
SCUOLADI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE
Dipartimento di Elettronica, Informazione e Bioingegneria

Ph.D. in Information Technology

Multimodal Conversational Interfaces:
Design, Modelling, Applications

Author:
Pietro Crovari

Supervisor:
Prof. Franca Garzotto

Co-supervisors:
Prof. Stefano Ceri

Ph.d. Thesis
XXXVCycle

Abstract
Aconversational agent is a software thatmimics human conversation. They are becoming
increasingly successful and adopted in a wide range of domains, such as education, user
assistance, mental health, and home automation.

In recent years, the interaction with conversational agents has been blended with other
interaction modalities to increase the system’s capabilities, creating new multimodal par-
adigms for interaction. However, this integration is still limited from a methodological
perspective despite being broadly exploited.

This Ph.D. research investigates the design, modeling, and development of multimodal
conversational agents. This work starts exploring this domain from the design of GeCoA-
gent and DSBot, two conversational agents to support the data science process. GeCoA-
gent is a multimodal conversational platform to enable biologists and clinicians to define
data analysis pipelines on genomic data through dialogue. The platform automatically
translates it into code, executes it, and returns the user the results. GeCoAgent’s design
process also led to modeling the bioinformatics tertiary analysis process in the form of an
ontology that can be used as a reference to elicit the requirements for interactive applica-
tions.

DSBot evolves this concept by providing a tool that translates users’ research questions,
expressed in natural language, into executable pipelines. The system exploits autoML
methodologies to select the best algorithm and optimize the parameter selection automat-
ically. Users are involved in the process through the conversation when decisions related
to the meaning of the data must be taken. In addition, we release one of the two modules
of DSBot as an open-source framework for multimodal conversational troubleshooting.

Having assessed the potentialities of multimodal conversational interfaces, we realize that
their design is a largely unexplored field. For this reason, we survey the literature to elicit a
set of principles to follow during the design process, and we formalize a conceptual frame-
work to describe the possible degrees of integration of conversational agents and other in-
terfaces.

Then, we complement the finding in the literature by analyzing the impact ofmultimodal-
ity on the conversational experience froma linguistic perspective. Weobserve users’ linguis-
tic performances in a comparative study withmore than 120 participants to assess how the
introduction of graphical elements affects the conversational experience.

We use these findings to ground the formulation of a conceptual model to support the
design process of multimodal conversational interfaces. The model exploits hierarchical
schemes, inspired by BPMN formalism, to model conversational interaction and separate
the task’s description from how it is reified on the various modalities.

iii

In the last part of the thesis, we describe Albot Einstein, a case study of a multimodal ped-
agogical conversational agent to teach pH to children. In addition, to validate the descrip-
tive capabilities of the model, we test the platform’s efficacy in a comparative study with
28 children, obtaining results comparable to the ones achieved through a ‘‘traditional” in-
teractive web application.

We design and develop a graphical authoring tool that enables that transform expressed in
a notation derived from one of the model into an instance of the application backend. An
empirical evaluation with 15 developers shows how such an interface can support develop-
ing multimodal conversational interfaces.

Finally, we discuss how thework presented can be framed in a single framework that covers
a multimodal conversational agent’s whole design and implementation process.

iv

Sommario
Un agente conversazionale è un software che imita la conversazione umana. Questi agenti
stanno riscuotendo sempre più successo e sono adottati in un’ampia gamma di settori,
come l’istruzione, l’assistenza agli utenti, la salute mentale e la domotica.

Negli ultimi anni, l’interazione con gli agenti conversazionali è stata integrata con altre
modalità di interazione per aumentare le capacità del sistema, creando nuovi paradigmi
di interazione multimodale. Tuttavia, nonostante sia ampiamente sfruttata, questa inte-
grazione è ancora limitata da un punto di vista metodologico.

Questa tesi studia la progettazione, la modellazione e lo sviluppo di agenti conversazionali
multimodali. Il lavoro inizia ad esplorare questo dominio partendo dalla progettazione di
GeCoAgent e DSBot, due agenti conversazionali a supporto del processo di data science.
GeCoAgent è una piattaforma conversazionale multimodale che consente a biologi e clin-
ici di definire pipeline di analisi dei dati genomici attraverso il dialogo con il sistema. La
piattaforma lo traduce automaticamente in codice, lo esegue e restituisce all’utente i risul-
tati. Il processo di progettazione diGeCoAgent ha portato anche amodellare il processo di
analisi terziaria bioinformatica sotto forma di un’ontologia che può essere utilizzata come
riferimento per elicitare i requisiti delle applicazioni interattive.

DSBot evolve questo concetto fornendo uno strumento che traduce le domande di ricerca
degli utenti, espresse in linguaggio naturale, in pipeline eseguibili. Il sistema sfrutta le
metodologie autoMLper selezionare l’algoritmomigliore e ottimizzare la scelta dei parame-
tri in modo automatico. Gli utenti sono coinvolti nel processo attraverso la conversazione
quando devono essere prese decisioni relative al significato dei dati. Inoltre, abbiamo ri-
lasciato uno dei due moduli di DSBot come framework open-source per la risoluzione di
problemi conversazionali multimodali.

Dopo aver valutato le potenzialità delle interfacce conversazionali multimodali, ci siamo
resi conto che la loro progettazione è un dominio largamente inesplorato. Per questo mo-
tivo, abbiamo analizzato la letteratura per elicitare una serie di principi da seguire durante
il processo di progettazione e abbiamo formalizzato un quadro concettuale per descrivere
i possibili gradi di integrazione tra agenti conversazionali e interfacce che sfruttano altre
modalità.

Successivamente, integriamo i risultati della letteratura tramite l’analisi dell’impatto della
multimodalità sull’esperienza conversazionale da una prospettiva linguistica. Osserviamo
le performance linguistiche degli utenti in uno studio comparativo con più di 200 parteci-
panti per valutare come l’introduzione di elementi grafici influisca sull’esperienza conver-
sazionale.

v

Su questi risultati, fondiamo la formulazione di un modello concettuale a supporto del
processo di progettazione di interfacce conversazionali multimodali. Il modello sfrutta
diagrammi gerarchici, ispirati al formalismo BPMN, per modellare l’interazione conver-
sazionale e separare la descrizione del compito da come viene reificato nelle varie modalità.

Nell’ultima parte della tesi, descriviamo Albot Einstein, un caso di studio di un agente
conversazionale pedagogico multimodale per insegnare il pH ai bambini. Inoltre, per val-
idare le capacità descrittive del modello, testiamo l’efficacia della piattaforma in uno stu-
dio comparativo con 28 bambini, ottenendo risultati paragonabili a quelli ottenuti con
un’applicazione web interattiva “tradizionale”.

Abbiamo progettato e sviluppato uno strumento di authoring grafico che consente di
trasformare le informazioni espresse in una notazione derivata da quella del modello in
un’istanza di backend dell’applicazione. Una valutazione empirica con 15 sviluppatori
mostra come tale interfaccia possa supportare lo sviluppodi interfacce conversazionalimul-
timodali.

Infine, discutiamo come il lavoro presentato possa essere inquadrato in un unico frame-
work che copre l’intero processo di progettazione e implementazione di un agente conver-
sazionale multimodale.

vi

Contents
Abstract iii

Sommario v

1 Introduction 1
1.1 Motivation and Goals . 1
1.2 Contributions . 2
1.3 Thesis Organization . 4

I Multimodal conversational agents for data science 7

2 GeCoAgent 9
2.1 Introduction and Research Questions 9
2.2 RelatedWork . 11

2.2.1 Tools for Bioinformatics . 11
2.2.2 Conversational Agents for Data Science 12
2.2.3 Elicitation andModeling of Tasks Requirements 13
2.2.4 GeCo Data Repository . 14

2.3 An Ontology to Describe the Bioinformatics Tertiary Analysis Research
Process . 15
2.3.1 Motivations . 15
2.3.2 From user interviews to a Hierarchical Task Tree 16
2.3.3 AHierarchical Task Tree to describe Tertiary Analysis 19
2.3.4 Validation . 22
2.3.5 Creating the Ontology . 28
2.3.6 Discussion . 32

2.4 GeCoAgent Requirement Analysis 32
2.4.1 Process Requirements . 32
2.4.2 Conversational Requirements 35

2.5 Design . 37
2.5.1 Functions Definition . 37
2.5.2 Task-drivenWorkflow . 39
2.5.3 Conversation DrivenWorkflow 40
2.5.4 From Automata to Conversation 43

2.6 Deployment . 44
2.6.1 Architecture . 44
2.6.2 Natural Language Understanding 46
2.6.3 Dialogue Management . 46

vii

2.6.4 Multimodal Interface Design 46
2.7 Using GeCoAgent: a Concrete Example 48
2.8 Evaluation . 51

2.8.1 Participants . 51
2.8.2 Procedure . 52
2.8.3 Results . 53

2.9 Discussion . 55
2.9.1 Limitations . 56

2.10 Conclusions . 56

3 DSBot: a multimodal conversational agent for data science 59
3.1 Introduction and Research Questions 59
3.2 State of Art . 62

3.2.1 Automatic Code Generation 62
3.2.2 AutoML . 62
3.2.3 Interactive Machine Learning 63
3.2.4 Conversational Troubleshooting 65

3.3 Design Principles . 65
3.3.1 Multimodality . 65
3.3.2 Extensibility . 66
3.3.3 Focus on Tabular Data . 66

3.4 SystemOverview . 66
3.5 Phase 1 . 67

3.5.1 Components . 67
3.5.2 Architecture . 76

3.6 Phase 2 . 77
3.6.1 ProblemDefinition . 77
3.6.2 System’s Overview . 78
3.6.3 Configuration . 79
3.6.4 Architecture . 80
3.6.5 Runtime Behaviour . 81
3.6.6 Mapping of the Design Principles in the System 82

3.7 Use Cases . 83
3.7.1 Use Case A: Analysis Use Case 83
3.7.2 Use Case B: Conversation Use Case 84
3.7.3 Use Case C: Troubleshooting 88

3.8 Evaluation . 88
3.8.1 Evaluation of the Automatic Machine Learning Pipeline Executor 88
3.8.2 Evaluation of the translation into executable pipeline 91
3.8.3 Evaluation of the Troubleshooting process 93
3.8.4 Results . 96
3.8.5 Discussion . 104

3.9 Conclusions . 106
3.9.1 Limitations and Further works 106

viii

II Multimodal Conversational Agent: a Design Perspective 109

4 Problem Space and Research Questions Definition 111
4.1 Lessons learned with the past experiments 111
4.2 Defining the Problem Space . 113

4.2.1 Model-based Conversational Agents 113
4.2.2 Task-oriented Conversational Agents 113
4.2.3 Process-driven conversational agents 114
4.2.4 Multimodal interaction . 114
4.2.5 TheMultimodality Continuum 115

4.3 Research Questions . 118

5 Design Principles for Multimodal Conversational Interfaces 119
5.1 Introduction . 119
5.2 Design Principles . 120

5.2.1 Show, Don’t Tell. 120
5.2.2 Separate Feedback from Support. 121
5.2.3 Show Information OnlyWhen Necessary. 122
5.2.4 Design a Light Interface— Emphasize content. 122
5.2.5 ShowOneModality at a Time. 122
5.2.6 Don’t Overload Multiple Modalities Beyond User Preferences

and Capabilities. 123
5.2.7 Use Multimodality to Resolve Ambiguities. 123

5.3 Case Study: Mapping the Principles on GeCoAgent 124
5.4 Discussion and Conclusions . 125

6 How does multimodality affect the conversation? 127
6.1 Introduction . 127
6.2 State of the Art . 128

6.2.1 Multimodal Chatbots . 128
6.2.2 Linguistic studies on chatbots 128
6.2.3 Usage of visual hints in chatbots 129

6.3 Method . 130
6.3.1 Goal and Research Questions 130
6.3.2 Setting . 131
6.3.3 Materials . 131
6.3.4 Procedure . 133
6.3.5 Observed Variables . 135
6.3.6 Participants . 135

6.4 Results . 135
6.5 Discussion . 138
6.6 Conclusions . 140

ix

III A model-driven approach to multimodal conversational in-
teraction design 141

7 A Conceptual Model for Multimodal Conversational Agents. 143
7.1 Introduction . 143
7.2 State of the Art . 144

7.2.1 DesignModels for Chatbots 144
7.2.2 Multimodal Dialogue Systems 146

7.3 A process-based model for Conversational Agents 147
7.3.1 Design dimensions . 148
7.3.2 Modeling Constructs . 148
7.3.3 Design process . 152
7.3.4 Example . 153

7.4 FromUni-modal to Multimodal . 155
7.4.1 Requirements for strongly integrated conversational agents . . 155

7.5 Synchronizing the modalities: event-based interaction and shared context 156
7.5.1 A proposed architecture for modalities synchronization 157

7.6 Process representation as shared knowledge 158
7.6.1 Run-time Behaviour . 159
7.6.2 Example . 160

7.7 Discussion and Conclusion . 166

8 Case Study: Albot Einstein, a Pedagogical Multimodal Conversational A-
gent 169
8.1 Introduction and Research Questions 169
8.2 State of the Art . 171
8.3 Pedagogical Design Principles . 172

8.3.1 Participants andMethods . 172
8.3.2 Results . 172

8.4 Albot Einstein . 173
8.4.1 User Experience (UX) . 173
8.4.2 RuntimeModel . 175

8.5 Evaluation . 176
8.5.1 Goal and Research Questions 176
8.5.2 Participants . 177
8.5.3 Setting . 177
8.5.4 Methodology . 178
8.5.5 Results . 180

8.6 Discussion . 181
8.7 Conclusions . 183

9 A Low-code Authoring Tool for Multimodal Conversational Agents 185
9.1 Introduction . 185
9.2 Background . 186

9.2.1 End-User Development . 186

x

9.2.2 Low-code and no-code development platforms 186
9.3 Conversational Agent Generation Tools Analysis 187

9.3.1 Dialogflow . 188
9.3.2 IBMWatson . 188
9.3.3 Amazon Lex . 189
9.3.4 Azure Bot Service . 189
9.3.5 FlowXO . 190
9.3.6 RASA . 191
9.3.7 Xenioo . 191
9.3.8 Landbot.io . 192
9.3.9 Chatterbot . 192
9.3.10 Pandorabots . 193
9.3.11 Xatkit . 194
9.3.12 Discussion . 194

9.4 SystemOverview . 195
9.5 Implementation . 196

9.5.1 Frontend . 196
9.5.2 Backend . 197

9.6 User Evaluation . 198
9.6.1 Participants . 198
9.6.2 Setting . 198
9.6.3 Procedure . 199
9.6.4 Results and Discussion . 200

9.7 Conclusions . 202

10 Conclusions 203
10.1 Discussion: a summary of the contributions of the thesis 203
10.2 Results: a holistic view on the thesis contributions 204
10.3 Limitations and Future Works . 206

Bibliography 209

xi

List of Figures
1.1 Graphical representation of the work presented in the thesis 3

2.1 The three steps of bioinformatics analysis 10
2.2 Schematic representation of the process that led to the formulation of the

ontology . 16
2.3 The three phases of the interview process. Source [12] 17
2.4 Hierarchical Task Tree of the Bioinformatics Tertiary Analysis process . 21
2.5 Example of mapping the process described in two research papers on the

Hierarchical Task Tree. Source [12] 26
2.6 Number of tasks described in every paper examined in the validation process 27
2.7 Number of occurrences of every task in the set of papers examined in the

validation process . 27
2.8 Graphical representation of the ontology. Source [12] 30
2.9 Zoom on a section of the graphical representation of the ontology pro-

vided in Figure 2.8. In particular, it represents the section of the tree
comprising the path from Bioinformatics Tertiary Analysis task toData
Preprocessing, with all its children tasks. Source [12] 31

2.10 The sections of trees colored in green represent the operations supported
by the GeCoAgent web interface . 34

2.11 The four interaction phases of GeCoAgent 34
2.12 Structure of a simple and high-order function. Source [11] 39
2.13 A function-using program as an example. The user chooses expression in-

formation from patients with kidney renal clear cell carcinoma, or KIRC.
Then she merges the samples, pivots the dataset, and produces a table
with rows for patients, columns for genes or microRNAs, and values for
fpkm expression information. To determine the optimal number of clus-
ters, the user plots the data using PCA and then uses k-means coupled
with a parameter tuning technique. The results are again plotted using a
PCA. Source [11] . 40

2.14 Finite state machine that describes at a macroscopic level the process sup-
ported by GeCoAgent. Every transition represents a function, while ev-
ery state corresponds to a dataset outcoming from an operation. Source
[11] . 41

2.15 An illustration of amicro automaton for dataset exploration, triggered by
the macro automaton’s initial edge with the label “Extract/Extraction.”
The user’s intents and the function’s parameters are recorded thanks to
the dialog, and information is gathered in the context object. The macro
automata start running again when the micro automaton has finished
running. Source [11] . 42

xiii

2.16 GeCoAgent’s three-tier architecture. The modules manager in the fron-
tend communicates with the server, distributes data to the operational
modules, and refreshes the GUI as necessary. The NLU Unit (based on
Rasa), the dialogue manager, and the development of the function mod-
ules are included in the backend. A relational engine facilitates the quick
execution of data exploration and analysis primitives on exported data.
GeCo Resources are part of the data layer. Source [11] 45

2.17 GeCoAgent’s web interface. Source [11] 47
2.18 Example of conversation with GeCoAgent. During the interaction, the

conversational agent aids the user in completing the task; e.g., (A) the Sup-
port Area shows the available options, the Tool Area reports (B) the meta-
data distribution, and (D) a table representation of the selected dataset.
In addition, the Conversational Agent (C) guides the user by suggesting
the most common choices or best practices. Source [11] 49

3.1 Conceptual architecture of the system. The boxes with a user depicted
are the ones in which users must interact with the platform. 68

3.2 Finite State Machine of the high-level conversation flow for user’s opera-
tional goal elicitation. 74

3.3 Example of an analysis’ results before (a) and after (b) the enrichment of
the pipeline. 75

3.4 Architecture of DSBot responsible for the first phase of the interaction. 77
3.5 Sequence of operations performed by the system. 78
3.6 The components of the system and the configuration files. 80
3.7 The system’s behavior; the Configuration Handler is not shown for sim-

plicity. 82
3.8 DSBot web interface for adding the input dataset and labeling it (use case

A). 85
3.9 Web user interface: textbox for users’ research questions (use case A). . 85
3.10 Web interface for visualization of final results and chatbot explanations

(use case A). 86
3.11 The layout of the results page. The user can interact with the chatbot on

the right while viewing the analytic results on the left. The parameters
associatedwith the user-identifiedproblemare highlighted in the pipeline
at the bottom. 89

3.12 Screen capture of the evaluation – initial results 97
3.13 Screen capture of the evaluation – first interaction 98
3.14 Screen capture of the evaluation – second results 99
3.15 Screen capture of the evaluation – final results 100
3.16 SUS percentile evaluation, adapted from [185] 104

xiv

4.1 The Multimodality Continuum: from uni-modal to multimodal fully
integrated conversational interfaces. (a) Uni-modal conversational agent
dialogues with the user. (b) The user either dialogues with the conversa-
tional agent or interacts manually with the interface. Both interactions
are not contemplated in this model. (c) The three agents are linked: the
user can either interact with the interface or dialogue with the agent, and
the agent can send instructions to the interface. (d) One multimodal ex-
ample of the conversational agent is the user dialogueswith the agent, and
the agent uses the interface as visual support. (e) All the possible connec-
tions are present: the user can either interact with the interface or dia-
logue with the agent, the agent can send instructions to the interface, and
it can also receive information from the visual interface. Every agent can
listen and interact with the other agents. 117

5.1 The interface of GeCoAgent, presented in Chapter 2. Table 5.2 illus-
trates how the principles apply in the interface design. 125

6.1 Screenshot of the web application used for the study. In particular, the
application is showing a set of cards, for theHint condition, in the Travel
Agency scenario . 132

6.2 Examples of hints used in the chatbot forHint condition 132
6.3 Graphical representationof the application’s four experimental groupsdi-

vided users. The assignmentwas done to create themost balanced groups
possible regarding demographics. 134

6.4 Raw number of messages sent in the four experimental groups. Visual
hints are in orange, while written messages are in blue 136

6.5 Rate of interactions per scenario in the four experimental groups 137

7.1 Building blocks for Process Model Diagram 149
7.2 Building blocks for Process Model Diagram 152
7.3 TaskDiagram for the example provided as a case study. The lower schema

is the expansion of the upper one. 153
7.4 Example of the Interaction DiagramModel of the Guess_ph task in the

uni-modal setting. The two tables underneath represent on the left the
event description and the output description on the right. 154

7.5 Example of the InteractionDiagramModel of the Xor_ph gateway in the
uni-modal setting. The two tables underneath represent on the left the
event description and the output description on the right. 154

7.6 Side conversations for the conversational agent. 155
7.7 example of multi-turn interaction . 157
7.8 The shift of paradigm introduced by the introduction of multimodality:

the input becomes a generic event (GUI input or utterance) and the out-
put a combination of utterances and GUI events. 158

7.9 Multimodal version of the example provided in the case study 161

xv

7.10 Example of the Interaction DiagramModel of the Guess_ph task in the
multimodal setting. Every modality has a lane in the schema. The two
tables underneath represent on the left the event description and the out-
put description on the right. 162

7.11 Example of the Interaction Diagram Model of the Xor_ph gateway. Ev-
ery modality has a lane in the schema. The two tables underneath repre-
sent on the left the event description and the output description on the
right. 163

7.12 Process model diagram representing the expansion of all the tasks and
gateways in their interaction diagram, merging the modalities. 164

7.13 example of a possible interactionbetween auser and themultimodal inter-
face of a web application teach chemistry. Particularly, on the left, there is
the chatbot, on the right the GUI, and in the center the user. Each arrow
pointing to the user indicates either the event or the message shown to
the user, whereas the arrows pointing to the interfaces are for themessage
from the user to either the GUI or the Conversational Agent. 165

8.1 A screenshot of Albot Einstein’s interface. 174
8.2 Runtime model of Albot Einstein. Text input in the chat is converted

into events, and the interaction is captured on the GUI. The dialogue
manager processes those events thanks to its process representation and
produces the output for all the modalities. 176

8.3 Application in the two experimental conditions. The GUI is integrated
with the Pedagogical Conversational Agent on the left-hand side (a, c).
Learners can interact directly by manipulating the interface and through
text messages in the chat. On the right-hand side, the PCA is replaced by
textual information displayed at the bottom of the screen. 177

8.4 (a) distribution score of the assessment test before and after interacting
with Albot Einstein. (b) improvement of users’ scores in the assessment
test, computed as the differencebetween thefinal and initial tests. (c) time
on task for the two tasks in the two experimental conditions. (d) UES-SF
scores in the two experimental conditions. 179

9.1 An overview of how the system works. 196
9.2 Backend genreated . 198
9.3 Process diagram of the conversational agents that study participants had

to implement . 199
9.4 Interaction diagram of the “obtain generalities” task that study partici-

pants had to implement . 199

10.1 An holistic view on the contributions of the thesis 205

xvi

List of Tables
2.2 Mapping of the leaf nodes of the Hierarchical Task Tree on the paper ex-

amined during the validation process. 25
2.3 Listing of data extraction and analysis pipelines, i.e., recurring task se-

quences in GeCoAgent processes. 35
2.4 List of functions divided by phase of the analysis process. 38
2.5 CompletionRate andTime onTask of the participants to the experimen-

tal study, divided by experimental condition. 53

3.1 High-level and low-level symbols included in DAW domain-specific lan-
guage. 70

3.2 Dataset Characteristics inferred by DSBot. 71
3.3 Organization of the Configuration Table. Each row represents a module

parameter, and each column represents a problem that DSBot seeks to
solve. If there is an utterance identifier in a cell, the parameter for that
utterance could be used to solve the issue in that column. This table is di-
rectly editable by the conversation designer, who can add problems, edit
utterances, and establish new relationships between problems and param-
eters. 80

3.4 Conversation betweenDSBot and the user after the interpretation of the
first user’s request failed (use case B). 87

3.5 Evaluation of classification tests. 91
3.6 Evaluation of regression tests. 92
3.7 Background and occupation of the participants to the test 95
3.8 Quantitative data collected during the evaluation 101
3.9 Chatbot interaction sentences analysis 102
3.10 Focus of users’ sentences . 102
3.11 User opinions on dsbot by type . 103
3.12 Cumulative frequency distributions of TLX scores 105

4.1 Differences between the conversational agent of GeCoAgent and DSBot. 111

5.1 Design Principles for designing of multimodal conversational interfaces 120
5.2 Application of the principles in the definition of the interface shown in

Fig. 5.1 . 126

6.1 Use of the hints in both scenarios . 133
6.2 Generalized linear mixed model fit by maximum likelihood (Laplace Ap-

proximation) . 138
6.3 Simultaneous Tests for General Linear Hypotheses 138

xvii

6.4 Generalized linear mixed model fit by maximum likelihood (Laplace Ap-
proximation), groups 1 and 2 combined 138

6.5 Generalized linear mixed model fit by maximum likelihood (Laplace Ap-
proximation), groups 3 and 4 combined 139

8.1 Implementationof the eliciteddesignprinciples (described inSection8.3)
in Albot Einstein . 175

8.2 Users’ answers to the question “What did you like the most?” 181

xviii

Chapter 1
Introduction
1.1 Motivation and Goals
A conversational agent is a computer program that mimics human conversation [1]. Users
speak or write in natural language (e.g., plain English); the software elaborates the input,
extracts the relevant information, formulates a response in natural language, and returns
it [2].

In recent years, conversational agents have seen rapid development, both in terms of adop-
tion and technological evolution. Thanks to the advancements in the fields of artificial
intelligence, machine learning, and natural language processing, modern conversational
agents can interpret increasingly complex requests from users, provide answers on broad
domains, and support users with personalized responses keeping in consideration the con-
text of the interaction.

Today, conversational agents are being used successfully employed in many domains, such
as customer assistance, e-commerce, education,mental health, andhomeautomation. The
presence in society is still at the beginning: Deloitte estimated that the market for conver-
sational AI, starting from $6B value in 2019, will grow to $22.6B by 2024 [3]. The latest
innovations in generative conversational agents, i.e., the conversational engines not trained
on a set of rules pre-definedby thedeveloper but on a large dataset of existing conversations,
are thought to disrupt many online services as they are today, such as search engines [4]
and programming environments [5].

Many factors concur with the success of these technologies. First, being the natural lan-
guage a very intuitive way for humans to interact with technology, the use of conversa-
tional agents allows users to relieve the cognitive load of interacting with an application
and, therefore, to focus on the task people are facing [6, 7]. Second, this technology offers
much room for interaction personalization, therefore providing a better user experience
and more comprehensive accessibility of the system [8]. In addition, automatic and self-
administered support enabled by conversational agents implies for the user a continuous
availability of the service, and for the service provider a lower cost than traditional customer
services [9]. Finally, in domains where privacy is particularly relevant (such as in the field
of sexually transmitted diseases), the absence of a human respondent is appreciated and is
seen as an incentive for users [10].

My Ph.D. journey started by trying to harness the potential of conversational technologies
to help people with little or no expertise in computer science and statistics to do data anal-
ysis. This gave rise to GeCoAGent, the tool presented in Chapter 2, which evolved into

1

Chapter 1. Introduction

DSBot, presented inChapter 3. These twoweb applications guide users in composingma-
chine learning pipelines through a conversational agent, the first in bioinformatics and the
second for any data in tabular form. These two tools have in common that they are mul-
timodal; conversation is supported by graphical content to guide users in complex tasks
such as data science operations. In fact, we juxtaposed the conversation with a graphical
user interface. The two interfaces are synchronous, and the behavior on one implies a state
update of the other as well.

These two experiences led us to reflect on the effectiveness and potential of multimodal
conversational interfaces, realizing, however, two gaps in the literature (Chapter 4): the
lack of conceptualization of the integration of the various modalities and, consequently,
the lack of a reference model for the design, specification, and implementation of such
interfaces.

My work then proceeded by defining the “Multimodality Continuum” (Chapter 4), i.e.,
the spectrum of possible degrees of modality integration and with an analysis of the impli-
cations thatmultimodality brings within the interaction, both from linguistic (Chapter 6)
and an interaction design perspective (Chapter 5): on the one hand, how the linguistic
register changes as graphical elements are juxtaposedwith the conversational agent, and on
the other hand, how the designer must take the multimodal setting into account within
experience design.

I then moved on to the formulation of an actual model for describing process-based mul-
timodal conversational agents, explained in Chapter 7 defining the elements necessary for
interface description and proposing a high-level architecture for the implementation of
such interfaces. Finally, after creating and testing a multimodal interface in the educa-
tional domain in Chapter 8, I created an authoring tool that allows rapid programming
and deployment of backend structures for managing such interfaces (Chapter 9).

1.2 Contributions
My work advances the state of the art in the design of multimodal conversational inter-
faces, providing design guidelines, empirical evidence, models, tools, and instruments that
approach those interfaces at 360 degrees.

Every chapter is a separate study that presents its contributions, answering well-defined
research questions. Overall, those contributions can be classified as follows:

• AdetailedLiteratureAnalysis, that provides the theoretical grounding for eachwork.
In addition, a detailed meta-analysis of the findings is the basis for the elicitation
of the theoretical models formulated in Chapter 2, design principles presented in
Chapter 5, and the design of the authoring tool in Chapter 9;

• A set ofTheoreticalModels, in the form of the ontology presented inChapter 2, the
“Multimodality Continuum” introduced in Chapter 4, and the conceptual model
for designing strongly-integratedmultimodal conversational interfaces (Chapter 7);

2

1.2. Contributions

Figure 1.1 –Graphical representation of the work presented in the thesis

• Three Conversational Applications; two of them for the analysis of supporting peo-
ple in data science operations, and a pedagogical conversational agent to teach chil-
dren chemistry, precisely the pH concept;

• FiveEmpirical Studieswith real users to test the applications (Chapter 2, 3, 8, and 9)
and to understand how the introduction of multimodality affects the interaction
(Chapter 6);

• Two Tools for Developers, specifically an open-source framework to support multi-
modal conversational troubleshooting, presented in Chapter 3, and a graphical au-
thoring tool to define and deploy backend structures of multimodal conversational
applications, shown in Chapter 9.

• Some Design Principles, extracted from the analysis of the literature in Chapter 5,
to be integrated with the contributions resulting from analysis of the qualitative
interviews performed in the presented studies (Chapter 2, 3, 8, and 9).

Figure 1.1 graphically maps the types of contributions to the chapters.

3

Chapter 1. Introduction

1.3 Thesis Organization
This thesis is divided into threemain parts, corresponding tomywork’s threemain phases.
Each chapter is developed as a research paper, and contains all the elements that make it
usable also individually. Figure 1.1 graphically represents the flow of the various works
presented in this Thesis.

In Part I, I will explore the use of multimodal conversational agents for data science, pre-
senting two tools with this aim.

In Chapter 2, I will talk about GeCoAgent, a conversational interface for Bioinformat-
ics Tertiary Analysis. Chatting with GeCoAgent users can filter data from heterogeneous
sources and combine their pipelines only using natural language. Multimodality provides
feedback and support coherently with the conversation. The design of the tool has been
based on an ontology-based representation of the BioinformaticsTertiaryAnalysis process,
first elicited from user interviews in the form of a Hierarchical Task Tree and then formu-
lated in the ontology formalism and validated through a literature analysis. The design
and implementation of the conversational engine are based on the definition of grammar-
based rules. We assessed the usability of the platform through a user testing session with
14 participants. The work presented in this chapter has been published in:

[11] Pietro Crovari, Sara Pidò, Pietro Pinoli, Anna Bernasconi, Arif Canakoglu, Franca
Garzotto, and Stefano Ceri. 2021. Gecoagent: a conversational agent for empowering
genomic data extraction and analysis. ACM Trans. Comput. Healthcare, 3, 1, Article 3,
(October 2021), 29 pages. issn: 2691-1957. doi: 10.1145/3464383. https://doi.
org/10.1145/3464383

[12] Sara Pidò, Pietro Crovari, and Franca Garzotto. 2021. Modelling the bioinformatics
tertiary analysis research process. BMC bioinformatics, 22, 13, 1–27

[13] Pietro Crovari, Sara Pidò, and Franca Garzotto. 2020. Towards an ontology for ter-
tiary bioinformatics research process. In International Conference on Conceptual Model-
ing. Springer, 82–91

[14] Pietro Crovari, Fabio Catania, Pietro Pinoli, Philipp Roytburg, Asier Salzar, Franca
Garzotto, and StefanoCeri. 2020. Ok, dna! a conversational interface to explore genomic
data. In Proceedings of the 2nd Conference on Conversational User Interfaces, 1–3

InChapter 3, I will present DSBot, another conversational agent for data science analysis.
As I will discuss in the chapter, DSBot can be considered the evolution of GeCoAgent for
many reasons, primarily for the extension to all data in tabular form and a different use of
the conversation that is nomore the central locus of the interaction but complements with
the graphical interface. DSBot is composed of two main functional parts that correspond
to the phases of the interaction: i) an engine that receives as input a dataset and a research
question in natural language and automatically creates a data science pipeline that exploits
AutoML techniques to produce an answer to the research question, and ii) a multimodal
conversational troubleshooting module that supports users in the refinements of the re-
sults. In addition, we distributed the secondmodule as a lightweight open-source module

4

https://doi.org/10.1145/3464383
https://doi.org/10.1145/3464383
https://doi.org/10.1145/3464383

1.3. Thesis Organization

to be integrated into any web application. We empirically tested the efficacy of the analysis
module, comparing our performances with the ones of well-established AutoML libraries
and assessing the goodness of the translation capabilities of the system from the research
question to the operative pipeline. We also tested the usability of the troubleshooting sup-
port through an empirical evaluation with 12 participants. Part of the work presented in
this chapter is published in:

[15] Sara Pidó, Pietro Pinoli, Pietro Crovari, Francesca Ieva, Franca Garzotto, and Stefano
Ceri. 2023. Ask your data—supporting data science processes by combining automl and
conversational interfaces. IEEE Access, 11, 45972–45988. doi: 10.1109/ACCESS.2023.
3272503

[16] Giulio Antonio Abbo, Pietro Crovari, Sara Pidò, Pietro Pinoli, and Franca Garzotto.
2022. Mctk: a multi-modal conversational troubleshooting kit for supporting users in
web applications. In Proceedings of the 2022 International Conference on Advanced Visual
Interfaces, 1–3

[17] Giulio Antonio Abbo, Pietro Crovari, and Franca Garzotto. 2022. Enhancing con-
versational troubleshootingwithmulti-modality: design and implementation. In Interna-
tionalWorkshop on Chatbot Research and Design. Springer, to appear

InPart II, I will analyze the role ofmultimodality in the interaction from a problem fram-
ing, linguistic, and design perspective.

Chapter 4 will open with some reflections on the role of multimodality in the success of
GeCoAgent and DSBot. Then, I will use that discussion as a starting point to frame the
problem of multimodality in conversational interfaces. I will introduce the design dimen-
sions and the problem space onwhich the rest of the thesis will discuss. I will introduce the
“Multimodality Continuum”, a taxonomy to describe the possible degrees of integration
of conversational agentswith othermodalities. Finally, Iwill discuss the research questions
that lead the work in the following chapters.

Chapter 5 will analyze the design implications of the introduction of multimodal ele-
ments in the interaction. The work followed a literature-based approach: we conducted a
survey of the research works in the fields of multimodality with a particular focus on mul-
timodal conversational applications, and we clustered the recurrent topics, eliciting seven
design principles for such interfaces. The chapter ends with a case study in whichwe show
how the design principles are applied to the design of GeCoAgent. The design principles
have been published in:

[18] Pietro Crovari, Sara Pidó, Franca Garzotto, and Stefano Ceri. 2020. Show, don’t
tell. reflections on the design of multi-modal conversational interfaces. In International
Workshop on Chatbot Research and Design. Asbjørn Følstad, Theo Araujo, Symeon Pa-
padopoulos, Effie L.-C. Law, Ewa Luger, Morten Goodwin, and Petter Bae Brandtzaeg,
editors. Springer. Springer International Publishing, Cham, (November 2020), 64–77.
isbn: 978-3-030-68288-0. doi: 10.1007/978-3-030-68288-0_5

5

https://doi.org/10.1109/ACCESS.2023.3272503
https://doi.org/10.1109/ACCESS.2023.3272503
https://doi.org/10.1007/978-3-030-68288-0_5

Chapter 1. Introduction

Chapter 6will assess multimodality influence from the linguistic perspective in a compar-
ative study. We set up an empirical study with 185 participants, who had to interact with
multiple conversational agents, equivalent in the conversations, but different in the inter-
action design: some of them were uni-modal chatbots, others embedded graphical hints
(such as buttons, carousels, and sliders) in the interface. We compared the performance of
the users in the different conditions, observing the language use, the interaction time, and
the number of errors committed.

In Part III, we will concentrate on modeling and implementing multimodal conversa-
tional agents, building on the knowledge generated in the previous part. I will start for-
mulating a model to describe the design of those interfaces and then provide a complete
example and realize an authoring tool to convert model-based specifications into the exe-
cutable backend of those applications.

InChapter 7 I will describe themodel we formulated for describingmultimodal, process-
based, task-oriented conversational interfaces. Our model takes inspiration from BPMN
notation [19] to decompose the interaction process in tasks connected by gateways that
rule the order of execution. We built this model pursuing the separation of concerns, that
is, dividing the description of what users must do from how they can do it so that modifi-
cations of the UX (e.g., a change in the dialogue) does not affect the other modalities or
the task specification.

Chapter 8will present a detailed description of the case study I used to describe how the
model works. I will introduce Albot Einstein, a multimodal pedagogical conversational
agent thought to teach children chemistry, precisely the concept of pH. I will describe the
designprocess that leads to the constructionof the application, involving teachers and com-
munication experts to elicit the design requirements. We conducted an empirical evalua-
tion with 28 children from a secondary school, divided into two experimental conditions,
to assess the learning effectiveness of such an application with respect to “traditional” web
applications, showing comparable results.

Finally, inChapter 9, I will present the authoring tool we developed to support develop-
ers in the creation ofmultimodal conversational interfaces. The tool we propose presents a
drag-and-drop interface on which developers can design and define the behavior of the ap-
plication they want to implement, with a formalism that is derived from the one described
in Chapter 7. We also decided to include the management of the conversation inside the
tool; developers can provide examples to train the Natural Language Understanding unit
from a dedicated pane. Then, with the simple push of a button, the tool checks the cor-
rectness of the schema and deploys it into a working backend, ready to be integrated with
a frontend. We tested our system with 15 developers that considered it a valid instrument.

The document ends withChapter 10with a broader discussion on the contributions and
the conclusions.

6

Part I

Multimodal conversational agents for
data science

7

Chapter 2
GeCoAgent
2.1 Introduction and Research Questions
My Ph.D. started with a simple but compelling research question: propose a tool to sup-
port biologists and clinicians in genomic analysis.

Genomics is the discipline that studies the genome of an organism, that is, the genetic
information that controls all the biological processes inside a living being, regulating its
life, its growth, and its development. Genomics’ primary focus is to investigate how the
mutations of portions of DNA, i.e., modifications during its reproduction, are related to
disease development.

Despite this discipline was born in the second half of the XXCentury (the term genomics
was used for the first time in 1987 by McKusick et al. [20], genomics saw exponential
growth in the last two decades [21], when the commercial availability of Next Generation
Sequencing techniques allowed researchers to sequence DNA, i.e., “read” its sequence of
base pairs, at an accessible cost [22].

This increasing popularity leads experiments to produce enormous amounts of data at
an unprecedented rate [23]. Clinicians, through tertiary analysis, can pursue precision
medicine using this data as a supplement to existing clinical knowledge, while biologists
can support genome research with a focus on tumors. This analysis is called tertiary be-
cause it is the last step of the bioinformatics pipeline, preceded by the formation of the
sequence read (i.e., primary analysis) and the alignment of those sequences on a refer-
ence sample (i.e., secondary analysis) [24, 25]. A schematic representation of the pro-
cess is shown in Figure 2.1 To be employed for these purposes, genomic data must be
interpreted and transformed into actionable knowledge. Bioinformatics supported this
requirement with several instruments: a massive amount of computational methods have
been developed to support biologists and clinicians in their purpose. These tools are vari-
ous in the technology they adopt and the problem they address, from the cloud and high-
performance solutions to web-based orchestration platforms.

Genomic data is not only enormous but also complex [26]. Data originate from several
processes, come from different sources, encode heterogeneous signals, and are presented
in many different representations. For this reason, the ERC Advanced Project GeCo, led
byProf. StefanoCeri, designed and implemented tools to integrate those data and simplify
information extraction [25, 27–29].

However, bioinformatics tertiary analysis is still extremely challenging. To be able to draw
meaningful conclusions, a researcher must formulate a valid research question and trans-
late them into proper search routines, identify the right tool to extract the information

9

Chapter 2. GeCoAgent

Analysis of the machine-
generated data

and assessment of the
quality of the read

Alignment of the reads on a
reference sequence

Data analysis on the
genomic data

Primary Analysis Secondary Analysis Tertiary Analysis

Bioinformatics Sequence Analysis

Figure 2.1 – The three steps of bioinformatics analysis

needed to answer those questions, select a computational algorithm that can lead to the
formulation of the thesis, understanding its functioning and its constraints; operate on
data to make them suitable to be used with the selected algorithms; understand the nu-
merical solutions proposed by the algorithm and, finally, interpret them in the biological
domain to verify or discard the research hypothesis [30]. Biologists usually need to gain
profound computer science knowledge; therefore, bioinformatics tools are often inacces-
sible.

The usability of bioinformatics tools is a serious issue that hinders both their capacity to
support bioinformatics research and their potential for adoption, as Bolchini noted in [31].
Although many of these tools are highly difficult to learn and use, they were built to help
bioinformatics operations and reduce the inherent challenges in the field. Managing them
demands a large amount of cognitive work if the user is not an expert in both biology and
computer science, which should be used to address research concerns. When biological
operations and data become more complicated, this issue becomes worse. They call for
sophisticated algorithms and computer science techniques that are frequently only known
to machine learning software or data mining specialists.

With GeCoAgent, we try to overcome this limitation designing a big data service tailored
to biologists’ needs, particularly for professionals with limited computer science expertise
that usually require computer scientists’ support to perform data analysis with existing
bioinformatics tools.

We decided to build GeCoAgent as a conversational interface, the first of its genre in the
panorama of bioinformatics tool for tertiary research, to increase the accessibility of such a
platform. In this way, researchers can dialoguewith the platform instead of being required
to write pieces of code. GeCoAgent transforms the conversation into a pipeline of data
science operations and returns the computational results to users. To further increase the
accessibility, we embed the conversational agent into a multimodal dashboard, where the
user displays several visualizations concerning the operations performed interactively.

Before designing the interaction, wemust elicit the research process thatGeCoAgentmust

10

2.2. RelatedWork

support. We use task analysis to create an ontology of bioinformatics tertiary analysis re-
search that describes all the significant operations that the process comprises and their
precedence constraints. Then, we use this ontology as the base to create a conversation
that abstracts both the main phases of a typical analysis:

1. Data Extraction, guiding the user to select the genomic data on which to perform
the operation and filtering them as desired;

2. DataAnalysis, guiding the user to apply statistical andmachine learning algorithms
to the selected datasets.

Multimodality ensures that, at every step of the process, the user is supported by visualiza-
tion of tables and typical statistics that describe the dataset and the operations performed.

In this first experiment of amultimodal conversational interface, after having shown a tech-
nique to elicit the process to inform the design of a conversational UI, we show that such
an interface can empower bioinformaticians with no coding experience to operate alone
ondata and reduces the time required to complete the task and the number of errorwith re-
spect to the use of existing tools, bothGUI and code-based, such asGenoSurf [28], Jupiter
Notebooks [32] and R-Studio [33].

The work presented in this chapter has been published in [11–13].

2.2 Related Work
2.2.1 Tools for Bioinformatics
Over the years, many tools have been developed for bioinformatics tertiary analysis. The
first ones were executable programs or simple scripts to be executed through the command
line. Tools with a Graphical User Interface (GUI) started to be created as soon as research
interest in the subject increased. GUI-based tools can be split into two primary groups:
those that facilitate the development of research pipelines and those that accomplish a par-
ticular operation.

Tools for Research Pipeline

This category comprises all the tools that support users to formulate research pipelines,
providing a graphical user interface to integrate different modules into a unique workflow.

OrangeBioLab [34] is an example of a visual interface for the visualization and analysis of
data. Users can upload data and define their pipeline through a block interface. OrangeBi-
oLab provides modules for machine learning, data mining, predictive modeling, and data
visualization.

Instead, UCSC Xena [35] is a tool for comparing and visualizing data on various dimen-
sions. Users can rapidly compare the differences in the observed dimensions thanks to its
layout that aligns the data in columns.

11

Chapter 2. GeCoAgent

Galaxy [36] framework is a powerful graphical environmentmainly designed for secondary
analysis, and provides the foundations for Globus Genomics [37], a tool to create research
workflows graphically to manage and analyze genomic data. Since it is a web application,
researchers can collaborate sharing their projects.

Amodular systemcalledGenePattern [38] offers a plethora of genomic analysis capabilities
via a graphical user interface. Its modules can be accessed via a block-based environment in
a browser or run via code, using Python Notebooks, or through the command line. The
system’s components are highly adaptable to tailor the tools to the particular challenge.

Tools for Specific Operations

These tools focus on precise operations and therefore are conceived to be used in sequence
with other tools to complete the operations pipeline. The most relevant are BEDTools,
Integrated Genome Browser, and Bioconductor.

BEDTools [39] is an interactive application to compute genome arithmetic, that is, the
application of set theory on the genome.

IntegratedGenomeBrowser [40] allows biologists to explore interesting patterns from the
biological perspective in genomic datasets through visualizations.

Bioconductor [41] expandsR - a programming language for statistics - to allow researchers
to analyze and comprehend high-throughput genomic data.

2.2.2 Conversational Agents for Data Science
Conversational technology can ease the use of data science tools, guiding users in the in-
teraction with the system and abstracting the complexity of the underlying interface or
programming language.

Many attempts have been made in Data Visualization. [42–44] are some examples. Tory
thoroughly examines the effects ofmultimodality, emphasizing the significance of a strong
interaction between the visualizations and the chat. The user studies reinforced the theory
affirmed by [45] on the value of mixed interfaces by highlighting the significance of gener-
ating the visuals in conventional interfaces, thus segregated from the discussion.

The Data Retrieval process might also benefit from the use of conversational technology.
Microsoft English, Precise, and Athena are among the most famous dialogue interfaces
that transform a conversation into SQL-like languages [46–48]. BiographBot [49] is a
dialogic interface for bioinformatics data retrieval. It operates through ALICE frame-
work [50] to convert the conversationwith the user into a query for the BioGraphDB [51],
a genomic database based on Gremlin [52] query language that is freely accessible online.
Maggie [53] is a conversational interface with a service-oriented architecture that is in-
tended to obtain various biological data sets fromBioCatalog [54]However, withMaggie,
the user needs to be helped by the dialogue flow.

12

2.2. RelatedWork

Finally, Iris [55] and Ava [56] try to use conversation for Data Analysis. Both of them
focus on the construction of data analytics pipelines. Ava operates on a defined struc-
ture of the pipeline. Every step is a set of straightforward or nested operations that users
must complete by inserting the parameter they need through the conversation. Ava then
transforms the conversation into an executable Jupiter Python Notebook that guarantees
the experiment’s reproducibility. The conversation that acts as a Controlled Natural Lan-
guage Interface [57] is based on a finite state machine. The verbal engagement with Ava
is demonstrably more effective than the conventional notebook interface, according to ex-
perimental validation of the platform. On the other hand, theAva systemdoes not provide
data exploration since the underlying state machine only offers linear interactions.

IrisConversationalAgent followsAva’s lead andconverts user dialogue into callablePython
routines. The authors develop a system where discrete functions may be stacked and inte-
grated through a conversation, drawing on the premise that human interactions are built
on a combination of atomic speech acts [58]. The Iris conversational engine creates a syn-
tax tree that describes the chosen operations as the conversation progresses, and this syn-
tax tree is ultimately translated into executable code. Additionally, Iris’ empirical analysis
demonstrated the effectiveness of such an interface by demonstrating howmuch faster the
user could complete the given tasks. Since the system’s atomic speech actionswork aswrap-
pers for the existingPython functions, the Iris functional structure ensures a far better level
of user expression flexibility at the expense of more user programming proficiency.

2.2.3 Elicitation and Modeling of Tasks Requirements
With an in-depth knowledge of what users must do to accomplish their tasks, it is possible
to design good andpurposeful applications [59]. Consequently, a clear definition of all the
users’ tasks is necessary before designing a new interactive system. TheHuman-Computer
Interaction community calls this process TaskModel Elicitation[60].

Researchers developed many methodologies to fulfill this goal. GOMS [61] is one of the
most adopted ones. The name is the acronym of the four phases that constitutes any task:
Goals, Operators, Methods, and Section Rules. GOMS predicates that every user task can
be described in these four elements. In addition, tasks might be hierarchically defined, it-
eratively describing the high-level ones as the composition of multiple sub-tasks until all
the sub-tasks are considered atomic elements of the process. The intrinsic result of this de-
composition process is a hierarchical tree of tasks, in which children nodes represents the
sub-tasks that compose the parent tasks. GOMS framework has been declined in many
variants, among which we find TADEUS [62], MECANO [63], TRIDENT [64], and
MOBI-B [65]. However, the knowledge users acquire and use in the process is not mod-
eled in these formulations as a task component.

ConcurTaskTree [66] is another popular methodology that describes the temporal rela-
tions, together with the structural relationships among the tasks.

Ontologies are another widely-used instrument in computer science. Ontologies are a for-
mal descriptionof concepts andhowthey relate to eachothe, considered a valid instrument
to describe phenomena [67]. Ontologies allow scientists to create a common ground with

13

Chapter 2. GeCoAgent

peers onwhich they create domain knowledge and share information [68]. They are partic-
ularly useful in complex domains such as biology and bioinformatics [69]. In particular,
in this last community, the adoption of ontologies started with the formalization of the
biomolecular field and since then has been widely recognized as valuable [70].

OBI, TheOntology for Biomedical Investigations, is one of the biggest ontologies in bioin-
formatics, counting more than 3600 classes and 100 properties [71]. As the name states,
OBI describes the whole biomedical research process, from acquiring the data to process-
ing and producing corresponding genomic data. The adoption of OBI allows researchers
to share a common terminology when dealing with data and facilitate interoperability be-
tween data sources. OBI is based onOWL2 [71] and inherits the class types from the Basic
Formal Ontology (BFO) [72], and from the Information Artifact one (IAO) [73]: OBI
classes can be processes, material entities, processes and roles, and information entities.

To the best of our knowledge, there have been no research works centered on eliciting the
entire bioinformatics tertiary analysis process, even if many experts recognized the impor-
tance of funding the design of bioinformatics tools on models such as ontologies of the
method [74, 75].

2.2.4 GeCo Data Repository
Before proceeding with the description of the ontology and GeCoAgent, it is necessary
to frame the development of this tool in the GeCo project’s panorama. As said, GeCo
is an ERC dedicated to analyzing genomic data. Since 2015, GeCo’s research group has
worked mainly on two complementary assets: a repository that integrates all the genomic
and epigenomic data from the main public sources and the GenoMetric Query Language,
a language to retrieve those data and perform complex operations on them.

GeCo Repository

GeCoData Repository is a repository in which heterogeneous genomic (and epigenomic)
data are integrated and shownuniformly, ready to be queried using theGenoMetricQuery
Language. Data are uniformedon theGenomicDataModel (GDM) [76], whichdescribes
both the clinical (and biological) information of the sample and the outcome of the biolog-
ical experiments involving the sample itself. Precisely, each entry represents an experiment
outcome, whereas the entry’s metadata are key-value pairs that describe clinical informa-
tion of the patient [27, 77, 78]. GeCo data repository is graphically accessible through
GenoSurf, a tool to search and filter data graphically through a web interface.

GenoMetric Query Language (GMQL)

GMQL, the GenoMEtric Query Language, is a language to query genomics datasets rep-
resented in GDM [29]. Intuitively, the language consists of an algebra over datasets rep-
resented as region data and metadata, producing result datasets that contain the metadata

14

2.3. An Ontology to Describe the Bioinformatics Tertiary Analysis Research Process

of the input datasets on which they are dependent. The classical and domain-specific alge-
braic operations are the language’s fundamental parts. GeCoAgent uses high-level data ab-
stractions not concerned with algorithmic or formatting concerns characteristic of bioin-
formatics languages to convey the semantics of computations. This language organization
transfers extremely well to these high-level data abstractions.

2.3 An Ontology to Describe the Bioinformatics Ter-
tiary Analysis Research Process

2.3.1 Motivations
Bioinformatics Tertiary Analysis is a broad subject that comprises all the (complex) com-
puter sciencemethods, tools, and algorithms to extract biological knowledge fromsequenc-
ing data coming from raw genomic data [25, 79].

To the best of our knowledge, most bioinformatics applications were designed to adopt
a “system-centric” approach, meaning that the demands of the user and the nature of
the involved human activities were given less attention than the technology requirements.
A more “user-centric” approach that considers the viewpoint of the bioinformatics re-
searcher from the very beginning of the technology design process would be required to
make these apps more usable and helpful.

We claim that to pursue this shift, the design of bioinformatics tools should focusmore on
the following:

1. the characteristics of the pipeline that is going to be used; which are its components
and which are their purposes;

2. the inputs available to the user; which are the input the usermust provide andwhich
are their structure (CSV tables, numeric parameters, configurations, etc.);

3. the preferred and/or required outputs; which are the outputs the operations will re-
turn, how they are structured, and how they should be structured to facilitate the
researcher’s work;

4. the existing relations among the process elements; looking at the operations not as iso-
lated but as part of a broader process, therefore considering which outputs become
inputs of other operations and which ones are necessary to continue the execution
of the pipeline.

Only with a clear idea of the whole process it is possible to design a tool aware of the points
mentioned above. For this reason, we create a formal description of the bioinformatics
tertiary analysis process. Our method uses process models that are gradually improved to
depict and make obvious all the stages often carried out by a bioinformatician in a typical
tertiary analysis activity.

We first conducted an exploratory user study with eight bioinformaticians to elicit our
model. They identified the tasks involved in tertiary analysis, conceptualized the process,

15

Chapter 2. GeCoAgent

and represented it as a Hierarchical Task Tree using a well-known technique called hier-
archical task analysis [80]. Using the findings of a literature review containing examples
of bioinformatics Tertiary Analysis, we then improved and validated the process model.
Finally, using OWL [81], a common formalism for ontologies, we converted the final Hi-
erarchical Task Tree into an ontology-based representation to increase its expressiveness.

Three contributions emerge from the elicitation of the ontology:

1. AHierarchicalTaskTree [80]of a outlining theprocesses of a tertiary analysis backed
by examples demonstrating its thoroughness was developed after consulting many
subject matter experts.

2. A formal ontological description of the resulting process requirements; this ontol-
ogy, which is given in a common syntax, serves as a model for the reference process
in bioinformatics. Tertiary analysis can be utilized by bioinformaticians to compare
and analyze current tools as well as to create new ones.

3. An approach to elicit and model bioinformatics processes that might apply to tech-
nology design in various situations, especially those involving cognitively compli-
cated cognitive tasks that require exact definition beginning with the identification
of implicit expertise of the key actors.

2.3.2 From user interviews to a Hierarchical Task Tree
We elicited the ontology in a three-step process, shown in Figure 2.2. First, we interviewed
eight bioinformaticians to understand the phases of their research work and we created a
Hierarchical Task Tree to describe the tertiary analysis process. Then, we transformed the
model adopting ontology formalism to enrich the representation with information about
the precedence of the operations and the output at each step. Finally, we run a preliminary
evaluation describing existing research processes with our ontology to assess the complete-
ness of our model.

Interviews with
bioinformaticians

Hierarchical task
analysis

Validation in
literature

Figure 2.2 – Schematic representation of the process that led to the formu-
lation of the ontology

16

2.3. An Ontology to Describe the Bioinformatics Tertiary Analysis Research Process

Figure 2.3 – The three phases of the interview process. Source [12]

Participants

We recruited eight bioinformaticians on a voluntary basis. Volunteers had different posi-
tions, reflecting their different levels of expertise: three Ph.D. students, two research as-
sistants, two postdoctoral researchers, and an assistant professor. All of them considered
bioinformatics tertiary research analysis as their primary field of research.

Setting

We run the interviews remotely. The interviewer and the bioinformaticianwere connected
through a teleconferencing tool. The study participants had an online digital whiteboard
with virtual sticky notes opened on their computers during the interview. The interviewer
could access the same whiteboard on his machine. The whiteboard was different for every
participant, so they could not be influenced bywhat had been said in the previous sessions.

17

Chapter 2. GeCoAgent

Protocol

Each participant was involved in a interview session in that lasted around 45 minutes in
which they were guided to elicit a Hierarchical Task Tree of their research process.

AHierarchical TaskTree is a visual representation of tasks or subtasks organized in a hierar-
chical manner, where each task is broken down into smaller, more manageable parts. The
tree structure starts with a high-level, overarching task, called the root node, which is then
divided into multiple branches, each representing a sub-task. These sub-tasks can further
be broken down into even smaller sub-tasks, creating a branching structure that allows for
a clear and organized representation of a complex project or goal.

Because it gives a clear perspective of all the tasks involved, their interdependencies, and
the sequence in which they must be accomplished, this structure is helpful for planning
and managing projects. Additionally, it makes it simpler to assign resources and set dead-
lines and aids in identifying potential dangers or obstacles. As stakeholders can quickly
comprehend the project’s broad plan and their individual roles and responsibilities, it can
also be used as a communication tool [82–84].

To aid the volunteer being questioned and to aid us with a visual viewpoint, we gave them
access to a real or virtual whiteboard. We photographed the board after each stage to recre-
ate the interview process when analyzing the findings. Each participant completed a con-
sent form in which the study was fully described, along with a guarantee that the informa-
tion gathered would be anonymous.

The interview session was divided into three phases, shown in Figure 2.3. The first phase
consisted of theDefinition of the pipeline. The participants were instructed to add a sticky
note for each stage to the whiteboard as they described their usual research method in
detail. No further restrictions were placed on the number of stages or the level of detail in
the steps. During this initial phase, we allowed them as much leeway as possible and only
interrupted them to ask for clarifications.

The interview continued with the Classification of the pipeline. Participants had to group
their process components into several levels based onhowabstract theywere. They achieve
this by layering their sticky notes on the board in accordance with the degree of abstrac-
tion. Since jobs were not subject to granularity restrictions during the previous phase, the
pipeline was consistently highly diverse concerning the description’s level of abstraction.

The third and final step, the Definition of the Hierarchical-tree, required the participants
to construct a Hierarchical Task Tree of their usual research process by connecting the
findings from the first and second parts of the interview. Participants could add sticky
notes to complete the hierarchical structure if they believed it was necessary.

Results

All the participants successfully completed the interview process. We analyzed the out-
come of the interviews by comparing the boards participants had composed with sticky

18

2.3. An Ontology to Describe the Bioinformatics Tertiary Analysis Research Process

notes at every step of the elicitation process, and integrating them with the notes taken
during the interviews

The initial phases’ results were comparable. Comparing the research flow and the higher
degree of granularity reveals that, although the pipelines varied and each had its abstrac-
tion level, identical actions were still taken into account in the same sequence. We were
able to instantly obtain four typicalmacro-phases common in every research process: Data
Retrieval, Data Exploration, Data Analysis, and Results Validation. However, when we
took a closer look at the outcomes of the interviews, we saw that every participant paid
more attention to a different stage of the process. This gave us a detailed specification of
each phase and allowed us to retrieve a complementary viewpoint on the tertiary bioinfor-
matics study.

Assessing the results of the second part of the interview, i.e., the classification, we noticed
that results varied because each participant had a different level of abstraction. Each par-
ticipant’s steps and subdivisions were unique. We noted that the people we spoke with
assigned comparable abstraction levels to related activities. Almost all participants classi-
fied data using three or four distinct abstraction levels.

We then looked at the trees that were produced. Three major phases made up this analysis.
The investigation of the topologies of the created trees came first. The interview set as a
whole shared a similar fundamental structure. The topologies of the trees were varied, nev-
ertheless, especially at the deepest nodes. This is because every participant’s attention was
on a different workflow stage. The nodes of the trees were then compared, and we made
an effort to create a single tree with all of the complimentary and common nodes. There
were hardly any conflicts found in this comparison. The tree’s leaf nodes were the loca-
tion of the few disagreements. This enables us to emphasize that the researchers implicitly
concur with the typical methodology of a tertiary bioinformatics study. The next phase
involved precisely comparing the generated tree to single ones. The remaining nodes in the
interview trees were examined. Although few, we tried to incorporate them into the new
framework and, if possible, integrate them.

2.3.3 A Hierarchical Task Tree to describe Tertiary Analysis
The presented approach produces a Hierarchical Task Tree that describes the tertiary re-
search analysis process of bioinformatics.

We combined the trees produced by the participant interviews into a single structure to
elicit the model. Resulting diagrams presented some inconsistencies. In those situations,
we chose the course of action that the vast majority of the participants took. We requested
an expert bioinformatician who had not been interviewed to settle the dispute and offer
his point of view when an equal number of participants favored the opposing viewpoints.

This depictionworks for a variety of reasons. First, the treeprovides theprocess description
at several levels of abstraction, offering the appropriate amount of granularity for the given
issue. For this reason, systems that operate at many levels may all be described using the
same paradigm. The part of relationship between parent nodes and children is embedded

19

Chapter 2. GeCoAgent

in the tree at the same time, giving the conditions essential for eliciting all of the actions
that a tool must offer. In fact, a tool created for taskAmust support every action that task
A’s child nodes define.

Even if formalisms such as ConcurTask Trees [66] are a more potent tool for task descrip-
tion, we chose to utilize Hierarchical Task Trees instead since they are the most similar
representation of the user replies we gathered from the interviews. Additionally, this is
simply a transitional representation before adopting ontology formalism, as detailed later
in this article; it is not the final model.

Figure 2.4 displays the generated tree. All the participant stated that the tertiary analysis
process could be broken down into the four major stages ofObjective Definition, Data Ex-
traction, Data Analysis, andResults Analysis, which are characteristic of most data science
applications. Going deep into the structure, or examining the process at a more granular
level, causes domain-specific distinguishing characteristics to emerge.

According to all studyparticipants,ObjectiveDefinition—adescriptionofwhat a researcher
hopes to learn and get from that analysis—is where the bioinformatics research process be-
gins. This task is divided into three parts: Research Question Definition, State of the Art
Analysis, andDeliverables Definition, or the questions the researcher wants to answer, an
analysis of the works that are relevant to that subject, and a characterization of the out-
comes the researcher intends to present after the pipeline. The last stage is often carried
out in collaboration with domain specialists who will assess the findings from a biologi-
cal standpoint. A collection of tables, charts, or data required to substantiate the research
hypothesis produced in the Research Question Definition step is the outcome of the deliv-
erable definition.

Data Extraction starts when the research’s goal has been established. DataRetrieval, Data
Exploration, andData Integration are the other three components of this phase. In order
to determine which of the accessible data sets may be utilized to address the research issue,
Data Retrieval starts with a Search of Publicly Available Datasets. The Dataset Selection
brings this process to a conclusion. The scientist initially interacts with the chosen data
during the Data Exploration phase. A Preliminary Analysis is initially performed to get
a basic knowledge of the data. This analysis is carried out by conducting a Literature Re-
search on Data, evaluating the data through a Data Assessment, and then performing a
Format Check. Then, Data Pre-processing is carried out to reduce data noise. A prelimi-
nary round of Quality Assessment is completed to comprehend noisy data. The process
of Quality Correction and Data Cleaning begins. It consists of three steps: Bad Data
Discard, Missing Data Imputation, and Trimming to remove extreme values and/or out-
liers. DataNormalization, which is brokendown intoMetric andNormalizationMethod
Identification andValues Normalization, marks the end of the pre-processing stage. Data
Visualization is crucial to comprehending the nature of the data in the analysis when ex-
ploring the dataset. Visualization Method Identification and Visualization Creation are
the two aspects of this process. Data Integrationmarks the end of the extraction process.
Heterogeneous data are combined in this step to create a unique dataset on which to con-
duct the analysis. Integration is the end product of three consecutive processes: Literature

20

2.3. An Ontology to Describe the Bioinformatics Tertiary Analysis Research Process

Bioinformatics
Tertiary
Analysis

Objective Defiinition

Data Extraction

Data Exploration

Data Pre- processing

Quality Assessment

Quality Correction and Data Cleaning

Data Normalization

Values Normalization

Data Analysis

Data Integration

Algorithm Execution

Research Question Definition

State Of The Art Analysis

Public Available Data Research

Data Retrieval

Dataset Selection

Preliminary Analysis

Metrics and Normalization Methods Identification

Data Assesment

Data Preparation

Data Split in Training and Testing Set

Data Adaptation to the Algorithm

Hyperparameter and Parameter Tuning

Optimization

Algorithm Selection Preliminary Analysis on Data and Algorithms

Results Analysis

Performance Evaluation

Robustness Evaluation

Comparative Analysis

Testing

Biological Results Evaluation

Computational Results Evaluation

Biological Validation

Data Visualization

Data Format Check

Relevant Features Extraction

Deliverables Definition

Literature Research on the Data

Bad Data Discard

Missing Data Imputation

Trimming

Visualization Method Identification

Visualization Creation

Literature Research on Integration Methods

Integration Method Identification

Integration Method Application

Algoithm Parameters Check

Enrichment Analysis

Literature Research on Biological Domain

Literature Research on the Algorithms

Algorithm Implementation

Data Visualization

Visualization Method Identification

Visualization Creation

Figure 2.4 –Hierarchical Task Tree of the Bioinformatics Tertiary Anal-
ysis process

21

Chapter 2. GeCoAgent

Research on Integration Methods, the Integration Method Identification, and the Integra-
tionMethod Application.

Data Analysis then starts. In order to extract information from the data, statistical and
computational procedures are used to examine the data. Algorithm Selection, Data Prepa-
ration, and Algorithm Execution make up the three processes that make up the analysis.
The best algorithm is selected duringAlgorithm Selection. This procedure is supported by
a Literature Research on the Algorithm to determine state of the art in comparable works,
a Preliminary Analysis on Data and Algorithms to determine whether the dataset and the
chosen method(s) are compatible, and lastly the Algorithm Implementation. The dataset
must be transformed during the Data Preparation step to execute the chosen algorithm
on it. The Data Adaptation to the Algorithm and Data Split into Training and Testing
Set are the first steps in doing that. To accurately evaluate the trained algorithms, the last
step is crucial. The Algorithm Execution comes last. According to the algorithm, these
phases involve a wide range of operations. They may be divided into three phases: Hyper
Parameter and Parameter Tuning, Algorithm Parameters Check, andOptimization.

Results Analysis is the fourth and last stage of the bioinformatics tertiary research process.
Here, knowledge is created from the information that the algorithms retrieved. To achieve
that, it is first important to conduct aComputationalResults Evaluation to determine their
significance and whether they may be regarded as valid. Performance Evaluation, Robust-
ness Evaluation, Comparative Analysis, andTestingmake up the computational validation.
The data are then subjected to Biological Results Evaluation to see whether a biological ex-
planation is possible. Biological Results Evaluation consists of three tasks: Biological Val-
idation, which is divided into Enrichment Analysis and Literature Research on Biological
Domain,Relevant Features Extraction, and finally, Functional Genomic Analysis.

2.3.4 Validation
We conduct a literature-based investigation for the Hierarchical Task Tree to be validated.
In particular, we aim to evaluate its descriptive power and identify the study work charac-
teristics that this model emphasizes.

We methodically chose 30 research and technique publications in bioinformatics tertiary
analysis from two sources: the latest work published in the BMCBioinformaticsmagazine
and the works from the Genomic Computing Group1. We scanned through the articles
published on the journal, ordered by the most recent publication date, choosing on the
title and abstract of the documents. The research has been carried out on December 8th,
2020.

We chose these two sources for precise reasons. BMCBioinformatics is one of themost im-
portant journals in bioinformatics tertiary analysis domains. Every year it publishes high-
quality works on a variety of sub-domains, allowing us to observe a good variety in the
works. In addition, all the articles are open access. We adopted the paper published by our

1http://www.bioinformatics.deib.polimi.it/geco

22

2.3. An Ontology to Describe the Bioinformatics Tertiary Analysis Research Process

research group as second source, so that in case of doubts on the methodologies followed
in the studies, we could directly contact the authors.

We paid particular attention to current methods or research papers addressing tertiary
bioinformatics analysis. In addition to eliminating all software-related publications, we
also eliminated all papers that did not use the findings of secondary analysis as their point
of departure. The papers were then carefully read and mapped onto the tree’s 36 leaves.
To be considered in the document, a task must be expressly specified. In Figure 2.5, two
instances of this procedure are depicted. Table 2.2 displays the outcomes.

ID Paper Title Reference
P01 Latent-space embedding of expression data identifies gene signatures

from sputum samples of asthmatic patients
[85]

P02 Analysis of genomic and transcriptomic variations as prognostic signa-
ture for lung adenocarcinoma.

[86]

P03 Association rule mining to identify transcription factor interactions in
genomic regions. Bioinformatics.

[87]

P04 Designing and evaluating deep learning models for cancer detection on
gene expression data.

[88]

P05 Investigating deep learning based breast cancer subtyping using pan-
cancer and multi-omic data.

[89]

P06 Matrix factorization-based technique for drug repurposing predictions. [90]
P07 Latent Dirichlet allocation based on Gibbs sampling for gene function

prediction
[91]

P08 Spatial patterns of CTCF sites define the anatomy of TADs and their
boundaries

[92]

P09 NAUTICA: classifying transcription factor interactions by positional
and protein-protein interaction information.

[93]

P10 Network modeling and analysis of normal and cancer gene expression
data.

[94]

P11 Combining DNAmethylation and RNA sequencing data of cancer for
supervised knowledge extraction.

[95]

P12 Modeling gene transcriptional regulation by means of hyperplanes ge-
netic clustering.

[96]

P13 Exploiting ladder networks for gene expression classification. [97]
P14 CGINET: graph convolutional network-based model for identifying

chemical-gene interaction in an integrated multi-relational graph.
[98]

P15 Deep learning based DNA: RNA triplex forming potential prediction.
BMC Bioinform.

[99]

P16 Prediction and prioritization of autism-associated long non-coding
RNAs using gene expression and sequence features.

[100]

P17 Prediction of enhancer-promoter interactions using the cross-cell type
information and domain adversarial neural network.

[101]

P18 SAlign–a structure aware method for global PPI network alignment. [102]

23

Chapter 2. GeCoAgent

P19 Improved cytokine-receptor interaction prediction by exploiting the
negative sample space

[103]

P20 LAMP: disease classification derived from layered assessment on mod-
ules and pathways in the human gene network.

[104]

P21 Feature selection algorithm based on dual correlation filters for cancer-
associated somatic variants.

[105]

P22 Variable selection from a feature representing protein sequences: a case
of classification on bacterial type IV secreted effectors.

[106]

P23 Predicting MiRNA-disease associations by multiple meta-paths fusion
graph embedding model.

[107]

P24 Cancer prognosis prediction using somatic point mutation and copy
number variation data: a comparison of gene-level and pathway-based
models.

[108]

P25 MCCMF: collaborative matrix factorization based on matrix comple-
tion for predicting miRNA-disease associations.

[109]

P26 Integration of anatomy ontology data with protein–protein interaction
networks improves the candidate gene prediction accuracy for anatomi-
cal entities.

[110]

P27 Impact of data preprocessing on cell-type clustering based on single-cell
RNA-seq data.

[111]

P28 Correntropy induced loss based sparse robust graph regularized extreme
learning machine for cancer classification.

[112]

P29 Leveraging TCGA gene expression data to build predictive models for
cancer drug response.

[113]

P30 Robust edge-based biomarker discovery improves prediction of breast
cancer metastasis.

[114]

Results

The Hierarchical Task Tree is complete. Figure 2.6 displays the aggregate values or
the frequencies of tasks and articles that were present. Every operation outlined in the
paper may be mapped to a job in the tree, demonstrating the model’s completeness.

Bioinformatics papers typically describe half of the tasks of the Hierarchical Tesk
Tree. The average number of tasks stated is about half of the 36 tasks (avg: 18.9, standard
deviation: 3.0). The low standard deviation demonstrates how the description’s depiction
of the number of tasks is homogeneous.

Not all the tasks are described with the same frequency in bioinformatics papers.
The same logic does not hold for the tasks, as seen by the uneven distribution of their ref-
erences. The fact that 10 tasks —Research Question Definition, State of the Art Analysis,
Dataset Selection, Literature Research on the Data, Data Assessment, and Data Format

24

2.3. An Ontology to Describe the Bioinformatics Tertiary Analysis Research Process

ID
Tr

ee
 L

ea
f (

Ta
sk

 N
am

e)
P0

1
P0

2
P0

3
P0

4
P0

5
P0

6
P0

7
P0

8
P0

9
P1

0
P1

1
P1

2
P1

3
P1

4
P1

5
P1

6
P1

7
P1

8
P1

9
P2

0
P2

1
P2

2
P2

3
P2

4
P2

5
P2

6
P2

7
P2

8
P2

9
P3

0
1

Re
se

ar
ch

 Q
ue

st
io

n
D

ef
in

iti
on

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

2
St

at
e

of
 th

e
Ar

t A
na

ly
si

s
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
3

D
el

iv
er

ab
le

 D
ef

in
iti

on
4

Pu
bl

ic
 A

va
ila

bl
e

D
at

a
Re

se
ar

ch
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

5
D

at
as

et
 S

el
ec

tio
n

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

6
Li

te
ra

tu
re

 R
es

ea
rc

h
on

 th
e

D
at

a
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
7

D
at

a
As

se
ss

m
en

t
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
8

D
at

a
Fo

rm
at

 C
he

ck
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
9

Q
ua

lit
y

As
se

ss
m

en
t

X
X

X
X

X
X

X
X

10
Ba

d
D

at
a

D
is

ca
rd

X
X

X
X

X
X

X
X

X
X

X
11

M
is

si
ng

 D
at

a
Im

pu
ta

tio
n

X
X

12
Tr

im
m

in
g

X
X

X
X

X
X

X
X

X
X

X
13

M
et

ric
s

an
d

N
or

m
al

iz
at

io
n

M
et

ho
ds

 Id
en

tif
ic

at
io

n
X

X
X

X
X

X
X

X
X

X
14

Va
lu

es
 N

or
m

al
iz

at
io

n
X

X
X

X
X

X
X

X
X

X
15

Vi
su

al
iz

at
io

n
M

et
ho

d
Id

en
tif

ic
at

io
n

X
X

X
X

X
X

X
X

X
X

X
X

16
Vi

su
al

iz
at

io
n

Cr
ea

tio
n

X
X

X
X

X
X

X
X

X
X

X
X

17
Li

te
ra

tu
re

 R
es

ea
rc

h
on

 In
te

gr
at

io
n

M
et

ho
ds

X
X

X
X

X
X

X
18

In
te

gr
at

io
n

M
et

ho
d

Id
en

tif
ic

at
io

n
X

X
X

X
X

X
X

X
19

In
te

gr
at

io
n

M
et

ho
d

Ap
pl

ic
at

io
n

X
X

X
X

X
X

X
X

20
Li

te
ra

tu
re

 R
es

ea
rc

h
on

 th
e

Al
go

rit
hm

s
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
21

Pr
el

im
in

ar
y

An
al

ys
is

 o
n

D
at

a
an

d
Al

go
rit

hm
s

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

22
Al

go
rit

hm
 Im

pl
em

en
ta

tio
n

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

23
D

at
a

Ad
ap

ta
tio

n
to

 th
e

Al
go

rit
hm

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
24

D
at

a
Sp

lit
 in

 T
ra

in
in

g
an

d
Te

st
in

g
Se

t
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
25

H
yp

er
pa

ra
m

et
er

 a
nd

 P
ar

am
et

er
 T

un
in

g
X

X
X

X
X

X
X

X
X

X
X

26
Al

go
rit

hm
 P

ar
am

et
er

s
Ch

ec
k

X
X

X
X

X
X

X
X

X
X

X
X

27
O

pt
im

iz
at

io
n

X
X

X
X

X
X

X
X

28
Vi

su
al

iz
at

io
n

M
et

ho
d

Id
en

tif
ic

at
io

n
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
29

Vi
su

al
iz

at
io

n
Cr

ea
tio

n
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
30

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

31
Ro

bu
st

ne
ss

 E
va

lu
at

io
n

X
X

X
X

32
Co

m
pa

ra
tiv

e
An

al
ys

is
X

X
X

X
X

X
X

X
X

X
X

X
33

Te
st

in
g

X
X

X
34

En
ric

hm
en

t A
na

ly
si

s
X

X
X

X
X

X
X

X
35

Li
te

ra
tu

re
 R

es
ea

rc
h

on
 B

io
lo

gi
ca

l D
om

ai
n

X
X

X
X

X
X

X
X

X
X

X
36

Re
le

va
nt

 F
ea

tu
re

 E
xt

ra
ct

io
n

X
X

X
X

Pa
pe
r

Table 2.2 –Mapping of the leaf nodes of the Hierarchical Task Tree on the
paper examined during the validation process.

25

Chapter 2. GeCoAgent

c

c

c

c

c

c

c

cv

c

c

c

c

cv

c

c

c

c
c

c

Present in [17]

Present in [21]

Present in [17,21]

c
c

Figure 2.5 – Example of mapping the process described in two research pa-
pers on the Hierarchical Task Tree. Source [12]

26

2.3. An Ontology to Describe the Bioinformatics Tertiary Analysis Research Process

Figure 2.6 – Number of tasks described in every paper examined in the
validation process

Figure 2.7 –Number of occurrences of every task in the set of papers exam-
ined in the validation process

Check, Literature Research on the Algorithms, Preliminary Analysis on Data and Algo-
rithms, Algorithm Implementation and Data Adaptation to the Algorithm—are present
in all the papers examined highlights their significance in the analysis. Public Available
Data Research (28/30) and Performance Evaluation (26/30) are two of the jobs that get
great attention as well. Also, these 2 tasks are important; the lack of this step in two doc-
uments is because one of those studies are based on datasets of previous works [85, 86],
while the other leverage on other validation techniques likeComparative Analysis [87, 88]
orRobustness Evaluation [85, 87].

Five activities are mentioned three times or less (Missing Data Imputation, Robustness
Evaluation, Testing), indicating that not all tasks are as popular. The considered papers
never specifically mention the Deliverable Definition. The reason is that although this
phase is essential for a research project’s success, it is frequently implied and not explicitly
stated. Additionally, it was mostly ignored during the interview process (7/8). This pro-
cedure is essential when the results are confirmed by individuals who are not computer
scientists, according to the lone researcher who made a note of it.

Sibling tasks tend to appear together in bioinformatics papers. Only 36 of the
503 instances of tasks appear isolated, that is, without the neighboring tasks being men-
tioned, when we look at how the tasks are presented. Additionally, the isolated tasks are

27

Chapter 2. GeCoAgent

not evenly distributed, although they are all part of the sub-tasks for Quality correction
and Data Cleaning andResults Analysis. The reason is that quality repair and data analy-
sis operations are different activities rather than phases in a single process. This tendency
is much more pronounced in outcomes analysis; only a few studies utilize many forms of
validation in the same tree branch.

Patterns emerge in tasks descriptions in bioinformatics papers. Amore thorough
study reveals that some neighboring rows (i.e., tasks) seem always to be coupled: Visualiza-
tionMethod Identification andVisualization Creation,Metrics andNormalizationMeth-
ods Identification andValues Normalization, and the triple Literature Research on Integra-
tionMethods, IntegrationMethod Identification, IntegrationMethod Application. Similar
to how knowing how to view data before plotting it validates this behavior, the seman-
tics of the operations in this instance also support it. The first task of the couples is the
prerequisite and essential task for the correct execution of the second one.

The presence of some tasks is a good indicator of the nature of the examined paper.
Finally, a fascinating connection between Data Pre-processing procedures and Biological
Results Evaluation is discovered. The nature of the research works justifies this link. Pre-
processing the data is a common concern in papers that wish to infer biological inferences
from the data. With this in mind, we can distinguish between two main types of contri-
butions: computational ones, which concentrate research on a new algorithmic approach
for tertiary analysis, and biological ones, which seek to discover both new computational
techniques and new biological advancements from a biological perspective. With this in
mind, we can distinguish between two main types of contributions: computational ones,
which concentrate research on a new algorithmic approach for tertiary analysis, and biolog-
ical ones, which seek to discover both new computational techniques and new biological
advancements from a biological perspective. We discover that the number of tasks in the
Data Pre-processing and Biological Results Evaluation is a good indicator of the category
in which the manuscript falls: if the manuscript only has a computational scope, we can
observe that the Data Pre-processing steps are almost always skipped, otherwise, at least
one of them is almost always performed, and the Biological Results Evaluation is present.

2.3.5 Creating the Ontology
Despite theHierarchicalTaskTree being able to describe in detail all the tasks that compose
the Bioinformatics Tertiary Process, this representation presented certain drawbacks. The
relational component was insufficient to in-depth characterize the process. The tree-based
description offers no details on the jobs’ results. Furthermore, the hierarchical structure is
too rigid to convey the order of duties adequately. In reality, for most siblings, the prece-
dence order is rigidly determined by the tree’s order of appearance. This is only true for
some tree nodes: a depth-first visit technique is insufficient to identify job priority in some
parts of the process when there is no definite precedence order, such as with Literature Re-
search on the Data and its siblings. Last but not least, the Hierarchical Task Tree cannot
be combined with other models or utilized with tools for their exploitation and analysis
because it is not specified using the common declarative languages used for ontologies.

28

2.3. An Ontology to Describe the Bioinformatics Tertiary Analysis Research Process

These factors led us to develop our model by adopting OWL2Web Ontology Language’s
formalism [81]. We picked OWL over OBO [115] since the first offers greater semantic
support than OBO. Our model is based on the Resource Description Framework (RDF)
[116] representation of data, which specifies that subject-predicate-object triples should be
used to code the model. As seen in the Figure, this representation implicitly generates a di-
rected graph of the ontology. TheRDFSchema [117] serves as the foundation uponwhich
OWL bases its language, giving an expressive way to define the ontology components and
their relationships. The outcome is a first-order logical piece that can be decided upon. In
other words, we can create OWL reasoners that respond to model-related queries in a set
amount of time and steps.

We usedWeb-protege [118], a web-based graphical user interface formodelingOWL-based
ontologies, to translate the model. Figure 2.8 displays a visual depiction of the findings,
while Figure 2.8 shows a sectionof it to have increased readability. Themodel’smost recent
version may be found in an online repository2.

There are 3 relations and 70 classes in the resultant model. OBI classes Information Con-
tent Entity andPlanned Processmake up the higher level. Planned procedures are generally
taken by a researcher and result in an information content entity as the outcome. Informa-
tionContent Entities are the knowledge, information, and outputs produced by a process
successfully carried out. Keep in mind that good execution does not guarantee a success-
ful conclusion. No matter if the outcome confirms or contradicts the study hypothesis,
we refer to procedures as successfulwhen their technique is correctly carried out, and some
result is achieved. TheResults subclass, which is the parent of all the Information Entities
that generate new information about the study topic, is one of the Information Content
Entities.

The following three relations link classes together:

1. Has Part relation defines the sub-processes that compose a process. In the Hierar-
chical Task Tree, this relationship is comparable to the parent-child relationships.
A sub-process shared by many processes can be the subject of numerous relations
instead of the tree representation, eliminating the tree’s duplication (e.g., Data Vi-
sualization). Any process may have zero or moreHas Part relations.

2. Has Specified Output describes the output for a task. Due to this, in a relationship
like this, the subject must be a planned process, and the object must be an informa-
tion content entity. An Information Content Entity may target one or more Has
Specified Output Planned Processes and may be the subject of zero or more Has
Specified Output Planned Processes. The following property holds: given A and
B Planned Processes objects and C being an Information Content Entity, if (A has
part B) and (B has specified output C), then (A has specified output C). These inferred
properties are not explicitly reported in the ontology.

2https://github.com/peempi/btap

29

Chapter 2. GeCoAgent

Figure 2.8 –Graphical representation of the ontology. Source [12]

30

2.3. An Ontology to Describe the Bioinformatics Tertiary Analysis Research Process

Figure 2.9 –Zoom on a section of the graphical representation of the ontol-
ogy provided in Figure 2.8. In particular, it represents the section of the tree
comprising the path fromBioinformatics TertiaryAnalysis task toData Pre-

processing, with all its children tasks. Source [12]

31

Chapter 2. GeCoAgent

3. Precedes relation expresses the process’s temporal constraint. Both the subject and
theobjectmust bePlannedProcesses. Intuitively, ifA andB arePlannedProcess and
(A precedes B) holds, then the output of A is necessary for the correct execution of
B. Precedes relation is transitive: if A, B, and C are planned processes, if A precedes
B) and (B precedes C), then A precedes C. Finally, the Precedes relation is specified
explicitly only between siblings. The following property holds: ifA, AA, B, and BB
are planned processes, (A has part AA), (B has part BB), and (A precedes B), then
(AA precedes B).

4. Requires relation models the necessity of preliminary operations for the execution
of the task. Intuitively, if A and B are Planned Processes and (B requires A), if an
instance of the process presents B, then it must present A as well.

2.3.6 Discussion
Numerous applications and uses are possible for this ontology-based model. As we have
shown while verifying the Hierarchical Task Tree using literary works, the first and more
apparent one is the potential use of a single terminology to explain procedures. Themodel
provided can be used as a guide for bioinformaticians, who will have a thorough step-by-
step explanation of the entire operation. The project can also be coordinated by work
groups, who can refer to a schematic diagram of the research process. Software program-
mers may also use the approach to create new bioinformatics support tools that are easier
to use and more suited for inclusion in the research process.

Because of the formalism used, the process model is machine-readable. Tools may use
it to describe processes, but they can also use the representation to incorporate process
knowledge and use it as a foundation for building operation pipelines or to validate user-
requested activities.

Finally, as we will see in the remaining chapter, ontology is a solid starting point for design-
ing user-centered bioinformatics tools.

2.4 GeCoAgent Requirement Analysis
Once the Bioinformatics Tertiary Analysis process had been defined, it was time to under-
standwhich functionalities the platform should provide and how the conversational agent
could effectively convey them.

2.4.1 Process Requirements
Phases Definition

Starting from the ontology, we decided that GeCo Agent should support the following
operations:

• Data Extraction (Data Retrieval and Exploration)

32

2.4. GeCoAgent Requirement Analysis

• Data Analysis

• Results Analysis (Computational Results Evaluation)

Figure 2.10 shows on theHierarchical TaskTreewhich part of the process is covered by the
GeCoAgent. We decided to exclude the Data Integration step because this is an operation
that is something that is performed only in complex research pipelines, as shown by the
low occurrences of these tasks in the papers surveyed. These pipelines are typically used by
expert computer scientists, who are not the primary user of our system. We also excluded
the Biological Evaluation in the Result Analysis since it is not a computational step. We
arranged all the tasks in the four-step pipeline shown in Figure 2.11.

The researcher should define objectives, including what data should be extracted and how
it should be arranged and accessed. Users then establish a universe of interest that may be
investigated and assessed in further detail. The resulting universe is examined using vari-
ous statistical, qualitative, and quantitative visualization tools in this second stage. Data
may be evaluated after it has been extracted. The third part entails designing an analytical
technique, which entails knowing the suitable procedures/tools, the proper parameters
to define, and utilizing a repository of current methodology (such as Statistics, Machine
Learning, and Deep Learning libraries) and widely used solutions. With additional visu-
alization tools, the fourth stage of result inspection may be carried out after the result of
interest has been created.

As the ontology definition shows, different paths can combine the four phases in many
ways. For example, the user may first observe the entire universe to get ideas from all the
available data and their interactions, then concentrate on a particular area, or they may
choose datasets one at a time and assess their qualities. The user may also decide at any
time that the initial datasets no longer meet the analysis requirements and return to the
data extraction stage and repeat the procedure. During analysis, methods and parameters
are gradually adjusted until the user is confident in the results.

Recurring Pipelines Definition

The next step was identifying recurrent pipelines or frequent sequences of data extraction
or processing tasks. Table 2.3 lists illustrative pipelines for these activities. The tasks were
chosen to satisfymany requirementswhile also being orthogonal and hence simple to com-
bine.

We used a top-down strategy regarding data extraction pipelines, building on the exper-
tise we have gained from utilizing the GeCo framework, which is the consequence of our
interactions with bioinformaticians who frequently carry out tertiary data management.
Examples include combining all experimental areas from several studies into a single sam-
ple (file), pairing experimental regionswhen they are close together, counting experimental
regions that overlap a reference dataset (such as genes), and extracting sections that have
been confirmed (e.g., regions which overlap in at least a given number of experiments).

Instead, we used a bottom-up approach to data analysis by looking at the analytic pipelines
that were used most commonly in tertiary data analysis, which are typically performed

33

Chapter 2. GeCoAgent

Bioinformatics
Tertiary
Analysis

Objective Defiinition

Data Extraction

Data Exploration

Data Pre- processing

Quality Assessment

Quality Correction and Data Cleaning

Data Normalization

Values Normalization

Data Analysis

Data Integration

Algorithm Execution

Research Question Definition

State Of The Art Analysis

Public Available Data Research

Data Retrieval

Dataset Selection

Preliminary Analysis

Metrics and Normalization Methods Identification

Data Assesment

Data Preparation

Data Split in Training and Testing Set

Data Adaptation to the Algorithm

Hyperparameter and Parameter Tuning

Optimization

Algorithm Selection Preliminary Analysis on Data and Algorithms

Results Analysis

Performance Evaluation

Robustness Evaluation

Comparative Analysis

Testing

Biological Results Evaluation

Computational Results Evaluation

Biological Validation

Data Visualization

Data Format Check

Relevant Features Extraction

Deliverables Definition

Literature Research on the Data

Bad Data Discard

Missing Data Imputation

Trimming

Visualization Method Identification

Visualization Creation

Literature Research on Integration Methods

Integration Method Identification

Integration Method Application

Algoithm Parameters Check

Enrichment Analysis

Literature Research on Biological Domain

Literature Research on the Algorithms

Algorithm Implementation

Data Visualization

Visualization Method Identification

Visualization Creation

Figure 2.10 –The sections of trees colored in green represent the operations
supported by the GeCoAgent web interface

Define Objectives Define Universe Design Algorithms Inspect Results

Figure 2.11 – The four interaction phases of GeCoAgent

34

2.4. GeCoAgent Requirement Analysis

Table 2.3–Listing of data extraction andanalysis pipelines, i.e., recurring
task sequences in GeCoAgent processes.

Extraction Pipelines Analysis Pipelines
E1: Extract relevant regions from a dataset A1: Identify outliers
E2: Merge all regions frommultiple samples of a dataset A2: Feature selection or imputation
E3: Pair regions from twodatasets atminimumdistance A3: Patient/Region Classification
E4: Count experimental regions overlapping with a ref-
erence dataset

A4: Regression/Survival Analysis

E5: Combine samples from two datasets A5: Network Analysis
E6: Exclude samples from a dataset which intersect an-
other dataset

A6: Co-occurrence or mutual exclu-
sion analysis

E7: Extract confirmed regions from a dataset A7: Pattern matching
E8: Count experimental regions overlapping confirmed
experiments

A8: Mutation Analysis

E9: Build new properties for each region of a dataset A9: Gene Enrichment Analysis

using commercial Python and R packages. We discovered many generic statistics and ma-
chine learning tasks, such as feature selectionor imputation, that apply to genomic datasets
just as they are to any other dataset in data science. We also identified a fewdomain-specific
activities typical of tertiary genomic analysis, includingmutation analysis and genomic pat-
tern matching.

2.4.2 Conversational Requirements
We exploited the semi-structured interviews we conducted with 8 researchers described in
Section 2.3.2 to understand the desired attributes of the conversational interface of GeCo-
Agent. In fact, during the interview process, we made participants inquiries about their
research objectives during tertiary analysis and progressively delved deeper into a variety
of topics, including the line of reasoning researchers would follow to achieve their objec-
tives, the kinds of high-level tasks theywould need to complete, the types of questions they
would ask themselves at the various steps, how they would formulate such inquiries for a
tool like GeCo, and what they would hope the systemwould provide in response; the pro-
cess’ degree of (non-)linearity, including the times when they would need to“go back” to
a prior stage to redo, undo, or alter what they have already done.

We used Thematic Analysis [119] to identify the significant themes by grouping the inter-
view transcripts and sticky notes that the researchers who were being interviewed eventu-
ally filled in. We then defined each theme in terms of the conversational requirements for
the Conversational Agent and the entire conversational interface, which influenced the
design of GeCoAgent as described in the following sections.

• Process Awareness. The conversational agent should be familiar with the overall pro-
cedure of tertiary analysis; at all times, it should be aware of the step of the process
that is currently being performed, and it should use this contextual knowledge to

35

Chapter 2. GeCoAgent

understand the user better, produce more accurate utterances, and suggest proac-
tive next steps (e.g., speaking about the possible supported actions). The discussion
is produced dynamically by considering the process environment rather than rig-
orously pre-defined a priori. Additionally, the conversation is parametric in that
the information and activities the Conversational Agent may “talk about” at any
time are determined by the process’s present context. To orient the user and em-
phasize the conversation’s context-driven character, the Conversational Interface
should also make the process’ present context clear through textual or visual cues.

• Discontinuity in the research process. Tertiary analysis in bioinformatics is a sub-
stantially non-linear research process; therefore, when it is carried out, the resulting
topology of connections and activities is complex. Goals may be vague or ambigu-
ous initially, andoperationalizing themmay takemultiple back-and-forth stages and
trial-and-error scenarios. High-quality analytical data are frequently the result of
several little modifications and enhancements made at various stages of the overall
process pipeline. As a result, the conversational agent must allow users to return to
a prior phase, reverse or change earlier decisions, and ultimately rejoin the process.
It should also offer suggestions (see the previous point) that give the user access to
various options but may be retracted at any moment.

• Strong modularity. The majority of research processes are created by combining
the same set of operational stages, which must be executed repeatedly and may do
so with various choices of input variables and/or chosen datasets. As a result, the
user should be allowed to create and reuse modules as needed. The Conversational
Agent should be able to identify this modularization process and use modules as
conversational primitives.

• Multiple dialogue strategies. Depending on the context (see above) and theuser’s “at
large” goal, theConversationalAgent should be able to sustain a variety of discourse
styles and techniques. For instance, the conversational style of the Agent should be
that of an executor who interprets user requests for data and operations and trans-
lates them into system functions with little dialogic interaction, as would be the
case when the researcher has a clear requirement inmind (for example, which could
be detected because she has followed a forward flow thus far and expressed precise
questions).

• Multimodality. Any interface enabling this process contains “ data visualization fea-
tures” and functions on such visualizations, given the visual character of many pro-
cesses and outputs involved in the tertiary analysis. Additionally, several straightfor-
ward tasks may be accomplished more easily by making a few clicks on a traditional
GUI instead of asking the Conversational Agent to complete them. As a result, the
Conversational Agent functions in a multimodal interaction environment; as such,
itmust be able to comprehend how conversation-based interactions andGUI-based
user interactions interactwith one another, aswell as how tomaster the content and
flow of discussion in each case.

36

2.5. Design

2.5 Design
Wemodel tertiary genomic research as a series of processes that includes data extraction, ex-
ploration, analysis, and result display without losing the ability to be generic. Therefore, a
workflow language representing each step and how they relate to one another is best suited
to describe the process. This produces a directed graphwhere each node represents a func-
tion or atomic operation, and the edges show how they are related and in what order they
should occur. The workflow is formed by first defining the functions and, subsequently,
their relationships.

2.5.1 Functions Definition
The most recurrent pipelines, or the repeated high-level processes computed during a ter-
tiary analysis, were specified in Section 2.4.1. Although pipelines are excellent at describ-
ing the research process, they are too abstract to define it from an operational standpoint.
Pipelines are made up of several processes linked together in a predetermined order rather
than being atomic. Additionally, many of the jobs’ component processes are repeated
across numerous tasks rather than specific to one another. For instance, the selection of the
samples is included in both the extraction tasks E1, “Extract relevant areas from a dataset,”
and E2, “Merge all regions frommultiple samples of a dataset.”

According to their roles in the four phases of the process, functions can be categorized
from a semantic standpoint as follows:

• Data extraction functions are used to extract specific data sets from the repository
and expand the information obtained using both standard relational algebra oper-
ations (including selection, projection, and grouping) and bioinformatics-specific
ones (e.g., mapping, binning). Data extraction functions are orthogonal, expressive
enough to allow for the creation of arbitrary processes, and brief enough to create
a small-footprint workflow that can be created using a conversational agent. In or-
der to do this, we primarily used the semantics of the GMQLoperators [25], which
operate on GDM datasets and elaborate both genomic data and related informa-
tion. The Pivot functions are also included in this class; they convert GDM data
into flat tables (or Excel files), using arguments to specify which data types must be
represented as rows and columns. The Pivot function’s output completes the Data
Extraction stage and creates tables thatmay be displayed and utilized in data analysis
procedures, or the “Universe of Discourse.”

• Data exploration functions are used for summarizing and visualizing extracted data
in tabular format. Summarization functions enable the computation of various
statistics on the data, including grouping, averaging, and counting. Data attributes
are shown using visualization tools like charts (e.g., histograms, pie charts, and box-
plots).

• Data analysis functions can be either domain-specific (such as algorithms that in-
clude genomics information) or domain-independent (such as machine learning
methods and algorithms, as well as validation functions for gauging the success of

37

Chapter 2. GeCoAgent

the data analysis). They may be constructed using higher-order composition, as
shown in Figure 2.12b, which includes a particular data analysis function encased
within a validation method and then encapsulated within a parameter tuning func-
tion.

• Result visualization functions support the visualization of the results; statistical tests,
most frequently employed in scientific data analysis, are also included. These fea-
tures enable users to convey the study’s findings to other scientists and fully com-
prehend the analysis results.

The supported functions ofGeCoAgent are listed inTable 2.4 and are organized according
to the phase in which they are employed.

Table 2.4 – List of functions divided by phase of the analysis process.

Extraction Exploration Analysis Visualization
GMQL-like functions
select samples
select regions
project metadata
project regions
cover
union
difference
map
join
merge
Pivot functions
pivot
label samples
join pivot
flat

Summarization functions
min
max
median
avg
find distribution
density
summary
Visualization functions
heatmap
line chart
histogram
PCA diagram
piechart
mutation enrichment visual-
ization

Domain Indep. functions
classification
clustering
regression
reduce data dimensionality
complex networks
hypothesis testing
parameter tuning
Domain Spec. functions
mutation analysis
motif discovery
enrichment analysis
Validation
cross-validation
AUC, accuracy, precision, re-
call, F1
AIC
BIC

heatmap
line chart
histogram
PCA diagram
piechart
violin plot
cluster map
Kaplan-Meier curve
enrichment analysis visualiza-
tion

Functions can be unary or binary from a syntactic perspective, depending on how many
inputs they take. The behavior of functions depends on zero, one, or many input parame-
ters, which may be optional or necessary. Each function generates a data output that may
be used as input by the one after it. Additionally, they may have side-effects like displaying
a visual, recording the analysis, or producing a Jupyter notebook section that encodes the
analysis. Figure 2.12a shows a schematic illustration of a general function. Functions are
visually represented as nodes of process graphs.

Higher-order functions are a particular class of functions frequently utilized throughout
the data analysis stage. Graphically, higher-order functions are depicted using a composed
structure inwhich thehigher-order functions encapsulate theparameter functions. Higher-
order functions need one or more functions as parameters. One such structure is shown
in Figure 2.12b, where “Parameter Tuning” is an example of a higher-order function that
takes the “Silhouette” function as a parameter; in turn, “Silhouette” is an example of a
higher-order function that takes the “K-means” parameter.

There are two primary benefits to the formulation through the definition of the function.
First, we offer a collection of primitives that may be used to define any activity effectively.

38

2.5. Design

(a) Graphical representation of a function. Each function can
have one or more data inputs, one or more parameters, and a

single data output.

(b) Graphical representation of a higher-order function for
data analysis. Parameter tuning is computed over the Silhou-
ette function that, in turn, is applied to K-means, a domain-

independent data clustering function.

Figure 2.12 – Structure of a simple and high-order function. Source [11]

For instance, two GMQL functions, “Select samples” and “Merge,” are used to complete
task E2, which is to “Merge all areas from numerous samples of a dataset.” On the other
hand, themodular formulation of functions permits their unrestricted combination, even
if a specified objective does not require it. In this sense, tasks serve as more of a recommen-
dation for the user than the only means of engagement. Users can choose to utilize the
functionalities freely or adhere to these recommendations.

2.5.2 Task-driven Workflow
A genomic application is a procedure that uses functions as nodes and executes them ac-
cording to a hierarchy of precedence. In computer science, it is customary to visualize pro-
cesses as directed graphs, where the nodes are the functions, and their arguments and the
edges reflect the execution’s flow. Figure 2.13 displays a straightforward application that
involves clustering the expression data of a specific illness, in this case, kidney renal clear
cell carcinoma (KIRC); the GDMdataset is then converted into a standard table using the
pivot function. We can identify two tasks as patterns of functions in the first phase of data
extraction: “Task E1,” which is to extract relevant regions from a dataset and is made up of
the two functions “Select samples” and “Select regions,” and “Task E5”; combine samples
from two datasets, which are made up of two “Select samples,” one “Select regions,” and a
“Union,” in other words. An overview of the retrieved data is shown during the following
step of data exploration. The user then groups the data using the k-means technique in
data analysis; the number of clusters is then automatically chosen to maximize the silhou-
ette score. The data visualization step completes the procedure when the user manually
assesses the outcomes by visualizing the findings of the collected clusters’ Principal Com-
ponent Analysis.

In platforms such asGalaxy3, Orange4 orTaverna5, a bioinformatician needs to be familiar
with the functions that are available, how to give the input parameters for those functions,

3https://usegalaxy.org
4https://orange.biolab.si
5https://taverna.incubator.apache.org

39

Chapter 2. GeCoAgent

Figure 2.13 – A function-using program as an example. The user chooses
expression information from patients with kidney renal clear cell carcinoma,
or KIRC. Then she merges the samples, pivots the dataset, and produces a
table with rows for patients, columns for genes or microRNAs, and values
for fpkm expression information. To determine the optimal number of clus-
ters, the user plots the data using PCA and then uses k-means coupled with
a parameter tuning technique. The results are again plotted using a PCA.

Source [11]

and how to connect those functions with the appropriate workflow edges may create the
workflows shown in Figure 2.13. In our context, since we are targeting a biologist or a clin-
ician, they are aware of their needs and intentions but are unaware of the tasks and func-
tions that go along with them. As a result, a conversational agent must capture their needs
and intentions through a task-oriented dialogue, and theworkflow shown in Figure 2.13 is
what comes out of that process. For this reason, wemust beginwith a redesignedworkflow
representation that strongly emphasizes user interactions.

2.5.3 Conversation Driven Workflow
Traditional conversational interfaces are based on workflow diagrams, which model the
status of a conversation in terms of what the conversational agent understands about the
user’s needs and intents. During a conversation, the agent is in a specific state of the au-
tomaton at any given time and may change that state in response to external inputs (such
as messages from the user).

We develop a high-level finite state automaton (shown in Figure 2.14), which can execute
any process beginning with the fundamental functions. Every transition in the state ma-
chine is a function, whereas the states are the data that result from function executions.
All transitions that start in the same state and those that conclude in the same state must
accept the same data type and return the same data type.

40

2.5. Design

Figure 2.14 – Finite state machine that describes at a macroscopic level
the process supported by GeCoAgent. Every transition represents a func-
tion, while every state corresponds to a dataset outcoming from an operation.

Source [11]

For example, the workflow defined in Figure 2.13 is generated by following the path on
Figure 2.14 that operates on the gene expression dataset by selecting its samples and
regions, then adds as right dataset miRNA expression by selecting its samples, then per-
forms the binary union operation. The confirmation allows the creation of the table us-
ing a pivot, which is next explored using the summary. The analysis starts with domain-
independent clustering analysis, performed by the K-Means method and Silhouette
validation, which is repeated multiple times to tune parameters. The visualization enables
the display of a PCA diagram at the conclusion. Due to the automaton’s generality, users
may alter their workflow at any moment to suit their needs in addition to performing pre-
defined activities.

Since it can map the dialogue at the level of functions, we refer to this automaton as the
macro automaton. This automaton falls short of adequately capturing the dialogic-level in-
teraction. In order to get the intended outcome, functions must be chosen and executed,
but they also need to have specific parameters defined; these parameters are frequently de-
termined iteratively, requiring more than one contact with the user. To control the dia-
logue while the particular function is being performed, we create a micro automaton for
each function.

An example ofMicro automata shown inFigure 2.15 is the one responsible for carrying out
the data selection function. The macro automaton’s initial edge, marked “Extract/Extrac-
tion,” causes the micro automata to be activated. The user chooses whether to obtain ex-
perimental data or annotations from the outset. In the first instance, three parameters will

41

Chapter 2. GeCoAgent

Figure 2.15 – An illustration of a micro automaton for dataset explo-
ration, triggered by the macro automaton’s initial edge with the label
“Extract/Extraction.” The user’s intents and the function’s parameters are
recorded thanks to the dialog, and information is gathered in the context ob-
ject. The macro automata start running again when the micro automaton

has finished running. Source [11]

42

2.5. Design

be requested from her: source, content type, and assembly. The second one requires more
parameters, such as the disease or the tissue of the samples. Particular attention is given to
the possibility of searching by health condition, an essential aspect of many datasets used
in human genomics. In the end, if the user confirms the choices, the selected samples are
extracted.

2.5.4 From Automata to Conversation
The conversational agent operates generally in the following manner: it begins the execu-
tion of the macro automaton by requesting the user to specify the target of the first oper-
ation. The conversation seeks to comprehend the user’s wants and intents, either directly
specified or inferred through responses to context-specific inquiries; when the user selects,
GeCoAgent instantiates the appropriate micro automaton, and its execution starts. The
automata direct the conversation’s generating process: from each state, the agent actively
communicates with the user, parses her answer to determine her purpose, and then pro-
ceeds to follow the edge designatedwith that same intent. At themicro-level, the technique
of querying and understanding the user’s responses is used to complete all the necessary
dependencies and arguments for a specific function, call it, and update the context. Some
of the function’s prerequisites may be grabbed straight from the context, missing out on
the part of the dialogue and making the agent less verbose.

The agent may foresee potential decisions by utilizing state diagrams to know the exact
state of the system. GeCoAgent may thus look at the tasks that are compatible with the
trail followed throughout the interaction and proactively recommend the most appropri-
ate functions to novice users. GeCoAgent can ask questions to determine the precise ac-
tion that the user requires, for instance, once the user has chosen two datasets and needs
to conduct a binary operation between them. In conclusion, the following elements help
GeCoAgent record a conversation:

• amacro automaton, represented in Figure 2.14 that captures the processing of func-
tions; as depicted in the picture, every edge is labeledwith a pair of identifiers “inten-
t/micro,” where the first label denotes an intent captured by reading the last user’s
message and the second label, that can be missing, identifies a micro-automaton.
For simplicity, similar labels and micro automata are grouped; they are represented
using bold characters. E.g.,Make_unary identifies the generic intent of perform-
ing a unary operation on the dataset, such as selection, filtering, or grouping, while
Unary groups the generic micro automata associated with the unary operations.
Also, to facilitate the reading, all the trivial edges are not represented, such as help
requests;

• a collection of micro automata, each of which represents in detail the dialogue for
a specific function; the function’s needed inputs, outputs, parameters, and connec-
tions are extrapolated from the conversation by the micro automata;

• a companion context object that stores details about the decisions the user made dur-
ing the conversation, such as a list of values that have already been supplied for some

43

Chapter 2. GeCoAgent

parameters and may be used again without requiring a new conversation to be cre-
ated.

The pre-defined activities in Table 2.3 match the most common interaction patterns; they
enable early intention detection and dialogue focusing. Dialogue generation is greatly
aided when a pattern is understood, and GeCoAgent can suggest the best default options.
For example, during data extraction, after the user has selected mutations, the bot can ask
if she is interested in exploring how they distribute to known genes; or during analysis, the
bot can ask if the data analysis is concernedwith classification or clustering (e.g., about the
clustering, validation, and parameter tuning methods).

The conversational engine may leverage the information acquired from the task specifica-
tion, the interaction history, and the previous executions to suggest the user’s best options.
In this sense, the conversational agent serves as both an operation executor and a process
facilitator who may assist the user activity during the whole procedure.

2.6 Deployment
GeCoAgent’s design uses a traditional three-layer architecture and relies on cutting-edge
NLP and conversational technologies to interpret the user’s intent from textual conversa-
tions and a highly expressive multimodal web interface.

2.6.1 Architecture
Today, many open-source tools are available for the automatic construction of conversa-
tional agents from a high-level specification of the anatomy of the discourse; themost well-
known are Chatterbot, Botpress, and Rasa. These solutions are made for straightforward
applications where the interaction is considerably more predictable, such as reserving a ta-
ble at a restaurant ormaintaining a bank’s FAQ.These solutions typically donot enable the
extensive background activities required for creating and carrying out a complicated data
science process and instead limit their features to analyzing user inquiries and predicting
the best answer. As a result, we created a standalone software system, whose architecture
is shown in Figure 2.16.

The user may pleasantly communicate with GeCoAgent thanks to the frontend interface.
It is a single-page web application made up of several functional modules, and it was cre-
ated using the Vue.js framework to provide modularity and extensibility, as is further ex-
plained in Section 2.6.4. The backend connection is arranged by the module manager,
who also distributes the data that the server sends. A group of separatemodules elaborates
the information before being shown on the graphical user interface.

The most important components of the backend are: the Natural Language Understand-
ing (NLU) unit, the dialogue manager (which includes the support for the automatons,
the context state, the summarizing, and the Jupyter notebook production modules), a re-
lational data engine used to provide quick access to extracted datasets, and the executable

44

2.6. Deployment

Figure 2.16 –GeCoAgent’s three-tier architecture. The modules manager
in the frontend communicates with the server, distributes data to the opera-
tionalmodules, and refreshes theGUIas necessary. TheNLUUnit (based on
Rasa), the dialogue manager, and the development of the function modules
are included in the backend. A relational engine facilitates the quick exe-
cution of data exploration and analysis primitives on exported data. GeCo

Resources are part of the data layer. Source [11]

implementationof the aforementioned atomic functions fromwhich anyworkflow is com-
posed.

The data layer is made up of two interrelated parts: GenoSurf and GMQL, the former of
which is used to get integrated data that has been curated, and the latter of which is used
tomanipulate a retrieved dataset while taking into account the genome. The backend calls
the RESTAPIs exposed by bothmodules to carry out the data extraction operations. The
backend’s conversation management module also makes frequent calls to GenoSurf APIs
to create answer phrases and provide the user with a list of potential field values.

The backend is implemented in Python; it exploits the Flask framework to communicate
with the frontend and manage users’ sessions. The GenoSurf REST APIs, the GMQL
engine, and standard Python techniques for manipulating the tabular data produced af-
ter a Pivot are used to construct the data extraction services. Utilizing the large selection
of libraries for data analysis and visualization, the inspection, analysis, and visualization
functions are fully implemented in Python. At the foundation, a relational data engine
with the appropriate materialized views and indexes supports the quick execution over ex-
tracted data. WebSockets are used for the backend and frontend to communicatewith one
other (using the socket.io package). This makes fast, real-time, bidirectional communica-
tion possible; frequently, the backend initiates communication by pushing information
to the frontend.

45

Chapter 2. GeCoAgent

2.6.2 Natural Language Understanding
Software for natural language processing may be created using a variety of chatbot frame-
works, such as Google DialogFlow, IBMWatson, and Rasa. Because Rasa NLU [120] of-
fers a comparably more significant number of intents, we chose it as our natural language
understanding library. Rasa, in particular, uses machine learning algorithms to compre-
hend the meaning of words, making it the preferable choice for creating unique NLP for
sophisticated chatbots [121].

2.6.3 Dialogue Management
Since the bot constructs the discourse based on the automaton’s current state and the
context, GeCoAgent’s dialogue management module may be considered finite-state and
frame-based. GeCoAgent initiates the dialogue, asks questions, and provides the userwith
options that allow generating the next state. The user has the option to solicit assistance or
provide the bot with the information it needs. We also handle problems and allow the user
to alter her selections. Changes in options might result in a new workflow distinct from
the prior one and alter the dialogue’s course. The user can get a summary of the conversa-
tion’s main crucial messages after the session. The bot offers a Python script detailing the
steps taken to collect and analyze genetic data.

2.6.4 Multimodal Interface Design
The interview sessions covered in Section 2.4.2 amply demonstrated that such interaction
could not be supported by a conversational interface alone. In reality, when doing their
study, scientists must constantly deal with a wide variety of material, including unpro-
cessed data, graphs, tables, documentation, and the past performance of prior procedures.
Instead, during a dialogue, only one piece of informationmay be communicated at a time.
Due to these factors, we opted to build a multimodal interface where the discussion is
embedded within a conventional GUI. GeCoAgent uses the capabilities of both a conver-
sational agent, which offers ongoing assistance and enables the researcher to work in natu-
ral language and a GUI, which offers a channel where many types of information may be
displayed simultaneously. Designing the interface, we tried to facilitate at most the execu-
tions of the operations that are supported by the tool. This rationale then evolved in a set
of guidelines, that will be presented in Chapter 5

As Figure 2.17 shows, theGeCoAgent interface is separated into five functional areas, each
of which is assigned to a particular function in the interaction and is arranged in two rows:

• In the upper rowwefind theConversationArea, the Support Area and theToolArea;
they describe the tools actively used during the interaction.

• In the lower row, there are the Process Area and the Parameters Area; they provide
information for the user orientation.

46

2.6. Deployment

Figure 2.17 –GeCoAgent’s web interface. Source [11]

Conversation Area. The entire conversation history is saved in the panel so that users
may explore the panel and remember what has already been done. It also contains the
user’s interaction with the Conversational Agent.

Support Area. It was created to include any data that may help the researcher through-
out the interview. The design reflects a compromise between two demands: on the one
hand, the dialogue must be maintained as straightforward as possible, containing just the
information pertinent to the current job; on the other hand, the researchers need support
data that directs them on what can be done and what cannot. This panel, which is solely
dedicated to this purpose, has received all of the material previously in the Conversation
Area. The researcher can access two different types of information in the Support Area:

• the options that are accessible at this point in the dialogue, such as the potential
actions at a specific stage of the pipeline or the range of values from which to select
when applying a filter to a dataset;

• advice and pointers on how to use GeCoAgent most effectively.

Ahelp icon is displayedwhen a list of options is displayed. A tool-tippanel that detailswhat
the user may do with the listed options is displayed when the mouse hovers over the icon.
The tool-tip will indicate that parameters can be added (in combination or disjunction
with the already inserted ones) or withdrawn, for instance, if researchers are filtering the
data and must pick according to which parameter to filter by. The Support Area includes
a search bar due to the cardinality of the options set, which in certain situations might be
significant (i.e., tens of potential components). Users may explore the information on the
interface sequentially as needed, preventing them from being overloaded by everything at
once. In conclusion, researchers have three options: they may only use the chat, look at

47

Chapter 2. GeCoAgent

the options displayed by the Support Panel, or get complete assistance through the help
tool-tip.

Tools Area. It includes visual feedback for the user that is shown. Since there may be
more than one visualization, users may choose which one they want to view by clicking on
it in the lower portion of the panel. The user can change between the visualizations, but
only one may be displayed at once. According to the conversation’s flow, visualizations
are dynamically added and deleted; when a new one is created, the associated tag in the
lower section is modified. To help the user decide what to concentrate on, GeCoAgent
may switch between the visuals. In any case, the user is always free to switch between tabs.
The following equipment was found to be required:

• Data Visualization, where graphs and charts are plotted. GeCoAgent automati-
cally generates visualizations, but the user can require additional ones.

• Table Visualization, where data tables are shown.

• Lists Visualization, where the users can explore lists of any nature, such as informa-
tion related to the data or sets ofmanually-curated datasets that are compatible with
the operations the user is performing.

Process Area. In addition to giving the user a visual overview of the prior stages, it also
gives a visual clue of how the process is progressing by indicating which step is being com-
pleted. The panel is made up of many interconnected blocks, each of which represents an
action taken at the outset of the execution. The appropriate block changes colors, and a
new one is added to the line after a module’s execution is complete. A tool-tip panel that
lists every decision made in the related module appears when the user hovers the mouse
over one of the finished blocks.

Parameters Area. When the execution of the module is finished, the panel is cleaned,
and all the same information is relocated to the matching tool-tip in the Process Area. It
shows comprehensive information on the current processes.

2.7 Using GeCoAgent: a Concrete Example
We carefully examine a practical scenario to demonstrate how the design decisions mani-
fest themselves in a genuine issue. We imagine that the user wants to receive training in
data analysis of expression data. She wants the number of samples available for certain
cancers to choose the dataset she uses; to do a statistically meaningful analysis, it is prefer-
able to use a particular tumor with a homogeneous number of tumoral/healthy samples.
She wants to arrange the data appropriately for further analysis after retrieving it (e.g., a
comma-separated-values file is preferred). She relies on GeCoAgent to help her through
the extraction process by supplying information that describes the necessary data since she

48

2.7. Using GeCoAgent: a Concrete Example

Figure 2.18 – Example of conversation with GeCoAgent. During the in-
teraction, the conversational agent aids the user in completing the task; e.g.,
(A) the Support Area shows the available options, the Tool Area reports (B) the
metadata distribution, and (D) a table representation of the selected dataset.
In addition, the Conversational Agent (C) guides the user by suggesting the

most common choices or best practices. Source [11]

is still determining exactly how to pick the correct data and prepare the analysis best. Fig-
ure 2.18 illustrates a conversation between GeCoAgent and the user, illustrating the inter-
action required to help the user obtain the expression data table.

In more detail, GeCoAgent prompts the user to choose the type of data to be used at the
beginning of the pipeline. In the beginning, the platform advises that the user identify
at least the kind (such as annotations or experimental data) if they do not already have a
preference specified. It then moves on to offer the filters that might be used to refine the
data further. In the given case, the user needs explicit information about gene expressions.
GeCoAgent displays the selected data type in the bottom right panel and a collection of
pie charts showing the number of samples available divided by the fields accessible in the
top right corner (these, in turn, are shown in the center panel).

The user initially requests to filter on “illness,” and after seeing the number of samples in
the pie charts, she chooses to extract “gene expression” related to “kidney renal clear cell
carcinoma.” She continues the talk as though the filtered information satisfies her.

49

Chapter 2. GeCoAgent

She responds to the bot as instructed, making no changes to her prior selections. After giv-
ing the created dataset a name, she may download it by selecting the button in the bottom
left panel (this appears after confirming the dataset). Additionally, as it does in this exam-
ple, the usermay choose to use a different dataset. She decides to have both themicroRNA
expression data and the long protein-coding gene expression data because she wants a full
view of the expression data for kidney cancer.

In this situation, GeCoAgent allows one to download the extracted dataset to a local sys-
tem and give it a unique name. The user wants to terminate the extraction/exploration ses-
sion by converting the chosen data into a single table containing all the expression values.
GeCoAgent offersmany functionalities to combine the twodatasets (such asUNIONand
DIFFERENCE).

In this instance, the user chooses to conduct the UNION operation because they want
to use the two datasets together. A table might contain distinct information on the rows,
different metadata or region data in the columns, and different values presented in the
table. GeCoAgent needs specific parameters to turn the data into a table. GeCoAgent
offers a proposal to the user, as shown in red text in Figure 2.18, by depending on accepted
procedures (i.e., common choice of parameters for certain kinds of data).

In conclusion, the user obtains a table with gene symbols in the columns, patient IDs in
the rows, and fragments per kilobase million (fpkm) as values. GeCoAgent offers a file
that describes the steps used to get the data, emphasizing the user’s decisions and removing
conversational aspects that are unimportant for choosing filters and parameters.

1 { ``Summary": ``You have chosen tcga gene expression
quantification data with filter 'disease '='kidney
renal clear cell carcinoma.' You renamed the first
dataset 'KIRC_Gene_Expr '. You have chosen miRNA
expression quantification for kidney renal clear cell

carcinoma. You renamed the second dataset '
KIRC_Mirna_Expr '. You used the UNION operation and
renamed the complete dataset 'KIRC_Expr '. The table
provided has patients ID in the rows, no metadata in
the columns and gene symbols in the columns, and fpkm

as values.",
2 ``Choices": [
3 {
4 ``source": ``tcga",
5 ``data_type": ``gene expression quantification",
6 ``disease": ``kidney renal clear cell carcinoma",
7 ``name": ``KIRC_Gene_Expr"
8 },
9 {
10 ``data_type": ``miRNA expression quantification",
11 ``disease": ``kidney renal clear cell carcinoma",
12 ``name": ``KIRC_Mirna_Expr"

50

2.8. Evaluation

13 },
14 {
15 ``binary_operation": ``union"
16 },
17 {
18 ``rows": ``patient ID",
19 ``metadata columns": [],
20 ``region columns": ["gene symbol"],
21 ``region values": ``fpkm"
22 }
23],
24 }

2.8 Evaluation
In order to evaluate GeCoAgent’s efficiency in aiding biologists and bioinformaticians in
tertiary analysis, we conducted preliminary empirical research on it. We concentrated our
review on usability, the primary driving force behind GeCoAgent since our objective was
to look into the elements that would either encourage or hinder its adoption within each
of the two primary target groups. Task completion and task execution time are two objec-
tive metrics that we gathered to assess howwell users performed when completing tertiary
analytic tasks. We also considered the subjective data gathered through semi-structured
interviews, which were also utilized to interpret the quantitative findings and investigate
the perceived potential for adoption. The study gave us the opportunity to elicit new needs
for our tool because of the insights on typical user behaviors that emerged from our obser-
vations of users using GeCoAgent.

2.8.1 Participants
In all, 14 participants from two groups of people (hence referred to as “users”) were re-
cruited. Seven biologists with some experience dealing with genetic data made up Group
1, although they had little computer science expertise. Seven members of Group 2 were
bioinformaticians or people with advanced computer science abilities and broad compu-
tational biology competency but little expertise in gene expression analysis. All users were
between 25 and 30 years old (M=26 in both groups), and none had any prior GeCoA-
gent experience. Three GeCoAgent researchers took part in the study as moderators and
observers (collectively referred to as “researchers” in the following text).

Every user signed up voluntarily and was found in clinical or research organizations that
had previously worked with our team. They agreed to participate in the study by signing a
permission formcontaining information about the study’s goals,methods, and all the legal
requirements we adhered to protect the privacy and anonymity of the data we obtained.

51

Chapter 2. GeCoAgent

2.8.2 Procedure
Due to the pandemic, the study was conducted online using video conferencing software,
allowingusers and researchers to communicate andobserveuser behaviorwhile usingGeCo-
Agent. Each participant participated in a single session that had three steps.

Step 1. Presentation of the tertiary analysis activity to be performed. Wewere cu-
rious to investigate our study variables for each of the twoprimary user profiles—biologists
and bioinformaticians. We also wished to contrast GeCoAgent with available tools and/or
programming languages (such as Python, R, or comparable) frequently used in bioinfor-
matics studies. Therefore, we distinguished how the twoparticipant groups completed the
tasks. Members of Group 1 (biologists) only used GeCoAgent to complete the task given.
The members of Group 2 (bioinformaticians) completed the tasks under two different ex-
perimental conditions: ”usingGeCoAgent” and ”using other tools”, i.e., systems and/or pro-
gramming languages theywere accustomed to in their routine tertiary analytis. Individuals
were randomly assigned to the two experimental conditions to counteract learning effects.

The provided assignment included routine tertiary analysis procedures such as data re-
trieval, data translation into a tabular format, and data clustering. Users had to group
information on pancreatic adenocarcinoma patients according to the gene expressions of
those individuals. The job was divided into 3 distinct tasks:

T1: find the gene expression data for pancreatic adenocarcinoma; data extraction using
GeCoAgentwas fromGenoSurf [28] (introduced in Section 2.2.4), in “using other
tools” condition, users extracted the datasets either fromGenoSurf or directly from
The Cancer Genome Atlas (TCGA), which is the standard repository for cancer-
related gene expression dataset. The two sources contain the same datasets, asGeno-
Surf imports TCGA data.

T2: create a table to operate on samples, thus with the patients (i.e., samples) on the
rows, the gene symbols on the columns, and the expression values (in fpkm) in the
cells without adding any labels;

T3: identify the clusters of the patients using k-means clustering, using automatic pa-
rameter tuning to find the optimal number of clusters (in the range [2, 5]).

The task time limit, or the total amount of time allotted for the completion of a particular
assignment, was 15 minutes.

Step 2. Execution of the assigned tasks. During task execution, participants were in-
structed to “think aloud” [122] or to express any thoughts that came to mind as they pre-
pared for each task, including what they were seeing, thinking, doing, and feeling. Users
gave remote researchers access to their displays and turned on their cameras and micro-
phones to see and hear what users were doing and saying. A screenshot of the user’s screen
during an interview is shown in Figure 2.17. The snapshot depicts the interaction of the

52

2.8. Evaluation

Table 2.5 – Completion Rate and Time on Task of the participants to the
experimental study, divided by experimental condition.

Completion Rate Time on Task
T1 T2 T3 T1 T2 T3

Measure Total Total Total µ σ µ σ µ σ

Group 1 - GeCoAgent 7/7 7/7 7/7 4:45 2:42 2:28 0:41 2:31 0:54
Group 2 - GeCoAgent 7/7 7/7 7/7 2:20 0:49 2:13 1:05 2:23 1:05
Group 2 - Programming Tools 6/7 0/7 5/7 10:21 4:42 N.A. N.A. 09:38 02:46

user, who first uses natural language sentences while in the second message uses the avail-
able keywords, at the point in the dialogue where GeCoAgent proposes to add additional
filters and the user wishes to choose the disease.

Step 3. Final interview. The researcher conducted brief semi-structured interviews
after each session, emphasizing the perceived usability and usefulness of the tool(s) used to
carry out the activities and its potential for adoption. Interviews were captured on video.
The inquiries were:

• (Perceived usability). How much do you find GeCoAgent easy to use, on a scale
from 1 (very difficult) to 5 (very easy)? What are the motivations for your score?

• (Perceived usefullness). Howmuch do you find GeCoAgent useful, on a scale from
1 (useless) to 5 (very useful)? What are the motivations for your score?

• Would you recommend GeCoAgent to biologists? For which reasons?

• What are the main advantages of GeCoAgent?

• What are the main disadvantages of GeCoAgent?

Despite not standardized, the first two questions were inspired from some of the SUS
ones [123].

2.8.3 Results
Analysis of Quantitative Data

Abinary scale (1 = task completedwithin the time limit; 0 = task not finished by time limit)
was used to measure task completion. GeCoAgent was used by all 14 users to accomplish
the task successfully, as shown in Table 2.5. Instead, T2 was not finished by any user in
the G2 group. Four participants made a valiant effort but could not accomplish the task
within the given time; three users expressly said they could not execute it and gave up very
quickly. Similar behaviors were seen for tasks T1 and T3: one user abandoned task T1 and
one user only partially finished task T3.

To compute the time on task variable, we only considered the time employed by the users
that successfully finished the task in less than 15 minutes, i.e., within the task time limit.

53

Chapter 2. GeCoAgent

TheWilcoxon signed-rank two-paired test comparing the two distributions between those
carried out in GeCoAgent (which were finished by all users within the time restriction)
revealed that therewas no significant difference for the twouser groups (T1: p = 0.219; T2:
p = 0.579; T3: p = 0.579). Only tasks T1 and T3 were compared for Group 2’s time on
task in the two experimental circumstances, “using GeCoAgent” and “using other tools.”
The results demonstrated that utilizing GeCoAgent significantly reduced the time spent
on each task compared to “using alternative tools”. T1 andT3were, on average, 3.0 and 3.9
times quicker with GeCoAgent, respectively (Wilcoxon test, p = 0.0313, and p = 0.0156).

GeCoAgent’s perceived usability was deemed to be satisfactory based on the quantitative
data from the final interview. All users had an average usability score of 4.00/5 (SD=0.78),
with biologists achieving a lower average score of 3.86/5 (SD=0.90) and computer scien-
tists receiving a higher average score of 4.14 (SD=0.69). The average utility score for all
users was 4.57/5 (SD=0.65), and the value was the same for both groups, with slight dif-
ferences only in the standard deviation (SD=0.79 vs. SD=0.53). Despite the above data
suggesting that some biologists experienced difficulties using GeCoAgent, this did not af-
fect the perceived utility, which was even higher than usability.

Regarding GeCoAgent’s potential for adoption, all panelists suggested that biologists em-
ploy it. Bioinformaticians did not universally recommended the tool as an alternative to
“traditional” programming environments, as highlighted from the answers to the first ques-
tion in Phase 3; out of the twelve participants, five biologists and seven bioinformaticians
did so, while the other two (biologists) did not. GeCoAgent was only suggested by one
biologist and two bioinformaticians for the first stages of Tertiary Analysis (e.g., Data Re-
trieval and Exploration).

Analysis of Qualitative Data

To identify recurring themes in the interview transcripts and thinking-aloud recordings,
we employed thematic analysis [119]. In the remaining text, the capital B stands for biolo-
gists and the capitalC for bioinformaticians. Even though the system is simple to use, there
is an initial learning curve that lasts only for the first exchange of text messages, according
to seven participants (4 biologists and 3 bioinformaticians), who also noted that as users
have trust in the platform, “the platform becomes easy” [B3]. Nine participants liked the
GeCoAgent chat-based interface. The chatbot questions were defined “simple” [C5] and
“easy to understand” [B1]. C2 enjoyed how the chatbot asked for “confirmation between
one step and the following one” while C3 found the chatbot proactivity helpful: “I like how
the bot anticipates the steps and suggests them to you.” Four participants found the visual
interface well organized and functional, as “all the elements are well organized” and “on
the same interface”, generally providing “a clear functional organization of all the panels.”
Users praised the graphical interface and conversational interface’s seamless interaction. In
particular, they liked how the chatbot suggested where to look for information on the in-
terface [C3], how information was displayed synchronously with the chat [B4], and how
certain words in the support panel suggested what to do next [B4, C1, C6]. The poten-
tial of GeCoAgent as a teaching tool for beginning biologists or bioinformaticians to learn

54

2.9. Discussion

about critical thinking processes and operations to undertake during tertiary analysis was
also emphasized by many users in Group 2.

Four computer scientists said that the tool’s inadequate openness of decisions, notably the
absence of explanations of the parameters automatically employed by the chatbot, was one
of its main drawbacks. Some users complained that there were times when it was difficult
to grasp the options for the next step or that the feedback was too brief in describing what
to do; they requested lengthier assistance messages. Additionally, they asserted that they
would want “greater control on the available actions” [C3] to employGeCoAgentmethod-
ically. Although GeCoAgent’s functions are occasionally powerful, biologists have found
them somewhat constrained [B1, B5]. They would utilize the tool more frequently if it
supported a greater variety of analytical activities.

Lastly, examining video recordings, the researcher notes recorded during the sessions, and
conversation logs determined that the chatbot’s understanding capacitywas sufficient. The
conversational agent could not “go back” to a certain step the user had requested (this ca-
pability was not yet built). Still, it only twice misunderstood the user’s intent. The ex-
amination of conversation flows also revealed two recurring patterns of users’ conversa-
tional behavior: talking to the chatbot “extensively,” which means forming whole phrases,
and “concisely,” which refers to utilizing just the keywords displayed in the visual interface
panel.

2.9 Discussion
GeCoAgent’s evaluation of a straightforward but practical use case indicates that this tool
has a good degree of usability, perceived value, and perceived adoption potential. Despite
the many user profiles, there was a short learning curve at first, and participants rated the
system as being easy to use. Even though none of themhad any prior training or familiarity
with the platform, they could execute all the tasks given to them in GeCoAgent.

We believe that by carefully eliciting andmodeling the cognitive and operational processes
of tertiary analysis, we were able to guide our design approach, which may have helped
to make the system’s use more predictable and intuitive [124]. GeCoAgent may enable
biologists with low computer science abilities to conduct tertiary analytic tasks more suc-
cessfully and independently, lowering - or maybe eliminating - the need for help from
bioinformaticians, filling the gap identified by Bolchini et al. [31]. This is the general con-
clusion of the study.

However, the use of GeCoAgent might also be advantageous for bioinformaticians. Our
technology allows bioinformaticians to conduct some complicated operationsmore quick-
ly and relieves them of the need to learn new programming abilities, as shown by a compar-
ison of the times required to accomplish tasks T1 and T2 in GeCoAgent and by writing
the necessary operations from scratch (which some participants missed, preventing them
from completing task T2).

55

Chapter 2. GeCoAgent

GeCoAgent was initially intended primarily as a tool for experienced genomic analysis spe-
cialists. An intriguing finding from the study broadens the range of our target users and
the context of use: participants reported that the tool also has potential for novice users as
an educational platform, for example, to teach biology and bioinformatics to students and
encourage the learning of tertiary analysis.

GeCoAgent’s multimodal interaction strategy and the seamless blending of chatbot be-
haviors with the GUI (Graphical User Interface) emerged as its strongest design elements.
The two paradigms were seen as enhancing and reinforcing one another, as previous stud-
ies highlighted [125, 126]. However, various restrictions were found in the operational
flow that the system provided, whether through the chatbot or the GUI end. In other in-
stances, it was seen to be overly inflexible, missing alternate pathways to reflect the various
methods to arrive at a solution or to reflect the user’s variable cognitive aim.

Coherently with previous findings (e.g., [127–129]), users would like more adaptivity in
GeCoAgent. In fact, some participants employed brief, keyword-based phrases while in-
teracting with the chatbot, and they also valued the succinct tone of the chatbot’s utter-
ances. Other people said the chatbot’s words needed a more complex style. They would
also have required greater feedback on their interactions andmore detailed descriptions of
the actions to take or the functions carried out by the system. We have a challenging aim
for our future research agenda: managing multiple conversational styles and contents to
dynamically fulfill the communication needs of the many users on various interactions.

2.9.1 Limitations
The study’s findings are generally promising. They are a first attempt to analyze the combi-
nation conventional (GUI) interfaces and conversational interaction to support intricate
tasks in tertiary analysis, opening the door to the additional study of interactive bioinfor-
matics technology thatmight result in fresh approaches for researchers working in the area.
However, given the exploratory and early character of the research as well as its limitations,
the results of our empirical investigation should be interpreted with care. Even while it
is equivalent to or larger than earlier empirical research on conversational interaction in
related fields, the user sample size is small. For instance, Iris [55] and Ava’s [56] empirical
assessments comprised 8 and 10 individuals, respectively (using a within-subjects study de-
sign). Additionally, we evaluated our system on a limited number of jobs typical of this
complicated activity known as tertiary analysis, albeit there are others. GeCoAgent’s per-
formance on a broader range of tasks may reveal flaws that the current study could not
reveal.

2.10 Conclusions
GeCoAgent is our first attempt at a multimodal conversational agent. It stands out as a
system that offers considerable benefits to the state-of-the-art due to the combination of
many special features:

56

2.10. Conclusions

• TheGeCoAgent concept incorporates expertise in genomic computing, both in terms
of the high level of abstractions of supported models and languages and the accessi-
bility of reliable systems that offer efficient data management, integrative pipelines,
and repositories encompassing the majority of pertinent open data sources.

• GeCoAgent’s requirements result from a bottom-up discussion with biologists and
doctors and a top-downreviewof experience (bothdomain-specific andwith abroader
data science perspective). They enable us to divide data extraction and analysis pro-
cedures into alternate phases, each accompanied by exploration and visualization.
We identify recurring patterns of interaction within this broad framework, which
might be helpful for better process structuring and early identification of user in-
tent.

• The ontology, a novel model to describe the bioinformatics tertiary research process.
Apart from providing the foundations to design GeCoAgent, the ontology can be
used as a reference to describe research activity and to design new, user-centered
tools.

• The ontology elicitation process, a methodology that can be exploited in any domain
to get a deep understanding of how the process workflows are structured and how
to support them with innovative digital products.

• GeCoAgent’s architecture is based on an innovative automata structure that takes
into account both the necessity to carry out the standard data extraction and data
analysis operations as well as the user’s desire. The process’ gradual building, which
gives dialogues meaning, is another factor that propels the automaton.

• GeCoAgent’s implementation combines two key technologies for empowering con-
versational agents: NLP recognition using machine learning acting on a corpus of
task-oriented dialogues and a multimodal user interface that combines the chatbot
with synchronized data visualizations and with a succinct summary of the develop-
ing analysis context.

The output of a design session is delivered in the form of a summary text outlining the
entire process as well as a Python script embedded within a Jupiter notebook and linked
to both internal and external data resources, which can be used to reproduce the extracted
datasets faithfully and statistical results (e.g., Excel tables, diagrams, and plots in standard
visualization formats). In this approach, a biologist or clinicianmaybehappywith theuser-
friendly delivery of findings while also being comfortable that the results can be repeated,
run later, and/or used with additional datasets.

GeCoAgent can help to effectively integrate genomics into public healthcare research by
bridging the cognitive divide that currently exists between clinicians and biologists regard-
ing the use of bioinformatics tools. This will make it easier to implement personalized
medicine in the context of diagnosis, prevention, and treatment. Some of GeCoAgent’s
benefits are also attributable to the potency of integrative pipelines for genomic data inte-
gration, which provide smooth genomic metadata integration and enrichment with inno-
vative biological and clinical research components [27].

57

Chapter 2. GeCoAgent

From experience with GeCoAgent, we can distill some valuable lessons learned. First, the
effectiveness of the platform leads us to think that multimodal conversational interaction
might be powerful also in other domains characterized by i) intensively process-driven in-
teraction and ii) high cognitive load for the task execution, paving the ground for more
detailed studies in the application of this technology, as we will see in the following chap-
ters.

58

Chapter 3
DSBot: a multimodal conversational
agent for data science
3.1 Introduction and Research Questions
In the previous chapter, we described the work that brought to the design and implemen-
tation of GeCoAgent, a conversational interface to support scientists in extracting and
analyzing genomic data. The empirical evaluation with users showed the potentialities of
such a tool when computational skills are lacking. However, we noticed how the rigid
structure of the grammar-based conversation implemented in GeCoAgent requires users
to have a little understanding of the operations that are required to produce a meaningful
response to their research questions; in fact, GeCoAgent guides users into the formulation
of the pipeline but requires users to know the sequence of operation theywant to perform,
in terms of data extraction and manipulation, and algorithmic choice.

For this reason, we wanted to create a new conversational interface that expandedGeCoA-
gent in two directions: by relieving users constraints on the domain, operating on generic
data science analysis, and users’ data science knowledge, automatically translating users’
research questions into operative pipelines.

We chose to relieve the domain constraints since whole data science has been an emerg-
ing domain in recent years. Businesses use data in the industrial setting to plan predic-
tive maintenance interventions, optimize processes, forecast revenues, and avoid break-
downs [130]. Researchers employ data to support their decisions by validating or develop-
ing new ideas [131]. These benefits are amplified by the process of data democratization,
inwhich an increasing number of data repositories aremade available online for free access
by academics all over the world [132].

However, utilizing the data that is becoming more widely available requires considerable
skills in programming, statistics, machine learning, and data management and modeling.
As a result, domain experts whomay lack strong technical aptitude and computational ex-
pertise do not nowhave full access toData Science. Activities in data science are frequently
tricky, even for expert people. Every dataset is unique and needs a customized set of op-
erations to extract valuable information [133]. Researchers may use an inefficient analysis
pipeline or battle with the wrong tools or techniques, frequently leading to inaccurate, if
not false, results. Before moving on to more complex studies, they could invest a lot of
time in setting up rudimentary data analysis pipelines to examine dataset properties.

59

Chapter 3. DSBot: a multimodal conversational agent for data science

Building on the knowledge gained from GeCoAgent, we created the DSBot, an interac-
tive machine learning tool based on a multimodal conversational agent that blends Natu-
ral Language Processing, conversational technologies, and AutoML methodologies. The
goal of DSBot is to convert a research topic communicated in plain language into a data
science pipeline that can be executed on any text dataset. The relief of the domain and
the users’ knowledge constraints implies four design principles on which DSBot bases its
foundations:

• Domain-independence; DSBot operates on any tabular dataset and is detached
from any data repository, making it domain-independent and allowing users to sub-
mit their data. Because of this, DSBot can be used for any Data Science application.
GeCoAgent, in contrast, is domain-dependent: it only works with its genomic data
warehouse and has analysis capabilities tailored to this particular content;

• Abstraction; GeCoAgent requires more data science expertise thanDSBot, which
makes it possible for any domain expert to do complex data analysis tasks on their
own data.

• Declarativeness; GeCoAgent needs users to supply a procedural specification of
the data analysis pipeline or progressively identify the operational steps required to
carry out the desired analysis. By expressing the analytic aims rather than the proce-
dures or methods required to produce the desired results, the user of DSBot states
their research question declaratively. Instead of specifying the method of obtain-
ing the results, the user may, for instance, query ”What factors influence the price
of a property the most?” to maximize the outcomes, DSBot automatically converts
a user’s declarative requirements into an operational pipeline by selecting the ideal
parameters and methods.

• Autonomy; From the standpoint of conversational design,GeCoAgent relies solely
on the user’s decisions made from a range of pre-defined alternatives presented at
each stage by the conversational agent. InDSBot, the discussion is formed by taking
into consideration the user’s explicit choices and the dataset’s characteristics. Both
during the elicitation of data analysis needs and the evolution of the pipeline exe-
cution, the conversational agent actively engages the researcher in the discussion.
For instance, some of the chat is devoted to asking the user if the agent accurately
comprehended their wishes. Additionally, DSBot involves the user in key decision
points where it is necessary to understand the semantics of the uploaded data and
human express decisions. For instance, the question “Please state the features you
want to consider” or “Should out-of-range numbers be eliminated because they are
probably a measurement error, or should they be considered as acceptable?” asks what
features to choose.

• Troubleshooting; When the analysis is complete, the DSBot guides users into a
conversational troubleshooting process in which users have the possibility to de-
scribewhat they donot like about the results (e.g., performance results, howclusters
are separated, the number of clusters identified, etc.). In response, DSBot intelli-
gence translates the issue into an actionable solution (e.g., If the users have concerns

60

3.1. Introduction and Research Questions

about how clusters are separated on the graphical representation, DSBbot suggests
changing the number of clusters or the dimensionality reduction technique to im-
prove the visualization)

The user can receive help from the beginning (statement of the research topic) to the finish
of the data analysis processwith the help ofDSBot, an end-to-end solution (analysis results
reporting). The system analyzes the data and handles pre-processing operations, such as
normalizing quantitative variables, addressing missing value issues, or transforming cate-
gorical variables with one-hot-encoding representation for clustering analysis, once users
have uploaded their dataset and stated their data analysis need (or “research question”).
After gathering all the essential data from the user and the data, DSBot uses an automatic
machine learning (AutoML) algorithm that was specifically created to choose the best al-
gorithm and adjust its (hyper)parameters. Finally, DSBot delivers graphs and tables that
include comments written in plain language and describe the analysis findings.

To evaluateDSBot’s ability to convert user informationneeds into appropriate operational
pipelines, we put it to the test onmore than 150 “research questions.”We also compared the
results acquired using TPOT, a well-known AutoML tool, to those produced using the
analyses carried out by DSBot over 30 datasets of various types in terms of execution time
and outcome. Our findings demonstrate that, with a substantially lower execution time,
our system achieves equivalent performances (in terms of accuracy and root mean square
error).

Finally, we evaluate DSBot troubleshooting capabilities testing it with 12 researchers with
different backgrounds, finding that the totality of the participants could fulfill the task in
autonomy, despite most of them have never experienced data science analysis before. In
addition, empirical evidence shows that the DSBot troubleshooting system reduced the
cognitive effort required to solve data science problems.

DSBot is innovative since it is a newdomain-independent tool tohelpnovice users perform
data science analyses as well as it is based on a cutting-edge method that combines Conver-
sational Technology, Neural Machine Translation, and AutoML techniques in a sophisti-
cated, original manner. In order to transform declaratively articulated user research ques-
tions into operational specifications—i.e., the operations and algorithms thatmake up the
data analysis pipeline—neuralmachine translation techniques are used. Utilizing concepts
and vocabulary that people with little to no expertise in data science can understand, con-
versation technology is used to engage users in a dialogue devoted to validating with them
the accuracy of the operational pipeline concerning their demands. When it is required
to elicit more data from the user during the pipeline’s execution, conversational technol-
ogy is also utilized. The “optimal” machine learning algorithm is chosen using autoML
approaches by i) running many ML algorithms on portions of the user-uploaded dataset;
ii) automatically choosing the best algorithm and the values of its (hyper)parameters; and
iii) applying the chosen algorithm to the entire dataset.

Some of the work presented in this chapter have been published in [pinoli2023ask, 16,
17].

61

Chapter 3. DSBot: a multimodal conversational agent for data science

3.2 State of Art
3.2.1 Automatic Code Generation
Programmers must first understand the programming language before translating their
thoughts into it [134, 135], making coding a mentally taxing activity [136]. The goal of a
great deal of research has been to create interfaces that convert spoken language into exe-
cutable code.

Today’s automatic code generation tools differ significantly in their operations, the data
they accept, and the programming language they output. Shin et al. [137] defined a taxon-
omy for classifying these applications in two dimensions, the type of the input (a high-level
description of the task to be executed or a detailed description of all the commands to be
programmed) and the output to produce (executable code, code snippets, or a representa-
tion in an intermediate language).

Automatic Code Generation tools can be divided into three primary categories from a
technology standpoint. The first one consists of straightforward tools powered by gram-
mar that match natural language patterns and convert them into executable code [138].
The second one entails more sophisticated systems that make use of probabilistic or com-
binatorial grammars to expand the range of user sentences that are acceptable [139, 140]
or that make use of natural language processing to comprehend user requests and glean in-
formation that may be used to generate code [141, 142]. The third most recent group uses
machine learning methods to create executable programs on demand. In particular, Neu-
ral Networks and a sizable training data set are frequently utilized for this purpose [143–
145].

3.2.2 AutoML
Asubfield of artificial intelligence calledAutomatedMachineLearning (AutoML) intends
to automate the machine learning process fully. Data scientists can focus on model opti-
mization and interpretation, and non-machine learning professionals can access machine
learning techniques more easily. The most common libraries are AutoML [146]. TPOT,
Auto-WEKA, and Auto-Sklearn.

Scikit-learn is the foundation of the AutoML library known as Auto-Sklearn [147]. A
meta-learning phase at the beginning of the process to warm-start the bayesian optimizer
and an ensemble creation method that integrates models evaluated during the optimiza-
tion are all factors that help it perform better.

Among the options provided by the Weka platform, Auto-WEKA [148] automatically
chooses the optimum algorithm and configuration. The decision is made by converting
the algorithmandparameter selectionproblem into abayesianoptimizationproblem. Auto-
WEKA can select the algorithm and its hyperparameters concurrently or consequentially,
depending on the optimization strategy.

TPOT [149] uses genetic programming as an engine for optimization. The tree structures
that make up machine learning pipelines are used to perform the genetic algorithm. Each

62

3.2. State of Art

pipeline is assessed, and the best ones are used to build the pipelines that will come after
them.

The procedure still requires human input at several crucial stages, such as choosing the
proper machine learning problem or identifying the pertinent aspects of domain-specific
data, even though automation and efficiency are among AutoML’s key strengths [150].

3.2.3 Interactive Machine Learning
With the development of ML and Data Science, there is a growing interest in enhancing
Data Science tools to lessen the workload of professional data scientists and to enable so-
phisticated data analysis for non-experts, hence expanding accessibility and adoption of
Data Science solutions. Several studies, like [151] and [152], emphasize the need for ma-
chine learning methods and tools that are more interactive and better integrated with hu-
man expertise and needs, complementing and enhancing the work of domain experts, es-
pecially in situations where providing fully automated functionality is computationally
very demanding. We may classify the interactive machine learning platforms that are now
available based on howmuch freedom they give users.

Themost straightforward systems enable the execution of a single classification-relatedma-
chine learning activity. The program automatically conducts the analysis and creates the
model; users simply need to provide data with some additional information (such as the la-
bel variable, in the case of supervised learning). Ozan [153] proposes using a web interface
to build a multi-label image classifier using TensorFlowJS [154]. The system generates a
ConvolutionalNeuralNetwork (CNN) [155] and two files—one providing the network’s
architecture and the other its weights—by uploading the image files in separate folders for
each label.

Google offers a framework called TeachableMachine for building picture and audio classi-
fiers [156]. Users upload samples, and the platform uses a single button click to train a clas-
sification algorithm to address the problem without further human intervention. Users
can then export the model as a piece of JavaScript code that can be used in any project.
Iyer et al. [133] suggest Trinity, a web interface for spatial data analysis that automatically
generates binary andmulti-class classificators. Data are pre-processed and ready for CNN-
based learning, and users are provided with visualizations. If the model’s output meets
expectations, Trinity provides a method to put it into use.

Otherplatforms forego complete automationof theprocess and allowusers to compare the
platform’s suggested solutions to choose which algorithm performs the best. To compare
AutoML solutions interactively, Model LineUpper [157], for instance, integrates visuals
and Explainable AI approaches. The authors derive a set of principles that can be used
in constructing a platform for comparing Data Science models by distilling the findings
of an empirical evaluation of the system. The necessity of giving users the opportunity
to modify models and making processes transparent so that users can understand exactly
what the system performed automatically is emphasized throughout all of the standards.

63

Chapter 3. DSBot: a multimodal conversational agent for data science

Other systems aid users in choosing the proper operations to carry out the analysis they
want. For instance, Snowcat [158] automatically suggests a list of research questions to
address using the data being examined. It trains a series of models and offers an interactive
dashboard to examine them based on the problem the user selects. Users for additional
analysis can also download the created models.

The AutoDS [159] system automatically suggests ML configurations, preprocesses data,
chooses algorithms, executes model training, and then displays the resulting pipeline on a
web-based graphical user interface and a notebook-based Python programming interface
after data workers have uploaded their dataset. In the publication, 30 professional data
scientists participated in an empirical controlled study to explore AutoDS; one group uti-
lized AutoDS while the other operated autonomously. The findings demonstrated that
AutoDS increased output, and the models created by the AutoDS team were of higher
quality and contained fewer faults. The AutoDS condition still had lower human con-
fidence in the final model. This skepticism is primarily motivated by a lack of complete
control over the system. Additionally, 43 percent of individuals said they trusted AutoDS,
meaning they had faith in the system and thought it was trustworthy (13 percent disagreed,
and 43 percent were neutral). Last but not least, just 10% of participants believed that Au-
toDS will replace human data scientists, with the remaining 50% remaining neutral.

In order to compare various classifierswhile consideringmodel performance, feature space,
and model explanation, Meng et al. [160] created a visual technique. ModelWise cus-
tomizes richly interactive graphics to enable various workflows for model diagnosis, selec-
tion, and enhancement.

Many analysis tools focus on providing users with a set of tools to utilize, at the expense
of necessitating that users have a solid understanding of the methodology they wish to
employ. One interface to work with publicly accessible data on Dataverse repositories is
TwoRavens [132, 161]. Users can examine the data they selected and select the statistical
approach to evaluate them through a graph-based user interface.

Pyrus is a graphical online modeling platform created for constructing data science pipe-
lines [162]. It is built on the separation of concerns principle, with data scientists imple-
menting block units that carry out data science operations in a dedicated interface and
domain experts using a block interface to build pipelines using the units already developed
in the system. However, in order to use this platform effectively, users must have a funda-
mental understanding of data science.

Some studies explore the use of conversational technologies during the data science pro-
cess. As discussed in the previous chapter, Ava and Iris are two examples. Ava [56] works
on a structured process: the conversation predicates on a pre-defined process in which the
conversation asks users for the desired operations and parameters. Yet effective, this choice
constrains users to use only themodules that fit in the processmodel. Iris [55] acts as a con-
versational wrapper for data science operators that allows users to compose their pipelines
in freedom. Yet, usersmust know themodules and their functionalities; the conversational
layer does not offer support in composing the operations.

64

3.3. Design Principles

In conclusion, interactivemachine learning is a young and active study area. Our literature
analysis reveals that users need to bewell-versed in the subjectmatter to trust the outcomes
generated by these platforms [159, 163]. With our work, we want to close this gap by offer-
ing a tool that does not require highly specialized Data Science knowledge, gives users the
freedom to conduct analysis motivated by research questions, and offers sufficient details
and justification to increase the user’s confidence in the outcomes.

3.2.4 Conversational Troubleshooting
Guided troubleshooting is the practice of supporting users in a certain field in finding so-
lutions to specific issues; typically, the user asks a query, which is then verified to identify
the underlying issue and carry out a corrective action [164].

Extraction of the question’s aim and specific information is necessary to develop programs
that can autonomously identify the correct answer and carry out the necessary actions.
There are numerous methods for resolving this issue, and they can be classified into two
categories—those that rely on human rule setup and those that learn from data—much
like dialogue managers [165].

In comparison to automated learning, rule-based approaches, such as taxonomic case-based
reasoning [166] or sophisticated slot-filling algorithms [167], allow formore customization
of behavior and rules, such as the integration of other services to boost performance. The
breadth of these troubleshooting frameworks is usually somewhat limited because they are
typically tailored solutions for a particular application in a single domain [168]. However,
managing vast sets of rules is challenging. With amulti-bot system that covers different ap-
plication domains at the cost of a more complex configuration, Subramaniam et al. [168]
attempt to get around this restriction.

By using automatic learning techniques [169], the automated approach avoids manually
establishing a complex knowledge base. The difficulty in creating domain-specific training
data sets and the wide range in answer quality and consistency provide a problem [170].

3.3 Design Principles
We first introduce the design principles we used, which are multimodality, separation of
concerns, and extensibility, beforemoving on to describe the system. By doing so, wewant
to clarify why we chose these ideas and show how they are applied in DSBot.

3.3.1 Multimodality
As said in the previous chapters, if a system enables several modes of interaction, including
text, images, gestures, and more, it is said to be multimodal [171]. Numerous studies have
demonstrated that the response tomultimodal stimuli is superior to uni-modal [172, 173].
Additionally, since aweb application’s graphical user interface serves as its primary point of
engagement, we want to assist and intervene as little as possible in that environment rather
than requesting that they transfer to a different conversational one [126].

65

Chapter 3. DSBot: a multimodal conversational agent for data science

A thorough integration between various modalities supports the understanding of users’
wishes. In fact, an automated solution should use the context of the request, namely the in-
formation about the pipeline that had been executed, to have a better knowledge of it, just
as a human field expert would answer a query regarding the system’s state. A customized
solution for each unique situationmight provide additional information, such as past user
behaviors on the graphical interface.

3.3.2 Extensibility
With minor modifications to its underlying structure, an extensible solution enables the
addition of new behaviors andmodification of the ones already present. As the knowledge
base expands, if the industry-specific data is ingrained within the application, introducing
changes will necessitate interventions at multiple sites, reevaluating all current rules to de-
termine whether they are affected by the changes, and the extension of the features will
become quickly impractical.

We want our system to be extensible mainly in two directions: machine learning experts
should easily add a new reference pipeline to the knowledge base and couples of problem-
solutions in the troubleshooting phase.

3.3.3 Focus on Tabular Data
Wewant DSBot to accept tabular data, i.e., tables in which each sample, or table row, con-
tains a tuple of distinct features. This is the standard form of a spreadsheet or the output
of a DBMS query. The dataset may contain any number of characteristics and, optionally,
a target column.

Wedecide not to supportmulti-dimensional data, such as images, audio samples, or tempo-
ral series, since these data require ad-hoc preprocessing and different analysis techniques,
strongly dependent on the nature of the data itself.

3.4 System Overview
In order to complete an analysis task, DSBot goes through several stages; some of them
require interactions with the user, while other phases are fully automatized. To get to the
final result, users must go through a series of steps, illustrated in Figure 3.1. At a glance,
the steps divide into two main interaction phases:

1. Pipeline elicitation and execution (Step 1-7): users upload their datasets and for-
mulate their research questions. DSBot first translates the research questions into
operation pipelines, then assesses if the translation is correct, and starts to execute
those pipelines, having a conversation with the user when a decision must be taken
from a data expert.

66

3.5. Phase 1

2. Results optimization and conversational troubleshooting (Step 8-9): Users
see the results coming from the execution of their pipeline and can modify the pa-
rameters to improve the outcome. DSBot supports them in this process, accepting
comments on what users dislike in the proposed solution and proposing actionable
suggestions to improve it.

The whole process is illustrated in Figure 3.1 and comprises the following nine main steps:

1. The user specifies the target column and uploads the dataset;

2. In order to infer descriptive properties, such as data types or the presence ofmissing
values, the system performs many conventional analyses on the dataset;

3. The user constructs a research query as a statement in natural language;

4. In a Data Analysis Workflow (DAW) pipeline, the system uses a machine translator
to translate the natural language inquiry;

5. In order to make sure the generated DAWphrase matches the user’s expectations, a
conversational agent engages the user in a discussion; at this stage, DSBot may also
use the dialogue to extract additional needs from the user in order to improve or
modify the DAW pipeline;

6. The pipeline built in this manner can be supplemented with extra operations to
cope with the dataset peculiarities (e.g., treatment of missing data and/or outliers);
the confirmed DAW pipeline is compared with a pipeline dictionary, from which
the best matching pipeline is selected.

7. The analysis’s findings are represented visually.

8. Users can describe the issues they see in the results. The chatbot proposes a solution
to those problems, highlighting the parameters to modify on the interface to solve
the issue.

3.5 Phase 1
3.5.1 Components
Hereafter, we present and discuss the details of the various components that rule the be-
havior in the first interaction phase of DSBot and show how they interact.

Data Analysis Workflow Domain-Specific Language

The pipelines for data analysis are encoded in a domain-specific language (DSL) called data
analysisworkflow (DAW). It is a formal language designed todepict datamanipulation and
analysis activities flow for (a) interpretation and execution and (b) storage and search in
the knowledge base. The dataset descriptions and the list of procedures make up a DAW
sentence. The first is a list of terms that describe the major dataset properties, such as
missingValues, outliers, and zeroVarianceFeatures, while the second refers to

67

Chapter 3. DSBot: a multimodal conversational agent for data science

1. Dataset Upload
and Target Specification

2. Preliminary Dataset
Analysis

3. Research
Question Request

4. Seq2Seq Translation

5. Conversation
with the User

6. DAW pipeline with
data Characteristics

matching in Dictionary

7. Pipeline Execution

8. Results Visualization
9. Guided

Troubleshooting

Ph
as

e
1

Ph
as

e
2

Figure 3.1 – Conceptual architecture of the system. The boxes with a user
depicted are the ones in which users must interact with the platform.

68

3.5. Phase 1

a series of actions that should be taken on the dataset in order to achieve a particular goal.
As new capabilities are introduced to the system, new terms can be added to the DAW
language’s description of datasets and workflow activities.

A workflow description in a DAW is a series of symbols showing the intended processes’
linear flow. There are two classes of symbols: high-level and low-level. Each low-level sym-
bol is a specialization of a high-level symbol. These two classes are arranged in a hierarchy.
While high-level symbolsmust first be specialized in a low-level symbol, either by automatic
methods (explained later in this section) or by engaging with the user, low-level symbols
have a one-to-one correlation with an operation that may be conducted immediately. Ta-
ble 3.1 reports a detailed list of the DAW symbols.

High Level Low Level

missingValues
fillMissingValues
removeMissingValues
missingValuesHandle

encoding oneHotEncoder

outliers outliersRemove
outliersDetection

zeroVariance zeroVarRemove
strongCorrelatedFeatures correlatedFeaturesRemove
featuresToRemove removeFeatures

preprocessing standardization
normalization

labelOperations labelRemove
labelAppend

correlation pearson
spearman

classification

autoClassification
randomForest
logisticRegression
kNeighbors
adaBoost

clustering
kmeans
dbscan
agglomerativeClustering

outliersDetection outliersDetection

featureSelection

lasso
selectKBest
laplace
userFeatureSelection

featureImportance featureImportance

featureEngineering pca2
mds

associationRules apriori

69

Chapter 3. DSBot: a multimodal conversational agent for data science

regression
autoRegression
ridgeRegression
linearRegression

performance regressionPerformance
confusionMatrix

plot

scatterplot
clustermap
roc
lassoPlot
tableRegression
tableAssociationRules
featureImportancePlot

Table 3.1 – High-level and low-level symbols included in DAW domain-
specific language.

As an example, consider the following DAW sentence:

userFeatureSelection oneHotEncode classification roc

userFeatureSelection is a low-level operator that can be used, and it might need to
talk to the user to getmore details. Contrarily, classificationmust first be specialized
to a low-level operator by a process that will be discussed later because it is a high-level
operation. The remaining procedures can be carried out automatically because they are
low-level and do not require user interaction.

The pipeline dictionary of the DAW is used to store manually selected models of analyses
in addition to describing the analysis that will be conducted. Please note that the DAW
symbols represent a particularmethod and abstract from its parameters, which thepipeline
executor automatically adjusts. The language is extensible; thus, new symbols canbe added
to DAW as new functions are added to the system.

Another advantage of the DAW is that it conceptually and logically separates the creation
of the analysis from its execution. Therefore, it would be sufficient to replace the execution
engine if better tools were available to do Data Science tasks without compromising the
translation apparatus. By simply substituting the existing execution enginewith one based
on the ML libraries of Apache Spark, one could offer a big-data version of DSBot.

Preliminary Analysis of the dataset

After the user uploads the data and specifies the label, DSBot automatically deduces the
properties of the current dataset to guide the selectionof potential studies and the selection
of an effective pipeline. Table 3.2 displays the list of attributes. Many of these are self-
explanatory, but some need more explanation:

70

3.5. Phase 1

Name Description
missingValues Some values are missing or NA
categorical Has both categorical and numeric features
onlyCategorical Has only categorical features
continuosLabel The target has continuous values
categoricalLabel The target has categorical values
outliers Some features presents outliers
lessThan3Features Less than 3 features are present
strongCorrFeatures Presence of strongly correlated features
uninformativeFeatures Some feature is not informative
zeroVarianceFeatures Presence of features with zero variance

Table 3.2 –Dataset Characteristics inferred by DSBot.

Outliers. This property points out the presence of outliers in the dataset, i.e., data points
whose values are distant from the others.

strongCorrFeatures. This property highlights the presence in the dataset of columns
containing numerical data whose values are strongly correlated, i.e., whose Pearson corre-
lation coefficient is more than 0.9.

uninformativeFeatures. This property indicates that thedataset presents oneormore
categorical columns whose number of distinct elements is greater than half the total num-
ber of values.

The system can choose from a variety of pipelines depending on which of the qualities
mentioned above best suit the uploadeddataset. Each characteristic is handled by a distinct
operation found in the pipelines that are available within the dictionary, as described in
Section 3.5.1.

Question Translation

Word embeddings are numerical vectors representing eachwordbyoneof the vector’s com-
ponents. Twovectors are comparable if their correspondingpoints are close to one another
in the vectorial space, where vectors are represented as points. These representations, often
referred to as dispersed word representations, may extract words’ semantic and syntactic
details from a sizable unlabeled corpus [174].

Word embeddings havebeendemonstrated to enhancenatural language interpretation and
processing tasks. In this study, we used GloVe pre-trained embeddings that use common
English language [175]. We changed them into word2vec vectors [176] and included the
embeddings of terms typically used to describe jobs involving data analysis. To do that, we
first used the Beautiful Soup library, and Google search results to web scrape the contents,
including the domain-specific terms. We calculated the embeddings of the new words

71

Chapter 3. DSBot: a multimodal conversational agent for data science

from the collected corpus using the word2vec technique and a skipgrammodel, with min-
imum count and maximum distance being equal to 2 and 30, respectively.

We developed a sequence-to-sequence machine translation model based on recurrent neu-
ral networks (RNN) to translate the user’s query into a workflow instance to be matched
to the pipeline vocabulary. The conditional probability p(y|x) of translating a source sen-
tence x1, ..., xn into a target sentence y1, ..., ym is modeled by a neural network in a neural
machine translation system.

We utilized the OpenNMT tool suite [177] to create the seq2seq machine translator. In
order to evaluate its performance, we used around 25,000 phrases for validation after train-
ing the model using a synthetic dataset made up of a set of manually prepared templates.
After 10,000 steps, the validation accuracy reached 78%.

Conversational Agent for Assessing Comprehension

Aconversational agent evaluates if the systemcorrectly understood the input sentence after
converting the user’s request into aDAW.The system gets theDAWphrase and transforms
its actions into a textual description to accomplish this. In order to get the user’s approval,
descriptions are combined into a single text message. The text defines operations at a high
level, removing itself from the specifics of how they work in favor of anticipated outcomes.
Data Science jargon is avoided since users of DSBot might not understand it.

We can use the same textual description for many terms that belong to the same algorith-
mic family since we are more concerned with the result of the operation than the algo-
rithm’s activity. The following description, for instance, can be transformed to include
both “kmeans” and “agglomerativeClustering” modules: “to organize your data in
such away that objects in the same group (called a cluster) aremore comparable (in some sense)
to each other than to those in other groups (clusters)”. The term “clustering” is associated
with the same definition.

As a result, the DAW’s symbols are divided between high-level and low-level classes. Ev-
ery symbol in a high-level class has a corresponding symbol or symbols in a low-level class.
For instance, the low level symbols “randomForest,” “logisticRegression,” “auto-
Classification,” etc., relate to the high level symbol “classification.”

Every node in the tree can have a textual description that includes the conversational sen-
tence to be used. When a word needs to be translated, the system uses a tree search to find
the deepest node in the path from the root to the searched node that has a textual descrip-
tion. It then returns that description, combined with the descriptions of the other words
in the DAW, and sent to the user for confirmation.

Users can check the written description, request more in-depth explanations, or request
an example of the workflow in action to see if they have grasped it correctly. The same
guidelines that guide the creation of texts for explanations and examples also apply here.
Users who approve the workflow hand off control to the Workflow Enrichment module
(Sec. 3.5.1).

72

3.5. Phase 1

The conversational agent aids the user in selecting an operation if the system has not ac-
curately comprehended what the user wants to do, adhering to the state-machine-based
description of the conversation flow depicted in Figure 3.2. Diamond shapes represent
the agent’s decisions regarding dataset properties, and rectangles with smooth angles rep-
resent decisions regarding the data science pipeline that will be suggested to the user when
the conversational agent sends a message to the user through the chat and waits for one of
the responses shown on the exiting arrows.

The dialogue aims to discover the user’s operational goal or the high-level operation they
want to carry out, such as clustering, regression, classification, association rules, or correla-
tionmatrix. In order to enhance the user experience and aid in comprehension, the discus-
sion uses the dataset information. If the dataset has a label, the prediction of a value is the
first suggested operation; if the user responds positively, the system automatically chooses
whether to use regression or classification based on the label’s nature. Instead, suppose the
user has not specified a label. In that case, the conversational agents will initially inquire
whether the userwishes to perform tasks such as clustering, prediction, or association rules
or correlations to uncover linkages in the data.

Heuristics on the data are used to determine the algorithm to use once the family of al-
gorithms has been found. When the user looks for relationships in the data, for instance,
correlation is automatically chosen if the dataset only contains numerical variables, while
it is eliminated if the dataset has no other numerical variables. The type of variable to be
predicted influences whether classification or regression is used in prediction tasks. Once
the desired operation has been elicited, the control is sent to the Workflow Enrichment
module, and a new pipeline containing the operation is created.

Pipeline Dictionary and Workflow Enrichment

As shown in Figure 3.1, theDAWobtained as a translation of the research question is com-
pared to a dictionary comprising manually edited pipelines and the dataset’s properties.
Using known best practices in data science, the best match is utilized to enhance and fix
the DAW. For instance, the best match will include the zeroVarianceRemoval step if
the dataset contains columns with zero variance (i.e., constant values). The pipeline dic-
tionary currently has 9634 pipelines spread across 439 different combinations of pipeline
attributes. The pipeline vocabulary can be expanded with new pipelines by design.

This algorithmwill choose the optimummatching pipeline based on the dataset’s proper-
ties as well as the user’s input, enhancing the accuracy of the analysis. Figure 3.3 reports an
example of analysis results before and after the pipeline enrichment using the example of a
user uploading the Penguin dataset and requesting a clustering analysis. The outcomes
of the pipeline execution without taking into account the dataset features, specifically
removeMissingValues, oneHotEncoder and kmeans, are depicted in Figure 3.3(a).

The outcomes of the second approach, which considers the dataset’s features and can ex-
tract more important clusters, are displayed in Figure 3.3(b).

73

Chapter 3. DSBot: a multimodal conversational agent for data science

Reformulation
of user's request

Output choice -
performance or feature

importance

User disagrees

User indicated
a label

Yes

Prediction proposal
No

Relationships proposal

User disagrees

User disagrees

Clustering proposal

User disagrees

User indicated
a label

No

Prediction proposal

Error message -
invitation to retry

User disagrees

Yes

User agrees

Dataset
has categorical

values?

Only categorical values

Algorithm =
association rules

No categorical values

Alghorithm =
correlation

Yes, not only

Algorithm choice -
correlation or

association rules

User selects association rules

Algorithm =
association rules

Alghorithm =
correlation

User selects correlation

User agrees

Alghorithm =
clustering

User agrees

User agrees

Dataset
has categorical

values?
Yes

Algorithm =
classification

No

Alghorithm =
regression

User wants feature importance

Output =
feature importance

User wants performance

Output =
performance

Columns in
the dataset

3 columns or more

Feature Selection Choice -
Manual or Automatic

less than 3 columns
Feature selection =

none

User selects automatic

Feature selection =
automatic

Feature selection =
manual

User selects manual

END -
error
page

START

END -
analysis

Figure 3.2 – Finite State Machine of the high-level conversation flow for
user’s operational goal elicitation.

74

3.5. Phase 1

(a)Results of using a pipeline without taking the features of the
dataset into account.

(b) Results of the pipeline’s execution using the chosen workflow
while accounting for the dataset’s properties.

Figure 3.3 – Example of an analysis’ results before (a) and after (b) the
enrichment of the pipeline.

AutoClassification and AutoRegression Modules

Not all of the modules in DSBot require user input. Fully automated processes exist; the
most pertinent ones are IRAutoClassification and IRAutoRegression. These two
perform several regression and classification modules while adjusting the settings. The
module and parameters with the best accuracy and root mean square error (RMSE), re-
spectively, are chosen for the analysis and prediction.

More specifically, the auto-classification module is used following several preprocessing
steps and the selection of Lasso features. A Random Forest classifier, an Ada Boost clas-
sifier, a k-nearest neighbors (KNN) classifier, and a Logistic Regression classifier are all
used to classify once the dataset has been divided into training and test sets. It also runs
a parameter tuning module on each of them to compare the four modules with the best
combinations of parameters in order to determine which module is the best. For the four
modules, in particular, it uses a random search approach based on each module’s unique
parameters. The search begins by evaluating each candidate (i.e., parameter combination)
with a small number of samples and then iteratively chooses the optimum parameter com-
bination using progressively more samples.

The AutoClassification module determines the ideal combination based on the accuracy
acquired and runs it on the training set after computing the accuracy for eachmodule and
various sets of parameters. It then stores the prediction of the testing sets and the signif-
icance of the features so that it can display the performance, a ROC curve, a confusion
matrix, or the significance of the features in two separate plots, depending on the user’s
preference.

We also developed a module to perform auto-regression after some pre-processing steps

75

Chapter 3. DSBot: a multimodal conversational agent for data science

and a Lasso feature selection. A Random Forest Regressor, an Ada Boost Regressor, a
LinearRegressor, and aRidgeRegressor are among the four alternative regressionmodules
performed on the dataset after it has been split into a training and test set. It runs not
only these four modules but also a parameter tuning module on each of them to try the
best parameter combination and compare the four modules with the best parameters to
determinewhichmodule is the best for that dataset. The parameterwas also tweakedusing
a random search with cross-validation in the regression scenario. This method considers
all possible parameter combinations on a small subset of samples, iteratively chooses the
optimal combination, and then applies it to a more extensive collection of samples.

In the regression situation, the parameter was also adjusted using a random search with
cross-validation. This method considers every conceivable parameter combination on a
limited group of examples. It then iteratively selects the best combination and applies it to
a more extensive collection of samples.

The AutoRegression module determines the best combination based on the obtained
root mean squared error and runs it on the training set after computing the accuracy for
each module and various sets of parameters. The prediction of the testing sets and the
significance of the characteristics are then saved in two distinct plots that demonstrate the
performance and significance of the features, respectively, along with a brief explanation
of the findings.

The Flask framework is used to serve the frontend and maintain user sessions in the back-
end, developed in Python. With the help of the many libraries that are readily available,
the analysis and visualization functions are fully implemented in Python and sent to the
frontend as pictures. Web Sockets are used for the backend and frontend to communicate
with each other (using the socket.io package). This makes fast, real-time, bidirectional
communication possible; frequently, the backend initiates communication by pushing in-
formation to the frontend.

3.5.2 Architecture
The architecture of Figure 3.4 displays the key elements of part of the system responsible
for the execution of Phase 1.

The user can pleasantly interactwith the tool thanks to the frontend. It is a single-pageweb
application that features separate modules for the web chat, input gathering, and result
display. The Vue.js framework was used in its implementation to provide modularity and
extendability.

The query translator, the pipeline dictionary, the pipeline executor, and the conversation
manager are among the backend’s most crucial parts. The Backend operates as follows:

• The pipeline executor does the initial analysis on the data after receiving the dataset
from the backend.

• The DAW pipeline is created from the research question by the query translator.

76

3.6. Phase 2

Figure 3.4 – Architecture of DSBot responsible for the first phase of the
interaction.

• If the translation is accurate, the dialoguemanager verifies it with the user in a brief
conversation and assists the user if necessary.

• The pipeline executor searches the pipeline dictionary for the best pipeline, builds
a module for each action it needs to perform, and then launches the module. The
pipeline executor may need human assistance to finish the pipeline and request spe-
cific input from the user. Other processes, such as the ones described in Section
3.5.1 (IRAutoClassification and IRAutoRegression), instead carry out the
analysis automatically. The pipeline executor may occasionally alert the user when
doing certain operations by giving her access to important details highlighted while
the activity is being performed. The percentage of deleted outliers serves as an illus-
tration.

ADocker instance of the open-sourceNatural LanguageUnderstanding (NLU)UnitRA-
SA [120] interprets users’ messages. This service is in charge of translating user dialogue
into symbols that are understandable from the dialogue manager (intents) and extracting
the parameter required for task completion (entities).

3.6 Phase 2
3.6.1 Problem Definition
Wewish to describe the system’s fundamental components and formalize the issue mathe-
matically before moving on to the description of the second phase. High-level abstraction
demands that the proposed system consider the following: read the user’s inquiry and con-
text details into the input fields, consult a knowledge base, then respond with a statement
outlining the pertinent details the user needs to be informed of.

77

Chapter 3. DSBot: a multimodal conversational agent for data science

Solution
Identification

Sentence

Visual Hints

Question

Active Modules

Problem
Identification

Figure 3.5 – Sequence of operations performed by the system.

Defining Modules and Parameters

Wecan consider the user’s options and organize them intomodules to describe the context.
Whether the user has access to the modules will determine whether they are active. For
instance, the modules of a photo editing program can be different tools like the brush,
crop, or stamp tool. The settings for each module can also be represented by one or more
parameters. These could be the number of clusters for the clustering method or the error
function in the regression module. The system will then be informed of which modules
are currently in use, as inactive modules are not accessible to users and cannot be used to
address their problems.

Mathematical Formulation

The issue can be formalized in the following way in terms of mathematics. Assuming that
each parameter is linked to one and only one module, letM be the set of all the system’s
modules and P be the set of parameters. Let q represent the user’s query. Our definition
of the system, givenA and a collection of activemodules,A ⊆ M, is the relation σ (A, q) =
⟨M,P, r⟩ that, given in input the users’ question and the active modules, returns:

• the set of modulesM ⊆ A and parameters P ⊆ P to highlight;

• the textual response r that explains to users how what to do to try to resolve their
issues

3.6.2 System’s Overview
The Configuration Table, a data structure that depicts relationships between issues and
solutions in a particular field of application and whose aspect is provided in Section 3.6.3,
is the core element of this module of DSBot. Figure 3.5 illustrates the four processes that
make up DSBot’s action in this phase. With the active modules on the screen—in the
example, these are the active tools—the system receives a problem from the interface that
the user describes in the conversation, for example: “How do I make the image darker?”
Through purpose extraction, the problem is found in the sentence. The list of potential
fixes for the active modules is retrieved using this in the Configuration Table.

78

3.6. Phase 2

3.6.3 Configuration
We suggest giving a quick rundown of the datamodels and configuration files before going
into further detail about the system’s structure. The training, configuration table, and
utterances files are the three files that can be used to configure this module.

training.json

The purpose of this file is to train an NLU engine to identify the problem type from the
queries that users ask. It contains examples of user statements for each type of problem.
The format adheres to NLP.js’s standards1, shown in the table below. Many languages
can be supported by offering numerous files with the language locale name—for instance,
training-en, training-it.

This is an example of how the file is structured:

{
``name": ``training",
``locale": ``en-US",
``data": [

{
``Intent": ``clusters_not_separated",
``utterances": [

``Points of different groups are mixed",
``I don't see the groups",
...

]
},
...

]
}

configuration-table.csv

The relationships between the different problem categories, modules, parameters, and so-
lutions are shown in this table, which is shown inTable 3.3. The table-based configuration
strikes a balance between extensibility, which is crucial when adding new problem kinds
and solutions to the table, and maintainability, which is vital while reading and changing
the table.

utterances.json

Utterance file is the data structure that links the responses’ identifiers to their textual equiv-
alents. It is a straightforward JSON file with the following stated structure. As before, sev-
eral files—for instance, utterances-en, utterances-it—can be included with the

1www.github.com/axa-group/nlp.js

79

Chapter 3. DSBot: a multimodal conversational agent for data science

Module Parameter problem1 problem2 problemN
moduleA param1 utternace1 utterance2
moduleA param2 utternace3 utterance4
moduleB param3 utterance5

Table 3.3 –Organization of the Configuration Table. Each row represents
amodule parameter, and each column represents a problem thatDSBot seeks
to solve. If there is an utterance identifier in a cell, the parameter for that
utterance could be used to solve the issue in that column. This table is directly
editable by the conversation designer, who can add problems, edit utterances,

and establish new relationships between problems and parameters.

NLU AdapterCoreInterface
Component

Integrated
NLU Engine

Configuration
Handler

Configuration
Table Utterances TrainingUse Use

Use

Figure 3.6 – The components of the system and the configuration files.

locale name to accommodate various languages.

{
``clusters.number":

``Try to increase the number of clusters, ...",
``visualization.technique":

``If you don't like how your points are grouped, ...",
``clusters.separation":

``If you don't see a clear division between clusters, ...",
...
}

3.6.4 Architecture
The architecture of the module responsible for Phase 2 is structured in five units, as pre-
sented in Figure 3.6. Themodule is embedded in the frontend; therefore, it is programmed
in Vue.js2, to be compatible with the DSBot application. We decided to create a self-
standing component such that we could release it as a multimodal conversational trou-
bleshooting framework to be integrated into other web applications.

2www.vuejs.org

80

3.6. Phase 2

The developer can access this element, whichmay be integrated into the online application.
A circle-shaped overlay button is visible at the bottom right of the screen. The button en-
ables the chat panel, which manages communication with the conversational agent, to be
toggled on and off. The interface will send a message to the Core component when a user
sends one, and when it receives a reply, it will display it in the chat and update the infor-
mation on which modules and parameters should be highlighted in the application. The
Vue.js component receivesmany configuration arguments, such as theURLs of the config-
uration files and a list of the currently active modules, and fires an event if the highlighted
components change.

Core

The Core carries out the module’s logic. Information regarding the active modules is pro-
vided at initialization. It uses theNLUAdapter and the Configuration Handler to get the
response—which includes an answer and a list of elements to highlight in the interface—
after receiving the user’s query. The algorithm’s specifics are provided in Section 3.6.5.
The interface component receives the response back. This component, independent of the
interface, is implemented in JavaScript.

NLU Adapter and Integrated NLU Engine

The task of extracting the intent, which symbolizes the user’s problem, from the user’s
inquiry falls to theNLUAdapter. It does this by using a lightweightNLP.js instance called
the Integrated NLU Engine. Due to its browser compatibility and native capability for
more than 40 languages, we adopted NLP.js. The web application has been trained with
the Training examples and is prepared to extract the intentions from the user sentences
when loaded in the client browser.

Configuration Handler

The Configuration Handler then gets the utterances and configuration table documents,
parses them, and gives the Core component their contents. The papers can be delivered
directly as strings or through a URL.

3.6.5 Runtime Behaviour
The mathematical notation covered in the preceding section can represent the Core com-
ponent’s behavior. The NLU Adapter derives the intent, which stands for the problem
type t, from the user’s question, q. Assume that A represents the same set of active mod-
ules. The method reads the configuration table, where the columns contain the problem
kinds tj and the associated cell is designatedwith uij, signifying an utterance identification,
and identifies all the ⟨mi, pi, uij⟩ that fulfill tj = t andmi ∈ A. In other words, it locates all
the currentmodule parameters related to the issue and the accompanying statements. The
actual utterances that make up the answer are retrieved from the utterances document us-
ing the input language extracted from theuser sentence. These are then combined to create
a single final response, denoted by the symbol r.

81

Chapter 3. DSBot: a multimodal conversational agent for data science

Interface
Component

showChat()

Core

load configuration
from Configuration
Handler

findSolution(data,
activeModules,
intent)

NLU AdapterWebapp
Framework

visits
loads initialize(NluInfo,

configURLs)
initialize(NLUInfo)

clicks on button

writes a question solve(question,
activeModules)

getIntent(question)

intent
answer,

highlightedModulesshow answer

«Event»
updateHighlighted

Figure 3.7 – The system’s behavior; the Configuration Handler is not
shown for simplicity.

As shown in Figure 3.7, which depicts the user’s behavior from the moment the trou-
bleshooting phase is initialized, the user’s interactions with the system can be modeled
practically. If used, the Integrated NLU Engine is swiftly taught during the early phase.
Theuser can communicatewith the systemand enquire. The computer reads the question,
keeps track of the running modules, and generates a reply. When the action is finished, an
event is released to inform the rest of the application that the highlighted items need to be
updated. Responding to this event and modifying the user interface is the responsibility
of the rest of the system.

3.6.6 Mapping of the Design Principles in the System
All the designprinciples are respected in thedesignofDSBOt, evenwithdifferent strategies
in the two phases of the interaction.

In Phase 1, multimodality is declined in a series of uni-modal interactions. The conver-
sation alternates with the interaction on the GUI according to the task users have to ac-
complish. In the second phase, instead, DSBot will allow intrinsic multimodality. The
configuration will be based on a Configuration Table that combines the context—here
defined as what is now displayed on the screen—with the problem-solution pairs and en-
ables incorporating in the response the interface elements pertinent to the solution, along

82

3.7. Use Cases

with the answer. As a result, various perspectives could generate various recommendations
suited to the screen’s action.

The suggested system meets the criteria for extensibility. Adding new pipelines to Phase
1 is as simple as adding new lines to the corresponding file. New data science modules
can be easily integrated into the system only by enriching the DSL of the new symbols.
In Phase 2, a new problem type can be added by adding a column, much like adding a
module or a parameter is as simple as adding a row to the table. The use of identifiers
rather than placing the utterances themselves in the cell allows for the reuse of the same
utterance multiple times without duplication and support for multiple languages; these
operations do not require interventions on the code, only on the data structure and on the
NLU configuration, fulfilling the separation of co-operation requirements.

The third principle, focus on tabular data, is guaranteed by the system’s design since it is
the only type of data that DSBot accepts.

3.7 Use Cases
Wedemonstrate twoDSBot executions in this section, one on a dataset of genomic features
and the other on a clinical and demographic information dataset. The first one displays an
entire analytic example, from uploading the dataset to visualizing the results; the second,
which concentrates on the conversational aspect, displays a dialogue in which DSBot first
struggles to comprehend the user’s natural language request.

3.7.1 Use Case A: Analysis Use Case
In this use case, breast cancer patients’ genomic data—one of the most prevalent tumor
types—are analyzed using data-driven methods. Basal, luminal A, luminal B, and her2
are the four molecular subtypes of breast cancer that are most frequently identified [178].
The progression of the disease and the selection of the most effective treatment are both
influenced by various subtypes [178].

To determine whether any breast cancer subtypes are easily confused, we assume that the
user will be a clinician who examines a genomic dataset containing gene expressions (i.e.,
the level at which each gene is active within a biosample) for a cohort of 1,127 patients
affected by breast cancer. Thus, in our dataset, the columns represent the genes and the
rows of the patients. We assess each patient’s expression of the 50 genes from the PAM50
panel, which oncologists have determined to bemost associatedwith the subtype of breast
cancer. Each patient is also given her subtype on the label.

The web interface for uploading the dataset (‘pam50_m...fed.csv’) with the label ’Ex-
pert subtype’ is shown in Figure 3.8. In this stage, the user provides the dataset’s three
properties: the label, the presence of column names, and the existence of an index column.
After analyzing the dataset and extracting the necessary attributes, DSBot displays a pre-
view of the uploaded table. In particular, this genomic dataset contains outliers and has a

83

Chapter 3. DSBot: a multimodal conversational agent for data science

categorical classification. According to the user’s query, the best pipeline is matched using
these factors.

The user thenuses the interface depicted in Figure 3.9 to express a research query in natural
language. In the given an example, the user seeks to identify the most challenging breast
cancer subtypes. His or her inquiry, which is depicted in Figure 3.9, would be something
like this

Can you tell me which are the most similar and the most difficult subtypes to discern?

The user’s request is interpreted byDSBot, which chooses the following preliminaryDAW
pipeline as being suitable:

classification confusionMatrix

The chatbot asks for confirmation to continue after rephrasing the user’s request in line
with the identified preliminary pipeline and offering a brief explanation to help the user
understand how their request has been interpreted (Figure 3.10 - right side). The inferred
dataset features are utilized as input for matching the pipeline dictionary and the con-
firmed preliminary DAW pipeline. The user is shown the final results after selecting and
running the DAW pipeline (described below), shown on the left side of Figure 3.10.

labelRemove standardization outliersRemove
lasso autoClassification confusionMatrix

The user receives feedback from DSbot while the final pipeline is being executed in the
form of sentences like “Outliers make up 2.838% of the rows. I’ll get rid of them” (Fig-
ure 3.10 - right side). The chatbot presents the main findings when the final results have
been visualized.

3.7.2 Use Case B: Conversation Use Case
In the second use case, the user wants to examine the clinical and demographic data from
the stroke prediction dataset [179]. Table 3.4 gives an example of a conversation between
the DSBot (B) and the user (U) that can occur if the system is unable to understand the
user’s first request. The conversational DSBot agent makes recommendations for poten-
tial alternate analyses while considering the dataset’s features. Since the user indicated a
label, DSBot suggests performing a prediction analysis. Additionally, since DSBot recog-
nizes that the label is categorical, it suggests using a classification approach rather than a
regressionone. It then askswhether thenecessary analysis shouldpresent theperformances
or the significance of the traits.

Before using the classification algorithm, DSBot advises performing a feature selection
analysis; specifically, it requests either an automatic or a human feature selection. The user
chooses to manually choose the features and offers a list of options to eliminate. The user
must provide some information to DSBot to complete the analysis, such as eliminating or
filling in themissing variables. The conversational agent also offers various analysis-related
insights, such as the proportion of outliers that were eliminated.

84

3.7. Use Cases

Figure 3.8 –DSBot web interface for adding the input dataset and label-
ing it (use case A).

Figure 3.9 –Web user interface: textbox for users’ research questions (use
case A).

85

Chapter 3. DSBot: a multimodal conversational agent for data science

Figure 3.10 –Web interface for visualization of final results and chatbot
explanations (use case A).

The reported discussion also highlights the tool’s domain independence; in fact, it only
considers feature attributes while interacting with the user and choosing the optimum
pipeline, ignoring feature semantics.

BOT:What do you want to obtain?

USER: analyze my data
B: Let me understand if I interpreted well your request. First, you want
to group your data in such a way that objects in the same group (called
a cluster) are more similar in some sense to each other than to those in
other groups (clusters). Then, you want to visualize the results in a
plot. Is it right?

U: I don’t know
B: From your request, I understood you want to apply to cluster, an
analysis that aims at finding groups of data similar to each other (clusters).
This kind of analysis doesn’t require any additional information from
you; it works with total autonomy.
Have I understood correctly your request?

U: no

86

3.7. Use Cases

B: I think I misinterpreted your original request. I will ask you some
questions to better understand what you want to do. I see that you
indicated the presence of a label in your dataset. Do you want to try
to predict its value from the other data?

U: yes
B:Given the composition of your dataset, we will use a Classification
Algorithm to predict the value contained in column class. Are you
interested in the prediction itself, or are you more interested in
understanding which are the most influencing factors in determining
the prediction?

U: I want to see the influencing factors
B:Ok, we will perform a Feature Importance analysis to highlight
which are the most important factors in the prediction outcome
I need one last piece of information: do you want to use all
the columns in your dataset or do you want to use only a subset
of them?

U: only a subset
B: Perfect! Do you want me to select the columns automatically?

U: no
B:Ok, I’ll ask you about the columns later on. Let’s proceed! List the
features you want to remove using a comma to separate them:
gender, age, hypertension,heart_disease, ever_married,
work_type, Residence_type,avg_glucose_level, BMI,
smoking_status

U: gender, ever_married, work_type, Residence_type

B:Ok, I will consider only columns age, hypertension,
heart_disease, avg_glucose_level, BMI, smoking_status, class
B:The 33.366% of the rows have at least a missing value.
Do you want to REMOVE or FILL the rows with missing
values?

U:Remove

B:Ok, I will remove them. The 20.548% of the rows are
outliers. I will remove them

Table 3.4 –Conversation betweenDSBot and the user after the interpreta-
tion of the first user’s request failed (use case B).

87

Chapter 3. DSBot: a multimodal conversational agent for data science

3.7.3 Use Case C: Troubleshooting
Alice, an ornithologist, was trying to perform a clustering analysis. As before, Alice nav-
igates to the DSBot webpage, uploads her dataset, and fills in the necessary information;
then, shewrites her objective: “Split the data into groups.” The system executes the follow-
ing pipeline: missingValuesRemove oneHotEncode outliersRemove laplace
agglomerativeClustering pca2 scatterplot.

At this point, the troubleshooting process starts, and she is presented with the results and
the chat panel. The pipeline has identified two clusters, but the division line is not neat,
and some samples are miscategorized: she writes: “The division is not clear.” The trou-
bleshooting model uses the pipeline and the extracted problem type wrong_cluster_-
division to find the solution that suggestsmodifying the number of clusters or changing
principal component analysis with another module and returns the sentence “If you don’t
like how the clusters are positioned, try to change the number of clusters. If no other modifi-
cations satisfy you, try to change the principal component analysis algorithm. When you are
ready, you can rerun the pipeline”.

Alice can now see the results and the chat panel as before, but also a representation of the
pipeline, where the relevant parameters are highlighted. She edits the number of clusters
and sets it to three. Then she reruns the pipeline. The page updates with the new results.
Alice is now satisfied with the outcome and can continue her studies. Figure 3.11 shows
the system interface.

3.8 Evaluation
We conducted three evaluations with different objectives: (i) to assess the accuracy and
computation time of DSBot, (ii) to test the system’s comprehension of the user’s research
questions and its ability to convert them into precise executable DS pipelines, and (iii) to
evaluate how the troubleshooting module was able to assist users who were not experts in
data science in optimizing results.

3.8.1 Evaluation of the Automatic Machine Learning Pipeline Ex-
ecutor

We sought to validate DSBot’s performance in terms of accuracy (for classification tasks)
and RMSE with this investigation (for regression tasks). We also measured the execution
time, which needs to be kept to a minimum to ensure a positive user experience.

We chose the well-known AutoML framework TPOT [149] as a starting point for our
tests. It employs genetic programming to explore hundreds of ML pipelines intelligently
and returns the one that optimizes a user-defined score function.

We studied a case in which the user allows DSBot to automatically choose one method
and adjust its hyper-parameters while not specifying the algorithm for the classification or
regression task.

88

3.8. Evaluation

Figure 3.11 – The layout of the results page. The user can interact with
the chatbot on the right while viewing the analytic results on the left. The
parameters associatedwith the user-identified problemare highlighted in the

pipeline at the bottom.

89

Chapter 3. DSBot: a multimodal conversational agent for data science

The evaluation was conducted using a combination of datasets from Kaggle3 and those
used in the evaluation of TPOT by its authors4. The final collection includes 12 datasets
for regression and a total of 18 datasets for classification. Additionally, we choose the
dataset collection to be as diverse as possible, encompassing a wide range of topics.

Note thatTPOTonly analyzes datasetswithoutmissing values or categorical features (which
must be encoded in advance) to determine either the best classifier or the best regressor. In
contrast, DSBot is an end-to-end tool capable of performing a complete analysis, including
data cleaning, data preprocessing, and results visualization.

To enable the comparison, we gave the original datasets to DSBot; for TPOT, we used an
Iterative Imputer approach to fill in the missing values and a one-hot-encoder to encode
the categorical variables. Then, we ran the subsequent workflow 50 times for each dataset,
averaging the outcomes:

1. We used the 20% of samples we randomly picked from the dataset as the testing
dataset and the other samples as the training set;

2. We use five generations of populations of 50 pipelines to execute TPOT on the
training set; a typical TPOT pipeline would comprise feature selection, feature en-
gineering, model selection, and parameter adjustment.

3. We use the training set to run DSBot. It automatically creates a pipeline that goes
from data preprocessing through data visualization; we utilized the autoClassi-
fication (autoRegression)module as a classifier and regressor. After choosing
the model, we terminated the pipeline because we were not interested in the result
presentation. A typical DSBot pipeline may comprise feature selection, encoding
of categorical features, outlier elimination, and several methods to handle missing
values (impute, delete).

4. We did not intervene during the execution, since the testing dataset were chosen for
not having any of the characteristics that would have made necessary user’s interac-
tion in DSBot pipeline.

5. Both techniques produce a pipeline for a classifier or regressor. The time it took the
two systems to create their candidate models was saved by us.

6. Using the held-out dataset, we used the two candidatemodels and assessed accuracy
for classification tasks and Root Mean Squared Error (RMSE) for regression tests.

Tables 3.5 and 3.6 present aggregate results in terms of performances and execution times.
Each entry in both tables represents a dataset on which the pipeline was run using both
TPOT and DSBot. The dataset dimensions (rows × columns), the average performance
relative to 20 runs with DSBot with its standard deviation (accuracy for classification,
RMSE for regression), the performance comparison between DSBot and TPOT (DSBot
mean performance - TPOTmean performance), the average time required to execute one

3https://www.kaggle.com
4http://www.randalolson.com/data/benchmarks/

90

3.8. Evaluation

Dataset rows × columns Mean (std) accuracy Δmean acc. time [sec] % time TPOT
Yeast 1479× 8 0.5939 (3.91e-02) -0.0134 3.17 1.77
Vowel 990× 13 0.9803 (1.00e-02) 0.0657 2.83 1.08
Vehicle 846× 18 0.8055 (3.67e-02) 0.1432 3.98 3.49
Breast cancer 286× 9 0.7008(5.34e-02) -0.0292 1.05 3.02
Diabetes types 768× 8 0.7662 (3.91e-02) 0.0341 2.08 4.46
Cleveland nom. 303× 7 0.5688 (5.48e-02) 0.0155 1.51 3.42
Balance scale 625× 4 0.8904 (2.45e-02) -0.0172 2.51 4.72
Vote 435× 16 0.9557 (2.36e-02) 0.0086 1.86 4.56
Chess 3196× 36 0.9860 (5.67e-03) 0.0011 35.21 17.94
Stroke 5110× 11 0.9500 (8.08e-03) 0.0023 223.38 131.11
Australian 690× 14 0.8500 (4.40e-02) 0.0094 3.23 6.44
Ecoli 327× 7 0.8530 (4.04e-02) -0.068 1.50 3.24
Car evaluation 1728× 21 0.9528 (2.18e-02) -0.0179 4.48 2.31
DNA 3186× 180 0.9498 (8.09e-03) 0.0091 63.91 5.89
Diabetes 768× 8 0.7701 (2.79e-02) 0.0406 2.53 5.43
Dermatology 366× 34 0.9479 (2.42e-02) -0.0169 2.02 2.79
Adult 48842× 14 0.8661 (2.20e-03) -0.0042 669.24 53.14
Ann thyroid 7200× 21 0.9962 (1.42e-03) 0.0099 59.56 12.41

Table 3.5 – Evaluation of classification tests.

run with DSBot, and the execution time comparison between DSBot and TPOT (DSBot
mean time/TPOTmean time ×100) are all contained in the columns.

Vowel, car, diabetes kinds, cleveland nominal, vote, chess, stroke, australian, dna, derma-
tology, and ann thyroid datasets were among the 11 out of 18 datasets for which DSBot
performed higher in terms of accuracy. We achieved an accuracy of more than 95% in six
of these cases. Only cleveland nominal achieved a poor accuracy (56 percent), while the
other four earned an accuracy between 75 and 85 percent. WhenDSBot performed worse
than TPOT, it always achieved comparable accuracy (within 95% of TPOT’s accuracy).

Additionally, the execution time is faster thanTPOT.On average,DSBot spent 14.85% less
time performing classification tasks than TPOT for the same analysis, while it only used
3.46% as much time to perform regression tasks.

We got superior results with the regression on 8 out of 12 datasets. In these scenarios, DS-
Bot outperforms TPOT by obtaining a reduced RMSE in a shorter amount of time.

3.8.2 Evaluation of the translation into executable pipeline
We developed a dataset of research questions in natural language, each accompanied by a
description of the operations used to respond to those inquiries, to test the system’s capac-
ity to translate a human inquiry into a workflow of activities. We took advantage of the
Kaggle5 platform’s dataset area, which allows users to upload datasets and Python note-
books that analyze them.

5https://www.kaggle.com

91

Chapter 3. DSBot: a multimodal conversational agent for data science

Dataset rows × columns Mean (std) RMSE Δmean RMSE Time [sec] % Time TPOT
Sample regression ds 10000× 21 1.40e-01 (8.92e-02) 4.51e-02 116.77 11.89
Students performance 1000× 8 2.69e-09 (5.99e-11) -1.71e-11 1.62 3.31
House price 545× 12 1.11e+06 (7.32e+04) -1.14e+05 1.56 3.43
Real estate 414× 7 8.09e+00 (1.81e+00) 4.82e-01 1.04 1.80
Material strength 1030× 8 5.54e+00 (8.96e-01) 3.06e-01 2.24 3.62
Patients LOS 835× 4 2.51e+02 (1.14e+02) 1.49e+01 2.35 2.54
Possum length 104× 13 2.08e+00 (2.29e-01) -7.79e-02 0.53 1.41
Insurance price 1338× 6 4.60e+03 (3.99e+02) -8.1e+02 2.10 2.50
Boston houses 506× 13 3.48e+00 (7.30e-01) -8.67e-02 1.42 2.78
Startup marketing 50× 4 9.02e+03 (2.76e+03) -2.54e+02 0.29 1.13
Insurance expenses 1338× 6 4.62e+03 (4.70e+02) -8.52e+01 2.13 3.31
Second hand cars 1000× 11 8.90e+03 (4.40e+02) -1.22e+02 2.01 3.85

Table 3.6 – Evaluation of regression tests.

We filtered the datasets saved in.csv format and ranked them in order of community vote
totals to create our evaluation. The 40 datasets with the highest number of votes were
chosen, and those that DSBot could not analyze, such as those with temporal data or in
which the data is supplied in more than one table, were discarded. Then, for each dataset
chosen, we looked through the top 30 uploaded notebooks in search of a written descrip-
tion of the actions taken by the notebook. We link each research topic to theDAW-written
pipeline used in the notebook. All of the research questions that DSBot did not support
were disregarded. Where the operation was supported but not the specific algorithm (e.g.,
when a notebook used a neural network for classification), we used the high-level term to
describe the operation (e.g., classification) instead of the specific algorithm. Eventually,
the resulting test set contained 106 research questions on 13 different datasets.

We employed the research question as a test set for the seq2seq translator. The accuracy of
each translated question was then assessed as follows:

accuracy =
n◦correct

n◦words
∗ 100. (3.1)

A 62.1% accuracy on average was the result.

The two leading causes of errors are translation errors, which occur whenDSBot misinter-
prets the research question, and user errors, which occur when operations carried out by
users do not correspond to the research question expressed or the research question is too
ambiguous in relation to the intended pipeline.

In both situations, the follow-up interaction is crucial to error recovery. In fact, the discus-
sion does not stop at letting users select the procedures they like; it also offers more expla-
nations and real-world examples to help users better grasp the processes. With an average
accuracy of 97.7%, the conversational agent interface was able to rectify a large number of
incorrectly translated sentences.

Alternative approaches to translating the natural language inquiry were also tested. In fact,

92

3.8. Evaluation

we assessed four Transformers offered by the OpenNMT library that is intended for trans-
lation:

• Eight heads ofmulti-head attentionwere used to build theOpenNMT transformer
model (T1). It displayed a 43% accuracy rate;

• Eight heads ofmulti-head attentionwere used to build theOpenNMT transformer
model (T2). It was accurate to within 33%;

• The smallest OpenNMT transformer model was constructed with four heads of at-
tention, a dot attention type, and sixty-four smaller-sized feed-forwardhidden layers
(T3). It achieves a 29% accuracy rate;

• GPT-2 model that has been trained with 355 million parameters and fine-tuned
using our training set. Its accuracy was 62.9 percent, an improvement over our
method of 1.4 percent. Limiting the generated output to contain terms from the
workflow language is impossible because GPT-2 is primarily a text generator. GPT-
2 generates an incorrect pipeline in about 2 percent of cases, whichwould have been
useless for our purposes.

In conclusion, the strategy outlined in DSBot is suitable for the demands of our research.
Our comparison investigation revealed that: (i) three of the four examined transformers are
less accurate than our LSTM model; (ii) the fourth transformer, GPT-2, uses a lot more
resources than our method and produces less reliable pipes.

3.8.3 Evaluation of the Troubleshooting process
This assessment’s purpose is to assess howwell the support for troubleshootingworks. We
chose to target individuals with some scientific training but little to no expertise in the
field of data science to test the suggested approach. In contrast to people with some or
significant data science knowledge, referred to as experts in this section, we shall refer to
them as non-familiars.

Research Questions Definition

This investigation focuses on three key areas: first, it is crucial to comprehend what non-
familiars and their interactions with the DSBot system think about the findings. After
that, we are curious about how individuals conveywhat they enjoy and do not like. Finally,
concerning the suggested remedy, we want to evaluate how well the new system works at
directing users toward better outcomes.

Users’ focus. An experienced data scientist knows what to look for in an analysis result
and can take the appropriate steps to address any problems. However, because it is in-
tended for non-familiar people as well and aims to assist them in resolving problems on
their own, it is crucial to recognize the aspects on which they concentrate because only in
relation to these aspects will they naturally express their opinions. In contrast, they will
require additional guidance to recognize other characteristics of the outcome.

93

Chapter 3. DSBot: a multimodal conversational agent for data science

Users’ expression. Once it is evident which features are essential to outsiders, it is cru-
cial to comprehend how they articulate themselves, including whether they speak of the
problem they want to address or the solution they intend to use. Additionally, we want to
evaluate whether this information varies according to the subject’s background.

Interface Evaluation. The last objective is to test the proposed solution in its compo-
nents: the conversational agent and thepipeline representation. Wewant to checkwhether
theusers can improve the results by changingparameters ormodules in thepipeline,whether
they feel that the chatbot supports themor is of hindrance, and finally, what they do if they
are not given a specific task.

The following is a synopsis of the research questions:

1. How do non-familiars evaluate the results?

(a) Do they understand the results of the analysis?

(b) What is their focus?

(c) Are there important aspects that are not considered?

2. How do non-familiars interact with the conversational assistant?

(a) What type of sentences do they use?

(b) Do they mention specific aspects of the problem or remain generic?

(c) Does this change depending on the experience level of the subjects?

3. Is the proposed solution effective?

(a) Can the subjects improve the result by changing the pipeline?

(b) Is the conversational agent useful in solving the issues?

(c) How do the subjects behave if not given a specific task?

Participants

We chose 12 participants for this study from various academic backgrounds, including
computer science, design, and psychology, as well as from various occupations, including
undergraduates, Ph.D. candidates, and post-docs, as shown in Table 2. While two individ-
uals were familiar with statistical analysis, all the subjects claimed little to no knowledge of
data science.

Participants who had no prior knowledge of data science would have had trouble under-
standing the examiner’s requests, while testing experts would have produced false results
regarding the usefulness of the problem-solving agent because theywould not have needed
it. This group of users represented the potential system users.

Four datasets were created before the experiment, each with a different interpretation of
the data but equivalent in content: research on a graphical interface, a comparison of TV

94

3.8. Evaluation

Table 3.7 – Background and occupation of the participants to the test

4 Students with a background in computer science
4 Ph.D. students with a background in computer science
2 PhDs without a background in computer science
2 Research assistants without a computer science background

shows, data from a remote exam session, and a collection of books. A card was printed
with information about each dataset and an illustration of what it included.

DSBotwas slightlymodified to generate the identical clustering analysis pipeline each time,
which consists of a principal component analysis module and an agglomerative clustering
module with a number of clusters parameter. Instead of the optimal value for this dataset,
which is two, there are nine clusters instead. Furthermore, due to its subpar performance,
the principal component analysis module creates a mixed-cluster representation. Multi-
dimensional scaling is the most effective module to utilize. Sessions with users were orga-
nized as follow:

1. Initial Interview: Questions regarding the subject’s educational background, present
employment, and competence with data science and statistical analysis are asked.

2. Dataset selection: The four dataset cards are provided to the respondent, who is
then asked to select the one they feel most at ease with after hearing about each
dataset’s specifics.

3. DSBot explanation: The user is given a brief overview of the DSBot tool, enabling
data science analysis without needing specialized knowledge. The selected dataset is
uploaded to the DSBotmain page, and the predetermined research question, “Find
the groups in the data,” is added. The user can access the information from the
initial dataset entries printed on paper.

4. First impression (Figure 3.12): following thepipeline execution, theuser is prompted
with a series of questions to assess what stands out in the outcome: What does the
outcome seem to like to you? How about it? And what about this outcome would
you wish to see improved?

5. First issue: It is noted that there are too many clusters if the subject is unaware of it.

6. First interaction (Figure 3.13): The user is asked to interact with the system to re-
solve the problem after it has been mentioned that the chat panel can assist in re-
solving issues with the results (while being careful not to influence his interactions
with the chatbot). In reality, the subject is anticipated to ask the chatbot a question
that will draw attention to the parameter for the number of clusters. After then, the
individual is anticipated to edit the parameter.

95

Chapter 3. DSBot: a multimodal conversational agent for data science

7. Second opinion (Figure 3.14): The updated findings are displayed once the user has
successfully decreased the number of clusters. The identical inquiries as in step four
are posed to the topic.

8. Second issue: The fact that the clusters are intermingled is brought up if the subject
is unaware of it.

9. Second interaction: To resolve this second problem, the user must engage with the
system. Again, the subject is intended to use the chatbot to ask a question and
switch the module from principal component analysis to multidimensional scaling
using the interface.

10. Third opinion (Figure 3.15): The subject is quizzed once more on the step 4 ques-
tions following the execution of the modified pipeline.

11. Free task: The user is instructed to experiment with a new dataset (different from
those used in the preceding steps) until they are happywith the outcomes, providing
feedback on the activities taken and the outcomes received.

12. Assessment Questionnaire: The subject is requested to complete a questionnaire
that includes a usability test (SUS [180]), a task intensity test (TLX [181, 182]), and
open-ended questions regarding the experience.

3.8.4 Results
The examination took an average of 28minutes (with aminimumof 13m52s, a maximum
of 43m41s, and a standard deviation of 6m55s, as detailed in Table 3.8). Here, the qualita-
tive data—notes made during the test’s execution, sentences used with the conversational
agent, user comments, and their final opinions—and the quantitative data from the sur-
veys are provided.

Quantitative Data

Experience Score. Each participant received a score depending on howwell-versed they
were in data science and statistical analysis after the preliminary interview. The results are
used to determine which topics can be classified as unfamiliar: a combined score of four
or more designates people with a non-negligible background in data science and statistics,
while the other results are considered unfamiliar. The scores ranged from zero (completely
unaware) to three (familiar). Of the 12 participants, seven were classified as unfamiliar,
while the remaining five had more data science and statistics backgrounds.

SUS. Users received a SystemUsability Scale questionnaire [180]. It consists of 10 ques-
tions rated from 1 (completely disagree) to 5 (totally agree). The results were handled ac-
cording to the standard procedure: the answers to positive questions had to be modified
by deducting 1, while the answers to negative-worded questions had to be modified by de-
ducting from 5. All of these results were then added up for each user and multiplied by
2.5 to obtain a score ranging from 0 to 100. The global SUS score, calculated by averaging
these values, was 73.75, with a standard deviation of 13.29.

96

3.8. Evaluation

Figure 3.12 – Screen capture of the evaluation – initial results

97

Chapter 3. DSBot: a multimodal conversational agent for data science

Figure 3.13 – Screen capture of the evaluation – first interaction

98

3.8. Evaluation

Figure 3.14 – Screen capture of the evaluation – second results

99

Chapter 3. DSBot: a multimodal conversational agent for data science

Figure 3.15 – Screen capture of the evaluation – final results

100

3.8. Evaluation

Table 3.8 –Quantitative data collected during the evaluation

Duration Experience SUS RTLX

Min 13:52 2 55 10
Max 43:41 5 95 61.67
Avg 28:02 3.25 73.75 34.86
σ 06:55 1.09 13.29 16.05

RTLX. Aworkload assessmentwas also conducted using theRawTaskLoad Index [181,
182]. The test has six questions with scores ranging from 1 to 10 in its most basic form.
Each user’s responses were averaged, multiplied by 10, and given equal weights to measure
their perceived workload. The final RTLX value, which is 34.89 with a standard devia-
tion of 16.05., is then calculated by averaging the values. Table 3.8 lists the experiment
duration’s minimum, maximum, and average values and the users’ experiences and survey
responses.

Qualitative Data

The subjects’ pertinent comments and some notes were recorded during the experiment.
A total of 93 comments and notes, 34 user opinions, and 37 chatbot interactions were
gathered and elaborated as detailed in the following paragraphs.

Chatbot Interaction. The sentences the subjects used to communicatewith the conver-
sational agent during each stage of the experimentwere clustered in two groups, as problem
related or domain related, depending on whether they described data science issues that
the natural language understanding component would easily recognize (cluster, division,
distribution, dimensions), such as “I don’t like the groups”, or they were issues related the
interpretation of the results, such as “Why are horror and love movies together?”. When
operated on large corpus of data, this practice is called IntentMining [183, 184].

Table 3.9 displays the outcomes. Additionally, according to their intended meaning, sen-
tences were categorized into five groups, which are here provided with an example and an
explanation of the logic:

• Inquire, “Can you change how data are shown?”: the user asks what activities are
possible and the system’s capabilities are.

• Understand, “I don’t understand what the dots are”: the user acknowledges their
confusion and requests a further explanation.

• Dislike, “I do not like what I am seeing”: the user criticizes something.

• Want, “I expected more clusters”: the user expresses what is desired or anticipated.

• Assert, “Clusters are not well separated”: the user claims that the results are incor-
rect.

101

Chapter 3. DSBot: a multimodal conversational agent for data science

Table 3.9 – Chatbot interaction sentences analysis

Inquire Understand Dislike Want Assert DS Domain

Count 2 6 8 9 12 21 6
Exp Avg 4.00 3.17 3.75 3.33 3.34 3.48 3.50
Exp σ 0.00 1.34 1.56 1.33 1.32 1.43 1.26

This table reports the number of sentences for each of the intents and tags,
the average experience score associated with the subject who used the sentences,

and its standard deviation.

Table 3.10 – Focus of users’ sentences

Focus Count ExpMin ExpMax Exp Avg Exp σ

Cluster separation 37 2 6 3.81 1.41
Image 24 2 6 3.13 1.24
Axis 13 2 6 2.92 1.14
Cluster size 12 2 6 2.83 1.14
Cluster number 12 2 6 3.42 1.38
Unassigned 4 2 3 2.25 0.43

Focus. The lines used with the chatbot and the comments were tagged with their focus,
as shown in Table 3.10, to understand better which aspects are important to the users.
When an utterance addressed two different things, it was counted twice—once for each
category. Six different groups were found:

1. Cluster separation: the clusters’ arrangement is discussed in the sentence.

2. Image: the phrase refers to the outcomes as a wholewithout going into any specifics.

3. Axis: the sentence mentions the axis of the results, the dimensions, and their mean-
ing.

4. Cluster size: the results’ axes, dimensions, and significance are mentioned in the
clause.

5. Cluster number: the number of clusters mentioned in the sentence.

6. Unassigned: the sentence refers explicitly to the largest cluster, which three users
perceived as being unassigned and not a group member.

Four comments exhibited wonder; others expressed perplexity regarding the results (7) or
the interface, and the remainder remarks did not fit into any emphasis (5). Two comments
gave respect to unimportant features like the color scheme and the geometric beauty of the
outcomes.

102

3.8. Evaluation

Table 3.11 –User opinions on dsbot by type

Tag Count Description

+ Intuitive 2 The interface is intuitive and easy to understand.
+ Highlight 3 The highlighting mechanism is useful and well-integrated
+ Other 4 The editable pipeline representation is well-done
− Issues 2 There are issues with the interface
+ Valuable 6 The chatbot adds value and is helpful
− Expert 3 The chatbot is not enough; there is still the need for an expert
−Variation 2 The chatbot answers need more variation

This table shows the results of the analysis of the user opinions. The tag is
preceded by a + if it is a positive comment and a− if the opinion is negative.

Notes. According to the notes made during the experiment, the subjects’ understand-
ing of the meaning of the results was unclear on three separate occasions: two did not
comprehend that different colors indicated different clusters, and one kept confusing the
number of clusters with the dataset’s dimensions. Four individuals freely edited the rele-
vant pipeline pieces after understanding on their own that the chatbot was doing so; these
subjects also displayed confidence in the free task. Two of the twelve subjects needed help
finishing the second exercise, particularly identifying the issue with the results.

Opinions. The subjects’ opinions were divided and numbered by topic after the exper-
iment, and the findings are shown in Table 3.11 opinion. The subjects were asked to iden-
tify the system’s positive and negative elements. When a usermade an identical pointmore
than once, the opinion was only counted once for each issue. It is significant to note that
the results in this section cannot be put together. One could assume that respondents who
did not express a good opinion on a certain feature did so because they held that opinion
to be unfavorable, but this was not the case.

On the other hand, 2/12 users had issues with specific aspects of the interface not directly
related to the functionalities of the system: for instance, the fact that the pipeline was not
visible without scrimping; 9/12 subjects liked the representation of the pipeline, and the
fact that it was editable; of these, 3 also explicitly mentioned as a positive aspect that the
relevant elements of the pipeline were highlighted; and 2 praised its intuitiveness. Regard-
ing the conversational agent, 6/12 participants believed it provided value to the system and
were excited that it allowed for data science analysis. However, 3/12 said they still needed
expert guidance, and 2/12 asked for more variety in the chatbot’s responses. The fact that
2/12 stated they had trouble articulating what was wrongwith the data is significant. Four
out of twelve individuals asked for new features, including more flexible conversational
agent engagement and more information on the outcome.

103

Chapter 3. DSBot: a multimodal conversational agent for data science

Figure 3.16 – SUS percentile evaluation, adapted from [185]

3.8.5 Discussion
Looking more closely at the data, it can be seen that the lowest score was related to need-
ing the support of an expert, while the highest score was related to the integration of the
various components, with the SUS questionnaire yielding a result of 73.75, which corre-
sponds to the 68th percentile, giving a final mark of B(-) [185]; as reported in Figure 3.16.
This is consistent with the findings from the analysis of user opinions: the interactive rep-
resentation of the pipeline is highly valued, particularly the way that it highlights the best
options based on the chatbot conversation; however, it is insufficient for some subjects,
who require additional assistance in identifying and resolving the problems.

The RTLX evaluation scored a value of 34.89. Compared to the research by Grier et
al. [186], this score falls comfortably within in the first quartile for cognitive tasks and
the second one for computer activities, as shown in Table 3.12. This indicates that the
activity is not excessively cognitive-demanding. DSBot and the additional functions were
successful in making the data-science process accessible to non-experts.

We wanted to see whether the level of confidence with chatbots had an influence on the
experience with DSBot. Dividing users in two groups according to the familiarity with
chatbots they declared, no relationwas found in an unpaired t-test that compared the indi-
viduals’ self-perceived level of expertise with chatbot (clustered in low and high) with the
SUS mark (p = .93), and the same is true for the RTLX score (p = .47). We can conclude
that this experiment did not reveal any relationship between a user’s experience and the
task’s perceived usability and difficulty. For this reason, we cannot draw conclusions on
which target population our system is more effective. However, this study only looked at
a small group of people with comparable levels of expertise. Therefore further research is
required to determine the full impact of experience in this area.

104

3.8. Evaluation

Table 3.12 – Cumulative frequency distributions of TLX scores

Min 25% 50% 75% Max
Description

Cognitive
Tasks 13.08 38.00 46.00 54.66 64.90

Computer
Activities 7.46 20.99 54.00 60.00 78.00

This table, extracted from the work of [186], shows the cumulative frequency
distributions of TLX scores for two relevant task types.

When the types of utterances used to communicate with the conversational agent were an-
alyzed, it was discovered that most of them were of the Assert type, in which users state
what they believe to be incorrect. These are similar to the Dislike group, which came in
third, but the user, in this case, is frequently less specific when describing the problem.
The complementary technique is to make a direct reference to the outcome desired, as is
the case in the Want sentences, which are the second most common, and these two sets
indicate one way of interacting with the system in which the focus is on the current situa-
tion. The fact that many subjects used precise terminology to identify the problem helped
the conversational agent respond better to these utterances.

It is interesting to notice that participants attempted to explain the outcomes 6 times (6
attempts total; it also indicates that this behavior is slightly more frequent among non-
familiars, as predicted) and attempted to describe the chatbot’s capabilities twice. This
implies—also taking into account user feedback—that developing a brief introductory pre-
sentation of the findings and the available alternatives could be required when the system
is initially utilized.

The most prevalent component that the respondents were interested in is Cluster Separa-
tion. However, users were able to identify problems with cluster size and quantity. Un-
familiar persons tend to be more perplexed by the diagram’s axis and the supposed unas-
signed dots. This is also true for the Cluster Size, maybe because more seasoned users did
not consider this feature problematic.

The notes and user feedback analysis demonstrate that, generally, the systemwas successful
in assisting unfamiliar users in carrying out a data science analysis; furthermore, in two
cases, the subjects displayed a learning effect, picking up the solution from the chatbot for
the first time and applying it on their own during the free task.

This, along with the fact that the dimensions of the result created confusion and that the
secondmost common group of sentences is those without a specific focus, tells us that it is
again necessary to introduce the analysis results better. However, it also shows that a more

105

Chapter 3. DSBot: a multimodal conversational agent for data science

guiding approach, such as a troubleshooting procedure, would be potentially beneficial to
introduce the analysis’s findings better.

3.9 Conclusions
This work introduces DSBot, a unique method, and system for creating and running data
analysis pipelines starting from user-uploaded datasets and natural language queries. The
most important features of DSBot are its definition of DAW, a domain-specific language
for describing data analysis pipelines; a machine translation based on a neural network
to create a DAW sequence from the user’s query; a matching algorithm to select the best
matching pipeline from a dictionary of pipelines; a conversational agent interacting with
the user as needed; and a multimodal conversational agent for troubleshooting.

In addition to performing the operations asked explicitly by the user, DSBot automatically
enhances the pipeline to improve the outcome in away understandable to a userwho is not
a highly skilled data analyst. By analyzing the evolution of this tool in two case studies—
one to examine the benefits of discussion and the other in which DSBot chooses the best
pipeline to address the user’s research question—we present empirical proof of the tool’s
potential.

By allowing non-experts to use data science, DSBot paves the way for a new family of tools
that will make data science more approachable and valuable to a broader audience.

3.9.1 Limitations and Further works
However, there are still some things that still need to be solved. In the current system, an
unbalanced dataset results in no actions being made. Either implementing rebalancing
techniques can solve this issue during the data preprocessing processes (such as downsam-
pling or oversampling) or by computing various evaluation criteria (e.g., Matthew Corre-
lation Coefficient). The automatic selection of machine learning models, which in the
current system version is based on the Accuracy metric, is another area that could use im-
provement. In these situations, more informative metrics should be used in place of the
Accuracy metric, which is inappropriate when the data sets are unbalanced (e.g., balanced
accuracy). The DSBot is modular, so these extensions will be simple to create and imple-
ment in the future.

Other improvements focus on two main issues: i) expanding and improving the set of
pipelines supported byDSBot and the operations supported by the system that is currently
permitted on single-table data only, and ii) enhancing the conversational power of the chat-
bot in some ways, including to elicit a more significant number of user research questions,
to sustain a more natural interaction, to increase the transparency of the AutoML pro-
cesses, and to explain the systemmore clearly [187].

We intend to address the first issue by incorporating and automatingmore algorithms and
analysis modules, such as those used for time series analysis or survival analysis, as well

106

3.9. Conclusions

as by testing them on a variety of datasets to increase the number of supported pipelines,
improve their quality, and offer the user more sophisticated computational support.

By gathering many fresh real-world research questions with different formulations and
exemplary conversation flows, we will expand the training corpora for research question
interpretation and elicitation for the chatbot. To find the ones better suitable for the
AutoML approach of DSBot, we will explore the explainable AI techniques already in
use [187]. They will assist in the creation of new chatbot conversational patterns [188] so
that the user can receive explanations that make the analysis procedures and their results
more transparent, understandable, and reliable.

Also the empirical evaluation with users presents some limitations. In fact, the results,
despite promising, lack of a comparisonwith a baseline, computed from the interaction of
a control group with traditional data science applications. In addition, the study focused
on a fictitious problem, a new study with real-world problems and research questions is
necessary to assess the validity of the application.

Yet, from the interaction perspective, the work in GeCoAgent and DSbot shows the po-
tentialities of multimodality in conversational interaction. Hence, there is a necessity to
structure the process of creatingmultimodal interfaces, as we will investigate in the follow-
ing chapters.

107

Part II

Multimodal Conversational Agent: a
Design Perspective

109

Chapter 4
Problem Space and Research Questions
Definition
4.1 Lessons learned with the past experiments
So far, we have described the implementation and evaluation of two multimodal conver-
sational interfaces for data science: GeCoAgent, a tool for extracting from databases and
analyzing genomic data, and DSBot, to analyze open-domain data in tabular form.

The two interfaces brought several scientific contributions. WithGeCoAgent, we showed
how to use user interviews and ontologies to design conversational interfaces, how to use
grammar to model and implement the interaction, and empirically shows the advantages
conversational agents bring to bioinformatics, especially but not only to non-experts.

With DSBot, instead, we showed how to combine natural language processing, conversa-
tional interfaces, and Automatic Machine Learning to translate users’ research questions
in executable data science pipelines that provide results comparable with well-established
AutoML libraries. In addition, we implemented and tested a multimodal conversational
troubleshooting module that can assist users in improving their outcomes.

However, despite the two systems present profound differences, summarized in Table 4.1.
The GeCoAgent’s domain is restricted to bioinformatics tertiary analysis; DSBot, instead,
is domain independent. Consequently, GeCoAgent knows the data it operates on, there-
fore being able to dialogue on them. At the same time, DSBot is agnostic on data, offering
conversational interaction only on the operations users want to perform.

GeCoAgent DSBot
Domain Restricted (Bioinformatics) Open (Tabular data)
Chatbot Role Actor Guidance
Multimodality Co-exist Alternate
Chatbot Aim Composing pipelines Guiding users
Prior Knowledge Domain + Data science Domain
Conversation Structure Grammar based Dynamic trees

Table 4.1 – Differences between the conversational agent of GeCoAgent
and DSBot.

111

Chapter 4. Problem Space and Research Questions Definition

We designed the two conversations with different roles inside the interaction with the sys-
tem. In GeCoAgent, the chatbot is the actor, and the task progression is entirely based on
the conversation, as users can manipulate data and perform operations only through the
chat. Visual interaction supports the execution of the tasks and feedback once the oper-
ations are completed. DSBot, instead, the chatbot is the guidance. The task progresses
through actions both on the conversational and the graphical interface. The conversa-
tional agent intervenes only in those phases in which users need detailed explanations or
guidance in their actions, such as the choice of the data science algorithm and the opti-
mization of the results. As a result, this application alternates moments of visual, conver-
sational, and mixed interaction (visual+conversational) according to the specific phase of
the interaction.

For this reason, themultimodality structure is also different. The conversational agent in
GeCoAgent co-exists with the graphical user interface, i.e., it is always displayed. All the
visual interactions are functional to the chat (e.g., users can click on the suggestions to copy
those terms in the message they are typing). At the same time, DSBot’s chatbot alternates
with the GUI: it is active only in the phases users can interact conversationally.

Also, the aim of the conversation changes accordingly. In GeCoAgent, the conversations’
goal is to let users compose their pipeline, translating natural language in execution blocks
and combining operations as they prefer. InDSBot, the conversation assists users, guiding
them in the pipeline that the system chose to answer the given research question and asking
for data-dependent decisions.

Consequently, the prior knowledge required for users to use the applications is different.
To use GeCoAgent, users need a complete understanding of genomic data and be able to
select the suitable algorithm to answer their research questions. InDSBot, users only need
an understanding of the data they are using. DSBot automatically selects themost suitable
algorithm and asks users only to make those decisions that are strictly dependent on the
nature of the data it operates on, like eliminating samples with missing values or filling
them with arbitrary values.

The conversation structure changes as well. GeCoAgent is entirely based on a hierarchical
grammar structure that allows users to compose operations as they wish, always following
the constraints given by the grammar rules. DSBot follows rigid trees composed dynam-
ically by the conversational engine according to the module inserted into the pipelines.
Contrary to what happens in GeCoAgent, where the conversation is conducted by the
user, here the conversation flow is determined by the block chosen for the pipeline and the
characteristics of the uploaded dataset.

This comparison shows a considerable difference between the two conversational agents,
although both can be described as “multimodal chatbots for data science.” To the best of
our knowledge, there is no design referencemodel to describe the design of conversational
agents, especially in a multimodal setting.

For this reason, we believe it is necessary to introduce a reference model and a codified
terminology for describing these applications to highlight the differences and similarities

112

4.2. Defining the Problem Space

between the systems. Such a model, in addition to allowing comparison and description
of existing systems, could play a vital role in designing new interfaces, acting as a commu-
nication tool between designers (UX and conversational) and developers.

The second part of my doctoral work focuses on this purpose: I want to explore the im-
plications of multimodality and define a model that can be used to design and develop
task-oriented multimodal conversational interfaces.

Todo that, Iwill proceed in three steps. Iwill start by exploring the concept ofmultimodal-
ity and its implications on the interaction. I will continue by defining a model to describe
multimodal conversational interfaces and produce an authoring tool to create such inter-
faces from their model-based representation.

The remainder of this chapter is structured as follows. First, I will describe the problem
space, defining the key terminologies on which the work is based. It will continue by de-
scribing the multimodal continuum, a tool we have designed to describe multimodal con-
versational agents. This chapter will conclude by formulating the research questions that
guide this part of the work.

4.2 Defining the Problem Space
4.2.1 Model-based Conversational Agents
We define model-based conversational agents as those agents whose conversation is struc-
tured on a set of rules [189]. This approach opposes generative conversational agents,
whose conversation is automatically creative through generative methods that learn from
a large corpus of interaction examples [190].

The model on which the conversation is based can be of various types, but all are united
by the fact that they are hand-crafted. Many model-based conversational agents are based
on ontologies [189]. Others, instead, are based on process representation, which we will
introduce in Section 4.2.3.

4.2.2 Task-oriented Conversational Agents
Both GeCoAgent and DSBot are task-oriented conversational agents, as are the conversa-
tional agents we will consider in the rest of the work. Contrarily to general purpose conver-
sational agents, whose primary purpose is to entertain users [191], task-oriented conversa-
tional agents aim at guiding users to accomplish a goal in one or more domain [192].

Since the research panorama has yet to converge on a unified vocabulary to describe con-
versational applications [193], we introduce the terminology we will use in the following
chapters referring to task-oriented conversational agents.

Goal. We define the goal, the final reason why the conversational agent was designed,
and, consequently, why the interaction takes place. For example, a chatbot on the website
of an airline company might have the goal of guiding users to buy flight tickets, whereas

113

Chapter 4. Problem Space and Research Questions Definition

the conversational agent on the web application of a bank might have the goal of helping
users in making money transfers.

Task. We define tasks as the sub-goals a conversational agent is programmed for. For
example, the conversational agent on the airplane company might support the following
tasks: look for available flights, purchase tickets, and modify bookings.

Process. We define the process as the sequence of operations the user must accomplish
to fulfill the task. The process can be explicitly specified in the specifications of the con-
versational agent or implicitly result from the constraints the users have to accomplish the
tasks. In the airplane website example, the process necessary to purchase a ticket might be
to choose the departure and arrival date and airport, select one of the flights, insert pas-
sengers’ generalities (name, surname, etc.), then insert debit card information to make the
payment.

A task-oriented conversational agent has one goal that might be declined onmultiple tasks
linked by a process. Also, the process is unique, even if the sequence of the operations to
reach the goal may vary. It is the process itself that rules how the sequence may vary.

4.2.3 Process-driven conversational agents
We define process-driven conversational agents as the model-driven task-oriented conver-
sational agent whose process is explicitly described in the design of the agent itself. Often
they are also referred to as rule-based conversational agents [194]. Themodel specification
introduces a precedence constraint on the various interactions and the operations the user
can start in the conversation.

There are many possible model specifications. Most of them are graph-based, such as tree-
like structures [55] and grammars [11]. Other specifications try to include in the represen-
tation the information that rules the various branches in the conversation. Many applica-
tions, such as BPMN [19, 195] exploit already existing formalization.

Process-based conversational agents are opposed to generative agents, where the interac-
tion rules are not hand-crafted by the designer but are learned automatically by the system,
trained on a base of interaction examples [196].

4.2.4 Multimodal interaction
Multimodal interaction refers to the use of multiple sensory modalities, such as speech,
gesture, touch, and vision, in human-computer communication [197]. This type of inter-
action allows users to engage with computer systems using a variety of modalities, thereby
enhancing the user experience andmaking the interactionmore natural and intuitive [171].
Multimodal interfaces canbe found in a variety of applications, including virtual assistants,
video games, and mobile devices [198].

114

4.2. Defining the Problem Space

Multimodal interaction allowsusers to communicatewith computers usingmultiple chan-
nels of input and output, which can enhance the richness and effectiveness of the interac-
tion. For example, a user may use a combination of speech and gesture to perform a task,
such as selecting an item from a menu or zooming in on a map [125]. By combining dif-
ferent modalities, multimodal interfaces can provide more robust and flexible interaction,
accommodating different user preferences and contexts [199]. Additionally, multimodal
interaction can help to overcome the limitations of individual modalities, such as speech
recognition errors, by providing redundancy and fallback options [200].

4.2.5 The Multimodality Continuum
We aim at strongly integrating Conversational Interfaces with other modalities, starting
fromawell-definedprocess, where themodalities cooperate to support the user in the tasks.
An interface is multimodal when it employs more communication channels to interact
with the user [199]. These communication channels are said modalities [201] and can
exploit the same or different medium.

Multimodal interfaces have been widely investigated in human-computer interaction be-
cause, since human’s perception of the world is intrinsically multimodal, they are consid-
ered the most natural interaction paradigm [202].

For users, multimodal interaction is highly convenient since it allows them to alternate the
modalities to adapt at best to users’ task [203].

Past research works investigated many types of multimodal interactions, such as speech-
gestures, touch-speech [204] multi-sensory environments [205, 206], virtual reality, and
tangible interaction [207]. In this thesis, we concentratemainly on combining a chat with
a graphical user interface. However, most of the results we will discuss in the following
chapters are generalizable to any combinationofmodalities that comprises a conversational
interface (text or speech-based) and another modality.

To better understand the implications of the integration, we want to introduce theMulti-
modalityContinuum to describe howConversational Interfaces can relate to othermodal-
ities in interactive applications. To exemplify themodel, we describe the interplay between
a chatbot and a Graphical User Interface, but the Multimodality Continuum also applies
to other modalities.

TheMultimodality Continuum categorizes chatbots into different interaction paradigms
according to the communication channels among the different actors in the system, as
shown in Figure 4.1. This model maps these interaction paradigms in a uni-dimensional
space, whose ends are the uni-modal interaction and the complete integration.

In uni-modal agents (Figure 4.1(a)), the user has a one-to-one dialogue with the chatbot,
usually in a messaging system or in a dedicated interface.

Multimodal interfaces allow people to use multiple types of inputs at once to carry out
a task, with the advantage that one input’s weakness is overcome by the strength of an-
other [208]. Many modalities in the same application allow users to perform faster and

115

Chapter 4. Problem Space and Research Questions Definition

more precise queries, less prone to errors [125]. Multimodality increases the usability
and performance of the application [209], letting users achieve complex tasks. Necessary
condition for multimodality is the interoperability of the various communications chan-
nels [210], but it not sufficient: the design of the user experience must orchestrate the
different loci of interaction.

When the chatbot is coupled with a GUI, the two interaction loci can exploit the com-
munication channels differently. In the simplest case, all the interaction happens through
the chatbot, which can only change the state interface, as represented in Figure 4.1(b). An
example is in [211], where the user can only modify the content on the visual interface
through the mediation of the conversational agent. This pattern has a limited adoption
since it results in lower usability: users are required to shift their approach from direct
manipulation of the interface to indirect management - from operating on the interface
telling the chatbot what to do on it - that is more time and effort consuming [212].

Sometimes the user interacts with the graphical interface and the chatbot, but the two
modalities do not communicate and are independent (Figure 4.1(c)). They are two wholly
separated entities. If the user applies some changes in the interface, the chatbot cannot
see them, and, on the contrary, if the chatbot converses with the user, the interface cannot
know what they are talking about. Many user assistance chatbots fall under this category:
when users switch from the web page to the chatbot, the latter is not aware of what was
happening on the GUI, and therefore users have to describe the issues they are requesting
assistance for.

An enhanced version of the previous paradigms enables the chatbot to modify the graph-
ical interface state through a direct communication channel, as shown in Figure 4.1(d).
When the conversation proceeds, the GUI is updated to provide consistent information
to the user. This approach is widely used when the task outputs are data visualizations or
multimedia content. The communication between the modalities is unilateral: if the user
manipulates the visual interface modifying its state, the chatbot is not informed. Ava [56]
exemplifies this paradigm: the application is a multimodal interface, but while the chatbot
can communicate with the GUI, the GUI cannot communicate with the chatbot. Conse-
quently, if the user performs any operation on the GUI, she cannot use the chatbot any
longer since it is not aware of the new state of the system.

Our approach synthesizes the threemultimodal patterns elicited above in theonedescribed
in Figure 4.1(e): every actor can interact with each other. This means that, in the case of
integrating a conversational agent and a GUI, the user can chat and act on the interface.
The chatbot’s state is synchronous with the interface’s state; the chatbot can see what hap-
pens in the graphical interface and dialogue with the user accordingly. The interface can
be modified directly by the user or according to the conversation between the user and
the agent. The chatbot cooperates with the other interface channels because it does not
lose the actions that the user performs through the interface, but it can continue the dia-
logue by asking for the correct thing at the right moment. The user can switch between
the modalities as she prefers. For example, she can decide to use the interface and ask for

116

4.2. Defining the Problem Space

Figure 4.1 – The Multimodality Continuum: from uni-modal to multi-
modal fully integrated conversational interfaces. (a) Uni-modal conversa-
tional agent dialogues with the user. (b) The user either dialogues with the
conversational agent or interacts manually with the interface. Both interac-
tions are not contemplated in this model. (c) The three agents are linked: the
user can either interact with the interface or dialogue with the agent, and the
agent can send instructions to the interface. (d) One multimodal example of
the conversational agent is the user dialogues with the agent, and the agent
uses the interface as visual support. (e) All the possible connections are present:
the user can either interact with the interface or dialogue with the agent, the
agent can send instructions to the interface, and it can also receive informa-
tion from the visual interface. Every agent can listen and interact with the

other agents.

help from the chatbot, or she can dialog all the time with the conversational agent and, at
some point, change the input channel.

When multimodality is not complete, the chatbot typically has a single purpose: either
the task executor, the primary locus of the interaction, or the process assistant, who can be
called upon for clarification or support while the task is being executed on theGUI.When
the modalities are strongly integrated, the chatbot can have multiple roles simultaneously.
At eachmoment, the agent can act as a different operator. It can be the teacher during the
user’s onboarding, making a tutorial on the interface’s functioning, then suggesting the
user tips and tricks exploit the interface. The user can start a task by describing it to the
chatbot and then modify some parameters graphically, i.e., the agent acts as a task execu-
tor. Such a chatbot can also support error recovery, guiding users through resolving the
errors they are committing while using the interface. Finally, the chatbot can learn users’
interaction patterns and suggest them in the following sessions or point out undisclosed
functionalities of the system.

117

Chapter 4. Problem Space and Research Questions Definition

4.3 Research Questions
Having defined the boundaries of the research, we can now focus on the design of multi-
modal task-oriented conversational agents. We start focusing on the combination of graph-
ical user interfaces and text-based conversational agents, but many findings are extensible
to any modalities combined with a text- or speech-based CA.

First, we want to understand how introducing a newmodality affects the interaction with
a conversational agent. We will analyze the influence from an interaction perspective, ob-
serving how the messages sent from the user vary in a uni-modal or multimodal conversa-
tional setting, and from a design one, studying how the introduction of the secondmodal-
ity should influence the design of the interface and providing actionable guidelines.

Then, we will define a model to design and describe multimodal conversational interac-
tion. Inspired by BPMN notation, we will describe the interaction as a process of tasks
and gateways in which every modality is treated independently. We will create an author-
ing tool to enable conversation designers to graphically program multimodal CA, letting
the platform transform the graphical representation into a working conversational agent.

Finally, wewill implement amultimodal pedagogical conversational agent, testing the capa-
bility of the model to describe such an interface and the effectiveness of the multimodality
in the final interaction.

We will analyze this domain trying to answer three research questions:

R1 How does the introduction of a second modality impacts the everyday experience
from a linguistic and design perspective?

R2 How can we model task-oriented multimodal conversational interfaces

R3 is a GUI-based graphical tool an effective authoring tool for multimodal conversa-
tional agents?

The result of this work will be a 360-degree analysis of multimodal interaction, consider-
ing linguistic, interaction design, user experience, formal modeling, and implementation
perspectives, producing guidelines for the design of such interfaces and a low-code tool for
their implementation.

118

Chapter 5
Design Principles for Multimodal
Conversational Interfaces
5.1 Introduction
In the previous chapters, we discussed how multimodality affects the interaction design
for conversational agents. In fact, the interaction through natural language is no more
the interaction channel but becomes one of the possible ones. The difference is not only
in the communication channel but also in interaction possibilities this paradigm offers:
the graphical user interface (GUI) requires direct manipulation, while the conversational
interaction implies an indirect control [213]. Therefore, the interaction design needs to
change by entering into the view of a multimodal environment early in the design process.
To the best of our knowledge, very little research has been done to understand how to
create multimodal conversational interfaces effectively.

This environment is the setting for our investigation. We want to examine how the design
ideas for creating the best conversational interfaces described in the literature adapt or need
to be changed in a multimodal environment, particularly when the conversation coexists
with visual interaction. To learnhowthe issue of integrating adiscussionwithothermodal-
ities was handled, we conducted a literature review. The primary contribution of this work
is a set of design guidelines from the literature research that was conducted and applied to
multimodal conversational interfaces, especially those where the discussion is combined
with a graphical user interface (GUI). We exemplify the resulting guidelines showing how
they apply to the design of GeCoAgent.

These “heuristic” concepts were distilled from the authors’ expertise in designing, devel-
oping, and evaluating various conversational applications [14, 214–221] as well as from a
review of the literature. To the best of our knowledge, this is the first list of the most rele-
vant chatbotdesign standards. Variouswriters haveput forthorused a variety of guidelines,
but they have yet to be standardized. Since they address chatbot-specific design principles,
they can be used as a checklist to improve the usability of chatbot-specific product features
from early in development and during usability evaluation - at the prototyping stage. As
a result, our principles can be seen as design guidelines that complement other, more gen-
eral heuristics proposed inHCI (e.g., Nielsen’s 10 heuristics for inspection-based usability
evaluation [222]).

The outcome of this study has been published in [18].

119

Chapter 5. Design Principles forMultimodal Conversational Interfaces

Table 5.1 –Design Principles for designing of multimodal conversational
interfaces

Design Principles
P1 Show, don’t tell.
P2 Separate feedback from support
P3 Show information only when necessary
P4 Design a light interface— emphasize content
P5 Show one modality at a time
P6 Don’t overload multiple modalities beyond user preferences and capabilities
P7 Use multimodality to resolve ambiguities

5.2 Design Principles
The design principles will be thoroughly explained in this section so that readers can com-
prehend their underlying motivations and implications.

In order to determine whether and how these principles apply to multimodal conversa-
tional agents, we first looked at the best practices and research findings for uni-modal con-
versational agents and multimodal interfaces in the literature.

We went about conducting our review using the PRISMA method [223]. We run the
our research on Scopus, using the following query: (“design principle*” OR “guideline*”)
AND (“conversational agent*” OR “multimodal interface*”), we filtered for recent papers
published in the last from 2005 to 2020. The query returned 115 results. The resulting
list was filtered through to identify papers that met the following criteria: the paper’s title
and/or abstract must indicate that it intends to address the issue (also) from a design per-
spective. 19 papers made it beyond the selection stage. We carefully read all the papers,
extending our pool with relevant documents included in the bibliography, even they did
not met the data criteria. The final list of consulted paper counts 29 documents.

In order to eliminate the principles, we thoroughly read the documents and categorized
them by the design principles applied to the interfaces described. The seven recurring
themes from this process reflect the design principles for the multimodal conversational
interfaces described in the paper.

5.2.1 Show, Don’t Tell.
Themost direct result of addingnewmodalities to the interaction is the availability ofmore
communication channels. As a result, the user can receive the information in various ways.

The agent must be created to be self-explanatory when using a uni-modal conversational
interface. The discussion must include all the details required to carry on the interaction,
such as the outcomes of prior activities and some suggestions for the following actions the

120

5.2. Design Principles

user might take. When there are several options and detailed results, the dialogue gets ver-
bose, lengthening messages or even necessitating more interactions to choose the desired
activity, decreasing the chatbot’s usefulness [224].

We draw inspiration from the well-known idea in literature to solve this issue, show, don’t
tell. The Russian playwright Anton Chekhov is quoted as saying that in narrative, argu-
ing that things should not be stated but rather illustrated through specific examples [225].
This approach was developed based on his words. Similar to how information can be dis-
played across several modalities in a multimodal conversational agent as opposed to just
being textually described in the discussion itself. Visual cues, for example, can guide a user
through a dialogue by providing a clear summary of the actions taken and negating the
need for textual descriptions [226]. A table can summarize the selections with the prior
statements, and graphics can describe the data gleaned from the dialogues.

This strategy offers twobenefits. The conversation’s design allows for the omissionof all in-
formation supplied via a differentmodality, resulting inmessages that are both shorter and
more succinct [227]. The expense of the talks can be decreased by lowering the amount
of messages [224]. Second, since the dialogue uses other modalities to transmit critical
information, the risk of information loss is reduced [226].

5.2.2 Separate Feedback from Support.
A conversational agent typically gives the user two types of information: support and feed-
back. The former showswhat the user canor shoulddo in the following interactions, while
the latter includes the outcomes of the operations carried out.

This information can be delivered via various channels in a multimodal interface. For in-
stance, the results could be displayed as graphs in a graphical user interface, the operation
could be completed by changing the color of a button in the interface, and the informa-
tion regarding the operations the user could perform could be written in a separate pane
or included in the conversation itself.

The users should be able to identify where to look for support and where to discover the
answers they are looking for, according to the Constantine and Lockwood-introduced
structure principle for GUIs [228]. However, in contrast to the original approach, the
separation must be constant between the interface’s modules and its many modalities.

Geranium [229] is an excellent illustration of a multimodal conversational agent that uses
several channels for support and feedback. Anembodied,multimodal conversational agent
makes up the application, which aims tomake kidsmore conscious of the urban ecosystem.
The agent probes the subject and offers commentary on the responses. When the question
is posed, a set of buttons emerges, allowing kids to select the proper response. When a re-
sponse is chosen, the agent’s avatar plays a happy or sad animation, depending on how
accurate the response is.

121

Chapter 5. Design Principles forMultimodal Conversational Interfaces

5.2.3 Show Information Only When Necessary.
If not appropriately used, the availability of multiple channels for communicating with
users can lead to cognitive overload and a loss of usability [230].

Themodalities shouldhave complimentary contentwithout repeating information to avoid
this issue [125]. Instead of considering the dialogue as a standalone channel, we should
consider it as a component of the multimodal interface. In this method, the information
can be dispersed through different channels, reaching the right people at the right time
with the right message. With repeats between chatbot utterances and what is on the other
channels, the interface becomes clear, which makes the system less usable.

Removing the information from the interface is another concern of an excellent multi-
modal chatbot design. Information no longer required should be concealed to save space
and reduce cognitive load.

This idea is frequently applied in those Embodied Conversational Agents (ECA) embod-
ied where the agents’ utterances are frequently recorded in balloons that vanish as the con-
versation progresses [231].

5.2.4 Design a Light Interface — Emphasize content.
Hearst andTory [227] illustrate how the user’s emphasis shifts to the presented data while
conversingwith amultimodal conversational agent, making the interface invisible to them.
Consequently, a suitable design for such a chatbot reduces the total effect of the interface
on the interaction. Users can only wholly focus on the conversation’s subject—the action
they wish to take—in this manner.

In order to adhere to this principle, interfaces must be created with a primary focus on
the channel being used to transmit the information or data. For instance, if the chatbot
is included on a dashboard for data visualization, much roommust be given to the graphs
rather than the conversation.

In the same study, the researchers observed how the user’s attention would shift suddenly
to the interface in cases where it was not functioning correctly or when the system pro-
vided unanticipated (or undesirable) responses, such as when the flow of a conversation
was interrupted. One instance is when the conversation comes to a halt, leaving the user
disappointed and the mission unfinished [171]. This effect can be lessened by carefully
examining the dialogue tree and ensuring that each statement can bring the discourse to a
good finish.

Ava [56] offers a good illustration of how to apply this idea by reducing the interface to
just two columns—one for the conversation and one for the generated Python notebook.

5.2.5 Show One Modality at a Time.
Studies show that while people prefer multimodal interaction [125], they often only em-
ploy one modality at a time [232, 233].

122

5.2. Design Principles

The same rule should apply to multimodal interaction with chatbots, asking the user only
to use one modality at a time is appropriate. Although the final work may be multimodal,
the multimodality should start with alternating various uni-modal actions rather than the
otherway around. For instance, a conversational agent for teaching canbe integrated into a
visual interface where the assignments are laid out. Students can interact with the chatbot
after reading the assignment to find the solution, and they can then submit the results in
a different dialogue box [234, 235].

Even if all channels are not used at once, the information that gets across through the oth-
ers will affect the dialogue. Since complementary information will be exchanged through
the other modalities, the sentences will frequently be condensed. This idea can help with
conversation design; if a process is too critical or prone to error to be explained verbally,
other modalities can be employed.

5.2.6 Don’tOverloadMultipleModalities BeyondUser Preferences
and Capabilities.

If properly utilized, multimodality canmake interaction easier for the user, but if the chan-
nels are not combined in a natural and intuitive way, it will make it harder for the user to
achieve their objectives [236].

Therefore, it is crucial to carefully choose the optimal channel via which the user can in-
teract with the platform and the ones the system utilizes for sending feedback once the
modalities have been created in the design phase of the conversational agent. Furthermore,
similar interactions ought to use related modalities. For instance, all visualizations must
be presented in a single pane, all search results must be discussed, and any potential course
of action must be given through a separate list. The consistency would be appreciated by
the user, who would not otherwise enjoy the interaction. [237].

The conversation history of the interface is updated each time a user or a chatbot sends a
message. As a result, as the dialogue goes on, it gets longer and longer, making it more dif-
ficult to retrieve the information that was written in the messages. Because of this, crucial
data should be kept somewhere other than the dialogue so that users can quickly access it.

AdApt [238] is an agent created to serve the retail industry, specifically the lookupof Stock-
holm apartments that are available on the market. Users have two options for the interac-
tion: they can speak to the agent verbally or interact with a map displayed on the screen.
TheirWizard of Oz study demonstrated how users utilized various channels following the
system’s architecture for various objectives.

5.2.7 Use Multimodality to Resolve Ambiguities.
Natural language is by its nature ambiguous [239]. These misunderstandings can jeopar-
dize the interaction’s outcome if the procedures to be carried out growmore complicated.
To remedy this issue, new modalities can be added to the interface. When an ambiguity
arises, the newmodalities can resolve the ambiguity.

123

Chapter 5. Design Principles forMultimodal Conversational Interfaces

For instance, in an e-commerce website, the virtual assistant can show pictures of the prod-
uct to understand the user’s tastes and recommend items accordingly [208]. In end-user
development, the conversation can ask the user to point out items on the screen to under-
stand precisely what they are talking about [45]. The agent in a music chatbot can force
users to listen to a brief preview of the song to ensure the one the user is referring to [215].

5.3 Case Study: Mapping the Principles on GeCoAgent
We want to exemplify the application of the design principles mapping them on GeCoA-
gent, the interface proposed in Chapter 2.

As said, GeCoAgent (reported in Fig. 5.1) is a multimodal interface that facilitates data
retrieval and exploration for a bioinformatics application, inherently difficult activities be-
cause of the complexity of the subjectmatter and because they call for proficiency in search
and analysis procedures, a trait common to computer scientists but sometimes lacking in
biologists and medical professionals.

Table 5.2 summarizes how each principle has been followed in the design of GeCoAgent’s
interface. We provided users with two panes to get feedback from the performed opera-
tions (e.g., graphs and tables) and orientation during the process [P1]. In this way, users
always know at which point of the process they are, which data are being processed and
which results are obtained until that moment.

We differentiated the areas for feedback and support on the interface [P2]. Users can con-
sult both the results of the operations and suggestions for the nextmoves at a glance on the
same view without switching panes.

Since the tool area and the support panels have different content that changes according
to the conversation (and, thus, to the operations performed), we programmed them such
that their content and visualization change dynamically with the progression of the inter-
action [P3]. In particular, according to the feedback, the tool panel switches to the most
appropriate view. Users can switch to another view by clicking on the buttons below the
pane.

The interaction (and its design) with GeCoAgent is strongly driven by the data that are
being manipulated. For this reason, we decided to minimize superfluous information to
let users concentrate on genomic data [P4]. If users need additional information, they can
ask the chatbot for further clarification, which will be provided in the chat.

Every time a message is sent to the chatbot, the chatbot replies with a textual message and
some visualization. These responses have been developed so that critical information is
contained only in one of the twomodalities every time [P5]. For example, when users filter
a dataset, the chatbot textually guides the users inserting the relevant information into the
filtering operation. TheGUI acts only as a support, providing suggestions to users. When
an algorithm is run, instead, the textual response only suggests that users look at the graph
displayed on the GUI since they are the core informative feedback.

124

5.4. Discussion and Conclusions

Figure 5.1–The interface ofGeCoAgent, presented inChapter 2. Table 5.2
illustrates how the principles apply in the interface design.

When we designed the interface, we carefully determined which was the best modality to
convey the various type of information, and therefore decided to adopt tables to show
datasets, charts to visualize statistics about the data, and lists to show the available filtering
options [P6].

Finally, we provide textual suggestions on all the requests to the users that might create
errors [P7], such as the names of the datasets and the possible values that can be filtered in
the application.

5.4 Discussion and Conclusions
More andmore difficult jobs in terms of the procedure and volume of data involved are be-
ing completed using chatbots. However, more than relying solely on talk may be required
and would benefit from the addition of other forms of engagement. Adding new modal-
ities makes it easier for users who require ongoing support during interactions and can
improve structured help and feedback. Even thoughmultimodal conversational interfaces
are being used more frequently, more needs to be written about optimizing their design.

We offered a set of recommendations for creating successful multimodal chatbots in this
paper, which are compiled in Table 5.2. To elicit our principles, we confronted multi-
modal and conversational literature and clustered recurrent topics into seven indications.

These guidelines stands at the intersection between the research on usability for multi-
modality [125, 230] and the one for design the design of conversational agents [240–242],
creating a bridge between the two worlds and trying to understand how they intersect in

125

Chapter 5. Design Principles forMultimodal Conversational Interfaces

Table 5.2 – Application of the principles in the definition of the interface
shown in Fig. 5.1

Application of each principle in the design of Fig.1’s interface
P1 In the process workflow, many visuals are employed as feedback and orientation.
P2 There are various sections of the GUI with assistance and visuals.
P3 According to the conversation’s situation, the GUI’s information changes dy-

namically.
P4 The interface is built around the main components without extraneous informa-

tion.
P5 Only one modality is used to display pertinent information at once.
P6 For each modality, actions and functionalities are defined.
P7 Users are helped by hints in the help section when setting parameters.

the domain of multimodal conversational agents. In fact, the findings presented in this
chapter, are not to be seen as an alternative to the works in the two domains, but the adap-
tation of the best practices of those domains into the design of multimodal conversational
agents.

We are conscious of the constraints that our work has. First, rather than being viewed
as guidelines, our principles should be considered a foundation upon which the interface
designer can build. Despite our thorough analysis, we only scratched the surface of this
issue. Our work is the beginning of a larger conversation that includes authorities from
various fields who can add to their points of view.

Our contribution is an initial effort to shed light on a mostly unexplored subject. In the
next chapter, we will deepen the knowledge about the influence of multimodality in con-
versational agents from the dialogue perspective.

126

Chapter 6
How does multimodality affect the
conversation?
6.1 Introduction
Before starting to design multimodal conversational agents, we want to understand in
depth howmultimodality affects the interaction with conversational agents. We focus on
those agents with graphical elements embedded in the conversation.

Recently, with an increase in the popularity of conversational technologies in user applica-
tions, the dialogues managed by chatbots have increased in complexity, becoming longer
(i.e., a higher number of messages exchanged) [243], operating on broader domains (i.e.,
more possibilities to choose among during the conversation) [244], supportingmore com-
plex tasks (i.e., tasks that require higher cognitive effort) [245] and providing conversations
customized to the user’s specific needs [246–248], such as in education and learning [249,
250], health (bothmental [251, 252] andphysical [253, 254]), and customer support [255,
256].

Consequently, to support the user in executing increasingly complex tasks, graphic ele-
ments started to be added to the conversational flow in natural language [257, 258] that
makes interaction multimodal. These elements - hereinafter referred to as hints - often
suggest to users what they can type to respond to the chatbot or provide a set of answer in-
teractive options delivered in various and sometimes combined forms: concise texts, icons,
or images, such as images [259]. Previous empirical studies show that this family of mul-
timodal chatbots has a reasonable degree of usability [18, 45, 257, 260]. However, past
works do not explore if the direct influence of hints introduction.

We hypothesize that the introduction of hints makes the chatbot easier to use, and has
a measurable effect on other usability dimensions, such as interface learnability and task
performance, and, more broadly, the user’s conversational behavior.

Our reseach hypothesis is declined in the following research questions:

• RQ1: Does the presence of hints influence the interaction with the conversational
agent, in terms of messages sent and time on task?

• RQ2: Does the presence of hints improve performance, i.e., reducing the number
the errors in the interaction?

• RQ3: Does the presence of hints introduce effects that affect users’ behaviour in the
following interactions?

127

Chapter 6. How does multimodality affect the conversation?

To answer these questions, we run an empirical study with 127 participants interacting
with two task-oriented chatbots, each in two experimental conditions - with and without
hints. The data we collected suggest that hints reduce the number of interactions (i.e.,
words), improve performance, and do not introduce learnability effects.

6.2 State of the Art
6.2.1 Multimodal Chatbots
Most information exchanged by task-oriented chatbots is textual or spoken (uni-modal)
[261]. As we said in the previous chapters, prior to now, the emphasis has been on uni-
modal systems, which must use only one modality —spoken or textual— and still be edu-
cational and engaging [262–264]. Most dialogue systems in use supported only textual in-
teraction, making it difficult to expand it to include othermodalities like visual ones [208].
Then, with the development of artificial intelligence, the emphasis shifted. As knowledge
of the informative visual modality significantly improves, dialogue systems begin to in-
clude additional modalities, including images, audio, and video, to be more robust [265].
The expressive visual modality helps text answer generation overcome challenges like de-
scribing visual characteristics [18, 208].

Among the first examples of the use of multimodality to facilitate the conversation with a
chatbot, we find PUMICE and Geraneum. PUMICE [45] is a conversational agent that
exploits multimodality to resolve ambiguity in the dialogue caused by the interpretation
of the natural language utterances inserted by the user. However, the multimodality only
applies to a few tasks the bot needs toperform. Instead,Geranium[257] takes advantage of
multimodality to enhance the chatbot’s knowledge and present the user with visual cues.

Liao et al. [208] created a multimodal dialogue system that can interpret many modalities
as input and generates responses using knowledge of both textual and visual modalities.
On the other hand, Firdaus et al. [265] offered a study of the task-oriented multimodal
dialogue system, particularly in answer generation. They created an effective multimodal
technique to generate a range of replies in a multimodal setup that captures data from
both text and visuals. Their investigation demonstrated how the multimodal approach
enhances a dialogue system’s effectiveness.

Another project that deals with multimodality in dialogue systems is provided by [266]:
they attempted to employ a multimodal interface to address the issue of conversational
breakdowns, or system failures, to interpret the user’s intentions accurately. With the mu-
tual disambiguation pattern, which uses inputs fromonemodality to clear up inputs from
another modality for the same notion, SOVITE hopes to solve this issue by showing the
agent’s comprehension [266].

6.2.2 Linguistic studies on chatbots
Language plays a fundamental role in the use of conversational technologies [267]. Sev-
eral studies show how the use of language can directly impact user engagement through

128

6.2. State of the Art

factors such as user satisfaction, perceived politeness, the establishment of trust, and oth-
ers [268–273]. However, only some studies focus on users’ perspective[267], analyzing
how people use language in the interaction with conversational agents. We report the two
most compelling studies.

Pickard et al. [274] study how the perceived likability of an Embodied Conversational
Agent (ECA) influencespeople’s linguistic behavior in interactingwith theConversational
Agent. They discover that when the chatbot is perceived as likable, users manifest more
immediacy and expressivity in the use of the language.

Second, Novelli et al. show how the communicationmean (written vs. speech-based inter-
action) affects users’ attitudes in the interaction with an embodied conversational agent.
On top of that, they highlight how the difference is accentuated in people with a back-
ground in humanities [275].

These studies bring significant contributions focusingon theperceptionofConversational
Agents during conversations, but - to the best of our knowledge - no study quantitatively
evaluated the impact of visual hints on conversational applications or the linguistic per-
spective.

Is it worth to mention, though, that some studies focuses on the study of cues (visual or
audio) to increase the conversational agents discoverability. Examples are reported in [263,
264, 276, 277]

6.2.3 Usage of visual hints in chatbots
Multimodality is the use of different communication channels to convey content to users.
In chatbot design, multimodality is often used to add multimodal items such as images,
sounds, and graphical elements like buttons to the conversational interface. [18].

Studies show that even if multimodality has to be seen as a support for the user experience,
users will consequently interact multimodally: they will use the modality they think fits
the most for the purpose they want to achieve [125]. This modality can change at every
step of the interaction. For example, in case of errors when interacting with a modality,
people tend to switch to another input modality, trying to solve the problem in another
way [278].

Chatbots typically reach multimodality by adding images or clickable buttons to the con-
versational interface. Especially in task-oriented applications, hints are meant to help the
user to have a clearer idea of what the chatbot could offer. Empirical studies show that
when users need to accomplish a task, the presence of visual hints helps them achieve it
faster and with fewer errors [279].

Even if visual hints reportedly improve chatbots’ usability, they should not obscure the
possibility of using free text input. The shift to completely buttons-based results in the
impression of a task environment service rather than a virtual agent [259].

In order to take the best advantage of visual hints in chatbots, some studies have been con-
ducted to characterize them anduse them in the bestway possible. In theirwork, Valerio et

129

Chapter 6. How does multimodality affect the conversation?

al. [259] categorized them into six sign classes according to the interaction paradigm they
convey or reinforce. There are:

• Simple message: a message that contains text and/or emojis;

• Simple image: a message that contains an image that could be static or animated;

• Suggestions or Quick replies: buttons that show the users what they can do at
that moment; they are meant to disappear after the user clicks on them or types a
message to be sent;

• Card: a set of actions that the user can take and, contrarily to suggestions, remains
in the chat history so that the user can scroll back and choose other options from
the set. A button represents each action. Buttons can stand by themselves or be
associated with an image;

• Carousel: is a set of cards that the user can “flip through.” Usually, they contain an
image and text;

• Persistent Menu: a set of buttons that can be accessed at any time by the user.

These sign classes can be used alongwith different strategies. For example, graphical classes
summarize the information more immediately concerning simple messages [18]. Quick
replies and cards suggest the following actions that could be taken, even if the possibility
of choosing from a large set of quick replies could become burdening [259].

Although many studies analyze the design of multimodal hints for chatbots and how it
influences users’ behavior in the application, to thebest of our knowledge, no study focuses
on how the presence of multimodal hints directly influences how the users converse with
the agent.

6.3 Method
We conduct an empirical evaluation to see how multimodal hints affect conversational in-
teraction in task-oriented conversational agents.

6.3.1 Goal and Research Questions
Wewant to analyze the influence of visual hints in the conversation with chatbots. We run
an empirical evaluation through a web application to answer these questions. We asked
them to complete assigned tasks by chatting with two chatbots, one after the other.

The chatbots belonged to one of the following conditions:

• Hint – the chatbot contained visual hints inside their interface;

• NoHint – the chatbot contained only text messages, without any hint.

130

6.3. Method

6.3.2 Setting
The experimental procedure was self-administered. Participants were required to connect
to a custom-developed web application and participate in the test in autonomy. The web
platform was accessible only through connections via laptop computers.

6.3.3 Materials
The test was executed on a custom web platform, shown in Figure 6.1. The platform was
developed to make participants interact with two task-oriented chatbots in both condi-
tions (Hint and NoHint).

To choose the visual hints to be used for the Hint condition, we relied on the article by
Valerio et al. [259], integrating it with established practices in chatbot design (e.g., those
proposed by Google1 and by ChatbotGuide2). The visual hints used were (Figure 6.2):

• Quick replies: clickable buttons were proposed to the users with different possible
answers to help them choose how to continue. As soon as they clicked on one of
them, they disappeared.

• Card: when more than one possible action was possible for the next step of the
conversation, a card with the list of all options was proposed. A card could contain
a set of actions the user could take, but they are persistent in the chat history even if
one is clicked. In this way, the user could scroll back and choose other options from
the set.

• Carousel: when an answer required several options from which the users could
choose, each of these was proposed in a card and formed a carousel that the users
could scroll to select the card they prefer.

• Calendar andHour Picker: when prompted to enter a date or an hour, a calendar
or an hour picker allowed the user to choose the days/hour with a simple selection.

• Slider: a slider is a graphical element where the user can set a value by moving an
indicator, usually horizontally. It allowed users to select a range of values needed to
continue the conversation.

• Persistent Menu: at the side of the chat, the user was offered permanent sugges-
tions that enabled the possibility to ask for information at any time during the con-
versation.

Calendars, Hour Pickers, and Sliders are examples of more complex interactions, i.e., they
are widgets. They are tools that help the user to do something like, in this case, selecting a
date, an hour, or a particular value.

The two task-oriented chatbots were based on two scenarios:

1https://developers.google.com/assistant/conversation-design/welcome
2https://www.chatbotguide.org

131

https://developers.google.com/assistant/conversation-design/welcome
https://www.chatbotguide.org

Chapter 6. How does multimodality affect the conversation?

Figure 6.1 – Screenshot of the web application used for the study. In partic-
ular, the application is showing a set of cards, for the Hint condition, in the

Travel Agency scenario

Figure 6.2 – Examples of hints used in the chatbot for Hint condition

132

6.3. Method

Hint Pizzeria Travel Agency

Calendar/Hour Picker Pizza delivery time Days on which the travel takes place
Quick replies Choice of the first/second type of gifts in Pizzeria Choice of time range of the round-trip flight
Carousel Choice of the first/second gifts in Pizzeria Choice of the round-trip flight
Free text Choice of the Pizzeria’s location Choice of the hotel’s location
Carousel Choice of the Pizzeria Choice of the hotel
Quick replies Choice of the type of pizza Choice of the activity to do in the city
Slider Choice of the budget for the pizza Choice of the budget for the activity
Quick replies Confirmations Confirmations

Table 6.1 –Use of the hints in both scenarios

1. Travel Agency: users had used the conversational agent of a travel agency to re-
serve a trip from Milan to Madrid. They had to choose the period they wanted to
travel, book the flights and a hotel, and ask for an activity to be done during their
vacation.

2. Pizzeria: In the simulation of the takeaway pizzeria, users had to order a pizza.
They had to choose the Pizzeria and the desired dough, and consult the menu for
choosing the pizza and the time of collecting it. Moreover, two complimentary ad-
ditions could be chosen to complete the order.

Although different in setting and goal, the two chatbots were created so that the tasks to
be completed and the design of the conversation were as similar as possible. In particular,
users had to attain a goal (order a pizza in the Pizzeria scenario and book a trip in the Travel
agency scenario), answering the same number of questions and exploiting the same num-
ber of steps to achieve the goal. In this vein, we created a 1-to-1 correspondence between
the questions proposed in the Travel Agency’s chatbot and in the Pizzeria’s chatbot, both
for what concerns the type of requests and the consequent answers and for what concerns
the possible hints. We designed the two conversations to exploit the highest number of dif-
ferent visual hints, paying attention to formulating questions that needed the same type
of hints, as shown in Table 6.1.

An important design decision is that clicking on the visual hints does not correspond to
sending themessage directly. The text contained in the buttons, or slightlymodifiedwhen
dealing with calendars, hour pickers, and sliders, is copied into the typing area. To send
the message, users have to click on the send button. This decision was made because we
wanted to allow users to edit the text to be sent if they felt it was necessary.

6.3.4 Procedure
The empirical study consisted of a self-administered test to be completed through a web
application. The test lasted around 15 minutes and was divided into two phases. The
ethical committee of our research institution approved the protocol of the study.

Phase 1 – Demographic questionnaire. Users completed a questionnaire in which informa-
tion such as age, gender, linguistic exposure (monolingual or bilingual), education level,

133

Chapter 6. How does multimodality affect the conversation?

Travel Agency
Hint

Pizzeria
Hint

First
Interaction

Second
Interaction

1

Pizzeria
Hint

Travel Agency
Hint

2

Travel Agency
No Hint

Pizzeria
Hint

3

Pizzeria
No Hint

Travel Agency
Hint

4

Figure 6.3 –Graphical representation of the application’s four experimen-
tal groups divided users. The assignment was done to create the most bal-

anced groups possible regarding demographics.

and frequency of chatbot use was requested. The collected information was anonymous:
we did not collect any information from which the participant’s identity could be recon-
structed.

Phase 2 – Chatbot interaction. All users had to interact with the chatbots in the two scenar-
ios to accomplish both the Pizzeria and the Travel Agency tasks. We considered the experi-
mental session accomplished if participants completed the interaction with both chatbots.
Some users had to interact first with a chatbot in the NoHint condition and then in the
Hint condition, whereas others had to interact with the two chatbots in the Hint condi-
tion.

To eliminate possible bias introduced by the different conditions, we randomized the order
in which the two scenarios were presented. As a consequence, study participants were
assigned to one of the following four experimental groups, represented in Figure 6.3:

• Group 1: Start to interact with the Travel Agency chatbot and end with the Pizzeria
chatbot, both with visual hints;

• Group 2: Start to interact with the Pizzeria chatbot and end with the Travel Agency
chatbot, both with visual hints;

• Group 3: Start to interact with the Travel Agency chatbot and end with the Pizzeria
chatbot, the first without and the second with visual hints;

• Group 4: Start to interact with the Pizzeria chatbot and end with the Travel Agency
chatbot, the first without and the second with visual hints;

The platformused the data collected during Phase 1 to create groups as balanced as possible
regarding demographics.

Before interacting with the chatbots, users had to download and read a single-page PDF
file containing the instructions to accomplish the given task. Once the interaction with
the chatbot was completed, the platform automatically proceeded.

134

6.4. Results

6.3.5 Observed Variables
Wemeasured the following variables:

• number of messages sent: the number of messages sent during the experimental
session (both chatbots).

• number of interactions: for interaction, we mean either the typing of a single
word or the click on a visual hint. If the message comes from clicking on a visual
suggestion, the number of interactions is considered one. On the other hand, when
the user types the message directly, the number of interactions will equal the num-
ber of words typed.

• number of errors committed: errors are all those things that were not expected
during the interactionwith the chatbot. We classify errors according to their nature,
interaction, and conceptual errors. Interaction errors are those made by users when
they type in something that the chatbot cannot understand; conceptual errors, on
the other hand, are errors due to incorrect answers, such as requesting something
that is not available.

• time taken to complete interaction: this is the time taken between the start and
the end of an experimental session.

All the data were stored anonymously.

6.3.6 Participants
We recruited participants voluntarily through email and social media posts. Participation
in the study was completely anonymous. Participants had to be 18 years old and resid-
ing in Italy to join the study. 185 people filled out the questionnaire. We excluded those
participants who did not complete the experimental sessions (both chatbots). After their
exclusion, the final number of participants was 127.

The population sample comprised 73 males and 54 females, most of whom were Italian
native speakers (122). The leading age group was 18-30 y.o. (46), followed by the over
60 y.o. (37), then by the 51-60 y.o. (27), the 41-50 y.o. (13) and, finally, the 31-40 y.o.
(4). For what concerns the educational level, the majority of the participants completed
their master’s degree (60), while the rest had obtained high school licenses (32), bachelor’s
degrees (25), Ph.D. (6), and middle school licenses (4). The majority of the users said they
never used chatbots (57) or that they used them rarely (64).

6.4 Results
In order to answer our research questions, we gathered quantitative data concerning users’
interactionswith the chatbot in the four experimental groups. We collected the number of
messages and the average number of errors in the four groups, the number of interactions
produced by the users in each session in the two scenarios (Travel Agency and Pizzeria),
and the average time needed by the users to complete each session.

135

Chapter 6. How does multimodality affect the conversation?

Figure 6.4–Rawnumber ofmessages sent in the four experimental groups.
Visual hints are in orange, while written messages are in blue

Nodifference emerged in the rawnumber ofmessages sent in the four experimental groups
and the number of visual hints andwrittenmessages betweenGroups 1 and 2 and between
Groups 3 and 4 (see Fig.6.4). These results confirmed that the experiment design perfectly
balanced the experimental groups.

For this reason, we could perform Generalized Linear Mixed Models (GLMM) with ex-
perimental groups (1 vs. 2 vs. 3 vs. 4) and scenarios (Travel Agency vs. Pizzeria) as fixed
effects and participants as the random effect to test whether (i) there was a tendency to ut-
ter fewer words when the users could select visual hints when interacting with the chatbot
(both scenarios in Groups 1 and 2 and the second scenario in Groups 3 and 4) [RQ1], (ii)
there was a learning effect regarding the number of words used between the first and the
second scenario within each experimental group [RQ3].

Results of the GLMMare shown in tables 6.2 and 6.3. The GLMM showed that Group 1
vs. Group 2 (p = .751) andGroup 3 vs. Group 4 (p = .610) did not differ in the number of
interactions produced. On the other hand, Group 1 was significantly different from both
Group 3 (p < .001) and Group 4 (p < .001), as well as Group 2 was significantly different
from both Group 3 (p < .001) and Group 4 (p < .001).

Moving to the comparison within the condition (Fig. 6.5), in Group 1 and Group 2, no
significant difference emerged between the two scenarios (both with visual hints). How-
ever, in both Group 3 (p < .001) and Group 4 (p < .001), significant differences emerged
between the first scenario (with no hints) and the second one (with hints). As we can see
in Fig. 6.5, in Groups 3 and 4, users were more prone to utter longer sentences in the first
scenario, but once the hints were introduced, they preferred to use the visual hint option
or utter a single word in the second scenario. Crucially, the average number of interactions
in the second scenario of Groups 3 and 4 was comparable to those in Groups 1 and 2.

Finally, we considered the average time needed to fulfill the sessions in the four experimen-
tal groups [RQ1] and the average number of user errors in the sessions [RQ2]. As expected,
participants inGroups 3 and 4 took longer to complete the sessions (on average, 11:53min-
utes and 13:13minutes, respectively) than inGroups 1 and 2 (on average, 8:26minutes and

136

6.4. Results

Figure 6.5 – Rate of interactions per scenario in the four experimental
groups

7:00 minutes, respectively). Again, if we consider the two scenarios separately, the average
timeneeded in the second scenario forGroups 3 and4was comparablewith that ofGroups
1 and 2 (on average, 8 minutes).

Concerning the average number of errors (both interaction errors and conceptual errors)
in the sessions, users made significantly more errors in Groups 3 and 4 than in Groups 1
and 2 (Group 1: 6.2% of errors; Group 2: 5.8% of errors; Group 3: 12.2% of errors; Group
4: 9.3% of errors) [RQ2].

We combined data fromGroups 1 and 2 to assess any learnability effect. We defined a new
GLMM to find any relationship between the number of interactions and the interaction
time, with interaction time being defined as a two-level fixed effect (first and second task).
We randomized over the user ID and the interaction_time given the scenario. Results show
no statistically significant difference in the two conditions, as shown in Table 6.4

Then, we wanted to assess the effects of the hints in the interaction. To do that, we com-
bined groups 3 and 4 to create a newGLMM to confront the number of interactions and
the presence of hints, considering the scenario and the user ID as randomized effects. Re-
sults show there is a statistically significant difference in the number of interactions in the
two experimental conditions, as shown in Table 6.5

In addition, we ran GLMM to assess the possible effects of extralinguistic factors such as
age, educational level, and familiarity with the chatbot of the participants on the number
of interactions produced in the four experimental groups. Results showed an effect of
age: participants in the older groups (51-60 y.o. and over 60 y.o.) displayed a tendency to
produce a higher number of words than the other age groups, independently of the exper-
imental condition taken into consideration. The second model showed that educational

137

Chapter 6. How does multimodality affect the conversation?

Table 6.2 – Generalized linear mixed model fit by maximum likelihood
(Laplace Approximation)

Estimate Std. Error z value Pr(>|z|)
Group 1 (intercept) -3.4405 0.2168 -15.867 <2e-16
Group 2 0.2840 0.2853 0.995 0.32
Group 3 2.4105 0.2654 9.082 <2e-16
Group 4 2.1359 0.2686 7.952 1.83e-15

Table 6.3 – Simultaneous Tests for General Linear Hypotheses

Estimate Std. Error z value Pr(>|z|)
1 vs 2 0.2840 0.2853 0.995 0.751
1 vs 3 2.4105 0.2654 9.082 <1e-05
1 vs 4 2.1359 0.2686 7.952 <1e-05
2 vs 3 2.1265 0.2559 8.309 <1e-05
2 vs 4 1.8518 0.2593 7.143 <1e-05
3 vs 4 -0.2747 0.2243 -1.224 0.610

level modulates the number of words produced: participants with a bachelor’s or a mas-
ter’s degree were more prone to use fewer words and to use hints to communicate with
the chatbots than the other participants with lower educational levels. Interestingly, no
effect emerged for the familiarity with chatbots. This result indicates that the task was suf-
ficiently easy to perform for all participants independently from their previous knowledge
of Conversational Agents.

6.5 Discussion
The goal of the present work was to study the influence of multimodal hints on the con-
versation.

Table 6.4 – Generalized linear mixed model fit by maximum likelihood
(Laplace Approximation), groups 1 and 2 combined

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.5632 0.7653 -5.963 <2.48e-09
Interaction Time T1 0.9554 0.8010 1.193 0.233
Interaction Time T2 0.9259 0.7556 1.225 0.220
T2 - T1 == 0 (linear hyp.) -0.02948 0.42897 -0.069 0.997

138

6.5. Discussion

Table 6.5 – Generalized linear mixed model fit by maximum likelihood
(Laplace Approximation), groups 3 and 4 combined

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.38442 0.09845 -3.905 9e-05
Hints -2.63670 0.15944 -16.537 <2e-16
Hints - NoHints == 0 (linear hyp.) -2.6367 0.1594 -16.54 <2e-16

Empirical data shows that the number of words for a turn is lower in the hint condition
[RQ1]. When hints are available, users prefer to use them on the screen rather thanmanu-
ally typing the message in the chat. Longer messages tend to disappear, highlighting how
users’ preference is more robust when they have to write longer texts.

On topof that, the presence ofmultimodal hints decreases the cost of the conversation, not
only in terms of the number of interactions but also in the time required to accomplish the
task [RQ1], as shown by the comparison of the two tasks in Group 1 and 2. These factors
are connected to improved usability of the system [280].

The presence ofmultimodal hints reduces the number of user errors [RQ2]. The presence
of the cues supports users in two dimensions. On the interaction side, using graphical el-
ements prevents the possibility of making errors while typing the text in the chat. On the
conceptual side, hints support the conversation on two different levels. First, they suggest
the available options - or a subset of them - users can insert as an answer to the chatbot,
reducing the trial-and-error process of finding an accepted response. Second, especially
when the hints do not cover the whole set of possible responses, they provide users with
information about the nature of the responses the chatbot is accepting (e.g., a date, a nu-
meric interval, a list of words, a complete sentence, etc.), guiding them on the use of the
appropriate wording.

Finally, introducing hints does not affect interface learnability [RQ3]. In the second test-
ing configuration (inwhich all participant groups used themultimodal chatbot), the users’
performance measures do not indicate a significant difference between people who had
previously interacted with hints and those who did not, and there is statistically signif-
icant difference for the interaction between the interaction without and with hints, for
people belonging to groups 3 and 4. People who previously interacted with the applica-
tion with hints spent less time in the interaction, and neither used a lower number of in-
teractions than the first task. Instead, people who tried the chatbot without hints in the
first scenario improved their performances, manifesting behaviors comparable to those in
the other group. These phenomena show that hints are a valid instrument to flatten the
learning curve of using the chatbot, supporting users to use the tool to the best of their
possibilities.

Our results present some limitations. A complete study would have considered six experi-
mental groups, the four we used plus a condition hints/no hints in the two scenarios (first

139

Chapter 6. How does multimodality affect the conversation?

pizzeria and then travel agency, and vice-versa). Yet, the estimated number of people we
could reach to participate in the study would not be high enough to be able to run statis-
tical analysis on the groups. In the future we aim at run a new, more complete study, to
analyze more in depth influence of multimodal hints, considering all six the experimental
conditions.

These results shed new light on how users interact with chatbots, highlighting that hints
are reliable and valuable tools for helping target the conversation’s goal and lightening the
structure of the conversation.

6.6 Conclusions
Wewanted to explore how the introduction of hints influences the interaction with a task-
oriented chatbot. To do that, we run an empirical evaluation with 127 users to compare
their behaviors with and without the presence of hints. Empirical results show that multi-
modality affects conversational interaction: users that use hints perform better in terms of
time spent on tasks and errors committed and use shorter messages regarding the number
of words. In addition, hints flatten the learning curve of using the chatbot.

Our study is not exempt from limitations. We tested users only on two tasks with a limited
number of interactions. In addition, only metrics connected to the interaction and the
number of words were considered. Future research will include a semantic analysis (NLP
annotation, e.g., names, verbs, articles, adverbs, etc.) of conversational agents in order to
evaluate not only quantitative data but also the quality of the conversations with chatbots
and how users modulate natural language when asked to converse with Conversational
Agents.

Our findings shed light on the growing phenomena of improving conversational experi-
ence through hints, leading to a more aware design of conversational interfaces. In the fol-
lowing chapters, we will use these considerations as foundations to systematize the design
of multimodal, task-oriented, conversational interfaces through the definition of a design
model and the development of an authoring tool to easily create the operating structure
of such interfaces.

140

Part III

A model-driven approach to
multimodal conversational interaction

design

141

Chapter 7
A Conceptual Model for Multimodal
Conversational Agents.
7.1 Introduction
As we analyzed in the previous chapters, in the last decade, from a user interaction per-
spective, we have witnessed an evolution of chatbots in various directions. Most of the
first-generation chatbots were “stand-alone” and “unimodal”, i.e., systems intended to be
in an independent manner (stand-alone) and to exploit written natural language only to
interact with the user (unimodal).

Soon Chatbots started to become “multimodal” [281, 282]: they are inside complex GUI-
based applications and communicate with the user both verbally and through the visual
elements of aGUI (Graphical User Interface) [200, 257]. AsGoogleConversationDesign
guidelines1 state that conversation is inherently multimodal, and the design of conversa-
tional agents cannot disregard this consideration;

Our previousworks, such asGeCoAgent andDSBot, predicate “complete”multimodality
(i.e., both users and interfaces communicate onmultiple communication channels), a new
trend that is starting to be investigated. The multimodality concept is no more only a
property of the system’s output but belongs to its interaction paradigm.

However, in most cases, the integration between the chatbot and GUI is weak. Often, the
chatbot is simply a means to offer an alternative, more natural way for the user to provide
instructions to the application. In other cases, the GUI and the conversational interface
are coupled but not integrated into the application: the user can perform even complex
tasks using the GUI or talking with the chatbot, but the two streams of interactions are
independent, and the behavior of the two interfaces is not coordinated.

In the previous chapters, we showed howmultimodality and strong integration affects the
design and the linguistic use of conversational interfaces and how such integration has sev-
eral advantages to improve the overall quality of the user experience, particularly in appli-
cations supporting relatively multiple tasks and complex processes. We discussed how the
two interfaces could complement each other to lower the cognitive barriers to using the ap-
plication. The chatbot candecrease the knowledge for the user to perform the various tasks
on theGUI since, during the various operations, the chatbot can provide explanations and
guidance in natural language and in a contextualizedway, taking into account thewhole in-
teraction history. In addition, we showed how the graphical interface could complement

1https://developers.google.com/assistant/conversation-design/what-is-conversation-design

143

Chapter 7. A ConceptualModel forMultimodal Conversational Agents.

conversations with information that are difficult to convey in natural language, such as
data visualizations, tables, and images. Finally, the chatbot can benefit from the graphical
interface’s power to allow direct manipulation of interaction affordances.

Achieving strong integration between conversational and GUI-based interaction is chal-
lenging from both a design and a technology perspective. In this chapter, we concentrate
on the design dimension. We propose a conceptual model that aims at facilitating the pro-
cess of designing “strongly integrated” graphical and conversational interfaces. Themodel
exploits the idea that theGUI and the conversational agent “predicate” on the same concep-
tual structure that describes the user tasks and interaction, regardless of the interaction’s
modality.

Our work aims to provide a tool to design the multimodal conversational interaction, not
to model the interaction from a high-level perspective. Our contribution sheds light on
the systematization of the design of multimodal process-intensive conversational agents.
Adopting our model, an experience designer can produce an interaction model that pre-
cisely describes the final application and unambiguously describes how all the interaction
modalities are exploited and what the system expects at every moment. Then, we describe
the requirements a reference architecture must satisfy to support the strongly integrated
multimodal integration.

The rest of the chapter is organized as follows: after presenting the current state of the art
related to this topic, we will present our conceptual framework that designs an integrated
interface starting from the process modeling. Finally, we will illustrate a complete case
study to exemplify the use of this framework.

7.2 State of the Art
7.2.1 Design Models for Chatbots
Today,manydesign techniques for conversational agents exist. These techniques are linked
to the conversational engine used in the application [283]. Perez et al. [283] propose
CONGA DSL, a platform-independent meta-model to describe the various approaches
to chatbot design. CONGA DSL’s model captures the main features of chatbots, such
as their name, the languages it supports, and the interaction flows composed by the dia-
logue between the user and the conversational agent. Together with the model, the au-
thors implement a recommender system that, given the specification of a chatbot writ-
ten in CONGA DSL, suggests the best conversational engine to build the chatbot. Still,
among the dimensions captured, CONGADSLmust describe how the interaction design
must happen.

In literature, there is no unique taxonomy to classify dialogue management techniques
for conversational agents. Though most proposed classifications divide techniques into
two leading families: handcrafted or rule-based, and probabilistic or generative based [284,
285]. The first family comprises all the dialogue managers in which the responses are de-
signed by the developer (or the interaction designer), and the intelligent component of

144

7.2. State of the Art

the system selects the best one according to the user’s input. Regular structures are the
most used approach formodeling the dialogue, such as instance automata [286], trees, and
grammars [258]. Pauchet et al. [287] propose a computational model of human-human
conversation, described through timed automata, generated through the observation of
people interacting with each other to accomplish given tasks, to then use the model as
input for the chatbot creation. AIML [288] and ChatScript [289] are among the most
famous handcrafted conversational design techniques.

Even if outside the scope of our work, it is worth mentioning Embodied Conversational
Agents (ECA), conversational agents that are embodied into a virtual agent. In this area,
considerable effort has been made to understand how to describe a multimodal behavior,
even if only limited to the output generation (sentences and agent’s behavior). Many re-
searchers tried to embed multimodal behavior into the dialogic representation. For ex-
ample, AMPL specification extends AIML language adding the description of the facial
expressions the virtual agent must perform [290]. SAIBA extends this idea to any mul-
timodal behavior, such as expressions, gestures, gaze, lips, and body movement [291]. A
similar approach is pursued byMURML, providing, together with the language specifica-
tion, a reference architecture to implement embedded conversational agents [292].

Other specifications focus on modeling a language to describe agents’ behaviour [293,
294]. For example, Wahlster et al. [260] proposes Multimodal Markup Language, 3ML,
to model input and output for ECAs across all the modalities. Nevertheless, the authors
focus on integrating differentmodalities in the same input and/or outputmodalities rather
than on the interaction design.

In probabilistic models, instead, the output of the chatbot is generated by artificial intelli-
gence, learning from examples of past conversations. Even if these methodologies are not
in the scope of this paper, wemention the approachproposed byAles et al. [295] to extract
dialogue patterns from annotated data and the one from Agarwal et al. [296] to generate
multimodal responses.

All these formulations, though, concentrate mainly on the definition of inputs and out-
puts as interaction pairs, or at most focusing on smaller conversation patterns [297, 298],
with little focus on how the whole interaction takes place [299]. The reasons mentioned
above make it impossible for interaction designers to describe precisely the steps of the in-
teraction with the conversational agent. For this reason, we consider generative models
out of this work’s scope.

Planas et al. [300] propose a first attempt to model multimodal conversational interfaces.
Their model consists of a Domain Specific Language composed of three main packages,
intent, behavioral, and runtime. Using their language, the developer can design a conver-
sational system achieving faster development and more accessible integration between the
components. Nevertheless, to design the user interaction, designers must use Interaction
FlowModeling Language (IFML) [301], which mainly focuses on the system perspective
rather than the interaction flow with the final user.

145

Chapter 7. A ConceptualModel forMultimodal Conversational Agents.

7.2.2 Multimodal Dialogue Systems
Traditionally, task-oriented chatbots are primarily uni-modal and based on textual infor-
mation. Previously, the focus was on uni-modal systems that had to be informative and
enjoyable by applying only one modality, either spoken or textual. Indeed, most of the
existing dialogue systems were limited to one interactionmodality, which cannot be easily
extended to other modalities, such as the visual one [208]. Then, the focus changed with
the growth of Artificial Intelligence. With significant advances in understanding the infor-
mative visual modality, dialogue systems have started incorporating other modalities such
as images, audio, and video to bemore robust [265]. Multimodality expands the expressive
power of human input to computers [302]. The expressive visual modality alleviates dif-
ficulties faced by text response generation, such as the description of visual attributes [18,
208].

An example is given by John et al. [303]. They implemented a chatbot for the analysis
of biomedical images. They defined a chatbot that can compute many analyses and com-
plex pipelines understanding a controlled natural language. However, their interface is
composed only of the chat and the visualization panel. The user can only chat with the
bot; she cannot perform operations without using dialogue. Another example is given by
PUMICE [45], a conversational agent that exploits multimodality to solve ambiguity in
the conversation generated by the interpretation of natural language utterances. However,
the multimodality is limited to only some specific operations required by the bot. Gera-
nium [257], instead, exploits multimodality to complement the information provided by
the chatbot and to give visual feedback to the user.

Liao et al. [208] developed amultimodal dialogue system that understands differentmodal-
ities as input and uses a knowledge awareness of both visual and textual modalities to gen-
erate the responses. Instead, Firadus et al.[265] provided a study of the task-orientedmul-
timodal dialogue system, particularly in response generation. They defined an efficient
approach to generate varied responses in a multimodal setup capturing information from
both text and images. Their work highlighted how this approach benefits the efficiency of
a dialogue system.

Another work that deals with the multimodality in dialogue system is presented by Li et
al. [266]: they tried to solve the problemof conversational breakdowns, i.e., system failures
to correctly understand the intents of the user, using a multimodal interface. SOVITE
wants to address this problem by visualizing the agent’s understanding using the mutual
disambiguation pattern, in which inputs from one modality are used to disambiguate in-
puts of another modality for the same concept [266]. Last but not least, Kassel et al. [304]
investigate the possibility of considering the dialogue with the user as an additional bidi-
rectional communication channel for visual analysis. Thus, they use the chatbot as a tutor
for generating visualization plots.

All these researches consider multimodality focusing not on the interaction as a whole but
on a subset of the interactive elements of the experience, such as the multimodal response
generation, themultimodal visualization for thedisambiguation, and the chatbot as a tutor
for the visual modality. [200], instead, explores the possibility of embedding the chatbot

146

7.3. A process-based model for Conversational Agents

in the visual interface as an alternative to the GUI-based interaction, but the chatbot is
limited to be an alternative for the buttons on the screen.

In many domains, there are application-specific frameworks to integrate conversational
agents (mainly speech-based ones) with othermodalities. For example, commercially avail-
able home assistants have models for integrating displays in the interaction (but only as
feedback) and intrinsicallymultimodal domains such as EmbodiedConversationalAgents
and Automotive sectors. To the best of our knowledge, there are no studies that reason
specifically on dealing with text-based chatbots and on a broader category of multimodal
chatbots, i.e., the GUI and the chatbot are integrated and seen as a whole. This limits
the user both in the speed of the interactions with the interface and the complexity of
performed operations. Studies show that these interfaces support a more effective human-
computer interaction, for example, by reducing task completion time and task error rate.

However, the natural language-based applications that provide other modalities are few,
and the different modalities are often not synchronous. Taking Ava [56], a chatbot that
performs a data science task, as an example, the two modalities are asynchronous. As dis-
cussed in Section 4.2.5, Ava [56] has both the possibilities of writing a Jupyter notebook
directly and delineating a data science function through the natural language. However,
a user cannot use the two interaction paradigms together: if she starts with the chat and
then modifies the notebook, Ava is no longer aware of the changes that happened in the
notebook [56].

7.3 A process-based model for Conversational Agents
In this section, we describe a model for the design of conversational agents. We focus on
task-oriented conversational agents, i.e., agents whose interactions aim at accomplishing
some user goals [189]. The goal is complete once all the intermediate objectives are com-
plete. These objectives may be temporally independent from each other (e.g., to register
to a new website, users must insert an email address and a password in any order) or with
some precedence order (e.g., customers on an e-commerce platform must first choose an
item and then select its color).

In Chapter 4 we introduced the following terminology:

• Task. A task is one of the possible goals that userswant to accomplish by interacting
with the system. A task-oriented conversational agent supports the execution of one
or more tasks.

• Process. A process is defined as a sequence of (interactive) steps that describe the
operations required to accomplish a task. Every task must be described by one pro-
cess.

We are introducing a shift in current design approaches. When designing a task-oriented
chatbot, it is common practice to start defining trees that map the dialogues. The inter-
action process is a natural consequence of the designed dialogue [305]. Indeed, in the
design, the focus is often on the dialogue’s flow rather than the process itself. For example,

147

Chapter 7. A ConceptualModel forMultimodal Conversational Agents.

Botpress2, Google DialogFlow3, two frameworks to build chatbots, allow to delineate the
possible conversation flows using a model similar to a state machine [306]. With this ap-
proach, what the conversational agent should do and how the conversational agent should
do it are modeled together [307] and therefore cannot be untangled.

7.3.1 Design dimensions
Ourmodel separates two design dimensions in the definition of conversational agents: the
what and the how.

The first phase of the design process focuses on the process, describing the tasks usersmust
perform and their precedence. In this phase, the interaction is described as a flow of high-
level steps; each step represents a task that can be expanded in sub-tasks until the process
is hierarchically represented in a series of atomic tasks. Only once the process has been
defined does the focus passes to the detailed interaction and the messages that users and
conversational agent exchange to accomplish the tasks. This clear separation of the two
phases significantly benefits the design process.

First, the decomposition of the design process into smaller phases reduces its complexity.
Instead of considering the whole problem as a whole, the conversation designer can con-
centrate on smaller, more approachable problems, having to concentrate on a single aspect
of the design at a time [308]. During the process design phase, the designer canmodify the
process without worrying about the conversation, reducing the cost of refining the model.
On top of that, logic gateways enrich the expressiveness of the process, enabling more ex-
plicit representation than in plain conversation trees.

Once the process is defined, the attention is shifted to the conversation design. In this
phase, modification of the conversation does not affect the process design; therefore, the
designer can concentrate on the interaction design to maximize the system’s usability. At
this level of granularity also, creating adaptive conversations is easier: once the goal of each
atomic task is well defined, the conversation designer can think of more ways to get to it,
such that the conversation can be tailored to the user’s preferences at runtime.

The conversation design is progressive; first, the conversation related to tasks is defined,
and then the decorative one. The design is therefore modularized; the process-related con-
versation that defines the essential interactions is separated from the decorative one.

The clear separation of the two phases introduces the possibility of having complementary
figures working on the design, such as requirements analysts to elicit the process model
and conversational design experts to take care of the interaction.

7.3.2 Modeling Constructs
We separate the design into two abstraction levels:

2https://botpress.com
3https://dialogflow.com

148

7.3. A process-based model for Conversational Agents

Figure 7.1 – Building blocks for Process Model Diagram

1. Process model: describes the procedure as a sequence of operations to be performed
to complete the task, i.e., describeswhat users must do; each operation corresponds
to a modification of the state of the interaction;

2. Interaction model: describes the interactions that each operation support, i.e., de-
scribes how users can accomplish their tasks; it can consist of a single step or a multi-
turn interaction.

Process Model Diagram

We introduce a process notation to describe users’ objectives and their precedence con-
straints, taking inspiration from Business ProcessManagement Notation (BPMN) [19], a
popular notation that serves well in this task, to create a state machine in which states can
have two different natures:

• tasks: the operations that must be performed to achieve the goal of the process. We
define a task as the atomic operation that influences the system’s state. From the
interaction perspective, a task can represent either a single-turn operation or a com-
posite one whose sub-operations are not influencing the state, such as a form com-
pletion or a multiturn dialogue to obtain a single piece of information.

• gateways: describe the control flow of the process, i.e., when the user can choose
how to proceed. This notation groups a list of actions that have to be performed
before moving to the next steps in the process.

149

Chapter 7. A ConceptualModel forMultimodal Conversational Agents.

Figure 7.1 illustrates the graphical representation of the building blocks of the process
model diagram. Tasks and gateways are linked by connections: represented as arrows, con-
nections indicate the flow of the process, defining, in particular, the precedence between
its activities.

The nature of the gateway determines the strategy to follow:

• and gateways indicate that all the actions must be performed, with no constraints
on the order;

• or gateways indicate that at least one actionmust be performed, letting users decide
whether to proceed with the interaction flow or traverse non-required paths before
proceeding;

• xor gateways indicate that users must perform one and only possible path before
continuing with the interaction flow.

Each gateway must be succeeded by a closure gateway that leads to the part of the process
after the fork.

Each process must be delimited by a start and a end state.

Interaction Model Diagram

Interaction model diagram precisely describes how users and the conversational agent in-
teract to accomplish the tasks the diagram represents. One and only one interactionmodel
diagram is associated with each task and each gateway in the process model diagram. The
symbols of gateway closure do not have any state diagram associated since they do not rep-
resent interaction but only rule the process flow.

An interaction diagram represents the whole dialogue related to a specific task or gateway
through a state machine. Each state represents a state of the chatbot and is associated with
a textual output. Arcs, instead, represents either users’ intents or system events, i.e., those
actions that make the flow of the interaction continue. In each diagram, there is an initial
state, the state where the interaction begins, and a final one in which the task correspond-
ing to the diagram is considered complete, and the interaction for the task terminates. In
the interaction diagrams for gateways, there are multiple final states, each representing a
possible transition in the process model diagram. An interactionmodel diagram is correct
if there is at least a sequence of intents that brings from the initial to the final state of the
FSM.

Despite being defined singularly, interaction diagrams represent consecutive parts of a
broader process. When the dialogue reaches the final state on the interaction diagram of a
task, its final state is concatenated with the initial state of the following task (or gateway),
determined by the task diagram. As a consequence, the conversation continues as deter-
mined by the interaction diagram of the new active state- Any user input does not cause
this progression; the result perceived by the user is a spontaneous transaction between the
two states.

150

7.3. A process-based model for Conversational Agents

Adding side conversations

The formalities described so far allow a conversation designer to describe a task-oriented
conversational agent. Nevertheless, the only interactions allowed are the ones that advance
the process state. Such a conversational agent lacks all the typical interactions of a human-
human conversation, such as requests for clarification, help support, chit-chat, and error
recovery. We define these as side conversations.

Therefore, we introduce the description of side interactions in our model to complete the
description of the conversational agent. Not all side interactions can be modeled in the
same way. Some are agnostic on the state, i.e., the response does not depend on the ac-
tive state, while others do. For example, the response to the user’s question “What is your
name?”might be the same independently from themoment the question is given, whereas
the question “What should I do now?” has different answers according to the task per-
formed.

We classify side interactions into three categories:

• Global side interactions. These are the interactions whose conversational agent’s re-
sponse does not depend on the state of the interaction. This category mainly com-
prises the chit-chat interaction developed mainly to give the CA a personality (e.g.,
”What’s your name?”, ”What’s your goal?”) or for entertainment purposes (”Tellme
a joke”, ”What’s the whale sound?”).

• Task-aware side interactions. These are the interaction whose response depends on
the active task in the interaction (e.g., ”What are we doing?”, ”Why should I do
this?”).

• Interaction-aware side interactions. These are the interactions whose response di-
rectly depends on the interaction that is occurring (e.g., ”What should I do now?”,
”I did not understand”, ”Can you repeat, please?”.

We represent global and task-aware side interactions as separate state machines automati-
cally inherited from all the states inside the process/task. We represent interaction-aware
side interactions directly on the task state machine of the task, using a different graphical
notation to differentiate it from process interactions.

All these side interactions inherit the transitions from the task state they are being issued.
For example, suppose a state A has:

• a transition for the state B thanks to an intent I, and

• a transition for the side state D for an intent HELP.

Side state D has a transition to side state D’, through an intent J. Suppose the interaction
is in the state A, and the user sends an utterance that is classified to belong to intentHELP;
the next state is therefore D. At this point, if the user’s intent is classified as I, the next state
is B, thanks to the transition’s inheritance, despite not an explicit transition between the
two states.

151

Chapter 7. A ConceptualModel forMultimodal Conversational Agents.

Figure 7.2 – Building blocks for Process Model Diagram

In some cases, multiple side conversations might predicate for the same task on the same
intent. For example, the designer can describe a global HELP intent and a specific one
for a particular task. We adopt a local-first policy: in case of multiple side conversations
referring to the same intent, we select the one closest to the task definition; task-aware side
interactions have the precedence, then task-wide, and, finally, global side interactions.

7.3.3 Design process
According to this model, the conversational design process is separated into two different
moments. First, the designer chooses the communication channel of the conversational
agent (text or voice) and the high-level goals of the conversation. Then, designers must
concentrate on the conversation process, that is what the conversation should achieve to
get to the overreaching goals. In doing that, the conversation process is described as a flow
of connected tasks and gateways. The diagram is expanded hierarchically until the design-
ers are satisfied with the specificity of the design.

Then, the focus is moved on how the interaction occurs, that is the detailed interaction
between the user and the conversational agent. Conversation designers must define for
each atomic task and gateway which utterances are produced by the conversational agent
and which are the accepted responses from the final users. Users’ messages are not unique:
they must be represented as an equivalence class, identified by an id – the intent name –
and providing a list of examples of user inputs. For each intent, we must define which are
parameters, mandatory and optional, that the application should expect from the user and
might be necessary to prosecute the interaction.

Finally, side interactions must be defined, i.e., interactions that do not contribute to the
progression of the process but are essential for guaranteeing a good user experience, such
as recovery error, in case the conversational agent does not understand the user’s input,
or help requests, or any other chit-chat interaction that enriches the experience. These
interactions could be represented on the diagram as auto-loop on every task and gateway;
we decide not to represent them to ease the read of the diagram.

At the end of this process, the result is a well-defined interaction flow, in the form of a
hierarchical flow diagram, that precisely describes the whole application.

152

7.3. A process-based model for Conversational Agents

pH ExplanationStart XOR_ph choose substance guess pH XOR_gam
e

Greetings

Greetings Theory explanation GameStart

End

End

Figure 7.3 – Task Diagram for the example provided as a case study. The
lower schema is the expansion of the upper one.

7.3.4 Example
We provide an example of a conversational agent’s design to clarify our model’s use better.
Supposewewant to design a (text-based) chatbot to teach secondary school children chem-
istry, precisely the concept of pH.We want children to understand what pH is, what acid
and alkaline solutions are, and how we can measure the pH of substances. While Chap-
ter 8 describes the whole system in detail, here, we only use it as an exemplification of the
model.

Following the design process described in Section 7.3.3, we start defining the high-level
process of the learning act. Students must first understand pH; then, they must learn
to test the pH of solutions, deducting which substances are acid and which are alkaline.
We represent this process through a two-tasks process diagram model, in which the tasks
explanation and game represent the operations described above. The resulting diagram
is shown in the upper part of Figure 7.3.

Wewant to expand the diagram to represent the learning process better. We split the game
task into two more concrete tasks: the user must first choose a substance to test, and then,
once received the response of the pH test, guess whether it is acid or alkaline. We add some
decision points that correspond to gateways into the process diagram. First, the bot asks
users whether they already know the concept of pH. In case of a positive response, the ex-
planation is skipped; otherwise the conversation continues as defined. This decision point
is represented by a XOR, since only one path is taken during the conversation. Similarly,
after the guess PH task, we add a XOR to let users choose to play again or quit the experi-
ence. The result is shown in the lower part of Figure 7.3.

The process modeled until this step is mode independent from the interaction modality:
we established what the users must do and how they must do that to continue the process.
Once the process model diagram is complete, we pass to define the conversation, creating
an interactionmodel diagram for every task and gateway that we defined. Figure 7.4 shows
an example for the state Guess pH and Figure 7.5 the one for the gateway XOR_ph. For
every interaction diagram, we attach two tables to describe the nature of the intent that
causes the transition and the behavior of the conversational agent in every state (i.e., the
sentence it has to respond to the user).

153

Chapter 7. A ConceptualModel forMultimodal Conversational Agents.

Figure 7.4 – Example of the Interaction Diagram Model of the
Guess_ph task in the uni-modal setting. The two tables underneath rep-
resent on the left the event description and the output description on the right.

Figure 7.5 – Example of the Interaction DiagramModel of the Xor_ph
gateway in the uni-modal setting. The two tables underneath represent on

the left the event description and the output description on the right.

154

7.4. From Uni-modal toMultimodal

Help
help
needed

pH Explanationph question

Acid Explanation
acid
question

New table

User asks what is an acid substanceacid question

DescriptionEvent ID

New table

"I understand... we learned so much today...
See you next time!"

acid
explanation

"Awesome!"
pH

Explanation

"Do you want to try with another solution?"

OutputState ID

Help

User asks what pH isph question

User says "hat should I do?"help needed

Figure 7.6 – Side conversations for the conversational agent.

To conclude, we design the side conversation to create a richer user experience. We want
our conversational agent to respond toquestions related to the topic, such as “what is pH?”
and “when is a substance acid?”. These questions will be global since we want the chatbot
to be able to answer these questions at any moment. Figure 7.6 shows the three conversa-
tions. They are a single-state conversation. Therefore they are represented as unique states
preceded by a user event.

Once the design process is complete, we will have the complete specification of the conver-
sational agent through a process diagram describing the high-level interaction and a set of
diagrams interaction diagrams that describe the conversation punctually.

7.4 From Uni-modal to Multimodal
Even if the adoption of the proposedmodel shows considerable advantages in the design of
uni-modal conversational agents, its major benefits lie in adopting multimodal conversa-
tional agents. Suppose we want to create a strongly integrated multimodal conversational
interface, i.e., an interface where the conversational agent is not the only communication
channel. However, it co-existswith other channels, such as a graphical user interface (GUI)
or a virtual reality environment. We want to achieve the highest degree of integration
according to the multimodality continuum presented in Section 4.2.5 Such integration
brings new challenges to be faced. Before extending our model, it is necessary to analyze
the possibilities of multimodal integration for conversational applications better and ex-
amine the new requirements in this scenario.

7.4.1 Requirements for strongly integrated conversational agents
Before discussing the integration, it is crucial to analyze the requirements to satisfy to reach
the full integration, both from the user’s and the system’s point of view.

From the user perspective, we need to guarantee a smooth integration of the modalities,
such that the system appears as a unique interface. As a consequence, the user’s require-
ments are:

1. Modality switching - ergonomy: usersmust be able to switch themodality according
to their preferences at every moment. For instance, a user could prefer using a form

155

Chapter 7. A ConceptualModel forMultimodal Conversational Agents.

to insert the required information to save time, whereas another wants to be guided
through the process in the chat.

2. Modality switching - confidence and security: users must be able to use the modality
they feel more comfortable and secure with. For example, a customer may prefer to
insert personal information like the credit card number in a dedicated view, in spite
of writing them on a chat.

3. Transparency of synchronization: the interface must support a switch of interaction
modality at any moment. The user must be free to initiate the interaction with the
chatbot and thenmove to theGUIor vice-versa, according towhat she prefers at any
moment, withoutworrying about synchronizing the state of the variousmodalities;

User requirements translate into the following system requirements:

1. Independence of modalities: we must be able to describe the interactions on each
modality independently to have the possibility of modifying them without com-
promising the others.

2. Separation of functional and interactive requirements: to guarantee the indepen-
dence of the modalities, we need to be able to modify the interaction over them
without compromising the others.

3. Support to asynchronous operation: different modalities are not equivalent; some ac-
tions, for example, may require a unique interaction on the GUI (such as the com-
pletion of a form) but a multiturn conversation on the conversational interface, as
shown in fig. 7.7. We can categorize actions to support in three families 1-to-1 in-
teractions, actions that are atomic in both the modalities, such as the click of the
help button on a GUI and digiting ”help” in a chat; 1-to-many interactions, actions
that are atomic on a modality, but they are not on the other, such as navigating the
FAQ of a website or digiting the desired question on a chat; or many-to-many in-
teractions, actions that require multiple steps on any communication channel to be
completed, such as the completion of a questionnaire on multiple pages, either on
the GUI or in the chat. It is worth noting that an action’s atomicity is not universal
but changes according to the designer’s desire. For example, a chatbot that must
support the user in the completion of a form might be able to see the completion
of a form as a multi-step interaction, whereas if the registration form does not need
the support of the chatbot, its completion and submission can be seen as an atomic
operation. For this reason, we need to support transactional actions, i.e., change the
state of the system, and informative actions or part of a multi-turn interaction;

7.5 Synchronizing the modalities: event-based interac-
tion and shared context

Toachievemultimodal integration,wemust introduce an artifact synchronizing themodal-
ities during the interaction. We propose to re-think the execution flow of conversational

156

7.5. Synchronizing the modalities: event-based interaction and shared context

Figure 7.7 – example of multi-turn interaction

technologies, extending the well-established input-intent-action-response model: an agent
receives the input, processes it, understands the intent, elaborates it, and produces a re-
sponse, deciding what to say and, eventually, what to do [309, 310].

In ourmodel, input is nomore just conversational but can arrive from any activemodality.
We want to adopt a unified representation of all the inputs so that the system can process
them similarly. Inputs are received, processed according to the modality on which they
have been triggered, and converted into a universal representation. For example, both the
form submission and the conversation shown in figure 7.7 would be converted into an ob-
ject in the form personal_data{name: Peter, surname: Parker, age: 28}.

The adoption of our model, the input-event-action-response one, has two immediate con-
sequences. First, all the modalities can be constantly updated on what is happening in
the interface, even when the interaction is not involving them directly. Second, as we did
for uni-modal conversational application, we are separating the what and the how design
dimensions. Designers can modify events’ triggering actions at any time, even changing
modality, without affecting the process definition.

We are implicitly introducing a shift of paradigm: the application is no more utterance-
based and conversation-driven, but it is event-based and context-driven, and this brings
the advantage of having a multimodal interface that is synchronous among the different
available channels.

7.5.1 A proposed architecture for modalities synchronization
Multimodal conversational applications need some specific elements to guarantee the syn-
chronization of the modalities. In particular, our model requires an entity that translates

157

Chapter 7. A ConceptualModel forMultimodal Conversational Agents.

Figure 7.8 –The shift of paradigm introduced by the introduction ofmul-
timodality: the input becomes a generic event (GUI input or utterance) and

the output a combination of utterances and GUI events.

user input into events and an artifact to store the interaction data necessary for the follow-
ing interactions.

We propose a synchronizermodule in charge to collect input from themodalities and trans-
form them into events. The synchronizer can throw two types of events:

• Primary, when the event notifies that amessage from amodality has arrived and the
information has been stored, such as in the case of the reception of a user’s personal
information;

• Secondary, when the synchronizer must perform some computation to choose the
event to throw, such as in the case of determining whether a user’s answer to a quiz
is correct or not.

Users’ input might contain parameters necessary for the interaction’s next steps. These
parametersmust be accessible from all themodalities. We store this information in the con-
text, a shareddata structure containingkey-valuepairs that are readable by all themodalities
but writable only by the synchronizer.

7.6 Process representation as shared knowledge
We want to extend the model to exploit the context to enable the design of strongly in-
tegrated multimodal conversational agents. A first approach for the integration could be
modeling themodalities as independent, with the addition of an event bus that communi-
cates the happenings on the various communication channels.

158

7.6. Process representation as shared knowledge

When the complexity of the task arises, two independent models are no longer sufficient
for the synchronizationof the tasks: ifwe represent the interactionbetween the twomodal-
ities as processes, the transitions on both of them increase exponentially. Every state of a
modality must be connected with all the states reachable from it: only in this way we can
model the interactions executed on the other modalities. On top of that, in many cases,
the actions executed in the states are the same, independently from the modality through
which the state is triggered.

For this reason, we propose to adopt the process model illustrated in Section 7.3. The pro-
cess model diagram remains unchanged; each state represents a sub-task of the interaction.
This diagram is a shared representation of the process corresponding to the system’s com-
mon knowledge. As in the uni-modal case, the process diagram does not describe how the
interaction should occur to complete the task.

Eachprocessmodel task is expanded into an interactionmodel diagram that declines the in-
teraction on the modalities. These are treated separately: this diagram consists of multiple
parallel state machines, one for everymodality in the system. As for the uni-modal interac-
tion, each state is associatedwith a uni-modal output, specifically on themodality towhich
the state machine is associated. On the other hand, differently from the uni-modal case,
transitions here correspond to events thrown by the synchronizer. Events might trigger
transactions only on a single state machine, generating a uni-modal output, or on multi-
ple machines, generating multimodal outputs.

The FSM of eachmodality may have multiple final states; the interaction concludes if and
only if the active state is final on every state machine. An interaction model diagram is
correct if a sequence of eventsmakes all the statemachines terminate in afinal state, starting
from the initial one.

With this two-layered model, we simplify the design process, since we create a unique
model to which the modalities refer and not a separate interaction model for each modal-
ity that participates. In addition, the separation of modalities allows the designers to mod-
ify the interaction over a modality without compromising the others. The process model
makes creating and designing a chatbot application to support the differentmodalities’ co-
operation easier. It is a mechanism to generate chatbot responses, but it is crucial in the
system’s knowledge that the system can exploit it to interpret user input better, suggest the
following actions, and answer user requests.

7.6.1 Run-time Behaviour
The runtime behavior operates as follows. When the system is initialized, the process
model indicates the initial state in which the interaction must occur. The correspond-
ing interaction model diagram punctuates the user experience: the first state of the state
machine of each modality determines the initial output on every modality.

Once the user interacts, the corresponding modality captures the interaction and sends it
to the synchronizer to be processed. If it is a chat message, the text is parsed into an intent,
processed, transformed into an intent, and converted into an event (primary or secondary).

159

Chapter 7. A ConceptualModel forMultimodal Conversational Agents.

If the interaction occurs on anothermodality, it is directly processed and transformed into
an event.

The event is stored and sent to the state machines of the modalities. If the received event
corresponds to the event on one arc exiting from the active state, the transaction is trig-
gered, and the output corresponding to the new state is produced. The task concludes
when a transaction brings all the state machines to a final state. The control is then passed
back to the process model diagram, which determines the new task of the process.

Thanks to this formulation, even if the user chooses to operate by means of the classical
UI, at any moment she can switch to the chatbot, since, thanks to the synergy between
the active function and the context, the chatbot is always aware of the current status of
the process, even if it is involved sporadically with lots of operation between two different
interactions in the dialogue.

Multimodality doesnot imply that the stepsperformedon the variousmodalities aremapped
1:1. For example, a form to insert personal data, that on the GUI is a unique form, can be
divided into a multi-step conversation, as shown in Fig 7.7. For this reason, each state
function can be conceptually divided into two parts: a first part, modality dependent, re-
sponsible for getting the input, and a second one in charge of its elaboration.

This is an important step forward compared to those systems where the chatbot has to
perform the entire process. Our framework allows the chatbot to be a valid assistant to the
process rather than the only means to complete it. Indeed, it can be consulted only when
the user feels the need, with the guarantee that the chatbot’s behavior is fully aware of the
current process state. Moreover, the hard integrationwith a knowledge basemay allow the
chatbot to act in a clever manner, advising the user of known best practices (maybe even
learned from several executions of the process itself).

7.6.2 Example
To better explain our model, we extend the example presented in Section 7.3.4, introduc-
ing a second interaction modality. In particular, we want to create a GUI representing a
kitchen counter, which is the placewhere the red cabbage experiment takes place. As in the
uni-modal scenario, the chatbot will explain to users what pH is and guide them through
the experience. With the addition of the GUI, we want children to interact through the
chat or clicking the items on the screen. Figure 7.9 shows the proposed user interface.

Defining Interactions

Since our model is based on separation of concerns principle, the process model diagram
remains unvaried. Nevertheless, we need to extend the interactionmodel diagram of every
task and gateway to define which operations can be performed on each modality.

As said, we need to create a separate state machine to represent the interaction on the GUI.
We choose to represent the interaction diagrams as separate lanes of the same diagram to
facilitate the readability of the schema. Figure 7.10 shows the interaction model diagram
for the guess state, i.e., the extension of the interaction described in Figure 7.4.

160

7.6. Process representation as shared knowledge

Figure 7.9–Multimodal version of the example provided in the case study

The visual interface will show a kitchen counter, highlighting the solutions that users can
test. Users must choose one of the solutions and drag it on the cup containing the red
cabbage solution. Once the user drops the solution, an animation of the solution being
poured will be reproduced, and the cabbage solution will change its color. If the user
guesses the correct pH, the avatar representing the bot will make a happy face. The conver-
sational experience remains unchanged, following the separation of concerns principle.

As in the case of the uni-modal design, we define in a table all the events that might trigger
a state change. We add a column to the table that describes which are the modalities that
can trigger each event: a user message in the chat, a user event on the GUI, or a system
event, such as the end of an animation.

In the case of the XOR_Gateway, we decide to have a transition only if a yes event is trig-
gered. Consequently, the initial state is also final since the transition might never occur in
the interaction. The result is shown in Figure 7.11

Result: Interaction Example

We now show an example of the interaction resulting from the application just elicited.
Figure 7.12 shows a view of the interaction model diagrams of all the tasks and the gates,
combined according to the specifications in the process model diagram.

Figure 7.13 shows a consequent example of interaction. The chatbot presents to the user,
asking for her/his name. When the user replies by presenting her/himself in the chat, the
conversational agent asks whether the user knows what pH is. At a positive response, the
substances on the counter get highlighted, while the chatbot invites the user to select one
of them. When the user selects the lemonade by clicking on it, the chatbot invites the user
to pour that substance into the red cabbage solution by dragging and dropping it.

161

Chapter 7. A ConceptualModel forMultimodal Conversational Agents.

Guess_ph

G
U

I
ch

at

New table

UI terminates the pouring animationSystem

Chat/GUI

Chat/GUI

GUI
User drags the chosen solution on the red

cabbage bowl

solution
poured

DescriptionEvent ID

pouring input

New table

confetti falling in the interface, bot avatar is
happy

kitchen -
greetings

Kitchen counter - the solution is colored
kitchen -
guessing
invitation

Animation of SOLUTION_NAME pouring in
the red cabbage solution, that colors

accordingly

pouring
animation

"Wow, it changed its color! Do you
understand which is on the pH scale on the

left?"

OutputState ID

"Oh no, the two colors don't seem to
concide... try again!"

retrial
invitation

guessing
prompt

"Pour SOUTION_NAME into the red cabbage
solution"

pouring
solution

invitation

greetings

kitchen - guessing
invitation

kitchen -
greetingscorrect answer

"It's right! SOLUTION_NAME's pH is VALUE,
that means the solution is ACID|BASE"

greetings

guessing prompt correct answer

retrial invitation

wrong answerpouring solution
invitation solution poured

kitchen - solutions
highlighted

pouring
animationpouring input solution poured

User clicks on the pH scale or digits in the
chat the value that is not SOLUTION_NAME's

pH
wrong answer

User indicates the correct pH
correct
answer

Kitchen counter, solutions are highlighted
kitchen -
solutions

highlighted

Modality

Figure 7.10 – Example of the Interaction Diagram Model of the
Guess_ph task in the multimodal setting. Every modality has a lane in
the schema. The two tables underneath represent on the left the event descrip-

tion and the output description on the right.

162

7.6. Process representation as shared knowledge

XOR_ph

G
U

I
ch

at

New table

Chat

Chat

Modality

User says no to the botno

DescriptionEvent ID

User says yes to the botyes

New table

OutputState ID

"Don't worry, neither I new what it was,
before playing with this game"

pH
reassurance

"excellent, so we can play!"pH greeting

"do you know what pH is?"pH question

pH question

pH greeting

ye
s

kitchen

ph reassurance

no

To: pH Explanation

To: end XOR_ph

kitchen - bot
happyyes

Kitchen counterkitchen

Kitchen counter - bot plays happy animation
kitchen - bot

happy

Figure 7.11 – Example of the Interaction DiagramModel of the Xor_ph
gateway. Every modality has a lane in the schema. The two tables under-
neath represent on the left the event description and the output description on

the right.

163

Chapter 7. A ConceptualModel forMultimodal Conversational Agents.

Start C: welcome message
G: kitchen hello

C: hello
C: pH question

G: kitchen

C: pH reassurance

no
yes

C: pH greetings
G: kitchen - bot happy

C: pH Explanation
G: kitchen

ok

C: pH measurement
G: pH scale ok

C: game invitation
G: kitchen - solutions

highlighted

C: selection

C: solution chosen greeting
G: kitchen - solution chosen

solution chosen

C: pouring solution invitation
G: kitchen - solutions

highlighted
G: pouring animationpouring input

C: guessing prompt

solution poured

wrong answerC: retrial invitation

correct answer

C: greetings
G: kitchen - greetings

C: another solution
experiment
G: kitchen

yesC: choice greetings

no

C: goodbye End

Figure 7.12 – Process model diagram representing the expansion of all the
tasks and gateways in their interaction diagram, merging the modalities.

When the user completes this task, an animation of the lemonade bottle pouring the liq-
uid into the red cabbage solution is reproduced in the GUI.When it finishes, the conversa-
tional agent asks the user to identify the solution’s pH level, comparing themixture’s color
to the scale shown on the left. When the user writes seven in the chat, that is the correct
answer, the chatbot congratulates the user, while the chatbot’s avatar makes a happy face.

Finally, when the user says she/he does not want to play another round, the avatar waves
its hand to greet the user while the conversational agent sends a goodbye message.

164

7.6. Process representation as shared knowledge

Hi! I am Albot. What's your name? Kitchen counter

I am Pietro

Nice to meet you, Pietro!

Do you know what is pH?

Excellent, we can start experimenting!

Yes

Choose the substance you want to test Substances highlighted

Clicks on lemonade

Pour the milk in the red cabbage solution

Drags and drops lemonade

Pouring animation

Red cabbage colours of red

The red cabbage coloured!

Can you guess lemonade pH?

Two

Well done! The avatar of the bot is happy

If a solution has pH under 7, we call it acid.

Do you want to play again?

No

Ok, bye! The avatar of the bot wave its arm

Figure 7.13– example of a possible interaction between a user and themul-
timodal interface of a web application teach chemistry. Particularly, on the
left, there is the chatbot, on the right the GUI, and in the center the user. Each
arrow pointing to the user indicates either the event or the message shown to
the user, whereas the arrows pointing to the interfaces are for themessage from

the user to either the GUI or the Conversational Agent.

165

Chapter 7. A ConceptualModel forMultimodal Conversational Agents.

7.7 Discussion and Conclusion
Our model is one of the first attempts to conceptualize strongly integrated conversational
agents. Taking inspiration from BPMN formalism [19], we model a process as a sequence
of actions that can be executed in a consecutive, predefinedmanner or that can be ruled by
conditional logic, defined by XOR, OR blocks, or parallel gateways.

Such a formulation introduces a paradigm shift from a conversational-driven model to a
process-driven one [196]. The conversation is now distinguishable from the model, hav-
ing the process built on top, but it is created on the definition of the process itself. In this
way, the dialogue is detached from the underlying process, bringing two immediate im-
provements [311, 312]. First, the conversation can be changed without the necessity of the
model to change. Interface designers canwork on the definition of the interaction, conver-
sational and not, without worrying about compromising the task, therebymaximizing the
design’s efficacy. The designer can add or remove interaction steps that only exploit one
of the channels without worrying about compromising the entire flow. Second, the con-
versation can dedicate entirely to the effective support of the user, exploiting the process
model to understand what the user is trying to do and making suggestions proactively.

At the same time, our model predicates a paradigm shift in the interaction, from an utte-
rance-based formulation to an event-based one. An event can be anything on any modal-
ity: an utterance in the conversation, a click on a GUI, audio played, or a physical button
pressed on a smart object. In thisway, the chatbot is not a stand-alone application anymore
but is fully integrated with the other modalities in which it operates.

Finally, the role played by the chatbot changes. It becomes aware of what is happening in
the whole system; consequently, it can support the user at 360 degrees, listen to the users’
goals, suggest the best actions to take, and provide active support in using the multimodal
application. Thus, the bot is not just an executor, a proxy for predefined actions, but be-
comes a tutor that follows the users in the interaction and proactively supports them.

Even ifwemainly focusedonwritten conversational agents, the proposedmodel is agnostic
on the conversational agent’s channel: both written CA (i.e., chatbots) and spoken CAs
can be modeled through it. Our formulation also needs to consider how the utterances
are formulated. The function in every single activity can autonomously choose how the
utterance is created: features like tone, intent, and emotion expressed can be adapted to
the conversation history to improve the interaction with the agent further.

Our framework is not conceived as a replacement for the conversational engines available
(e.g., Dialogflow, Lex, RASA), neither for the conceptual models that describe conversa-
tional agents instances (e.g., [300, 311, 313]). Indeed, it operates at design level. Our work
stresses the importance of taking into account the multimodality of the system since the
very beginning of the project. We know that the underlying idea is not novel: conversation
as a multimodal interaction is a widely established idea, both in disembodied and embod-
ied conversational agents [314, 315]. However, to the best of our knowledge, the process
formodelingmultimodality in disembodied conversational agents has yet to be formalized.

166

7.7. Discussion and Conclusion

The developer can build an interaction diagram that describesGUI and chat-based interac-
tions through our formulation. Then, she/he can proceedwith implementing the dialogic
system and the user interface, keeping in mind the integration requirements.

In the future, we aim to further extend our model by introducing new modalities and
policies of recommendation that keep in consideration best practices and common choices
from previous interactions.

Our contribution paves the ground for a new generation of chatbots, able to support users
in tasks too complex to deal with o be dealt with the conversation alone. Such agents can
empower users to do knowledge-intensive tasks that today require much expertise: data
retrieval, data analysis, data exploration and visualization, end-user development, and busi-
ness processes are just a few examples. In this way, the new family of conversational tech-
nologies can act as facilitators to lower the learning curve of these tasks. At the same time,
the tutoring capabilities of the agent can be leveraged to distribute individual users’ exper-
tise to improve the interaction’s efficacy.

In the following chapters, we will see a detailed explanation of Albot Einstein, the appli-
cation we used as a case study in this chapter, and a web platform to transform the model-
based definition of multimodal conversational agents into the backbone of a working ap-
plication.

167

Chapter 8
Case Study: Albot Einstein, a
Pedagogical Multimodal
Conversational Agent
8.1 Introduction and Research Questions
In the previous chapter, we saw the definition of a design model to define multimodal
strongly integrated conversational interfaces. We presented the design of a conversational
agent to teach chemistry to children to exemplify how the model works. In this chapter,
we expand on this example, providing an entire case study investigating the efficacy of a
multimodal conversational agent that has been produced using the model in the learning
environment.

We focus on a subset of the broad family of conversational agents, namely the Pedagogical
Conversational Agents (PCAs), that are the ones whose conversation has an educational
goal [316]. These instruments have proven to increase students’ engagement and moti-
vation [317] and promote a more profound understanding thanks to their adaptive feed-
back [318]. PCAs have been successfully employed for factual learning in disciplines like
safety [317], foreign languages [319], and argumentation [320]. Pedagogical Conversa-
tional Agents are also increasingly explored in STEM education, which refers to learning
in Science, Technology, Engineering, andMathematics [321].

As statedbyU.S.NationalHighSchoolAlliance, STEMeducation is not only “traditional”
learning of factual information but is “an approach to teaching that is larger than its con-
stituent parts” [322]. Educators should promote the creation of connections among dif-
ferent STEMdisciplines and facilitate the process of coming upwith solutions rather than
focusing on the solutions themselves only [322]. In this approach, students need to be able
to experimentwith problems and solutions in the first person, also training computational
skills and critical thinking. A digitally-enhanced learning experience for STEM education
can hardly employ chat-based interaction only: the rendering of concepts using multiple
media and the possibility of interacting with such contents is crucial to help students ex-
plore and formulate different hypotheses based on direct observations and verify them in
virtual experimental settings.

For this reason, we want to exploit the capabilities of multimodality. We believe that a
strong integrationofPedagogicalConversationalAgentswithGUI (GraphicalUser Interface)-
based experiences could provide a more effective STEM learning experience supporting

169

Chapter 8. Case Study: Albot Einstein, a PedagogicalMultimodal Conversational Agent

pro-active and adaptive support to students in multiple complementary ways. In this per-
spective, a chatbot is no longer an independent entity but collaborates with theGUI appli-
cation as part of a broader learning experience, in which users can interact in natural lan-
guage with the Pedagogical Conversational Agent and in a more conventional way with
the GUI in which the PCA is. This multimodal approach has significant implications
for the design of PCAs, in which these agents are not the unique actors of the interaction
with the user and can playmultiple roles: motivator -motivating the learner and increasing
engagement; tutor - guiding the learner through STEM activities (e.g., interactive experi-
ments) and facilitating the formulation of hypotheses and solutions; instructor - teaching
and clarifying theoretical concepts and correcting the student when needed; usability sup-
port - helping the user in the GUI interface use [323].

In this context, our research is born: we want to investigate the benefits of interactive ap-
plications for STEM education that adopt a multimodal paradigm - hereinafter referred
to as Multimodal Pedagogical Conversational Agent (MPCA) - in which conversational
interaction and GUI interaction are smoothly integrated. Specifically, our goal is declined
into three research questions:

1. Can a multimodal PCA be effective for learning?

2. Does the presence of the PCA affect the engagement in the experience?

3. Which role does the PCA play in the interaction?

To answer these questions, we design, implement, and evaluate Albot Einstein, a Multi-
modal Pedagogical Conversational Agent, to teach chemistry, precisely the concept of pH,
to middle school children. Since we already described the interaction model on which Al-
bot Einstein has been built, in this chapter, we will focus on the pedagogical design and
technological perspective of the application, Finally, through a controlled study, we empir-
ically evaluate Albot Einstein with children (N=28) from a middle school; we compared
the Multimodal Pedagogical Conversational Agent against an interactive web application
providing the same GUI-based experience but not including the chatbot.

Our research offers two main contributions:

1. we exemplify how to design and implement a Multimodal Pedagogical Conversa-
tional Agent, also highlighting its underlying design principles and reflecting on
the role of this kind of technology for STEM education; this articulated example
and its discussion can inspire and facilitate the work of designers and developers of
e-learning solutions in the STEM field

2. we report an empirical evaluation of 28 students in 2 different experimental condi-
tions, which provides an example of a controlled study forMultimodal Pedagogical
Conversational Agent that, to the best of our knowledge, is unique;

The work presented in this Chapter is currently under review at [324].

170

8.2. State of the Art

8.2 State of the Art
A wide variety of categorizations and taxonomies of chatbots can be identified due to
the swift rise they experienced in the last years [325]. Pedagogical Conversational Agents
(PCAs) are employed in the field of education. These agents can be defined as “lifelike au-
tonomous characters that cohabit the learning environment creating a rich interface face-
to-face with students to create rich learning interactions” [326] and have experienced a
rise in employment in educational computer systems [327]. The benefits related to the
employment of PCAs have been studied thoroughly and appear to be related mainly to:

• the Persona effect, which states that the perception of the learning experience of the
student is positively impacted by the presence of an interactive agent [328];

• the Proteus effect, stating that students can have higher motivation if they want to
resemble the agent [329].

Depending on the agent’s role in the learning experience, a PCA can be classified as an
instructor, student, or companion [323].

An agent is defined as an instructor if it assumes the role of teacher and educates the user
on a defined topic [330]. Remarkable examples of the category can be found in [257, 317,
331–333]. In [257], the instructor is represented by Gera, a geranium plant that aims at
teaching children about the diversity in the urban ecosystem. Different sections can be
selected, and the user can interact via GUI or voice. This method allows for a more scal-
able and personalizable learning experience and improves a school-like interaction using
technology. However, the child can grow accustomed to the method and, as it bears many
similarities with regular classes, can perceive it as not engaging enough [334].

In contrast, PCAs as students, which are often referred to as Teachable Agents, are also
a popular solution [335]. According to the “Learning by Teaching” principle, students
tend tomake a greater effort in studying and understanding the material when they ought
to teach it to others, referred to as the Protégé effect [336]. This technique is employed
in [337]: users can learn about rocks and their classification through a set of articles and
pictures shownon the interface and teach the agent, Sigma, about it. The agent can request
the topic to learn, and the user has to select related sentences to be taught to the agent. If
they are correct, Sigma learns them, and they appear in a notebook. However, this solution
does not focus on verifying the extent to which the user retains the information.

Finally, agents can also be employed as companions following the “Learning by Doing”
paradigm [338]. In this case, the agent focuses on supporting and motivating the user.
The attention is placed on the virtual environment rather than on the conversation [339].
Tutors also fall in this category. A notable example is Alcody [340], an educational en-
vironment to teach programming to Primary Education children. The users can choose
the design of the interface and the companion to provide a pleasant learning environment.
Children can input their programs by writing them in Alcody p-code language, which is
then compiled. The agent gives feedback to the users without providing them with the
right solution. Alcody also features gamification and an emotional support system. The
main drawback of this class of systems lies in the lack of theoretical conceptualization of

171

Chapter 8. Case Study: Albot Einstein, a PedagogicalMultimodal Conversational Agent

the phenomena explored in the system. Students may learn mechanically and therefore
need help to generalize. For example, in [340], users were confusing Scratch and Alcody
terms and modalities.

Considering the discussed points, we decided to design an agent with an intermediate role
between instructor and companion (tutor). In this way, we maintained the perk of a self-
paced environment with occasions to experiment while also providing detailed informa-
tion on the topic to ensure effective learning.

8.3 Pedagogical Design Principles
8.3.1 Participants and Methods
We interviewed four experts, two science professors in middle school, a science communi-
cator, and a user experience designer to elicit the design principles to follow in creating the
platform, and, more in general, a multimodal Pedagogical Agent for teaching STEM.

Each expert was interviewed individually by twomembers of the team, onewho facilitated
the interview and the otherwhowas takingnotes as anobserver. After a short introduction
of the project, we asked them the following questions:

1. If youhad todescribe such a conversational agentwith someadjectives,whichwould
they be?

2. Which do you think are the strengths of such a conversational agents?

3. Which do you think are the pitfalls in which such a system might occur? How do
you think we should prevent them?

Finally, we showed them some mock-ups of the interface and the dialogue, asking what
they believed to be the strength of the final platform and what could be improved.

8.3.2 Results
Wewent through the notes taken by the observer and we found that all the answers could
be condensed into six design principles.

Interactivity – Children are protagonists. Multimodal Pedagogical Conversational
Agents should facilitate the execution of the experiment to children and not replace their
actions. When possible, the facilitation should guarantee freedom of action to children
[341], leaving them free to formulate a hypothesis and to verify them through the experi-
ment, as suggested by the latest learning frameworks [318, 342]. In case of mistakes, the
conversational agent should be supportive and encourage understanding of the error.

Clarity – Explain everything on the screen. As Graphical User Interface design prin-
ciples suggest, the interface must contain only the elements that are necessary for the exe-
cution of the experiment [343]. In addition, all of them must be explained by the PCA,
such that students understand what they can do to accomplish their goals. Visual cues

172

8.4. Albot Einstein

can support the explanation, for example, highlighting the elements the chatbot is talking
about.

Realism – Stick to reality. Even if the experiment is presented as a digital simulation, it
must be as coherent as possible with the actual procedure so that children can learn how
it works in real life [344]. The interface should not hide any step of the experiment, such
that the children can learn how it works.

Safety – Try this at home. The experiment’s simulation eliminates most of the risks re-
lated to experiments: in the virtual environment, students can experiment with dangerous
substances and tools without the risk of being harmed [345]. Consequently, we can intro-
duce into the application some experiences that children could not do in a real-world sce-
nario, therefore enriching the experience. On the other hand, the application must clearly
state which actions, tools, or substances are potentially harmful in a real environment.

Parallelism – Cite real-world methodologies and applications. In the experience de-
sign, the interface should explain how the concept presented is applied in the real world
[346]. If the methodologies used in the experiments do not coincide with the real-world
ones, at some point in the interaction, the interface should explain it or at least mention it.

Rythm – Fragment long explanation in multi-turn interactions. The PCA should
avoid long explanations asmuch as possible. If necessary, the conversation designer should
fragment them into a dialogue interruptedby interactivemoments such as direct questions
to the user to keep the engagement high [298].

8.4 Albot Einstein
8.4.1 User Experience (UX)
Albot Einstein is a multimodal Pedagogical Conversational Agent to introduce middle
school children to chemistry. By experimenting with the e-learning experience, students
can discover the concept of pH, what acid and alkaline solutions are, and how to measure
the pH of a substance.

As shown in Figure 8.1, the experience is set in a virtual kitchen; on the counter, children
find common solutions (e.g., soda, vinegar, milk, lemonade, egg yolk, etc.) and a bowl con-
taining red cabbage solution, the pH indicator used in the experiment. The visual interface
is coupled with the multimodal PCA, which guides children through the experience. We
will refer to the agent as PCAor chatbot interchangeably. A pH scale on the left completes
the interface; it references the colors assumed by the red cabbage solution when exposed
to acid or alkaline solutions.

Students interact with Albot Einstein by clicking on the Graphical User Interface or writ-
ing textual messages in the chat. Some interactions require modality-specific actions (e.g.,
click on the lemon juice button to pour it into the red cabbage solution), whereas others can
be executed on any modality (e.g., children can guess the pH level of a substance either
clicking it on the pH scale or writing it in the chat). The interface is fully multimodal: the

173

Chapter 8. Case Study: Albot Einstein, a PedagogicalMultimodal Conversational Agent

Figure 8.1 – A screenshot of Albot Einstein’s interface.

twomodalities are aware of what is happening in the counterpart. In this way, for example,
the interaction in the GUI can proceed even if the assigned task is completed through the
chatbot, or the chatbot can highlight some elements in the interface to clarify what it is
talking about.

Albot Einstein consists of two activities, introductory mode and free game one. In the
introductory mode, children discover the concepts related to pH. To do that, the PCA
guides step-by-step in measuring the pH of four substances, an acid, two alkalies, and wa-
ter, by pouring them into the red cabbage solution and then confronting the color of the
solution with the ones on the pH scale. Proceedings with the experiments, the chatbot
questions users to stimulate their critical thinking, inviting them to formulate hypotheses
onwhat they are observingwhile introducing the concepts of pH scale and indicators, acid
and alkaline solutions, and strong and weak acid/alkaline solutions.

In the meantime, children learn to interact with the platform through all the modalities.
When children complete the task, the free game starts. A set of testable solutions appear on
the counter, and the child can test their pH level independently. In this phase, the PCA
occasionally stimulates children’s curiosity by asking questions that can be answered by
interacting with the experiment (e.g., “Which substance is more acid? vinegar or lemon
juice?”).

At any time, if children have any doubts or curiosity, they can directly ask the chatbot,
which provides further explanation.

Table 8.1 describes how the elicited principles (Section 8.3) have been implemented in the
design of Albot Einstein

174

8.4. Albot Einstein

Table 8.1 – Implementation of the elicited design principles (described in
Section 8.3) in Albot Einstein

Design Principle Implementation

Interactivity All the explanation moments follow interactive moments in
which users can formulate and test their hypotheses

Clarity At the beginning, the PCA presents all the interactive elements
on the screen and their use

Realism The proposed experiment is a loyal reproduction of a real activ-
ity

Safety Children can test dangerous substances such as bleach risk-free
Parallelism Real-world instruments used to measure pH are described dur-

ing the experience
Rhythm Longer explanations are fragmented with questions, practical

examples, puns, etc.

8.4.2 Runtime Model
A platform able to guarantee such an experience presents three main requirements. To
be multimodal, the system has to process input from both communication channels syn-
chronously: the chatbotmust be aware ofwhat is happening on the interface and vice versa.
There needs to be more than synchronous communication; to be proactive, the chatbot
must take the initiative and send content to the interface through asynchronous communi-
cations. Finally, the experience must be flexible and adaptable with little effort, such that
new elements to identify or dialogues can be introduced when needed.

The backend architecture is built around two main modules, the Natural Language Pro-
cessing (NLP)Module and the DialogueManager, for the system to process simultaneous
inputs. The Dialogue Manager is responsible for conducting the interaction. Figure 8.2
exemplifies its functioning. The Dialogue Manager listens for input events, both textual
(in the chat) and graphical (on the GUI). In the first case, it sends the message to the NLU
module to identify the user’s intent and parameters, if any. To parse users’ messages we
use RASA, an open-source Natural Language Understanding Unit [120].

From this point, textual input and interface interactions are generic events and therefore
are treated in the sameway. Then, it processes the input is processed to produce the desired
output. Theoutput is alsomultimodal: the dialoguemanager produces both textmessages
for the chatbot and modifications on the GUI.

The dialogue manager bases decisions on a state machine that formally represents the de-
signed experience. A JSON describes the state machine; it specifies for each state a list of
possible inputs, and for each input:

• the chatbot’s utterances;

175

Chapter 8. Case Study: Albot Einstein, a PedagogicalMultimodal Conversational Agent

Figure 8.2 – Runtime model of Albot Einstein. Text input in the chat is
converted into events, and the interaction is captured on the GUI. The dia-
logue manager processes those events thanks to its process representation and

produces the output for all the modalities.

• the modifications of the GUI, in objects displayed and phases of the game;

• the next state of the user, given the input.

The design is flexible since the experience can be quickly modified only by acting on the
JSON. The communication system between the backend and the front-end leverages a
customWebSocket implementation to provide proactive interaction from the PCA.

8.5 Evaluation
8.5.1 Goal and Research Questions
We want to explore the potential of Multimodal Pedagogical Conversational Agents for
teaching STEM subjects, particularly chemistry.

To answer these questions, we run an experimental study with 28 children in a middle
school. These children have never studied the concept of pH at school. To assess the
role that the multimodal Conversational Agent plays in the application, we divided par-
ticipants into two experimental conditions:

1. Chatbot (C): participants interact with the multimodal Pedagogical Conversational
Agent (Fig. 8.3 a,c);

2. Interface (I): participants interact with a similar application, but the instructions
provided by the chatbot are replaced by textual prompts on the interface (Fig. 8.3
b,d), allowing learners to interact only through the Graphical User Interface.

176

8.5. Evaluation

Figure 8.3 – Application in the two experimental conditions. The GUI
is integrated with the Pedagogical Conversational Agent on the left-hand
side (a, c). Learners can interact directly by manipulating the interface and
through textmessages in the chat. On the right-hand side, the PCA is replaced

by textual information displayed at the bottom of the screen.

8.5.2 Participants
We recruited 28 children from amiddle school. All participants were aged between 10 and
14 (M=12) and balanced in gender (14 F, 14M). The participants from each group did not
differ on variables like gender, average age, and class they belonged. Participants were se-
lected from classes that had not previously studied the concept of pH. All the participants
joined the study voluntarily. Before the study, both the students’ parents signed a consent
form that explained the study’s purpose andprocedure and included all regulatory ruleswe
followed to guarantee the anonymity and privacy of the data collected. Before starting the
experimentation, children had to pick up a nickname to use in the activity, such that no
personal data was stored. Additionally, according to the assigned experimental condition,
each participant was assigned an identifier, C1-C14, and I1-I14.

8.5.3 Setting
Participants were met in a room individually, with the same setting for the two experimen-
tal conditions. Two members of the research team were present during the study, one to
guide the user in the experimentation process (i.e., the facilitator) and one to take notes on
the interview (i.e., the observer). Participants sat in front of a laptop on a table to interact
with the web application, with the facilitator next to them. The observer was also sitting
in the room with a laptop to take notes. In addition, the participant’s laptop was sharing
the screen with the observer, so the observer could watch the interactions on the screen
without interfering in the activities.

177

Chapter 8. Case Study: Albot Einstein, a PedagogicalMultimodal Conversational Agent

8.5.4 Methodology
Each participant was met individually in a semi-structured interview. The interview was
structured into four phases and lasted around 15 minutes. The ethical committee of our
research institution approved the protocol of the study.

Phase 1 – Preliminary assessment. Before the beginning of the interview, participants were
asked to choose a nickname among famous scientists’ names. Subsequently, students were
required to answer an assessment questionnaire. The questionnaire consisted of 10 closed
questions that investigated students’ prior knowledge of pH.

Phase 2 – Interaction with Albot Einstein. Once participants completed the preliminary
assessment, the facilitator introduced them to Albot Einstein. According to the experi-
mental condition they were assigned, the platform interface was different:

• Chatbot (C): the GUI was integrated with the Pedagogical Conversational Agent
(Fig. 8.3 a,c). Participants could communicate both through the Graphical User
Interface and the PCA;

• Interface (I): the PCA was replaced by a textual prompt at the bottom of the GUI.
The textual prompt showed the same information as the chatbot in the (C) condi-
tion, but learners could not interact textually with it (Fig. 8.3 b,d).

In both conditions, the facilitator asked participants to follow the instructions given by
Albot Einstein to accomplish two tasks:

1. T1: Complete the introductory mode;

2. T2: Successfully individuate baking soda, egg white, and vinegar pH.

The facilitator did not give any instructions not to introduce bias in the data. Observer
measured:

• Number of errors: errors committed by participants; errors were classified as Inter-
action errorswhen users use the interface not as intended, andGuessing errors, when
the users choose the wrong pH value on the scale;

• Requests for help: number of times the participants asked the facilitator for help.
Requests were classified into Interaction requests if participants asked about how to
use the interface, and Clarification requests, if participants asked about the didactic
content of the application.

At the same time, Albot Einstein logged:

• Time on task: the time spent executing task 1 and task 2; defined as the time elapsed
since the complete loading of the application page until the appearance of the com-
pletion message;

• Number of messages: in the chatbot condition, Albot Einstein logged the number
of messages sent by the user to the chatbot in every task.

178

8.5. Evaluation

Figure 8.4 – (a) distribution score of the assessment test before and after
interacting with Albot Einstein. (b) improvement of users’ scores in the assess-
ment test, computed as the difference between the final and initial tests. (c)
time on task for the two tasks in the two experimental conditions. (d) UES-SF

scores in the two experimental conditions.

Phase 3 – Assessment and User evaluation. Participants were invited to complete an as-
sessment questionnaire to verify the knowledge acquired in the interaction with Albot
Einstein. The questionnaire was the same administered during phase 1.

Then, participants had to complete UES-SF (User Engagement Scale - Short Form) [347]
questionnaire to measure their engagement with the application.

Phase 4 – Final Interview. The session concludedwith a semi-structured interview to qual-
itatively understand how users perceived the version of the platform used in their experi-
mental condition. The questions were:

• What is the thing you liked the most?

• What did you not like about Albot Einstein?

• Do you think Albot Einstein is useful for your education? Why?

179

Chapter 8. Case Study: Albot Einstein, a PedagogicalMultimodal Conversational Agent

8.5.5 Results
Competences assessment

All 28 of the participants successfully completed the study. As shown in Figure 8.4(a),
before playing with Albot Einstein, participants in Chat condition (C), scored on average
4.44 points out of 10 (N = 14, SD = 2.55), whereas in Interface condition (I), the average
score was 4.35 points out of 10 (N = 14, SD = 2.56). In both conditions, the scores
normally distribute according to the Saphiro-Wilk test (C : W = 0.916, p = 0.893; I :
W = 0.967, p = 0.862)

On average, the second test scored 7.32 points out of ten in C condition (SD = 1.90) and
7.09 points in I condition (SD = 1.90). Also in this case, according to the S-W test, the
conditions distributed normally (C : W = 0.916, p = 0.893; I : W = 0.967, p = 0.862)

We run a Repeated Measures ANOVA on the scores and we found that the difference in
the performances between before and after interaction was statistically significant (F =
45.84, p < .001). Yet, there is no statistically significant difference in the performance of
the groups in the two conditions (F = 0.07, p = .795).

Interaction

As shown in Figure 8.4(c), on average, students in C condition spent on average 3m54s
executing task T1 (N = 14,M = 3m54s, S.D. = 49s), and 58s executing T2 (N =
14,M = 58s, S.D. = 25s). T1 timings are distributed normally according to K-S test
(D(13) = .14, p = .2), whereas T2 ones are not (D(13) = .24, p = .03).

Students in I condition, instead, spent on average 2m17s executing task T1 (N = 14,M =
2m17s, SD = 25s), and 1m04s executing T2 (N = 14,M = 1m04s, SD = 18s). Both the
distributions are not distributed normally (T 1 : D(13) = .25, p = .01, T2 : D(13) =
.20, p = .03).

Participants in condition C were significantly slower than the ones in I condition in exe-
cuting T1, as shown by Mann-Whitney U test (U (NC = NI = 14) = 18, z = −3.68, p <
.001), whereas the same test did not find a significant difference in T2 timings (U (NC =
NI = 14) = 80.5, z = −.81, p < .42).

No participant committed any Interaction error that was unable to recover by themselves.
All the requests (both interaction and clarification) for the facilitator were solved in au-
tonomy by a more careful analysis of the application. Instead, participants made on aver-
age 1.21 and 1.64 guessing errors respectively in C and I conditions (C : N = 14,M =
1.21, SD = .80; I : N = 14,M = 1.64, SD = 1.28). None of the two distributions is
normal according to the K-S test (C : D(13) = .27, p = .01; I : D(13) = .34, p =< .001).
Again, no significancewas found in the difference between the two distributions byMann-
Whitney U test (U (NC = NI = 14) = 86.5, z = −.57, p < .57).

Participants interacting with the multimodal PCA sent from 4 to 7 messages per person
(N = 67,M = 4.77, S.D. = .89) during T1, whereas only one participant sent messages
in the second part (P11,N = 2).

180

8.6. Discussion

Table 8.2 –Users’ answers to the question “What did you like the most?”

Liked Aspect Conversation (C) Interface (I)

Fun experience 0 3
UX/UI 2 6
Explanations 1 3
Task T2 2 1
Chat 9 N.A.

UES-SF questionnaire data

All the participants completed the UES questionnaire after interacting with the platform.
The overall score, obtained as the average score of every question, is 3.78 in C condition
(M = 3.78, S.D. = .39) and 3.66 in I condition (M = 3.78, S.D. = .25) (Figure 8.4(d)).
Both distributions are normal according to the K-S test (C : D(13) = .17, p = .2; I :
D(13) = .14, p = .2). Though, there is no significant difference between the two distribu-
tions (t(26) = −.94, p = .35).

Qualitative interviews

We analyzed the data coming from the semi-structured interviews by running a thematic
analysis [119].

At the question ”What did you like the most?”, in C condition, seven participants said
the chat’s support and its role in the game, two said the second activity (T2), in which
they could identify the pH in autonomy, one the explanations inside the activity, and two
the interface and experience design. In I condition, instead, five people appreciated user
experience and interface design the most, three the explanations inside the game, three the
fun they had while playing with Albot Einstein, and one the second task.

In general, Albot Einsteinwas described as interesting [C1, I4, I9] and enjoyable [I1, I3, I5].
Nine participants highlighted that the experience was engaging (C:3, I:6). Many students
found the interface appealing (C:4, I:6) and intuitive (C9, I10, I12). Finally,many students
[I7, I9, I10, I11, I12, I13] felt confident about the competencies they acquired playing the
game. Students did not raise critiques if not for the brevity of the experience (C:2, I:4).

8.6 Discussion
Wewanted to assess the efficacy of Albot Einstein for learning the pH concept and explor-
ing the potentialities introduced by the multimodality in the interaction.

The difference in the efficacy of Albot w.r.t. interactive web platforms is not statistically
significant. Also, the effectiveness of the interaction is comparable, as shown by the same

181

Chapter 8. Case Study: Albot Einstein, a PedagogicalMultimodal Conversational Agent

content error rate in the two conditions. Though, users spendmuchmore time, on average
50%more, interacting with the chatbot than with the corresponding web interface.

Despite this difference that might indicate a more elevated cost of interaction, and thus
a worse experience, UES-SF scores highlight that users in the C condition did not report
a lower engagement than those in the control group (RQ2). Further study are necessary
to understand if this additional time is a limit of the conversational agent or, as suggested
by Spanjers et al. [348], this could lead to a higher substantive engagement. Such a con-
sequence would be proven to increase students’ motivation, and consequently to higher
long-term performances [349, 350]. In the future we aim at carrying out a new study in
which we compare also the information retention in the two conditions.

From a qualitative perspective, users recognize the efficacy of the interaction with the con-
versational agent, as themajority of them reported during the interviews and the increasing
interest in PCA shows [351]. Children are attracted by the PCA and are curious about it.
As the interaction continues, curiosity evolves into engagement: the chatbot is perceived
as a companion that makes the experience intuitive [C10], as a provider of helpful expla-
nation [C2], and as an agent that canmake “fun even subjects that [children] find boring”
[C3].

The interaction analysis shows that the design of the chatbot directly impacts users’ per-
ception during experience (RQ3), as highlighted by previous studies [342, 351]. As shown
by the difference in the number of messages exchanged in the two tasks, children interact
much with the chatbot at the beginning of the experience to focus on the GUI in the sec-
ond part of the activity. A dual nature of the role of the conversational agent in the ex-
perience emerges; in the first part, it is a tutor that introduces the children to the activity,
guiding them in the interaction while introducing the fundamental concepts of the sub-
ject. Then, as children learn how to play, the focus of the interaction is moved to the GUI.
Children do not need to be guided anymore butwant to act autonomously; a conversation
that guides them step by step would be redundant and burdening. At any time, children
could ask for further information from the PCA as if it were a teacher for the user. At the
same time, in the advanced phases of the game, the PCA can act as a facilitator, providing
hints on what the player is doing or increasing the engagement by giving children further
challenge to solve at a difficulty level that is adaptive to children’s capabilities.

Coherently with existing literature, evidence of the importance of multimodality was also
given from how errors occurred and were recovered [352, 353]. 10 participants out of 14
who used the chatbot asked the facilitator which modality to answer the PCA’s questions
(many were answerable using both modalities). At the same time, 5 participants in the C
condition used the chat instead of occasionally clicking on the corresponding elements.
These observations show how students feel natural the interaction with the multimodal
Pedagogical Conversational Agents since the first step of the interaction. Children imme-
diately understand their capabilities and their usefulness for their learning experience.

182

8.7. Conclusions

8.7 Conclusions
Wewanted to explore the adoption of multimodal Pedagogical Conversational Agents for
STEM education. To do that, we interviewed four experts who helped us elicit a set of
principles for designing tools that can guide the design process.

Following the principles, we implementedAlbot Einstein, a multimodal Pedagogical Con-
versational Agent, to teach children pH concepts. Interacting with it, children can exper-
iment in the first person on how to use red cabbage solution to measure the pH level of a
substance, grasping the concepts of acid and alkaline solutions and pH indicators.

We measured the efficacy of Albot Einstein in an experimental study in which we com-
pared the interaction and performances of students that played with Albot Einstein with
respect to the ones who tried the application deprived of the chatbot. Empirical measures
show no statistically significant difference in learning effect and user engagement in the
two interaction conditions. The interviews showed that most of the study participants ap-
preciate the presence of the chat in the experience, recognizing it as the best component of
the game-play.

We showed how such a Pedagogical Conversational Agents plays different roles during
the interaction experience [354]. The PCA is the tutor that introduces users to the plat-
form to explore the disciplines, supporting users in formulating their scientific hypotheses.
It proactively stimulates the child to discover new concepts and refine their observations
when needed. Finally, it acts as the teacher that explains the concept behind those obser-
vations, ensuring the correct understanding of the underlying scientific principles. Roles
are not constant, but the chatbot can switch from one to another, adapting to the user’s
particular needs and ensuring the best experience possible.

Also, the locus of the interaction changeswhile the experience is evolving; our observations
show how users tend to rely more on the chatbot in the first phases when they have more
need to be guided, to then concentrate more on the GUI once they understand how the
application works.

Our research is not exempt from limitations. Despite being rigorous, our study only con-
centrates on the immediate retention of the information rather than investigating the long-
term. In the future, we aim to test our product on a broader audience and verify its effec-
tiveness in the long-term scenario. In addition,wewant to test such agents in others subject
to see how they perform in various domains.

Our research explores the study ofmultimodal Pedagogical Conversational Interfaces that
experience designers and educators can leverage to stimulate the benefits of informal learn-
ing in a digital environment and create games that can raise children’s awareness and inter-
est in STEM disciplines.

However, the design process of Albot Einstein required a custom technological solution
that required a considerable time investment for its realization. In the next chapter, we
present an online authoring tool that allows the generation of a backend that supports
multimodal conversational interaction through a drag-and-drop block interface.

183

Chapter 9
A Low-code Authoring Tool for
Multimodal Conversational Agents
9.1 Introduction
In the previous chapters, we defined amodel to describe strongly integrated conversational
agents and showed an example of how to employ it to designAlbot Einstein, amultimodal
pedagogical conversational agent. Although the use of themodelwas successful, themodel
we presented supported Albot Einstein’s realization only during the design phases, requir-
ing us to create a custom architecture to manage multimodality during conversational in-
teraction.

We want to automatize the creation of the structure of the conversational agent. We ob-
serve that multimodal task-oriented conversational agents, even if support different pro-
cesses, present common functionalities in the backbone structure: a process manager that
rules the interaction, a conversational engine that translates users’ input into natural lan-
guage and produces conversational outputs, and a system to manage inputs and outputs
on the others modalities.

In recent years, low-code andno-codeprogrammingparadigms emerged to enable abroader
population to ease access to programming software. These are platforms on which users
can typically define the behavior of the programs through graphical user interfaces, and
the platform automatically transforms them into executable software [355].

The difference between the two families is thin and related to the possibility of customizing
the behavior of the programs by adding user-written code, whereas in no-code applications
users only can compose pre-defined blocks [356].

Today, there are low-code/no-code applications for many domains, such as web develop-
ment, smartphone application programming, coding education, robotics, andmanymore.
The recent success of conversational agents leads to the birth of such chatbot platforms.
Conversation designers can define the conversations typically through some flowdiagrams
or question-answer pairs, provide examples of users’ utterances to train the natural lan-
guage processing engine, and the platform automatically deploys a conversational agent
ready to be inserted on an existing interface or used through common messaging applica-
tions.

However, Multimodal Conversational Agents do not profit from a generation tool de-
signed with this form of interaction inmind, despite the recent breakthroughs of this new
paradigm and the popularity of chatbot-generating tools.

185

Chapter 9. A Low-code Authoring Tool forMultimodal Conversational Agents

For this reason, we want to build on top of our model a tool that allows programmers to
define a multimodal interaction flow graphically, and it automatically carries out several
backend setup tasks, such as communication structure, event handling, and NLP engine
maintenance.

In this chapter, I will describe the design and the implementation of this tool, bringing
major contributions:

• An analysis of the existing conversational agents authoring tools;

• The design and the implementation of an interface to author multimodal conversa-
tional interfaces;

• An empirical evaluation of the interface.

9.2 Background
9.2.1 End-User Development
End-User Development (EUD) refers to tools that let non-professional developers build
complex data objects and software products without having to have a deep understanding
of programming [357]. Scripting languages, spreadsheets, graphic programming, trigger-
action programming, and natural language programming are just a few instances of pro-
gramming by example.

The most utilized EUD tool is a spreadsheet [358]. They are programming environments
with first-order functional programs as their formulas [359]. The outcomes of the formu-
las are the calculated output values, and the said formulas may relate to input variables
denoting cell names.

The programmable environment is portrayed in end-user languages as visual metaphors
that adhere to condition-action principles. The goal is to lessen the cognitive load by clos-
ing the conceptual gap between programming and real-world operations [360]. For in-
stance, while using a spreadsheet, entering a value into a particular cell corresponds to ini-
tializing a variable with that value and the cell’s name as the variable.

9.2.2 Low-code and no-code development platforms
Twonew, disruptive paradigms—low-code andno-code development—have been attract-
ing more and more attention among the branches of EUD (figure) [361]. They offer a
graphical programming environment that enables people with no programming skills to
utilize it and enables programmers to quickly and automatically develop programs and
applications.

186

9.3. Conversational Agent Generation Tools Analysis

Low-code platforms enable developers to customize an application for a particular use case
or functionality, generally using graphs and forms [361]. These applications are devel-
oped utilizing declarative, high-level, and graphical abstractions, cloud computing infras-
tructures, automatic code generation, andmodel-driven engineeringmethodologies [355].
These platforms are primarily cloud-native.

Platforms of this kind are designed for usage by expert developers because low-code pro-
gramming requires some level of coding proficiency or aptitude for technical subjects. In
most circumstances, more granularity and experience ensure that the outcome of this pro-
cess is of higher quality and more production-ready.

Low-code authoring tools bring several benefits to the programming process, such as sav-
ing time and improving overall productivity, reducing the need for specialized skills, and
offering a satisfactory degree of freedom to the developer at the cost of some technical skills
required.

No-code development, instead, overcomes that barrier, providing easy access to program-
ming only exploiting a graphical user interface at the cost of less flexibility of the tool.
IFTTT is the most famous example of a no-code platform. It is an online application that
allows the definition of ECA rules (event-condition-action) through the formula If This
ThanThat. GeCoAgent andDSBot, presented in chapters 2 and 3, can also be considered
no-code platforms.

9.3 Conversational Agent Generation Tools Analysis
This section examines the major players in the panorama of low-code and no-code tools to
generate conversational agents. Being those mainly commercial products, we ran our anal-
ysis looking at the survey presented in the major technology magazines and blogs. Even
if it is not a comprehensive list, we were interested in the technological and design solu-
tions implemented by the most popular and the fastest-rising platforms as case studies of
successful paradigms to define conversational interaction.

We analyze the platform along four dimensions:

1. Input processing. We examine how the platform processes users’ input, whether
the processing is transparent to developers, or they must configure a Natural Lan-
guage Processing (NLP) engine, and which information those engines can identify
and extract.

2. Dialogue Definition. We examine how the dialogue is modeled and how develop-
ers have to describe the structure of the conversation to generate the conversational
agent.

3. Integrations. We examine how different CA generation platformsmay offer differ-
ent functionalities in their development kits, such as the integration with chat ser-
vices like Slack, FacebookMessenger, andWhatsapp, or with development-specific

187

Chapter 9. A Low-code Authoring Tool forMultimodal Conversational Agents

services such database providers, testing platforms, cloud functionalities, or version
control software, in addition to functionality service support.

4. DeploymentModality.Weexaminehow, once the conversationhas beendesigned,
the developer can deploy the conversational agent in an application.

9.3.1 Dialogflow
Google’s Dialogflow is one of the most well-known and acclaimed CA-generating tools.
It is an entire set of tools that includes everything from the original design of a CA to
validation, testing, and user behavior analysis.

Usage Target users for GUI-based applications include not just developers but also non-
programmers such as CA designers. However, unlike typical chatbot developers, its user
interface is not built on a drag-and-dropprocedure. First and foremost, CAdesignersmust
initialize intents and entities. The former specifies all the actions an end user wishes to
accomplish, while the latter are the objects of the context of the entire conversation flow.

The potential to develop a conversational agent utilizing pre-builtmodels likewise deserves
consideration. By doing so, CA designers may quickly build their chatbot with minimal
customization and without the hassle of declaring intents and entities, saving time over
starting from scratch.

Integration. Dialogflow has a large selection of plugins for integrating external services.
There are all the most popular messaging platforms (such as Telegram, Facebook Messen-
ger, and Slack) and direct telephonic integration, enabling users to communicate with the
chatbot by voice.

Input Processing. Dialogflow allows CA designers to train entity/intent recognition
using regular expressions. The platform also includes NLP for phrase matching with the
ability to extract parameters from the processed text. The platform’s enterprise edition
allowsCAdesigners to use sentiment analysis to categorize input. Additionally, more than
50 languages support these natural language processing functions.

9.3.2 IBMWatson
Due to its extensive market presence and functional capabilities, IBM Watson1 might be
compared to DialogFlow.

Usage. The IBMWatson user interface provides a full range of tools while maintaining
a simple design for new developers. It permits the definition of entities and intentions,
just like DialogFlow. Machine learning enters the picture when developers describe such
variables; thus, CA designers are urged to use as many instances as possible. By relying on

1https://www.ibm.com/watson

188

https://www.ibm.com/watson

9.3. Conversational Agent Generation Tools Analysis

the definition of blocks, it is also feasible to structure the dialogue into a tree-like struc-
ture. Each block represents a phase of the chatbot dialogue. CA designers can match the
previously defined entities and intents inside each block.

Integration. Dialogflowpresentsmany integrations fordeploying conversational agents
on multiple channels (chat applications, text messages, phone calls, etc.) and supporting
popular applications, such as web searches, CRM applications, and databases.

Input Processing. A powerful NLU engine is a critical component of IBM Watson.
Speech recognition, phraseparameter extraction, and text processing are all fully supported.
When raw text is provided as input, sentiment analysis—which is also supported—helps
identify the most appropriate entity and intent.

9.3.3 Amazon Lex
Lex is a platform for natural language processing offered by AmazonWeb Services (AWS).
Amazon provides the essential characteristics necessary to create a pre-built conversational
agent in addition to the NLP engine.

Usage. The user interface for Amazon Lex does not use conversational blocks. The CA
developersmust set up all the actions they anticipate chatbot users to take because the inter-
face is intent-based. Setting up intentions also entails giving several examples of questions:
Automatic processing by the NLU engine results in updates to the conversation agent
model. Additionally, the platform enables developers to create entities, or slots, which CA
designers may then put in persistent variables.

Integration. Althoughhaving coding skills is not a requirement, AmazonLex function-
alities canbe further expandedusing theAWSdomainbecauseCAdevelopers can interface
their conversational agent with every Amazon cloud computing tool accessible. Software
developers can increase the functionality of their agents by having them run custom code
using AWS Lambda. Like DialogFlow, development-specific features are restricted to the
Amazon environment, and integrating cloud services other than AWS is challenging.

InputProcessing. Lex’s robustness is dependentonAmazonWebServices (AWS).Ama-
zon guarantees to have all themachine learning resources necessary tomaintain a powerful
NLU engine. Lex does provide NLP support for parameter extraction and storage (the
slots), ranging from basic regular expression to in-depth sentiment analysis.

9.3.4 Azure Bot Service
Azure Bot Service is the set of conversational services provided by the Microsoft Azure
computing platform.

1https://aws.amazon.com/it/lex/
1https://azure.microsoft.com/en-us/products/bot-services/

189

https://aws.amazon.com/it/lex/
https://azure.microsoft.com/en-us/products/bot-services/

Chapter 9. A Low-code Authoring Tool forMultimodal Conversational Agents

Usage. Azure Bot Service requires the knowledge ofC# programming language and pro-
gramming skills to set up the project, integrating the various services offered by the plat-
form.

Integration. The Azure Bot framework provides native channel integration. The in-
termediate Bot Framework tier receives messages from several supported sources and inte-
grates and transmits them to the Bot program, which forwards them to the NLU engine.
Additionally, advanced developers can create their own external channel integration with
moderate effort.

Input Processing. After the code setup is finished, CA designers can use the LUIS nat-
ural language processing engine. This Microsoft NLU utility offers all the standard func-
tions for processing input: Speech recognition, regular expressions, NLP, parameter ex-
traction, and sentiment analysis.

9.3.5 FlowXO
FLowXO is an online service to create a chatbot centered around the idea of conversation
flows.

Usage. This service creates a flow throughout the entire chat. A linear list of blocks
is used to provide the user interface. By placing conversational chunks along the stream
one below the other, CA designers can construct the chatbot experience. A piece of logic
known as a conversational block allows CA designers to choose the entered answers and
offer responses. Simple text responses, selections, and yes/no dialogue confirmations can
all be sent.

Integration. In order to connect with social networks, FlowXO offers adapters. In ad-
dition, a chatbot can call outside services to improve functionality. User activity analytics
are also supported.

Input Processing. Native natural language processing is not supported; developers are
requested to enter many potential user responses or utilize regular expressions. Addition-
ally, filters are used to produce conversational logic. CA designers can project conversa-
tional paths by enhancing end-user historical responses. There is no branch visualization
because the entire discussion is structured along a single linear flow, including optional ut-
terances. For these reasons, FlowXO is better suitable for designing straightforward chat-
bots or task automation executors than for producing conversational agents that resemble
people. Its most significant advantage is simplicity: a CA creator without programming
knowledge may perform an entire automator in minutes.

1https://flowxo.com/

190

https://flowxo.com/

9.3. Conversational Agent Generation Tools Analysis

9.3.6 RASA
RASA is an open-source framework to create task-oriented conversational agents.

Usage. Most of this framework’s experience is code-free, and CA designers can only
construct conversational agents using the GUI. Despite this, RASA provides a complete
development kit to expand its features. Using the library offered, it is possible to create
customized agents that can do operations programmatically, retrieve data from external
services, or carry out operative system tasks. The RASA UI is jam-packed with features;
therefore, this framework has a steep learning curve. However, beginners can begin devel-
oping their own CA by selecting the interactive learning option, which enables training
the agent through interactive chat using real-world examples.

Integration. RASA provides many options for integrating outside services. CA design-
ers have access to the library or Twilio integration tools. If this is still insufficient, the
integrations of RASA can be expanded by forking the project.

Input Processing. The primary purpose of RASA is to process natural language us-
ing neural techniques. Anyway, regular expressions can be used to identify basic speech
patterns without any training quickly. Moreover, RASA facilitates the extraction of pa-
rameters from phrases in order to construct new entities and intents. Both volatile and
persistent parameters are possible.

9.3.7 Xenioo
A comprehensive chatbot generation platform is available from Xenioo. It is thought for
CA designers without any programming experience.

Usage. Making a personalized conversational agent is a simple process. Different behav-
iors that correlate to various end-user intents can be created by developers. Each behavior
is linked to a distinct canvas where a graph of interactions can be defined. Each interaction
is tied to the questions the conversational agent asks the user. Depending on the user’s
responses, the flow moves to a different intended interaction. Multiple interactions and
multiple ones can address a single interaction. The resulting structure is a graph, and in-
teractions are therefore represented by blocks that are logically connected by links. Addi-
tionally, CA designers can start with pre-made conversational agent templates andmodify
them to suit their requirements.

Integration. In order to install the chatbots on themost popular channels, Xenioo pro-
vides a number of ready-made plugins. Additionally, programmers can design their social
network connectors.

1https://rasa.com/
1https://www.xenioo.com/

191

https://rasa.com/
https://www.xenioo.com/

Chapter 9. A Low-code Authoring Tool forMultimodal Conversational Agents

Input Processing. Numerous input recognition features powered bymachine learning
are available on Xenioo. Using regular expressions, extracting sentence parameters, and
NLP are all supported. Xenioo provides a few functional variables that can be used in
the conversation flow to the CA designer, and the latter can also create new ones based
on prodded utterances. The platform supports multimodal chatbot input. CA designers
can make non-textual interaction blocks. There are several acceptable types of responses,
including buttons, targeted input listening (perhaps with NLU), and option selections.
However, developers can only add input elements within chat and customize them using
conventional technologies; therefore, even if this multimodality support is quite robust, it
is not a complete integration.

9.3.8 Landbot.io
Landbot.io is a no-code conversational agent generation platform.

Usage. Landbot.io is based on a straightforward graphical user interface, and CA de-
signers can create their conversational agents by using a canvas with pre-built blocks. By
dragging and dropping the required blocks and connecting them, it is possible to build a
conversational flow. Each block corresponds to a prompt question that will be presented
to the user—various methods of requesting feedback, such as multiple choice with but-
tons.

Integration. Landbot.io can be natively integrated with web applications and What-
sapp and provides a set of pre-built integrations with CRMs, CMSs, and third-party ap-
plications.

Input Processing. The creators of conversational bots must rely on regular expression
matching because this platform, like FlowXO, does not allow natural language processing.
This platform is better suited for the straightforward development of conversational agents
with minimal developer experience.

On the other hand, DialogFlow integration was made possible by Landbot.io. The can-
vas can then import a DialogFlow block to take advantage of its NLU features. By doing
this, CA designers can preserve a simple, graph-based dialogue representation while rely-
ing on a reliable natural language processing engine. Landbot.io also offers a rudimentary
multimodal chat capability, similar to Xenioo: instead of sending the user only text, CA
designers can send choice buttons, forcing the user to respond unequivocally.

9.3.9 Chatterbot
Chatterbot is an example of a programming library, specifically in Python, that makes it
simple for programmers to create conversational agents and handle user input. In contrast

1https://www.landbot.io

192

https://www.landbot.io

9.3. Conversational Agent Generation Tools Analysis

to the software produced by platforms or frameworks described before, this library’s out-
put is still being prepared for deployment since it must be inserted in a web application.
On the other hand, developers are granted more authority, and service integrations have
no restrictions.

Usage. Being a Python library, CA designers need to be able to code with Chatterbot.
Developers must include optional integrations while initializing the chatbot tool and im-
porting the constructors (Database URL, storage adapter, and logical adapter). The chat-
bot instance can then be “trained” to recognize input data: Chatbot creates conversational
graphs that represent the interactions’ cycles. Developers are not required to explicitly set
up loops or branches because logic is performed internally by providing conversational
input, which is then turned into the graph.

Integration. Being a code library, Chatterbot requires developers to integrate it with
every service they want manually. Natively, this library only offers integration with the
Django framework to build the server hosting the conversational agent.

Input Processing. By focusing on the generation of graphs, Chatterbot provides a na-
tive natural language processing engine. However, this functionality is constrained be-
cause sentiment analysis and other advanced language processing features that rely on ma-
chine learning are not supported. However, developers can integrate external NLU ser-
vices (like LUIS or RASA) that offer APIs by creating their custom adapters.

9.3.10 Pandorabots
Pandorabots is a framework for creating conversational agents targeting conversation de-
signers and developers without coding knowledge.

Usage. Developers can use various techniques to build their agents using a dashboard
view. CA designers can rely on an interactive conversation design modality where user in-
tents can be defined. On the other hand, using Artificial Intelligence Markup Language
can result in more control (AIML). With that information, programmers created a pro-
cessing category that has two properties: pattern, which denotes the user input that needs
to be intercepted, and template, which denotes the relative chatbot utterance.

Integration. Some external channels have native integration in Pandorabots. Custom
interaction support can be developed for particular social networks.

Input Processing. Developers must match and record all potential patterns resulting
from user input using AIML. This recognition is not based on a machine learning engine

1https://chatterbot.readthedocs.io/
1https://home.pandorabots.com

193

https://chatterbot.readthedocs.io/
https://home.pandorabots.com

Chapter 9. A Low-code Authoring Tool forMultimodal Conversational Agents

but on regular expression matching. Therefore, this strategy can be viewed as being ex-
tremely inadequate, especially when dealing with unanticipated user input.

9.3.11 Xatkit
Xatkit is the result of an alliance between Berger-Levrault and theOpenUniversity of Cat-
alonia [362]. It was created to simplify the deployment of chatbot services in government
portals, to be tailored around the e-commerce experience.

Usage. Xatkit includes a robust software development kit (SDK). Programming in a
domain-specific language (DSL) is the development methodology. CA developers must
write the code for their Xatkit conversational agent in the platform’s programming lan-
guage before compiling it. Options exist for recognizing intents, entities, and extensive
data.

Integration. Xatkit can be easily integrated withWooCommerce andWordPress to en-
hance the customers’ shopping experience.

Input Processing. Xatkit presents several built-in conversations that the developer can
expand by adding FAQs question-answers pairs from a dedicated GUI.

9.3.12 Discussion
The conversational agents generating tools discussed above come in various varieties. The
most common method of tool provision is through an internet portal (PaaS). Others are
provided as frameworks, allowing for on-site installation. The only service offered among
those listed is Chatterbot, while others allow use as external callable services. These varia-
tions increase the accessible feature set and complicate comparability.

However, from a functional standpoint, most of them rely on the paradigm of conversa-
tional creation. It is necessary to determine the most likely explanation in a more straight-
forward scenario. Most of the time, this results in a close relationship between the conver-
sational agent’s actions (the intents) and how these actions are represented (the end user’s
utterances), which may cause observable development bottlenecks.

Multimodality is only offered in the context of chat when it is accessible. Because con-
trols on website UI elements are never provided, this limits the options available to CA
developers. Many CA frameworks do not provide any multimodality support at all.

The construction of complicated conversational botsmay be severely hampered by the fact
that NLU-related properties are not always available. Additionally, most of the time, AI-
powered applications are proprietary, making integrating them with other services chal-
lenging. On the other hand, the modular design of RASA and its ability to be accessed
through an external API help to address the drawbacks mentioned above partially.

1https://xatkit.com/

194

https://xatkit.com/

9.4. System Overview

Nearly all of the tools offered for dialogue design mode rely on a GUI. The GUI often
makes it simple to define intent and entities, and it occasionally uses a block-based interface
to describe the conversational flow. InRASA, hybrid development—which uses code and
a GUI—is only available as an advanced capability.

These considerations are the foundation of the platform design we will present in the rest
of the chapter.

9.4 System Overview
Our platform is an online authoring tool that allows to:

1. Design the interaction flow with task-oriented multimodal conversational agents;

2. Define the events on every modality that make the interaction proceed;

3. Define the system feedback on every modality;

4. Specify advanced custom operations through snippets of code;

5. Train a conversational agent to recognize users’ utterances;

6. Deploy andmanage running applications, exposing a set of APIs developers can use
to integrate the multimodal frontend.

Since, coherently with the model described in Chapter 7, the whole representation is cen-
tered around the concept of event, this authoring tool is agnostic from themodality: it can
work with the combination of a task-oriented conversational agent (written or text-based)
and any other modality (one or more). The frontend will be in charge of translating the
events into outputs declined on the various modalities.

Once logged in, the developer can select the project on which to work from a list of all the
available ones. Once a project is opened, developers can define the Process Diagram on a
canvas by dragging and dropping task blocks and gateways.

Then, they can open every item in the Process Diagram to define its Interaction Diagram.
The authoring tool supports a condensed version of this diagramwhere the statemachines
of all the modalities are condensed into a single one. In the Interaction Diagrams, devel-
opers must specify which are the output events, i.e., that will be processed by the frontend
to generate the (multimodal) output, the snippets of executable code necessary to fulfill
the task (e.g., third-party services calls), and the users’ events that correspond to the trans-
actions on the Interaction state machines. If these events must be recognized from user
input, developers must provide sentence examples so that the Natural Language Unit can
be trained accordingly.

195

Chapter 9. A Low-code Authoring Tool forMultimodal Conversational Agents

Figure 9.1 – An overview of how the system works.

Finally, with only the push of a button, the system automatically transforms the project
into an executable backend, comprising the parsing of users’ utterances and the manage-
ment of the state machine, and provides developers with an API-based interface to inte-
grate it with the frontend. Figure 9.1 shows a high-level representation of the generation
process.

9.5 Implementation
9.5.1 Frontend
The frontend is a web application developed in React. It is composed of five main pages:

1. A login page, where developers can authenticate;

2. A projects page, where developers manage their projects;

3. A process diagram authoring page, where developers define projects at task diagram
level;

4. A task diagram authoring page, where developers define projects at interaction dia-
gram level;

5. An eventmanager page, where developers define user events and provide samples to
train the NLU unit.

Once developers log in, the platform shows them the projects they created. They can create
a new project or select an existing one from the projects page.

196

9.5. Implementation

When a project is selected, the process diagram authoring page opens. The process defi-
nition occurs through drag and drop interaction: users can select the type of blocks they
want to insert from the list on the left and drag them on the canvas. Then, they can con-
nect the blocks to define the order of the tasks. The closing symbol is automatically added
when a gateway is added to the project. An arbitrary identifier is given to the blocks added;
developers can modify them to increase the readability of the diagram.

Developers can access the interaction diagram of every task and gateway through the op-
tions menu associated with each block. The interaction diagram page interface is similar
to the process diagram one, except for the type of blocks users can add to the process.

Every block in the diagram presents a drop-down menu from which the developer can
specify the event linked to the transaction that brings to the block itself. All the events
already inserted in the project are present in the list. Developers can click on the “Add new
event” option to open the event manager pane. When a new event is added, the developer
must specify if the event is generated through a message in natural language sent by the
user or if it is generated by the other modalities or the system. In the first case, developers
are also required to insert a set of training samples for the NLU unit.

Finally, once developers define the whole diagram, they can deploy it by pushing the play
button. At that point, the whole project is transformed into a single JSON representing
the schema, which is validated through a formal algorithm that checks if the schema is
valid. If so, it is merged with the information about the events and sent to the backend so
the deployment can start.

9.5.2 Backend
The backend is a server in Python that, in addition to communicating with the frontend
and providing it with the information it needs to run the application, is responsible for
transforming projects into executable instances and managing them.

The JSON received by the frontend is split into its parts and sent to three main modules:

1. The statemachine generator, in charge of generating the data structure representing
the state machine on which the interaction will be based at runtime.

2. The event trigger generator, in charge of configuring the event trigger module, i.e.,
the unit that receives users input from the backend and triggers the corresponding
event that makes the state machine proceed.

3. The NLP generator, in charge of creating and training a RASA instance for the
running project.

The generated project comprises a folder whose structure is illustrated in Figure 9.2. In-
side the project folder, we find a handler for events triggered by the frontend and generates
the responses, one thatmanages the connectionwith the user application through Python
WebSocket, a file that manages the state machine, and a folder containing the NLUmod-
ule, with the handler and the model trained during the generation.

197

Chapter 9. A Low-code Authoring Tool forMultimodal Conversational Agents

Figure 9.2 – Backend genreated

9.6 User Evaluation
We conduct an empirical evaluationwith 15 participants to assess the efficacy and usability
of the authoring tool. During the study, we gather quantitative and qualitative variables
to answer the following questions:

• RQ1: is the tool perceived as usable?

• RQ2: are developers able to use it in autonomy to define the backend structure of
a multimodal conversational agent?

• RQ3: which is the potential for adoptability of the tool?

9.6.1 Participants
We recruited 15 participants on a voluntary basis. To join the study, participants had to
have a degree in computer science or work as a developer for at least three years.

None of the users had seen or used the tool before, and their average ages ranged from 23
to 30 (M = 25.27). Participants in this study took on the role of Conversational Agent
designers and identified them through a code (P-1 to P-15). Before the study, the partic-
ipant gave their agreement by signing a paper describing the objectives, procedures, and
legal standards followed to ensure the confidentiality and anonymity of the data collected.

9.6.2 Setting
The study took place in a dedicated room in presence. The participant sat at a table in front
of a computer, with a facilitator next to her/him, whose goal was to illustrate the task and
guide the interview. On the side of the table, an observer looked at what the user was doing
through a screen that mirrored the participants’ one and took notes about the interaction.

198

9.6. User Evaluation

Figure 9.3 – Process diagram of the conversational agents that study par-
ticipants had to implement

Figure 9.4 – Interaction diagram of the “obtain generalities” task that
study participants had to implement

9.6.3 Procedure
The experimentation consisted of individual interviews, was divided into four phases, and
lasted around 25 minutes per participant.

Phase 1: Demographics and introduction.

Users were welcomed by the facilitator, who asked them to fill out an anonymous form
about their demographics. We collected age, gender, education level, and degree of famil-
iarity with chatbot programming. Then, participants were introduced to the interface and
the conversational agents they would have to implement during the session, represented
in the diagram in Figure 9.3. We gave them the description in the form of the task diagram
since the design of the interface through the model was not part of the evaluation.

Phase 2: Project creation and process diagram definition.

Participants had to create a new project from the project page, open the process diagram
authoring page and implement the diagram shown in the previous phase (Fig. 9.3). We
asked participants to think-aloud in order for us to be able to understand the reasoning
users were making when using the interface.

199

Chapter 9. A Low-code Authoring Tool forMultimodal Conversational Agents

Phase 3: Interaction diagram and events definition.

Once defined the process diagram, users had to open the interaction diagram page corre-
sponding to Obtain Generalities task, illustrated in Figure 9.4. In addition, they had to
define all the events included in the diagram. Participants were free to decide on which
modality the event would have been triggered, with the constraint of defining at least two
events launched through textual messages and providing at least two examples to train the
NLU unit.

Phase 4: Final Evluation

In the last part of the session, we asked participants to answer two evaluation question-
naires: SUS [180] and NASA-TLX [182]. Finally, we conducted a semi-structured inter-
view based on the following questions:

1. Which elements of the application did you like the most?

2. Which elements did you like the least?

3. Would you use the tool in a real project?

4. What would you modify inside the interface?

9.6.4 Results and Discussion
Theuser evaluations of usability that have been gathered, alongwith the remarks that users
have provided in the part of open-ended questions, indicate a very positive impression.
According to Sauro [123], the tool’s score on the SystemUsability Scale surveys, using the
Brooke-identifiedmethod [180], was 83.3 with a deviation of 7.8, placing it in the top 10%
and designating it as Excellent.

According to Grier [186], using the findings of the NASA TLX to assess the workload of
the tool on the user, we received an overall score of 40.08, which puts the product barely
above the 30% percentile. This score, along with 50% of the measured global workloads,
lies between 36.77 and 60.00.

With a standard deviation of 1.52 and 2.01, 100% of users could complete both tasks in an
average of 4.35 minutes for the first task and 7.29 minutes for the second.

These assessments were examined using a thematic analysis [119] and went well with the
user’s general remarks in the last unstructured interview. The tool was deemed simple to
use and learn by eight users [P-2, P-3, P-4, P-8, P-9, P-10, P-11, and P-13], while it was
deemed intuitive by two users [P-8, P-13], as well as simple to use [P-6], efficient [P-10],
and accessible [P-11]. Four users spoke about howmuch they appreciated the tool’s clarity,
which was communicated through its graphical aspects, and how “blocks and connectors
considerably aided their thinking process,” [P-2, P-4, P-11, P-13, P-14] in a user’s words [P-
9]. The same user clarified that they believed the tool’s simplicity resulted from the fact
that most of the principles it uses, such as block schemas and gateways, are well-known to
computer scientists.

200

9.6. User Evaluation

Users who frequently go through the process of creating an MCA as part of their job or
research [P-4, P-5] and students or anyone looking to approach chatbots [P-1, P-2, P-8, P-
9] are listed as the tool’s primary stakeholders and beneficiaries, but in reality, anyone with
instructions [P-3, P-7] can use it.

Additionally, all of them said that they would use this tool if they were to construct a
multimodal chatbot. This tool was specifically viewed as appropriate for straightforward
projects [P-1, P-2, P-4] that do not go to the production stage [P-4], for educational or
academic objectives [P-4], and generally as a substitute when it is not necessary to create
the agent from scratch [P-5].

Users contrasted the toolwith other graphical tools that are currently available, like draw.io
(now diagrams.net2)[P-4, P-14], tripetto3 [P-12], and Dialogflow [P-10, P-15]. Most com-
parisons were used to showcase this tool’s advantages and draw attention to its functional
shortcomings in contrast to other tools. Despite the contrary, users still thought this inter-
face should offer comparable commands to interact with the canvas as the other graphical
tools. Their justification for this is that consumers become frustrated when expected be-
haviors associated with actions like a double-click or right-click do not materialize [P-4].

Users talked about the tool’s usability, and clarity of the model used when using it or com-
mented on specific aspects.

The model’s hierarchical structure was well-liked by users [P-6, P-13] and, in the words of
P-6, “makes things easier for larger models.”

The fact that events of a particular transaction were to be associated with the condition
they caused rather than the transaction itself was the trait that sparked the most debate
and confusion. Almost all users were confused about where to add the events [P-2, P-3,
P-5, P-6, P-7, P-8, P-11, P-12, P-14] as a result of this unnecessary complication. As a result,
many users assumed the event was generated by the backend rather than the one they had
received when they noticed it graphically inside the state. Direct suggestions were made to
move the event from the state to the transaction by P-2, P-4, P5, and P-6.

Users frequently pointed out notation as a problem as well. Three users [P-4, P-5, and
P-10] needed the assistance of facilitators because they struggled to decide whether to use
a state or a logic block. A similar issue occurred when defining events: only five users
correctly identified the events to be used [P-4, P-5, P-6, P-7, P-8], and six users were unable
to fill out the utterances field [P-1, P-3, P-7, P-11, P-12, P-13] when given the option to
choose whether an event is ui-related or conversation-related.

The interface offered no explanations or guidance in either instance, but it stands to reason
that notations issues would diminish following good onboarding andwith instructions or
a guide attached to the tool.

2https://app.diagrams.net/
3https://tripetto.app/

201

https://app.diagrams.net/
https://tripetto.app/

Chapter 9. A Low-code Authoring Tool forMultimodal Conversational Agents

Many errors and comments also came from the Start and End blocks. Almost all users
instinctively added them to themodelwhen they saw them in themenu. However, because
they thought of them as tasks, they sought to change their names [P-5, P-6, P-7, P-8, P-
10] or used them for “welcome” and “goodbye” activities [P-1, P-2, P-5, P-6, P-7, P-8, P-
10, P-13, P-14]. P-13 suggested allowing users to mark jobs as initial or final while not
separating them from typical tasks. P-11, on the other hand, recommended that since they
are necessary, they should be fixed someplace on the canvas from the start.

Two people also provided feedback on the magnitude of the events. P-6 and P-15 initially
believed that events were local to a state and not global because all 15 users generated events
as required to do so and used the “add event” feature that showed up in each state’s drop-
down menu. Even though it wasn’t obvious at first, P-6 said that it “makes sense and is
useful that events are genuinely global.”

Minor problems with the user experience were also found, including broken connectors
and an offset in the dropping of objects onto the canvas. However, because they had a
minimal impact on the user experience, they were declared irrelevant to the discussion.

9.7 Conclusions
In this chapter, we presented the process that led to the design of an authoring tool to
graphically generate the behavioral logic of multimodal conversational agents. We started
by analyzing the available platforms for authoring conversational agents to understand the
most successful interaction paradigms that are worth exploring.

Then, we implemented an authoring tool based on a drag-and-drop block interface that
developers can use to build their application’s backend graphically. The programming
process consists of three steps: the definition of the process diagram, the interaction dia-
gram for every process block, and the events that trigger a transaction in the state machine.
Then, with the push of a button, the structure is validated, and, in case of a positive out-
come, the backend is automatically generated.

An empirical evaluation shows the potential of such an interface: the tool is perceived as
easy to use and has a high potential for adoptability. Developers appreciate the intuitive-
ness of the block-based interface, the possibility of rapid prototyping strongly integrated
conversational interfaces, and the possibility of concentrating on the interaction design
rather than on the technicalities of the implementation.

Our platform is not exempt from limitations; it must be considered as a prototype that
needs to be expanded, introducing additional features and functionalities, such as collabo-
rative options and a more powerful authoring interface. However, it is the first attempt of
a new class of tools to create more powerful conversational interfaces that support users at
360-degrees.

202

Chapter 10
Conclusions
10.1 Discussion: a summary of the contributions of the

thesis
We are approaching the end of this journey. We started with designing a multimodal con-
versational agent for bioinformatics analysis to discover the need to shed light on theories
and practices to design applications based on those agents.

In this section, wewill briefly revise the contributions presented so far to propose a holistic
view and combine them in a unique framework in the next section.

In Chapter 2, we saw how to design a conversational agent on a process ontology. We
started from the ontology definition and its validation to build GeCoAGent, a multi-
modal conversational agent for data science, to support the bioinformatics tertiary analysis
process, exploiting a novel design technique based Hierarchical Task Trees [83] and filling
the gap highlighted by [31]. GeCoAgent’s innovative structure is grammar-based, so new
modules can easily be added through the extension of the grammars that rules the con-
versation. We validated GeCoAgent effectiveness with biologists and bioinformaticians
to show how the application can support both user categories, supporting the findings
of [126, 128, 129].

In Chapter 3, we presented DSBot, another multimodal conversational agent for data sci-
ence that evolves on the lessons learned with GeCoAgent. DSBot is agnostic from the
data since it accepts any data in tabular form. This application is innovative since exploits
a mix of technologies (such as conversational agents, machine translation, and autoML)
in a transparent way to translate users’ research questions into operative pipelines and ex-
ecute them [150], supporting the process of data democratization described in [132]. In
addition to the application itself, the chapter presents how one of the two modules that
make up the application has been turned into an open-source framework for integrating
a conversational troubleshooting system into web applications, overcoming some of the
most common problems of today conversational troubleshooting systems [170]. Finally,
we provide empirical studies to measure the machine learning module’s functioning and
the interface’s usability.

Chapter 4 reflects on the lessons learned from the experience with the two conversational
agents to set the basis for the generalization process. After defining the research space and
introducing the terminology adopted in the following work, we conceptualize the Multi-
modality Continuum, which is the specter of possible integration paradigms of conversa-
tional agents with other modalities.

203

Chapter 10. Conclusions

In Chapter 6, we started to explore multimodality by analyzing the influence that its in-
troduction brings to users’ linguistic behavior, trying to better investigate the principles
on which previousmultimodal conversational interfaces had been built [18, 45, 257, 260].
Through an empirical study, we discovered that when graphical hints are added to the con-
versation, users tend to make shorter interactions and fewer errors.

Chapter 5 complements the study by investigating the design perspective of the introduc-
tion ofmultimodality, trying to fill at the intersection between the research on usability for
multimodality [125, 230] and the one for design the design of conversational agents [240–
242]. Examining existing literature, we extract valuable lessons and cluster them into seven
principles that can inform the design of such interfaces.

Chapter 7 condenses all findings into a model for designing multimodal process-oriented
conversational interfaces, where the modalities are strongly connected and communicate
with each other and the user. The model takes inspiration from BPMN formalism to de-
scribe the high-level steps users must accomplish to reach their goals. Then, with simi-
lar diagrams, developers and designers can describe the interactions in every modality and
how they relate. Ourmodel takes inspirationwidely-established formalisms to introduce a
paradigm shift from a conversational-drivenmodel to a process-driven one [196, 311, 312].

The chapter ends with a proposed architecture based on a shared context to transform the
model into the backbone of an application.

Chapter 8 takes up the case study presented as an example in the model description to
present it in detail. The application is Albot Einstein, a pedagogical conversational agent
to teach children chemistry, precisely pH. This chapter, in addition to describing the pro-
cess that led to the design of the application by showing the result of a design process that
followed the model, empirically evaluates the effectiveness of the platform in one school,
exploring by the increasing interest interest in PCA in the scientific community [351]. The
gathered data shows no statistically significant difference in students’ performance with re-
spect to the ones that interacted with a similar application but without the chatbot, point-
ing toAlbot as a effective tool for education. The interaction analysis shows that the design
of the chatbot directly impacts users’ perception during experience, as highlighted by pre-
vious studies [342, 351].

Finally, Chapter 9 shows the authoring tool we designed to transform the model-based
specification of a conversational agent into an executable application backend. Develop-
ers can set the process and the interactions through a drag-and-drop interface and train
the conversational engine on a dedicated interface. Then, the application is automatically
deployed with the push of a single button. We assessed the platform’s usability in an em-
pirical study involving developers and software engineers.

10.2 Results: a holistic view on the thesis contributions
As discussed, this thesis consists of a long journey in which many contributions followed
one another, even of a heterogeneous nature, linked by the logic of the an overall vision,

204

10.2. Results: a holistic view on the thesis contributions

Figure 10.1 – An holistic view on the contributions of the thesis

presented in Section 1.2.

In this section, rather than focusing on the single contributions of the thesis, we present
the contributions from a different perspective that transcends the temporal narrative on
which the thesis has been set so far to give a holistic view in which the various pieces blend
in a single vision, as shown in Figure 10.1.

The work described in this thesis can be seen from an holistic perspective that provides
small but consistent contributions on all the aspects of the design and implementation
process of a multimodal conversational agent.

The ontology presented in Chapter 2 and its elicitation process, the Multimodality Con-
tinuum(Chapter 4), and theDesignModel inChapter 7 aremethods that provide thebasis
for the design of a multimodal conversational application. In particular, the analysis that
leads to the definition of the process ontology is a methodology that can guide the elicita-
tion of users’ requirements in the design of an application. Such a methodology provided
a graphical artifact that represents what emerged during the elicitation process, on which
all the stakeholders can discuss and agree upon. When requirements are prepared, and the
modalities are chosen, the multimodality continuum provides a reference to decide the
best degree of integration between the modalities. Finally, the design model allows the re-
searchers to graphically define the whole interaction and works as a reference for designers

205

Chapter 10. Conclusions

and developers, minimizing the miscommunications in the development process.

The results of the linguistic study presented in Chapter 6 and the principles elicited in
Chapter 5 support and inform the design process. Conversation experts and interaction
designers can use these tools to produce a more informed experience design.

The process, so far explored in the design and the methodology, is then analyzed in the
development phase through the study of the tools presented in the thesis, particularly the
authoring tool described in Chapter 9 and the framework in Chapter 3. The application
can be created from scratch or an interface on which conversational capabilities are added.
In the first case, developers can use the authoring to quickly transform the designmodel of
an application in a working backend. In the second one, the conversational troubleshoot-
ing kit allows them to provide users with conversational support on an existing web appli-
cation with minimal effort.

Finally, GeCoAgent (Chapter 2), DSBot (Chapter 3), andAlbot Einstein (Chapter 8) pro-
vide three examples ofmultimodal conversational agents, developers anddesigners can take
inspiration from. Each presents distinctive design choices that lead to different ways of ex-
ploiting multimodality.

10.3 Limitations and Future Works
As discussed in the previous chapters, every study had its limitations due to many factors
that directly or indirectly impacted the execution of the work. The main one deals with
most user evaluations’ small-scale and short-term design. Additional evaluations are nec-
essary to generalize the results. Many works require further testing sessions with more
participants, and studies that take two ormore sessions in a prolonged time interval to test
how the findings apply in an ecological setting [363], i.e., in settings where the tools are
used for working in a real setting and with actual tasks.

Another problemwe faced was the need for shared terminology in the conversational com-
munity [364]. Many terms are used with different meanings; therefore, it is challenging
to guarantee effective communication for describing the models and the studies and pre-
senting the results. To overcome this limitation, in this document, we defined all the ter-
minology before using it. However, it is necessary for a global effort of the conversational
research community to define a reference vocabulary to describe research in the field.

In the future, we aim to overcome these limitations and study the long-term benefits of
multimodality in the interaction. We also aim to investigate further the integration of con-
versational agents with modalities other than the Graphical User Interface, to strengthen
themodels and assess how the design principles and the users’ behaviors change according
to new interaction channels.

In the last month we saw an exponential growth of generative conversational interfaces,
based on Large Language Models [365]. These applications are disrupting the world con-
versational technologies, producing results that were not thinkable even few months ago

206

10.3. Limitations and FutureWorks

[366]. For this reason, we want to explore these applications to understand how the con-
tributions described in this thesis apply to this new conversational paradigm.

207

Bibliography
[1] Leigh Clark, Nadia Pantidi, Orla Cooney, Philip Doyle, Diego Garaialde, Justin

Edwards, Brendan Spillane, Emer Gilmartin, Christine Murad, CosminMuntea-
nu, et al. 2019. What makes a good conversation? challenges in designing truly
conversational agents. In Proceedings of the 2019 CHI Conference on Human Fac-
tors in Computing Systems, 1–12.

[2] Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason Weston, and Emily Dinan.
2021. Bot-adversarial dialogue for safe conversational agents. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, 2950–2968.

[3] [n. d.] Au-deloitte-conversational-ai.pdf. https : / / www2 . deloitte . com /
content / dam / Deloitte / au / Documents / strategy / au - deloitte -
conversational-ai.pdf. (Accessed on 01/02/2023). ().

[4] Karsten Wenzlaff and Sebastian Spaeth. 2022. Smarter than humans? validating
how openai’s chatgpt model explains crowdfunding, alternative finance and com-
munity finance. Validating how OpenAI’s ChatGPT model explains Crowdfund-
ing, Alternative Finance and Community Finance.(December 22, 2022).

[5] Mubin Ul Haque, Isuru Dharmadasa, Zarrin Tasnim Sworna, Roshan Namal
Rajapakse, and Hussain Ahmad. 2022. ” i think this is the most disruptive tech-
nology”: exploring sentiments of chatgpt early adopters using twitter data. arXiv
preprint arXiv:2212.05856.

[6] Robbert-Jan Beun, Eveliene de Vos, and Cilia Witteman. 2003. Embodied con-
versational agents: effects on memory performance and anthropomorphisation.
In International workshop on intelligent virtual agents. Springer, 315–319.

[7] AliceKerry,RichardEllis, and SusanBull. 2008.Conversational agents in e–learn-
ing. In International conference on innovative techniques and applications of artifi-
cial intelligence. Springer, 169–182.

[8] JuanMartı́nez-Miranda. 2017. Embodied conversational agents for the detection
and prevention of suicidal behaviour: current applications and open challenges.
Journal of medical systems, 41, 9, 1–14.

[9] Dominic W Massaro, Ying Liu, Trevor H Chen, and Charles Perfetti. 2006. A
multilingual embodied conversational agent for tutoring speech and language learn-
ing. In INTERSPEECH.

[10] Alastair van Heerden, Xolani Ntinga, and Khanya Vilakazi. 2017. The potential
of conversational agents to provide a rapid hiv counseling and testing services. In
2017 international conference on the frontiers and advances in data science (FADS).
IEEE, 80–85.

[11] PietroCrovari, SaraPidò, PietroPinoli,AnnaBernasconi,ArifCanakoglu, Franca
Garzotto, and Stefano Ceri. 2021. Gecoagent: a conversational agent for empow-
ering genomic data extraction and analysis.ACMTrans. Comput. Healthcare, 3, 1,

209

https://www2.deloitte.com/content/dam/Deloitte/au/Documents/strategy/au-deloitte-conversational-ai.pdf
https://www2.deloitte.com/content/dam/Deloitte/au/Documents/strategy/au-deloitte-conversational-ai.pdf
https://www2.deloitte.com/content/dam/Deloitte/au/Documents/strategy/au-deloitte-conversational-ai.pdf

Bibliography

Article 3, (October 2021), 29 pages. issn: 2691-1957. doi: 10.1145/3464383.
https://doi.org/10.1145/3464383.

[12] Sara Pidò, PietroCrovari, and FrancaGarzotto. 2021.Modelling the bioinformat-
ics tertiary analysis research process. BMC bioinformatics, 22, 13, 1–27.

[13] Pietro Crovari, Sara Pidò, and Franca Garzotto. 2020. Towards an ontology for
tertiary bioinformatics research process. In International Conference on Concep-
tualModeling. Springer, 82–91.

[14] PietroCrovari, FabioCatania, Pietro Pinoli, PhilippRoytburg, Asier Salzar, Fran-
caGarzotto, andStefanoCeri. 2020.Ok, dna! a conversational interface to explore
genomic data. In Proceedings of the 2nd Conference on Conversational User Inter-
faces, 1–3.

[15] Sara Pidó, Pietro Pinoli, Pietro Crovari, Francesca Ieva, Franca Garzotto, and Ste-
fano Ceri. 2023. Ask your data—supporting data science processes by combin-
ing automl and conversational interfaces. IEEEAccess, 11, 45972–45988. doi: 10.
1109/ACCESS.2023.3272503.

[16] Giulio Antonio Abbo, Pietro Crovari, Sara Pidò, Pietro Pinoli, and Franca Gar-
zotto. 2022.Mctk: a multi-modal conversational troubleshooting kit for support-
ing users in web applications. In Proceedings of the 2022 International Conference
on Advanced Visual Interfaces, 1–3.

[17] Giulio Antonio Abbo, Pietro Crovari, and Franca Garzotto. 2022. Enhancing
conversational troubleshootingwithmulti-modality: design and implementation.
In InternationalWorkshop on Chatbot Research and Design. Springer, to appear.

[18] Pietro Crovari, Sara Pidó, Franca Garzotto, and Stefano Ceri. 2020. Show, don’t
tell. reflections on the design ofmulti-modal conversational interfaces. In Interna-
tionalWorkshop on Chatbot Research and Design. Asbjørn Følstad, Theo Araujo,
Symeon Papadopoulos, Effie L.-C. Law, Ewa Luger, Morten Goodwin, and Pet-
ter Bae Brandtzaeg, editors. Springer. Springer International Publishing, Cham,
(November 2020), 64–77. isbn: 978-3-030-68288-0. doi: 10.1007/978-3-
030-68288-0_5.

[19] Stephen AWhite. 2004. Introduction to bpmn. Ibm Cooperation, 2, 0, 0.
[20] Victor A McKusick and Frank H Ruddle. 1987. Toward a complete map of the

human genome.Genomics, 1, 2, 103–106.
[21] Jun Zhang, Rod Chiodini, Ahmed Badr, and Genfa Zhang. 2011. The impact of

next-generation sequencing on genomics. Journal of genetics and genomics, 38, 3,
95–109.

[22] Sam Behjati and Patrick S Tarpey. 2013. What is next generation sequencing?
Archives of Disease in Childhood-Education and Practice, 98, 6, 236–238.

[23] CL Philip Chen and Chun-Yang Zhang. 2014. Data-intensive applications, chal-
lenges, techniques and technologies: a survey on big data. Information sciences,
275, 314–347.

[24] Rute Pereira, Jorge Oliveira, andMário Sousa. 2020. Bioinformatics and compu-
tational tools for next-generation sequencing analysis in clinical genetics. Journal
of clinical medicine, 9, 1, 132.

210

https://doi.org/10.1145/3464383
https://doi.org/10.1145/3464383
https://doi.org/10.1109/ACCESS.2023.3272503
https://doi.org/10.1109/ACCESS.2023.3272503
https://doi.org/10.1007/978-3-030-68288-0_5
https://doi.org/10.1007/978-3-030-68288-0_5

Bibliography

[25] Marco Masseroli, Arif Canakoglu, Pietro Pinoli, Abdulrahman Kaitoua, Andrea
Gulino, Olha Horlova, Luca Nanni, Anna Bernasconi, Stefano Perna, Eirini Sta-
moulakatou, et al. 2019. Processing of big heterogeneous genomic datasets for ter-
tiary analysis of next generation sequencing data. Bioinformatics, 35, 5, 729–736.

[26] Scott D Kahn. 2011. On the future of genomic data. science, 331, 6018, 728–729.
[27] A. Bernasconi, A. Canakoglu,M.Masseroli, and S. Ceri. 2020.Meta-base: a novel

architecture for large-scale genomic metadata integration. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 1–1.

[28] Arif Canakoglu, Anna Bernasconi, Andrea Colombo, Marco Masseroli, and Ste-
fanoCeri. 2019. Genosurf: metadata driven semantic search system for integrated
genomic datasets. Database: The Journal of Biological Databases and Curation,
2019.

[29] Marco Masseroli, Pietro Pinoli, Francesco Venco, Abdulrahman Kaitoua, Vahid
Jalili, FernandoPalluzzi,HeikoMuller, andStefanoCeri. 2015.GenoMetricQuery
Language: a novel approach to large-scale genomic data management. Bioinfor-
matics, 31, 12, 1881–1888.

[30] Jeremy Leipzig. 2017. A review of bioinformatic pipeline frameworks. Briefings
in bioinformatics, 18, 3, 530–536.

[31] Davide Bolchini, Anthony Finkelstein, Vito Perrone, and Sylvia Nagl. 2009. Bet-
ter bioinformatics through usability analysis. Bioinformatics, 25, 3, 406–412.

[32] ThomasKluyver, BenjaminRagan-Kelley, Fernando Pérez, Brian EGranger,Mat-
thias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica BHamrick, JasonGrout,
Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for reproducible
computational workflows.Volume 2016.

[33] Jeffrey SRacine. 2012.Rstudio: a platform-independent ide for r and sweave. (2012).
[34] Janez Demšar et al. 2013. Orange: data mining toolbox in python. Journal ofMa-

chine Learning Research, 14, 2349–2353. http://jmlr.org/papers/v14/
demsar13a.html.

[35] Mary J Goldman, Brian Craft, Mim Hastie, Kristupas Repečka, Fran McDade,
Akhil Kamath, Ayan Banerjee, Yunhai Luo, Dave Rogers, Angela N Brooks, et
al. 2020. Visualizing and interpreting cancer genomics data via the xena platform.
Nature Biotechnology, 1–4.

[36] Enis Afgan, Dannon Baker, Bérénice Batut,Marius VanDen Beek, Dave Bouvier,
MartinČech, JohnChilton,DaveClements,NateCoraor, BjörnAGrüning, et al.
2018. The galaxy platform for accessible, reproducible and collaborative biomed-
ical analyses: 2018 update.Nucleic acids research, 46, W1, W537–W544.

[37] Ravi K Madduri, Dinanath Sulakhe, Lukasz Lacinski, Bo Liu, Alex Rodriguez,
Kyle Chard, Utpal J Dave, and Ian T Foster. 2014. Experiences building globus
genomics: a next-generation sequencing analysis service using galaxy, globus, and
amazon web services. Concurrency and Computation: Practice and Experience, 26,
13, 2266–2279.

[38] Michael Reich, Ted Liefeld, Joshua Gould, Jim Lerner, Pablo Tamayo, and Jill P
Mesirov. 2006. Genepattern 2.0.Nature genetics, 38, 5, 500–501.

211

http://jmlr.org/papers/v14/demsar13a.html
http://jmlr.org/papers/v14/demsar13a.html

Bibliography

[39] Aaron R Quinlan and Ira M Hall. 2010. Bedtools: a flexible suite of utilities for
comparing genomic features. Bioinformatics, 26, 6, 841–842.

[40] John W Nicol, Gregg A Helt, Steven G Blanchard Jr, Archana Raja, and Ann E
Loraine. 2009.The integrated genomebrowser: free software for distribution and
exploration of genome-scale datasets. Bioinformatics, 25, 20, 2730–2731.

[41] Robert C Gentleman, Vincent J Carey, Douglas M Bates, Ben Bolstad, Marcel
Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff Gen-
try, et al. 2004. Bioconductor: open software development for computational bi-
ology and bioinformatics.Genome biology, 5, 10, R80.

[42] Tong Gao,Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G Karahalios.
2015. Datatone: managing ambiguity in natural language interfaces for data visu-
alization. In Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology, 489–500.

[43] Kedar Dhamdhere, Kevin S McCurley, Ralfi Nahmias, Mukund Sundararajan,
and Qiqi Yan. 2017. Analyza: exploring data with conversation. In Proceedings of
the 22nd International Conference on Intelligent User Interfaces, 493–504.

[44] EnamulHoque, Vidya Setlur,Melanie Tory, and IsaacDykeman. 2017. Applying
pragmatics principles for interaction with visual analytics. IEEE transactions on
visualization and computer graphics, 24, 1, 309–318.

[45] Toby Jia-JunLi,MarissaRadensky, Justin Jia,Kirielle Singarajah,TomMMitchell,
and Brad A Myers. 2019. Pumice: a multi-modal agent that learns concepts and
conditionals fromnatural language anddemonstrations. InProceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology (UIST ’19).
Association for ComputingMachinery, NewOrleans, LA, USA, (October 2019),
577–589. isbn: 9781450368162. doi: 10.1145/3332165.3347899.

[46] Adam Blum. 1999. Microsoft english query 7.5: automatic extraction of seman-
tics from relational databases and olap cubes. InVLDB. Volume 99, 247–248.

[47] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a theory of
natural language interfaces to databases. In Proceedings of the 8th international
conference on Intelligent user interfaces, 149–157.

[48] DiptikalyanSaha,Avrilia Floratou,Karthik Sankaranarayanan,UmarFarooqMin-
has, AshishRMittal, and FatmaÖzcan. 2016. Athena: an ontology-driven system
for natural language querying over relational data stores. Proceedings of the VLDB
Endowment, 9, 12, 1209–1220.

[49] Antonio Messina, Agnese Augello, Giovanni Pilato, and Riccardo Rizzo. 2017.
Biographbot: a conversational assistant for bioinformatics graph databases. In In-
ternational Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing. Springer, 135–146.

[50] RichardSWallace. 2009.The anatomyof alice. InParsing theTuringTest. Springer,
181–210.

[51] Antonino Fiannaca, Massimo La Rosa, Laura La Paglia, Antonio Messina, and
Alfonso Urso. 2016. Biographdb: a new graphdb collecting heterogeneous data
for bioinformatics analysis. Proceedings of BIOTECHNO.

212

https://doi.org/10.1145/3332165.3347899

Bibliography

[52] Marko A Rodriguez. 2015. The gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages, 1–10.

[53] Walter Ritzel Paixão-Côrtes, Vanessa Stangherlin Machado Paixão-Côrtes, Cris-
tiane Ellwanger, and Osmar Norberto de Souza. 2019. Development and usabil-
ity evaluation of a prototype conversational interface for biological information
retrieval via bioinformatics. In International Conference onHuman-Computer In-
teraction. Springer, 575–593.

[54] PRodriguez-Tom√©. 1998.The biocatalog.Bioinformatics (Oxford, England), 14,
5, 469–470.

[55] EthanFast, BinbinChen, JuliaMendelsohn, JonathanBassen, andMichael SBern-
stein. 2018. Iris: a conversational agent for complex tasks. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. Association for
ComputingMachinery, New York, NY, USA, (April 2018), 1–12.

[56] Rogers JeffreyLeo John,Navneet Potti, and JigneshMPatel. 2017.Ava: fromdata
to insights through conversations. In CIDR. CIDR.

[57] NorbertEFuchs andRolf Schwitter. 1995. Specifying logicprograms in controlled
natural language. arXiv preprint cmp-lg/9507009.

[58] Daniel Vanderveken. 1990. Meaning and speech acts: Volume 1, principles of lan-
guage use. Volume 1. Cambridge University Press.

[59] DavidBenyonandDianneMurray. 1993.Applyingusermodeling tohuman-compu-
ter interaction design. Artificial Intelligence Review, 7, 3-4, 199–225.

[60] Mourad Abed, Dimitri Tabary, and Christophe Kolski. 2003. Using formal speci-
fication techniques for the modelling of tasks and generation of hci specifications.
The handbook of task analysis for human computer interaction, 503–529.

[61] Bonnie E John andDavid E Kieras. 1996. The goms family of user interface analy-
sis techniques: comparison andcontrast.ACMTransactions onComputer-Human
Interaction (TOCHI), 3, 4, 320–351.

[62] Egbert Schlungbaum. 1998. Support of task-based user interface design in tadeus.
Universitat Rostock.

[63] AngelRPuerta. 1996. Themecano project: enabling user-task automation during
interface development. In Proceedings of AAAI. Volume 96, 117–121.

[64] François Bodar, Anne-Marie Hennebert, Jean-Marie Leheureux, Isabelle Provot,
Jean Vanderdonckt, and Giovanni Zucchinetti. 1996. Key activities for a develop-
ment methodology of interactive applications. In Critical Issues in User Interface
Systems Engineering. Springer, 109–134.

[65] AngelRPuerta andDavidMaulsby. 1997.Management of interface design knowl-
edgewithmobi-d. InProceedings of the 2nd international conference on Intelligent
user interfaces, 249–252.

[66] Fabio Paternò, C Santoro, and LD Spano. 2012. Concur task trees (ctt).Retrieved
July, 29, 2016.

[67] Li Ding, Pranam Kolari, Zhongli Ding, and Sasikanth Avancha. 2007. Using on-
tologies in the semantic web: a survey. InOntologies. Springer, 79–113.

213

Bibliography

[68] BalakrishnanChandrasekaran, JohnRJosephson, andVRichardBenjamins. 1999.
What are ontologies, and why do we need them? IEEE Intelligent Systems and
their applications, 14, 1, 20–26.

[69] Patricia G. Baker, Carole A. Goble, Sean Bechhofer, Norman W. Paton, Robert
Stevens, andAndyBrass. 1999.Anontology forbioinformatics applications.Bioin-
formatics (Oxford, England), 15, 6, 510–520.

[70] SteffenSchulze-Kremer. 2002.Ontologies formolecular biology andbioinformat-
ics. In Silico Biology, 2, 3, 179–193.

[71] Anita Bandrowski, Ryan Brinkman, Mathias Brochhausen, Matthew H Brush,
Bill Bug, Marcus C Chibucos, Kevin Clancy, Mélanie Courtot, Dirk Derom,Mi-
chel Dumontier, et al. 2016. The ontology for biomedical investigations. PloS one,
11, 4, e0154556.

[72] Robert Arp, Barry Smith, and Andrew D Spear. 2015. Building ontologies with
basic formal ontology. Mit Press.

[73] Werner Ceusters. 2012. An information artifact ontology perspective on data col-
lections and associated representational artifacts. InMIE, 68–72.

[74] Frank Kramer and Tim Beißbarth. 2017. Working with ontologies. In Bioinfor-
matics. Springer, 123–135.

[75] Mario Cannataro and Pierangelo Veltri. 2007. Ms-analyzer: preprocessing and
data mining services for proteomics applications on the grid. Concurrency and
Computation: practice and experience, 19, 15, 2047–2066.

[76] Marco Masseroli, Abdulrahman Kaitoua, Pietro Pinoli, and Stefano Ceri. 2016.
Modeling and interoperability of heterogeneous genomic big data for integrative
processing and querying.Methods, 111, 3–11.

[77] Anna Bernasconi, Stefano Ceri, Alessandro Campi, and Marco Masseroli. 2017.
Conceptual modeling for genomics: building an integrated repository of open
data. In Conceptual Modeling. Heinrich C. Mayr, Giancarlo Guizzardi, Hui Ma,
and Oscar Pastor, editors. Springer International Publishing, Cham, 325–339.

[78] Anna Bernasconi, Arif Canakoglu, and Stefano Ceri. 2019. From a conceptual
model to a knowledge graph for genomic datasets. In Conceptual Modeling. Al-
bertoH. F. Laender, Barbara Pernici, Ee-Peng Lim, and José PalazzoM. de Olivei-
ra, editors. Springer International Publishing, Cham, 352–360.

[79] GavinROliver, StevenNHart, and EricWKlee. 2015. Bioinformatics for clinical
next generation sequencing. Clinical chemistry, 61, 1, 124–135.

[80] Andrew Shepherd. 1998. Hta as a framework for task analysis. Ergonomics, 41, 11,
1537–1552.

[81] Jeff Z Pan and OWLWorking Group. 2009. Owl 2 web ontology language docu-
ment overview: w3c recommendation 27 october 2009. English. (2009).

[82] John Annett. 2003. Hierarchical task analysis. In Handbook of cognitive task de-
sign. CRC Press, 17–36.

[83] John Annett. 2004. Hierarchical task analysis. The handbook of task analysis for
human-computer interaction, 667.

[84] Dan Bohus and Alexander Rudnicky. 2003. Ravenclaw: dialog management us-
ing hierarchical task decomposition and an expectation agenda.

214

Bibliography

[85] Shaoke Lou, Tianxiao Li, Daniel Spakowicz, Xiting Yan, Geoffrey Lowell Chupp,
and Mark Gerstein. 2020. Latent-space embedding of expression data identifies
gene signatures from sputum samples of asthmatic patients. BMC bioinformatics,
21, 1, 1–13.

[86] Talip Zengin and Tuğba Önal-Süzek. 2020. Analysis of genomic and transcrip-
tomic variations as prognostic signature for lung adenocarcinoma.BMCbioinfor-
matics, 21, 14, 1–28.

[87] Gaia Ceddia, Liuba Nausicaa Martino, Alice Parodi, Piercesare Secchi, Stefano
Campaner, andMarcoMasseroli. 2020. Association rule mining to identify tran-
scription factor interactions in genomic regions.Bioinformatics, 36, 4, 1007–1013.

[88] Arif Canakoglu, Luca Nanni, Artur Sokolovsky, and Stefano Ceri. 2018. Design-
ing and evaluating deep learning models for cancer detection on gene expression
data. In International Meeting on Computational Intelligence Methods for Bioin-
formatics and Biostatistics. Springer, 249–261.

[89] FranciscoCristovao, SilviaCascianelli, ArifCanakoglu,MarkCarman, LucaNan-
ni, Pietro Pinoli, and Marco Masseroli. 2020. Investigating deep learning based
breast cancer subtyping using pan-cancer andmulti-omic data. IEEE/ACMTrans-
actions on Computational Biology and Bioinformatics.

[90] Gaia Ceddia, Pietro Pinoli, Stefano Ceri, andMarcoMasseroli. 2020. Matrix fac-
torization-based technique fordrug repurposingpredictions. IEEE Journal ofBiomed-
ical and Health Informatics.

[91] Pietro Pinoli, Davide Chicco, andMarco Masseroli. 2014. Latent dirichlet alloca-
tion based on gibbs sampling for gene function prediction. In 2014 IEEE Confer-
ence on Computational Intelligence in Bioinformatics and Computational Biology.
IEEE, 1–8.

[92] Luca Nanni, Stefano Ceri, and Colin Logie. 2020. Spatial patterns of ctcf sites
define the anatomy of tads and their boundaries.Genome biology, 21, 1, 1–25.

[93] Stefano Perna, Pietro Pinoli, Stefano Ceri, and Limsoon Wong. 2020. Nautica:
classifying transcription factor interactions by positional and protein-protein in-
teraction information. Biology direct, 15, 1, 1–18.

[94] Gaia Ceddia, Sara Pidò, andMarcoMasseroli. 2020. Networkmodeling and anal-
ysis of normal and cancer gene expression data. In Computational Intelligence
Methods for Bioinformatics and Biostatistics. Paolo Cazzaniga, Daniela Besozzi,
IvanMerelli, andLucaManzoni, editors. Springer InternationalPublishing,Cham,
257–270. isbn: 978-3-030-63061-4.

[95] Eleonora Cappelli, Giovanni Felici, and Emanuel Weitschek. 2018. Combining
dna methylation and rna sequencing data of cancer for supervised knowledge ex-
traction. BioData mining, 11, 1, 22.

[96] Fabrizio Frasca, Matteo Matteucci, Marco Masseroli, and Marco Morelli. 2018.
Modeling gene transcriptional regulation by means of hyperplanes genetic clus-
tering. In 2018 International joint conference on neural networks (IJCNN). IEEE,
1–8.

215

Bibliography

[97] Guray Golcuk, Mustafa Anil Tuncel, and Arif Canakoglu. 2018. Exploiting lad-
der networks for gene expression classification. In International Conference on
Bioinformatics and Biomedical Engineering. Springer, 270–278.

[98] WeiWang, Xi Yang, ChengkunWu, and Canqun Yang. 2020. Cginet: graph con-
volutional network-based model for identifying chemical-gene interaction in an
integrated multi-relational graph. BMC bioinformatics, 21, 1, 1–17.

[99] Yu Zhang, Yahui Long, and Chee Keong Kwoh. 2020. Deep learning based dna:
rna triplex forming potential prediction. BMC bioinformatics, 21, 1, 1–13.

[100] Jun Wang and Liangjiang Wang. 2020. Prediction and prioritization of autism-
associated longnon-coding rnasusing gene expression and sequence features.BMC
bioinformatics, 21, 1, 1–15.

[101] Fang Jing, Shao-Wu Zhang, and Shihua Zhang. 2020. Prediction of enhancer–
promoter interactions using the cross-cell type information and domain adversar-
ial neural network. BMC bioinformatics, 21, 1, 1–16.

[102] UmairAyub, ImranHaider, andHammadNaveed. 2020. Salign–a structure aware
method for global ppi network alignment. BMC bioinformatics, 21, 1, 1–18.

[103] AbhigyanNath and André Leier. 2020. Improved cytokine–receptor interaction
prediction by exploiting the negative sample space. BMC bioinformatics, 21, 1, 1–
16.

[104] Zhilong Mi, Binghui Guo, Xiaobo Yang, Ziqiao Yin, and Zhiming Zheng. 2020.
Lamp: disease classification derived from layered assessment onmodules and path-
ways in the human gene network. BMC bioinformatics, 21, 1, 1–20.

[105] Hyein Seo and Dong-Ho Cho. 2020. Feature selection algorithm based on dual
correlation filters for cancer-associated somatic variants. BMC bioinformatics, 21,
1, 1–19.

[106] Jian Zhang, Lixin Lv, Donglei Lu, Denan Kong, Mohammed Abdoh Ali Al-A-
lashaari, and Xudong Zhao. 2020. Variable selection from a feature representing
protein sequences: a case of classification on bacterial type iv secreted effectors.
BMC bioinformatics, 21, 1, 1–15.

[107] Lei Zhang, Bailong Liu, Zhengwei Li, Xiaoyan Zhu, Zhizhen Liang, and Jiyong
An. 2020. Predicting mirna-disease associations by multiple meta-paths fusion
graph embedding model. BMC bioinformatics, 21, 1, 1–19.

[108] Xingyu Zheng, Christopher I Amos, and HRobert Frost. 2020. Cancer progno-
sis prediction using somatic point mutation and copy number variation data: a
comparison of gene-level and pathway-based models. BMC bioinformatics, 21, 1,
1–19.

[109] Tian-Ru Wu, Meng-Meng Yin, Cui-Na Jiao, Ying-Lian Gao, Xiang-Zhen Kong,
and Jin-Xing Liu. 2020. Mccmf: collaborative matrix factorization based on ma-
trix completion for predicting mirna-disease associations. BMC bioinformatics,
21, 1, 1–22.

[110] Pasan C Fernando, Paula M Mabee, and Erliang Zeng. 2020. Integration of ana-
tomy ontology data with protein-protein interaction networks improves the can-
didate gene prediction accuracy for anatomical entities. bioRxiv.

216

Bibliography

[111] ChunxiangWang, Xin Gao, and Juntao Liu. 2020. Impact of data preprocessing
on cell-type clustering based on single-cell rna-seq data. BMC bioinformatics, 21,
1, 1–13.

[112] Liang-Rui Ren, Ying-Lian Gao, Jin-Xing Liu, Junliang Shang, and Chun-Hou
Zheng. 2020. Correntropy induced loss based sparse robust graph regularized ex-
treme learningmachine for cancer classification. BMCbioinformatics, 21, 1, 1–22.

[113] EvanAClayton, ToyyaAPujol, John FMcDonald, and PengQiu. 2020. Leverag-
ing tcga gene expression data to build predictive models for cancer drug response.
BMC bioinformatics, 21, 14, 1–11.

[114] Nahim Adnan, Chengwei Lei, and Jianhua Ruan. 2020. Robust edge-based bio-
marker discovery improves prediction of breast cancer metastasis. BMC bioinfor-
matics, 21, 14, 1–18.

[115] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug,
Werner Ceusters, Louis J Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J
Mungall, et al. 2007. The obo foundry: coordinated evolution of ontologies to
support biomedical data integration.Nature biotechnology, 25, 11, 1251–1255.

[116] Eric Miller. 1998. An introduction to the resource description framework. Bul-
letin of the American Society for Information Science and Technology, 25, 1, 15–19.

[117] Dan Brickley, Ramanathan V Guha, and Andrew Layman. 1999. Resource de-
scription framework (rdf) schema specification. (1999).

[118] TaniaTudorache, JenniferVendetti, andNatalyaFridmanNoy. 2008.Web-protege:
a lightweight owl ontology editor for the web. InOWLED. Volume 432, 2009.

[119] Virginia Braun and Victoria Clarke. 2012. Thematic analysis. American Psycho-
logical Association.

[120] Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and Alan Nichol. 2017. Rasa:
open source languageunderstanding anddialoguemanagement.ArXiv, abs/1712.05181.

[121] Sumit Raj. 2018. Building chatbots with python. Using Natural Language Pro-
cessing andMachine Learning. Apress.

[122] TedBoren and JudithRamey. 2000. Thinking aloud: reconciling theory and prac-
tice. IEEE transactions on professional communication, 43, 3, 261–278.

[123] Jeff Sauro PhD. [n. d.]MeasuringUsability with the SystemUsability Scale (SUS)
– MeasuringU. en-US. (). Retrieved 11/29/2022 from https://measuringu.
com/sus/.

[124] Quentin Limbourg and Jean Vanderdonckt. 2004. Comparing task models for
user interface design. The handbook of task analysis for human-computer interac-
tion, 6, 135–154.

[125] Sharon Oviatt. 1999. Ten myths of multimodal interaction. Communications of
the ACM, 42, 11, (November 1999), 74–81. issn: 0001-0782. doi: 10.1145/
319382.319398. https://doi.org/10.1145/319382.319398.

[126] Abbas Mehrabi Boshrabadi and Reza Biria. 2014. The efficacy of multimodal vs.
print-based texts for teaching reading comprehension skills to iranian high school
third graders. International Journal ofLanguageLearningandAppliedLinguistics
World, 5, (January 2014), 17.

217

https://measuringu.com/sus/
https://measuringu.com/sus/
https://doi.org/10.1145/319382.319398
https://doi.org/10.1145/319382.319398
https://doi.org/10.1145/319382.319398

Bibliography

[127] Rangina Ahmad, Dominik Siemon, Daniel Fernau, and Susanne Robra-Bissantz.
2020. Introducing” raffi”: a personality adaptive conversational agent. In PACIS,
28.

[128] RanginaAhmad,Dominik Siemon,UlrichGnewuch, andSusanneRobra-Bissantz.
2022.Designingpersonality-adaptive conversational agents formental health care.
Information Systems Frontiers, 24, 3, 923–943.

[129] Ricarda Schlimbach, Heidi Rinn, Daniel Markgraf, and Susanne Robra-Bissantz.
2022. A literature review on pedagogical conversational agent adaptation. In Pa-
cific Asia Conference on Information Systems, 1.

[130] Krzysztof Witkowski. 2017. Internet of things, big data, industry 4.0–innovative
solutions in logistics and supply chains management. Procedia engineering, 182,
763–769.

[131] FionnMurtagh and Keith Devlin. 2018. The development of data science: impli-
cations for education, employment, research, and the data revolution for sustain-
able development. Big Data and Cognitive Computing, 2, 2, 14.

[132] James Honaker and Vito D ’ Orazio. [n. d.] Statistical modeling by gesture: a
graphical, browser-based statistical interface for data repositories. http://ceur-
ws.org/Vol-1210/datawiz2014_05.pdf. Accessed: 2021-12-31. ().

[133] C VKrishnakumar Iyer, Feili Hou, HenryWang, YonghongWang, Kay Oh, Swe-
tava Ganguli, and Vipul Pandey. 2021. Trinity: a No-Code AI platform for com-
plex spatial datasets. In Proceedings of the 4th ACM SIGSPATIAL International
Workshop onAI forGeographicKnowledgeDiscovery (GEOAI ’21).Association for
ComputingMachinery,Beijing,China, (November2021), 33–42. isbn: 9781450391207.
doi: 10.1145/3486635.3491072.

[134] David Price, Ellen Rilofff, Joseph Zachary, and Brandon Harvey. 2000. Natural-
java: a natural language interface for programming in java. In Proceedings of the
5th international conference on Intelligent user interfaces, 207–211.

[135] MiltiadisAllamanis, EarlTBarr, PremkumarDevanbu, andCharles Sutton. 2018.
A survey of machine learning for big code and naturalness.ACMComputing Sur-
veys (CSUR), 51, 4, 1–37.

[136] VG Renumol, Dharanipragada Janakiram, and S Jayaprakash. 2010. Identifica-
tion of cognitive processes of effective and ineffective students during computer
programming. ACMTransactions on Computing Education (TOCE), 10, 3, 1–21.

[137] Jiho ShinOzan2021 and JaechangNam. 2021. A survey of automatic code genera-
tion fromnatural language. Journal of Information Processing Systems, 17, 3, (June
2021). issn: 1976-913X. doi: 10.3745/JIPS.04.0216.

[138] Stephen Chong and Riccardo Pucella. 2004. A framework for creating natural
language user interfaces for action-based applications. arXiv preprint cs/0412065.

[139] David Vadas and James RCurran. 2005. Programming with unrestricted natural
language. InProceedings of the Australasian Language TechnologyWorkshop 2005,
191–199.

[140] Pengcheng Yin and Graham Neubig. 2017. A syntactic neural model for general-
purpose code generation. arXiv preprint arXiv:1704.01696.

218

http://ceur-ws.org/Vol-1210/datawiz2014_05.pdf
http://ceur-ws.org/Vol-1210/datawiz2014_05.pdf
https://doi.org/10.1145/3486635.3491072
https://doi.org/10.3745/JIPS.04.0216

Bibliography

[141] Henry Lieberman andMoin Ahmad. 2010. Knowing what you’re talking about:
natural language programming of a multi-player online game. In No Code Re-
quired. Elsevier, 331–343.

[142] Vu Le, Sumit Gulwani, and Zhendong Su. 2013. Smartsynth: synthesizing smart-
phone automation scripts from natural language. In Proceeding of the 11th annual
international conference onMobile systems, applications, and services, 193–206.

[143] Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin Vu, and Michael D Ernst.
2017. Program synthesis from natural language using recurrent neural networks.
University ofWashingtonDepartment of Computer Science and Engineering, Seat-
tle,WA, USA, Tech. Rep. UW-CSE-17-03-01.

[144] Jinfeng Lin, Yalin Liu,Qingkai Zeng,Meng Jiang, and JaneCleland-Huang. 2021.
Traceability transformed: generating more accurate links with pre-trained bert
models. In 2021 IEEE/ACM43rd International Conference on Software Engineer-
ing (ICSE). IEEE, 324–335.

[145] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de O-
liveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374.

[146] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. Automl: a survey of the state-
of-the-art.Knowledge-Based Systems, 212, 106622.

[147] Matthias Feurer, AaronKlein, Katharina Eggensperger, Jost Tobias Springenberg,
Manuel Blum, and Frank Hutter. 2019. Auto-sklearn: efficient and robust auto-
matedmachine learning. InAutomatedMachine Learning. Springer, Cham, 113–
134.

[148] Chris Thornton, FrankHutter, HolgerHHoos, andKevin Leyton-Brown. 2013.
Auto-weka: combined selection andhyperparameter optimizationof classification
algorithms. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, 847–855.

[149] Randal S Olson and Jason HMoore. 2016. Tpot: a tree-based pipeline optimiza-
tion tool for automating machine learning. In Workshop on automatic machine
learning. PMLR, 66–74.

[150] Shubhra Kanti Karmaker, Md Mahadi Hassan, Micah J Smith, Lei Xu, Chengx-
iang Zhai, and Kalyan Veeramachaneni. 2021. Automl to date and beyond: chal-
lenges and opportunities. ACMComputing Surveys (CSUR), 54, 8, 1–36.

[151] Djallel Bouneffouf, Charu Aggarwal, Thanh Hoang, Udayan Khurana, Horst
Samulowitz, Beat Buesser, Sijia Liu, Tejaswini Pedapati, Parikshit Ram, Ambrish
Rawat, et al. 2020. Survey on automated end-to-end data science? In 2020 Inter-
national Joint Conference on Neural Networks (IJCNN). IEEE, 1–9.

[152] Tijl De Bie, Luc De Raedt, José Hernández-Orallo, Holger H Hoos, Padhraic
Smyth, and Christopher KI Williams. 2021. Automating data science: prospects
and challenges. arXiv preprint arXiv:2105.05699.

[153] Erol Ozan. 2021. A novel browser-based no-code machine learning application
development tool. In 2021 IEEE World AI IoT Congress (AIIoT). (May 2021),
0282–0284. doi: 10.1109/AIIoT52608.2021.9454239.

219

https://doi.org/10.1109/AIIoT52608.2021.9454239

Bibliography

[154] Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann Yuan, Nick Kreeger, Ping
Yu, Kangyi Zhang, Shanqing Cai, Eric Nielsen, David Soergel, et al. 2019. Tensor-
flow. js:machine learning for thewebandbeyond.arXiv preprint arXiv:1901.05350.

[155] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. 2017. Understanding
of a convolutional neural network. In2017 international conference on engineering
and technology (ICET). Ieee, 1–6.

[156] Michelle Carney, Barron Webster, Irene Alvarado, Kyle Phillips, Noura Howell,
Jordan Griffith, Jonas Jongejan, Amit Pitaru, and Alexander Chen. 2020. Teach-
able machine: approachable web-based tool for exploring machine learning clas-
sification. In Extended abstracts of the 2020 CHI conference on human factors in
computing systems, 1–8.

[157] Shweta Narkar, Yunfeng Zhang, Q Vera Liao, Dakuo Wang, and Justin D Weisz.
2021.Model lineupper: supporting interactive model comparison at multiple lev-
els for automl. In26th InternationalConference on IntelligentUser Interfaces, 170–
174.

[158] Remco Chang. 2021. Snowcat and CAVA: Visualization Tools for Interacting
with AutoML and Knowledgebases. Technical report. TUFTS UNIV.

[159] DakuoWang, JoshAndres, JustinDWeisz, ErickOduor, andCaseyDugan. 2021.
AutoDS: towards Human-Centered automation of data science. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. Associa-
tion for Computing Machinery, New York, NY, USA, (May 2021), 1–12. isbn:
9781450380966. doi: 10.1145/3411764.3445526.

[160] LinhaoMeng, Stef VanDenElzen, andAnnaVilanova. 2022.Modelwise: interac-
tive model comparison for model diagnosis, improvement and selection. In Com-
puter Graphics Forum number 3. Volume 41. Wiley Online Library, 97–108.

[161] Gary King. 2007. An introduction to the dataverse network as an infrastructure
for data sharing. (2007).

[162] ArunSMaiya. 2020.Ktrain: aLow-Code library for augmentedmachine learning.
arXiv preprint arXiv:2004.10703.

[163] RobertRHoffman, ShaneTMueller, GaryKlein, and JordanLitman. 2018.Met-
rics for explainable ai: challenges and prospects. arXiv preprint arXiv:1812.04608.

[164] DavidHeckerman, John S. Breese, andKoosRommelse. 1995.Decision-theoretic
troubleshooting.Communications of the ACM, 38, 3, (March 1995), 49–57. issn:
0001-0782, 1557-7317. doi: 10.1145/203330.203341.

[165] Camilo Thorne. 2017. Chatbots for troubleshooting: A survey. Language and
Linguistics Compass, 11, 10, e12253. issn: 1749-818X. doi: 10 . 1111 / lnc3 .
12253.

[166] KalyanMoy Gupta. 2001. Taxonomic Conversational Case-Based Reasoning. In
Case-Based Reasoning Research and Development (Lecture Notes in Computer
Science). David W. Aha and Ian Watson, editors. Springer, Berlin, Heidelberg,
219–233. isbn: 978-3-540-44593-7. doi: 10.1007/3-540-44593-5_16.

[167] Guoguang Zhao, Jianyu Zhao, Yang Li, Christoph Alt, Robert Schwarzenberg,
Leonhard Hennig, Stefan Schaffer, Sven Schmeier, Changjian Hu, and Feiyu Xu.

220

https://doi.org/10.1145/3411764.3445526
https://doi.org/10.1145/203330.203341
https://doi.org/10.1111/lnc3.12253
https://doi.org/10.1111/lnc3.12253
https://doi.org/10.1007/3-540-44593-5_16

Bibliography

2019. MOLI: Smart Conversation Agent forMobile Customer Service. Informa-
tion, 10, 2, (February 2019), 63. doi: 10.3390/info10020063.

[168] Sethuramalingam Subramaniam, Pooja Aggarwal, Gargi B. Dasgupta, and Amit
Paradkar. 2018. COBOTS - A Cognitive Multi-Bot Conversational Framework
for Technical Support. In Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS ’18). International Founda-
tion forAutonomousAgents andMultiagent Systems, Richland, SC, (July 2018),
597–604.

[169] Oriol Vinyals and Quoc Le. 2015. A Neural Conversational Model. (July 2015).
doi: 10.48550/arXiv.1506.05869. arXiv: 1506.05869 [cs].

[170] AsbjørnFølstad,CecilieBertinussenNordheim, andCatoAlexanderBjørkli. 2018.
What Makes Users Trust a Chatbot for Customer Service? An Exploratory Inter-
view Study. In Internet Science (Lecture Notes in Computer Science). Svetlana
S. Bodrunova, editor. Springer International Publishing, Cham, 194–208. isbn:
978-3-030-01437-7. doi: 10.1007/978-3-030-01437-7_16.

[171] Sharon Oviatt. 2007. Multimodal Interfaces. In The Human-Computer Interac-
tion Handbook. (Second edition). CRC Press. isbn: 978-0-429-16397-5.

[172] DominicW.Massaro. 2004. A framework for evaluating multimodal integration
by humans and a role for embodied conversational agents. In Proceedings of the
6th International Conference on Multimodal Interfaces - ICMI ’04. ACM Press,
State College, PA, USA, 24. isbn: 978-1-58113-995-2. doi: 10.1145/1027933.
1027939.

[173] SharonOviatt,RachelCoulston, andRebeccaLunsford. 2004.Whendowe inter-
act multimodally? Cognitive load and multimodal communication patterns. Pro-
ceedings of the 6th international conference onMultimodal interfaces, 8.

[174] Siwei Lai, Kang Liu, Shizhu He, and Jun Zhao. 2016. How to generate a good
word embedding. IEEE Intelligent Systems, 31, 6, 5–14.

[175] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 1532–1543.

[176] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient esti-
mation of word representations in vector space. arXiv preprint arXiv:1301.3781.

[177] GuillaumeKlein, YoonKim, YuntianDeng, VincentNguyen, Jean Senellart, and
Alexander M Rush. 2018. Opennmt: neural machine translation toolkit. arXiv
preprint arXiv:1805.11462.

[178] XiaofengDai, Ting Li, ZhonghuBai, YankunYang, Xiuxia Liu, Jinling Zhan, and
Bozhi Shi. 2015. Breast cancer intrinsic subtype classification, clinical use and fu-
ture trends. American journal of cancer research, 5, 10, 2929.

[179] kaggle. [n. d.] Strokepredictiondataset.https://www.kaggle.com/datasets/
fedesoriano/stroke-prediction-dataset. [Online; accessed 28-April-
2022]. ().

[180] john Brooke. 1996. SUS: a ’Quick andDirty’ Usability Scale. InUsability Evalua-
tion In Industry. CRC Press. isbn: 978-0-429-15701-1.

221

https://doi.org/10.3390/info10020063
https://doi.org/10.48550/arXiv.1506.05869
https://arxiv.org/abs/1506.05869
https://doi.org/10.1007/978-3-030-01437-7_16
https://doi.org/10.1145/1027933.1027939
https://doi.org/10.1145/1027933.1027939
https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset

Bibliography

[181] SandraG.Hart andLowell E. Staveland. 1988.DevelopmentofNASA-TLX(Task
Load Index): results of Empirical and Theoretical Research. In Advances in Psy-
chology.HumanMentalWorkload. Volume 52.North-Holland, (January 1, 1988),
139–183. doi: 10.1016/S0166-4115(08)62386-9.

[182] Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Pro-
ceedings of theHumanFactors andErgonomics Society AnnualMeeting, 50, 9, (Oc-
tober 1, 2006), 904–908. doi: 10/fzvtd4.

[183] Alberto Benayas, Miguel Angel Sicilia, and Marçal Mora-Cantallops. 2023. Au-
tomated creation of an intent model for conversational agents. Applied Artificial
Intelligence, 37, 1, 2164401.

[184] Ali Ahmadvand. 2020. User intent inference for web search and conversational
agents. In Proceedings of the 13th International Conference on Web Search and
DataMining, 911–912.

[185] John Brooke. 2013. Sus: a retrospective. Journal of usability studies, 8, 2, 29–40.
[186] RebeccaA.Grier. 2015.HowHigh isHigh? aMeta-Analysis ofNASA-TLXGlobal

Workload Scores. Proceedings of the Human Factors and Ergonomics Society An-
nualMeeting, 59, 1, (September 2015), 1727–1731. doi: 10/gf447w.

[187] Amina Adadi andMohammed Berrada. 2018. Peeking inside the black-box: a sur-
vey on explainable artificial intelligence (xai). IEEE access, 6, 52138–52160.

[188] QVeraLiao,DanielGruen, andSarahMiller. 2020.Questioning the ai: informing
design practices for explainable ai user experiences. InProceedings of the 2020CHI
Conference on Human Factors in Computing Systems, 1–15.

[189] Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie Huang, and XiaoYan Zhu.
2020.Recent advances and challenges in task-oriented dialog systems. Science Chi-
na Technological Sciences, 63, 10, 2011–2027.

[190] YinongLong, JiananWang,ZhenXu,ZongshengWang,BaoxunWang, andZhuo-
ran Wang. 2017. A knowledge enhanced generative conversational service agent.
InProceedings of the 6thDialog SystemTechnology Challenges (DSTC6)Workshop.

[191] Minlie Huang, Xiaoyan Zhu, and Jianfeng Gao. 2020. Challenges in building in-
telligent open-domain dialog systems.ACMTransactions on Information Systems
(TOIS), 38, 3, 1–32.

[192] Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. 2017. A survey on
dialogue systems: recent advances and new frontiers. Acm Sigkdd Explorations
Newsletter, 19, 2, 25–35.

[193] Salla Syvänen and Chiara Valentini. 2020. Conversational agents in online orga-
nization–stakeholder interactions: a state-of-the-art analysis and implications for
further research. Journal of CommunicationManagement, 24, 4, 339–362.

[194] MichaelMcTear. 2020.Conversational ai: dialogue systems, conversational agents,
and chatbots. Synthesis Lectures on Human Language Technologies, 13, 3, 1–251.

[195] Luis Fernando Lins, Glaucia Melo, Toacy Oliveira, Paulo Alencar, and Donald
Cowan. 2021. Pacas: process-aware conversational agents. In International Con-
ference on Business Process Management. Springer, 312–318.

[196] Shafquat Hussain, Omid Ameri Sianaki, and Nedal Ababneh. 2019. A survey on
conversational agents/chatbots classification and design techniques. InWorkshops

222

https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10/fzvtd4
https://doi.org/10/gf447w

Bibliography

of the International Conference on Advanced Information Networking and Appli-
cations. Springer, 946–956.

[197] Marie-Luce Bourguet. 2003. Designing and prototypingmultimodal commands.
In Interact. Volume 3. Citeseer, 717–720.

[198] Sigrid Norris. 2004. Analyzing multimodal interaction: A methodological frame-
work. Routledge.

[199] MatthewTurk. 2014.Multimodal interaction: a review.Pattern recognition letters,
36, 189–195.

[200] David Griol, Ismael Baena, José Manuel Molina, and Araceli Sanchis de Miguel.
2014. A multimodal conversational agent for personalized language learning. In
Ambient intelligence-software and applications. Springer, 13–21.

[201] SSMuhammadNizam,RimanizaZainalAbidin,NurhazarifahCheHashim,Meng
Chun Lam, Haslina Arshad, and NAAMajid. 2018. A review of multimodal in-
teraction technique in augmented reality environment. Int. J. Adv. Sci. Eng. Inf.
Technol, 8, 4-2, 1460.

[202] Harry Bunt, Robbert-Jan Beun, and Tijn Borghuis. 1998. Multimodal human-
computer communication: systems, techniques, and experiments.Volume 1374. Springer
Science & Business Media.

[203] Maria Chiara Caschera, Fernando Ferri, and Patrizia Grifoni. 2007. Multimodal
interaction systems: information and time features. International Journal ofWeb
and Grid Services, 3, 1, 82–99.

[204] Aditya Sankar and Steven M Seitz. 2016. In situ cad capture. In Proceedings of
the 18th International Conference on Human-Computer Interaction with Mobile
Devices and Services, 233–243.

[205] Mirko Gelsomini, Giulia Cosentino, Micol Spitale, Mattia Gianotti, Davide Fisi-
caro, Giulia Leonardi, Fabiano Riccardi, Agnese Piselli, Eleonora Beccaluva, Bar-
bara Bonadies, et al. 2019. Magika, a multisensory environment for play, educa-
tion and inclusion. In Extended abstracts of the 2019 CHI conference on human
factors in computing systems, 1–6.

[206] PietroCrovari,MattiaGianotti, FabianoRiccardi, andFrancaGarzotto. 2019.De-
signing a smart toy: guidelines from the experience with smart dolphin” sam”. In
Proceedings of the 13th Biannual Conference of the Italian SIGCHI Chapter: De-
signing the next interaction, 1–10.

[207] Eleni Papadaki, Stavroula Ntoa, Ilia Adami, and Constantine Stephanidis. 2017.
Let’s cook: an augmented reality system towards developing cooking skills for chil-
dren with cognitive impairments. In International conference on smart objects and
technologies for social good. Springer, 237–247.

[208] Lizi Liao, Yunshan Ma, Xiangnan He, Richang Hong, and Tat-seng Chua. 2018.
Knowledge-aware multimodal dialogue systems. In Proceedings of the 26th ACM
international conference onMultimedia, 801–809.

[209] SharonOviatt. 2003. Advances in robust multimodal interface design. IEEE com-
puter graphics and applications, 5, 62–68.

[210] DeborahADahl. 2017.Multimodal interactionwithw3c standards.Cham,Switzer-
land: Springer International Publishing.

223

Bibliography

[211] Fabio Catania. 2020. Conversational technology and natural language visualiza-
tion for children’s learning. In Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems, 1–7.

[212] Pattie Maes. 1994. Agents that reduce work and information overload. Commun.
ACM, 37, 7, (July 1994), 30–40.

[213] E Horvitz. 1999. Principles of mixed-initiative user interfaces. Proceedings of the
SIGCHI conference on Human.

[214] Fabio Catania, Nicola Di Nardo, Franca Garzotto, and Daniele Occhiuto. 2019.
Emoty: an emotionally sensitive conversational agent for people with neurodevel-
opmental disorders. In Proceedings of the 52nd Hawaii International Conference
on System Sciences.

[215] FabioCatania,GiorgioDeLuca,Nicola Bombaci, EricaColombo, PietroCrovari,
EleonoraBeccaluva, andFrancaGarzotto. 2020.Musical and conversational artifi-
cial intelligence. In Proceedings of the 25th International Conference on Intelligent
User Interfaces Companion, 51–52.

[216] Fabio Catania, Micol Spitale, Davide Fisicaro, and Franca Garzotto. 2019. Cork:
a conversational agent framework exploiting both rational and emotional intelli-
gence. In IUIWorkshops.

[217] Pietro Crovari, Fabio Catania, and Franca Garzotto. 2020. Crime story as a tool
for scientific and technological outreach. In Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems, 1–10.

[218] ClaudiaMariaCutrupi, SalvatoreFadda,GiovanniValcarenghi,GiuliaCosentino,
Fabio Catania, Micol Spitale, and Franca Garzotto. 2020. Smemo: a multi-modal
interface promoting children’s creation of personal conversational agents. In Pro-
ceedings of the 2nd Conference on Conversational User Interfaces, 1–3.

[219] Amirreza Rouhi, Micol Spitale, Fabio Catania, Giulia Cosentino, Mirko Gelso-
mini, and Franca Garzotto. 2019. Emotify: emotional game for children with au-
tism spectrum disorder based-on machine learning. In Proceedings of the 24th In-
ternational Conference on Intelligent User Interfaces: Companion, 31–32.

[220] Micol Spitale, Fabio Catania, Pietro Crovari, and Franca Garzotto. 2020. Multi-
criteria decision analysis and conversational agents for children with autism. In
Proceedings of the 53rd Hawaii International Conference on System Sciences.

[221] Micol Spitale, Silvia Silleresi,GiuliaCosentino, FrancescaPanzeri, andFrancaGar-
zotto. 2020. ”whomwould you like to talkwith?” exploring conversational agents
for children’s linguistic assessment. In Proceedings of the Interaction Design and
Children Conference, 262–272.

[222] Jakob Nielsen. 2005. Ten usability heuristics. (2005).
[223] MJ Page, JE McKenzie, PM Bossuyt, I Boutron, TC Hoffmann, CDMulrow, L

Shamseer, JM Tetzlaff, EA Akl, SE Brennan, et al. [n. d.] The prisma 2020 state-
ment: an updated guideline for reporting systematic reviews. syst rev. 2021; 10: 89.
().

[224] Marilyn A.Walker, Diane J. Litman, Candace A. Kamm, and Alicia Abella. 1997.
Paradise: a framework for evaluating spoken dialogue agents. (1997). arXiv: cmp-
lg/9704004 [cmp-lg].

224

https://arxiv.org/abs/cmp-lg/9704004
https://arxiv.org/abs/cmp-lg/9704004

Bibliography

[225] AntonChekhov. 1999.TheUnknownChekhov: Stories&OtherWritingsHitherto
Untranslated. Macmillan.

[226] Qiyu Zhi and Ronald Metoyer. 2020. Gamebot: a visualization-augmented chat-
bot for sports game. InExtendedAbstracts of the 2020 CHIConference onHuman
Factors in Computing Systems, 1–7.

[227] Marti Hearst andMelanie Tory. 2019. Would you like a chart with that? incorpo-
rating visualizations into conversational interfaces. In 2019 IEEE Visualization
Conference (VIS). IEEE, 1–5.

[228] Larry L Constantine and Lucy AD Lockwood. 1999. Software for use: a practical
guide to the models and methods of usage-centered design. Pearson Education.

[229] David Griol and Zoraida Callejas. 2013. An architecture to develop multimodal
educative applications with chatbots. International Journal of Advanced Robotic
Systems, 10, 3, 175.

[230] Nadine B Sarter. 2006. Multimodal information presentation: design guidance
and research challenges. International journal of industrial ergonomics, 36, 5, 439–
445.

[231] Justine Cauell, Tim Bickmore, Lee Campbell, and Hannes Vilhjálmsson. 2000.
Designing embodied conversational agents. Embodied conversational agents, 29.

[232] Sharon Oviatt. 1997. Mulitmodal interactive maps: designing for human perfor-
mance.Human–Computer Interaction, 12, 1-2, 93–129.

[233] SharonOviatt, Antonella DeAngeli, and Karen Kuhn. 1997. Integration and syn-
chronization of input modes during multimodal human-computer interaction.
In Proceedings of the ACM SIGCHI Conference on Human factors in computing
systems, 415–422.

[234] StergiosTegos, StavrosDemetriadis, Georgios Psathas, andThrasyvoulosTsiatsos.
2019. A configurable agent to advance peers’ productive dialogue in moocs. In
InternationalWorkshop on Chatbot Research and Design. Springer, 245–259.

[235] Alice Kerlyl, Phil Hall, and Susan Bull. 2006. Bringing chatbots into education:
towards natural language negotiation of open learner models. In International
Conference on InnovativeTechniques andApplications ofArtificial Intelligence. Sprin-
ger, 179–192.

[236] Bruno Dumas, Denis Lalanne, and Sharon Oviatt. 2009. Multimodal interfaces:
a survey of principles, models and frameworks. In Human machine interaction.
Springer, 3–26.

[237] Jonathan Grudin. 1989. The case against user interface consistency. Communica-
tions of the ACM, 32, 10, 1164–1173.

[238] Joakim Gustafson, Linda Bell, Jonas Beskow, Johan Boye, Rolf Carlson, Jens Ed-
lund, Björn Granström, David House, and Mats Wirén. 2000. Adapt—a multi-
modal conversational dialogue system in an apartment domain. In The Sixth In-
ternational Conference on Spoken Language Processing (ICSLP), Beijing, China,
134–137.

[239] Adwait Ratnaparkhi. 1998.Maximum entropymodels for natural language ambi-
guity resolution.

225

Bibliography

[240] Raina Langevin, Ross J Lordon, Thi Avrahami, Benjamin RCowan, TadHirsch,
and Gary Hsieh. 2021. Heuristic evaluation of conversational agents. In Proceed-
ings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–15.

[241] Andrew J Cowell and KayM Stanney. 2003. Embodiment and interaction guide-
lines for designing credible, trustworthy embodied conversational agents. In Intel-
ligent Virtual Agents: 4th International Workshop, IVA 2003, Kloster Irsee, Ger-
many, September 15-17, 2003. Proceedings 4. Springer, 301–309.

[242] David R Large, Gary Burnett, and Leigh Clark. 2019. Lessons from oz: design
guidelines for automotive conversational user interfaces. In Proceedings of the 11th
International Conference on Automotive User Interfaces and Interactive Vehicular
Applications: Adjunct Proceedings, 335–340.

[243] ShivangVerma, Lakshay Sahni, andMoolchand Sharma. 2020.Comparative anal-
ysis of chatbots. InProceedings of the International Conference on Innovative Com-
puting & Communications (ICICC).

[244] Irene Lopatovska, Katrina Rink, Ian Knight, Kieran Raines, Kevin Cosenza, Har-
rietWilliams,PerachyaSorsche,DavidHirsch,QiLi, andAdriannaMartinez. 2019.
Talk to me: exploring user interactions with the amazon alexa. Journal of Librari-
anship and Information Science, 51, 4, 984–997.

[245] Satwinder Singh and Himanshu Beniwal. 2021. A survey on near-human conver-
sational agents. Journal of King Saud University-Computer and Information Sci-
ences.

[246] Matthew L Meuter, Amy L Ostrom, Robert I Roundtree, and Mary Jo Bitner.
2000. Self-service technologies: understanding customer satisfactionwith techno-
logy-based service encounters. Journal of marketing, 64, 3, 50–64.

[247] Mary Jo Bitner, Stephen W Brown, and Matthew L Meuter. 2000. Technology
infusion in service encounters. Journal of the Academy of marketing Science, 28, 1,
138–149.

[248] Anne Scherer, Nancy V Wünderlich, and Florian Von Wangenheim. 2015. The
value of self-service.MIS quarterly, 39, 1, 177–200.

[249] MehdiAlaimi, EdithLaw,KevinDaniel Pantasdo,Pierre-YvesOudeyer, andHélène
Sauzeon. 2020. Pedagogical agents for fostering question-asking skills in children.
In Proceedings of the 2020 CHI Conference on Human Factors in Computing Sys-
tems, 1–13.

[250] Jessy Ceha, Ken Jen Lee, Elizabeth Nilsen, Joslin Goh, and Edith Law. 2021. Can
a humorous conversational agent enhance learning experience and outcomes? In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems,
1–14.

[251] AdityaNrusimhaVaidyam,HannahWisniewski, JohnDavidHalamka,Matcheri
S Kashavan, and John Blake Torous. 2019. Chatbots and conversational agents
in mental health: a review of the psychiatric landscape. The Canadian Journal of
Psychiatry, 64, 7, 456–464.

226

Bibliography

[252] RobertRMorris,KareemKouddous,RohanKshirsagar, andStephenMSchueller.
2018. Towards an artificially empathic conversational agent for mental health ap-
plications: systemdesign anduser perceptions. Journal ofmedical Internet research,
20, 6, e10148.

[253] Liliana Laranjo, Adam G Dunn, Huong Ly Tong, Ahmet Baki Kocaballi, Jessica
Chen, Rabia Bashir, Didi Surian, Blanca Gallego, Farah Magrabi, Annie YS Lau,
et al. 2018. Conversational agents in healthcare: a systematic review. Journal of the
AmericanMedical Informatics Association, 25, 9, 1248–1258.

[254] Jean-Emmanuel Bibault, Benjamin Chaix, Pierre Nectoux, Arthur Pienkowski,
Arthur Guillemasé, and Benoı̂t Brouard. 2019. Healthcare ex machina: are con-
versational agents ready for prime time in oncology? Clinical and translational
radiation oncology, 16, 55–59.

[255] UlrichGnewuch, StefanMorana, andAlexanderMaedche. 2017. Towards design-
ing cooperative and social conversational agents for customer service. In ICIS.

[256] Alisa Kongthon, Chatchawal Sangkeettrakarn, Sarawoot Kongyoung, and Choo-
chart Haruechaiyasak. 2009. Implementing an online help desk system based on
conversational agent. In Proceedings of the International Conference on Manage-
ment of Emergent Digital EcoSystems, 450–451.

[257] David Griol, José Manuel Molina, and Araceli Sanchis De Miguel. 2014. Devel-
oping multimodal conversational agents for an enhanced e-learning experience.
ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal,
3, 1, 13–26.

[258] PietroCrovari, SaraPidò, PietroPinoli,AnnaBernasconi,ArifCanakoglu, Franca
Garzotto, and StefanoCeri. 2021.GeCoAgent: a conversational agent for empow-
ering genomic data extraction and analysis. ACM Trans. Comput. Healthcare, 3,
1, (October 2021), 1–29. issn: 2691-1957. doi: 10.1145/3464383.

[259] Francisco AMValério, Tatiane G Guimarães, Raquel O Prates, and Heloisa Can-
dello. 2020. Comparing users’ perception of different chatbot interaction para-
digms: a case study. In Proceedings of the 19th Brazilian Symposium on Human
Factors in Computing Systems, 1–10.

[260] Wahlster. 2003. Smartkom: symmetricmultimodality in an adaptive and reusable
dialogue shell. Proceedings of the human computer interaction status.

[261] Jasper Feine, Ulrich Gnewuch, StefanMorana, and Alexander Maedche. 2019. A
taxonomyof social cues for conversational agents. International Journal ofHuman-
Computer Studies, 132, 138–161.

[262] Stephan Diederich, Alfred Benedikt Brendel, and Lutz M Kolbe. 2019. Towards
a taxonomy of platforms for conversational agent design.

[263] Xi Yang and Marco Aurisicchio. 2021. Designing conversational agents: a self-
determination theory approach. InProceedings of the 2021 CHIConference onHu-
man Factors in Computing Systems, 1–16.

[264] PhilippKirschthaler,Martin Porcheron, and Joel E Fischer. 2020.What can i say?
effects of discoverability in vuis on task performance and user experience. In Pro-
ceedings of the 2nd Conference on Conversational User Interfaces, 1–9.

227

https://doi.org/10.1145/3464383

Bibliography

[265] Mauajama Firdaus, Arunav Pratap Shandeelya, and Asif Ekbal. 2020.More to di-
verse: generating diversified responses in a task orientedmultimodal dialog system.
PloS one, 15, 11, e0241271.

[266] Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom MMitchell, and Brad A Myers.
2020.Multi-modal repairs of conversational breakdowns in task-oriented dialogs.
In Proceedings of the 33rd Annual ACM Symposium on User Interface Software
and Technology, 1094–1107.

[267] Yi Shan,Meng Ji,WenxiuXie,XiaoboQian,RongyingLi,XiaominZhang,Tiany-
ongHao, et al. 2022. Language use in conversational agent–based health commu-
nication: systematic review. en. Journal of Medical Internet Research, 24, 7, (July
2022), e37403. issn: 1439-4456, 1438-8871. doi: 10.2196/37403.

[268] RyanMSchuetzler, GMarkGrimes, and Justin ScottGiboney. 2020.The impact
of chatbot conversational skill on engagement and perceived humanness. Journal
ofManagement Information Systems, 37, 3, 875–900.

[269] Eun Go and S Shyam Sundar. 2019. Humanizing chatbots: the effects of visual,
identity and conversational cues on humanness perceptions. Computers in Hu-
man Behavior, 97, 304–316.

[270] SangwonLee,Naeun Lee, and Young June Sah. 2020. Perceiving amind in a chat-
bot: effect ofmind perception and social cues on co-presence, closeness, and inten-
tion to use. International Journal of Human–Computer Interaction, 36, 10, 930–
940.

[271] Tibert Verhagen, Jaap Van Nes, Frans Feldberg, and Willemijn Van Dolen. 2014.
Virtual customer service agents: using social presence andpersonalization to shape
online service encounters. Journal of Computer-Mediated Communication, 19, 3,
529–545.

[272] Timothy W Bickmore and Rosalind W Picard. 2005. Establishing and maintain-
ing long-term human-computer relationships. ACM Transactions on Computer-
Human Interaction (TOCHI), 12, 2, 293–327.

[273] JustineCassell. 2000.Embodied conversational interface agents.Communications
of the ACM, 43, 4, 70–78.

[274] Matthew D Pickard, Judee K Burgoon, and Douglas C Derrick. 2014. Toward
an objective linguistic-basedmeasure of perceived embodied conversational agent
power and likeability. International Journal of Human-Computer Interaction, 30,
6, 495–516.

[275] Nicole Novielli, Fiorella de Rosis, and Irene Mazzotta. 2010. User attitude to-
wards an embodied conversational agent: effects of the interaction mode. Jour-
nal of pragmatics, 42, 9, (September 2010), 2385–2397. issn: 0378-2166. doi:
10.1016/j.pragma.2009.12.016.

[276] Leigh Clark, Philip Doyle, Diego Garaialde, Emer Gilmartin, Stephan Schlögl,
Jens Edlund, Matthew Aylett, João Cabral, Cosmin Munteanu, Justin Edwards,
et al. 2019. The state of speech in hci: trends, themes and challenges. Interacting
with computers, 31, 4, 349–371.

228

https://doi.org/10.2196/37403
https://doi.org/10.1016/j.pragma.2009.12.016

Bibliography

[277] Razan Jaber and Donald McMillan. 2020. Conversational user interfaces on mo-
bile devices: survey. In Proceedings of the 2nd Conference on Conversational User
Interfaces, 1–11.

[278] S. Oviatt and R. VanGent. 1996. Error resolution during multimodal human-
computer interaction. InProceeding of Fourth International Conference on Spoken
Language Processing. ICSLP ’96. Volume 1. (October 1996), 204–207 vol.1. doi:
10.1109/ICSLP.1996.607077.

[279] Isabel Kathleen Fornell Haugeland. 2020. Understanding the user experience of
customer service chatbots An experimental study of how user experience is affected by
differences in interaction design. Master’s thesis.

[280] Gregory A Sanders, Jean C Scholtz, et al. 2001. Measurement and evaluation of
embodied conversational agents.

[281] AmonRapp,LorenzoCurti, andAriannaBoldi. 2021.Thehuman side of human-
chatbot interaction: a systematic literature review of ten years of research on text-
based chatbots. International Journal of Human-Computer Studies, 151, 102630.

[282] HeloisaCandello,ClaudioPinhanez,MauroPichiliani, PauloCavalin, FlavioFigueiredo,
Marisa Vasconcelos, and Haylla Do Carmo. 2019. The effect of audiences on the
user experience with conversational interfaces in physical spaces. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems, 1–13.

[283] Sara Pérez-Soler, Esther Guerra, and Juan de Lara. 2020. Model-Driven chatbot
development. In Conceptual Modeling. Springer International Publishing, 207–
222. doi: 10.1007/978-3-030-62522-1_15.

[284] KiranRamesh, SuryaRavishankaran,Abhishek Joshi, andKChandrasekaran. 2017.
A survey of design techniques for conversational agents. In Information, Com-
munication and Computing Technology. Springer Singapore, 336–350. doi: 10.
1007/978-981-10-6544-6_31.

[285] Jan-GerritHarms, Pavel Kucherbaev, Alessandro Bozzon, andGeert-JanHouben.
2018. Approaches for dialogmanagement in conversational agents. IEEE Internet
Computing, 23, 2, 13–22.

[286] Terry Winograd, Fernando Flores, and Fernando F Flores. 1986. Understanding
computers and cognition: A new foundation for design. Intellect Books.

[287] Pauchet, El Fallah Seghrouchni, and Chaignaud. 2007. Simulating a human co-
operative problem solving. Produits pharmaceutiques. issn: 0370-1565.

[288] RichardWallace. 2003. The elements of aiml style. Alice AI Foundation, 139.
[289] Michele LMcNeal andDavidNewyear. 2013. Chatbot creation options. Library

Technology Reports, 49, 8, 11–17.
[290] Berardina De Carolis, Catherine Pelachaud, Isabella Poggi, and Mark Steedman.

2004. APML, amarkup language for believable behavior generation. InLife-Like
Characters: Tools, Affective Functions, and Applications. Helmut Prendinger and
Mitsuru Ishizuka, editors. Springer BerlinHeidelberg, Berlin, Heidelberg, 65–85.
isbn: 9783662083734. doi: 10.1007/978-3-662-08373-4_4.

[291] Stefan Kopp, Brigitte Krenn, Stacy Marsella, Andrew NMarshall, Catherine Pe-
lachaud, Hannes Pirker, Kristinn R Thórisson, and Hannes Vilhjálmsson. 2006.
Towards a common framework for multimodal generation: the behavior markup

229

https://doi.org/10.1109/ICSLP.1996.607077
https://doi.org/10.1007/978-3-030-62522-1_15
https://doi.org/10.1007/978-981-10-6544-6_31
https://doi.org/10.1007/978-981-10-6544-6_31
https://doi.org/10.1007/978-3-662-08373-4_4

Bibliography

language. In IntelligentVirtualAgents. SpringerBerlinHeidelberg, 205–217.doi:
10.1007/11821830_17.

[292] StefanKopp,Bernhard Jung,NadineLessmann, and IpkeWachsmuth. 2003.Max-
a multimodal assistant in virtual reality construction.KI, 17, 4, 11.

[293] JustineCassell, HannesHögni Vilhjálmsson, andTimothy Bickmore. 2004. Beat:
the behavior expression animation toolkit. InLife-Like Characters. Springer, 163–
185.

[294] Paul Piwek, Brigitte Krenn,Marc Schröder, Martine Grice, Stefan Baumann, and
Hannes Pirker. 2004. Rrl: a rich representation language for the description of
agent behaviour in neca. arXiv preprint cs/0410022.

[295] Zacharie Alès, Guillaume Dubuisson Duplessis, Ovidiu Şerban, and Alexandre
Pauchet. 2012. A methodology to design human-like embodied conversational
agents. In InternationalWorkshop onHuman-Agent InteractionDesign andMod-
els (HAIDM’12), online–proceedings.

[296] Shubham Agarwal, Ondrej Dusek, Ioannis Konstas, and Verena Rieser. 2018. A
Knowledge-Grounded multimodal Search-Based conversational agent, (October
2018). arXiv: 1810.11954 [cs.CL].

[297] Robert J Moore. 2018. A natural conversation framework for conversational UX
design. In Studies in Conversational UXDesign. Robert JMoore,MargaretH Szy-
manski, Raphael Arar, and Guang-Jie Ren, editors. Springer International Pub-
lishing, Cham, 181–204. isbn: 9783319955797. doi: 10.1007/978-3-319-
95579-7_9.

[298] Robert J Moore and Raphael Arar. 2019. Conversational UX Design: A Practi-
tioner’s Guide to the Natural Conversation Framework. Association for Comput-
ing Machinery, New York, NY, USA. isbn: 9781450363013.

[299] Peter Wallis, Helen Mitchard, Jyotsna Das, and Damian O’Dea. 2001. Dialogue
modelling for a conversational agent. In Australian Joint Conference on Artificial
Intelligence. Springer, 532–544.

[300] Elena Planas, GwendalDaniel,Marco Brambilla, and JordiCabot. 2021. Towards
a model-driven approach for multiexperience AI-based user interfaces. Software
and Systems Modeling, 20, 4, (August 2021), 997–1009. issn: 1619-1374. doi:
10.1007/s10270-021-00904-y.

[301] Carlo Bernaschina, Sara Comai, and Piero Fraternali. 2018. Formal semantics of
omg’s interaction flowmodeling language (ifml) for mobile and rich-client appli-
cationmodel driven development. Journal of Systems and Software, 137, 239–260.

[302] Sharon Oviatt and Philip R Cohen. 2015. The paradigm shift to multimodality
in contemporary computer interfaces. Synthesis lectures on human-centered infor-
matics, 8, 3, 1–243.

[303] Rogers Jeffrey Leo John, JigneshM Patel, Andrew LAlexander, Vikas Singh, and
Nagesh Adluru. 2018. A natural language interface for dissemination of repro-
ducible biomedical data science. In International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 197–205.

230

https://doi.org/10.1007/11821830_17
https://arxiv.org/abs/1810.11954
https://doi.org/10.1007/978-3-319-95579-7_9
https://doi.org/10.1007/978-3-319-95579-7_9
https://doi.org/10.1007/s10270-021-00904-y

Bibliography

[304] Jan-Frederik Kassel andMichael Rohs. 2019. Talk tome intelligibly: investigating
an answer space to match the user’s language in visual analysis. In Proceedings of
the 2019 on Designing Interactive Systems Conference, 1517–1529.

[305] Jack Cahn. 2017. Chatbot: architecture, design, & development. University of
Pennsylvania School of Engineering and Applied Science Department of Computer
and Information Science.

[306] Srini Janarthanam. 2017. Hands-on chatbots and conversational UI development:
build chatbots and voice user interfaces with Chatfuel, Dialogflow, Microsoft Bot
Framework, Twilio, and Alexa Skills. Packt Publishing Ltd.

[307] S Biundo and A Wendemuth. 2016. Companion-Technology for cognitive tech-
nical systems.KI-Künstliche Intelligenz.

[308] Renaud Blanch and Michel Beaudouin-Lafon. 2006. Programming rich interac-
tions using the hierarchical state machine toolkit. In Proceedings of the working
conference on Advanced visual interfaces, 51–58.

[309] Abhishek Singh, Karthik Ramasubramanian, and Shrey Shivam. 2019. Introduc-
tion tomicrosoft bot, rasa, and google dialogflow. InBuilding an Enterprise Chat-
bot. Springer, 281–302.

[310] Marcos Baez, Florian Daniel, and Fabio Casati. 2019. Conversational web inter-
action: proposal of a Dialog-Based natural language interaction paradigm for the
web. In InternationalWorkshop on Chatbot Research and Design. Springer Inter-
national Publishing, 94–110.

[311] DonyaRooein,DevisBianchini, FrancescoLeotta,MassimoMecella, PaoloPaolini,
and Barbara Pernici. 2022. Achat-wf: generating conversational agents for teach-
ing business process models. Software and SystemsModeling, 1–24.

[312] ArturCaetano,AntónioRitoSilva, and JoséTribolet. 2010.Business process decomposition-
an approach based on the principle of separation of concerns. Enterprise Mod-
elling and Information Systems Architectures (EMISAJ), 5, 1, 44–57.

[313] Jean-BaptisteLouvet,GuillaumeDubuissonDuplessis,NathalieChaignaud,Lau-
rent Vercouter, and Jean-Philippe Kotowicz. 2017. Modeling a collaborative task
with social commitments. Procedia computer science, 112, 377–386.

[314] Anirudh Sundar and Larry Heck. 2022. Multimodal conversational ai: a survey
of datasets and approaches. arXiv preprint arXiv:2205.06907.

[315] Joao Luis Zeni Montenegro, Cristiano André da Costa, and Rodrigo da Rosa
Righi. 2019. Survey of conversational agents in health. Expert Systems with Ap-
plications, 129, 56–67.

[316] Bogdan Pătruţ andRoxana-Petronela Spatariu. 2016. Implementation of artificial
emotions and moods in a pedagogical agent. In Emotions, technology, design, and
learning. Elsevier, 63–86.

[317] Sherry Ruan, Liwei Jiang, Justin Xu, Bryce Joe-Kun Tham, Zhengneng Qiu, Ye-
shuang Zhu, Elizabeth L Murnane, Emma Brunskill, and James A Landay. 2019.
QuizBot: a dialogue-based adaptive learning system for factual knowledge. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems. As-
sociation for ComputingMachinery, New York, NY, USA, (May 2019), 1–13.

231

Bibliography

[318] Michelene THChi andRuthWylie. 2014. The icap framework: linking cognitive
engagement to active learning outcomes.Educational psychologist, 49, 4, 219–243.

[319] Luke K Fryer, Kaori Nakao, and Andrew Thompson. 2019. Chatbot learning
partners: connecting learning experiences, interest and competence.Computers in
Human Behavior, 93, 279–289.

[320] ThiemoWambsganss. 2021. Designing adaptive argumentation learning systems
based on artificial intelligence. In Extended Abstracts of the 2021 CHI Conference
on Human Factors in Computing Systems, 1–5.

[321] JuanCCastro-Alonso,RachelMWong,OlusolaOAdesope, and Fred Paas. 2021.
Effectiveness of multimedia pedagogical agents predicted by diverse theories: a
meta-analysis. Educational Psychology Review, 33, 3, 989–1015.

[322] TJ Kennedy andMRLOdell. 2014. Engaging students in stem education. Science
Education International, 25, 3, 246–258.

[323] Diana Marín. 2021. A review of the practical applications of pedagogic conversa-
tional agents to be used in school and university classrooms. Digital, 1, (January
2021), 18–33. doi: 10.3390/digital1010002.

[324] Pietro Crovari, Chiara Marzano, Massimiliano Nigro, Mariagiovanna Di Iorio,
and Franca Garzotto. 2023. Exploring multimodal pedagogical conversational a-
gents for stem education. In Interaction Design and Children, Under Review.

[325] Eleni Adamopoulou and Lefteris Moussiades. 2020. Chatbots: history, technol-
ogy, and applications.MachineLearningwithApplications, 2, 100006. issn: 2666-
8270. doi: https://doi.org/10.1016/j.mlwa.2020.100006. https://
www.sciencedirect.com/science/article/pii/S2666827020300062.

[326] W. Johnson, J. Rickel, and J. Lester. 2000. Animated Pedagogical Agents: Face-to-
Face Interaction in Interactive Learning Environments. International Journal of
Artificial Intelligence in Education, 11, (January 2000), 47.

[327] Fabio Clarizia, Francesco Colace, Marco Lombardi, Francesco Pascale, and Do-
menico Santaniello. 2018. Chatbot: an education support system for student. In
Cyberspace Safety and Security. ArcangeloCastiglione, Florin Pop,MassimoFicco,
and Francesco Palmieri, editors. Springer International Publishing, Cham, 291–
302. isbn: 978-3-030-01689-0.

[328] James C. Lester, Sharolyn A. Converse, Susan E. Kahler, S. Todd Barlow, Brian
A. Stone, and Ravinder S. Bhogal. 1997. The persona effect: affective impact of
animated pedagogical agents. In Proceedings of the ACM SIGCHI Conference on
Human factors in computing systems (CHI ’97). Association for Computing Ma-
chinery, NewYork,NY,USA, (March 1997), 359–366. isbn: 978-0-89791-802-2.
doi: 10.1145/258549.258797. Retrieved 09/02/2021 from https://doi.
org/10.1145/258549.258797.

[329] Nick Yee and Jeremy Bailenson. 2007. The Proteus Effect: The Effect of Trans-
formed Self-Representation on Behavior. en. Human Communication Research,
33, 3, (July 2007), 271–290. issn: 0360-3989, 1468-2958. doi: 10.1111/j.
1468-2958.2007.00299.x.Retrieved09/02/2021 fromhttps://academic.
oup.com/hcr/article/33/3/271-290/4210718.

232

https://doi.org/10.3390/digital1010002
https://doi.org/https://doi.org/10.1016/j.mlwa.2020.100006
https://www.sciencedirect.com/science/article/pii/S2666827020300062
https://www.sciencedirect.com/science/article/pii/S2666827020300062
https://doi.org/10.1145/258549.258797
https://doi.org/10.1145/258549.258797
https://doi.org/10.1145/258549.258797
https://doi.org/10.1111/j.1468-2958.2007.00299.x
https://doi.org/10.1111/j.1468-2958.2007.00299.x
https://academic.oup.com/hcr/article/33/3/271-290/4210718
https://academic.oup.com/hcr/article/33/3/271-290/4210718

Bibliography

[330] YangheeKim,AmyLBaylor, PALSGroup, et al. 2006. Pedagogical agents as learn-
ing companions: the role of agent competency and type of interaction. Educa-
tional technology research and development, 54, 3, 223–243.

[331] RainerWinkler, SebastianHobert,Antti Salovaara,Matthias Söllner, and JanMarco
Leimeister. 2020. Sara, the Lecturer: Improving Learning in Online Education
with a Scaffolding-Based Conversational Agent. In Proceedings of the 2020 CHI
Conference onHuman Factors in Computing Systems. Association for Computing
Machinery, New York, NY, USA, (April 2020), 1–14. isbn: 978-1-4503-6708-
0. Retrieved 09/02/2021 from https : / / doi . org / 10 . 1145 / 3313831 .
3376781.

[332] Thiemo Wambsganss, Tobias Kueng, Matthias Soellner, and Jan Marco Leimeis-
ter. 2021.ArgueTutor:AnAdaptiveDialog-BasedLearning System forArgumen-
tation Skills. InProceedings of the 2021 CHIConference onHumanFactors inCom-
puting Systems (CHI ’21). Association forComputingMachinery,NewYork,NY,
USA, (May 2021), 1–13. isbn: 978-1-4503-8096-6. doi: 10.1145/3411764.
3445781.Retrieved09/02/2021 fromhttps://doi.org/10.1145/3411764.
3445781.

[333] Silvia Tamayo-Moreno and Diana Pérez-Marín. 2017. Designing and Evaluating
Pedagogic Conversational Agents to Teach Children. en. 11, 3, 6.

[334] Magnus Haake and Agneta Gulz. 2009. A look at the roles of look & roles in em-
bodied pedagogical agents - a user preference perspective. I. J. Artificial Intelli-
gence in Education, 19, (January 2009), 39–71.

[335] Kristen Blair, Daniel L Schwartz, Gautam Biswas, and Krittaya Leelawong. 2007.
Pedagogical agents for learning by teaching: teachable agents. Educational Tech-
nology, 56–61.

[336] Catherine C. Chase, Doris B. Chin, Marily A. Oppezzo, and Daniel L. Schwartz.
2009. Teachable Agents and the Protégé Effect: Increasing the Effort Towards
Learning. en. Journal of Science Education and Technology, 18, 4, (August 2009),
334–352. issn: 1573-1839. doi: 10.1007/s10956-009-9180-4. Retrieved
09/02/2021 from https://doi.org/10.1007/s10956-009-9180-4.

[337] JessyCeha,Ken JenLee, ElizabethNilsen, JoslinGoh, andEdithLaw. 2021.Can a
Humorous Conversational Agent Enhance Learning Experience and Outcomes?
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Sys-
tems. Number 685. Association for ComputingMachinery, NewYork, NY, USA,
(May 2021), 1–14. isbn: 978-1-4503-8096-6.Retrieved 09/02/2021 fromhttps:
//doi.org/10.1145/3411764.3445068.

[338] Yuichiro Anzai andHerbert A Simon. 1979. The theory of learning by doing.Psy-
chological review, 86, 2, 124.

[339] Yanghee Kim, AmyLBaylor, and Entong Shen. 2007. Pedagogical agents as learn-
ing companions: the impact of agent emotion and gender. Journal of Computer
Assisted Learning, 23, 3, 220–234.

233

https://doi.org/10.1145/3313831.3376781
https://doi.org/10.1145/3313831.3376781
https://doi.org/10.1145/3411764.3445781
https://doi.org/10.1145/3411764.3445781
https://doi.org/10.1145/3411764.3445781
https://doi.org/10.1145/3411764.3445781
https://doi.org/10.1007/s10956-009-9180-4
https://doi.org/10.1007/s10956-009-9180-4
https://doi.org/10.1145/3411764.3445068
https://doi.org/10.1145/3411764.3445068

Bibliography

[340] José Miguel Ocaña, Elizabeth K. Morales-Urrutia, Diana Pérez-Marín, and Ce-
leste Pizarro. 2020. Can a learning companion be used to continue teaching pro-
gramming to children evenduring the covid-19pandemic? IEEEAccess, 8, 157840–
157861. doi: 10.1109/ACCESS.2020.3020007.

[341] Jay Cross. 2011. Informal learning: Rediscovering the natural pathways that in-
spire innovation and performance. JohnWiley & Sons.

[342] FlorianWeber, ThiemoWambsganss, DominicRüttimann, andMatthias Söllner.
2021. Pedagogical agents for interactive learning: a taxonomy of conversational
agents in education. In Forty-Second International Conference on Information Sys-
tems, Austin.

[343] WilbertOGalitz. 2007.The essential guide to user interface design: an introduction
to GUI design principles and techniques. JohnWiley & Sons.

[344] Lucy Green. 2008. Group cooperation, inclusion and disaffected pupils: some
responses to informal learning in the music classroom. presented at the rime con-
ference 2007, exeter, uk.Music Education Research, 10, 2, 177–192.

[345] Mina C Johnson-Glenberg. 2019. The necessary nine: design principles for em-
bodied vr and active stem education. InLearning in a digital world. Springer, 83–
112.

[346] MinaC Johnson-Glenberg, David ABirchfield, ColleenMegowan-Romanowicz,
and Erica L Snow. 2015. If the gear fits, spin it!: embodied education and in-game
assessments. International Journal of Gaming and Computer-Mediated Simula-
tions (IJGCMS), 7, 4, 40–65.

[347] Heather L O’Brien, Paul Cairns, and Mark Hall. 2018. A practical approach to
measuring user engagement with the refined user engagement scale (ues) and new
ues short form. International Journal of Human-Computer Studies, 112, 28–39.

[348] DeannaM Spanjers, Matthew K Burns, and Angela RWagner. 2008. Systematic
direct observation of time on task as ameasure of student engagement.Assessment
for effective intervention: official journal of the Council for Educational Diagnos-
tic Services, 33, 2, (March 2008), 120–126. issn: 1534-5084. doi: 10 . 1177 /
1534508407311407.

[349] Jennifer A Fredricks, Phyllis C Blumenfeld, and Alison H Paris. 2004. School en-
gagement: potential of the concept, state of the evidence.Review of educational re-
search, 74, 1, (March2004), 59–109. issn: 0034-6543.doi:10.3102/00346543074001059.

[350] Ryan Schaaf. 2012.DOESDIGITALGAME-BASEDLEARNING IMPROVE
STUDENTTIME-ON-TASKBEHAVIORANDENGAGEMENT INCOM-
PARISONTOALTERNATIVE INSTRUCTIONAL STRATEGIES? en.The
Canadian Journal of Action Research, 13, 1, 50–64. issn: 1925-7147, 1925-7147.
doi: 10.33524/cjar.v13i1.30.

[351] Leo Natan Paschoal, Aliane Loureiro Krassmann, Felipe Becker Nunes, Myke
Morais de Oliveira, Magda Bercht, Ellen Francine Barbosa, and Simone do Rocio
Senger de Souza. 2020. A systematic identification of pedagogical conversational
agents. In 2020 IEEE Frontiers in Education Conference (FIE). IEEE, 1–9.

234

https://doi.org/10.1109/ACCESS.2020.3020007
https://doi.org/10.1177/1534508407311407
https://doi.org/10.1177/1534508407311407
https://doi.org/10.3102/00346543074001059
https://doi.org/10.33524/cjar.v13i1.30

Bibliography

[352] Marie-Luce Bourguet. 2006. Towards a taxonomy of error-handling strategies in
recognition-basedmulti-modal human–computer interfaces.SignalProcessing, 86,
12, 3625–3643.

[353] Janienke Sturm and Lou Boves. 2005. Effective error recovery strategies for mul-
timodal form-filling applications. Speech communication, 45, 3, 289–303.

[354] Diana Pérez-Marı́n. 2021. A review of the practical applications of pedagogic con-
versational agents to be used in school and university classrooms.Digital, 1, 1, 18–
33.

[355] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pieran-
tonio. 2020. Supporting the understanding and comparison of low-code devel-
opment platforms. In 2020 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). IEEE, 171–178.

[356] WilliamVillegas-Ch, JoselinGarcı́a-Ortiz, andSantiagoSánchez-Viteri. 2021. Iden-
tification of the factors that influence university learning with low-code/no-code
artificial intelligence techniques. Electronics, 10, 10, 1192.

[357] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-
UserDevelopment:AnEmergingParadigm. en. InEndUserDevelopment.Human-
Computer Interaction Series. Henry Lieberman, Fabio Paternò, andVolkerWulf,
editors. Springer Netherlands, Dordrecht, 1–8. isbn: 978-1-4020-5386-3. doi:
10.1007/1-4020-5386-X_1. Retrieved 11/21/2022 from https://doi.
org/10.1007/1-4020-5386-X_1.

[358] MattMcCutchen, Shachar Itzhaky, andDaniel Jackson. 2016.Object spreadsheets:
a new computational model for end-user development of data-centric web appli-
cations. In Proceedings of the 2016 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, 112–127.

[359] SimonPeyton Jones, AlanBlackwell, andMargaret Burnett. 2003.Auser-centred
approach to functions in Excel. ACM SIGPLAN Notices, 38, 9, (August 2003),
165–176. issn: 0362-1340.doi:10.1145/944746.944721.Retrieved 11/26/2022
from https://doi.org/10.1145/944746.944721.

[360] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev. 2004. Meta-
design: amanifesto for end-user development.Communications of theACM, 47, 9,
(September2004), 33–37. issn: 0001-0782.doi:10.1145/1015864.1015884.
Retrieved 11/03/2022 fromhttps://doi.org/10.1145/1015864.1015884.

[361] Timothy C. Lethbridge. 2021. Low-Code Is Often High-Code, So WeMust De-
sign Low-Code Platforms to Enable Proper Software Engineering. en. In Leverag-
ing Applications of Formal Methods, Verification and Validation (Lecture Notes
in Computer Science). Tiziana Margaria and Bernhard Steffen, editors. Springer
International Publishing, Cham, 202–212. isbn: 978-3-030-89159-6. doi: 10 .
1007/978-3-030-89159-6_14.

[362] Gwendal Daniel, Jordi Cabot, Laurent Deruelle, and Mustapha Derras. 2020.
Xatkit: a multimodal low-code chatbot development framework. IEEE Access, 8,
15332–15346.

[363] Samuel M Scheiner and Jessica Gurevitch. 2001.Design and analysis of ecological
experiments. Oxford University Press.

235

https://doi.org/10.1007/1-4020-5386-X_1
https://doi.org/10.1007/1-4020-5386-X_1
https://doi.org/10.1007/1-4020-5386-X_1
https://doi.org/10.1145/944746.944721
https://doi.org/10.1145/944746.944721
https://doi.org/10.1145/1015864.1015884
https://doi.org/10.1145/1015864.1015884
https://doi.org/10.1007/978-3-030-89159-6_14
https://doi.org/10.1007/978-3-030-89159-6_14

Bibliography

[364] Asbjørn Følstad, Theo Araujo, Effie Lai-Chong Law, Petter Bae Brandtzaeg, Sy-
meon Papadopoulos, Lea Reis,Marcos Baez, Guy Laban, PatrickMcAllister, Car-
olin Ischen, et al. 2021. Future directions for chatbot research: an interdisciplinary
research agenda. Computing, 103, 12, 2915–2942.

[365] Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, GeorgGroh, StephanGünnemann, Eyke
Hüllermeier, et al. 2023. Chatgpt for good? on opportunities and challenges of
large language models for education. Learning and Individual Differences, 103,
102274.

[366] Yiqiu Shen,LauraHeacock, JonathanElias,KeithDHentel, BeatriuReig,George
Shih, and LindaMoy. 2023. Chatgpt and other large language models are double-
edged swords. (2023).

236

	Abstract
	Sommario
	Introduction
	Motivation and Goals
	Contributions
	Thesis Organization

	I Multimodal conversational agents for data science
	GeCoAgent
	Introduction and Research Questions
	Related Work
	Tools for Bioinformatics
	Conversational Agents for Data Science
	Elicitation and Modeling of Tasks Requirements
	GeCo Data Repository

	An Ontology to Describe the Bioinformatics Tertiary Analysis Research Process
	Motivations
	From user interviews to a Hierarchical Task Tree
	A Hierarchical Task Tree to describe Tertiary Analysis
	Validation
	Creating the Ontology
	Discussion

	GeCoAgent Requirement Analysis
	Process Requirements
	Conversational Requirements

	Design
	Functions Definition
	Task-driven Workflow
	Conversation Driven Workflow
	From Automata to Conversation

	Deployment
	Architecture
	Natural Language Understanding
	Dialogue Management
	Multimodal Interface Design

	Using GeCoAgent: a Concrete Example
	Evaluation
	Participants
	Procedure
	Results

	Discussion
	Limitations

	Conclusions

	DSBot: a multimodal conversational agent for data science
	Introduction and Research Questions
	State of Art
	Automatic Code Generation
	AutoML
	Interactive Machine Learning
	Conversational Troubleshooting

	Design Principles
	Multimodality
	Extensibility
	Focus on Tabular Data

	System Overview
	Phase 1
	Components
	Architecture

	Phase 2
	Problem Definition
	System's Overview
	Configuration
	Architecture
	Runtime Behaviour
	Mapping of the Design Principles in the System

	Use Cases
	Use Case A: Analysis Use Case
	Use Case B: Conversation Use Case
	Use Case C: Troubleshooting

	Evaluation
	Evaluation of the Automatic Machine Learning Pipeline Executor
	Evaluation of the translation into executable pipeline
	Evaluation of the Troubleshooting process
	Results
	Discussion

	Conclusions
	Limitations and Further works

	II Multimodal Conversational Agent: a Design Perspective
	Problem Space and Research Questions Definition
	Lessons learned with the past experiments
	Defining the Problem Space
	Model-based Conversational Agents
	Task-oriented Conversational Agents
	Process-driven conversational agents
	Multimodal interaction
	The Multimodality Continuum

	Research Questions

	Design Principles for Multimodal Conversational Interfaces
	Introduction
	Design Principles
	Show, Don't Tell.
	Separate Feedback from Support.
	Show Information Only When Necessary.
	Design a Light Interface — Emphasize content.
	Show One Modality at a Time.
	Don’t Overload Multiple Modalities Beyond User Preferences and Capabilities.
	Use Multimodality to Resolve Ambiguities.

	Case Study: Mapping the Principles on GeCoAgent
	Discussion and Conclusions

	How does multimodality affect the conversation?
	Introduction
	State of the Art
	Multimodal Chatbots
	Linguistic studies on chatbots
	Usage of visual hints in chatbots

	Method
	Goal and Research Questions
	Setting
	Materials
	Procedure
	Observed Variables
	Participants

	Results
	Discussion
	Conclusions

	III A model-driven approach to multimodal conversational interaction design
	A Conceptual Model for Multimodal Conversational Agents.
	Introduction
	State of the Art
	Design Models for Chatbots
	Multimodal Dialogue Systems

	A process-based model for Conversational Agents
	Design dimensions
	Modeling Constructs
	Design process
	Example

	From Uni-modal to Multimodal
	Requirements for strongly integrated conversational agents

	Synchronizing the modalities: event-based interaction and shared context
	A proposed architecture for modalities synchronization

	Process representation as shared knowledge
	Run-time Behaviour
	Example

	Discussion and Conclusion

	Case Study: Albot Einstein, a Pedagogical Multimodal Conversational Agent
	Introduction and Research Questions
	State of the Art
	Pedagogical Design Principles
	Participants and Methods
	Results

	Albot Einstein
	User Experience (UX)
	Runtime Model

	Evaluation
	Goal and Research Questions
	Participants
	Setting
	Methodology
	Results

	Discussion
	Conclusions

	A Low-code Authoring Tool for Multimodal Conversational Agents
	Introduction
	Background
	End-User Development
	Low-code and no-code development platforms

	Conversational Agent Generation Tools Analysis
	Dialogflow
	IBM Watson
	Amazon Lex
	Azure Bot Service
	FlowXO
	RASA
	Xenioo
	Landbot.io
	Chatterbot
	Pandorabots
	Xatkit
	Discussion

	System Overview
	Implementation
	Frontend
	Backend

	User Evaluation
	Participants
	Setting
	Procedure
	Results and Discussion

	Conclusions

	Conclusions
	Discussion: a summary of the contributions of the thesis
	Results: a holistic view on the thesis contributions
	Limitations and Future Works

	Bibliography

