
Executive Summary of the Thesis

Deep Learning based Approximate Message Passing for MIMO De-
tection in 5G

Laurea Magistrale in Computer Science Engineering - Ingegneria Informatica

Author: Andrea Pozzoli

Advisor: Prof. Umberto Spagnolini

Academic year: 2020-2021

Abstract
Massive Multiple Input Multiple Output
(MIMO) is the main technology in the
Fifth Generation (5G) mobile commu-
nication system. It consists in several
receiver antennas that serve multiple
transmitters, and it increases link re-
liability and information throughput.
However, one of the main problem for
MIMO systems is MIMO detection, so
retrieving the original messages at the
receiver side from a noisy signal. The
optimal technique to solve the problem
is called Maximum Likelihood (ML), but
it does not scale. Several sub-optimal
techniques have been tested in order to
solve MIMO detection problem, trying
to balance the complexity-performance
trade-off. In recent years, Approximate
Message Passing (AMP) based techniques
brought interesting results. Moreover,
deep learning (DL) has been tested with
promising results. In the thesis, two new
techniques AMP and DL based, called
OAMP-Net2 and LVAMP, have been
tested and compared with the state of
art, using channel matrices that differ
in channel model and size. OAMP-Net2

revealed to be a consistent technique that
can be used in solving MIMO detection
problem. It not only provides really inter-
esting results on both i.i.d Gaussian and
Kronecker channel models, but it adapts
easily to different models, providing good
results on Kronecker channel models
also when the network is trained only
with i.i.d. Gaussian matrices. LVAMP
instead has performances that are similar
to MMSE, but with a lower complexity.
Also LVAMP adapts well to complex
channel such as OAMP-Net2.

Keywords: 5G, MIMO detection, Ap-
proximate Message Passing, OAMP-Net2,
LVAMP, MMNet, Deep Learning

1. Introduction
During the last years, the demand in wireless
communication data transferring in a rapid and
reliable way is increased and continues to in-
crease drastically. In order to face the quantity
of data and the speed of communication, Mas-
sive Multiple Input Multiple Output (MIMO)
technology is the key technology that is used the
5G mobile communication system [3]. This tech-
nique enhances a large number of antennas at
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both the transmitter and the receiver side [15].
In 5G systems, a Base Station (BS) equipped
with a large number of receiver antennas (64-
256) serves multiple single-antenna transmitters,
called User Equipment (UE), simultaneously on
the same frequency [18]. MIMO increases the
information throughput and link reliability by
exploiting link diversity.
With a high number of antennas, trying to re-
cover the transmitted information in a massive
MIMO up-link receiver is more computation-
ally complex, because the transmitted signals
interfere with each other. The channel is time-
varying and shared. The thesis focuses on sig-
nal detection in a multi-user communication sce-
nario, in particular at the receiver side. This
means that the focus is on trying to detect cor-
rectly the signals transmitted by the UEs, from
the signal that arrives at the BSs.
The optimal MIMO detector in terms of per-
formance is the Maximum Likelihood (ML) de-
tector, but it has a complexity that is exponen-
tially increasing with the number of transmit-
ters. It consists of an exhaustive search over
all the possible symbols for each UE. Therefore
it is necessary to find sub-optimal algorithms
with the best performance/complexity trade-off.
One of the most used sub-optimal algorithm is
Minimum Mean Squared Error (MMSE) algo-
rithm, that reduces ML complexity, scarifying
accuracy.
Promising detectors with excellent performance
and reduced complexity are iterative detectors
based on Approximate Message Passing (AMP)
algorithm [7]. The AMP based detector approx-
imates the posterior distribution on a dense fac-
tor graph by using the central limit theorem and
the Taylor expansion [5]. AMP based detector
works well with channel matrices with indepen-
dent elements and identically sub-Gaussian dis-
tributions.
Recently, Deep Learning (DL) reported promis-
ing results in signal detection showing that it can
reduce the prediction complexity during train-
ing. Therefore Section 2 focuses on some DL
and AMP based techniques for solving MIMO
detection.

2. Related work
In [13] the Generalised AMP (GAMP) algorithm
is presented. GAMP extends AMP methods by

including arbitrary distribution on both the in-
put and the output of the transform. Its advan-
tage is an efficient approximate implementation
of max-sum and sum-problem loopy Belief Prop-
agation (BP). Moreover, the algorithm is com-
putationally simple involving only scalar estima-
tion and linear transforms. In [21] a deep learn-
ing based Trainable AMP (TAMP) algorithm is
proposed. It consists of a neural network com-
posed by a preprocessing layer that acts like
a learnable filter followed by detection layers
derived by unfolding the iterations of GAMP.
TAMP uses parameters that are trainable in or-
der to control the prior mean and variance of
MMSE denoiser. TAMP uses backpropagation
for parameter tuning.
A method based on the approximation of the
original discrete messages sent in an AMP based
factor graph with continuous Gaussian mes-
sages through Kullback-Leiber divergence crite-
rion has been proposed in [17]. The principle
of expectation propagation is applied in order
to compute the approximate Gaussian messages
and then the approximate message is computed
from the Gaussian approximate belief. More-
over, it uses a posteriori probabilities fed back
from channel decoders, and the central limit the-
orem. The algorithm presents low complexity
and good performances for small MIMO sys-
tems.
The authors of [20] combined different tech-
niques in order to complete channel estima-
tion, MIMO detection and noise level estimation
simultaneously. They proposed an algorithm
called variational approximate message passing
that exploits the advantages of AMP, in partic-
ular using Bilinear Generalized AMP, and Vari-
ational Bayesian Inference.
Another deep learning neural network, this time
base on belief propagation, has been proposed in
[11] and it is called DLBP detector. The network
is composed by multiple units that consist of a
four layer neural network derived by unfolding
the BP algorithm. The output of each unit is
designed so that it is possible to speed up the
training, that is conducted using cross entropy
loss function.
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3. Problem and research ques-
tion

Every years, new methods are studied, pre-
sented and tested in order to find the one that
best deals with performance-complexity trade-
off. Recently two new algorithms based on deep
learning and AMP have been proposed. The
first one is called LVAMP and it is a deep lean-
ing based neural network that is obtained by un-
folding the Vectorized AMP algorithm (VAMP).
The second one instead is a new network ob-
tained by unfolding Orthogonal AMP (OAMP)
algorithm, called OAMPNet2. A comparison
between these two algorithms in different situ-
ations and with a common baseline is missing,
therefore the thesis is focused on that.
From the problem described, the research
question emerges easily and can be stated as
follow.

Research Question: Can LVAMP and
OAMPNet2 be considered as sub-optimal solu-
tions to MIMO detection problem and which
one is the best network in terms of complexity
and SER on different MIMO scenarios?

Sub-optimal solution stands for a working algo-
rithm with a possible practical implementation
that can handle the MIMO detection problem
with a timing that respects the communication
speed and with low errors during the detection.
In particular, the thesis considers as sub-optimal
solution a MIMO detector that obtains at least
the same performances of MMSE detector, with
a complexity that is polynomial respect to the
dimension of the MIMO system. The complex-
ity of the algorithm is the time complexity, not
the space one, and it will affect the timing of
the algorithm. The Symbol Error Rate (SER)
metric is the measure of the performance used
in the thesis and that is explained later.

4. MIMO
MIMO system can be represented trough a ma-
trix mathematical approach. Each transmitter
antenna i sends a xi message, that follows dif-
ferent paths with different channel properties to
reach the receiver antennas. The different paths
are represented by hij that is the channel that
links the transmitter i with the receiver j. Each

receiver antenna j collects a message yj that is
the combination of signals that arrives to the
antenna j. with three transmitters and three re-
ceivers for example, the system can be expressed
as in 1:

y1 = h11x1 + h21x2 + h31x3

y2 = h12x1 + h22x2 + h32x3

y3 = h13x1 + h23x2 + h33x3

(1)

In general, the system is modelled through the
MIMO system 2 in matrix form :

ȳ := H̄x̄+ n̄ (2)

where ȳ is a vector of complex values of length
N̄r, with N̄r that is the number of receiver an-
tennas, and represents the signal received by the
BS. x̄ represents the signal transmitted by the
UEs and it is a vector of complex values, taken
from a discrete alphabet Ā, of length N̄t, with
N̄t that is the number of transmitter antennas.
n̄ represents the noise and it is a vector of com-
plex numbers of length N̄r. Finally, H̄ is called
channel matrix, it has shape N̄r×N̄t and hij ∈ C
is the channel gain that derives from x̄j and x̄i
antennas. The channel matrix can assume dif-
ferent structures, called channel models. In par-
ticular in this thesis the focus is on the iid Gaus-
sian channel model and the Kronecker channel
model.
The MIMO model that is used in the thesis fol-
lows the following assumptions:
• Noise is complex zero-mean Gaussian ni ∼
CN (0, σ2) and the Covariance matrix is
σ2IN̄r

.
• The column of H̄ are normalized, ∥h̄i∥2 = 1.
• SNR = 10 log10

E(∥H̄x̄∥22)
N̄rσ2 .

• The channel matrix H̄ is known by the re-
ceiver.

4.1. i.i.d Gaussian channel model
The common channel model, used in most of the
literature in order to test and compare MIMO
signal detection algorithms, is the iid Gaussian
one. This channel model is so common because
it is simple but it is far from the real scenario.
In fact, it assumes that each h̄ij is independent
from all the others and h̄ij ∼ CN (0, 1/N̄r).
The columns of H̄ are normalized such that
∥h̄i∥2 = 1 in this thesis. Due to the fact that
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the channels in a real scenario are spatially cor-
related and so dependent each other, also the
Kronecker channel model is considered.

4.2. Kronecker channel model
As said before, the Kronecker channel model
simulates the spatial correlation among chan-
nels [12]. It is modelled as: H̄ = R

1/2
R KR

1/2
T

where k̄ij ∼ CN (0, 1/N̄r) and RR and RT are
the receiver and transmitter Correlation matri-
ces respectively. These matrices are generated
according to an exponential correlation model,
depending on a parameter of correlation that as-
sumes values from 0 (iid Gaussian) to 1 when all
the channels interfere with each other. The co-
efficient at receiver side is indicated as ρr while
the one at transmitter side is ρt. Also in this
case, the column of H̄ are normalized such that
∥h̄i∥2 = 1.

4.3. From Complex to Real MIMO
System

Due to the fact that working with complex val-
ues is more difficult than working with real num-
bers, the MIMO model previously described can
be convert from a complex-valued system to a
real-valued system. The conversion works by
treating the real and the imaginary parts of a
complex number separately. A new vector is de-
fined for each variable of the model, in particular
the transmitted symbol vector becomes

x =
[
ℜ(x̄T ) ℑ(x̄T )

]T (3)

where ℜ(·) is the real part of the complex num-
ber between brackets and ℑ(·) is its imaginary
part. Following the same approach, also the
other variables are modified and in particular

y =
[
ℜ(ȳT ) ℑ(ȳT )

]T
n =

[
ℜ(n̄T ) ℑ(n̄T )

]T
H =

[
ℜ(H̄T ) −ℑ(H̄T )
ℑ(H̄) ℜ(H̄)

] (4)

With these new variables, it is possible to define
differently the MIMO system in 5

Definition 1 (Real-valued MIMO):

y = Hx+ n

Nr = 2N̄r

Nt = 2N̄t

(5)

The last modification that must be applied con-
cerns the alphabet A. With these new definition
of MIMO system, x can assume values coming
from A, where A = ℜ(Ā) = ℑ(Ā) in the case of
QAM modulation.

4.4. QAM Modulation
Modulation is an operation applied on the pe-
riodic waveform called carrier signal that varies
its phase and/or its amplitude and/or its fre-
quency in order to transmit information. The
modulation technique used in the thesis is
the Quadrature Amplitude Modulation (QAM),
that changes the amplitude and the phase of
the carrier signal. It consists of producing a
signal in which two carriers with the same fre-
quency shifted in phase by 90 degrees (they are
in quadrature or orthogonal) are modulated and
combined. At the receiver side the signal can be
divided thank to the orthogonality property. A
basic signal can transmit only a 0 or a 1 since it
can exhibit only two positions. Thanks to QAM
it is possible to enhance different points that dif-
fers for phase and amplitude. The QAM points
are spaced in a squared grid with equal horizon-
tal and vertical spacing, that is called constella-
tion diagram. Due to the fact that digital com-
munications use binary data, usually the num-
ber of points that compose the constellation is
a power of 2. The most used forms of QAM are
QAM-4, QAM-16, QAM-64, QAM-256 as QAM
is square. Different binary values are assigned
to different symbols in the constellation and in
this way it is possible to transfer data with a
single signal in a much higher rate. In QAM-M
the points have values along each axis equal to
±(
√
M − 1)d/2 where M is a power of two and

square number and d is the minimum distance
between two different points in the constellation.

5. MIMO Detection
Definition 2 (MIMO Detection): Given
a MIMO system a MIMO Detection method
can be defined as the problem of retrieving the
transmitted signal vector x ∈ RNt from a noisy
linear measurement that can be expressed as
y = Hx+ n ∈ RNr where H is a known matrix
∈ RNr×Nt and n is an unknown unstructured
noise vector ∈ RNr .

This problem can be also called standard lin-
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ear regression or, in the signal processing lit-
erature, linear inverse problem (or compressive
sensing if Nr << Nt and x is sparse). The
multiple symbols can be detected separately or
jointly. In joint detection in order to detect a
symbol it is required to consider also the char-
acteristics of the other symbols, while in sepa-
rate detection each symbol is detected indepen-
dently. Typically joint detection achieves better
performances than separate detection despite an
higher complexity. The channel matrix can be
known from explicit channel estimation, in this
case the detection of x is called coherent detec-
tion, or the explicit estimation can be avoided
and in this case the detection is said incoherent
detection.
The optimal method for solving the MIMO
detection problem is represented by the ML
detector in 6.

Definition 3 (Maximum Likelihood Detec-
tor):

x̂ = arg max
x∈ANt

prob(y|x,H) = arg min
x∈ANt

∥y −Hx∥2

(6)

The best estimation x̂ for x is the one that maxi-
mize the likelihood p(y|x,H), but this approach
suffers from a high computational complexity
due to the exhaustive search over all possible
values of x ∈ ANt . This optimization problem
is a NP-hard problem due to the finite alphabet
constraint.
To solve the MIMO detection problem it is re-
quired to find a sub optimal solution trying
to handle the performance/complexity trade-off.
There are methods that are computationally
cheap but with low accuracy, and methods with
high accuracy but that are computationally ex-
pensive. The accuracy and the complexity of
some methods can vary with the dimension of
the MIMO system.
Several methods have been tested in order to
solve this problem during the years, and the
most common is Minimum Mean Squared Error
(MMSE) [14]. MMSE finds x̂MMSE through

x̂MMSE = arg min
x∈ANt

∫
∥x− x̄∥2p(x|y)dx (7)

that is equal to compute E[x|y]. MMSE can be
expressed also as

x̂ = (HTH + σ2INt)
−1HT y ≈ z + w (8)

In practice MMSE provides good results but the
performance are still far from optimal and it has
some difficulties at scaling when the number of
antennas increases. MMSE is used as bench-
mark in most of the comparative research for
MIMO detection problem, therefore also in the
thesis it is used as benchmark.
If the noise w can be expressed as w ∼
N (0, γ−1

w I), it is called AWGN, with γw > 0.

5.1. Iterative framework
An approach that can be followed in order to
solve the MIMO detection problem is an itera-
tive estimation of the transmitted signal. This
class of algorithms is based on a number T of
iterations that comprise two steps (9)

zt = x̂t +At(y −Hx̂t) + bt
x̂t+1 = ηt(zt)

(9)

The first step has as input x̂t, that is the cur-
rent estimation of the transmitted signal x, the
channel matrix H and the received signal y, and
it computes zt that is a linear transformation.
The second step instead is a non-linear denoiser
that is applied to zt in order to produce the new
estimation x̂t+1 of x, that is used for the first
step of the next iteration. The goal of each it-
eration is to improve the estimation x̂t of x re-
spect to the previous iterations. For the first
iteration, x̂0 = 0. The term y − Hx̂t is called
residual term. The denoiser ηt(·) can be any
non-linear function, but usually it applies the
same thresholding function to each element. A
element-wise η function can reduce the complex-
ity of the denoiser. Usually the parameters re-
quired by the denoising function are indicated
with σt, and they can change for each iteration.
A common choice for the denoising function is
the minimizer of E[∥x̂− x∥2|zt] that is given by
ηt(zt) = E[x|zt].
Optimal denoiser for Gaussian noise: if the noise
at the input of the denoiser zt − x has an iid
Gaussian distribution with a covariance matrix
that is diagonal with value σ2

t INt , the element-
wise thresholding function derived from the pre-
vious formula is

βg
t (z;σ

2
t ) =

1

Z

∑
xt∈A

xt exp(−
∥z − xt∥2

σ2
t

) (10)

where Z =
∑

xt∈A exp(−∥z−xt∥2
σ2
t

). In this
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case σt represents the standard deviation of the
Gaussian noise.

5.2. AMP
Another approach for approximately solving the
MIMO detection problem is through BP if the
problem is seen as a bipartite graph [16]. On
this type of graph, BP requires a number of up-
date messages that is in O(NrNt) for each iter-
ation, that is not feasible for large MIMO sys-
tems. To face this limit, Jeon et al. [9] pro-
poses Approximate Message Passing (AMP) for
solving MIMO detection problem in iid Gaus-
sian scenario with a lower complexity. In fact,
AMP uses O(Nr +Nt) messages for each itera-
tion. The AMP algorithm performs the steps:

zt = x̂t +HH(y −Hx̂t) + bt
bt = αt(H

H(y −Hx̂t−1) + bt−1)
x̂t+1 = ηt(zt;σt)

(11)

AMP is an iterative algorithm that uses At =
HH and a bt term that is called Onsanger cor-
rection term. Both σt and αt can be computed
using Signal Noise Ratio (SNR) and system pa-
rameters such as the dimension of the system
or the constellation. The denoising function is
the optimal one described in formula optimal for
each element of zt. AMP is asymptotically opti-
mal for large iid Gaussian channel matrices [4].

5.3. OAMP
A variant of AMP that relaxes the iid Gaus-
sian channel assumption is the Orthogonal AMP
(OAMP) that works for unitarily invariant chan-
nel matrices [10]. OAMP is an optimal estimator
with excellent convergence properties [19]. The
principle of OAMP is to decouple the posterior
probability p(x|y,H) into a series of probabili-
ties p(xi|y,H)i=1,2,...,Nt in an iterative way. The
OAMP detector can be written as Algorithm 1
[6]
The algorithm is divided into two modules, the
linear estimator used to compute rt and the non
linear estimator to estimate xt+1. v2t and τ2t are
instead the average variance of qt = x̂t − x and
pt = rt−x respectively. The vector pt is used to
measure the accuracy of the output of the lin-
ear estimator, while qt is used for the nonlinear
estimator. v2t and τ2t are defined as

v2t =
E[∥qt∥22]

Nt

τ2t =
E[∥pt∥22]

Nt

(12)

Algorithm 1 OAMP
Require: received signal y, channel matrix
H, noise covariance matrix Rn̂n̂

Output: Estimated signal x̂T+1

Initialize: τ0 ← 1, x̂0 ← 0
for t = 1, . . . , T − 1 do
rt = x̂t +Wt(y −Hx̂t)
x̂t+1 = E{x|rt, τt}
v2t =

∥y−Hx̂t∥22−tr(Rn̂n̂)

tr(HHH)

τ2t = 1
Nt

tr(BtB
H
t )v2t +

1
Nt

tr(WtRn̂n̂W
H
t )

end for
Return x̂T

The linear estimator presents the matrix Wt that
can assume different values such as the transpose
of H, its pseudo inverse or the LMMSE matrix,
but the optimal definition is

Wt =
Nt

tr(ŴtH)
Ŵt (13)

where Ŵt is the LMMSE matrix and it can be
defined as

Ŵt = v2tH
H(v2tHHH +Rn̂n̂)

−1 (14)

where Rn̂n̂ is the covariance matrix of the noise
in signal detector n̂. The matrix Wt is de-
correlated when tr(Bt) = 0, where Bt = I −
WtH (pt uncorrelated with x and mutually un-
correlated with zero-mean and identical vari-
ance).
The non linear estimator instead is MMSE esti-
mate of x which is in relation to rt through

rt = xt + wt (15)

where wt ∼ NC(0, τ2t I). Due to the fact that
the values of x are taken from a constellation
of symbols and that the estimation is based on
MMSE, in order to estimate x̂ it is used

x̂t+1 = E{xi|ri, τi} =
∑

si
siNC(si; ri, τ

2
t )p(si)∑

si
NC(si; ri, τ2t )p(si)

(16)

where p(si) is the prior distribution of
the symbol xt and is defined as p(xi) =∑

j∈Nr

1√
Nr

δ(xi − sj).
It is important to notice that the prior mean
of MMSE estimator is rt and its variance is τ2t
and they control the accuracy and convergence
of x̂t+1.

6



Executive summary Andrea Pozzoli

5.4. VAMP
In [14] the Vector Approximate message passing
(VAMP) algorithm is proposed, showing that it
holds under a bigger class of channel matrices re-
spect to AMP, those that are right-orthogonally
invariant. Moreover, it keeps the same desir-
able properties of AMP, such as low peritera-
tion complexity, convergence in few iterations,
and shrinkage inputs rt that can be modelled
through the AWGN model [2]. The VAMP
algorithm is based on the “economy” SVD of
the channel matrix: H = Ūdiag(s̄)V̄ T where
s̄ ∈ RRforR := rank(H) ≤ min(Nr, Nt). Algo-
rithm 2 is the SVD form of the VAMP algorithm.

Algorithm 2 VAMP in SVD form
Require: received signal y, channel matrix
H, denoiser function g1(·, γt), noise precision
γw ≥ 0, number of iterations T , r0 ≥ 0, γ0 ≥ 0

Output: Estimated signal x̂T
Compute economy SVD H = Ūdiag(s̄)V̄ T

Compute preconditioned ỹ = diag(s̄)−1ŪT y
for t = 0, 1, . . . , Tdo do
x̂t = g1(rt, γt)
αt = ⟨g′1(rt, γt)⟩
r̃t = (x̂t − αtrt)/(1− αt)
γ̃t = γt(1− αt)/αt

dt = γwdiag(γws̄
2 + γ̃t1)

−1s̄2

γt+1 = γ̃t⟨dt⟩/(Nt
R − ⟨dt⟩)

rt+1 = r̃t +
Nt
R V̄ diag(dt/⟨dt⟩)(ỹ − V̄ T r̃t)

end for
Returnx̂T

In the algorithm, g1(rt, γt) : RNt → RNt is de-
fined as g1 = argminx∈A[

γt
2 |x − rt|2 − ln p(x)]

where p(x) is the prior distribution of x, while
g′1(rt, γt) as g′1(rt, γt) = diag[∂g1(rt,γt)∂rt

], and
⟨·⟩ is the empirical averaging operation ⟨u⟩ :=
1
Nt

∑Nt
n=1 un. Moreover, rt ∈ RNt is called resid-

ual term at iteration t− th and γt represents the
reciprocal of its variance. Finally, R is defined
as R = rank(H).
As it possible to see, the VAMP algorithm is
very similar to the AMP one [8]. In fact, the
denoising and the divergence steps are identi-
cal, and also the VAMP algorithm presents an
Onsanger term αkrk. Finally, another similarity,
not visible from the comparison of the algorithm,
is that for both the algorithms for certain large

random H, rk behaves like a white Gaussian
noise corrupted version of x, rk = x+N (0, τkI)
for some variance τk > 0.
There is also another approach to write the
VAMP algorithm without using the SVD form.
In this second variant, the linear MMSE and
the trace of the covariance matrix must be com-
puted at each iteration, involving the inverse of a
Nt×Nt matrix. Differently from AMP that uses
a loopy factor graph with scalar valued nodes,
VAMP uses a non loopy graph with vector val-
ued nodes and this is the reason for the name
Vector AMP. The second version of the VAMP
algorithm is called LMMSE form and it follows
the steps of Algorithm 3.

Algorithm 3 VAMP in LMMSE form
Require: LMMSE estimator g2(r2t, γ2t), de-
noiser function g1(·, γ1t), number of iterations
T , r10 and γ10 ≥ 0
Output: Estimated signal x̂T
for t = 0, 1, . . . , T do

Denoising
x̂1t = g1(r1t, γ1t)
α1t = ⟨g′1(r1t, γ1t)⟩
η1t = γ1t/α1t

γ2t = η1t − γ1t
r2t = (η1tx̂1t − γ1tr1t)/γ2t
LMMSE
x̂2t = g2(r2t, γ2t)
α2t = ⟨g′2(r2t, γ2t)⟩
η2t = γ2t/α2t

γ1,t+1 = η2t − γ2t
r1,t+1 = (η2tx̂2t − γ2tr2t)/γ1,t+1

end for
Returnx̂1T

where g2(r2t, γ2t) = (γwH
TH +

γ2tI)
−1(γwH

T y + γ2tr2t) is a MMSE estimate
linear in r2k (that’s why it is called LMMSE
form) of a random vector x2 under likeli-
hood N (y;Hx2, γ

−1
w I) and prior N (r2k, γ

−1
2k I).

Instead, ⟨g′2(r2k, γ2k)⟩ can be defined as
⟨g′2(r2k, γ2k)⟩ =

γ2t
Nr

tr[(γwH
TH + γ2tI)

−1]. For
what concerns g1 and g′1, they are defined as in
Algorithm 2.
VAMP alternates between two stages that can
be summarized as:
• a MMSE inference of x under likeli-

hood N (y;Hx, σ2
wI) and pseudo prior

N (x; r̃t, σ̃
2
t I)
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• a MMSE inference of x under pseudolikeli-
hood N (rt;x, σ

2
t I) and prior x ∼ p(x).

The OAMP algorithm is similar to VAMP but
they differ in the approximation of certain vari-
ance terms, and on the reliance on matrix inver-
sion.

6. Deep learning
Deep learning is a subset of machine learning
that from a dataset composed by pairs (feature,
label) {(y(d), x(d))}Dd=1 where D represents the
number of pairs, tries to learn some parame-
ters of a Artificial Neural Network (ANN) aim-
ing to predict the unknown label x̂ associated to
new data y. The network knows y and uses it
in many layers of processing, where each layer
is composed by a linear transformation and a
component-wise non-linearity.
MLP is a type of (ANN) that concatenates T
basic blocks also called layers

Vt ∈ RMt ×RMt−1

yt = Ω(Vtyt−1) : RMt−1 → RMt
(17)

where Vt is a linear operator, Ω a non linear
function, and Mt the dimension of the vector in
block t− th. In order to predict x̂ it is necessary
to create a net composed by the concatenation
of T layers:

x̂ = g(y) = g(y0) = Ω(VtΩ(Vt−1 − . . .Ω(V1y0) . . . ))

(18)
During the training phase. The values of
V1, . . . , VT are learnt with the goal of reducing
the prediction error on the labels in the train-
ing data. For quantifying the prediction error,
it is required to define a loss function L, that
brings the problem to be defined as a minimiza-
tion problem

arg min
V1,...,VT

L([x(1), . . . , x(D)], [x̂(1), . . . , x̂(D)])

.
In the thesis, to achieve the values of the pa-
rameters V1, . . . , VT that minimize the loss func-
tion L two steps are needed. First, the gradi-
ents of L with respect to the parameters are
computed. Second, the parameters are updated
through gradient descent, and, in the case of the
thesis, with Adam optimizer as update rule [15].
Deep learning is usually used in MIMO De-
tection by unfolding an iterative MIMO Detec-
tion models and adding some trainable parame-
ters. Deep learning can increase significantly the

speed of convergence with respect to the tradi-
tional iterative algorithms. Moreover, the DL
methods can decrease the average recovery er-
ror respect to the iterative version, because they
do not need to model the problem but they learn
a mapping from the input to the output directly
[1].

6.1. OAMP-Net2
In [7] the authors proposed a model driven
deep learning network based on OAMP, named
OAMPNet2, with four trainable parameters in
order to adapt to various channel environments
and take channel estimation error into consid-
eration. OAMPNet2 performs considerably bet-
ter than OAMP and is more robust with respect
to SNR, channel correlation, modulation symbol
and MIMO configuration mismatches.
The OAMPNet2 algorithm performs signal de-
tection with channel estimation error. In the
MIMO system, it is possible to express the chan-
nel matrix H as H = Ĥ − ∆H where Ĥ is
the estimated channel and ∆H is the error on
the channel estimation. If the MIMO detection
problem uses the estimated channel matrix Ĥ,
n̂d = nd −∆Hxd is the noise in signal detector
that includes the channel estimation error and
the AWGN vector. This noise is supposed to be
Gaussian distributed.
OAMPNet2 is a deep learning network com-
posed by T cascade layers with the same archi-
tecture but different parameters. The inputs of
the network are y and Ĥ, while the output is
x̂T+1. For each layer, the input is the x̂t estima-
tion of x computed in the previous layer. The
OAMPNet2 detector follows these steps at each
layer:

rt = x̂t + γtWt(y − Ĥx̂t)
x̂t+1 = ηt(rt, τ

2
t ;ϕt, ξt)

v2t =
∥y−Ĥx̂t∥22−tr(Rn̂n̂)

tr(ĤHĤ)

τ2t = 1
Nt

tr(CtC
H
t )v2t +

θ2t
Nt

tr(WtRn̂n̂W
H
t )

(19)

As it possible to see, the difference between
OAMP and OAMPNet2 is represented by the
presence of the learnable parameters Ωt =
{γt, ϕt, ξt, θt} in each layer. When γt = θt =

8



Executive summary Andrea Pozzoli

ϕt = 1 and ξt = 0 the OAMPNet2 is reduced to
the OAMP detector, while optimizing the values
of the parameters, the performance can be im-
proved. The matrix Ct = I − θtWtĤ is similar
to Bt of OAMP algorithm adding the trainable
parameter θt in order to regulate τ2t . Also the
OAMPNet2 algorithm is divided into two mod-
ules, a linear and a nonlinear estimator. For
what concerns the linear estimator, the train-
able parameter γt is added to the formula for
updating rt and it can be considered as the step
size of the update. The nonlinear estimator ηt
for estimating x̂t+1 instead is revised and it is
constructed by the divergence free estimator

ηt(rt, τ
2
t , ϕt, ξt) = ϕt(E{x|rt, τt} − ξtrt) (20)

where E{x|rt, τt} is computed as for OAMP. The
formula can be seen as a linear combination be-
tween the priori mean rt and the posteriori mean
E{x|rt, τt}, and it uses the learning parameters
ϕt and ξt. For what concerns the variance es-
timators v2t and τ2t , v2t remains the same as for
OAMP, while τ2t is computed using Ct instead
of Bt and using γt and θt parameters. v2t can
be replaced with max(v2t , ξ) for a small positive
constant ξ = 5 · 10−13 in order to avoid stabil-
ity problems. OAMP is far from optimal per-
formance when there are strong spatial corre-
lation and channel estimation error. With the
help of trainable variables, OAMPNet2 tries to
avoid this problem and to adapt to various chan-
nel environments. γt and θt are used to adjust
the linear estimator and to find the optimal step
size for updating rt and τ2t . ϕt and ξt instead are
important in order to construct the divergence
free estimator ηt(·).
In Figure 1 the network is shown.

Figure 1: OAMPNet2 network layer

6.2. LVAMP
LVAMP is the neural network that results from
the unfolding of the iterations of VAMP. The
LVAMP network consists in two modules as
VAMP that can be divided in two parts each.
Therefore, four steps compose the LVAMP net-
work, a LMMSE estimation, decoupling stage,
shrinkage estimation, an another identical de-
coupling stage. The LMMSE stage uses as pa-
rameters θ̃ = {Ut, st, Vt, σ

2
wt} for each iterations

t. When the channel is not iid Gaussian and
there are correlations, it is important to consider
the covariance matrix. In this case the param-
eters of the network becomes θ̃ = {Gt,Kt} and
the LMMSE stage is defined as

η̃(r̃t; σ̃t, θ̃t) = Gtr̃t +Kty (21)

where Gt ∈ RNt×Nt and Kt ∈ RNt×Nr . The
shrinkage stage instead has as parameter θt that
is used in the denoising function η(·). There-
fore the parameters to be learnt are expressed
as {θ̃t, θt}Tt=0. It is suggested to inizialize U , s,
V as the SVD values of H and σ2

w at the average
value of N−1

t ∥y∥2.
In Figure 2 it is possible to see how the network
is built.

Figure 2: LVAMP network layer

6.3. MMNet
In [10] the authors propose MMNet detector, a
MIMO detection scheme based on deep learning
and on the theory of iterative soft-thresholding
algorithms. Thanks to a novel training algo-
rithm that leverages temporal and spectral cor-
relation to accelerate training, MMNet outper-
forms existing approaches on realistic channel
with the same or lower computational complex-
ity. MMNet adds the right degree of freedom
into the iterative framework, balancing model
flexibility and complexity. On a iid Gaus-
sian channel, MMNet achieves the same per-
formances of sub-optimal detectors, with a two

9
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order less of complexity respect to other deep
leaning approaches. It is also better than a clas-
sic linear scheme such as MMSE detector. The
advantage of MMNet is that the algorithm is
trained online, and in this way it can adapt to
different channel models. There are two ver-
sion of MMNet neural network, one for Gaussian
channel matrices and one for arbitrary channels.
For the iid Gaussian channel, the network has
the following architecture:

zt = x̂t + θ
(1)
t HH(y −Hx̂t)

x̂t+1 = ηt(zt;σ
2
t )

(22)

the denoiser is the same of AMP, in fact it is
the optimal denoiser for Gaussian noise. One of
the properties of MMNet is the assumption that
the noise at the input of the denoiser follows the
same distribution for all the transmitted sym-
bols. The estimation of the noise variance σ2

t is
given by

σ2
t =

θ
(2)
t

Nt
(
∥I −AtH∥2F
∥H∥2F

[∥y −Hx̂t∥22 −Nrσ
2]+

+
∥At∥2F
∥H∥2F

σ2)

MMNet assumes that the noise is composed by
two parts, the residual error caused by the esti-
mation of x̂t respect to the real value of x, and
by the noise of the channel n. The first com-
posed is amplified by the linear transformation
(I − AtH) while the second by At. For the iid
Gaussian channel model, only two parameters
per iteration (θ(1)t and θ

(2)
t ) are sufficient, and

the type of channel does not require an online
training. In fact, MMNet can reach good perfor-
mance on iid Gaussian channels by being trained
offline on randomly sampled iid Gaussian ma-
trices. The MMNet architecture for arbitrary
channel matrices is structured as follows:

zt = x̂t +Θ
(1)
t (y −Hx̂t)

x̂t+1 = ηt(zt;σ
2
t )

(23)

where Θ(1)
t is a Nt×Nr complex-valued trainable

matrix. In order to add a degree of freedom to
the estimation of the noise per transmitter, the
trainable parameter θ

(2)
t in formula σ2

t becomes
a vector of shape Nt× 1. In this way, the model
can handle cases where the different transmitted
symbols have different levels of noise, by scaling

the noise variance by different values for each
symbol. MMNet uses a flexible linear transfor-
mation for computing zt but at the same time
using the optimal denoiser for Gaussian noise.
Moreover, it does not need matrix inversion that
can raise the complexity.
The MMNet t−th layer block is shown in Figure
3.

Figure 3: MMNet network layer

7. Method
The thesis is based on an experimental and
quantitative methodology. The algorithms
that are taken in consideration for the thesis
and therefore for the experiments are MMSE,
VAMP, OAMP, LVAMP, OAMPNet2, and also
MMNet. While the first three algorithms are
ready for being used, LVAMP, OAMPNet2 and
MMNet, that are based on DL, require a train-
ing phase.
The experiments consist in different simulations
based on 5G scenarios. The simulations differ
for size of the MIMO system, channel model,
QAM size, SNR values and type of training.
The sizes of MIMO system that are used are:
4 × 4, 32 × 32, 64 × 32, where for each couple
the first value represents the number of receiver
antennas while the second one the number of
transmitters.
The channel models on which the algorithms are
trained and tested are the iid Gaussian and the
Kronecker ones. For what concerns the Kro-
necker channel model, different correlation val-
ues at both receiver and transmitter side are
considered. In particular, the correlation val-
ues that are considered are 0.1, 0.3, 0.5, 0.7 for
both sides and the simulations differ for differ-
ent combinations of correlation at receivers and
correlation at transmitters.
The modulation scheme that are used in the ex-
periments are different types of QAM. In partic-
ular QAM-16 and QAM-64 are the values used

10



Executive summary Andrea Pozzoli

to create different simulations.
For each experiment, the same range of SNR
values are considered. The range that has been
selected is from 18 dB to 23 dB, that are the
values that are common in the comparison of
MIMO detectors. Therefore, the same configu-
ration of parameters that composes a simulation
is tested on this range of SNR with a step size
of 1 dB.
Finally, the algorithms, in particular the ones
that are DL-based, are trained and tested in
three different ways:
• The training phase is conducted with iid

Gaussian channel matrices, and tested with
matrices generated from the same channel
model.
• The training phase uses Kronecker channel

matrices with different correlation parame-
ters, and the testing is conducted with Kro-
necker channel matrices.
• The training is based on iid Gaussian chan-

nel model, but the testing is done with Kro-
necker matrices in order to verify the adapt-
ability of the algorithms.

The metric that is used to compare the algo-
rithms in the experiments is the SER perfor-
mance metric.

7.1. Performance Metrics
The performance metrics that are usually used
while working with MIMO detection problem
are the Bit Error Rate (BER) and the SER,
at different SNR values. Both the metrics are
a division between the number of errors in the
estimated message x̂ compared to the original
transmitted message x and the number of values
transmitted. In particular, the BER is defined
as

BER =
no.ofbitsinerror

totalno.oftransmittedbits
(24)

While SER is defined as

SER =
no.ofsymbolsinerror

totalno.oftransmittedsymbols
(25)

Therefore BER works on the bit level, while SER
on the constellation symbols. In the thesis, only
the SER metric is used.

7.2. Dataset
The training dataset is split in parts of equal
size called batches before the start of the learn-
ing procedure. When the training phase starts

the algorithm iterates over epochs. For each
epoch, a training step is repeated for every batch
that compose the training dataset. For each
experiment, the dataset is composed by sam-
ples with three sources of randomness: the sig-
nal x, the channel matrix H and the noise n.
The signal x is sampled form the constellation
randomly and uniformly. The channel matrix
is sampled following the structure of the chan-
nel model selected for the experiment. The
noise is derived from the sampling of the stan-
dard deviation sigma that is derived from the
SNR of the experiment. For each sample in
the batch, the SNR value is chosen randomly in
the range 18-23 dB. Therefore, each batch that
is used during training is a tuple of four ele-
ments {(y(d), H(d), σ(d), x(d))}Dd=1 where x(d) are
the values that have to be predicted. In this
thesis, the algorithms are trained offline with
randomly sampled iid Gaussian channel matri-
ces. Then they are tested on both iid Gaus-
sian and Kronecker channel matrices with same
source of randomness and different random seed.
Finally, the algorithms are trained also on Kro-
necker channel matrices and tested using the
same channel model for generating different ma-
trices.
The generated training dataset is split in two
parts in order to create the validation set, that
can be used for early stopping and for cross val-
idation. The size of the validation set is 25% of
the generated dataset. In order to avoid overfit-
ting, early stopping, dropout and cross valida-
tion are used. The algorithms have been trained
for 2000 epochs, with Adam optimizer and learn-
ing rate of 0.001. Each batch has size of 1000
samples.

7.2.1 Early Stopping

Early stopping is a criteria that decides when to
stop the training of the model according to the
prediction error on the validation set. During
the training of the model, the prediction error
on the training set continues to decrease because
this is the goal of the phase. However, the pre-
diction error on the validation set initially de-
creases but after a while it stops to go down
and starts to raise. When the prediction error
on the validation dataset starts to increase, this
means that the model is overfitting on the train-
ing data, therefore it is better to stop the train-
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Table 1: Experiments summary

Experiment Nr Nt Shape Modulation C.M. training C.M. testing
1 4 4 Squared QAM-16 i.i.d Gaussian i.i.d Gaussian
2 32 32 Squared QAM-64 i.i.d Gaussian i.i.d Gaussian
3 32 32 Squared QAM-64 Kronecker Kronecker
4 32 32 Squared QAM-64 i.i.d Gaussian Kronecker
5 64 32 Rectangular QAM-64 i.i.d Gaussian i.i.d Gaussian
6 64 32 Rectangular QAM-64 Kronecker Kronecker
7 64 32 Rectangular QAM-64 i.i.d Gaussian Kronecker

ing procedure.

7.2.2 Droupout

Dropout is applicable to any layer t of the neural
network excepts for the last layer, so the output
layer. At every stage of the training phase, each
input yt can drop out temporarily with a prob-
ability p, that is called as dropout rate. When
an input drops out, its value is set to zero and it
will not have a contribution during that training
step.

7.2.3 Cross Validation

During the training phase, with deep learning,
not only the values of the parameters V1, . . . , VT

have to be optimized, but also the hyperparam-
eters of the model. These parameters cannot
be optimized with the backpropagation step but
they require to be tuned in order to achieve bet-
ter performance. The hyperparameters are for
example the number of layers, the learning rate,
the hidden dimension of each layer, the dropout
rate. The cross validation technique consists in
validating the performance of different models
composed by predefined combinations of hyper-
parameters on the validation set, at the end of
the training. The model with the combination
of hyperparameters that achieves the best per-
formances on the validation set is the best can-
didate to be used for testing.

7.3. Experiments
The number of combinations that can be gener-
ated and that have been tested during the thesis
work are hundreds. In the thesis only the most
significant ones are reported. Seven experiments
have been described in the thesis and they can
be summarized through Table 1.

The first column of the table states the num-
ber of the experiment. Nr and Nt indicates the
number of receivers and the number of trans-
mitters respectively. The fourth column states
if the MIMO system has a squared or rectan-
gular shape. The column named modulation
indicates which modulation scheme the exper-
iment adopts. The last two columns represents
the channel models (indicated with the acronym
C.M.) that are used for the training and the test-
ing phase respectively.

8. Results and Analysis
In this section, the results of the experiments are
shown and analysed. Due to the fact that the
32 transmitters and 64 receivers configuration is
the most common and realistic for comparing al-
gorithms in a MIMO scenario, only the results
of Experiment 5, 6 and 7 are shown in this ex-
ecutive summary. The results are presented in
a graphical way where the horizontal axis rep-
resents the different values of SNR expressed in
dB on which the algorithms are tested and the
vertical axis instead expresses the SER metric in
a logarithmic scale.

8.1. Experiment 5
The number of receivers is 64 and the trans-
mitters are 32, therefore the shape is rectangu-
lar. The training phase is conducted through iid
Gaussian channel matrices, and the same chan-
nel model is used for the testing phase. This
experiment is the most used when dealing with
comparison among MIMO detectors. In Figure 4
the results of the experiment are presented. As
it possible to see, all the algorithms have very
good performances, with SER values that are
always (a part from 18 dB of SNR) under 0.1.
The OAMPNet2 algorithm outperforms the oth-
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ers, being the only one having all SER under
0.1, and reaching 10−4 for 23dB of SNR. VAMP
and LVAMP algorithms instead does not per-
form well in this configuration, with values that
are very similar to the one of MMSE and curves
that overlap with the baseline. The OAMP al-
gorithm is the second best algorithm with great
results despite it is not a DL-based algorithm.
For what concerns MMNet instead, it has a par-
ticular curve, very different from the others. In
fact, at the beginning the curve and the SER
values are very close to the ones of OAMP, but
when the SNR values increase, it does not fol-
low the OAMP curve, having an improvement
of accuracy lower. Interesting is the case of 23
dB, where the performance of MMNet is worse
than all the other algorithms, including MMSE.
The MMNet algorithm, compared to the others,
seems to be less adaptable to changes of SNR,
while the others have a more regular shape.

Figure 4: Experiment 5 graphical results: the
graph represents the SER values for the different
SNR values for each algorithm, in a 64 receivers
and 32 transmitters MIMO system, trained and
tested on i.i.d. Gaussian channel matrices using
QAM-64 as modulation scheme

8.2. Experiment 6
Experiment 6 is divided in two cases, that are
based on training and testing phases conducted
with Kronecker channel matrices.

8.2.1 Experiment 6a

The first case consists in an experiment where
the DL-based algorithms are trained with Kro-

necker channel matrices and then all the al-
gorithms are tested on a a Kronecker channel
model with ρR = ρT = 0.3. In Figure 5 the
results of the experiment are reported. At first
sight, what is evident is the strange behaviour
of MMNet. In fact, the MMNet algorithm per-
forms very badly, with SER values that are very
high. This algorithm, as said before, is frag-
ile when trained offline and this experiments
shows the difficulties for MMNet to adapt to a
more complex scenario. For what concerns the
other algorithms, they behave similarly to ex-
periment 5. In fact, also in this case VAMP
and LVAMP have performances very close to
the ones of MMSE, and graphically they appear
overlapped. OAMP provides again good results,
while OAMPNet2 outperforms the other algo-
rithms. As it possible to see, OAMPNet2 is the
only algorithm that reaches a SER value close
to 10−4 with a SNR value of 23 dB. The SER
values are a bit worse than the ones in experi-
ment 5, but this is due to a more complex and
realistic MIMO system in which the experiment
is conducted.

Figure 5: Experiment 6a graphical results: the
graph represents the SER values for the different
SNR values for each algorithm, in a 64 receivers
and 32 transmitters MIMO system, trained with
Kronecker channel matrices and tested on a Kro-
necker channel model with ρR = ρT = 0.3 using
QAM-64 as modulation scheme

8.2.2 Experiment 6b

The second case changes the correlation param-
eters respect to the experiment 6a. In fact in
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this case ρR = ρT = 0.5. The result of the ex-
periment are presented in Figure 6. This time
MMNet has SER values very close to 1, meaning
that quite all the estimations are wrong. With
an highly correlated Kronecker channel model,
MMNet is not able to estimate the transmitted
signal if trained offline. An interesting result of
the experiment is represented by OAMPNet2.
In fact for the first time, it has a behaviour very
close to the one of OAMP for SNR equal to 18,
19 and 20 dB. For the last three values of SNR,
instead, OAMPNet2 performs better than the
others. Again, VAMP and LVAMP have accu-
racy very close to the one of MMSE, overlap-
ping graphically. Also OAMP is closer to MMSE
for 18dB of SNR, but then its performances im-
prove.

Figure 6: Experiment 6b graphical results: the
graph represents the SER values for the different
SNR values for each algorithm, in a 64 receivers
and 32 transmitters MIMO system, trained with
Kronecker channel matrices and tested on a Kro-
necker channel model with ρR = ρT = 0.5 using
QAM-64 as modulation scheme

8.3. Experiment 7
The final experiment is based on a training phase
conducted with iid Gaussian channel matrices
and then the algorithms are tested on a Kro-
necker channel model. This represents the inno-
vative part of the thesis. Thanks to this experi-
ment it is possible to analyse the adaptability of
the DL algorithms, trained with a simple chan-
nel model, and tested on a more complex one.
Also in this experiment, two cases are analysed.

8.3.1 Experiment 7a

The first case uses ρR = ρT = 0.3 as cor-
relation parameters for the Kronecker channel
model. The results of the experiment are shown
in Figure 7. The results are very similar to
the ones obtained in experiment 6a, with some
SER values that are also better. Again, MM-
Net is not able to adapt to a more complex
channel model, having high SER values for each
SNR considered. VAMP and LVAMP performs
as MMSE as seen in the previous experiments
with the 32× 64 MIMO configuration. OAMP-
Net2, despite the training phase conducted with
iid Gaussian channel matrices, outperforms the
other algorithms. Again it reaches a value of
SER in order of 10−4 for SNR equal to 22 dB
and 23 dB.

Figure 7: Experiment 7a graphical results: the
graph represents the SER values for the different
SNR values for each algorithm, in a 64 receivers
and 32 transmitters MIMO system, trained with
i.i.d. Gaussian channel matrices and tested a
Kronecker channel model with ρR = ρT = 0.3
using QAM-64 as modulation scheme

8.4. Experiment 7b
The second case and last experiment is con-
ducted testing the algorithms on a Kronecker
channel model with correlation parameters ρR =
ρT = 0.5, therefore an highly correlated channel.
The DL-based algorithms are again trained with
iid Gaussian channel matrices. The results of the
experiment are very similar to the ones of exper-
iment 6b and they can be seen in and Figure 8.
MMNet again misses the estimations of all the
points, achieving a SER very close to 1 for all the
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SNR values. Also in this case, VAMP, LVAMP
and MMSE perform the same, with overlapping
curves in the graph. OAMPNet2 is also in this
case the best algorithm, but for low SNR val-
ues it performs like OAMP. For higher SNR val-
ues instead it improves its performances. Also
OAMP has performances that are a bit worse for
the lowest SNR values, and better when SNR in-
creases.

Figure 8: Experiment 7b graphical results: the
graph represents the SER values for the different
SNR values for each algorithm, in a 64 receivers
and 32 transmitters MIMO system, trained with
i.i.d. Gaussian channel matrices and tested a
Kronecker channel model with ρR = ρT = 0.5
using QAM-64 as modulation scheme

9. Complexity Analysis
The algorithms that are taken in consideration
in the experiments have different complexity.
MMSE has a complexity in O(N3

r ) because it
is dominant by the matrix inversion of the chan-
nel matrix. VAMP and LVAMP have a com-
plexity in O(TN3

r ) due to the SVD decomposi-
tion, but with some new implementations they
can be in O(2TNtNr) using an economy-SVD.
For VAMP, T represents the number of itera-
tions, while for LVAMP it is the number of layers
of the network. For what concerns OAMP and
OAMPNet2, the matrix inversion is again dom-
inant in the detection, therefore the complexity
is in O(TN3

r ), where T are the number of itera-
tions for OAMP, and the number of layers of the
network for OAMPNet2. Finally, MMNet has a
complexity in O(TN2

r ) for the detection. The
number of iterations or layers in order to the al-

gorithms to converge is different, impacting the
complexity. For MMSE, there is only an itera-
tion since it is not an iterative algorithm. VAMP
and LVAMP converge in 5 or 6 iterations/layers.
OAMP and OAMPNet2 converge faster, since
they converge in 4 or 5 iterations/layers. MM-
Net is the slower algorithm of this group. In fact
it needs from 10 to 14 layers to converge, impact-
ing the complexity of the algorithm. A summary
of this complexity analysis is shown in Table 2
where each column represents an algorithm, the
first row the computational complexity and the
second row the number of iterations/layers T for
convergence.

10. Conclusions
Both LVAMP and OAMPNet2 algorithms can
be considered sub-optimal solutions for the
MIMO detection problem. In fact, LVAMP can
be built with a complexity lower than MMSE
and it obtains SER values that are equal or bet-
ter than MMSE in all the scenarios considered
for the experiments. Also OAMPNet2 is a sub-
optimal solution to the problem because it out-
performs MMSE in all the scenarios considered,
having a complexity that is just a few greater
than MMSE, thanks also to a very fast conver-
gence.
In terms of complexity LVAMP is better than
OAMPNet2, and also of MMNet. The perfor-
mances are very interesting for this complexity
and convergence speed. Therefore, it is perfect
for a MIMO system in which the complexity
should be low, but with an accuracy at least
equal to the one of MMSE.
For what concerns the SER performances,
OAMPNet2 has incredible performances, out-
performing all the algorithms considered in ev-
ery scenarios. This network is perfect for a
MIMO system in which the detection does not
represents the complexity bottleneck. It is a
very accurate algorithm with performances of-
ten near also to ML, with a complexity only four
or five times the one of MMSE. It could improve
the MIMO detection problem, becoming a seri-
ous candidate as detector.
Another important insight discovered thanks to
the experiments is that the two deep networks
are able to adapt very well to different condi-
tions. In fact they perform well on both iid
Gaussian and Kronecker channel models. They
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Table 2: Complexity and number of iterations/layers for convergence of each algorithm

MMSE MMNet VAMP LVAMP OAMP OAMPNet2
Complexity O(N3

r ) O(TN2
r ) O(2TNrNt) O(2TNrNt) O(TN3

r ) O(TN3
r )

T 1 10-14 5-6 5-6 4-5 4-5

are also able to perform well on realistic chan-
nel models like the Kronecker one, with both
medium and high correlation parameters. More-
over, they can perform well on this type of chan-
nel, also with a simple training phase conducted
with iid Gaussian channel matrices.
The drawbacks of this work is that in order to
obtain the performances achieved by OAMP-
Net2, an high complexity is still needed despite
a deep learning approach. At the same time,
lowering the complexity thanks to LVAMP does
not bring a strong improvement of the perfor-
mances. Therefore, despite deep learning can be
an interesting and promising solution for MIMO
detection, a deep learning that can face bet-
ter the complexity-performance trade-off is still
missing.

11. Future work
In this section, the future works and directions
that can follow this thesis work, are presented.
The first future work that should be done is to
try to find new methods in order to solve the
MIMO detection problem.
A second direction can be to compare and ver-
ify that all the different version of VAMP and
LVAMP performs the same or if there is a ver-
sion that provides better results than the others.
Trying to rethink the OAMPNet2 algorithm in
order to lowering its complexity can be an hard
but useful future work for trying to have a very
competitive detector.
Another interesting future work is to apply all
the algorithms presented in the thesis in the
3GPP channel model, that is the most realistic
scenario for simulating link layer transmission in
MIMO systems.
As modulation scheme and SNR values, in the
thesis, only limited values have been tested.
A simple future work can be testing the algo-
rithms also using other QAM types as modula-
tion scheme. Moreover, the experiment can be
conducted on a wider range of SNR values in or-
der to discover strange behaviour of the curves of
the algorithms. On the same direction, also dif-

ferent sizes of MIMO system can be tested, test-
ing the algorithms also on bigger systems and
with different Nt

Nr
ratios.

Another direction can be changing the loss func-
tion during the training phase of the DL-based
algorithms. Different loss functions can bring
different results and new insights on LVAMP and
OAMPNet2.
Finally, even if in the thesis it has already
been done, trying different numbers of itera-
tions/layers for the four proposed algorithms can
help in finding the best trade-off between perfor-
mances and complexity.
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