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Abstract

Flight simulation technology has come a long way in recent years, and the field con-
tinues to develop at a rapid pace. As a provider of innovative software solutions for
aviation training, TXT e-solutions S.p.A. is committed to incorporating the latest high-
tech innovations into their products. One area of interest for the company is the use
of Model-Based Design in the development of flight simulators, a growing field with on-
going research aimed at improving accuracy and reducing costs, development time, and
maintenance time.

To investigate the potential of Model-Based Design, the company asked to analyze
and improve a pre-existing model of a generic automatic flight control system. The
technical methodologies and implementation issues that arose during this investigation
are presented in this research work. The company provided input requirements for the
model development, which are all analyzed and verified in this thesis.

The main outcome produced is a Simulink® model of a generic automatic flight control
system that includes the most important autopilot components and their control logics.
These components include Stability Augmentation System Mode (SAS), Attitude Hold
Mode (ATT), Turn Coordinator Functionality (TC), Indicated Airspeed Hold Mode (IAS),
Heading Hold Mode (HDG), Barometric Altitude Hold Mode (ALT), Radar Height Hold
Mode (RHT), and Hover Hold Mode (HOV). An external auto-tuning Matlab® script
is also produced to identify the optimal controllers parameters for the autopilot control
system, based on specific project requirements in input. Additionally, the model was
designed with high levels of generality and customisation, allowing quickly adaptation of
the autopilot parameters and characteristics to the specific helicopter. The performances
of the automatic flight control system were tested and validated against that achievable
with a certified full flight simulator level D. Therefore, the results obtained demonstrate
that the Model-Based Design approach is reliable even when dealing with more complex
autopilot structures as the one presented in this work.





Sommario

La tecnologia della simulazione di volo ha fatto passi da gigante negli ultimi anni e
il settore continua a svilupparsi a ritmo sostenuto. In qualità di fornitore di soluzioni
software innovative per l’addestramento aeronautico, TXT e-solutions S.p.A. si impegna
a incorporare le ultime innovazioni high-tech nei propri prodotti. Un’area di interesse per
l’azienda è l’uso del Model-Based Design nello sviluppo dei simulatori di volo, un campo
in crescita con ricerche continue volte a migliorare l’accuratezza e a ridurre i costi, i tempi
di sviluppo e di manutenzione.

Per indagare le potenzialità del Model-Based Design, l’azienda ha chiesto di analizzare
e migliorare un modello preesistente di un generico sistema di controllo automatico del
volo. Le metodologie tecniche e i problemi di implementazione emersi durante lo studio
sono presentati in questo lavoro di ricerca. L’azienda ha fornito alcuni requisiti in input
per lo sviluppo del modello, i quali sono stati tutti analizzati e verificati in questa tesi.

Il risultato principale prodotto in questo lavoro è un modello Simulink® che include i
componenti più importanti dell’autopilota e le loro logiche di controllo. Questi compo-
nenti includono lo Stability Augmentation System Mode (SAS), l’Attitude Hold Mode
(ATT), il Turn Coordinator Functionality (TC), l’ Indicated Airspeed Hold Mode (IAS),
l’ Heading Hold Mode (HDG), il Barometric Altitude Hold Mode (ALT), il Radar Height
Hold Mode (RHT) e l’ Hover Hold Mode (HOV). È stato prodotto anche uno script
esterno di autotuning in ambiente Matlab®, al fine di identificare i parametri ottimali
dei controllori del sistema di controllo dell’autopilota, sulla base di specifici requisiti di
progetto in ingresso. Inoltre, il modello è stato progettato con alti livelli di generalità
e personalizzazione, consentendo un rapido adattamento dei parametri e delle caratter-
istiche dell’autopilota a seconda dello specifico elicottero. Le prestazioni del sistema di
controllo automatico di volo sono state testate e convalidate rispetto a quelle ottenibili
con un simulatore di volo certificato full flight di livello D. Pertanto, i risultati ottenuti
dimostrano che l’approccio Model-Based Design è affidabile anche quando ci si occupa di
strutture di autopilota più complesse come quella presentata nel presente lavoro.
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PI Proportional–Integral Controller
PID Proportional–Integral–Derivative Controller
RHP right-half plane
RHT Radar Height Hold Mode
SAS Stability Augmentation System
SISO Single Input Single Output
TC Turn Coordinator
TF Transfer Function
VNE Velocity Never Exceed



xix

Introduction and Thesis Objectives

According to the Boeing Pilot & Technician Outlook 2020-2039, the civil aviation in-
dustry will need to hire approximately 2.4 million new pilots and technicians by 2039 to
meet the growing demand for air travel.

Flight simulators can play a crucial role in addressing this shortage by preparing pilots
for the complexities of flying, both in civil and military applications. As aviation poses
high levels of risk, the use of flight simulators allows pilots to practice and refine their
skills in a safe and controlled environment. The synthetic environment is used during the
initial phases of training for familiarization with the aircraft and then maintains its impor-
tance in subsequent phases, culminating in training for mission-critical and safety-critical
procedures. Although simulation devices have different levels of complexity, realism, and
fidelity compared to the real aircraft, they are linked by a common set of standards and
requirements coming from the designated authorities (FAA and EASA). This suitability is
also demonstrated through objective tests that link the behavior of the simulated aircraft
within the synthetic environment with the real aircraft performances by comparing flight
maneuvers accomplished in the simulator with the same maneuvers recorded in flight.
By redacting the Qualification test guide (QTG), it is possible to demonstrate that the
performance and handling qualities of a Flight Simulation Training Devices (FSTDs) are
effectively representative of the specific craft, within prescribed limits imposed by the
certification body.

Given the growing importance of this branch of the aviation industry, TXT e-solutions
S.p.A., a provider of engineering software solutions, has been at the forefront of this
technology for years. The company has consistently pursued advancements in the latest
flight simulation innovations, striving for continuous improvement. In the pursuit of
replace traditional design strategies of flight simulators, TXT e-solutions S.p.A. has shown
interest in the use of Model-Based Design throughout the development of flight simulators.

Indeed, most helicopter flight simulators of major aircraft manufacturers such as Leonardo
S.p.A. or Airbus S.a.S. are realised using the C++ programming language. Therefore, for
decades hand-coding approach has been the mainstream in industry being a versatile and
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effective solution, allowing for high levels of modularity and reusability of recurring parts
of code. However, the greatest disadvantage lies in the lack of a form of visual communi-
cation that enables the reader to automatically match the objects reproduced in the code
with the physical components, which can be a problem in the case of particularly complex
models, for which traceability can be difficult. To tackle this issue, Model-Based Design
approach relies on a visual and intuitive modeling interface in which physical components
are represented with graphical objects whose parameters and configuration properties
are accessible and editable in a more user friendly environment enabling not only expert
software developers to create models and design systems. However, this is just the most
obvious benefit of this approach with respect to the traditional way of proceeding, as it
not only preserve modularity and reusability features, but it also allows to save money
enabling early verification of designs and thus potential error detection. Indeed, one of
the main rule of thumb in projects development is that the earlier you step-back in a
project the less it cost. Finally, as the purpose is still to produce a C++ code to integrate
on an embedded processor, Model-Based Design provides the capability to automatically
generate it.

Therefore, to investigate the potential of Model-Based Design, TXT e-solutions S.p.A.
aim to realise a single generic helicopter automatic flight control system. The goal is
to replace the traditional development workflow which address a specific autopilot de-
sign for each specific helicopter flight simulator in analysis. Instead, the pursuit of the
company and thus the scope of this thesis, is to build a modular and customisable autopi-
lot architecture which have to embrace common operating characteristics from different
manufacturers and hence from different autopilot designs. The final structure of the au-
tomatic flight control system must be able to simulate a wide variety of helicopters by
simply changing configurations and parameters according to the specific application.

Given this goal, a proof of concept of a basic generic helicopter autopilot provided of
low level functionalities was developed in a previous work [32]. Therefore, in the present
research, the company asked to analyze and improve this model in order to demonstrate
that the Model-Based design approach is still valid even when dealing with more realistic
and complex autopilot architectures. In particular, the improvement provided to the
model must satisfy the requirements summarized below:

1. The model should be developed in Simulink®.

2. The current state of the generic autopilot should be studied and analyzed to adopt
a design philosophy in line with the existing one.

3. The suitability of the model for C++ code generation by means of Simulink Em-
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bedded Coder® should be preserved.

4. The current model should be improved with the autopilot upper modes and their
control logics, along with a tuning methodology for their controllers.

5. The current level of modularity should be improved by developing an autopilot
model in which each individual customized block fulfills a single operating function.

6. The level of generality of the autopilot model should be improved so that it can be
easily adapted to different types of helicopters.

7. The results should be validated by comparing them with those of a full flight simu-
lator level D.

To achieve these goals, several steps were necessary, which in turn were recorded and
transcribed within the Chapters of this thesis according to the structure shown in the
following:

• Chapter 1, based on private TXT e-solutions documents and from information
gathered from aviation literature, provides important technical notions regarding
two main topics. The first aims to briefly present which are the typical helicopter
flight control inputs enabling the pilot to achieve and maintain manually controlled
aerodynamic flight. In the second topic, instead, the attention is shifted to the
description of a generic 4-axis automatic flight control system and its structure.

• Chapter 2 examines the principal Simulink® tools employed throughout the Model-
Based Design of the generic autopilot. Emphasis is placed on the description of
practical implementation procedures to be adopted in Simulink® in order to model
systems with high levels of modularity, customisability and automation.

• Chapter 3 provides a detailed analysis of a collection of modular Simulink® blocks
created from scratch throughout this work in order to ensemble the whole autopilot
structure. Each block models a single operating autopilot function which is typi-
cally reused multiple times within different autopilot subsystems. To this purpose,
emphasis is given to the implementation issues to address in order to achieve a
customisation level that allows to reuse the blocks for different autopilot modes.

• Chapter 4 illustrates the customisable auto-tuning process developed to optimize
the control systems gains of the assembled model of the generic autopilot. A twin-
engine light utility helicopter dynamics is used as case-study model to test the tuning
workflow.

• Chapter 5 outlines three different verification tests carried out to validate the whole
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autopilot modeling, either from control logics and phisical modeling point of views
as well as to demonstrate the tuning process effectiveness by comparisons with a
certified full flight simulator level D.



1

1| Flight Control System and
Automatic Flight Control
System

The first Section of this Chapter provides a brief description of the three essential flight
controls that the pilot uses to maneuver a helicopter. In the second Section, the focus
shifts to the structure of the automatic flight control system, which provides the pilot
with additional assistance during flight.

The information contained in this Chapter are mainly taken from private TXT e-
solutions documents and from notions gathered from aviation literature. Since the goal of
this thesis is to fulfill the research requirements imposed at the beginning, the components
described in this Chapter, either from the flight control system or from the autopilot, are
restricted to the only necessary systems which are intended to be modeled in the automatic
flight control system or that may be important for the understanding of this work.

1.1 Flight Control System

Fixed-wing aircraft and rotary-wing aircraft constitute two distinct types of flight ve-
hicles that exhibit several differences, especially in their flight control surfaces. In the
following, a brief description of the history of the helicopter flight control systems is
provided.

The Cierva autogyro, developed in 1923, was the first rotary-wing aircraft capable
of achieving significant forward velocities [34]. It consisted of a conventional airplane
modified with rotating wings. Since it was an autogyro, its blades did not require power
to rotate, and the pilot had no control over them. Consequently, the aircraft was operated
using conventional airplane surfaces. One of the main challenges faced by rotary-wing
inventors was the asymmetrical velocity field in the rotor during forward flight. This
phenomenon is illustrated in Figure 1.1 for a rotor with anticlockwise rotation.
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Figure 1.1: Profile of the velocity normal to the leading edge in hover and forward flight.

In the figure, the angular velocity of the rotor is denoted by W , its radius by R, the
forward velocity of the vehicle by V , and the azimuth of one blade by Ψ. In hovering
flight, the incident velocities are distributed symmetrically with respect to the rotor hub.
However, during forward flight, the normal velocities on the advancing side (0 < Ψ < 180)
are higher than those in the hover situation, while the velocities on the retreating side
(180 < Ψ < 360) are smaller. Furthermore, a reverse flow region exists near the hub.
This dissymmetry of velocities generates a lift gradient that produces a roll moment in
the rotorcraft. In the Cierva autogyro this problem was solved by introducing hinges in
the blade roots, which allowed for a flapping motion of the blades. This motion changed
the local angles of attack and compensated for the asymmetrical lift distribution.

Due to Coriolis effects, when the rotor blades flap, a corresponding in-plane vibration
appears at the blade root, usually known as lag (or lead-lag) motion. To deal with this
vibration, lag hinges also need to be incorporated into the connection with the rotor hub.
In addition to flapping and lag motion, the blades can be feathered about an axis parallel
to the blade span. This rotation is very useful for controlling the entire helicopter, as it
enables the pitch of the blades to be adjusted. Figure 1.2 illustrates the three fundamental
blade motions and the hinge associated with each one.
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Figure 1.2: Fundamental rotor blade motions [4].

After the development of the Cierva autogyro, it became apparent that the effectiveness
of the traditional fixed wing aircraft control surfaces was inadequate, especially when
flying at low airspeeds. Therefore, a new component, called direct control system, was
developed. It consists of a gimbal mounted rotor that can be tilted longitudinally and
laterally using a control stick. As the rotor thrust vector is almost always perpendicular
to its tip-path plane (the plane described by the tips of the rotating blades), the rotorcraft
is accelerated in the direction of the tilt, generating roll and pitch moments around its
CG.

The direct control was effective in controlling the autogyro, but it proved impractical
for helicopters. Consequently, a new system was spontaneously developed by several
engineers to account for the unequal aerodynamics on the rotor during forward flight and
to provide roll and pitch control in those kind of systems. This solution, known as cyclic
pitch, was initially proposed by G. A. Crocco in 1906. As the name indicates, it makes
use of the pitch motion of the blades to achieve pitch and roll maneuvers in helicopters.
In modern times, this invention continues to serve as one of the primary control systems
for a helicopter.

1.1.1 Cyclic Pitch

The cyclic pitch system, which allows for the control of the pitch angle of helicopter
blades, is reliant on the swashplate assembly. A typical architecture of this assembly can
be seen in Figure 1.3.
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Figure 1.3: Generic helicopter flight control system. [34].

The swashplate comprises two main parts, namely the stationary swashplate and the
rotating swashplate. The stationary (outer) swashplate, located on the main rotor mast, is
connected to the cyclic and collective controls using a series of pushrods. These pushrods
make up the so-called flight control actuation chain, which can vary between different
types of helicopters, distinguishing between mechanical controls, hydro-mechanical con-
trols and fly-by-wire controls. The fixed swashplate can tilt in all directions and move
vertically. The rotating (inner) swashplate, on the other hand, is mounted on the sta-
tionary swashplate via a bearing and is allowed to rotate with the main rotor mast. An
anti-rotation link is in place to prevent the inner swashplate from rotating independently
of the blades, which could result in torque being applied to the actuators. The outer
swashplate typically has an anti-rotation slider as well to prevent it from rotating. Both
swashplates move up and down as a single unit, with the rotating swashplate linked to
the pitch horns via pitch links.

By focusing exclusively on the cyclic pitch control mechanism, this system is respon-
sible for tilting the swashplate and subsequently the rotor tip-path plane by cyclically
adjusting the pitch of the helicopter blades. The tilt of the thrust vector, which is almost
perpendicular to this plane, enables the pilot to steer the helicopter in the desired direc-
tion. The control for this tilt is managed using the so-called cyclic stick, which is usually
located between the pilot’s legs and which is illustrated in Figure 1.3. By moving this
stick forward or backward, the pilot can tilt the tip-path plane longitudinally, causing
the helicopter to pitch its nose down or up, respectively. Similarly, moving this command
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sideways results in the tilt of the tip-path plane laterally, causing the helicopter to roll to
the right or left.

Figure 1.4: Example Cyclic Adjustment.

1.1.2 Collective Pitch

While the cyclic control is responsible for changing the pitch of the rotor blades in
a cyclical manner, the collective control allows for an equal pitch adjustment across all
blades. This is made possible by the vertical movement of the swashplate, which moves
along a sliding surface around the rotor shaft. The collective lever, located on the left
side of the pilot, operates a series of mechanical linkages that control the movement of the
sliding surface, as depicted in Figure 1.3. Raising the collective lever increases the pitch
of the blades, which generates more lift and increases rotor thrust. Figure 1.5 shows what
happens to the rotor blades when this lever is raised. Conversely, lowering the collective
lever reduces the thrust produced. This type of control is primarily used for vertical
maneuvers, including climbing and descending.

Figure 1.5: Example Collective Adjustment.

1.1.3 Anti-Torque Pedals

The anti-torque pedals are the last and third set of flight controls that enable a pilot to
maneuver a helicopter. Indeed, as the name of these flight controls suggest, the main rotor,
mounted on the fuselage, generates a torque moment that produces an equal and opposite
moment on the helicopter body, causing it to spin, as per the principle of conservation
of the angular momentum. In a single main rotor helicopter, a small auxiliary rotor is
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usually mounted on the tail boom at the rear of the fuselage in order to generate thrust to
counteract this moment. The collective pitch of the auxiliary rotor’s blades is controlled
by the pedals, as depicted in Figure 1.3. The left pedal increases the yaw moment of the
helicopter to the left, while the right pedal is used to turn the helicopter to the right.
Besides balancing the main rotor torque, the pedals also enable directional control by
altering the helicopter’s heading. Unlike the main rotor, the tail rotor has a small radius
and a high rotational speed, which makes its flapping motion negligible, resulting in the
absence of a cyclic pitch system.

Figure 1.6: Anti-Torque Solution.

1.2 Automatic Flight Control System

Helicopters are associated with intrinsic instabilities and inter-axis couplings, which
make controlling them a challenging task. This is because pilots need to constantly act
on the different controls simultaneously. To address this issue, mechanical stabilizing
systems were implemented in rotary-wing aircraft in the early years [34].

Initially, control forces in small helicopters were modest, allowing the pilot to directly
act on the control mechanisms, as shown in Figure 1.3. However, with the increasing
size of helicopters, control forces also increased, necessitating the installation of hydraulic
boosted actuators to help the pilot handle the helicopter by providing extra strength in
the control deflections. With the development of electronics, hydraulic control actuators
began to incorporate an electro-hydraulic servo valve, which can be operated by electric
signals from a flight computer. This made it possible to integrate automatic control laws,
leading to the implementation of SAS with limited authorities of around 10 % of the
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actuator stroke to improve the flying qualities.

Following the incorporation of this system and the further development of flight control
laws, full authority flight controllers were introduced, and the first helicopter autopilots
were implemented. Instead of controlling the control deflections directly, the pilot sends
their intentions to the flight computer on board, which computes the required actions of
the actuators to perform the desired maneuvers. The references commanded to the com-
puter are normally supplied in terms of angular rates or attitude angles that correspond
to the displacement of the conventional control interfaces in the cockpit. This type of
configuration serves as the basis for fly-by-wire systems, which eliminate the mechanical
linkages between the cockpit and the actuators, reducing the weight of the vehicle and
the complexity of its mechanical systems.

In general, an Automatic Flight Control System (AFCS) in a helicopter is a collection
of control systems designed to provide various levels of automatic control of flight by
automatically changing the orientation of the flight controls along three or four axes of
motion. A 4-axis AFCS operates in all four axes of aircraft control: pitch, roll, yaw, and
collective.

Different nomenclatures may be found in manuals dealing with AFCS, even among
different helicopters of the same manufacturer. However, despite the name assigned to
the AFCS architecture, the AFCS is typically structured in two control loops:

• the innermost loop is the helicopter Automatic Stabilization Equipment (ASE),
which include pitch, roll and yaw rate stabilisation by means of Stability Augmen-
tation System (SAS), pitch, roll and yaw attitude hold by means of Attitude Hold
(ATT), Turn Coordination by means of Turn Coordinator (TC). ASE operates in
the pitch, roll and yaw axes.

• the outermost loop is the helicopter Autopilot (AP) which in turn enables the pilot
to engage modes in all four axes of aircraft control. Those modes differs from
the previous because they allow to control and to hold "external" conditions [31]
reducing the pilot’s workload and enhancing his situational awareness for a better
managing of critical situations. The most important among these systems are the
Indicated Airspeed Hold (IAS), the Barometric Altitude Hold (ALT), the Radar
Height Hold (RHT), the Heading Hold (HDG), etc. The AP modes function through
the ASE control systems and axes and may also operate in the collective axis.
However, AP modesyy does not have to operate on every axis but may work on
a single one up to all four axes. Transition of modes on axes, as well as mode
engagement and disengagement decisions, are provided by the AP control logics.
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The pilot can access these modes primarily through the switches and buttons on
the Autopilot Control Panel (APCP).

Another common AFCS framework provides the following division:

1. Lower Modes, which basically contain SAS and ATT and thus control the aircraft
angular rates and attitude. These systems grant a certain degree of stability and
maneuverability of the aircraft, and therefore, the pilot hardly disengages those aids
during flight.

2. Upper Modes which in practice contain the modes that allow control of the primary
flight parameters (e.g. Indicated Airspeed, Barometric Altitude, Radar Height, etc.).
In order to complete their tasks, those modes rely on the Lower Modes and especially
on the ATT, which is usually a prerequisite for their functioning. However, the
category of Upper Modes is basically coincident with the definition of Autopilot
provided in the previous AFCS framework.

3. Functionalities which in practice differ from the previous categories because they
provide automatic increment of helicopter controllability, stability and maneuver-
ability. Indeed, one peculiarity of these systems is that they are always engaged dur-
ing flight, but they provide control actions only in specific flight conditions. Among
these functionalities, there are the Turn Coordinator (TC) and the Auto-Trim.

Since the framework adopted in this research is the second one, as it eases the achieve-
ment of greater modularity in the AFCS, the term "autopilot" will be used with the same
meaning of "automatic flight control system" to shorten the notation.

1.2.1 Autopilot Control Panel and Stick Grip Control Switches

The Autopilot Control Panel provides controls for mode selection and arming, and
mode status display for the AFCS. It is also used for pre-flight testing. The APCP is
usually located in the center of the inter-seat console between the pilots and is equipped
with multiple push buttons and rotary/push knobs, which are typically labeled with
corresponding mode. Pressing a button triggers the activation of the specific mode, but
it does not guarantee engagement in the AFCS due to control logics that may or may
not allow engagement depending on various factors. Alternatively, pressing the button of
an armed mode triggers its disengagement. Figure 1.7 shows an example configuration of
the APCP.
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Figure 1.7: APCP Example Configuration.

In addition, helicopters furnished with modern automatic flight control systems usually
have cyclic and collective grips with several switches and buttons. The configuration and
number of these additional grip controls may vary depending on the specific helicopter,
but the fundamental cyclic and collective grips are always equipped with

• the Force Trim switch (also called Force Trim Release (FTR). As already said
before, control forces in small helicopters were modest enough to allow the pilot to
directly act on the control mechanisms via cyclic, collective, and pedals. Later on,
as helicopters got bigger, so did the forces and hence the previously cited solutions
were introduced. However, the drawback was that the pilot lost the feel from the
real control displacement applied to the swashplate or to the tail rotor [34].

To address the issue, control centering and artificial feel system were introduced
inside the pilot controls [34]. Indeed, in addition to the artificial force gradient, the
control should have a definite “detent” position that requires some force to initially
move or “breakout". This detent can be achieved through the use of a cartridge
with two preloaded springs opposing each other. When a breakout occurs, a sensor
perceives this movement and updates the control status to the so-called Out of
Detent state. As a result, both the gradient and detent work together to ensure
that if the control is moved and then released, it will return to its original trim
position.

However, since during flight, a pilot often necessitate to apply large changes in flight
controls in order to modify the helicopter flight condition, it would be desirable to
avoid fighting against the retention of the spring as it would make it difficult for the
pilot to control the aircraft smoothly. Moreover, the control used by the pilot should
keep its new position in these cases. As a result, to address these necessities, a pilot
presses and hold the Force Trim button present either in the cyclic and in collective
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sticks, which in turn relax the retention of the spring. Once the pilot has maneuvered
the helicopter and releases the button, the force gradients are re-established with
the new location as the zero force point.

FTR buttons are typically located on both the cyclic and collective sticks, as de-
picted in Figure 1.12. However, the cyclic FTR button not only removes forces in
the cyclic, but also in the pedals.

Furthermore, if the cyclic FTR button is hold, the operation of the modes engaged
in the pitch, roll and yaw axes are inhibited; the same applies for the collective FTR
button with respect to the modes engaged at that moment in the collective axis of
the AFCS.

Additionally, pressing the cyclic FTR button resets the specific reference datum of
each AFCS mode operating on the pitch, roll, and yaw axes to their current value,
which is sensed at the moment in which the button is released. The same applies to
the collective FTR button with respect to the mode operating on the collective axis.
However, it should be noted that if the pilot operates against the spring retention
(i.e. without pressing the FTR) in either the cyclic or the collective, the reference
datum remains unchanged, and when the maneuver is complete, the artificial feel
system returns the helicopter to its previous trim condition.

• the Beep Trim switch. When a pilot wants to maneuver to a new flight condition,
he may disengage the trim system by means of FTR or he may “beep” the controls
to the new flight condition. Indeed, a Beep Trim is a 4-way hat switch that can
be moved and held in forward, backward, and sideways positions. It is typically
present either on the cyclic and on the collective sticks and when used it moves the
trim system to center about a new position.

This new position is set on the basis of the modes engaged on the AFCS at that
moment, since primarily the movement of the Beep Trim assigns an increment or
decrement to the reference datum of specific modes, which is proportional to the
amount of time that the switch is pressed in a certain direction. Forward and
backward movements of the cyclic Beep Trim vary the reference datum of the pitch
mode engaged in that moment in the AFCS. Left and Right movements of the cyclic
Beep Trim does the same for the current AFCS roll mode. Instead, forward and
backward movements of the collective Beep Trim act on the reference datum of the
mode active on the collective axis, while sideways movements does the same for
the yaw mode engaged. Each AFCS mode has its own Beep Trim functioning rate,
which specifies the rate of variation of the specific reference datum per second.
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Figure 1.8: Collective and Cyclic AFCS Grip Controls.

1.2.2 PID Controllers

The PID control algorithm has been widely used in various applications, including
helicopter control systems, for several decades. The algorithm works by continuously
measuring the difference between a desired setpoint and the current value of a process
variable, and utilizing this error signal to compute an appropriate control action that can
assist in bringing the process variable closer to the setpoint.

In modern helicopter applications, the PID control algorithm is still extensively em-
ployed as a component of the automatic flight control system to provide adjustments on
cyclic, collective, and pedal inputs to enable stable flight. In the present work, therefore,
the development of the AFCS also rests on PID controllers.

One of the advantages of using PID controllers in helicopter applications is that they
can be easily tuned and customized to suit specific helicopter models and flight condi-
tions. This means that helicopter manufacturers and operators can optimize the AFCS
to provide the best possible performance and safety for their particular application.

In general, PID controllers are most effective when the loop to be controlled is linear
and symmetric. However, when the system is non-linear and asymmetric, limitations re-
garding the use of PID controllers arise. This is unfortunately often the case in many
helicopter flight phases, as rotorcrafts are non-linear systems that exhibit different be-
havior in different operating regions. The sub-optimality resulting from the use of PID
control can vary from being imperceptible to causing severe damage to the system. One
common approach to address this problem is to apply Gain Scheduling, a control strategy
that involves linearizing the problem around different operating points to create a family
of PID controllers (one for each point) and tuning each of them to be optimal for the
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corresponding linearization.

PID Algorithm

In standard industrial regulator, the control variable u is obtained as a sum of three
components: a term proportional to the error e, a term proportional to the integral of
e and the last proportional to the derivative of e; indeed PID stands for Proportional
Integral Derivative.

The error is defined as e = ysp − y, i.e. the difference between the reference ysp (often
called setpoint) and the measured process variable y. The most basic algorithm formula-
tion of a PID controller is discribed by [1]:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
= Kp

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

)
. (1.1)

The proportional gain Kp, the integral gain Ki and the derivative gain Kd are the
control parameters of a standard PID regulator (see Figure 1.9). The time constants Ti
and Td, called integral time and derivative time, respectively, are sometimes used instead
of the integral and derivative gains.

An industrial PID regulator might involve only the action of one or two components,
not necessarily the combination of all, since every term plays a different role in the control
loop mechanism.

• The proportional term amplify the instantaneous error, reducing the system re-
sponse time without introducing a phase shift. However, the stability is reduced
when increasing Kp because the amplitude of oscillations are also enhanced. In
general, with constant disturbances and a purely proportional regulator, the steady
state error is non-zero but, in some cases, it can be cancelled by simply adding a
proper offset to u(t).

• The integral term takes into account the history of the error, it increases indefinitely
when the steady state error approaches a finite value different from zero and there-
fore it is used to remove the residual error (in particular when the disturbances are
affected by step changes). Indeed, The precision improvement of the integral term
is often coupled with the action of the proportional one.
On the other hand, the integral component adds a phase shift of -90° that reduces
the phase margin, it increases the system response time by narrowing the bandwidth
and might lead to the integral windup issue.
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• The derivative term aims to control the error by predicting its future state. It
introduces a phase shift of +90° that increases the phase margin of the plant and
reduces the system response time due to a broader bandwidth. The last effect
represents also a drawback since high frequency noise in measures are amplified by
the derivative controller and a low-pass filter is therefore needed.

Figure 1.9: Block diagram of a feedback PID control system

The Laplace transform of the control law given in Equation 1.1 is:

U(s) = KpE(s) +
Ki

s
E(s) +KdsE(s) = Kp

(
1 +

1

Tis
+ Tds

)
E(s), (1.2)

when considering also the low-pass filter in the derivative term, the control law becomes:

U(s) = Kp

(
1 +

1

Tis
+

Tds
Td

N
s+ 1

)
E(s), (1.3)

with N/Td representing the bandwidth of the filter.

When using the PID model of Equation 1.3, it follows that a step change in the setpoint
Ysp (recall that E = Ysp − Y ) produces a sharp spike in the control variable U , ideally a
Dirac impulse when N → +∞.

This problem can be solved considering the two-way (or 2-DOF) PID architecture,
characterized by the addition of the parameters (b, c) to the standard PID model:

U = Kp

(
(bYsp − Y ) +

1

Tis
(Ysp − Y ) +

Tds
Td

N
s+ 1

(cYsp − Y )

)
, (1.4)

b and c take values in the range [0, 1] and are known as the setpoint proportional weight
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and setpoint derivative weight, respectively. When b = c = 1, the basic PID control law
is retrieved.

The formulation given in Equation 1.4 allows to decouple and differentiate the control
transfer function response to the setpoint and the measured variable, indeed:

U = Gsp
c Ysp −Gout

c Y, with


Gsp

c = Kp

(
b+

1

Tis
+

Tds
Td

N
s+ 1

c

)
,

Gout
c = Kp

(
1 +

1

Tis
+

Tds
Td

N
s+ 1

)
.

Moreover, the weights b and c allow to place freely the zeros of the closed-loop system in
order to adjust the transient response. However, in most industrial regulators c = 0 and
b ̸= 0, with this choice the derivative action applied to the setpoint dynamics is cancelled
out.

Integral Windup

The windup phenomena happens when the output of the regulator u(t) does not corre-
spond to the real actuator action m(t). The actuator is a device with physical limitation,
its action m(t), mathematically, is a non-linear function of u(t) of the type:

m(t) =


umin if u(t) ≤ umin,

u(t) if umin < u(t) < umax,

umax if u(t) ≥ umax.

The actuator saturation occurs whenever the control variable reaches the physical limits,
then the feedback loop is broken and the plant evolves with a constant input. Meanwhile,
the integrator continues to integrate the error variable and, since it is not asymptotically
stable, values far different from the ones really needed are attained. Once the error gets
to values that would produce a regular control signal, the integrator needs still time to
decrease its output and thus also the PID controller before coming back to a working
state. For this reason, this phenomena is often referred to as integral windup.

A simple approach to avoid this issue consists of an interruption of the integral ac-
tion whenever the actuator saturation occurs; as soon as the actuator input and output
matches again the integrator returns to operate. In Figure 1.10 is shown the block diagram
of the PID controller that embeds the evaluation of |m(t)| − |u(t)| and the conditional
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interruption of the integrator.

This anti-windup method is known as conditional integration and is widely spread in
industrial PID because is a sensible precaution, however attention must be paid to the
way in which the saturation is identified in order to avoid useless obstacles in the control
action.

Figure 1.10: Block diagram of a PID controller with conditional integration

1.2.3 Lower Modes

Lower modes play a crucial role in maintaining the stability and maneuverability of
helicopters. These modes are designed to address the inherent instabilities and inter-axis
couplings that are typical of helicopter dynamics. Without them, flying a helicopter would
be an extremely challenging task, as pilots would need to constantly manage the various
controls simultaneously to maintain stability and control. Therefore, these lower modes
represent the primary means by which pilots can effectively fly and control helicopters,
making it possible to perform a wide range of complex maneuvers and tasks with greater
ease and safety.

SAS - Stability Augmentation System

Conventional helicopters have an inherent instability, especially in pitch and roll, which,
as already said, can lead to pilot fatigue during flight due to the prolonged control he has
to apply. To overcome this issue, the Stability Augmentation System is used to improve
the stability of the aircraft by introducing independent control actions in the three axes
based on the pitch, roll, and yaw angular rates.

In its basic form, the SAS control law is a negative Proportional rate feedback. However,
since SAS control actions feed series actuators with limited stroke authorities (usually
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between ∓10% and ∓20% of the maximum stroke; specific values different from one
helicopter to another), the high proportional gains required would lead to quick saturation
in the actuators. To avoid this problem, the SAS control law may also include the Integral
term (PI controlled SAS).

However, in this latter configuration, the SAS fights against the pilot’s actions as well
as disturbances. Indeed, the SAS must provide short-term aircraft angular rate stabi-
lization to mitigate the effects of external disturbances, such as turbulence, but it should
not provide any long-term stabilization on a preset aircraft attitude in order to avoid
interfering with the pilot’s hands-on and feet-on flight controls.

To address this issue, the solution illustrated in Figure 1.11 can be implemented, where
the pseudo-attitude hold contribution is removed by cutting out this branch when the pilot
is maneuvering. It implies that if a specific pilot control is out of detent or if the force
trim buttons of the cyclic or collective grips are held, the integral SAS action associated
with the stabilization control action of one or more specific axes is inhibited.

Figure 1.11: SAS block diagram (steady condition on the left, maneuver condition on the
right) [31]

Moreover, the SAS can allow stability augmentation functions to be used separately,
even if automatic control is not required or available due to an autopilot malfunction [31],
as shown in the AFCS workflow diagram in Figure 1.11.
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Figure 1.12: AFCS Workflow Diagram.

ATT - Attitude Hold System

The other basic mode which is always present in modern AFCS architectures, is the
Attitude Hold System. This mode furnish another essential feature, as it provides the
capability to acquire and hold a pitch, roll and yaw attitude reference; the ATT mode
operates on the pitch, roll and yaw axis simultaneously and independently.

The ATT mode is commonly fed by a vertical gyro that senses the helicopter’s attitude.
The measured value is compared with a fixed reference attitude, and based on these inputs,
a PID controller generates the driver signal for the series actuators, which, as already said,
have limited stroke authorities. Nevertheless, even if the ATT mode is correctly engaged
in the AFCS, it provides null control action if the pilot is flying manually. To adjust
the reference attitude datum, force trim or beep trim can be employed, as discussed in
Section 1.2.1. Obviously, references both in pitch attitude and in roll attitude are limited
to specific thresholds characteristic of the helicopter’s performance.

When the helicopter is in cruise condition and its Indicated Airspeed exceeds a certain
threshold specific to the helicopter, the ATT mode is disengaged only for the yaw axis.
In such cases, the yaw axis may be managed by the Turn Coordination function which
automatically start to operate when the same Indicated Airspeed threshold is exceeded
and if a minimum Roll Angle value is overpassed.

The ATT mode is the default mode of operation for the AFCS, automatically engaging
when the AP button on the APCP is pressed. This mode is a prerequisite for every upper
mode that operates on the pitch, roll, and yaw axis. Whenever an upper mode operating
on these axes is manually disengaged via the APCP, the ATT mode automatically engages
on the unengaged axis. In certain cases of automatic disengagement of some upper modes,
the ATT mode also engages as a backup.
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1.2.4 Upper Modes

Section 1.2 has already analyzed the most important features of the upper modes,
but there are some additional notes that need to be provided to further inspect these
systems. The upper modes are a collection of systems located at the outermost loop of
the helicopter AFCS. These modes can actually fly the helicopter and perform certain
functions selected by the pilot in the APCP. With some of these modes engaged, the pilot
no longer directly controls the aircraft but selects the flight conditions that he wants the
autopilot to maintain, while monitoring the functioning through displays and indicators
in the cockpit.

For a 4-axis AFCS, the upper modes controlling the pitch, roll, or yaw axes always rely
on the functioning of the ATT to successfully perform their task. However, the same
does not apply to the collective channel, as the collective upper modes directly feed the
collective series actuator. Modes that rely on the ATT do not feed any actuator, but
their control law generates a δAttitude, which is summed with the current value of the
attitude to provide the reference value for the ATT. The ATT subsequently evaluates the
control action for the specific series actuator to chase the reference value of the specific
upper mode.

Therefore, the control law behind a generic upper mode (valid also for collective modes)
aims to hold the aircraft at a reference external condition by comparing this setpoint value
to the current value of the same parameter. These inputs are provided to a PID controller
which in turn calculates the necessary control action. The reference values of the upper
modes can be adjusted using force trim or beep trim and if the pilot manually flies the
aircraft, the upper mode functioning is inhibited. These same properties are present, as
already seen, in the ATT; indeed the structural behaviour of an Attitude Hold is very
similar to the one of a generic upper mode.

Another very important consideration regarding the upper modes refers to their control
logics. Apart from the obvious use of switch and buttons in the APCP for the manual
engagement of an upper mode in the AFCS, there are several non-trivial control logics that
determine the automatic engagement or disengagement of a mode during flight. While
these control logics may vary among different AFCS, the fundamental ones usually remain
the same among different AP.

In conclusion, the facilities that can be provided by the upper modes are limited only by
the sensors, computing capabilities and the control authority of the specific helicopter AP
[31]. However, certain modes are more commonly available in different rotorcraft AFCS
than others. Therefore, in line with the imposed requirements for the current research,
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the following sections present these upper modes and their principal characteristics.

IAS - Indicated Airspeed Hold

The IAS mode provides the capability to capture and to hold an Indicated Airspeed
reference between a minimum and a maximum Indicated Airspeed (usually between 30/40

kt and VNE); the mode operates on the pitch axis.

The initial datum in the IAS mode is the Indicated Airspeed existing at the time of
engagement. The Indicated Airspeed reference can be modified using the cyclic force
trim which releases the pitch trim actuator and synchronizes the position reference of the
cyclic control with the current Indicated Airspeed reference. Setpoint adjustments may
be provided also by means of forward/backward movements of cyclic beep trim.

IAS mode can be engaged/disengaged pressing the IAS push button on the APCP.
Automatic engagement of IAS mode may be triggered by the ALT transition from pitch to
collective axis. Automatic disengagement occurs in case of engagement of an incompatible
mode (in the AFCS developed in this research, only incompatible mode is HOV).

ALT - Barometric Altitude Hold

The ALT mode provides the capability to capture and to hold a Barometric Altitude
reference, between a minimum and a maximum value (usually upper value is the maximum
operational altitude of the aircraft).

The mode may operate on the collective or on the pitch axes. If Indicated Airspeed is
lower than a threshold value (typically 60kt), the mode is engaged on the collective axis.
Otherwise, if pitch axis is free, meaning that no other upper modes are controlling the
pitch channel, then the ALT may operate on the pitch axis. If Indicated Airspeed drops
below the threshold value while ALT is engaged on the pitch axis, and if collective axis is
available, ALT is transferred to collective axis and IAS mode is automatically engaged in
pitch axis. The viceversa applies if the Indicated Airspeed surpasses the threshold value
while ALT is engaged on the collective axis, and pitch axis is free.

The initial datum in the ALT mode is the Barometric Altitude existing at the time of
engagement. The Barometric Altitude reference can be modified using the collective force
trim which releases the collective trim actuator and synchronizes the position reference
of the collective control with the current Barometric Altitude reference. Setpoint adjust-
ments may be provided also by means of forward/backward movements of collective beep
trim.
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ALT mode can be engaged/disengaged pressing the ALT push button on the APCP.
Automatic engagement of ALT mode may be triggered by automatic disengagement of
RHT due to exceeding of maximum Radar Height. Automatic disengagement occurs in
case of engagement of an incompatible mode (in the AFCS developed in this research,
incompatible mode are RHT and HOV).

RHT - Radar Height Hold

The RHT mode provides the capability to capture and to hold a Radar Height reference
between a minimum and a maximum value (usually up to 2500ft); the mode operates on
the collective axis.

The initial datum in the RHT mode is the Radar Height existing at the time of en-
gagement. The Radar Height reference can be modified using the collective force trim
which releases the collective trim actuator and synchronizes the position reference of the
collective control with the current Radar Height reference. Setpoint adjustments may be
provided also by means of forward/backward movements of collective beep trim.

RHT mode can be engaged/disengaged pressing the RHT push button on the APCP.
Automatic engagement of RHT mode may be triggered by HOV engagement. Automatic
disengagement occurs in case of engagement of an incompatible mode (in the AFCS
developed in this research, only incompatible mode is ALT). If the maximum Radar
Height threshold is exceeded ALT mode operates as a backup mode.

HDG - Heading Hold

The HDG mode provides the capability to capture and to hold a Heading Angle up to
VNE.

The mode may operates on the roll or on the yaw axes (in the latter case coincides
with the ATT on the yaw axis). Below the same Indicated Airspeed threshold for the
functioning of the Turn Coordinator (usually around 40kt and 60kt for light utility heli-
copters), the HDG is engaged or transitioned on the yaw axis. Otherwise, if the threshold
is exceeded, HDG is engaged or transitioned on the roll axis and is assisted by the Turn
Coordinator which provides control action on the yaw axis.

The initial datum in the HDG mode is the Heading Angle existing at the time of en-
gagement. The Heading Angle reference can be modified using the pedal/cyclic force trim
(respectively the first case for HDG on yaw axis and the second in case of HDG engaged
on the roll axis) which releases the yaw/roll trim actuator and synchronizes the position
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reference of the yaw/roll control with the current Heading Angle reference. Setpoint ad-
justments may be provided also by means of sideways movements of collective/cyclic beep
trim (respectively the first case for HDG on yaw axis and the second in case of HDG
engaged on the roll axis).

HDG mode can be engaged/disengaged pressing the HDG push button on the APCP.
Automatic disengagement occurs in case of engagement of an incompatible mode (in the
AFCS developed in this research, only incompatible mode is HOV).

HOV - Hover Hold

The HOV mode provides the capability to capture and to hold a Lateral Groundspeed
and Longitudinal Groundspeed references under certain thresholds in terms of Lateral
Groundspeed, Longitudinal Groundspeed and Indicated Airspeed.

The mode operates on the pitch and roll axis and, when engaged, the RHT (or ALT as
backup) and HDG modes are simultaneously engaged by the system to control height and
heading respectively. The collective Axis is Under Control of either RHT or ALT modes,
while Yaw axis is under control of HDG mode.

The initial datum in the HOV mode is the Lateral Groundspeed and Longitudinal
Groundspeed existing at the time of engagement. The Lateral Groundspeed and Longitudi-
nal Groundspeed references can be modified using the cyclic force trim which releases the
pitch and roll trim actuators and synchronizes the position reference of the pitch and roll
controls with the current Lateral Groundspeed and Longitudinal Groundspeed references.
Setpoint adjustments may be provided also by means of forward/backward/left/right
movements of cyclic beep trim.

HOV mode can be engaged/disengaged pressing the HOV push button on the APCP.
Automatic disengagement occurs in case of engagement of an incompatible mode (in the
AFCS developed in this research, incompatible modes are IAS and HDG).

1.2.5 Functionalities

The AFCS provides different control Functionalities that automatically increase the he-
licopter controllability, stability and maneuverability. Each Functionality offers automatic
control actions only in specific flight conditions that are characteristic of the respective
Functionality.
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TC - Turn Coordinator

To turn a helicopter while in a hover the pilot uses the pedals to control the tail rotor
by adjusting the amount of sideways thrust it creates: this kind of maneuver is called
flat turn. On the other hand, when turning the helicopter while in forward flight, the
pilot tilts the main rotor disk in the desired direction using the cyclic control, and the
fuselage follows; in this second configuration the pedals do not contribute to turning the
helicopter, but instead are used to balance the torque and maintain longitudinal trim
for coordinated flight. Indeed, pilots typically aim for coordinated turns which are turns
with no lateral acceleration, as those motions are undesirable and poorly tolerated by the
human body.

Therefore, within the AFCS, the Turn Coordination Functionality provides control
of the aircraft lateral acceleration to ensure coordinated flight. The function operates
through the yaw axis and may furnish turn coordination both in forward flight and in
turns. The control law also in this case may be managed by a PID controller having the
Lateral Acceleration as parameter to control and where the reference is always set to 0.
The control action is fed to the yaw series actuator.

This function is automatically activated when the Indicated Airspeed at which the pilot
is flying exceeds a determined threshold (usually around 40kt and 60kt for light utility
helicopters) and a fixed value of Roll Angle is surpassed (usually between 0°and 3°).
When these conditions are met, the system provides turn coordination if the autopilot is
holding a roll attitude via a specific mode (e.g. HDG-Roll or ATT-Roll), and the pilot is
flying feet-off. However, turn coordination is also automatically provided when the pilot
manually maneuvers the helicopter in the roll axis without using the pedals.
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Efficient System Design

This chapter examines the principal tools available in Simulink® for designing a sys-
tem having high levels of modularity, generality, and automation, as in the case of the
development of the current AFCS model. Modularity refers to the property of a system
or program consisting of distinct units, each with a specific functionality, capable of in-
teracting with each other. On the other hand, genericity refers to the ability of a system
to offer a high degree of configurability to the end user, enabling customization of the
model according to specific needs and requirements. In conclusion, automatization in
Simulink refers to a suite of optimization tools that can automate the process of max-
imizing system performance in accordance with pre-established metrics and objectives.
Additionally, Simulink offers the capability to automatically generate code from system
models, reducing the time and effort required for software development and minimizing
the risk of introducing errors into the code.

The subsequent paragraphs provide a concise overview of the essential Simulink® tools
utilized for the Model-Based Design of the present AFCS, but which in general can be
applied for any project with the above-mentioned requirements.

2.1 Custom Libreries

In Simulink®, a Custom Library refers to a collection of custom blocks that users can
create and store in their personal library. These custom blocks are designed to perform
specific functions or tasks that are frequently encountered during the development of
a model or a project. Indeed, these blocks are designed with features that encourage
their reusability, modularity, and scalability. The use of Configuration Masks can further
enhance the purpose of these blocks by allowing customization of block parameters. This
enables users to modify the behavior of custom blocks and provide a visual representation
of their function.
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It is important to exercise caution when adding a Custom Library to the Simulink®

Library Browser, as this process can be complex and requires the user to follow specific
steps. In order to achieve a result similar to the one shown in Figure 2.1, users must
carefully follow the guidelines outlined in the reference [14].

Figure 2.1: Custom Library

In the present work, the Custom Library shown in Figure 2.1 has been created and
all blocks in the library were designed with the intention of achieving generality, allow-
ing them to be reused multiple times throughout the assembly of the model. Indeed,
throughout the development of the AFCS, various modifications have been tested and
custom blocks have evolved accordingly. The Custom Library allows the user to keep
track of these modifications and ensure that they are reflected in the model being devel-
oped. It is therefore considered good practice not to set the Library Link to Disable Link
when building the model.

Figure 2.2: Library Link
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Instead, the Disable Link function may be used for testing changes locally in the model
without affecting the real structure of the library block. In this regard, it should be noted
that changes made while the link is disabled will not be preserved in the library block,
even if the user decides to select Restore Link.

2.2 Block Masks

In Simulink®, a mask is a GUI that can be added to a subsystem made of different
blocks in order to allow end-users to customize its structure, behavior and parameters
without dealing with the individual components that compose it.

Figure 2.3: Example of a Masked Block and its GUI

Clearly, in order to have this type of automation, the price to be paid is the upstream
definition of the characteristics that this mask must have. This is where the Mask Editor
[15] comes in, as this tool provides a graphical interface for editing masks, allowing users
to add and arrange parameters, create custom user interfaces, and specify the behavior
of the block.

The example displayed in Figure 2.4 illustrates the structure of the Parameters &
Dialog interface within the Mask Editor. This interface represents the most significant
component among the other panels within the editor, as it enables the user to define
the parameters of the block that are customizable through the mask. Additionally, the
interface provides users with the ability to customize the GUI of the mask, allowing for
the selection of various controls such as text fields, checkboxes, and drop-down menus to
modify and add parameters.
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Figure 2.4: Example of a Mask Editor Interface

In addition to the Parameters & Dialog interface, the Initialization section within
the tabbed panes holds significant importance and plays a pivotal role in enhancing the
reusability and generality of the masked block. This section provides the ability to initial-
ize the masked block using MATLAB® code. It is important to note that all parameters
defined within the Parameters & Dialog interface are also available within this section.
This allows the initialization of the masked block to be customized based on the prop-
erties of these parameters, which are defined directly by the end-user. Such flexibility
enables the subsystem to vary in every aspect and can be tailored to meet the needs of
the designer.

On the other hand, the Icon & Ports section is primarily utilized to create a custom
icon for the block, which is displayed in the Simulink® model. This section also allows
users to define the block’s input and output ports and specify their properties, such as
dimensions and data types.

Finally, the Documentation pane serves as a platform to describe the behavior and
purpose of the masked block in detail. This section enables users to add comprehen-
sive information, including Description, which can be crucial while using the MATLAB®

command’s set_param.
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2.3 Stateflow Charts

Stateflow® is a MATLAB® tool that provide a graphical programming environment
based on finite state machines, i.e. dynamic systems that transition from one operating
mode (state) to another. With Stateflow® is possible to describe how MATLAB algo-
rithms and Simulink models respond to input signals, events, and time-based conditions;
all those features enable the system designer to easily develop supervisory control logics
and task management logics while having models that remain clear and concise, even as
the complexity of the system increases. The Stateflow® environment also supports testing
and debugging phases, considering various simulation scenarios, with methods for activity
animation and integrity control systems. Finally, this toolbox may generate code from
their own state machine.

Stateflow®, following an approach similar to the typical Simulink® block diagrams,
employs a state transition diagram composed of various objects organized in hierarchy.
To optimize designer needs, multiple strategies and tools may be employed; however, it
will be just explained in the following, which are the most important graphical objects of
this toolbox, as well as the most adopted components in the realisation and development
of the AFCS model.

Figure 2.5: Example of Stateflow® Chart

• States are a graphical Stateflow® object that may be active or inactive depending
on the logics of the diagram. Usually, a state contain a specific set of actions that
are executed when it become active. Those actions, depending on designer’s needs,
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may be very simple as updating existing variables or creating new ones, or they may
be more complex and invoke, for example, MATLAB® Functions.

When defining a state actions it is common practice to define when the state action
occur, by specifying one or more of the following [21] :

1. entry (abbr. en), if it only needs to be performed in the time step in which
the state changes from inactive to active.

2. during (abbr. du), if it is to be executed for each time step in which the state
is active, starting with the time step after the state has been activated

3. exit (abbr. ex ), if it only needs to be performed in the time step in which the
state changes from active to inactive.

It is possible to organize states in a hierarchical structure wherein a state referred
to as a Substate can only become active when its parent state is active. States that
have substates are commonly referred to as Superstates.

Once the hierarchy has been defined, it is important to recognise that each super-
state imposes a decomposition, which is unique for each of its substates, and that
defines their Decomposition of execution [24]. The decomposition can be either Ex-
clusive (OR) or Parallel (AND), identified in the graph by solid and dashed borders,
respectively. Exclusive decomposition is employed to represent mutually exclusive
operating modes, where only one substate can be active at each time step. On the
other hand, when a state has parallel decomposition, all substates operate at the
same time step, but it is crucial to define the proper Execution Order among those
substates.

For example, in Figure 2.5, a superstate and three substates are shown. The super-
state has a parallel execution with respect to the other substates that are not shown
in the Figure, but that make up the overall Stateflow® block: this is recognisable
by the dotted lines and the number in the top right-hand corner that identifies the
order of execution of that state. As for its substates, they have an exclusive execu-
tion, as shown by the solid lines on their border; also, by chance in this example,
all these substates are characterised by the entry state action.

• Transitions are Stateflow® objects that determine the activity or inactivity of a
state by connecting the latter, with one or more arrows (transitions), into or out of
itself, with one or more states.

To establish a criteria for switching between states, each transition arrow can be
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accompanied by one or more transition actions. These actions are identified by label
syntax and definition order, as demonstrated in Figure 2.6.

Figure 2.6: Transition Label [25]

There are four main types of transition actions that can be classified as follow:

1. Events (or Trigger) are objects that can activate actions in a parallel state
within a Stateflow® chart or in another Stateflow® chart. There are two types
of events, implicit and explicit. Focusing solely on the explicit events, i.e. those
declared by the user, they can be classified into three distinct categories [22] :

(a) Input events, when the event transmitted to a chart came from outside the
Stateflow® block.

(b) Local events, when the event may occur anywhere within the chart, but
is visible only within the parent object and its descendants. The level
of hierarchy visibility of those events may be specified through the Model
Explorer GUI; Visibility can be assigned according to specific needs, from
upper superstates to lower substates, providing a high level of flexibility
in modelling the logics.

(c) Exit events, when the event occurs within the Stateflow® chart but their
effects are transmitted outside of it.

It should be noted that events, unlike the other three transition actions de-
scribed in the following, need to be well defined in the Symbols Pane prior to
being used. Furthermore, as depicted in Figure 2.5, events can be identified as
distinct from other transitions by the absence of brackets and their orange color
if visibility is properly configured. It is evident that events must be triggered
somewhere, and one possible means of doing so is through Condition Actions
or Transition Actions, also illustrated in Figure 2.5.

2. Conditions are Boolean expressions that determine the occurrence of a transi-
tion. In transition label syntax, conditions must be enclosed in square brackets.
Logical operators can be employed to define conditions, and more complex con-
ditions can be specified by invoking Graphical Functions, Truth Table Func-
tions, MATLAB® functions, or Simulink® functions that return a numeric
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value.

3. Conditions Actions are actions specified in curly braces that are executed when
the condition guarding the transition becomes true, but before the destination
of the transition is determined to be valid.

4. Transition Actions are actions that differ from the previous ones in that they
are specified in curly brackets preceded by a forward slash and their execu-
tion occurs when the entire transition path is considered valid. Thus, in the
case where the transition is part of a transition path that consists of several
segments, the transition action is executed if the path reaches the destination
state or an end junction.

• Default Transitions are a special type of transition that lacks a source. It serves
to resolve ambiguity among two or more neighboring exclusive (OR) states by in-
dicating which state to enter firstly, as shown in the state at the top of the Figure
2.5.

• Junctions are representative of decision points, as they facilitate the creation of
transition paths consisting of multiple transition segments. Such paths can be es-
tablished, for instance, from a single source to multiple destinations or from several
sources to a singular destination. In such scenarios, any intermediate transitions ne-
cessitate the inclusion of a connective junction as either a source or destination. In
the Stateflow® environment, connective junctions can be utilized as the foundation
for constructing fundamental programming objects, such as for loops, while loops,
if-else statements, and similar constructs. To assist with the development of these
common flow chart patterns, the Stateflow® platform includes the Pattern Wizard
tool, an integrated feature designed specifically for this purpose [17].

Figure 2.7: Example of usage of Stateflow® Pattern Wizard



2| Simulink Tools for Flexible and Efficient System Design 31

• MATLAB® Functions are objects within Stateflow® that enable the creation of
algorithms in the MATLAB Editor while storing them inside the Stateflow® chart
itself. These functions are particularly useful when graphical representation using
charts is too restrictive, making it easier to directly implement MATLAB® code.
It is important to note that MATLAB® Function may access data not only from
the specified input and output data, but also from their parent. Therefore, it is
important to check the data properties to verify that the data is gathered and utilized
as expected. This can be done by opening in the Model Explorer the Stateflow®

containing the MATLAB® Function of interest: here, data properties can be viewed
and modified if necessary.

Figure 2.8: Data memory allocation in Statflow® [23]

One crucial data property is the scope field, which indicates the allocation of data
with respect to its parent and whose classification is shown in Figure 2.8. Addi-
tionally, users can modify data directly in the Stateflow® environment using the
Property Inspector tab, while another possibility for managing few data in charts is
through the Symbols Pane interface.

2.4 Code Generation

The Model-Based Design approach offers significant advantages for the development
of complex projects, including the ability to automate processes through the automatic
generation of code from system models. This approach greatly reduces development time
and minimizes the risk of errors. Indeed, in traditional system design, the need of manual
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programming is typically onerous and laborious, but the use of Simulink®, as a Model-
Based Design software, enables the creation of models that can be translated into C or
C++ code documents and executed on various platforms, including embedded processors.

Aligned with the methodology taken in the previous thesis [32], the current research
necessitates the development of a Simulink® model that is capable of being exported as
C++ code. This is vital to enable the future integration of the AFCS model into the
Flight Simulator of TXT e-solutions. In this regard, the current work builds upon the
practical methodology highlighted in [32] and aspires to construct a Simulink® model
equipped with all the essential features to be exported utilizing the Embedded Coder®

tool of Simulink®. To ensure that the model can be exported without any issues, the same
system design philosophy utilized in [32] is followed as closely as possible. Although this
approach may sometimes impose limitations on subsystem design, it provides a guarantee
about the safe export of the model.

Given the design strategy just outlined, the research goal exclusively focuses on devel-
oping the Simulink® model. Therefore, this section does not describe the features of the
Embedded Coder®, as it is not actually used in the present work but implicitly imposes
restrictions on it.

2.4.1 Time Step Issue

The time step is a parameter that determines the accuracy and efficiency of a simula-
tion, and it is dependent on the hardware platform (e.g. industrial control systems such
as programmable logic controllers (PLCs), Embedded systems such as microcontrollers
and field-programmable gate arrays (FPGAs), ecc.) on which the simulation software
is installed. Different hardware platforms operate at different frequencies, which means
that the time step may need to be adjusted to ensure that the simulation is accurate and
efficient for a specific application. Therefore, it is crucial that this parameter is easily
manageable directly in the simulation software.

In Simulink® environment, the time step pertains to the magnitude of time for which
the Simulink® model is executed and processed during each simulation step. Given its
relevancy, this parameter can be easily modified and accessed by the user through the
Solver section in the Model Settings interface of Simulink®. Although this operation is
straightforward remaining within the boundaries of Simulink®, during the transition to
the generated code, the management of the time step results much more restrictive.

Indeed, it is worth considering a simple Simulink® model, as depicted in Figure 2.9.
It is required that this model be highly customizable for the end-user and must also be
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exportable to C++ code. To meet these requirements, the model’s parameters must be
defined as Tunable, allowing them to be exported as Tunable as well.

Figure 2.9: Example Model for the time step issue

The simple Simulink® model shown in Figure 2.9 has only two parameters, namely the
Gain value k and the simulation time step dt. The latter parameter should be defined
within the Solver, after specifying that the simulation solver will have a constant sim-
ulation time step (Fixed-step). This setting is fundamental as in practical applications
different constant time step amplitudes may be used depending on specific hardware.
Following this, the numerical values for these parameters must be defined within the
MATLAB® Workspace.

Figure 2.10: Simulink® settings for Solver type and time step value

Prior to generating the code, it is necessary to configure the tunability of the parameters
and their storage class in the Optimization panel, as well as properly set up the Code
Generation panel.

The Inline and Tunable behaviors [11] are available for the parameters, and the user
must choose one. If the inlined behavior is selected, then the time step is replaced inline
within the code, which makes it impossible to parameterize it: the programmer would
have to modify it within the C++ solution, which is not feasible. Indeed, it is important
to note that the generated software should be managed as if it were being used by a
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customer who does not have a MATLAB/Simulink license, as it is purely a development
tool and not part of the final product. To achieve this, the time step and other custom
parameters in the system must be defined as Tunable.

Additionally, the configuration of how these Tunable parameters must be exported
in the C++ code is also necessary. Various solutions may be applied, but the most
convenient approach in this specific case may be to set the storage class to ImportedExtern
[26] [16]. Doing so allows the declaration of the Global variable in the generated file
filenameprivate.h when the code is exported. However, the assignment of the values
of those variables must be set externally using, for example, an external library. This
approach preserves the code structure and enables the user to go back to the Simulink®

model, change the parameter values, perform some tests, and then return to the exported
version of the C++ solution with an updated parameters list. Clearly, these parameters
must be properly allocated in an external file when saved from Matlab®/Simulink®.

Figure 2.11: Simulink® settings for parameters tunability and storage class

Figure 2.12: Simulink® settings for C++ code generation
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Finally, the C++ solution can be generated using the Embedded Coder® [13]. However,
as illustrated in Figure 2.13, an error occurs when attempting to generate code with the
aforementioned features.

Figure 2.13: Code Generation Error

2.4.2 Custom Solver Algorithm

The error is linked to the presence of a tunable parameter as a time step value in the
Fixed-step Solver. To overcome this problem, one practical solution is developed in the
previous work [32] and is also employed in the present thesis.

In practice, when simulating a dynamic system, i.e. computing its states at successive
time steps over a specified time span, Simulink® employs the Solver. The Solver applies
a numerical method to solve the set of ordinary differential equations that represent the
model and determines the time of the next simulation step. The Solver also satisfies the
accuracy requirements specified by the user while solving this initial value problem.

If the AFCS Simulink® model does not incorporate Library Browser blocks that use
the specified Solver time step for their task, the Solver ’s time step can be replaced with
an arbitrary numerical value. In such a scenario, when generating the code, only the file
ert_main.cpp would employ the Solver time step information. However, this file, which
defines the necessary statements for initializing, executing, and terminating the model, is
not essential for integrating the generated code within a real flight simulator system as it
already has its own configurations file, among which, also the flight simulator time step
value is present.

However, developing a control system without using any component that requires the
usage of the Solver is impossible. Therefore, every time the Simulink® model needs a
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block that employs the usage of the Solver, the block is rebuilt from scratch. Indeed,
the mask contents of various Library Browser blocks can be accessed by the designer,
making it easier to create a customized version of them. The custom version is required
to perform the same task as the standard block while also having the time step as a
custom parameter, assignable from an external environment.

In order to rebuild the standard Library Browser blocks that cannot be used in the
AFCS model, it is essential to choose a numerical algorithm for performing integration.
This algorithm may be employed to rebuild standard Simulink® blocks like PID con-
trollers, filters, and transfer functions.

In general, various numerical integration schemes are available in the literature, each
with its own distinct properties that may be more or less suitable for a given application.
For this thesis, the same algorithm utilized in the previous work [32] is adopted to perform
numerical integration since it satisfies the same application requirements.

Runge-Kutta 4-th Order

Consider the following initial value problem:ẋ(t) = f(t, x(t)), t ∈ [t0, T ],

x(t0) = x0,

a numerical solution is able to generate a sequence of values {xn}Nn=0 such that, at time
tn, xn is an approximation of the exact solution:

xn ≈ x(tn) ∀n.

The well-known family of Runge-Kutta methods are single-step, that is, the algorithm
calculate xn+1 through a continuos function that involves the step-size hn := tn+1− tn and
the pair of values (tn, xn).
The idea of the German mathematicians Runge and Kutta was to develop new schemes
that were able to extend the classic forward Euler method, providing also greater accuracy.
Since the advent of digital computers, researchers contributed to build the theory around
Runge-Kutta methods and to widen this family of numerical solvers. Indeed, early works
proposed explicit Runge–Kutta methods, but implicit ones have been studied and now
are included in the same class.
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The recursive equations of a Runge-Kutta method with s stage is:
xn+1 = xn + hn

s∑
i=1

biki, n = 0, . . . , N − 1,

ki = f(tn + hnci, xn + hn

s∑
j=1

aijkj), i = 1, . . . , s,

(2.1)

by aij, bi and ci are denoted, respectively, the elements of a matrix A ∈ Rs×s, vector
b ∈ Rs and vector c ∈ Rs; generally expressed via the Butcher tableau as in the following
grid.

c A

bT

When the method is explicit and the step-size h is fixed, the system (2.1) is substituted
by: 

xn+1 = xn + h
s∑

i=1

biki, n = 0, . . . , N − 1,

k1 = f(tn + hc1, xn),

ki = f(tn + hci, xn + h
i−1∑
j=1

aijkj), i = 2, . . . , s;

(2.2)

therefore, for the computation, is necessary to define just the lower-triangular part of
matrix A.
One of the most famous and commonly used Runge-Kutta method has four stage (RK4)
because it uses four function evaluations every step. It is characterized by the following
Butcher tableau:

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 2/6 2/6 1/6
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and the resulting algorithm is:

k1 = f(tn, xn),

k2 = f(tn +
h

2
, xn +

h

2
k1),

k3 = f(tn +
h

2
, xn +

h

2
k2),

k4 = f(tn + h, xn + hk3),

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4),

tn+1 = tn + h.

It is important to highlight that RK4 satisfies a property that holds for all Runge-Kutta
algorithms and guarantees the consistency of the methods, that is:

s∑
i=1

bi = 1.

Moreover, RK4 has order of accuracy 4, indeed the truncation error is O(h4). It has been
proven [2] that one, two, three, four stages yield methods of order one, two, three, and
four, respectively. But above order 4, it is no longer possible to obtain order s with just
s stages, hence the addition of another stage does not produce an effective improvement
in terms of accuracy; this feature makes RK4 especially convenient.
However, higher order method are still remarkable when considering stability region. The
latter is defined as the set of points in the complex plane for which the stability function
R(z) has magnitude bounded by 1: {z ∈ C : |R(z)| ≤ 1}. The expression of stability
function for RK4 is:

R(z) = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4

and the stability region is shown in figure 2.14.
In the present analysis, the function f depends linearly only by the state vector x and

is embedded in a linear time-invariant SISO system of the form:ẋ = Ax+Bu

y = Cx+Du
.
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Figure 2.14: Stability region of explicit Runge-Kutta methods with order 4

The application of RK4 to this system produce the following algorithm:

k1 = Axn +Bun,

k2 = A(xn +
h

2
k1) +Bun+ 1

2
,

k3 = A(xn +
h

2
k2) +Bun+ 1

2
,

k4 = A(xn + hk3) +Bun+1,

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4),

yn+1 = Cxn+1 +Dun+1,

where un+ 1
2

is approximated with the mean value between un and un+1. Lastly, the
step-size h need to be chosen so that, ∀λ ∈ σ(A), hλ belongs to the stability region
{z ∈ C : |R(z)| ≤ 1}.

The algorithm can be stored in a MATLAB function , as shown in Figure 2.15, allowing
for easy access to the numerical integration scheme whenever it is needed. More details
regarding the application of this algorithm are provided in Section 3.3.2.
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Figure 2.15: RK4 MATLAB function

Code Generation Problem: Solved

Regarding the error in Figure 2.13, the Simulink® model used to generate the code
has a standard Integrator block that employ the time step information declared in the
Solver at each step. To resolve the code generation issue, it’s necessary to create a custom
version of this block that uses the externally provided time step value and performs the
integration using the RK4 Method explained earlier. Details on creating the custom
block are provided in the following section. For now, it’s just worth noting that all code
generation settings remain the same, except for the ability to set randomly both the time
step size and the Solver numerical scheme.

Figure 2.16: New Simulink® settings for Solver type and time step value

Finally, requesting code generation provides a solution without any errors. As shown
in Figure 2.17, this solution allows declaring the time step variable without specifying
its numerical value, which must be provided from an external source, as requested in the
Storage Class definition.
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Figure 2.17: Succesful Code Generation: Tunable Variable Declaration

The custom RK4 algorithm that performs the integration is stored in the filename.cpp
file. As depicted in Figure 2.18, the numerical scheme uses the custom time step to carry
out the integration, effectively resolving the issue associated with the Tunable time step.

Figure 2.18: Succesful Code Generation: RK4 Algorithm
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The modeling phase in the model-based approach is a critical component of the devel-
opment process. The phase involves creating a complex model that represents the real
system using several blocks connected to each other on different hierarchical layers. It
also involves identifying the system’s inputs, outputs, states, and transitions, as well as its
internal and external interfaces. The model must ensure that the real behavior, structure,
and interactions with the environment are as closely represented as possible. Clearly, the
accuracy of the model increases with a more detailed modeling, but this decreases its
efficiency during simulation and increases its complexity. Therefore, finding the right
trade-off among these considerations is crucial during the modeling phase. Above all,
accurately representing the system’s entry requirements and constraints are key features
of successful modeling.

Now, by focusing on this application, the primary aim of this thesis is to develop an
AFCS model with a flexible structure that can be quickly adapted to any helicopter system
architecture. In order to meet those requirements, the development of the AFCS model
must include:

• the creation of custom blocks with the highest possible level of system modularity,
allowing for the reuse of small but key pieces of models in future AFCS developments.

• the modeling of generic blocks with the highest possible level of customization in
order to concede the parametric definition of helicopter AFCS variables.

Therefore, this chapter presents the structure of each Custom Library block, its main
purpose, and the Simulink® tools utilized to build it up.

3.1 Push Button Block

Generally, in a helicopter’s Autopilot Control Panel, such as the one depicted in Figure
1.7, there exist numerous push buttons and rotary knobs, as well as other triggering
devices or switches, depending on the particular helicopter under analysis. Given that
push buttons constitute the most fundamental triggers that are invariably present in the
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APCP, this study only consider such types of switches as they enable the most basic
function of the APCP, i.e., the engagement or disengagement of flight modes.

The purpose of the Push Button Block is to enable the detection of a logical event
that occurs when a button is pressed in the helicopter’s APCP. As the act of pressing
the button is not instantaneous, but rather occurs over a finite period of time, the input
from the user can be considered a Boolean history where a value of 1 is assigned when
the button is pressed and 0 otherwise. However, it is only necessary to detect the event
of the button being pressed and not the entire history, since this event is the key factor
for the engagement or disengagement of modes in the Modes Logics Stateflow. Thus, the
Push Button Block has been designed to produce an output that reflects only the button
press event, with a value of 0 at every time step except for those when the input switches
from 0 to 1, but not the vice versa.

Figure 3.1: Push Button Block Structure

Figure 3.2: Push Button Block Example Application
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3.2 Modes Logics Stateflow®

Autopilot upper mode transitions may differ depending on the helicopter model. Ex-
amining flight manuals from various manufacturers, common operating characteristics of
the logics were identified along with some distinguishing features. Generally, the logics
that identify those transitions can be categorized into two main groups:

• Manual engagement/disengagement, in which the pilot selects the status of an AP
mode manually through the APCP

• Automatic engagement/disengagement, in which the software automatically switches
the status of an AP mode based on certain factors, such as:

1. the flight conditions in which the helicopter is operating (e.g., airspeed, alti-
tude, attitude limitations, etc.)

2. the compatibility of different modes to be simultaneously activated (e.g., the
autopilot cannot engage two upper modes that operate on the same axis)

3. the disengagement of a specific mode (e.g. some modes have a backup mode)

4. the loss of an actuator on a specific axis

5. the loss of a specific sensor data

6. The presence of a Reset Function in the AP, which can trigger the deactivation
of the current modes and the activation of the traditional upper modes (IAS,
HDG, ALT) all at once.

In creating the automatic engagement/disengagement logics, it has been decided not to
consider the loss of an actuator or specific sensor data as a discriminating factor. These
reasons are considered secondary and handled differently, depending on the selected he-
licopter type. Additionally, the presence of the Reset Function is not taken into account
since it is optional and varies depending on the helicopter model. Instead, the design
objective is to allow the transition logics to cater for various helicopter models without
being specific to any of them. To this end, logics are created with the ability to param-
eterise certain discriminating input parameters that may vary according to the type of
helicopter considered.

To develop a dynamic system capable of transitioning from one operating mode to
another, state machines are considered the optimal tool. As a result, the Modes Logics
Block has been developed using Stateflow®, as illustrated in Figure 3.3.
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Figure 3.3: Modes Logics Stateflow® Block

By accessing the mask of this block, the Symbols Pane interface depicted in Figure 3.4
can be accessed. Within this pane, it is possible to clearly view and manage:

• Inputs, consisting of Boolean values associated with the activation/deactivation of
an APCP button, measurements of certain helicopter dynamical parameters, and
static parameters that define mode thresholds.

• Outputs, which are Boolean values dependent on the status of a specific mode on a
particular axis.

• Local events occurring within the state that are triggered elsewhere.
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Figure 3.4: Modes Logics Stateflow® : inputs (left), outputs (middle), events (right)

Instead, regarding the core structure of the Modes Logics Block, it is possible to divide
the state transition diagram in three sections:

1. in Figure 3.5, the AP’s power-off status. When the helicopter is switched on, first
the AFCS is switched off and only after pressing the AP button on the APCP can
the AFCS be switched on. In addition, if the power-on state of the AP is activated,
pressing the AP button turns the AFCS off.

Figure 3.5: Modes Logics Stateflow® : AP off

2. in Figure 3.6, the management states of complex modes, which occur, of course, if
the AP is engaged. As explained in Chapter 1, certain AP modes can be engaged on
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different axes (e.g. ALT or HDG), and some require the engagement of other modes
(e.g. HOV). Due to the complexity of these modes, they are managed separately.

Specifically, managing multi-axis modes separately helps to determine the operating
axis and also facilitate the switching among axes during simulation. This approach
also provides better visualization of the mode transition on different axes. Instead,
managing separately the logic of modes that require the engagement of multiple
modes results in a more concise decision logic rather than defining each condition
on a specific axis.

It is worth noting that the states depicted in the figure below are sub-states of the
AP_ON superstate and are decomposed in a Parallel fashion. During simulation,
all of these states are executed within a single time step and must follow a specific
Execution Order. Specifically, these states must be executed before the transition
diagram reaches the states managing mode engagement on each helicopter axis.
This is essential to determine the status of these complex modes beforehand and to
trigger their activation or deactivation conditions.
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Figure 3.6: Modes Logics Stateflow® : AP on, Management States

3. in Figure 3.7, the states managing mode engagement on each helicopter axis, which
occur, of course, if the AP is engaged. The helicopter axes include the pitch, roll,
yaw, and collective axes, and a mode can be engaged for each axis based on the
pilot’s needs.

During each time step, the transition logic is evaluated, and child states of the same
axis superstate (e.g. ALT,ATT, HOV,IAS within AP_ON_PitchAxis) may switch
among themselves or remain in the same state as the previous time step. If a switch
occurs from one state to another, the Boolean logic specified in the new state is
evaluated as an entry action.

It is also worth noting that these states are decomposed in a Parallel manner, and
the Execution Order has been specified to occur after the management of complex
modes, as mentioned earlier.
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Figure 3.7: Modes Logics Stateflow® : AP on, Axis States

3.3 PID Block & Anti-windup Block

Following the analysis of PID controllers in Section 1.2.2, a two degree of freedom PID
Controller has been chosen as the appropriate controller for the generic AFCS due to
its superior customization options compared to the standard PID Controller structure.
Indeed, by simply setting b=1, c=1, the standard PID configuration can be restored.

The PID Controller (2DOF) block is readily available in the Simulink® library, but it
uses the time step information declared in the Solver options to compute the integration.
Thus, in order to treat this information as a Tunable parameter and define the time step
from the block’s mask, it is necessary to recreate the block from scratch. Additionally,
the PID Controller (2DOF) library block offers the option for the user to specify an anti-
windup strategy, either clamping or back-calculation. Hence, the custom block is designed
to have a fixed structure with a pre-implemented clamping anti-windup method for cases
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of actuator saturation. However, the anti-windup block has been created separately and
added to the personal library as a stand-alone block, which can be reused whenever
required. This approach offers more flexibility and allows for easier integration of other
anti-windup techniques into the custom PID block in the future. The Figure below
displays the two blocks created.

Figure 3.8: PID-2DOF Custom Block and Clamping Anti-Windup Custom Block

Regarding the content of those masks, the Figure 3.9 shows the structure of the custom
PID, conversely, the figure 3.10 shows the structure of the conditional integrator anti-
windup strategy.

Figure 3.9: Structure of the PID-2DOF Custom Block
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Figure 3.10: Structure of the Clamping Anti-Windup Custom Block

3.3.1 Custom PID Mask Editor

As shown in the Figure below, a mask interface is provided with the custom PID block
to facilitate its customization.

Figure 3.11: Mask of the PID-2DOF Custom Block
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The mask interface can modify the number of displayed parameters based on the logic
defined in the Callback of the Mask Editor. The visibility of the PID gains depends on
the Controller Type specified in the mask, where an integer value of 1 corresponds to P,
2 to PI, 3 to PD, and 4 to PID.

Figure 3.12: Callback property in the Mask Editor of the PID-2DOF Custom Block

Additionally, the Initialization panel shown in Figure 3.13 has been thoughtfully crafted
to enable accurate naming customization for the Saturation Value. This is an essential flag
that must be consistently specified based on the particular application. For instance, if
the PID controller supplies control input to the AFCS Pitch actuator, then the Saturation
Value should be assigned as ’Pitch’.

Furthermore, the Initialization interface plays a vital role when using the Simulink®

Control System Tuner. If the custom PID block is present on the linearization path, it
would not be linearized correctly; more information on this topic can be found in the
previous thesis [32]. However, by properly specifying the linearization of this block in
the Initialization interface, it is possible to circumvent this issue and still leverage the
capabilities of the Simulink® Control System Tuner tool.
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Figure 3.13: Initialization of the Mask Editor of the PID-2DOF Custom Block

3.3.2 Custom PID Integrator and Derivative Transfer Functions

It is important to note that the RK4 algorithm presented in Section 2.4.2 must be
implemented within the custom PID block because an integration scheme is required
in order to perform the derivative and integration actions of the PID controller. The
Stateflow® blocks in Figure 3.9 are responsible for carrying out these tasks. Indeed, while
Stateflow® blocks are commonly used for modeling state machines [32], they can also
be utilized to create an environment where custom numerical algorithms can be applied
according to the specific requirements of the problem.

In order to recreate both the integral and derivative actions of the PID controller, it
is necessary to consider the Laplace domain Standard form of the 2-DOF PID controller,
shown in Equation 3.1.
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U = Kp

(bYsp − Y ) +
1

Tis︸︷︷︸
Integrator TF

(Ysp − Y ) +
Tds

Td

N
s+ 1︸ ︷︷ ︸

Derivative TF

(cYsp − Y )

 (3.1)

Finally, before using the algorithm in Figure 2.15, a transformation from the integral
and derivative transfer functions into their respective state-space representations must be
performed.

From Transfer Function to State-Space

Although the transformation from transfer function to state-space model is not unique,
it is possible to obtain the state variables in the form of phase variables [30]. The state
variables are phase variables where each subsequent state is defined to be the derivative
of the previous state variable.

Consider a system having input u(t) and output y(t) described by the n-th order linear
differential equation:

dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · ·+ a1

dy(t)

dt
+ a0y(t) = b0u(t) (3.2)

A convenient way to choose the state variables is to use the output y(t) and its n − 1

derivatives as the state variables. These are called phase variables:



x1 = y

x2 = dy
dt

...

xn = dn−1y
dtn−1

(3.3)

Differentiating both sides of the system (3.3) yields:

ẋn =
dny

dtn
(3.4)

Denoting as ẋi = dix
dti

, the system (3.3) can be written also as:
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x1 = y

x2 = dy
dt

= dx1

dt
= ẋ1

x3 = d2y
dt2

= dx2

dt
= ẋ2

...

xn = dn−1y
dtn−1 = dxn−1

dt
= ẋn−1

(3.5)

Substituting the definitions 3.3 and 3.4 into 3.2 it results:

ẋn + an−1xn + · · ·+ a1x2 + a0x1 = b0u (3.6)

The n-th order differential equation 3.2 can be converted to a system of n first-order
differential equations by using the definitions of the derivatives from 3.5 and incorporating
the ẋn obtained from 3.6:



ẋ1 = x2

ẋ2 = x3
...

ẋn−1 = xn

ẋn = −a0x1 − a1x2 − · · · − an−1xn + b0u

(3.7)

In a matrix-vector form, equations 3.7 become:



ẋ1

ẋ2

ẋ3
...

ẋn−1

ẋn


=



0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...
0 0 0 0 · · · 1

−a0 −a1 −a2 −a3 · · · −an−1





x1

x2

x3
...

xn−1

xn


+



0

0

0
...
0

b0


u (3.8)

The phase-variable form of the state equation is represented by equation 3.8. This form
is characterized by the pattern of 1’s above the main diagonal and 0’s in the rest of the
state matrix, except for the last row that holds the coefficients of the differential equation
written in reverse order.
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The output equation in a vector form is:

y =
[
1 0 0 0 · · · 0

]


x1

x2

x3
...

xn−1

xn


+ 0 · u (3.9)

From the Integrator TF to its State-Space

Given the transfer function:

H(s) =
Y (s)

U(s)
=

1

Tis
=

1
Ti

s
(3.10)

Rearranging equation 3.10, one can obtain the differential equation in the form pre-
sented in equation 3.2 by taking the inverse Laplace transform.

sY (s) =
1

Ti
U(s) ⇒ dy

dt
=

1

Ti
u (3.11)

Given the simplicity of this case it is straightforward to obtain the state-space repre-
sentation by simply imposing:

x = y ⇒ ẋ =
dy

dt
= ẏ (3.12)

The definition above can be substituted into eq. 3.11 to obtain the state equation and
output equation: ẋ = 1

Ti
u

y = x
(3.13)

Hence, the state-space representation is obtained by imposing:

A = [0] B =

[
1

Ti

]
C = [1] D = [0] (3.14)

Therefore, based on the aforementioned results, by properly setting the Stateflow®
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block and recalling the RK4 algorithm implemented in the Matlab Function, one can
easily obtain the Simulink® implementation, as shown below.

Figure 3.14: PID Custom Integrator obtained through Stateflow®

It is important to notice that during the implementation of this custom integrator, as
well as the others custom blocks that require the RK4 algorithm, it is usually necessary
to allow visibility and accessibility of certain variables declared within the mask of the
subsystem considered. In this case, for instance, the variables needed for the custom
integrator that are externally defined in the PID_ClampingAwu custom block mask, are
the parameters named kind, dt and Ti. Therefore, recalling the Figure 2.8, those variables
must be specified in the Model Explorer pane, with the Scope property set to Parameter,
as shown below.

Figure 3.15: PID Custom Integrator data properties settings
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From the Derivative TF to its State-Space

Given the transfer function:

H(s) =
Y (s)

U(s)
=

Tds
Td

N
s+ 1

=
Ns

s+ N
Td

(3.15)

Since in this case the equation 3.15 is still a simple first order TF having a polynomial
term at numerator instead of a constant term at numerator, as in the previous case,
the transformation to the state-space representation must be handled differently [30]. In
particular, from the eq. 3.15, it is necessary to separate the transfer function into two
cascaded transfer functions, in which the first is the denominator and the second one is
just the numerator. Also by performing the inverse Laplace transform one may obtain:

X(s)

U(s)
=

1

s+ N
Td

⇒ ẋ+
N

Td
x = u ⇒ ẋ = −N

Td
x+ u (3.16)

Y (s)

X(s)
= Ns ⇒ y = Nẋ ⇒ y = −N

2

Td
x+Nu (3.17)

Hence, the state-space representation is obtained by imposing:

A =

[
−N

Td

]
B = [1] C =

[
−N

2

Td

]
D = [N ] (3.18)

The Simulink® implementation is shown in the Figure below.

Figure 3.16: PID Custom Derivative obtained through Stateflow®
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3.4 SAS Block

The objective of this custom block is to mimic the behavior of a generic Stability
Augmentation System. The block’s structure is depicted below.

Figure 3.17: Structure of the SAS Custom Block

In this structure, since the P-PI controller is in its Parallel form:

U = Kp(Ysp − Y ) +
Ki

s
(Ysp − Y ) (3.19)

the Integrator Stateflow® of this block must simulate the transfer function H(s) = 1
s
,

hence its state space reduces to:

A = [0] B = [1] C = [1] D = [0] (3.20)

It is also important to note that a portion of this structure is utilized in the majority
of the developed custom blocks: the Switch block that uses the pilot’s maneuver as a
discriminant. In this case, depending on the boolean values of the force trim and of
the out of detent of the specific axis where the SAS is functioning, the controller may
switch from a P-controller to a PI-controller or vice versa. Specifically, if the pilot is
maneuvering the helicopter, the controller is only proportional to prevent a decrease in
the control augmentation provided by the pilot.
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As for the mask of this block, its GUI is visible in Figure 3.18.

Figure 3.18: Mask of the SAS Custom Block

To provide a quick customization of the block and thus having a single SAS custom
block enabling the creation of SAS for pitch, roll and yaw axis, it is necessary to specify
the nomenclature of the block through the fields Axis and Angular Rate (e.g. Axis =
’Roll’, Angular Rate = ’stP’).

Indeed, as shown in Figure 3.19, the nomenclature specification allows for the name
assignment customization within the structure of the SAS custom block.
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Figure 3.19: Initialization of the Mask Editor of the SAS Custom Block

3.5 Mode Setpoint Block

This custom block, together with the Mode δCommand/δSetpoint block, are the most
fundamental and generic blocks created for the AFCS. By properly customizing their mask
and combining these two blocks, all upper/lower modes within the AFCS of the current
work can be created. To achieve such modularity and generality of these blocks, careful
consideration of the nomenclature at each hierarchy level of the AFCS has been necessary,
as well as taking into account every mode characteristic and making the distinguishing
feature of each mode as generic as possible.

Since the pilot can maintain a specific datum characteristic of the particular mode in
most of the lower/upper modes of the helicopter autopilot, the Mode Setpoint block is
designed to manage the setpoint value for each of those modes, based on the pilot’s actions
in the cockpit. The structure of this block is illustrated in Figure 3.20 and its function is
explained as follows:
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1. The Mode Setpoint block takes the characteristic variable of the specific mode as
input.

2. The Switch block determines the setpoint assignment based on its discriminant
Boolean value in input:

• When the discriminant is equal to 1, the setpoint coincides with the current
measured variable input.

• When the discriminant is equal to 0, which only happens when the pilot is
not using the force trim (hence, its Boolean is 0) and the specified mode is
correctly engaged (hence, its Boolean is 1), the setpoint may differ from the
current value of the variable, depending on the pilot’s actions on the beeptrim
controlling that specific mode.

3. The Mode Setpoint block outputs the correct setpoint of the specific mode on a
specific axis.

Figure 3.20: Structure of the Mode Setpoint Custom Block

Consistent specification of nomenclature is essential, depending on the properties of the
mode. The mask parameters also include the functioning rate of the time step and the
specific mode beep trim’s functioning rate, as illustrated below.
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Figure 3.21: Mask of the Mode Setpoint Custom Block

The mask’s Initialization interface provides the usual method for ensuring the correct-
ness of nomenclature assignment.

However, it should be noted that some modes may be engaged on different axes based
on the control logics outlined in Section 3.2. As a result, it is necessary to maintain the
same setpoint value regardless of the axis on which the mode is engaged. For instance,
suppose the ALT Mode is engaged on the Pitch Axis and then the control logics switch
it to the Collective Axis after the IAS Mode engagement: in this case any discrepancy
between the setpoint values in the ALTPitchSetpoint block and the ALTCollectiveSetpoint
block could result in improper setpoint management and potentially incorrect autopilot
behavior. Consequently, for these particular modes, the Initialization interface shown in
Figure 3.22 includes a specific sequence of commands that enables the structure in Figure
3.20 to modify its assembly and adapt to the behavior of those modes. For instance, in
the case of the ALT Mode, the NOT block would receive input from two From blocks,
namely the ALTPitchLogic and the ALTCollectiveLogic, instead of just one.
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Although there may be other methods to handle this problem, this particular approach
has been chosen to ensure that the block’s modularity and genericity are maintained at
the highest level.

Figure 3.22: Initialization of the Mask Editor of the Mode Setpoint Custom Block
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3.6 Mode δCommand/δSetpoint Block

As mentioned in the previous paragraph, this custom block is a fundamental component
in developing each mode of the AFCS. To create this block, the same building strategy
employed fot the Mode Setpoint block is also applied here. Additionally, a proper nomen-
clature assignment is utilized to ensure a high level of modularity and generality. This
block functionalities vary based on the user’s customization in the mask GUI, which may
be depicted in Figure 3.23.

Figure 3.23: Mask of the Mode δCommand/δSetpoint Custom Block

This block has two distinct purposes, depending on the specification entered in the
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Mode Type field of the mask. Indeed, during the development of the AFCS it was evident
that the two different subsystems needs to rely on the same structural block configuration
illustrated in Figure 3.24, but they require different nomenclature settings. To resolve
this issue, a decision is made to consolidate them into a single, more versatile block.

Figure 3.24: Structure of the Mode δCommand/δSetpoint Custom Block

Going into detail, this block can perform the following two tasks:

1. if the Mode Type specified is 1, this block functions as a Mode δCommand block,
which is essential for the ATT mode to operate. Its task is to compute the command
variations through a PID controller having as a setpoint the desired attitude imposed
on the ATT of a specific axis. Furthermore, if this block is used for the ATT mode
on the yaw axis, its structure changes, and a new parameter in the mask appears.
Furthermore, among the upper modes, only the collective modes employ the Mode
δCommand block to function, as they don’t rely on ATT during their functioning.

2. if the Mode Type specified is 2, this block is instead used as a Mode δSetpoint block.
This second kind of function is fundamental for every upper modes. Indeed, since
an upper mode engaged on a specific axis requires the ATT mode on the same axis
to function, the purpose of this block is to determine the setpoint change of the
ATT given a specific activated upper mode.

Suppose for instance the IAS mode engaged in the AFCS; in this case, depending on
the error between the reference and the current Indicated Airspeed, a PID controller
computes the variation of Theta required to achieve null error. The Mode δSetpoint
block is responsible for this task when customized for the IAS mode. However, this
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is just the setpoint variation, since in order to obtain the correct setpoint value for
the ATT of the pitch axis, the value obtained must be added to the current value
of Theta.

Furthermore, as already seen for the Mode Setpoint custom block, also in this case a
Switch block determine the value of the δCommand/δSetpoint based on its discriminant
Boolean input. Specifically:

• when the discriminant is equal to 0, the δCommand/δSetpoint is 0 as well.

• when the discriminant is equal to 1, which only occurs when the pilot is not using
the force trim (hence, its Boolean is 0), the command is not out of detent (hence,
its Boolean is 0), and the specified mode is correctly engaged (hence, its Boolean is
1), then δCommand/δSetpoint corresponds to the output of the PID controller.

It is worth mentioning that the Figure 3.24 shows that the PID 2DOF custom block
is nested inside the Mode δCommand/δSetpoint custom block. However, it is possible to
define the parameters of the PID 2DOF custom block without accessing the mask of this
custom block. By simply specifying the Controller Type field of the mask in Figure 3.23,
along with the time step and controller gains, one can directly pass those parameters to
the PID 2DOF custom block. It is important to note that this result is always achievable
when dealing with nested blocks, provided that the parameters are defined through the
Promote control present in the Parameters & Dialog interface in the Mask Editor of the
custom block.

Moreover, the mask GUI of the Mode δCommand/δSetpoint custom block must be
filled with the correct nomenclature, depending on the block’s purpose. The mask’s
Initialization interface allows as usual for this feature, as shown in Figure 3.25.
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Figure 3.25: Initialization of the Nomenclature of the Mode δCommand/δSetpoint Cus-
tom Block
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On the other hand, as depicted in the Figure 3.26, the mask’s Initialization interface
is necessary to manage also the special case in which this custom block is employed
for the ATT on the yaw axis. Indeed, this mode requires an additional check on the
helicopter’s current Indicated Airspeed, which must not exceed a fixed threshold. This
check is necessary because the TC Mode, which works for the yaw axis, may be active
above this threshold, and in such cases, the ATT on the yaw axis must be turned off since
the two AP systems cannot be engaged simultaneously in the AFCS.

Figure 3.26: Initialization of the adjustments occurring when the Mode
δCommand/δSetpoint Custom Block is used for the ATT on the yaw
axis

Finally, since some fields of the mask GUI of this custom block may be useless to be
shown in some configurations, namely the various controller parameters as well as the
threshold that characterise the condition imposed only for the ATT on the yaw axis, the
visibility of the parameters of the mask GUI of this custom block must be properly set as
shown below.
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Figure 3.27: Visibility of the Callback property in the Mask Editor of the Mode
δCommand/δSetpoint Custom Block
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3.7 TC Block

All of the AFCS lower and upper modes can be developed by utilizing the SAS custom
block, the Mode δCommand/δSetpoint custom block, and the Mode Setpoint custom block.
Therefore, the only missing system in the current work’s AFCS architecture is a custom
block able to model the Turn Coordinator behaviour.

The TC custom block shares some structural similarity with the Mode δCommand/δSetpoint
custom block. However, due to the Turn Coordinator’s intrinsic functionalities, ad-
ditional logical conditions must be added to the Switch block, compared to the Mode
δCommand/δSetpoint custom block. As a result, the TC custom block is only used once
in the creation of the AFCS model and is the least generic block created. Nevertheless,
it remains a highly customisable block, like all the other blocks developed. The structure
and mask of this custom block are shown in Figures 3.28 and 3.29, respectively.

Figure 3.28: Structure of the Turn Coordinator Custom Block
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Figure 3.29: Mask of the Turn Coordinator Custom Block

3.8 Saturation Block

The Saturation Block is a custom block created to limit the input signal to the upper
and lower saturation values set by the user. Additionally, it provides the necessary inputs
for the Anti-Windup custom block by means of GoTo blocks. The images below display
the structure of this block, along with the mask GUI and the Initialization interface
required for naming conventions.

Figure 3.30: Structure of the Saturation Custom Block
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Figure 3.31: Mask of the Saturation Custom Block

Figure 3.32: Initialization of the Saturation Custom Block
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4| AFCS Controllers Tuning

This chapter aims to present a methodology for tuning the controllers of an automatic
flight control system in order to address the control requirements of a highly nonlinear
helicopter dynamics model. The AFCS being referred to is the one that can be assembled
using the custom blocks outlined in the preceding chapter.

In this regard, it is worth mentioning that different levels of certification exist, depend-
ing on the type of helicopter and the level of accuracy required by the flight simulator.
These levels are determined by regulatory authorities such as the FAA and the EASA.
The level of accuracy is determined by several factors, including the replication of the
cockpit environment and flight performance. For this reason, being the aim of the present
work the development of a generic AFCS, then also the tuning process of the controllers of
the AFCS must allow custom specification of requirements and performance goals which
can vary depending on the specific rotorcraft.

Another aspect to consider is that the tuning phase for those kind of applications is
typically not carried out in real-time during the simulation, as flight simulators have
a fast refresh rate of typically 60 Hz to 120 Hz to ensure smooth movement of the heli-
copter during the flight simulation. Real-time tuning would be computationally expensive.
Therefore, in the current work, the tuning of the controllers is accomplished in an external
script.

4.1 Helicopter Model

To perform the tuning process of the AFCS controllers, a suitable helicopter model
must first be selected. The helicopter model used in this thesis is a twin-engine light
utility helicopter model provided by TXT e-solutions. For the validation phase of this
work, TXT e-solutions also provided the possibility to extrapolate data directly from the
same helicopter FFS Level D.

Obviously, a generic certified helicopter full flight simulator employs a complex and
highly nonlinear flight model to recreate the behavior of the simulated helicopter. The
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detailed description of how this model works is completely beyond the scope of this thesis.
However, a brief descriptive explanation regarding the functioning of a generic flight
simulator is given in the following in order to understand where the model employed for
the tuning process comes from.

4.1.1 Nonlinear Model

The mathematical modeling of helicopter flight behavior presents several challenges as
the vehicle is a complex arrangement of interacting subsystems, as illustrated in compo-
nent form in the Figure below [5].

Figure 4.1: Helicopter generic subsystems decomposition
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Therefore, a convenient and efficient strategy in the mathematical modeling of such a
complex system may be to split the complete model in two parts:

1. the generic modules that are characteristic of each helicopter model.

2. the specific subsystems (e.g. rotor module, engine module, aerodynamics module)
characteristic of the particular helicopter model.

This distinction is particularly useful in practice as different subsystems may be mod-
eled or not depending on the aircraft design and configuration. However, a highly rec-
ommended approach to developing a mathematical model is to employ the principles of
modularity and standardization, as it provides significant efficiency and maintainability
benefits. When using a modular approach, it is necessary to define information interfaces,
such as specifying which input is required for each module or defining the information
that each module should share with external modules. Figure 4.2 below depicts a rough
organizational model.

Regarding the division of modules outlined at the beginning, the Force & Moment
Summation module, the Equations of Motions module, and the Environment module
(which provides air properties throughout the simulation) represent the core modules
for any simulation, as they are generic to all types of helicopters. On the other hand,
properly modeling each determinant helicopter subsystem is crucial to assess the total
forces and moments acting on the aircraft center of gravity. Indeed from their evaluation,
it is possible to retrieve from the equations of motion the state variables of the system
(as well as numerous ancillary computations) [33].

Figure 4.2: Rough Organization of an Helicopter Math Model

Therefore, the core module of each helicopter model is usually the module containing
the equations of motion. In this regard, must be noted that usually forces and moments
are evaluated in a body-fixed axes system that centers at the aircraft’s center of mass and
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is oriented at an angle relative to the principal axes of inertia. In this axes system, the
x-direction points forward along a reference line of the helicopter’s fuselage. Formulating
the equations of motion involves the application of Newton’s laws of motion, which relate
the applied forces and moments to the resulting translational and rotational accelerations.
Hence, the resulting equations of motion in the 6 DOF Rigid-Body model of helicopters,
which includes three translational and three rotational degrees of freedom, consist of the
Forces Equation 4.1 and the Moment Equations 4.2. The steps required to formulate this
system of equations are not included for brevity but can be found in [5].


u̇ = −(wq − vr)− g sin θ + X

Ma

v̇ = −(ur − wp) + g cos θ sinϕ+ Y
Ma

ẇ = −(vp− uq) + g cos θ cosϕ+ Z
Ma

(4.1)


Ixxṗ = (Iyy − Izz) qr + Ixz(ṙ + pq) + L

Iyy q̇ = (Izz − Ixx) rp+ Ixz (r
2 − p2) +M

Izz ṙ = (Ixx − Iyy) pq + Ixz(ṗ− qr) +N

(4.2)

In the body axes, the aerodynamic forces applied to the aircraft are denoted by X, Y ,
and Z, while the aerodynamic moments, corresponding to roll, pitch, and yaw moments,
are respectively represented by L, M , and N ; the inertial translational velocities in the
same moving axes system (body frame) are denoted by u, v, and w; the bank angle, pitch
angle, and heading angle are represented by the 321 Euler angles ϕ, θ, and ψ, respectively.
The angular velocities measured in the body frame are the roll rate p, the pitch rate q,
and the yaw rate r. The fuselage moments of inertia about the reference axes are given
by Ixx, Iyy, Izz, and Ixz, while the aircraft mass is denoted by Ma.

Besides the equations above, the relationship between the 321 Euler angles and the
airframe angular velocities is also needed and therefore shown in Eqn. 4.3.


p = ϕ̇− ψ̇ sin θ

q = θ̇ cosϕ+ ψ̇ sinϕ cos θ

r = −θ̇ sinϕ+ ψ̇ cosϕ cos θ

(4.3)
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Figure 4.3: Euler angles and vehicle angular velocities

The external aerodynamic forces and moments can be expressed as a sum of con-
tributions from various components and subsystems that are specific to the helicopter
considered. In the graph in Figure 4.2, this phase coincides with the Force & Moment
Summation module. Relevant helicopter modules are modeled and kept as separate as
possible from one another, in order to determine the combined forces and moments acting
on the rotorcraft. These are then integrated with Equations 4.1, 4.2, 4.3 to obtain the
overall equations of motion for the helicopter.

An example of an arrangement architecture that may be used in a helicopter simulation
model is shown in Figure 4.4. The simulation model must integrate each subsystem of
the helicopter sequentially or concurrently, depending on the processing architecture.
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Figure 4.4: Example arrangement of helicopter simulation model [5]

Therefore, following this procedure, the overall helicopter equations of motion are com-
posed by a set of nonlinear differential equations in the form:

ẋ = F (x,u) (4.4)

where the state vector x comprises a number of components that depends on the
modeled subsystems. Therefore, the state vector may vary among different helicopter
models due to differences in the rotorcraft components and the required level of model
accuracy, as determined by the certification body. However, a basic helicopter model
should include a state vector that is similar to the one shown below:



x = {xf ,xr,xp,xc}
xf = {u,w, q, θ, v, p, ϕ, r}
xr = {β0, β1c, β1s, λ0, λ1c, λ1s}
xp = {Ω, Qe, Q̇e}
xc = {θ0, θ1s, θ1c, θ0T}

(4.5)

The state subscripts f, r, p, and c used in the equation above represent the fuselage, ro-
tor, engine, and control actuation, respectively. The variables β0, β1c, and β1s correspond
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to the rotor blade coning, longitudinal and lateral flapping angles, while λ0, λ1c, and λ1s
represent the rotor uniform and first harmonic inflow velocities in hub/shaft axes. The
main rotor speed is denoted by Ω, and Qe denotes the engine torque. The variables θ0,
θ1s, and θ1c refer to the main rotor collective pitch angle, longitudinal and lateral cyclic
pitch angle, respectively, while θ0T corresponds to the tail rotor collective pitch angle.

The structure of the control vector u remains fixed across different helicopters. While
a model designer may define different inputs, the control vector must include at least the
main and tail rotor cockpit controls, as illustrated below.

u = {η0, η1s, η1c, η0T} (4.6)

In the control vector u, η0 is the pilot’s collective stick input, η1s and η1c are the pilot’s
cyclic stick inputs while η0T is the pilot’s pedal input.

The solution to equation 4.4 relies on the initial conditions, typically the trim state
of the helicopter and the time histories of controls and atmospheric disturbances. To
calculate the trim conditions, the rates of change of the state vector are set to zero, and
the resulting algebraic equations are solved. However, in most practical applications, it
is not feasible to define each state of equation 4.4 analytically, and numerical integration
methods are employed instead. Therefore, at each time step, following the framework
shown in Fig.4.4, the forces and moments on the various components are computed and
consolidated to produce the total force and moment at the aircraft center of mass. Finally,
the integration scheme allows to evaluate the motion of the aircraft at each time step.

4.1.2 Linearized Model

Despite the nonlinear model of a helicopter represents the highest level of accuracy
regarding the behavior of the simulated rotorcraft, it only allows for tackling the rotor-
craft’s Response Analysis. Typically, in a real flight simulator, the nonlinear model of the
helicopter is used exclusively for real-time simulations. However, due to the complexity
surrounding a helicopter’s nonlinear model, analyzing and understanding it from multiple
viewpoints can be quite challenging.

Linearization is a process that simplifies nonlinear equations by approximating them
with linear equations. This process involves selecting a small region around a specific
operating point and assuming that the nonlinear equations can be approximated by a
linear equation that describes the system’s behavior in that region. The definition of
the equilibrium operating point in flight dynamics takes the name of Trim Problem. The
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resulting linearized model is much simpler and easier to analyze, making it a valuable tool
in understanding the helicopter’s behavior as well as to perform the so-called Stability
Analysis.

Furthermore, despite Nonlinear Control Theory is a well-developed area of the Control
Theory, the mathematical techniques developed to handle problems are more rigorous
and much less general than the methods offered in the Linear Control Theory. Typically,
in controller design for aeronautical applications, a solution that is applied is the Gain
Scheduling approach. This approach is a linear technique for controlling nonlinear or time-
varying plants. The idea behind this approach is to compute linear approximations of the
plant at various operating configurations, tune the controller gains at each of them, and
swap gains during the simulation depending on the operating conditions. This procedure
involves the following three major steps:

1. trim and linearize the plant at each operating condition.

2. tune the controller gains for the linearized dynamics at each operating condition.

3. reconcile the gain values to provide a smooth transition between operating condi-
tions.

For the reasons that have just been explained, it is necessary to use the linear models
of the helicopter. As a first step, a suitable trimmed flight condition must be selected and
evaluated. This involves determining the configuration in which the rate of change of the
aircraft’s state vector is zero, and the resultant of the applied forces and moments is also
zero. To achieve this, the LHS of Equation 4.4 is set equal to zero.

0 = F (x,u) (4.7)

The trim solution is represented by the zero point of this nonlinear algebraic function,
which computes the necessary controls ue to maintain a defined state xe. Typically, a
numerical root-finding algorithm such as the Newton–Raphson Method is employed to
solve the Trim Problem, following the flowchart pattern illustrated in Figure 4.5.
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Figure 4.5: Typical Trim Solution Flowchart

From a specific trim point, the nonlinear model model can be linearized. Achieving this
requires to recall the nonlinear model, which is expressed in vector form as equation 4.4,
and compute its first-order Taylor expansion. As a result, the nonlinear system can be
rephrased in the following perturbation form:

ẋ ≈ F (xe,ue) + Jx
F (xe,ue)(x− xe) + Ju

F (xe,ue)(u− ue) (4.8)

where Jx
F (xe,ue) and Ju

F (xe,ue) form the Jacobian matrix associated with the function
F : Rn × Rm → Rn evaluated at the equilibrium point (xe,ue), explicitly:

Jx
F (xe,ue) =


∂F1

∂x1
. . .

∂F1

∂xn... . . . ...
∂Fn

∂x1
. . .

∂Fn

∂xn


x=xe,u=ue

Ju
F (xe,ue) =


∂F1

∂u1
. . .

∂F1

∂um... . . . ...
∂Fn

∂u1
. . .

∂Fn

∂um


x=xe,u=ue

Then, choosing a trim condition, i.e., F (xe,ue) = 0 and neglecting the approximation
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error, one can get the linearized model as:

ẋ = Aδx+Bδu

where δx and δu are the perturbations of the state and control vectors from the
trim condition. The state matrix A and control matrix B correspond to Jx

F (xe,ue) and
Ju
F (xe,ue), respectively. Hence, the elements in matrices A and B are given by:

Aij =

(
∂Fi

∂xj

)
x=xe,u=ue

Bij =

(
∂Fi

∂uj

)
x=xe,u=ue

Therefore, the linearization process’s fundamental assumption is that the aerodynamic
forces and moments must be analytic functions of the state and control variables.

Going back to the Gain Scheduling control strategy, if the purpose is to implement
such a controller design technique, then the aforementioned linearization procedure needs
to be carried out as many times as the number of trim points considered. As a result,
numerous linear models should be generated, and a suitable linear controller needs to be
designed for each one.

However, in this present work, since the Gain Scheduling approach implies to repeat
the same tuning procedure over different linear models, the controller tuning has been
carried out for brevity only for a single operating point being the scope of this work to
present a generic AFCS model as well as a tuning methodology for its controllers design.

TXT e-solutions linear model

As already stated before, the case study of this thesis is a twin-engine light utility
whose linearized model is provided by TXT e-solutions. The matrices that characterise
this model are private property of TXT e-solutions, hence cannot be shown in the present
thesis. However, a description of their content may be provided in the following Tables.

The linear model trim condition is a steady level flight configuration, at Barometric
Altitude of 5926 [ft] and Indicated Airspeed of 68 [kt]. The matrices dimension are:
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A = 39× 39

B = 39× 4

C = 12× 39

D = 12× 4

Matrix States
Parameter Name Symbol UoM Trim Value Reference Frame

Pitch Rate q [rad/s] 0 body
Pitch Angle θ [rad] 0.0497 inertial

CG X-velocity Vx [m/s] 31.8635 body
CG Z-velocity Vz [m/s] -5.1658 body
CG X-position X [m] 0 inertial
CG Z-position Z [m] -1806.4022 inertial

Roll Rate p [rad/s] 0 body
Yaw Rate r [rad/s] 0 body

Bank Angle ϕ [rad] -0.0044 inertial
Heading Angle ψ [rad] 4.4712 inertial
CG Y-velocity Vy [m/s] 7.9163 body
CG Y-position Y [m] 0 inertial

Rotor Induced Inflow Parameter λ0 [-] 0.0416 hub
Rotor Longituinal Induced Inflow Parameter λ1c [-] 0.0390 hub

Rotor Lateral Induced Inflow Parameter λ1s [-] -0.0029 hub
Wake Skew Angle wakeX [-] 0.6387 hub

Wake Spacing wakeS [-] 0.5270 hub
Wake Longitudinal Curvature wakeKc [-] 0 hub

Wake Lateral Curvature wakeKs [-] 0 hub
1st MBC Flap Mode β1 [rad] 0.0269 hub

1st MBC Flap Velocity Mode dβ1 [rad/s] 0 hub
2nd MBC Flap Mode β2 [rad] -0.0119 hub

2nd MBC Flap Velocity Mode dβ2 [rad/s] 0 hub
3rd MBC Flap Mode β3 [rad] -0.0029 hub

3rd MBC Flap Velocity Mode dβ3 [rad/s] 0 hub
4th MBC Flap Mode β4 [rad] -0.0013 hub

4th MBC Flap Velocity Mode dβ4 [rad/s] 0 hub
5th MBC Flap Mode β5 [rad] -0.0001 hub

5th MBC Flap Velocity Mode dβ5 [rad/s] 0 hub
1st MBC Lag Mode ζ1 [rad] -0.0119 hub

1st MBC Lag Velocity Mode dζ1 [rad/s] 0 hub
2nd MBC Lag Mode ζ2 [rad] 0.0018 hub

2nd MBC Lag Velocity Mode dζ2 [rad/s] 0 hub
3rd MBC Lag Mode ζ3 [rad] -0.0013 hub

3rd MBC Lag Velocity Mode dζ3 [rad/s] 0 hub
4th MBC Lag Mode ζ4 [rad] 0.0001 hub

4th MBC Lag Velocity Mode dζ4 [rad/s] 0 hub
5th MBC Lag Mode ζ5 [rad] 0 hub

5th MBC Lag Velocity Mode dζ5 [rad/s] 0 hub

Table 4.1: TXT e-solutions Linearized System States
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Matrix Inputs
Input Name UoM Range Description Trim Value

Longitudinal Cyclic [-] [-1.0, 1.0] -1= Fully Forward; +1=Fully Backward -0.2014
Lateral Cyclic [-] [-1.0, 1.0] -1= Fully Left; +1=Fully Right -0.0037

Pedals [-] [-1.0, 1.0] -1= Fully Left; +1=Fully Right -0.0425
Collective [-] [-1.0, 1.0] -1= Fully Down; +1=Fully Up 0.6258

Table 4.2: TXT e-solutions Linearized System Inputs

Matrix Outputs
Parameter Name Symbol UoM Trim Value Reference Frame

Pitch Rate q [rad/s] 0 body
Pitch Angle θ [rad] 0.0497 inertial
Roll Rate p [rad/s] 0 body
Yaw Rate r [rad/s] 0 body

Bank Angle ϕ [rad] -0.0044 inertial
Heading Angle ψ [rad] 4.4712 inertial

CG Y-Acceleration Ay [G] 0 body
Radar Height Radalt [m] 1804.6127

Longitudinal Groundspeed GSx [m/s] 31.5661 inertial
Lateral Groundspeed GSy [m/s] 7.8934 inertial
Indicated Airspeed Ias [m/s] 34.5044
Barometric Altitude Baralt [m] 1806.4022

Table 4.3: TXT e-solutions Linearized System Outputs

4.2 AFCS Model Assembly

Before commencing with the assembly of the Simulink® model, it is worthwhile to
discuss a fundamental assumption that has been employed throughout the model’s de-
velopment. In real helicopters, the signal computed by the AFCS is transmitted to an
actuator chain. Therefore, in the current AFCS, this component should also be modeled.
However, depending on the characteristics of the specific helicopter under consideration,
the actuator chain may have varying configurations and purposes. By simply distinguish-
ing between mechanical flight controls, hydro-mechanical flight controls, and fly-by-wire
flight controls, one can already comprehend that in order to maintain generality in the
development of the AFCS, it is preferable to avoid modeling those actuation chains. In-
deed, the aim of this thesis is to model a generic autopilot that can function with any
type of helicopter. Furthermore, even in the certified FFS Level D utilized to validate the
findings of this study, the AFCS only provides a control input to the series actuator, but
the actuators that effectively alter the orientation and position of the swashplate are not
even modeled in the simulator. As a result, this custom AFCS is designed to allow for
quick integration regardless of the helicopter under consideration. In fact, in this specific
instance of a real existing flight simulator, the custom AFCS C++ code can be exported
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and subsequently integrated directly into the actual simulator by simply substituting the
existing flight simulator’s AFCS. This task would not be feasible, at least with this level
of ease, if specific control actuation chains were taken into account during development.
Additionally, it has been demonstrated by TXT e-solutions know-how that the actuation
chain dynamics do not significantly alter the optimal controller gains discovered during
the tuning process.

Given this introduction, the primary objective of this section is to elucidate how the
Simulink® model depicted in Figure 4.6 was created utilizing the custom blocks stored in
the custom library, as well as some other fundamental Simulink® library blocks.

Figure 4.6: AFCS Tuning Model
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The Figure shown above represent the highest hierarchical layer of this model. If the
AFCS overall structure is the one encircled in red in the picture, the other components,
included the state-space representation of the helicopter dynamics, are mainly used for
tuning purposes. Those other components are:

1. the APCP buttons, which are modeled for simplicity as Signal Builder blocks. The
idea is that the pilot presses a generic button for a determined amount of time, and
the pression is recorded in Boolean values.

2. the out of detent, force trim and beep trim of each flight control of the generic
helicopter. Also in this case, those components may assume only Boolean values.

3. the output measurements of the simulated helicopter dynamics. A Memory block
is required in each feedback loop since it is necessary to break the algebraic loop
generated by the closed-loop configuration [32].

It is important to note that this Simulink® model is intended solely for tuning purposes
and is not meant for code generation. However, by making small adjustments, it is
possible to retrieve the model of the AFCS intended for export in a C++ environment
and integration into a flight simulator. These adjustments involve mainly the substitution
of the components in the bulleted list above with Input blocks. Additionally, the helicopter
state-space must be removed, and the outputs of each AFCS channel (i.e., Pitch, Roll,
Yaw, Collective channels) must be connected with Output blocks.

Moving on to the subsystems that compose the AFCS, the first one to be executed
during the simulation is the Modes Logics subsystem, whose structure is depicted in
Figure 4.7.
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Figure 4.7: AFCS Modes Logics Subsystem

This subsystem basically takes as input:

• the pressure recordings of the APCP buttons, which are subsequently analyzed in
order to capture only the potential event.
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• The values of some of the output measurements of the helicopter dynamics which are
required to assess the control logics. A clarification is necessary here: the constant
block named IC_Output (e.g. IC_Ias) was added, since in the tuning model the
helicopter dynamics simulates at each time step the variation, δOutput, with respect
to the trim condition in which the model was linearised. Since the control logics
require absolute output measurements instead of their variations, it is necessary to
add the trim value to the δOutput evaluated at each time step. This process is solely
for tuning purposes. If the AFCS were to be exported as C++ code, the constant
block and the Sum block would be removed.

• the absolute values of some thresholds characteristics of the specific helicopter AP.
Those values are necessary to determine some of the control logic conditions within
the Stateflow® block.

This subsystem provides in output the logical values of each mode of the AFCS, which in
turn are fundamental for the functioning of the Upper Modes subsystem, whose structure
is depicted in Figure 4.8

The latter aims to replicate the function of each upper mode of the autopilot, as indi-
cated by its name. For the sake of clear visualization and schematic implementation, the
upper modes are divided for each helicopter axis command inputs. However, there are a
few points to be noted regarding this sybsystem:

1. the yaw axis is not present only because in the present AFCS the only upper mode
that may employ this axis is the HDG mode. However, for an implementation choice
of the current AFCS, the HDG mode when is engaged on the yaw axis, i.e. when
the Indicated Airspeed is lower than a certain characteristic threshold of the specific
helicopter, this mode coincides with the ATT mode on the yaw axis. In other words,
since the HDG upper mode and the lower mode which is beneath its functioning,
would coincide in this situation, for practical reason when the HDG is engaged on
the yaw axis, in practice it coincides with the ATT mode engaged on this very same
axis.

2. upper modes which may be engaged on multiple axis are implemented in separated
configurations, one for each potential axis of operation. Hence, there is an ALT
mode on the pitch axis and an ALT mode on the collective axis, as well as there is
an HDG mode on the roll axis and an HDG mode on the yaw axis (coincident, for
what explained just above, with the ATT on the yaw axis).

3. collective modes are by definition the only AFCS modes that are not dependent
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from the ATT. Hence they are considered upper modes but basically they behave
as they were lower modes as they directly provide in output the command variation
to fournish at the actuator of the collective axis. Despite being classified as upper
modes, they behave like lower modes by directly issuing command variations to the
actuator of the collective axis. This holds true for the collective modes implemented
in this work, including ALT and RHT, but may also be accurate for other collective
modes.

4. in general, apart from the already explained collective upper modes, every other up-
per mode provides in output the setpoint change of their respective ATT. However,
this variation must be summed with the current value of the relative ATT attitude
in order to become the setpoint of the relative ATT.
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Figure 4.8: AFCS Upper Modes Subsystem
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The subsystem structure has been obtained through the employment of the Mode Set-
point custom block and the Mode δCommand/δSetpoint custom block, already encoun-
tered respectively in Sec.3.5 and Sec.3.6. The configuration of those masks must be care-
fully and properly set depending on the mode considered. In Appendix A.1 are shown
the masks configuration adopted for building the current AFCS upper modes.

Apart from the case of collective modes, the GoTo blocks of this subsystem are redi-
rected to the Lower Modes subsystem, whose structure is shown in Figure 4.9. The goal
of this subsystem, is to replicate the behaviour of the lower modes of the autopilot. In
more detail the task performed by this subsystem are:

1. to provide in output the SAS contribution for each axis.

2. to determine the setpoint of the ATT on each axis.

3. to determine through the State Transitions subsystem of each axis, which mode,
among the lower and the upper modes, is engaged on the AFCS. This is necessary
to provide the correct setpoint to the block in charge of evaluating the command
variation.

4. to produce command variations for the pitch, roll, and yaw axes, which are then
transmitted to the appropriate actuator.

Also this subsystem structure was created by utilizing the custom blocks, Mode Setpoint
custom block and the Mode δCommand/δSetpoint custom block. The configuration of
these blocks, along with the contents of each State Transitions subsystem, can be found
in Appendix A.2.

Additionally, going back to the Figure 4.6, some Saturation blocks have been introduced
for each helicopter axis in order to account for the physical limitations of the specific
actuators on the rotorcraft.
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Figure 4.9: AFCS Lower Modes Subsystem

The last subsystem that is required to be analysed is the Functionalities subsystem
which basically just contain the TC custom block, as it is the only functionality developed
in the present work.
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Figure 4.10: AFCS Functionalities Subsystem

4.3 AFCS Tuning

In traditional programming, tuning a control system can be a challenging and time-
consuming task. The designer relies on their experience to manually adjust control system
parameters through trial-and-error. This is especially difficult for control systems with
multiple feedback loops or tunable components, such as cascaded PID loops or MIMO
control loops with significant cross-coupling. Indeed, in principle, one element or one
control loop at a time should be tuned, making the process iterative, time-consuming,
and not robust in terms of optimality of the final design.

In contrast, with a model-based design approach, the control system designer has a
mathematical representation of the plant, derived from first principles or by data-driven
techniques. Model-based tuning can then be applied, allowing for more efficient and
automatic techniques to tune a control system.

In particular, given the structure of the current AFCS, it is necessary to tune its PID
controllers, based on the linear dynamics of the case study helicopter. In general, in order
to tune the PID gains, mainly two broad approaches [29] must be analyzed:

1. Manual tuning, which is basically the use of the designer knowledge of Control
Theory to choose the proper gains. Several methods may be exploited, however tree
of the most popular techniques are:

• Pole Placement. It is a control design technique used to place the closed-
loop poles of a system in desired locations in order to achieve the desired
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performance characteristics, such as stability, settling time, overshoot, and
damping. The PID contoller introduces in the system tunable zeros, poles and
gain that allow to modify the closed-loop behaviour.

• Loop Shaping. This method looks at the frequency response of the loop transfer
function and exploit the knowledge of the open-loop gain margin, phase margin
and crossover frequency in order to predict how the closed-loop system would
behave. Indeed, by adding the PID controller and adjusting the location of
its zeros, poles and gain it is possible to shape the loop transfer function Bode
Diagram to get the desired frequency characteristics.

• Heuristics Methods as Cohen-Coon method or Ziegler-Nichols method. Those
techniques rely on rules of thumb or empirical formulas, rather than rigorous
Control Theory tools. The goal of these methods is to quickly obtain initial
PID gains that can then be fine-tuned to achieve optimal performance.

2. Automatic tuning, which instead, employing the aid of software tools, enable to gen-
erate optimal PID gains based on the requirements specified by the control system
designer. Usually, most of the auto-tune programs utilize the same techniques as
manual tuning, but they are presented in a more streamlined and accessible format.

However, at the end of the parameters computation in both approaches, in order to
get the perfect response, it is always a good practice to check if it is needed a manual
fine-tune of the PID controller gains.

4.3.1 Simulink Control System Tuner

Since the AFCS Simulink® model relies on PID controllers, it requires the tuning of
their gains to attain the desired performance. Therefore, being already employed an auto-
tuning methodology in the previous work [32], the same technique may be applied also
in this case since the current AFCS shares the same modeling philosophy as the previous
thesis.

The auto-tuning suite used is the Control System Tuner of Simulink® [9]. This tool
can tune any control system architecture by defining design goals. It is capable of tuning
multiple fixed-order, fixed-structure SISO or MIMO control elements distributed over any
number of feedback loops. In the Control System Tuner, various tuning goals are available,
including reference tracking, disturbance rejection, loop shapes, pole constraints, closed-
loop damping, and stability margins.

The Control System Tuner employs different algorithms for each tuning goal since
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each goal requires satisfying a distinct task. However, the software solves always the
imposed constraint as a minimization problem, where each tuning goal is converted into
a normalized scalar value f(x), with x the vector of tunable parameters defined in the
control system. The software then evaluates the optimal parameter values that minimize
f(x) (soft goal constraint) or reduce f(x) below the value of 1 (hard goal constraint).

Regarding the tuning of the current AFCS, the Control System Tuner goals employed
are:

1. Tracking of Step Commands [27]. This requirement is imposed on almost every
controller of the AFCS. It enables finding the optimal PID gains that can produce
the step response from specific inputs to specific outputs as closely as possible to the
desired response. This goal may be applied to constrain SISO or MIMO responses,
however in this application only the SISO case is needed. Step response target may
be defined in terms of first-order system characteristics (time constant definition
is needed) or second-order system characteristics (natural frequency and percent
overshoot specifications are needed) or even defining a custom reference system.

2. Rejection of Step Disturbances [12]. This goal is used to constrain how a step
disturbance injected at a specified location in the control system affects the signal
at a specified output location. The desired response can be specified in time-domain
terms of peak value, settling time, and damping ratio. This requirement is only used
once in the development of AFCS tuning, in the controller tuning of the TC.

3. Constraint on Closed-Loop Dynamics [18]. This goal allows to constrain the dynam-
ics of the entire control system or specified feedback loops of the control system,
which in practise is a constraint on the dynamics of the Sensitivity Function mea-
sured at a specified location in the control system. Specifications for minimum decay
rate or minimum damping for the poles need to be enforced to properly set the goal.
This constraint is applied only for the tuning of the PI controllers of the SAS of the
AFCS.

4. Minimum Stability Margins [20]. This requirement allows to constrain the gain
and the phase margins above some threshold decided by the user. The evaluation
of those margins rely on the disk margin theory. Like classical gain and phase
margins, disk margins quantify the stability of a closed-loop system against gain or
phase variations in the open-loop response. Disk margins also take into account all
frequencies and loop interactions. Therefore, disk-based margin analysis provides a
stronger guarantee of stability than the classical gain and phase margins.
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The complete tuning workflow of the AFCS controllers occurs at the command-line, as
shown in Appendix B.1. This is fundamental for this specific tuning process as it allows for
the utilization of some Matlab® commands that are not directly accessible from the fixed
GUI of the Control System Tuner. Those fundamental commands are taken mainly from
the Control System Toolbox™(e.g. TunableGain, TunablePID2 ). This issue is mainly
caused due to the presence in the Simulink® model of custom blocks, such as custom
PID blocks, which require different handling [32] with respect to standard PID blocks,
and therefore they cannot be directly tuned in the Control System Tuner. However, the
Control System Tuner can still be utilized for a portion of each tuning process. One of its
features is the ability to auto-generate the code for the tuning specified in its interface.
As a result, a strategy is to establish a tuning process that closely resembles the desired
one and then export the generated Matlab® code, which can subsequently be adjusted
in the Matlab® Editor. This procedure saves time and reduces errors since most of the
tuning workflow is auto-generated.

The AFCS is configured in a multiloop feedback setup where each mode has its own tun-
able controller gains. However, the tuning process cannot be done in a single optimization
phase due to the following reasons:

• Firstly, the SAS on the pitch, roll, and yaw axis are always considered to be func-
tioning and must be tuned together. Thus, they need to be the first systems tuned
in the AFCS. Once the optimal gains for each SAS are determined, other modes can
be tuned. This is because, in a real helicopter, if back-up SAS is activated, those
systems may operate and provide stability augmentation on pitch, roll, and yaw
axes even if both autopilots are lost. The same working principle does not apply to
any of the other AFCS systems implemented in this thesis.

• Secondly, most of the upper modes rely on the ATT, so the ATT must be the second
system tuned.

• Thirdly, upper modes that work on the same axis cannot be tuned simultaneously.

• Lastly, the tuning process must align with the control logics requirement of the
specific modes. Therefore, it may be necessary to tune a mode while another mode
is also engaged in the AP. However, if it is not strictly required by the control logics,
this should be avoided since most of the upper modes can be independently engaged
in the AP.

Despite the need to repeat the tuning process multiple times, the steps required to carry
out a single system tuning are always the same [6] and can be summarized as follows:
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1. Ensure that the mode or functionality under tuning is engaged in the AFCS and
able to provide the desired behavior. This can be done varying the state of the
APCP buttons, out of detent, force trim, and beep trim.

Just for verification purposes, the Simulink® Model Linearizer and its Linearization
Manager can be used to check if those configurations are correctly imposed and
translated into a well-defined linearization path.

2. Select and define the blocks under tuning in the Simulink® model.

3. Select the Analysis Points in the Simulink® model. Those locations are mainly used
to specify goal definitions in the following.

4. Specify an Operating Point for the time instant in which the Simulink® model is
linearized. The time instant specified must be subsequent to the time instant in
which the mode under tuning is engaged in the AFCS.

5. Build an slTuner interface containing the specific Simulink® model, the blocks under
tuning, the eventual Operating Point, and Options. This interface is mandatory for
every tuning Matlab® command such as systune, which operates on a linear model.
slTuner automatically computes and stores a linearization of the selected Simulink®

model.

6. Construct a tunable model of the control system by setting the specific parameteri-
zation of the tuned block. This can be achieved using pre-defined tunable elements
such as TunableGain or TunablePID2, which can be assigned to Simulink® model
elements using the setBlockParam command. Tunable element’s initial, maximum,
and minimum values may also be specified.

7. Specify single or multiple tuning goals depending on the specific tuning process (e.g.
Tracking of Step Commands, Rejection of Step Disturbances, etc.).

8. Run the tuning process using the systune command.

Generally, systune, looptune, and hinfstruct tune the controller parameters opti-
mizing the H∞ norm across a closed-loop system [28]. These commands apply
structured H∞ synthesis, which allows defining the structure and configuration of
feedback loops, specifying the parameterization of each tunable component, and
combining multiple requirements on separate closed-loop transfer functions.

Most of those features are not allowed in traditional H∞ synthesis, and therefore
commands as hinfsyn or loopsyn are not appropriate for this specific AFCS tuning.
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4.3.2 Tuning Results

As mentioned previously, the objective of this work is not to replicate the AFCS model
of a particular helicopter, nor to fine-tune its controllers to match the behavior of that
specific helicopter. Rather, the goal of this thesis is to create a generic AFCS model that
can be exported in C++, and whose controllers can be tuned using an auto-tuning script
capable of specifying multiple generic requirements.

Therefore, the goals imposed throughout the tuning process in Appendix B.1, are not
to be intended as the real AFCS requirements used to tune the AFCS gains of this specific
helicopter or its certified flight simulator.

Instead, the purpose of the tuning process outlined in Appendix B.1 is to demonstrate
how different types of specifications can be imposed and achieved using the auto-tuning
methodology described earlier.

However, to validate the AFCS modeling and the employed tuning methodology, the
requirements for the tuning of most of the AFCS modes are set based on the responses used
to validate this work, which are presented in the next Chapter. Indeed, roughly measuring
the response characteristics, such as settling time and overshoot, it was possible to define
a criteria to determine most of the tuning goals.

In this regard, it is worth noting that since the TXT e-solutions case study helicopter
does not have an upper mode HOV, tuning for this mode is not obviously carried out.
However, if it was present, the tuning methodology would be the same as that for the
other upper modes.

Additionally, since the tuning process is performed at a specific trim condition (due to
the plant controlled being the TXT e-solutions linearized model shown in Section 4.1.2),
certain tunable blocks defined in the AFCS model cannot be tuned, as their control logics
prevent their engagement under these conditions. This is the case of the ATT on the yaw
axis, since the Indicated Airspeed exceeds the threshold imposed for the functioning of this
system. While the same reasoning should apply to the RHT, because the Radar Height
is above the maximum value for the engagement of this mode, the RHT controller gains
are still tuned as this controller is shared between RHT and ALT on the collective axis.
In fact, the latter can be engaged even in this trim condition under specific circumstances
determined by its control logic.

Furthermore, in each tuning process, the pilot is supposed to fly hands-off and feet-off,
relying solely on the AFCS. This procedure enables the tuning of each AFCS controller
as it provides a linearized path that differs from zero.
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SAS Pitch, SAS Roll, SAS Yaw

As already said, the first loop to be tuned is the most internal one as well as the only
one that can operate when both helicopter autopilots fail. Therefore, the PI controller in
the SAS requires tuning for its Proportional and Integral gains. The SAS aims to stabilize
the aircraft’s angular rate in the short term, specifically on the pitch, roll, and yaw axis,
in order to minimize the effects of external disturbances like turbulence.

Therefore, considering the linear dynamics of the case study helicopter, the command
pzmap allows to retrieve its pole-zero plot, as shown in the Figure 4.11.

Figure 4.11: Pole-Zero map of the TXT e-solutions linear model

Being the dynamics of the helicopter unstable due to a pair of complex conjugate poles
in the RHP, the Stability Augementation System must shift the poles of the closep-loop
system such that every poles is located in the LHP. Therefore, the goal employed in the
systune tuning process is the Constraint on Closed-Loop Dynamics which in turn refers to
the command TuningGoal.Poles. It constrains the closed-loop poles in terms of minimum
decay rate (mindecay), minimum damping ratio (mindamping) and maximum natural
frequency (maxfreq).

However, for the SAS only, TXT e-solutions was able to provide some flight test re-
sponses with the SAS activated. These flight tests were conducted for certification pur-
poses, following the procedures of EASA document CS-FSTD(H). Therefore, based on
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these responses and the requirements specified in the CS-FSTD(H) for each SAS, some
of the optimal gains found with the systune tuning process were manually fine-tuned to
meet the certification requirements for the SAS.

Figure 4.12 shows the closed-loop poles obtained with the auto-tuning process and the
subsequent manual gains fine-tune.

Figure 4.12: Tuning SAS: Closed-Loop Poles

ATT Pitch, ATT Roll, TC

Once the gains for the SAS PI controllers are found, the next step involves the tuning
of the Attitude Hold System, which is another basic mode of the current AFCS. To obtain
the correct linearization path during the tuning process, the AP button must be pressed
to turn on the AFCS. Moreover, since the case study trim Indicated Airspeed is greater
that the maximum threshold for the engagement of the ATT on the yaw axis, the Turn
Coordinator system provides non-zero control inputs in the yaw axis. Additionally, the
SAS stabilizes the aircraft in pitch, roll, and yaw axis.

Therefore, in this trim condition, three PID controllers must be jointly tuned. Those
controllers refer to the ATT on the pitch axis, the ATT on the roll axis and the TC.

For the specification of requirements for those systems, the controller designer may
decide to impose constraints in the frequency domain. However, since the validation



4| AFCS Controllers Tuning 103

of the tuning process is carried out based on time-domain responses, the requirements
imposed for the tuning are also chosen in the same domain. Therefore:

• The time-domain goal imposed for the ATT on the pitch and for the ATT on the
roll axis, is the Tracking of Step Commands which refers to the in-line command
TuningGoal.StepTracking ; indeed, the purpose of the Attitude Hold System is to set
and hold a reference attitude, respectively for the first ATT, the pitch attitude θ, and
for the second, the roll attitude ϕ. In this case, reference step response specifications
are given in the form of second-order responses [27], specifying desired time constant
(tau) and overshoot (overshoot) for each ATT.

• the time-domain goal imposed for the TC is the Rejection of Step Disturbances which
refers to the in-line command TuningGoal.StepRejection; in fact, the purpose of the
Turn Coordinator is to annihilate the lateral acceleration sensed by the system.
Therefore, in order to generate this kind of acceleration, a roll maneuver must
be introduced. Thus, the setpoint of the Roll Angle ϕ is given in input, and the
measurement value of the acceleration Ay (V dot in the Simulink® model) in output.
The goal is to annihilate the lateral acceleration response that is generated by a
step applied in the input, given a reference response [12] specified in terms of peak
value (peak), settling time (tSettle), and damping ratio (zeta).

However, since those requirements provide only nominal performance for the controlled
plant, assuming that, as it is in the real world, the helicopter model is subject to uncer-
tainties, then a robust stability requirement must be imposed. Several techniques may be
employed, such as the Minimum Stability Margins, which refers to the in-line command
TuningGoal.Margins [20]. It allows to provide multivariable gain margin (gainmargin) as
well as phase margin (phasemargin) at plant selected locations. In this tuning process,
it is supposed necessary to provide gain and phase margins at the plant outputs that
are feedback into the AFCS tuned systems. Obviously, those latter requirements are set
without any criteria with respect to the real helicopter or its flight simulator.

Therefore, this tuning process involves the joint tuning of the free parameters of three
PID controllers subject to four tuning goals. In this regard it is important to note
that the specification given in terms of soft goals (SoftReqs) and hard goals (HardReqs)
highly constrain the systune algorithm during the optimization. Hence, since in this
case, the TuningGoal.StepTracking imposed for the ATT on the roll axis and the Tuning-
Goal.StepRejection imposed for the TC are conflicting requisites, for better tuning results
it is convenient to define one of them as soft goal and the other one as hard goal. For this
reason, in this tuning process every requisites is set as an hard goal apart from the TC’s
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one which is set as soft goal. The results achieved after the tuning process are shown in
the Figures 4.13, 4.14, 4.15, 4.16.

The last note concerns the fact that, since the ATT is a prerequisite for the functioning
of the upper modes, the gains just found in this tuning process are also used to serve the
upper modes operations.

Figure 4.13: Tuning ATT Pitch, ATT Roll and TC: θref vs θ

Figure 4.14: Tuning ATT Pitch, ATT Roll and TC: ϕref vs ϕ
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Figure 4.15: Tuning ATT Pitch, ATT Roll and TC: Ayref vs Ay

Figure 4.16: Tuning ATT Pitch, ATT Roll and TC: Stability Margins

IAS

The first upper mode that may be tuned is the IAS. This mode provides the capability
to set and hold a reference Indicated Airspeed during the flight.

In the trim flight condition of the linearized dynamics case study, the IAS mode can
be engaged by first pressing the AP button and then the IAS button on the APCP. In
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this specific condition, the IAS controls the pitch axis, ATT Roll controls the roll axis,
TC controls the yaw axis, while the collective axis remains free. In addition, the SAS
operates in all three axes.

The tuning process of the IAS involves the tuning of the PID controller which based on
the reference and current values of Indicated Airspeed, outputs a variation in δθ, which is
summed to the current value of θ and provided as setpoint for the ATT Pitch.

Therefore, for the reasons already analyzed, also in this case the requirements may
be supplied in the form of TuningGoal.StepTracking and TuningGoal.Margins, specifying
both as hard goals. The results obtained are shown in the Figures 4.17 and 4.18.

Figure 4.17: Tuning IAS: Iasref vs Ias

Figure 4.18: Tuning IAS: Stability Margins



4| AFCS Controllers Tuning 107

ALT Collective

The next upper mode to tune is the ALT. This system provides the capability to set and
hold a reference Barometric Altitude during the flight. Since this mode can be engaged on
either the collective or pitch axes, depending on the flight conditions and AFCS channel
available, two separate systems have been defined in the AFCS modeling. Therefore, two
separate PID controllers must be tuned.

Starting from the ALT Collective, given the trim flight condition of the linearized
dynamics case study, the check on the minimum Barometric Altitude is positive, while
the check on the Indicated Airspeed threshold would provide the engagement of the ALT
on the pitch axis. However, if the pitch channel is already in use by another upper mode,
the ALT can be engaged on the collective axis.

Therefore, the engagement of the ALT Collective occurs by triggering the AP button,
then engaging a pitch axis upper mode (e.g. IAS) and finally triggering the ALT button
on the APCP. Therefore, in this specific condition, the pitch axis is controlled by the IAS,
the roll axis by the ATT Roll, the yaw axis by the TC, the collective axis by the ALT
Collective. Additionally, the SAS operates in all three axes.

The tuning process of this mode involves the tuning of the PID controller which based
on the reference and current values of Barometric Altitude, outputs a command variation
δCollective.

Requirements are set in the form of TuningGoal.StepTracking and TuningGoal.Margins,
specifying both as hard goals. The results obtained are shown in the Figures 4.19 and
4.20.
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Figure 4.19: Tuning ALT Collective: Baraltref vs Baralt

Figure 4.20: Tuning ALT Collective: Stability Margins

ALT Pitch

Regarding instead the tuning of the upper mode ALT Pitch, the engagement procedure
is more straightforward. Firstly, the AP button must be triggered and then the ALT
button must be pressed. Once engaged, the ALT Pitch system controls the pitch axis,
while the roll axis is controlled by the ATT Roll, the yaw axis by the TC, and the collective
axis is left free. The SAS operates in all three axes.

When the ALT Pitch is engaged, its PID controller can be tuned. This controller takes
the reference and the current values of Barometric Altitude, and outputs a a variation
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in δθ, which is summed to the current value of θ and provided as setpoint for the ATT
Pitch.

As with the other upper modes, the tuning process for ALT Pitch involves setting goals
using TuningGoal.StepTracking and TuningGoal.Margins, both specified as hard goals.
The achieved results are shown in Figures 4.21 and 4.22.

Figure 4.21: Tuning ALT Pitch: Baraltref vs Baralt

Figure 4.22: Tuning ALT Pitch: Stability Margins

HDG Roll

Finally, the last upper mode which can be tuned is the HDG Roll. This system provides
the capability to set and hold a reference Heading Angle during the flight. This mode can
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be engaged either on the roll or yaw axes, depending on the operating Indicated Airspeed.
In the yaw case this mode coincides with the functionalities provided by the ATT on the
yaw axis.

As already said, the trim flight condition of the case study linearized dynamics doesn’t
allow for the engagement of the HDG on the yaw axis. Instead, to engage the HDG on
the roll axis, it is necessary to trigger the AP button and then select the HDG button on
the APCP.

In this situation, the pitch axis is controlled by the ATT Pitch, the roll axis by the
HDG Roll, the yaw axis by the TC. SAS are operating in all the three axes.

The tuning process of this mode involves the tuning of its PID controller which based
on the reference and current values of ψ, outputs a a variation in δϕ, which is summed to
the current value of ϕ and provided as setpoint for the ATT Roll.

Requirements are provided in the form of TuningGoal.StepTracking and TuningGoal.Margins,
specifying both as hard goals. The results obtained are shown in the Figures 4.23 and
4.24.

Figure 4.23: Tuning HDG Roll: ϕref vs ϕ
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Figure 4.24: Tuning HDG Roll: Stability Margins
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In the so-called V-Model, the missing passages to complete the Simulink® model-based
design of the current AFCS are related to the Code-Generation, Integration and Validation
phases.

However, in the previous work [32], the proofs of concept of the Code-Generation and
Integration phases have already met satisfying results. Indeed, the previous generic AFCS
model was shown to be suitable for code export and integration within a real helicopter
flight simulator. In the present work, despite the complete reorganization of the AFCS
Simulink® model structure and the addition of new features, the design methodology and
modeling philosophy have remained unchanged. Additionally, as already explained in 4.2,
by making small adjustments, it is possible to retrieve the model of the AFCS intended for
code generation from Simulink® environment. This strategy allowed to keep the previous
results as granted also for this work, while focusing more on the modeling and simulation
of new components. Therefore, the model-based design phase that cannot be skipped in
the current work, is the last one, the Validation phase.

For this reason, this Chapter outlines the test methodologies employed to verify the
correctness of the present AFCS model.

5.1 Upper Modes Control Logics

Stateflow® environment provides powerful tools not only for modelling state machines
but also for analyze their behaviour and debug complex transitions.

Those debugging techniques rely on:

• the Stateflow® chart animation [8]. During simulation, animation provides visual
verification of expected behaviour of modeled charts. Animation highlights active
objects in a chart as execution progresses. Speed animation may be changed and
set as Lightning Fast, Fast, Medium, Slow, None (which turn off animation).

• the Stateflow® breakpoints [7] and the data inspection tools [10]. A breakpoint is a
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circular red badge set on a Stateflow® element (e.g. on charts, states, transitions,
graphical or truth table functions, events, etc.) which pauses the simulation in order
to examine the status of the chart and check the values of the current data through,
for example, the Symbols Pane interface.

The Figure 5.1 shows an example animation taken from the debugging of the Modes
Logics Stateflow® custom block.

Figure 5.1: Example Debugging of the Modes Logics Stateflow® custom block

Therefore, to validate the correct functionality of the upper modes control logics mod-
eled as state machines, it is necessary to define test cases that cover all possible states
and transitions of the state machine, and verify that the output signals are correct. Ad-
ditionally, during the simulation of each test, the debugging tools explained above can
provide another source of charts behavior assessment, which can be useful in cases where
the potential error is not directly evident from the output of the state machine.

For the specific validation process of the Modes Logics Stateflow® custom block, once the
functional tests have been identified, the standard Signal Builder block can be employed
to translate those test cases in Simulink® environment [19]. Finally, running each test,
it is possible to verify if the simulated behaviour matches the expected test output. The
validation model of the upper modes control logics in shown in Figure 5.2.
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Figure 5.2: Validation Model of the Modes Logics Stateflow® custom block
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For instance, one of the most complex test case developed is illustrated in Figure 5.3.
During this test’s simulation, all AFCS modes are engaged and disengaged. This is
achieved by triggering most of the APCP buttons. However, this is not the only source of
engagement or disengagement of modes of this test, as also numerous automatic transitions
occur due to the variation of flight parameters such as Ias or Radalt.

Figure 5.3: Example Test Case of the Upper Modes Control Logics validation

The outputs generated by this test and displayed in Figure 5.4, must be compared with
the input signal depicted in Figure 5.3. Here, it is crucial to carefully check whether the
behavior of the simulated model matches the expected behavior.

In this example case, the simulation shows the following events:

• at t ≈ 0.5s, the AP button is pressed, which results in the automatic engagement
of ATT mode in the AFCS. The pitch, roll, and yaw axes are controlled by ATT
Pitch, ATT Roll, and ATT Yaw, respectively, while the collective axis remains free.

• At t ≈ 1.3s the HOV button is pressed and this mode is engaged in the AFCS.
This leads to the disengagement of the ATT Pitch and the engagement of the HOV
Pitch on the pitch axis, the disengagement of the ATT Roll and the engagement of
the HOV Roll on the roll axis, the engagement of the RHT on the previously free
collective axis. The mode engaged on the yaw axis remains the same.
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• At t ≈ 2.6s the HDG button is pressed and this mode is engaged in the AFCS. It
causes the disengagement of the HOV Pitch and the automatic backup engagement
of the ATT Pitch on the pitch axis, the disengagement of the HOV Roll and the
engagement of the HDG Roll on the roll axis, while the other axes remain unchanged.

• At t ≈ 3.9s the Radalt exceeds the maximum threshold for RHT functioning, and
as a result, this mode is automatically disengaged from the AFCS. Being the ALT
the backup mode of the RHT, the ALT Pitch is engaged on the pitch axis since the
Ias is above the V PIas and no upper modes are engaged on the pitch axis.

• At t ≈ 5.8s the IAS button is pressed and this mode is engaged in the AFCS. This
results in the disengagement of the ALT Pitch and the engagement of the IAS on
the pitch axis. At this point the ALT mode is automatically transitioned from the
pitch axis to the collective axis and therefore the ALT Collective is engaged.

• At t ≈ 9.2s the AP button is pressed, and this turns off the autopilot. As a result,
all the modes engaged in the AFCS are automatically disengaged.

Figure 5.4: Engagement of Modes in Pitch, Roll, Yaw and Collective axis during the
Simulation of the Control Logics Example Test Case
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Numerous tests have been carried out varying numerous flight conditions and triggering
the activation of different combination of upper modes. Since at the end of the process
each test was successful, the upper modes control logics are resulted robust enough to be
validated.

5.2 Stability Augmentation System

As discussed in the previous chapter, real flight test data provided by TXT e-solutions
were used to fine-tune the SAS on the pitch, roll, and yaw axis.

In principle, these flight test data were originally used to certify the existing FFS
Level D, demonstrating that the simulated and the real helicopter behaviour were closely
matching. Indeed, the flight test campaigns required for the certification of a helicopter
flight simulator must adhere to EASA guidelines outlined in the document CS-FSTD(H).

However, if some of these flight tests were conducted under conditions close to the trim
point for which the case study’s linearized dynamics matrices were produced, then the
same flight tests could be utilized to tune and validate the present work.

Therefore, this current work utilizes two validation FSTD tests listed in the MC1
FSTD(H).300 Qualification Basis [3], namely the 2.c.(1) test and the 2.d.(1)(i) test.
Figures 5.5 and 5.6 respectively provide explanations for these tests.

Since the purpose of this validation is to assess the correct behaviour of the SAS while
their are functioning and not to prove the helicopter model truthfulness, then only the
flight condition Cruise Stability Augmentation On must be taken into account. In both
of those tests, helicopter is excited with cyclic step input, respectively for 2.c.(1) in the
longitudinal plane and for 2.d.(1)(i) in the lateral one. The test is passed if the measured
values of the simulated results fall within the certification body’s imposed tolerance.

Figure 5.5: CS-FSTD(H) Validation Test 2.c.(1)
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Figure 5.6: CS-FSTD(H) Validation Test 2.d.(1)(i)

Therefore, to carry out this validation, a validation model of the current AFCS has
been developed specifically for this purpose. The model allows to simulate pilot inputs
in the form of longitudinal and lateral cyclic inputs, pedals inputs, and collective inputs,
as depicted in Figure 5.7. These control actions are combined with the ones provided
from the AFCS, and the total control input is then supplied to the linearized helicopter
dynamics.

Figure 5.7: AFCS Simulink® Model provided of Pilot Inputs
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In the flight test 2.c.(1), the measured pilot commands are shown in Figure 5.8. The
responses generated from the real helicopter and from the tuned AFCS with just the
SAS activated, are shown in Figures 5.9 and 5.10. Both the tolerances imposed from the
certification body are respected.

Figure 5.8: 2.c.(1): Flight Test Pilot Inputs
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Figure 5.9: 2.c.(1): Flight Test and Simulated Pitch Angle Responses with SAS activated

Figure 5.10: 2.c.(1): Flight Test and Simulated Pitch Rate Responses with SAS activated
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Same reasoning for the the flight test 2.d.(1)(i), where the inputs are shown in Figure
5.11, while the responses in Figures 5.12 and 5.13. Also in this case, simulated values are
within the imposed limits.

Figure 5.11: 2.d.(1)(i): Flight Test Pilot Inputs
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Figure 5.12: 2.d.(1)(i): Flight Test and Simulated Bank Angle Responses with SAS acti-
vated

Figure 5.13: 2.d.(1)(i): Flight Test and Simulated Roll Rate Responses with SAS acti-
vated
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5.3 Attitude Hold System and Upper Modes

Finally, the last type of validation analysis conducted proves that the ATT and upper
modes tuned in the previous Chapter are capable of producing similar responses to those
obtainable with the certified FFS Level D.

For this phase, TXT e-solutions provided the possibility to log data directly from the
existing FFS Level D of the specific helicopter used to tune the AFCS Simulink® model.
The workflow of the validation process can be summarized as follows:

• the first step involved the creation of validation tests having the property of being
reproducible in both the FFS and the Simulink® AFCS model. According to the
modeling strategy employed to build the AFCS in Simulink®, external inputs may
be provided from four sources:

1. Pressing buttons on the APCP.

2. Pressing the force trim buttons present either on the cyclic and on the collective
sticks.

3. Moving upward/backward/left/right the beep trim present either on the cyclic
and on the collective sticks.

4. Moving the cyclic, collective and pedals to trigger their respective out of detent
sensor.

Therefore, since the pursuit of those tests is to engage a mode and verify if their
functioning is correct, the APCP buttons as well as the beep trim on both the cyclic
and collective sticks are used to perform validation tests in the FFS. Although the
force trim could have been used to carry out some tests with some mode engaged,
this was not feasible due to hardware problems in the data logging from the FFS.
Indeed, for each validation test, a .csv file is produced; this file containis relevant
information such as measured attitudes, rates, AFCS status, mode engaged for each
axis, setpoint of each mode, beep trim switching, etc. Therefore, several real-time
simulations in operating flight conditions similar to the one used to obtain the
linearized model, are run. In each of those simulations, a different mode is engaged
and is subject to beep trim excitements.

• in the second step a Matlab® script is created to store data in the Workspace from
each .csv test file. This file is essential to reproduce the same test performed in the
FFS in the Simulink® environment. In this regard, the model used for the AFCS
tuning and shown in Figure 4.6, is also employed for this validation phase. Hence,
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each block of this model is updated with the optimal gains found during the tuning
process.

• The third step involves the preparation of a Matlab® script in which each test is
separately conducted, updating each time the Simulink® model with the specific
test APCP buttons time histories as well as with the beep trim time histories.
In addition, the StopT ime of each simulation is set equal to the duration of each
specific FFS test. Obviously, those data are taken from the Matlab® script created
in the previous step. Finally, each simulation can be run and results can be plotted
and compared to the ones obtained with the FFS.

Before showing the results it is worth mention the limitations of this analysis:

1. The FFS employs a nonlinear model of the helicopter while in the Simulink® model
a linearized version is utilized. Hence, executing tests in these models provide almost
reliable results only in the neighborhood of the trim condition of the linear model.

2. The tuning executed in the previous Chapter has been set with goals that were not
the same used to build the FFS AFCS. Moreover, requirements imposed in terms
of Stability Margins were set without any criteria with respect to the responses of
the FFS, since the pursuit was just to show a possible tuning methodology and not
to explain how to replicate a specific tuning process.

Despite the limitations, for most of the modes the obtained results are consistent with
or above expectations. In the following some considerations about the outcomes of this
validation.

• Modes that can be engaged on different axes effectively transition the control action
from one axis to another and continue to generate effective responses, as illustrated
by the test of the ALT in Figure 5.18. During this experiment, the Ias was inten-
tionally reduced providing two pitch up commands in the helicopter at t ≈ 40s and
t ≈ 90s. Consequently, the Ias dropped below the threshold for disengagement of
the ALT on the pitch axis and the engagement of the ALT on the collective axis.

• The setpoint imposed by beep trim in the FFS perfectly matches the one obtained
in the Simulink® model. The dotted lines in each figure shown below are always
overlapping, which means that this function is correctly modeled.

• The Simulink® model’s responses well capture the specific mode’s task and often
exhibits better performance in terms of settling time and overshoot compared to
the FFS responses. For instance, this is the case for the IAS, as depicted in Figure
5.17. Additionally, another notable result is achieved concerning the TC, as shown
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in Figure 5.16. This system can eliminate lateral accelerations more efficiently
while maintaining the proper operation of the other mode excited in the same test,
i.e. the ATT Roll, shown in Figure 5.15. Therefore, these results demonstrate the
accuracy of both the blocks modeling of the modes and the auto-tuning methodology
employed to select the gains for their controllers.

ATT Pitch

Figure 5.14: Validation of the ATT Pitch
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ATT Roll and TC (Same Test)

Figure 5.15: Validation of the ATT Roll
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Figure 5.16: Validation of the TC
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IAS

Figure 5.17: Validation of the IAS
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ALT

Figure 5.18: Validation of the ALT Collective and ALT Pitch
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HDG Roll

Figure 5.19: Validation of the HDG Roll
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Conclusions

In conclusion, the aim of this work was to develop, through a model-based approach, a
generic helicopter automatic flight control system that guarantee certain requisites with
respect to the results obtained in the previous work. Those requirements, which have
been all satisfied, were:

1. To fulfill all the goals already achieved in the previous research, i.e. the development
of the lower modes of the generic autopilot in Simulink® enviroment, the develop-
ment of a tuning methodology for those controllers and the suitability of the model
for code generation purposes.

2. To enhance the level of complexity of the autopilot, introducing the most important
upper modes, their control logics and a tuning methodology for the controllers of
those upper modes.

3. To increase the modularity of each Simulink® block, identifying and segregating
repetitive system components within the autopilot.

4. To increase the level of generality of each Simulink® block, seeking the highest levels
of customisation.

5. To reorganise the autopilot structure by developing a framework that facilitates the
inclusion of new components and functions in future AFCS developments.

The validation phase carried out in the final Chapter has shown that the modelling of
the whole autopilot and the tuning of its control system were able to achieve remarkable
results even in comparison with a certified full flight simulator.

Therefore, the generic autopilot architecture developed in this thesis can be used as a
starting point for future research in this topic, and the knowledge gained from this study
can be applied to develop new components and subsystems in future developments of the
current autopilot.

To this purpose, the structural architecture developed for the model assembly (Section
4.2) could pave the way for an easy implementation of new upper modes, such as Vertical
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Speed Mode (VS) or Go Around Mode (GA) and most importantly to the introduction of
a new category of modes, namely the Flight Director Modes such as En-Route Navigation
Mode (NAV), Localizer Mode (LOC), Glideslope Mode (GS), and others.
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A| Appendix: AFCS Masks

Configuration

A.1 Upper Modes Subsystem

Figure A.1: Mode Setpoint custom block configured for IAS Mode on Pitch Axis
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Figure A.2: Mode δCommand/δSetpoint custom block configured as Mode δSetpoint block
for IAS Mode on Pitch Axis

Figure A.3: Mode Setpoint custom block configured for ALT Mode on Pitch Axis
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Figure A.4: Mode δCommand/δSetpoint custom block configured as Mode δSetpoint block
for ALT Mode on Pitch Axis

Figure A.5: Mode Setpoint custom block configured for HOV Mode on Pitch Axis
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Figure A.6: Mode δCommand/δSetpoint custom block configured as Mode δSetpoint block
for HOV Mode on Pitch Axis

Figure A.7: Mode Setpoint custom block configured for HDG Mode on Roll Axis



A| Appendix: AFCS Masks Configuration 143

Figure A.8: Mode δCommand/δSetpoint custom block configured as Mode δSetpoint block
for HDG Mode on Roll Axis

Figure A.9: Mode Setpoint custom block configured for HOV Mode on Roll Axis
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Figure A.10: Mode δCommand/δSetpoint custom block configured as Mode δSetpoint
block for HOV Mode on Roll Axis

Figure A.11: Mode Setpoint custom block configured for ALT Mode on Collective Axis
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Figure A.12: Mode Setpoint custom block configured for RHT Mode on Collective Axis

Figure A.13: Structure of the the subsystem that enables the State Transitions (both
Setpoint and Current State Transitions) among Collective Axis Modes
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Figure A.14: Mode δCommand/δSetpoint custom block configured as Mode δCommand
block for Collective Axis Modes
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A.2 Lower Modes Subsystem

Figure A.15: SAS custom block configured for the Pitch Axis

Figure A.16: Mode Setpoint custom block configured for ATT Mode on Pitch Axis
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Figure A.17: Structure of the the subsystem that enables the Setpoint Transition among
Pitch Axis Modes

Figure A.18: Mode δCommand/δSetpoint custom block configured as Mode δCommand
block for Pitch Axis Modes
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Figure A.19: SAS custom block configured for the Roll Axis

Figure A.20: Mode Setpoint custom block configured for ATT Mode on Roll Axis
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Figure A.21: Structure of the the subsystem that enables the Setpoint Transition among
Roll Axis Modes

Figure A.22: Mode δCommand/δSetpoint custom block configured as Mode δCommand
block for Roll Axis Modes
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Figure A.23: SAS custom block configured for the Yaw Axis

Figure A.24: Mode Setpoint custom block configured for ATT Mode on Yaw Axis
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Figure A.25: Structure of the the subsystem that enables the Setpoint Transition among
Yaw Axis Modes

Figure A.26: Mode δCommand/δSetpoint custom block configured as Mode δCommand
block for Yaw Axis Modes
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A.3 Functionalities Subsystem

Figure A.27: TC custom block configuration
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A.4 Saturation of the Actuators

Figure A.28: Saturation custom block configured for the actuator of each helicopter axis
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B.1 Tuning Script
1 clear all ;

2 close all ;

3 clc ;

4
5 %% HELICOPTER LINEAR DYNAMICS

6
7 % Import stateSpace matrices and trim conditions

8 [stateSpace , userData] = txtImportScript('

Linearized_68kt_5926ft.tab') ;

9 MatA = stateSpace.A ; % [39 x39]

10 MatB = stateSpace.B ; % [39x4]

11 MatC = stateSpace.C ; % [12 x39]

12 MatD = stateSpace.D ; % [12x4]

13
14 % Assign output initial condition for tuning simulation (

needed only in the tuning script for mode logics

management and results verification)

15 IC_Q = userData.Output.InitValue {1}(1); %[rad/s]

16 IC_Theta = userData.Output.InitValue {2}(1) ; %[rad]

17 IC_P = userData.Output.InitValue {7}(1) ; %[rad/s]

18 IC_R = userData.Output.InitValue {8}(1) ; %[rad/s]

19 IC_Phi = userData.Output.InitValue {9}(1) ; %[rad]

20 IC_Psi = userData.Output.InitValue {10}(1) ; %[rad]

21 IC_Ny = userData.Output.InitValue {16}(1) ; %[G]

22 IC_Radalt = userData.Output.InitValue {22}(1) ; %[m]

23 IC_Gsx = userData.Output.InitValue {29}(1) ; %[m/s]

24 IC_Gsy = userData.Output.InitValue {30}(1) ; %[m/s]
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25 IC_Ias = userData.Output.InitValue {31}(1) ; %[m/s]

26 IC_Baralt = userData.Output.InitValue {32}(1) ; %[m]

27
28 % Dynamical system poles -zeros

29 [poles ,zeros] = pzmap(ss(MatA , MatB , MatC , MatD)) ;

30 figure

31 pzmap(ss(MatA , MatB , MatC , MatD)) ;

32 grid minor ;

33
34 %% FIXED PARAMETERS

35
36 % Measurement Unit Conversion

37 kt_to_ms = 0.514444 ; % [m/(s*kt)]

38 ft_to_m = 0.3048 ; % [m/ft]

39 deg2rad = 0.0174533 ; % [rad/deg]

40
41 % Simulation Timestep

42 timeStep = 1/60 ; % [s]

43
44 % Treshold Parameters of Modes Logics

45 VPIas = 60 ; % [kt]

46 Vne = 150 ; % [kt]

47 MinIasIAS = 30 ; % [kt]

48 MinIasTC = 40 ; % [kt]

49 MinRadaltRHT = 3 ; % [ft]

50 MaxRadaltRHT = 2200 ; % [ft]

51 MinBaraltALT = 30 ; % [ft]

52 MaxIasHOV = 80 ; % [kt]

53 MaxGsxHOV = 40 ; % [kt]

54 MaxGsyHOV = 20 ; % [kt]

55
56 % Actuators Saturation Limits (expressed as actuator stroke

percentages normalized to 1)

57 UpperSatPitch = 0.11 ;

58 LowerSatPitch = -0.11 ;

59 UpperSatRoll = 0.19 ;

60 LowerSatRoll = -0.19 ;
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61 UpperSatYaw = 0.215 ;

62 LowerSatYaw = -0.215 ;

63 UpperSatCollective = 0.07 ;

64 LowerSatCollective = -0.07 ;

65
66 % Helicopter Attitude Limits

67 LowerSatTheta = -12 ; % [deg]

68 UpperSatTheta = +14 ; %[deg]

69 LowerSatPhi = -30 ; %[deg]

70 UpperSatPhi = +30 ; %[deg]

71 LowerSatPsi = -360 ; %[deg]

72 UpperSatPsi = +360 ; %[deg]

73
74 % ATTPitch

75 ATTPitchMType = 1 ; % 1=Lower Mode , 2=Upper Mode

76 ATTPitchCType = 4 ; % 1=P, 2=PI, 3=PD, 4=PID

77 beepTrimATTPitchRate = 0.01745*3 ; % [rad/s]

78
79 % ATTRoll

80 ATTRollMType = 1 ; % 1=Lower Mode , 2=Upper Mode

81 ATTRollCType = 4 ; % 1=P, 2=PI, 3=PD, 4=PID

82 beepTrimATTRollRate = 0.01745*3 ; % [rad/s]

83
84 % ATTYaw (Equal to HDGYaw)

85 ATTYawMType = 1 ; % 1=Lower Mode , 2=Upper Mode

86 ATTYawCType = 4 ; % 1=P, 2=PI, 3=PD, 4=PID

87 beepTrimATTYawRate = 0.09 ; % [rad/s]

88
89 % TC

90 TCCType = 4 ; % 1=P, 2=PI, 3=PD, 4=PID

91 MinPhiTC = 0 ; % [deg]

92
93 % IAS

94 IASMType = 2 ; 1=Lower Mode , 2=Upper Mode

95 IASCType = 4 ; % 1=P, 2=PI, 3=PD, 4=PID

96 beepTrimIASRate = -4 ; % [m/s]

97
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98 % HDGRoll

99 HDGRollMType = 2 ; % 1=Lower Mode , 2=Upper Mode

100 HDGRollCType = 4 ; % 1=P, 2=PI, 3=PD, 4=PID

101 beepTrimHDGRollRate = 0.09 ; %[rad/s]

102
103 % ALTPitch/ALTCollective/RHT

104 ALTCollective_RHT_MType = 2 ; % 1=Lower Mode , 2=Upper Mode

105 ALTPitchMType = 2 ; % 1=Lower Mode , 2=Upper Mode

106 ALTCollective_RHT_CType = 4 ; % 1=P, 2=PI, 3=PD, 4=PID

107 ALTPitchCType = 4 ; % 1=P, 2=PI, 3=PD, 4=PID

108 beepTrimRHTRate = 22.4 ; % [m/s]

109 beepTrimALTRate = 22.4 ; % [m/s]

110
111 % HOVPitch/HOVRoll

112 HOVPitchMType = 2 ; % 1=Lower Mode , 2=Upper Mode

113 HOVRollMType = 2 ; % 1=Lower Mode , 2=Upper Mode

114 HOVPitchCType = 4 ; % 1=P, 2=PI, 3=PD, 4=PID

115 HOVRollCType = 4 ; % 1=P, 2=PI, 3=PD, 4=PID

116 beepTrimHOVPitchRate = 1 ; % [m/s]

117 beepTrimHOVRollRate = 1 ; % [m/s]

118
119 %% TUNABLE PARAMETERS (TUNparameters are only used for tuning

purposes)

120
121 % SAS

122 sasPitchP = .85 ;

123 TUNsasPitchPm = .84 ;

124 TUNsasPitchPM = .86 ;

125 sasPitchI = .1 ;

126 TUNsasPitchIm = .09 ;

127 TUNsasPitchIM = .11 ;

128
129 sasRollP = .3 ;

130 TUNsasRollPm = 0.29 ;

131 TUNsasRollPM = .31 ;

132 sasRollI = .1 ;

133 TUNsasRollIm = .09 ;
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134 TUNsasRollIM = .11 ;

135
136 sasYawP = 1.2 ;

137 TUNsasYawPm = 1.19 ;

138 TUNsasYawPM = 1.21 ;

139 sasYawI = .7 ;

140 TUNsasYawIm = .69 ;

141 TUNsasYawIM = .71 ;

142
143 % ATT

144 ATTPitchKp = .1 ;

145 TUNATTPitchKpm = -10 ;

146 TUNATTPitchKpM = 10 ;

147 ATTPitchb = 1 ;

148 TUNATTPitchbm = 0 ;

149 TUNATTPitchbM = 1 ;

150 ATTPitchTi = 10 ;

151 TUNATTPitchKi = ATTPitchKp/ATTPitchTi ;

152 TUNATTPitchKim = -10 ;

153 TUNATTPitchKiM = 10 ;

154 ATTPitchTd = 1 ;

155 TUNATTPitchKd = ATTPitchKp * ATTPitchTd ;

156 TUNATTPitchKdm = -10 ;

157 TUNATTPitchKdM = 10 ;

158 ATTPitchN = 10 ;

159 TUNATTPitchTf = TUNATTPitchKd /( ATTPitchKp * ATTPitchN) ;

160 TUNATTPitchTfm = .01 ;

161 TUNATTPitchTfM = 10 ;

162 ATTPitchc = 0 ;

163 TUNATTPitchcm = 0 ;

164 TUNATTPitchcM = 1 ;

165
166 ATTRollKp = .1 ;

167 TUNATTRollKpm = -10 ;

168 TUNATTRollKpM = 10 ;

169 ATTRollb = 1 ;

170 TUNATTRollbm = 0 ;
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171 TUNATTRollbM = 1 ;

172 ATTRollTi = 10 ;

173 TUNATTRollKi = ATTRollKp/ATTRollTi ;

174 TUNATTRollKim = -10 ;

175 TUNATTRollKiM = 10 ;

176 ATTRollTd = 1 ;

177 TUNATTRollKd = ATTRollKp * ATTRollTd ;

178 TUNATTRollKdm = -10 ;

179 TUNATTRollKdM = 10 ;

180 ATTRollN = 10 ;

181 TUNATTRollTf = TUNATTRollKd /( ATTRollKp * ATTRollN) ;

182 TUNATTRollTfm = .01 ;

183 TUNATTRollTfM = 10 ;

184 ATTRollc = 0 ;

185 TUNATTRollcm = 0 ;

186 TUNATTRollcM = 1 ;

187
188 ATTYawKp = .1 ;

189 TUNATTYawKpm = -10 ;

190 TUNATTYawKpM = 10 ;

191 ATTYawb = 1 ;

192 TUNATTYawbm = 0 ;

193 TUNATTYawbM = 1 ;

194 ATTYawTi = 10 ;

195 TUNATTYawKi = ATTYawKp/ATTYawTi ;

196 TUNATTYawKim = -10 ;

197 TUNATTYawKiM = 10 ;

198 ATTYawTd = 1 ;

199 TUNATTYawKd = ATTYawKp * ATTYawTd ;

200 TUNATTYawKdm = -10 ;

201 TUNATTYawKdM = 10 ;

202 ATTYawN = 10 ;

203 TUNATTYawTf = TUNATTYawKd /( ATTYawKp * ATTYawN) ;

204 TUNATTYawTfm = .01 ;

205 TUNATTYawTfM = 10 ;

206 ATTYawc = 0 ;

207 TUNATTYawcm = 0 ;
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208 TUNATTYawcM = 1 ;

209
210 % TC

211 TCKp = .1 ;

212 TUNTCKpm = .1 ;

213 TUNTCKpM = .3 ;

214 TCb = 1 ;

215 TUNTCbm = 0 ;

216 TUNTCbM = 1 ;

217 TCTi = .1 ;

218 TUNTCKi = TCKp/TCTi ;

219 TUNTCKim = 0 ;

220 TUNTCKiM = 2 ;

221 TCTd = .1 ;

222 TUNTCKd = TCKp * TCTd ;

223 TUNTCKdm = 0 ;

224 TUNTCKdM = 2 ;

225 TCN = 1 ;

226 TUNTCTf = TUNTCKd /(TCKp * TCN) ;

227 TUNTCTfm = .4 ;

228 TUNTCTfM = 2 ;

229 TCc = 0 ;

230 TUNTCcm = 0 ;

231 TUNTCcM = 1 ;

232
233 % ALTCollective / RHT

234 ALTCollective_RHT_Kp = .1 ;

235 TUNALTCollective_RHT_Kpm = -10 ;

236 TUNALTCollective_RHT_KpM = 10 ;

237 ALTCollective_RHT_b = 1 ;

238 TUNALTCollective_RHT_bm = 0 ;

239 TUNALTCollective_RHT_bM = 1 ;

240 ALTCollective_RHT_Ti = 10 ;

241 TUNALTCollective_RHT_Ki = ALTCollective_RHT_Kp/

ALTCollective_RHT_Ti ;

242 TUNALTCollective_RHT_Kim = -10 ;

243 TUNALTCollective_RHT_KiM = 10 ;
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244 ALTCollective_RHT_Td = 1 ;

245 TUNALTCollective_RHT_Kd = ALTCollective_RHT_Kp *

ALTCollective_RHT_Td ;

246 TUNALTCollective_RHT_Kdm = -10 ;

247 TUNALTCollective_RHT_KdM = 10 ;

248 ALTCollective_RHT_N = 10 ;

249 TUNALTCollective_RHT_Tf = TUNALTCollective_RHT_Kd /(

ALTCollective_RHT_Kp * ALTCollective_RHT_N) ;

250 TUNALTCollective_RHT_Tfm = .01 ;

251 TUNALTCollective_RHT_TfM = 10 ;

252 ALTCollective_RHT_c = 0 ;

253 TUNALTCollective_RHT_cm = 0 ;

254 TUNALTCollective_RHT_cM = 1 ;

255
256 % IAS

257 IASKp = .1 ;

258 TUNIASKpm = -10 ;

259 TUNIASKpM = 10 ;

260 IASb = 1 ;

261 TUNIASbm = 0 ;

262 TUNIASbM = 1 ;

263 IASTi = 10 ;

264 TUNIASKi = IASKp/IASTi ;

265 TUNIASKim = -10 ;

266 TUNIASKiM = 10 ;

267 IASTd = 1 ;

268 TUNIASKd = IASKp * IASTd ;

269 TUNIASKdm = -10 ;

270 TUNIASKdM = 10 ;

271 IASN = 10 ;

272 TUNIASTf = TUNIASKd /( IASKp * IASN) ;

273 TUNIASTfm = .01 ;

274 TUNIASTfM = 10 ;

275 IASc = 0 ;

276 TUNIAScm = 0 ;

277 TUNIAScM = 1 ;

278
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279 % ALTPitch

280 ALTPitchKp = .1 ;

281 TUNALTPitchKpm = -10 ;

282 TUNALTPitchKpM = 10 ;

283 ALTPitchb = 1 ;

284 TUNALTPitchbm = 0 ;

285 TUNALTPitchbM = 1 ;

286 ALTPitchTi = 10 ;

287 TUNALTPitchKi = ALTPitchKp/ALTPitchTi ;

288 TUNALTPitchKim = -10 ;

289 TUNALTPitchKiM = 10 ;

290 ALTPitchTd = 1 ;

291 TUNALTPitchKd = ALTPitchKp * ALTPitchTd ;

292 TUNALTPitchKdm = -10 ;

293 TUNALTPitchKdM = 10 ;

294 ALTPitchN = 10 ;

295 TUNALTPitchTf = TUNALTPitchKd /( ALTPitchKp * ALTPitchN) ;

296 TUNALTPitchTfm = .01 ;

297 TUNALTPitchTfM = 10 ;

298 ALTPitchc = 0 ;

299 TUNALTPitchcm = 0 ;

300 TUNALTPitchcM = 1 ;

301
302 % HDGRoll

303 HDGRollKp = .1 ;

304 TUNHDGRollKpm = -10 ;

305 TUNHDGRollKpM = 10 ;

306 HDGRollb = 1 ;

307 TUNHDGRollbm = 0 ;

308 TUNHDGRollbM = 1 ;

309 HDGRollTi = 10 ;

310 TUNHDGRollKi = HDGRollKp/HDGRollTi ;

311 TUNHDGRollKim = -10 ;

312 TUNHDGRollKiM = 10 ;

313 HDGRollTd = 1 ;

314 TUNHDGRollKd = HDGRollKp * HDGRollTd ;

315 TUNHDGRollKdm = -10 ;
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316 TUNHDGRollKdM = 10 ;

317 HDGRollN = 10 ;

318 TUNHDGRollTf = TUNHDGRollKd /( HDGRollKp * HDGRollN) ;

319 TUNHDGRollTfm = .01 ;

320 TUNHDGRollTfM = 10 ;

321 HDGRollc = 0 ;

322 TUNHDGRollcm = 0 ;

323 TUNHDGRollcM = 1 ;

324
325 % HOVPitch

326 HOVPitchKp = .1 ;

327 TUNHOVPitchKpm = -10 ;

328 TUNHOVPitchKpM = 10 ;

329 HOVPitchb = 1 ;

330 TUNHOVPitchbm = 0 ;

331 TUNHOVPitchbM = 1 ;

332 HOVPitchTi = 10 ;

333 TUNHOVPitchKi = HOVPitchKp/HOVPitchTi ;

334 TUNHOVPitchKim = -10 ;

335 TUNHOVPitchKiM = 10 ;

336 HOVPitchTd = 1 ;

337 TUNHOVPitchKd = HOVPitchKp * HOVPitchTd ;

338 TUNHOVPitchKdm = -10 ;

339 TUNHOVPitchKdM = 10 ;

340 HOVPitchN = 10 ;

341 TUNHOVPitchTf = TUNHOVPitchKd /( HOVPitchKp * HOVPitchN) ;

342 TUNHOVPitchTfm = .01 ;

343 TUNHOVPitchTfM = 10 ;

344 HOVPitchc = 0 ;

345 TUNHOVPitchcm = 0 ;

346 TUNHOVPitchcM = 1 ;

347
348 % HOVRoll

349 HOVRollKp = .1 ;

350 TUNHOVRollKpm = -10 ;

351 TUNHOVRollKpM = 10 ;

352 HOVRollb = 1 ;
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353 TUNHOVRollbm = 0 ;

354 TUNHOVRollbM = 1 ;

355 HOVRollTi = 10 ;

356 TUNHOVRollKi = HOVRollKp/HOVRollTi ;

357 TUNHOVRollKim = -10 ;

358 TUNHOVRollKiM = 10 ;

359 HOVRollTd = 1 ;

360 TUNHOVRollKd = HOVRollKp * HOVRollTd ;

361 TUNHOVRollKdm = -10 ;

362 TUNHOVRollKdM = 10 ;

363 HOVRollN = 10 ;

364 TUNHOVRollTf = TUNHOVRollKd /( HOVRollKp * HOVRollN) ;

365 TUNHOVRollTfm = .01 ;

366 TUNHOVRollTfM = 10 ;

367 HOVRollc = 0 ;

368 TUNHOVRollcm = 0 ;

369 TUNHOVRollcM = 1 ;

370
371 %% INITIALIZATION OF SIGNALS

372
373 open('AFCS_Model ')

374
375 %Modes buttons AFCS

376 signalbuilder('AFCS_Model/SignalAP ' ,'set','Signal 1','Group

1' ,[0 timeStep timeStep 1 1 10],[0 0 0 0 0 0])

377 signalbuilder('AFCS_Model/SignalIAS ','set','Signal 1','Group

1' ,[0 timeStep timeStep 1 1 10],[0 0 0 0 0 0])

378 signalbuilder('AFCS_Model/SignalHOV ','set','Signal 1','Group

1' ,[0 timeStep timeStep 1 1 10],[0 0 0 0 0 0])

379 signalbuilder('AFCS_Model/SignalHDG ','set','Signal 1','Group

1' ,[0 timeStep timeStep 1 1 10],[0 0 0 0 0 0])

380 signalbuilder('AFCS_Model/SignalALT ','set','Signal 1','Group

1' ,[0 timeStep timeStep 1 1 10],[0 0 0 0 0 0])

381 signalbuilder('AFCS_Model/SignalRHT ','set','Signal 1','Group

1' ,[0 timeStep timeStep 1 1 10],[0 0 0 0 0 0])

382
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383 %Out of detent of the pilot commands (i.e. cyclic/collective/

pedals ood)

384 TUNoodPitch = 0 ; TUNoodRoll = 0 ; TUNoodYaw = 0 ;

TUNoodCollective = 0 ;

385
386 %Force Trim button (i.e. cyclic/collective ft button)

387 TUNftPitch = 0 ; TUNftRoll = 0 ; TUNftYaw = 0 ;

TUNftCollective = 0 ;

388
389 %Beeptrim button (i.e. cyclic/collective bt button)

390 signalbuilder('AFCS_Model/SignalbtPitch ' ,'set','Signal 1

','Group 1' ,[0 timeStep timeStep 1 1 10],[0 0 0 0 0 0])

391 signalbuilder('AFCS_Model/SignalbtRoll ' ,'set','Signal 1

','Group 1' ,[0 timeStep timeStep 1 1 10],[0 0 0 0 0 0])

392 signalbuilder('AFCS_Model/SignalbtYaw ' ,'set','Signal 1

','Group 1' ,[0 timeStep timeStep 1 1 10],[0 0 0 0 0 0])

393 signalbuilder('AFCS_Model/SignalbtCollective ','set','Signal 1

','Group 1' ,[0 timeStep timeStep 1 1 10],[0 0 0 0 0 0])

394
395 %% ----- TUNING SAS PI -----

396
397 %% Create system data with slTuner interface

398
399 TunedBlocks = {'AFCS_Model/LowerModes/SASPitch/Proportional ';

...

400 'AFCS_Model/LowerModes/SASRoll/Proportional ';

...

401 'AFCS_Model/LowerModes/SASYaw/Proportional ';

...

402 'AFCS_Model/LowerModes/SASPitch/Integral '; ...

403 'AFCS_Model/LowerModes/SASRoll/Integral '; ...

404 'AFCS_Model/LowerModes/SASYaw/Integral '};

405
406 AnalysisPoints = {'AFCS_Model/FR_deltaPitchMODE /1'; ...

407 'AFCS_Model/FR_deltaRollMODE /1'; ...

408 'AFCS_Model/FR_deltaYawMODE /1'; ...

409 'AFCS_Model/FR_deltaCollectiveMODE /1'; ...
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410 'AFCS_Model/Demux /1'; ...

411 'AFCS_Model/Demux /3'; ...

412 'AFCS_Model/Demux /4'};

413
414
415 % Specify the custom options

416 Options = slTunerOptions('AreParamsTunable ',true);

417 % Create the slTuner object

418 CL0 = slTuner('AFCS_Model ',TunedBlocks ,AnalysisPoints ,Options

);

419
420 % Set the parameterization of the tuned block

421 AFCS_Model_SASPitch_Proportional = tunableGain('

AFCS_Model_SASPitch_Proportional ' ,1,1);

422 AFCS_Model_SASPitch_Proportional.Gain.Value = sasPitchP;

423 AFCS_Model_SASPitch_Proportional.Gain.Minimum = TUNsasPitchPm

;

424 AFCS_Model_SASPitch_Proportional.Gain.Maximum = TUNsasPitchPM

;

425 setBlockParam(CL0 ,'AFCS_Model/LowerModes/SASPitch/

Proportional ',AFCS_Model_SASPitch_Proportional);

426
427 % Set the parameterization of the tuned block

428 AFCS_Model_SASRoll_Proportional = tunableGain('

AFCS_Model_SASRoll_Proportional ' ,1,1);

429 AFCS_Model_SASRoll_Proportional.Gain.Value = sasRollP;

430 AFCS_Model_SASRoll_Proportional.Gain.Minimum = TUNsasRollPm;

431 AFCS_Model_SASRoll_Proportional.Gain.Maximum = TUNsasRollPM;

432 setBlockParam(CL0 ,'AFCS_Model/LowerModes/SASRoll/Proportional

',AFCS_Model_SASRoll_Proportional);

433
434 % Set the parameterization of the tuned block

435 AFCS_Model_SASYaw_Proportional = tunableGain('

AFCS_Model_SASYaw_Proportional ' ,1,1);

436 AFCS_Model_SASYaw_Proportional.Gain.Value = sasYawP;

437 AFCS_Model_SASYaw_Proportional.Gain.Minimum = TUNsasYawPm;

438 AFCS_Model_SASYaw_Proportional.Gain.Maximum = TUNsasYawPM;
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439 setBlockParam(CL0 ,'AFCS_Model/LowerModes/SASYaw/Proportional '

,AFCS_Model_SASYaw_Proportional);

440
441 % Set the parameterization of the tuned block

442 AFCS_Model_SASPitch_Integral = tunableGain('

AFCS_Model_SASPitch_Integral ' ,1,1);

443 AFCS_Model_SASPitch_Integral.Gain.Value = sasPitchI;

444 AFCS_Model_SASPitch_Integral.Gain.Minimum = TUNsasPitchIm;

445 AFCS_Model_SASPitch_Integral.Gain.Maximum = TUNsasPitchIM;

446 setBlockParam(CL0 ,'AFCS_Model/LowerModes/SASPitch/Integral ',

AFCS_Model_SASPitch_Integral);

447
448 % Set the parameterization of the tuned block

449 AFCS_Model_SASRoll_Integral = tunableGain('

AFCS_Model_SASRoll_Integral ' ,1,1);

450 AFCS_Model_SASRoll_Integral.Gain.Value = sasRollI;

451 AFCS_Model_SASRoll_Integral.Gain.Minimum = TUNsasRollIm;

452 AFCS_Model_SASRoll_Integral.Gain.Maximum = TUNsasRollIM;

453 setBlockParam(CL0 ,'AFCS_Model/LowerModes/SASRoll/Integral ',

AFCS_Model_SASRoll_Integral);

454
455 % Set the parameterization of the tuned block

456 AFCS_Model_SASYaw_Integral = tunableGain('

AFCS_Model_SASYaw_Integral ' ,1,1);

457 AFCS_Model_SASYaw_Integral.Gain.Value = sasYawI;

458 AFCS_Model_SASYaw_Integral.Gain.Minimum = TUNsasYawIm;

459 AFCS_Model_SASYaw_Integral.Gain.Maximum = TUNsasYawIM;

460 setBlockParam(CL0 ,'AFCS_Model/LowerModes/SASYaw/Integral ',

AFCS_Model_SASYaw_Integral);

461
462 %% Create tuning goal to constrain the dynamics of the closed

-loop system

463
464 % Tuning goal specifications

465 MinDecay = 0; % Minimum decay rate of closed -loop poles

466 MinDamping = 0; % Minimum damping of closed -loop poles
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467 MaxFrequency = inf; % Maximum natural frequency of closed -

loop poles

468 % Create tuning goal for closed -loop poles

469 PolesGoal = TuningGoal.Poles(MinDecay ,MinDamping ,MaxFrequency

);

470 PolesGoal.Name = 'PolesGoal '; % Tuning goal name

471
472 %% Create option set for systune command

473 Options = systuneOptions ();

474 Options.Display = 'final'; % Tuning display level ('final ', '

sub ', 'iter ', 'off ')

475 Options.RandomStart = 100; % Number of randomized starts

476
477 %% Set soft and hard goals

478 SoftGoals = [];

479 HardGoals = [PolesGoal ];

480
481 %% Tune the parameters with soft and hard goals

482 [CL1 ,~,~,~] = systune(CL0 ,SoftGoals ,HardGoals ,Options);

483
484 Sas = getTunedValue(CL1) ;

485
486 sasPitchP = Sas.AFCS_Model_SASPitch_Proportional.D ;

487 sasRollP = Sas.AFCS_Model_SASRoll_Proportional.D ;

488 sasYawP = Sas.AFCS_Model_SASYaw_Proportional.D ;

489 sasPitchI = Sas.AFCS_Model_SASPitch_Integral.D ;

490 sasRollI = Sas.AFCS_Model_SASRoll_Integral.D ;

491 sasYawI = Sas.AFCS_Model_SASYaw_Integral.D ;

492
493 %% View tuning results

494 figure ;

495 viewGoal ([ SoftGoals;HardGoals],CL1) ;

496
497 %% ----- TUNING ATTPITCH + ATTROLL + TC -----

498
499 %% Create system data with slTuner interface

500 % Engage ATT
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501 signalbuilder('AFCS_Model/SignalAP ','set','Signal 1','Group 1

' ,[0 timeStep timeStep 1 1 10],[0 0 1 1 0 0])

502
503 TunedBlocks = {'AFCS_Model/LowerModes/DeltaCommandPitch/

Controller '; ...

504 'AFCS_Model/LowerModes/DeltaCommandRoll/

Controller '; ...

505 'AFCS_Model/Functionalities/TC/Controller '};

506 AnalysisPoints = {'AFCS_Model/Demux /2'; ...

507 'AFCS_Model/Demux /5'; ...

508 'AFCS_Model/Demux /7'; ...

509 'AFCS_Model/LowerModes/DeltaCommandPitch/

SetpointFr /1'; ...

510 'AFCS_Model/LowerModes/DeltaCommandRoll/

SetpointFr /1'};

511
512 OperatingPoints = timeStep *5; % linearization point

513 % Specify the custom options

514 Options = slTunerOptions('AreParamsTunable ',false);

515 % Create the slTuner object

516 CL0 = slTuner('AFCS_Model ',TunedBlocks ,AnalysisPoints ,

OperatingPoints ,Options);

517
518 % Set the parameterization of the tuned block

519 AFCS_Model_ATTPitch_Controller = tunablePID2('

AFCS_Model_ATTPitch_Controller ','PID');

520 AFCS_Model_ATTPitch_Controller.Kp.Value = ATTPitchKp;

521 AFCS_Model_ATTPitch_Controller.Kp.Minimum = TUNATTPitchKpm;

522 AFCS_Model_ATTPitch_Controller.Kp.Maximum = TUNATTPitchKpM;

523 AFCS_Model_ATTPitch_Controller.b.Value = ATTPitchb;

524 AFCS_Model_ATTPitch_Controller.b.Free = 1;

525 AFCS_Model_ATTPitch_Controller.b.Minimum = TUNATTPitchbm;

526 AFCS_Model_ATTPitch_Controller.b.Maximum = TUNATTPitchbM;

527 AFCS_Model_ATTPitch_Controller.Ki.Value = TUNATTPitchKi;

528 AFCS_Model_ATTPitch_Controller.Ki.Minimum = TUNATTPitchKim;

529 AFCS_Model_ATTPitch_Controller.Ki.Maximum = TUNATTPitchKiM;

530 AFCS_Model_ATTPitch_Controller.Kd.Value = TUNATTPitchKd;
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531 AFCS_Model_ATTPitch_Controller.Kd.Minimum = TUNATTPitchKdm;

532 AFCS_Model_ATTPitch_Controller.Kd.Maximum = TUNATTPitchKdM;

533 AFCS_Model_ATTPitch_Controller.Tf.Value = TUNATTPitchTf;

534 AFCS_Model_ATTPitch_Controller.Tf.Minimum = TUNATTPitchTfm;

535 AFCS_Model_ATTPitch_Controller.Tf.Maximum = TUNATTPitchTfM;

536 AFCS_Model_ATTPitch_Controller.c.Value = ATTPitchc;

537 AFCS_Model_ATTPitch_Controller.c.Free = 1;

538 AFCS_Model_ATTPitch_Controller.c.Minimum = TUNATTPitchcm;

539 AFCS_Model_ATTPitch_Controller.c.Maximum = TUNATTPitchcM;

540 setBlockParam(CL0 ,'AFCS_Model/LowerModes/DeltaCommandPitch/

Controller ',AFCS_Model_ATTPitch_Controller);

541
542 % Set the parameterization of the tuned block

543 AFCS_Model_ATTRoll_Controller = tunablePID2('

AFCS_Model_ATTRoll_Controller ','PID');

544 AFCS_Model_ATTRoll_Controller.Kp.Value = ATTRollKp;

545 AFCS_Model_ATTRoll_Controller.Kp.Minimum = TUNATTRollKpm;

546 AFCS_Model_ATTRoll_Controller.Kp.Maximum = TUNATTRollKpM;

547 AFCS_Model_ATTRoll_Controller.b.Value = ATTRollb;

548 AFCS_Model_ATTRoll_Controller.b.Free = 1;

549 AFCS_Model_ATTRoll_Controller.b.Minimum = TUNATTRollbm;

550 AFCS_Model_ATTRoll_Controller.b.Maximum = TUNATTRollbM;

551 AFCS_Model_ATTRoll_Controller.Ki.Value = TUNATTRollKi;

552 AFCS_Model_ATTRoll_Controller.Ki.Minimum = TUNATTRollKim;

553 AFCS_Model_ATTRoll_Controller.Ki.Maximum = TUNATTRollKiM;

554 AFCS_Model_ATTRoll_Controller.Kd.Value = TUNATTRollKd;

555 AFCS_Model_ATTRoll_Controller.Kd.Minimum = TUNATTRollKdm;

556 AFCS_Model_ATTRoll_Controller.Kd.Maximum = TUNATTRollKdM;

557 AFCS_Model_ATTRoll_Controller.Tf.Value = TUNATTRollTf;

558 AFCS_Model_ATTRoll_Controller.Tf.Minimum = TUNATTRollTfm;

559 AFCS_Model_ATTRoll_Controller.Tf.Maximum = TUNATTRollTfM;

560 AFCS_Model_ATTRoll_Controller.c.Value = ATTRollc;

561 AFCS_Model_ATTRoll_Controller.c.Free = 1;

562 AFCS_Model_ATTRoll_Controller.c.Minimum = TUNATTRollcm;

563 AFCS_Model_ATTRoll_Controller.c.Maximum = TUNATTRollcM;

564 setBlockParam(CL0 ,'AFCS_Model/LowerModes/DeltaCommandRoll/

Controller ',AFCS_Model_ATTRoll_Controller);
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565
566 % Set the parameterization of the tuned block

567 AFCS_Model_TC_Controller = tunablePID2('

AFCS_Model_TC_Controller ','PID');

568 AFCS_Model_TC_Controller.Kp.Value = TCKp;

569 AFCS_Model_TC_Controller.Kp.Minimum = TUNTCKpm;

570 AFCS_Model_TC_Controller.Kp.Maximum = TUNTCKpM;

571 AFCS_Model_TC_Controller.b.Value = TCb;

572 AFCS_Model_TC_Controller.b.Free = 1;

573 AFCS_Model_TC_Controller.b.Minimum = TUNTCbm;

574 AFCS_Model_TC_Controller.b.Maximum = TUNTCbM;

575 AFCS_Model_TC_Controller.Ki.Value = TUNTCKi;

576 AFCS_Model_TC_Controller.Ki.Free = 1;

577 AFCS_Model_TC_Controller.Ki.Minimum = TUNTCKim;

578 AFCS_Model_TC_Controller.Ki.Maximum = TUNTCKiM;

579 AFCS_Model_TC_Controller.Kd.Value = TUNTCKd;

580 AFCS_Model_TC_Controller.Kd.Free = 1;

581 AFCS_Model_TC_Controller.Kd.Minimum = TUNTCKdm;

582 AFCS_Model_TC_Controller.Kd.Maximum = TUNTCKdM;

583 AFCS_Model_TC_Controller.Tf.Value = TUNTCTf;

584 AFCS_Model_TC_Controller.Tf.Free = 1;

585 AFCS_Model_TC_Controller.Tf.Minimum = TUNTCTfm;

586 AFCS_Model_TC_Controller.Tf.Maximum = TUNTCTfM;

587 AFCS_Model_TC_Controller.c.Value = TCc;

588 AFCS_Model_TC_Controller.c.Free = 1;

589 AFCS_Model_TC_Controller.c.Minimum = TUNTCcm;

590 AFCS_Model_TC_Controller.c.Maximum = TUNTCcM;

591 setBlockParam(CL0 ,'AFCS_Model/Functionalities/TC/Controller ',

AFCS_Model_TC_Controller);

592
593 %% Create tuning goal to shape how the closed -loop system

responds to a specific input signal

594 % Inputs and outputs

595 Inputs = {'AFCS_Model/LowerModes/DeltaCommandPitch/SetpointFr

/1'};

596 Outputs = {'AFCS_Model/Demux /2'};

597 % Tuning goal specifications
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598 Tau = 0.7; % Time constant

599 Overshoot = 5; % Overshoot (%)

600 % Create tuning goal for step tracking

601 StepTrackingGoalPitch = TuningGoal.StepTracking(Inputs ,

Outputs ,Tau ,Overshoot);

602 StepTrackingGoalPitch.Name = 'StepTrackingGoalPitch '; %

Tuning goal name

603
604 %% Create tuning goal to shape how the closed -loop system

responds to a specific input signal

605 % Inputs and outputs

606 Inputs = {'AFCS_Model/LowerModes/DeltaCommandRoll/SetpointFr

/1'};

607 Outputs = {'AFCS_Model/Demux /5'};

608 % Tuning goal specifications

609 Tau = 0.7; % Time constant

610 Overshoot = 5; % Overshoot (%)

611 % Create tuning goal for step tracking

612 StepTrackingGoalRoll = TuningGoal.StepTracking(Inputs ,Outputs

,Tau ,Overshoot);

613 StepTrackingGoalRoll.Name = 'StepTrackingGoalRoll '; % Tuning

goal name

614
615 %% Create tuning goal to reject step disturbances with the

minimum performance as in the desired response

616 % Inputs and outputs

617 Inputs = {'AFCS_Model/LowerModes/DeltaCommandRoll/SetpointFr

/1'};

618 Outputs = {'AFCS_Model/Demux /7'};

619 % Tuning goal specifications

620 MaxAmplitude = .7;

621 MaxSettlingTime = 20;

622 MinDamping = 1;

623 % Create tuning goal for step tracking

624 StepRejectionGoalTC = TuningGoal.StepRejection(Inputs ,Outputs

,MaxAmplitude ,MaxSettlingTime ,MinDamping);
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625 StepRejectionGoalTC.Name = 'StepRejectionGoalTC '; % Tuning

goal name

626
627 %% Create tuning goal to enforce specific gain and phase

margins

628 % Feedback loop locations

629 Locations = {'AFCS_Model/Demux /2';...

630 'AFCS_Model/Demux /5';...

631 'AFCS_Model/Demux /7';};

632 % Tuning goal specifications

633 GainMargin = 5; % Required minimum gain margin

634 PhaseMargin = 30; % Required minimum phase margin

635 % Create tuning goal for margins

636 MarginsGoalATT = TuningGoal.Margins(Locations ,GainMargin ,

PhaseMargin);

637 MarginsGoalATT.Name = 'MarginsGoalATT '; % Tuning goal name

638
639 %% Create option set for systune command

640 Options = systuneOptions ();

641 Options.Display = 'final'; % Tuning display level ('final ', '

sub ', 'iter ', 'off ')

642 Options.RandomStart = 10; % Number of randomized starts

643
644 %% Set soft and hard goals

645 SoftGoals = [ StepRejectionGoalTC ];

646 HardGoals = [ StepTrackingGoalPitch , StepTrackingGoalRoll ,

MarginsGoalATT ];

647
648 %% Tune the parameters with soft and hard goals

649 [CL1 ,~,~,~] = systune(CL0 ,SoftGoals ,HardGoals ,Options);

650
651 AP = getTunedValue(CL1) ;

652
653 ATTPitchKp = AP.AFCS_Model_ATTPitch_Controller.Kp ;

654 ATTPitchb = AP.AFCS_Model_ATTPitch_Controller.b ;

655 ATTPitchTi = AP.AFCS_Model_ATTPitch_Controller.Kp/AP.

AFCS_Model_ATTPitch_Controller.Ki ;
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656 ATTPitchTd = AP.AFCS_Model_ATTPitch_Controller.Kd/AP.

AFCS_Model_ATTPitch_Controller.Kp ;

657 ATTPitchN = AP.AFCS_Model_ATTPitch_Controller.Kd/(AP.

AFCS_Model_ATTPitch_Controller.Kp * AP.

AFCS_Model_ATTPitch_Controller.Tf) ;

658 ATTPitchc = AP.AFCS_Model_ATTPitch_Controller.c ;

659
660 ATTRollKp = AP.AFCS_Model_ATTRoll_Controller.Kp ;

661 ATTRollb = AP.AFCS_Model_ATTRoll_Controller.b ;

662 ATTRollTi = AP.AFCS_Model_ATTRoll_Controller.Kp/AP.

AFCS_Model_ATTRoll_Controller.Ki ;

663 ATTRollTd = AP.AFCS_Model_ATTRoll_Controller.Kd/AP.

AFCS_Model_ATTRoll_Controller.Kp ;

664 ATTRollN = AP.AFCS_Model_ATTRoll_Controller.Kd/(AP.

AFCS_Model_ATTRoll_Controller.Kp * AP.

AFCS_Model_ATTRoll_Controller.Tf) ;

665 ATTRollc = AP.AFCS_Model_ATTRoll_Controller.c ;

666
667 TCKp = AP.AFCS_Model_TC_Controller.Kp ;

668 TCb = AP.AFCS_Model_TC_Controller.b ;

669 TCTi = AP.AFCS_Model_TC_Controller.Kp/AP.

AFCS_Model_TC_Controller.Ki ;

670 TCTd = AP.AFCS_Model_TC_Controller.Kd/AP.

AFCS_Model_TC_Controller.Kp ;

671 TCN = AP.AFCS_Model_TC_Controller.Kd/(AP.

AFCS_Model_TC_Controller.Kp * AP.AFCS_Model_TC_Controller.

Tf) ;

672 TCc = AP.AFCS_Model_TC_Controller.c ;

673
674 %% View tuning results

675 figure ;

676 viewGoal(SoftGoals (1),CL1) ;

677 figure ;

678 viewGoal(HardGoals (1),CL1) ;

679 figure ;

680 viewGoal(HardGoals (2),CL1) ;

681 figure ;
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682 viewGoal(HardGoals (3),CL1) ;

683
684 %% Restore initial configuration

685 signalbuilder('AFCS_Model/SignalAP ','set','Signal 1','Group 1

' ,[0 1 1 2 2 10],[0 0 0 0 0 0])

686
687
688 %% ----- TUNING IAS -----

689
690 %% Create system data with slTuner interface

691
692 % Engage ATT

693 signalbuilder('AFCS_Model/SignalAP ','set','Signal 1','Group 1

' ,[0 timeStep timeStep 0.5 0.5 10],[0 0 1 1 0 0])

694
695 % Engage IAS after ATT engagement

696 signalbuilder('AFCS_Model/SignalIAS ','set','Signal 1','Group

1' ,[0 1+ timeStep 1+ timeStep 1.5 1.5 10] ,[0 0 1 1 0 0])

697
698 TunedBlocks = {'AFCS_Model/UpperModes/DeltaspstThetaIAS/

Controller '};

699 AnalysisPoints = {'AFCS_Model/Demux /11'; ...

700 'AFCS_Model/UpperModes/DeltaspstThetaIAS/

SetpointFr /1'};

701
702 OperatingPoints = 1+5* timeStep; % linearization point

703 % Specify the custom options

704 Options = slTunerOptions('AreParamsTunable ',false);

705 % Create the slTuner object

706 CL0 = slTuner('AFCS_Model ',TunedBlocks ,AnalysisPoints ,

OperatingPoints ,Options);

707
708 % Set the parameterization of the tuned block

709 AFCS_Model_IAS_Controller = tunablePID2('

AFCS_Model_IAS_Controller ','PID');

710 AFCS_Model_IAS_Controller.Kp.Value = IASKp;

711 AFCS_Model_IAS_Controller.Kp.Minimum = TUNIASKpm;
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712 AFCS_Model_IAS_Controller.Kp.Maximum = TUNIASKpM;

713 AFCS_Model_IAS_Controller.b.Value = IASb;

714 AFCS_Model_IAS_Controller.b.Free = 1;

715 AFCS_Model_IAS_Controller.b.Minimum = TUNIASbm;

716 AFCS_Model_IAS_Controller.b.Maximum = TUNIASbM;

717 AFCS_Model_IAS_Controller.Ki.Value = TUNIASKi;

718 AFCS_Model_IAS_Controller.Ki.Minimum = TUNIASKim;

719 AFCS_Model_IAS_Controller.Ki.Maximum = TUNIASKiM;

720 AFCS_Model_IAS_Controller.Kd.Value = TUNIASKd;

721 AFCS_Model_IAS_Controller.Kd.Minimum = TUNIASKdm;

722 AFCS_Model_IAS_Controller.Kd.Maximum = TUNIASKdM;

723 AFCS_Model_IAS_Controller.Tf.Value = TUNIASTf;

724 AFCS_Model_IAS_Controller.Tf.Minimum = TUNIASTfm;

725 AFCS_Model_IAS_Controller.Tf.Maximum = TUNIASTfM;

726 AFCS_Model_IAS_Controller.c.Value = IASc;

727 AFCS_Model_IAS_Controller.c.Free = 1;

728 AFCS_Model_IAS_Controller.c.Minimum = TUNIAScm;

729 AFCS_Model_IAS_Controller.c.Maximum = TUNIAScM;

730 setBlockParam(CL0 ,'AFCS_Model/UpperModes/DeltaspstThetaIAS/

Controller ',AFCS_Model_IAS_Controller);

731
732 %% Create tuning goal to shape how the closed -loop system

responds to a specific input signal

733 % Inputs and outputs

734 Inputs = {'AFCS_Model/UpperModes/DeltaspstThetaIAS/SetpointFr

/1'};

735 Outputs = {'AFCS_Model/Demux /11'};

736 % Tuning goal specifications

737 Tau = 2.5; % Time constant

738 Overshoot = 10; % Overshoot (%)

739 % Create tuning goal for step tracking

740 StepTrackingGoalIAS = TuningGoal.StepTracking(Inputs ,Outputs ,

Tau ,Overshoot);

741 StepTrackingGoalIAS.Name = 'StepTrackingGoalIAS '; % Tuning

goal name

742
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743 %% Create tuning goal to enforce specific gain and phase

margins

744 % Feedback loop locations

745 Locations = {'AFCS_Model/Demux /11'};

746 % Tuning goal specifications

747 GainMargin = 10; % Required minimum gain margin

748 PhaseMargin = 10; % Required minimum phase margin

749 % Create tuning goal for margins

750 MarginsGoalIAS = TuningGoal.Margins(Locations ,GainMargin ,

PhaseMargin);

751 MarginsGoalIAS.Name = 'MarginsGoalIAS '; % Tuning goal name

752
753 %% Create option set for systune command

754 Options = systuneOptions ();

755 Options.Display = 'final'; % Tuning display level ('final ', '

sub ', 'iter ', 'off ')

756 Options.RandomStart = 10; % Number of randomized starts

757
758 %% Set soft and hard goals

759 SoftGoals = [ ];

760 HardGoals = [ StepTrackingGoalIAS , MarginsGoalIAS ];

761
762 %% Tune the parameters with soft and hard goals

763 [CL1 ,~,~,~] = systune(CL0 ,SoftGoals ,HardGoals ,Options);

764
765 AP = getTunedValue(CL1) ;

766
767 IASKp = AP.AFCS_Model_IAS_Controller.Kp ;

768 IASb = AP.AFCS_Model_IAS_Controller.b ;

769 IASTi = AP.AFCS_Model_IAS_Controller.Kp/AP.

AFCS_Model_IAS_Controller.Ki ;

770 IASTd = AP.AFCS_Model_IAS_Controller.Kd/AP.

AFCS_Model_IAS_Controller.Kp ;

771 IASN = AP.AFCS_Model_IAS_Controller.Kd/(AP.

AFCS_Model_IAS_Controller.Kp * AP.

AFCS_Model_IAS_Controller.Tf) ;

772 IASc = AP.AFCS_Model_IAS_Controller.c ;
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773
774 %% View tuning results

775 figure ;

776 viewGoal(HardGoals (1),CL1) ;

777 figure ;

778 viewGoal(HardGoals (2),CL1) ;

779
780 %% Restore initial configuration

781 signalbuilder('AFCS_Model/SignalAP ','set','Signal 1','Group 1

' ,[0 1 1 2 2 10],[0 0 0 0 0 0])

782 signalbuilder('AFCS_Model/SignalIAS ','set','Signal 1','Group

1' ,[0 1 1 2 2 10],[0 0 0 0 0 0])

783
784 %% ----- TUNING ALTCollective (note that Ias >

VerticalProtectionIas; then ALT Mode would be engaged on

the Pitch Axis. However , if IAS Mode is already engaged on

Pitch Axis , ALT Mode works on Collective Axis) -----

785
786 %% Create system data with slTuner interface

787
788 % Engage ATT

789 signalbuilder('AFCS_Model/SignalAP ','set','Signal 1','Group 1

' ,[0 timeStep timeStep 0.5 0.5 10],[0 0 1 1 0 0])

790
791 % Engage IAS after ATT engagement

792 signalbuilder('AFCS_Model/SignalIAS ','set','Signal 1','Group

1' ,[0 1+ timeStep 1+ timeStep 1.5 1.5 10] ,[0 0 1 1 0 0])

793
794 % Engage ALT after IAS engagement

795 signalbuilder('AFCS_Model/SignalALT ','set','Signal 1','Group

1' ,[0 1.1+ timeStep 1.1+ timeStep 1.5 1.5 10],[0 0 1 1 0 0])

796
797 TunedBlocks = {'AFCS_Model/UpperModes/DeltaCommandCollective/

Controller '};

798 AnalysisPoints = {'AFCS_Model/Demux /12'; ...

799 'AFCS_Model/UpperModes/

DeltaCommandCollective/SetpointFr /1'};
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800
801 OperatingPoints = 1.1+5* timeStep; % linearization point

802 % Specify the custom options

803 Options = slTunerOptions('AreParamsTunable ',false);

804 % Create the slTuner object

805 CL0 = slTuner('AFCS_Model ',TunedBlocks ,AnalysisPoints ,

OperatingPoints ,Options);

806
807 % Set the parameterization of the tuned block

808 AFCS_Model_ALTCollective_RHT__Controller = tunablePID2('

AFCS_Model_ALTCollective_RHT__Controller ','PID');

809 AFCS_Model_ALTCollective_RHT__Controller.Kp.Value =

ALTCollective_RHT_Kp;

810 AFCS_Model_ALTCollective_RHT__Controller.Kp.Minimum =

TUNALTCollective_RHT_Kpm;

811 AFCS_Model_ALTCollective_RHT__Controller.Kp.Maximum =

TUNALTCollective_RHT_KpM;

812 AFCS_Model_ALTCollective_RHT__Controller.b.Value =

ALTCollective_RHT_b;

813 AFCS_Model_ALTCollective_RHT__Controller.b.Free = 1;

814 AFCS_Model_ALTCollective_RHT__Controller.b.Minimum =

TUNALTCollective_RHT_bm;

815 AFCS_Model_ALTCollective_RHT__Controller.b.Maximum =

TUNALTCollective_RHT_bM;

816 AFCS_Model_ALTCollective_RHT__Controller.Ki.Value =

TUNALTCollective_RHT_Ki;

817 AFCS_Model_ALTCollective_RHT__Controller.Ki.Minimum =

TUNALTCollective_RHT_Kim;

818 AFCS_Model_ALTCollective_RHT__Controller.Ki.Maximum =

TUNALTCollective_RHT_KiM;

819 AFCS_Model_ALTCollective_RHT__Controller.Kd.Value =

TUNALTCollective_RHT_Kd;

820 AFCS_Model_ALTCollective_RHT__Controller.Kd.Minimum =

TUNALTCollective_RHT_Kdm;

821 AFCS_Model_ALTCollective_RHT__Controller.Kd.Maximum =

TUNALTCollective_RHT_KdM;
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822 AFCS_Model_ALTCollective_RHT__Controller.Tf.Value =

TUNALTCollective_RHT_Tf;

823 AFCS_Model_ALTCollective_RHT__Controller.Tf.Minimum =

TUNALTCollective_RHT_Tfm;

824 AFCS_Model_ALTCollective_RHT__Controller.Tf.Maximum =

TUNALTCollective_RHT_TfM;

825 AFCS_Model_ALTCollective_RHT__Controller.c.Value =

ALTCollective_RHT_c;

826 AFCS_Model_ALTCollective_RHT__Controller.c.Free = 1;

827 AFCS_Model_ALTCollective_RHT__Controller.c.Minimum =

TUNALTCollective_RHT_cm;

828 AFCS_Model_ALTCollective_RHT__Controller.c.Maximum =

TUNALTCollective_RHT_cM;

829 setBlockParam(CL0 ,'AFCS_Model/UpperModes/

DeltaCommandCollective/Controller ',

AFCS_Model_ALTCollective_RHT__Controller);

830
831 %% Create tuning goal to shape how the closed -loop system

responds to a specific input signal

832 % Inputs and outputs

833 Inputs = {'AFCS_Model/UpperModes/DeltaCommandCollective/

SetpointFr /1'};

834 Outputs = {'AFCS_Model/Demux /12'};

835 % Tuning goal specifications

836 Tau = .8; % Time constant

837 Overshoot = 5; % Overshoot (%)

838 % Create tuning goal for step tracking

839 StepTrackingGoalALTCollective_RHT_ = TuningGoal.StepTracking(

Inputs ,Outputs ,Tau ,Overshoot);

840 StepTrackingGoalALTCollective_RHT_.Name = '

StepTrackingGoalALTCollective_RHT_ '; % Tuning goal name

841
842 %% Create tuning goal to enforce specific gain and phase

margins

843 % Feedback loop locations

844 Locations = {'AFCS_Model/Demux /12'};

845 % Tuning goal specifications
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846 GainMargin = 15; % Required minimum gain margin

847 PhaseMargin = 40; % Required minimum phase margin

848 % Create tuning goal for margins

849 MarginsGoalALTCollective_RHT_ = TuningGoal.Margins(Locations ,

GainMargin ,PhaseMargin);

850 MarginsGoalALTCollective_RHT_.Name = '

MarginsGoalALTCollective_RHT_ '; % Tuning goal name

851
852 %% Create option set for systune command

853 Options = systuneOptions ();

854 Options.Display = 'final'; % Tuning display level ('final ', '

sub ', 'iter ', 'off ')

855 Options.RandomStart = 10; % Number of randomized starts

856
857 %% Set soft and hard goals

858 SoftGoals = [ ];

859 HardGoals = [ StepTrackingGoalALTCollective_RHT_ ,

MarginsGoalALTCollective_RHT_ ];

860
861 %% Tune the parameters with soft and hard goals

862 [CL1 ,~,~,~] = systune(CL0 ,SoftGoals ,HardGoals ,Options);

863
864 AP = getTunedValue(CL1) ;

865
866 ALTCollective_RHT_Kp = AP.

AFCS_Model_ALTCollective_RHT__Controller.Kp ;

867 ALTCollective_RHT_b = AP.

AFCS_Model_ALTCollective_RHT__Controller.b ;

868 ALTCollective_RHT_Ti = AP.

AFCS_Model_ALTCollective_RHT__Controller.Kp/AP.

AFCS_Model_ALTCollective_RHT__Controller.Ki ;

869 ALTCollective_RHT_Td = AP.

AFCS_Model_ALTCollective_RHT__Controller.Kd/AP.

AFCS_Model_ALTCollective_RHT__Controller.Kp ;

870 ALTCollective_RHT_N = AP.

AFCS_Model_ALTCollective_RHT__Controller.Kd/(AP.

AFCS_Model_ALTCollective_RHT__Controller.Kp * AP.
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AFCS_Model_ALTCollective_RHT__Controller.Tf) ;

871 ALTCollective_RHT_c = AP.

AFCS_Model_ALTCollective_RHT__Controller.c ;

872
873 %% View tuning results

874 figure ;

875 viewGoal(HardGoals (1),CL1) ;

876 figure ;

877 viewGoal(HardGoals (2),CL1) ;

878
879 %% Restore initial configuration

880 signalbuilder('AFCS_Model/SignalAP ','set','Signal 1','Group 1

' ,[0 1 1 2 2 10],[0 0 0 0 0 0])

881 signalbuilder('AFCS_Model/SignalIAS ','set','Signal 1','Group

1' ,[0 1 1 2 2 10],[0 0 0 0 0 0])

882 signalbuilder('AFCS_Model/SignalALT ','set','Signal 1','Group

1' ,[0 1 1 2 2 10],[0 0 0 0 0 0])

883
884 %% ----- TUNING ALTPitch -----

885
886 %% Create system data with slTuner interface

887
888 % Engage ATT

889 signalbuilder('AFCS_Model/SignalAP ','set','Signal 1','Group 1

' ,[0 timeStep timeStep 0.5 0.5 10],[0 0 1 1 0 0])

890
891 % Engage ALT after ATT engagement

892 signalbuilder('AFCS_Model/SignalALT ','set','Signal 1','Group

1' ,[0 1.1+ timeStep 1.1+ timeStep 1.5 1.5 10],[0 0 1 1 0 0])

893
894 TunedBlocks = {'AFCS_Model/UpperModes/DeltaspstThetaALT/

Controller '};

895 AnalysisPoints = {'AFCS_Model/Demux /12'; ...

896 'AFCS_Model/UpperModes/DeltaspstThetaALT/

SetpointFr /1'};

897
898 OperatingPoints = 1.1+5* timeStep ; % linearization point
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899 % Specify the custom options

900 Options = slTunerOptions('AreParamsTunable ',false);

901 % Create the slTuner object

902 CL0 = slTuner('AFCS_Model ',TunedBlocks ,AnalysisPoints ,

OperatingPoints ,Options);

903
904 % Set the parameterization of the tuned block

905 AFCS_Model_ALTPitch_Controller = tunablePID2('

AFCS_Model_ALTPitch_Controller ','PID');

906 AFCS_Model_ALTPitch_Controller.Kp.Value = ALTPitchKp;

907 AFCS_Model_ALTPitch_Controller.Kp.Minimum = TUNALTPitchKpm;

908 AFCS_Model_ALTPitch_Controller.Kp.Maximum = TUNALTPitchKpM;

909 AFCS_Model_ALTPitch_Controller.b.Value = ALTPitchb;

910 AFCS_Model_ALTPitch_Controller.b.Free = 1;

911 AFCS_Model_ALTPitch_Controller.b.Minimum = TUNALTPitchbm;

912 AFCS_Model_ALTPitch_Controller.b.Maximum = TUNALTPitchbM;

913 AFCS_Model_ALTPitch_Controller.Ki.Value = TUNALTPitchKi;

914 AFCS_Model_ALTPitch_Controller.Ki.Minimum = TUNALTPitchKim;

915 AFCS_Model_ALTPitch_Controller.Ki.Maximum = TUNALTPitchKiM;

916 AFCS_Model_ALTPitch_Controller.Kd.Value = TUNALTPitchKd;

917 AFCS_Model_ALTPitch_Controller.Kd.Minimum = TUNALTPitchKdm;

918 AFCS_Model_ALTPitch_Controller.Kd.Maximum = TUNALTPitchKdM;

919 AFCS_Model_ALTPitch_Controller.Tf.Value = TUNALTPitchTf;

920 AFCS_Model_ALTPitch_Controller.Tf.Minimum = TUNALTPitchTfm;

921 AFCS_Model_ALTPitch_Controller.Tf.Maximum = TUNALTPitchTfM;

922 AFCS_Model_ALTPitch_Controller.c.Value = ALTPitchc;

923 AFCS_Model_ALTPitch_Controller.c.Free = 1;

924 AFCS_Model_ALTPitch_Controller.c.Minimum = TUNALTPitchcm;

925 AFCS_Model_ALTPitch_Controller.c.Maximum = TUNALTPitchcM;

926 setBlockParam(CL0 ,'AFCS_Model/UpperModes/DeltaspstThetaALT/

Controller ',AFCS_Model_ALTPitch_Controller);

927
928 %% Create tuning goal to shape how the closed -loop system

responds to a specific input signal

929 % Inputs and outputs

930 Inputs = {'AFCS_Model/UpperModes/DeltaspstThetaALT/SetpointFr

/1'};
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931 Outputs = {'AFCS_Model/Demux /12'};

932 % Tuning goal specifications

933 Tau = 3; % Time constant

934 Overshoot = 5; % Overshoot (%)

935 % Create tuning goal for step tracking

936 StepTrackingGoalALTPitch = TuningGoal.StepTracking(Inputs ,

Outputs ,Tau ,Overshoot);

937 StepTrackingGoalALTPitch.Name = 'StepTrackingGoalALTPitch '; %

Tuning goal name

938
939 %% Create tuning goal to enforce specific gain and phase

margins

940 % Feedback loop locations

941 Locations = {'AFCS_Model/Demux /12'};

942 % Tuning goal specifications

943 GainMargin = 5; % Required minimum gain margin

944 PhaseMargin = 20; % Required minimum phase margin

945 % Create tuning goal for margins

946 MarginsGoalALTPitch = TuningGoal.Margins(Locations ,GainMargin

,PhaseMargin);

947 MarginsGoalALTPitch.Name = 'MarginsGoalALTPitch '; % Tuning

goal name

948
949 %% Create option set for systune command

950 Options = systuneOptions ();

951 Options.Display = 'final'; % Tuning display level ('final ', '

sub ', 'iter ', 'off ')

952 Options.RandomStart = 10; % Number of randomized starts

953
954 %% Set soft and hard goals

955 SoftGoals = [ ];

956 HardGoals = [ StepTrackingGoalALTPitch , MarginsGoalALTPitch ];

957
958 %% Tune the parameters with soft and hard goals

959 [CL1 ,~,~,~] = systune(CL0 ,SoftGoals ,HardGoals ,Options);

960
961 AP = getTunedValue(CL1) ;
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962
963 ALTPitchKp = AP.AFCS_Model_ALTPitch_Controller.Kp ;

964 ALTPitchb = AP.AFCS_Model_ALTPitch_Controller.b ;

965 ALTPitchTi = AP.AFCS_Model_ALTPitch_Controller.Kp/AP.

AFCS_Model_ALTPitch_Controller.Ki ;

966 ALTPitchTd = AP.AFCS_Model_ALTPitch_Controller.Kd/AP.

AFCS_Model_ALTPitch_Controller.Kp ;

967 ALTPitchN = AP.AFCS_Model_ALTPitch_Controller.Kd/(AP.

AFCS_Model_ALTPitch_Controller.Kp * AP.

AFCS_Model_ALTPitch_Controller.Tf) ;

968 ALTPitchc = AP.AFCS_Model_ALTPitch_Controller.c ;

969
970 %% View tuning results

971 figure ;

972 viewGoal(HardGoals (1),CL1) ;

973 figure ;

974 viewGoal(HardGoals (2),CL1) ;

975
976 %% Restore initial configuration

977 signalbuilder('AFCS_Model/SignalAP ','set','Signal 1','Group 1

' ,[0 1 1 2 2 10],[0 0 0 0 0 0])

978 signalbuilder('AFCS_Model/SignalALT ','set','Signal 1','Group

1' ,[0 1 1 2 2 10],[0 0 0 0 0 0])

979
980
981 %% ----- TUNING HDGRoll -----

982
983 %% Create system data with slTuner interface

984
985 % Engage ATT

986 signalbuilder('AFCS_Model/SignalAP ','set','Signal 1','Group 1

' ,[0 timeStep timeStep 0.5 0.5 10],[0 0 1 1 0 0])

987
988 % Engage HDG after ATT engagement

989 signalbuilder('AFCS_Model/SignalHDG ','set','Signal 1','Group

1' ,[0 1.1+ timeStep 1.1+ timeStep 1.5 1.5 10],[0 0 1 1 0 0])

990
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991 TunedBlocks = {'AFCS_Model/UpperModes/DeltaspstPhiHDG/

Controller '};

992 AnalysisPoints = {'AFCS_Model/Demux /6'; ...

993 'AFCS_Model/UpperModes/DeltaspstPhiHDG/

SetpointFr /1'};

994
995 OperatingPoints = 1.1+5* timeStep; % linearization point

996 % Specify the custom options

997 Options = slTunerOptions('AreParamsTunable ',false);

998 % Create the slTuner object

999 CL0 = slTuner('AFCS_Model ',TunedBlocks ,AnalysisPoints ,

OperatingPoints ,Options);

1000
1001 % Set the parameterization of the tuned block

1002 AFCS_Model_HDGRoll_Controller = tunablePID2('

AFCS_Model_HDGRoll_Controller ','PID');

1003 AFCS_Model_HDGRoll_Controller.Kp.Value = HDGRollKp;

1004 AFCS_Model_HDGRoll_Controller.Kp.Minimum = TUNHDGRollKpm;

1005 AFCS_Model_HDGRoll_Controller.Kp.Maximum = TUNHDGRollKpM;

1006 AFCS_Model_HDGRoll_Controller.b.Value = HDGRollb;

1007 AFCS_Model_HDGRoll_Controller.b.Free = 1;

1008 AFCS_Model_HDGRoll_Controller.b.Minimum = TUNHDGRollbm;

1009 AFCS_Model_HDGRoll_Controller.b.Maximum = TUNHDGRollbM;

1010 AFCS_Model_HDGRoll_Controller.Ki.Value = TUNHDGRollKi;

1011 AFCS_Model_HDGRoll_Controller.Ki.Minimum = TUNHDGRollKim;

1012 AFCS_Model_HDGRoll_Controller.Ki.Maximum = TUNHDGRollKiM;

1013 AFCS_Model_HDGRoll_Controller.Kd.Value = TUNHDGRollKd;

1014 AFCS_Model_HDGRoll_Controller.Kd.Minimum = TUNHDGRollKdm;

1015 AFCS_Model_HDGRoll_Controller.Kd.Maximum = TUNHDGRollKdM;

1016 AFCS_Model_HDGRoll_Controller.Tf.Value = TUNHDGRollTf;

1017 AFCS_Model_HDGRoll_Controller.Tf.Minimum = TUNHDGRollTfm;

1018 AFCS_Model_HDGRoll_Controller.Tf.Maximum = TUNHDGRollTfM;

1019 AFCS_Model_HDGRoll_Controller.c.Value = HDGRollc;

1020 AFCS_Model_HDGRoll_Controller.c.Free = 1;

1021 AFCS_Model_HDGRoll_Controller.c.Minimum = TUNHDGRollcm;

1022 AFCS_Model_HDGRoll_Controller.c.Maximum = TUNHDGRollcM;



188 B| Appendix: Matlab Scripts

1023 setBlockParam(CL0 ,'AFCS_Model/UpperModes/DeltaspstPhiHDG/

Controller ',AFCS_Model_HDGRoll_Controller);

1024
1025 %% Create tuning goal to shape how the closed -loop system

responds to a specific input signal

1026 % Inputs and outputs

1027 Inputs = {'AFCS_Model/UpperModes/DeltaspstPhiHDG/SetpointFr /1

'};

1028 Outputs = {'AFCS_Model/Demux /6'};

1029 % Tuning goal specifications

1030 Tau = 2; % Time constant

1031 Overshoot = 10; % Overshoot (%)

1032 % Create tuning goal for step tracking

1033 StepTrackingGoalHDGRoll = TuningGoal.StepTracking(Inputs ,

Outputs ,Tau ,Overshoot);

1034 StepTrackingGoalHDGRoll.Name = 'StepTrackingGoalHDGRoll '; %

Tuning goal name

1035
1036 %% Create tuning goal to enforce specific gain and phase

margins

1037 % Feedback loop locations

1038 Locations = {'AFCS_Model/Demux /6'};

1039 % Tuning goal specifications

1040 GainMargin = 5; % Required minimum gain margin

1041 PhaseMargin = 20; % Required minimum phase margin

1042 % Create tuning goal for margins

1043 MarginsGoalHDGRoll = TuningGoal.Margins(Locations ,GainMargin ,

PhaseMargin);

1044 MarginsGoalHDGRoll.Name = 'MarginsGoalHDGRoll '; % Tuning goal

name

1045
1046 %% Create option set for systune command

1047 Options = systuneOptions ();

1048 Options.Display = 'final'; % Tuning display level ('final ', '

sub ', 'iter ', 'off ')

1049 Options.RandomStart = 10; % Number of randomized starts

1050
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1051 %% Set soft and hard goals

1052 SoftGoals = [ ];

1053 HardGoals = [ StepTrackingGoalHDGRoll , MarginsGoalHDGRoll ];

1054
1055 %% Tune the parameters with soft and hard goals

1056 [CL1 ,~,~,~] = systune(CL0 ,SoftGoals ,HardGoals ,Options);

1057
1058 AP = getTunedValue(CL1) ;

1059
1060 HDGRollKp = AP.AFCS_Model_HDGRoll_Controller.Kp ;

1061 HDGRollb = AP.AFCS_Model_HDGRoll_Controller.b ;

1062 HDGRollTi = AP.AFCS_Model_HDGRoll_Controller.Kp/AP.

AFCS_Model_HDGRoll_Controller.Ki ;

1063 HDGRollTd = AP.AFCS_Model_HDGRoll_Controller.Kd/AP.

AFCS_Model_HDGRoll_Controller.Kp ;

1064 HDGRollN = AP.AFCS_Model_HDGRoll_Controller.Kd/(AP.

AFCS_Model_HDGRoll_Controller.Kp * AP.

AFCS_Model_HDGRoll_Controller.Tf) ;

1065 HDGRollc = AP.AFCS_Model_HDGRoll_Controller.c ;

1066
1067 %% View tuning results

1068 figure ;

1069 viewGoal(HardGoals (1),CL1) ;

1070 figure ;

1071 viewGoal(HardGoals (2),CL1) ;

1072
1073 %% Restore initial configuration

1074 signalbuilder('AFCS_Model/SignalAP ','set','Signal 1','Group 1

' ,[0 1 1 2 2 10],[0 0 0 0 0 0])

1075 signalbuilder('AFCS_Model/SignalHDG ','set','Signal 1','Group

1' ,[0 1 1 2 2 10],[0 0 0 0 0 0])

1076
1077
1078 %% ----- SAVE PARAMETERS FOR VALIDATION MODEL -----

1079 % Save the fixed and tuned parameters to a file named "

ParametersList.mat"

1080
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1081 save('ParametersList.mat', ...

1082 'kt_to_ms ', ...

1083 'ft_to_m ', ...

1084 'deg2rad ', ...

1085 'timeStep ', ...

1086 'VPIas', ...

1087 'Vne', ...

1088 'MinIasIAS ', ...

1089 'MinIasTC ', ...

1090 'MinRadaltRHT ', ...

1091 'MaxRadaltRHT ', ...

1092 'MinBaraltALT ', ...

1093 'MaxIasHOV ', ...

1094 'MaxGsxHOV ', ...

1095 'MaxGsyHOV ', ...

1096 'UpperSatPitch ', ...

1097 'LowerSatPitch ', ...

1098 'UpperSatRoll ', ...

1099 'LowerSatRoll ', ...

1100 'UpperSatYaw ', ...

1101 'LowerSatYaw ', ...

1102 'UpperSatCollective ', ...

1103 'LowerSatCollective ', ...

1104 'LowerSatTheta ', ...

1105 'UpperSatTheta ', ...

1106 'LowerSatPhi ', ...

1107 'UpperSatPhi ', ...

1108 'LowerSatPsi ', ...

1109 'UpperSatPsi ', ...

1110 'ATTPitchMType ', ...

1111 'ATTPitchCType ', ...

1112 'beepTrimATTPitchRate ', ...

1113 'ATTRollMType ', ...

1114 'ATTRollCType ', ...

1115 'beepTrimATTRollRate ', ...

1116 'ATTYawMType ', ...

1117 'ATTYawCType ', ...
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1118 'beepTrimATTYawRate ', ...

1119 'TCCType ', ...

1120 'MinPhiTC ', ...

1121 'IASMType ', ...

1122 'IASCType ', ...

1123 'beepTrimIASRate ', ...

1124 'HDGRollMType ', ...

1125 'HDGRollCType ', ...

1126 'beepTrimHDGRollRate ', ...

1127 'ALTCollective_RHT_MType ', ...

1128 'ALTPitchMType ', ...

1129 'ALTCollective_RHT_CType ', ...

1130 'ALTPitchCType ', ...

1131 'beepTrimRHTRate ', ...

1132 'beepTrimALTRate ', ...

1133 'HOVPitchMType ', ...

1134 'HOVRollMType ', ...

1135 'HOVPitchCType ', ...

1136 'HOVRollCType ', ...

1137 'beepTrimHOVPitchRate ', ...

1138 'beepTrimHOVRollRate ', ...

1139 'sasPitchP ', ...

1140 'sasPitchI ', ...

1141 'sasRollP ', ...

1142 'sasRollI ', ...

1143 'sasYawP ', ...

1144 'sasYawI ', ...

1145 'ATTPitchKp ', ...

1146 'ATTPitchb ', ...

1147 'ATTPitchTi ', ...

1148 'ATTPitchTd ', ...

1149 'ATTPitchN ', ...

1150 'ATTPitchc ', ...

1151 'ATTRollKp ', ...

1152 'ATTRollb ', ...

1153 'ATTRollTi ', ...

1154 'ATTRollTd ', ...
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1155 'ATTRollN ', ...

1156 'ATTRollc ', ...

1157 'ATTYawKp ', ...

1158 'ATTYawb ', ...

1159 'ATTYawTi ', ...

1160 'ATTYawTd ', ...

1161 'ATTYawN ', ...

1162 'ATTYawc ', ...

1163 'TCKp', ...

1164 'TCb', ...

1165 'TCTi', ...

1166 'TCTd', ...

1167 'TCN', ...

1168 'TCc', ...

1169 'ALTCollective_RHT_Kp ', ...

1170 'ALTCollective_RHT_b ', ...

1171 'ALTCollective_RHT_Ti ', ...

1172 'ALTCollective_RHT_Td ', ...

1173 'ALTCollective_RHT_N ', ...

1174 'ALTCollective_RHT_c ', ...

1175 'IASKp', ...

1176 'IASb', ...

1177 'IASTi', ...

1178 'IASTd', ...

1179 'IASN', ...

1180 'IASc', ...

1181 'ALTPitchKp ', ...

1182 'ALTPitchb ', ...

1183 'ALTPitchTi ', ...

1184 'ALTPitchTd ', ...

1185 'ALTPitchN ', ...

1186 'ALTPitchc ', ...

1187 'HDGRollKp ', ...

1188 'HDGRollb ', ...

1189 'HDGRollTi ', ...

1190 'HDGRollTd ', ...

1191 'HDGRollN ', ...
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1192 'HDGRollc ', ...

1193 'HOVPitchKp ', ...

1194 'HOVPitchb ', ...

1195 'HOVPitchTi ', ...

1196 'HOVPitchTd ', ...

1197 'HOVPitchN ', ...

1198 'HOVPitchc ', ...

1199 'HOVRollKp ', ...

1200 'HOVRollb ', ...

1201 'HOVRollTi ', ...

1202 'HOVRollTd ', ...

1203 'HOVRollN ', ...

1204 'HOVRollc ') ;

1205
1206 %% ----- SAVE PARAMETERS FOR C++ MODEL -----

1207 % Collect the parameter used for the C++ Model

1208
1209 FILE = fopen('ParametersList.cpp', 'w') ;

1210 fprintf(FILE , '#include ".\\ Simulink \\ rtwtypes.h"\n\n') ;

1211 fclose(FILE) ;

1212
1213 FILE = fopen('ParametersList.cpp', 'a') ;

1214
1215 formatSpec = 'real_T %s = %.6f ;\n\n' ;

1216
1217 names = ['kt_to_ms ';

1218 'ft_to_m ';

1219 'deg2rad ';

1220 'timeStep ';

1221 'VPIas ';

1222 'Vne ';

1223 'MinIasIAS ';

1224 'MinIasTC ';

1225 'MinRadaltRHT ';

1226 'MaxRadaltRHT ';

1227 'MinBaraltALT ';

1228 'MaxIasHOV ';
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1229 'MaxGsxHOV ';

1230 'MaxGsyHOV ';

1231 'UpperSatPitch ';

1232 'LowerSatPitch ';

1233 'UpperSatRoll ';

1234 'LowerSatRoll ';

1235 'UpperSatYaw ';

1236 'LowerSatYaw ';

1237 'UpperSatCollective ';

1238 'LowerSatCollective ';

1239 'LowerSatTheta ';

1240 'UpperSatTheta ';

1241 'LowerSatPhi ';

1242 'UpperSatPhi ';

1243 'LowerSatPsi ';

1244 'UpperSatPsi ';

1245 'ATTPitchMType ';

1246 'ATTPitchCType ';

1247 'beepTrimATTPitchRate ';

1248 'ATTRollMType ';

1249 'ATTRollCType ';

1250 'beepTrimATTRollRate ';

1251 'ATTYawMType ';

1252 'ATTYawCType ';

1253 'beepTrimATTYawRate ';

1254 'TCCType ';

1255 'MinPhiTC ';

1256 'IASMType ';

1257 'IASCType ';

1258 'beepTrimIASRate ';

1259 'HDGRollMType ';

1260 'HDGRollCType ';

1261 'beepTrimHDGRollRate ';

1262 'ALTCollective_RHT_MType ';

1263 'ALTPitchMType ';

1264 'ALTCollective_RHT_CType ';

1265 'ALTPitchCType ';
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1266 'beepTrimRHTRate ';

1267 'beepTrimALTRate ';

1268 'HOVPitchMType ';

1269 'HOVRollMType ';

1270 'HOVPitchCType ';

1271 'HOVRollCType ';

1272 'beepTrimHOVPitchRate ';

1273 'beepTrimHOVRollRate ';

1274 'sasPitchP ';

1275 'sasPitchI ';

1276 'sasRollP ';

1277 'sasRollI ';

1278 'sasYawP ';

1279 'sasYawI ';

1280 'ATTPitchKp ';

1281 'ATTPitchb ';

1282 'ATTPitchTi ';

1283 'ATTPitchTd ';

1284 'ATTPitchN ';

1285 'ATTPitchc ';

1286 'ATTRollKp ';

1287 'ATTRollb ';

1288 'ATTRollTi ';

1289 'ATTRollTd ';

1290 'ATTRollN ';

1291 'ATTRollc ';

1292 'ATTYawKp ';

1293 'ATTYawb ';

1294 'ATTYawTi ';

1295 'ATTYawTd ';

1296 'ATTYawN ';

1297 'ATTYawc ';

1298 'TCKp ';

1299 'TCb ';

1300 'TCTi ';

1301 'TCTd ';

1302 'TCN ';
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1303 'TCc ';

1304 'ALTCollective_RHT_Kp ';

1305 'ALTCollective_RHT_b ';

1306 'ALTCollective_RHT_Ti ';

1307 'ALTCollective_RHT_Td ';

1308 'ALTCollective_RHT_N ';

1309 'ALTCollective_RHT_c ';

1310 'IASKp ';

1311 'IASb ';

1312 'IASTi ';

1313 'IASTd ';

1314 'IASN ';

1315 'IASc ';

1316 'ALTPitchKp ';

1317 'ALTPitchb ';

1318 'ALTPitchTi ';

1319 'ALTPitchTd ';

1320 'ALTPitchN ';

1321 'ALTPitchc ';

1322 'HDGRollKp ';

1323 'HDGRollb ';

1324 'HDGRollTi ';

1325 'HDGRollTd ';

1326 'HDGRollN ';

1327 'HDGRollc ';

1328 'HOVPitchKp ';

1329 'HOVPitchb ';

1330 'HOVPitchTi ';

1331 'HOVPitchTd ';

1332 'HOVPitchN ';

1333 'HOVPitchc ';

1334 'HOVRollKp ';

1335 'HOVRollb ';

1336 'HOVRollTi ';

1337 'HOVRollTd ';

1338 'HOVRollN ';

1339 'HOVRollc ' ] ;
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1340
1341 values = [kt_to_ms ; ...

1342 ft_to_m ; ...

1343 deg2rad ; ...

1344 timeStep ; ...

1345 VPIas ; ...

1346 Vne ; ...

1347 MinIasIAS ; ...

1348 MinIasTC ; ...

1349 MinRadaltRHT ; ...

1350 MaxRadaltRHT ; ...

1351 MinBaraltALT ; ...

1352 MaxIasHOV ; ...

1353 MaxGsxHOV ; ...

1354 MaxGsyHOV ; ...

1355 UpperSatPitch ; ...

1356 LowerSatPitch ; ...

1357 UpperSatRoll ; ...

1358 LowerSatRoll ; ...

1359 UpperSatYaw ; ...

1360 LowerSatYaw ; ...

1361 UpperSatCollective ; ...

1362 LowerSatCollective ; ...

1363 LowerSatTheta ; ...

1364 UpperSatTheta ; ...

1365 LowerSatPhi ; ...

1366 UpperSatPhi ; ...

1367 LowerSatPsi ; ...

1368 UpperSatPsi ; ...

1369 ATTPitchMType ; ...

1370 ATTPitchCType ; ...

1371 beepTrimATTPitchRate ; ...

1372 ATTRollMType ; ...

1373 ATTRollCType ; ...

1374 beepTrimATTRollRate ; ...

1375 ATTYawMType ; ...

1376 ATTYawCType ; ...
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1377 beepTrimATTYawRate ; ...

1378 TCCType ; ...

1379 MinPhiTC ; ...

1380 IASMType ; ...

1381 IASCType ; ...

1382 beepTrimIASRate ; ...

1383 HDGRollMType ; ...

1384 HDGRollCType ; ...

1385 beepTrimHDGRollRate ; ...

1386 ALTCollective_RHT_MType; ...

1387 ALTPitchMType ; ...

1388 ALTCollective_RHT_CType; ...

1389 ALTPitchCType ; ...

1390 beepTrimRHTRate ; ...

1391 beepTrimALTRate ; ...

1392 HOVPitchMType ; ...

1393 HOVRollMType ; ...

1394 HOVPitchCType ; ...

1395 HOVRollCType ; ...

1396 beepTrimHOVPitchRate ; ...

1397 beepTrimHOVRollRate ; ...

1398 sasPitchP ; ...

1399 sasPitchI ; ...

1400 sasRollP ; ...

1401 sasRollI ; ...

1402 sasYawP ; ...

1403 sasYawI ; ...

1404 ATTPitchKp ; ...

1405 ATTPitchb ; ...

1406 ATTPitchTi ; ...

1407 ATTPitchTd ; ...

1408 ATTPitchN ; ...

1409 ATTPitchc ; ...

1410 ATTRollKp ; ...

1411 ATTRollb ; ...

1412 ATTRollTi ; ...

1413 ATTRollTd ; ...
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1414 ATTRollN ; ...

1415 ATTRollc ; ...

1416 ATTYawKp ; ...

1417 ATTYawb ; ...

1418 ATTYawTi ; ...

1419 ATTYawTd ; ...

1420 ATTYawN ; ...

1421 ATTYawc ; ...

1422 TCKp ; ...

1423 TCb ; ...

1424 TCTi ; ...

1425 TCTd ; ...

1426 TCN ; ...

1427 TCc ; ...

1428 ALTCollective_RHT_Kp ; ...

1429 ALTCollective_RHT_b ; ...

1430 ALTCollective_RHT_Ti ; ...

1431 ALTCollective_RHT_Td ; ...

1432 ALTCollective_RHT_N ; ...

1433 ALTCollective_RHT_c ; ...

1434 IASKp ; ...

1435 IASb ; ...

1436 IASTi ; ...

1437 IASTd ; ...

1438 IASN ; ...

1439 IASc ; ...

1440 ALTPitchKp ; ...

1441 ALTPitchb ; ...

1442 ALTPitchTi ; ...

1443 ALTPitchTd ; ...

1444 ALTPitchN ; ...

1445 ALTPitchc ; ...

1446 HDGRollKp ; ...

1447 HDGRollb ; ...

1448 HDGRollTi ; ...

1449 HDGRollTd ; ...

1450 HDGRollN ; ...
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1451 HDGRollc ; ...

1452 HOVPitchKp ; ...

1453 HOVPitchb ; ...

1454 HOVPitchTi ; ...

1455 HOVPitchTd ; ...

1456 HOVPitchN ; ...

1457 HOVPitchc ; ...

1458 HOVRollKp ; ...

1459 HOVRollb ; ...

1460 HOVRollTi ; ...

1461 HOVRollTd ; ...

1462 HOVRollN ; ...

1463 HOVRollc ;] ;

1464
1465 for ii = 1: length(values)

1466 fprintf(FILE , formatSpec , names(ii ,:), values(ii ,:)) ;

1467 end

1468
1469 fclose('all') ;
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