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Sommario

La malattia di Huntington è una malattia neurodegenerativa genetica
e autosomica dominante che colpisce la mobilità muscolare e porta
inevitabilmente a degenerazione cognitiva e problemi psichiatrici. Uno
dei sintomi della malattia di Huntington è la morte di alcuni neuroni
nel cervello e la conseguente atrofia dell’organo cerebrale. Per atrofia
cerebrale si intende la riduzione del tessuto cerebrale, conseguente alla
necrosi e al restringimento delle cellule che compongono il suddetto
tessuto. L’atrofia cerebrale comporta una perdita delle funzioni svolte
dal cervello. L’entità di questa perdita dipende dall’estensione delle aree
cerebrali interessate dai processi di necrosi e restringimento cellulare.
Poiché la malattia di Hungtington è una malattia genetica, esistono
test genetici utili per identificare e diagnosticare la predisposizione
all’insorgenza della malattia. Non esiste ancora una cura per la malattia
di Huntington e l’unico intervento medico possibile è la prescrizione di
farmaci in grado di rallentare e arginare i sintomi sia fisici che psichiatrici.
Prima viene trattato un paziente, più efficace sarà il trattamento e potrà
posticipare l’insorgenza dei sintomi.
Per capire se un trattamento è efficace e può cambiare il decorso naturale
della malattia, dobbiamo misurare e prevedere la progressione della
malattia. Purtroppo la medicina non è ancora in grado di identificare i
gradi di sviluppo della malattia di Huntington, in particolare durante le
prime fasi, quelle presintomatiche, in cui i cambiamenti sono più sottili e
difficili da percepire. Un metodo per studiare e prevedere la malattia di
Huntington si basa sull’analisi della risonanza magnetica per immagini
(MRI). Una scansione MRI è un metodo non invasivo e invivo, in grado
di misurare il volume e lo spessore delle strutture cerebrali. Molti studi
sono stati condotti con l’utilizzo di questa tecnologia e hanno dimostrato
come diverse aree del tessuto cerebrale siano interessate dalla malattia
di Huntington, provocandone la diminuzione di volume e il conseguente
assottigliamento.
L’obiettivo della tesi è trovare un algoritmo in grado di distinguere
i controlli sani dai pazienti presintomatici. L’ipotesi di partenza è
che la struttura delle superfici cerebrali, in particolare lo spessore del
tessuto cerebrale, sia interessata dalla degenerazione della malattia di
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Huntington. Attraverso l’applicazione di due diversi metodi, il primo
più generale, il secondo più specifico, che utilizza un algoritmo di shape
matching per ottenere una registrazione specifica dell’utente dei cervelli
analizzati, l’obiettivo è quello di riuscire a distinguere i controlli sani
dai pazienti con malattia di Huntington attraverso un’analisi effettuata
sulla diminuzione dello spessore, che può evidenziare una netta linea di
separazione tra le due categorie analizzate.



Abstract

Huntington’s disease is a genetic and autosomal dominant neurode-
generative disease that affects muscle mobility and inevitably leads to
cognitive degeneration and psychiatric problems. One of the symptoms
of Huntington’s disease is the death of some neurons in the brain and
the consequent atrophy of the brain organ. By cerebral atrophy we
mean the reduction of the brain tissue, resulting from the necrosis and
shrinking of the cells that make up the aforementioned tissue. Brain
atrophy involves a loss of the functions performed by the brain. The
extent of this loss depends on the extent of the brain areas affected by
the processes of cellular necrosis and shrinkage.
Since Hungtington’s disease is a genetic disease, there are genetic tests
that are useful for identifying and diagnosing the predisposition to the
onset of the disease. There is still no cure for Huntington’s disease and
the only possible medical intervention is the prescription of medicines
that can slow down and stem both physical and psychiatric symptoms.
The sooner a patient is treated, the more effective the treatment will be
and will be able to postpone the onset of symptoms.
To understand if a treatment is effective and can change the natural
course of the disease, we need to measure and predict the progression
of the disease. Unfortunately, medicine is still unable to identify the
degrees of development of Huntington’s disease, particularly during
the early stages, the presymptomatic ones, in which the changes are
more subtle and difficult to perceive. A method to study and predict
Huntington disease is based on the analysis of Magnetic Resonance
Imaging (MRI). An MRI scan is a non-invasive and invivo method, that
can measure the volume and thickness of brain structures. Many studies
have been done with the use of this technology and have shown how
different areas of the brain tissue are affected by Huntington’s disease,
causing the decreasing in volume and consequent thinning.
The goal of the thesis is to find an algorithm to distinguish healthy
controls from presymptomatic patients. The starting hypothesis is that
the structure of the brain surfaces, in particular the thickness of the
brain tissue, is affected by the degeneration of the Huntington’s disease.
Through the application of two different methods, the former more
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general, the latter more specific, that uses a shape matching algorithm
to obtain a user-specific registration of the analyzed brains, the goal is to
be able to distinguish healthy controls from patients with Huntington’s
disease through an analysis carried out on the decrease in thickness,
that can highlight a clear separating line between the two categories
analyzed.
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sia nei momenti migliori, sia in quelli cos̀ı difficili da sembrare insor-
montabili.
Ringrazio mia mamma Elena che mi ha sempre incoraggiato a impeg-
narmi al massimo, mi ha spronato a non mollare mai e che è sempre
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Ringrazio mio papà Marco che non è mai stato pressante e opprimente,
che mi ha sempre lasciato libero di fare quello che desideravo, ma che si è
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Chapter 1

Introduction

Huntington’s disease is an inherited disease caused by the degeneration
of brain cells located in specific areas of the brain. It is characterized by
a more frequent onset in adulthood but can in fact arise at any age, from
infancy to old age. The brain cells affected by the degenerative process
are found in deep structures of the brain but also the cells of the outer
part of the brain (cerebral cortex) which are essential to functions such
as thinking, perception and memory are involved in varying degrees.
The characteristic clinical picture that derives from the progressive
degeneration of neurons in the indicated areas includes both involuntary
movements and a reduction in cognitive abilities and mood alterations.
As things currently stand, there are still no medicines capable of curing
the disease or interrupting its course. The neurologist can prescribe
various drug therapies to control the main motor and/or psychiatric
symptoms that characterize Huntington’s disease, but these medicines
are only useful for relieving the symptoms and improving the patient’s
quality of life. However, it is essential to start therapy as soon as
possible to make the treatment more effective and to guarantee the
patient a greater quality and longevity of life. The crucial problem is
the fact that it is difficult to identify a Huntington’s patient, especially
at the presymptomatic stage; therefore it becomes important to find an
effective method that succeeds in this purpose.
The goal of the thesis is to find an algorithm able to divide healthy
patients from presymptmatic ones. The starting hypothesis is that the
structure of the brain surfaces, in particular the thickness of the brain
tissue, is affected by Huntington’s disease. I will present two methods
that use cortical thickness analysis to highlight the presence or absence
of a separation between healthy and sick patients. The former, more
general, will have as a starting point a global registration of the patients’
brains, while the latter, more specific, will use a user-specific registration
using the Functional maps algorithm.
The analyzes were performed on a cross-sectional and longitudinal MRI



brain scan dataset, provided by IBM and from the CHDI foundation,
which included 41 early HD patients (4 visits each one) and 44 healthy
controls (7 visits each one).
The contents of the thesis will be structured in this way. First of all, in
chapter 2, the background of the thesis will be analyzed in detail. In
particular, an overview of Huntington’s disease, its history, etiology and
the resulting symptoms will be presented, both at the macroscopic and
at the microscopic level. The chapter will continue with the physical
explanation of how MRI brain imaging occurs, followed by how these
images are digitally processed through software called Freesurfer. The
chapter will end by illustrating a particular shape matching technique,
Functional Maps which I used for my analysis of Huntington’s disease.
This approach, used within the thesis, considers the mappings between
functions defined on the shapes, rather than correspondence of points
on the shapes. I have chosen Functional maps because this method is
able to create a map between two brains of the same patient but at
different time instant. This allows to obtain a user-specific registration
of the brain, which may have more precise information than a global
record of brains: in particular, it is possible to have a map that allows
to better compare the cortical thickness of patients in order to identify
Huntington’s disease.
Chapter 3 is a detailed description of how the problem was approached,
illustrating the two methods proposed one after the other.
Chapter 4 will contain an explanation of the data available, on which
I carried out my tests and in the next chapter (chapter 5) the results
obtained by the proposed methods will be shown. The results show
that cortical thickness degeneration is evident in sick patients, even in
a presymptomatic state and are validated by the use of two statistical
tests: the Kruskal-Wallis test and the Wilcoxon Rank Sum test which
confirm the initial hypothesis and which therefore makes it possible to
distinguish a Huntington’s patient even before the first symptoms appear.
This result can make it possible to act more promptly, anticipating the
start of drug therapy and therefore increasing the chances of its benefit.
Finally, chapter 6 contains the conclusions of the work done and the
comparison between the two method used showing the effectiveness or
otherwise of the methods and the advantages of using one over the other.
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Chapter 2

Background

In this chapter I intend to explain in what context my thesis work is
placed. In particular, in the first part an overview of Huntinton’s disease
will be presented, illustrating its history, spread, etiology and pathogen-
esis. The second section will show how MRI images are extracted and
how they are reprocessed using a digital processing software, Freesurfer.
In the final section, on the other hand, a shape matching method is
presented, Functional Maps, which will then be used in one of the two
methods proposed in my work.

2.1 Huntington Desease

Huntington’s disease, or Huntington’s chorea (pronounced: chorea or
chorea), is a genetic neurodegenerative disease that affects muscle mo-
bility and inevitably leads to cognitive degeneration and psychiatric
problems. The first symptoms typically appear during adulthood and
more frequently during middle age; it is the most frequent disease due
to genetics which has involuntary movements of the locomotor system
as symptoms (which are called chorea). The worldwide prevalence of
Huntington’s disease is 5-10 cases per 100,000 people, but it varies widely
due to ethnicity and migration. People of Western European descent
have such a genetic predisposition that Huntington’s disease is more
common, with an average of around 3-7 cases per 100,000 people, than
those of Asian or African descent in which the incidence rate is around
1 in 1,000,000 [1].
The disease is caused by an autosomal dominant mutation in one of two
copies (alleles) of a gene encoding a protein called huntingtin, which
means that the independent probability of inheriting the disease from a
person with the disease for each child is 50%. Physical symptoms of the
disease can begin to manifest even at a young age, but more frequently
between the ages of 35 and 44.
The disease does not manifest itself with the same symptoms even



among individuals with the disease of the same family, but usually the
progression of symptoms can be broadly predicted. The first manifesta-
tions are often mild mood or cognitive problems resulting in a lack of
general coordination and motor instability. As the disease progresses,
the unstable coordination of the body becomes increasingly evident and
is accompanied by a progressive worsening of mental abilities and the
appearance of behavioural and psychiatric problems.
Life expectancy at the onset of the first symptoms is around 20 years
due to possible complications, such as pneumonia, physical damage from
falls and heart disease, given by the weakness of the body. There is
still no cure for Huntington’s disease and full-time care in the more
advanced stages of the disease becomes indispensable. There are no
surgical treatments, so the only applicable treatments are the pharmaco-
logical ones that try to alleviate its many symptoms, even if not by much.

2.1.1 History of Huntington’s disease

The cause of Huntington’s disease remained unknown until the last
decades of the twentieth century, although Huntington’s chorea had
been recognized and cataloged as a disorder since the Middle Ages.
Originally it was simply called ”chorea”, a word of Greek origin whose
literal meaning is ”dance in unison”, due to the typical jerky dancing
movements; later it was also renamed ”hereditary chorea” and ”chronic
progressive chorea” due to its condition of inheritance and progressive
degeneration.
The first complete description of the disease was by George Huntington,
from whom it later took its name, and was in 1872 [2]. He was able to
understand by examining the medical history of several generations of a
family who had very similar symptoms, which these conditions had to
be somehow related. Even in Europe, the disease aroused great interest
among scientists, including Louis Theophile Joseph Landouzy, Camillo
Golgi, Desire-Magloire Bourneville and Joseph Jules Dejerine, so much
so that at the end of the 19th century the greatest amount of data and
results on the disease was European.
By the late 1900s, the disease was now known around the world as a
condition in its own right. An important breakthrough in Huntington’s
disease research came in 1983 with the discovery of the approximate lo-
cation of a causal gene. In 1993 was isolated the specific gene responsible
of the disease [3].

2.1.2 Etiology of Huntington’s disease

Huntington’s disease is caused by abnormal stretching of a specific section
of a gene repeatedly. This gene is the HTT gene which is located on
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the short arm of chromosome 4. The HTT gene consists of a three-base
sequence of DNA: cytosine-adenine-guanine (CAG), repeated several
times in a succession, known as expansion of a hat-trick. For this reason,
Huntington’s disease is classified as one of the triplet expansion diseases
[4]. A healthy person has fewer than 36 CAG repeats; a sequence of 36
or more triplets results in the production of a protein that has different
characteristics called mutated huntingtin protein (mHtt, mutant Htt)
and which will result in Huntington’s disease [4], as it can be seen in
figure 2.1.

Figure 2.1: Two sequencies of CAG: the top one of a healthy person; the one
below of a person with Huntington’s disease.
Credit: National Institute of General Medical Sciences, National Institutes of
Health

The Huntington’s disease mutation is genetically dominant with
near-complete penetrance: the mutation of one of a person’s HTT genes
causes the disease. One of the symptoms of the altered form mHtt is
the death of some types of neurons in the brain and since the presence
of these neurons is not uniformly distributed, different regions of the
brain have a different involvement in this degeneration. Based on the
number of CAG triplets in excess, the incidence of the disease is more
or less accentuated. A number of repetitions ranging from 36 to 39
leads to a disease in the form of reduced penetrance, with a much later
onset of age and with a slower progression. In a number of repetitions
exceeding this threshold the disease has complete penetrance and can
appear even at a young age, thus being defined as juvenile Huntington’s
disease. This accounts for approximately 7% of the conditions [5].
The behaviour of this mutated protein is not fully understood, but as
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mentioned above it is evident that it is harmful to some types of cells,
particularly those of the brain. The striatum is affected most early in
symptoms, but as the disease progresses, other areas of the brain are
also affected extensively. The disease brings with it a series of really
serious complications for the sick subject, most of which due to the
deterioration of muscle coordination and to a lesser extent, due to the
behavioural changes induced by the progressive degeneration of cognitive
faculties.
The greatest risk is of developing pneumonia (figure 2.2), which causes
the death of half of those with Huntington’s disease. Pulmonary compen-
sation problems, the risk of inhaling food and drink and the increased
likelihood of contracting pneumonia are the effects of the degenerative
deterioration in the ability to synchronize movements. The second risk
factor effect is the onset of heart disease, responsible for nearly a quarter
of the deaths of people with the disease. Suicide is the third leading
cause of death, with 7.3% of Huntington’s disease sufferers taking their
own life, while at least 27% attempt to do so. It has not yet been possible
to understand whether the desire to commit suicide is due to psychiatric
symptoms or the patient’s willingness to avoid the later stages of the
disease. Other causes of death from complications, albeit to a lesser
extent, are related to suffocation, fall injuries and malnutrition [4].

2.1.3 Clinical Tests and Disease Course

The Unified Huntington’s Disease Rating Scale (UHDRS)[6] is the most
widely used clinical method for recording Huntington’s disease and its
progression. The UHDRS is the evaluation system to quantify the state
of the disease and identify the stage of the sick subject. This method is
divided into four sub-categories in order of relevance for the ability to
identify the symptoms of the disease. The sections are: motor, cognitive,
behavioural, functional. The final score is calculated by adding the
various results obtained in the various sub-categories.
As mentioned, the motor symptoms are the most explanatory as they
are the most robust and coherent ones and the quantification of these
symptoms is indicated with a value, called Total Score System (TMS),
obtained from the sum of 31 elements [7]. These elements are distributed
among oculomotor functioning (6 elements), chorea (7 elements), dysto-
nia (5 elements), bradykinesia (11 elements) and rigidity (2 elements)
and each is rated on a 5-point scale ranging from 0 (severe impairment)
to 4 (normal).
The second part of the motor assessment subsection consists of the Di-
agnostic Confidence Level (DCL), which is a single item with an ordinal
rating scale of 5 categories. The examiner must choose a value based on
how confident he is that the motor disturbance calculated by the TMS is
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Figure 2.2: Pneumonia causes the death of half of those with Huntington’s disease.
Credit: Hopes Huntington’s outreach project for education, at Stanford

due to Huntington’s disease. Value 0 indicates that the patient is healthy
and has no symptoms of the disease, value 1 indicates that the motor
abnormalities are non-specific (<50% confidence), value 2 indicates that
the abnormalities may be evidence of Huntington’s disease (50% - 89%
confidence), a value of 3 indicates that the motor abnormalities are
likely signs of Huntington’s disease (90% - 98% confidence interval) and
a value of 4 indicates that the motor abnormalities are unambiguous
signs of Huntington (>98% confidence)(see table 2.1).
Based on the results obtained from the UHDRS test, it is possible to
divide the subjects examined into two main groups: premanifest and
manifest. In the first group there are those presymptomatic subjects
in which it is not yet possible to determine the onset of Huntington’s
disease while in the second group the subjects in which the symptoms
of the disease are manifest and are classified into 5 stages based on the
score obtained from TMS as indicated in table 2.2.
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DLC Description of syntoms

0 Normal

1 Motor abnormalities are non-specific

2 Abnormalities may be evidence of Huntington’s disease

3 Motor abnormalities are likely signs of Huntington’s disease

4 Motor abnormalities are unambiguous signs of Huntington

Table 2.1: DLC score

TFC Years since onset Stage

11 - 13 0 - 8 I

7 - 10 3 - 13 II

3 - 6 5 - 16 III

1 - 2 9 - 21 IV

0 11 - 26 V

Table 2.2: TFC relation with onset and division in stages

2.1.4 Atrophy and Thickness Reduction

As previously mentioned, one of the symptoms of Huntington’s disease
is the death of some neurons in the brain and the consequent atrophy
of the brain organ. By cerebral atrophy we mean the reduction of the
brain tissue, resulting from the necrosis and shrinking of the cells that
make up the aforementioned tissue. Brain atrophy involves a loss of
the functions performed by the brain. The extent of this loss depends
on the extent of the brain areas affected by the processes of cellular
necrosis and shrinkage. Through the analysis of magnetic resonances
(MRI) it is possible to analyze the volumes and thicknesses of the brain
structures through a longitudinal study (compare the measurements
made on the same patient for a given period of time) and transversal
(compare the measurements made by different patients). What emerges
from these studies is that the rate of volume thinning is heterogeneous,
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i.e. that the rate of atrophy is different in the different brain regions
also as regards the time point in which degeneration begins [8].
Although heterogeneous, several studies have found that the state of
atrophy, due to Huntington’s disease, occurs mainly in the sub-cortical
regions, where the most affected areas are the striatum and white matter
[9].
These studies have also highlighted the close correlation between the
striatal volume on the one hand and the age of onset and locomotor
dysfunction on the other; the same is also true for white matter. Another
cross-sectional study highlights that even in prodromal subjects (subjects
presenting a non-specific clinical manifestation that appears anticipating
the clinical picture typical of a given disease) it is possible to perceive
differences between healthy and sick and that the loss of volume is
mainly caused from thinning (figure 2.3).

Figure 2.3: (A): right hemisphere of a healthy patient. (B): right hemisphere of a
sick patient. (C): left hemisphere of a heathy patient. (D): left hemisphere of a
sick patient. Credit: image taken from [10]
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2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is an image generation technique
used mainly in the medical field for diagnostic purposes, based on the
physical principle of nuclear magnetic resonance. This imaging tech-
nique allows discrimination between different tissues on the basis of
their biochemical composition, thus differentiating from other acquisition
methods that do not allow such a distinction. MRI exploits the presence
of hydrogen protons in the water contained in the body’s tissues. A
machine produces magnetic fields and radio frequency (RF) pulses that
strike these hydrogen protons thus producing a signal that is returned
to the machine and processed to obtain a high resolution image of the
body tissue being analyzed. The result is images of the body sections on
three different planes (axial, coronal, sagittal). Each voxel (3D pixel) of
the image corresponds to a small area within this section. Based on the
quantity and properties of the water present in an area, an intensity value
will be stored inside the voxel which will uniquely identify that area,
thus making it possible to distinguish different tissues from each other.
Moreover, diseases, by affecting these tissues, modify the characteristics
of the water very often, thus making it possible to distinguish a healthy
tissue from a diseased one. The MRI can also be set, by adjusting
some parameters, to obtain images with a different contrast to high-
light the areas of analysis and different characteristics of these areas [11].

2.2.1 Structure and Operation

A commercial scanner for medical use is mainly made up of 4 elements
that are used to create static and variable magnetic fields in time and
space. Such elements are the main magnet, the radio frequency coils,
the gradient coils and various auxiliary coils as it can be seen in figure
2.4. The main magnet, as the name implies, is the most fundamental
component of the scanner and its purpose is to generate a constant
magnetic field in space and time. The most important specification
of a magnetic resonance imaging magnet is the strength of the field
produced. Magnetic fields of greater intensity increase the resolution of
the obtainable images and also decrease the time required for a scan.
The radiofrequency coils, on the other hand, are necessary to create the
rotating magnetic field at the Larmor frequency. The gradient coils are
a fundamental part for a scanner as they have the function of generating
magnetic fields that vary in space depending on how the current passing
through them is modulated. Their primary characteristic is to obtain
magnetic fields that vary linearly along one direction of the Cartesian
axis and that are uniform in the other two. Around the main magnet
there are also other coils in addition to the gradient coils, which have
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Figure 2.4: MRI machines.
Credit: MagLab

the function of improving the characteristics of the system itself.

2.2.2 Physics in Detail

The first step in creating an MRI image is to create a magnetic field,
B0, in such a way that the protons of the patient’s body water respond
to the magnetic field at the frequency f0 and a part of these protons
respond by creating a net magnetization, M, parallel to B0.
This magnetization is initially uninteresting, as no apparent change is
detectable. By rotating the net magnetization out of the equilibrium
direction, a changing magnetic field will be generated which will induce
a measurable signal usable for imaging. This is possible by applying a
variable magnetic field B1 in the plane perpendicular to the direction of
B0. When exposed to this new magnetic field, the vector M will begin
to precess on it at the frequency f1 = (γ/2π)B0. But as soon as M is
misaligned with B0, (M) starts to precess around B0 as well, at the
resonant frequency f0 with a corkscrew-like motion (figure 2.5); this
implies rotation on both B0 and B1.
By applying a radio frequency (RF) pulse of the RF pulse it is possible
to generate this magnetic field B1. If two coils of wire (usually the same
coils that are used to apply the RF pulse) are adjacent to the body,
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they experience varying magnetic flux due to the rotating magnetization
vector M . This varying magnetic flux will cause a current to flow in the
wire.
When M is parallel to B0, no current is induced in the receiver coils, as
there is no change in the magnetic flux across the coil area. It is only
when M is rotated in the transverse plane (xy) perpendicular to the
static magnetic field that a signal can be generated due to the change
in magnetic flux.
After explaining the way in which the signal is produced and the way

Figure 2.5: A short burst of B1 in an RF pulse is capable of notating M out of the
equilibrium direction by tracing out a spiral on the surface of a sphere with the tip
of the M vector. Following the RF pulse the net magnetization vector will precess
around the B0 direction at the resonant frequency. Image taken from [12]

in which this signal affects the protons of the body’s water, we will
now analyze how the localization of the signal produced by the protons
occurs and how this signal is captured in the voxel of the body final
image. Thanks to a gradient-pulse sequence, a particular sequence of
RF pulses and gradient magnetic fields it is possible to perform this
localization of the signal.
First you need to select a slice and this is possible thanks to the use of
the so-called slice selector gradient or Gss . We know that the frequency
of protons depends on their position with respect to the direction of B0

and therefore with Gss, which is added to B0, we are able to modify
the precession frequency of the protons in a predictable way. Thanks to
the RF pulses produced by the MR machine within a specific frequency
band length, it is possible to select only the slice we are interested in.
Three sets of gradient coils are used to be able to obtain the desired
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orientation in space based on the tissue of the body we are analyzing. Gss
is nothing more than the combination of the magnetic fields produced by
these gradient coils. The RF pulses and the slice selector gradient Gss
are closely related: in fact the RF bandwidth is directly proportional to
the thickness of the slice, while the intensity of the gradient is inversely
proportional to it. We can therefore obtain more or less thin slices in
two ways, either by increasing the strength of the gradient Gss or by
reducing the bandwidth of the RF pulse.
After figuring out how to locate a slice, the next step is to locate
every single point within the slice. This is possible by encoding each
single signal into spatial frequencies and subsequently remapping these
frequencies in the two-dimensional spatial domain through the 2D inverse
Fourier transform.
The spatial frequency domain is called k − space where k indicates the
number of dimensions of the space. In our case, since we are working
on a slice in two dimensions, k will be equal to two and since we are in
the presence of a discrete domain it is possible to imagine this 2− space
as a matrix within which each cell is identified through two spatials
frequencies, one for each direction in the slice (figure 2.6).
Two gradients are used to encode the signal: a phase encoding gradient

Figure 2.6: On the left (a) the representation of an MRI image in the k − space,
on the right (b) a MRI image representing a slice.
Credit: image taken from [13]

(Gpe), applied after slice selection, and a frequency encoding gradient
(Gfe), applied continuously during signal acquisition. The two gradients
are not used at the same time but first the selection of the row/column
takes place based on the direction in the slice where Gpe is applied,
thanks to the activation of Gpe.
In fact, after the RF pulse is activated all the protons are in phase and
therefore all the protons of the selected slice produce a signal. Thanks to
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the activation of the Gpe gradient it is possible to modify the precession
frequency of the protons according to their position.
After deactivating Gpe, only a small part of the protons will correspond
to a certain spatial frequency and therefore only these will contribute to
the measured signal. In this way we were able to select a row/column.
Gfe is then activated and will remain on for the duration of the signal
acquisition. As for all the other gradient fields, Gfe has the function
of modifying the precession frequency of the protons according to their
position and therefore to interrogate more spatial frequencies and to
obtain an image with more resolution in the Gfe direction it is necessary
to increase the frequency of sampling. In this way we were able to
identify each point of a specific row/column; to be able to map all the
rows/columns you have to repeat the procedure applying a different Gpe
each time.
To clarify the procedure, let’s take the example of being in a k−space of
512 × 1024, where Gpe is applied in the horizontal direction, identifying
the columns, while Gfe is applied in the vertical direction, locating the
rows. It therefore becomes necessary to use 1024 different Gpe: each
gradient applied corresponds to a specific column of the k − space. The
signal is sampled 512 times while Gfe remains active: each sample
corresponds to a specific line of the k − space. For further information
see [12, 11].

2.2.3 MRI Limitations

After scanning through an MR machine we are able to obtain high
resolution images of slices of the tissue/organ we are analysing. These
images, although very precise, are certainly not without errors; it is
possible to find different types of errors such as misalignment, out-of-
scale values or unwanted data (for example fabrics that do not interest
us for analysis). These errors are easily localized by the eye of an expert
but if we want to use these data to process them in a calculator, a data
”cleaning” step is necessary so that the analyses are not affected by the
errors mentioned above.
Another intrinsic problem to MRI is the fact that it can only return
two-dimensional (2D) images, instead for our analysis it is necessary
to have three-dimensional (3D) images in order to apply the functional
maps algorithm to our case of analysis.

2.2.4 Freesurfer

FreeSurfer is free software, developed by Harvard University, specifically
for the study of the brain and its cortical and subcortical anatomy.
Much of FreeSurfer’s pipeline is automated to greatly simplify analysis
on a large amount of data.
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The software is able to reprocess the images obtained through MRI and
to build models of the white matter, the cortical gray matter and the
pial surface. After the construction of these three-dimensional models
it is possible to carry out different anatomical measurements such as:
cortical thickness, surface area, curvature, the normal to the surface at
each point of the cortex, etc.
In addition to being able to perform these operations, the software is
able to deform these surfaces to have a better view of the affected areas.
It is possible to divide the steps performed by FreeSurfer into two main
phases, the first deals mainly with the original MRI volumes, while the
second works with the surfaces obtained in the first step. The first step
is designed to reprocess the MRI volumes is to identify and label the
subcortical tissue classes. This procedure is divided into 5 basic steps
[14]. Summarizing the various steps, the MRI volumes are recorded via
an affine transformation designed to be insensitive to disease and to
maximize the accuracy of the final segmentation and is subsequently
labeled. These steps are solely dependent on skull stripping [15] to
create a brain mask in which labeling is performed (figure 2.7). In the

Figure 2.7: An example of MRI labelled volume after the first step

second phase instead, FreeSurfer uses the models created previously to
extract the cortical and subcortical surfaces and all the information
related to them [16, 17]. Voxels are first classified as white matter or as

15



something that is not white matter based on the intensity of the voxels.
We then proceed by separating the two hemispheres of the brain based
on the symmetry of the white matter and on algorithms that encode
the expected shape of these structures and by removing the cerebellum
and the brain stem.
An initial surface is then generated for each hemisphere by tiling the
outside of the white matter mass for that hemisphere. This initial
surface is then smoothed following the intensity gradients between the
white matter and the gray matter, obtaining the definitive white surface
(figure 2.8), which is moved to be able to identify the pial surface (figure
2.9.
It was done in the same way as before but refining the surface by suiting
the intensity gradients between the gray matter and the cerebrospinal
fluid. The distance between the white and the flat surface gives us the
resulting thickness [18]. We can also calculate the local curvature, the
surface area and the surface normal.

Figure 2.8: An example of white surface after the second step

2.3 Functional Maps

The main goal of shape matching is to find a point-to-point correspon-
dence between two shapes which are usually represented as point clouds
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Figure 2.9: An example of pial surface after the second step

or polygon meshes. A classic approach is to find a correspondence map
that connects the sets of points that make up the two shapes.
The approach used within the thesis aims to consider the mappings
between functions defined on the shapes, rather than inserting points of
correspondence on the shapes [19, 20]. This approach can be considered
as a generalization of the classical point-to-point map since at each
point-to-point correspondence it induces a mapping between function
spaces. However, this generalized representation is both suitable for
shape matching as many natural constraints on the map become linear
constraints on the functional map, and flexible in choosing the basis for
the function space on each shape.
The choice of the eigenfunctions of the Laplace-Beltrami operator allows
to benefit from their multi-scale, ”geometry aware” nature. Basically,
the possibility of using a small number of Laplace-Beltrami bases for
the spaces of the functions of the two forms, allows to create a map
(figure 2.10(a)) that can be approximated to a relatively small matrix
with respect to the total number of points constituting the forms, which
is identified as C (figure 2.10(b)).
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(a) Point-to-point correspondences ob-
tained by Functional Maps algorithm

(b) Matrix C encoding the map

Figure 2.10: Results with Functional Maps using Tosca dataset (a) with the relative
matrix C (b).
Credit: image taken from [19]

2.3.1 Laplace-Beltrami Operator

To be able to create a finite matrix C of relatively small dimensions
that represents a transformation TF in a compact way, I need to use a
relatively small subset of basic functions. The starting choice is to use
basic functions φMi on the form M and φNj on the form N, but I need
to satisfy two fundamental requirements: compactness and stability.
The first because the simplest elements of a form must be represented
with the fewest possible basic functions and the second because the space
of functions extended by the linear combination of the basic functions
must be stable with reference to small deformations.
In differential geometry, the Laplace-Beltrami operator is a self-adjoint
differential operator that generalizes the Laplace operator to functions
defined on Riemannian manifolds. A Riemannian manifold is a differ-
entiable manifold (curve or surface) on which the notions of distance,
length, geodesics, area (or volume) and curvature are defined.
The manifold is a topological space locally similar to a well known
topological space such as the Euclidean one but which globally can
have different geometric properties such as being curved. The Laplace-
Beltrami operator is therefore the extension to non-Euclidean cases of
the standard Laplacian and can be discretized. The most interesting
feature of the eigenfunctions of this operator is that its eigenfunctions
are parallel to the Fourier bases and how the latter are ordered according
to their absolute value; this makes these eigenfunctions suitable for the
TF transformation since, being ordered from the lowest to the highest
frequency, they provide an innate multiscale way to approximate func-
tions. The transformation matrix of the Fourier coefficients, compact
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and optimizable, therefore represents the functional map.
This optimization is based on the alignment of a set of functions which
can be calculated on both forms and which are known to correspond
to each other. So the first thing needed to exploit this method is to
compute a set of descriptors for each point on both forms, M and N,
and then create some function conservation constraints from them. On
the basis of the forms between which we have to make shape matching,
it is possible to use different types of descriptors that can be better
adapted to the specific case.
In a general case it is possible to use two descriptors that fit more or
less well to any shape: the Wake Kernel Signature (WKS) [21] and the
Heat Kernel Signature (HKS) [22]. WKS exploits the Schrodinger wave
equation to characterize a point x ∈ X from the mean probabilities
of quantum particles of different energy levels to be measured in x.
Since the energies of the particles correspond to the frequencies, in this
approach information from all frequencies is captured while at the same
time the influences from the different frequencies are clearly separated.
The Wave Kernel Signature (WKS) can be defined as

w(E, x) =
n∑
i=0

φi(x)2fE(λi)
2 (2.1)

where E is an approximation of the energy expected value, and fE(λi)
2

is an energy probability distribution. Similarly, Heat Kernel Signature
instead uses the heat diffusion equation to characterize a point x ∈ X
for the amount of heat measured in x at certain times t > 0. The Heat
Kernel Signature (HKS) can be computed as

h(x, t) =
n∑
i=0

e−λitφ2i (x) (2.2)

where λi, φi are eigenvalues and eigenfunctions of the Laplace Beltrami
operator eigendecomposition and n is the number of selected eigenfunc-
tions.
To set the stage for functional mappings as a generalization of classical
point-to-point mappings, let T : M → N be a bijective mapping between
manifolds M and N.
If we are given a scalar function f : M → R then we obtain a corre-
sponding function g : N → R by composition, as in g = f ◦ T−1.
We use F(·,R), a generic space of real-valued functions, to denote this
trasformation TF : F(M,R)→ F(N,R). We call TF the functional rep-
resentation of the mapping T. We know that the original mapping T can
be recovered from TF and that for any fixed bijective map T : M → N ,
TF is a linear map between function spaces.
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We may paraphrase these remarks to say that knowledge of TF is equiv-
alent to knowledge of T. And while T may be a complicated mapping
between surfaces, TF acts linearly between function spaces.
Every function f : M → R can be represented as a linear combination
of basis functions φMi as f =

∑
i aiφ

M
i .

In the same way I can also apply to N a set of basis functions φNj , doing

so I can consider TF (φMi ) =
∑

j cijφ
N
j for some cij and

TF (f) =
∑
i

ai
∑
j

cijφNj =
∑
i

∑
j

aicijφ
N
j (2.3)

as can be seen in Figure 2.11.

Figure 2.11: Basis functions applied to source shape M and target shape N.
Credit: image taken from [19]

2.3.2 Functional Matrix C

Let φMi and φNj be bases for F(M,R) and F(N,R), respectively. A
generalized linear functional mapping TF : F(M,R) → F(N,R) with
respect to these bases is the operator defined by (2.3) where cij is a
possibly infinite matrix of real coefficients (subject to conditions that
guarantee convergence of the sums above).
If now we consider f as a vector of coefficients a = (a1, a2, . . . , ai, . . . )
and g = TF (f) as another vector of coefficients b = (b1, b2, . . . , bi, . . . )
then, we can rewrite the equation mentioned above in (2.3) as

bj =
∑
i

aicij (2.4)

where cij is completely independent from the chosen function and is
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determined only by the bases and the map T.
The map TF can be represented as a (possibly infinite) matrix C s.t. for
any function f represented as a vector of coefficients a then TF (a) = Ca.
This remark in combination with the previous two remarks shows that
the matrix C fully encodes the original map T.
In addition to this, if the shapes M and N are isometric and T is an
isometry, matrix Cij can be non-zero only if φMi and φNj correspond to
the same eigenvalue. In particular, if all eigenvalues are non-repeating,
matrix C will be diagonal.
If the trasformation T is not an isometry, so the shapes M and N are
non-rigidly deformed, the matrix C is not yet diagonal but it still close
to it with a funnel shape that stays along the diagonal. It is necessary
underline that the matrix C stops to be diagonal or close to diagonal
when the non-isometric deformations are not so small and it is mostly
visible at high frequencies eigenfunctions (at the bottom-right corner of
the matric C ).

2.3.3 Functional Maps Inference

Functional shape maps are well-suited for inference because of their
continuous nature and because a large number of constraints become
linear in this representation. Suppose we are given a pair of discrete
shapes represented as meshes, with the corresponding Laplace-Beltrami
eigenfunctions. As we have seen, the goal of this method is to find
the underlying functional map represented as a matrix C that matches
the trasformation T from the shape M and the shape N. The simplest
way to do so is to construct a large system of linear equations, where
each equation corresponds to one of the constraints. These constraints
can be either a functional constraint or the operator commutativity
constraint.Then, it is possible to find the best functional map by finding
the matrix C that best satisfies the constraints in the least squares sense.
A list of the steps necessary to do this is presented at algorithm 1.

Algorithm 1 Functional Maps Inference for Matching

Compute a set of descriptors for each point on M and N, and create
function preservation constraints.
If landmark correspondences or part decomposition constraints are
known, compute the function preservation constraints using those.
Include operator commutativity constraints for relevant linear operators
on M and N (e.g. Laplace-Beltrami or symmetry).
Incorporate the constraints into a linear system and solve it in the least
squares sense to compute the optimal C.
Refine the initial solution C using one of the iterative methods proposed
below.
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Figure 2.12: Some other results obtained by Functional Maps

2.3.4 Post-Processing Iterative Refinement

One of the method used to improve and refine the algorithm presented
and the method used for the thesis is the standard Iterative Closest
Point (ICP) algorithm of Besl and Mckay [23] with the only difference
that in this case it is applied in the spectral embedding rather than on
the simple Euclidean space.
We have the two matrices of the Laplace-Beltrami eigenfunctions ΦM and
ΦN that refers to M and N. Every colums of these matrices corresponds
to a point and every row corresponds to an eigenfunction; so it is possible
to obtain the image of the function centered in each point of M simply
as CΦM .
Given an initial estimate matric C0 that represents a point-to-poiny
map T. We have understood that each colums of the matrix obtained
by C0Φ

M coincides theoretically with same colums of ΦN . C0 must
align ΦM and ΦN since we consider these as two point clouds with
dimensionality equal to the number of eigenvalues used in the functional
representation C0.
Thus an iterative refinement of C0 can be obtained via simple iterative
cycle of steps:

1. For each column x of C0Φ
M find the closest x̄ in ΦN .

2. Find the optimal orthonormal C minimazing
∑
||Cx− x̄||.

3. Set C0 = C and iterate until convergence..

To obtain a good refinement of the initial matrix C0, it is essential to
have a good initial estimate C0.
Finally, note that the output of this procedure is not only a functional
matrix C but also a point-to-point correspondence given by nearest
neighbor assignment between points on M and N.
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Chapter 3

Thickness Analysis

In this chapter I intend to explain in detail how I set up the core of the
thesis, trying to be as exhaustive and complete as possible.
The goal of my research is to compare, thanks to the analysis of the
available data, the thickness of the brains taken in the study and to
classify, through the use of automated algorithms, healthy patients from
patients in which Huntington’s disease is in an embryonic state.
My thesis compares two methods to achieve this and highlights what
they consist of and what differentiates them from each other showing
the usefulness and effectiveness of one over the other or vice versa.
The two methods will presented separately one after the other.

3.1 Problem Formulation

Thanks to the use of the Freesurfer software, it was possible to obtain
from the MRI images of the patients, a high-resolution volumetric
reconstruction of the hemispheres of the patients’ brains. After the
construction of these three-dimensional models it was possible to carry
out various anatomical measurements such as: cortical thickness, surface,
curvature, normal to the surface in each point of the cortex. One of the
main symptoms of Huntington’s disease, as mentioned in chapter 2, is
the reduction of brain tissue, resulting from the necrosis and shrinkage of
the cells that make up the aforementioned tissue. It therefore becomes
possible to perceive differences between a healthy patient and a sick
patient from the loss of volume caused mainly by thinning. Consequently,
the most interesting anatomical measurement to be analyzed was cortical
thickness.
A cross-sectional study (visits of different patients) and a longitudinal
study (visits of the same patient after about one year) are available. In
this way it was possible to extract the values of the cortical thickness
both for different patients and for the same patient for years later. From



the analysis of these data, the goal is to classify healthy patients from
those affected by the first symptoms of Huntington’s disease thanks to
a study on the patients’ cortical thickness. Thickness can be seen as a
function fui such that:

fui : Sui 7−→ R (3.1)

where fui stands for the values of the thickness for the patient u at the
visit i and Sui stands for the white surface of the brain of patient u at
the visit i.
The goal is to classify, through the thickness function, healthy patients
(control) from those affected by the first symptoms of Huntington’s
disease (earlyHD):

C :
{
fu1 , ..., f

u
n

}
7−→

{
earlyHD, control

}
(3.2)

My thesis aims to analyze and compare two methods that both use the
thickness function but implementing a different brain registration. The
first method, through the use of Freesurfer, allows to carry out a global
registration, patient indipendent, of all the brains:

Rui : Sui 7−→ R (3.3)

where R stands for the global registration indipendent from the patients.
The second method, through the use of Functional Maps algorithmn,
allows, instead, to carry out a user-specific registration, based on patients
brain:

F ui : Sui 7−→ Su0 (3.4)

where F ui stands for the user-speficic patient registration.

3.2 Freesurfer Data Analysis

In this section I will present the first method that I used to compute
Freesurfer data on brain. I will present it in such a way that all the are
clear and exhaustive. The results obtained by this method will then
be presented in chapter (5) and compared with those obtained by the
other.

3.2.1 Evaluation of Thickness

The first step to be performed is to extract the cortical thickness values
from the three-dimensional models created thanks to the use of Freesurfer.
The result of this operation is the acquisition of a vector containing a
thickness value for each point of the three-dimensional model of the
patient’s white surface.
Having available a longitudinal study with a variable number of visits
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from four for presymptomatic patients and seven for healthy patients,
a vector is saved for each patient for each time instant. In this way I
have a vector containing the thickness values (for each three-dimensional
point) for each patient under analysis and for each time. Each time
instant corresponds to a different visit made by the patient and can be
indicated with V t where t = 1, 2, 3, 4, 5, 6, 7;.
It will therefore be possible to analyze the difference in thickness between
the various pairs (V t, V 1) with t = 1, 2, 3, 4, 5, 6, 7; and verify if the
increase of this difference (due to a lower thickness in the visits after the
first) is accentuated in the case of a patient in which the first symptoms
of disease begin to appear compared to healthy patients. To show how
much the thickness decreased between a V t visit and the first visit
V 1, I choose to sum the absolute value of each difference in thickness,
calculated as

∆th =
n∑
n=1

|V t
n − V 1

n | (3.5)

where n is the number of points in the model shape.
I choose to use the absolute value as it is not possible for the white
matter to increase with the progress of time and therefore with the aging
of the patient. Furthermore, I decided to sum all the values because, as
mentioned in chapter 2, practically all areas of the brain are affected by
necrosis of the brain tissue.

3.3 Functional Maps on Cerebrums

In this section I will present the method that makes use of the Functional
Maps algorithm, presented in chapter 2, and how it was adapted for my
brain analysis. I will present all the passages clearly and exhaustively.
The results obtained by this method will then be presented in chapter
(5) and compared with those obtained by the other. Since I have both a

(a) Source shape M (b) Target shape N

Figure 3.1: Functional Maps on source shape (a) and target shape (b).
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transversal study and a longitudinal study, I use the method of functional
maps to find a map that represents the correspondences between real-
valued functions on the hemispheres of the same patient but scanned in
different time periods. From this map it is therefore possible to extract a
point-to-point correspondence in a very simple way that allows to obtain
a method of transferring the functions between the shapes, given by the
point-to-point map. In this way it is possible to obtain a registration
of the brains that is not global (as in Freesurfer) but specific for each
patient which allows to transfer the thickness function from one shape
to another.
In particular, a functional map will be found for each available time
interval.
Assuming we have four visits, V1, V2, V3, V4, which represent the visits
at time t = 1, 2, 3, 4; , we will look for the correspondences between
the pairs (V1, V2), (V1, V3), (V1, V4). In this way the functional map will
change according to the degeneration / non-degeneration of the patient’s
brain and consequently will transfer the thickness function more or less
precisely.
It will then be possible to analyze the difference in thickness between the
various (V1, V2), (V1, V3), (V1, V4) pairs and verify whether this reduction
is accentuated in the case of a patient in which the first symptoms of
disease begin to arise compared to healthy patients.

Figure 3.2: Basis functions φMi applied on source shape M

3.3.1 Choice of Basis Functions

From now on, for each pair of visits (V1,Vi), the source shape of V1 will
be indicated as M and the target shape of Vi as N. The first step, but
of fundamental importance, to correctly apply the Functional Maps
algorithm to shapes M and N, is the choice of the basis functions.
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There are two properties, as mentioned in chapter 2, that must be
respected: compactness and stability. By compactness we mean the
ability to approximate the natural functions applied to the shape with
a small number of basis functions; by stability we mean that the space
of functions spanned by the linear combination of the basis functions
must be robust to small deformations. The natural choice therefore
was to use the eigenfunctions of the Laplace-Beltrami operator as basis
functions because on the one hand, behaving like Fourier basis, they are
ordered according to their frequency (from lower frequencies to higher
frequencies) and therefore using only a limited set of the former it is
possible to approximate well the starting functions, and on the other
hand, being able to represent periodic functions as a linear combination
of sinusoidal functions, they allow to obtain the desired stability.
In order to get a square matrix, I decided to use the same number of
eigenfunctions on the shape M and on the shape N.
φMi are the basis functions on shape M and φNj are the basis functions
on shape N, where i = j.
The basis function can represent every function f : M → R as a linear
combination as f =

∑
i aiφ

M
i as it can be seen in figure 3.2.

Applying to N a set of basis functions φNj , thus getting TF (φMi ) =∑
j cijφ

N
j , for some cij and I get:

TF (f) =
∑
i

ai
∑
j

cijφ
N
j =

∑
i

∑
j

aicijφ
N
j (3.6)

If now we consider f as a vector of coefficients a = (a1, a2, . . . , ai, . . . )
and g = TF (f) as another vector of coefficients b = (b1, b2, . . . , bi, . . . )
then, we can rewrite (3.6) as bj =

∑
i aicij where cij is completely

independent from the chosen function and is determined only by the
bases and the map T.
The map TF can be represented as a matrix C s.t. for any function f
represented as a vector of coefficients a then TF (a) = Ca.

3.3.2 Computing the Descriptors

My choice was to select a small number of landmarks (six to be precise)
uniformly distributed on shapes M and N. These landmarks have been
saved in two vectors lM and lN respectively for shape M and shape
N. Given two associated sets of landmarks, I need to compute a set of
descriptors for each point x in lMx and in lNx . I decided to use Wake
Kernel Signature (WKS): the basic idea is to characterize each land-
mark x in lMx based on the average probabilities of quantum particles
of different energy levels to be measured in x. Since the energies of the
particles correspond to the frequencies, in this approach information
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Figure 3.3: Basis functions φNj applied on target shape N

Figure 3.4: First 5 steps of temporal evolution of the wave equation on source
shape M

from all frequencies is captured while at the same time the influences
from the different frequencies are clearly separated.

First of all, I need to determine the probability of measuring a
quantum particle of a certain energy distribution in a given location.
The evolution of a quantum particle on the surface is governed by its
wave function ψ(lMx , t) which is a solution of the Schrodinger equation,
a phisic fundamental equation that determines the temporal evolution
of the state of a system:

δψ

δt
(lMx , t) = i∆ψ(lxl

M , t) (3.7)

For example, I take a quantum particle with unknown position is on the
shape M. At time t = 0 I can make an approximate measurement of its
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Algorithm 2 Wave Kernel Signature WKS

Input : lMx , l
N
x , φ

M
k , φ

N
k

Output :FctMx , F ct
N
x

1 ψE(lMx , t) =
∑∞

k=0 e
iEktφk(l

M
x )fE(Ek) // The wave function of a

quantum particle in the coordinates lMx in the shape M

2 ψE(lNx , t) =
∑∞

k=0 e
iEktφk(l

N
x )fE(Ek) // The wave function of a

quantum particle in the coordinates lNx in the shape N

3 WKS(E, lMx ) = limT→∞
1
T

∫ T
0 |ψE(lMx , t)|2 // Define the WKS as the

average probability of the energy to measure a particle in lMx

4 WKS(E, lNx ) = limT→∞
1
T

∫ T
0 |ψE(lNx , t)|2 // Define the WKS as the

average probability of the energy to measure a particle in lNx

5 FctMx = WKS(E, lMx ) =
∑∞

k=0 φk(l
M
x )2f2E(Ek)

2 // e−iEkt are

orthogonal for the L2 norm

6 FctNx = WKS(E, lNx ) =
∑∞

k=0 φk(l
N
x )2f2E(Ek)

2 // e−iEkt are

orthogonal for the L2 norm

energy E.
I decided to do this choice because this allow me to cope with pertur-
bations of eigenenergies under non-rigid deformation of the shape M.
Doing this approximation we obtain a certain probability distribution
f2E with expectation value E.
In the case of the study the Laplace spectrum of the shape M has no
repeated eigenvalues, then the wave function of the particle is given by

ψE(lMx , t) =
∞∑
k=0

eiEktφk(l
M
x )fE(Ek) (3.8)

The probability of measuring the particle at point lMx is therefore
|ψE(lMx , t)|2.
I choose to not consider time because it has no straightforward interpre-
tation in the geometrical characteristics of the shape. The eigenvalues of
the Laplace-Beltrami operator is strictly related to energy and therefore
to an intrinsic notion of scale in the shape M, so I decide to replace the
time with the energy defining the WKS as the average probability (over
time) to measure a particle in lMx :

WKS(E, lMx ) = lim
T→∞

1

T

∫ T

0
|ψE(lMx , t)|2 (3.9)

Since the functions of e−iEkt are orthogonal for the L2 norm, simply
substituting Equation (3.8) into Equation (3.9) I obtain for shape M
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Figure 3.5: First 5 steps of temporal evolution of the wave equation on target
shape N

and N respectively:

FctMx = WKS(E, lMx ) =
∞∑
k=0

φk(l
M
x )2f2E(Ek)

2

FctNx = WKS(E, lNx ) =
∞∑
k=0

φk(l
N
x )2f2E(Ek)

2

(3.10)

The eigenvalues of the Laplace-Beltrami operator is strictly related to
energy and therefore to an intrinsic notion of scale in the shape M. To
derive a descriptor which characterizes the properties of the shape at
different scales independently we merely need to choose the appropriate
distributions f2E in (3.10) , and to define an appropriate distance between
wave kernels.

3.3.3 Matrix C

Finally, I have all the elements that I need to compute the functional
matrix C, that represents the transformation TF from the source shape
M to the target shape N.
The simplest method for recovering an unknown functional map between
M and N shapes is to solve the following optimization problem:

C = min
P

∑
x

‖ PFctNx − FctMx ‖2F +α
∑
k

‖ φMk P − PφNk ‖2F (3.11)

where FctNx are the wake kernel descriptors computed with (3.10) of
source shape M, FctMx are the wake kernel descriptors computed with
(3.10) of the target shape N, φMk are the k selected Laplace-Beltrami
eigenfunctions on the souce shape M, φNk are the k selected Laplace-
Beltrami eigenfunctions on the target shape N and α is a scalar weight
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parameter. As the shapes are approximately isometric and the descrip-
tors are well-preserved by the (unknown) map, then this procedure
already gives a good approximation of the underlying map.
The second part of the optimization function is called Operator Com-
mutativity Constraint and assert that, given functional operator, as
Laplace-Beltrami eigenfunctions, on shapes M and N it may be natural
to require that the functional map C commute with φMk and φNk respec-
tively. After the optimization problem, I obtain a functional maps C of
size k × k that encodes the transformation from the functional space of
N to that of M as in equation (3.11). It is possible to see a graphical
representation of matric C of size 60× 60 in figure 3.6.

Figure 3.6: Matrix C of size 60× 60

3.3.4 Conversion to Point-to-Point Map

Now I have a functional matrix C of size k × k that encodes the trans-
formation from the functional space of N to that of M ; but I need to
return to a point-to-point mapping (figure 3.7) to evaluate how the
thickness function is trasferred from the source shape M to the target
shape N.
Given a matrix ΦM of the Laplace-Beltrami eigenfunctions of M, where
each column corresponds to a point and each row to an eigenfunction, I
can find the image of all the functions centered at points of M simply
as CΦM . Therefore an efficient way to find correspondences between
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points is to consider for every point of CΦM its nearest neighbor in ΦN .
To obtain this, I decided to use the K-Nearest Neighbors algorithm.

pC = KNN(CΦM ,ΦN ) (3.12)

finds the nearest neighbor in ΦM for each query point in ΦN and returns
the indices of the nearest neighbors in a column vector. These column
vector has the same number of rows as ΦN .

Figure 3.7: Point-to-point mapping obtained by equation (3.12)

3.3.5 Evaluation of Thickness

The goal is to distinguish healthy patients from those presenting the first
symptoms of the disease. As described in chapter 2, one of the symp-
toms of Huntington’s disease is the death of some neurons in the brain
and the consequent atrophy of the brain organ. By cerebral atrophy
we mean the reduction of brain tissue, consequent to the necrosis and
shrinkage of the cells that make up the aforementioned tissue. Brain
atrophy involves a loss of the functions performed by the brain. The
extent of this loss depends on the extent of the brain areas affected by
the processes of cell necrosis and shrinkage and it is possible to perceive
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Algorithm 3 Functional Maps

Input : Source shape M, target shape N
Output :Functional matrix C

1 Choice φMi ∈ R|M |×i and φNj ∈ R|N |×j // Compute the first i

Laplace-Beltrami eigenfunctions of M and the first j Laplace-Beltrami

eigenfunctions of N.

2 Select φMk ∈ R|M |×k and φNk ∈ R|N |×k // The first k

Laplace-Beltrami eigenfunctions of M and the first k Laplace-Beltrami

eigenfunctions of N.

3 Choose lMx ∈M and lNx ∈ N // Select x landmark on M and x

landmarks on N

4 [FctMx ,FctNx ]←−WKS (lMx , l
N
x , φ

M
k , φ

N
k ) // Compute descriptors as the

average probabilities of qantum particles of different energy levels

to be measured in lMx on M and in lNx on N.

5 C ← min
P

∑
x

‖ PFctNx − FctMx ‖2F +α
∑
k

‖ φMk P −

PφNk ‖2F // Minimization problem for C resulting in a matrix of size

k × k and that encodes C : F(N,R)→ F(M,R).

6 pC ← KNN(CΦM ,ΦN ) // find the point-to-point map pC

with K-Nearest Neighbors algorithm, where ΦM and ΦN are the matrices

of the Laplace-Beltrami eigenfunctions of M and N

differences between a healthy patient and a sick patient from the loss of
volume mainly caused by thinning.
Consequently, given four visits, V1, V2, V3, V4, which represent the visits
at time t = 1, 2, 3, 4; , we found the point-to-point correspondences
between the pairs (V1, V2), (V1, V3), (V1, V4). So, the point-to-point map-
ping has changed according to the degeneration / non-degeneration of
the patient’s brain and consequently will transfer the thickness function
more or less precisely.
It will then be possible to analyze the difference in thickness between the
various (V1, V2), (V1, V3), (V1, V4) pairs and verify whether this reduction
is accentuated in the case of a patient in which the first symptoms of
disease begin to arise compared to healthy patients.
At this point I find a point-to-point correspondence between the original
shape and the target shape. Thanks to the use of Freesurfer, in addition
to extrapolating the surfaces of the hemispheres of the brain, it was pos-
sible to obtain a thickness value for each point belonging to the source
and the target shapes. These values can represent a ThM function on
shape M and a ThN function on shape N. Through the point-to-point
correspondence obtained, it is therefore possible to transfer the values
of the ThM function on the target shape N, thus obtaining a ThM→N

vector.
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What we want to do is see if it is possible to get a better registration
of the brains using the functional map extracted thanks to the Func-
tional Maps algorithm, instead of using the global registration made by
Freesurfer. In the best case, i.e. in which the patient is healthy, cellular
degeneration should be minimal and therefore the difference

∆th = ThM→N − ThN (3.13)

between ThM→N and ThN should tend to very low values. On the other
hand, if a patient already presents even mild symptoms of Huntington’s
disease, as the mapping would be less precise, ∆th would reach higher
values allowing us to distinguish in this way healthy and sick patients.
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Chapter 4

Dataset

In this chapter I will show the dataset on which the two methods
presented in the previous chapter (3) were performed. In particular,
section 4.1 will describe what the dataset contains, while section 4.2
will explain how these data have been filtered, tuned and extracted to
be used later.

4.1 Dataset Composition

As mentioned above, I had both a transversal and a longitudinal study
available. The dataset is made up of 85 total patients, divided into 44
presymptomatic patients (earlyHD) and 41 healthy patients (control).
For each earlyHD, 4 visits are available, carried out approximately one
year from one to the other. As for the control patients, 7 visits are
available at the same time distance. Of these patients, 48 are female,
while the remaining 37 are male. Other data are collected in the table
4.1.

control earlyHD

Number Mean Age Std Age Number Mean Age Std Age

female 23 46.3 10.9 25 48.6 10.3

male 18 42.8 8.4 19 45.2 9.4

Table 4.1: Dataset description



4.2 How Data Was Preprocessed

From the dataset, thanks to the use of Freesurfer, I first obtained a
volumetric reconstruction of the patients’ brains, from which I then
extracted the white surface and calculated the thickness as the difference
between the white surface and the pial surface. In order to use and
process this data I have coded the white surface in an .ASC file organized
as follows: the first row contains the total number of points and the
number of triangular faces that make up the shape of the white surface;
each subsequent line indicates a point on the surface and contains its
coordinates on a three-dimensional plane (figure 4.1); after the list of
all points, triplets of three numbers are listed. Each trio indicates a
face and which points constitute it (figure 4.2). Each hemisphere of the
brain has a variable number of points and consequently also of faces,
but all of them are between 138,000 and 144,000 points and 283,000
and 288,000 faces. Thanks to this file, I was then able to reconstruct
the meshes of the brain hemispheres necessary to be able to apply the
Functional Maps algorithm.
As for the thickness, the procedure is similar but in this case the
corresponding thickness value is indicated next to the coordinates of a
point (figure 4.3).
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Figure 4.1: First part of file .ASC that describes the white surface
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Figure 4.2: Second part of file .ASC that describes the white surface
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Figure 4.3: File .ASC that describes thickness
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Chapter 5

Results Analysis

In this chapter, I will present the results obtained from the two methods
explained in chapter 3, dividing the analysis into two sections. The
sections will be dedicated respectively to the two methods used where I
will also show the process chosen for the evaluation of the results. In
particular, the results are validated by the use of two statistical tests:
the Kruskal-Wallis test and the Wilcoxon Rank Sum test, explained in
detail in the first section.

5.1 Freesurfer Data Analysis

I had both a cross-sectional study (visits of different patients) and a
longitudinal study (visits of the same patient after a certain period
of time, equivalent to about one year). In this way it was possible to
extract the values of the cortical thickness both for different patients and
for the same patient for different years. From the analysis of these data,
the goal was to try to be able to classify healthy patients (control) from
those affected by the first symptoms of Huntington’s disease (earlyHD)
thanks to a study on the patients’ cortical thickness.
As explained in chapter 3, through the formula 3.5 the goal is to highlight
a statistically evident degeneration of thickness in earlyHD patients,
compared to control patients. As mentioned in chapter 4, the brain of
each patient is analyzed separately in the right and left hemisphere as
can be seen in figures 5.1 and in figure 5.2. Figure 5.3 instead combines
in a single graph the results obtained on the two hemispheres. In the
last figure (5.4), I plot, for each time instant, the average of the values.

5.1.1 Kruskal-Wallis test

In Statistics, the Kruskal-Wallis test ([24]) is a non-parametric method
to verify the equality of the medians of different groups; that is, to verify



Figure 5.1: Freesurfer Data Analysis: results obtained on the right hemispheres
of patients. Each blue broken line indicates an earlyHD patient, while the red
ones indicate control patients. The line is obtained by joining the values obtained
through equation 3.1, calculated for each time instant. Time instants, ranging in
the interval [2,7], are indicated on the horizontal axis, while the total value of the
decrease in thickness with respect to the time instant t = 1 (the first available
visit) are indicated on the vertical axix.

that these groups come from the same population (or from populations
with the same median). It is named after its authors William Kruskal
and W. Allen Wallis. This method is the non-parametric correspondent
of the analysis of variance where data is replaced by their rank, and is
usually used when a normal population distribution cannot be assumed.
Using this statistical test, the goal is to demonstrate that the ”behavior”
of the cortical thickness of a healthy patient (control) differs from that
of a presymptomatic patient (earlyHD).
Specifically, I test:

• Null hypothesis: which states that the set of values calculated
through equation 3.5 on healthy patients (control) and the set
of values calculated on presymptomatic patients (earlyHD) come
from the same distribution with the same median, which means
that the values tested are attributable to a single group. We expect
to reject this hypothesis, as we believe that the behavior between
the two groups clearly diverges.
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Figure 5.2: Freesurfer Data Analysis: results obtained on the left hemispheres
of patients. Each blue broken line indicates an earlyHD patient, while the red
ones indicate control patients. The line is obtained by joining the values obtained
through equation 3.5, calculated for each time instant. Time instants, ranging in
the interval [2,7], are indicated on the horizontal axis, while the total value of the
decrease in thickness with respect to the time instant t = 1 (the first available
visit) are indicated on the vertical axix.

• Alternative hypothesis: which states that the set of values cal-
culated through equation 3.5 on healthy patients (control) and
the set of values calculated on presymptomatic patients (earlyHD)
come from different distributions with different medians, which
means that the tested values are attributable to two separate
groups. We expect to accept this hypothesis because it would
prove statistical evidence that the decrease in cortical thickness is
attributable to the onset of Huntington’s disease.

For the test I used a significance level of 5%. The analysis, which I run
with these tests, returns a p-value. If the p-value reaches and exceeds
a value of 0.05 then the null hypothesis is accepted, otherwise it will
be discarded and the alternative hypothesis accepted. The lower the
p-value is, the higher is the evidence of the different distribution of the
analyzed groups.
The problem with this statistical test is that the samples must be the
same length. Therefore, only the time interval [1,4] was considered even
if the interval available for control patients was [1,7].
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Figure 5.3: Freesurfer Data Analysis: results obtained on the whole brain of
patients. Each blue broken line indicates an earlyHD patient, while the red ones
indicate control patients. The line is obtained by joining the values obtained
through equation 3.1, calculated for each time instant. Time instants, ranging in
the interval [2,7], are indicated on the horizontal axis, while the total value of the
decrease in thickness with respect to the time instant t = 1 (the first available
visit) are indicated on the vertical axix.

The Kruskal-Wallis test was performed on both the right and left hemi-
sphere and the entire brain of the patients. The results obtained are
shown in figures 5.5, 5.6, 5.7. In all three tests the null hypothesis was
rejected. This means that the method used was able to achieve its goal,
which is to distinguish control patients and earlyHD patients.

It is possible to extend the analysis by performing a multiple com-
parison test using the information obtained from the Kruskal-Wallis
test which allows to return a matrix of pairwise comparison results.
Each row of the matrix represents a test and there is a row for each
pair of groups. The items in the row indicate the compared means,
the estimated difference in the means, and a confidence interval for the
difference.
A graphic representation of the test is shown in figure 5.8.
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Figure 5.4: Freesurfer Data Analysis: this plot shows the average of the results
for each hemisphere of the brain. Time instants, ranging in the interval [2,7],
are indicated on the horizontal axis, while the average of the total value of the
decrease in thickness with respect to the time instant t = 1 (the first available
visit) is indicated on the vertical axix.

5.1.2 Wilcoxon Rank Sum Test

The Wilcoxon rank sum test ([25]) is a nonparametric test for two
populations when samples are independent. If X and Y are independent
samples with different sample sizes, the test statistic returns the rank
sum of the first sample. The Wilcoxon rank sum test is equivalent to the
Mann-Whitney U-test. The Mann-Whitney U-test is a nonparametric
test for equality of population medians of two independent samples X
and Y.
In my case, I used the two-sided Wilcoxon rank sum test to demonstrate
that the ”behavior” of the cortical thickness of a healthy patient (control)
differs from that of a presymptomatic patient (earlyHD). A substantial
difference to note is that this test does not work by comparing groups
of samples (such as Kruskal-Wallis test) but compares only two samples.
In order to use this method I have therefore created two vectors: the
first contains all the values calculated on the control patients while
the second contains all the values calculated on the earlyHD patients.
The advantage of this test compared to the previous one, however, is
that here the samples can have different lengths allowing me to use the
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calculated data along the entire time interval.
In particular, I test:

• Null hypothesis: which states that the set of values calculated
through equation 3.5 on healthy patients (control) and the set
of values calculated on presymptomatic patients (earlyHD) are
samples from continuous distributions with equal medians. We
expect to reject this hypothesis, as we believe that the behavior
between the two samples clearly diverges.

• Alternative hypothesis: which states that the set of values cal-
culated through equation 3.5 on healthy patients (control) and
the set of values calculated on presymptomatic patients (earlyHD)
come from different distributions with different medians, which
means that the tested values are attributable to two separate
samples. We expect to accept this hypothesis because it would
prove statistical evidence that the decrease in cortical thickness is
attributable to the onset of Huntington’s disease.

For the test I used a significance level of 5%. The analysis, which I run
with these tests, returns a p-value. If the p-value reaches and exceeds
a value of 0.05 then the null hypothesis is accepted, otherwise it will
be discarded and the alternative hypothesis accepted. The lower the
p-value is, the higher is the evidence of the different distribution of the
analyzed groups.
The Wilcoxon Rank Sum Test was performed on both the right and left
hemisphere and the entire brain of the patients.
Another alternative hypothesis was also tested. Instead of verifying that
the two samples have different medians, it is tested if the median of the
data concerning control patients is lower than that concerning earlyHD
patients. The results obtained are shown in table 5.1 and 5.2.

P-value Result of the Hypothesis test

right hemisphere 0.0251 Null Hypothesis Rejected

left hemisphere 0.0426 Null Hypothesis Rejected

entire brain 0.0026 Null Hypothesis Rejected

Table 5.1: Freesurfer Data Analysis: Wilcoxon rank sum test. Null hypothesis of
equal medians.

Another experiment performed was to try to compare the degenera-
tion of thickness in the brains of control patients compared to earlyHD
patients, not using all the available visits but progressively reducing this
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P-value Result of the Hypothesis test

right hemisphere 0.0125 Null Hypothesis Rejected

left hemisphere 0.0213 Null Hypothesis Rejected

entire brain 0.0013 Null Hypothesis Rejected

Table 5.2: Freesurfer Data Analysis: Wilcoxon rank sum test. Alternative hypoth-
esis is that the median of control patients is lower than the median of earlyHD
patients.

number to verify until I was able to reject the null hypothesis of the test.
Tables 5.3, 5.4, 5.5 summarize the results obtained on different time
interval for the right, left or entire brain of the patients respectively. As
can be deduced from the results reported, the null hypothesis is accepted
only considering the time interval [1,2], i.e. taking into account only
one visit after the first one. In the rest of the cases, however, it appears
statistically evident that healthy patients and sick patients have two
different distributions, with different medians.

Time Interval P-value Result of the Hypothesis test

[1,4] 3.43e−6 Null Hypothesis Rejected

[1,3] 0.0043 Null Hypothesis Rejected

[1,2] 0.4844 Null Hypothesis Accepted

Table 5.3: Freesurfer Data Analysis: Wilcoxon rank sum test on different time
interval on the right hemisphere of the brain.

Time Interval P-value Result of the Hypothesis test

[1,4] 1.608e−6 Null Hypothesis Rejected

[1,3] 0.0169 Null Hypothesis Rejected

[1,2] 0.6761 Null Hypothesis Accepted

Table 5.4: Freesurfer Data Analysis: Wilcoxon rank sum test on different time
interval on the left hemisphere of the brain.
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Time Interval P-value Result of the Hypothesis test

[1,4] 2.453e−10 Null Hypothesis Rejected

[1,3] 1.962e−4 Null Hypothesis Rejected

[1,2] 0.4328 Null Hypothesis Accepted

Table 5.5: Freesurfer Data Analysis: Wilcoxon rank sum test on different time
interval on the entire brain.

5.2 Functional Maps Data Analysis

As for the previous method, the goal is to be able to classify (control)
patients from those (earlyHD) thanks to a study on the patients’ cortical
thickness. As explained in chapter 3, through the formula 3.13 the goal is
to highlight a statistically evident degeneration of thickness in earlyHD
patients, compared to control patients.
As for the first method, the analysis is made on right (figure 5.9) and
left hemisphere (figure 5.10) and on the entire brain of the patients
(figure 5.11). In the last figure (5.12), I plot, for each time instant, the
average of the values.

5.2.1 Kruskal-Wallis test

As for the previous method, I used the Kruskal-Wallis test to demonstrate
that the ”behavior” of the cortical thickness of a healthy patient (control)
differs from that of a presymptomatic patient (earlyHD). For the test
I used a significance level of 5%. The analysis, which I run with these
tests, returns a p-value. If the p-value reaches and exceeds a value of
0.05 then the null hypothesis is accepted, otherwise it will be discarded
and the alternative hypothesis accepted. The Kruskal-Wallis test was
performed on both the right and left hemisphere and the entire brain of
the patients. The results obtained are shown in figures 5.13, 5.14, 5.15.
In all three tests the null hypothesis was rejected. This means that the
method used was able to achieve its goal, which is to distinguish control
patients and earlyHD patients.

I extend the analysis by performing a multiple comparison test
using the information obtained from the Kruskal-Wallis test; a graphic
representation of the test is shown in figure 5.16.

5.2.2 Wilcoxon Rank Sum Test

Also for this second metheod, I used the two-sided Wilcoxon rank sum
test to test the results. I used a significance level of 5%. If the p-value
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reaches and exceeds a value of 0.05 then the null hypothesis is accepted,
otherwise it will be discarded and the alternative hypothesis accepted.
The Wilcoxon Rank Sum Test was performed on both the right and left
hemisphere and the entire brain of the patients.
The results obtained are shown in table 5.6 and 5.7.

P-value Result of the Hypothesis test

right hemisphere 0.0064 Null Hypothesis Rejected

left hemisphere 0.0026 Null Hypothesis Rejected

entire brain 3.6e−5 Null Hypothesis Rejected

Table 5.6: Functional Maps Data Analysis: Wilcoxon rank sum test. Null hypothesis
of equal medians.

P-value Result of the Hypothesis test

right hemisphere 0.0032 Null Hypothesis Rejected

left hemisphere 0.0013 Null Hypothesis Rejected

entire brain 1.8e−5 Null Hypothesis Rejected

Table 5.7: Functional Maps Data Analysis: Wilcoxon rank sum test. Alternative
hypothesis is that the median of control patients is lower than the median of
earlyHD patients.

The same experiment performed in the first method tries to com-
pare the degeneration of thickness in the brains of control patients
compared to earlyHD patients, not using all the available visits but
progressively reducing this number to verify until I was able to reject the
null hypothesis of the test. Tables 5.8, 5.9, 5.10 summarize the results
obtained on different time interval for the right, left or entire brain of
the patients respectively. As can be deduced from the results reported,
the null hypothesis is accepted only considering the time interval [1,2],
i.e. taking into account only one visit after the first one. In the rest of
the cases, however, it appears statistically evident that healthy patients
and sick patients have two different distributions, with different medians.
Even with this method I therefore achieve the set goal, that is to be
able to identify Huntington’s patients at a presymptomatic stage.
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Time Interval P-value Result of the Hypothesis test

[1,4] 1.015e−5 Null Hypothesis Rejected

[1,3] 0.0030 Null Hypothesis Rejected

[1,2] 0.2655 Null Hypothesis Accepted

Table 5.8: Functional Maps Data Analysis: Wilcoxon rank sum test on different
time interval on the right hemisphere of the brain.

Time Interval P-value Result of the Hypothesis test

[1,4] 2.284e−6 Null Hypothesis Rejected

[1,3] 0.0025 Null Hypothesis Rejected

[1,2] 0.1561 Null Hypothesis Accepted

Table 5.9: Functional Maps Data Analysis: Wilcoxon rank sum test on different
time interval on the left hemisphere of the brain.

Time Interval P-value Result of the Hypothesis test

[1,4] 7.118e−11 Null Hypothesis Rejected

[1,3] 1.895e−5 Null Hypothesis Rejected

[1,2] 0.0677 Null Hypothesis Accepted

Table 5.10: Functional Maps Data Analysis: Wilcoxon rank sum test on different
time interval on the entire brain.
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(a) Kruskal-Wallis ANOVA table

(b) Kruskal-Wallis boxplot. CN stands for control and HD stands for earlyHD

Figure 5.5: Freesurfer Data Analysis: results of Kruskal-Wallis test on the right
hemisphere of patients. P-value is equal to 3.421e−6. The returned p-value
indicates that Kruskal-Wallis test rejects the null hypothesis that control and
earlyHD come from the same distribution at a 5% significance level. The table (A)
provides additional test results, and the boxplot (B) visually presents the summary
statistics for each patient in each group.
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(a) Kruskal-Wallis ANOVA table

(b) Kruskal-Wallis boxplot. CN stands for control and HD stands for earlyHD

Figure 5.6: Freesurfer Data Analysis: results of Kruskal-Wallis test on the left
hemisphere of patients. P-value is equal to 1.602e−5. The returned p-value
indicates that Kruskal-Wallis test rejects the null hypothesis that control and
earlyHD come from the same distribution at a 5% significance level. The table (A)
provides additional test results, and the boxplot (B) visually presents the summary
statistics for each patient in each group.
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(a) Kruskal-Wallis ANOVA table

(b) Kruskal-Wallis boxplot. CN stands for control and HD stands for earlyHD

Figure 5.7: Freesurfer Data Analysis: results of Kruskal-Wallis test on the entire
brain of patients.P-value is equal to 4.906e−11. The returned p-value indicates
that Kruskal-Wallis test rejects the null hypothesis that control and earlyHD come
from the same distribution at a 5% significance level. The table (A) provides
additional test results, and the boxplot (B) visually presents the summary statistics
for each patient in each group.
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(a) Multiple comparison test of means for right hemisphere

(b) Multiple comparison test of means for left hemisphere

(c) Multiple comparison test of means for the entire brain

Figure 5.8: Freesurfer Data Analysis: multiple comparison test of means. It displays
a graph with each group mean represented by a symbol and an interval around the
symbol. Two means are significantly different if their intervals are disjoint, and are
not significantly different if their intervals overlap.
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Figure 5.9: Functional Maps Data Analysis: results obtained on the right hemi-
spheres of patients. Each blue broken line indicates an earlyHD patient, while
the red ones indicate control patients. The line is obtained by joining the values
obtained through equation 3.13, calculated for each time instant. Time instants,
ranging in the interval [2,7], are indicated on the horizontal axis, while the total
value of the decrease in thickness with respect to the time instant t = 1 (the first
available visit) are indicated on the vertical axix.
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Figure 5.10: Functional Maps Data Analysis: results obtained on the left hemi-
spheres of patients. Each blue broken line indicates an earlyHD patient, while
the red ones indicate control patients. The line is obtained by joining the values
obtained through equation 3.13, calculated for each time instant. Time instants,
ranging in the interval [2,7], are indicated on the horizontal axis, while the total
value of the decrease in thickness with respect to the time instant t = 1 (the first
available visit) are indicated on the vertical axix.
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Figure 5.11: Functional Maps Data Analysis: results obtained on the whole brain
of patients. Each blue broken line indicates an earlyHD patient, while the red
ones indicate control patients. The line is obtained by joining the values obtained
through equation 3.9, calculated for each time instant. Time instants, ranging in
the interval [2,7], are indicated on the horizontal axis, while the total value of the
decrease in thickness with respect to the time instant t = 1 (the first available
visit) are indicated on the vertical axix.
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Figure 5.12: Functional Maps Data Analysis: this plot shows the average of the
results for each hemisphere of the brain. Time instants, ranging in the interval
[2,7], are indicated on the horizontal axis, while the average of the total value of
the decrease in thickness with respect to the time instant t = 1 (the first available
visit) is indicated on the vertical axix.
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(a) Kruskal-Wallis ANOVA table

(b) Kruskal-Wallis boxplot. CN stands for control and HD stands for earlyHD

Figure 5.13: Functional Maps Data Analysis: results of Kruskal-Wallis test on
the right hemisphere of patients. P-value is equal to 1.010e−5. The returned
p-value indicates that Kruskal-Wallis test rejects the null hypothesis that control
and earlyHD come from the same distribution at a 5% significance level. The
table (A) provides additional test results, and the boxplot (B) visually presents the
summary statistics for each patient in each group.
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(a) Kruskal-Wallis ANOVA table

(b) Kruskal-Wallis boxplot. CN stands for control and HD stands for earlyHD

Figure 5.14: Functional Maps Data Analysis: results of Kruskal-Wallis test on the
left hemisphere of patients. P-value is equal to 2.273e−6. The returned p-value
indicates that Kruskal-Wallis test rejects the null hypothesis that control and
earlyHD come from the same distribution at a 5% significance level. The table (A)
provides additional test results, and the boxplot (B) visually presents the summary
statistics for each patient in each group.
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(a) Kruskal-Wallis ANOVA table

(b) Kruskal-Wallis boxplot. CN stands for control and HD stands for earlyHD

Figure 5.15: Functional Maps Data Analysis: results of Kruskal-Wallis test on
the entire brain of patients.P-value is equal to 7.102e−11. The returned p-value
indicates that Kruskal-Wallis test rejects the null hypothesis that control and
earlyHD come from the same distribution at a 5% significance level. The table (A)
provides additional test results, and the boxplot (B) visually presents the summary
statistics for each patient in each group.
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(a) Multiple comparison test of means for right hemisphere

(b) Multiple comparison test of means for left hemisphere

(c) Multiple comparison test of means for the entire brain

Figure 5.16: Functional Maps Data Analysis: multiple comparison test of means.
It displays a graph with each group mean represented by a symbol and an interval
around the symbol. Two means are significantly different if their intervals are
disjoint, and are not significantly different if their intervals overlap.
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Chapter 6

Conclusions

The goal of the work is to classify healthy patients (control) from those
affected by the first symptoms of Huntington’s disease (earlyHD) thanks
to a study on the patients’cortical thickness. In particular, the aim is
to highlight whether there is same statistical evidence in degeneration
of thickness in earltyHD patients, compared to control patients.
To achieve this goal, as shown in detail in chapter 3, I used two different
methods, one through the use of Freesurfer which allowed to obtain
a global registration of the patients’ brains, the other, through the
use of the algorithm of Functional Maps, which allowed a user-specific
registration, directly dependent on the anatomy of the brain of the
patient analyzed. Both methods were then validated through the use
of two statistical tests, the Kruskal-Wallis test and the Wilcoxon Rank
Sum test. As it is evident from the results reported in the previous
chapter (5), both methods showed an evident degeneration of the cortical
thickness of the brain of patients suffering from Huntington’s disease,
confirmed by the results of the statistical tests used.
On the one hand, it is possible to use the values of the cortical thickness
to identify an earlyHD patient, therefore still in the presymptomatic
phase. This is a positive result, because succeeding in this means
being able to start pharmacological therapies at a very early stage of
Huntington’s disease, making them much more effective and timely.
On the other hand, it is not possible to say that a user-specific brain
registration is more effective than a global brain registration since, as it
is possible to see in tables 6.1, 6.2, 6.3, the results obtained from the
tests are very similar. However, if we evaluate the p-values obtained, it is
possible to note that, unlike those obtained with the Kruskal-Wallis test,
where the values are of the same order of magnitude, those obtained
from the Wilcoxon Rank Sum test on the second method (Functional
Maps) have different orders of magnitude, as can be seen in table 6.2.
So although both methods reject the null hypothesis which states the
distribution equality for control and earlyHD patients, the lower p-values



of the second method indicate greater evidence. As proof of this, in fact,
if the test were conducted with a significance level of 1 % in the cases
concerning the right and left hemisphere of the brain, the result would
be the acceptance of the null hypothesis as regards the Freesurfer data
analysis method, unlike of the Functional Maps data analysis method
which would maintain the same results.
It is therefore possible to affirm that even if both methods achieve the
intended purpose, the second, in some cases, allows greater precision
and therefore greater evidence.
As a final consideration this is one of the few works, together with the
one on Brains by S. Melzi et al. [20], that exploits functional maps in
the medical field and it also does it successfully.

Kruskal-Wallis Freesurfer p-value Functional Maps p-value

right hemisphere 3.421e−6 1.01e−5

left hemisphere 1.602e−5 2.273e−6

entire brain 4.906e−11 7.102e−11

Table 6.1: Comparison between Kruskal-Wallis test results. Freesurfer: Freesurfer
data analysis. Functional Maps: Functional maps data analysis

Wilcoxon rank sum test Freesurfer p-value Functional Maps p-value

right hemisphere 0.0251 0.0064

left hemisphere 0.0426 0.0026

entire brain 0.0026 3.6e−5

Table 6.2: Comparison between Wilcoxon rank sum test results. Freesurfer:
Freesurfer data analysis. Functional Maps: Functional maps data analysis
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Wilcoxon rank sum test Freesurfer p-value Functional maps p-value

right hemisphere

[1,4] 3.43e−6 1.015e−5

[1,3] 0.0043 0.0030

[1,2] 0.4844 0.2655

left hemisphere

[1,4] 1.608e−6 2.284e−6

[1,3] 0.0169 0.0025

[1,2] 0.6761 0.1561

entire brain

[1,4] 2.453e−10 7.118e−11

[1,3] 1.962e−4 1.895e−5

[1,2] 0.4328 0.0677

Table 6.3: Comparison between Wilcoxon rank sum test results considering different
time interval. Freesurfer: Freesurfer data analysis. Functional Maps: Functional
maps data analysis
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