability in
terms of estimation accuracy and robustness. In experiments conducted
in gel, the solution showed to be able to estimate the needle pose for the
entire length of the insertion with position and orientation errors consis-
tent with the state of the art.
The solution was later extended to a four-segment PBN design and tested
in gelatine. Results demonstrated the feasibility of the proposed method



96 Chapter 5. Conclusions

for estimating the position and the orientation of the needle segment
tips, although a long time of convergence was evidenced for the torsion
angle.

5.0.2 Impact and future perspective

In minimally invasive surgery, a great interest is shown for robotic-assisted
percutaneous interventions. In this context, multiple steerable needle designs
have been proposed which have the advantage of performing curvilinear tra-
jectories in the tissue and, in doing so, they can increase the range of possible
insertion paths or, in cluttered workspace, the probability to find one. This
technology aims at setting new standards in terms of targeting and insertion
accuracy. In this perspective, this PhD dissertation proposed methods to ad-
dress two open issues in steerable needle percutaneous interventions: the path
planning and the real-time full pose needle estimation required to track the
needle torsion during the insertion.
Concerning the first point, although the planner herein presented is suited for
the PBN design, the approach used to confine the search volume within a kine-
matically reachable space as well as the proposed optimization algorithm can
potentially be used with needles featuring different designs and/or steering
mechanisms (e.g., standard bevel-tip needles or duty-cycle bevel-tip needles),
provided that the needle kinematic limits are known.
In our path planner, the computational time represents a point of potential
improvement. Many efforts have been lately put on multi-disciplinary ap-
proaches to increase the performance of steerable needle path planning, like
the combination of sampling-based or kinematic-based methods with Rein-
forcement Learning. We plan to investigate the use of this technique to further
reduce the time required for the path computation.
Concerning the full pose estimation solution proposed in this thesis, it is also
potentially extendable to other needle designs. A possible candidate is rep-
resented by the bevel-tip needle with base rotation, the kinematic model of
which is reported in Kallem and Cowan, 2009. In this case, the needle tip po-
sition could be tracked and, similarly to the method presented in this thesis,
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a state variable representing the torsional mismatch between the tip and the
base of the needle could be included in the model to correct the needle pose
estimation.
Improvements in estimation performance could be achieved by including the
orientation measurements provided by 5 DoF electromagnetic sensors. These,
along with the benefits deriving by using different filtering solutions such as
Unscented Kalman or particle filters, will be objects of future studies.

5.1 Scientific publications

5.1.1 Journal pubblications

A. Favaro, R. Secoli, F. R. Y. Baena and E. De Momi, “Model-based robust
pose estimation for a multi-segment, programmable bevel-tip steerable nee-
dle”, Robotics and Automation Letters (RA-L), under review

A. Favaro, A. Segato, F. Muretti and E. De Momi, “An evolutionary-optimized
surgical path planner for a programmable bevel-tip needle”, IEEE Transaction
on Robotics (TRO), under review

A. Segato, V. Pieri, A. Favaro, M. Riva, A. Falini, E. De Momi and A. Castel-
lano, “Automated Steerable Path Planning for Deep Brain Stimulation Safe-
guarding Fiber Tracts and Deep Gray Matter Nuclei”, Frontiers in Robotics and
AI, vol. 6, 8 2019

5.1.2 Conference proceedings

A. Favaro, R. Secoli, F. R. Y. Baena and E. De Momi, “Optimal pose estimation
method for a multi-segment, programmable bevel-tip steerable needle”, Inter-
national Conference on Intelligent Robots and Systems (IROS), under review

A. Favaro, L. Cerri, S. Galvan, F. R. Y. Baena, and E. De Momi, “Automatic
Optimized 3D Path Planner for Steerable Catheters with Heuristic Search and
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A. Favaro, L. Cerri, D. Scorza and E. DeMomi, “Automatic multi-trajectory
planning solution for steerable catheters”, in 2018 International Symposium on
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segmentation", in SPIE Medical Imaging, R. J. Webster and B. Fei, Eds. Interna-
tional Society for Optics and Photonics, 3 2017, p. 101352E.
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Chapter 6

Appendices

6.1 Discretization of the independent variable u

The independent variable u ∈ [0, 1] used to defined the NURBS curve in para-
metric form is discretized in order to compute the parameters of Section 3.3.3.
This is performed according to a discretization parameter δ determined em-
pirically and linked to the number NP,j of control points Pk ∈ solj , such that:

δ =


0.1 if NP,j = 2

0.01 if NP,j = 3

0.001 if NP,j ≥ 4

6.2 Mutation algorithm

If {Po} 6= ∅ (Line 2, Figure 3.4a), the set of control points {Pcritico } that control
parts of indj,i,at where the condition {Po} 6= ∅ happens is defined (Line 3). It-
erating over all Pk ∈ {Pcritico } (Line 4), the weights wj,i,ak,t is increased (Line 8)
to push indj,i,at away from the obstacle until the condition {P ko } = ∅ is reached
(i.e. obstacle avoidance is achieved within the part of indj,i,at controlled by Pk,
Line 7). If the weight modification leads to exceed kPBN or to approach an-
other obstacle located in the same section controlled by Pk (#{P kc }n > #{P kc },
Line 11), the weight variation (∆) is reduced, according to a “divide and con-
quer” approach, as in Favaro et al., 2018b, provided that the stop condition
∆/2 <∆thr is maintained (Lines 12-15). If indj,i,at is feasible (i.e. {Po} = ∅ and
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{Pc} = ∅, Line 16, Figure 3.4b), allwj,i,ak,t with k = 2, ..., N i,a
P,j−1 (i.e. all weights

except the ones associated toEPi,a and TP , Line 17) are decreased (Line 21) in
order to smooth the curve and reduce its total length provided that the weight
reduction does not generate obstacle collision and complies with a limit of
flatness, which correspond to a stop condition (Lines 20). In case obstacle col-
lision occurs, the “divide and conquer” approach is used (Lines 25-28 ).
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Algorithm 1 Mutation(indj,i,at )

1: {Pc}, {Po} = verify(indj,i,at )
2: if {Po} 6= ∅ then
3: {Pcritico } =controlPointsObs(indj,i,at ,Pk)
4: for all{Pk} ∈ {Pcritico } do
5: {P kc }, {P ko } = verify(indj,i,at ,Pk)
6: reset(∆)
7: while {P ko } 6= ∅ do
8: wj,i,ak,t = wj,i,ak,t + ∆

9: update(indj,i,at )
10: {P kc }n{P ko }n= verify(indj,i,at )
11: if #{P kc }n > #{P kc }or

#{P ko }n > #{P ko } then
12: wj,i,ak,t = wj,i,ak,t −∆

13: update(indj,i,at )
14: if ∆/2 < ∆thr then break
15: else ∆ = ∆/2
16: end if
17: end if
18: end while
19: end for
20: end if
21: if {Pc} = ∅ and {Po} = ∅ then
22: for all{wj,i,ak,t , k = 2, ..., N i,a

P,j − 1 do
23: {P ko } = verify(indj,i,at ,Pk)
24: reset(∆)

25: while {P ko } = ∅ and ind′′
j,i,a
t > kthr do

26: wj,i,ak,t = wj,i,ak,t −∆

27: update(indj,i,at )
28: {P ko }new= verify(indj,i,at )
29: if {P ko }new 6= ∅ then
30: wj,i,ak,t = wj,i,ak,t + ∆

31: update(indj,i,at )
32: if ∆/2 < ∆thr then break
33: else ∆ = ∆/2
34: end if
35: end if
36: end while
37: end for
38: end ifreturn indj,i,at
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