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"Remember to look up at the stars and not down at your feet.
Try to make sense of what you see and wonder about what makes the
Universe exist. Be curious. And however difficult life may seem, there

is always something you can do and succeed at.
It matters that you don’t just give up."

Stephen Hawking





Abstract

The effect of a secondary attractor on the dynamics of a spacecraft orbiting
around a primary, has been always a challenge to be modeled in an efficient

and, at the same time, accurate way. The equations of the Restricted Three Body
Problem accomplish this task, but they require to be numerically integrated since
they do not have a close form solution. Such numerical integration results to be
expensive in terms of computational time when the motion of the probe shall be
predicted for a long period.
In recent years, the Keplerian Map theory was developed with the purpose of
approximating the solution of such equations saving time and with good accu-
racy, possibly with a (semi-)analytical model. Implemented for the first time by
Petrosky and Broucke in 1988, the latest evolution of the theory includes in its
mathematical model the eccentric motion of the third body and it is obtained
without making assumptions on the mass parameter of the system. The approach
was applied to propagate the motion of a body in different scenarios, as in the
Jovian system or for a Near Earth Asteroid. However, it is still not clear when
it is possible or not to approximate the trajectory with good accuracy. In order
to know a priori if the Keplerian Map approach can be used without introducing
a significant error on the motion prediction, there is the necessity to identify an
applicability domain. This region can be identified through a comparison with
the solution obtained with the numerical integration of the three-body problem
equations.
The aim of this thesis is to determine the Keplerian Map applicability domain.
Such purpose is achieved with a sensitivity analysis in which the initial condi-
tions of the spacecraft are made to vary and then propagated. This procedure
is performed many times comparing the results with the solution of the three-
body problem through a relative percentage error. The output of this analysis
are different plots in which the error value is reported in function of some system
parameters. By reading these maps graphically, scenarios in which the theory can
be applied are recognised.
Finally, after that an applicability domain is defined, the theory is applied to
design direct retrograde orbits with the exploitation of an optimisation process,
highlighting the advantages in doing that with the Keplerian Map approach.
This thesis project is part of the project COMPASS "Control for Orbit manoeu-
vring through perturbations for application to space systems". The COMPASS
project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 679086 - COMPASS).
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Sommario

Modellare in modo efficace e allo stesso tempo accurato l’effetto di un sec-
ondo corpo sulla dinamica di uno spacecraft che sta orbitando attorno ad

un attrattore primario, è stata da sempre una sfida. Le equazioni del problema dei
tre corpi ristretto riescono in ciò, ma richiedono di essere integrate numericamente,
non avendo una soluzione in forma chiusa. Questa integrazione numerica risulta
essere dispendiosa in termini di tempo computazionale quando il moto del satellite
deve essere predetto per un lungo periodo.
Negli ultimi anni, la teoria della Keplerian Map è stata sviluppata con l’intenzione
di approssimare con buona accuratezza la soluzione di queste equazioni in modo
da risparmiare tempo nell’integrazione, essendo un modello (semi-)analitico. Im-
plementata per la prima volta da Petrosky e Broucke nel 1988, l’ultima evoluzione
della teoria include nel suo modello matematico il moto eccentrico del terzo corpo,
ed è ottenuta senza fare assunzioni sul parametro di massa del sistema. Questo
approccio è stato utilizzato per propagare il moto di un corpo in diversi scenari,
come nel sistema Gioviano o per un asteroide vicino alla Terra. Ad ogni modo,
non è ancora chiaro quando è possibile o no approssimare la traiettiera con buona
accuratezza. In modo tale da sapere a priori se la Keplerian Map può essere uti-
lizzata senza introdurre errori significanti, c’è la necessità di identificare un suo
dominio di applicabilità. Questa regione può essere trovata comparando i risultati
con quelli numerici proposti dal problema dei tre corpi.
L’obiettivo di questa tesi è di determinare il dominio di applicabilità della Ke-
plerian Map. Tale scopo è raggiunto tramite un’analisi di sensibilità nel quale
le condizioni iniziali della particella sono fatte variare e poi propagate. Questa
procedura è effettuata molte volte, comparando i risultati con quelli del problema
dei tre corpi tramite un errore relativo. L’output sono diversi grafici nei quali è
riportato il valore dell’errore in funzione di alcuni parametri del sistema, dai quali
è possibile identificare quando le soluzioni convergono.
Infine, dopo che un dominio di applicabilità è stato definito, la teoria viene appli-
cata per progettare orbite retrogradi distanti, sfruttando un processo di ottimiz-
zazione ed evidenziando i vantaggi nel fare ciò con la Keplerian Map.
Questo lavoro di tesi è parte del progetto COMPASS "Control for Orbit ma-
noeuvring through perturbations for application to space systems". Il progetto
COMPASS ha ricevuto fondi dall’European Research Council (ERC) per il pro-
gramma di ricerca e innovazione dell’European Union’s Horizon 2020 (accordo di
sovvenzione No 679086 - COMPASS).
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Symbols & Acronyms

The following list of symbols is compiled in alphabetical order.

a Semi-major axis [km]
e Eccentricity [-]
CJ Jacobi constant [-]
E Eccentric anomaly [rad]
E Orbital energy [km2/s2]
h Altitude [km]
H Hamiltonian [km2/s2]
i Inclination [rad]
J Cost function [-]
K Keplerian energy term [km2/s2]
L Libration point, Length
m Mass [kg]
M Mean anomaly [rad]
n Mean motion [rad/s]
p Generalized momentum [km2/s2]
r Distance [km]
R Distance, Disturbing function,

Rotation matrix
s State
t Time [s]
T Period [s]
U Potential function [kg km2/s2]
v Velocity [km/s]
x,X Coordinate
y, Y Coordinate
z, Z Angle, Coordinate

α Generic orbital element, Angle
γ Phasing angle [rad]
δ Angle, Coefficient
ε Error
θ Angle, True anomaly [rad]
λ Longitude [rad]
µ Mass Parameter [-]
ν True anomaly [rad]
π Number
ρ Cost function coefficient [-]
φ Latitude [rad]
Ω Right Ascension of the

Ascending Node [rad]
ω Argument of pericentre [rad]
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The following list of acronyms is compiled in alphabetical order.

CR3BP Circular Restricted Three
Body Problem

DRO Distant Retrograde Orbit
GV E Gauss’ Variational Equations
ECI Earth Centered Inertial
FOV Field Of View
LPE Lagrange’s Planetary

Equations
LV LH Local-Vertical

Local-Horizontal
MOID Minimum Orbit Intersection

Distance
MRD Minimum Relative Distance

NEA Near-Earth Asteroid
ODE Ordinary Differential Equation
QSO Quasi-Satellite Orbit
R2BP Restricted Two Body

Problem
R3BP Restricted Three Body

Problem
RAAN Right Ascension of

the Ascending Node
S{C Spacecraft
SOI Sphere Of Influence
SRP Solar Radiation Pressure
JUICE JUpiter ICy moons Explorer
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CHAPTER 1

Introduction

Since the beginning of the space age, there is the needing to predict the
motion of a satellite in order to design trajectories such that the mission

objectives are satisfied. The modeling of the system in which the spacecraft
is involved have always been a real challenge for scientists, that developed
mathematical models to reconstruct the dynamics of a probe orbiting around
a planet.
The two-body problem [1] is the most intuitive and simple model used in ce-
lestial mechanics, being a sufficiently faithful representation of the motion that
a particle follows around a major celestial body. However, it is an approxima-
tion in which the effect of perturbing bodies that simultaneously influence the
motion of a mass-less particle is neglected. This assumption leads to wrong
results when such motion is predicted for a long period, especially in environ-
ments in which the perturbing bodies are massive and/or numerous (as in the
Jovian system). For this reason, it is necessary to use a multi-body problem
to reconstruct the behavior of any space system for practical applications [2].
More accurate predictions can be obtained with the use of the three-body prob-
lem [3], in which it is accounted the presence of a third body that influences
the motion of the spacecraft. Such expansion is used when modeling any grav-
ity assist maneuver: a close encounter phenomenon widely used nowadays in
space mission design. It is a technique that allows to save propellant mass,
taking advantage of a natural energy exchange between the celestial body and
the spacecraft.
In several cases the third body acts only as a perturbation for the particle,
whose dynamics remains in majority dictated by the gravity field of the pri-
mary celestial body. This is what happens when the third body is far from the
spacecraft, and its gravity is so small with respect to the one of the primary. In
these contexts it is possible to simplify the problem, accounting only for long-
period effects of the third body, adopting the orbital perturbations technique
[4].
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Chapter 1 Introduction

In between the three-body problem and the perturbation technique, the Kep-
lerian Map theory was developed [5]. It is an approach which is born to predict
the behavior of a particle in distant encounters with a secondary attractor. Be-
ing a semi-analytical model, it allows to save the computational time required
for the numerical integration of the three-body problem equations (which have
not a close form solution). However, it is a theory that sometimes leads to
completely wrong predictions, as will be introduced in this chapter and then
explained in the following.
This study has been performed with the final target of developing a propagator
able to predict the motion of a particle considering the effect of the presence of
a third body, approximating the solution of the three-body problem. This can
be done using different models (e.g Keplerian Map, perturbations technique,
patched conics, etc...), each one applied when leading to results with higher
accuracy.
In this introductory section it is explained the state of the art in this field, then
the objectives of the thesis are meticulously listed, and finally it is presented
the thesis outline.

1.1 State of the art

As anticipated above, the simplest way to represent the motion of a spacecraft
orbiting around a celestial body is to model the system with the two-body
problem. By assuming that the mass of the spacecraft is small, it does not
affect the motion of the planet. This physical model is called Restricted Two
Body Problem (R2BP) [1]. It is the fastest and most intuitive model that can
be adopted, especially when searching for very preliminary solutions.
The mathematical model of the two-body problem is directly obtained by New-
ton’s 2nd law [1]. It has an analytical closed-form solution, such that the tra-
jectory of the particle follows different conics sections depending on its orbital
energy, allowing for an easy dynamical interpretation which can be exploited
for space missions design.
However, in most of the cases the orbital perturbations play a significant role
which shall be taken into account if a more refined solution is needed.
The path followed by a mass-less particle can be represented in a particular
set of coordinates, called Keplerian elements (since they uniquely represent an
orbit respecting Kepler’s laws). Except for the true anomaly of the particle,
it is asserted that in the two-body problem these coordinates remain constant

— 2 —



Chapter 1 Introduction

with time [1]. An extension of the R2BP used to design interplanetary tra-
jectories is the patched-conics model, in which the trajectory of the particle is
divided in different arcs, each one modelled with the two-body problem. The
gravitational attraction exerted by a celestial body on the particle is considered
only inside the body Sphere Of Influence (SOI) [1], whose size depend on the
body mass. For instance, this approach could be applied to predict the path
of a spacecraft going away from the Earth and approaching the interplanetary
space. After the particle goes outside the SOI of the Earth, only the gravita-
tional attraction of the Sun is considered.
Even if the patched-conics approach allows to design an interplanetary mission
in a short time, the solution can be used only as a preliminary one. Indeed,
because of the assumptions made, the error introduced is significantly large
in multiple cases (as when the oblateness of a celestial body provokes a non-
uniform gravity field, or when there is a strong effect of the Solar Radiation
Pressure, or when there is an atmosphere, ...). The most relevant case for this
discussion The most relevant for this discussion is when the gravitational force
exerted by two or more bodies is of the same order of magnitude, meaning that
none of them can be assumed negligible.
In order to obtain a solution that is more faithful to the exact one, it is neces-
sary to account for the effect of the orbital perturbations that alter the motion
of the particle, causing its orbital elements to vary over time. This theory is
also called Variation of Parameters [4], and it makes use of dynamics equations
that includes the effects of the orbital disturbances. If only conservative forces
are acting on the particle, the disturbing force can be described as gradient of
a potential function and its effect obtained through the Lagrange’s Planetary
Equations (LPE) [6]; if non-conservative forces are modelled (as the Aerody-
namic drag) the Gauss’ Variational Equations (GVE) [4] shall be used. These
set of equations allows to obtain the variation of the orbital elements of the
particle through numerical integration.
Whenever the study is focused only in the long-period dynamics of the parti-
cle, different applications of the perturbation approach have been developed.
A relevant one is the use of a single or double-averaging technique following the
approach of Kaufman and Dasenbrock [7], which is a semi-analytical approach
that allows to isolate long-period effects of the third-body disturbance. Ap-
plications of this method can be the re-entry prediction of a satellite through
the use of a disposal maneuver, exploiting for instance the Planetary Orbital
Dynamics [8].
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Since the studies carried out in this thesis are centered on the effect of the third
body on the motion of the particle, the Variation of Parameters will be used
considering the third-body disturbance only. Then, in Section 6, even other
perturbations will be added to the mathematical model. Works accounting for
the luni-solar disturbances and zonal harmonics, focused in Highly-Elliptical
Orbits (HEO) have been carried out exploiting a double-averaging technique
[9]. A similar procedure to develop the disturbing function is exploited in the
current studies.
When the third body effect cannot be considered as a perturbation, but it
strongly influences the particle dynamics, it is necessary to adopt a different
model, moving to the three-body problem dynamical regime. For sake of clar-
ity, it is useful to specify that in this thesis the "third body" and the "secondary
attractor" have the same meaning, being two notations used in literature for
different topics (but now are considered as the same thing).
The Circular Restricted Three-Body Problem (CR3BP) [3] is a widely used
model when working in the three-body context, since it is a good compromise
between accuracy of the solution and complexity of the mathematical model.
In the CR3BP the states of the particle are expressed in a rotating frame called
Synodic Frame, centered in the barycentre of the system. Under the assump-
tions of the CR3BP 5 equilibrium points of the system can be found [3]. These
points are widely exploited in space missions, since they allow to design tra-
jectories in which the spacecraft keeps the same position relative to the Sun
and the Earth with almost null fuel consumption for station keeping. Their
stability properties are also exploited in mission design for low-cost transfers.
An extension of the CR3BP is considered when dealing with non-circular or-
bits of the attractive bodies around their centre of mass, entering in the more
general field of the Restricted Three-Body Problem (R3BP) [3]. This model
does not benefit from the same features present in the CR3BP, but it can be
used when an high-accuracy solution is needed.
In between of the Variation of Parameters and the Three-body problem, there
is the Keplerian Map theory. Such theory makes use of the third-body potential
in the perturbation approach, to approximate the solution of the three-body
problem [10].
It was initially developed by Petrosky and Broucke [11],[12]; then it was adopted
to model the effect of successive distant encounters with the third body by Ross
and Scheeres [5], who developed a kick energy function able to predict the evo-
lution of the orbital elements after each distant passage. Afterwards, the model
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was refined by the works of Alessi et al. [13], [14], [15] and Sanchez et al. [16],
where the accuracy of the method was compared to the solution of the CR3BP.
The actual state of the art of the Keplerian Map has been reached with the
work by Giudici [17] which extended the method for the general case of the
R3BP, obtaining the model without assumptions on the mass parameter of the
system. In its work the theory is validated with the reproduction of some steps
of JUICE mission (JUpiter ICy moons Explorer) [18], and then exploited to
design a mission towards a Near Earth Asteroid (NEA).
Another model which has been developed to describe the motion of the particle
in close encounters with the third body is the Öpik’s flyby theory, explained
by Valsecchi et al. [19],[20],[21]. The method introduces further simplifications
on the CR3BP to easily predict the dynamics when the spacecraft is passing
near the secondary attractor.
Despite of the analysis done on the accuracy of the Keplerian Map theory, a
clear limit of applicability of the method has not been found yet. In recent
studies [16] a comparison of the method with the Double averaging technique
and Öpik’s flyby theory has been done, declaring that:

• The third body perturbative approach (single or double averaging) can
be more efficiently used (with respect to the Keplerian Map) whenever
the particle remains very far from the perturbative body

• In some cases the Keplerian map can also be used for encounters occurring
within the Sphere Of Influence, as long as the perturbation does not
change drastically the original Keplerian motion

These two statements can be used as starting points for the present work. The
first one suggests that it is pointless to use the Keplerian Map theory when
the third body is several sphere of influence radii far from the spacecraft. The
limit at which the use of the double averaging approach becomes advantageous
has still to be defined.
The second statement is proposing to quantify the effect of a close encounter
and exploit it as a limit for the applicability of the Keplerian Map theory. If
the flyby with the third body follows a strong variation of the particle motion,
another method shall be used to predict the trajectory instead of the Keple-
rian Map. This happens in general when the secondary attractor has an high
planetary constant, since the gravity field exerted on the particle is of the same
order of magnitude of the main attractor. However, a single parameter may
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not be sufficient to fully characterize the effect of a close encounter, and further
studies are needed in this direction.

1.2 Aim of the thesis

As aforementioned in the first part of the chapter, a series of studies has been
done searching for suitable methods that allow to approximate the solution of
the three-body problem. The purpose of such studies is to develop a propaga-
tor capable of approximating the motion of the spacecraft, exploiting different
methods and combining them. Since each single method (e.g. Öpik’s flyby
theory [19]) works well only in certain circumstances, by merging together dif-
ferent approaches it is possible to propagate the motion in every situation. It
is necessary to identify the limits of each method such that an accurate switch
can be done. The idea is that this switching procedure is done automatically
by the final propagator, hence it must be able to identify when it is better to
use a certain method instead of another one through a sharp borders definition.
Such software can be used in missions design not only to predict the trajectory,
but also to plan the effect of successive encounters independently of the dis-
tance from the disturbing body. It shall work even in systems in which there
are multiple perturbing bodies at the same time (as in the Jovian system).
Among the different methods analysed as candidates for being part of the prop-
agator, a particular and intense study is performed on the Keplerian Map the-
ory. This method constitutes the core of the propagation, acting as a "bridge"
between models considering the third body as a perturbation and models con-
sidering the third body for flybys (in which it becomes the primary attractor
within its sphere of influence).
The main thesis objective is to define an applicability domain of the Keplerian
Map approach. The identification of such region is done selecting a wide range
of particle initial conditions, which are then numerically propagated with the
Keplerian Map and the results are compared with the solution of the three-
body problem. Through this analysis it is possible to know a priori when is
better to use the Keplerian Map instead of another model as the double aver-
aging technique or the flyby theory.
The second aim of this work is to apply the method to design distant ret-
rograde orbits, as will be presented in Section 6. Such family of orbits are
usually found with a numerical analysis in the three-body problem, through
the integration of the R3BP equation [22]. The initial conditions of the probe
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are obtained with an optimisation algorithm, such that the stability period of
the orbit is imposed. This is a completely novel application of the Keplerian
Map theory that has been never done in past works. The numerical integration
of the Keplerian Map allows to save computational time with respect to the
integration of the R3BP equations, especially when the search domain of the
optimisation process is wide. The results obtained (that will be shown in the
dedicated chapter) confirmed that it is particularly advantageous to use the
Keplerian Map in such context.

1.3 Thesis outline

The different chapters of this thesis are organised sequentially as follow:

• Chapter 2: The Keplerian Map – This chapter starts with the expla-
nation of the framework in which the Keplerian Map is defined. The
three-body problem and its properties are introduced, as well as the per-
turbation technique. After that, the Keplerian Map theory is explained
through the demonstration of its mathematical model, showing how it
can be applied to predict the motion of the particle.

• Chapter 3: Limits of the Keplerian Map theory – In this chapter it is
presented the analysis on the boundaries of applications of the Keplerian
Map. This part constitutes the core of the thesis. A completely novel
analysis on the Jacobi Constant dependence is included, adding in parallel
an analysis on the energy of the particle with respect to the third body
during the close encounters. Then, the error dependence on the Minimum
Relative Distance between the particle and the third-body is studied,
concluding the chapter with remarks on the limits of the Patched Conics
approach and the explanation of how the minimum distance reached by
the particle can be analytically predicted.

• Chapter 4: Model Validation – This chapter includes practical examples
to show the validity of the results obtained in Chapter 3. Three test cases
are analysed: the first two consider the Earth-Moon system (in which the
Keplerian Map shows significant errors in the propagation) and the last
one the Jupiter-Europa system. The latter represents the scenario in
which it is possible to use the theory in order to obtain almost exact
results in the propagation.
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• Chapter 5: Alternative model – In this chapter it is explained a pos-
sible alternative model that can be used instead of the Keplerian Map
to numerically propagate the motion of the particle. The approach un-
der consideration adopts the Lagrange’s Planetary Equations in their
hyperbolic form, and it is applied when the particle enters in the sphere
of influence of the third body. However, as explained in this part, no
improvements are observed and a deeper analysis on this alternative is
needed.

• Chapter 6: Keplerian Map for trajectory design – The theory of the
Keplerian Map is used to design particular trajectories in Martian envi-
ronment, called Distant Retrograde Orbits or Quasi-Satellite Orbits. In
order to find the initial conditions of the mass-less particle, an optimisa-
tion algorithm is adopted. Through the use of the Keplerian Map theory,
the optimisation process appears to be less expensive in terms of compu-
tational time with respect to the procedure that exploit the three-body
problem equations. An additional orbital perturbation is here considered,
and also the elliptical motion of Martian moons Phobos and Deimos are
involved in the mathematical model. The output is a trajectory that can
be exploited in future space missions aimed at performing remote sensing
above Phobos and Deimos surfaces. The process to generate such orbits
is carefully explained in the first part, and then the effectiveness of the
Keplerian Map theory is highlighted.

• Chapter 7: Conclusions – The final part of the thesis starts with a
brief resume of the work presented in the previous chapters. Then, the
possible continuations in this field are proposed through suggestions on
the directions that could be taken.
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CHAPTER 2

The Keplerian map

In this chapter the Keplerian Map will be explained. As anticipated in Sec-
tion 1.1, this model has been developed to approximate the three-body prob-

lem solution making use of the third-body potential through the Lagrange’s
Planetary Equations.
The first part of this section contains a brief introduction on the framework
of the three-body problem and the perturbation approach. Afterwards, the
mathematical model of the Keplerian Map is derived step by step. Thanks
to the work done in past years [17], such derivation is carried out without
making assumptions on the mass parameter of the system. However, as will
be understood going through the definition of the model, this does not imply
that the approach can be adopted to predict the motion of the particle in all
the scenarios. Through an analysis of the error introduced, varying numerous
parameters in the initial conditions of the particle, a domain of applicability
of the Keplerian Map theory will be defined in the next chapter.

2.1 The Framework

In order to introduce the Keplerian Map theory, it is necessary to introduce
the possible models that can be used for representing the third body distur-
bance, highlighting the assumptions that each method requires and therefore
the possible domains of application.

2.1.1 Three-Body Problem

Consider a system composed by three bodies as represented in Fig. 1. Each
mass is exerting a gravitational force on the others. The masses m1 and m2

represent the primary and the secondary attractors (e.g. m1 represents the
Earth, m2 represents the Moon), while m3 identifies the spacecraft (or a gen-
eral minor body) orbiting around them. Since the spacecraft with mass m3
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Figure 1: Inertial barycentric reference frame tG,X, Y, Zu.

has a negligible mass with respect to the values of m1 and m2, it can be mod-
elled as a mass-less particle, following that it does not influence the motion of
the two massive bodies. This is the assumption characterising the Restricted
Three-Body Problem (R3BP).
The inertial reference frame tX, Y, Zu is centered in the barycentre of the sys-
tem (along the conjunction between m1 and m2). The mass parameter of the
system is defined as:

µ “
m2

m1 `m2

(1)

The position vector of the mass-less particle with respect to the barycentre of
the system is identified with r, while the position vectors of m1 and m2 from
the barycentre are identified with r1 and r2, respectively. The position vector
of m2 with respect to m1 is denominated with R (that has the same direction
of r2, but different modulus).
From the barycentre definition, it is possible to obtain that:

"

r1 “ ´µR
r2 “ p1´ µqR

(2)

The equation of motion in the inertial barycentric reference frame of the mass-
less particle can be obtained by writing the 2nd Newton’s law [1]:

:r “ ´
Gm1

‖r´ r1‖3 pr´ r1q ´
Gm2

‖r´ r2‖3 pr´ r2q (3)
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By defining µ1 “ Gm1 and µ2 “ Gm2, and inserting Eq. (2) in Eq. (3), the
equation of motion of the mass-less particle becomes:

:r “ ´
µ1

‖r` µR‖3 pr` µRq ´
µ2

‖r´ p1´ µqR‖3 pr´ p1´ µqRq (4)

Note that it is more convenient to write the equations of motion of the particle
in function of quantities that can be easily understood. This is why the equa-
tions are written in function of R, which can be obtained even from analytical
ephemerides.
Eq. (4) can be numerically integrated to obtain the states of the mass-less par-
ticle over time. However, the mathematical model of the R3BP does not have
interesting properties that can be exploited to understand better the behavior
of the system.
Introducing the assumption that the primary and secondary bodies move on
circular orbits around their barycentre, the model reduces to the Circular Re-
stricted Three-Body Problem (CR3BP).
It is better to work in a rotating (non-inertial) reference frame as shown in
Fig. 2, called Synodic reference frame.

x

y

G
𝑚!

𝑚"

𝑚#

X

Y

𝜗

𝐫𝟏
𝐫𝟐

𝐫

𝐑𝟏

𝐑𝟐

Figure 2: Non-inertial (rotating) Synodic reference frame. Axis z exiting from the
paper, coinciding with axis Z of the inertial reference frame in Fig. 1.

In this reference frame tx, y, zu, the x axis is always directed from the primary
to the secondary, the y axis lies on the orbital plane, while z is perpendicular
to it. The frame is rotating around the barycentre of the system (which is the
origin) about the z axis with constant angular velocity; as a result, m1 and m2

appear to be at rest.
It is useful to switch in non-dimensional coordinates [1] , assuming that:
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• The sum of the primary and secondary bodies are such that m1`m2 “ 1;

• The mass value of the primary ism1 “ 1´µ, and the one of the secondary
is m2 “ µ;

• The distance between m1 and m2 is equal to 1;

• The angular velocity of the frame is Ω “ 1, which means that a full
period is equal to 2π.

Therefore, the equations of motion of the particle in this frame can be written
as [1]:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

:x´ 2 9y “ x´
1´ µ

r3
1

px` µq ´
µ

r3
2

px´ 1` µq

:y ` 2 9x “ y ´
1´ µ

r3
1

y ´
µ

r3
2

y

:z “ ´
1´ µ

r3
1

z ´
µ

r3
2

z

(5)

where:
$

’

&

’

%

r1 “

b

px` µq2 ` y2 ` z2

r2 “

b

px´ 1` µq2 ` y2 ` z2

(6)

The right-hand side in Eq. (5) is the gradient of a scalar function called Three-
Body Potential U , that is defined as [1]:

U “
1

2

`

x2
` y2

˘

`
1´ µ

r1

`
µ

r2

(7)

Moreover, in the CR3BP there exists an integral of motion called Jacobi con-
stant CJ defined as:

CJ “ 2U ´ v2 (8)

where v is the particle velocity in the Synodic reference frame. The Jacobi
constant can be considered as the total energy of the particle in the rotating
frame. The existence of an integral of motion is one of the advantages of work-
ing in such frame. It can be exploited to understand the realms in which the
particle with a certain energy can moves: when the velocity of the particle
v is equal to zero, for a given value of CJ , there is a boundary in which m3

can move, respecting the relation 2U ą CJ . These boundaries are called Zero
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Velocity curves and they define the forbidden and allowed regions for the par-
ticle’s motion.
When the value of ∇U is equal to zero, the particle is in equilibrium in the
Synodic frame. There exist 5 equilibrium points, called Libration points, in
which theoretically the particle remains in a fixed position relative to the mas-
sive bodies. These points can be exploited in mission design also exploiting
their stability/instability features. The position of these points is represented
in Fig. 3.

𝐿! 𝐿"
𝐿#

𝐿$

𝐿%

Figure 3: Libration points representation. The three collinear points are L1, L2

and L3, while the triangular points are L4 and L5.

2.1.2 Variation of Parameters

The Variation of Parameters [4] is a formulation of the equations of motion
for a particle orbiting into a perturbed dynamical system. In this theory the
variation of the orbital elements of the particle are obtained integrating a set
of differential equations. In the case in which only conservative perturbations
are considered (which is the case of interest in this work), they can be written
as gradient of a disturbing function R and inserted into the Lagrange’s Plane-
tary Equations (LPE) [6]. The LPE can assume different forms depending on
the angular variable chosen to represent the motion; commonly, the angular
variable considered is the initial mean anomaly M0 of the particle [6]:
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%

da

dt
“

2

na

BR

BM0

de

dt
“ ´

?
1´ e2

na2e

BR

Bω
`

1´ e2

na2e

BR

BM0

di

dt
“ ´

1

na2
?

1´ e2 sin i

BR

BΩ
`

cos i

na2
?

1´ e2 sin i

BR

Bω

dΩ

dt
“

1

na2
?

1´ e2 sin i

BR

Bi

dω

dt
“ ´

cos i

na2
?

1´ e2 sin i

BR

Bi
`

?
1´ e2

na2e

BR

Be

dM0

dt
“ ´

2

na

BR

Ba
´

1´ e2

na2e

BR

Be

(9)

where a, e, i,Ω, ω,M0 are the orbital elements of the particle, R is the disturbing
potential and n is the particle mean motion.
In a semi-analytical perturbation approach, an averaged disturbing function
can be taken to filter out high-frequency perturbations, isolating long-period
terms. This is an elegant technique to analyze the effect of the perturbations,
allowing a deeper understanding of the dynamics [9]. Following the approach
developed by Kaufman [7], in a planet-centered reference frame (depicted in
Fig. 4), the disturbing potential due to the third-body perturbation can be
written as [9]:

R pr, r3Bq “ µ3B

ˆ

1

‖r´ r3B‖
´

r ¨ r3B
r3

3B

˙

(10)

where r is the position vector of the particle from the primary body, r3B and
µ3B are the position vector of the third-body (i.e. the secondary attractor)
with respect to the primary and its planetary constant.
By exploiting the angle ψ between the vectors r and r3B (Fig. 4), the disturbing
potential becomes [9]:

R pr, r3Bq “
µ3B

r3B

¨

˝

1
b

1´ 2 pr{r3Bq cosψ ` pr{r3Bq
2
´

r

r3B cosψ

˛

‚ (11)
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Figure 4: Planet-centered reference frame tξ, η, ζu used in the perturbation ap-
proach. Axis ζ exiting from the paper.

In order to substitute the disturbing potential inside the LPE, it is necessary
to express it as function of the particle orbital elements ra, e, i,Ω, ω, νs.
According to Kaufmann and Dasenbrock procedure [7] (also explained in [9]),
this can be achieved by using the eccentric anomaly E as angular variable
(in alternative to the true anomaly ν), expressing the ratio between the orbit
semi-major axis and the distance from the third body as:

δ “
a

r3B

(12)

Then, the eccentricity direction P̂ and the semi-latus rectum direction Q̂ ex-
pressed in the inertial frame are obtained through a multiple rotation:

P̂ “ R3 pΩqR1 piqR3 pωq

»

–

1
0
0

fi

fl

Q̂ “ R3 pΩqR1 piqR3

`

ω ` π
2

˘

»

–

1
0
0

fi

fl

(13)

with Ri pαq (with i “ 1, 2, 3) being the rotation matrix of angle α around the
ith axis.
The position vector of the particle can be written exploiting Eq. (13):

r “ cos νP̂` sin νQ̂ (14)
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and the term cosψ becomes:

cosψ “ r̂ ¨ r̂
3B
“

´

P̂ cos ν ` Q̂ sin ν
¯

¨ r̂3B “ A cos ν `B sin ν (15)

with:
A “ P̂ ¨ r̂3B
B “ Q̂ ¨ r̂3B

(16)

By applying Eq. (12) and Eq. (15) in Eq. (11), the disturbing function R is [9]:

R “
µ3B

r3B

˜

1
b

1´ 2δ
`

A pcosE ´ eq `B
?

1´ e2 sinE
˘

` δ2 p1´ e cosEq2

´δ
´

A pcosE ´ eq `B
?

1´ e2 sinE
¯

¸

(17)

Assuming that the particle is far enough from the perturbing body, this follow
that the parameter δ is small, and Eq. (17) can be rewritten as a McLaurin
series around δ [7]:

R pr, r3Bq “
µ3B

r3B

8
ÿ

k“2

δkFk pA,B, e, Eq (18)

where the summation starts from k “ 2 since the zero-order term is constant
(therefore irrelevant), and the first-order term simplifies with the second term
of Eq. (17).
Now the first averaging operation is performed by integrating the function Fk
over one particle orbital period [7], assuming that the orbital elements remain
fixed during one revolution (valid assumption since δ is assumed to be small):

F̄k pA,B, eq “
1

2π

ż π

´π

Fk pA,B, e, Eq p1´ e cosEq dE (19)

and the averaged disturbing function becomes [9]:

R̄ pr, r3Bq “
µ3B

r3B

8
ÿ

k“2

δkF̄k pA,B, eq (20)
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The next step is to compute the partial derivatives of the averaged disturbing
function with respect to the orbital elements, in order to insert them into the
LPE of Eq. (9) [9]:

BR̄

Ba
“
µ3B

r3B

8
ř

k“2

k

a
δkF̄k

BR̄

Be
“
µ3B

r3B

8
ř

k“2

δk
BF̄k
Be

BR̄

Bi
“
µ3B

r3B

8
ř

k“2

δk
ˆ

BF̄k
BA

BA

Bi
`
BF̄k
BB

BB

Bi

˙

BR̄

BΩ
“
µ3B

r3B

8
ř

k“2

δk
ˆ

BF̄k
BA

BA

BΩ
`
BF̄k
BB

BB

BΩ

˙

BR̄

Bω
“
µ3B

r3B

8
ř

k“2

δk
ˆ

BF̄k
BA

BA

Bω
`
BF̄k
BB

BB

Bω

˙

(21)

A possible continuation can be a further averaging of the disturbing function,
integrating over the fast variable of the perturbing body orbital motion. This
can be done assuming that the orbital elements of the particle do not change
significantly during a full revolution of the third body.
The double-averaged disturbing function R becomes [9]:

¯̄R3B pr, r3Bq “
µ3B

r3B

8
ÿ

k“2

δk ¯̄Fk pe, i,Ω, ω, i3Bq (22)

where i3B is the third-body inclination.
Note that the disturbing potential can be expressed in different frames, but
the double-averaging procedure remains the same.
A first frame [23] is centered in the central body, the x´y plane is the perturbing
body orbital plane and the z direction is directed as the perturbing body
angular momentum. This is the same rotating frame used in the CR3BP (the
Synodic frame), with the only difference that it is not centered in the centre of
mass of the system.
Another possible frame that can be used is a planet-centered inertial one [9] (if
the central planet is the Earth, than it is the ECI frame). Making use of this
frame, the Eq. (22) assumes a more complex form but it does not introduce
the assumption that all the disturbing bodies lie on the same plane. This can
lead to wrong results when the planes are not similar (as in the Jovian system,
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or even when working with the luni-solar perturbation around the Earth) and
it is facilitating the introduction of other perturbation effects in the potential
as the zonal harmonics.
In the latter frame, the double-averaging is obtained integrating the single-
averaged disturbing function over one period of the disturbing body [9]:

¯̄Fk pe, i,∆Ω, ω, i3Bq “
1

2π

2π
ż

0

F̄k pA,B, eq dθ3B (23)

where ∆Ω “ Ω ´ Ω3B and θ3B is the third-body true anomaly. Note that the
dependency of ¯̄Fk by θ3B is in the coefficients A and B, since [9]:

A “ A pi,Ω, ω, i3B,Ω3B, ω3B ` θ3Bq

B “ B pi,Ω, ω, i3B,Ω3B, ω3B ` θ3Bq

(24)

Even in this case the temporal variation of the orbital elements can be obtained
by computing the partial derivatives of Eq. (22) with respect to the particle
orbital elements, and then inserted into the LPE in Eq. (9).

2.2 Mathematical Model of the Keplerian Map

The Keplerian Map theory is now presented starting from the derivation of its
mathematical model in the CR3BP and expanding it in the general case of the
R3BP. In this paragraph, the approach described by [17] is followed.
The starting point can be considered the expression of the Hamiltonian of
the CR3BP in the inertial reference frame (referring to Fig. 1), which can be
written as [5]:

Hin “
1

2

`

p2
x ` p

2
y ` p

2
z

˘

´
1´ µ

r1

´
µ

r2

(25)

where px, py, pz are the generalized momenta of the mass-less particle, µ is
the mass parameter of the system (defined in Eq. (1)), r1 and r2 are the ab-
solute values of the position vectors of the particle from the primary and the
secondary (defined in Eq. (6)).
Following the approach initially suggested by Ross and Scheeres [5], by tak-
ing the assumption that the mass parameter µ is small, the Eq. (25) can be
decomposed in two parts: a Keplerian term K plus a perturbative one U :

Hin “ K ` U ` O pµq2 (26)

— 18 —



Chapter 2 The Keplerian map

Before showing the procedure to obtain the disturbing function R of the Keple-
rian Map, an important consideration can be done:: while in the perturbation
approach shown in Section 2.1.2 the disturbing function R was computed as-
suming that the parameter δ of Eq. (12) is small, now there are no assumptions
on the distance between the particle and the third-body. On the other hand, an
important assumption is made on the mass parameter of the system µ, which is
assumed to be small. This will affect the field of application of the two models.
In order to remain in line with the literature and to reduce the complexity of
the model, it is better to switch in polar coordinates making use of the angle
θ defined as the angle between the x axis and the particle position vector from
the barycentre r, with norm r:

"

r cos θ “ x1

r sin θ “ y1
(27)

This new reference frame tx1, y1, z1u is represented in Fig. 5.
As can be deduced, this new frame follows the mass-less particle, which lies

G𝑚! 𝑚"

𝑠/𝑐

𝑥′

𝑦′

𝜗

𝐫𝟏 𝐫𝟐𝐫

𝐑𝟏 𝐑𝟐

Figure 5: Barycentric reference frame tG, x1, y1, z1u used in the Keplerian Map
theory.

always in the x1 ´ y1 plane. R1 represents the position vector of the primary
from the centre of mass, and R2 the position vector of the secondary from the
barycentre:

R1 “ ´µx̂1 , R2 “ ´p1´ µqx̂
1 (28)

Thanks to these new coordinates, the vectors r1 and r2 (identifying the particle
position from the primary and the secondary respectively), can be computed
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as:
r1 “ r´R1 “

„

r cos θ ` µ
r sin θ



r2 “ r´R2 “

„

r cos θ ´ 1` µ
r sin θ



(29)

Therefore, the norms of r1 and r2 also in Eq. (6) can be rewritten as:

r1 “
a

r2 ` µ2 ` 2µr cos θ

r2 “
a

r2 ` p1´ µq2 ´ 2p1´ µqr cos θ
(30)

From Eq. (30) it is possible to write the terms K and U appearing in the
Hamiltonian of Eq. (25) as [5]:

K “ 1

2

`

p2
x ` p

2
y ` p

2
z

˘

´
1´ µ

r

U “ µ

ˆ

cos θ

r2
´

1
?
r2 ` 1´ 2r cos θ

˙ (31)

It can be noticed that K is the term representing the total specific energy
of the particle if the primary were located in the centre of mass, while the
perturbing potential U is due to the presence of the third body and it provokes
the divergence of the particle motion from its nominal Keplerian orbit.
The disturbing function R of the Keplerian Map in the CR3BP is therefore the
opposite of the disturbing potential U in Eq. (31):

R “ ´U “ ´µ

ˆ

cos θ

r2
´

1
?
r2 ` 1´ 2r cos θ

˙

(32)

In order to insert the disturbing function into the Lagrange’s Planetary Equa-
tions, it is necessary to reformulate the expression in Eq. (32) in function of
the particle orbital elements R “ Rpa, e, i,Ω, ω, νq.
This can be done in two steps. The first one consists in writing the expression
of r and cos θ in a non-dimensional form. This can be obtained with the use
of the eccentric anomaly E and the resolution of a spherical triangle [17]:

r “
a

R2

p1´ e cosEq

cos θ “ cospΩ´ θ3Bq cospω ` νq ´ sinpΩ´ θ3Bq sinpω ` νq cos i
(33)
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where:

cos ν “
cosE ´ e

1´ e cosE
, sin ν “

?
1´ e2 sinE

1´ e cosE
(34)

The second step is the computation of the true anomaly of the third body θ3B

in function of the particle orbital elements. This can be obtained thanks to
the fact that the third body moves on a circular orbit according to the CR3BP
assumptions, by exploiting the Kepler’s equation of time [1]:
"

M ´M0 “ npt´ t0q
θ3B ´ θ3B0 “ n3Bpt´ t0q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇÑ̌ θ3B “ θ3B0`

ˆ

a

R2

˙3{2

pE ´ e sinE ´M0q (35)

By substituting Eq. (35) into Eq. (33) it is possible to write the expression of
R in function of the particle orbital elements R “ Rpa, e, i,Ω, ω, Eq. Thus, its
partial derivatives can be computed and inserted into the LPE of Eq. (9).
The derivation of the Keplerian Map presented so far has been specifically
developed for CR3BP. Recent studies [17] expanded this theory in the more
general case of the Restricted Three-Body Problem, and obtained the expres-
sion of the disturbing function R without taking the assumption of µ ăă 1.
Thanks to a novel demonstration, it is possible to obtain the expression of R
in Eq. (32) as difference between the gravitational potentials, changed in signs,
exerted by the celestial bodies in the perturbed and unperturbed motions of
the particle.
This is done with the following passages:

G𝑚! 𝑚"

𝑠/𝑐

𝜗

𝑥# , 𝑥′′

𝑦′𝑦′′

𝐫𝟏 𝐫𝟐𝐫

𝐑𝟏 𝐑𝟐

Figure 6: Perturbed reference frame tG, x1, y1, z1u and unperturbed reference frame
tm1, x

2, y2, z2u. Axes z1 and z2 exiting from the paper.
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1. Referring to the perturbed and unperturbed reference frames depicted
in Fig. 6, the differential acceleration is computed as difference between
the acceleration of the particle in the perturbed case, and the one in the
unperturbed case [17]:

δa “ apert´aunpert “
1´ µ

r3
1

pr´R1q´
µ

r3
2

pr´R2q´

ˆ

´
1´ µ

r3
r

˙

(36)

2. After rearranging Eq. (36), a change of variables is performed, switching
from polar to Cartesian coordinates (referring to the frame tG, x1, y1, z1u
in Fig. 6):

r “
a

px1q2 ` py1q2 and

$

’

’

&

’

’

%

cos θ “
x1

r

sin θ “
y1

r

(37)

which allows to write δa in function of only x1, y1 and µ.

3. The differential acceleration can be seen as the gradient of the differential
potential function δU :

δa “

»

—

—

—

–

´
BδU

Bx

´
BδU

By

fi

ffi

ffi

ffi

fl

(38)

This means that by integrating the expression of δa in x1 and y1, and
changing by sign the result, it is possible to obtain the disturbing function
R.

4. As demonstration, the expression of δa in Eq. (36) in its rearranged
version (expressed in function of x1, y1, µ) is expanded in Taylor series
of µ around 0. The expression is then integrated and changed by sign,
leading to the same expression of Eq. (32) if a switch in polar coordinates
is done, verifying the procedure.

Thus, it has been demonstrated that the disturbing function of the Keplerian
Map can be obtained without making the assumption of the small parameter
µ, and it can be written as summation of the gravitational potentials acting
on the particle [17] as:

R “ ´

ˆ

´
1´ µ

r1

˙

´

ˆ

´
µ

r2

˙

`

ˆ

´
1´ µ

r

˙

(39)
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The first and the second terms in Eq. (39) are the gravitational potentials ex-
erted on the particle by the primary and the secondary attractor bodies that are
moving around the barycentre of the system. The last term is the gravitational
potential that the primary would exerts if it was located in the barycentre. It
can be noticed that in all the terms appearing in Eq. (39), the minus sign is
highlighted in order to recall the fact that the disturbing function is none but
the disturbing potential U changed by sign.
The exact expression of R can now be expressed in function of the particle
orbital elements, such that it is possible to compute its partial derivatives to
be inserted into the LPE.
This can be done extending the application to the R3BP without making the
assumption that the third body moves on a circular orbit around the barycen-
tre. Such assumption implies that now it is not possible to express the third
body true anomaly in function of the particle eccentric anomaly as in Eq. (35).
Indeed, now it is not possible to obtain the exact position of the secondary
knowing just the position of the particle, but it can be achieved whenever the
use of the ephemerides is possible.
To remain in the same framework of the three-body problem, a dimensionless
form of the Keplerian Map is obtained, where the distance from the primary
and the secondary is equal to one. Moreover, from the definition of the barycen-
tre it is possible to write that:

R1 “
µ

1´ µ
R2 (40)

Thus, the expression of the primary and the secondary position vectors from
the centre of mass of the system can be computed as:

R1 “

»

—

—

–

´
µ

1´ µ

1´ e2
3B

1` e3B cos θ3B

0

fi

ffi

ffi

fl

, R2 “

»

—

—

–

1´ e2
3B

1` e3B cos θ3B

0

fi

ffi

ffi

fl

(41)

The expression of the position vector of the particle with respect to the barycen-
tre can be written as:

r “

«

r cos θ

r sin θ

ff

(42)

Thanks to Eq. (42) and Eq. (41), exploiting the same relations in Eq. (29),
the norms of the position vectors of the mass-less particle with respect to the
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primary and the secondary are [17]:

r1 “

d

r2 `
µ2

p1´ µq2

ˆ

1´ e2
3B

1` e3B cos θ3B

˙2

` 2r
µ

1´ µ
cos θ

1´ e2
3B

1` e3B cos θ3B

r2 “

d

r2 `

ˆ

1´ e2
3B

1` e3B cos θ3B

˙2

´ 2r cos θ
1´ e2

3B

1` e3B cos θ3B

(43)
After the substitution of r, r1 and r2 into Eq. (39), the disturbing function
becomes [17]:

R “
1´ µ

d

r2 `
µ2

p1´ µq2

ˆ

1´ e2
3B

1` e3B cos θ3B

˙2

` 2r
µ

1´ µ
cos θ

1´ e2
3B

1` e3B cos θ3B

`

`
µ

d

r2 `

ˆ

1´ e2
3B

1` e3B cos θ3B

˙2

´ 2r
1´ e2

3B

1` e3B cos θ3B

´
1´ µ

r

(44)

The remaining terms that shall be written in function of the particle orbital
elements are the radial distance from the centre of mass r and the cos θ. The
first one can easily be written in dimensionless form as:

r “
a

a3B

1´ e2

1` e cos ν
(45)

while the cos θ can be obtained from the scalar product of r̂ and R̂2 in the
inertial frame:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

r̂in “ R3pΩqR1piqR3pω ` νq

»

–

1
0
0

fi

fl

R̂in
2 “ R3pΩ3BqR1pi3BqR3pω3B ` θ3Bq

»

–

1
0
0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ cos θ “ r̂in ¨ R̂in
2 (46)

Now the disturbing function of Eq. (44) can be written in terms of only the par-
ticle orbital elements thanks to Eq. (45) and Eq. (46): R “ R pa, e, i,Ω, ω, νq,
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assuming that the position of the third body is known from an ephemerides
model.
In the case that this is not possible, an approximated solution can be obtained
by assuming that the orbit of the third body has low eccentricity e3B, thus [1]:

M3B “ E3B ´ e3B sinE3B « E3B “

ˆ

a

a3B

˙3{2

pE ´ e sinEq `M3B0

θ3B “ arctan

c

1` e3B

1´ e3B

tan
E3B

2

(47)

with M3B, E3B and M3B0 the mean anomaly, eccentric anomaly and initial
mean anomaly of the third body.
The disturbing function to be adopted inside the LPE has to be dependent on
six constant orbital elements and time, where constant means that under the
hypothesis of Keplerian motion, they do not change with time. Therefore, it
is necessary to write the particle true anomaly in function of the time and the
initial mean anomaly. This can be achieved through the following relations [1]:

ν “ 2 arctan

c

1` e

1´ e
tan

E

2

E ´ e sinE “ nt`M0 “

c

p1´ µq
´a3B

a

¯3

t`M0

(48)

Finally, the disturbing function is ready to be partially derived, being depen-
dent on [17]:

R “ R pa, e, i,Ω, ω, ν pEpa, e,M0, tq, eqq (49)
The partial derivatives of the disturbing function with respect to the orbital
elements can be written as [17]:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

dR

da
“
BR

Ba
`
BR

Bν

Bν

BE

BE

Ba

dR

de
“
BR

Be
`
BR

Bν

ˆ

Bν

Be
`
Bν

BE

Bν

BE

BE

Be

˙

dR

di
“
BR

Bi
;

dR

dΩ
“
BR

BΩ
;

dR

dω
“
BR

Bω

dR

dM0

“
BR

Bν

Bν

BE

BE

BM0

(50)
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where the notation of the total derivative is used just to highlight that in
reality the orbital elements depend themselves on the true anomaly, thus even
a partial derivative shall be decomposed in more terms, as sufficiently explained
in literature [17].
The partial derivatives of ν and E appearing in the right terms of Eq. (50) can
be analytically obtained from the following relations [17]:

‚

$

’

’

’

&

’

’

’

%

cos ν “
cosE ´ e

1´ e cosE

sin ν “

?
1´ e2 sinE

1´ e cosE

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ

$

’

’

&

’

’

%

Bν

BE
“

Bν

B cos ν

B cos ν

BE
“

1` e cos ν
?

1´ e2

Bν

Be
“

Bν

B cos ν

B cos ν

Be
“

sin ν

1´ e2

‚ a “

˜

E ´ e sinE ´M0
a

a3
3Bp1´ µqt

¸´2{3

Ñ
BE

Ba
“

ˆ

Ba

BE

˙´1

“ ´
3

2a

E ´ e sinE ´M0

1´ e cosE

‚ e “
E

sinE ´
nt`M0

sinE

Ñ
BE

Be
“

ˆ

Be

BE

˙´1

“
sin ν
?

1´ e2

‚ M0 “ E ´ e sinE ´ nt Ñ
BE

BM0

“

ˆ

BM0

BE

˙´1

“
1` e cos ν

1´ e2

(51)
Once the derivatives of R are computed, the evolution with time of the particle
orbital elements can be obtained by using the LPE.
Note that the Keplerian Map theory has two different possible bifurcations from
this point on, as it is explained in the following Section 2.2.1 and Section 2.2.2.
However, before proceeding with them, a consideration on the mathematical
model just derived can be done.
From the definition of the system in the theory, it shall be remarked that the
particle orbital elements that are used are a fictitious set. Indeed, as shown in
Fig. 5, the radial distance r in Eq. (45) of the mass-less particle is computed
from the barycentre of the system, and not from the primary. This fact has
an important consequence, and can be considered as the main reason for the
error introduced when using the Keplerian Map: when the primary attractor
and the barycentre are considerably distant, a large variation of the fictitious
orbital elements does not correspond to the same variation that the real orbital
elements undergo. This happens in close encounters when the mass parameter
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of the system µ is not so small, as in the Earth-Moon system.
Therefore, even if the derivation of the mathematical model has been done
without taking assumptions on the mass parameter of the system for the general
case of the R3BP, carefulness shall be applied with the application of the
method. This is also discussed in Section 3.

2.2.1 Semi-analytical approach

The initial goal of the Keplerian Map theory was to predict the variation of
the particle orbital elements during one orbital period in a distant encounter
with the third body, through a semi-analytical method. In order to avoid the
numerical integration of the Lagrange’s Planetary Equations, it is possible to
apply the first Picard’s iteration [24] to approximate the integration over one
orbital period.
The Picard’s procedure is an analytical approximation of a differential equa-
tion. It is an iterative procedure that allows to obtain more and more accurate
results by increasing the number of iterations performed, and it is valid only
if the time span is sufficiently small [13]. To approximate the integration of
the LPE, just the first Picard’s iteration is sufficient. The discrete variation of
each orbital element during one orbital period is computed as in Eq. (54) [13],
where Ei and Ef represents the initial and final particle eccentric anomaly.
Note that the discrete "kick" of the orbital elements is assumed to happen all
at the pericentre of the particle orbit (the nearest point with respect to the
secondary) [5].
The integral variable chosen is the eccentric anomaly rather than the time
since in reality the orbital period is not constant due to the semi-major axis
variation.
This approach seems by now to be only analytical. However, the integrals
appearing in Eq. (54) can be easily computed with a numerical procedure.
Different integration schemes can be adopted, one of them is the Simpson’s
integration rule [25]:

Ij`1
αi

“ Ijαi
`
dν

6

˜

BR

Bαi

ˇ

ˇ

ˇ

ˇ

ν“νj´1

` 4
BR

Bαi

ˇ

ˇ

ˇ

ˇ

ν“νj

`
BR

Bαi

ˇ

ˇ

ˇ

ˇ

ν“νj`1

¸

(52)
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where dν is the step in true anomaly and [17]:

Iαi
“

νf
ż

νi

BR

Bαi
dν (53)
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’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

∆a “
2

n2a

Ef
ż

Ei

BR

BE
dE

∆e “
1´ e2

n2a2 sin i

Ef
ż

Ei

BR

BE
dE ´

p1´ e2q
2

n2a2e

Ef
ż

Ei

BR

Bω
p1´ e cosEq dE

∆i “ ´
1´ e2

n2a2 sin i

Ef
ż

Ei

BR

BΩ
p1´ e cosEq dE`

`
p1´ e2q cos i

n2a2 sin i

Ef
ż

Ei

BR

Bω
p1´ e cosEq dE

∆Ω “ ´
1´ e2

n2a2 sin i

Ef
ż

Ei

BR

Bi
p1´ e cosEq dE

∆ω “ ´
p1´ e2q

2

n2a2e

Ef
ż

Ei

BR

Be
p1´ e cosEq dE`

´
p1´ e2q

2

n2a2 sin i

Ef
ż

Ei

BR

Bi
p1´ e cosEq dE

(54)

2.2.2 Numerical Approach

The main drawback in using a semi-analytical approach to solve the LPE, is
that it does not allow to track the evolution of the orbital elements inside
the extremes of integration. This is something that can be acceptable when
searching for preliminary solutions, but not when a detailed and complete or-
bital elements variation is needed.
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However, in certain applications may be useful to obtain the full evolution with
time of the particle orbital elements, and this can be done by numerically in-
tegrating the Lagrange’s Planetary Equations.
That procedure is necessary especially when the variation of the orbital ele-
ments is extremely large and when the time span of the propagation is large.
Indeed, by applying successives Picard’s procedures there is a small error intro-
duced at each iteration, that becomes large if the number of periods considered
is high.
The easiest and the fastest way to integrate Eq. (9) is to use an ODE solver
available in different programming languages.
A simple one-step or multi-step solver can be used. Since an high tolerance
is necessary in general when integrating space systems models, the best choice
could be to use an explicit Runge-Kutta 4th ´ 5th order scheme, or a multi-
step variable order method as the Adams-Bashforth-Moulton scheme. These
two schemes can be used in MATLAB® software under the names of ode45
and ode113 respectively. In the present work the latter is preferred since the
computational time required does not change significantly even for long inte-
gration, and it has an higher accuracy at stringent tolerances [26].
It is important to remark that in this thesis the numerical approach has been
preferred to the semi-analytical one. Indeed, with the numerical integration of
the LPE it is possible to save computational time with respect to the procedure
needed to solve them in the semi-analytical approach. Moreover, the orbital
elements evolution during the whole period is needed to compare the results of
the Keplerian Map propagation with the ones of the three-body problem.

2.2.3 The Kick Map

An useful way to apply the Keplerian Map is to compute the kick in orbital
elements obtained by each distant encounter, in function of the initial phase
angle between the particle and the third body.
A Kick Map for a given osculating orbital element is defined as the set of
variations experienced by the given orbital element over one orbital period,
in function of the relative angular phasing between the initial position of the
mass-less particle and the third body [13].
In the case of the CR3BP, the phasing angle γ

CR3BP
can be obtained from the

resolution of the spherical triangle represented in Fig. 7, through the use of the
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cotangent law [17]:

γ
CR3BP

“ Ω´ θ3B0 ` arctan cos i tanω (55)

In the case of the R3BP the expression of the phasing angle γ becomes more
complicated since now the third body does not move on a circular orbit. Con-
sidering the two spherical triangles depicted in Fig. 8, by applying the cotangent
law to the orange triangle [17]:

cos z cos i “ cotω sin z Ñ z “ arctan tanω cos i (56)

and applying it to the green triangle:

cos z `∆Ω cos i3B “ cot γ ` ω3B ` θ3B sin z `∆Ω (57)

where ∆Ω “ Ω´ Ω3B.
If the Eq. (56) is substituted into Eq. (57), after an algebraic manipulation is
possible to obtain the phasing angle [17]:

γ “ arctan

ˆ

1

cos i3B
tanparctanptanω cos iq `∆Ωq

˙

´ ω3B ´ θ3B (58)

x

e

90°

𝛾𝜔

𝑖

Figure 7: Spherical triangle used to obtain the expression of the phasing angle
γCR3BP .
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𝑧	 + Ω − Ω!"

Figure 8: Spherical triangles used to obtain the expression of the phasing angle γ
in the R3BP context.
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CHAPTER 3

Limits of the Keplerian map
theory

The mathematical model of the Keplerian Map has been obtained in Sec-
tion 2.2, without making assumptions on the mass parameter of the sys-

tem µ. This theory can be usefully exploited for a high-fidelity prediction of
the motion of a spacecraft influenced by the presence of a third-body. However,
it is not always possible to apply it, since the prediction can be not sufficiently
accurate in particular situations.
In this chapter the studies done to identify the limits for the application of the
Keplerian Map theory are presented, highlighting the dynamical analysis of
the model and its dependence on particular parameters of a system. A massive
number of simulations have been performed to identify the optimal conditions
in which this theory can be applied.
The accuracy of the model is measured through an error, computed as difference
between a state of the spacecraft obtained with the Keplerian Map propagation
and the same state obtained with a theory considered exact (e.g. the R3BP).
The strategy used to compare the propagation of the particle motion exploit-
ing the Keplerian Map and the Three-Body Problem is a sensitivity analysis,
where particular parameters of the system are made to vary by changing the
initial conditions of the system. Each initial condition is then propagated for
one orbital period with the Keplerian Map, and the final states are compared
with the ones obtained with the three-body problem model.
Before presenting the analysis done, it is important to highlight one more time
a core concept about the definition of the Keplerian Map theory. As explained
in Section 2.2, the peculiarity of this method is that the orbital elements of the
particle are referred to the centre of mass of the system and not to the primary
body. Hence, the variation that they experience due to the presence of the
third body is not the same variation experienced by a set of orbital elements
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referred to the main attractor. The difference between them becomes larger
when the barycentre of the system is significantly displaced from the main at-
tractor, meaning that the mass parameter of the system µ is high. Moreover, if
the encounter between the particle and the third body happens very close (e.g.
inside the 3rd body SOI), the variation of the orbital elements experienced is
large, as the error with respect to the variation of the orbital elements referred
to the main attractor.
The mass parameter of the system can be seen as a weight of the third-body
effect on the spacecraft dynamics. An high mass parameter implies that the
effect of the disturber is strongly influencing the motion of the particle. Hence,
it is clear that for high mass parameters, a close encounter of the particle with
the third body provokes a large variation of its orbital motion, following a
large error of the Keplerian Map with respect to the solution proposed by the
Three-Body Problem.
The mass parameter of the system µ plays undeniably a key role when search-
ing for an applicability domain of the Keplerian Map; therefore, its dependence
will be always included in the analyses done in this chapter, since it represents
the main indicator of the third body effect.

3.1 Jacobi Constant dependence

In the context of the CR3BP, as presented in Section 2.1.1, the Jacobi Con-
stant is an integral of motion that remains constant during the motion of the
particle.
This is valid in the Synodic reference frame (reported in Fig. 2), which rotates
following the secondary attractor that lies on the x axis. In this frame the
value of the Jacobi Constant can be written as in Eq. (8), or as:

CJ “ x2
` y2

` 2

ˆ

1´ µ

r1

˙

` 2

ˆ

µ

r2

˙

´ v2 (59)

where r1 and r2 are reported in Eq. (6). The value of the Jacobi constant (also
called Jacobi integral) is a measure of the total energy E that a particle has in
the Synodic frame, that is defined as:

E “ 1

2
v2
` U “

1

2
v2
´

1

2
px2

` y2
q ´

ˆ

1´ µ

r1

`
µ

r2

˙

(60)
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Therefore, from Eq. (59) and Eq. (60) it is possible to obtain that:

E “ ´1

2
CJ (61)

This latter relation explains that high values of CJ corresponds to low values
of E , and viceversa.
The theory of the Keplerian Map starts from the expression of the Hamiltonian
of the CR3BP (as shown in Section 2.2), which contains the particle’s Keplerian
energy of the two-body problem and a perturbing term [5].
In this sense, there is a dependence on the energy of the particle in the Keplerian
Map theory. Therefore, an accurate analysis of the error introduced when
propagating with the Keplerian Map is now presented, searching for a relation
of this error with the value of the Jacobi Constant (being an indicator of the
particle total energy in the Synodic frame).

3.1.1 Synodic reference frame and Libration points

As it was described in Section 2.1.1, in the Synodic reference frame there exist
5 equilibrium points named Libration points (depicted in Fig. 3). These points
correspond to maximum/minimum or saddle points of the potential energy of
the particle, and they have different stability properties:

• The three collinear points L1, L2 and L3 are unstable equilibrium points

• The two triangular points L4 and L5 are stable equilibrium points

For each Libration point it corresponds to a certain energy value ELi
, and

a value of the Jacobi Constant CLi
. This can be exploited to understand

the allowed realm of the particle that moves with a certain CJ , through the
concept of the zero velocity curves [3]. In particular, for a given µ it is possible
to compute the position of the Libration points and the value of the particle
energy at rest on these points, such that: EL5 “ EL4 ą EL3 ą EL2 ą EL1 , or
inversely: CL1 ą CL2 ą CL3 ą CL4 “ CL5 .
The allowed realm for each value of CLi

is represented in Fig. 9.
The coordinates in the Synodic frame x, y, z are usually taken in a dimen-
sionless form. The position of the particle and its velocity are transformed in
dimensionless units through the characteristic length and characteristic time:

"

L˚ “ R3B

t˚ “ T3B
(62)
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Figure 2: Regions of possible motion. Zero velocity curves for five values of the Jacobi constant CJ ,

one in each of the cases, are shown on the x-y plane for µ = 0.3. These curves bound the zone, in white,

accessible by the particle P for a given CJ . The part of the x-y plane which is shaded is inaccessible for

a given energy. The outermost accessible exterior region known as the, extends to infinity. In the fifth

case, the forbidden region vanishes and motion over the entire x-y plane is possible. In the last panel, the

(µ, CJ)-plane is partitioned into the five cases of Hill’s regions.

(see [6] for details). The cases are shown in Figure 2. The divisions between the cases are
given by the Jacobi constant at the Lagrange points, i.e., Ci = CJ(Li).

We are focusing on particle motion which remains in the exterior region. According to
the cases, this would mean CJ > C2. In the Jupiter-Callisto system (µ = 5.667 ⇥ 10�5),
for example, we have C2 = 3.00618. Even though motion from the exterior to the regions
around m2 and m1 are possible for cases 3 and above we find that for energies close to but
below C2, particle motion can remain in the exterior region for long times. Transit from
the exterior region to the region around m2 is possible for CJ < C2, and the connection
between multiple gravity assists and capture orbits will be discussed in §6.

4

Figure 9: Zero velocity curves for five values of the Jacobi constant CJ (one in each
of the cases), computed for a test case with µ “ 0.3. Particle’s position denoted with
P, gray regions are forbidden and white regions are allowed. In the last subfigure on
the right it is represented how the value of CLi changes with the value of µ [3].

where R3B is the distance between primary attractor and third body (it is
equal to a3B, that remains constant in the CR3BP), and T3B is the period
of rotation of the third body around the barycentre. Therefore, the relation
between dimensionless and dimensional particle’s states is:

$

’

’

&

’

’

%

r˚ “
r

L˚

v˚ “
t˚

L˚
v

(63)

Another transformation that can be mentioned is the switch from the Synodic
reference frame (shown in Fig. 2) to the inertial barycentric frame (shown in
Fig. 1). This change of coordinates can be achieved by exploiting a rotation
along the z axis of an angle θ, that identifies the position of the third body with
respect the X axis of the inertial frame. To obtain the states of the particle
in the Synodic reference frame by knowing them in the inertial barycentric
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reference frame, the following relation must be applied:
"

rin “ Rθ ¨ rsyn
vin “ Rθ ¨ vsyn ` 9Rθ ¨ rsyn

(64)

in which the rotation matrix Rθ and its derivative 9Rθ that shall be used are:

Rθ “

»

–

cos θ ´ sin θ 0
sin θ cos θ 0

0 0 1

fi

fl and 9Rθ “ n

»

–

´ sin θ ´ cos θ 0
cos θ ´ sin θ 0

0 0 0

fi

fl (65)

where n “ 9θ “ const. is the mean motion of the third body around the barycen-
tre of the system.
In order to compute the values of CLi

(or equivalently, ELi
), it is necessary

to compute the position of the Libration points in the Synodic dimensionless
frame. They can be computed by imposing:

∇U !
“ 0 (66)

where U is the three-body potential defined in Eq. (7). The triangular points
L4 and L5 are situated in a symmetric position with respect to the third body,
being their coordinates:

L4 “

„

1

2
´ µ ,

?
3

2
, 0

T

and L5 “

„

1

2
´ µ , ´

?
3

2
, 0

T

(67)

The position of the collinear points L1, L2 and L3 is instead computed from a
nonlinear equation [1] that has three different solutions, identifying the coordi-
nates xLi

such that Li “ rxLi
, 0 , 0sT . The nonlinear equation is the following

one:
1´ µ

|x` µ|3
px` µq `

µ

|x´ p1´ µq|3
px´ p1´ µqq ´ x “ 0 (68)

and it can be solved by a common nonlinear solver, choosing three different
initial conditions x0:

• The value of xL1 is obtained if 0 ă x0 ă 1

• The value of xL2 is obtained if x0 ą 1

• The value of xL3 is obtained if x0 ă 0

By exploiting the aforementioned equations, it is always possible to compute
the Jacobi Constant at a certain Libration point CLi

and to switch from the
inertial reference frame to the Synodic dimensionless frame (and viceversa).
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3.1.2 Jacobi Constant - Mass parameter - Error Map

Now that the Jacobi integral has been introduced, and after that basic concepts
related to the CR3BP have been presented, it is possible to enter in the core
of the current analysis.
The idea of this analysis is first of all to build a map that relates the following
three parameters:

• The value of the mass parameter of the system µ

• The value of the Jacobi Constant, hence the total energy of the particle
in the three-body problem

• The error introduced when propagating the motion of the particle with
the Keplerian Map theory, with respect to the solution proposed by the
CR3BP equations

New initial conditions

Propagation:
• CR3BP
• Keplerian Map

Compute 𝜀"#

Compute 𝐶% 	− 𝑀𝑅𝐷

Figure 10: Blocks scheme summariz-
ing the procedure to obtain the CJ ´
µ´ ε∆a Map and the MRD´µ´ ε∆a

Map.

This has been done by performing several
propagation of the particle’s motion by
changing each time the initial conditions
of the system. Every propagation is per-
formed firstly with the numerical integra-
tion of the CR3BP equations (Eq. (5)),
then with the numerical integration of
Keplerian Map (scheme resumed in Sec-
tion 2.2.2). The integration is always
performed for a period of the particle,
and then the two results are compared by
computing an error ε. The block scheme
representing the algorithm used to build
the CJ ´µ´ε Map is depicted in Fig. 10.
The procedure can be explained with the following passages:

1. A set of initial conditions for the system are chosen, being the initial
states of the particle (position and velocity) or its initial orbital elements,
and the the same for the third body.

2. The equations of the CR3BP are numerically integrated for a particle’s
orbital period
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3. For the same time span a numerical integration of the Keplerian Map
theory is performed

4. The two results are compared with different kinds of errors. They are
computed at the end of the integration and at the pericentre of the par-
ticle orbit with respect to the third body. Multiple types of error have
been analysed to highlight the dependence on the studied parameter

5. Some initial parameters related to the mass-less particle are let to vary, in
order to change the value of the Jacobi Constant CJ and obtain different
initial conditions. The initial conditions of the third body are instead
kept fixed. A huge loop is run that examines hundreds of thousands of
cases by just iterating this procedure with different initial conditions

Table 1: Block particle initial conditions used to build the CJ ´ µ´ ε∆a Map and
the MRD ´ µ´ ε∆a.

Orbital element Initial value
Semi-major Axis a0 P r0.3 , 1.5s ¨ a3B0

Eccentricity e0 “ 0.5
Inclination i0 “ 10 deg
RAAN Ω0 “ 345 deg

Argument of pericentre ω0 “ 25 deg
True Anomaly ν0 P r0 , 360s deg

Before presenting a single final result that summarizes all the different quan-
tities and calculations that have been done, it is necessary to introduce the
definition of error used. Initially, the comparison between the CR3BP and the
Keplerian Map propagation was done through a relative percentage error on
the final value of the particle’s semi-major axis after a period:

εrel∆a “

ˇ

ˇ

ˇ

ˇ

∆aCR3BP ´∆aKM

∆aCR3BP

ˇ

ˇ

ˇ

ˇ

¨ 100 (69)

where aCR3BP is the value of the particle’s semi-major axis after a propagation
of the CR3BP equations and aKM is the semi-major axis after a propagation
with the numerical Keplerian Map procedure. This relative percentage error
shall be coupled with the absolute error, since when ∆a tends to 0, then the
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relative one tends to infinity. Therefore, the study of the behavior of εrel∆a
shall

be coupled with the study of the absolute error.
To avoid this procedure, in general what is done is to adopt an error similar to
the relative one, but that avoids to tend to infinity. This error is defined as:

ε∆a “

ˇ

ˇ

ˇ

ˇ

∆aCR3BP ´∆aKM

∆aCR3BP ` 1

ˇ

ˇ

ˇ

ˇ

¨ 100 (70)

A further consideration can be done regarding the choice of which semi-major
axis variation to take for the computation of the error in Eq. (70). To this
purpose, it is necessary to recall that the Keplerian Map theory is in general
applied in its semi-analytical version (explained in Section 2.2.1), since it avoids
to perform a numerical integration. From the semi-analytical formulation it
is possible to compute only the variation of the particle orbital elements in a
certain true anomaly interval. However, in a detailed analysis as the current
one, it may be necessary to know the orbital elements evolution during the
whole time period, and not only at its boundaries. The latter consideration
explains why the numerical version of the Keplerian Map has been used in
this analysis. Even if the error is computed with the semi-major axis variation
during one orbital period, it has been obtained that the results are analogous
even when taking the maximum variation of semi-major axis over the period.

Table 2: Initial conditions of the third body used to build the CJ ´ µ ´ ε∆a Map
and the MRD ´ µ´ ε∆a.

Orbital Element Initial Value
a3B0 [km] 383078.81
i3B0 [deg] 25.84
Ω3B0 [deg] 10.47
ω3B0 [deg] 236.82
ν3B0 [deg] 177.25

The set of initial conditions that are used to build the error maps that will be
presented in this chapter are listed in Table 1 for the particle, and in Table 2
for the third body. The wide ranges of initial semi-major axis and true anomaly
allow to compare very different situations, where the particle motion starts far
or close to the third body, with large or small Jacobi Constant.
The CJ ´ µ´ ε∆a Map is depicted in Fig. 11.
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Figure 11: CJ´µ´ε∆a Map. Red regions identify errors in the numerical integration
of the Lagrange’s Planetary Equations. Color-map showing the relative percentage
error defined in Eq. (70).

The X-axis is the logarithmic variation of the mass parameter of the system,
while the Y -axis is the variation of the Jacobi Constant. The color-map shows
the logarithmic variation of the error for the different cases.
The red zones represent where the numerical integration of the Keplerian Map
fails. These cases represent those initial conditions that lead to hyperbolic
trajectories for which the Lagrange’s Planetary Equations written in Eq. (9)
are no more valid, and the ODE solver used stops the integration. Thus, it is
not appropriate to associate these cases as if they were model errors, and they
have been marked with a different color.
The error spans from low to significant values, and the first dependence that
stands out is the one on the mass parameter µ. Increasing the mass parameter
of the system, the error increases almost linearly. For high values of µ it is
clear that the Keplerian Map cannot be used for almost all the values of CJ .
To help the reading of the Fig. 11 in terms of mass parameter, the results can
be observed coupled with Table 3, in which the mass parameters of the most
common systems are listed. The Earth-Moon system seems to be inaccessible
for the Keplerian Map theory, being its mass parameter of the highest. This
was expected from the consideration about the dependence on µ, explained in
the first part of the chapter, and now it has been confirmed.
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Table 3: Mass parameters µ for most common systems studied in the Three-Body
Problem field [27].

Main attractor Third Body Mass parameter µ
Sun Jupiter 9.537 ¨ 10´4

Sun Earth + Moon 3.036 ¨ 10´6

Earth Moon 1.215 ¨ 10´2

Mars Phobos 1.667 ¨ 10´8

Mars Deimos 2.310 ¨ 10´9

Jupiter Io 4.704 ¨ 10´5

Jupiter Europa 2.517 ¨ 10´5

Jupiter Ganymede 7.804 ¨ 10´5

Jupiter Callisto 5.667 ¨ 10´5

Saturn Mimas 6.723 ¨ 10´8

Saturn Titan 2.366 ¨ 10´4

Neptune Triton 2.089 ¨ 10´4

Pluto Charon 1.097 ¨ 10´1

On the other hand, systems where the mass of the third body is several order of
magnitudes smaller than the one of the main attractor are suitable cases (with
some exceptions as will be shown). For example, trajectories in the Jovian
system and in Martian environment can be propagated with the Keplerian
Map.
While the dependence on µ is very evident, it is not so clear the influence of
the Jacobi Constant on the error. For high values of CJ and relatively small
values of µ the method appears to work well, with an error that remains below
10´4 %. In the lower part, there is a raised region in which the error grows,
remaining high even for small values of µ.
An interesting feature can be seen inserting into the plot of Fig. 11 the lines
corresponding to CLi

.

— 41 —



Chapter 3 Limits of the Keplerian map theory

(a) CJ ´ µ´ ε∆a Map with CLi

(b) CJ ´ µ´ ε∆a Map with SOI transitions

Figure 12: Error Map in Jacobi Constant dependence with the addition of two
different features: CLi lines or 3rd body SOI transitions (identified with red crosses).
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This is depicted in Fig. 12a, where it is possible to recognize five lines repre-
senting the values of CLi

. For each value of µ the position of the Libration
points changes, and so the value of CLi

. It is clear that above CL1 the value of
the error remains low, while below the value of CL5 the error has a non-regular
behavior, reaching occasionally very high values.
Trajectories with CJ ą CL1 have low energies E , and the particle motion is
limited in the interior region of the realm (as reported in Fig. 9). The space-
craft is orbiting around the primary and is sufficiently far from the third body,
so that the effect of the latter on the particle’s dynamics is weak. This can
be seen isolating a test case, fixing a value of µ and CJ (ą CL1), as shown in
Section 4.
In trajectories with CJ ă CL5 the particle is able to move in the whole realm,
since forbidden regions disappear, and it can reach high energies. In high en-
ergy transfers a close encounter with the third body can provokes large orbital
elements variations, leading to a significant error.
In Fig. 12b the red crosses mark trajectories in which the particle reaches the
third body Sphere Of Influence (SOI)whose radius is computed as [1]:

rSOI “ R3B ¨

ˆ

µ2

µ1

˙2{5

(71)

Almost in the whole region in which the error grows, the third body SOI is
reached. Thus, a dependence of the error on the minimum relative distance
that the particle and the third body experience shall be investigated, opening
the discussion for another error map. A further investigation on the region
in which the error increases is done, refining the grid of the simulation. The
refinement is performed focusing on such low-CJ -region, and it is reported in
Fig. 13.
A peak curve in pink is represented in Fig. 13. The curve follows the simula-
tions block in which the error is larger than the other regions of the domain.
Each point belonging to this line represents a simulation with different initial
conditions, but isolating them one by one a correlation was found.
Taking two random initial conditions belonging to the pink line, and propa-

gating the trajectory of the spacecraft for one orbital period, it has been found
that in both cases there is a close encounter with the third body. In the case
with µ “ 10´2 (represented in Fig. 14a) the Minimum Relative Distance MRD
reached between particle and third body is at 0.4 ¨ rSOI (where rSOI is the SOI
radius of the third body). A similar thing happens in the case with µ “ 10´4
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Figure 13: CJ ´ µ´ ε∆a Map with region in which the error increases highlighted
through a pink curve.

(a) µ “ 10´2, CJ “ 2.87, MRD “ 0.4 ¨ rSOI (b) µ “ 10´4, CJ “ 2.84, MRD “ 5 ¨ rSOI

Figure 14: Two test trajectories belonging to the pink curve in Fig. 13. The plot
contains the paths of the particle according to the CR3BP and the Keplerian Map
numerical propagation, and even the trajectory traveled by the third body during
the time span.
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(represented in Fig. 14b), in which the MRD reached is at 5 ¨ rSOI . Even if
outside the SOI of the third body, the close encounter has a considerable effect
on the particle’s trajectory. In the other cases that do not belong to the pink
line, the close encounter happens very far from the third body, and the error
is smaller.

3.1.3 Influence of the energy with respect to the third body

Before closing the discussion about the dependence on CJ , it is necessary to
show another examination done on the CJ ´ µ ´ ε∆a map. A close encounter
with the third body can take place under different conditions. The best way
to classify and understand the type of encounter is to look at the energy that
the spacecraft has with respect to the planet, and consider the Minimum Rel-
ative Distance (MRD) reached between them. Assuming that the third body
becomes the principal and only attractor, it is as modelling the encounter with
the Restricted Two-Body Problem (R2BP) [1], since the effect of the main
attractor is neglected when the spacecraft is closer to the third body. The
mass-less particle is moving on a hyperbolic trajectory, and its energy with
respect to the planet E2 can be computed as:

E2 “
v2

2
´
µ2

r
(72)

where r and v are respectively the position and the velocity of the particle
with respect to the third body. µ2 is the planetary constant of the third body.
In order to obtain more readable results, the energy can be normalized with
respect to the energy of the third body that moves around the main attractor
on a circular orbit:

E3B “ ´
µ1

2R3B

(73)

where µ1 is the planetary constant of the main attractor and R3B the radius
of the circular orbit on which the third body is orbiting around the primary.
Therefore, the normalized energy used for the particle is:

Ē2 “

ˇ

ˇ

ˇ

ˇ

E2

E3B

ˇ

ˇ

ˇ

ˇ

(74)

Substituting the error with Ē2 from the previous map, the CJ ´µ´ Ē2 map can
be obtained, and it is represented in Fig. 15. The color-map in Fig. 15 now
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Figure 15: CJ´µ´ Ē2 Map. Color-map representing the energy of the particle with
respect to the third body, normalised to the energy of the third body with respect
to the primary.

shows the Ē2 variation. It is interesting to see that the cases in Fig. 13 in which
the error was increasing, are all of them correlated to a close encounter with
high energy with respect to the third body. This confirms that are not only a
close encounter and a large µ that justify the large error introduced with the
Keplerian Map propagation, but even the energy of the particle with respect
to the third body plays a key role.

3.2 Minimum Relative Distance dependence

From the results obtained with the analysis carried out in Section 3.1 follow
that the dependence upon the distance shall be investigated. The results shown
highlight that in most of the cases in which the error introduced by the Keple-
rian Map increases, the particle trajectory passes inside or near the SOI of the
third body (referring to Fig. 12b).
Adopting a similar procedure used for the CJ´µ´ε∆a map, a massive block of
simulations have been performed, this time without computing the value of the
Jacobi Constant in each case but observing the Minimum Relative Distance
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MRD between particle and third body reached during a period of propagation.
The output is a MRD´ µ´ ε∆a Map. The blocks scheme explaining the pro-
cedure to obtain the new error map is represented in Fig. 10.
The initial conditions of the particle are in line with the previous ones, with a
slight change regarding the initial semi-major axis (Table 1 and Table 2).
Again, hundreds of thousands of cases have been analysed, allowing to assem-
ble the MRD ´ µ ´ ε∆a Map, represented in Fig. 16. The X-axis still shows
the mass parameter µ, while the Y -axis now is the variation of the MRD nor-
malized to the third body SOI (whose expression is in Eq. (71)).
The color-map still represents the percentage error as the difference between
the semi-major axis variation obtained with the Keplerian Map and the CR3BP
equations, as reported in Eq. (70).

Figure 16: MRD ´ µ ´ ε∆a Map. Y axis is containing the Minimum Relative
Distance (MRD) reached by the particle with respect to the third body, normalised
to its sphere of influence (Eq. (71)). Color-map representing the relative percentage
error defined in Eq. (70) between CR3BP and Keplerian Map propagation.

The first characteristic that can be noticed is again the evident dependence of
the error on µ.
Referring to the MRD dependence, there are few features that can be observed.
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In general, the idea is that the higher the MRD, the lower is the error intro-
duced by the Keplerian Map propagation. However, this variation is not linear.
Looking at the map as a surface Fig. 17a, the error stops to decrease over a
certain value of MRD. A better understanding are the vertical pink lines in
Fig. 17b, that highlight that the error does not depends anymore on the MRD.
This is because when the spacecraft passes very far from the third body, the
orbital elements variation is low compared to the intrinsic error of the model
that becomes more relevant (in coherence with what has been understood in
literature [17]).
It shall be mentioned that for very distant passages from the 3rd body, the
effect of the latter on the particle’s motion can be seen as just a small pertur-
bation. In these cases, it is more useful to adopt another method to predict the
orbital elements variation, as the averaged technique explained in Section 2.1.2
which is fully-analytical, and the numerical integration of the Keplerian Map
is excessive.
For very low encounters instead the orbital elements variation is large, and the
error increases. This is again due to the fact that the orbital elements of the
Keplerian Map are fictitiously defined with respect to the barycentre of the
system, while their variation follows the primary’s movement.
Following these considerations, it can be understood that in reality the opti-
mal range in which the Keplerian Map theory shall be applied is situated in
the middle: neither for very far encounters (large MRD), nor for very close
encounters (small MRD).
It is inappropriate to set the lower limit to exactly the sphere of influence of
the third body, since:

• The meaning of the SOI loses sense when the mass parameter of the
system is very large (as in the Earth-Moon system). The effect of the
secondary remains significant even outside from its SOI if its mass is
large, and neglecting this would lead to wrong results.

• From the results obtained the error is significant even outside from the
third body SOI, reaching large values even up to 10 times the SOI for
high values of µ.

For low values of µ the dependence by the MRD can be neglected, and the
only analysis that can be done is the one regarding the energy of the particle
(explained in Section 3.1. These considerations conclude the analysis of the
MRD ´ µ´ ε∆a Map.
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(a) 3D surface of MRD ´ µ´ ε∆a Map

(b) Level curves of MRD ´ µ´ ε∆a Map

Figure 17: 3D surface and level curves of the MRD ´ µ´ ε∆a Map represented in
Fig. 16. Pink lines highlighting the behavior of the error with the increasing of the
MRD. Now the MRD is not normalised to obtain a better visibility of the feature.

3.3 Results and considerations

The error introduced by the Keplerian Map - based propagation has been
analysed in Section 3.1 and Section 3.2, searching for a dependence on the
Jacobi Constant of the particle and on the Minimum Relative Distance reached
between third body and spacecraft. This part is devoted to summarise the
results obtained and to fix a suitable domain of application where the model
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can be used.

3.3.1 Comparison with Patched Conics approach

To emphasize even more the effectiveness of the Keplerian Map theory, the same
error maps that were shown in the previous discussions can be re-computed
comparing the CR3BP solution with a different model. To highlight the non-
negligible effect of the third body presence in the system, it can be useful to
compare the results to those obtained when using the Patched Conics approach
[1].
The Patched Conics modelling is an extension of the Two Body Problem, in
which the trajectory of the spacecraft is divided in different arcs. In each arc
the R2BP model is adopted, neglecting the effect of a secondary attractor.
When the spacecraft enters inside the Sphere Of Influence of another celestial
body, this becomes the main attractor. In the case of the Sun-Earth system,
this concept is applied as in the following example:

1. The particle is orbiting around the Sun and it is far from the Earth. The
model used for the system is the R2BP with the Sun as attractor. To pre-
dict the whole trajectory, the equations of the R2BP can be numerically
integrated [1].

2. If the particle reaches the SOI of the Earth, the integration is stopped
and the model is switched to a R2BP where the main attractor is the
Earth.

3. The hyperbolic trajectory with respect to the Earth is propagated until
the limit of the Earth’s SOI is reached again. At this point there is
another switch of the model to a R2BP with the Sun as attractor.

In the case in which the SOI of the third body is never reached, the motion is
fully modelled with a R2BP with a single main attractor, neglecting completely
the presence of another celestial body.
Using this scheme, it is possible to reconstruct an error map similar to those
in Section 3.1 and Section 3.2, this time adopting the percentage error defined
as:

εPC∆a “

ˇ

ˇ

ˇ

ˇ

∆aCR3BP ´∆aPC

∆aCR3BP ` 1

ˇ

ˇ

ˇ

ˇ

¨ 100 (75)

in which ∆aPC represents the semi-major axis variation using the Patched
Conics modeling. If the third body’s SOI is never reached, then ∆aPC “ 0 and
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the relative error is maximum.
Therefore, following the same blocks scheme of Fig. 10, but using the Patched
Conics approach instead of the Keplerian Map theory, the error maps in Fig. 18
and Fig. 19 are obtained.

Figure 18: CJ ´ µ ´ ε∆a Map comparing CR3BP and Patched Conics approach.
Color-map showing the error defined in Eq. (75). Set of initial conditions of Table 1
and Table 2.

The error maps obtained with the Patched Conics modeling instead of the use
of the Keplerian Map has significant higher errors. As can be seen in Fig. 18,
the region in which the error is larger for high energies is still present, but now
in general the error does not fall below 10´3 %. The same can be seen in Fig. 19.
With the increasing of the mass parameter µ, the influence of the third body
on the particle motion becomes more relevant. Consequently, the two-body
problem approximation can not be considered applicable anymore. Thanks to
the results shown, it can be stated that there are no cases in which the Patched
Conics approach can be used instead of the propagation of Keplerian Map.

3.3.2 Error threshold as criterion for the Keplerian map applicabil-
ity

From the error maps shown in Section 3.1 and Section 3.2 it is not easy to
define a domain of application for the Keplerian Map theory. As expected, the
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Figure 19: MRD´µ´ε∆a Map comparing CR3BP and Patched Conics approach.
Color-map showing the error defined in Eq. (75). Set of initial conditions of Table 1
and Table 2. MRD normalised to the third body sphere of influence radius (Eq. (71)).

dependence on some system parameters have been found, but none of them
allow to define a sharp applicability region. The correctness of the motion
propagation with Keplerian Map has been measured with the percentage error
of Eq. (70). By imposing a threshold on the error, it is possible to separate the
error maps in two different regions, identifying when the Keplerian Map can
be applied.
A limit that can be imposed is a percentage error of:

εlim∆a “ 10´3 % (76)

such that:

If:

#

ε∆a ě 10´3 % Ñ The Keplerian Map is not applied

ε∆a ă 10´3 % Ñ The Keplerian Map is applied
(77)

The error maps on CJ and MRD can be re-printed as a binary plot showing
the whole applicability domain of the Keplerian Map as the region in which
the error is below 10´3 %.
The binary error maps are shown in Fig. 20 and Fig. 21. The one in CJ ´µ´ε
(Fig. 20) can be exploited with the following reasoning: before starting the
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Figure 20: Binary CJ ´ µ ´ ε∆a Map.
Color-map showing acceptable and non-
acceptable cases according to the error
limit of Eq. (76). Same building proce-
dure of the map in Fig. 11.

Figure 21: BinaryMRD´µ´ε∆a Map.
Color-map showing acceptable and non-
acceptable cases according to the error
limit of Eq. (76). Same building proce-
dure of the map in Fig. 16.

propagation, the user can compute the Jacobi constant of the system and the
mass parameter of the system. Then, the user enters in the map and see if the
error is expected to be large or not. If the error expected is acceptable, the
user can propagate the motion with the Keplerian Map theory.
Referring to the MRD ´ µ ´ ε map, it is sufficient to compute the MRD
reached to predict the error introduced with the Keplerian Map propagation.
If the MRD can be predicted without the numerical propagation of the R3BP
equations (possible methods explained in Section 3.3.3), then it is possible to
enter in a pre-built map as the one of Fig. 21 and look at the expected error,
evaluating whether or not to apply the Keplerian Map. This procedure can be
time-saving, especially in optimisation processes, since it avoids the numerical
integration of the R3BP equations
It is important to remember that also the map itself has a dependence on the
initial conditions of the system. Indeed, as shown in Table 1 and Table 2, the
maps created does not cover all the possible initial conditions of the problem,
but they are built only for a set of cases.
However, reproducing the maps for other blocks of initial conditions, the mor-
phology of the map remains the same:

• In the CJ ´ µ ´ ε map there is always the region in which the error
increases, and it is always for CJ ă CL5 . For CJ ą CL1 the error has
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always a linear dependence on µ as observed.

• In theMRD´µ´εmap there is always the optimal region of applicability
is in the middle. Indeed, for low MRD the error is always growing, and
for high MRD the error stops to decrease.

3.3.3 Minimum Relative Distance prediction

As aforementioned in Section 3.3.2, if it is possible to predict the MRD reached
between the particle and the third body, then it is possible to enter in the bi-
nary plot of Fig. 21 and to know a priori if the Keplerian Map theory can be
applied (if the map settings cover the current initial conditions).
In the context of the CR3BP, Öpik’s theory ([19],[20],[21]) is a fully analytical
theory used to approximates a close encounter of a spacecraft with the third
body. In an extension of the theory developed by Valsecchi [19], it is demon-
strated how to analytically predict the Minimum Orbit Intersection Distance
(MOID) between particle and third body. The MOID is defined as the min-
imum distance reached between the osculating orbits of the particle and the
third body. Therefore, the MOID does not corresponds to the MRD in most
of the times, but can be used as preliminary data to identify the problem.
Other studies [17] developed an almost fully-analytical procedure that allows
to predict when the encounter will happen by assuming that the motion of the
particle is unperturbed until the closest approach with the third body.
Even if this seems a huge approximation, it is demonstrated that the MRD
is predicted with sufficient accuracy so that this method might be used as a
preliminary tool.
This procedure is developed for the general R3BP, and it is explained in the
following. The maps presented are all built in the case of the CR3BP, since
decreasing the complexity of the model can allow to understand better its core
properties.
In the case of the CR3BP the position of the third body can be expressed in
function of the particle orbital elements (thanks to the relation in Eq. (47)).
Therefore, the distance between particle and third body can be expressed in
function of the only true anomaly ν and the minimum can be easily computed.
In the general case of the R3BP, the distance between the spacecraft and the
third body can be obtained from their position vectors in the inertial frame
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with respect to the barycentre of the system:

r “ R3 pΩqR1 piqR3 pω ` νq

„

ap1´ e2q

1` e cos ν
0 0

T

r3B “ R3 pΩ3BqR1 pi3BqR3 pω3B ` θ3Bq

„

a3Bp1´ e
2
3Bq

1` e cos θ3B

0 0

T
(78)

such that:

∆r “ r´ r3B Ñ ∆r “ ∆rpν, θ3Bq “ ||r´ r3B|| (79)

To minimise ∆r its total derivative with respect to the particle true anomaly
shall be computed [17]:

d∆r

dν
“
B∆r

Bν
`
B∆r

Bθ3B

Bθ3B

Bν
“
B∆r

Bν
`
B∆r

Bθ3B

Bθ3B

BE3B

BE3B

BM3B

BM3B

BE

BE

Bν
(80)

where E is the eccentric anomaly of the particle, M3B and E3B are respectively
the mean anomaly and the eccentric anomaly of the third body. The partial
derivatives in the second term of Eq. (80) are computed as:

Bθ3B

BE3B

“
1` e3B cos θ3B
a

1´ e2
3B

BE3B

BM3B

“
1` e3B cos θ3B

1´ e2
3B

BM3B

BE
“

ˆ

a

a3B

˙3{2
1´ e2

1` e cos ν

BE

Bν
“

?
1´ e2

1` e cos ν

(81)

Indeed, as stated in Eq. (80), there is not the possibility to express θ3B as
function of ν, but their derivatives can be related as in Eq. (80).
Setting Eq. (80) equal to zero, it is possible to compute the particle true
anomaly at the maximum and the minimum relative distances. Taking the
minimum of ∆r, the true anomaly of the particle νMRD at the closest ap-
proach with the third body can be obtained. However, this requires to solve
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the equation numerically, since it is implicit. Moreover, it has not a single
solution, but the νMRD can be found choosing a proper set of initial conditions
νMRD

0 P r0 , 2πs and taking the lowest solution.
This tool can be used to approximate the closest approach distance that is
reached in one particle orbital period. Knowing the MRD, the mass param-
eter µ and the initial conditions of the particle, it is possible to enter in the
MRD ´ µ´ ε∆a map and predict the error introduced by the Keplerian Map
propagation.

3.3.4 Other error maps

To conclude the results and considerations part, it is important to mention
that other error dependencies were analysed. In addition to the error maps
presented in Section 3.1 and Section 3.2, the behavior of the error introduced
with the Keplerian Map theory were studied in function of other parameters:
the Tisserand parameter (ε∆apT q), the initial phasing angle between the parti-
cle and the third body (ε∆apγ0q) and the resonance ratio between particle and
third body periods (ε∆apa{a3Bq).
The error maps in those parameters were not studied in deep as the ones in
the current work, but they were suggesting that in reality the error has no de-
pendencies on such parameters. On the other hand, as mentioned in Section 7,
a further analysis on these parameters might be needed to understand a more
refined limit for the Keplerian Map domain. These are the reasons for which
only the analysis done on the CJ and MRD are reported in this work.
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Model validation

A set of possible limits for the Keplerian Map utilisation have been defined
in Section 3. The analysis have been carried in the CR3BP context,

since it is an approximated model that allows to exploit some particular system
properties (as the Jacobi Integral conservation).
In the current chapter the intent is to remain in the field of the C3BP , applying
the model developed showing the applicability of the Keplerian Map theory in
trajectories prediction for real systems as Earth-Moon and Jupiter-Europa.
The only goal now is to show that propagating the motion of a particle with
the Keplerian Map is not always possible, since, under some conditions, it
introduces a significant error in the orbital elements prediction. Instead, a real
design of trajectory will be carried in Section 6.
Before presenting the examples studied as validation of the model, it can be
useful to recap the main results found in Section 3:

• The propagation through the Keplerian Map shall be avoided for high
mass parameters µ. In particular, for µ ą 10´4 the percentage error
introduced is larger than the defined threshold limit εlim∆a “ 10´3%.

• The propagation through the Keplerian Map shall be avoided when the
energy of the particle in the Synodic frame is high (meaning a low Jacobi
Constant) in systems with high µ. In particular, for CJ ą CL1 the error
is low for low values of µ, and the model can be used.

• The propagation through the Keplerian Map shall be avoided for systems
with high mass parameters and when the particle flies close to the third
body. The error introduced in the prediction reaches prohibitive values
when the MRD is small, and µ is high.

Then, the procedure that can be adopted to predict the particle motion through
the Keplerian Map is the following:
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1. A set of prepared error maps including hundreds of thousands of initial
conditions shall be available. It is sufficient that the error maps are in
their binary version (as in Fig. 20 and Fig. 21).

2. From the knowledge of the initial conditions (orbital elements of the
particle, of the third body and mass parameter of the system) it is possible
to compute the Jacobi Constant and enter in the CJ´µ´ε∆a error map,
looking at the expected error.

3. With the procedure explained in Section 3.3.3 an approximation of the
closest approach distance can be computed, allowing to enter even in the
MRD ´ µ´ ε∆a error map and see the expected error.

4. If in both cases the value of the expected error is small, than it is possi-
ble to propagate the motion of the particle with the Keplerian Map, as
explained in Section 2.2.

By adopting this procedure, three examples of possible applications are pre-
sented in the following.

4.1 Earth - Moon system

Two different examples in the Earth-Moon system are presented, showing the
error in the prediction of the orbital elements evolution. The mass parameter
of the system is [27]:

µC´K “ 1.2151 ¨ 10´2 (82)

From the error map in Fig. 12a it has been shown that carefulness shall be
adopted if the energy of the particle in the Synodic frame (expression in
Eq. (60)) is high (low CJ), while the error remains contained for high val-
ues of CJ (low energies). This is what is demonstrated with the following
examples.

4.1.1 Trajectory with high energy

The first application that is presented concerns the motion of a spacecraft in
the Earth-Moon system, with a Jacobi Constant CJ that is lower than the
value of CL1 .
The initial conditions of the particle are listed in Table 4. The initial semi-
major axis of the particle is a0 “ 0.67 ¨R3B. By computing the initial position
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in the dimensionless Synodic reference frame (with the procedure shown in
Section 3.1.1), it is possible to compute the value of the Jacobi Constant of the
particle:

CJ “ 3.015668 (83)

The initial conditions for the Moon are listed in Table 5. They are taken from

Table 4: Initial conditions of the particle in the Earth - Moon system (trajectory
with CJ ă CL1).

Orbital Element Initial Value
a0 [km] 257837.67
e0 [-] 0.50
i0 [deg] 10.00
Ω0 [deg] 345.00
ω0 [deg] 25.00
ν0 [deg] 310.00

NASA Horizons system [28], but the eccentricity of the Moon is set to zero
since now the examples are with the CR3BP assumption.

Table 5: Initial conditions of the Moon used in the Earth - Moon system examples.
Orbital elements of 30{10{2021 from NASA Horizons [28] but CR3BP case (e0 “ 0).

Orbital Element Initial Value
a3B0 [km] 384832.34
i3B0 [deg] 26.38
Ω3B0 [deg] 10.39
ω3B0 [deg] 236.22
ν3B0 [deg] 254.51

From the definition of the system, it is possible to compute the Jacobi Constant
in the Libration points, as shown in Table 6. From the value of the particle’s
Jacobi Constant (in Eq. (83), it is clear that the particle is orbiting with CL2 ą

CJ ą CL3 . In this realm the particle is orbiting with an energy just above EL2 :
the trajectory passes in the vicinity of m1 and m2 and the exterior realm via a
neck around L2 (as represented in Fig. 9) [3].
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Table 6: Jacobi Constant values in the Libration points of the Earth - Moon system
in the dimensionless Synodic reference frame.

CL1 CL2 CL3 CL4 “ CL5

3.172160 3.188341 3.012147 2.987997

Another thing that can be predicted with the knowledge of the initial condi-
tions of the system, is the MRD reached by the particle with respect to the
third body during a period of revolution. This is done with the approximated
procedure explained in Section 3.3.3 and then compared to what in reality
happens propagating the CR3BP equations:

From CR3BP propagation: MRD “ 2.87 ¨ rSOI
From approximated procedure: MRD “ 3.45 ¨ rSOI

(84)

A relative error in the approximation of the MRD of the 20.21 % is computed
from Eq. (84). As expected, the approximated procedure does not allow to
obtain an accurate prediction in this case. This is due to the large orbital ele-
ments variation that the particle experiences, due to the high mass parameters.
With the initial conditions, the knowledge of µ, CJ and MRD, it is possible
to enter in the error maps (of Fig. 11 and Fig. 16) and to predict the value of
ε∆a. The error in the semi-major axis variation will be certainly large since
the mass parameter µC´K is the largest of the Solar System, and furthermore
since CJ ă CL1 the prediction is expected to give almost completely different
results from the ones of the CR3BP.
The motion of the particle for one orbital period is represented in Fig. 22a and
Fig. 22b in the Inertial and Synodic reference frames, respectively.
The comparison between CR3BP and Keplerian Map solutions shown that the
error ε∆a (computed as in Eq. (70)) is:

ε∆a “ 16.88 % (85)

It is worth highlighting that the error is referred to just one orbital period
propagation. In real applications there is the need to predict the error for
several periods, and this causes the error to grow significantly.
The low accuracy of the propagation through the Keplerian Map can be noticed
also looking at the orbital elements evolution with time, that are shown in
Fig. 23.
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(a) Inertial Barycentric reference frame (b) Synodic reference frame

Figure 22: Trajectory of the particle with initial conditions in Table 4, propagated
with CR3BP and Keplerian Map, represented in the Inertial Barycentric and Synodic
reference frames.

This example confirmed that in the Earth-Moon system, especially in high
energy cases, the particle’s motion can not be propagated with the Keplerian
Map, since the error introduced is not negligible. Worst predictions can be
obtained decreasing further the MRD and the CJ values.

4.1.2 Trajectory with low energy

As previously mentioned, the initial conditions are now modified in order to
validate the model in a different energy regime.
The new initial conditions of the particle are listed in Table 7. The initial
conditions of the Moon are instad unchanged. Now the initial semi-major axis
of the particle is a0 “ 0.4 ¨ R3B. With the new initial conditions, the value of
the Jacobi Constant of the particle is:

CJ “ 3.749205 (86)

Now the particle is orbiting with CJ ą CL1 . This means that the particle
cannot move between the realms around m1 and m2 [3].
As done in the previous example, the value of the MRD is computed and
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Figure 23: Orbital elements evolution(referred to the case of Section 4.1.1). Com-
parison of numerical propagation through CR3BP and Keplerian Map.

compared with the real one:

From CR3BP propagation: MRD “ 2.82 ¨ rSOI
From approximated procedure: MRD “ 2.38 ¨ rSOI

(87)

In this case the relative percentage error in the MRD prediction is 15.61%. This
is a better approximation than the one previously examined, but the error is
still not negligible.
Now ε∆a is expected to be smaller, but still not acceptable for the set threshold
of 10´3 %. Propagating the motion of the particle for one orbital period with
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Table 7: Initial conditions of the particle in the Earth - Moon system (trajectory
with CJ ą CL1).

Orbital Element Initial Value
a0 [km] 153932.93
e0 [-] 0.50
i0 [deg] 10.00
Ω0 [deg] 345.00
ω0 [deg] 25.00
ν0 [deg] 10.00

the CR3BP equations and with the Keplerian Map, the resulting error on the
semi-major axis variation at the end is:

ε∆a “ 5.39 % (88)

It is significantly smaller than the one for high energy trajectories, but as
predicted, it remains unacceptable.
The motion of the particle for one orbital period is represented in Fig. 24a
and Fig. 24b in the Inertial and Synodic reference frames, respectively. It is
evident that now the orbit is far from the Moon, and even if the MRD is not
so distant from the Moon SOI, the prediction of the motion is computed with
good accuracy with respect to before.
The variation of the particle orbital elements is shown in Fig. 25. As can
be seen, they do not experience a large variation during an orbital period,
following an error not excessively large.
This example demonstrates that in cases of low energy trajectories, the motion
of the particle propagated with the Keplerian Map has an improvement, but
confirms that the Earth-Moon case remains out of the limits.

4.2 Jupiter - Europa system

In this section the last example as model validation is presented, showing that
in systems with relatively small mass parameter, the propagation of the parti-
cle’s motion with the Keplerian Map is more accurate than in the examples in
Section 4.1.
In particular, we move to the Jupiter - Europa system, in which the mass
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(a) Inertial Barycentric reference frame (b) Synodic reference frame

Figure 24: Trajectory of the particle with initial conditions in Table 7, propagated
with CR3BP and Keplerian Map, represented in the Inertial Barycentric and Synodic
reference frames.

parameter is:
µE´E “ 2.5165 ¨ 10´5 (89)

Since the value of µ is low, it is expected that the motion propagation with the
Keplerian Map is almost coincident with the solution of the CR3BP equations.
The initial conditions of Europa are taken from the NASA Horizons system
[28] at epoch 30/10/2021, and are listed in Table 8.

Table 8: Initial conditions of Europa used in the Jupiter - Europa system example.
Orbital elements of 30{10{2021 from NASA Horizons [28] but CR3BP case (e0 “ 0).

Orbital Element Initial Value
a3B0 [km] 671302.58
i3B0 [deg] 2.52
Ω3B0 [deg] 329.36
ω3B0 [deg] 122.42
ν3B0 [deg] 1.32

The initial conditions of the particle are written in Table 9 (the value of the
initial semi-major axis is a0 “ 1.05 ¨R3B). From them, it is possible to compute
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Figure 25: Orbital elements evolution (referred to the case of Section 4.1.2). Com-
parison of numerical propagation through CR3BP and Keplerian Map.

that:
CJ “ 2.700158 (90)

which is lower than the value of CL5 . This means that the spacecraft has an
high energy allowing it to move in the whole realm.
The MRD prediction during one period can be done as in the other examples,
through the procedure of Section 3.3.3. The results shows that:

From CR3BP propagation: MRD “ 6.58 ¨ rSOI
From approximated procedure: MRD “ 6.60 ¨ rSOI

(91)
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Table 9: Initial conditions of the particle in the Jupiter-Europa system.

Orbital Element Initial Value
a0 [km] 704867.70
e0 [-] 0.50
i0 [deg] 10.00
Ω0 [deg] 345.00
ω0 [deg] 25.00
ν0 [deg] 72

Thus, the error on the MRD prediction is of the 0.3 %, confirming that the
used procedure gives sufficiently accurate results when µ is small.
From the propagation for one orbital period with the CR3BP and with the
Keplerian Map, the resulting error is:

ε∆a “ 1.2 ¨ 10´5 % (92)

Which is below the threshold of 10´3 %, thus the Keplerian Map can be used
in this case, granting almost perfect results.
The trajectory of the spacecraft in the Inertial Barycentric reference frame
is depicted in Fig. 26. As it can be observed, the motion obtained with the
Keplerian Map is basically coincident with the one coming from the CR3BP
equations.
The accuracy of the results can be appreciated also in the plot of the orbital
elements evolution of the particle, that are represented in Fig. 27. This
brief example demonstrated that when dealing with systems with low mass
parameter, the Keplerian Map theory can be applied obtaining very accurate
results.
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Figure 26: Trajectory of the particle in Inertial Barycentric reference frame of
Jupiter-Europa system (initial conditions in Table 9). Comparison between numerical
propagation through CR3BP or Keplerian Map (the prediction almost exact).
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Figure 27: Orbital elements evolution (referred to the Jupiter-Europa example).
Comparison of numerical propagation through CR3BP and Keplerian Map (the pre-
diction is almost exact).
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CHAPTER 5

Lagrange’s Planetary Equations in
hyperbolic form

The analysis done on the limits of the Keplerian Map theory has confirmed
that the model cannot be always applied to predict the motion of the

spacecraft. In the cases identified in Section 3, there is the necessity to adopt
another approach to apporximate the solution of the three-body problem.
With the aim of doing that, a possible alternative is the numerical integration of
the Lagrange’s Planetary Equations in their hyperbolic form. In this chapter
their mathematical model is presented. Then, some remarks are written to
conclude if this application can be a valid alternative to the use of the Keplerian
Map approach.

5.1 Hyperbolic LPEs Mathematical Model

The concept of Variation of Parameters has been explained in Section 2.1.2, in
which the disturbing potential due to the third-body perturbation is written in
the case of elliptic motion of the spacecraft with respect to the central planet.
Now, some changes have to be done, since the current formulation has to be
applied when the particle enters inside the third body sphere of influence: in
this case the central planet becomes the third body, but the motion of the
particle with respect to him is hyperbolic.
The approach that can be used it to consider an hyperbolic flyby of the particle
around the third body, in which the main attractor of the system (e.g. the Sun)
acts as perturbing body.
The derivation of the Lagrange’s Planetary Equations in their hyperbolic form
has been carried out in literature [29], resulting in the following system of
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differential equations:
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(93)

where a, e, i,Ω, ω are the orbital elements of the particle, R is the disturbing
potential and n is the particle mean motion. M̄0 is the initial hyperbolic mean
anomaly of the particle.
It shall be recalled that for hyperbolic orbits, the eccentricity of the particle’s
orbit is greater than 1, and the following relationships apply [1]:

cos ν “
cosh Ē ´ e

1´ e cosh Ē
sin ν “

?
e2 ´ 1 sinh Ē

1´ e cosh Ē

or inversely:

cosh Ē “
cos ν ` e

1` e cos ν
sinh Ē “

?
e2 ´ 1 sin ν

1` e cos ν

(94)

where the real part of the hyperbolic eccentric anomaly Ē is defined such that:

Ē “ 2 tanh´1

˜

c

e´ 1

e` 1
tan

ν

2

¸

(95)

Now the disturbing function R that shall be inserted into the LPE of Eq. (93)
is obtained considering:
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• The attractor that in the previous models was identified as "third body"
(with mass m2), now becomes the main attractor, with mass parameter
µp

• The celestial body that in the previous models was identified as "main
attractor" (with mass m1), now becomes the disturbing body, with mass
parameter µs

By adopting this notation it is possible to obtain the third body disturbing
function as [9]:

R “
µs
r3B

»

–

˜

1´ 2
r

r3B

cosψ `

ˆ

r

r3B

˙2
¸´1{2

´
r

r3B

cosψ

fi

fl (96)

where r3B is the distance between the main attractor and the disturbing body,
while ψ is the angle between the spacecraft direction and the direction of the
disturbing body with respect to the main attractor (as represented in Fig. 4).
Writing the eccentricity direction P̂ and the semi-latus rectum direction Q̂
as in Eq. (13), it is possible to write the cosψ as in Eq. (15), which can be
algebraically manipulated in the case of hyperbolic orbits, resulting in:

cosψ “
1

1´ e cosh Ē

´

Apcosh Ē ´ eq `Bp
?
e2 ´ 1 sinh Ē

¯

(97)

with A and B defined in Eq. (16). It is necessary to express the disturbing
function R through the particle orbital elements, so that it can be partially
derived and used for the LPEs. To do so, the reference frame tm2, x

2, y2, z2u
represented in Fig. 28 can be exploited. It is centered in the body with mass
m2 that now is called main attractor.
The expression of r in Eq. (96) can be written for hyperbolic paths as:

r “ ´ā
`

1´ e cosh Ē
˘

(98)

with ā “ |a|, being the semi-major axis on hyperbolic orbits a negative quantity.
It is necessary to express r3B in the inertial frame as:

r3B “

»

—

—

–

´
1

1´ µ
R2

0
0

fi

ffi

ffi

fl

Ñ rin3B “ R3pΩpqR1pipqR3pωp ` θpq ¨ r3B (99)
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Figure 28: Rotating barycentric reference frame (tG, x1, y1, z1u) and planet-centered
reference frame (tm2, x

2, y2, z2u) used to derive the disturbing function R. Axes z1

and z2 exiting from the paper.

with R2 written in Eq. (41), Rjpαq is the rotation matrix of angle α around the j
direction, and the orbital elements of the main attractor are rap, ep, ip,Ωp, ωp, θps.
By writing the position of the disturber in this way, it is possible to easily move
from a reference frame to another one (represented in Fig. 28):

• before that the spacecraft enters in the third body SOI, the reference
frame used to propagate the motion is centered in the barycentre of the
system

• when the propagation is done with the hyperbolic LPEs, the origin of the
reference frame is moved to the body with mass m2, that becomes the
primary attractor

Thanks to the aforementioned equations, the disturbing function R in Eq. (96)
can be written in function of the particle orbital elements only.
The derivatives of R with respect to the particle orbital elements can be per-
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formed as done in the Keplerian Map mathematical model:
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BĒ

BM̄0

(100)

where now the partial derivatives appearing are:
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‚ ā “

˜
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With the computation of such derivatives it is possible to integrate the LPEs in
hyperbolic form, to obtain the evolution of the orbital elements of the particle
inside the sphere of influence of the third body.

5.2 Application procedure and remarks

In this part it is explained the algorithm that can be used to propagate the
motion of the spacecraft starting from a generic initial condition, trying to
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improve the results obtained with the Keplerian Map in Section 3.
Through a proper check done at each integration point, the position of the
particle when it crosses the SOI of the third body is obtained through the
numerical integration of the Keplerian Map. If the spacecraft will never reach
the SOI of the third body, then the propagation is done for a complete orbital
period as in the Keplerian Map application, leading to the same results shown
in Section 3.
In the case that the particle reaches the SOI, then the integration is stopped
and a change of coordinates is performed. If the states of the spacecraft in the
reference frame of the Keplerian Map when it crosses the SOI are called skmSOI,
then the states of the particle with respect to the third body are written as:

s3BSOI “ skmSOI ´ p1´ µqs3B (102)

where s3B are the states of the third body with respect to the primary in the
inertial barycentric reference frame, at the instant at which the particle crosses
its SOI. The mass parameter µ is defined as in Eq. (1).
Thanks to the know procedure that allows to pass from the position and veloc-
ity to the orbital elements of the particle, the initial conditions for the hyper-
bolic LPEs can be computed. They are used as initial point for the numerical
integration of the equations, which is stopped when the particle crosses again
the sphere of influence of the third body.
At this point it is possible to apply the Eq. (102) and perform the final inte-
gration of the motion through the Keplerian Map approach.
This procedure has been adopted to reproduce the error maps present in Sec-
tion 3. However, it is important to make a consideration: when the mass
parameter of the system increases, the concept of Sphere Of Influence is mean-
ingless, since the perturbation of the third body remains significant even out-
side from it. Therefore, to apply the hyperbolic LPEs inside the SOI of the
third body could not be the best approach to improve the model of the Kep-
lerian Map.
This is something that has been confirmed with the CJ ´ µ ´ ε∆a map and
the MRD´µ´ ε∆a map obtained with the tool explained in this section (rep-
resented in Fig. 29 and Fig. 30). The model of the Keplerian Map appears
to be more efficient and most importantly more accurate than the procedure
that exploits the hyperbolic LPEs. This can be easily seen in the CJ ´µ´ ε∆a

map: in the cases in which the particle crosses the third body SOI (marked in
Fig. 12b), the error obtained propagating with the hyperbolic LPEs is higher
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than when just the Keplerian Map is used. In general, in both the maps the
error appears to be higher than the one in Fig. 11 and Fig. 16.
Such consideration does not want to state that there is not the possibility to
improve the model, but suggests to move in this direction considering another
switching condition, forgetting the concept of SOI when the mass parameter
of the system is big (as in the Earth-Moon system).
To conclude, for the aforementioned reasons, it results that the model ex-
plained in this section is not able to increase the accuracy of the Keplerian
Map propagation, at least not for high mass parameters (where an improve-
ment is needed).

Figure 29: CJ´µ´ε∆a Map obtained with the Keplerian Map + Hyperbolic LPEs
when the particle flies inside the SOI of the third body.
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Figure 30: MRD ´ µ ´ ε∆a Map obtained with the Keplerian Map + Hyperbolic
LPEs when the particle flies inside the SOI of the third body.
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CHAPTER 6

Distant retrograde orbits design
with the Keplerian map

This final part is dedicated to exploit the Keplerian Map approach to design
distant retrograde orbits.

From the analysis carried in Section 3, it is possible to identify different scenar-
ios in which the theory can be applied to predict the motion of the spacecraft
(as the Jupiter system, the Mars system, the Saturn system, etc...). In such
cases, instead of using the common three-body problem equations, the use of
the Keplerian Map entails improvements in the computational time required
to propagate the motion, granting results with good accuracy.
In the current work the method has been applied in a multi-bodies perturbed
environment to generate Distant Retrograde Orbits (DRO), also called Quasi-
Satellite Orbits (QSO). As will be presented in the following section, such orbits
allow to to save propellant budget and transfer times, with benefits even for
navigation purposes, station keeping techniques and mission objectives.
To identify such orbits it is necessary the use of an optimisation process, which
is aimed in finding the required initial conditions of the problem. The use of the
Keplerian Map in an optimisation algorithm allows to reach the convergence in
a smaller amount of time than when exploiting the three-body problem equa-
tions.
In past works [17] it was demonstrated the use of the Keplerian Map in tra-
jectory design from unstable manifolds of the Libration point L2 to reach a
Near-Earth Asteroid (NEA), and multi-flybys trajectory optimisations in the
Jovian system. In such applications it was demonstrated that the Keplerian
Map introduces a gain in computational time achieved with respect to the N-
body problem, opening the door to larger trajectory optimisation processes.
However, this method has never been used to design a QSO in past studies,
making such application a novelty.
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In order to justify the decision of designing distant retrograde orbits, the chap-
ter opens with an introduction about the QSOs to show the advantages intro-
duced by such trajectories. Then, the new disturbing function used in the LPE
will be computed, and finally the results obtained will be presented.

6.1 Quasi-Satellite Orbits definition

As anticipated in the introduction part of the chapter, the reason of the choice
of a particular orbit in a space mission is not only related to the minimisation
of the propellant costs, but other parameters play a key role when designing the
trajectory of the mission. In general, the parameters that can be considered as
"costs" for the mission are strictly dependent on the mission objectives. For
instance, in a mission whose objective is to perform remote sensing above the
surface of a celestial body (as a planet, a moon, an asteroid) with the intent of
studying its surface, the coverage of the trajectory is an important parameter
that determines the kind of orbit chosen.
In a mission in which it is necessary to maximise the coverage and reduce the
station keeping costs (that can be high in strongly-perturbed environments), a
solution that is proposed is the use of Distant Retrograde Orbits (DRO), also
known as Quasi-Satellite Orbits (QSO), particular cases of the "horseshoe" and
"tadpole" types of orbits [30]. They represent a useful alternative to gravita-
tionally bounded orbits when a space probe needs to remain for a long time in
the neighborhood of a celestial body.
A spacecraft that is orbiting around a planet with almost resonant motion
with its moon (i.e. the spacecraft and the moon rotates with almost identical
periods around the central planet) is the field of application of the QSO, that
are particular retrograde quasi-synchronous orbits. The QSO can also be seen
as an orbit around the more massive body and perturbed by the less massive
one in a way that forces the probe to stay in its vicinity, at least for a certain
period of time.
This peculiar orbits have the goal of obtaining a global longitudinal coverage
of the surface of the moon, maximising the latitudinal one, ensuring an almost
constant altitude from the surface. Indeed, it might be necessary to maintain
a constant altitude over the surface during the remote science phase, when a
deep analysis is needed and when fast and close passages are not enough for
the study of the terrain.
However, the real advantage of the QSO with respect to other kinds of tra-
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jectories exploited in relative dynamics is that it is a naturally-stable orbit, so
that the costs related to the station keeping are heavily reduced.
In general, to observe the surface of a body, even other kinds of orbits can be
selected. Many times the exploitation of a stable manifold around a Libration
point is a solution adopted that allows to maintain the satellite orbiting around
an object. The disadvantages in this choice are multiple:

• A close orbit around a Libration point is something that in a perturbed
environment requires a costly station keeping strategy to prevent the
motion from decaying in an unstable trajectory

• It is almost impossible to obtain a global coverage of the surface exploiting
an orbit around a Libration point, since in general they allows a stable
motion over the body’s surface, covering only a small ground track region
(the motion of a moon is usually tidally locked)

• In systems where the third body is very small with respect to the primary,
the Libration points L1 and L2 are always just above the surface of the
secondary, meaning that the altitude of an orbit around them is too near
the ground, following a weak coverage, limiting the Field Of View (FOV)
of the optical instrumentation and increasing the impact risks

A first study of Quasi-Satellites Orbits has been carried out searching for a
long-term stability around the Martian moon Phobos [31]. A dynamical model
including Mars gravity and oblateness was developed [32] and then the prob-
lem was extended to the R3BP including the eccentricity of the moon. Other
studies demonstrated the dynamics of asteroids that are in QSO around some
planets [2], but the main scenario in which this kind of orbit are applied is the
Martian environment [33].
With the strongly perturbing gravity of Mars and the masses of Phobos and
Deimos being too small to capture a satellite, it is not possible to orbit the
Martian moons in the usual sense [31]. On the other hand, the mass of Phobos
or Deimos can not be neglected in the dynamics of a satellite orbiting at high
altitudes from Mars’ surface, therefore it is necessary to use the three-body
problem to model a motion comprehending a primary (Mars) and a secondary
attractor (Phobos or Deimos).
Since Phobos and Deimos are very small, their sphere of influence lies com-
pletely below its surface and the Langrangian points L1 and L2 are immediately
above them [22].
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The planetary constants of Mars, Phobos and Deimos are listed in Table 10. As
it can be deduced, the mass of the moons are very small compared to the one
of Mars. The mass parameters of the systems Mars-Phobos and Mars-Deimos
are shown in Table 3. Being the Martian environment a very suitable and

Table 10: Planetary constants of Mars, Phobos and Deimos [27].

µD [km3{s2] µP [km3{s2] µD [km3{s2]
4.283 ¨ 104 7.088 ¨ 10´4 9.616 ¨ 10´5

familiar case for this kind of orbits, even in the present work they are chosen
as applications to show the effectiveness of the Keplerian Map.

6.2 Modeling Martian environment

Before explaining how the mathematical model is built and the optimisation
algorithm to generate a Quasi-Satellite Orbit, it is necessary to mention the
reference frames adopted in this scenario. In particular, in the modeling of the
QSO has been used the SPICE toolkit by NASA [34] to obtain the ephemerides
of Phobos and Deimos.
The first frame that can be introduced is the Mars IAU frame (Mars Mean
Equator and IAU vector of J2000 frame [35]), which is an inertial barycentric
reference frame defined as in Fig. 1, composed with:

• The X-axis directed towards the IAU-vector at Mars (this vector is the
cross product of Earth mean north with Mars mean north).

• the Z-axis is directed as Mars’ North Pole.

• the Y -axis completes an orthonormal basis with X and Z axes.

In this frame are given the ephemerides of Phobos or Deimos needed for the
Keplerian Map mathematical model. Other two frames that can be defined are
the Phobos Equatorial frame and Deimos Equatorial frame. They are centered
on Phobos/Deimos barycentre, with:

• Z-axis pointing towards the North pole direction of Phobos/Deimos.

• X-axis is defined as cross product between the North pole direction of
Phobos/Deimos and the North pole direction of Mars.
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Figure 31: Three main reference frames used in the design of the QSO. The Pho-
bos/Deimos Equatorial frame contains even the right ascension and declination.

• Y -axis completes an orthonormal basis with X and Z axes.

These two reference frames are used to project the orbit of the spacecraft onto
Phobos’/Deimos’ surface, to represent the ground track, adopting the right
ascension and the declination of the spacecraft.
The last reference frame is the LVLH (Local-Vertical Local-Horizontal) frame,
which rotates with the Mars-Phobos/Deimos direction. It is centered in the
moon barycentre, with:

• X-axis (also called R-bar) directed from Mars toward the targeted moon.

• Z-axis (also called V-bar) pointing in the direction of the orbital angular
momentum of the moon.

• Y -axis (also called H-bar) completes an orthonormal basis with X and
Z axes.

In this frame the spacecraft on the QSO performs a retrograde motion in el-
liptical epicycles around the moons [22], and it is the frame used for the opti-
misation process. The Mars IAU frame, the Phobos/Deimos Centered frame
and the LVLH frame are shown in Fig. 31.
After a brief introduction in which the main frames adopted in the modeling
have been mentioned, it is possible to quickly describe the Martian environment
in terms of orbital perturbations. This is relevant for the disturbing potential
that is used in the Keplerian Map theory.
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4.2 LEAMES structure 

LEAMES is a collection of tools written in Python for the analysis of the long-term behaviour and evolution of 
space objects in Martian orbits. Its structure is presented in Fig. 5. The core module is the Evolution Model (EM) 
that includes the Lifetime Analysis Module and the Orbit Evolution Module. EM calls the Long-term Integrator of 
Mean orbital Elements (LIME) that has been developed for this work, the Break-Up Model (BUM) and the Launch 
Traffic Model (LTM). User defined settings address the propagation duration, the launch traffic and the break-up 
rate, and the potential execution of a PPP manoeuvre.  

Fig. 4. Order of magnitude of various perturbations acting on probes in Mars 
orbits as a function of geoid surface distance. 

Fig. 5. Structure of the Long-term Evolution Analysis of Martian Environment 
Suite. 

6110.pdfFirst Int'l. Orbital Debris Conf. (2019)

Figure 32: Main perturbations acting in Martian environment [36] with correspond-
ing orders of magnitude as function of the distance from the surface.

In Fig. 32 are represented the order of magnitudes of the main perturbations
acting on the orbit of a satellite [36], as function of the distance from Mars’
surface. It can be deduced that at Phobos and Deimos distances, the main
perturbations that can be considered are Mars J2, J4, the Sun presence and
the Solar Radiation Pressure (SRP). However, since this discussion is intended
to demonstrate the use of the Keplerian Map, in addition to the third body
disturb, it will be considered only the effect of Mars J2. The introduction of
this perturbation in the Keplerian Map mathematical model is explained in
Section 6.3.

6.3 New disturbing function and Keplerian Map applica-
bility

As anticipated in Section 6.2, in addition to the disturbing potential of the
Keplerian Map due to the presence of Phobos/Deimos, another perturbation
that is included in the mathematical model is Mars zonal harmonic potential
J2, which plays a significant role even in Phobos and Deimos proximity (as
shown in Fig. 32).
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The Zonal harmonics Potential function is modeled as an expansion of spherical
harmonics functions in Legendre polynomials [37]:

RZH “ ´
µ

r

8
ÿ

n“2

Jn

ˆ

Rp

r

˙n

Pn pcosφq (103)

in which µ is the planetary constant, Rp the planet mean radius, r the space-
craft distance from the centre of the planet, φ the latitude of the spacecraft,
Jn a tabulated coefficient experimentally determined and Pn is the Legendre
polynomial of order n. The latter, has the expression [37]:

Pnpxq “
1

2nn!

dn

dxn
“`

x2
´ 1

˘n‰ (104)

It is necessary to express the disturbing function RZH in dependence of the par-
ticle orbital elements. This is achieved with the relation between the spacecraft
latitude and its position [37]:

cosφ “
zeq
r

(105)

with zeq the out-of-plane component of the spacecraft position vector in Mars
equatorial frame.
The potential function of Mars J2 is obtained taking the expansion in Eq. (103)
up to order 2. The Legendre Polynomial of second order is:

P2pcosφq “
1

2

`

3 sin2
pω ` νq sin2

piq ´ 1
˘

(106)

which is inserted into the potential, obtaining [6]:

RD
J2
“ ´

µDR
2
D

r3
1

J2

`

3 sin2
pω ` νq sin2

piq ´ 1
˘

(107)

where µD is the planetary constant of Mars (written in Table 10), RD “ 3389.9
km is Mars mean radius [38], the value of J2 is the value experimentally com-
puted from Phobos-Grunt mission [22]:

J2 “ 1.96045 ¨ 10´3 (108)

The term r1 in Eq. (107) is the distance of the spacecraft with respect to Mars:

r1 “

d

r2 `

ˆ

µ

1´ µ

a3Bp1´ e
2
3Bq

1` e3B cos θ3B

˙2

` 2r cos θ
µ

1´ µ

a3Bp1´ e
2
3Bq

1` e3B cos θ3B

(109)
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By inserting the expression of r1 in RD
J2

and computing the angle θ as in Eq. (46)
, the J2 disturbing function is written in the orbital elements of the particle,
and can be added to the total disturbing function:

Rtot “ RKM `R
D
J2

(110)

with RKM the disturbing function of the Keplerian Map, computed as in
Eq. (44).
The partial derivatives of the total disturbing function in Eq. (110) are com-
puted through Eq. (50), and then inserted into the LPE of Eq. (9) to compute
the orbital elements evolution with time.
It is worth highlighting that Phobos and Deimos are assumed with spheri-
cal gravitational field, therefore no disturbing terms are present in the total
disturbing potential. This assumption has been done to not overload the math-
ematical model, and remembering that the analysis is focused on the use of
the Keplerian Map.
Before presenting the scheme adopted to generate the initial conditions of the
QSO, it is useful to spend few words about the Keplerian Map applicability.
Since now the model is developed in the R3BP context, it makes no sense to
speak about Jacobi Integral. However, other considerations can be done re-
garding the value of µ and the MRD.
In both systems Mars/Phobos and Mars/Deimos, the mass parameter is quite
small (orders of 10´8 and 10´9 as written in Table 3), meaning that the ex-
pected error in terms of orbital elements variation is very small. In addition to
this, it shall be remarked that Phobos and Deimos have their sphere of influ-
ence that lies completely inside their surface. This means that the spacecraft
will remain always outside from it, and the MRD will be always above the
unity.
From these two considerations is safe to say that the Keplerian Map theory is
a suitable method that can be used for the propagation of the particle motion
in this case.

6.4 Optimisation Process

An optimisation algorithm is exploited to generate the QSO initial conditions,
such that the orbit is naturally stable for 30 days. The trajectory is considered
stable if the spacecraft remains in a certain range of altitude over the moon
surface, without going too far or too close from it. The cost function to be
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minimised involves also a parameter related to the maximum latitude covered
by the ground track on the moon surface. Indeed, as aforementioned, one of the
real advantages of the QSO is that it allows to achieve high levels of coverage.
However, the higher is the inclination of the orbit with respect to the moon
(high inclination corresponds to high maximum latitude), the lower will be the
stability period of such QSO [33]. In this section is summarised the structure
of the optimisation algorithm adopted and how the cost function is defined.
The optimisation variables, in the LVLH frame, consist on the relative dis-
placement between S/C and moon along the x direction, tangential velocity
component and the out-of-plane velocity. Therefore the initial states of the
particle in the LVLH frame are:

srel0 “ rx0 , 0 , 0 , 0 , vy0 , vz0 s
T (111)

where x0, vy0 and vz0 are the degrees of freedom of the optimisation, while the
other initial states are imposed as zero, meaning that initially the satellite has
null velocity along the radial direction, and lies on the conjunction between
the moon and Mars.
The initial states are then transformed in the Mars IAU frame. In order to do
that, it is necessary to obtain the position and the velocity of Phobos/Deimos
with respect to the barycentre at the initial epoch s0P{D through SPICE toolkit
[34]. Defining the rotation matrix from LVLH frame to the Mars IAU frame
as RIAU

LV LH , then:

s0 “

«

r0

v0

ff

“

»

–

r0P{D `R
IAU
LV LH ¨ r

rel
0

v0
P{D `R

IAU
LV LH ¨ v

rel
0 ` 9RIAU

LV LH ¨ r
rel
0

fi

fl (112)

are the initial states of the spacecraft in Mars IAU frame.
This initial states can be translated in the initial Keplerian elements around
the barycentre through the well known transformation. They can be used as
initial conditions for the numerical integration of the LPE, that are propagated
for 30 days.
The choice of such time span is in line with what is present in literature [31].
Numerical studies on the QSO demonstrated that the higher the stability pe-
riod, the lower the maximum latitudes of coverage. One month of stability is
a good compromise, but even orbits with longer stability have been computed.
After that the propagation has been done, the states of the particle during the
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30 days sptq are transformed in Phobos/Deimos Equatorial frame seqptq with
the relation:

seqptq “ REQ
IAU ¨

`

sptq ´ sP{Dptq
˘

(113)

where sP{Dptq are the states of Phobos/Deimos at a given time t, and REQ
IAU is

the rotation matrix from Mars IAU frame to Phobos/Deimos equatorial frame.
In this frame it is possible to compute the ground track of the satellite over the
moon surface, and obtain the parameters determining the quality of the QSO:

• The maximum latitude achieved by the spacecraft over the moon surface
φmax during the time span

• The average altitude of the satellite with respect to the moon havg during
the time span

• The maximum and minimum altitude reached by the satellite with re-
spect to the moon hmin, hmax during the time span

With the first two quantities, it is possible to define the cost function to be
minimised:

J “ havg ¨

ˆ

ρ1 `
1

φmax

˙

(114)

with ρ1 set to 0.1 after a trial and error process.
Moreover, hmin and hmax are used to see if the QSO obtained is a valid one or
not, in particular:

if

$

&

%

hmin ă 20 km
or

hmax ą 150 km

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ QSO not valid (115)

If the QSO is not valid, then the cost function is set to J “ 104, penalising
the current solution in the optimisation process.
The cost function J is given to an heuristic optimisation method (as the Ge-
netic Algorithm, Particle Swarm, etc...) to find its minimum.
This is the scheme adopted to generate a QSO with high maximum latitude
and constant, low altitudes. In the next parts of the chapter are presented the
results of the optimisation.

— 86 —



Chapter 6 DRO with the Keplerian Map

6.5 Analysis of the results

From the optimisation process described in Section 6.4, it is possible to obtain
the set of initial conditions srel0 so that the spacecraft trajectory propagated
for 30 days gives the best QSO in terms of average altitude and maximum
latitude.
In this section are firstly reported the trajectories for Phobos and Deimos or-
bits, then the results are commented highlighting the use of the Keplerian Map.
Finally, a comparison with the results obtained when propagating through the
R3BP equations is done, focusing on the time required to the optimisation
algorithm to converge.

6.5.1 Phobos QSO

The solution that is presented is the one associated with the initial conditions
listed in Table 11, in which there are listed also the main features of the orbit.
The QSO can be appreciated in Mars IAU frame in Fig. 33. As can be seen,
the paths of the spacecraft and of Phobos are almost overlapped, but in reality
the S/C is relatively rotating around the moon.
The motion of the probe around Phobos in the LVLH frame is depicted in
Fig. 35, and the associated ground track is shown in Fig. 34.

Table 11: Initial states in Phobos LVLH frame and features of the corresponding
QSO if the motion is propagated for 30 days. Initial epoch: 21th December, 2021
13 : 30 UTC

srel0 “ r´60.89 km , 0 , 0 , 0 , 14.79 m/s , 9.96 m/s sT

hmin hmax havg φmax

38.27 km 163.58 km 76.92 km 49.99 deg
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Figure 33: QSO around Phobos represented in Mars IAU frame. Trajectory prop-
agated for one day (to obtain a better visibility).

Figure 34: Ground track of the QSO around Phobos, with initial and final points.
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(a) Phobos QSO - 3D view

(b) Phobos QSO - Upper view

Figure 35: QSO around Phobos in LVLH frame seen from two different point of
views.
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A last result that can be shown regards the evolution of the orbital elements of
the particle in the inertial barycentric reference frame. They are represented
in Fig. 36. From them it is possible to observe a periodic variation with larger
frequencies and one with shorter due to the orbital perturbation effects. The
error introduced with the Keplerian Map remains quite small for all the orbital
elements. If αi is the i ´ th orbital element, the evolution of the error with
time obtained comparing the numerical solution of the R3BP equations and
the one with the Keplerian Map, is:

εαi
ptq “

ˇ

ˇ

ˇ

ˇ

αiptq
KM ´ αiptq

R3BP

αiptqR3BP

ˇ

ˇ

ˇ

ˇ

¨ 100 (116)

where αiptqR3BP is the i´ th orbital element of the particle at time t obtained
with the R3BP numerical integration (with the addition of the J2 perturba-
tion), while αiptqKM is referred to the orbital element obtained from the LPE
integration.
The errors εαi

are represented in Fig. 37. For all the orbital elements the
relative percentage error remains below 10´5% (with exception of some peaks
in the case of the argument of pericentre that reach 10´4%), confirming the
almost exact numerical propagation through the Keplerian Map theory.
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Figure 36: Orbital elements evolution with time for Phobos QSO.
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Figure 37: Relative percentage error (defined in Eq. (116)) between numerical
integration of R3BP equations and LPE evolution with time for each orbital element,
referred to Phobos QSO.
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Table 12: Initial states in Deimos LVLH frame and features of the corresponding
QSO if the motion is propagated for 30 days. Initial epoch: 21th December, 2021
13 : 30 UTC

srel0 “ r´93.45 km , 0 , 0 , 0 , 5.50 m/s , 4.12 m/s sT

hmin hmax havg φmax

85.54 km 194.75 km 112.46 km 48.31 deg

6.5.2 Deimos QSO

The same results shown for Phobos QSO in Section 6.5.1 are now presented for
the QSO around Deimos. The output of the optimisation process is written in
Table 12, with the associated features of the trajectory during the 30 days.
With respect to the QSO around Phobos, now the spacecraft flew farther from
the surface of the moon, but reaches almost the same longitudinal coverage.
Deimos has a mass parameter that is an order of magnitude smaller than the
one of Phobos, therefore its attraction on the probe is less effective.
The larger distances can be appreciated in the plots where the path is depicted.
Firstly, with the motion in Mars IAU frame shown in Fig. 38, then with the
transformation into the LVLH frame (represented in Fig. 40).
The associated ground track is shown in Fig. 39, where it can be noticed that
now the spacecraft is "rotating" slower around the moon. The orbital elements
evolution with time during the time span is reported in Fig. 41. To conclude,
the error comparing the results from the R3BP and the ones from the LPE
numerical integration is shown in Fig. 42. Even in this case, a propagation
with high accuracy is confirmed from these plots.
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Figure 38: QSO around Deimos represented in Mars IAU frame. Trajectory prop-
agated for two days (to obtain a better visibility).

Figure 39: Ground track of the QSO around Deimos, with initial and final points.
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(a) Deimos QSO - 3D view

(b) Deimos QSO - Upper view

Figure 40: QSO around Deimos in LVLH frame seen from two different point of
views.
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Figure 41: Orbital elements evolution with time for Deimos QSO.
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Figure 42: Relative percentage error (defined in Eq. (116)) between numerical
integration of R3BP equations and LPE evolution with time for each orbital element,
referred to Deimos QSO.

6.6 CPU time comparison

The last consideration that can be done on the design of a QSO throughout the
Keplerian Map, concerns the smaller computational time needed to integrate
the equations. In short periods propagation the difference with the numerical
integration of the R3BP equations is not so relevant, since it amounts to few
seconds. Whenever the number of times that the motion is propagated becomes
more significant (as in the current case), the efficiency of the Keplerian Map
is more evident. With the use of the Genetic Algorithm by MATLAB, the

— 97 —



Chapter 6 DRO with the Keplerian Map

computational times required to generate the same QSO are shown in Table 13.

Table 13: Computational time comparison required for the optimisation process
aimed in finding the initial conditions of Phobos and Deimos QSO. Processor:
1.8GHz Intel Core i7

QSO around: R3BP LPE with KM
Phobos 172.7 min 140.4 min
Deimos 193.0 min 159.8 min

As it can be seen the numerical integration of the Lagrange’s Planetary Equa-
tions with the Keplerian Map allows to save approximately the 18% of the
time, since the optimisation algorithm reaches earlier the convergence. It is
important to highlight that the comparison with the R3BP in the Genetic
Algorithm is carried out with the same "random points" evaluated at each
generation. Indeed, in MATLAB the random numbers generation is not truly
random, but it works pseudo-random number generating algorithm. Each time
that the optimisation algorithm is launched, it is possible to force the random
number generation to be restarted equal to the one in the previous case. This
is what is done in Monte Carlo simulation or in simulation-based optimisation
procedures, when there is the needing to compare the results obtained with
successive launches of the algorithm that works with random points evalua-
tions.
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CHAPTER 7

Conclusions and Further
Developments

The studies presented in this thesis were focused on searching for a domain
in which the theory of the Keplerian Map could be used successfully,

without introducing a significant error on the propagation of the particle’s tra-
jectory. The analysis has been carried out looking at the problem from different
perspectives, exploring the behavior of the error in function of different system
parameters.
From the previous works that developed the Keplerian Map theory and demon-
strated its validity in particular cases, a further step has been done in deter-
mining in which scenarios this approach can be adopted. If previously it was
thought that the theory could not be applied for close encounters in which the
particle crosses the third body sphere of influence, from this novel study it can
be stated that also the energy of the particle with respect to the third body
plays a significant role. The most relevant result remains the confirmation that
for heavy systems (with high mass parameter), the Keplerian Map cannot be
adopted if the required accuracy on the prediction is stringent. As explained
through the work, this limit is due to the definition of the mathematical model
itself: the disturbing function considers the orbital elements with respect to
the barycentre of the system, whilst the use of the Lagrange’s Planetary Equa-
tions requires to express it with respect to the primary. However, it has been
demonstrated that whenever the mass of the secondary attractor is sufficiently
small, it is possible to apply the approach efficiently, assuring an high accuracy
on the prediction.
The only off-limits case in which the theory cannot be applied for a long pe-
riod propagation remains the Earth-Moon system. In this case the effect of the
Moon is so strong on the spacecraft’s dynamics that a different method shall
be used to approximate the solution of the three-body problem. A possible al-
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ternative to the Keplerian Map in this case could be the numerical integration
of the Lagrange’s Planetary Equations in their hyperbolic form, in which the
disturbing potential is expressed with respect to third body and the primary is
considered as perturbing body. This method might be used when the particle
enters the third body sphere of influence, and then the switching to the Kep-
lerian Map is performed when the probe exits from it. Studies on this possible
application have been carried out in the current work, but the final results
shown that this approach seems not to be a more accurate alternative than
the Keplerian Map. The problem might be the erroneous concept of sphere of
influence that has poor meaning in systems in which the secondary attractor
has significant mass (as in the Earth-Moon system). Further studies are sug-
gested in this direction, trying to replace this concept with another "switch
condition", such that an efficient numerical propagator can be used even in the
Earth-Moon system.
A completely novel application of the Keplerian Map theory was presented in
this work. The Martian system fulfill the requirements in terms of mass pa-
rameter to apply the approach, and the use of an optimisation algorithm to
identify Quasi-Satellite Orbits highlighted that the Keplerian Map is a con-
siderable time-saving method when an high number of propagation is needed,
granting predictions with high accuracy. Other possible scenarios in which the
same procedure can be applied to identify a QSO are the Jupiter system and
the Saturn system.
Another possible continuation of the studies on the applicability domain of the
Keplerian Map can be the sensitivity analysis on other system parameters. As
mentioned in the related chapter, other error maps were built varying different
quantities as the Tisserand parameter, the initial phasing angle and the reso-
nance ratio. No dependencies of the error on them have been found, but deeper
studies of the effect of such quantities can be carried out trying to confirm or
deny this result.
Thanks to this work a further step has been done to achieve the final goal
of developing a propagator aimed in approximating the solution of the three-
body problem exploiting different methods, in which the main protagonist is
the Keplerian Map theory.
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