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Abstract

In this work we detail an innovative computational framework to study and to numeri-
cally simulate the hemodynamics in the pulmonary artery, including the pulmonary valve
leaflets.
The blood flow is described by the Navier-Stokes equations, where the valve is represented
by the Resitive Immersed Implicit Surface (RIIS) method.
The 3D hemodynamics is coupled with a lumped-parameters model which reproduces the
valve dynamics. This model is derived from a local force balance at the leaflets, including
the stress exchanged with the blood flow, the elasticity associated to the leaflets curvature
and damping effects.
The coupled problem is discretized through a Finite Element (FE) formulation with the
Streamline Upwind Petrov-Galerkin and the Pressure-Stabilizing Petrov-Galerkin (SUPG-
PSPG) stabilization and a backward differentiation formula (BDF) time scheme.
The study is applied to two clinical cases. The correct reconstruction of the pulmonary
artery, and the proper positioning of the valve, in its closed and open positions, are of
utmost importance in reproducing the patient-specific hemodynamics.
The results show the suitability of the system in representing the leaflets motion, the
blood flow inside the pulmonary artery and the sharp pressure gradient across the pul-
monary valve.

Keywords: Cardiac valve dynamics; Computational fluid dynamics; Fluid-structure in-
teraction; Pulmonary circulation.





Abstract in lingua italiana

In questo lavoro dettagliamo un innovativo framework computazionale per studiare e
simulare numericamente l’emodinamica nell’arteria polmonare, compresa la valvola pol-
monare.
Il flusso sanguigno è descritto dalle equazioni di Navier-Stokes, in cui la valvola è rappre-
sentata dal metodo RIIS (Resistive Immersed Implicit Surface).
L’emodinamica tridimensionale è accoppiata con un modello a parametri concentrati
che riproduce la dinamica valvolare. Tale modello è ottenuto da un bilancio locale di
forze agenti sulla valvola, che comprendono gli sforzi scambiati con il flusso sanguigno,
l’elasticità associata alla curvatura dei foglietti valvolari ed effetti di smorzamento.
Il problema accoppiato è discretizzato tramite una formulazione a Elementi Finiti (FE) con
stabilizzazione SUPG-PSPG (Streamline Upwind Petrov-Galerkin - Pressure-Stabilizing
Petrov-Galerkin) e uno schema BDF (backward differentiation formula) in tempo.
Lo studio è applicato a due casi clinici. La corretta ricostruzione dell’arteria polmonare e
l’appropriato posizionamento della valvola, nelle sue configurazioni chiusa ed aperta, sono
di estrema importanza nel riprodurre l’emodinamica paziente-specifica.
I risultati mostrano l’adeguatezza del sistema nel rappresentare il movimento dei foglietti
valvolari, il flusso sanguigno nella valvola polmonare e il gradiente netto di pressione in
corrispondenza della valvola polmonare.

Parole chiave: Dinamica della valvola cardiaca; Fluidodinamica computazionale; In-
terazione fluido-struttura; Circolazione polmonare.
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1| Introduction

In this chapter we provide a description of the cardiovascular system, focusing on the pul-
monary circulation. We explain the importance of the computational methods in hemo-
dynamics, especially with respect to the cardiac pathologies of the pulmonary valve. A
section is devoted to the tetralogy of Fallot, which affects the patients we are considering,
and the surgical treatment, the Ross procedure and the prosthetic valve implant. We ex-
amine, by means of a literature review, the principal methods to study the fluid-structure
interaction between the blood flow and the valve and we mention some of the most rep-
resentative contributions to the numerical hemodynamics of the pulmonary circulation.
Finally, the purpose and the organization of the thesis are presented.

1.1. Overview of the cardiovascular system

The cardiovascular system is a closed circuit whose main task is the transport of blood.
It consists of elastic vessels, which bring blood in all the regions of the organism, two
circulatory loops, with the aim of carrying oxygenated and non-oxygenated blood, and
an organ, the heart, which powers all the system, acting as a pump.
The first of the two circulatory loops is the systemic circulation. It is made of arteries,
vessels with the aim of carrying oxygenated blood from the left heart to the living tissues,
veins, which let, instead, non-oxygenated blood to return to the right heart and the
microvasculature, that allows the exchange of nutrients and regulates the blood flow due
to the high resistance, which entails the decrease of fluid pressure.
The second loop is the pulmonary circulation, in which non-oxygenated blood, ejected
by the right heart, flows in the pulmonary arteries towards the lungs, where it becomes
oxygenated and goes back to the left heart through the pulmonary veins.
The route of the blood is reported in Figure 1.1.
The heart is a hollow, highly evolved organ that combines structural and functional
heterogeneity to attain its primary function as a pump. Both the right and the left side
consist of two chambers, an atrium and a ventricle. Upper left (LA) and right (RA) atria
collect the blood from the veins and lower left (LV) and right (RV) ventricles contract
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Figure 1.1: Circulatory system. Oxigenated blood is red, non-oxygenated blood is blue [66].

to propel the blood into the systemic and pulmonary arteries. The two ventricles share
a septum, which separates the heart into the left and right sides and does not allow the
transfer of blood, whereas the atria and the ventricles are connected by the atrioventricular
valves (tricuspid valve in the right heart, mitral valve in the left heart) that either allow
or prevent the blood transfer from the atria to the ventricles depending on their position,
open or closed, respectively. In particular, they open when the atrial pressure is higher
than the ventricular pressure and close as soon as the blood flow rate becomes negative,
i.e. when the blood flow, which normally goes from the atrium to the ventricle, comes
back into the atrium. The papillary muscles, located in the ventricles, attach to the
cusps of these valves via the chordae tendineae, preventing their inversion (prolapse)
during the closure. All four chambers are connected to the circulatory system: the left
ventricle through the aorta, the right ventricle through the pulmonary artery, the left
atrium through the pulmonary veins, and the right atrium through the superior and
inferior venae cavae. The ventricles are separated from the circulatory system by two
further valves, the aortic valve on the left side and the pulmonary valve on the right side,
whose opening/closure mechanism is similar to that of the atrioventricular valves, namely
they open when the pressure is higher in the ventricle with respect to the corresponding
connected artery, whereas they close when the flow rate becomes negative, i.e. going
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Figure 1.2: Schematic representation of the heart. Chambers: LA left atrium, LV left ventricle,
RA right atrium, RV right ventricle. Vessels: Ao aorta, PA pulmonary artery, SVC superior
vena cava, IVC inferior vena cava, Pv pulmonary veins. Valves: TV tricuspid valve, AV aortic
valve, PV pulmonary valve, MV mitral valve [36].

from the artery to the ventricle. The aortic valve and the pulmonary valve are semilunar
valves which do not require muscular support since the three cusps support each other
when the valves are closed; the significant contact surface is called the coaptation zone.
Moreover they have smooth ventricular and wavy arterial faces. The free edge is indented,
with the Arantius nodule for the aortic valve and the Morgagni nodule for the pulmonary
valve, characterised by a high concentration of collage fibres in its thicker middle part.
All the cardiac valves are sheets of connective tissue covered by an endothelium and
are composed of intramural cells (smooth muscle cells, fibroblasts and myofibroblasts),
reinforced by collagen and elastic bundles. No valves are located between the atria and the
corresponding terminal veins, thus it is difficult to distinguish where the veins end and the
atria begin [36, 72]. In Figure 1.2 a sketch of the anatomy of the heart is reported. The
heartbeat is a two stages pumping action over a period of about 0.8 s. The heart, in order
to pump the blood in the circulatory system through the aorta and the pulmonary artery,
needs to exceed the resistance in the arteries where the blood has a non-null pressure, due
to the reaction of the elastic vessel wall to the deformation induced by the blood inside.
The cardiac cycle is defined as a sequence of alternating contraction and relaxation of
atria and ventricles in order to pump blood throughout the body. Each cardiac cycle has
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a sistolic phase, in which the myocardium contracts and the blood is ejected from the
ventricle, and a diastolic phase, the period when the myocardium is relaxing. At rest
diastole occupies approximately two thirds of the cardiac period. Considering as starting
point of the cardiac cycle the time instant in which the ventricles have just ejected the
blood and the pulmonary and aortic valves are closed, the cardiac phases are the following:

• isovolumetric relaxation: no changes in the ventricular volume and fast decrease of
the ventricular pressure;

• relaxation period: the pressure drops below the atrial one, the atrioventricular valves
open and the blood starts to flow into the ventricles. All four chambers are in
diastole;

• atrial systole: the atria spontaneously contract and the ventricular filling ends;

• isovolumetric contraction: the ventricles pressure becomes higher than the atrial
pressure, a retrograde flow is generated, causing the closure of the atrioventricu-
lar valve leaflets. No changes in the ventricular volume and fast increase of the
ventricular pressure;

• ventricular systole: when the left/right ventricle pressure becomes higher than the
aortic/pulmonary trunk one, the aortic/pulmonary valve opens and the blood flows
into the aorta/pulmonary artery.

Afterwards the inversion of the sign of the pressure gradient occurs and the blood decel-
erates, until the velocity is negative and the semilunar valves close and the cardiac cycle
restarts [23, 72, 85].

1.2. Pulmonary circulation

Pulmonary circulation includes the right side of the heart, the pulmonary arteries, the
pulmonary veins, the tricuspid and pulmonary valves, the lungs and it ends in the left
atrium.
The main pulmonary artery arises from the right ventricular outflow tract and courses
posteriorly and superiorly to the left of and posterior to the aorta. Below the aortic
arch, it bifurcates into the right and left pulmonary arteries at the level of the carina, as
shown in Figure 1.3. The right and left pulmonary arteries divide into two lobar branches
each, and subsequently into segmental and sub segmental branches. Segmental and sub
segmental pulmonary arteries are named according to the bronchopulmonary segments
that they feed [49]. The main pulmonary artery, or pulmonary trunk, is the only artery
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arising from the right ventricle that carries non-oxygenated blood into the lungs [62]. In
normal subjects, the pulmonary trunk is about 5 cm long and it has a diameter of about
2.70-3 cm [28, 42]; instead, the two pulmonary arteries have a diameter of about 1.70-1.90
cm [21]. The right pulmonary artery is generally a bit longer and larger than the left
branch. In healthy patients the pulmonary arteries pressure is 8-20 mmHg at rest. In the
right ventricle a normal systolic pressure is 20-30 mmHg and a normal diastolic pressure
is 3-7 mmHg [59]. The characteristic velocity of blood through the pulmonary valve is
approximately 75 cm/s [47]. Both the pressure and velocity ranges inside the pulmonary
circulation are lower than the correspondent ones inside the systemic circulation. Given
the diameter of the pulmonary artery D, the mean blood velocity inside it U , and the den-
sity and viscosity of blood it is possible to compute the Reynolds number Re = ρDU/µ,
a dimensionless number, that is large in the arteries, accounting for the predominance of
inertial effects over viscous effects of the flow [36, 72].
The pulmonary valve is located between the pulmonary trunk and the right ventricle.
It is composed of three semilunar, pocket-like cusps (the anterior, right and left leaflet),
whose convex outer border is attached to the root of the pulmonary trunk. The free inner
border is thickened in the middle to form the nodule on each side of which there is a
small, thin crescent-like area (lunula). When the valve closes the nodules and lunulae
are pressed together projecting upwards into the lumen of the pulmonary trunk, thus
preventing blood from returning into the right ventricle [51, 91].

Figure 1.3: Pulmonary circulation (left) and schematic representation of the heart with high-
lighted the right ventricle, the pulmonary artery and the pulmonary valve (right).

The cardiac cycle detailed for the right heart is the following one.
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• Non-oxygenated blood comes from the superior and inferior venae cavae and passes
in the right atrium. When the atrium exceeds the ventricular pressure, the tricuspid
valve opens and the blood starts flowing passively in the right ventricle, which relaxes
and its volume increases. This is the relaxation period in which both the atrium
and the ventricle are in diastole. In this period the first two steps of the diastolic
phase of the right ventricle occur: an early rapid filling and a slow filling.

• The right atrium spontaneously contracts. During this period the last part of the
diastolic phase of the right ventricle occurs. In Figure 1.4 the atrial contraction
is represented by the a-wave on the atrial pressure waveform. The end-diastolic
volume (EDV), i.e. the volume of blood within the right ventricle at the end of the
atrial contraction, is 100-160 mL in healthy patients.

• After the atrial systole, the ventricular active contraction starts. This produces an
increase in the ventricular pressure causing retrograde flow that accordingly closes
the tricuspid valve. However, the ventricular pressure is still lower than the pressure
inside the pulmonary trunk, so the pulmonary valve is also closed. The volume of the
ventricle remains constant, but it undergoes a significant change in its shape as the
myocardium continues to contract and the pressure in the ventricle increases rapidly.
This phase is the isovolumetric contraction. In Figure 1.4, the c-wave represents the
atrial pressure increase as a consequence of the tricuspid valve bulging into the right
atrium due to the presence of retrograde flow.

• When the ventricle pressure becomes higher than the pulmonary artery one, the
pulmonary valve opens and the blood is ejected into the pulmonary trunk. This
is the ventricular systole. Initially, the blood flows through the pulmonary valve
rapidly and after 0.15-0.2 s the strength of the contraction wanes.

• As time goes on, the ventricle pressure drops below the pulmonary artery one, the
flow changes its direction and the pulmonary valve closes. The end-systolic volume
(ESV), i.e. the volume of blood within the ventricle following valve closure, is 50-100
mL in healthy patients. After the closure of the pulmonary valve, the right ventricle
relaxes again and the pressure falls below that of the right atrium (isovolumetric
relaxation). Afterwards the atrial pressure starts to rise slowly again due to the
blood coming from the superior and inferior venae cavae; this corresponds to the
v-wave of the atrial pressure waveform in Figure 1.4.

We underline that the pulmonary trunk enters the lungs splitting into the right and the
left pulmonary arteries. Here, they become arterioles carrying non-oxygenated blood to
the pulmonary alveoli, where the blood releases carbon dioxide and receives the oxygen
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introduced with breathing. Successively the pulmonary venules carry the oxygenated
blood to the pulmonary veins and finally to the left atrium where the cardiac cycle restarts
[23, 57, 72, 85, 90].

Figure 1.4: Wiggers diagram for the right circulation.

1.3. Cardiac pathologies

One of the most common pathologies of the pulmonary circulation is the pulmonary hy-
pertension (PAH). It is characterized by an elevated pressure in the pulmonary artery, in
mean greater than 25 mmHg at rest or 30 mmHg during exercise [24]. The increase in
pressure and pulmonary vascular resistance leads to right ventricle hypertrophy, dilation,
and eventual failure and death [20].
Our main focus are the pathologies related to the pulmonary valve. In healthy conditions,
as all the other cardiac valves, it has the main task of allowing unidirectional blood flow
without causing obstruction or regurgitation or excessive mechanical stress in the cusps
and leaflets. Moreover it is responsible for improving the chamber washout, orienting the
jets and affecting the coherent vortex structures of the flow, thanks to its shape and mo-
tion. Abnormal conditions of the valves, as anatomical defects interesting the leaflets or
the subvalvular apparatus, can cause cardiac pathologies [77]. The origins of heart valve
pathologies can be classified in two main categories, depending on the age of the patient,
they can either be congenital or acquired. In particular, the pulmonary valve can present
anatomic variations, for example a different number of cups, or be affected by stenosis or
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regurgitation.
The valvular stenosis implies the incomplete opening of the leaflets, because they are
thicken, stiffen or fuse together. The presence of a narrower orifice is responsible for the
reduced blood flow which can pass over the valve. This causes a pressure overload of the
right ventricle, resulting in increased contractility and dilation, and leading to increased
wall stress and compensatory right ventricular hypertrophy. Increased muscle mass allows
for the right ventricle to maintain a normal cardiac output. Right ventricular hypertrophy
may cause a decrease in ventricular compliance and results in increased right ventricular
end-diastolic pressures and increased right atrial pressures. Stenosis is primarily a con-
genital condition; acquired cases can also occur, but are considerably less common. The
latter etiologies include infectious endocarditis, carcinoid heart disease, rheumatic heart
disease and iatrogenic causes. One of the most common causes of a valve stenosis is the
calcification of the valve, where the deposit of calcium on the valve structure causes its
stiffening.
The pulmonary valve regurgitation, instead, occurs when the leaflets do not close com-
pletely and it results in the leakage of the valve. In this pathologic condition some blood is
allowed to stream backward from the pulmonary artery to the ventricle early in diastole.
As for the stenosis, it can have primary and secondary causes. Primary causes have con-
siderable overlap with etiologies of stenosis, including iatrogenic regurgitation, congenital
anomalies, infectious endocarditis, rheumatic disease and carcinoid heart disease. While
iatrogenic pulmonary stenosis itself is not a very common condition, iatrogenic pulmonary
regurgitation is the most common cause of severe regurgitation. Secondary causes are the
result of pulmonary arterial dilation, either idiopathic or resulting from pulmonary arte-
rial hypertension in patients who have morphologically normal valves.
Both pathologies, if untreated, can lead to heart failure and death of the patient. Usually
the solution is valve replacement or surgical repair [30, 74].
Finally the pulmonary valve can be affected by or involved in anomalies and syndromes
[91]. An example of congenital anomaly is the tetralogy of Fallot.

1.3.1. Tetralogy of Fallot

Tetralogy of Fallot is the most common form of cyanotic congenital heart disease.
It was first described by the Danish anatomist and naturalist Niels Stenson in 1671, al-
though its precise anatomical description was elegantly illustrated by William Hunter at
St. Georges Hospital Medical School in London in 1784: “...the passage from the right
ventricle into the pulmonary artery, which should have admitted a finger, was not so wide
as a goose quill; and there was a hole in the partition of the two ventricles, large enough
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Figure 1.5: Comparison between normal heart and heart with tetralogy of Fallot [1].

to pass the thumb from one to the other. The greatest part of the blood in the right
ventricle was driven with that of the left ventricle into the aorta, or great artery, and
so lost all the advantage which it ought to have had from breathing” (Figure 1.5). His
description was refined by Étienne-Louis Fallot in 1888 in L’anatomie pathologique de la
maladie bleue, referring to a tetrad of ventricular septal defect (VSD), obstruction of the
right ventricular outflow tract, override of the ventricular septum by the aortic root, and
right ventricular hypertrophy (Figure 1.6) [13, 15]. Then the term tetralogy of Fallot
was used by Canadian Maude Abbott in 1924 in his Atlas of Congenital Cardiac Disease
[64]. Similar to many complex congenital heart diseases, tetralogy of Fallot is frequently
diagnosed during fetal life [13]. About 3.5% of all infants born with a congenital heart
disease have tetralogy of Fallot, corresponding to 3 of every 10.000 live births, with males
and females being affected equally [13, 15]. The aetiology is multifactorial, but reported
associations include untreated maternal diabetes, phenylketonuria, and intake of retinoic
acid. Associated chromosomal anomalies can include trisomies 21, 18, and 13, but recent
experience points to the much more frequent association of microdeletions of chromosome
22. The risk of recurrence in families is 3% [15]. Although an experienced paediatri-
cian or cardiologist usually suspects the diagnosis clinically, transthoracic cross-sectional
echocardiography provides a comprehensive description of the intracardiac anatomy [13].
Since the first procedures in the 1950s, advances in the diagnosis, perioperative and sur-
gical treatment, and postoperative care have been such that almost all those born with
tetralogy of Fallot can now expect to survive to adulthood. Since the first reported in-
tracardiac repair of tetralogy in 1955, the age of patients receiving primary corrective
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Figure 1.6: Cardinal features of tetralogy of Fallot [15].

surgery has gradually decreased [13]. Some centres prefer to perform complete repairs
in all neonates, while others palliate symptomatic neonates, and perform a complete re-
pair in all patients at the age of 4 to 6 months. Palliation, which frequently does not
require cardiopulmonary bypass, establishes a secure source of flow of blood to the lungs
by construction of a systemic-to-pulmonary arterial shunt, balloon dilation, or placement
of a stent in the right ventricular outflow. The most common type of aortopulmonary
shunt is known as the modified Blalock-Taussig shunt. This consists of a communica-
tion between a subclavian and pulmonary artery on the same side. A complete repair,
always performed under cardiopulmonary bypass, consists of closing the interventricular
communication with a patch channeling the left ventricle to the aortic root, relief of the
subpulmonary obstruction, and reconstruction, if necessary, of the pulmonary arteries
[13, 15].
Studies of immediate and long-term follow-up in tetralogy of Fallot reveal excellent out-
comes. Chronic issues that face the current population of adults subsequent to their
surgical repair include the hemodynamic manifestations of chronic pulmonary regurgi-
tation, recurrent or residual pulmonary stenosis, and ventricular arhythmias. As for all
patients with congenitally malformed hearts, the management of the patient with tetral-
ogy of Fallot does not end at the time of complete repair. Follow-up by cardiologists
trained in congenital cardiac disease will remain a lifelong experience [15].

One possible treatment is the Ross procedure first, in pediatric age range, and then
the implant of a prosthetic valve.
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1.3.2. Ross procedure

The Ross procedure is a cardiac surgery procedure in which the diseased aortic valve,
in our case due to aortic overriding, is replaced with the patient’s own pulmonary valve
(autograft valve) and a right ventricle (RV) to pulmonary artery conduit is placed in
the pulmonary position [58, 65]. Aortic valve replacement in children is associated with
distinct clinical and technical problems. Those problems are especially common in the
smallest children owing to the lack of suitable small size prostheses and subsequent early
and late problems related to compression of adjacent cardiac structures by the relatively
large prosthesis, rapid prosthesis degeneration, lack of growth and poor compliance with
anticoagulation regimen. There is no ideal valve substitute and all options are associated
with major limitations; the Ross procedure is no exception [11]. This has the advantages
of neo-aortic (autograft) valve growth and avoidance of anticoagulation [65]. After the
operation the patient is left in a condition of severe pulmonary insufficiency. A donated
human pulmonary valve (pulmonary homograft/allograft) or a prosthetic valve is used to
replace the pulmonary valve [4].

1.3.3. Prosthetic valve implant

In order to be successful, the prosthetic valve must mimic the static and dynamic charac-
teristics of the natural human valve and the mechanics of flow through it. It should not
produce turbulence, flow stagnation or excessive shear stress, which can cause haemolysis,
i.e. the damaging of blood cells [36].
The No-React® Injectable BioPulmonic Prosthesis (Bio Integral Surgical, Inc., Missis-
sauga, ON, Canada) combines a minimalized invasive procedure with the advantages of
surgical pulmonary valve replacement. It is a xenograft prosthetic valve consisting of a
porcine PV covered with a No-React®-treated bovine pericardium sleeve and mounted
on a self-expandable Nitinol stent, a tube-like medical device. Stent hooks lock the de-
vice by grasping the surrounding pulmonary trunk tissue (Figure 1.7). Both the porcine
valve and the pericardium are affixed with glutaraldehyde and then detoxified with a
proprietary process called No-React®, which eliminates any free residual aldehyde from
surfaces [40]. Xenografts have the advantage that they are biological material, but they
must be treated so that they are not rejected by the immune system and this treatment
limits their lifetime [36]. The diameter of the prosthesis ranges from 15 to 31 mm. The
device is fully MRI-compatible. It has the European Conformity mark certification so it
can be freely implanted in Europe. It has not been approved by the US Food and Drug
Administration so it can be implanted in patients in the USA only for compassionate use
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Figure 1.7: No-React® Injectable BioPulmonic valve prosthesis [40].

or in authorized clinical trials. An injectable valve prosthesis can be implanted both with
a beating heart and on cardiopulmonary bypass. The surgical procedure is performed
through a median sternotomy in all patients [40].

1.4. Computational hemodynamics

Cardiovascular diseases represent more than 30% of all global deaths [55]. The increasing
impact of cardiovascular diseases in our lives is the driving motivation of the remarkable
interest from both the mathematical and bioengineering communities over the past 25
years [72].
Computational hemodynamics represent a powerful tool for gaining insight into cardio-
vascular disease progression, providing essential metrics of blood flow that are otherwise
immeasurable. Both in academic research and in clinical settings, virtual simulations of
the cardiovascular system have applications to treatment and surgical planning since they
can be used to rapidly assess complex multivariable interactions between blood vessels,
blood flow, and the heart [52]. Their non-invasiveness has become a major requisite, be-
cause it allows to investigate on physiological and pathological real cases, and to follow
the temporal evolution of the vascular pathology.
The study of blood dynamics with a rigorous mathematical approach starts to increase
in the early 90s thanks to the development of the high-resolution imaging systems (com-
puted tomography, magnetic resonance and angiographic techniques) which allowed the
visualization of blood vessels in a non invasive way. Moreover, using the image segmenta-
tion process it became possible also to reconstruct accurate patient-specific 3D geometry
models of blood vessels from clinical images [36].
Papers about pulmonary circulation are very few in literature with respect to the sys-
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temic one, making the hemodynamics in the pulmonary vasculature largely unexplored
[52]. The importance of the pulmonary circulation is largely increased in the last years,
since it is the respiratory system itself to be mainly attacked by the coronavirus COVID19
disease. Anyway the pulmonary vasculature is susceptible to a wide range of pathologies,
that directly impact and are affected by the hemodynamics, as anticipated in Section 1.3,
and consequently the ability to develop numerical models of pulmonary blood flow can
be inestimable to the clinical scientist. In particular, the pulmonary valve plays a crucial
role. Due to its importance, a computational model aiming at reproducing and analyzing
cardiac hemodynamics requires to include valves geometry and dynamics.

1.5. Fluid-valve interaction: State of the art

Both the geometry and the dynamics of the cardiac valves have to be included in a
computational model with the aim of accurately describe the cardiac hemodynamics,
as already discussed in Section 1.4. In literature many methods and approaches have
been proposed to model the fluid-structure interaction (FSI) between the blood flow and
the valve dynamics. Here we report the most important ones, by discussing them in a
decreasing order with respect to the dimension of the valve problem, while the blood has
always a 3D description.

1.5.1. 3D-3D models

One of the possible techniques to face the FSI problem is the Arbitrary Lagrangian Eule-
rian (ALE). The ALE formulation is the most common boundary-conforming method:
the computational mesh is deformed dynamically to always conform to the boundaries of
the computational domain. It can be used both with structured and unstructured grids
but its usefulness is limited to problems with relatively simple geometries and moderate
deformations, since it may require a frequent remeshing of the domain to deal with large
mesh deformation and topology changes. In the fluid-structure problem arising between
blood and heart valve leaflets, this approach is not much used, since, due to the large
displacements of the leaflets, the fluid mesh becomes highly distorted, producing severely
stretched mesh elements and thus requiring a frequent remeshing of the grid [31, 72, 88].
An example of application of the ALE formulation can be found in [32].
More suited techniques in the context of valve-fluid interaction are the immersed bound-
ary and fictitious domain methods. They are non boundary- conforming methods:
there is no need for the grid to conform to moving boundaries and as such are inherently
applicable to cardiovascular flow problems. Moreover they both belong to the category
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of diffused-interface methods. In both immersed boundary and fictitious domain meth-
ods the leaflets are represented in a Lagrangian framework regarded as part of the fluid,
represented in an Eulerian framework, and exerting internal localized forces on the latter
[72]. In other words, the fluid is discretized in a fixed computational domain, while the
valve structure is discretized in a separate body-fitted mesh with the coupling accounted
either explicitly or implicitly by adding suitable forces at the fluid/solid interface [31]. In
particular, in the immersed boundary method, proposed by Peskin [68], the appropriate
forces are explicitly added to the fluid equation and distributed over all nodes of the fluid
mesh through a smoothed Dirac delta function. An evolution of this method, that is no
longer first order, but it is formally second-order accurate and combines adaptive mesh
refinement to increase resolution in the vicinity of immersed boundaries has also proposed
by Griffith et al. [44]. In the fictious domain method the coupling between the fluid and
the solid problem is made through Lagrange multipliers. An example of application of
this method can be found in [45]. A major limitation of diffused-interface methods is
the computational cost associated with carrying out simulations at physiologic Reynolds
numbers due to the large numbers of grid nodes required to accurately resolve the wall
shear stress on diffused immersed boundaries [87]. For that reason such methods are more
recently used in conjunction with local mesh refinement, see e.g. [44].
To remedy the difficulties inherent with diffused interface methods, a class of sharp-
interface immersed boundary methods, which treat the immersed boundary as a sharp
interface, still belonging to the non-boundary conforming methods, has been developed
[88]. In the so-called cut-cell methods [86] the shape of grid cells in the vicinity of the
boundary is modified to produce a locally boundary-fitted mesh. The Cut-FEM approach
allows to handle an internal interface cutting the mesh in an arbitrary way and writing
two weak formulations of the problem at hand, one for each of the two subdomains gen-
erated by the presence of the interface, and then sum them up. In this case, the meshes
of the two subdomains are fixed. For the mesh elements that are cut by the interface,
their contribution is split into two parts and the jump between the normal stresses at the
interface is determined by the physical interaction with the interface, as happens for the
blood/valve interaction. To guarantee the satisfaction of the interface continuity condi-
tions, a common choice is the discontinuous Galerkin (DG) mortaring, which prescribes
interface conditions in a weak sense, thus allowing a great degree of flexibility of the so-
lution at the interface. Since the cut elements can be polygonal elements, the Extended
Finite Element method (X-FEM) is commonly used: the Finite Element space is suitably
enriched in order to make the treatment of the cut elements easy, duplicating the vari-
ables in the cut elements and using the basis functions of the original triangle in both
subdomains, to represent the Finite Element solution and to compute the integrals [72].



1| Introduction 15

Examples of applications can be found in found in [10, 94]. An alternative sharp-interface
formulation readily applicable to arbitrarily complex flow domains is the curvilinear im-
mersed boundary developed in [41]. This method is a hybrid formulation, integrating
structured curvilinear boundary fitted grids with the sharp-interface immersed boundary
methodology.
All of these aforementioned methods require a full 3D representation of the valve geome-
try and of its mechanics solver. Thus they require a high computational cost. For these
reasons, full 3D FSI models are nowadays mostly restricted to study valves in simplified
configurations.

1.5.2. 3D-2D models

In FSI simulations of biological tissues, such as heart valve leaflet interaction with blood
flow, it is crucial to use a relevant and efficient structural model that is able to realisti-
cally represent the deformation of the tissue under loads imposed by the pulsatile blood
flow. Biological tissues of leaflets are normally thin and they exhibit significant bending.
Therefore, to study the cardiac valves, it is possible to use the Koiter’s shell model [53],
which is a well known two-dimensional model for elastic shells. Example of applications
to the tricuspid valve and the pulmonary valve can be found in [80] and [81] respectively.

1.5.3. 3D-0D models

In order to provide reliable information on the valve dynamics with reduced computa-
tional cost, without neglecting its interaction with the blood flow, lumped-parameter
models have been introduced.
These models can be grouped into two main categories. In the first one, which includes
the majority of works, the valve hemodynamic effects are represented by means of a phe-
nomenological relationship between the pressure jump across the leaflets and the flow rate
passing through them [19, 56]. The single parameters appearing in the equations do not
have a precisely quantifiable physical meaning and consequently the model becomes highly
dependent on the specific application of interest. In the second one, instead, the reduced
model is derived from a momentum balance at the leaflets; the inertia and stiffness of the
leaflets can be neglected, as in [27], or considered, e.g. in a linear ordinary differential
equation, as in [78]. In the first paper the geometry of the mitral valve is described by
a one degree of freedom, parametric model. The flow-valve interaction is expressed in
integral terms based on the conservation of mass without the need of defining the mate-
rial characteristic of the valve tissue. The difference between the densities of blood and
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tissue is assumed negligible since the basic idea is that the mitral valve motion is almost
completely driven by the blood dynamics. The second paper, instead, has the aim of
studying the flow physics of transvalvular flows in the aorta, both with a normal and a
abnormal valve. The valve model employed is based on the prescribed mode shape of the
movement of the leaflets, but the dynamics of the leaflets is determined by the equation
of motion with the integrated hemodynamic force on the leaflets as well as the inertia and
the stiffness parameters. By prescribing the mode shape, the degree of freedom can be
reduced and the equation of motion is reduced to an ordinary differential equation, and
this enables the efficient FSI simulations of the transvalvular flows, while the status of
leaflet can be controlled with the model parameters (inertia and stiffness).
Fedele et al. [31] proposed a reduced fully coupled 3D-0D FSI model for the interactions
between the fluid and the aortic valve leaflets, belonging to the first category. Blood
dynamics is described by incompressible Navier-Stokes equations, and the hemodynam-
ics effect of the valve’s kinematics are accounted for by the Resistive Immersed Implicit
Surface method (RIIS), by adding a penalty term to the fluid momentum equation. It
is based on the Resistive Immersed Surface (RIS) method, that lays in the immersed
boundary/fictitious domain framework and it is characterized by a fundamentally negli-
gible computational overhead in computational fluid dynamics (CFD) simulations. The
dynamics of the valve between its closed and open position is modeled using the 0D model
proposed by Korakianitis and Shi [56] based on a second-order ordinary differential equa-
tion (ODE) with the leaflets angle as the unique, dependent variable. The valve opening
angle depends on the pressure jump and the flow rate across the valve.
Another lumped-parameter structure model for the aortic valve, coupled with a Navier-
Stokes-RIIS fluid dynamics, that instead belongs to the second category, is proposed in
the work of work of Fumagalli et al. [39]. The aim of this work is to enrich the description
of the valve dynamics while preserving a low computational effort, lower than the one of
fully 3D FSI systems. In this case the model for the dynamics of the valve is derived from
the balance of forces at the leaflet, which relates the elasticity of the leaflets to its curva-
ture. This approach allows to automatically account for the specific valve geometry and
to relate it directly with the flow-induced forces to which the leaflets are subject. Based
on this mechanical model, a reduced 3D-0D fluid-structure interaction (FSI) system is
introduced, modeling the interplay between the 3D blood flow in the aorta and the aortic
valve dynamics.
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1.5.4. 3D-image-based models

Computational hemodynamics based on dynamic medical images, which provide the vessel
or myocardial displacement, represents an effective tool to provide quantitative insights
about cardiovascular diseases and useful indications to design clinical practices. This is
true mainly for the reconstructions of the motion of vessels and ventricles, but also for
the reconstruction of the cardiac valve kinematics. For example in [38] the motion of the
mitral leaflets is reconstructed from cine magnetic resonance imaging (cine-MRI) data.
This strategy allows to reduce the computational effort, avoiding the complex structure
of the mitral valve including the subvalvular apparatus, and the demanding calibration
of the valve rheological properties. In this work the presence of the mitral valve in the
fluid problem is accounted for by the Resistive Immersed Implicit Surface (RIIS) method,
already discussed in the previous section (Section 1.5.3).

1.6. State of the art of computational studies for the

right circulation

As already mentioned in Section 1.4, the pulmonary circulation is scarcely studied, in
particular with respect to the systemic one.
Most works about the hemodynamics in the pulmonary artery concern pathological con-
ditions, in particular the pulmonary hypertension. In [52] the authors provide a clinical
overview of pulmonary hypertension with a focus on the hemodynamics, current treat-
ments, and their limitations. Moreover they present a review of the tasks involved in
developing a computational model of pulmonary blood flow, namely vasculature recon-
struction, meshing, and boundary conditions. In [92] the pulmonary arterial hypertension
is detected by vascular wall stiffness and hemodynamic parameters that represent poten-
tial biomechanical markers. In [89] the authors provide a comparison with respect to
the normal pulmonary blood flow, in terms of local hemodynamics, especially wall shear
stress, energy loss and streamlines. Another comparison between the PAH and the healthy
case in terms of velocity and wall shear stress can be found in [84].
On the other hand some papers consider phisiological conditions. For example in [60] a
computational fluid-structure interaction study for a healthy patient-specific pulmonary
arterial tree is presented, using the unified continuum and variational multiscale formu-
lation. In [55], instead, a highly parallel algorithm is developed and studied for solving
a monolithically coupled fluid-structure system for the modeling of the interaction of the
blood flow and the arterial wall. Another parallel algorithm, scalable and based on do-
main decomposition methods, is examinated in [54] to investigate an unsteady model with
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patient-specific pulsatile waveforms as the inlet boundary condition. Instead in [83] the
three-dimensional hemodynamics in the human pulmonary arteries is analyzed, in partic-
ular comparing resting and exercise conditions.
Also for what concerns the pulmonary valve, as it happens for the pulmonary artery, in
literature we can find papers concerning both valve defects and physiological behavior.
In [29], for example, an approach for optimal leaflet shape design based on Finite Ele-
ment simulation of a mechanically anisotropic, elastomeric scaffold for pulmonary valve
replacement is proposed. In [76] the authors provide a description of the anatomy of
the pulmonary valve and related structures at CT and MR imaging and some imaging
examples of pathologic findings in different diseases, such as pulmonary regurgitation.
Another work which focuses on the imaging is [43], in which a complete and modular
patient-specifc valve model based on 4D cardiac computed tomography data is discussed.
In [79], instead, a geometrical model of the pulmonary valve in its fully open position,
according to its structure and physiological features, is presented.

1.7. Aims of the work

The goal of this work is to apply for the first time the reduced 3D-0D fluid-structure
interaction model proposed in Fumagalli et al. [39], for the aortic valve, to the pulmonary
valve. This thesis is innovative since a 3D-0D model has not been applied to the right
heart yet. The model has to be properly calibrated, since, considering the pulmonary
circulation instead of the systemic one, not only the pressure and velocity ranges but also
the geometry of the artery and of the valve are different. We are interested in analyzing if
the FSI model, after the calibration, well represents the physiological behavior of both the
blood inside the pulmonary artery and the pulmonary valve or if some further assumptions
are needed.
The work consists of two main steps.

• The first step is to arrange the 3D model of the pulmonary artery, already recon-
structed in a previous work [69], for the numerical simulations and to position the
pulmonary valve. The reconstruction procedures have been performed starting from
the data and the tomographic images of two patients with the pulmonary prosthetic
valve, provided by the Division of Cardiovascular Surgery of the Department of Car-
diology of Niguarda Hospital, Milan. The pulmonary valve is not reconstructed from
the computed tomography (CT), but a generic model of the valve, in this case the
one provided by Zygote [9], is adapted to each patient specific geometry, both in its
open and closed configuration. This valve positioning procedure is a very challenging
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and important aspect in numerical models for cardiac valves, since the geometrical
configuration of the valve greatly influences the hemodynamics. The choice of the
Zygote valve model is dictated by the fact that the cardiac valve reconstruction
from the CT is usually demanding since the low resolution of the tomographic data
makes the leaflets not detectable.

• The second step is devoted to the calibration of the model and to the numerical sim-
ulations, performed in order to characterize the hemodynamics inside the pulmonary
artery, by analyzing the meaningful quantities.

Both steps are performed for each patient.
The thesis is organized as follows.
After the first introductory chapter, the second chapter concerns the description of the
mathematical and numerical models. In particular the blood flow is modeled by the Navier
Stokes equations with the addition of a resistive penalty term which takes into account
the presence of the immersed valve, while the dynamics of the valve is described by a
lumped-parameters model. The resulting reduced fluid-structure interaction problem has
a computational cost that is comparable with the solution of a prescribed-motion fluid
dynamics problem. A stabilized Finite Element method with a BDF (backward differ-
entiation formula) time scheme is adopted for the discretization of the coupled problem.
For what concerns the boundary conditions they are derived from the 0D model of the
whole cardiovascular system. This model will be additionally the object of a sensitivity
analysis.
The third chapter is dedicated to all the steps that are needed to set up the computational
domain, both the artery and the valve.
Finally the fourth chapter contains the calibration of the model, the numerical simulations
and the post-processing of the results.
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2| Mathematical models and

numerical methods

In this chapter we introduce the reduced model representing the fluid-structure interac-
tion between the blood flow in the pulmonary artery and the pulmonary valve leaflets.
After having provided in Section 2.1 a description of the blood modeling, in Section 2.2
we discuss the fluid dynamics model, with the valve effects modeled by a resistive method.
Then, the reduced structure model for the valve dynamics is derived in Section 2.3, and
the FSI coupling is detailed in Section 2.4. Finally Section 2.5 is devoted to the numerical
approximation of the fully coupled model.
At the end of the chapter, in Section 2.6, we provide a description of the lumped-
parameters model of the whole cardiovascular system, from which we extract the boundary
conditions for the fluid problem.

2.1. Blood modeling

Blood is composed of plasma (about 55% of its total volume) and living cells.
The plasma contains ≃ 92% water with the rest being made up of proteins, small molecules
and ions. The diameter of blood cells is approximately 10−3 cm, whereas that of the
smallest arteries and veins is about 10−1 cm.
Thus, blood is commonly modeled as an homogeneous, incompressible fluid, with uniform
density ρ = 1.06 · 103 kg/m3 and dynamic viscosity µ = 3.5 · 10−3 Pa · s. Moreover,
in the systemic and pulmonary circulations, it is typically considered Newtonian, i.e.
characterized by a linear relationship between internal forces and velocity gradients [35,
67]. In the smallest arteries, such as coronary arteries or in the presence of vessel narrowing
(stenosis), instead, non-Newtonian blood rheology is more appropriate [25].
The Cauchy stress tensor for a Newtonian, incompressible and viscous fluid is

σ(u, p) = −pI+ 2µD(u) = −pI+ µ(∇u+ (∇u)T ), (2.1)
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where D(u) is the strain rate tensor, p and u are the pressure and the velocity of the
fluid, respectively.

2.2. Fluid model and Resistive Immersed Implicit

Surface method

The interaction of the valve dynamics with the fluid dynamics is accounted for by the
Resistive Immersed Implicit Surface (RIIS) method. It is inspired by the Resistive Im-
mersed Surface (RIS) approach, originally proposed in Fernández et al. [33] to study a
porous interface immersed in a fluid, and lately extended in Astorino et al. [14] to model
the aortic valve. It was successively employed in [38] in a clinical context for the mitral
valve. In this method the presence of the valve is taken into account in the momentum
equation of the Navier–Stokes system by adding a localized penalty term, specifically a
resistive term, which weakly enforces the blood to adhere to the leaflets.
The fluid model is solved in an Eulerian formulation and in a fixed domain Ω ⊂ R3. The
movement of the leaflets does not modify the computational mesh since the computational
mesh and the surface do not need to be conforming.

More in detail, the approach consists in representing the geometry of the moving valve
Γt, in our case the pulmonary valve, as a surface immersed in the fluid domain Ω, for us
the pulmonary artery (Figure 2.1). It is implicitly described at each time t by a level-set
function φt : Ω → R [63], as

Γt = {x ∈ Ω : φt(x) = 0}. (2.2)

The function φt is assumed to be a signed distance function, i.e. it fulfills |∇φt| = 1, for
any t.
The velocity u and pressure p of the blood satisfy the following formulation of the Navier-
Stokes equations:
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ρ∂tu+ ρ(u · ∇)u−∇ · σ(u, p) + R
ϵ
(u− uΓ)δΓ,ϵ = 0 in Ω, t ∈ (0, T ],

∇ · u = 0 in Ω, t ∈ (0, T ],

u = 0 on Σwall, t ∈ (0, T ],

σ(u, p)n = pinn on Σin, t ∈ (0, T ],

σ(u, p)n = poutn on Σout, t ∈ (0, T ],

u = 0 in Ω, t = 0,

(2.3)

where uΓ is the velocity of the valve, which constitutes a datum for the fluid problem.
The resistive penalty coefficient, added into the Navier-Stokes equations, is defined as
the ratio between the resistance coefficient R and the half-thickness ϵ of the leaflets, and
the resistive term enforces condition u = uΓ as ϵ → 0. Indeed, in that case R

ϵ
→ ∞,

which forces u to be equal to the valve velocity. We underline that this method can be
interpreted as a weak imposition of a no-slip condition on the immersed surface.
The resistive term has support in a narrow layer around Γt, represented by a smeared Dirac
delta function δΓ,ϵ : Ω → [0,+∞) that approximates the Dirac distribution (rigorously,
the codimension-1 Hausdorff measure), as follows:

δΓ,ϵ(x) =


1 + cos(πφt(x)/ϵ)

2ϵ
if |φt(x)| ≤ ϵ,

0 if |φt(x)| > ϵ,
(2.4)

where the half-thickness ϵ is the smoothing parameter.
In general, the reconstruction of uΓ may be complex, possibly entailing numerical insta-
bilities [31]. The prescribed leaflet velocity uΓ may be provided in different ways, for
example as the solution to an additional structural problem for the leaflets as in our case,
by a reconstruction procedure based on clinical data or adopting a quasi-static approach,
that is setting uΓ = 0. The computational costs are lower in the quasi-static approach
and are higher if the valve velocity is reconstructed through an additional problem.
With regard to the boundary conditions, pin and pout are the pressure values imposed at
the inflow and outflow boundaries Σin and Σout, respectively, while the boundary Σwall

represents the artery wall. More in detail, Σin is the inlet of the artery, where the blood
enters, ejected from the right ventricle; Σout = Σ1

out ∪ Σ2
out consists in two outlets, corre-

sponding to the left and right pulmonary artery (Figure 2.1). The pressure values come
from a physiological simulation of circulation model, discussed in Section 2.6.
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Figure 2.1: Computational domain Ω with its boundaries and the immersed valve Γ.

Starting from the strong formulation of the problem (2.3) and introducing the following
functional spaces:

V = {v ∈
[
H1(Ω)

]3
: v|Σwall

= 0},

Q = L2(Ω),

we can write the weak formulation.
The idea is to take v and q as test functions for velocity and pressure respectively, belong-
ing to the two correspondent functional spaces. Afterwards the momentum and continuity
equations, respectively the first and the second equation of (2.3), have to be multiplied by
the respective test function, integrating over the computational domain Ω and considering
the Neumann boundary conditions from the strong formulation.
Taking into account the momentum equation, we multiply it by the test function v ∈ V

and we integrate over Ω:∫
Ω

ρ∂tu · v dΩ +

∫
Ω

ρ(u · ∇)u · v dΩ−
∫
Ω

∇ · σ · v dΩ +

∫
Ω

R

ϵ
(u− uΓ)δΓ,ϵ · v dΩ = 0.

If we consider the Cauchy stress tensor divergence integral, exploiting the definition
in (2.1) firstly and then integrating by parts we obtain:
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∫
Ω

∇ · σ · v dΩ =

∫
Ω

−∇p · v dΩ +

∫
Ω

µ∇ · (∇u+ (∇u)T ) · v dΩ =

=

∫
Ω

p∇ · v dΩ−
∫
∂Ω

pn · v dγ −
∫
Ω

µ(∇u+ (∇u)T ) : ∇v dΩ+

+

∫
∂Ω

µ
∂u

∂n
· v dγ ∀v ∈ V.

(2.5)

Relying on the Neumann boundary conditions from the strong formulation in (2.3) and
substituting the Cauchy stress tensor divergence integral with the integral sum in (2.5),
the weak formulation of the momentum equation is recovered:∫

Ω

ρ∂tu · v dΩ +

∫
Ω

ρ(u · ∇)u · v dΩ−
∫
Ω

p∇ · v dΩ +

∫
Ω

µ(∇u+ (∇u)T ) : ∇v dΩ+

−
∫
Σout

pinn · v dγ −
∫
Σout

poutn · v dγ +

∫
Ω

R

ϵ
(u− uΓ)δΓ,ϵ · v dΩ = 0 ∀v ∈ V.

Repeating the procedure for the continuity equation, multiplying for the test function
q ∈ Q, the following identity is obtained:∫

Ω

∇ · u q dΩ = 0 ∀q ∈ Q.

The weak formulation can be re-written by introducing the following forms and function-
als:

ã(u,v) = a(u,v) + r(u,v) =

=

∫
Ω

µ(∇u+ (∇u)T ) : ∇v dΩ +

∫
Ω

R

ϵ
uδΓ,ϵ · v dΩ,

b(v, q) = −
∫
Ω

∇ · v q dΩ,

c(w,u,v) =

∫
Ω

ρ(w · ∇)u · v dΩ,

F (v) =

∫
Σin

pinn · vdγ +

∫
Σout

poutn · vdγ +

∫
Ω

R

ϵ
uΓδΓ,ϵ · v dΩ.

The weak formulation reads as follows.
Find u ∈ V and p ∈ Q for a.e. t ∈ (0, T ] such that ∀v ∈ V and ∀q ∈ Q: ρ(∂tu,v) + ã(u,v) + c(u,u,v) + b(v, p) = F (v)

b(u, q) = 0
(2.6)

where the duality in the first term of the momentum equation identifies an integral over
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Ω with the following notation:

(u,v) =

∫
Ω

u · v dΩ.

2.3. Lumped-parameters structure model

Aiming at providing the configuration and the velocity of the valve, represented by δΓ,ϵ

and uΓ in the fluid problem (2.3), a structural model for the deformation of the surface
Γt has to be presented.
In this section we provide the derivation of the reduced, lumped-parameters model which
is able to describe the main features of cardiac valve dynamics, between its closed and
open configurations, in a realistic manner, proposed in [39]. A schematic representation
of the leaflet section is provided in Figure 2.2a.
Denoting by dΓ : [0, T ] × Γ̂ → R3 the displacement of the leaflet with respect to its
reference configuration Γ0 = Γ̂, we can represent the current configuration Γt as

Γt = {x ∈ R3 : x = Tt(x̂) = x̂+ dΓ(t, x̂) for some x̂ ∈ Γ̂}.

We assume that every point x ∈ Γt of the leaflet is subject, at each time t, both to
an external force f(t,x) due to the surrounding fluid, and to an elastic force, that is
related to the leaflet curvature H(t,x). Both these contributions depend on the current
configuration of Γt described by dΓ(t, x̂). We assume that the curvature-induced elastic
force acts only normally to the surface, as it happens for the free-surface tension. A
schematic representation of the forces acting on the leaflet is provided in Figure 2.2b.
Moreover we impose this elastic force to vanish on Γ̂, since it is generally observed that
the resting state of the cardiac valve is its closed configuration. Finally we assume that the
valve motion can be affected by some damping effect. In accordance to these assumptions
we can formulate a local force balance as follows:

ρΓẍ+ βρΓẋ = f(t,x)− γ[H(t,x)− Ĥ(x̂)]nΓ(t,x), (2.7)

where ρΓ is the surface density of the valve, β is a damping coefficient, γ is an elasticity
coefficient, and nΓ is the normal to the surface Γt. The function Ĥ(x̂) represents the
total curvature of the surface Γ̂ in the position x̂ = T−1

t (x) corresponding to x. For the
sake of simplicity, and in accordance to the common practice for biological tissues, the
density valve leaflets can be considered to be the same of the blood. Based on these
considerations, we get ρΓ = 2ϵρ, where ϵ denotes the semi-thickness of the leaflet, and, by
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RIIS representation, we can write the following consistency formula:∫
Γt

ρΓdΓ ≃
∫
Ω

2ϵρδΓ,ϵdΩ = ρ2ϵ|Γt|.

We underline that the parameter ρΓ can be tuned to different values, without loss of
generality, in order to account for different inertial properties of the leaflets. In particular
the inertia of the leaflets may be unknown in patient-specific settings or be affected by
added-mass effects, see e.g. [22].

(a) Leaflet section and motion (b) Forces acting on the leaflet

Figure 2.2: Schematic representation of a leaflet section and of the forces acting on it.

In order to reduce equation (2.7) to a 0D model, we assume that dΓ can be decomposed
as

dΓ(t, x̂) = c(t)g(x̂), (2.8)

where g : Γ̂ → R3 is known and takes into account the spatial dependence of the displace-
ment, while c : [0, T ] → [0, 1] has to be modeled. In particular, g represents the valve
opening field, and it has to be provided. Indeed it reproduces the displacement of the
valve between its closed and open positions, and it depends on the patient-specific model.
On the other hand, c represents the valve opening coefficient and expresses the fraction of
the valve opening: c = 0 corresponds to the valve in closed position, while c = 1 denotes
the open valve. Moreover, we underline that c ∈ [0, 1], instead of [−∞,+∞], since g
is the total displacement from closed to open valve position. Taking into account these
extremes, in particular c = 0, allows to guarantee a contact effect, at least at kinematic
level, even without the presence of a contact force.
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Therefore the local balance (2.7) can be re-written as

[c̈(t) + βċ(t)]ρΓg(T
−1
t (x)) = f(t,x)− γ[H(t,x)− Ĥ(T−1

t (x))]nΓ(t,x).

Taking the component along nΓ(t,x) and integrating over Γt, the following ordinary dif-
ferential equation for c is obtained:

c̈(t) + βċ(t) =

∫
Γt
f(t,x) · nΓ(t,x)dx− γ

∫
Γt
[H(t,x)− Ĥ(T−1

t (x))]dx∫
Γt
ρΓg(T

−1
t (x)) · nΓ(t,x)dx

, (2.9)

where the dependence of the right hand side on c is implicit in its dependence from the
curvature H. Indeed H is defined as H = −divnΓ and the normal vector nΓ can be
computed in terms of the derivatives of the function Tt(x̂) = x̂+ c(t)g(x̂). This equation
can be completed by proper initial conditions on c and ċ, depending on the application
of interest, in our case they are both 0, since the we consider the closed, fixed valve as
initial configuration.

2.4. Coupling of the fluid and structure models

The 3D fluid model described in Section 2.2 and the 0D valve model introduced in Sec-
tion 2.3 can be coupled in a reduced FSI model. The fluid-to-valve stress f , appearing in
equation (2.9), is computed from the 3D fluid model in terms of u, p and the RIIS-related
quantities, while the valve position and velocity are provided by the 0D valve model. We
introduce some additional notation related to the representation of the immersed surface
Γt. Being φt a signed distance function, the domain Ω can be partitioned into two regions:

Ω+
t = {x ∈ Ω : φt(x) > 0}, Ω−

t = {x ∈ Ω : φt(x) < 0}. (2.10)

The definition of φt that we employ, as implemented in [8], yields that Γt, defined as
in (2.2), is a subset of the interface Ω+

t ∩Ω−
t . Indeed such interface is partitioned into the

actual leaflet Γt and the surface (Ω+
t ∩Ω−

t ) \ Γt where φt jumps from negative to positive
values.
According to (2.10), any function f defined over Ω can be decomposed as f = f+ + f−,
where f± = f |Ω± .
Moreover, the function φt allows to define ñΓ and H̃, that are the extensions to the whole
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domain Ω of the surface normal nΓ and its curvature H, respectively:

ñΓ =
∇φt
|∇φt|

,

H̃ = −divñΓ = − ∆φt
|∇φt|

+
∇2φt : (∇φt ⊗∇φt)

|∇φt|3
,

(2.11)

with ∇2φt denoting the Hessian matrix of φt. These quantities are actual extensions of
the normal vector and curvature, since ñΓ|Γ = nΓ, H̃|Γ = H. We remark that ñΓ is such
that it does not change its verse when passing through Γt.
We point out that in the definitions (2.11), we did not make the common assumption
that |∇φt| = 1. Indeed it is not valid near ∂Γt, where φt is not continuous, but only in
the neighborhood of internal points of Γt. We underline that the derivatives appearing
in (2.11) are computed in Ω+

t and Ω−
t separately, so that no contribution actually arises

from the discontinuity of φt.
Moreover, this definition of ñΓ ensures that the normal has unit magnitude also at the
discrete level.
The quantities defined above represent the geometric description of the valve leaflets, we
now introduce their kinematics and dynamics. Regarding the RIIS description of the
surface, looking at a definition (2.8), the surface velocity can be expressed as

uΓ(t,x) = ċ(t)g̃(x), (2.12)

where g̃ : Ω → R3 is the closest-point extension of g : Γ̂ → R3.
The forces exerted by the fluid on the valve are related to the stress jump across Γt, thus

f = [σnΓ]|Γt = σ+|ΓtnΓ − σ−|ΓtnΓ.

Considering the surface smearing introduced by the smooth Dirac delta δΓ,ϵ and the
definitions (2.11), the integral term related to f that appears in (2.9) can be approximated
as follows: ∫

Γt

f · nΓ ≃
∫
Ω

(
σñΓ · ñΓδ

+
Γ,ϵ − σñΓ · ñΓδ

−
Γ,ϵ

)
. (2.13)

In analogous way, the other integrals of (2.9) can be approximated as follows:∫
Γt

ρΓ(g ◦T−1
t ) · nΓ ≃

∫
Ω

ρΓ(g ◦T−1
t ) · ñΓδΓ,ϵ,

−γ
∫
Γt

(
H − Ĥ ◦T−1

t

)
≃ −γ

∫
Ω

(
H̃ − ̂̃

H

)
δΓ,ϵ,

(2.14)
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with ̂̃
H denoting the RIIS representation of the pulled-back curvature Ĥ ◦T−1

t .
We notice that, since ñΓ = 1, if the strain component of the normal stress is assumed to
be negligible with respect to the pressure term, the integral force in (2.13) reduces to∫

Γt

f · nΓ ≃
∫
Ω

(
p δ+Γ,ϵ − p δ−Γ,ϵ

)
,

in accordance with other reduced models which are based on the pressure jump across
the valve [19, 27, 56, 78].
Summarizing, the coupled problem is the following.
Given pin, pout, g, g̃, find u, p, c such that:

fluid problem



ρ∂tu+ ρ(u · ∇)u−∇ · σ(u, p) + R
ϵ
(u− uΓ)δΓ,ϵ = 0 in Ω, t ∈ (0, T ],

∇ · u = 0 in Ω, t ∈ (0, T ],

u = 0 on Σwall, t ∈ (0, T ],

σ(u, p)n = pinn on Σin, t ∈ (0, T ],

σ(u, p)n = poutn on Σout, t ∈ (0, T ],

u = 0 in Ω, t = 0,

structure problem


c̈+ βċ =

∫
Γt
f · nΓdx− γ

∫
Γt
[H − Ĥ]dx∫

Γt
ρΓg · nΓdx

t ∈ (0, T ],

c = 0, ċ = 0 t = 0,

coupling


Γt = x̂ + c g, δΓ,ϵ = F (Γt),

uΓ = ċ g̃,

f = [σ(u, p)nΓ]|Γt = σ+(u, p)|ΓtnΓ − σ−(u, p)|ΓtnΓ.

The dependence of the smeared dirac function δΓ,ϵ on the valve position Γt is achieved
through equations (2.2) and (2.4). Indeed the valve position allows to compute the
signed distance function φt and consequently δΓ,ϵ. The computation of φt allows to find
also the valve curvature H and its normal nΓ, according to equations (2.11) and then
restricting on Γ. The approximation of the integrals showing up in the structure problem
is reported in equations (2.13), (2.14).

2.5. Numerical approximation

We focus on the numerical approximation of the fully coupled model, reported at the end
of Section 2.4 . The fluid model is discretized in space using the stabilized Finite Element
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(FE) method, for which the approximated velocity and pressure variables are build from
Lagrangian polynomial basis functions of equal degree, and in time by means of backward
differentiation formula (BDF) of order 1 and by adopting a semi-implicit treatment for
the nonlinear term. The 0D structure problem, instead, is discretized with an explicit
scheme.

2.5.1. Fluid model

Time discretization

We introduce a uniform partition of the time interval [0, T ] with step-size ∆t and nodes
{tn}Nn=0, where ∆t = T

N
. Accordingly, the time-discrete counterparts of all quantities,

evaluated at time tn, will be denoted by a superscript ·n. We consider the time discretiza-
tion by means of backward differentiation formula (BDF) of order 1 and by adopting a
semi-implicit treatment for the nonlinear term.
In the following we explain the choice of a semi-implicit formulation, with respect to the
advantages and disadvantages of an explicit or implicit one.
An explicit formulation allows the resolution of a linear system reducing the computa-
tional cost, but it imposes a restrictive stability condition, ∆t ≲ h2, where h is the mesh
discretization step. It is a restrictive condition, since in most fluid dynamics applications
a refined grid is considered, with a small value of h.
On the other hand a fully implicit formulation generates an unconditionally stable method,
but a onerous non-linear system must be solved at every time step.
The choice of a semi-implicit treatment allows to avoid, on one side, the expensive non-
linear system of a fully-implicit treatment, and, on the other side, the restrictive stability
condition of an explicit approach. With the semi-implicit approach the non linear term
is linearized and the stability condition is of the following type:

∆t ≤ C
h

||un−1||L∞
,

where C is a real constant. This condition is usually already satisfied in hemodynamics
for accuracy purposes.
The time discretization of the problem (2.6) reads follows.
We assume known the boundary conditions values and the valve velocity.
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Given u0 = 0, find un, pn for each n = 1, .., N such that:
(
ρ
un − un−1

∆t
,v

)
+ ãn(un,v) + c(un−1,un,v) + b(v, pn) = F n(v)

b(un, q) = 0

The forms and functional are introduced in Section 2.2.
The dependence of ãn on n is highlighted with the apex and is due to the term δnΓ,ϵ showing
up in the resistive contribution.

Spatial Finite Element discretization

Let T h be a hexahedral mesh for the domain Ω, such that Ω =
⋃
T∈Th T and the space

discretization step is defined as h = max
T∈Th

(diam(T )). We introduce the Finite Element

(FE) space
Xr
h = {vh ∈ C0(Ω̄) : vh|T ∈ Qr(T),∀T ∈ Th},

where Qr denotes the space of polynomials of degree r with respect to each space coordi-
nate.
The velocity and pressure discrete spaces are thus defined as

V r
h = ([Xr

h]
3 ∩ V ), V r

h ⊂ V, dim(V r
h ) = Nh <∞ ∀h > 0,

Qs
h = Xs

h ∩Q, Qs
h ⊂ Q, dim(Qs

h) =Mh <∞ ∀h > 0.

The fully discretized problem reads as follows.
Given u0

h = 0, find unh ∈ V r
h , pnh ∈ Qs

h for each n = 1, ..., N such that ∀vh ∈ V r
h and

∀qh ∈ Qs
h:(

ρ
unh − un−1

h

∆t
,vh

)
+ ãn(unh,vh) + c(un−1

h ,unh,vh) + b(vh, pnh)− b(unh, qh) = F n(vh).

(2.15)

The continuity and coercivity on V r
h of the bilinear form ã(·, ·) can be proved, taking into

account the added resistive term:

• continuity

ã(uh,vh) =
∫
Ω

µ(∇uh + (∇uh)
T ) : ∇vh dΩ +

∫
Ω

R

ϵ
uhδΓ,ϵ,h · vh dΩ ≤

≤
(
µ+

R

ϵ2

)
||uh||H1||vh||H1 ∀uh,vh ∈ V r

h ,
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• coercivity

ã(vh,vh) =
∫
Ω

µ(∇vh + (∇vh)
T ) : ∇vh dΩ +

∫
Ω

R

ϵ
vhδΓ,ϵ,h · vh dΩ ≥

≥ µ

1 + C2
Ω

||vh||2H1 ∀vh ∈ V r
h .

We have used the equivalence between the H1 semi-norm and the H1 norm:

1√
1 + C2

Ω

||v||H1 ≤ ||∇v||L2 ≤ ||v||H1 ,

thanks to the Poincaré inequality:

||v||L2 ≤ CΩ||∇v||L2 .

For the resistive term we have exploited the definitions of the infimum and the supremum
of the smooth Dirac function:

inf
ψ∈R+

δΓ,ϵ(ψ) = 0, sup
ψ∈R+

δΓ,ϵ(ψ) =
1

ϵ
.

Regarding the bilinear form b(·, ·), to account for coercivity, it has to satisfy the so-called
inf-sup condition:

∃βh > 0 : inf
qh∈Qs

h
qh ̸=0

sup
vh∈V r

h
vh ̸=0

b(vh, qh)
||vh||H1||qh||L2

≥ βh > 0 ∀h > 0. (2.16)

Typically, the constant βh should be independent of h. If it is not the case and for instance
βh → 0 as h→ 0, the convergence properties of the method may be affected.
If the inf-sup condition is violated, i.e. if

inf
qh∈Qs

h
qh ̸=0

sup
vh∈V r

h
vh ̸=0

b(vh, qh)
||vh||H1||qh||L2

= 0,

then there exists at least a function q∗h ∈ Qs
h such that

sup
vh∈V r

h
vh ̸=0

b(vh, q∗h)
||vh||H1||q∗h||L2

= 0



34 2| Mathematical models and numerical methods

and therefore
b(vh, q∗h)

||vh||H1||q∗h||L2

= 0 ∀vh ∈ V r
h .

Thus, if (uh,ph) is a solution of (2.15), also the pair (uh,ph+ q∗h) is solution, entailing that
the solution of the problem is not unique anymore. Elements as q∗h are called spurious
pressure modes, leading to numerical instabilites as the inf-sup condition is violated.
The inf-sup condition is satisfied if the FE spaces are inf-sup compatible, otherwise the
problem has to be stabilized. In this work, in order to limit the computational burden of
the spatial discretization, for the FE spaces V r

h and Qs
h, we choose equal order r = s = 1.

Therefore the two spaces are not inf-sup stable and require a suitable stabilization.

Stabilization

As already mentioned, the discrete spaces V r
h and Qs

h have been chosen of the same or-
der, equal to 1, to reduce the computational effort, but this choice requires a suitable
stabilization since the pair is not stable. Moreover a relevant source of numerical in-
stabilities is associated to the fact that the flow regime is highly advective, especially
in the region of the valve. For these reasons, in order to deal with the two aforemen-
tioned sources of instabilities, we employ the Streamline Upwind Petrov-Galerkin and
the Pressure-Stabilizing Petrov-Galerkin (SUPG-PSPG) approach. We introduce the
stabilization term s (2.17). As proposed in [37] for time discretization based on the BDF
scheme, we set the SUPG parameters in a straightforward way following the variational
multiscale (VMS) concept, see [16].

s(unh,u
n−1
h , pnh;vh, qh) =

∑
T∈Th

(τM(un−1
h )rnM(unh, p

n
h), ρu

n−1
h · ∇vh +∇qh)T+

+
∑
T∈Th

(τC(un−1
h )rnC(u

n
h),∇ · vh)T

(2.17)

(·, ·)T denoting the L2 inner product over a mesh element T . The two terms rnM(unh, p
n
h)

and rnC(unh) represent the residuals of the momentum and continuity equations and are
defined as

rnM(unh, p
n
h) = ρ

unh − un−1
h

∆t
− µ∆unh + ρun−1

h · ∇unh +∇pnh +
R

ϵ
δnΓ,ϵ,h(u

n
h − unΓ,h),

rnC(u
n
h) = ∇ · unh,
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and the stabilization parameters τM and τC are

τM =

(
ρ2

∆t2
+ ρ2un−1

h · Gun−1
h + Crµ

2G : G +
R2

ϵ2
(δnΓ,ϵ,h)

2

)−1/2

,

τC = (τMg · g)−1.

The quantity Cr = 60 · 2r−2, while G = J−TJ−1 and g = J−T I denote the metric tensor
and vector, respectively, depending on the Jacobian J of the element map MT : T̂ → T ,
for T ∈ Th, mapping the reference element T̂ to the current one T .
It is strongly consistent method since the truncation error of the added term is zero for
every value of the space discretization parameter h.

For what concerns the boundaries, the backflow stabilization is applied to the ones
on which Neumann conditions are imposed and through which inflow occurs, in this case
both the inlet and the outlet. Indeed a typical issue of the hemodynamics simulations is
the instability of the artificial Neumann boundaries because of the backflow that arises
[71]. The instability is due to the convective term that makes the energy balance unstable
when the velocity and the normal of the boundary have opposite directions. Further
details can be found in [17]. It is possible to correct these instabilities by introducing the
stabilization term e:

e(unh,u
n−1
h ;vh) = (βρ(un−1

h · n)−unh,vh)ΓN
,

where ΓN = Σin ∪ Σout, β ∈ (0, 1] and

(u · n)− =

0 if u · n ≥ 0

−(u · n) if u · n < 0.

We underline that the time discretization of the stabilization term must be consistent to
that used for the convective term [17].

The fully discretized and stabilized problem reads as follows.
Given u0

h = 0, find unh ∈ V r
h , pnh ∈ Qr

h for each n = 1, ..., N such that ∀vh ∈ V r
h and

∀qh ∈ Qr
h: (

ρ
unh − un−1

h

∆t
,vh

)
+ ãn(unh,vh) + c(un−1

h ,unh,vh) + b(vh, pnh)+

+ s(unh,u
n−1
h , pnh;vh, qh) + e(unh,u

n−1
h ;vh)− b(unh, qh) = F n(vh).

(2.18)
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Algebraic formulation

The algebraic formulation is derived by introducing the scalar basis functions {φk(x)}Mh
k=1

for the discrete space Qr
h and the vectorial basis functions {ϕj(x)}Nh

j=1 for V r
h . Regarding

the vectorial ones, they are defined introducing the basis functions of Xr
h, {ϕj(x)}Kh

j=1,
where 3Kh = Nh, such that a basis of V r

h can be built as:
ϕ1

0

0

 ,
ϕ2

0

0

 , ...,
ϕKh

0

0

 ,
 0

ϕ1

0

 ,
 0

ϕ2

0

 , ...,
 0

ϕKh

0

 ,
 0

0

ϕ1

 ,
 0

0

ϕ2

 , ...,
 0

0

ϕKh


.

The total number of degrees of freedom is: Ntot = Nh +Mh = 3Kh +Mh.
The solution of the discrete problem can be written as linear combination of the basis
functions:

unh(x) =

Nh∑
j=1

unjϕj(x) =

=

Kh∑
j=1

unj

ϕj(x)0

0

+

Kh∑
j=1

unKh+j

 0

ϕj(x)

0

+

Kh∑
j=1

un2Kh+j

 0

0

ϕj(x)

 ,
pnh(x) =

Mh∑
k=1

pnkφk(x),

where the coefficients {unj }
3Kh
j=1 and {pnk}

Mh
k=1, for n = 1, ..., N , have been introduced.

In the problem (2.18) we take vh = ϕi and qh = φl, ∀i = 1, ..., Nh and ∀l = 1, ...,Mh and
we sostitute the above expressions.
Let us introduce the vectors Un = [un1 , ..., u

n
Nh

]T , Pn = [pn1 , ..., p
n
Mh

]T and
Fn = [F n(ϕ1(x)), ..., F n(ϕNh

(x))]T .
Subsequently, the following matrices are built:

• the mass matrix M ∈ RNh×Nh : Mij =
∫
Ω
ϕj · ϕi,

• the stiffness matrix A ∈ RNh×Nh : Aij = a(ϕj,ϕi),

• the resistive matrix Rn ∈ RNh×Nh : Rn
ij = rn(ϕj,ϕi),

• the convective matrix N ∈ RNh×Nh : [N(Un−1)]ij = c(un−1
h ,ϕj,ϕi),

• the matrix B ∈ RMh×Nh : Blj = b(ϕj, φl).
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In order to introduce the SUPG-PSPG stabilization matrix, we rewrite the contributions
of equation (2.17):

s11 =τM

[(
ρ
unh
∆t
, ρun−1

h · ∇vh

)
T

− (µ∆unh, ρu
n−1
h · ∇vh)T + (ρun−1

h · ∇unh, ρu
n−1
h · ∇vh)T+

+

(
R

ϵ
δnΓ,ϵ,hu

n
h, ρu

n−1
h · ∇vh

)
T

]
+ τc(∇ · unh,∇ · vh)T ;

s12 =τM(∇pnh, ρun−1
h · ∇vh)T ;

s21 =τM

[(
ρ
unh
∆t
,∇qh

)
T

− (µ∆unh,∇qh)T + (ρun−1
h · ∇unh,∇qh)T +

(
R

ϵ
δnΓ,ϵ,hu

n
h,∇qh

)
T

]
;

s22 =τM(∇pnh,∇qh)T ;

fu =τM

[(
ρ
un−1
h

∆t
, ρun−1

h · ∇vh

)
T

+

(
R

ϵ
δnΓ,ϵ,hu

n
Γ,h, ρu

n−1
h · ∇vh

)
T

]
;

fp =τM

[(
ρ
un−1
h

∆t
,∇qh

)
T

+

(
R

ϵ
δnΓ,ϵ,hu

n
Γ,h,∇qh

)
T

]
.

For the sake of clearness, the sum over the hexahedral mesh has been omitted.
These terms give rise to the following correspondent algebraic contributions:
s11 → Σ11Un, Σ11 ∈ RNh×Nh , s12 → Σ12Pn, Σ12 ∈ RNh×Mh ,
s21 → Σ21Un, Σ21 ∈ RMh×Nh , s22 → Σ22Pn, Σ22 ∈ RMh×Mh ;
fu → Fn

u, fp → Fn
p .

On the other hand, the backflow stabilization matrix is the following:
E ∈ RNh×Nh: [E(Un−1)]ij = (βρ(un−1

h · n)−ϕj,ϕi)ΓN
.

The algebraic counterpart of the problem (2.18) reads:

ρ
M

∆t
Un + AUn +RnUn +N(Un−1)Un + Σ11Un + Σ12Pn + E(Un−1)Un +BTPn =

= Fn + Fn
u

BUn + Σ21Un + Σ22Pn = Fn
p

U0 = 0

where (Fn)i =

(
ρ
M

∆t
Un−1

)
i

+
∫
Σin

pninn · ϕidγ +
∫
Σout

pnoutn · ϕidγ +

(
R
ϵ
unΓ,hδ

n
Γ,ϵ,h,ϕi

)
.

In order to simplify the notation, we set:
K = ρM

∆t
+ A+Rn +N(Un−1) + Σ11 + E(Un−1);

F̃
n
= Fn + Fn

u.

Summarizing, the fully discretized and stabilized problem written in compact algebraic
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form is the following.
Given U0 = 0, find Un, Pn for each n = 1, ..., N such that:[

K Σ12 +BT

B + Σ21 Σ22

][
Un

Pn

]
=

[
F̃
n

Fn
p

]
.

It is important to discuss the importance of the choice of ϵ, strictly connected to the
condition number. We remark that, if ϵ increases, the matrix condition number decreases,
but the valve becomes thicker and thicker. Our aim is to reproduce physiological value of
the valve thickness. The importance of ϵ will be also analyzed in the following.

2.5.2. Structure model

For what concerns the geometric quantities valve related, we consider a FE description,
even if, since they appear only inside integrals, we do not need all of them to actually
belong to a FE space.
In particular, the distance function is approximated by φnh ∈ Xs

h at each time tn, with a
polynomial degree s ≥ 2 that is in general different from r, and δnΓ,ϵ,h is defined accordingly.
We underline again the importance of the half-thickness ϵ. As already mentioned at the
end of Section 2.5.1, ϵ has to be sufficiently small in order to reproduce physiological
values. However, it must be at least 1.5 times larger than h, in order for δnΓ,ϵ,h to be
correctly resolved by the mesh. As a general guideline, the mesh has to be fine in the
valvular region in order to set a sufficiently small ϵ [31].
Denoting by {ψl}

Ns
h

l=1 the basis functions spanning Xs
h, the distance function reads:

φnh =

Ns
h∑

l=1

φnl ψl,

and the leaflets extended normal and curvature are then defined as follows:

ñnΓ,h =

∑Ns
h

l=1 φ
n
l ∇ψl∣∣∑Ns

h
l=1 φ

n
l ∇ψl

∣∣ ,
H̃
n

Γ,h = −div ñnΓ,h =

= −
∑Ns

h
l=1 φ

n
l ∆ψl∣∣∑Ns

h
l=1 φ

n
l ∇ψl

∣∣ +
∑Ns

h
l=1 φ

n
l ∇2ψl :

(∑Ns
h

l=1 φ
n
l ∇ψl ⊗

∑Ns
h

l=1 φ
n
l ∇ψl

)∣∣∑Ns
h

l=1 φ
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In order to represent the leaflet velocity at the discrete level, we apply a first-order ap-
proximation of (2.12):

unΓ,h =
cn − cn−1

∆t
g̃h.

Regarding the solution of the ODE equation (2.9) describing the valve dynamics it is
based on an explicit, fourth-order Runge-Kutta method (see Appendix A).

2.5.3. Reduced 3D–0D FSI model

The fluid and structure models are then weakly coupled at each time-step. In particular,
at each time step the fluid exchanges with the valve the stress, expressed in terms of the
fluid velocity and pressure, and receives from the valve model the position and the velocity
of the leaflets. More in detail, the solution of the 0D valve model is the opening coefficient
which allows to compute the valve displacement, its configuration and consequently its
velocity. On the other hand the blood velocity and pressure are computed by solving the
3D fluid problem. The normal vector to the valve and its curvature are assembled from
the signed distance function.
Thus, we have the following scheme:

Algorithm 1: Solution scheme for the 3D-0D FSI model

Given unh, pnh, cn for n = 0, and computed the functions φn, ñnΓ, H̃
n

corresponding to the surface Γn for n = 0

for n = 1 to N do
1. Compute the integrals that make up (2.9), in terms of

un−1
h , pn−1

h , Γn−1, φn−1;

2. Find cn by advancing the 0D equation (2.9) with a step
of an explicit fourth-order Runge-Kutta method;

3. Move the immersed surface to its new configuration Γn

described by dnΓ = cng and compute unΓ =
cn − cn−1

∆t
g̃;

4. Compute the new signed distance function φn w.r.t. Γn and
assemble the normal and curvature fields ñnΓ and H̃

n
;

5. Find (unh, pnh) ∈ V r
h ×Qr

h by solving the linear problem (2.18).

end
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2.6. Lumped-parameters model of the cardiovascular

system

As boundary conditions at the inlet and outlet sections of the domain we impose the
pressure values obtained from the lumped circulation. In particular, solving stand-alone
the lumped-parameters model which represent the whole cardiovascular system, includ-
ing the pulmonary artery and the pulmonary valve, allows to derive the pressure values
that are imposed as boundary conditions of the fluid problem. We point out that the
lumped-parameters model of the cardiovascular system, object of this section, does not
receive any condition from the fluid model and thus we are proceeding in “one-way”.

Solving the whole cardiovascular system with a 3D system is currently not affordable
because of the complexity of the computational domain composed by a large number of
vessels and the multitude of different length scales required to accurately represent the
flow in the various regions of the cardiovascular system. Moreover, the huge amount of
data that would be generated by such simulations is costly to process, of difficult clinical
interpretation and it is not necessary, since a detailed description of the microscopic be-
havior of the hemodynamics variables is requested only in the domain of interest [36, 72].
However, it is possible to devise simplified models exploiting specific features of blood
flow. Even though these models are highly simplified with respect to the local dynamics,
they can provide reliable numerical results at a low computational cost. Interpretation
is much straightforward, thus making them ideal as an everyday tool for use in clinical
practice. Moreover, these models are well-suited for describing systemic dynamics such as
feedback mechanisms that play an important role in the correct working of the vascular
system. These dynamics typically involve mechanical and biochemical phenomena that
can be hardly described in terms of complete 3D models [36].
In many applications, reduced-dimensional models are used, either as stand-alone models
or coupled with the 3D ones [72]. We consider the 0D model as a stand-alone model to
obtain the boundary conditions for the 3D fluid model in our domain of interest, i.e. the
pulmonary artery.
In the 0D (or lumped-parameters) model the space dependence is lost and consequently
the variables are only time-dependent. The 0D model is based on the concept of com-
partment. A compartment is a set of vascular districts that is appropriate to regard as a
unit for the application at hand; the behavior of the blood is described in terms of flow
rate and pressure averaged over the compartment length [71, 72]. On a compartment, the
features of the vessels are lumped in a few parameters set on physiological measured data.
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The associated mathematical model is typically based on differential algebraic equations
(DAE), often represented in terms of hydraulic or electric networks [36]. Blood flow in
the circulatory system and electric conduction in a circuit have much similarity: blood
pressure gradient in the circulatory loop drives the blood to flow against the hydraulic
impedance; similarly, voltage gradient in a circuit drives current to flow against the elec-
tric impedance. Hydraulic impedance represents the combined effect of the frictional loss,
vessel wall elasticity and blood inertia in the blood flow, whilst electric impedance rep-
resents the combination of the resistance, capacitance and inductance in the circuit [82].
Systemic and pulmonary circulations are modeled with resistance-inductance-capacitance
(RLC) circuits, one for the arterial part and the other one for the venous part. In Ta-
ble 2.1 we summarize the hydraulic/electric analogy.
The heart is a special “compartment” of the vascular system that needs a specific rep-
resentation in the lumped-parameters framework [34]. The four chambers are modeled
by time-varying elastance elements, whereas the four valves are represented as non-ideal
diodes [73].

HYDRAULIC ELECTRIC
Pressure Voltage
Flow rate Current

Blood viscosity Resistance R
Blood inertia Inductance L

Wall compliance Capacitance C

Table 2.1: Analogy between electric and hydraulic networks.

The analytical expression of the valve resistance is defined as R = 10c, where c is:

c = log10Rmin + (log10Rmax − log10Rmin) ·
[
1

2
+

1

π
arctan

(
kπ

2
(P2 − P1)

)]
,

where Rmax is the resistance when the valve is closed and Rmin corresponds to the resis-
tance when the valve is open; P1 and P2 are the pressures ahead and behind the valve,
respectively. In Figure 2.3, the evolution of R, in which we have set k = 200, is plotted.
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Figure 2.3: Evolution of the valve resistance R.

The considered circuital scheme is illustrated in Figure 2.4 [73]. The variables, showing
up in Figure 2.4, are the following:

• pLA, pLV , pRA, pRV are the pressures of the left atrium, left ventricle, right atrium
and right ventricle, respectively;

• pAR,SY S, pV EN,SY S, pAR,PUL, pV EN,PUL are the pressures in the systemic arterial
system, in the systemic venous system, in the pulmonary arterial system and in the
pulmonary venous system, respectively;

• QAR,SY S, QV EN,SY S, QAR,PUL, QV EN,PUL are the flow rates in the systemic arterial
system, in the systemic venous system, in the pulmonary arterial system and in the
pulmonary venous system, respectively;

• QMV , QAV , QTV , QPV are the flow rates through the mitral, aortic, tricuspid and
pulmonary valve, respectively;

• ELA, ELV , ERA, ERV are the elastances of the left atrium, left ventricle, right atrium
and right ventricle, respectively;

• RAR,SY S, RV EN,SY S, RAR,PUL, RV EN,PUL, RUP,SY S, RUP,PUL are the resistances in
the systemic arterial system, in the systemic venous system, in the pulmonary ar-
terial system and in the pulmonary venous system, upwind the systemic and pul-
monary circulations, respectively;

• RMV , RAV , RTV , RPV are the resistances of the mitral, aortic, tricuspid and pul-



2| Mathematical models and numerical methods 43

monary valve, respectively;

• LAR,SY S, LV EN,SY S, LAR,PUL, LV EN,PUL are the inductances in the systemic arterial
system, in the systemic venous system, in the pulmonary arterial system and in the
pulmonary venous system, respectively;

• CAR,SY S, CV EN,SY S, CAR,PUL, CV EN,PUL are the capacitances in the systemic arterial
system, in the systemic venous system, in the pulmonary arterial system and in the
pulmonary venous system, respectively.

Other variables, non reported in the figure, are:

• VLA, VLV , VRA, VRV are the volumes of the left atrium, left ventricle, right atrium
and right ventricle, respectively.

The elastances, resistances, inductances and capacitances have to be prescribed and prop-
erly tuned, see e.g. [3].

Figure 2.4: Circuital scheme of the full 0D circulation model [3].
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The compact form of the complete 0D problem is the following. Find c1, c2, for any
t ∈ (0, T ], such that: 

dc1(t)

dt
= D(t, c1(t), c2(t))

c2(t) = W(t, c1(t))

c1(0) = c1,0

(2.19)

where c1(t) is the vector of state variables and c2(t) is the vector of algebraic variables:

c1(t) =(VLA(t), VLV (t), VRA(t), VRV (t), pAR,SY S(t), pV EN,SY S(t), pAR,PUL(t), pV EN,PUL(t),

QAR,SY S(t), QV EN,SY S(t), QAR,PUL(t), QV EN,PUL(t))
T ,

c2(t) =(pLV (t), pLA(t), pRV (t), pRA(t), QMV (t), QAV (t), QTV (t), QPV (t))
T .

Details can be found in [73].
The time discretization of the lumped-parameters model (2.19) is achieved by means of
the classical 4th order Runge-Kutta explicit method (see Appendix A). At the end of the
discretization procedure we find out pnRV and pnAR,PUL, that can be interpreted as the inlet
and outlet pressure, pnin and pnout respectively, showing up in the discretized fluid problem.
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generation

In this chapter we focus on the first step of our work, i.e. the set up of the computational
domain for the numerical simulations. Starting from the clinical images, provided by the
Division of Cardiovascular Surgery of the Department of Cardiology of Niguarda Hospital,
Milan, some technical steps have to be performed in order to obtain the computational
domain.
To achieve this goal the softwares used have been vmtk, ParaView and MatLab.
Vmtk (The Vascular Modeling ToolKit) [7] is a collection of scripts and classes for im-
age segmentation, geometric characterisation and processing, mesh generation and post-
processing for vascular modeling. Paraview [6] is a software useful to visualize and post-
process the results of the numerical experiments and also to analyze the data using quali-
tative and quantitative techniques. Finally Matlab (Matrix Laboratory) [5] is a numerical
computing and statistical analysis environment. It is based on the use of the C language
applied to matrix calculation, which allows to manipulate functions and data, draw graphs
or implement algorithms that can interface with other programs and software.
We consider data of two different patients of the Niguarda Hospital. Since they are anony-
mous, we distinguish data and results by naming Patient 1 and Patient 2.

The clinical image acquisition is executed by the hospital, with a computed tomogra-
phy (CT) technology with constrast agent (Figure 3.1).
The CT is a computerized x-ray imaging procedure in which a narrow beam of x-rays
is aimed at the patient and quickly rotated around the body, producing signals that are
processed by the machine computer to generate cross-sectional images, or “slices”, of the
body. Once a number of successive slices is collected, they can be digitally “stacked”
together to form a three-dimensional image of the patient that allows for easier identifi-
cation and location of basic structures [48].
Contrast agents are indispensable to more clearly differentiate anatomic structures and
to detect and characterize abnormalities [75], thanks to their iodine content, an element
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Figure 3.1: CT of Patient 1 (left) and Patient 2 (right) provided by Niguarda Hospital.

able to absorb radiations. The result of a CT is a series of greyscale images given by the
structure of bones and organs. The greyscale changes in relation to the radiological den-
sity: as the density increases, the color approaches white. The scale used to describe the
radiodensity is the Hounsfield (HU). The pulmonary arteries have a radiological density
between 200 HU and 450 HU [46].
Since the medical images are often affected by noise and artifacts that may interfere with
the quality of the final results of the pre-processing step, an imaging enhancement is
usually performed [72].
Then the hospital images are converted from DICOM format, standard for all CT images,
into the mhd (MetaImage Header) format, suitable for modern software for image-based
modeling of blood vessels.

3.1. Pulmonary artery

After the image acquisition and imaging enhancement steps, the image undergoes the
segmentation process. This step was already performed in a previous work [69]. The
goal of the segmentation step is to extract the region of interest, in our case the pulmonary
artery. The separation between anatomical districts is identified thanks to a sudden
variation of grey. Using this procedure, the vessel wall, the valve leaflets and the metallic
stent are not reconstructed since they have a different scale.
After the segmentation process, the surface appears rough and irregular, principally due
to the presence of noise in the clinical images. Thus, in order to perform consistent
simulations, the quality of the surface and of the boundaries must be improved. In
particular, since the central portion of the pulmonary trunk, in correspondence of the
valve, appears very irregular, it is improved by deforming and adapting a cylinder to the
desired morphology, applying an iterative procedure with ParaView and vmtk. Indeed
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this irregularity, caused by the fact that the software has as input also the greyscale
correspondent to the blood and it reconstructs the morphology of the vessel thanks to
the volume occupied by the fluid, does not reflect the smooth vessel wall and has to be
corrected. Moreover also the circular contours, where the boundary conditions are applied,
are regularized. The final arteries, reconstructed in [69], can be observed in Figure 3.2.
In [69] it is also present the construction of a reference system in the vessel (function
phi), in which the values 0 and 1 are imposed in correspondence of the inflow and the
outflow respectively (Figure 3.2). Moreover in that work, using the command polyfit of
Matlab, the authors have generated the function edgelength (Figure 3.2), that describes
the characteristic length h, relating it to the reference system phi (Figure 3.3).

Patient 1

Patient 2

Figure 3.2: Functions phi (left) and edgelength (right).

In our work, in order to simplify the imposition of the boundary conditions, we consider
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Figure 3.3: Function edgelength with respect to the independent variable phi.

two outlets only, the right and the left pulmonary arteries, making them of almost the
same length, cutting, with ParaView, the geometry just before the secondary branches.
Finally the boundaries are capped, applying the command vmtksurfacecapper of vmtk,
and the surface is smoothed (Figure 3.4).
In the last step of the computational domain reconstruction pipeline the focus is on the
generation of a computational volumetric mesh. The aim is to obtain a hexahedral
non-uniform mesh, with low characteristic length in correspondence of the valve, our
region of interest, to ensure higher accuracy. For this purpose we have started from the
two aforementioned functions phi and edgelength. We remark that these functions are
relative to the geometry considered in [69], that means before the cutting and capping
steps.
Thus, to obtain a detailed description, the values of edgelength have be manipulated
in order to obtain h ≃ 3.6 mm and h ≃ 8 mm in correspondence of the valve and of
the bifurcation, respectively. Then using the command vmtksurfaceprojection we have
projected the edgelength from the initial geometries onto the cut ones (Figure 3.5). Finally
we have used the command vmtksurfaceremeshing to generate the surface mesh, with
the average characteristic length contained in the array edgelength.
For each one of these steps the output file extension is .vtp.
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Patient 1

Patient 2

Figure 3.4: Pulmonary artery reconstructed by [69] (left) and after the cutting and capping
procedures (right).

The next step consists in filling the volume by means of tetrahedral elements. This
is achieved with the command vmtkmeshgenerator. In this case the output file is in
the .vtu format, suitable for a volumetric geometry with unstructured grid. In vmtk the
tetrahedral elements are generated on the Tetgen algorithm allowing to create a Delaunay
high-quality tetrahedralization. A detailed description of the algorithm can be found in
[12].
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Since Lifex works with hexahedral elements, the tetrahedral mesh is converted into a
hexahedral one. The command vmtkmeshtethex provides a hexahedral mesh, by splitting
each tetrahedron (volume mesh element) in four hexahedra and each triangle (surface mesh
element) in three quads. The surface quads have approximately half of the characteristic
length with respect to the correspondent starting triangles. The output file extension is
still .vtu. Finally the mesh file is exported and written into the disk in the format .msh
with the command vmtkmeshwriter.

Patient 1

Patient 2

Figure 3.5: edgelength (left), tetrahedral mesh (center) and hexahedral mesh (right).

All these steps have been performed to produce for the two patients a similar cell diameter,
both the average and especially the minimum value (Table 3.1). These values allow to
have enough accuracy and they are consistent with those used in other works.
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Patient 1 Patient 2
Number of degrees of freedom 235988 276676

Number of active cells 51752 61036
Maximum cell diameter [m] 0.00779642 0.00697939
Minimum cell diameter [m] 0.00121902 0.00121843
Average cell diameter [m] 0.00280893 0.00292343

Table 3.1: Hexahedral mesh.

3.2. Pulmonary valve

For the purpose of a correct hemodynamic simulation, it is needed not only the segmen-
tation of the vessel, but also the reconstruction of the internal structures that can affect
the flow, in our case the valve. Indeed, since the flow field strongly depends on the pul-
monary valve function, the latter should be necessarily included in our model. The valve
has to be first reconstructed and then correctly positioned in the artery, by considering
the location of the valve sinuses, the commissures (the area where the valve leaflets abut
one another) and the orientation of the valve itself. We are interested in both the open
and closed configurations of the valve. These steps are of utmost importance since the
hemodynamics is greatly affected by the geometrical configuration of the valve.

3.2.1. Reconstruction

The valve leaflets are not recognizable from the CT, due to the low resolution of the
tomographic data, as already discussed in Section 1.7. This critical issue has been solved
by using a model of valve provided by MOX Laboratory of Politecnico di Milano in the
iHEART project, starting from a model developed by Zygote [9] (Figure 3.6).

3.2.2. Positioning

The valve has to be first correctly oriented and then properly rotated.
As first step we have extracted a ring on the artery wall just after the sinuses, i.e. towards
the outlet. Thanks to the command vmtkimageseeder we have selected the points of the
CT corresponding to the six vertices of the hexagonal stent and then we have joined
them in ParaView (Figure 3.7). The ring and the circumference passing through the six
vertices are useful to define the valve scaling, since they allow to calculate the enlargement
or reduction factor of the model.
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Figure 3.6: Zygote valve model.

Afterwards a rigid registration of the ring to the stent is applied through the Iterative
Closest Point (ICP) algorithm proposed by Besl [18]. Registration is the process of trans-
forming different sets of data into one coordinate system. According to the ICP algorithm,
one point cloud, the reference, is kept fixed, while the other one, the source, is transformed
to best match the reference. The algorithm needs to find for each point in the source point
cloud the nearest point in the reference point cloud, so that all 3D source coordinates can
be correctly matched. In vmtk the distance computation is performed by applying the
command vmtkicpregistration and by selecting the ring as reference and the stent as
source surface. The next step consists in translating the valve leaflets, applying the com-
mand vmtksurfacetransform. The input matrix that contains the information needed
to transform the surfaces is provided by the distance computed in the previous step.
Once the valve is correctly oriented, it must undergo a planar rotation to make the com-
missures conforming to those extracted from the CT (Figure 3.7). This is achieved thanks
to ParaView and to the same vmtk commands.
Finally the valve has to be resized, first according to the reduction/enlargement factor
previously found and then to correctly match the artery dimensions. For what concerns
the latter, the aim is to keep fixed the internal points of the valve and to translate the
most extreme ones. Using ParaView we have generated a function such that the points
belonging to the central part of the valve have value 0, the perimetric ones have value 1
and the other points have values ranging from 0 to 1 starting from the interior and ap-
proaching the perimeter (Figure 3.8). We have computed the minimum pointwise vectorial
distance between the valve and the artery wall with the command vmtksurfacedistance
and multiplied it for the aforementioned function. Then we have translated each point of
the valve by the result quantity (Figure 3.9) with ParaView. Finally the surface has been
smoothed (Figure 3.9).
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These steps have to be repeated for both patients due to the patient-specificity of the
model.

Patient 1 Patient 2

Figure 3.7: Stent (in red) and commissures (in blue).

Figure 3.8: Valve resizing function. The internal points have value 0, the perimetric ones have
value 1.
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Patient 1

Patient 2

Figure 3.9: Adjusting displacement array (left) and closed valve configuration (right). In order
to obtain the final closed configuration, such that the perimetric points of the valve adhere to
the artery wall, each point has to be translated by the adjusting displacement array.

3.2.3. Open and closed configurations

Starting from the closed configuration of the valve, we have adapted the open one, already
provided by MOX Laboratory, to our geometry. The open configuration is geometrically
reconstructed from the closed one. In particular, each point of the valve in the closed
position has to be translated in order to obtain the open one. This step is performed
trying to construct an open valve such that the leaflets adhere as much as possible to
the artery wall. The displacement array joining the closed with the open configuration
(Figure 3.10) has been smoothed with the command vmtksurfacearraysmoothing.
The displacement array, together with the closed position, are provided to the valve model,
which reproduces the movement of the valve between the open and closed configurations.
The open configuration is not solution of the 3D-0D FSI model, but it is given to the model
as datum being obtained by translating each point of the closed valve by the displacement
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array.
The open configurations of the pulmonary valve for Patient 1 and Patient 2 are reported
in Figure 3.10.
We remark, also in this case, the importance of repeating the procedure for both patients
due to the dependence of the open position of the valve on the geometrical configuration
of the artery.
In Figure 3.11 it is possible to observe the pulmonary valve in both its closed and open
configurations, immersed in the pulmonary artery, for Patient 1 and Patient 2.

Patient 1

Patient 2

Figure 3.10: Displacement array which joins each point of the closed valve with the open valve
(left) and open valve configuration (right).
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Patient 1

Patient 2

Figure 3.11: Pulmonary valve (in pink) in its closed (left) and open (right) configurations.
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This chapter is devoted to the results of the hemodynamic simulations of the problem
arising from the fluid-structure interaction between the blood flow in the pulmonary
artery and the pulmonary valve.
First of all, in Section 4.1 we report some information about the cluster and the numerical
and physiological parameters of the simulations.
Section 4.2 is dedicated to the imposition of the boundary conditions of the fluid problem,
that are obtained by a simulation of the whole 0D cardiovascular system. The validity of
the parameters concerning the pulmonary valve is proved by a sensitivity analysis. We
recall that the 0D model of the whole cardiovascular system is solved independently, not
receiving any condition from the 3D fluid model, as already highlighted in Section 2.6.
Afterwards we analyze two different scenarios:

• Scenario Trial : we address preliminarily, in Section 4.3, the case in which the valve
motion law is prescribed;

• Scenario Full FSI : the valve motion is described by the lumped-parameters valve
model, introduced in Section 2.3. We detail the calibration procedure of the model
parameters in Section 4.4 and we present the hemodynamic results by means of
visualizations of velocity, pressure, wall shear stress and Q-criterion in Section 4.5.

Finally in Section 4.6 we collect the main achievements of our study.

4.1. Setting of the numerical simulations

The numerical problem is solved through Lifex [3], a high-performance Finite Element
library, written in C++ and based on the deal.II Finite Element core [2]. It is devel-
oped by the laboratory for modeling and scientific computing of Politecnico di Milano,
the MOX Laboratory, in the iHEART project. It is focused on the mathematical models
and numerical methods for cardiac applications, concerning, for instance, elastodynamics,
electrophysiology or fluid dynamics. The numerical simulations have been performed in
parallel, on the clustered computational resources of Politecnico di Milano, in the queue
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gigatlong on a processor relying on 5 nodes with 160 cores 4x Xeon E5-4610 v2 (2.3GHz)
1.2TB RAM. The simulations have been performed with 32 cores selected.
In order to perform the hemodynamic simulations concerning the interaction between the
blood flow and the valve, some input parameters are modified in a parameters file, a
script in the .prm format. It contains the needed information related to the numerical
and physiological parameters and the addressed tags of the domain boundary to impose
boundary conditions, in addition to the path of the computational mesh and the valve
surface.
We report the parameters which are commons to all simulations:

Blood flow parameters

• blood density: ρ = 1.06 103 Kg
m3 ;

• blood dynamic viscosity: µ = 3.5 10−3 Pa · s.

Numerical parameters

• time step: ∆t = 10−4 s;

• heartbeat period: T = 0.8 s;

• BDF time scheme order = 1;

• velocity FE space degree = 1;

• pressure FE space degree = 1;

• SUPG-PSPG stabilization;

• backflow stabilization on Neumann boundaries with β = 1;

• the linear system is solved by means of the generalized minimum residual (GMRES)
algorithm:

– Maximum number of iterations = 1000;

– Tolerance = 1e-5;

– SIMPLE preconditioner (Semi-Implicit Method for Pressure Linked Equations).

For time-independency, we find that when the chosen time step is halved, the results are
not affected by appreciable changes.

RIIS parameters

• R = 10000 kg
m s

;
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• ϵ = 0.0025 m.

The value of the resistance R is chosen to weakly enforce the no-slip condition on the
valve leaflets, even in case a high pressure gradient occurs across them.
We underline that the value of the half-thickness of the pulmonary valve surface ϵ is
imposed relying on the mesh size in the region of the valve. Indeed, in order to capture
correctly the valve motion in the fluid domain, the value of ϵ needs to be sufficiently large.

4.2. Boundary conditions

The fluid problem has Neumann boundary conditions both in inlet and in outlet. By
recalling the notation of Section 2.2, pin(t) and pout(t) are the pressure functions prescribed
according to physiological values. In particular they represent the pressure inside the right
ventricle pRV (t) and the pressure inside the pulmonary artery pAR,PUL(t), respectively, as
already discussed in Section 2.6. These pressure profiles are derived from a simulation
of the whole cardiovascular system, presented in Section 2.6. The simulations of the
0D model of the whole cardiovascular system have been performed imposing a time step
∆t = 10−4 s and a heartbeat period T = 0.8 s. The values of the parameters showing up
in the model are the default ones present in [3]. The pressure plots that we obtain are
reported in Figure 4.1.
We underline that the choice of an inlet pressure boundary condition is necessary to
properly model the evolution of the pressure in the domain along the whole cardiac cycle
and particularly the pressure jump across the closed leaflets at diastole.

pin = pRV , pout = pAR,PUL ∆p = pin − pout = pRV − pAR,PUL

Figure 4.1: Boundary conditions. The pressure functions are obtained from the 0D circulation
model of the whole cardiovascular system, stand-alone solved, and are imposed as boundary
conditions of the 3D fluid problem.

The values of the resistances characterizing the diodes that represent the cardiac valves in
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the 0D circulation model are set to the default ones present in [3], Rmax=75006.2 mmHg
s mL−1 and Rmin=0.0075 mmHg s mL−1, according to the notation of Section 2.6.
The validity of these values have been proved by performing a Sensitivity Analysis of the
fluid dynamics of the pulmonary artery with respect to the diode parameters Rmin and
Rmax of the pulmonary valve.

Sensitivity Analysis
The goal is to modify the default values of Rmin and Rmax of the pulmonary valve and to
study how these variations affect the profiles of pRV and pAR,PUL and afterwards the 3D
fluid dynamics of the pulmonary artery.
The first step of this analysis consists in performing simulations of the 0D model of the
whole cardiovascular system for different values of Rmin and Rmax of the pulmonary valve,
then we extract the values of the pressure in the right ventricle and in the pulmonary
artery and finally we impose them as inlet and outlet conditions of the 3D model of
the pulmonary artery. We assume that the pulmonary valve leaflets, immersed in the
pulmonary artery, have a prescribed dynamics. In particular the valve opening and closing
phases are instantaneous: the leaflets open when pRV gets higher than pAR,PUL and close
to avoid backflow, reproducing the physiological behavior. Moreover we consider the
valve dynamics characterized by the so-called on-off behavior: the surface appears and
disappears instantaneously in time, it does not move but disappears as soon as it reaches
half of the total opening.
The geometry of the pulmonary artery considered belongs to Patient 2.

Figure 4.2: Pressure plots for different values of Rmin.
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First we have kept Rmax fixed to the default value, Rmax=75006.2 mmHg s mL−1, and
we have varied Rmin ∈ {0, 0.0001, 0.0005, 0.001, 0.002, 0.004, 0.006, 0.0075, 0.008, 0.1}
mmHg s mL−1. The behavior of the pressure profiles, arising from the 0D model of the
whole cardiovascular system, is the following one. As Rmin increases, the distance between
the pressure curves increases, in particular pRV increases, as highlighted in Figure 4.2. If
Rmin > 0.008 mmHg s mL−1, pRV belongs to the characteristic range of values of the
Pulmonary Arterial Hypertension; if Rmin < 0.006 mmHg s mL−1 the pressure values
are again no longer physiological. Moreover the first pressure gradient inversion always
occurs in the same time instant (t = 0.1718 s), while the second one occurs later in time
for larger values of Rmin (Figure 4.3).

Figure 4.3: Dependence of the second pressure gradient inversion instant on Rmin.

The fluid dynamics of the pulmonary artery is influenced as follows. As Rmin increases
the inlet flow rate, or equivalently the inlet velocity, increases too (Figure 4.4). This is in
accordance to the presence of a larger pressure gradient between inlet and outlet.

Figure 4.4: Inlet flow rate (left) and inlet velocity (right) for different values of Rmin.

If Rmin < 0.006 mmHg s mL−1 or Rmin > 0.008mmHg s mL−1 the values of flow rate and
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velocity are not physiological. The inlet flow rate, or the inlet velocity, becomes positive
in the same time instant for all cases, while it reverses later in time for larger values of
Rmin (Figure 4.4). This is consistent with what happens for pressures.

Afterwards we have kept Rmin fixed to the default value, Rmin=0.0075 mmHg s mL−1,
and we have varied Rmax ∈ {1000, 3000, 4000, 5000, 10000, 75006.2, 80000, 100000, 500000}
mmHgsmL−1. From Figure 4.5, where we have reported the pressure plots for some values
of Rmax, we observe that if Rmax is sufficiently large (Rmax > 10000 mmHg s mL−1) the
pressure values are physiological. On the contrary, if Rmax is not sufficiently large there
are two possibilities: if 3000 < Rmax ≤ 10000 mmHg s mL−1 the pressure plots show
some oscillations, while if Rmax ≤ 3000 mmHg s mL−1 the pressure values are n.a.n..
We also notice that, for 3000 < Rmax ≤ 10000 mmHg s mL−1, as Rmax decreases the
first pressure gradient inversion occurs before in time and the second one later in time
(Figure 4.6).

Figure 4.5: Pressure plots for different values of Rmax.
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In Figure 4.7 we can observe the 3D fluid dynamics of the artery: if Rmax is sufficiently
large (Rmax > 10000 mmHg s mL−1) the inlet flow rate, or equivalently the inlet velocity,
shows physiological values; if Rmax is too small, but still the pressures are not n.a.n., the
values of the inlet flow rate, or the inlet velocity, are not physiological.

Figure 4.6: Dependence of the first (left) and second (right) pressure gradient inversion instants
on Rmax.

Moreover as Rmax decreases, the inlet flow rate, or the inlet velocity, becomes positive
before in time and it reverses later in time, consistently with the behavior of inlet and
outlet pressures.

Figure 4.7: Inlet flow rate (left) and inlet velocity (right) for different values of Rmax.

Summing up, Rmin has to be large in order to allow an adequate pressure difference
between outlet and inlet and a sufficiently high inlet velocity, in accordance with literature
values, but not too large to end up in the Pulmonary Arterial Hypertension pressure
range. Furthermore if Rmax is small, pressure and inlet velocity values do not belong to
the physiological ranges or even there are numerical instabilities.
The default values for Rmin and Rmax belong to the physiological range and can be
appropriately tuned to possibly obtain better results depending on the application of
interest.
A recap of all the possible cases is reported in Table 4.1.
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Rmin < 0.006 mmHg s mL−1 not physiological

Rmax=75006.2 mmHg s mL−1 0.006 mmHg s mL−1 ≤ Rmin ≤ 0.008 mmHg s mL−1 physiological

Rmin > 0.008 mmHg s mL−1 not physiological

Rmax ≤ 3000 mmHg s mL−1 instability

Rmin=0.0075 mmHg s mL−1 3000 mmHg s mL−1 < Rmax ≤ 10000 mmHg s mL−1 not physiological

Rmax > 10000 mmHg s mL−1 physiological

Table 4.1: Sensitivity Analysis of fluid dynamics in the pulmonary artery with respect to
the diode parameters Rmin and Rmax of the pulmonary valve.

4.3. Scenario Trial

In this section we do not consider the lumped-parameters model for the valve dynamics,
but a prescribed valve motion law.
This simplified valve dynamics allows to perform a preliminary analysis in order to verify
that the pre-processing and mesh generation steps have been performed correctly. This
condition is achieved through the comparison between our results and the physiological
ones, specifically benchmark quantities of velocity and pressure.
We focus on the systolic phase, starting our simulations just before the valve opening,
when the valve is still closed, and on the first part of the diastole, when the valve comes
back to its closed configuration.
As for the lumped-parameters valve model of Section 2.3, also in this case the displacement
of the leaflets dΓ can be decomposed into two contributions (equation (2.8)): the open-
ing field g, which is a datum and accounts for the spatial dependence, and the opening
coefficient c, which considers the temporal dependence. However, here the opening coef-
ficient c is not solution of a structure problem for the valve, as in the lumped-parameters
model, but it is decided a priori in order to simulate the physiological behavior. In
particular, by recalling the notation of Section 2.3, a proper opening field g has been
introduced on the leaflets, i.e. the displacement array of Section 3.2.3, so that the surface
Γopen = {x = x̂ + g(x̂), x̂ ∈ Γ̂}, corresponding to an opening coefficient c = 1, represents
the physiological open valve configuration. In order to simulate the physiological behavior
we impose the time instants in which the valve opens and successively closes (Table 4.2).
The valve leaflets motion between the closed/open and open/closed configurations is lin-
ear and occurs in one time step. More in detail, the valve opening and closing stages are
instantaneous: the valve leaflets open when pRV becomes higher than pAR,PUL and close
to avoid backflow. The instantaneous opening and closing stages neglect the transitory,
intermediate effects between the two configurations.
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Patient 1 Patient 2
opening valve time instant 0.1718 s 0.1718 s
closing valve time instant 0.4505 s 0.4474 s

Table 4.2: Prescribed opening and closing valve time instants in Scenario Trial.

Patient 1 Patient 2

Figure 4.8: Prescribed opening coefficient c in Scenario Trial.

The opening coefficient plots reproduce the physiological behavior (Figure 4.8). Indeed
both the duration of the systole and the delay of the valve closing (see Table 4.2) with
respect to pressure gradient inversion (t = 0.4069 s) are consistent with the valve model-
ing literature.
As benchmark quantities we analyze, for both patients, the maximum velocity magnitude
on a slice positioned just upwind the valve leaflets and the average pressure in a spherical
control volume in correspondence of the artery bifurcation (Figure 4.9). The values ob-
tained are comparable with those present in literature, see e.g. [52] for the velocity values
and [90] for the pressure ones, and confirm the success of the pre-processing and mesh
generation steps.
The small differences between the two patients concerning both the closing valve time
instant and the velocity and pressure values are due to their different geometrical config-
urations.
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Figure 4.9: Maximum velocity magnitude on a slice upwind the valve (left) and pressure in
a sphere at the artery bifurcation (right) of Patient 1 (up) and Patient 2 (bottom) in Scenario
Trial.

4.4. Calibration in the Scenario Full FSI

In this section we refer to the lumped-parameters model introduced in Section 2.3. In
particular, the valve dynamics is described by equation (2.9), whose solution is the opening
coefficient c.
As Section 4.3 we focus on the systolic phase and on the first part of the diastole, and
we need the same definition of opening field g such that Γopen corresponds to an opening
coefficient c = 1 that represents the open valve.
In the following we will refer to the first contribution of the right hand side of equation (2.9)
as the fluid stress jump term and to the second one as the elastic term. We recall the
equation by highlighting the two terms in the boxes:

c̈(t) + βċ(t) =

∫
Γt
f(t,x) · nΓ(t,x)dx∫

Γt
ρΓg(T

−1
t (x)) · nΓ(t,x)dx

−
γ
∫
Γt
[H(t,x)− Ĥ(T−1

t (x))]dx∫
Γt
ρΓg(T

−1
t (x)) · nΓ(t,x)dx

.

Our goal is to properly calibrate the model and successively to analyze the results of
the computational hemodynamic simulations. The aim of the calibration procedure is
to tune the parameters in order for the model to be able to reproduce the physiological
behavior of the pulmonary circulation. We are first interested in obtaining the overall
trend of valve motion: the initial configuration is the closed one, successively the leaflets
show an opening phase, then they remain open and finally they close and maintain the
closed configuration. In particular the valve leaflets open when the pressure upwind the
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valve is higher than the pressure downwind and start closing as soon as the flow, after
a decelerating phase, changes its direction. Moreover we want the opening and closing
times and the duration of the systole to be comparable with those present in literature.
We recall the valve modeling parameters, already discussed in Section 2.3, showing up in
equation (2.9):

• damping β;

• elasticity γ.

Moreover we introduce two more parameters:

• density scaling factor;

• initial curvature term.

The first one takes into account the inertial properties of the leaflet and, representing the
scaling between the valve leaflets density and the blood density, it is defined as the ratio
between ρΓ and ρ; the second parameter is summed up to Ĥ in order for the elastic force
to always act in the same verse.
We have to properly tune both the value and the sign, that is related to the geometrical
visualization of the leaflets.
We first study Patient 2 and afterwards we extend the obtained results to Patient 1.

4.4.1. Patient 2

The first part of the calibration procedure for Patient 2 considers only the valve opening
phase.
The correct trend of leaflets motion, already discussed in Section 4.4, is achieved by the
identification of the correct sign of the parameters. On the other hand to obtain the
correct times for the duration of the systole and the opening and closing stages we have
to modify their values.
We discuss now the influence of each parameter on the opening phase:

• the presence of the damping term slows down the valve leaflets opening phase;

• an increasing of the elasticity parameter delays the opening phase: both the begin-
ning and the end of the opening phase are delayed. See Figure 4.10a. Considering
this result, we expect that an excessively large value makes the valve not able to
open during systole;

• the density scaling factor has to be sufficiently large in absolute value in order to
maintain the valve open after the opening phase. In other words the valve leaflets
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must have a sufficient inertia to maintain the valve in its open configuration. If the
parameter value belongs to the appropriate range, we notice that as it increases, in
absolute value, the opening phase is slowed down. See Figure 4.10b;

• the initial curvature term is chosen in order for the elastic term to always have the
same sign. Physically this means that the elastic force always acts in the same verse,
that is pulling the leaflets to their closed configuration.

(a) elasticity

(b) density scaling factor

Figure 4.10: Sensitivity of the opening coefficient c with respect to the parameters elasticity
and density scaling factor for Patient 2.

The model is much sensitive to the elasticity parameter and to the density scaling factor,
small variations cause an appreciable difference in the opening coefficient c plot.
All these considerations are proceeded by a considerable number of simulations that sup-
port their validity.
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In all cases we notice that the opening coefficient plot shows some oscillations that drive
the actual opening stage. Indeed the opening stage can be divided into two parts: the
first one, before the oscillations, very slow and the second one, after the oscillations, much
faster.

Considering the values of the parameters that best reproduce the physiological valve
opening phase (Table 4.3) we have simulated the whole systole.

damping elasticity density scaling factor initial curvature term
0.2 s−1 0.2 N/m -0.12 0.24 m−1

Table 4.3: Model parameters calibrated for Patient 2.

The closing phase appears very slow (Figure 4.11, blue curve) and occurs when backflow is
generated, violating the physiological behavior. Possible corrective strategies could be the
adoption of an implicit coupling between fluid and valve models, instead of the explicit
one considered in the present work, or the quasi-static approximation. The latter has
been chosen in [31], in that case to avoid some numerical instability.
Thus, we consider the quasi-static approach, by imposing uΓ = 0. This approximation
affects the fluid behavior since formally represents a violation of the physical adherence
of the blood to the moving valve, but only in a limited manner, during the valve opening
and closing stages. We do not observe any oscillations at all and the closing phase appears
much faster such that the valve closes to avoid retrograde flow (Figure 4.11, red curve).
In this case the absence of the oscillations allows the valve leaflets to maintain almost the
same velocity along the whole opening phase. Physically, in the quasi-static approximation
the flow perceives the valve as a bigger obstacle, with respect to the non approximated
case. Indeed, in order to attain u = 0 in the region where |φ| < ϵ, the continuous
function u must move from the flow values to 0 in a surrounding boundary layer, which
thus artificially enlarges the effective obstacle that the leaflets represent to the flow.
Driven by the encouraging results obtained with the quasi-static approach, the idea was
to consider also intermediate cases. This is achieved by modifying some lines of code
in Lifex. The fluid velocity u in correspondence of the valve is the leaflets velocity uΓ,
satisfying the no-slip condition, in the non approximated case; while it is 0 in the quasi-
static approach. Between these two limit cases the fluid velocity u in correspondence of
the valve can be approximated with a certain fraction of the leaflets velocity uΓ, velocity
explicitly computed by the model. In particular, we consider a factor η ∈ [0, 1] multiplying
uΓ in the fluid momentum equation. It could be thought as an extra parameter showing
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up in the blood flow model. Moreover it could be interpreted as a re-calibration of the
orifice area that in the other cases was overestimated or underestimated.
The leaflets velocity fraction, that allows to obtain good results in terms of opening and
closing times (Table 4.4), is η = 0.1 (Figure 4.11, brown curve).

Figure 4.11: Opening coefficient c in Scenario Full FSI (Patient 2).

The opening and closing stages last 64 ms and 42 ms, respectively. We assume that they
can be compared with the physiological times for the aortic valve, 76 ± 30 ms for the
opening and 42 ± 16 ms for the closing [61], since the times concerning the pulmonary
valve are not available, being until now not investigated.

valve opening time [0.1783 s, 0.2426 s]
valve closing time [0.4496 s, 0.4920 s]

Table 4.4: Opening and closing valve times in Scenario Full FSI (Patient 2).

The time evolution of the cross-valve pressure jump together with the pressure boundary
conditions are reported in Figure 4.12. From Figure 4.11 and Figure 4.12 we observe
that the leaflets remain closed until a minimal transvalvular pressure jump of about 1.6

mmHg is developed. Successively they open up to their fully open position. In most part
of the systole the valve remains in its fully open configuration, while the pressure jump
progressively decreases. We notice that the pressure jump is definitely positive/negative
during the opening/closing stage, whereas it remains below 2.5 mmHg when the valve is
fully open. Moreover the beginning of the closing phase at t = 0.4496 s is delayed with
respect to the inversion of the macroscopic pressure jump, occurring at t = 0.4069 s. Such
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behavior, consistent with the physiological one, is due to the inertia of both the blood flow
and the valve, and it shows how the reconstruction of the local stress exchanged between
the flow and the leaflets has a major impact on the valve dynamics. Indeed the closing
phase starts when the fluid stress jump term returns negative (Figure 4.13).

Control volumes pjump = pup − pdown, ∆p = pin − pout

Figure 4.12: Macroscopic pressure jump pjump between two spherical control volumes (Patient
2). The overall pressure difference ∆p is reported too, for comparison.

Figure 4.13: Transvalvular fluid stress jump (Patient 2).

4.4.2. Patient 1

Exploiting the results achieved for Patient 2, and thus skipping the calibration procedure
step, we directly consider the whole systole for Patient 1.
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We stress again the importance of the patient-specific geometry. Indeed the elasticity
parameter γ has to be increased with respect to the one considered for Patient 2, in order
to obtain for the two patients a similar valve opening instant (Table 4.5). We underline
that increasing the elasticity term the opening phase is delayed, while the closing phase
is brought forward.

damping elasticity density scaling factor initial curvature term
0.2 s−1 1 N/m -0.12 0.24 m−1

Table 4.5: Model parameters calibrated for Patient 1.

With this geometry also, the inadequacy of the non approximated model is confirmed.
Indeed, since the valve leaflets close when the flow is retrograde, there is not any guarantee
for the valve to close and to maintain the closed configuration (Figure 4.14, blue curve).
With Patient 1 geometry, 0.2uΓ is the approximation that better matches the physiological
duration of valve opening and closing (Figure 4.14, green curve). This difference with
respect to Patient 2 can be explained referring to the orifice size. In this case, since
the geometry of Patient 1 has a smaller diameter, 0.2uΓ instead of 0.1uΓ allows to better
estimate the orifice size. Indeed, as the quasi-static approximation artificially enlarges the
obstacle that the immersed surface represents to the flow, by increasing the considered
velocity leaflets fraction the effective orifice size increases too.

Figure 4.14: Opening coefficient c in Scenario Full FSI (Patient 1).

The opening and closing stages last 68 ms and 47 ms, respectively (Table 4.6). These
values lay in the physiological ranges, already reported for Patient 2.
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valve opening time [0.1780 s, 0.2463 s]
valve closing time [0.4478 s, 0.4945 s]

Table 4.6: Opening and closing valve times in Scenario Full FSI (Patient 1).

The same analysis performed for Patient 2 has be repeated for Patient 1 and from Fig-
ure 4.15 and Figure 4.16 it is possible to draw similar considerations.

Control volumes pjump = pup − pdown, ∆p = pin − pout

Figure 4.15: Macroscopic pressure jump pjump between two spherical control volumes (Patient
1). The overall pressure difference ∆p is reported too, for comparison.

Figure 4.16: Transvalvular fluid stress jump (Patient 1).
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4.5. Results of the computational hemodynamic

simulations in the Scenario Full FSI

We report the results of the computational hemodynamic simulations obtained with the
model parameters and the approximation of the leaflets velocity that better reproduce
the physiological behavior, discussed in Section 4.4.
Our goal is the visualization of the following fields:

• velocity field;

• pressure field;

• wall shear stress;

• Q-criterion.

The visualization on the 2D slices, reported in the following, have been obtained by
cutting the arteries with two spheres to well capture their geometrical configurations
(Figure 4.17). The choice of the sphere allows to cut perfectly the main, the left and the
right pulmonary arteries. The leaflets are visible in transparency.

Patient 1 Patient 2

Figure 4.17: Slice visualization, obtained by cutting the arteries with two spheres.

Velocity field

We examine the velocity field on a slice of the pulmonary artery, in Figure 4.18 and in
Figure 4.19 through streamlines.
The position of the slice allows to examine the deviation of the blood flow.
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Patient 1

t = 0.175 s (closed valve) t = 0.25 s (valve just opened) t = 0.31 s (systolic peak)

t = 0.445 s (before valve closing) t = 0.6 s (closed valve)

Patient 2

t = 0.175 s (closed valve) t = 0.245 s (valve just opened) t = 0.3 s (systolic peak)

t = 0.445 s (before valve closing) t = 0.6 s (closed valve)

Figure 4.18: Velocity distribution at different times of Patient 1 (top) and Patient 2 (bottom).
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We can notice that the flow direction is influenced by the patient-specific valve geometry
that leads to an asymmetric jet impinging on the pulmonary artery wall. This phe-
nomenon of flow deviation becomes appreciable when the valve has just reached the open
position and becomes more considerable when the blood velocity reaches its maximum.
We remark the importance of using the patient-specific geometry of the leaflets in order
to visualize this behavior.
The streamlines visualization allows to analyze the pattern of the velocity field (Fig-
ure 4.19). In particular we notice a clear presence of coherent structures in the valve
sinuses. They play a fundamental role in enhancing the efficiency of the blood supply
and minimizing the blood backflow through the ventricle, ensuring a fast closure of the
valve. Moreover some residual structures after the valve closing are also present, in this
case both upstream and downstream the leaflets.

Patient 1

t = 0.25 s

(valve just opened)
t = 0.31 s

(systolic peak)
t = 0.445 s

(before valve closing)
t = 0.6 s

(closed valve)

Patient 2

t = 0.245 s

(valve just opened)
t = 0.3 s

(systolic peak)
t = 0.445 s

(before valve closing)
t = 0.6 s

(closed valve)

Figure 4.19: Velocity streamlines at different times of Patient 1 (top) and Patient 2 (bottom).



4| Numerical results 77

Figure 4.20 shows the leaflets velocity.

Patient 1

t = 0.175 s (closed valve) t = 0.225 s (opening valve) t = 0.31 s (open valve)

t = 0.48 s (closing valve) t = 0.6 s (closed valve)

Patient 2

t = 0.175 s (closed valve) t = 0.22 s (opening valve) t = 0.3 s (open valve)

t = 0.475 s (closing valve) t = 0.6 s (closed valve)

Figure 4.20: Leaflets velocity at different times of Patient 1 (top) and Patient 2 (bottom).
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Pressure field

In this section we study the pressure distribution, both in the ϵ-neighborhood of the valve
(Figure 4.21) and on a slice (Figure 4.22).

Patient 1

t = 0.175 s (closed valve) t = 0.25 s (valve just opened) t = 0.31 s (systolic peak)

t = 0.445 s (before valve closing) t = 0.6 s (closed valve)

Patient 2

t = 0.175 s (closed valve) t = 0.245 s (valve just opened) t = 0.3 s (systolic peak)

t = 0.445 s (before valve closing) t = 0.6 s (closed valve)

Figure 4.21: Pressure distribution across the valve at different times of Patient 1 (top) and
Patient 2 (bottom).
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Patient 1

t = 0.175 s (closed valve t = 0.25 s (valve just opened) t = 0.31 s (systolic peak)

t = 0.445 s (before valve closing) t = 0.6 s (closed valve)

Patient 2

t = 0.175 s (closed valve) t = 0.245 s (valve just opened) t = 0.3 s (systolic peak)

t = 0.445 s (before valve closing) t = 0.6 s (closed valve)

Figure 4.22: Pressure distribution on a slice at different times of Patient 1 (top) and Patient 2
(bottom).
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When the valve is closed, the whole pressure gradient develops within the 2ϵ valve thick-
ness, while outside that region the pressure is not affected by this high pressure jump.
This shows the capacity of our method to reproduce the presence of the valve using the
resistive RIIS term and its effectiveness in providing an obstacle to the flow.
When the valve is open, especially when the velocity in the region of the valve reaches its
maximum, the pressure in the right ventricle and in the valve sinuses is almost homoge-
neous, with the highest pressure gradient localized among the leaflets, while downstream
to the valve the deviation of the flow, already discussed, induces a corresponding pressure
peak near the wall and, as a result, a depression zone in the central part of the main
pulmonary artery.

Wall shear stress

We introduce the wall shear stress (WSS) to measure the tangential viscous forces mag-
nitude exerted by the blood in motion on the vessel walls Σwall.
It is defined as:

WSS = µ

√√√√ 2∑
j=1

((∇un) · τ (j))2 on Σwall,

where u is the fuid velocity, n is the normal unit vector, and τ (j) j = 1, 2 represent the
tangential unit vectors.
We underline that WSS is a scalar function [72].

Patient 1 Patient 2

Figure 4.23: WSS of Patient 1 (left) and Patient 2 (right) at t = 0.35 s.
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Physically, the WSS indicates how fast the flow velocity increases when moving from a
point on the vessel boundary to an adjacent point towards the normal direction to the
wall [50].
In Figure 4.23 it is possible to observe a WSS almost null in correspondence on the valve,
through which the blood flows not coming into contact with the artery wall, and a high
value where the flow impacts upon the wall, emphasizing the shape of the jet blood already
examined through the velocity distribution figures.

Q-criterion

We use the Q-criterion to visualize coherent vortex structures in the flow.
The Q function is:

Q = 0.5(|A|2 − |S|2),

where A and S are, respectively, the skew-symmetric and symmetric part of the velocity
gradient.
To visualize the coherent vortex structures that appear in regions of a positive Q, we plot
the iso-contours of Q, by selecting a suitable positive value [26].
In Figure 4.24 we can examine more clearly the vortex structures, already visualized
through the streamlines (Figure 4.19).
When the valve opens a jet flow is generated, which leads to the formation of the classical
ring coherent structures detaching from the tips of the leaflets. This underlines well orga-
nized laminar vortex structures in this phase of the cardiac cycle. During the central part
of the systole, when the velocity magnitude reaches its peak value, the vortex structures
are transported downwind in the artery and they break down in smaller structures just
before the beginning of the closing phase. In this stage of the cardiac cycle the recircula-
tion region increases its size and appears disorganized. These vortexes are physiological
and contribute to the closure of the leaflets. Finally, after the valve has reached the closed
position, residual flow recirculations can be appreciated both upstream and downstream
to the valve.
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Patient 1

t = 0.225 s (opening valve) t = 0.25 s (valve just opened) t = 0.31 s (systolic peak)

t = 0.445 s (before valve closing) t = 0.6 s (closed valve)

Patient 2

t = 0.22 s (opening valve) t = 0.245 s (valve just opened) t = 0.3 s (systolic peak)

t = 0.445 s (before valve closing) t = 0.6 s (closed valve)

Figure 4.24: Q-criterion isosurfaces with Q = 300 s−2 colored with velocity magnitude at
different times of Patient 1 (top) and Patient 2 (bottom).
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4.6. Final remarks

The resistive method, employed in this work, makes the valve perceived by the blood flow
as an effective obstacle, being able to capture the sharp pressure jump across the valve
without the necessity of meshing the leaflets.
The Scenario Trial allows to simulate the hemodynamics in the pulmonary artery with
a computational cost which is smaller with respect to the one of the Scenario Full FSI.
However, the prescribed instantaneous valve opening and closing stages neglect the tran-
sitory, intermediate effects between the closed and open configurations, which have to
be taken into account in order to provide an exhaustive and complete description of the
hemodynamics. Moreover, the resolution of the ordinary differential equation, describing
the valve dynamics, in the Scenario Full FSI, states that the valve opens when a suf-
ficiently large transvalvular pressure gradient develops, and not as soon as the upwind
pressure is larger than the downwind one as it is prescribed in the Scenario Trial, better
showing the physiological behavior.
The numerical simulations, in order to provide consistent hemodynamic results, in the
Scenario Full FSI, have to be proceeded by a calibration phase in which the model pa-
rameters are appropriately tuned. This procedure, according to our experience, is not
trivial, due to the sensitivity of the model. From our analysis, and with our patient-
specific geometries, no value of the parameters allows to perfectly represent the valve
motion trend. Thus, an approximation of the leaflets velocity, which allows to patient-
specifically calibrate the orifice size, is needed in order to gain our goal of reproducing the
physiological duration of the systole and of the valve opening and closing stages.
Finally the correct reconstruction of the artery and the appropriate positioning of the
valve, which greatly influences the hemodynamics and can not be neglected, are of ut-
most importance to build our computational domain. These two steps allow to reproduce
the physiological values of the main flow quantities, both the pressure values and the
velocity pattern.
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5| Conclusions, limitations and

future developments

In this work we have presented a reduced 3D-0D FSI model to describe the interaction
between the blood flow in the pulmonary artery and the pulmonary valve.
The 3D fluid dynamics problem with the inclusion of the valve is solved by the Resis-
tive Immersed Implicit Surface (RIIS) method. The presence of the valve is taken into
account in the momentum equation of the Navier-Stokes equations by adding a resistive
term, which weakly enforces the blood to adhere to the leaflets.
The blood flow dynamics is coupled with a 0D model which describes the valve dynamics
reproducing its movement between the closed and open configurations. The model con-
siders the flow-induced stress, the curvature-based elasticity and damping effects.
The reduced 3D-0D FSI model allows to describe the valve dynamics and the hemody-
namics with a computational cost slightly higher than the effort of a CFD simulation
with prescribed displacement; the additional cost lays in the assembly of the right-hand
side of the ODE representing the valve dynamics, which can be done very efficiently on
each quadrature node. Moreover the model explicitlely provides an expression for the
leaflets velocity uΓ, without the discrete interpolation errors that would be introduced by
a complex reconstruction procedure.
The remaining part of the cardiovascular system is accounted for by the boundary con-
ditions which represent physiological values of pressure. The validity of the values of the
parameters describing the pulmonary valve in the lumped-parameters model of the whole
cardiovascular system is proved through a sensitivity analysis.
We have analyzed two different patients, affected by the tetralogy of Fallot, that after
the Ross procedure in pediatric age and some years with pulmonary insufficiency, have
undergone the implant of a prosthetic pulmonary valve. The data and the tomographic
images are provided by the Niguarda Hospital, Milan. We have detailed the artery set-up
and the valve reconstruction method in order to obtain the closed and open configurations
of the patient-specific valve. We have not directly reconstructed the valve geometry from
the CT, but we have adapted a generic valve model to our geometries considering the
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position and the orientation of the valve sinuses, the stent and the commissures, derived
from the images. This step is very thorny and challenging since the valve configuration
greatly affects the blood dynamics.
We review the principal results:

• the pre-processing procedure succeeds in the reconstruction of the patient-specific
pulmonary valve leaflets in both open and closed positions and for both patients;

• the calibration procedure of the 0D valve model, according to our experience not
trivial at all due to the sensitivity of the model to the variation of the parameters,
succeeds in reproducing the valve motion and consequently the associated hemody-
namics;

• the RIIS method is able to provide an effective obstacle to the blood flow and to
capture the sharp pressure jump across the valve without the necessity of meshing
the leaflets;

• in order to obtain physiological results, a further model assumption is necessary,
which allows to modulate the intensity of the leaflets velocity. Indeed, since consid-
ering the velocity of the blood flow in correspondence to the valve equal to the valve
velocity itself causes the presence of some oscillations in the valve opening coefficient
plot and a non physiological valve closure stage, the idea is to apply an approxi-
mation. In particular, considering only a certain fraction of the leaflets velocity,
instead of the whole, allows to restore the correct trend of valve motion, in terms of
physiological times of the valve opening and closing stages, as well as pressure and
velocity values comparable with those reported in literature. This approximation
can be interpreted as an extra parameter in the Navier-Stokes equation and a re-
calibration of the orifice size. Physically, it violates the adherence of the blood to
the moving valve, but only in a limited time during the opening and closing stages
and in a limited space;

• the patient-specificity of the model is of utmost importance, as showed especially
by the results concerning the velocity field. Indeed the variability among different
patients can be captured only considering the patient-specific pulmonary artery
geometry and the patient-specific leaflets in the correct position.

We now address the main limitations:

• the assumption of rigid artery walls for the pulmonary artery, that could be re-
sponsible for slightly overestimations of flow quantities. The interaction between
fluid and pulmonary wall structure can be easily considered by extending the RIIS
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approach to a fluid-structure model of the pulmonary artery;

• the pressure values imposed as outlet boundary condition, that should not be equal,
since the two branches of the pulmonary artery have different shapes and sizes.
Thus, for more accurate simulations we would need more precise pressure values.

Finally we discuss the possible developments of this work that can be undertaken in order
to further enhance the proposed model for the study of different scenarios:

• the adoption of an implicit coupling between the blood and valve dynamics, instead
of the explicit one considered in the present work;

• a further investigation on the leaflets velocity approximation or alternative strate-
gies;

• the application of other 3D-0D FSI models to the same framework or the same model
but to other patient-specific geometries, in physiological or different pathological
conditions concerning both the artery geometry and the valve;

• the extension, being the model derived from a local force balance, to the atrio-
ventricular valves, possibly introducing additional terms which take into account
the subvalvular apparatus;

• the addition of complexity by introducing the contact forces exchanged among the
leaflets, that may affect the dynamics in the early opening phase and in diastole;

• the investigation, regarding the model calibration phase, on an efficient semi-automatic
calibration strategy of the model parameters or reduced order models and machine-
learning-based surrogates of this complex system.

We remark that it is the first time that a 3D-0D FSI model is applied to the pulmonary
artery and to the pulmonary valve. The pulmonary circulation is not much studied in
literature and our work can be considered as a starting point in the context of coupled
problems including the pulmonary valve.
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A| Runge Kutta methods

Runge-Kutta methods are effective and widely used for solving the initial-value problems
of differential equations [93]. They gain accuracy from the one-step structure, but they
loose linearity due to an increasing number of functional evaluations at each step. In fact
the difference between the Runga-Kutta methods and the classical numerical methods
for ODEs (e.g. implicit and explicit Euler or the Crank-Nicholson method) is that the
right-hand side term is multiple evaluated and consequently an accurate approximation
is achieved [70].
We consider a Cauchy problem of this form:

dy(t)

dt
= f(t, y(t)) t ∈ (0, T ]

y(0) = y0

We introduce a uniform partition of the time interval [0, T ] with step-size ∆t and nodes
{tn}Nn=0 such that tn = n∆t. Accordingly, the time-discrete counterparts of all quantities,
evaluated at time tn, will be denoted by a superscript ·n. We express with un the approx-
imation of the exact solution y(tn) in the node tn.
In the most general form, a Runge-Kutta method can be written as

un = un−1 +∆tF (tn−1, un−1,∆t; f) n > 0,

where F is defined in the following way:

F (tn−1, un−1,∆t; f) =
s∑
i=1

biKi,

Ki = f(tn−1 + ci∆t, u
n−1 +∆t

s∑
j=1

aijKj) i = 1, 2, ..., s,

where s is the number of stages. The coefficients {aij}, {ci} and {bi} completely charac-
terize the method, and they are typically collected in the so-called Butcher tableau:
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c1 a11 a12 ... a1s

c2 a21 a22 ... a2s
...

...
. . .

...

cs as1 as2 ... ass

b1 b2 ... bs

We suppose the following condition to hold:

ci =
s∑
j=1

aij i = 1, ...s.

If aij = 0 for j ≥ i, with i = 1, 2, ..., s, each Ki can be explicitely computed only with the
i − 1 coefficients K1, ..., Ki−1, previously computed. In this case the method is explicit,
otherwise it is implicit and for the computation of the coefficients Ki it is necessary to
solve a non linear system of dimension s, much expensive. Another possibility is the semi-
implicit method. In this case aij = 0 for j > i and consequently each Ki is given by the
resolution of a non linear equation. Thus, a semi-implicit scheme requires the resolution
of s non linearly independent equations [70].
We report some properties of the Runge-Kutta methods [70]:

• a Runge-Kutta method is consistent only if the condition
∑s

i=1 bi = 1 is verified.
Moreover if the method is consistent it is also convergent, since, for one-step meth-
ods, consistency implies stability and then convergence;

• a Runga-Kutta explicit method with s stages can not have order greater than s.
Moreover Runge-Kutta explicit methods with s stages and with order s can not
exist if s ≥ 5. In Table A.1 it is possible to observe, for orders from 1 to 8, the
minimum number of stages that is necessary to obtain a method of correspondent
order. The maximum number of stages in correspondence of which the order is not
less than the number of stages itself is 4.

order 1 2 3 4 5 6 7 8
smin 1 2 3 4 6 7 9 11

Table A.1: Relation between order and minimum number of stages.

The classical 4th order Runge-Kutta explicit method is defined by means of the following
Butcher tableau:
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0 0 0 0 0
1
2

1
2

0 0 0
1
2

0 1
2

0 0

1 0 0 1 0
1
6

1
3

1
3

1
6

Therefore the solution reads:

un = un−1 +
∆t

6
(K1 + 2K2 + 2K3 +K4)

where
K1 = f(tn−1, un−1),

K2 = f
(
tn−1 +

∆t

2
, un−1 +∆t

1

2
K1

)
,

K3 = f
(
tn−1 +

∆t

2
, un−1 +∆t

1

2
K2

)
,

K4 = f(tn−1 +∆t, un−1 +∆tK3).

The Runge Kutta methods can be easily extended to a system of ODEs of the form
dy(t)
dt

= f(t,y(t)) t ∈ (0, T ]

y(0) = y0





101

List of Figures

1.1 Circulatory system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Schematic representation of the heart. . . . . . . . . . . . . . . . . . . . . . 3
1.3 Pulmonary circulation and schematic representation of the heart with high-

lighted the right ventricle, the pulmonary artery and the pulmonary valve. 5
1.4 Wiggers diagram for the right circulation. . . . . . . . . . . . . . . . . . . 7
1.5 Comparison between normal heart and heart with tetralogy of Fallot. . . . 9
1.6 Cardinal features of tetralogy of Fallot. . . . . . . . . . . . . . . . . . . . . 10
1.7 No-React® Injectable BioPulmonic valve prosthesis. . . . . . . . . . . . . . 12

2.1 Computational domain Ω with its boundaries and the immersed valve Γ. . 24
2.2 Schematic representation of a leaflet section and of the forces acting on it. 27
2.3 Evolution of the valve resistance R. . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Circuital scheme of the full 0D circulation model. . . . . . . . . . . . . . . 43

3.1 CT of Patient 1 and Patient 2 provided by Niguarda Hospital. . . . . . . . 46
3.2 Functions phi and edgelength. . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Function edgelength with respect to the independent variable phi. . . . . . 48
3.4 Pulmonary artery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 edgelength, tetrahedral mesh and hexahedral mesh. . . . . . . . . . . . . . 50
3.6 Zygote valve model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Stent and commissures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8 Valve resizing function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.9 Adjusting displacement array and closed valve configuration. . . . . . . . . 54
3.10 Displacement array and open valve configuration. . . . . . . . . . . . . . . 55
3.11 Pulmonary valve in its closed and open configurations. . . . . . . . . . . . 56

4.1 Boundary conditions of the 3D fluid problem. . . . . . . . . . . . . . . . . 59
4.2 Pressure plots for different values of Rmin. . . . . . . . . . . . . . . . . . . 60
4.3 Dependence of the second pressure gradient inversion instant on Rmin. . . . 61
4.4 Inlet flow rate and inlet velocity for different values of Rmin. . . . . . . . . 61
4.5 Pressure plots for different values of Rmax. . . . . . . . . . . . . . . . . . . 62



102 | List of Figures

4.6 Dependence of the first and second pressure gradient inversion instants on
Rmax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Inlet flow rate and inlet velocity for different values of Rmax. . . . . . . . . 63
4.8 Prescribed opening coefficient c in Scenario Trial. . . . . . . . . . . . . . . 65
4.9 Maximum velocity magnitude on a slice upwind the valve and pressure in

a sphere at the artery bifurcation of Patient 1 and Patient 2 in Scenario
Trial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.10 Sensitivity of the opening coefficient c with respect to the parameters elas-
ticity and density scaling factor for Patient 2. . . . . . . . . . . . . . . . . 68

4.11 Opening coefficient c in Scenario Full FSI (Patient 2). . . . . . . . . . . . 70
4.12 Macroscopic pressure jump pjump between two spherical control volumes

(Patient 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.13 Transvalvular fluid stress jump (Patient 2). . . . . . . . . . . . . . . . . . . 71
4.14 Opening coefficient c in Scenario Full FSI (Patient 1). . . . . . . . . . . . 72
4.15 Macroscopic pressure jump pjump between two spherical control volumes

(Patient 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.16 Transvalvular fluid stress jump (Patient 1). . . . . . . . . . . . . . . . . . . 73
4.17 Slice visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.18 Velocity distribution of Patient 1 and Patient 2. . . . . . . . . . . . . . . . 75
4.19 Velocity streamlines of Patient 1 and Patient 2. . . . . . . . . . . . . . . . 76
4.20 Leaflets velocity of Patient 1 and Patient 2. . . . . . . . . . . . . . . . . . 77
4.21 Pressure distribution across the valve of and Patient 2. . . . . . . . . . . . 78
4.22 Pressure distribution on a slice of Patient 1 and Patient 2. . . . . . . . . . 79
4.23 WSS of Patient 1 and Patient 2. . . . . . . . . . . . . . . . . . . . . . . . . 80
4.24 Q-criterion isosurfaces of Patient 1 and Patient 2. . . . . . . . . . . . . . . 82



103

List of Tables

2.1 Analogy between electric and hydraulic networks. . . . . . . . . . . . . . . 41

3.1 Hexahedral mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Sensitivity Analysis of fluid dynamics in the pulmonary artery with respect
to the diode parameters Rmin and Rmax of the pulmonary valve. . . . . . . 64

4.2 Prescribed opening and closing valve time instants in Scenario Trial. . . . . 65
4.3 Model parameters calibrated for Patient 2. . . . . . . . . . . . . . . . . . . 69
4.4 Opening and closing valve times in Scenario Full FSI (Patient 2). . . . . . 70
4.5 Model parameters calibrated for Patient 1. . . . . . . . . . . . . . . . . . . 72
4.6 Opening and closing valve times in Scenario Full FSI (Patient 1). . . . . . 73

A.1 Relation between order and minimum number of stages. . . . . . . . . . . . 98





105

Acknowledgements

Ringrazio il Professor Christian Vergara per avermi dato l’opportunità di lavorare a questo
progetto estremamente interessante e per i suoi preziosi insegnamenti e consigli durante
tutta la stesura della Tesi.
Ringrazio il Dottor Ivan Fumagalli per tutto l’aiuto e il supporto.

Grazie ai miei genitori, alla mia mamma che mi ha seguita e accompagnata lungo tutto
il mio percorso scolastico e al mio papà che mi ha sempre sostenuta e incoraggiata.

Grazie a tutti coloro che mi sono vicini e condividono con me la gioia e l’emozione di
questo importante traguardo.




	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Overview of the cardiovascular system
	Pulmonary circulation
	Cardiac pathologies
	Tetralogy of Fallot
	Ross procedure
	Prosthetic valve implant

	Computational hemodynamics
	Fluid-valve interaction: State of the art
	3D-3D models
	3D-2D models
	3D-0D models
	3D-image-based models

	State of the art of computational studies for the right circulation
	Aims of the work

	Mathematical models and numerical methods
	Blood modeling
	Fluid model and Resistive Immersed Implicit Surface method
	Lumped-parameters structure model
	Coupling of the fluid and structure models
	Numerical approximation
	Fluid model
	Structure model
	Reduced 3D–0D FSI model

	Lumped-parameters model of the cardiovascular system

	Pre-processing and mesh generation
	Pulmonary artery
	Pulmonary valve
	Reconstruction
	Positioning
	Open and closed configurations


	Numerical results
	Setting of the numerical simulations
	Boundary conditions
	Scenario Trial
	Calibration in the Scenario Full FSI
	Patient 2
	Patient 1

	Results of the computational hemodynamic simulations in the Scenario Full FSI
	Final remarks

	Conclusions, limitations and future developments
	Bibliography
	Runge Kutta methods
	List of Figures
	List of Tables
	Acknowledgements

