
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica
Scuola di Ingegneria Industriale e dell’Informazione

Regret-based Traces-Exploration
Abstractions for Large Game Solving

Artificial Emotional Intelligence
Integrating Irrationality into

Moral Rational Agents

Relatore: Prof. Nicola Gatti
Correlatore: Prof.ssa Barbara Caputo

Tesi di Laurea di:
Jacopo Pio Gargano

Matricola 913073

Anno Accademico 2020-2021





“Non vediamo le cose per come sono, ma per come siamo.”

(I. Kant)
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Sommario

Negli ultimi anni, l’obiettivo dell’Intelligenza Artificiale è passato dallo
sviluppo di agenti artificiali capaci di simulare il comportamento umano
all’accrescimento dell’intelligenza, potenziando le capacità di ragionamento
ben oltre quelle della mente umana. Lo sviluppo di metodi basati sulla
teoria dei giochi volti a trovare strategie ottimali è focalizzato prevalente-
mente su attività specifiche, allontanandosi dall’intelligenza artificiale forte.
La maggior parte degli scenari reali, ad esempio di economia e politica, si
prestano a un’analisi secondo la teoria dei giochi. Tuttavia, la loro comp-
lessità, dovuta al grande o infinito numero di stati e azioni, non ha perme-
sso agli algoritmi esistenti per la ricerca di strategie di gioco competitive
di scalare. Nonostante queste difficoltà, le realizzazioni di gioco ottenute
tramite giocate reali o simulazioni sono ampiamente disponibili. Eppure,
la ricerca sui giochi basati su realizzazioni senza il relativo modello non è
ancora esaustiva. Pertanto, concentriamo la nostra ricerca sullo sviluppo di
un’architettura di astrazione, indipendente dal dominio di applicazione e dal
modello di gioco, capace di trovare equilibri di Nash in strategie miste in qual-
siasi gioco in forma estesa tramite le sue realizzazioni. Inoltre, indaghiamo
filosoficamente e tecnicamente un’estensione alla classica teoria dei giochi per
integrare l’irrazionalità negli agenti morali razionali senza renderli irrazion-
ali. L’emotività renderebbe così possibile un’interazione con l’ambiente più
completa, permettendo agli agenti di relazionarsi in situazioni reali. Introdu-
ciamo ReTrE, un insieme di algoritmi che sfruttano reti neurali e tecniche di
esplorazione per approssimare il comportamento di CFR, un algoritmo otti-
male di minimizzazione del rimorso, nel gioco completo. Valutando ReTrE
su giochi non eccessivamente complessi, in modo tale da essere risolti anche
da CFR, osserviamo che le performance sono in linea con quelle dell’algoritmo
ottimale. Di conseguenza, essendo i risultati promettenti, l’utilizzo pratico
dell’architettura proposta per giochi complessi è ragionevole e costituisce una
futura direzione di ricerca.
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Abstract

Throughout the years, the goal of Artificial Intelligence has shifted from de-
veloping artificial agents simulating human behavior to complementing in-
telligence by enhancing reasoning far beyond the capability of the human
mind. Despite AI’s vision being on general intelligence, development of
game-theoretical methods to find optimal strategies is mainly focused on
domain specific tasks and recreational games, allowing for little domain in-
dependence. Most real-world strategic scenarios, including theoretical eco-
nomics, political science, and military are suitable for classical game theoret-
ical analysis. However, their complexity, mainly due to the huge or infinite
number of states and actions, has not allowed the proposed algorithms to
scale. In spite of these challenges, game realizations observed through ac-
tual play or simulations are readily accessible. However, little research has
been carried out on simulation-based games, where a complete description
of the game is not available, but game plays and corresponding noisy payoffs
are. As such, we focus our research on developing a domain-independent
model-free abstraction framework, able to find mixed strategy Nash Equi-
libria in any extensive-form game in a simulation-based fashion. Moreover,
we inquire an extension to the classical game theoretical framework to inte-
grate irrationality in moral rational agents without making them irrational,
allowing for more complex and emotional agents, enabling full interaction
with the environment in real-world situations while keeping emotional con-
text. We propose ReTrE, a framework leveraging deep neural networks
and confidence-based exploration techniques to approximate the behavior of
CFR, an optimal regret minimization algorithm, in the full game. We show
that ReTrE achieves comparable performance with CFR in terms of ex-
ploitability when dealing with games small enough to be analyzed by both.
Therefore, the practical use of the proposed framework in large games is
possible and performance is likely to be in line with what CFR could theo-
retically achieve, allowing to find competitive suboptimal strategies.
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Chapter 1

Introduction

“Not only artists abstract.”

Jacopo

1.1 Overview

The research presented by this thesis belongs to the field of Algorithmic
Game Theory, with a focus on large and infinite games, respectively in-
feasible or impossible to represent in practice. Our goal is to develop a
model-free abstraction method, supported by theoretical guarantees, able
to find approximate mixed strategy Nash Equilibria in any extensive-form
game in a simulation-based fashion, that is, starting from observations. The
resulting game-theoretical abstraction approach can be applied to large real-
world complex-interaction scenarios including but not limited to recreational
games, sports, governance and conflicts. A general approach to solving large
and infinite games would allow significant breakthroughs in the several areas
game-theoretical methods can be applied, comprising scalability improve-
ments in security scenarios.

This thesis was developed as part of the Honours Programme1 at Po-
litecnico di Milano, supervised by prof. Nicola Gatti2 and co-supervised by
prof. Barbara Caputo of Politecnico di Torino as part of the Alta Scuola
Politecnica double degree.

1http://www.honours-programme.deib.polimi.it
2Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria,

Via Ponzio 34/5, 20133, Milano, Italy.

http://www.honours-programme.deib.polimi.it
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1.2 Research Focus

1.2.1 Area of Focus

The area of focus of our research is Algorithmic Game Theory, a field of
study that aims to analyze strategic conditions and to design algorithms
able to find strategies for the involved agents allowing them to reach an
equilibrium3. A strategic environment is mathematically modeled through
formal representations so as to describe its problems and solutions, if any.
Solving a strategic problem requires the use of the theory of computation
and algorithm design: the former to analyze the problem complexity and
evaluate its difficulty4, the latter to solve the problem - usually corresponding
to finding equilibria. Therefore, Algorithmic Game Theory is a combination
of Mathematics, specifically Game Theory, and of Computer Science.

The problem of analyzing approximations of the game through abstrac-
tions5 in strategic games is related to specific fields of Computer Science:
Artificial Intelligence and Machine Learning. When it comes to generating
traces5 so as to model abstractions, Artificial Intelligence concepts like ex-
ploration and exploitation come into play. Moreover, clustering algorithms
and online learning could be leveraged for our purpose. Online Convex Op-
timization is crucial as most of the problems faced by Game Theory are
modeled as function optimization problems - usually as the minimization of
convex functions over convex sets. Finally, Theoretical Computer Science
is fundamental to analyze both space and time complexity of a problem,
specifically of its representation or of the algorithms proposed to solve it.

1.2.2 Research Topic

The main problem faced by Game Theory is that of game representation
and resolution. Solving a game typically means finding its Nash Equilibria3.
Finding exact Nash Equilibria is not always feasible. This is why approxi-
mated solutions of the game, corresponding to quasi-optimal strategies, are
considered good. These go under the name of ε-Nash Equilibria.

In the early days of Algorithmic Game Theory, relatively small games
were analyzed and their reduced size allowed them to be solved through the

3Nash Equilibrium: a strategy profile such that each player does not benefit from de-
viating from their strategy, keeping the strategies of all the other players fixed. According
to Nash’s Existence Theorem, every game with a finite number of players in which each
player can choose from finitely many pure strategies has at least one Nash Equilibrium.
See Def. 2.17 for details.

4In terms of computational complexity (e.g., NP-hardness).
5See Chapter 2.
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use of linear programming [Billings et al., 2003]. Recently however, with
the introduction of regret minimization in imperfect information5 games,
the most common ways to solve games for Nash Equilibria are based on
Counterfactual Regret Minimization (CFR) [Zinkevich et al., 2008], which
can solve larger games. Not surprisingly, there exist many variations of it
with improved performances [Brown et al., 2019; Gibson et al., 2012; Lanctot
et al., 2009; Tammelin, 2014]. In general, there are several equilibrium-
finding algorithms to solve a game, however a central challenge in solving
games is posed by large games6. For instance, two-player no-limit Texas
hold’em poker has more than 10165 possible states [Johanson, 2013].

In order to cope with complexity in decision making for large extensive-
form games, the concept of abstracting games was developed by Billings et al.
[2003]. Abstractions are a way to lower game complexity while retaining all
relevant information. Abstracting generally consists in building a smaller
version of the game tree with a reduced number of states and actions. Ab-
stractions are designed for games with signals, in which the game tree is the
same in terms of rules and available actions, regardless of the information
defining states.

The most notable applications of abstraction techniques gave birth to
Libratus and Pluribus [Brown and Sandholm, 2018, 2019b]. Despite using
both information and action abstractions7, the authors claim abstractions
are not enough to solve large games. To cope with the limitations that
abstractions bring to the quality of the solution, refinement techniques were
implemented [Avni et al., 2018; Brown and Sandholm, 2015, 2018, 2019b].
These techniques aim to improve the quality of the abstraction as the game
advances, by solving nested subgames, dropping unnecessary information and
adding actions with the ultimate goal of refining the abstracted version of
the game, namely making it less coarse.

In practice, sequential games are very large and their complexity pre-
vents them to be fully represented, explored and analyzed to find equilibria.
Being able to study large and infinite games through abstractions is crucial
to extend the applicability of game theoretical principles to real-world prob-
lems. These include every possible strategic situation that is representable
through a sequential game, including but not limited to recreational games,
sports, governance and conflicts. This is why our research topic is of great
significance.

6Large game: a game whose representation through a tree is infeasible.
7See Section 2.2.1.
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1.3 The Problem

Despite the remarkable contributions8 in the field of abstractions, especially
those of Brown and Sandholm, there are still several open problems to tackle.
Most real-world strategic games are too large as the available actions belong
to a continuous space. These kinds of games are known as infinite games
and there is no explicit way to fully represent them. The only available
option to obtain exact information about large or infinite games is to collect
game samples in the form of traces and corresponding payoffs for the players
according to their preference.

Moreover, information about the game in the form of samples, obtained
via actual play or simulations, is readily accessible. However, little research
has been carried out on simulation-based games, where a complete description
of the game is not available, but game plays and corresponding noisy payoffs
are.

Therefore, with our research we aim to solve the following problem: find-
ing equilibria in large or infinite simulation-based games.

Specifically, to the best of our knowledge, with respect to our research
topic, the only significant results were achieved by Areyan et al. [2019b,
2020]. They present a method able to learn all approximated equilibria of a
simulation-based game. However, according to the authors, their algorithm
can only find pure strategy9 ε-Nash Equilibria. Considering that most games
admit mixed strategies Nash Equilibria rather than only pure ones, this open
problem is of great importance in the field.

Furthermore, previous works have mainly contributed with domain-
specific implementations of the presented abstraction methods. Most of them
were focused on heads-up no-limit Texas hold’em Poker and simpler variants
of it. A general model-free10 approach has not been presented yet. This issue
is at least as meaningful as the aforementioned more theoretical problem, if
not more.

With respect to security games, the main challenge is to deploy limited
security resources taking into account differences in priorities of targets re-
quiring security coverage and the responses of the adversaries to the security
allocation, considering uncertainty in their behavior. Tambe et al. [2014]
show that it is NP-hard to compute optimal strategies for the defenders

8See Chapter 3.
9Strategies can be pure or mixed. Actions of a mixed strategy are taken according to

a probability distribution; in a pure strategy only one action is taken and all others never
are.

10Model-free: no information on the game is available besides game samples and cor-
responding approximated payoffs.
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when in strategic games (e.g. deceiving an attacker, allocating experts to
examine security alerts). Moreover, it is still computationally challenging to
solve large security games in consideration of limited observation. In fact, in
several security problems little information is available and simulating events
requires solid domain-specific knowledge.

Previous research does not take into consideration sequential interac-
tion between the attacker and the defender (with very few exceptions, such
as, e.g., [Bosanský et al., 2017; Farina et al., 2018; Marchesi et al., 2019]),
highly reducing game complexity, resulting in an excessive simplification.
Instead, we intend to address complex-interaction scenarios, in which agents
dynamically adapt their strategies to the moves of their opponents over time,
exploiting enhanced exploration techniques.

1.4 Our Goal

The goal of our research is to develop a model-free abstraction approach,
supported by theoretical guarantees, able to find approximate mixed strategy
Nash Equilibria in any extensive-form game in a simulation-based fashion,
that is, only through game samples – in the form of traces and corresponding
approximated payoffs – as the only inputs.

Therefore, our research is a blend of algorithm design and theoreti-
cal analysis, with the ultimate aim of providing a general method for any
simulation-based game. As a consequence, the nature of our research is
mainly experimental.

1.5 Original Contributions

We propose ReTrE, a learning-based game-theoretical framework leverag-
ing deep neural networks and confidence-based exploration techniques to ap-
proximate the behavior of CFR, an optimal regret minimization algorithm,
in the full game.

We show that ReTrE achieves comparable performance with CFR in
terms of exploitability when dealing with games small enough to be analyzed
by both. Therefore, the practical use of the proposed framework in large
games is possible and performance is likely to be in line with what CFR could
theoretically achieve, allowing to find competitive suboptimal strategies.
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1.6 Thesis Structure

This thesis is structured in the following way:

• Chapter 2 lays the theoretical groundings on which this work is based.
It presents some key concepts from Game Theory and Algorithmic
Game Theory, in particular abstractions and regret minimization.

• In Chapter 3 we carry out a thorough analysis on the state-of-the-art
works related to our research, identifying those areas where research is
needed. We review the main regret minimization algorithms, discussing
their advantages and uses.

• Chapter 4 is the core of this work. It comprises the description of
ReTrE and its components, with details on the implementation in the
form of algorithms. We also present and discuss possible extensions to
the framework.

• In Chapter 5 we present the experiments that we conducted and discuss
the obtained results to evaluate the performance of ReTrE.

• Chapter 6 is a philosophical digression on Artificial Emotional Intel-
ligence, which measures, understands, simulates and reacts to human
emotions. We inquire about the possibility of integrating irrationality,
intended as self-contradiction due to emotional instability or cognitive
deficiency, into moral rational agents without making them irrational.
These kinds of scenarios are characterized by a large number of states
and actions, making ReTrE suitable for application.

• Chapter 7 draws the conclusions of this work summarizing the results
obtained and discussing about possible future work.



Chapter 2

Preliminaries

2.1 Game Theory

Game Theory consists in the study of mathematical models of conflict and
cooperation between intelligent rational decision-makers: entities qualifying
as source of action, or simply agents. Agents are rational when they are able
to use decision theory, namely they choose the alternatives that allow them,
in expectation, to reach the best outcome of a situation, according to their
preferences. Game Theory provides the general mathematical techniques for
analyzing situations in which two or more agents make decisions that will
influence their welfare [Myerson, 1991].

The main concepts in the field of Game Theory, specifically games, their
representations and game solving notions, are hereby presented.

2.1.1 Games and Representations

Definition 2.1. Game
A game is a tuple pN,A,Áq, consisting in:

• N “ t1, 2, . . . , nu, the set of players;

• A, the set of actions. Ai “ tai,1, ai,2, . . . , ai,mu being the set of actions
available to player i, @i P N ;

• Á, the preference relations of the players. Ái being the preference re-
lation of player i over A “ ˆjPNAj, @i P N .

This definition of game comprises the concept of state, or node. A state
s P S is defined by all the information concerning the environment status:
public information available to all players, player-specific private knowledge
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and the history of the game, that is, the sequence of actions taken so far.
A state can also be player specific, si, where only the private information
available to player i is included and all other players’ private information is
omitted. Apsq denotes the actions available at state s.

The preference relation Ái can be represented by a payoff function,
namely the utility function.

Definition 2.2. Utility Function
A utility function is a function ui : S Ñ R such that uipsq ě uips

1q whenever
s Ái s

1, where s, s1 P S.

A common representation for games is the normal-form representation.

Definition 2.3. Normal-form Game
A normal-form game is a tuple pN,A,Uq, where:

• N is the set of players;

• A “Ś

iPN Ai is the set of action profiles, namely the tuples containing
one action per player, where Ai is the finite set of actions of player i;

• U “ tu1, ..., unu is the set of the utility functions ui : S Ñ R, each
mapping a state into the respective payoff for player i P N .

Definition 2.4. Sequential Game
A sequential game is a game in which players play in succession taking turns.

The most common graphical representation of a sequential game is a tree.

Definition 2.5. Game Tree
A game tree is a triple pS,E, s0q, where pS,Eq is an oriented graph – S the
set of vertices, or states, E the set of edges – and s0 P S is the root of the tree,
namely a vertex such that there is a unique path from s0 to s, @s P S z ts0u.

With reference to Game Theory, the root of the game tree s0 corresponds
to the initial situation of the game, and every game state is represented
by a vertex of the tree. For each vertex s, its children are the vertices
corresponding to the game states that can be reached from s via a certain
action, represented by an edge e P E.
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s0

s1 s2

a b

L1 R1 L2 R2

Figure 2.1: Game tree of a perfect-information extensive-form game (see
Def. 2.12). s0 is the root node; a,b P E are the available actions at s0.

Definition 2.6. Information Set [Maschler et al., 2013]
An information set h Ď Si of player i is a set of states that are indistinguish-
able to the player given the information available to them a that stage of the
game.

s0

s1 s2h

a b

L R L R

Figure 2.2: Game tree of an imperfect-information extensive-form game
(see Def. 2.11). h is an information set, comprising nodes s1 and s2. The
available actions at nodes s1 and s2, namely L and R, are the same as the two
nodes belong to the same information set and therefore are indistinguishable.

Definition 2.7. Behavioral Strategy
A behavioral strategy is a function σi : Hi Ñ ∆|AHi

|, i P N , that associates
to each information set h P Hi a probability distribution over the available
actions Ah at that information set h. σiph, aq is the probability of playing
action a at information set h.

Definition 2.8. Strategy Profile
A strategy profile σ, or simply strategy, is a vector of |N | behavioral strate-
gies σi, one for each player in N .
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Definition 2.9. Expected Utility
Given a strategy σ, the expected utility uipσq of player i is:

uipσq “
ÿ

zPZ

πσpzq ¨ uipzq

where πσpzq is the reach (see Def. 2.25) of leaf node z. Note that when utility
is a function of a state, then it refers to Def. 2.2, whereas this definition
applies when it is a function of a strategy.

Definition 2.10. Value
Given a strategy σ, the (expected) value of information set h for player i is

vσi phq “ πσ´iphq
ÿ

zPZrĎZ

uipzq

where πσ´iphq is the external reach (see Def. 2.25) of information set h, and
Zr is the set of reachable leaf nodes from h.

Not in all games agents know all the information describing the game,
besides possible randomness. For instance, poker players do not know the
cards of their opponents; however, this is not the case for the game of chess,
in which all information is available to all players at all times. Moreover,
agents might not know their opponents’ preferences over the outcomes of
the game, however we will not investigate this aspect further and assume
in our inquiry that agents know how to compute both their own and their
opponents’ utility for each state of a game. The majority of all real-world
strategic games are imperfect-information perfect recall1 sequential games.
Formally, these are represented by extensive-form games.

Definition 2.11. Imperfect-Information Extensive-Form Game
[Leyton-Brown and Shoham, 2009]
An imperfect-information extensive-form game Γ is a tuple
pN,A, S, V, Z,H, χ, ρ, θ, Uq, where:

• N is the set of players;

• A is the set of actions, and Ah Ď A is the set of available actions at
information set h;

• S is the set of states;

• V Ď S is the set of nonterminal nodes, and Vi Ď V is the set of decision
nodes belonging to player i P N ;

1Perfect Recall : players are able to recall all the actions and states happened in the
past.
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• Z Ď S is the set of terminal nodes, also known as leaves. Z X V “ H
and Z Y V “ S;

• H “ tH1, ...,Hnu is the collection of information sets of all players;
for each i P N , Hi is an information partition of Vi such that decision
nodes within the same information set h P Hi are not distinguishable
by player i;

• χ : V Ñ 2A is the action function, which assigns to each nonterminal
node a set of possible actions;

• ρ : V Ñ N is the player function, which assigns to each nonterminal
node the player i P N taking an action at that node;

• θ : V ˆ A Ñ S is the successor function, which maps a nonterminal
node and an action to the following state (or a set of states in case the
action is random);

• U “ tu1, ..., unu is the collection of utility functions of all players,
where ui : Z Ñ R is a real-valued utility function for player i P N on
the terminal nodes Z.

L R

a 4, 4 3, 6

b 5, 1 2, 2

Player 1

Player 2

(4, 4) (3, 6)

Player 2

(5, 1) (2, 2)

h

a b

L R L R

Figure 2.3: A two-player normal-form game and its equivalent extensive-
form game representation through a tree.

Definition 2.12. Perfect-Information Extensive-Form Game
[Maschler et al., 2013]
A perfect-information extensive-form game is an imperfect-information
extensive-form game in which all information sets consist of a single state.

When a game is finite but large2 (e.g. poker) or infinite, being the avail-
able actions in a continuous space, it is not possible to build an explicit

2Large game: a game whose representation through a tree is infeasible due to memory
constraints.
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representation of it. In order to obtain exact information on the game, the
only available option is to collect game samples in the form of game traces
(see Def. 2.15) and corresponding payoffs for the players. In this setting,
payoffs are available as the output of an oracle, which can be intended as
a simulator, rather than specified analytically or through a payoff matrix,
which is the classical approach [Vorobeychik and Wellman, 2008].

Definition 2.13. Simulation-based Game [Vorobeychik and Wellman,
2008]
A simulation-based game is a tuple pN,Σ, Oq, where N is the set of players,
Σ is the set of strategies, and O is an oracle producing a possibly noisy sample
from the joint payoff function of players, given a joint strategy profile.

Definition 2.14. Empirical Game
An empirical game is an abstracted, that is, smaller and simpler, version of
a simulation-based game constructed via finite sampling.

A game consists of a sequence of states in which players take actions and
end up in other states. A trace of a game represents a possible sequence of
states and actions leading to a terminal state and a corresponding utility for
the players. It therefore represents one of the many3 possible plays by the
players.

Definition 2.15. Trace
A trace of a game is an array τ “ ps1, a1, ..., sm, am, zq, where sj P V are
the traversed states, aj P A are the undertaken actions, j P r1,ms, sm and
am such that z “ θpsm, amq P Z, namely the trace reaches a terminal node.

Definition 2.16. Best Response
Given player i and his opponents’ strategy σ´i, his best response to σ´i is
a strategy BRpσ´iq P Σ such that uipBRpσ´iq, σ´iq “ maxσ1iPΣi

uipσ
1
i, σ´iq.

2.1.2 Game Solving

Solving a game consists in finding an equilibrium, which in its most classical
form is a Nash Equilibrium (NE). A strategy profile is a NE if, for each player
of the game, a player does not benefit from deviating from their strategy,
keeping the strategies of all the other players fixed.

Definition 2.17. Nash Equilibrium [Nash et al., 1950]
Given a game, a strategy profile σ˚ is a Nash Equilibrium (NE) if and only

3The number of traces of a finite game is equal to |Z|.
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if, @i P N , @σi P Σi it holds:

uipσ
˚q ě uipσi, σ

˚
´iq

where uipσq is the expected utility of player i if strategy σ is adopted, Σi

is the set of strategies of player i, σ˚´i is a strategy profile containing the
strategies of all players except that of player i, (σi, σ˚´i) is the strategy
profile obtained by the combination of σi and σ˚´i. Furthermore, a NE
σ˚ is a strategy profile where every player plays a best response: @i P N ,
uipσ

˚
i , σ

˚
´iq “ maxσ1i uipσ

1
i, σ

˚
´iq

A fundamental result in game theory is that any game with a finite set of
players and a finite set of actions has at least a Nash Equilibrium in mixed
strategies [Nash, 1951]. In particular, the following holds:

Theorem 1. The strategic game pN,Ai,Áq has a Nash Equilibrium if, for
all i P N , the set Ai of actions of player i is a nonempty compact convex
subset of a Euclidean space and the preference relation Ái is continuous and
quasi-concave on Ai.

Any Nash Equilibrium is stable, meaning that, once the players are play-
ing such a strategy, they do not have any incentive to individually deviate
from it. On the other hand, a game may admit multiple Nash Equilibria and
it may happen that players reach a non-optimal final reward.

Example 1. As an example consider the classical Bach or Stravinsky? game:
two people wish to go out together to a concert of music by either Bach or
Stravinsky. They are willing to go out together, but one person prefers Bach
and the other person prefers Stravinsky. The situation is modeled with the
normal-form game reported in the following table (Table 2.1).

Bach Stravinsky
Bach p2, 1q p0, 0q

Stravinsky p0, 0q p1, 2q

Table 2.1: Bach or Stravinsky?

This game turns out to have three NE: 2 of them are in pure strategies,
namely when both players choose Bach or when they both choose Stravinsky,
the remaining equilibrium is in mixed strategies, specifically σ1 “ p

2
3 ,

1
3q and

σ2 “ p
1
3 ,

2
3q.
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Example 2. As an example of a game in which two individuals acting in
their own self-interest do not produce the optimal outcome is the prisoner’s
dilemma. Consider the situation in which two prisoners, separated and un-
able to communicate, must each choose between silence and blaming their
friend. If they both remain silent then the authorities will convict them to
a gentle sentence. If only one of them blames the other then that one is
set free and the other is convicted to a strict sentence. If both confess they
will be convicted for being partly responsible. The situation is modeled with
the normal-form game reported in the following table (Table 2.2), where the
absolute value of the utility corresponds to the years of sentence.

Silence Blame
Silence p´1,´1q p´5, 0q

Blame p0,´5q p´3,´3q

Table 2.2: Prisoner’s Dilemma.

Both players blaming each other is a NE. In fact, no player has an in-
centive to deviate from the blaming strategy assuming that the other will
blame. However, pBlame,Blameq is not the optimal outcome as it would
result in 6 total years in prison. The socially optimal outcome is instead
pSilence, Silenceq, resulting in only 2 total years.

2.2 Abstractions and Equilibria

Algorithmic Game Theory was born from the union of the fields of algorithms
and game theory. Its early goal was to address the problem of understanding
how to reach equilibrium, which is crucial for practical applications, but is
rarely studied in traditional Game Theory. The question of most interest in
the field is the following: is it possible to efficiently calculate the equilibrium
of a game in practice?

When a game is too large, solving the game, namely calculating an exact
NE, is an impossible task leveraging the current technology. Consequently,
an approximated solution is the only alternative possible.

Definition 2.18. ε-approximate Nash Equilibrium
Let, for any σ P Σ, δipσq “ ui

`

BRpσ´iq, σ´i
˘

´ uipσq and ε “ maxiPN δipσq.
Then, given a NE σ˚ and exploitability epσiq “ ui

`

σ˚i , BRpσ
˚
i q
˘

´

ui
`

σi, BRpσiq
˘

, an ε-approximate Nash Equilibrium (ε-NE) is a NE where



2.2. Abstractions and Equilibria 15

no player has exploitability eipσq ą ε. When it holds δipσq “ 0,@i P N , then
σ is a NE.

2.2.1 Abstractions

A tree is an effective way to represent a sequential game. However, the
number of nodes of a tree is exponential in its depth and highly depends
on the branching factor. In sequential games nodes represent the states of
the game; the depth4 of a terminal node represents the number of actions to
reach that node, representing one of the possible outcomes of the game; the
branching factor is the average number of actions available to the players
at each node. The complexity of decision making is positively correlated to
these factors and this is why when analyzing large games, in order to lower
game complexity while trying to retain all relevant information, abstractions
are used.

Definition 2.19. Abstraction [Billings et al., 2003]
A game abstraction is a smaller version of the game with the purpose of
capturing the most essential properties of the real domain, such that the
solution of the abstracted game provides a useful approximation of an optimal
strategy for the underlying real game.

The purpose of abstractions is to reduce the complexity of a game by
approximating it. A measure of the approximation is hereby presented.

Definition 2.20. Uniform ε-approximation [Areyan et al., 2019b]
A game Γ1 is said to be a uniform ε-approximation of another game Γ when

||Γ´ Γ1||8 ď ε

where ||Γ´ Γ1||8 :“ sup
iPN, sPS

|uipsq ´ u
1
ipsq|.

Definition 2.21. Coarseness
The coarseness of an abstraction is a measure of how approximate the ab-
straction is. The more information is kept, the less the abstraction is coarse
and the more it is fine-grained.

Abstractions are preliminarily divided in:

• Lossless information abstractions: abstractions not loosing any infor-
mation about the game [Gilpin and Sandholm, 2007b].

4Depth of a node: the length of the path from the root of a tree to that node.
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• Lossy information abstractions: a more abstracted version of lossless
information abstractions resulting in a loss of information about the
game [Gilpin and Sandholm, 2007a].

Most importantly, we distinguish three categories of abstractions: informa-
tion abstractions, action abstractions, and simulation-based abstractions.

Information Abstractions

Information abstraction is an abstraction method such that the agents can-
not distinguish some of the states that they could distinguish in the actual
game [Sandholm, 2010]. These are also referred to as state abstractions.

Definition 2.22. State Abstraction [Abel, 2019]
A state abstraction is an abstraction where the set of states is restricted by
grouping together similar5 states.
Formally, a state abstraction Φ : S Ñ SΦ maps each state s P S to an
abstract state sΦ P SΦ, where typically |SΦ| ! |S|.

Example 3. Without loss of generality, with reference to a game two dice
are cast, an example of a state abstraction is the following. The number of
possible distinct outcomes for the two values is 21, considering the two dice
are equal. In order to reduce the number of outcomes, instead of considering
the values of the two dice, one may consider their sum. Indeed, the number
of distinct outcomes becomes 11, thus reducing complexity.

More specific implementations of information abstractions include:

• Expectation-based abstractions: an abstraction method using states
clustering to abstract states and integer programming to assign chil-
dren to states in the abstraction tree minimizing the expected error
[Gilpin and Sandholm, 2007a].

• Potential-aware abstractions: abstractions where each state of the
game is associated to a histogram over future possible states, capturing
its potential - that is, a measure of how close a state is to a positive
outcome of the game for a player [Gilpin et al., 2007; Sandholm, 2010].

• Strategy-based abstractions: an iterative abstraction method where the
equilibrium strategies found in an abstraction are used to guide the
generation of the next abstraction [Sandholm, 2010].

• Extensive-form game abstractions: abstractions applied to information
sets instead of states [Kroer and Sandholm, 2014a].

5The similarity criteria is domain-specific.
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Action Abstractions

Action abstraction is an abstraction method where the number of available
actions to each player is less than in the original game [Sandholm, 2010].
The methods that are used the most comprise bucketing and discretization.
The first clusters actions together according to their similarity in order to
significantly reduce the space of available actions. The latter discretizes a
continuous space of actions so as to transform an infinite game into a finite
one.

Simulation-based Abstractions

Simulation-based abstraction refers to simulation-based games. The ab-
stracted version of a simulation-based game is an empirical game. For these
games a complete and accurate description, in the form of knowledge of the
game’s utility functions, is not available [Areyan et al., 2019b].

In this kind of games the abstracted version of the game is built starting
from data in the form of traces. The data is fed to an oracle, a simulator,
that outputs a possibly noisy payoff for a given strategy of the players. If
the oracle is queried with all the possible traces and if it outputs the exact
payoffs for the players, that is, it does not output noisy payoffs, then the
whole original game is reconstructed.

Simulation-based abstraction can be intended as a bottom-up approach,
as the game is built starting from traces. Instead, the aforementioned
approaches of information abstraction and action abstraction start from
the model and build a smaller version of the tree, resulting in a top-down
approach.

2.2.2 Strategy Evaluation

Once a strategy is found, its performance is evaluated through its exploitabil-
ity.

Definition 2.23. Exploitability
The exploitability epσiq of a strategy σi in a game is how much worse σi
performs versus BRpσiq compared to how a NE strategy σ˚i does against
BRpσ˚i q. More formally,

epσiq “ ui
`

σ˚i , BRpσ
˚
i q
˘

´ ui
`

σi, BRpσiq
˘
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A commonly used metric for poker AI evaluation is NashConv.

Definition 2.24. NashConv [Lanctot et al., 2017]
NashConv is an exploitability evaluation metric defined over a strategy σ
as:

NashConvpσq “
ÿ

iPN

max
σ1iPΣi

uipσ
1
i, σ´iq

It represents, in total, how much each player gains by deviating to their
best response unilaterally. It can be interpreted as a distance from a Nash
Equilibrium.

Note that NashConv is easy to compute in small enough games, however
it becomes impractical to use for large games [Johanson et al., 2011]. An
approximate exploitability calculation was just presented by Timbers et al.
[2020].

2.2.3 Regret

“To miss very much” and “to be very sorry for” are the two main definitions
of regret provided by Merriam-Webster online dictionary [Merriam-Webster
Online, 2020]. With reference to Game Theory and AI in general, not having
taken a certain action may produce regret in an artificial agent, as well as in
humans. The game-theoretical definition of the regret of not having taken a
certain action a is hereby presented.

First, we define the reach of an information set to capture how likely an
information set is to be visited during play.

Definition 2.25. Reach
The reach of an information set h is:

πσphq “
ź

h1¨aĂh

σi1ph
1, aq

It is the probability h is reached if all players play according to σ, where i1 is
the player playing at information set h1. All players contribute to the reach:
we define πσi as the agent reach and πσ´i as the external or counterfactual
reach, that is, the probability of reaching h with strategy profile σ except that
we treat i’s actions to reach the state as having probability 1. Specifically,
πσphq “ πσi phq ` π

σ
´iphq, for any player i P N .

Definition 2.26. Counterfactual Value [Zinkevich et al., 2008]
The counterfactual value for player i of information set h, following strategy
σ is:

vσi phq “
ÿ

zPZ

πσ´iphq ¨ π
σph, zq ¨ uipzq
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Definition 2.27. Regret [Zinkevich et al., 2008]
Player i’s regret of not having taken action a at information set h and having
instead followed strategy σ is:

riph, aq “ vσi ph, aq ´ v
σ
i phq

where vi is the counterfactual value.

Definition 2.28. Cumulative Counterfactual Regret [Zinkevich et al.,
2008]
Player i’s cumulative counterfactual regret of not having taken action a at
information set h at time T is:

RTi ph, aq “
T
ÿ

t“1

rtiph, aq

In two-player zero-sum games6, if both players’ average total regret sat-
isfies RT

i
T ď ε, then their average strategies pσ̄T1 , σ̄T2 q form a 2ε´NE [Waugh,

2009].

6Zero-sum game: each player’s gain or loss of utility is exactly balanced by the losses
or gains of the utility of the other players.
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Chapter 3

State of the Art

3.1 Classification of the Main Related Works

The research and works carried out on abstractions may be classified accord-
ing to the following criteria:

• Representation: explicit VS implicit.

• Abstraction method: information VS action VS simulation-based.

• Abstracted game generation: offline VS online.

• Implementation: general VS domain-specific (marked with †).

• Date of publication: past VS recent (in bold).

Representation-wise, explicit means that generally the game can be ex-
plicitly built through a top-down approach; implicit means that the game
can only be theoretically built as there are infinitely many actions and states,
as these belong to a continuous space that is not to be discretized. The con-
cept of online abstracted game generation comprises all the techniques that
are able to build abstractions in an online1 fashion, possibly applying re-
finement techniques. A work is classified as recent if it was published three
or less years ago from 2019, the starting year of our research. The works
classified under Other do not have a specific collocation according to the
aforementioned criteria, however they are still related to the research topic.

1Online: in the context of abstractions, online refers to starting from a very coarse
abstraction and progressively adding information to it so as to refine it.
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Explicit Implicit

Information Action
Simulation-

based

Offline

Abel et al. [2019a]§,
Abel et al. [2019b]§,
Billings et al. [2003]†,
Gilpin and Sandholm
[2006]†, Gilpin and

Sandholm [2007a], Gilpin
and Sandholm [2007b],

Gilpin et al. [2007]†, Kroer
and Sandholm [2014a],
Kroer and Sandholm

[2014b], Shi and Littman
[2000]†

Abel et al.
[2019b]§, Basak
[2016], Brown
and Sandholm
[2014], Hawkin
et al. [2011]†

Tuyls
et al.
[2018]

Online

Avni et al. [2018],
Brown and Sandholm
[2018]†, Brown and
Sandholm [2019b]†

Brown and
Sandholm [2015],
Brown and
Sandholm

[2018]†, Brown
and Sandholm

[2019b]†,
Garivier et al.

[2016]†

Areyan
et al.

[2019b],
Areyan
et al.
[2020]

Other
Brown et al. [2019]†, Areyan et al. [2019a],

Steinberger et al. [2020]

Table 3.1: Classification of the main related works.

3.2 Description of the Main Related Works

After classifying the main related works, the most relevant ones to the re-
search topic are hereby analyzed more in detail, presenting their contribu-
tions and highlighting their limitations.

§This work belongs to the field of Reinforcement Learning.
†Domain-specific implementation: poker.
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Information Abstractions

The majority of research carried out on abstractions regards information
abstraction. Early works were initiated by Shi and Littman [2000] and by
Billings et al. [2003] leveraging linear programming and bucketing to abstract
states in 2-player poker. However, these are not particularly interesting
for our research as the methods they used are now considered basic and
considerable improvements were made over time.

The most relevant works were presented by Gilpin and Sandholm. Before
their works were published, abstractions were computed by hand. Automated
abstractions were introduced by Gilpin and Sandholm [2006]. Their work in-
troduces a Texas hold’em poker player (GS1 ) that is able to solve a large
linear program offline so as to compute optimal strategies for the abstracted
first part of the game. When playing, it exploits the computed best strate-
gies and observes the state of the game after the initial moves. Then, it
updates the probabilities of reaching final outcomes given the information
acquired and adapts its strategy accordingly. Despite being an innovative
implementation for the time, GS1 ’s performance against human players was
far from declaring it to be an overall winner.

Gilpin and Sandholm [2007b] introduced the concept of ordered game
isomorphic abstraction transformation, which allows to convert any Nash
Equilibrium of an abstracted game into one in the original game. They
achieved this through GameShrink. Despite not preserving equilibrium when
addressing large games, it still yields close-to-optimal strategies.

Interesting advances were obtained in the same years by Gilpin and Sand-
holm, through the introduction of expectation-based abstractions [Gilpin and
Sandholm, 2007a] and potential-aware abstractions [Gilpin et al., 2007].

The former work uses k-means clustering to obtain a state abstraction
and it aims to minimize the expected error when assigning children to these
states through linear programming. It then simulates the outcome of the
game in order to keep the complexity relatively low. The authors themselves
inspire further research through the idea of abstracting in an iterative manner
where an abstraction is refined based on the statistical model of the player
in self-play [Gilpin and Sandholm, 2007a].

In the latter, the main idea is that of capturing the potential of a state:
the likelihood of ending in a positive outcome leaf starting from that state
times the associated payoff. The limits of this work lie in the fact that given
two states with the same potential it is not possible to evaluate which of
the two will have its potential significantly vary sooner. Consequently, it is
not possible to distinguish the two based on the cost of obtaining relevant
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information and explore the cheapest.
Kroer and Sandholm [2014a] introduce extensive-form game abstractions:

abstractions on information sets rather than on states. They also con-
tributed with the introduction of an equilibrium refinement technique that
can be used to analyze the quality of general Nash Equilibria from abstract
games. Despite working for any game with perfect recall, the set of abstrac-
tions they can compute is only a subset of all possible abstractions.

Action Abstractions

Action abstractions were first analyzed by Hawkin et al. [2011]. They fo-
cused their research on abstractions by studying the choice of the value of
parameters of an action.

The first substantial contribution to the field of action abstractions was
made by Brown and Sandholm [2014] providing the first action abstraction
algorithm with convergence guarantees for extensive-form games. In partic-
ular, the presented algorithm is able to select a small number of discrete
actions from a continuum of actions, transforming an infinite game into a
finite one, considerably reducing the size of the game.

Basak [2016] introduces the idea of abstracting games by clustering
strategies and then solving them by finding and solving suitable subgames.
However, he states that there are several abstraction approaches, mainly re-
lated to the abstraction method and to the way of solving the abstracted
game: understanding which method is the best or the most appropriate is
still an open problem.

An interesting contribution was brought by Abel et al. [2019b]. In partic-
ular, they combined state and action abstraction and introduced a value loss
that is extended to capture near-optimality of joint state-action abstraction.

Abstraction Refinement

One of the first online methods for abstractions was developed by Brown and
Sandholm [2015]. Their method consists in generating coarse abstractions
and later adding actions making them finer-grained. This result is to be con-
sidered quite innovative as it allowed an agent to begin learning with a coarse
abstraction and then strategically insert actions without having to restart
the equilibrium finding. According to the authors, this method converges to
a better solution than equilibrium finding in fine-grained abstractions. More-
over, the algorithm is game independent and it is considered to be useful in
solving games with large action spaces.
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The online approach has been adopted also in state abstraction by Avni
et al. [2018]. They present an abstraction-refinement method that is able to
refine the abstraction function when approximations are too coarse to find
a Nash Equilibrium.

Simulation-based Abstractions

Little research has been carried out on simulation-based abstractions.
A theoretical contribution was given by Tuyls et al. [2018]. In this work

the authors derive guarantees on the quality of all equilibria learned from
finite samples providing theoretical bounds for empirical game-theoretical
analysis of complex multi-agent interactions. They show that a Nash Equi-
librium of the empirical game is an approximate Nash Equilibrium of the true
underlying game and they provide insights on the number of data samples
required to obtain a close enough approximation.

Areyan et al. [2019b] study simulation-based games, which in their ab-
stracted form are called empirical games. They start from game traces and
approximate game utilities, generating an abstracted version of the game.
They are able to learn all equilibria of a game through two algorithms, one
of which is a pruning algorithm refining the empirical game at each itera-
tion, until the equilibria are approximated to the desired accuracy. There
are however some limitations to this work, since, according to the authors,
their algorithm can only find pure strategy2 ε-Nash Equilibria. They say
that computing mixed strategy Nash Equilibria is intractable, being PPAD3

complete.
The most interesting contribution in the specific field of simulation-based

games is by Areyan et al. [2020], designing algorithms that uniformly approx-
imate simulation-based games with finite sample guarantees, achieving the
same performance as previous work with far fewer samples. Recently, March-
esi et al. [2020] provide similar results for the specific setting of zero-sum
two-player games with potentially infinite action spaces.

Beyond Abstractions

The most advanced techniques do not rely on abstractions only. The major
contributions were developed by Brown and Sandholm presenting Libratus
[Brown and Sandholm, 2018] and Pluribus [Brown and Sandholm, 2019b],
the latter named “superhuman AI for multiplayer poker”.

2Strategies can be pure or mixed. Actions of a mixed strategy are taken according to
a probability distribution; in a pure strategy only one action is taken with probability 1.

3PPAD : Polynomial Parity Arguments on Directed graphs – a complexity class.



26 Chapter 3. State of the Art

Libratus features three main modules. The first computes an abstraction
of the game and solves it through self-play via an improved version of Monte
Carlo Counterfactual Regret Minimization (MCCFR) [Gibson et al., 2012;
Lanctot et al., 2009], obtaining a blueprint strategy. The second module
comes into play later in the game as a refinement by constructing a finer-
grained abstraction for a particular part of the game that is reached during
play and solves it in real time. They exploit the nested subgame solving
technique on off-tree actions4, solving subgames with the off-tree actions in-
cluded. This technique comes with a provable safety guarantee [Burch et al.,
2014]. Finally, Libratus is able to self-improve by enhancing the blueprint
strategy. It does so by filling in missing branches in the blueprint abstraction
and solving those for a strategy. Despite the implementation of Libratus
being limited to two-player heads-up no-limit poker, the authors claim that
their game-theoretical approach is application-independent and that it will
be important for the future growth and widespread application of AI.

Pluribus is an enhanced version of its predecessor Libratus that is able
to play six-player heads-up no-limit poker. Despite proving itself to be an
undisputed winner against top players, results are not solidly supported by
theory. In fact, finding an exact or approximated Nash Equilibrium in zero-
sum games with more than two players is computationally hard [Rubinstein,
2018]. Moreover, even if a Nash Equilibrium could be computed efficiently
in a game with more than two players, it is not clear if playing such an
equilibrium strategy would be wise5. Finally, the goal of the authors was
not to obtain a specific game-theoretical solution concept, but consisted in
creating an AI able to empirically defeat human opponents.

3.3 Regret Minimization

“So it really was a decision I had to make for myself and the
framework I found, which made the decision incredibly easy, was
a regret minimization framework. So I wanted to project myself
forward to age 80 and say ‘okay now I’m looking back on my life,
I want to have minimized the number of regrets I have’, and I
knew that when I was going to be 80 I was not going to regret
having tried this.”

(Jeff Bezos, 2008)

4Off-tree actions: actions that are outside the precomputed abstraction.
5See the Lemonade Stand Game for an example [Zinkevich et al., 2011].
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The decision Bezos refers to is that of founding Amazon, which would
become one of the most valuable companies. This decision made him the
world’s wealthiest man.

The framework we will adopt throughout this inquiry is that of re-
gret minimization. The most successful family of algorithms for imperfect-
information games have been variants of Counterfactual Regret Minimization
(CFR), first introduced by Zinkevich et al. [2008].

3.3.1 Counterfactual Regret Minimization (CFR)

Counterfactual Regret Minimization (CFR) [Zinkevich et al., 2008] is an
iterative policy improvement algorithm that computes a new policy profile
σt on each iteration t. The average of these policies converges to a Nash
Equilibrium as tÑ8.

On each iteration t, CFR traverses the entire game tree and updates the
regrets for every information set in the game according to policy profile σt.
These regrets define a new policy σt`1. The strategy σT`1 at time T ` 1 is
obtained through regret-matching. Given RT,`i ph, aq “ max

`

RTi ph, aq, 0
˘

:

σT`1
i ph, aq “

$

&

%

RT,`
i ph,aq

ř

aPAh
RT,`

i ph,aq
if
ř

aPAh
RT,`i ph, aq ą 0

1
|Ah|

otherwise
(3.1)

For each information set, Equation 3.1 is used to compute action proba-
bilities in proportion to the positive cumulative regrets [Neller and Lanctot,
2013]. For each action, CFR then produces the next state in the game, and
computes the utility for each action recursively. Regrets are computed from
the returned values, and the value of playing to the current node is finally
computed and returned. Note that it is the average strategy profile that
converges to a Nash Equilibrium, and not the final strategy profile.

The initial policy is set to uniform random. The average policy σ̄Ti is:

σ̄Ti ph, aq “

řT
t“1

`

πσ,ti phq ¨ σ
t
iph, aq

˘

řT
t“1 π

σ,t
i phq

(3.2)

The sum of the counterfactual regret across all information sets upper
bounds the total regret. Therefore, if player i plays according to CFR on
every iteration, then RTi ď

ř

hPHi
RT phq. Thus,

lim
TÑ8

RTi
T
“ 0
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Since CFR only needs to store values at each information set, its space
requirement is Op|H|q. However, CFR requires a complete traversal of the
game tree on each iteration, which prohibits its use in many large games.
Zinkevich et al. [2008] made steps to alleviate this concern with a chance-
sampled variant of CFR for poker-like games. The theoretical convergence
bound of CFR is Op 1?

T
q. Recall that in a zero-sum game, if RTiPN ď ε, then

σ̄T is a 2ε´NE [Waugh, 2009].

Algorithm 1 CFR
Input the history history, the traverser player i, CFR iteration t, reach

probabilities πi, chance reach πc
Output counterfactual value vσi phq

1: function CFR(history, i, t, π1, π2, πc):
2: hÐ get information set associated to history
3: if h is terminal then
4: return uiphq

5: else if h is chance then
6: H 1 Ð θph,RAq Ź RA being the random action
7: for all h1 P H 1 do
8: history1 Ð history` infoph1q Ź info() returns the public info
9: vσi phq Ð vσi phq`CFR(history1, i, t, π1, π2,

πc
|H 1|)

10: return meanpvσi phqq

11: else
12: vσi phq Ð 0

13: vσi
`

θph, aq
˘

Ð 0 for all a P Ah
14: for all a P Ah do
15: if ρphq “ 1 then
16: vσi

`

θph, aq
˘

Ð CFRphistory ` a, i, t, σtph, aq ¨ π1, π2, πcq

17: else
18: vσi

`

θph, aq
˘

Ð CFRphistory ` a, i, t, π1, σ
tph, aq ¨ π2, πcq

19: vσi phq Ð vσi phq ` σ
tph, aq ¨ vσi

`

θph, aq
˘

20: if ρphq “ i then
21: for all a P Ah do
22: riph, aq Ð riph, aq ` πc ¨ π´i ¨

`

vσi pθph, aqq ´ v
σ
i phq

˘

23: siph, aq Ð siph, aq ` πi ¨ σ
tph, aq

24: σt`1phq Ð regret-matching values using Eq. 3.1 and ri
25: return vσi phq
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Note that although CFR theory calls for both players to simultaneously
update their regrets, in practice far better performance is achieved by al-
ternating which player updates their regrets on each iteration [Brown and
Sandholm, 2019a].

3.3.2 CFR+ and LCFR

CFR+ is very similar to CFR, with a few differences. First, any action
with negative regret riph, aq ă 0 is set to 0 regret, that is riph, aq “

max
`

riph, aq, 0
˘

. Then, CFR+ uses a weighted average strategy where it-
eration T is weighted by T rather than using a uniformly-weighted average
strategy as in CFR. CFR+ is worse in exploitability compared to CFR,
however it typically converges much faster than CFR.

Linear CFR (LCFR) is identical to CFR, except on iteration t the updates
to the regrets and average strategies are weighted by t.

3.3.3 Monte Carlo CFR

Monte Carlo CFR (MCCFR) is a variant of CFR in which certain player
actions or chance outcomes are sampled [Lanctot et al., 2009]. Combined
with abstractions, MCCFR has produced state-of-the-art poker AIs, as it is
the case for Libratus [Brown and Sandholm, 2018].

The key to the approach behind MCCFR is to avoid traversing the entire
game tree on each iteration, while still having the immediate counterfactual
regrets unchanged in expectation, restricting the terminal histories considered
at each iteration. MCCFR allows CFR to update regrets only on part of the
tree for a single agent, called the traverser. There are many forms of MCCFR
with different sampling schemes, such as Outcome-Sampling and External-
Sampling. The latter is the most popular one: opponent and chance actions
are sampled according to their probabilities, but all actions belonging to the
player updating his regret are traversed.

Lanctot et al. [2009] showed empirically in very different domains that
the reduction in iteration time outweighs the increase in required iterations
leading to faster convergence. Moreover, they also showed that External-
Sampling requires only a constant factor more iterations than CFR, where
the constant depends on the desired confidence in the bound.

3.3.4 DeepCFR

DeepCFR [Brown et al., 2019] is a form of CFR that obviates the need for
abstraction by using deep neural networks to approximate the behavior of
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CFR in the full game. The goal of DeepCFR is to avoid calculating and
accumulating regrets at each information set, by generalizing across similar
ones using function approximation via deep neural networks.

At each iteration, DeepCFR conducts a constant number of K partial
traversals of the game tree, with the path of the traversal determined accord-
ing to external sampling MCCFR [Lanctot et al., 2009]. At each information
set h it encounters, it plays a strategy σtphq determined by regret matching,
just like CFR, obtained through the output of a neural network, which takes
as input the information set h and outputs the strategy. The goal of this
network is to be approximately proportional to the regret that CFR would
have produced.

A separate neural network, called the policy network, approximates the
average strategy at the end of the run, as it is the average strategy played
over all iterations that converges to a Nash Equilibrium.

DeepCFR is theoretically principled and achieves strong performance
in large poker games compared to domain-specific abstraction techniques
without relying on advanced domain knowledge. It has been shown by Brown
et al. [2019] that it achieves significant performances in large games.

SingleDeepCFR [Steinberger, 2019] is a variant of DeepCFR that
has a lower overall approximation error by avoiding the training of an aver-
age strategy network. It leverages function approximation and partial tree
traversals to generalize over the game’s state space. It extracts the aver-
age strategy directly from a buffer of value networks from past iterations,
eliminating the approximation error in DeepCFR resulting from training
a network to predict the average policy, at the minor cost of using extra
disk space to store the models from each CFR iteration. It empirically out-
performs DeepCFR with respect to exploitability and one-on-one play in
poker.

3.3.5 DREAM

(D)eep (RE)gret minimization with (A)dvantage Baselines and (M)odel-free
learning DREAM [Steinberger et al., 2020] is a deep reinforcement learning
algorithm that finds optimal strategies in imperfect-information games with
multiple agents. It does not require access to a perfect simulator of the game
to achieve good performance6.

6Recently, other CFR-like algorithms have been proposed for settings involving mul-
tiple agents, see, e.g., [Celli et al., 2019; Farina et al., 2019]. However, these works require
access to a complete description of the game and focus on solution concepts based on the
possibility for players to correlate their behavior.
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The authors show that DREAM empirically achieves state-of-the-art per-
formance among model-free algorithms in popular benchmark games, and is
even competitive with algorithms that use a perfect simulator.

3.4 Discussion

An analysis on the available literature on abstractions in extensive-form
games was carried out and presented in this document. To sum up our study
on the state of the art for our research topic, we present a critical examina-
tion of the main focus points of research in the past years. We investigate
which problems are stills open and which are the areas where further work
is needed.

By observing Table 3.1, it is evident that the majority of research in the
field was focused on information abstraction in an offline fashion. In the
last few years more research was conducted on action abstraction. How-
ever, interestingly, in the past four years, most of the research was focused
on refinement techniques. The most notable work was produced by Brown
and Sandholm giving birth to Libratus [Brown and Sandholm, 2018], which
unsurprisingly won the Marvin Minsky Medal. In their work they combine
abstractions with MCCFR, nested subgame solving and self-improvement.
Their work is supported by strong theoretical evidence and their results are
outstanding. However, it must be noted that most of their research is fo-
cused on poker, even if they state that their game-theoretical approach is
application-independent and that they use poker as an implementation since
“no other popular recreational game captures the challenges of hidden in-
formation as effectively and as elegantly as poker” [Brown and Sandholm,
2019b].

Little research has been carried out on simulation-based games and re-
lated abstractions. To the best of our knowledge, only Tuyls et al. [2018] and
Areyan et al. [2019b, 2020] were able to achieve substantial results. How-
ever, there are some limitations to the research of Areyan et. al, since their
algorithm can only find pure strategy ε-Nash Equilibria. Simulation-based
games are of great interest since they are the only way a game with infinite
actions and states can be represented. In fact, collecting game traces repre-
sents the only way to obtain exact and eventually complete information on
the game.

Being able to find mixed strategy Nash Equilibria in large or infinite
games would allow great breakthroughs in real-world scenarios. There are
many areas where game-theoretical principles are already applied so as to
find optimal strategies for the involved agents. Just to cite a few: theoret-
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ical economics, networks and flows, political science, military applications,
evolutionary biology. However, large games are becoming of great interest
as most real-world meaningful applications usually correspond to infinite
games, being the available actions in a continuous space.

Security is recognized as a world-wide challenge and game theory is an
increasingly important paradigm for reasoning about complex security re-
source allocation, being security resources usually very limited. Tambe et al.
[2014] present some of the successful applications they were able to design
and deploy through game-theoretical approaches. Among the physical ones,
they were able to protect ports, airports, transportation, wildlife including
endangered fish and forest from poachers and smugglers, and lower public
transportation fare evasion. The challenge we face regarding physical se-
curity is that existing algorithms still cannot scale up to very large scale
domains such as scheduling randomized checkpoints in cities.

Being able to solve large games would allow the application of game-
theoretical principles, that is, finding optimal strategies, to any real-world
meaningful strategic situation. For instance, other critical infrastructures
can be protected, illegal drug, money and weapons trafficking could be dras-
tically limited, and urban crime could be suppressed.

Furthermore, network security is an important problem faced by organi-
zations who operate enterprise networks housing sensitive information and
perform important functions. In recent years there have been several suc-
cessful cyber attacks on enterprise networks by malicious actors. A network
administrator should respond to requests from an adversary attempting to
infiltrate their network. These detected cyber menaces must be investigated
by cyber analysts to determine whether or not they are an actual attack and
usually the attacks outnumber human analysts. Cybersecurity problems are
more complex than physical ones, as the space of actions can be much larger,
leading to infinite games.

Finally, we believe that further research must be carried out in the field of
simulation-based abstractions. It would be game-changing to find a domain-
independent method to obtain approximated, or even better exact, optimal
strategies starting from game traces and corresponding possibly noisy payoffs
and solving an abstracted version of the game.



Chapter 4

ReTrE Counterfactual Regret
Minimization

“No humbleness, no learning.
No learning, no growth.”

Jacopo

In this Section we present Regret-based Traces-Exploration Counterfac-
tual Regret Minimization (ReTrE), which is built on top of DeepCFR
[Brown et al., 2019]. DeepCFR deals with large games obviating the need
for abstraction by using deep neural networks to approximate the behavior of
CFR in the full game. This approach, as the authors state, does not depend
on the domain of application as it can be applied to any strategic situation
representable through an extensive-form game.

Domain-independence is one of the core characteristics of ReTrE, which,
just like DeepCFR, leverages neural networks to solve games, and, in addi-
tion, to explore the original game focusing on its most exploitable parts. Re-
TrE is a pre-play only framework, namely, it outputs a suboptimal strategy
for an agent to stick with for the whole game. However, it can be integrated
with strategy refinement algorithms, such as depth-limited search, to exploit
the current state of the game and allow for better performances.

4.1 Assumptions

4.1.1 An Oracle

The main assumption the framework we introduce is based on is the avail-
ability of a source of information, namely an oracle, which can be intended
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as a simulator, for the agent that is solving a certain game. Information on
the game may be available in different ways.

Offline Learning
Nowadays, information is readily available in the form of observations of
events. For instance, in the case of social networks, such as Twitter, an
event consists of a post and its associated information, i.e. likes, comments
and retweets mainly. In the case of recreational games, events are given by
game plays, that are sequences of states and actions with associated rewards
for the players. In general, in the case of strategic games, observations are
represented through the concept of traces (see Def. 2.15) with associated
payoffs for the players in the game. This kind of information is generally
available as there is no practical limit to storage and sources are available.
This is the case of Machine Learning (ML), where the agent is trained based
on a set of data that is available beforehand. We consider this case as an
offline approach based on a dataset, in which usually all the data is used
to train the agent. In this case, if the traces payoffs are not available (e.g.,
players’ preference relations are non-observable), the oracle would output
them.

Online Learning
On the other hand, information might not be available right away, perhaps
because there were no observations in the past, or because the desired
information was not observed yet. In this case, there are mainly two
possibilities. Either there is an oracle that is aware of the game model,
including rules and payoffs, which can be queried with specific parameters to
obtain desired information of the game, rather than analyzing information
specified analytically or through a payoff matrix. Or, a Reinforcement
Learning (RL) approach can be adopted, learning directly from experience
of play. In this case, instead, the agent learns as it performs actions and
observes the associated reward. Namely, in RL the agent would actually
play a game multiple times, observing the outcome of its actions and
adjusting its strategy accordingly in an online fashion, possibly collecting
data as it grows up so as not to forget about the past [Russell and Norvig,
2009]. The disadvantage of RL would be that there might be a certain
expense to pay for training (e.g., at the beginning of the game the agent
would lose considerably). This latter approach of RL is model-free as no
knowledge of the game model is required. More specific details on how
ReTrE can be extended to model-freedom are provided in Section 4.5.
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4.1.2 Knowing Others’ Preferences

Furthermore, another assumption we make in our framework is on the knowl-
edge of the players’ utilities. This is a very strong assumption when it comes
to practical cases. For instance, consider the case of negotiation in which a
certain issue is involved. The parties involved in the negotiation do not fully
know each others’ preferences and must discover them in an online fashion
by observing events and corresponding reactions.

On the other hand, payoffs are fully known for recreational games, which
are the ones we mainly consider for experiment analysis in our inquiry. In
fact, for recreational games it is very easy to compute the utility of players
applying the rules of the game and assuming no player wishes to lose. Indeed,
utility computation becomes more complex if emotional preference is taken
into consideration (see Section 6.4.3).

4.1.3 Limited Computational Resources for Large Games

Games are made up of states and actions. We consider a game as small when
its number of states is not larger than 1012 [Zinkevich et al., 2008]. Large
games, instead, are those games having a huge number of states. This may
be due to the fact that the game model, that is, the set of rules implemented
through the transition function, is too complex. For instance, the game
of chess is way more complex than the game of checkers in terms of rules,
mainly because of the different pieces and moves. A huge number of states
can also derive from a large action space. That is to say that if the num-
ber of actions at each state is considerable, then the number of tree nodes
becomes significantly high. Moreover, if the action space is continuous then
the number of nodes is infinite and the representation of the game through
any data structure becomes infeasible and only theoretically possible.

Consequently, using the available technology in terms of computational
power and memory to solve a large game – namely finding a Nash Equilib-
rium strategy, even approximate – is infeasible. That is why, in our inquiry,
we consider limited computational power and memory that corresponds to
today’s technology. It is safe to say that no current processing technology
will be able to scale enough to solve large games in the next years. Perhaps,
with the advent of quantum computing large games will be as easy to solve
as small games.
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4.2 Overview

We hereby provide an overview of ReTrE by describing the main compo-
nents and processes from a high level perspective, deepening the focus right
after.

ReTrE leverages deep learning to solve large games by exploring the
original game focusing on its most exploitable parts providing a strategy
profile in the form of a neural network. The main components of ReTrE
are the Policy Network (PN), a neural network approximating the behavior
of CFR in the full game, the Exploration Dictionary (ED), a data structure
to hold information about the information sets to guide exploration of the
full tree, and the Exploration Network (EN), a neural network approximating
the ED when memory resources are not enough.

Traces
Abstract

Tree

CFR & PN
Data Collection

Policy Network
Exploration
Dictionary

EV Computation

Exploration
Network

EV on
Original Game

Strategy on
Original Game

Oracle
Original Game

Data

Exploitability
Evaluation

Traces
Exploration

σ, πσ

〈
h, 〈v̄, n〉

〉

〈h, σ̄(h)〉

Figure 4.1: Overview of ReTrE.

Initialization
With reference to Figure 4.1, initially, a set of traces is available, obtained
either offline – as a subset of all the available ones – or online – either through
an oracle or in a RL-like approach (the component name comprises all three
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possibilities) (Oracle Original Game Data).

Abstract Game Tree
The collected traces make up a smaller game tree compared to the original
one – namely the abstract game tree. For an abstract game tree to be ana-
lyzed, its size must be smaller than 1012 nodes [Zinkevich et al., 2008]. Then,
player specific abstract game trees, representing imperfect information, are
generated from the abstract game tree by removing adversary private infor-
mation.

CFR Game Solving and PN Data Collection
When player-specific abstract game trees are built, we run T iterations of
CFR for each player. By doing this, we obtain the average strategy for the
two players, which converges to a Nash Equilibrium as T Ñ 8 [Zinkevich
et al., 2008].

While running CFR, we collect samples for the Policy Network – provid-
ing a strategy for the original game (see Section 4.4.2) – in the following way:
at each CFR iteration t P r1, T s, for every information set h, we collect a
sample xh, σ̄tphqy, where σ̄tphq is the average strategy over all the iterations
up to t. Furthermore, also the information sets’ value and external reach are
stored for Exploration Value computation.

Exploration Value Computation
Once CFR is over, for every information set h, for every available action
a P Ah, we compute the Exploration Value (EV) – the value guiding the
traces exploration phase by storing measures of regret for the information
sets (see Section 4.4.3) – through the strategy and reach values obtained
through CFR (EV Computation).

Then we update the ED entry for the child information set reached taking
action a from information set h with the couple xv̄, ny, where v̄ is the average
EV and n is the number of times the child information set was included in
the abstract game tree throughout ReTrE iterations1 (see Section 4.3.2)
(Exploration Dictionary).

Training
Once CFR is over and the ED is updated, we train the EN using the ED
(see Section 4.3.3) (Exploration Network).

1Note that ReTrE iterations do not correspond to CFR iterations.
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Traces Exploration
The ED and the EN are then used in the traces exploration phase, as de-
scribed in Section 4.4.4. In a nutshell, the new set of traces is obtained by
choosing those traces maximizing an upper confidence bound of the EV. This
is done through the use of the ED and eventually the EN for information
sets not fitting into memory.

Repeating Until Exhaustion
The new traces are then used to generate a new abstract game tree focused on
the parts of the original game tree that are more exploitable by the opponent
compared to the previous ones and the process described so far is repeated
until computational resources are available.

Finally
At the final algorithm iteration, we train the PN with the collected samples
throughout the process to obtain the ultimate PN defining an artificial agent
able to play an ε-approximate Nash Equilibrium strategy (Policy Network).
Strategy evaluation can finally be performed to evaluate the performance of
the algorithm (Exploitability Evaluation).

4.3 Components

The main components of ReTrE are: the Policy Network, the Exploration
Dictionary, and the Exploration Network. In this Section we present them
in more detail.

4.3.1 Policy Network

The ultimate objective of game solving consists in finding a competitive
strategy for a game. Player i’s strategy is a function σi : Hi Ñ ∆|AHi

|, that
associates to each information set h P Hi belonging to player i, a probability
distribution over the available actions Ah at that information set h (Def. 2.7).
A strategy profile is a vector of strategies, one for each player of the game.
When a game is large, the optimal strategy, i.e. one of the game’s Nash
Equilibria is infeasible to compute. Therefore, a relaxation of it in which
every player has an incentive to deviate less than or equal to ε, namely a
ε-NE, is computed.

To approximate the average strategy of the original game, we resort to
the PN, introduced in DeepCFR [Brown et al., 2019], and whose archi-
tecture is shown in Figure 4.2. Given an information set h, the network
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PN : H Ñ ∆|AHi
| predicts the average strategy over the available actions

Ah. The learning problem we define consists in the supervised learning of
the probability distribution over the actions available at a certain informa-
tion set. Therefore, the network training samples are in the form xh, σ̄hy.
Information sets are represented by the private information of the player
they belong to, by the public information and by the history of the game.
The training samples are collected throughout CFR traversals of the abstract
tree, as shown in Section 4.4.2.
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Figure 4.2: Policy Network.

Since the learning problem consists in estimating a probability distribu-
tion, we minimize the Kullback-Leibler divergence, also known as relative
entropy : a measure of how one probability distribution is different from
another. For probability distributions P and Q of a continuous random
variable, the Kullback–Leibler divergence is defined as:

DKLpP ||Qq “

ż 8

´8

ppxq log
ppxq

qpxq
dx

Finally, this network represents the approximated average strategy: for
every information set of the game, the network outputs a probability distri-
bution over the available actions. Embedded in an artificial agent, this is the
only component needed to play the game at an approximate equilibrium.
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4.3.2 Exploration Dictionary

The ED is a data structure holding information for each information set,
until memory allows. Each player has their own ED.

The information stored in the ED is the couple
@

h, xv̄, ny
D

, where:

• h is an information set;

• v̄ is the average EV;

• n is the number of times that information set h was visited throughout
ReTrE iterations.

The EV v̄ is what guides the traces exploration phase together with n (see
Section 4.4.4). We use a measure of the counterfactual value of information
sets for the EV (see Eq. 4.1), however, other measures may be used, such as
the regret (see Def. 2.27) or the advantage (see Def. in [Brown et al., 2019]).

With reference to Section 4.1.3, it is important to note that this com-
ponent has limited size. Therefore we can only store a limited number of
information sets’ information. When the ED reaches its maximum capacity
we remove least recently visited information sets, namely the ones with lower
n, to make space for the newly observed ones, which, as T Ñ 8, are the
ones where the focus shall be.

The ED serves two main purposes. The first, and most important, is
that of being a source of information when querying the oracle or traversing
the original game tree during the traces exploration phase. The other is to
constitute the training set for the EN.

4.3.3 Exploration Network

Since the size of the ED is limited, a way to estimate the EV and the number
of times an information set was visited throughout ReTrE iterations is
needed to fetch new traces in the traces exploration phase. We resort to the
Exploration Network for each player to accomplish the task of estimating
the EV.

The EN is a neural network EN : H Ñ R that takes as input an in-
formation set h P H and outputs the estimated EV for it. In case the EV
is the regret, the goal for EN , given information set h and action a, is to
be approximately proportional to the regret rph, aq that tabular CFR would
have produced.

Since the learning problem consists in estimating a real positive number,
we train the EN by minimizing the Mean Squared Error MSE. This measure
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is defined as:
MSE “

1

|D|

ÿ

iPD

pvi ´ v̂iq
2

where D is the training dataset, vi is the true EV, and v̂i is the predicted
EV.
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Figure 4.3: Exploration Network.

Estimating n
Throughout the iterations of ReTrE, information sets are considered for
the abstract game tree generation in the traces exploration phase and some
are eventually discarded, as others happen to be more promising and the size
of the ED is limited. Until the maximum capacity of the ED is respected,
there is no need to estimate n for information sets that are not in the ED.

However, when the maximum capacity is reached, some information sets
need to be discarded together with their information. While the EV can be
estimated through the EN, we use the following methodology for n.

First, if n needs to be estimated, it means that the information set was
either never considered in the past or it was previously discarded. Then, n
cannot be greater than the minimum one stored in the ED, namely n ď n̂ “

minh1PED nh1 , otherwise it would be in the ED. Therefore, n assumes values
in r0, n̂s. The estimated n must be n̂, otherwise the fact that this estimation
assumes values in r0, n̂s could be not valid for future cases.

Therefore, a sound estimation of n is n̂ “ minh1PED nh1 .
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4.4 The Algorithms

In this Section we present the main algorithms involved in Regret-based
Traces-Exploration Counterfactual Regret Minimization.

4.4.1 ReTrE

The core algorithm is ReTrE itself (Algorithm 2). It calls GetTrace-
sUCB (Algorithm 6), CFR with PN data collection (Algorithm 3) and
ComputeEV (Algorithm 4).

First introduced in Section 4.2 through an overview, ReTrE is the core
algorithm of the framework we present. It takes as parameters: the Explo-
ration Parameter (EP), that is an integer k, defining the maximum number
of children to explore for each state; the players of the game; the number of
iterations of itself and of CFR, which is run for a total of |N | ¨T ¨RT times.
At each iteration, ReTrE fetches new traces focusing the search on those
parts of the original game tree that maximize the chosen EV.

Once the EV is computed or estimated through the EN, the ED is up-
dated (in ComputeEV). The EN is trained at each ReTrE iteration, and
the PN is trained only at the end, as there is no need to train it beforehand
as the search becomes more focused on the interesting parts of the tree as
rtÑ RT . Note that πσ at Line 8 is obtained through CFR.

The output of ReTrE is the PN for both players, which is indeed the
only component needed to play.

Algorithm 2 ReTrE
Input the EP k, players N , CFR iterations T , ReTrE iterations RT
Output Policy Network PN

1: function ReTrE(k, N , T , RT ):
2: Initialize PN,ED,EN for each player i P N
3: for ReTrE iteration rt “ 1 to RT do
4: tracesÐ GetTracesUCBpED,EN, rt, kq
5: for CFR iteration t “ 1 to T do
6: for all i P N do
7: CFRpr s, i, t, rt, 1, 1, 1q Ź CFR & PN data collection

8: ComputeEVprt, πσ, ED,ENq
9: Train EN through ED
10: Train PN
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4.4.2 PN Data Collection

ReTrE is based on CFR (see Section 3.3.1). In order to collect data to
update the ED and train the PN, we extend CFR with a data collection
phase. Line 7 of Algorithm 3 coincides with Line 20 of Algorithm 1.

In particular, we collect the player’s strategy, computed through regret
matching (Line 11, see Equation 3.1), and save it for later use to train the
PN (Line 12). Note that σ is a strategy on all legal actions: σph, aq is set to
0 for the non-observed actions and for illegal ones.

Algorithm 3 ReTrE - CFR & PN Data Collection
Input the history history, the traverser player i, CFR iteration t, Re-

TrE iteration rt, players reach probabilities πi, chance reach πc
Output counterfactual value vσi phq

1: function CFR(history, i, t, rt, π1, π2, πc):
2: hÐ get information set associated to history
3: if h is terminal then
4: ...
5: else
6: ...
7: if ρphq “ i then
8: for all a P Ah do
9: riph, aq Ð riph, aq ` πc ¨ π´i ¨

`

vσi pθph, aqq ´ v
σ
i phq

˘

10: siph, aq Ð siph, aq ` πi ¨ σ
tph, aq

11: σt`1phq Ð regret-matching values using Eq. 3.1 and ri
12: Store xh, σ̄t`1phqy Ź store average policy for the PN
13: Store xt, vσi phq, π´iy Ź store value and external reach

14: return vσi phq

4.4.3 EV Computation

Once CFR is over, we calculate the average weighted value of information
sets (Line 6 of Algorithm 4), that is, the information set value weighted over
its linear reach through time.

The EV that we use is the following:

v̂iph, aq “

řT
t“1

´

t ¨ πσ,t´i phq ¨
`

vσ,ti pθph, aqq ´ v
σ,t
i phq

˘

¯

řT
t“1

`

t ¨ πσ,t´i phq
˘

(4.1)

where T is the number of CFR iterations. This measure is very similar to the
regret, and it only considers the opponents’ strategy. This is fundamental, as



44 Chapter 4. ReTrE Counterfactual Regret Minimization

humbleness is for learning. In fact, if the player willing to learn an optimal
strategy by using ReTrE used an EV in the traces exploration phase that
is biased on their own strategy, then they would not be completely able to
explore new possibilities in the original game, possibly lowering exploitability.

Intuitively, this happens in life too: if one wishes to explore new, possibly
better, especially wider, perspectives, the starting point is growing apart
from self-belief.

Algorithm 4 ReTrE - EV Computation and Collection
Input ReTrE iteration rt, information sets reaches πσ, Exploration

Dictionary ED, Exploration Network EN
1: function ComputeEV(rt, πσ, ED, EN):
2: for all information sets h P H do
3: iÐ ρphq

4: for all a P Ah do
5: h1 Ð θph, aq

6: v̂i Ð compute EV using Eq. 4.1
7: if rt “ 1 then
8: v̄ Ð v̂i
9: nÐ 1

10: else
11: if h1 P EDi then
12: v̄, nÐ get xv̄, ny of h1 from EDi

13: else
14: v̄ Ð predict v̄ph1q through ENi

15: nÐ estimate n Ź see Section 4.3.3
16: v̄ Ð v̄¨n`v̂i

n`1 Ź compute the average EV
17: nÐ n` 1

18: Store
@

h1, xv̄, ny
D

Ź store information in EDi

4.4.4 Traces Exploration

Differently from DeepCFR, the traces exploration phase leverages an Up-
per Confidence Bound (UCB) like approach to guarantee exploration and
exploitation. GetTracesUCB (Algorithm 6) gathers the traces calling
TraverseUCB (Algorithm 5), which guides the search phase. The latter
is a recursive algorithm which starts from a state s and explores the original
game. In our implementation the original game is explored, however, simi-
larly, an oracle or a set of data could be queried with the relative parameters
to perform exploration.
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The algorithm first builds a set of tuples xaction, statey, making up the
parts of the original game tree to explore. Then, it explores them.

For state s:

• If s is terminal, then the trace can be inserted in the set of traces (Lines
3-5).

• If s is chance2, then we consider all of its outcomes as extensions to
the current trace. RA stands for Random Action (Lines 6-8).

• Otherwise, we retrieve the EV and the number of times the information
set associated to s was visited throughout ReTrE.

– If the information set is in the ED, then we get its information
directly from it (Lines 15-16).

– Otherwise, we estimate the EV through the EN, and estimate n
through the methodology presented in Section 4.3.3 (Lines 18-19).

Then, we compute the UCB value associated with EV and n (Lines 20-
21). The UCB we use in our implementation is that of UCB1 [Auer et al.,
2002a]:

ucb “ v̄ `

c

2 logptq

n
(4.2)

We resort to a UCB-like method to guarantee exploration and exploita-
tion. In fact, the value provided by any UCB takes into account the confi-
dence one has on a measure by leveraging the number of times the measure
was taken. In our case this corresponds to n. Intuitively, if at an information
set an action has not been explored much compared to the other available
ones, it is reasonable to give it more chances to be explored compared to
the others, unless the others are far more valuable. This is why n appears
at the denominator in Eq. 4.2. Note that time guarantees exploration too
by contributing positively to the UCB as the algorithm progresses in the
iterations. The dependency on time, however, is not linear as that of n, but
logarithmic, consequently more importance is given to n.

Finally, we sort the state’s children on ucb descending (Line 22). We
continue the trace generation traversing only on the first k children, k being
the EP defining how determining the size of the abstract game tree (Lines
23-28). When k “ |Ah|, the whole game tree is explored.

2Chance state: a state with random outcomes, that is, the nature player is playing.
This is the case for events driven by chance, such as casting dice.
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Algorithm 5 ReTrE - Traces Exploration
Input state s, traces traces, current trace trace, Exploration Dictionary

ED, Exploration Network EN , ReTrE iteration rt, the EP k

1: function TraverseUCB(s, traces, trace, ED, EN , rt, k):
2: actions_statesÐ empty list
3: if s is terminal then
4: traces.insertptraceq
5: return
6: else if s is chance then
7: for all s1 P θps,RAq do
8: actions_states.insert

`

xRA, s1y
˘

9: else
10: childrenÐ empty list
11: for all a P As do Ź As are the legal actions at s
12: s1 Ð θps, aq

13: h1 Ð information set corresponding to s1

14: iÐ ρpsq

15: if h1 P EDi then
16: v̄, nÐ get xv̄, ny of h1 from EDi

17: else
18: v̄ Ð predict v̄ph1q through ENi

19: nÐ estimate n Ź see Section 4.3.3
20: ucbs1 Ð v̄ `

b

2 logprtq
n

21: children.insert
`

xa, s1, ucbs1y
˘

22: Sort children on ucb descending
23: k Ð minpk, |children|q

24: actions_statesÐ childrenr: ks Ź get first k xa, sy tuples

25: for all a, ŝ P actions_states do
26: trace.add

`

xa, ŝy
˘

27: TraverseUCBpŝ, traces, trace, ED,EN, rt, kq
28: trace.remove

`

xa, ŝy
˘
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Algorithm 6 ReTrE - Traces Gathering
Input Exploration Dictionary ED, Exploration Network EN , ReTrE

iteration rt, the EP k

Output explored traces traces
1: function GetTracesUCB(ED, EN , rt, k):
2: tracesÐ empty list
3: s0 Ð get initial state
4: traceÐ empty list
5: trace.addps0q

6: for all s1 P θps0, RAq do
7: trace.add

`

xRA, s1y
˘

8: TraverseUCBps1, traces, trace, ED,EN, rt, kq
9: trace.remove

`

xRA, s1y
˘

10: return traces

4.5 Extensions

In the previous Sections we presented the details of ReTrE and of its com-
ponents. In this Section we present and discuss some possible extensions to
the framework.

Regret Minimization
The current implementation of ReTrE leverages CFR, which is the sim-
plest yet powerful form among regret minimization algorithms. There are,
however, many other implementations of regret minimization algorithms, the
main of which we presented in Section 3.3. Switching from the implemented
form of CFR to a different regret minimization algorithm is possible and
would most likely benefit the performances of ReTrE, increasing however
its complexity. It would be interesting to experiment both LCFR and MC-
CFR, especially the latter, which is shown to have good performances on
large games.

Information Encoding and Embedding
As ReTrE deals with neural networks, information representation is funda-
mental. There are two neural networks involved in ReTrE: the Exploration
Network and the Policy Network. Both networks take as input an informa-
tion set, which needs to be encoded. The details of the encoding we use
are presented in Section 5.1, however there are several possibilities when it
comes to encoding this kind of information.
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An information set is uniquely identified by the sequence of actions and
events happened before it was reached, namely its history. This is how we
encode information sets in our implementation. However, this methodology
may not capture many aspects of an information set. For instance, with
reference to Leduc Poker (see Section 5.1), consider the case in which a
player has a pair and the case in which they do not, all the other actions
and information being the same. Then, the associated information sets will
be very similar except for the player’s private information, while having two
completely different values.

With reference to the concept of potential [Gilpin et al., 2007], it would
be very interesting to exploit the advances in information embedding3 to
represent information sets. In fact, in a strategic situation small details can
make a large difference. This is easily noticeable in recreational games, and
it has great significance in other real-world situations too, such as governance
and negotiation. Not all information in the history of information sets may be
of the same importance. Therefore, learning an embedding for information
sets would be very useful to capture their real essence and potential, beside
reducing network complexity.

Model-Free Learning
With reference to Section 4.1.1, we consider the case of online learning, which
is nowadays what artificial learning, in particular Reinforcement Learning
(RL), is focusing on.

The presented implementation of ReTrE is not properly model-free. In
a model-free approach there is no prior knowledge of the game model in
any form: the information on the game is acquired as the agent explores
the environment playing the game. RL can be intended as a child learning
from experience. Just like a child does, an agent leveraging ReTrE in a
completely model-free way would play the game assuming that any action
it can perform is legal, including those that do not have anything to do
with the game itself. However, in practice this is infeasible, and a minimum
knowledge on the available actions of the game would be required, otherwise
it would be quite impractical for the agent to learn how to play the game
in a reasonable time4. Note that in its current implementation, the PN
estimates a strategy for a given information set and that illegal actions have

3Information embedding captures some of the semantics of the input by placing se-
mantically similar inputs close together in the embedding space, resulting in a lower-
dimensional space compared to the starting one.

4Learning how to learn is studied in the field of Meta-Learning [Hospedales et al.,
2020].
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probability close to 0. This is thanks to the PN data collection phase (see
Section 4.4.2), in which the probability to play an illegal action is set to 0.

Upper Confidence Bounds and Bayesian Approach
When exploring the original game, the EV guides the gathering of new traces
to focus on more valuable parts of the game. We use an upper confidence
bound on the EV in order to guarantee exploration and exploitation at the
same time. In its current implementation, ReTrE leverages UCB1, which
is one of the most used UCBs in practice. There is, however, the possibility
of using other measures of UCB.

For instance, EXP3 [Auer et al., 2002b] can be used. This algorithm is
based on importance-weighted sampling in order to balance the exploration
vs exploitation trade-off. A weight is kept for each arm (in our case the
actions) in order to decide which one to pull next. To perform exploration,
a hyperparameter γ is used, tuning the extent to which the arms are pulled
uniformly at random.

Another possibility is to use Bayesian methodologies for the learning
purpose, exploiting prior knowledge on the EV of information sets. A well
known Bayesian algorithm is Thompson Sampling (TS) [Agrawal and Goyal,
2012], however, we will not inquire this case any further.

Monte Carlo Exploration
The traces exploration phase is performed in a Multi-Armed Bandit fashion
[Auer et al., 2002a]. However, this is certainly not the only possible approach.
There are several exploration approaches studied in the field of AI. One of the
most promising ones is Monte Carlo exploration [Russell and Norvig, 2009].
This method relies on random sampling to obtain a result, in the form of
payoffs for games. Traces can be explored using this approach, resulting in a
less deterministic exploration, which could be integrated with some guidance
provided by the EV.
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Chapter 5

Experimental Evaluation

5.1 Experimental Setup

We run experiments on classical Leduc Poker, measuring ReTrE’s perfor-
mance through strategy exploitability evaluation using NashConv (see Def.
2.24) and running head-to-head simulations.

Leduc Poker
First introduced by Southey et al. [2012], Leduc Poker is a common bench-
mark in Poker AI. It consists of a six-card deck: three values {Jack, Queen,
King} and two suits {♣,♠}. Each player pays a blind of 1 chip to play and
receives a private card. There are two rounds of betting, with a maximum of
two raises each, whose values are 2 and 4 chips respectively. After the first
round of betting, a single public card is revealed. The possible actions at
each state are {Fold, Call, Raise}, with Raise being the only one not always
legal. If a player folds, then the other player wins. Otherwise, the showdown
phase is reached and the players reveal their cards, which are considered
together with the public card for score computation. If a player has a pair,
then they win. Otherwise, high card is considered (King ą Queen ą Jack).
When players have the same card of a different suit the pot is split.

Information Encoding Details
In its current implementation, the information ReTrE encodes is that of in-
formation sets, to be fed to the neural networks, namely the PN and the EN.
We encode an information set uniquely by considering the available informa-
tion to a player at that information set, including their private information
(their private card), the public information (the public card, if any) and the
history of actions taken by all players until then. For instance, this is how a
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Leduc information set is encoded:

xJack♣,King♠, CALL,RAISE,CALL,None,CALL,None,None,Noney

where Jack♣ is the player’s private card; King♠ is the public card; None
is needed for encoding standardization with other information sets, as the
maximum length of the history of a Leduc Poker information set is 8.

5.2 Results

We hereby present the results of the several experiments we conducted to
evaluate the performance of ReTrE in different scenarios.

ReTrE is a highly configurable framework, scalable to the requirements
imposed by computational resources. In fact, there are several parameters
that can be adjusted: the Exploration Dictionary size, the Exploration Value,
the upper confidence bound, and the Exploration Parameter k.
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Figure 5.1: Exploitability Evaluation for CFR-500 and ReTrE’s best con-
figuration.

Figure 5.1 compares the performance of CFR with the best version of
ReTrE achieved in Leduc Poker in terms of exploitability (see Def. 2.24),
specifically with k “ 2, EV from Equation 4.1, UCB1, and ED size = 8.
Whilst the performance of baseline CFR-500, namely CFR run for 500 it-
erations, does not depend on the number of ReTrE iterations, ReTrE’s
performance does. In particular, just after less than 10 iterations ReTrE
shows good performance compared to CFR-500, and, after an exploration
phase happening later on in the iterations, it shows lower exploitability than
CFR-500, resulting in being closer to a NE. This result is due to the oppor-
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tunity that ReTrE has to focus on the most exploitable parts of the tree,
discarding the less interesting ones, mastering its strategy accordingly.

Upper Confidence Bound
We compare two different UCBs with not having a bound at all on the EV
for the Traces Exploration phase. Figure 5.2 shows the results obtained. In
particular, we consider UCB1 as in Equation 4.2, UCBt =

b

2 logprtq
n¨prt´1q and

no UCB. The figure shows that the best performance is achieved by UCB1.
UCBt’s performance is close to that of UCB1, as expected, considering their
similarity. However, convergence is more stable for UCB1. Not having an
UCB results in mediocre performance, as the algorithm is not able to aban-
don its belief to explore unexplored paths reducing exploitability.
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Figure 5.2: Exploitability Evaluation for different UCBs.

Exploration Dictionary Size
ReTrE is a framework thought and designed for large games. Therefore,
considering the computational resources available to us, we simulate its be-
havior in large games by limiting the ED size. We first consider infinite
capacity, which would allow full tree traversal, and consequently the use of
tabular CFR algorithms. Then, we limit the ED size to 10% and to 1% of
all the information sets. Figure 5.3 shows the performance of limited ED
size ReTrE. Low capacity does not influence the exploitability of ReTrE
overall, whereas very low capacity does not show desirable performance.

This result, however, is to be analyzed further as it does not properly
simulate the behavior ReTrE would have in a large game. In fact, when an
information set is not present in the ED, ReTrE leverages the Exploration
Network to estimate its EV. The EN is a neural network which is trained in a
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deep learning fashion: information sets are provided as is and their relevant
features are extracted automatically when training. Machine learning and
deep learning, especially, need many training samples to have solid perfor-
mances. This is why it is impossible to simulate the behavior ReTrE would
have in a large game using a small game and shrinking it further.
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Figure 5.3: Exploitability Evaluation for different ED sizes.

Exploration Value
We compare different possibilities for the EV. In particular, we show per-
formance for ReTrE with the EV of Equation 4.1, ReTrE-v with the
information set value of Definition 2.10, and ReTrE-r where the EV is the
cumulative regret of Definition 2.28. Figure 5.4 shows the EV of Equation
4.1 outperforms the other two.
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Figure 5.4: Exploitability Evaluation for different EVs.
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Head-to-head Simulations
Finally, we run AI vs AI simulations to evaluate actual performance during
play. First, we let CFR-500, ReTrE and ReTrE-jr – limited ED – play
against CFR-500. Figure 5.5 left shows the value for the first player playing
against CFR-500. Despite ReTrE achieving lower exploitability than CFR-
500, it still loses against it. This is due to CFR-500 being able to exploit
ReTrE’s vulnerabilities and not viceversa. However, ReTrE is closer to a
NE.

We then show the values achieved by the first player when playing against
itself in Figure 5.5 right. More detailed results are provided in Table 5.1.

0 2,000 4,000 6,000 8,000 10,000
−0.4

−0.2

0

0.2

Hands

V
al
u
e

CFR vs CFR
ReTrE vs CFR

ReTrE-jr vs CFR

0 2,000 4,000 6,000 8,000 10,000
−0.4

−0.2

0

0.2

Hands

V
al
u
e

CFR vs CFR
ReTrE vs ReTrE

ReTrE-jr vs ReTrE-jr

Figure 5.5: Left: AI vs CFR-500 value for AI. Right: AI vs AI value for
first player.

CFR-500 ReTrE ReTrE-jr

CFR-500 ´0.085 0.136 0.252

ReTrE ´0.101 ´0.113 0.173

ReTrE-jr ´0.294 ´0.213 ´0.174

Table 5.1: AI vs AI results. Row is player 1, Column is player 2. Value is
shown for player 1.

Conclusions
Overall, ReTrE achieves comparable performance with CFR in terms of
exploitability when dealing with games small enough to be analyzed by both.
We compare different configurations to find the most promising one. We
conclude that the practical use of the proposed framework in large games
is possible and performance is likely to be in line with what CFR could
theoretically achieve, allowing to find competitive suboptimal strategies.
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Chapter 6

Artificial Emotional
Intelligence

6.1 Overview

Understanding, measuring, enhancing, and replicating intelligence, that is,
the computational part of the ability to achieve goals in the world [McCarthy,
2004], has always been of great scientific interest. Artificial Intelligence (AI),
coined by John McCarthy in 1955, is the science and engineering of mak-
ing intelligent machines especially, in the form of computer programs, with
the ultimate objective of allowing for the resolution of problems and the
achievement of goals in the world as well as humans.

This digression aims to address, both from a philosophical and technical
perspective, the possibility of integrating irrationality, in the sense of self-
contradiction (see Def. 6.2), in moral rational agents, as defined in [Floridi
and Sanders, 2004], without making them irrational.

When dealing with problem solving in any kind of situation, namely tak-
ing an action after reasoning, machines, as well as humans, find themselves
in a specific strategic setting, referred to as game. A game is a process con-
sisting in: a set of agents1, a set of states, including an initial situation and
all the possible outcomes, a set of rules that agents must follow, the prefer-
ences of all the agents over the states, and a transition mechanism allowing
the state of the game to change when an agent has taken an action [Maschler
et al., 2013].

The reasoning process agents carry out to decide which action to take
is based on their preference over the outcomes of the situation they are

1Agents: entities qualifying as the source of action, able to observe the surrounding
environment through sensors and capable of reasoning.
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in. An agent is defined to be rational when it always takes the action has
the highest expected outcome [Russell and Norvig, 2009]. The preferences
of an agent depend on the specific virtues and goals that characterize it.
Since in ordinary usage the words moral and morality have no precise and
consistent use [Wallace and Walker, 2020], we define an agent as moral when
its behavior can be judged as right or wrong from an ethical perspective. For
instance, both a human and a natural phenomenon such as a hurricane are
agents, however only the former is considered as a moral agent.

Nowadays, AI is mostly focused on solving domain-specific problems, for
instance, fraud detection, predictive maintenance, and recreational games.
The complexity of these systems is already quite considerable and it does
not allow for straightforward progress in building machines able to perform
multiple uncorrelated tasks with significant performance. However, the def-
inition of intelligence is domain-agnostic, referring to the concept of general
intelligence: the ability to achieve complex goals in complex environments,
adapting with insufficient knowledge and resources [Goertzel and Pennachin,
2007].

In 1905, with the aim of answering the question “Can machines think?”,
Turing [1950] proposed the “Imitation Game”, where intelligence would be
achieved by a computer program able to simulate human behavior in a text-
based conversational interchange. However, through the years the goal of
AI has shifted from developing an agent that simulates the behavior of a
human to “creating a nonhuman digital intelligent system, complementing
human intelligence by carrying out data analysis and management tasks far
beyond the capability of the human mind, cooperating with humans in a way
that brings out the best aspects of both the human and the digital flavors of
general intelligence” [Goertzel and Pennachin, 2007].

If we want to include any kind of situation in the scope of an agent, es-
pecially those depending on the internal essence of the agent itself, we shall
consider also feelings and discretion, shifting from narrow to general AI,
focusing on Artificial Emotional Intelligence, which measures, understands,
simulates and reacts to human emotions [Somers, Meredith, 2019], first an-
alyzed by Picard [2000].

These are only two of the elements irrationality, not intended as the
mere contrary of rationality, builds upon. Throughout this paper, the mean-
ing of acting irrationally is the one proposed by Gardner [1993], where he
states that “an irrational subject is [...] one who will be unable to provide
an explanation-cum-justification of himself”, relatively to its reasoning and
consequent behavior. Acting irrationally can therefore be intended as acting
through inadequate use of reason, or when in emotional distress or cognitive
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deficiency, following one’s emotions rather than just resorting to straightfor-
ward logical reasoning.

In Section 6.2 we introduce the concept of moral rational agents, ex-
panding on the definition provided by Floridi and Sanders [2004]. Section
6.3 explores the concept of irrationality, identifying the meaning we will refer
to. In Section 6.4 we propose a framework to integrate logic and emotions
in a generalized way into agents’ preference. Finally, Section 6.5 explains
how a moral rational agent integrating irrationality is still rational, w.r.t.
the proposed framework. In Section 6.6 we discuss why it is important that
agents are rational, meaning they always choose the best action, and well-
designed, leaving little room for stochastic behavior. Finally, in Section 6.7
we imagine and discuss what would happen if all agents were able to soundly
compute Nash Equilibria.

6.2 Moral Rational Agents

In any situation we can identify the entities it comprises. Some entities are
agents, as they qualify as source of action; some are patients, being receivers
of actions; some are both; and some others are neither. We will refer to
entities that are both agents and patients simply as agents. The environment
is the setting in which agents exist. It consists of all the entities, of its current
state, and of rules. Rules define both the actions available to agents at a
specific state of the environment, and the environment transition mechanism
from a state to another for every possible action. For each state, each agent
has its own preference over the actions performed by either itself or by other
agents. Since an action causes a change of state in the environment and
being states identified also by the history of previous states and actions, we
may generalize stating that agents have preferences over the environment’s
state. Their measure of preference is known as utility.

Generally, before reasoning and consequently taking an action, an agent
observes the environment obtaining all possible information about it. When
an agent can observe every aspect defining the state of the environment,
then the game, namely the situation, is defined as perfect-information game.
However, most real-world scenarios are not such, meaning agents cannot
observe all information. These scenarios are called imperfect-information
games. After the agent has obtained all the possible information about
the environment – which is not always the case 2 – then it will reason by

2In case agents are short on time to reason, then they experience limited rationality
[Russell and Norvig, 2009].
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computing the expected utility for each possible action it can take. An
agent’s utility depends on the agent itself, in particular on its preferences
(see Section 6.5).

The choices an agent makes define its behavior. Morality is concerned
with the principles allowing for the distinction between right and wrong
behavior. It has been widely and deeply studied by ethics, which can be
distinguished in three main branches [Bauer, 2020]:

• Metaethics, answering the question “How do moral values originate? ”;

• Normative ethics, investigating on what makes an action right or wrong
and on the importance of consequences and intentions of actions;

• Applied ethics, focusing on determining whether or not specific actions
in specific situations are morally justifiable.

In a multi-agent setting, as agents interact with one another, one’s actions
not only have effect on the agent that is the source of the action, but also
on the other ones. To extend the scope of an agent, with the ultimate
objective of reaching general intelligence, the concept of morality must be
included in agents. To embed morality in an agent, namely allowing it to
consciously perform (im)moral actions, we consider moral agents, embracing
the definition of Floridi and Sanders [2004]:

Definition 6.1. Moral Agent [Floridi and Sanders, 2004]
A moral agent is an agent satisfying the following three criteria:

• Interactivity – the agent and its environment (can) act upon each other.

• Autonomy – the agent is able to change state without direct response
to interaction, performing internal transitions to change its state.

• Adaptability – the agent’s interactions (can) change the transition
rules by which it changes state.

The first property allows agents to engage in a situation in which the
actions of an agent influence the others. By being autonomous, an agent
becomes independent from the environment it is in and it can focus on itself,
diving into, possibly deep, domain-agnostic reasoning. Adaptability is the
property of greatest interest for the scope of this work and it is based on the
idea that agents have an internal state.

Each agent must in fact be different, especially if we wish to embed
morality into it. If this were not the case, then all agents would make the
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same choices, as they would be guided by the same logical and ethical rules.
Universal morality, based on Kantian deontology, would emphasize following
strict duties, represented by maxims [Kant, 1785]. The categorical impera-
tive would require having all agents morally evaluating a specific action in
the same way, or at least quite similarly. However, this cannot be the case,
as in practice there is no such thing as universally followed rules without
contradiction. Moreover, this approach would limit discretion and feelings,
leaving no room to autonomy and adaptability. Finally, if a rational agent
were to follow maxims, then it might not be rational anymore. In fact, if
an agent were to limit the available actions to those that respect universal
maxims, then it might exclude the one action with the highest utility, as
its preferences may clash with the maxims. Therefore, considering moral
generalism, in which what is right is determined by applying ethical rules to
situations, and moral particularism, where what is right depends instead on
the specific situation [Dancy et al., 2004], we will adopt the latter.

Thus, each agent is defined by its internal state. This state collects the
agent’s characteristics in terms of morality, feelings, and logic. Moreover, it
comprises the function used to compute the (expected) utility for a given
state of the environment. This function depends on the agent’s preferences,
whose conception and values may change over time, as a moral rational agent
is autonomous and adaptable (see Section 6.4).

6.3 Irrationality

“Irrationality comprises a variety of psychological phenomena intermediate
between error and madness” is the beginning of the inquiry of Gardner [1993]
on irrationality. He suggests that one way of defining “irrational” would be
to take it as the contrary of “rational”. If we consider “rational” as in the
sense of always taking the action with the highest expected utility, then
defining “irrational” would be straightforward: an agent is irrational when
it takes sub-optimal actions. However, we shall not limit to irrationality in
this sense. If we integrated this definition of irrationality in moral rational
agents, besides making them irrational, we would not be really representing
intelligence as it is in practice, as it makes no sense for an agent to choose
an action it considers as sub-optimal. Moreover, we would not be leveraging
the properties of moral agents presented in Section 6.2, as we could discard
morality and internal states and simply have agents choose actions randomly,
resulting in sub-optimality.

We shall dig further into what makes behavior irrational. Gardner [1993]
states “the seeds of irrationality lie in a discrepancy between action and self-
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explanation, the recognition of which is bound up with the possibility of in-
terrogation”. According to him, once an agent has performed an action we
may question it about its decision, making it reason once more. If there is
inconsistency between the agent’s answer and the action that was actually
taken, then the agent “is on the verge, at least, of being irrational ”. He goes
on stating that “a person exhibits irrationality when he does not think about
himself in a way that would make both adequate sense of his own thought
and/or action, and at the same time avoid exhibiting incompleteness, inco-
herence, inconsistency, lapse into unintelligibility, or some other defect of a
kind to signify, in a suitably broad sense, self-contradiction”. This definition
is closely related to the internal state transitions agents go through and also
to the properties defining moral agents, especially that of autonomy.

Other definitions of irrationality can also be related to the internal state
of agents. According to [Argenteri, 2006] and [Wikipedia contributors, 2019],
irrationality manifests when an action is chosen through emotional distress
or cognitive deficiency, or when an agent is dominated by passions.

Therefore, we consider the following generalized definition of irrationality,
integrating the afore-reported definitions, for our inquiry:

Definition 6.2. Irrationality
Irrationality (An irrational action) is acting (an action performed) in a state
of emotional instability or cognitive deficiency, resulting in self-contradiction.

The following are two examples of irrational behavior as we intend it
throughout this paper, w.r.t. the aforementioned definition. It is irrational
to get angry at a smartphone that is not working and smashing it on the
ground. It is also irrational to cry when watching a sad movie. In both the
first and the second example, the agent is in a state of emotional distress:
in the first it may be angry, and in the second it is probably sad. The
agent chooses the two actions as a rational, in the sense of best, response
to its internal state (see Section 6.4). However, when the agent goes back
to a stable state, it would reason and admit that it would not perform the
same action, giving more importance to logical reasoning. Namely, the agent
would be aware of the fact that throwing a phone on the ground will not fix
it, and that a movie may have a sad twist, but that it is just fiction and that
it does not make much sense to cry. Nonetheless, the agent did perform an
irrational action, but it did so rationally, choosing what it believed was the
best action to take.
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6.4 Preference and Utility

Moral rational agents are characterized by an internal state, which distin-
guishes them one from another. This state changes over time, as well as the
way it changes does. The internal state of an agent includes its preferences
P over the possible states of the environment, which are observable through
sensors.

To measure preference, classical game-theoretical approaches have intro-
duced the concept of utility. Traditionally, in most simple scenarios, utility
upsq is a function of the state s of the environment only. However, in gen-
eral, agents may calculate utility in different ways, depending on how they
are designed, reason and evolve. This is why we need to generalize utility
calculation to allow for more complex scenarios.

6.4.1 Sub-utility Functions

We consider utility as the weighted sum of several sub-utilities, computed
through sub-utility functions ūpps, tq, each relative to a specific preference
p P P of the agent over a specific state s of the environment at time t. Ex-
amples of preferences and relative sub-utilities are money, happiness, anger,
satisfaction, and specific objects that are of one’s possession, each consid-
ered over a state of the environment, namely a situation. It is important
to note that, even in its classical definition, utility does not have a specific
unit of measure. Indeed, one shall consider a way to generalize the measure
of sub-utilities through dimensionless quantities. This is to say that prefer-
ences shall be pair-wise universally comparable (e.g., comparing happiness
and money should be possible). Note that the comparison is the same univer-
sally, whereas the value given to each preference depends on the single agent
(e.g., an agent may value happiness more than money). Here, we assume
that comparing preferences is possible for all agents.

6.4.2 Internal Preference Coefficients

We introduce internal preference coefficients kpptq to represent how valuable
each preference p P P is to an agent at time t. The values of these coefficients
vary agent by agent and depend both on the agent’s nature, namely its initial
design, and on its nurture, i.e. its experiences and evolution, considering the
properties of moral rational agents introduced in Section 6.2. It is crucial to
note that these coefficients define the internal state of the agent and do not
depend on the specific state s of the environment. These coefficients define
the agent’s emotional state – its mood – allowing it to prefer preferences.
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We distinguish preferences in two mutually exclusive categories: logical
and emotional.

6.4.3 Logical Preference

We define a preference p P Pl Ă P as logical if it is based on unique logical
reasoning, meaning that its corresponding sub-utility is computed in the
same way by all agents meeting certain intellectual and volitional conditions
for a specific state of the environment, at a specific time. This is to say
that only agents in a compromised intellectual state – cognitive deficiency –
would reason differently when calculating the associated utility.

Without loss of generality, we present a simple example of logical prefer-
ence. With reference to a simple game3, an example of a logical preference
would be that over the outcome of the game. This preference is logical since
the related sub-utility is uniquely computable by all intellectually stable
agents applying the universally known and unique rules of the game. Any
moral rational agent characterized only by this logical preference would want
to win the game.

Generalizing, all moral rational non-intellectually-compromised agents
able to experience only a logical preference will make the same choice re-
gardless of their internal state. One may argue that if an agent gained
something else by losing the game – as it is in the case of corruption – it
would want to lose the game. However, if this were the case, we would have
to include also the logical preference over money. In fact, considering both
preferences, the agent would probably tend towards losing, depending on its
internal preference coefficients.

6.4.4 Emotional Preference

We define a preference p P Pe Ă P as emotional when its corresponding sub-
utility is not uniquely computable. Sub-utility function ūpps, tq of emotional
preference p varies agent by agent and changes over time as the agent exists,
interacts with the environment, and evolves transitioning from an internal
state to another, possibly modifying the way it does so. An example of
emotional preference is anger. Not all moral agents get angry in the same
way for a specific event. The level of anger an agent feels depends on the
agent itself, on its nature and on its nurture.

3Simple game: a game in which agents either win or lose, that is, winning corresponds
to u “ 1, losing to u “ ´1. Note that a cognitively deficient agent would calculate the
utility in a different way.
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Generalizing, emotional preference is a way to represent emotions in a
moral rational agent.

6.4.5 General Framework

According to the presented framework, each agent is characterized by:

• the universal set of preferences P “ Pl Y Pe;

• |P | functions ūpps, tq to calculate sub-utilities, varying over time;

• internal preference coefficients kpptq, varying over time.

What is different among agents is the way sub-utilities are calculated –
depending on initial design, experiences and evolution – and the way internal
preference coefficients vary, that is, internal state transitions – depending on
interactivity, autonomy, and adaptability. Note that one may argue that not
all agents may be able to experience the same preferences or that they may
only understand some preference as they grow up. Then, one could simply
set the sub-utility calculation to return 0, so that it will not contribute to
the overall utility calculation, and eventually change it as the agent evolves.

The proposed utility function for an environment state s at time t is:

ups, tq “
ÿ

pPP

kpptq ¨ ūpps, tq (6.1)

Finally, note that the environment state s can be either the current en-
vironment state or the state the environment transitions to when taking an
action a. The definition of ups1, a, tq is the same as Equation 6.1, where s
is the state the environment transitions to starting from state s1 and taking
action a.

6.5 Integrating Irrationality in Moral Rational
Agents

Let us recall the definition of irrationality: acting in a state of emotional in-
stability or cognitive deficiency, resulting in self-contradiction (Def. 6.2). We
may finally investigate why the presented framework allows us to integrate
irrationality in moral rational agents without making them irrational.

Cognitive deficiency is represented by a change in the sub-utility function
ūpps, tq of a preference p. Let us consider ti as a time of cognitive deficiency
or instability and ts as one of stability. Then ūpps, tiq ‰ ūpps, tsq. Note
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that the internal state coefficients do not necessarily change when an agent
is cognitively deficient. Cognitive deficiency may refer both to logical and
emotional preferences. An example for the former case is trivial: consid-
ering losing better than winning when playing a game. The latter is more
interesting. Consider self-harm, this practice is universally associated with
a very low utility, causing physical pain in humans and malfunctioning in
machines. However, it seems that people do it to express their distress, or
relieve unbearable tension, as it brings them relief [NHS UK, 2020]. If we
consider pain p and the state s reached after taking a self-harmful action,
then ūpps, tiq " ūpps, tsq.

The emotional state of an agent at time t is represented by the internal
state coefficients kpptq, p P Pe. A state of emotional instability happens when
there are some emotions strongly prevailing on others, especially negative
ones. Without loss of generality, let us call e P Pe the prevailing emotion,
and consider ts and ti as before. Then, we will have keptiq " keptsq. Note
that ūeps, tiq is not necessarily greater than ūeps, tsq.

In both cognitive deficiency and emotional instability the expected utility
u of the available actions at a certain state of the environment will be different
at times ts and ti, that is, ups1, a, tiq ‰ ups1, a, tsq. Therefore, if the agents we
consider are moral rational agents, then at times ti and ts they will choose
the action with the greatest utility. However, the two chosen actions may
not coincide, resulting in self-contradiction, and therefore, irrationality.

Note that the considered class of agents is still rational, as they always
choose the action with the highest expected utility, but they may experience
irrationality in the form of self-contradiction when emotionally unstable or
cognitively deficient. This definitively shows that we are able to integrate
irrationality in moral rational agents without making them irrational.

6.6 Why Should Artificial Agents Be Rational and
Well-designed?

We now focus our attention specifically to artificial moral rational agents –
as we cannot design humans, yet – and briefly discuss why it is important
for them to be rational and well-designed.

In its classical game-theoretical definition, rationality is choosing the ac-
tion with the highest (expected) utility among the available ones. It is very
important that this property holds for moral rational agents. If agents were
not rational, then they would choose sub-optimal actions, possibly resulting
in stochastic behavior.
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Stochastic behavior, especially in uncontrollable4 artificial agents, is very
undesirable. The properties of autonomy and adaptability of moral agents, as
defined in Section 6.2, are the ones that allow for independence and evolution,
which may lead towards unpredictable behavior, even for rational agents.

Independence, in the sense of inner thinking without stimuli from the en-
vironment, allows for spontaneous and unnoticeable transitions of the agent’s
internal state, as no particular event is needed to trigger a change. However,
one may argue that the agent would still be following the transition rules
embedded into it by the designer. This is true, unless the internal state
it transitions to is one allowing it to wiggle out of its design. Therefore,
autonomous agents’ behavior, internal state shifts and inner reasoning are
generally controllable.

Instead, evolution, in the sense of adaptability, is what can potentially
make agents unpredictable. In fact, if agents are allowed to change the
transitions rules of their internal state as they wish, they must be designed
in such a way that does not allow for unwanted changes. For instance, if
an agent is designed to seldom get angry, but as it evolves it tends to be
more prone to getting angry, then the consequences may be catastrophic,
especially if it can cause harm and if it is uncontrollable.

Therefore, it is very important for agents to be well-designed, allowing
little or no room to stochastic changes, embedding moral values, and to be
rational, so that the action they choose will always be the one respecting the
most the principles they are designed by.

6.7 Discussion

We investigated the possibility of integrating irrationality, in the sense of
self-contradiction due to a cognitive deficiency or emotional instability, in a
moral rational agent without making it irrational. We first recalled the defini-
tion of rational and moral agent, referring to classical definitions and to that
of Floridi and Sanders [2004]. Then, we explored the concept of irrational-
ity, deriving the aforementioned definition to use throughout our inquiry.
Moreover, we presented a way to allow for more complex and emotional
agents, introducing preferences, sub-utility functions, internal preference co-
efficients, and distinguishing between logical and emotional preferences. Fi-
nally, through the proposed framework we showed moral rational agents can
rationally act irrationally, and discussed the importance of them still being
rational and well-designed, leaving little room for stochastic behavior. As

4Uncontrollable agents: agents over which one cannot take control once deployed.
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we integrated irrationality in the standard representations of extensive-form
games, and being real-world situations large or infinite games, regret mini-
mization algorithms, such as ReTrE5, can be used to make the next general
emotional AIs.

In 1951, the American mathematician Nash [1951] introduced the con-
cept of mixed strategy Nash Equilibrium (NE). A NE is a joint combination
of strategies stable with respect to unilateral deviations, namely each agent
has no incentive to deviate from its strategy given the strategies of the oth-
ers, which behave rationally in the worst case. If we assume that agents’
preferences and available actions are universally observable, then being able
to compute NEs would allow agents to derive optimal strategies for every
situation. This is the case, for instance, of recreational games such as poker
[Brown and Sandholm, 2018]. Thus, one may wonder if living would still
make sense, as everything may be precomputed and therefore known.

Nonetheless, in practice many phenomena are both unpredictable,
stochastic and uncontrollable, such as natural events. Moreover, the as-
sumption of knowing agents’ preferences is very strong and not applicable
to reality. Anyway, we may introduce ε-optimality allowing agents to choose
one of the approximately optimal actions, controlling the permitted level
of sub-optimality. Controlled randomness, instead, may be implemented in
internal state transitions and in adaptability. Therefore, allowing for a bit
of randomness and sub-optimality in the choice of actions would let arti-
ficial agents be more human-like and the aforementioned phenomenon of
knowledge of the future would be contained, resulting in a more interesting
existence.

5The emotional framework belongs to general-sum games, so ReTrE should be ex-
tended to this case.
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Conclusions

In this work, we focused on the challenge of analyzing large and infinite games
so as to solve them by finding approximate mixed strategy Nash Equilibria.
It is infeasible to represent these games through a game tree and traverse
through them because of their complexity. This is why in practice abstrac-
tions are used to lower complexity, allowing to find suboptimal strategies
close enough to optimal ones. We hereby present our original contributions
and the future research that can be carried out to enhance the presented
framework.

7.1 Original Contributions

We introduced ReTrE, a domain-independent model-free abstraction frame-
work, able to find approximate mixed strategy Nash Equilibria in any
extensive-form game in a simulation-based fashion, that is, starting from
observations. ReTrE obviates the need for abstraction by leveraging deep
neural networks to approximate the behavior of CFR, an optimal regret
minimization algorithm, in the full game.

We showed that ReTrE achieves comparable performance with CFR in
terms of exploitability when dealing with games small enough to be analyzed
by both. Therefore, the practical use of the proposed framework in large
games is possible and performance is likely to be in line with what CFR could
theoretically achieve, allowing to find competitive suboptimal strategies.

Interestingly, despite having lower exploitability, we observed that, in the
case of Leduc Poker, ReTrE loses against CFR if agents are static. However,
in practice, agents are dynamic, as they can change their strategy. Therefore,
in the long run, a dynamic agent would shift away from their strategy to
exploit the opponent’s vulnerabilities, earning back what it previously lost.
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Moreover, besides being a domain-independent framework, ReTrE is
scalable to specific computing requirements by adjusting the Exploration
Dictionary size and the Exploration Parameter k.

Finally, we proposed an extension to the classical game theoretical frame-
work to integrate irrationality in moral rational agents without making them
irrational. This allows for more complex and emotional agents, enabling full
interaction with the environment in real-world situations while keeping emo-
tional context.

7.2 Future Work

ReTrE opens up several promising directions of research that can be ex-
plored next.

First, the performance of ReTrE in large games must be evaluated
through practical experimentation: more complex recreational games, such
as heads-up no-limit Texas hold’em Poker and Contract Bridge, can be ex-
perimented with initially. Then, the focus may be shifted towards real-world
applications, such as car racing or cybersecurity scenarios.

Comparing ReTrE with the leading abstraction algorithms, both do-
main dependent and independent, would allow for further inquiries and
deeper analyses on the advantages of each method. Furthermore, several
other regret minimization algorithms and variants of CFR can be used to
enhance the performance of ReTrE.

Particularly, capturing the essence of information sets through enhanced,
perhaps domain specific, embeddings would allow better performances. In
fact, it would be interesting to give more importance to an information set’s
potential, building upon the research of Gilpin et al. [2007], by integrating
it in a suitable embedding.

ReTrE leverages UCB1, which is a widely chosen possibility for upper
confidence bounds. Using other measures for the bound, such as EXP3,
could provide better performance in practice. Another possibility is to use
Bayesian methodologies for the learning purpose (e.g., Thompson Sampling),
exploiting prior knowledge on the Exploration Value of information sets.
Moreover, other exploration methods, such as Monte Carlo search, could be
applied during the traces exploration phase.

Furthermore, ReTrE is a pre-play only framework, namely, it outputs a
suboptimal strategy for an agent to stick with for the whole game. However,
it can be integrated with strategy refinement algorithms, such as depth-
limited search, to exploit the current state of the game and allow for better
performance.
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Finally, it would be particularly interesting to integrate ReTrE in
Artificial Emotional Intelligence scenarios. In fact, real-world problems
involving emotions are characterized by a huge action space, and being able
to choose the most important and relevant ones obtaining a coarse strategy
is crucial to obtain considerable results.

ReTrE is not simply an algorithm, it is a perspective.
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