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1. Introduction
Amid concerns about greenhouse gas emissions
and environmental pollution caused by exces-
sive fossil fuel consumption, there is a growing
focus on utilizing renewable energy sources for
power generation. Solar photovoltaics (PV) has
emerged as a prominent option due to its rapid
growth and potential. However, the power out-
put of PV panels is heavily influenced by meteo-
rological factors like solar irradiance, air temper-
ature, and relative humidity. Consequently, the
power generated by PV panels exhibits variabil-
ity based on these parameters. Therefore, accu-
rate solar PV power prediction has become crit-
ical for ensuring reliable and cost-effective grid
operation, facilitating the deployment of large-
scale PV plants, and optimizing the performance
of solar power systems [8]. This study demon-
strates the potential of using machine learning
techniques for accurate and reliable solar PV
power forecasting.

2. Data Exploration and Pre-
Processing

The data are sourced from the National Renew-
able Energy Laboratory Photovoltaic Data Ac-
quisition (NREL PVDAQ), which is a large-scale
time-series database containing system meta-
data and performance data from a variety of

experimental PV sites and commercial public
PV sites [5]. Photovoltaic field array data are
made up of time-series, raw performance data
collected by a number of sensors linked to a PV
system. Two datasets are utilized - One ranging
from 2013 to 2018 with one-minute sampling in-
terval and the other from 2011 to 2019 with 15-
minute sampling interval.
The quality of input data is crucial for accu-
rate and reliable forecasting. The data may
contain intermittent static or spike elements
caused by weather or seasonal variations, elec-
tricity demand fluctuations and power system
failures. Moreover, data may also sometimes be
corrupted or missing due to sensor defects or
erroneous recordings. Therefore, it is impera-
tive to pre-process distorted input data by re-
construction using decomposition, interpolation
or seasonal adjustments(i.e. data cleansing and
structure change).
Data from each year is considered to transform
the dataset into a usable format. To address dis-
crepancies in the data, the datasets correspond-
ing to each year are combined, and the unnec-
essary columns are removed. To further sanitize
the data, negative solar irradiance and missing
associated power values due to solar irradiance
sensors offset and inverter failures, respectively
are set to zero.
Table 1 shows the statistical measures used to
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better comprehend the data.

DC Power Irradiance

Count 349275.0000 349275.0000

Mean 193.6086 239.3601

Std 295.8135 355.2808

Min 0.0000 0.0000

25% 0.0168 0.0000

50% 7.3763 13.4476

75% 310.2527 393.8758
Max 1184.8890 1442.0380

Table 1: Statistical Measures, Year 2018

Figure 1 depicts the Temporal progression of
generated power and solar irradiance. Power
and solar irradiance have comparable trends,
with higher values in the summer and lower val-
ues in the winter, as expected.

(a) Power and
Irradiance (June 2014)

(b) Power and
Irradiance (January

2015)

Figure 1: Temporal Progression of generated
power and solar irradiance

3. Evaluation
The Evaluation metrics employed in this study
are presented in this section.

3.1. Prediction Horizons
The prediction horizon must be specified in or-
der to select an appropriate approach. The pre-
diction horizon is the period of time in the fu-
ture for which PV output power is forecasted.
Based on specified prediction horizons, statisti-
cal methods in particular Artificial Neural Net-
works are selected for PV Power prediction tasks
[1]. Applications of different prediction horizons
are depicted in Figure 2.

Figure 2: Different prediction horizons and their
applications

3.2. Performance Metrics
Performance metrics are statistical measures
used to evaluate the quality and accuracy of
a model. They provide a way to determine
the effectiveness of a model by comparing its
predictions to actual results. In this case,
following performance metrics are used:

• Mean Squared Error (MSE)

Mean Squared Error (MSE) is a commonly used
loss function in supervised machine learning,
which is defined as the average of the squared
differences between the predicted values and the
true values as calculated in Equation 1.
Supposing power time series is Yi = Y1, Y2, ..., Yn
and Ŷi is the predicted time series, and i indi-
cates time.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (1)

where n is the number of instances in the dataset
and the

∑
symbol represents the sum over all

instances. The MSE is commonly used as it is
easy to compute and differentiable, making it
suitable for optimization with gradient-based
methods.

• Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is a loss function
used in regression problems, where the goal is to
predict a continuous value output. It is calcu-
lated as the average of the absolute differences
between the true values and the predicted values
as shown in Equation 2.

MAE =

∑n
i=1 |yi − xi|

n
(2)

2



Executive summary Saloni Dhingra

where yi is the prediction and xi is true value.

• Root Mean Squared Error (RMSE)

Root Mean Squared Error (RMSE) is calculated
as the square root of the average of the squared
differences between the actual and predicted val-
ues as represented in Equation 3.

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(3)

where yi = y1, y2, ..., yn are observed values, ŷi
is a predicted time series and i indicates time.

3.3. Hyperparameters Tuning
Hyperparameter tuning is the process of finding
the optimal set of hyperparameters for a ma-
chine learning model to achieve the best perfor-
mance on a given dataset. Learning rate, reg-
ularization strength, and the number of hidden
layers in a neural network are all examples of
hyperparameters [3].

4. Forecasting Results
4.1. Short-Term Prediction with Hy-

perparameters Tuning
Figures 3 - 7 show the outcomes of short-term
prediction with one-hour prediction horizon and
using the dataset with one-minute sampling in-
terval for the LSTM architecture.

(a) Learning Curve (b) Simulation Results

Figure 3: Learning and simulation results,
Learning rate = 0.0001, Epochs = 15

(a) Learning Curve (b) Simulation Results

Figure 4: Learning and simulation results,
Learning rate = 0.001, Epochs = 18

(a) Learning Curve (b) Simulation Results

Figure 5: Learning and simulation results,
Learning rate = 0.01, Epochs = 10

(a) Learning Curve (b) Simulation Results

Figure 6: Learning and simulation results,
Learning rate = 0.001 for epoch ≤ 6; Learning
rate = 0.0001 for epoch > 6, Total Epochs = 10

(a) Learning Curve (b) Simulation Results

Figure 7: Learning and simulation results, Ex-
ponentially Decaying Learning rate; Initial value
= 0.01; Decay steps = 1000 and Decay rate =
0.9, Epochs = 10

Table 2 summarizes short-term prediction re-
sults with hyperparameter adjustment for the
LSTM architecture.

L.Rate Epochs MSE MAE RMSE

0.0001 15 0.0099 0.0512 0.0997

0.001 18 0.0100 0.0528 0.1002

0.01 10 0.0100 0.0521 0.1000

Varying 10 0.0099 0.0500 0.0995
Decaying 10 0.0100 0.0510 0.1002

Table 2: Short-Term Prediction Results

Based on the findings presented in this table,
it is evident that the performance of a ma-
chine learning model can be significantly influ-
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enced by various combinations of learning rates.
Notably, employing lower and varying learning
rates tends to yield superior performance on
the test dataset, as demonstrated by decreased
Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) values.

4.2. Comparison Between Different
Neural Networks

A brief comparison between four popular neural
network architectures [4]: convolutional neural
networks, autoencoders, long-short term mem-
ory and gated-recurrent unit are shown in Fig-
ures 8 - 11.

(a) Learning Curve (b) Simulation Results

Figure 8: Convolutional Neural Network (CNN)

(a) Learning Curve (b) Simulation Results

Figure 9: Autoencoders

(a) Learning Curve (b) Simulation Results

Figure 10: Long-Short Term Memory (LSTM)

(a) Learning Curve (b) Simulation Results

Figure 11: Gated-Recurrent Unit (GRU)

When comparing different neural networks for
prediction tasks, several factors need to be con-
sidered, including the architecture, training pro-
cess, and performance metrics. The choice of
neural network depends on the specific task at
hand, the nature of the data, and the available
resources. Experimentation and empirical eval-
uation are necessary to determine the most suit-
able neural network architecture for a given pre-
diction problem. Table 3 summarizes results for
short-time prediction to compare different neu-
ral networks considering window length of 12
hours and prediction horizon of 1 hour in each
case.

Network MSE MAE RMSE

CNN 0.0134 0.0649 0.1174

Autoencoders 0.0109 0.0534 0.1162

LSTM 0.0101 0.0463 0.1025
GRU 0.0104 0.0498 0.1159

Table 3: Comparison of Different Networks

Overall, LSTM and GRU models excel in cap-
turing long- term dependencies in time series
data, making them effective for prediction tasks
but they typically require more processing power
compared to Autoencoder and CNN models [6].
The complex architecture and memory-intensive
operations of LSTMs and GRUs can increase the
computational demands during training and in-
ference.
Autoencoder models are useful for feature ex-
traction and anomaly detection, but their per-
formance may vary depending on the dataset
but they have lower processing power require-
ments since they involve simpler neural network
structures.
While CNN models are powerful for spatial
data analysis, they may not be as effective for
time series prediction due to their limited abil-
ity to capture long-term dependencies and also,
they can be computationally demanding, espe-
cially when dealing with high-dimensional time
series data. Therefore, it is important to con-
sider the available processing power when select-
ing the appropriate model for time series predic-
tion tasks.
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5. Ageing
Solar panels are known to degrade over time
due to exposure to the environment, tempera-
ture variations, and other factors. This degra-
dation is commonly referred to as "ageing" and
can have a significant impact on the power out-
put of the solar panels. As solar panels age, their
efficiency in converting sunlight into electricity
decreases gradually. In this study, two methods
are used to investigate the effect of ageing using
the dataset with 15-minutes sampling interval.

5.1. Predictive Analysis
LSTM is used to train the model to observe the
effect of ageing on solar PV power output as
LSTM can model complex non-linear relation-
ships between input and output signals, allowing
it to capture the complex dynamics of the sig-
nal in panel ageing [2]. Data is retrieved from
freshly installed PV panels (i.e. "old data” with
respect to the present day) and the model is
compared with more recent data. It was ex-
pected that predictions at times immediately af-
ter the data used to create the model should
be predicted quite accurately, while predictions
made at times that are more in the future should
overestimate real data. Thus, the difference be-
tween the actual and predicted values over sev-
eral years in future can be used to observe the
effect of ageing.
The simulation results are represented in Figure
12. The graph spans from January 2015 to De-
cember 2019, and for each month within that
time frame, the table provides the average dif-
ference between the actual and predicted values
over the time span.

Figure 12: Ageing by Predictive Analysis

Based on the graph, we can infer that the ac-
curacy of the predictions varies over time. The
average difference between the actual and pre-
dicted values is quite small for some months
(e.g., January 2015, January 2016), while for

other months, the difference is relatively large.
There are many factors that can contribute to
the fluctuating difference between actual and
predicted values in different months such as
changes in external factors such as weather or
maintenance patterns. Improving prediction ac-
curacy by clustering the dataset for different
weather conditions is discussed in detail in sec-
tion 6.

5.2. Data Analysis
Scatter plots are used to study ageing using data
analysis. Analyzing solar panel ageing using the
slope of a scatter plot between irradiance and
power during different years can provide insights
into how the panels are performing over time.
In general, the slope of a scatter plot between
irradiance and power can indicate the efficiency
of the solar panel, with a steeper slope indicating
a more efficient panel.

5.2.1 Linear Interpolation

To analyze ageing, a scatter plot corresponding
to each year along with the interpolating line is
shown in Figure 13.

Figure 13: Ageing using Linear Interpolation

The slope for each year is graphically repre-
sented in Figure 14.

Figure 14: Slope of each year using linear inter-
polation
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Based on Figure 14, there is a clear evidence of
a consistent decrease in slope values over the 9-
year period covered by the data. While there is
some variability in slope values from year to year
but there is a certain trend indicating a decrease
in slope values over time.

5.2.2 Quadratic Interpolation

A scatter plot corresponding to each year along
with Quadratic interpolation is shown in Figure
15.

Figure 15: Ageing using quadratic interpolation

The quadratic equation for each year is given in
Table 4.

Year Quadratic Fit

2011 y = −0.00015x2 + 1.12x− 1.70

2012 y = −0.00015x2 + 1.13x− 1.90

2013 y = −0.00016x2 + 1.14x− 1.91

2014 y = −0.00016x2 + 1.11x− 1.30

2015 y = −0.00018x2 + 1.13x− 1.00

2016 y = −0.00016x2 + 1.10x− 0.41

2017 y = −0.00016x2 + 1.10x− 0.73

2018 y = −0.00015x2 + 1.08x− 1.61

2019 y = −0.00015x2 + 1.08x− 1.63

Table 4: Quadratic Equation for each year

Moreover, to understand the ageing, years vs
PV power output graph considering quadratic

fitting is plotted in Figure 16 for a fixed value of
irradiance (1200 W/m2).

Figure 16: Power Output using quadratic inter-
polation with Irradiance = 1200 W/m2

It is evident that the output power is gradually
decreasing each year with the same value of irra-
diance, as observed through quadratic interpo-
lation. This indicates that a quadratic fit may
provide a more suitable description of the cor-
relation between irradiance and power, and also
aid in assessing the effects of ageing.

6. Model Performance Im-
provements - Dataset Clus-
tering

The objective of dataset clustering is to sys-
tematically aggregate days exhibiting analogous
patterns in photovoltaic (PV) power generation
relative to solar irradiance. To address the chal-
lenge of uncertainty in power values on a day-
to-day basis, the dataset is divided into two cat-
egories: sunny days and overcast days [7]. Each
category is then trained separately using ded-
icated models. By grouping days with similar
power production characteristics into the same
category, the variability within each set is re-
duced. This clustering approach allows for a
more targeted and accurate prediction by tai-
loring the models to specific weather conditions.
To split the dataset into cloudy and sunny days,
the daily mean irradiance values for each day
in the dataset are obtained. Then, a threshold
value is determined that will serve as the cut-
off between cloudy and sunny days. In order
to determine the most suitable threshold value,
various thresholds were evaluated. This process
resulted in the creation of a new dataset where
days were grouped into either sunny or cloudy
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categories based on the threshold comparison.
Flowchart of the above process is illustrated in
Figure 17.

Figure 17: Flowchart for Dataset clustering

The simulation results for cloudy and sunny
days with a threshold value of mean daily ir-
radiance equal to 250 W/m2 are shown below
from Figures 18 - 19.

Figure 18: Sunny Days Results, MAE = 0.0324

Figure 19: Cloudy Days Results, MAE = 0.0621

The clustering of the dataset has been shown
to effectively reduce prediction errors. It is
worth noting that the predictive accuracy is sig-
nificantly lower for overcast days compared to
sunny days. One possible explanation for this
disparity is the substantial variability in power
values within the overcast dataset, whereas the

sunny dataset tends to exhibit more consistent
patterns. Consequently, training models on the
sunny dataset leads to more repetitive and reli-
able forecasts.
The performance of utilizing a model trained on
one weather condition (sunny or overcast) for
predicting power values on the opposite condi-
tion (overcast or sunny, respectively) can also
be assessed. Figures 20 - 21 shows the simula-
tion results of employing a model trained on one
weather condition for predicting power values on
the opposite condition.

Figure 20: Cloudy Day model used for Sunny
days, MAE = 0.0378

Figure 21: Sunny Day model used for Cloudy
days, MAE = 0.0854

The results demonstrate that using a model
trained on the sunny dataset and vice-versa,
to predict power values on overcast days and
sunny days, respectively led to higher MAE.
These findings indicate that there are notable
differences in power production characteristics
between sunny and overcast conditions. The
models trained on their respective datasets have
learned specific patterns and relationships rel-
evant to the corresponding weather conditions.
When applied to opposite weather conditions,
the models struggled to capture the nuanced dy-
namics, leading to decreased performance.
These findings highlight the importance of tai-
loring models to specific weather conditions for
accurate power predictions. Therefore, it is rec-
ommended to employ separate models trained
specifically for sunny and overcast conditions to
address the challenge of uncertainty in power
values on a day-to-day basis effectively.
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7. Conclusions
The results suggests that LSTM architecture is
the most effective model for predicting power
generation from a solar PV system and it out-
performed all other networks in terms of predic-
tion accuracy. Additionally, the analysis of PV
system aging provides valuable insights into the
deterioration of prediction accuracy over time,
suggesting the need for periodic recalibration or
retraining of the prediction model to account for
the changing characteristics of aging PV panels.
Furthermore, by employing the clustering ap-
proach to classify the dataset into sunny and
cloudy days and developing individual predic-
tion models for each category lead to an im-
provement in prediction accuracy. The locations
with more consistent and stable sunny weather
conditions, with fewer occurrences of cloudy
days throughout the year, achieved higher pre-
diction accuracy.
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