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1. Introduction
Numerical models have been successfully ap-
plied to many complex engineering fields for in
silico testing. However, some limitations may
arise in uncertainty quantification routines be-
cause of the high computational costs required.
In this work, we consider a method to signif-
icantly reduce this computational burden by
replacing a high-fidelity mathematical model,
obtained, e.g., with the finite element method
or the finite volume method, with a compu-
tationally cheap surrogate model [8]. In par-
ticular, we employ a non-parametric regression
method, namely the Gaussian process (GP), as
a surrogate model, since it is completely data-
driven and does not require an explicit knowl-
edge about the functional relationship between
input and output variables.
First, we highlight some of the main character-
istics of Gaussian processes with the aim of bet-
ter understanding how to manage them in more
complex problems, such as the lumped parame-
ter closed-loop model for the whole circulatory
network. Then we take advantage of Gaussian
processes prediction efficiency to accelerate the

sensitivity analysis and the Bayesian parameter
estimation by means of the Markov chain Monte
Carlo (MCMC) method.

2. Gaussian processes
Let f denote an (unknown) function that maps
the input x ∈ X to the output y ∈ Y, i.e.
f : X → Y. As reported in [4], a Gaussian pro-
cess is a collection of random variables, any fi-
nite number of which has a joint Gaussian distri-
bution. One of the main characteristics of Gaus-
sian processes is that they are completely iden-
tified by a mean function and a covariance func-
tion. Indeed, given the mean function µ(x) and
the covariance function k(x,x′), with x,x′ ∈ X ,
the Gaussian process for a real process f(x) can
be written as

f(x) ∼ GP(µ(x), k(x,x′)).

The mean function µ(x) reflects the average of
all the functions in the distribution evaluated
at a certain input x. On the other hand, the
covariance function k(x,x′) models the depen-
dence between the function values at different
input points x and x′.
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2.1. Covariance function and hyper-
parameters optimization

The covariance function represents a key el-
ement in Gaussian processes, since it deter-
mines the shape, smoothness and other impor-
tant properties of the function that we want to
model. For this reason, the choice of a suitable
covariance function is crucial in order to obtain
reliable predictions.
The covariance function used throughout this
work is the squared exponential covariance func-
tion, also known as the exponentiated quadratic
covariance function:

k(x,x′;σ, λ) = σ2exp

(
−∥x − x′∥2

2λ2

)
, (1)

where σ2 is called amplitude, which determines
the average distance of our function away from
its mean, and λ is called length scale, which
regulates the speed of decay of the correlation
among the points.
These quantities are called hyperparameters
and their values must be determined, even if it
may not be easy in practical applications. This
problem is treated by the training of the Gaus-
sian process, which consists of the maximization
of the log marginal likelihood with respect to the
hyperparameters.

2.2. Predictive distribution
As explained in [4], the choice of the covariance
function implies a distribution over functions

f∗ ∼ N (0,K(X∗, X∗)),

where X∗ represents the input values and the
covariance matrix K(X∗, X∗) is defined by us-
ing the squared exponential covariance function
(1) elementwise.
As explained in [4], we are not interested in
drawing random functions from the prior, but
we actually want to exploit the information
given by the training data about the function.
Given the training inputs and outputs {xi, fi|i =
1, . . . , n} and the test inputs and outputs
{x∗,j , f∗,j |j = 1, . . . , n∗}, the joint distribution
in the noise free case of the training outputs f
and of the test outputs f∗ according to the prior
is defined as[

f
f∗

]
∼ N

(
0,
[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
.

Nevertheless, in real-life situations, we only have
access to noisy function values y = f(x) + ϵ,
where ϵ is an independent identically distributed
Gaussian noise. As a consequence, we get

cov(y) = K(X,X) + σ2
nI,

where σ2
n represents noise variance. Then the

joint distribution of the noisy observed values
and the function values at the test points under
the prior can be written as[

y
f∗

]
∼ N

(
0,
[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
.

In conclusion, the predictive equations for Gaus-
sian process regression in the noisy case are
given by

f∗ |X∗, X,y ∼ N (̄f∗, cov(f∗)),

where

f̄∗ = E[f∗ |X∗, X,y]

= K(X∗, X)[K(X,X) + σ2
nI]

−1y,

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X)+

σ2
nI]

−1K(X,X∗).

2.3. Anisotropic covariance functions
The squared exponential covariance function (1)
is by definition an isotropic covariance function.
This means that it represents a suitable choice
only if the output varies uniformly in all the
directions [7]. Therefore, in order to obtain an
anisotropic version of the squared exponential
covariance function, [4] proposes to introduce
the matrix M = diag(λ)−2 as follows:

ky(xi, xj) = σ2exp
(
− 1

2
(xi−

xj)
TM(xi − xj)

)
+ σ2

nδij ,

where vector λ = (λ1, . . . , λD)
T contains the

length scales with respect to each parameter, so
that it is possible to detect, when present, the
anisotropic behaviour.
In particular, Table 1 shows how the root mean
squared error and the L∞ error reduce as we
pass from the isotropic covariance function to
the anisotropic one in a simple benchmark prob-
lem, confirming that significant improvements
are detectable if we modify the approach.
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Error Isotropic Anisotropic

RMSE 0.1077 0.0671
L∞ error 0.4339 0.2220

Table 1: Root mean squared error and L∞ error
in the isotropic and anisotropic cases.

2.4. High-fidelity circulation model
As explained in [1], since the numerical mod-
eling of the cardiovascular system is a compu-
tationally expensive problem, some high-fidelity
reduced models, such as the lumped parameter
models, can be introduced in order to minimize
the computational burden. These approaches
are based on geometrical reduction, so that it is
possible to significantly simplify the description
of spatially distributed physical systems.
Since this kind of model is particularly popular
to describe electric circuits, it is possible to es-
tablish an analogy between the circulatory net-
work and an electric circuit. This means that
a physical meaning for the electric elements we
typically find in a circuit must be provided:
• the resistance R models the dissipation due

to the fluid viscosity;
• the capacitance C models the vessel com-

pliance due to the elasticity of the wall;
• the inductance L models the inertial prop-

erties of the fluid.
Therefore, the lumped parameter closed-loop
circulation model proposed in [5] can be char-
acterized as follows:
• the systemic and pulmonary circulations

are modeled with resistance-inductance-
capacitance (RLC) circuits, one for the ar-
terial part and the other one for the venous
part;

• the four chambers (atria and ventricles)
are modeled by time-varying elastance el-
ements;

• the cardiac valves are represented as non-
ideal diodes.

2.5. Numerical experiments
We analyze the obtained results by means of the
root mean squared error and the L∞ error be-
tween the high-fidelity circulation model intro-
duced in Section 2.4 and its Gaussian process
predictions. We test the prediction efficiency
of Gaussian process regression in four different

cases with 100, 500, 1000, 2000 training val-
ues and 9000 test values, whereas the consid-
ered output is the maximum pressure in the left
ventricle pmax

LV . The idea is to let the parame-
ters in Table 2 vary in their ranges used to train
the Gaussian process, with the remaining ones
which are fixed at their baseline value.

Case Parameters

Case 1 RSYS
AR , CSYS

AR

Case 2 RSYS
AR , CSYS

AR , Eact
LV , Epass

LV

Case 3
RSYS

AR , CSYS
AR , Eact

LV , Epass
LV ,

T contr
LV , T rel

LV, tdel
LA, tdel

RA

Case 4
RSYS

AR , CSYS
AR , Eact

LV , Epass
LV ,

T contr
LV , T rel

LV, tdel
LA, tdel

RA,

RSYS
VEN, RPUL

VEN, CSYS
VEN, CPUL

VEN

Table 2: Varying input parameters of the circu-
lation model considered in the four cases.

Figure 1 shows that the prediction efficiency of
the Gaussian process posterior predictive distri-
bution improves as the number of training val-
ues increases.

(a) 100 training values (b) 500 training values

(c) 1000 training values (d) 2000 training values

Figure 1: Behaviour of Gaussian process pre-
dictions with respect to the high-fidelity model
observations with 100, 500, 1000 and 2000 train-
ing values as 4 parameters variate.
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On the other hand, it is possible to detect
a worsening of the predictions as the number
of parameters gets larger (e.g., the RMSE in-
creases from 0.0463 with 100 training values and
2 parameters to 0.2508 with 100 training values
and 12 parameters), as shown in Figure 2. How-
ever, even if a more complicated model implies
a worse prediction ability of the Gaussian pro-
cess, an improvement is always noticeable by in-
creasing the number of training values (e.g., the
L∞ error decreases from 0.7601 with 100 train-
ing values and 4 parameters to 0.0690 with 2000
training values and 4 parameters).

(a) 2 parameters (b) 12 parameters

Figure 2: Behaviour of Gaussian process predic-
tions with respect to the high-fidelity model ob-
servations with 100 training values for the cases
with 2 parameters in panel (a) and 12 parame-
ters in panel (b) respectively.

Indeed, Figure 3 shows that the errors increase
as the number of parameters gets larger, since
more varying input parameters imply a more
complex behaviour to be predicted, but they
also tend to decrease when the number of train-
ing values increases.
We can conclude that a similar trend is recog-
nizable for all the cases, but the higher the vari-
ability of the output, the more demanding the
training of the Gaussian process, since an in-
crease in the number of training values implies
a significant increase in the required computa-
tional time, as shown in Table 3.

N° of training values

100 500 1000 2000

∼ 31 s ∼ 446 s ∼ 3051 s ∼ 13561 s

Table 3: Computational time required by Gaus-
sian process training depending on the number
of training values.

(a) RMSE

(b) L∞ error

Figure 3: Root mean squared error and L∞ er-
ror for each number of parameters as the size of
the training sample varies.

3. Sensitivity analysis
Sensitivity analysis quantifies how sensitive
model outputs are with respect to changes in
model inputs. It can be used to determine a
criterion to rank the most influential input pa-
rameters and, conversely, to identify which of
them do not have a strong effect on a specific
output.
As reported in [3], in general, sensitivity anal-
ysis approaches can be divided in two groups:
local and global methods. Basically, local meth-
ods are employed to analyze the impact of input
parameters at a specific point in the parameter
space, whereas global methods examine the sen-
sitivity with regard to the entire parameter dis-
tribution.
In this work, we consider a variance-based global
sensitivity method that describes the amount of
output variance generated from the variation of
each parameter [6]. This analysis is performed
by means of the Sobol indices, which provide
direct information about the contribution of a
specific parameter on the total variance of the
output.
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As explained in [2], given a real process f : Rd →
R, it is possible to write

Y = f(X),

where the input X = (X1, . . . , Xd)
T consists of d

statistically independent random variables with
known distributions, since the exact value of the
input parameters is unknown. Similarly, this
makes the model output Y a random variable
as well. The first order Sobol indices are defined
as

Si =
Vi

V(Y )
,

where

Vi = V(fi(Xi)) = VXi(EX∼i [Y |Xi]).

The notation X∼i is used to indicate the set of
all the input factors excluding Xi.

3.1. Numerical tests
We perform the sensitivity analysis by means
of the first order Sobol indices in the four cases
reported in Table 2, whereas the considered out-
put is always the maximum pressure in the left
ventricle pmax

LV . The goal is to prove that it is
possible to obtain a reliable ranking of the in-
put parameters with respect to Gaussian pro-
cess predictions by comparing these results with
those obtained in the high-fidelity model.
These results are in line with what we observed
in Section 2.5; indeed, first order Sobol indices
with respect to Gaussian process predictions are
approximately equivalent to those obtained with
the high-fidelity model in the first two cases,
where a better posterior predictive distribution
is obtained. On the other hand, when many
varying input parameters are involved, the esti-
mation becomes more challenging. Indeed, Fig-
ures 4–5 show that the values of the first or-
der Sobol indices significantly change for some
parameters from the lowest number of training
values to the greatest one.
We can observe that the reliability of the sen-
sitivity analysis performed on Gaussian process
predictions is rather low for a small number of
training values. For instance, the order of pa-
rameters with lower impact on the output con-
siderably changes from the case with minimum
number of training values to the case with max-
imum number of them. However, these charts
suggest that it is always possible to obtain a

significant improvement by increasing the size
of the training sample, even if, as we reported
in Table 3, this implies a trade-off in terms of
computational cost.

(a) 100 training values (b) 2000 training values

(c) High-fidelity model

Figure 4: Comparison between pie charts with
respect to Gaussian process predictions for the
minimum/maximum number of training values
and the one obtained from the high-fidelity cir-
culation model in the case with 12 parameters.

(a) 100 training values (b) 2000 training values

(c) High-fidelity model

Figure 5: Comparison between Pareto charts
with respect to Gaussian process predictions for
the minimum/maximum number of training val-
ues and the one obtained from the high-fidelity
circulation model in the case with 12 parame-
ters.

5



Executive summary Alessandro Pirozzi

4. Bayesian parameter estima-
tion

As reported in [6], the patient-specific person-
alization of the circulation model requires the
estimation of several parameters starting from
clinical measurements. However, not all the re-
quired scalar quantities are usually available for
this purpose and, when present, they are af-
fected by noise.
For this reason, we exploit the Markov chain
Monte Carlo method, which represents a suit-
able Bayesian method that allows us to solve
the inverse problem (i.e. estimating parameters
from outputs) taking into account the impact
of the noise that affects the measurement of the
quantities of interest and that reflects in uncer-
tainty on parameters.
This method is non-intrusive, since it analyzes
a large number of model evaluations for differ-
ent parameter values with the aim of providing
a suitable approximation of the posterior dis-
tribution. Moreover, since it only requires the
model outputs, we can use Gaussian processes
instead of the high-fidelity circulation model in
order to reduce the computational time.

4.1. Numerical tests
To prove the capability of Gaussian processes
to accelerate the estimation of parameters, we
proceed as follows:

• we perform a simulation with the high-
fidelity circulation model from which we de-
rive a set of observations y to which we add
a synthetic measurement noise;

• we employ the Gaussian process instead
of the high-fidelity circulation model in
the Bayesian estimation of parameters per-
formed by means of the MCMC method;

• we validate the obtained results with re-
spect to the values used to generate the ob-
servations.

We consider a couple of parameters, namely the
systemic arterial resistance RSYS

AR and the sys-
temic arterial capacitance CSYS

AR , whereas the re-
maining ones are fixed at their baseline value.
On the other hand, the quantities of interest
considered are the minimum and maximum ar-
terial pressures. For parameters under investi-
gation we prescribe a value that is slightly differ-
ent from the baseline one, such as RSYS

AR = 0.52

mmHg smL−1 and CSYS
AR = 1.5 mL mmHg−1.

Then we demonstrate that it is possible to re-
duce the computational burden associated to
the MCMC method for parameter estimation by
means of Gaussian process emulators.
The measurement errors are added as artifi-
cial noises with zero mean and variance σ2

exp =

{1.0, 0.1, 0.01} mmHg2 over the output values
given by the high-fidelity model. On the other
hand, the error corresponding to the usage of
Gaussian process predictions for outputs esti-
mation in the MCMC method is given by the
observations noise variances obtained from the
optimization of GP hyperparameters.
Figure 6 shows the comparison between the out-
put of the Bayesian parameter estimation for the
parameters pair (RSYS

AR , CSYS
AR ) obtained by using

the high-fidelity circulation model and the one
obtained by exploiting Gaussian process predic-
tions. In particular, we can observe the 90%
credibility region and the prescribed exact value
of parameters. Notice that for each value of the
noise, the credibility region contains the exact
value of the parameters and, as expected, for
larger values of the noise, the size of the credi-
bility region increases, since the estimate is more
uncertain.
Moreover, it is possible to observe that the size
of the credibility region in the high-fidelity case
is slightly smaller for each value of the mea-
surement noise. However, this does not repre-
sent an advantageous trade-off if compared with
the Gaussian process based approach, since it
results in a computationally expensive method
(see Table 4) with no substantial improvements,
especially as the measurement noise gets larger.

Gaussian process
based approach

High-fidelity
model

∼ 1153 s ∼ 13728 s

Table 4: Computational time required for
Bayesian parameter estimation by exploiting
Gaussian processes and the high-fidelity circu-
lation model.
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(a) σ2
exp = 1.0 mmHg2

(b) σ2
exp = 0.1 mmHg2

(c) σ2
exp = 0.01 mmHg2

Figure 6: Posterior distributions on the pa-
rameters pair (RSYS

AR , CSYS
AR ) computed by means

of the MCMC method with the high-fidelity
model (on the left) and the Gaussian process
for σ2

exp = {1.0, 0.1, 0.01} mmHg2.

5. Conclusions
In this work, we observed that Gaussian pro-
cesses are a powerful tool in making predictions
also thanks to the fact that they are easily inter-
pretable and not particularly computationally
demanding. Indeed, we proved that Gaussian
processes provide accurate estimations in sensi-
tivity analysis and in Bayesian parameter esti-
mation.
Some issues may arise when the number of vary-
ing input parameters is large, even if this prob-
lem could be successfully overcome by increasing
the number of training values. However, this is
not always possible in real-life problems; indeed,
it may happen that a sufficiently large amount
of data is not available for practical difficulties
linked to data collection.
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