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Abstract

In questo lavoro, è stato sviluppato un controllo Adaptive Backstepping con Com-
mand Filter con compensazione di disturbi per controllare una classe di sistemi
non lineari di ordine elevato con parametri sconosciuti e affetti da disturbi es-
terni. L’obiettivo del controllo e di garantire la stabilità globale del sistema e il
corretto tracking tra l’uscita del sistema e un segnale di riferimento. Il sistema di
controllo si basa sul controllo Backstepping. L idea del controllo Backstepping e
di suddividere il sistema controllato in sottosistemi più piccoli che sono ricorsi-
vamente stabilizzati da alcune cosiddette funzioni stabilizzanti. Il calcolo delle
derivate delle funzioni stabilizzanti, necessarie nelle leggi di controllo, richiede
grande computazione nel caso di sistemi di ordine elevato e per questo motivo
in questo lavoro è stato implementato un filtro Command Filter nell’algoritmo
di controllo standard del backstepping. Il filtro Command Filter ha permesso di
ottenere nuove leggi di controllo senza la necessità di calcolare le derivate delle
funzioni stabilizzanti. Il nuovo controllo Backstepping con Command Filter e
stato successivamente esteso con leggi adattative che hanno permesso la stima dei
parametri incogniti nel sistema. Tuttavia, una degenerazione delle prestazioni di
tracking e stata mostrata per il controllo di una classe di sistemi non lineari affetti
da disturbi esterni. Per migliorare le prestazioni di tracciamento, e stata imple-
mentata una rigerssione con Support Vector Regression per identificare i disturbi
a partire da campioni rumorosi. Infine questi modelli dei disturbi sono stati in-
clusi nella precedentemente sviluppata legge di controllo, in modo tale da poter
compensare i disturbi originali. Le prestazioni di tracciamento del nuovo sistema
di controllo sviluppato su una classe di sistemi non lineari affetti da disturbi,
hanno mostrato risultati comparabili al caso di sistema non affetti da disturbi.
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Abstract (english)

In this work, a Command Filtered Adaptive Backstepping Control with distur-
bance compensation has been developed to control a class of high order nonlinear
systems in a strict feedback form with unknown parameters and affected by ex-
ternal disturbances. The objective of the control system was to guarantee global
system stability and the tracking between the output of the system and a reference
signal. The control system is based on Backstepping control, which is a recursive
approach to control nonlinear systems where the controlled system is divided
into smaller subsystems which are recursively stabilized by some so-called sta-
bilizing functions. The calculation of the derivatives of the stabilizing functions,
necessary in the control laws, require heavy computation in the case of high order
systems and for this reason, in this work a command filter has been implemented
in the standard backstepping control algorithm. The developed command fil-
tered backstepping control was extended with adaptive laws that allowed the es-
timations of the unknown parameters in the systems. However, when one tried
to control a class of nonlinear systems affected by external disturbances, a degen-
eration in the performance was shown. To improve the tracking performance,
function identification models by a Support Vector Machine variant known as
Least Squares Support Vector Regression were used as regression models of the
disturbances and then implemented in the control system to preform rejection
of the original disturbances. To perform the regression, the regression models
have been trained with a noisy data set of the disturbances. The trained mod-
els by Least Squares Support Vector Regression could approximate the unknown
disturbances with satisfying accuracy. Finally, a novel Command Filtered Adap-
tive Backstepping control system was developed by using the regression models
by LS-SVR to reject the external disturbances. The simulations showed that the
tracking performance of the novel developed control system implemented to a
nonlinear system affected by external disturbances are comparable to the case
where no external disturbances were added to the system.
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Chapter 1

Introduction

In the past decades, numerous approaches have been proposed for the design of
nonlinear control systems. Among these, adaptive control has been widely used
as a design methodology that can stabilize nonlinear systems affected by uncer-
tainties or in presence of unknown parameters [1][2]. The main idea of Adaptive
Control is to adjust on-line the control parameters in the case where the controlled
system has parameters which are unknown or vary during the execution. A lot
of researchers have presented several important results on Adaptive Control and
among these, Model Reference Adaptive Control has been largely used when
the aim of the control system was the tracking between the output of the system
and the output of a reference model [3]. In order to achieve the tracking, Model
Reference Adaptive Control systems have tuning parameters that are updated
on-line based on the error between the output of the plant and the output of the
reference model. When using a MRAC control system, some restrictions such
as matching conditions are necessary in order guarantee the global stability [4].
To overcome these restrictions, backstepping control and adaptive backstepping
control have been used to control nonlinear systems [2]. The main idea behind
backstepping control is to recursively derive some so called stabilizing functions
as pseudo inputs of lower dimension subsystems of the original system until all
the subsystems, and so the original system, are stabilized. Backstepping control
can guarantee tracking performance and global stability for different classes of
strict-feedback system and has been largely used in the field of electronics engi-
neering, aerospace engineering etc. [5][6][7]. Nevertheless, some drawbacks of
the backstepping approaches also exist, such as the explosion of complexity dur-
ing the calculation of the stabilizing functions in the case where the plant is a high
order system (n > 2). In an attempt to solve the explosion of complexity, meth-
ods like the Command Filter or Sliding Mode filters have been implemented in
backstepping and adaptive backstepping control [8][9][10]. However, in the pres-
ence of external disturbances, these must be exactly known or exactly estimated
to guarantee good performances when using a backstepping approach [11]. In
different control applications, Multilayer feedforward neural network and radial
basis function (RBF) neural network have been used to approximate different
classes of function with suitable accuracy [11][12]. In the case of RBF networks,
one has a curse of dimensionality in the number of parameters that needs to be
defined [13][14]. A promising technique for function approximation and pattern
classification called Support Vector Machine has been recently used to overcome

7



CHAPTER 1. INTRODUCTION

the overfitting problem and the curse of dimensionality of the RBF in nonlinear
control [15][16][17]. Support Vector Machine is a kernel approach derived from
Neural Networks and originally used as a classifier that maps input data to a
higher dimensional space where an optimal separating hyperplane can be de-
rived, in contrast to a more complex and heavy computing nonlinear function in
the original input space [18]. A regression variant of the Support Vector Machine
called Support Vector Regression was proposed by Vladimir N. Vapnik and his
colleagues [13][14]. The training process of a Support Vector Machine, and so
Support Vector Regression, is characterized by the formulation of a convex opti-
mization problem, which so also overcomes the problem of local minima suffered
by classical neural network approaches and only few tuning parameters needs to
be defined, in contrast to the curse of dimensionality of a standard RBF method.
This work aims to design an adaptive controller for a class of nonlinear systems of
second order and higher (n > 2) that guarantees good tracking performances and
global stability in presence of unknown parameters and external disturbances. To
achieve this, a Command Filtered approach will be implemented for its simplic-
ity in the formulation and effectiveness into the standard Backstepping Control to
overcome the discussed explosion of complexity problem. Then, an adaptive con-
trol approach will be implemented to the controller in order to estimate unknown
systems parameters. To estimate the external disturbances in the controlled sys-
tem, a Least Squares variant of the Support Vector Regression known as Least
Squares Support Vector Regression will be used for its efficiency in the computa-
tion and simplicity in the formulation compared to the traditional SVR. Finally,
the LS-SVR regression models will be implemented in the control laws of a novel
Command Filtered Adaptive Backstepping controller to compensate the external
disturbances affecting the system.
The organization of the thesis is as follows.
Chapter 2 presents a brief introduction to Adaptive Control and backstepping
control. The explosion of complexity problem is shown and a comparison bew-
teen the standard backstepping and the commanded filtered backstepping, which
aims to solve the considered problem, is proposed. Finally an adaptive exten-
sion of the command filtered backstepping is developed. Chapter 3 considers the
case where external disturbances are added to the system previously controlled
by the developed adaptive command filtered backstepping control system. The
degeneration of the performance is shown and so Neural Networks and Sup-
port Vector Machine are introduced. Finally a Support Vector Machine method
to estimate nonlinear functions called Support Vector Regression is discussed.
Chapter 4 presents a novel command filtered adaptive backstepping control sys-
tem based on the control system developed in Chapter 3 where the trained SVRs
models are included in the control laws to reject the external disturbances. Chap-
ter 5 shows simulations of the developed command filtered adaptive backstep-
ping controllers in the case of a second order and third order nonlinear systems.
The Conclusion and Future Works chapter presents comments about the results
of the simulations chapter and discuss about the drawbacks and future works of
the developed control systems.
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Chapter 2

Nonlinear Systems Control

2.1 Introduction Adaptive Control

Adaptive Control is a control methodology that covers techniques in which the
control parameters are adjusted on-line in order to guarantee the desired perfor-
mance in the case where the dynamic parameters of the plant, linear or nonlinear,
change in time and/or are unknown. In the control theory, the knowledge of the
plant model parameters is necessary for the tuning of the controller, which aims
to guarantee the desired performances on the plant. In the case where the plant
parameters are unknown or uncertain, Adaptive control techniques can provide
a real time tuning procedure of the controller parameters based on some available
data of the plant [1]. A controlled system can present unknown parameters due
to lack of knowledge during the modeling and also cases of real systems where
the parameters change in time are common in the control field [1]. An example
could be the case where the environmental conditions change or because a non-
linear systems is linearized and a change in operation condition will lead to a
different linearized model [1]. In the discussed cases, adaptive control has been
proven to be effective to deal with the small or large unknown parameters and
changes in the plant during its functioning [1][3][19]. Moreover, depending on
the system, adaptive controllers operate for a short or long time until the desired
performances are guaranteed. The on-line information about the model plant can
be processed in different ways, and this distincts the existing adaptive control al-
gorithms. It is important to known that all the adaptive controllers are modeled
as nonlinear systems, since the control parameters are based on the measure-
ments of system variables through the adaptation loop [1]. Among the adaptive
controllers Model Reference Adaptive Control has proven to be effective in dif-
ferent cases when the desired performance of the system could be specified in
a target, or reference, model [3]. In the next section Model Reference Adaptive
Control will be introduced.

9



CHAPTER 2. NONLINEAR SYSTEMS CONTROL

2.1.1 Model Reference Adaptive Control (MRAC)

As discussed in the previous section, the specification of the desired performance
is essential in the first presented adaptive controller design approach.
In Model Reference Adaptive Control, the desired performance of the system can
be seen as the output of a so called reference model, which has the desired loca-
tion of the closed loop poles of the plant. The main goal of the control will be
to match the output of the plant in a closed loop and the output of the derived
reference model [1].
An example of a Model Reference Adaptive Control scheme is shown in the fol-
lowing figure:

Figure 2.1: Model Reference Adaptive Control scheme

where ym is the output of the reference model, y is the output of the plant, e is
the error between the output of the plant and the output of the reference model,
r is the reference signal and u is the control input.
The error e between the output of the reference model and the output of the
plant is used as a real time information for the adaptation mechanism, which
will adjust the control parameters in order to make the error between the two
outputs asymptotically equal to zero. However, there exist restricting conditions
that have be made on the controlled systems that limit the application of a Model
Reference Adaptive Control approach [4]. An example is the assumption that the
plant model has stable zeros in every situation, which in the discrete-time case is
quite restrictive, and the problem becomes even more difficult in the multi-input
multi-output case [1]. These conditions are known as matching conditions, and
often limits the applications for Model Reference adaptive systems [1][4]. For this
reason, another nonlinear control approach called Backstepping Control and its
adaptive variant called Adaptive Backstepping Control have been widely used
for nonlinear control systems [2][19][20][21]. Both of these methods are based on
the stability theory known as ”Lyapunov Stability Theory, which will be intro-
duced in the following section.

10 Chapter 2 Cuoghi Ludovico



CHAPTER 2. NONLINEAR SYSTEMS CONTROL

2.2 Lyapunov stability theory

In the control theory, a rigorous stability theory that guarantees the stability of
the system plays an important role, as an unstable control system is useless.
Lyapunov stability theory gives tools to analyze the stability of nonlinear sys-
tems and has been widely used in the control engineering field [22]. Lyapunov
stability includes two different approaches: the first approach is known as Lya-
punov direct method while the second, less used, is known as Lyapunov indirect
method. The more used Lyapunov direct method can achieve global stability
of a nonlinear system without the need to linearize the system. For this reason,
the direct method is more used than the indirect method [22]. The main idea
of the Lyapunov direct method is that if the total energy of a system is contin-
uously dissipating, then the system will eventually reach an equilibrium point
and so guarantee stability [22]. In order to apply the direct Lyapunov Stability
method to a nonlinear system, a suitable scalar function, which it will be referred
to as Lyapunov function, needs to be derived. Next the time derivative of the
Lyapunov Function needs to be evaluated along the trajectory of the considered
nonlinear system. The system will be considered stable if the derivative of the
Lyapunov Function is negative along the trajectory.

2.2.1 Lyapunov Direct Method

Consider the following dynamical system:

ẋ = f (x, t) t ≥ 0 (2.1)
x(t0) = x0 t0 ≥ 0 (2.2)

where x ∈ Rn , f is a nonlinear continuous function in t where t ∈ R+.
It is assumed that f (x, t) satisfies the existence condition and uniqueness of solu-
tions. The nonlinear system is said to be autonomous, or time-invariant, if f (x, t)
does not depend explicitly on the time t. In this case, the system can be written
as:

ẋ = f (x) (2.3)

Let xeq = 0 be an equilibrium point ( f (xeq, t) = 0) where f : Ω → Rn is a
locally Lipchitz and Ω ⊂ Rn a domain that contains the origin.
The considered equilibrium point xeq = 0 is said to be locally stable if all point in
its neighborhood remain near xeq for all time. The equilibrium point xeq is said
to be locally asymptotically stable if xeq is locally stable and as t → ∞ all solutions
starting near x tend towards the equilibrium point xeq.

Chapter 2 Cuoghi Ludovico 11



CHAPTER 2. NONLINEAR SYSTEMS CONTROL

Let a function V(xeq, t) : Ω → R be a non negative and continuously dif-
ferentiable function in Ω with derivative V̇(xeq, t) along the trajectories of the
considered system.

• If −V̇(xeq, t) is negative semidefinite, then xeq = 0 is a stable equilibrium
point.

• If −V̇(xeq, t) is negative definite, then xeq = 0 is an asymptotically stable
equilibrium point.

If such function V(x) exists, it is called Lyapunov Function.
The existence of a Lyapunov function is sufficient to prove stability, in the sense
of Lyapunov, in the region Ω [22]. The Lyapunov approach has been widely used
since it allows to study and guarantee the stability of a given equilibrium point
without solving the differential equations that describe the considered system. A
disadvantage of a Lyapunov approach to study the stability of a system is that
there is no general approach to derive a Lyapunov Function. In the literature, de-
pending on the specific application, mathematical and physical insight are often
used to derive a suitable Lyapunov Function. In the next section the Lyapunov
stability theory will be used to guarantee the stability of the system.

12 Chapter 2 Cuoghi Ludovico



CHAPTER 2. NONLINEAR SYSTEMS CONTROL

2.3 Backstepping Control

Backstepping control is a recursive approach to control nonlinear systems devel-
oped by V. Kokotovic, Krstic and Kanellakopoulos [2]. The main goal of the back-
stepping control is to guarantee the tracking between the output of the considered
controlled system and a reference signal while guaranteeing global stability. In
order to achieve the tracking, the considered nonlinear system is first transformed
into a strict feedback form and then divided into smaller subsystems which will
be gradually stabilized. The procedure starts by the stabilizing the first subsys-
tem, which guarantees the main tracking objective by using a stabilizing function
which will act as virtual control. The defined stabilized function will generate
a new subsystem. The control action of the newly generated subsystem will be
‘stepped back’ to a new virtual control, which will be generate a new subsytem
and so a new virtual control will be defined. The procedure ends when the real
control input u, which acts as the final virtual control, is reached. At each step, for
every subsystem, an augmented Lyapunov Function of the Lyapunov Function
defined in the previous step is derived and then then a direct Lyapunov stability
method is applied to guarantee the asymptotic stability of the considered subsys-
tem. Because the control action is back stepped after each subsystem is stabilized,
the process is called ”backstepping”.
An example of a strict-feedback systems is:

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3
...
ẋi = fi(x1, x2, . . . xi) + gi(x1, x2, . . . xi)xi+1
...
ẋn = fn(x1, x2, . . . xn) + gn(x1, x2, . . . xn)u

where x1, . . . , xn ∈ R are the state variables of the system, u ∈ R is the control
input and fi, gi, for i = 1, . . . , n are known functions.

The basic recursive design of a backstepping control is known as the integrator
backstepping, which will be shown in the next section. Based on the integrator
backstepping, the control design will be expanded to the class strict-feedback
systems case previously mentioned.

Chapter 2 Cuoghi Ludovico 13



CHAPTER 2. NONLINEAR SYSTEMS CONTROL

2.3.1 Integrator Backstepping Control

Consider the following system:

ẋ1 = f1(x1) + g1(x1)x2 (2.4)
ẋ2 = u (2.5)

where x1, x2 ∈ R are the state variables of the system, u ∈ R is the control
input and f1, g1 are known functions.
The objective of the control system is to design a state feedback control law such
that x1, x2 → 0 as t → ∞. This system can be viewed as a cascade connection
of two subsystems. The first subsystem is (2.4) with x2 as input and the second
subsystem is the integrator (2.5).
The second system variable x2 will be considered a virtual control input for the
stabilization of the first system variable x1. Assume that there exists a smooth
state feedback control law x2 = α(x1), with α(0) = 0, such that the origin of:

ẋ1 = f1(x1) + g1(x1)α(x1) (2.6)

is asymptotically stable. Consider that for the choice of α(x1), a Lyapunov func-
tion V(x1) that guarantees the following condition is known:

∂V
∂x1

[ f1(x1) + g1(x1)α(x1)] ≤ −W(x1) (2.7)

where W(x1) is positive definite. By adding and subtracting g(x1)α(x1) on the
right hand side of (2.4), one has:

ẋ1 = f1(x1) + g1(x1)α(x1) + g1(x1)[x2 − α(x1)] (2.8)
ẋ2 = u (2.9)

The error e between the state x2 and the pseudo control α(x1) is defined as:

e = x2 − α(x1) (2.10)

By writing the initial system in the x1 and e coordinates, one has:

ẋ1 = [ f1(x1) + g1(x1)α(x1)] + g1(x1)e (2.11)
ė = u− α̇(x1) (2.12)

Since f1, g1 and α(x1) are known functions, the derivative α̇(x1) can be computed
by using the expression:

α̇ =
∂α

∂x1
[ f1(x1) + g1(x1)e] (2.13)

14 Chapter 2 Cuoghi Ludovico
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The following subsystem with state variables x1 and e can be defined:

ẋ1 = [ f1(x1) + g1(x1)α(x1)] + g1(x1)e (2.14)
ė = u− α̇(x1) (2.15)

In this newly obtained subsystem, the origin of the first component (2.14) is
asymptotically stable when the virtual input e is zero because the condition in
(2.7). By applying the backstepping procedure, the stabilizing function α(x1)
acting as a pseudo has been “back stepped” through the integrator from u =
e + α̇(x1). An augmented Lyapunov Function V1, which will include the newly
defined e variable, will be defined as follows:

V1(x1, e) = V(x1) +
1
2

e2 (2.16)

by taking the derivative of the augmented Lyapunov Function V̇1(x1, e), one ob-
tains:

V̇1(x1, e) = V̇(x1) + eė (2.17)

V̇1(x1, e) =
∂V
∂x1

[ f1 + g1α(x1) + g1e] + e(u− α̇(x1)) (2.18)

V̇1(x1, e) =
∂V
∂x1

[ f1 + g1α(x1)] + e(u− ∂α

∂x1
[ f1 + g1e] +

∂V
∂x1

g1) (2.19)

< W1 + e(u− ∂α

∂x1
[ f1 + g1e] +

∂V
∂x1

g1) (2.20)

The real control input u is available in the derivative of the augmented Lyapunov
Function.
If one chooses the following value for the real control input u:

u = −k1e +− ∂α

∂x1
[ f1 + g1e]− ∂V

∂x1
g1, k1 > 0 (2.21)

then
V̇1(x1, e) < −W(x1)− k1e2 (2.22)

which shows that the origin (x1 = 0, e = 0) is asymptotically stable for the
Lyapunov direct method. Since α(0) = 0, and e → 0 as t → ∞; then, the, origin
of the initial system [x1(0), x2(0)]T = [0, 0]T is asymptotically stable as well. The
backstepping algorithm stopped after two iterations as the real control input u
was available in the derivative of the last defined Lyapunov Function V̇1(x1, e).
In the next section, a backstepping control scheme for a second order system in a
strict feedback form will be derived based on the presented integrator backstep-
ping approach.
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2.3.2 Backstepping System Design

This section illustrates the implementation of the backstepping methodology to
a second order system in a strict feedback form. The explosion of complexity
caused by the calculation of the derivative of the stabilizing function will be
shown. In previous section, the Integrator backstepping has been used to sta-
bilize the origin of the system. In this case the backstepping algorithm is used to
guarantee the tracking between the output of the system y = x1 and the desired
trajectory yd. First, the case where all the parameters of the systems are known
will be considered. Later an adaptive approach will be implemented in order to
estimate the unknown parameters while guaranteeing the tracking between the
output of the system y = x1 and the desired trajectory yd.
Consider the following second order system:

ẋ1 = 0.5x1 + (1 + 0.1x2
1)x2

ẋ2 = x1x2 + (2 + cos(x1))u
y = x1

(2.23)

where x1,x2 are the state variables and y is the output of the system. The ini-
tial condition is x0 = [x10, x20]

T = [0, 0]T and the desired reference signal of the
system is yd = sin(t).

STEP 1

The tracking error between the output y = x1 and the reference signal yd is de-
fined as:

x̃1 = x1 − yd (2.24)

To derive the stabilizing function α1 that will act as a virtual input to stabilize the
first system in order to guarantee x1 = yd asymptotically, the Lyapunov Function
V1(x̃1) needs to be derived and its derivative will be calculated.
The derivative of the tracking error (2.24) is evaluated as follows:

˙̃x1 = ẋ1 − ẏd = 0.5x1 + (1 + 0.1x2
1)x2 − ẏd (2.25)

The following Lyapunov Function V1(x̃1) is considered:

V1(x̃1) =
1
2

x̃2
1 (2.26)

Then, the derivative V̇1(x̃1) is evaluated:

V̇1(x̃1) = x̃1 ˙̃x1 = x̃1(0.5x1 + (1 + 0.1x2
1)x2 − ẏd) (2.27)

In order to achieve V̇1(x̃1) < 0 and so x̃1 → 0 asymptotically, the stabilizing
function x2 = α1 is chosen as:

α1 = − 1
(1 + 0.1x2

1)
(0.5x1 − ẏd + k1x̃1) (2.28)

where k1 > 0 is a tuning parameter.
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By substituting x2 = α1 in (2.27):

V̇1(x̃1) = −k1x̃2
1 < 0 (2.29)

This guarantees x̃1 → 0 asymptotically.

STEP 2

The error variable x̃2 will be defined as:

x̃2 = x2 − α1 (2.30)

The objective is to make x̃2 → 0 asymptotically in order to force the state variable
x2 to follow α1. An augmented Lyapunov Function V2(x̃1, x̃2) will be defined
and then the stabilizing function α2 that will guarantee V̇2(x̃1, x̃2) < 0 will be
calculated.
The derivative of x̃2 is evaluated:

˙̃x2 = ẋ2 − α̇1

= x1x2 + (2 + cos(x1))u +
1

(1 + 0.1x2
1)

2

[
(0.5ẋ1 − ÿd + k1 ˙̃x1)(1 + 0.1x2

1)−

+ 0.5x1ẋ1(0.5x1 − ẏd + k1x̃1)

]
(2.31)

where:

˙̃x1 = ẋ1 − ẏd (2.32)

ẋ1 = 0.5x1 + (1 + 0.1x2
1)x̃2 (2.33)

The candidate Lyapunov function V2(x̃1, x̃2) is chosen as follows:

V2(x̃1, x̃2) =
1
2

x̃2
1 +

1
2

x̃2
2 (2.34)

And so its derivative is considered:

V̇1(x̃1, x̃2) = x̃1 ˙̃x1 + x̃2 ˙̃x2 = x̃1(0.5x1 + (1 + 0.1x2
1)(x̃2 + α1)− ẏd) + x̃2 ˙̃x2 (2.35)

By substituting α1 with (2.28) and ˙̃x2 with (2.31), the derivative V̇2(x̃1, x̃2) be-
comes:

V̇2(x̃1, x̃2) = x̃1(−k1x̃1 + (1 + 0.1x2
1)x̃2) + x̃2(x1x2 + (2 + cos(x1))u + Θ)

= −k1x̃2
1 + x̃2((1 + 0.1x2

1)x̃1 + x1x2 + (2 + cos(x1))u + Θ) (2.36)

where:

Θ =
1

(1 + 0.1x2
1)

2

[
(0.5ẋ1 − ÿd + k1 ˙̃x1)(1 + 0.1x2

1)− 0.5x1ẋ1(0.5x1 − ẏd + k1x̃1)

]
(2.37)
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The real control input variable u is available in the derivative of the aug-
mented Lyapunov Function (equation 2.36). For this reason there is no need to de-
fine a second stabilizing function α2. The control law u that allows V̇2(x̃1, x̃2) < 0
is defined as follows:

u = − 1
2 + cos(x1)

(Θ + x1x2 + (1 + 0.1x2
1)x̃1 + k2x̃2) (2.38)

where k2 > 0 is a tuning parameter.
The derivative of the Lyapunov Function V̇2(x̃1, x̃2) becomes:

V̇1(x̃1, x̃2) = −k1x̃2
1 − k2x̃2

2 < 0 (2.39)

This guarantees x̃1 = x1− yd → 0 and x̃2 = x2− α1 → 0 asymptotically. Summa-
rizing the process, x1 − yd → 0 was guaranteed by using a virtual input α1. Later
the real available signal x2 was forced to follow α1 by choosing a proper value of
the control input u.

2.4 Command Filtered Backstepping Control

In the traditional backstepping algorithm presented in the previous chapter, at
each step of the procedure, the calculation of the virtual control signals αi and
their derivatives is required. Theoretically, the calculation of the virtual control
signal derivatives is simple, but it can be quite complicated and tedious in ap-
plications when the order of the controlled system increases [23]. This happens
because at the end of the procedure, the real control signal u will include the
derivative of αn, which requires the second derivative of αn−1, which requires
the third derivative of αn−2, and so on. In the previously presented example,
in the case of a second order system, equation (2.36) and (2.37) clearly show the
problem known as ”explosion of complexity” [8]. In certain applications, such as
induction motors, the number of backstepping iterations is small and the com-
putation is achievable [24]. In other applications, such as a helicopter application
or high-order nonlinear multiagent systems [7][19][25], the analytic derivation
of the stabilizing functions αi is tedious and heavy computing. This problem
known as ”explosion of complexity” has been addressed by a variety of meth-
ods [8][10][23]. In this work the explosion of complexity problem will be avoided
by using a command filter approach. The basic concept of a command filter ap-
praoch is to filter at each step the stabilizing function αi in order to obtain two
new signals, xi+1,c and its derivative ẋi+1,c. These new signals will be then used
instead of αi and its derivative α̇i. To compensate the filtering error, compensa-
tion error variables will be defined. The command filter approach decouples of
the design of the controllers for the backstepping iterations, it avoids the tedious
algebra related to computing the command signal derivatives and it only requires
the reference signals yd and its (n− 1) derivatives to be available as inputs to the
system [8]. In the following section, a command filtered backstepping control
will be developed for the second order system (2.23) previously controlled by a
traditional backstepping approach.
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2.4.1 Command filter design

In this section an implementation of the command filter to the Backstepping ap-
proach is presented. The objective is eliminate the analytic computation of the
derivatives α̇1 for i = 1, . . . , (n− 1), while guaranteeing a rigorous stability anal-
ysis.
Consider the following strict-feedback nonlinear of order n:

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3
...
ẋi = fi(x1, x2, . . . , xi) + gi(x1, x2, . . . , xi)xi+1
...
ẋn = fn(x1, x2, . . . , xn) + gn(x1, x2, . . . , xn)u
y = x1

(2.40)

In the traditional backstepping design, the stabilizing functions αi are defined as:

α1(x1, yd) =
1
g1
(−k1x̃1 + ẏd − f1) (2.41)

αi(x1, . . . , xi, yd) =
1
gi
(−ki x̃i + α̇i−1 − gi−1xi1) (2.42)

for i = 2, . . . , n and ki > 0 for i = 1, . . . , n and the control variable is assigned
the value u(t) = αn(x1, . . . , xn, yd). On the other hand, in the command filtered
approach, the definition of the virtual control signals αi of the backstepping pro-
cedure is as follows:

α1(x1, x1,c) =
1
g1
(−k1x̃1 + ẋ1,c − f1) (2.43)

αi(x1, . . . , xi, xi,c, vi−1) =
1
gi
(−ki x̃i + ẋi,c − fi − gi−1vi−1) (2.44)

for i = 2, . . . , n and ki > 0 for i = 1, . . . , n , x1,c = yd and the control variable is
assigned the value u(t) = αn(x1, . . . , xn, xn,c, vn−1).
The following errors are defined:

• The tracking error signals x̃i:

x̃i = xi − xi,c i = 1, . . . , n. (2.45)

where x1.c = yd. It resembles the tracking error in the traditional backstep-
ping control (see equation 2.24).

• The signals ξi, for i = 1, . . . , (n− 1) produced by filtering, (xi+1,c − αi) de-
scribe the unachieved portion of αi and are define as follows:

ξ̇i = −kiξi + gi(xx+1,c − αi) (2.46)

where ξi(0) = 0 and ξn = 0.
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• The compensated tracking errors vi are obtained by removing the filtered
unachieved portion of αi, as represented by ξi, from the tracking error and
are defined as:

vi = x̃i − ξi i = 1, . . . , n. (2.47)

The signals xi,c and ẋi,c for i = 1, 2, . . . , n are the output of the following command
filter {

q̇i,1 = ωnqi,2

q̇i,2 = −2ζωnqi,2 −ωn(qi,1 − αi)
(2.48)

where xi+1,c = qi,1 and ẋi+1,c = ωnqi,2 are the outputs of each command filter
implemented in the system. For i = 1, x1,c = yd = α0 and ẋ1,c = ẏd = α̇0.

Figure 2.2: The structure of a command filter

The filter initial conditions are:

qi,1(0) = αi(x1(0, . . . , xi(0), xi,x(0), vi−1(0)))
qi,2(0) = 0

The filter design parameters are ωn > 0 and ζ ∈ (0, 1]. Each command filter
is designed to compute xi+1,c and ẋi+1,c without differentiation.
To achieve good tracking performance between xi+1,c, ẋi+1,c and αi, α̇i respec-
tively, the designer would choose ωn > ki+1 for i = 1, . . . , n [8].
In the next section, a command filtered backstepping control will be developed
and implemented to a second order nonlinear system.

Figure 2.3: Block diagram of a command filtered backstepping controller for a
3rd order system
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2.4.2 Command Filtered Backstepping System Design

In this section, a command filtered backstepping control will be implemented to
the second order system (equation 2.23) previously controlled by a traditional
backstepping control, in order to show the simplification in the design process.
Consider the following second order system:

ẋ1 = 0.5x1 + (1 + 0.1x2
1)x2

ẋ2 = x1x2 + (2 + cos(x1))u
y = x1

(2.49)

where x1,x2 are the state variables and y is the output of the system.
The initial condition is x0 = [x10, x20]

T = [0, 0]T and the desired reference signal
of the system is yd = sin(t). The implemented command filtered backstepping
approach resembles the traditional backstepping approach until the first stabiliz-
ing function α1 is obtained. The stabilizing function α1 will be then filtered and
the new control law will be obtained, without using its derivative α̇1.

STEP 1

The backstepping algorithm starts by defining the tracking error x̃1 between the
output y = x1 and the reference signal yd as:

x̃1 = x1 − yd (2.50)

To derive the stabilizing function α1, which will act as a virtual input to stabilize
the first system in order to guarantee x1 = yd asymptotically, the Lyapunov Func-
tion V1(x̃1) and its derivative will be defined.
First, the derivative of the tracking error x̃1 is calculated:

˙̃x1 = ẋ1 − ẏd = 0.5x1 + (1 + 0.1x2
1)x2 − ẏd (2.51)

The following Lyapunov Function V1(x̃1) is considered:

V1(x̃1) =
1
2

x̃2
1 (2.52)

Then its derivative V̇1(x̃1) is calculated:

V̇1(x̃1) = x̃1 ˙̃x1 = x̃1(0.5x1 + (1 + 0.1x2
1)x2 − ẏd) (2.53)

To achieve V̇1(x̃1) < 0 and so x̃1 → 0 asymptotically, the following stabilizing
function x2 = α1 is chosen:

α1 = − 1
(1 + 0.1x2

1)
(0.5x1 − ẏd + k1x̃1) (2.54)

where k1 > 0 is a tuning parameter.
By substituting x2 = α1 in (2.53):

V̇1(x̃1) = −k1x̃2
1 < 0 (2.55)

This guarantees x̃1 → 0 asymptotically.
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STEP 2

The next step is to pass α1 to a command filter to obtain x2,c and ẋ2,c. Recalling
equation (2.48), the command filter can be described by the following space state
equations: {

q̇1,1 = ωnq1,2

q̇1,2 = −2ζωnq1,2 −ωn(z1,1 − α2)
(2.56)

where x2,c = q1,1 and ẋ2,c = ωnq1,2 are the outputs of the command filter.
The second tracking error signal x̃2 is defined as follows:

x̃2 = x2 − x2,c (2.57)

and its derivative ˙̃x2 is calculated:

˙̃x2 = ẋ2 − ẋ2,c

= x1x2 + (2 + cos(x1))u− ẋ2,c (2.58)

The command filter will produce a filtering error that may increase the difficulty
in getting the tiny tracking error. For this reason a compensation tracking error
v1 of x̃1 is defined as:

v1 = x̃1 − ξ1 (2.59)

Where the ξ̇1 signal is defined as:

ξ̇1 = −k1ξ1 + (1 + 0.1x2
1)(x2,c − α1) , ξ1(0) = 0 (2.60)

The derivative v̇1 of v1 is now calculated, as it will be necessary in the calculation
of the derivative of the next Lyapunov Function.

v̇1 = ˙̃x1 − ξ̇1

= (0.5x1 + (1 + 0.1x2
1)x2 − ẏd)− (−k1ξ1 + (1 + 0.1x2

1)(x2,c − α1))

= (0.5x1 + (1 + 0.1x2
1)x2 − ẏd + k1ξ1 − (1 + 0.1x2

1)x2,c + (1 + 0.1x2
1)α1

= (0.5x1 + (1 + 0.1x2
1)x̃2 − ẏd + k1ξ1 + (1 + 0.1x2

1)α1

= (1 + 0.1x2
1)x̃2 + k1ξ1 + (1 + 0.1x2

1)x̃1

= −k1(x̃1 − ξ1) + (1 + 0.1x2
1)x̃2

= −k1v1 + (1 + 0.1x2
1)x̃2 (2.61)

The following Lyapunov Function V2(v1, x̃2) is considered:

V2(v1, x̃2) =
1
2

v2
1 +

1
2

x̃2
2 (2.62)

its derivative is calculated as follows:

V̇2(v1, x̃2) = v1v̇1 + x̃2 ˙̃x2

= v1(−k1v1 + (1 + 0.1x2
1)x̃2) + x̃2 ˙̃x2

= v1(−k1v1 + (1 + 0.1x2
1)x̃2) + x̃2(x1x2 + (2 + cos(x1))u− ẋ2,c)

= −k1v2
1 + x̃2((1 + 0.1x2

1)v1 + x1x2 + (2 + cos(x1))u− ẋ2,c) (2.63)
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The real control input variable u is available in the derivative of the second Lya-
punov function(equation 2.63). For this reason another virtual control α2 is not
necessary.
The value of the control signal u that allows V̇1(v1, x̃2) < 0 is defined as follows:

u = − 1
2 + cos(x1)

(−ẋ2,c + x1x2 + (1 + 0.1x2
1)v1 + k2x̃2) (2.64)

where k2 > 0 is a tuning parameter.
The Lyapunov Function V̇1(v1, x̃2) becomes:

V̇1(v1, x̃2) = −k1v2
1 − k2x̃2

2 < 0 (2.65)

This guarantees x̃2 → 0 asymptotically, v1 → 0 =⇒ x̃1 → 0 asymptotically,
with the consequence that x1 = yd asymptotically. It can be noticed that in the
command filtered approach here implemented, the derivative α̇1 was not used to
determine the control input u, avoiding so the explosion of complexity encoun-
tered when using the traditional backstepping control method.
In the next section, the developed command filtered backstepping control will be
extended to the case where the controlled system presents unknown parameters,
which will be estimated by using an adaptive approach.
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2.5 Adaptive Command Filtered Backstepping Con-
trol

In this section, an adaptive control law will be implemented in the command fil-
tered backstepping control previously developed, in order to estimate unknown
parameters in the system.
The following class of nonlinear systems is considered:

ẋ1 = f1(x1) + g1(x1)x2 + φT
1 (x1)θ1

ẋ2 = f2(x1, x2) + g2(x1, x2)x3 + φT
2 (x1, x2)θ2

...
ẋi = fi(x1, x2, . . . xi) + gi(x1, x2, . . . xi)xi+1 + φT

i (x1, x2, . . . xi)θi
...
ẋn = fn(x1, x2, . . . xn) + gn(x1, x2, . . . xn)u + φT

n (x1, x2, . . . xn)θn

y = x1

(2.66)

where x1, . . . , xn ∈ R are the state variables of the system, u ∈ R is the control
input and f1, f2, . . . , fi, . . . , fn, g1, g2, . . . , gi, . . . , g∈R, φ1, φ2, . . . φi . . . , φn ∈ RT for
i = 1, . . . , n are known functions and θ1, θ2, . . . , θi, . . . , θn ∈ RT for i = 1, . . . , n
are unknown parameters. The objective is to globally stabilize the system and
achieve the asymptotic tracking between the system output y = x1 and the refer-
ence signal yd. In section 2.3.2 an implementation of the traditional backstepping
control based on the integrator backstepping was considered to control a second
order nonlinear system to show the explosion of complexity problem. In sec-
tion 2.4.2 a command filtered backstepping control was implemented to the same
second order nonlinear system to avoid the explosion of complexity problem by
using a command filter. In the following section, a parametric nonlinear system
of order three with unknown parameters will be considered and the previously
implemented command filtered backstepping approach will be extended to the
adaptive case. Being the backstepping control a recursive approach, the exten-
sion to higher order systems results simple, and it will be discussed later in the
work.

2.5.1 Third order system control

The following parametric nonlinear system of order three is considered:
ẋ1 = f1(x1) + g1(x1)x2 + φT

1 (x1)θ1

ẋ2 = f2(x1, x2) + g2(x1, x2)x3 + φT
2 (x1, x2)θ2

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)u + φT
3 (x1, x2, x3)θ3

y = x1

(2.67)

where x1, x2, x3 ∈ R are the state variables of the system, u ∈ R is the control
input and f1, f2, f3 ∈ R, g1, g2, g3 ∈ R and φ1, φ2, φ3 ∈ RT are known nonlinear
functions and θ1, θ2, θ3 ∈ RT are unknown parameters.
The objective is to globally stabilize the system and achieve the asymptotic track-
ing between the output of the system y = x1 and the reference signal yd.
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STEP 1

The backstepping algorithm starts by defining the tracking error between the out-
put y = x1 and the reference signal yd as:

x̃1 = x1 − yd (2.68)

To derive the stabilizing function α1, which will act as a virtual input to stabilize
the first system and guarantee x1 = yd asymptotically, a Lyapunov Function and
its derivative will be defined.
First, the derivative of the tracking error x̃1 is considered:

˙̃x1 = ẋ1 − ẏd = f1 + g1x2 + φT
1 θ1 − ẏd (2.69)

Since θ1 is unknown, an estimate value θ̂1 of θ1 is considered and then an estima-
tion law for θ̂1 will be determined. Moreover, an estimation error θ̃ between the
real value of θ1 and its estimation θ̂1 will be defined as follows:

θ̃1 = θ1 − θ̂1 (2.70)

The following Lyapunov Function V1(x̃1, θ̃1), which also includes the estimation
error θ̃1 is chosen:

V1(x̃1, θ̃1) =
1
2

x̃2
1 +

1
2

θ̃T
1 Γ−1

1 θ̃1 (2.71)

where Γ1 is a diagonal positive definite matrix.
The derivative of the Lyapunov Function V1(x̃1, θ̃1) will be now calculated:

V̇1(x̃1, θ̃1) = x̃1 ˙̃x1 + θ̃T
1 Γ−1

1
˙̃θ1 = x̃1( f1 + g1x2 + φT

1 θ1 − ẏd) + θ̃T
1 Γ−1

1
˙̃θ1 (2.72)

In order to achieve V̇1(x̃1, θ̃1) < 0 and so x̃1 → 0 asymptotically, one would
choose the stabilizing function x2 = α1 as:

α1 = α∗1 = − 1
g1
( f1 + φT

1 θ1 − ẏd − k1x̃1) (2.73)

where k1 > 0 is a tuning parameter.
Because θ1 is not available, the following stabilizing function α1 is chosen, where
instead of θ1, its estimate value θ̂1 is included:

α1 = − 1
g1
( f1 + φT

1 θ̂1 − ẏd − k1x̃1) (2.74)

By substituting x2 = α1 in equation 2.72:

V̇1(x̃1, θ̃1) = x̃1(−k1x̃1 + φT
1 θ1 − φT

1 θ̂1) + θ̃T
1 Γ−1

1
˙̃θ1

= x̃1(−k1x̃1 + φT
1 θ̃1) + θ̃T

1 Γ−1
1

˙̃θ1

= −k1x̃2
1 + θ̃T

1 (Γ
−1
1

˙̃θ1 + x̃1φ1) (2.75)

If one chooses the following value for ˙̃θ1:

˙̃θ1 = −Γ1x̃1φ1 (2.76)
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the derivative of the Lyapunov Function V̇1(x̃1, θ̃1) becomes:

V̇1(x̃1, θ̃1) = −k1x̃2
1 < 0 (2.77)

This guarantees that x̃1 → 0 asymptotically.
Based on equation 2.76, the update law for the estimated parameter θ̂1 can be
derived:

˙̂θ1 = − ˙̃θ1 = Γ1x̃1φ1 (2.78)

θ̂1 = Γ1

∫
x̃1φ1 (2.79)

STEP 2

The next step is to pass α1 to a command filter to obtain x2,c and ẋ2,c.
The following command filter in the form of a second order system is considered:{

q̇1,1 = ωnq1,2

q̇1,2 = −2ζωnq1,2 −ωn(q1,1 − α1)
(2.80)

where x2,c = q1,1 and ẋ2,c = ωnq1,2 are the outputs the command filter.
The tracking error x̃2 between x2 and x2,c is defined as follows:

x̃2 = x2 − x2,c (2.81)

and its derivative ˙̃x2:
˙̃x2 = ẋ2 − ẋ2,c (2.82)

Because a command filter was used to filter α1, a compensation tracking error v1
of x̃1 is derived, and it will be used instead of x̃1 in the next calculations:

v1 = x̃1 − ξ1 (2.83)

The ξ̇1 signal is defined as:

ξ̇1 = −k1ξ1 + g1(x2,c − α1) , ξ1(0) = 0 (2.84)

The derivative of v1 is derived, as it will be used in the calculation of the next
Lyapunov function:

v̇1 = ˙̃x1 − ξ1

= [ f1 + g1x2 + φT
1 θ1 − ẏd]− [−k1ξ1 + g1(x2,c − α1)]

= f1 + g1x2 + φT
1 θ1 − ẏd + k1ξ1 − g1x2,c + g1α1

by substituting x̃2 = x2 − x2,c and α1 with equation 2.74, one obtains:

v̇1 = g1x̃2 + φT
1 θ1 + k1ξ1 − k1x̃1 − φT

1 θ̂1

= −k1(x̃1 − ξ1) + g1x̃2 + φT
1 θ̃1

= −k1v1 + g1x̃2 + φT
1 θ̃1 (2.85)
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The following Lyapunov Function V2(v1, x̃2, θ̃1, θ̃2) will be chosen, where instead
of x̃1, its compensated signal v1 is included:

V2(v1, x̃2, θ̃1, θ̃2) =
1
2

x̃2
1 +

1
2

x̃2
2 +

1
2

θ̃T
1 Γ−1

1 θ̃1 +
1
2

θ̃T
2 Γ−1

2 θ̃2 (2.86)

where Γ1 and Γ2 are diagonal positive definite matrices.
The derivative of V2(v1, x̃2, θ̃1, θ̃2) will be now calculated:

V̇2(v1, x̃2, θ̃1, θ̃2) = v1v̇1 + x̃2 ˙̃x2 + θ̃T
1 Γ−1

1
˙̃θ1 + θ̃T

2 Γ−1
2

˙̃θ2

= v1(−k1v1 + g1x̃2 + φT
1 θ̃1) + x̃2( f2 + g2x3 + φT

2 θ2 − ẋ2,c) + θ̃T
1 Γ−1

1
˙̃θ1 + θ̃T

2 Γ−1
2

˙̃θ2

= −k1v2
1 + x̃2(g1v1 + f2 + g2x3 + φT

2 θ2 − ẋ2,c) + θ̃T
1 (Γ

−1
1

˙̃θ1 + v1φ) + θ̃T
2 Γ−1

2
˙̃θ2
(2.87)

The following values for the stabilizing function x3 = α2 and ˙̃θ1 are chosen:

α2 = − 1
g2
( f2 + φT

2 θ̂2 − ẋ2c − k2x̃2) (2.88)

˙̃θ1 = −Γ1v1φ1 (2.89)

where k2 > 0 and Γ1 are tuning parameters.
By substituting x3 = α2 and ˙̃θ1 into equation 2.87:

V̇2(v1, x̃2, θ̃1, θ̃2) = −k1x̃2
1 − k2x̃2

2 + θ̃T
2 (Γ

−1
2

˙̃θ2 + x̃2φ) (2.90)

Finally, the following value for ˙̃θ2 is chosen:

˙̃θ1 = −Γ2x̃2φ2 (2.91)

The derivative of the Lyapunov Function V̇2(v1, x̃2, θ̃1, θ̃2) becomes:

V̇2(v1, x̃2, θ̃1, θ̃2) = −k1x̃2
1 − k2x̃2

2 < 0 (2.92)

This guarantees:

• v1 = x̃1 − ξ1 → 0 asymptotically

• x̃2 = x2 − ẋ2,c → 0 asymptotically

The new Adaptive Laws to estimate θ̂1 and θ̂2 can be derived:

˙̂θ1 = − ˙̃θ1 = Γ1v1φ1 (2.93)

θ̂1 = Γ1

∫
v1φ1 (2.94)

˙̂θ2 = − ˙̃θ2 = Γ2x̃2φ2 (2.95)

θ̂2 = Γ2

∫
x̃2φ2 (2.96)

Based on this intermediate result, it’s already possible to determine a control for
second order system nonlinear system. The control can be achieve considering
α2 = u.
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STEP 3

The backstepping procedure will be iterated for the third and last time because
the controlled system is a third order system (n = 3). The stabilizing function α2
will be passed to a command filter to obtain x3,c and ẋ3,c.
The following command filter will be considered:{

q̇2,1 = ωnq2,2

q̇2,2 = −2ζωnq2,2 −ωn(q2,1 − α2)
(2.97)

where x3,c = q2,1 and ẋ3,c = ωnq2,2 are the outputs of the command filter.
The tracking error x̃3 between x3 and x3,c is defined as follows:

x̃3 = x3 − x3,c (2.98)

and its derivative
˙̃x3 = ẋ3 − ẋ3,c (2.99)

Because a command filter has been used to filter α2, a compensation tracking error
v2 of x̃2 is defined and it will be used instead of x̃2 in the next calculations:

v2 = x̃3 − ξ2 (2.100)

The ξ̇2 signal is defined as:

ξ̇2 = −k2ξ2 + g2(x3,c − α2), ξ2(0) = 0 (2.101)

The derivative of v2 will be considered as it will be necessary in the calculation of
the derivative of the next Lyapunov function.

v̇2 = ˙̃x2 − ξ2

= [ f2 + g2x3 + φT
2 θ2 − ẋ2,c]− [−k2ξ2 + g2(x3,c − α2)]

= f2 + g2x3 + φT
2 θ2 − ẋ2,c + k2ξ2 − g2x3,c + g2α2 (2.102)

by substituting ˙̃x2 = ẋ2 − ẋ2,c and α2 with equation 2.88, one obtains:

v̇2 = g2x̃3 + φT
2 θ2 + k2ξ2 − k2x̃3 − φT

2 θ̂2

= −k2(x̃3 − ξ2) + g2x̃3 + φT
2 θ̃2

= −k2v2 + g2x̃3 + φT
2 θ̃2 (2.103)

The third Lyapunov Function V3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) is defined as follows:

V3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) =
1
2

ṽ2
1 +

1
2

ṽ2
2 +

1
2

x̃2
3 +

1
2

θ̃T
1 Γ−1

1 θ̃1 +
1
2

θ̃T
2 Γ−1

2 θ̃2 +
1
2

θ̃T
3 Γ−1

3 θ̃3

(2.104)

Where Γ1, Γ2 and Γ3 are diagonal positive definite matrices.
The derivative of V3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) will be now calculated:

V̇3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) = v1v̇1 + v2v̇2 + x̃3 ˙̃x3 + θ̃T
1 Γ−1

1
˙̃θ1 + θ̃T

2 Γ−1
2

˙̃θ2 + θ̃T
3 Γ−1

3
˙̃θ3

= v1(−k1v1 + g1x̃2 + φT
1 θ̃1) + v2(−k2v1 + g2x̃3 + φT

2 θ̃2)+

+ x̃3( f2 + g3u + φT
3 θ3 − ẋ3,c) + θ̃T

1 Γ−1
1

˙̃θ1 + θ̃T
2 Γ−1

2
˙̃θ2 + θ̃T

3 Γ−1
3

˙̃θ3

= −k1v2
1 +−k2v2

1 + x̃3(g2v1 + f3 + g3u + φT
3 θ3 − ẋ3,c)+

+ θ̃T
1 (Γ

−1
1

˙̃θ1 + v1φ) + θ̃T
2 (Γ

−1
2

˙̃θ2 + v2φ) + θ̃T
3 Γ−1

3
˙̃θ3 (2.105)
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One chooses the following values for the input signal u, ˙̃θ1 and ˙̃θ2:

u = − 1
g3
( f3 + φT

3 θ̂3 − ẋ3,c − k3x̃3) (2.106)

˙̃θ1 = −Γ1v1φ1 (2.107)
˙̃θ2 = −Γ2v2φ2 (2.108)

where k3 > 0, Γ1 and Γ2 are tuning parameters.
By substituting u, ˙̃θ1 and ˙̃θ2 in 2.105, one obtains:

V̇3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) = −k1v2
1 − k2v2

2 − k3x̃3 + θ̃T
3 (Γ

−1
3

˙̃θ3 + x̃3φ) (2.109)

Finally, the following value for ˙̃θ3 is chosen:

˙̃θ3 = −Γ3x̃3φ3 (2.110)

The Lyapunov Function V̇3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) becomes:

V̇3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) = −k1x̃2
2 − k2x̃2

2 − k3x̃2
3 < 0 (2.111)

This guarantees:

• v1 = x̃1 − ξ1 → 0 asymptotically

• v2 = x2 − ξ2 → asymptotically

• x̃3 = x3 − ẋ3,c → 0 asymptotically

The new Adaptive Laws to estimate θ̂2 and θ̂3 can be derived:

˙̂θ2 = − ˙̃θ2 = Γ1v2φ2 (2.112)

θ̂2 = Γ2

∫
v2φ2 (2.113)

˙̂θ3 = − ˙̃θ3 = Γ3x̃3φ3 (2.114)

θ̂3 = Γ3

∫
x̃3φ3 (2.115)

The important results will be summarized.
Stabilizing functions α1, α2 and the real control input u values:

α1 = − 1
g1
( f1 + φT

1 θ̂1 − yd − k1x̃1)

α2 = − 1
g2
( f2 + φT

2 θ̂2 − ẋ2,c − k2x̃2)

u = − 1
g3
( f3 + φT

3 θ̂3 − ẋ3,c − k3x̃3)

Adaptive laws for θ̂1, θ̂2 and θ̂3

θ̂1 = Γ2

∫
v1φ1

θ̂2 = Γ2

∫
v2φ2

θ̂3 = Γ3

∫
x̃3φ3
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Chapter 3

Disturbance Identification

3.1 System control in presence of disturbances

In the previous chapter, a control law for nonlinear system in the strict form
with unknown parameters was obtained by using a Command Filtered Adaptive
Backstepping approach. In the case where external disturbances ∆̃ = [∆1, . . . ∆n]
enter the system, the previously developed algorithm cannot guarantee asymp-
totical stability or good tracking performance between the system output and the
desired reference signal.
The following class of nonlinear system affected by external disturbances will be
considered:

ẋ1 = f1(x1) + g1(x1)x2 + φT
1 (x1)θ1 + ∆1

ẋ2 = f2(x1, x2) + g2(x1, x2)x3 + φT
2 (x1, x2)θ2 + ∆2

...
ẋi = fi(x1, x2, . . . xi) + gi(x1, x2, . . . xi)xi+1 + φT

i (x1, x2, . . . xi)θi + ∆i
...
ẋn = fn(x1, x2, . . . xn) + gn(x1, x2, . . . xn)u + φT

n (x1, x2, . . . xn)θn + ∆n

y = x1

(3.1)

where ∆i for i = 1, . . . , n are external disturbances, x1, . . . , xn ∈ R represent
the state variables of the system, u ∈ R is the control input and f1, f2, . . . , fi, . . . , fn,
g1, g2, . . . , gi, . . . , gn ∈ R, φ1, φ2, . . . φi . . . , φn ∈ RT for i = 1, . . . , n are known func-
tions and θ1, θ2, . . . , θi, . . . , θn ∈ RT for i = 1, . . . , n are unknown parameters .
The objective is to globally stabilize the system and achieve the asymptotic track-
ing between the output of the system y = x1 and the reference signal yd. The
control systems developed in the previous chapter cannot guarantee stability as
they were developed considering a non-disturbance case. The following exam-
ples will show the degrade of the tracking performance caused by the introduc-
tion into the system of the external disturbances, which cannot be rejected by
using the previously developed command filtered control.
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The following second order nonlinear system is considered:
ẋ1 = 0.5x1 + θ1x2

1 + (1 + 0.1x2
1)x2 + ∆1

ẋ2 = x1x2 + θ2(0.8 sin(x1) +
√

x2) + (2 + cos(x1))u + ∆2

y = x1

(3.2)

where ∆1 and ∆2 are external disturbances, θ1 and θ2 are unknown parame-
ters, x1,x2 are the state variables and y is the output of the system.
The initial condition is x0 = [x10, x20]

T = [0, 0]T and the desired reference signal
of the system is yd = sin(t). In the following, some plots of the tracking error
x̃1 = x1 − yd will show the degradation in the tracking performance caused by
the introduction of external disturbances in the controlled system without any
disturbance rejection in the control system.

The following external disturbances signals ∆1 and ∆2 will be considered:

∆1 = δ1[(cos(0.4t) + [0.5 + 0.5sin(0.8t)]) (3.3)

∆2 = δ2[0.7sin(t +
π

4
) + 0.5sin(t)] (3.4)

where δ1 ranges from 1 to 1.3 and δ2 ranges from 1 to 1.5.

No disturbance case

Figure 3.1: Error between reference signal yd and the output y = x1 in case where
no external disturbances area added to the system

In the case where no disturbances are present in the system (∆1 = ∆2 = 0), the
error x̃1 has peak values at t = 1s and t = 7s caused by the unknown parameters
θ1 and θ2 that makes the tracking more difficult until the Adaptive law estimates
proper estimation values θ̂1 and θ̂2.
After t = 10s, the adaptive algorithm determines good estimations of θ1 and θ2
and so the error stays in the range of x̃1 = ±0.02 when t > 15s.
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Disturbance case

In the case where the disturbances are added to the system, the error x̃1 has a
peak value of x̃1 = 0.1 at t = 1.5s and for t > 5 it stays in the range of ±0.06
because the adaptive algorithm finds satisfying estimated values θ̂1 and θ̂2.

Figure 3.2: Error between reference signal yd and the output y = x1 in case where
an external disturbances are added to the system

As shown in the previous plots, the developed Command Filtered Adaptive
Backstepping algorithm guaranteed satisfying tracking performance in the ”non
disturbances case” but in the case where external disturbances were added to the
system, the performance was deteriorated.
In this work, the case where a plain data set of the unknown disturbances is
known is considered. The considered available data is affected by noise and
a learning algorithm will be implemented to estimate the original signal based
on the noisy data. Several Neural network based approaches have been imple-
mented in backstepping control in some researches [11][12]. A known drawback
of traditional Neural network approaches is in the curse of dimensionality that
one has in the number of parameters, which recently lead the researchers to use a
Neural network derived method known as Support vector Machine [14][16][26].
In this work, a Support Vector Machine based method called Support Vector Re-
gression will be used to compute a regression of the disturbances based on the
available noisy data. Then a disturbance rejection system will be implemented
in a novel command filtered adaptive backstepping control to reject the original
disturbances ∆1 and ∆2 by using the regression models by SVRs. In the following
section, a brief introduction to Neural networks function estimation approaches
will be presented.
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3.2 Introduction to Neural Networks

An Artificial Neural Network (ANN) is a computational model that is inspired by
the way biological Neural networks in the human brain process information. Ar-
tificial Neural networks have generated a lot of excitement in Machine Learning
research and industry, thanks to many breakthrough results in speech recogni-
tion, computer vision and text processing [14][26]. A particular type of Artificial
Neural network called Multi Layer Perceptron provides a nonlinear map between
the input vector and the output vector and has been largely used in different en-
gineering field to learn functions f () : Rn → Rm by a given dataset, where n is
the number of dimensions of the input and m is the number of dimensions of the
output. The basic unit of computation in a Neural network is the neuron, often
called perceptron or node. It receives input from some other nodes, or from an
external source and computes an output. Each input has an associated weight
wi, which is assigned on the basis of its relative importance to other inputs. The
node applies a function f , known as Activation function, to the weighted sum of
its inputs as shown below:

Figure 3.3: An example of Perceptron

The above network takes numerical inputs x1, x2 and x3 with the associated
weights w1, w2 and w3. Additionally, there is another input with value 1 and
weight b (called the Bias) associated with it. The bias term provides every per-
ceptron with a constant value in addition to the normal inputs that the perceptron
receives. The activation function f decides whether a neuron should be activated
or not by calculating weighted sum and further adding bias to it. The activation
function transform the input into a nonlinear function and so makes the node
able to learn and perform more complex tasks.
Some example of activation functions are:

f (x) = sigmoid(x) =
1

1 + e−x f (x) = tanh(x) =
ex − e−x

ex + e−x

The sigmoid function takes a real-valued input x and squashes it to interval [0, 1]
while the hyperbolic tangent takes a real-valued input x and squashes it to the
interval [−1, 1].
A network composed by multiple perceptrons takes the name of Multi layer Per-
ceptron networks and it will be discussed in the following section.
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3.2.1 Multi Layer Perceptron

A Multi Layer Perceptron (MLP) is a class of Neural networks that contains mul-
tiple perceptrons, or nodes, arranged in layers. Nodes from adjacent layers have
links between them, which have associated weights. While a single layer percep-
tron, explained before, can only learn linear functions, a multi layer perceptron
can also learn non-linear functions.

Figure 3.4: Example of Multi Layer Perceptron Network

In a Multi Layer Perceptron Neural Network, three types of layer can be defined:

• The Input layer acquire information from the outside world and passes it to
the next layer, called Hidden layer.

• The Hidden layer has nodes that perform computations and transfer infor-
mation from the input nodes to the output nodes.

• The Output layer receives the information from the Hidden layer and trans-
fer them to the outside world.

Given a set of input X = (x1, x2, . . . , xn) and a target value y, a Multi Layer Per-
ceptron can learn the relationship between the input and the target, for either
classification or regression. Neural networks are capable of adaptation to given
data even when the input data set contains noise or missing values. In order to
achieve this result, Neural networks use learning algorithms to update the val-
ues of the weights and biases, based on the error between the actual output of the
network and a desired output. One of the most used learning algorithm is called
”Gradient Descend”. First a Loss function is defined between the desired and the
actual output of the network, then the algorithm calculates its derivatives respect
to the bias and the weights and solve a minimum optimization problem, in order
to find the best values of bias and weights that will minimize the Loss function.
Despite many of these advances, there still remain a number of weak points for
these classical Neural networks approaches, namely, the existence of many lo-
cal minima solutions and the issue of choosing the number of hidden units and
hidden layers [14][26]. Major advances have been obtained by means of a new
class of Neural networks called Support Vector Machines (SVMs), originally in-
troduced by Vapnik within the area of statistical learning theory and structural
risk minimization to solve classification problems [13], which will be introduced
in the following section.
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3.3 Introduction to Support Vector Machines

Support Vector Machines (SVMs) are a set of supervised learning methods used
for classification and regression. Support Vector Machines (SVMs) were first
heard in 1992, introduced by Boser, Guyon, and Vapnik and originally used to
solve classification problems [14]. To perform a classification, Support Vector Ma-
chines need to be first trained with some input data with a known classification
by using statistical learning theory. In the training process, the input data is pro-
jected into a higher dimensional space where a hyperplane that can classify the
projected data is considered instead of a difficult and heavy computing nonlin-
ear function in the original lower dimensional space. The optimization problem
that will solve the classification is first evaluated in a primal weight space, where
one can work in the higher dimensional feature space, but one solves the result-
ing problem in the dual space, in which the solution is the same as the primal
problem but results easier to calculate. Once the training process is finished, the
Support Vector Machine can classify new input data. Support Vector Machine
methods have been widely used to solve classification and regression problems
and have given comparable accuracy to sophisticated Neural networks in some
applications such as hand writing analysis, face analysis and so forth, especially
for pattern classification and regression based applications [13][14]. Moreover,
Support Vector Machine methods solve convex optimizing problems, typically
quadratic programming, where standard Neural networks methods solve opti-
mization problems where the solution is a local minima and not necessary the
optimal solution [13][26]. Support Vector Machine were originally developed
to solve classification problems, but recently a regression variant called Support
Vector Regression has been largely used to solve regression problems and will be
introduced later in this work.
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3.4 Linear SVM Classifier

First the Support Vector Machine will be introduced for classification problem,
later in this work a Regression model will be derived. Given a set of training
examples, each marked as belonging to one or the other of two classes, a Support
Vector Machine algorithm defines a classifier that can classify new data.

Figure 3.5: Example of Classification problem

To separate the two classes (blue and green dots), there are many possible
hyperplanes that can correctly separate the two classes. Classification algorithms
aims to define which is the best hyperplane that can separate the two classes.
The dimension of the hyperplane depends upon the dimension of the data. For
example, if the dimension of the input data is n = 2, then the hyperplane is just
a line, if the dimension of input data is n = 3, then the hyperplane becomes
a two-dimensional plane and so on. A Support Vector Machine Classifier can
be implemented to find the ”best” hyperplane y = wT ϕ(x) + b that separates the
two classes. In order to do so, one would choose a hyperplane that maximizes the
margin between the different classes as the further from the hyperplane, giving
a greater chance of new data being classified correctly. Therefore, the data points
has to be as far away from the hyperplane as possible, while still being on the
correct side of it. The vector points closest to the hyperplane are known as the
Support Vector points because only these points are contributing to the result of
the algorithm. If a data point is not a Support Vector, removing it has no effect on
the model. On the other hands, deleting the Support Vectors will then change the
position of the hyperplane. In order to find the best margin that divides the two
classes, only the Support Vectors will be considered.
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The classification problem for two classes can be formulated as follows:

a training set {xk, yk}N
k=1 with input data xk ∈ R2 and corresponding binary class

labels yk ∈ {−1,+1}, find the best separator y = wTx + b that allows the best
classification between the two classes, labeled by {−1,+1}:

wTxk + b ≥ +1 i f yk = +1

wTxk + b ≤ −1 i f yk = −1

which can be written as:

yk[wTxk + b] ≥ +1 k = 1, . . . , N.

In the figure below, the classification problem for two different classes of data
(blue and green dots) is shown. In the considered case the hyperplane is ”linear”
(a line) and takes the form: y = wTx + b

Figure 3.6: Linear SVM

The objective is to maximize the margin 2ε between the delimiting functions
wTxk + b = +1 and wTxk + b = −1, which delimits the two classes.
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The geometrical distance between the two delimiting functions is defined as
follows:

2ε =
2
‖w‖ =

2√
wTw

(3.5)

So maximizing the margin 2
‖w‖ means minimizing the quantity 1

2

√
wTw. Then

the following minimization problem can be formulated [14]:

min
w,b

1
2

wTw

subject to yi(wTxi + b) ≥ 1

As most of the real-world data are not fully linearly separable, the slack vari-
ables ξk are introduced in order to allow some data to fall off the margin with a
penalization.

Figure 3.7: Linear SVM with slack variables

The slack variables aim to avoid the over fitting problem, where an unneces-
sary difficult nonlinear function is used to separate different classes of data that
could be separated by a linear separator that allows errors with penalization.
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The overfitting problem is shown in the figure below. On the left figure, a
linear separator has been used to classify the two sets of input data. On the other
hand, on the right figure a high computational nonlinear separator was used to
separate the two classes.

Figure 3.8: Example of over fitting problem

The previously defined optimization problem is reformulated including the
slack variables ξi:

min
w,b,ξ

1
2

wTw + C
N

∑
i=1

ξi

subject to yi(wTxi + b) + ξi ≥ 1 i = 1, . . . , N
ξi ≥ 0 i = 1, . . . , N

In the general case, the relationship between the two classes is nonlinear and so
no linear hyperplane can separate the two classes of data even if slack variables
are introduced. An example is shown in the figure below:

Figure 3.9: Example of non-linearly separable data

To solve this class of non-linear classification problems, SVMs algorithm de-
fine a function ϕ() : Rn −→ Rm, where n > m, maps the input space to a so-called
higher dimensional feature space where the data become linearly separable. This
class of classification problems will be discussed in the next section.

Chapter 3 Cuoghi Ludovico 39



CHAPTER 3. DISTURBANCE IDENTIFICATION

3.5 Nonlinear SVM Classifier

Given a training set {xk, yk}N
k=1 with input data xk ∈ Rn and corresponding bi-

nary class labels yk ∈ {−1,+1}, the SVM classifier formulation starts from the
following assumption:

wT ϕ(xk) + b ≥ +1 i f yk = +1

wT ϕ(xk) + b ≤ −1 i f yk = −1

Which can be written as:

yk[wT ϕ(xk) + b] ≥ +1 k = 1, . . . , N.

Here ϕ() : Rn −→ Rm, where n > m is a nonlinear function that maps the input
space to a so-called higher dimensional feature space (See figure below).

Figure 3.10: Mapping the Input data to the higher dimensional space by using
the map ϕ()

It is important to note that the dimension m of this space is only defined in
an implicit way and it can be infinite dimensional [14]. The term b denotes a bias
term. One defines the following optimization problem:

min
w,b,ξ

J(w, ξ) =
1
2

wTw + C
N

∑
i=1

ξi

subject to yi(wT ϕ(xi) + b) ≥ 1− ξi i = 1, . . . , N
ξi ≥ 0 i = 1, . . . , N

The minimization of ‖w‖2 corresponds to the maximization of the margin be-
tween the two classes. C is a positive real constant known as ”regularization
parameter” and should be considered as a tuning parameter in the algorithm.
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The Lagrangian for this problem is given by

L(w, b, ξ; α, v) = J(w, ξ)−
N

∑
i=1

αi{yi(wT ϕ(xi) + b)− 1 + ξi} −
N

∑
i=1

viξi (3.6)

with Lagrange multipliers αi > 0, υi > 0 where i = 1, . . . , N.
The solution of optimization problem is characterized by the saddle point of the
Lagrangian [13], which is defined as follows:

max
α,v

min
w,b,ξ

L(w, b, ξ; α, v) (3.7)

One obtains

∂L
∂w

= 0 −→ w =
N

∑
i=1

αiyi ϕ(xi), (3.8)

∂L
∂b

= 0 −→
N

∑
i=1

αiyi = 0, (3.9)

∂L
∂ξi

= 0 −→ 0 ≤ αi ≤ C, i = 1, . . . , N (3.10)

By replacing w in the Lagrangian, one obtains the following dual problem (in the
Lagrange multipliers α), which is the quadratic programming problem:

max
α

Q(α) = −1
2

N

∑
i,k=1

yiyk ϕ(xi)
T ϕ(xk)αiαk +

N

∑
i=1

αi (3.11)

subject to
N

∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , N (3.12)

One can choose a Kernel function:

K(xi, xk) = ϕ(xi)
T ϕ(xk) (3.13)

so that there is no need to compute φ(xk), which can be infinite dimensional [14].
This operation takes the name of Kernel Trick, and it will be explained in the next
section.
Finally, in the dual space, the nonlinear SVM classifier becomes:

y(x) = sign

[
N

∑
i=1

αiyiK(x, xi) + b

]
(3.14)

where αi > 0 follow from the QP problem. The non-zero Lagrange multipliers
αi are called Support Values. The corresponding data points are called Support
Vectors and are located close to the hyperplane. The bias term b follows from the
called Karush–Kuhn–Tucker (KKT) conditions (Karush 1939, Kuhn and Tucker
1951) [13], and is not further discussed in this work.
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3.6 Kernel Functions

Formally, a Kernel function is any function that satisfies Mercer theorem, which
states that a given function k(xi, xj) is a kernel function if the associated Kernel
Matrix K where Ki,j = k(xi, xj) is positive semi-definite, i.e:

cTKc = ∑
i

∑
j

cicjKi,j = ∑
i

∑
j

cicjφ(xi)
Tφ(xj) =

=

(
∑

i
φ(xi)

)∑
j

φ(xj)

 =

∥∥∥∥∑
j

φ(xj)

∥∥∥∥2

≥ 0

3.6.1 Kernel Trick

The Kernel Trick is a mathematical tool that allows to get the same result of an
inner product in a high dimensional space but operating in a low dimensional
space. In other words, for input variable xi and xj in the input space A, certain
functions K(xi, xj) can be expressed as inner product in another space B, where
dim(B) > dim(A). The function k : A × A → R is often referred to as Kernel
or Kernel Function. A Kernel Function is a function which represents a inner
product in an extended space. Given the feature map φ : xi → φ(xi) then the
computation can be made much simpler using the kernel defined as.

k(xi, xj) = 〈φ(xi)φ(xj)〉B

There exists different Kernel functions, which are chosen depending on the prob-
lem at hand. Two examples of Kernel Functions will be introduced.

Polynomial Kernel

With n original features and d degree of polynomial, the polynomial kernel yields
nd extended features

k(xi, xj) = (xi · xj + c)d

Gaussian radial basis function (RBF)

The RBF Kernel is a general-purpose kernel that is generally used when there is
no prior knowledge about the input data.

K(xi, xk) = exp
(
−γ‖xi − xk‖2

)
where the parameter γ > 0 is called learning rate and defines the influence of a
single training example.
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3.7 Support Vector Regression

Support Vector Machine can also be used as a regression method, while main-
taining all the main features that characterize the algorithm and it takes the name
of Support Vector Regression [14]. The Support Vector Regression (SVR) uses the
same principles as the SVM for classification, with only a few minor differences.
In the case of regression, the parameter ε is set as the tolerance approximation
that a SVM would have requested from the problem. The main idea is to choose
the hyperplane that maximizes the margin, considering that the some error is tol-
erated by the means of the slack variables to avoid overfitting.
Consider a given training set {xk, yk}N

k=1 with input data xk ∈ Rn and output data
yk ∈ R. The following model is taken

f (x) = wT ϕ(x) + b

where the input data are projected to a higher dimensional feature space with the
map ϕ() as in the classifier case. In Empirical Risk Minimization one optimizes
the cost function containing Vapnik’s ε-insensitive loss function which is defined
as follows:

The optimization problem is defined as follows:

min
w,b,ξ

J(w, ξ, ξ∗) =
1
2

wTw + c
N

∑
i=1

(ξi + ξ∗i )

subject to yi − wT ϕ(xi)− b ≤ ε + ξi

wT ϕ(xi) + b− yi ≤ ε + ξ∗i
ξ, ξ∗ ≥ 0 i = 1, . . . , N

where in this case ε is the accuracy that one demands for the approximation,
which can be violated by means of the slack variables ξ and ξ∗.
The conditions for optimality lead to the following dual problem in the Lagrange
multipliers α, α∗ [14]:

max
α,α∗

− 1
2

N

∑
i,k=1

(αi − α∗i )(αk − α∗k)K(xi, xk)− ε
N

∑
i=1

(αi + α∗i ) +
N

∑
i=1

yi(αi − α∗i )

subject to
N

∑
i=1

(αi − α∗i ) = 0, αi, α∗i ∈ [0, C]

The kernel trick K(xk, xi) = φ(xk)
Tφ(xi) is again applied in the formulation of

this quadratic programming problem. Finally, the SVM for nonlinear function
estimation model can be derived:

f (x) =
N

∑
i=1

(αi − α∗i )K(x, xi) + b (3.15)
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3.8 Least Squares Support Vector Regression

In this work, a Least Square version of the standard Support Vector Regression
will be implemented. The Least Squares Support Vector Regression (LS-SVR)
uses the squared-error loss function where the standard SVR uses the so-called ε
insensitive absolute-error loss function.

Figure 3.11: On the left, the Loss function for standard SVR, on the right the
quadratic Loss function in the LS-SVR

Least-squares SVR loses the sparsity of standard SVR originated from the in-
sensitivity of its loss function to any errors that are smaller than ε. This means
that in LS-SVR, all the training data are considered in the target function, where
in the traditional SVR method, only the Support Vectors are considered. In stan-
dard SVR, the dual problem is a quadratic programming problem that needs an
iterative solution. On the other hand, the LS-SVR leads to a problem that presents
an analytic (i.e. non-iterative) solution, which therefore is computationally more
efficient compared to the non least square variant.
The LS-SVR model for function estimation has the following representation in
feature space:

y(x) = wT ϕ(x) + b

Where x ∈ Rn, y ∈ R. The use of nonlinear mapping φ() is similar to the classifier
case. Given a training set {xk, yk}N

k=1 one defines now the optimization problem

min
w,b,ξ

J(w, ξ) =
1
2

wTw + C
1
2

N

∑
i=1

e2
i (3.16)

subject to

yi = wT ϕ(xi) + b + ei, i = 1, . . . , N

One constructs the following Lagrangian[13]:

L(w, b, e; α) = J(w, e)−
N

∑
i=1

αi(wT ϕ(xi) + b + ei − yi) (3.17)

where αi are Lagrange multipliers.
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The conditions for optimality are given by

∂L
∂w

= 0 −→ w =
N

∑
i=1

αi ϕ(xi), (3.18)

∂L
∂b

= 0 −→
N

∑
i=1

αi = 0, (3.19)

∂L
∂ei

= 0 −→ αi = Cei i = 1, . . . , N (3.20)

∂L
∂αi

= 0 −→ wT ϕ(xi) + b + ei − yi, i = 1, . . . , N (3.21)

with solution:

where y = [y1, . . . , yN], I = [1, . . . , 1] and α = α1, . . . , αN.
From application of the Mercer condition one obtains

Ωi,k = ϕ(xi)
T ϕ(xk), i, k = 1, . . . , N

= K(xi, xk)

The resulting LS-SVM model for function estimation becomes

y(x) =
N

∑
i=1

αiK(x, xi) + b (3.22)

where αk, b are the solution to the linear system.

The Least Squares Support Vector Regression has been widely used in the control
field as a regression model for its effectiveness and simplicity in the formulation
[17][27][28]. In order to obtain the regression model 3.22, a linear set of equation
had to be solved, instead of a quadratic programming problem as in the stan-
dard SVR approach. In the next chapter, the external disturbances ∆i will be esti-
mated by using the LS-SVR regression model in equation 3.22. The approximated
functions will be then used in the design of a novel command filtered adaptive
backstepping control to reject the original disturbances ∆i while guaranteeing the
desired tracking performance and global stability.
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Chapter 4

Control System with Disturbance
Compensation

In this chapter, a regression model by Least Squares Support Vector Regression
will be used to estimate the unknown disturbances. Moreover, the estimated
functions by LS-SVR will be implemented in the control system to reject the ex-
ternal disturbances. The following class of nonlinear system affected by external
disturbances will be considered:

ẋ1 = f1(x1) + g1(x1)x2 + φT
1 (x1)θ1 + ∆1

ẋ2 = f2(x1, x2) + g2(x1, x2)x3 + φT
2 (x1, x2)θ2 + ∆2

...
ẋi = fi(x1, x2, . . . xi) + gi(x1, x2, . . . xi)xi+1 + φT

i (x1, x2, . . . xi)θi + ∆i
...
ẋn = fn(x1, x2, . . . xn) + gn(x1, x2, . . . xn)u + φT

n (x1, x2, . . . xn)θn + ∆n

y = x1

(4.1)

where ∆i for i = 1, . . . , n are external disturbances, x1, . . . , xn ∈ R are the
state variables of the system, u ∈ R is the control input, f1, f2, . . . , fi, . . . , fn ∈ R,
g1, g2, . . . , gi, . . . , gn ∈ R, φ1, φ2, . . . φi . . . , φn ∈ RT for i = 1, . . . , n are known func-
tions and θ1, θ2, . . . , θi, . . . , θn ∈ RT for i = 1, . . . , n are unknown parameters. The
objective is to globally stabilize the system and achieve the asymptotic tracking
between the output of the system y = x1 and the reference signal yd. As shown
in chapter 3, the disturbances deteriorate the performance of the control system
and so a LS-SVR estimation model of the disturbances will be used to estimate
the unknown disturbance. To train the LS-SVR models, an available set of noisy
data {xk, yk}N

k=1 of the external disturbances ∆i for i = 1, . . . , n will be used.
The LS-SVR identification model y(x) obtained in chapter 4 is:

y(x) =
N

∑
k=1

αkK(x, xk) + b (4.2)

where xk are the training data of the disturbance, αk for i = 1, . . . , N and b are
the solution of the optimization problem discussed in the previous chapter and
K(x, xk) is a Kernel Function.
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In order to obtain the solutions αk for i = 1, . . . , N and b, the following linear
system, resulted from the optimization problem, will be considered:

where y = [y1, . . . , yN], I = [1, . . . , 1], C is a tuning parameter and Ω is:

Ωi,k = ϕ(xi)
T ϕ(xk), i, k = 1, . . . , N

= K(xi, xk)

where K(xk, xl) is a Kernel Function.
For this work, the Radial Basis Function Kernel was chosen

K(xi, xj) = exp
(
−γ
∥∥∥xi − xj

∥∥∥2
)

where γ > 0 is a tuning parameter.
In the next section, the command filtered adaptive backstepping control devel-
oped in chapter 3 will be extended to the case where the controlled system is
affected by three different disturbances ∆1, ∆2 and ∆3.

Third order system

The following third order nonlinear system will be considered:
ẋ1 = f1(x1) + g1(x1)x2 + φT

1 (x1)θ1 + ∆1

ẋ2 = f2(x1, x2) + g2(x1, x2)x3 + φT
2 (x1, x2)θ2 + ∆2

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)u + φT
3 (x1, x2, x3)θ3 + ∆3

y = x1

(4.3)

where x1, x2, x3 ∈ R represent the state variables of the system, u ∈ R is the con-
trol input, f1, f2, f3 ∈ R, g1, g2, g3 ∈ R and φ1, φ2, φ3 ∈ RT are known functions,
θ1, θ2, θ3 ∈ RT are unknown parameters and ∆1, ∆2 and ∆3 are unknown distur-
bances.
The objective is to globally stabilize the system and achieve the asymptotic track-
ing between the output of the system y = x1 and the reference signal yd.
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First, the following function ψ1(x), ψ2(x) and ψ3(x), used as estimations of
the three unknown disturbances ∆1, ∆2 and ∆3 respectively, needs to be trained
and then tested:

ψ1(xt,1) =
N1

∑
k=1

αk,1K1(xt,1, xk,1) + b1 (4.4)

ψ2(xt,2) =
N2

∑
k=1

αk,2K2(xt,2, xk,2) + b2 (4.5)

ψ3(xt,3) =
N3

∑
k=1

αk,3K3(xt,3, xk,3) + b3 (4.6)

where xk,1,xk,2 and xk,3 are the training data of the disturbances, αk,1 for i =
1, . . . , N1, αk,2 for i = 1, . . . , N2, αk,3 for i = 1, . . . , N3 and b1,b2 and b3 are the solu-
tion of the optimization problem discussed in the previous chapter and K1(xt,1, xk,1),
K2(xt,2, xk,2) and K3(xt,3, xk,3) are Kernel Functions. The variables xt,1,xt,2 and xt,3
are the testing data used to validate the performance of the SVR models once they
are trained. Both the training data and testing data are acquired for a specific ac-
cumulation time tacc. The testing dataset is generally smaller than the training
dataset. In order to train the SVR models, for each SVR model an optimization
problem (3.16) discussed in the previous chapter is considered. For each of the
three optimization problems, the solutions αi for i = 1, . . . , N and b of the follow-
ing linear system, resulted from the optimization problem, will be considered:

where y = [y1, . . . , yN] are training data of the function that needs to be esti-
mated, I = [1, . . . , 1], C is a tuning parameter and Ω is:

Ωi,k = ϕ(xi)
T ϕ(xk), i, k = 1, . . . , N

= K(xi, xk)

where K(xi, xk) is a Kernel Function.
The Radial Basis Function Kernel was chosen for all the three identification mod-
els.

K1(xi, xj) = exp
(
−γ1

∥∥∥xi − xj

∥∥∥2
)

K2(xi, xj) = exp
(
−γ2

∥∥∥xi − xj

∥∥∥2
)

K3(xi, xj) = exp
(
−γ3

∥∥∥xi − xj

∥∥∥2
)

where γ1, γ2, γ3,> 0 are tuning parameters.
For the first training of the estimation functions ψ1(x), ψ2(x) and ψ3(x), the SVR
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parameters C, also called regularization parameter, and γ, the learning rate of
the RBF function, are set to a initial value. Once the training is finished, the SVR
models will be tested with the testing data.
After the testing, to evaluate the performance of the SVR, in a real world case
study the tuning parameters of the SVR are chosen in order to guarantee the best
tracking between the output of the system and the reference signal and so obtain
the lowest error between the two signals. In the simulations, the unknown dis-
turbance functions that generates the noisy samples are available, and they will
be used to evaluate the performance of the SVRs. The parameters of the SVRs
will be then tuned in order to guarantee the best fit between the approximated
functions by the SVRs and the real noise-less disturbances. Once the results are
satisfying, the functions ψ1(x), ψ2(x) and ψ3(x) can be used in the control laws
of a novel control system in order to compensate the original disturbances ∆1,
∆2 and ∆3. In the following section, a command filtered adaptive backstepping
algorithm similar to the one developed in chapter 2 will be implemented for the
third order system (4.3) considered in this section. The difference with the previ-
ously developed command filtered adaptive backstepping control system is that
the functions ∆1, ∆2 and ∆3 are added to the controlled system and the SVR mod-
els ψ1(x), ψ2(x) and ψ3(x) will be used in the control laws to reject the original
disturbances.

STEP 1

The backstepping algorithm starts by defining the tracking error between the out-
put y = x1 and the reference signal y = yd as:

x̃1 = x1 − yd (4.7)

To derive the stabilizing function α1 that will act as a virtual input to stabilize the
first system and guarantee x1 = yd asymptotically, the Lyapunov Function V1(x̃1)
and its derivative will be derived.
First, derivative of the tracking error x̃1 is considered:

˙̃x1 = ẋ1 − ẏd = f1 + g1x2 + φT
1 θ1 + ψ1(x)− ẏd (4.8)

Since θ1 is unknown, an estimate value θ̂1 of θ1 is considered and then an the es-
timation law for θ̂1 will be determined. Moreover, an estimation error θ̃ between
the real value of θ1 and its estimation θ̂1 is derived as follows

θ̃1 = θ1 − θ̂1 (4.9)

The following Lyapunov Function V1(x̃1, θ̃1), which also includes the estimation
error θ̃1, will be considered:

V1(x̃1, θ̃1) =
1
2

x̃2
1 +

1
2

θ̃T
1 Γ−1

1 θ̃1 (4.10)

where Γ1 is a diagonal positive definite matrix.
The derivative of the Lyapunov Function V1(x̃1, θ̃1) will be now calculated:

V̇1(x̃1, θ̃1) = x̃1 ˙̃x1 + θ̃T
1 Γ−1

1
˙̃θ1 = x̃1( f1 + g1x2 + φT

1 θ1 + ψ1(x)− ẏd) + θ̃T
1 Γ−1

1
˙̃θ1

(4.11)
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In order to achieve V̇1(x̃1, θ̃1) < 0 and so x̃1 = 0 asymptotically, one would choose
the following stabilizing function x2 = α1:

α1 = α∗1 = − 1
g1
( f1 + φT

1 θ1 + ψ1(x)− ẏd − k1x̃1) (4.12)

where k1 > 0 is a tuning parameter.
Because θ1 is not available, one chooses the following stabilizing function α1
where instead of θ1, its estimated value θ̂1 will be used:

α1 = − 1
g1
( f1 + φT

1 θ̂1 + ψ1(x)− ẏd − k1x̃1) (4.13)

By substituting x2 = α1 in equation 4.11:

V̇1(x̃1, θ̃1) = x̃1(−k1x̃1 + φT
1 θ1 − φT

1 θ̂1) + θ̃T
1 Γ−1

1
˙̃θ1

= x̃1(−k1x̃1 + φT
1 θ̃1) + θ̃T

1 Γ−1
1

˙̃θ1

= −k1x̃2
1 + θ̃T

1 (Γ
−1
1

˙̃θ1 + x̃1φ1) (4.14)

by choosing the following value for ˙̃θ1:

˙̃θ1 = −Γ1x̃1φ1 (4.15)

The derivative of the Lyapunov Function V̇1(x̃1, θ̃1) becomes:

V̇1(x̃1, θ̃1) = −k1x̃2
1 < 0 (4.16)

This guarantees x̃1 → 0 asymptotically.
Based on 4.15 the update law for the estimated parameter θ̂1 can be derived:

˙̂θ1 = − ˙̃θ1 = Γ1x̃1φ1 (4.17)

θ̂1 = Γ1

∫
x̃1φ1 (4.18)

STEP 2

The next step is to pass α1 to a command filter to obtain x2,c and ẋ2,c.
The following command filter in the form of a second order system is considered:{

q̇1,1 = ωnq1,2

q̇1,2 = −2ζωnq1,2 −ωn(q1,1 − α1)
(4.19)

where x2,c = q1,1 and ẋ2,c = ωnq1,2 are the outputs the command filter.
The tracking error x̃2 between x2 and x2,c is defined as follows:

x̃2 = x2 − x2,c (4.20)

and its derivative ˙̃x2:
˙̃x2 = ẋ2 − ẋ2,c (4.21)
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Because a command filter was used to filter α1 a compensation tracking error v1
of x̃1 is derived, and it will be used instead of x̃1 in the next calculations:

v1 = x̃1 − ξ1 (4.22)

The ξ̇1 signal is defined as:

ξ̇1 = −k1ξ1 + g1(x2,c − α1), ξ1(0) = 0 (4.23)

The derivative of v1 will be now calculated as it will be used in the calculation of
the next Lyapunov function:

v̇1 = ˙̃x1 − ξ1

= [ f1 + g1x2 + φT
1 θ1 + ψ1(x)− ẏd]− [−k1ξ1 + g1(x2,c − α1)]

= f1 + g1x2 + φT
1 θ1 + ψ1(x)− ẏd + k1ξ1 − g1x2,c + g1α1

by substituting x̃2 = x2 − x2,c and α1 with equation 4.13:

v̇1 = g1x̃2 + φT
1 θ1 + k1ξ1 − k1x̃1 − φT

1 θ̂1

= −k1(x̃1 − ξ1) + g1x̃2 + φT
1 θ̃1

= −k1v1 + g1x̃2 + φT
1 θ̃1 (4.24)

The following Lyapunov Function V2(v1, x̃2, θ̃1, θ̃2) will be chosen, where instead
of x̃1 its compensated signal v1 is included

V2(v1, x̃2, θ̃1, θ̃2) =
1
2

x̃2
1 +

1
2

x̃2
2 +

1
2

θ̃T
1 Γ−1

1 θ̃1 +
1
2

θ̃T
2 Γ−1

2 θ̃2 (4.25)

Where Γ1 and Γ2 are diagonal positive definite matrices.
The derivative of V2(v1, x̃2, θ̃1, θ̃2) is considered:

V̇2(v1, x̃2, θ̃1, θ̃2) = v1v̇1 + x̃2 ˙̃x2 + θ̃T
1 Γ−1

1
˙̃θ1 + θ̃T

2 Γ−1
2

˙̃θ2

= v1(−k1v1 + g1x̃2 + φT
1 θ̃1) + x̃2( f2 + g2x3 + φT

2 θ2 + ψ2(x)− ẋ2,c)+

+ θ̃T
1 Γ−1

1
˙̃θ1 + θ̃T

2 Γ−1
2

˙̃θ2

= −k1v2
1 + x̃2(g1v1 + f2 + g2x3 + φT

2 θ2 + ψ2(x)− ẋ2,c)+

+ θ̃T
1 (Γ

−1
1

˙̃θ1 + v1φ) + θ̃T
2 Γ−1

2
˙̃θ2 (4.26)

The following values for the stabilizing function x3 = α2 and ˙̃θ1 are chosen:

α2 = − 1
g2
( f2 + φT

2 θ̂2 + ψ2(x)− ẋ2c − k2x̃2) (4.27)

˙̃θ1 = −Γ1v1φ1 (4.28)

where k2 > 0 and Γ1 are tuning parameters.
By substituting x3 = α2 and ˙̃θ1 into the Lyapunov Function V̇2(v1, x̃2, θ̃1, θ̃2):

V̇2(v1, x̃2, θ̃1, θ̃2) = −k1x̃2
1 − k2x̃2

2 + θ̃T
2 (Γ

−1
2

˙̃θ2 + x̃2φ) (4.29)

Finally, the following value for ˙̃θ2 is chosen:
˙̃θ1 = −Γ2x̃2φ2 (4.30)

The derivative of the Lyapunov Function V̇2(v1, x̃2, θ̃1, θ̃2) becomes:

V̇2(v1, x̃2, θ̃1, θ̃2) = −k1x̃2
1 − k2x̃2

2 < 0 (4.31)

Chapter 4 Cuoghi Ludovico 51



CHAPTER 4. CONTROL SYSTEM WITH DISTURBANCE COMPENSATION

This guarantees:

• v1 = x̃1 − ξ1 → 0 asymptotically

• x̃2 = x2 − ẋ2,c → 0 asymptotically

The new adaptive laws to estimate θ̂1 and θ̂2 can be derived:

˙̂θ1 = − ˙̃θ1 = Γ1v1φ1 (4.32)

θ̂1 = Γ1

∫
v1φ1 (4.33)

˙̂θ2 = − ˙̃θ2 = Γ2x̃2φ2 (4.34)

θ̂2 = Γ2

∫
x̃2φ2 (4.35)

Based on these intermediate results, it’s already possible to determine a control
for second order system nonlinear system.
The control can be achieve considering α2 = u.

STEP 3

The backstepping procedure will be iterated for the third and last time because
the considered system is a third order system (n = 3). The second stabilizing
function α2 will be passed to a command filter to obtain x3,c and ẋ3,c.
The following command filter will be considered:{

q̇2,1 = ωnq2,2

q̇2,2 = −2ζωnq2,2 −ωn(q2,1 − α2)
(4.36)

where x3,c = q2,1 and ẋ3,c = ωnq2,2 are the outputs of the command filter.
The tracking error x̃3 between x3 and x3,c is defined as follows:

x̃3 = x3 − x3,c (4.37)

and its derivative
˙̃x3 = ẋ3 − ẋ3,c (4.38)

Because a command filter has been used to filter α2, a compensation tracking error
v2 of x̃2 is defined and it will be used instead of x̃2:

v2 = x̃3 − ξ2 (4.39)

The ξ̇2 signal is defined as:

ξ̇2 = −k2ξ2 + g2(x3,c − α2), ξ2(0) = 0 (4.40)

The derivative of v2 will be calculated as it will be necessary in the calculation of
the derivative of the next Lyapunov function.

v̇2 = ˙̃x2 − ξ2

= [ f2 + g2x3 + φT
2 θ2 + ψ2(x)− ẋ2,c]− [−k2ξ2 + g2(x3,c − α2)]

= f2 + g2x3 + φT
2 θ2 + ψ2(x)− ẋ2,c + k2ξ2 − g2x3,c + g2α2
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Substituting ˙̃x2 = ẋ2 − ẋ2,c and α2 in equation (4.27) leads to:

v̇2 = g2x̃3 + φT
2 θ2 + k2ξ2 − k2x̃3 − φT

2 θ̂2

= −k2(x̃3 − ξ2) + g2x̃3 + φT
2 θ̃2

= −k2v2 + g2x̃3 + φT
2 θ̃2 (4.41)

The third Lyapunov Function V3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) is defined as follows:

V3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) =
1
2

ṽ2
1 +

1
2

ṽ2
2 +

1
2

x̃2
3 +

1
2

θ̃T
1 Γ−1

1 θ̃1 +
1
2

θ̃T
2 Γ−1

2 θ̃2 +
1
2

θ̃T
3 Γ−1

3 θ̃3

(4.42)

Where Γ1, Γ2 and Γ3 are diagonal positive definite matrices.
The derivative of V3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) will be considered in order to guarantee
v1, v2, x̃3 = 0 asymptotically.

V̇3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) = v1v̇1 + v2v̇2 + x̃3 ˙̃x3 + θ̃T
1 Γ−1

1
˙̃θ1 + θ̃T

2 Γ−1
2

˙̃θ2 + θ̃T
3 Γ−1

3
˙̃θ3

= v1(−k1v1 + g1x̃2 + φT
1 θ̃1) + v2(−k2v1 + g2x̃3 + φT

2 θ̃2)+

+ x̃3( f2 + g3u + φT
3 θ3 + ψ3(x)− ẋ3,c) + θ̃T

1 Γ−1
1

˙̃θ1 + θ̃T
2 Γ−1

2
˙̃θ2 + θ̃T

3 Γ−1
3

˙̃θ3

= −k1v2
1 +−k2v2

1 + x̃3(g2v1 + f3 + g3u + φT
3 θ3 + ψ3(x)− ẋ3,c)+

+ θ̃T
1 (Γ

−1
1

˙̃θ1 + v1φ1) + θ̃T
2 (Γ

−1
2

˙̃θ2 + v2φ2) + θ̃T
3 Γ−1

3
˙̃θ3 (4.43)

One chooses the following values for the real input signal u, ˙̃θ1 and ˙̃θ2:

u = − 1
g3
( f3 + φT

3 θ̂3 + ψ3(x)− ẋ3,c − k3x̃3) (4.44)

˙̃θ1 = −Γ1v1φ1 (4.45)
˙̃θ2 = −Γ2v2φ2 (4.46)

where k3 > 0, Γ1 and Γ2 are tuning parameters.
By substituting the defined values for u, ˙̃θ1 and ˙̃θ2 in V̇3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) one
obtains:

V̇3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) = −k1v2
1 − k2v2

2 − k3x̃3 + θ̃T
3 (Γ

−1
3

˙̃θ3 + x̃3φ3) (4.47)

Finally, the following value for ˙̃θ3 is chosen:

˙̃θ3 = −Γ3x̃3φ3 (4.48)

The derivative of the Lyapunov Function V̇3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) becomes:

V̇3(v1, v2, x̃3, θ̃1, θ̃2, θ̃3) = −k1ṽ2
1 − k2ṽ2

2 − k3x̃2
3 < 0 (4.49)
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This guarantees:

• v1 = x̃1 − ξ1 → 0 asymptotically

• v2 = x2 − ξ2 → 0 asymptotically

• x̃3 = x3 − ẋ3,c → 0 asymptotically

The new Adaptive Laws to estimate θ̂2 and θ̂3 can be derived:

˙̂θ2 = − ˙̃θ2 = Γ1v2φ2 (4.50)

θ̂2 = Γ2

∫
v2φ2 (4.51)

˙̂θ3 = − ˙̃θ3 = Γ3x̃3φ3 (4.52)

θ̂3 = Γ3

∫
x̃3φ3 (4.53)

The important results will be summarized:
Stabilizing functions α1,α1 and the real control input u:

α1 = − 1
g1
( f1 + φT

1 θ̂1 + ψ1(x)− yd − k1x̃1)

α2 = − 1
g2
( f2 + φT

2 θ̂2 + ψ2(x)− ẋ2,c − k2x̃2)

u = − 1
g3
( f3 + φT

3 θ̂3 + ψ3(x)− ẋ3,c − k3x̃3)

Adaptive laws for θ̂1, θ̂2 and θ̂3

θ̂1 = Γ2

∫
v1φ1

θ̂2 = Γ2

∫
v2φ2

θ̂3 = Γ3

∫
x̃3φ3

The adaptive laws for θ̂1, θ̂2, θ̂3 can be expressed by using the non-compensated
tracking errors x̃i:

θ̂1 = Γ2

∫
x̃1φ1

θ̂2 = Γ2

∫
x̃2φ2

θ̂3 = Γ3

∫
x̃3φ3

This alternative formulation is less accurate than the previous one, but it will
simplify the modeling in the simulations.
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Chapter 5

Simulations

In this chapter, simulations of the developed adaptive backstepping control sys-
tems will be shown.

5.1 Command Filtered Adaptive Backstepping Con-
trol

Second order system control case

The following second order nonlinear system will be considered:
ẋ1 = 0.5x1 + θ1x2

1 + (1 + 0.1x2
1)x2

ẋ2 = x1x2 + θ2[
√

x + 0.8sin(x1)] + (2 + cos(x1))u
y = x1

(5.1)

where x1,x2 are the state variables, y is the output of the system and the parame-
ters θ1 and θ2 are unknown. The initial condition is x0 = [x10, x20]

T = [0, 0]T and
the desired reference signal of the system is yd = sin(t).
The stabilizing function α1 and the real control input u are defined as following:

α1 = − 1
1 + 0.1x2

1
(0.5x1 + x2

1θ̂1 − yd − k1x̃1)

u = − 1
2 + cos(x1)

(x1x2 + [
√

x + 0.8sin(x1)]θ̂2 − ẋ2,c − k2x̃2)

where k1 and k2 are tuning parameters.
The unknown parameters θ1 and θ2 will be estimated by using the following
adaptive laws for θ̂1 and θ̂2:

θ̂1 = Γ1

∫
x̃1x2

1

θ̂2 = Γ2

∫
x̃2[
√

x + 0.8sin(x1)]

where Γ1 and Γ2 are tuning parameters.

The Command Filter parameters were chosen as ζ1 = 1 and ωn = 300.
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Constant unknown parameters

First, the case where the unknown parameters θ1 and θ2 are constant will be con-
sidered. The following plot shows a comparison between the output of the sys-
tem and the reference signal.

Figure 5.1: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30 and k2 = 30.

• Constant unknown parameters original values: θ1=2 and θ2=3.

• Adaptive Control tuning parameters: Γ1=10 and Γ2=10.

The following plot shows the error between the output of the system and the
reference signal

Figure 5.2: Error between system output and reference signal
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Variable unknown parameters

In this section, the case where the unknown parameters change during the ex-
ecution will be considered in order to test the robustness of the implemented
adaptive control laws.
Tracking performance plot:

Figure 5.3: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30 and k2 = 30.

• Unknown parameters original values: θ1=3 and θ2=2,
from t = 10s: θ1=5 and from t = 20s: θ2=5.

• Adaptive Control tuning parameters: Γ1=10 and Γ2=10.

Tracking error plot:

Figure 5.4: Error between system output and reference signal
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In the previous section a deterioration in the tracking performance was shown
as the value of the unknown parameters suddenly changed during the execution.
To overcome the problem, higher values of the adaptive gains Γ1 and Γ2 were
chosen.
Tracking performance plot:

Figure 5.5: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30 and k2 = 30.

• Unknown parameters original values: θ1=3 and θ2=2,
from t = 10s: θ1=5 and from t = 20s: θ2=5.

• Adaptive Control tuning parameters: Γ1=25 and Γ2=25.

Tracking error plot:

Figure 5.6: Error between system output and reference signal
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Third order system control case

The following third order nonlinear system will be considered:
ẋ1 = 0.5x1 + θ1x2

1 + (1 + 0.1x2
1)x2

ẋ2 = x1x2 + θ2[
√

x + 0.8sin(x1)] + (2 + cos(x1))x3

ẋ3 = θ3(1 + x2
3) + (2 + 0.5x2

3)u
y = x1

(5.2)

where x1,x2 and x3 are the state variables, y is the output of the system and the pa-
rameters θ1, θ2 and θ3 are unknown. The initial condition is x0 = [x10, x20, x30]

T =
[0, 0, 0]T and the desired reference signal of the system is yd = sin(t).
The stabilizing functions α1, α2 and the real control input u are defined as follow-
ing:

α1 = − 1
1 + 0.1x2

1
(0.5x1 + x2

1θ̂1 − yd − k1x̃1)

α2 = − 1
2 + cos(x1)

(x1x2 + [
√

x + 0.8sin(x1)]θ̂2 − ẋ2,c − k2x̃2)

u = − 1
2 + 0.5x2

3
((1 + x2

3)θ̂3 − ẋ3,c − k3x̃3)

where k1, k2 and k3 are tuning parameters.
The parameters θ1, θ2 and θ3 will be estimated by using the following adaptive
laws for θ̂1, θ̂2, θ̂3

θ̂1 = Γ1

∫
x̃1x2

1

θ̂2 = Γ2

∫
x̃2[
√

x + 0.8sin(x1)]

θ̂2 = Γ3

∫
x̃3(1 + x2

3)

where Γ1 and Γ2 and Γ3 are tuning parameters.
The parameters of the two implemented Command Filters were chosen as:
ζ1, ζ2 = 1 and ωn1, ωn2 = 300.
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Constant unknown parameters

First, the case where the unknown parameters θ1 and θ2 and θ3 are constant will
be considered. The following plot shows a comparison between the output of the
system and the reference signal.

Figure 5.7: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30, k2 = 30 and k3 = 20.

• Constant unknown parameters original values: θ1=5, θ2=3 and θ3=4.

• Adaptive Control tuning parameters: Γ1=10 and Γ2=10 and Γ3=10.

The following plot shows the error between the output of the system and the
reference signal

Figure 5.8: Error between system output and reference signal
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Variable unknown parameters

In this section, the case where the unknown parameters change during the ex-
ecution will be considered in order to test the robustness of the implemented
adaptive control laws.
Tracking performance plot:

Figure 5.9: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30, k2 = 30 and k3 = 20.

• Unknown parameters original values: θ1=5 and θ2=5 and θ3=4
from t = 5s: θ2=8 , from t = 15s: θ1=7 and from t = 20s: θ3=8.

• Adaptive Control tuning parameters: Γ1=10 and Γ2=10 and Γ3=10.

Tracking error plot:

Figure 5.10: Error between system output and reference signal
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In the previous section, a deterioration of the performance was shown, as the
value of the parameter suddenly changed during the execution. To improve the
performance, higher values of the adaptive gains Γ1 and Γ2 were chosen.
Tracking performance plot:

Figure 5.11: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30, k2 = 30 and k3 = 20.

• Unknown parameters original values: θ1=5 and θ2=5 and θ3=4
from t = 5s: θ2=8 , from t = 15s: θ1=7 and from t = 20s: θ3=8.

• Adaptive Control tuning parameters: Γ1=30 and Γ2=20 and Γ3=20.

Tracking error plot:

Figure 5.12: Error between system output and reference signal
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5.2 Command Filtered Adaptive Backstepping Con-
trol with SVR

Second order system control case

The following second order nonlinear system will be considered:
ẋ1 = 0.5x1 + θ1x2

1 + (1 + 0.1x2
1)x2 + ∆1

ẋ2 = x1x2 + θ2[
√

x + 0.8sin(x1)] + (2 + cos(x1))u + ∆2

y = x1

(5.3)

where x1,x2 are the state variables, y is the output of the system and the parame-
ters θ1 and θ2 are unknown. The initial condition is x0 = [x10, x20]

T = [0, 0]T and
the desired reference signal of the system is yd = sin(t).
The stabilizing function α1 and the real control input u are defined as following:

α1 = − 1
1 + 0.1x2

1
(0.5x1 + x2

1θ̂1 + ψ1 − yd − k1x̃1)

u = − 1
2 + cos(x1)

(x1x2 + [
√

x + 0.8sin(x1)]θ̂2 + ψ2 − ẋ2,c − k2x̃2)

where k1 and k2 are tuning parameters.
The unknown parameters θ1 and θ2 will be estimated by using the following
adaptive laws for θ̂1 and θ̂2:

θ̂1 = Γ1

∫
x̃1x2

1

θ̂2 = Γ2

∫
x̃2[
√

x + 0.8sin(x1)]

where Γ1 and Γ2 are tuning parameters.

The Command Filter parameters were chosen as ζ1 = 1 and ωn = 300.
The unknown disturbances ∆1 and ∆2 will be estimated by the following SVRs
models:

ψ1(xt,1) =
N

∑
k=1

αk,1e

(
−γ1‖xt,1−xk,1‖2

)
+ b1 (5.4)

ψ2(xt,2) =
N

∑
k=1

αk,2e

(
−γ2‖xt,2−xk,2‖2

)
+ b2 (5.5)

where:

• αk,1 for i = 1, . . . , N, αk,2 for i = 1, . . . , N, and b1 and b2 are the solution of
the optimization problem discussed in the previous chapter. The number of
samples N depends on the accumulation tacc and the sampling time.

• γ1, γ2 > 0 are tuning parameters.

• The samples xk,1 and xk,2 are the training data and xt,1 and xt,2 are the testing
data, and both are acquired during the accumulation time tacc.
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LS-SVR parameter tuning

The value of the regularization parameter C was initially set to C = 1000. The
impact of choosing a different values of C was not enough important on the func-
tion approximation and so it has been fixed to its initial chosen value C = 1000 .
On the other hand, in the case of the learning rate γ, different plots will show the
big impact on the approximated functions when choosing different values.
The approximated functions ψ1 and ψ2 are generated by using a training data
and validated with a testing data. In this work, the training data consists of
pairs {xi, yi}N

1 that have been accumulated for tacc = 40s using a sampling time
Ts = 0.05, resulting in N = 800 samples. The unknown disturbances are con-
sidered to be only time dependent functions, so the input is the sample time
and the output is the amplitude. For this reason, the plain data is in the form
of {sample timei, amplitudei}N

i=1. The training data {xi}N
i=1 was accumulated for

tacc = 40s using a sampling time Ts = 0.1, resulting in N = 400 samples.
The effects of choosing different values for the learning rate will be shown in the
case of the disturbance ∆1. For the other disturbance ∆2, only the plot that shows
the estimated function with the properly tuned values will be shown.
The following plot shows an example where the chosen learning rate parameter
was too high (γ1 = 3).

Figure 5.13: High value of the learning rate for ψ1
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The following plot shows an example where the chosen learning rate param-
eter was too low (γ1 = 0.01).

Figure 5.14: Low value of the learning rate for ψ1

By choosing γ1 = 0.1, the following plot shows that the estimated function ψ1
fits the original disturbance ∆1.

Figure 5.15: Correft value of the learning rate for ψ1
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By choosing γ2 = 0.06, the following plot shows that the estimated function
ψ2 fits the original disturbance ∆2.

Figure 5.16: Correct value of the learning rate for ψ2

The Support Vector Regression parameters chosen for the following simula-
tions are as follows:

• γ1 = 0.1

• γ2 = 0.06

• C1, C2=1000

In the following simulations, the disturbances ∆1 and ∆2 will be added to the
second order system previously considered in the simulations. It will be shown
how the compensation of the disturbances in the control law is crucial in order to
obtain a good tracking performance.
The previous simulations of the second order system in the ”non disturbance
case”, showed that asymptotically the error stays in the range e = |0.02|. The
objective of the next sections will be to achieve the same performance when the
disturbances are present and then compensated in the system.
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Constant unknown parameters

Without disturbance compensation

First, the case where the unknown parameters θ1 and θ2 are constant will be con-
sidered. The following plot shows a comparison between the output of the sys-
tem and the reference signal.

Figure 5.17: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30 and k2 = 30.

• Constant unknown parameters original values: θ1=2 and θ2=3.

• Adaptive Control tuning parameters: Γ1=10 and Γ2=10.

The following plot shows the error between the output of the system and the
reference signal

Figure 5.18: Error between system output and reference signal
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With disturbance compensation

Now the LS-SVRs models ψ1 and ψ2 will be implemented in the control system
to compensate the disturbances.
Tracking performance plot:

Figure 5.19: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30 and k2 = 30.

• Constant unknown parameters original values: θ1=2 and θ2=3.

• Adaptive Control tuning parameters: Γ1=10 and Γ2=10.

• LS-SVR parameters: γ1 = 0.1,γ2 = 0.06, C1 = 1000 and C2 = 1000.

The following plot shows the error between the output of the system and the
reference signal

Figure 5.20: Error between system output and reference signal
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Variable unknown parameters

Without disturbance compensation

In this section, the case where the unknown parameters change during the ex-
ecution will be considered in order to test the robustness of the implemented
adaptive control laws.
Tracking performance plot:

Figure 5.21: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30 and k2 = 30.

• Unknown parameters original values: θ1=3 and θ2=2,
from t = 10s: θ1=5 and from t = 20s: θ2=5.

• Adaptive Control tuning parameters: Γ1=10 and Γ2=10.

Tracking error plot:

Figure 5.22: Error between system output and reference signal
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To improve the performance, higher values of the adaptive gains can be cho-
sen. However, the simulations will show that the tracking performance is dete-
riorated by the disturbances when compared to the case where the disturbances
are not present in the system.
Tracking performance plot:

Figure 5.23: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gain k1 = 40 and k2 = 40.

• Unknown parameters original values: θ1=3 and θ2=2,
from t = 10s: θ1=5 and from t = 20s: θ2=5.

• Adaptive Control tuning parameters Γ1=25 and Γ2=25.

Tracking error plot:

Figure 5.24: Error between system output and reference signal
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With disturbance compensation

In this section, the compensation of the disturbances by Least Squares Support
Vector Regression will be implemented. It will be shown how finally the perfor-
mance can reach a satisfying level.
Tracking performance plot:

Figure 5.25: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 40 and k2 = 40.

• Unknown parameters original values: θ1=3 and θ2=2,
from t = 10s: θ1=5 and from t = 20s: θ2=5.

• Adaptive Control tuning parameters Γ1=25 and Γ2=25.

• LS-SVR parameters: γ1 = 0.1,γ2 = 0.06, C1 = 1000 and C2 = 1000.

Tracking error plot :

Figure 5.26: Error between system output and reference signal
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Third order system control case

The following third order non system will be considered for the simulations:
ẋ1 = 0.5x1 + θ1x2

1 + (1 + 0.1x2
1)x2 + ∆1

ẋ2 = x1x2 + θ2[
√

x + 0.8sin(x1)] + (2 + cos(x1))x3 + ∆2

ẋ3 = θ3(1 + x2
3) + (2 + 0.5x2

3)u + ∆3

y = x1

(5.6)

where x1,x2 and x3 are the state variables, y is the output of the system and the pa-
rameters θ1, θ2 and θ3 are unknown. The initial condition is x0 = [x10, x20, x30]

T =
[0, 0, 0]T and the desired reference signal of the system is yd = sin(t).
The stabilizing functions α1, α2 and the real control input u are chosen as follows:

α1 = − 1
1 + 0.1x2

1
(0.5x1 + x2

1θ̂1 + ψ1 − yd − k1x̃1)

α2 = − 1
2 + cos(x1)

(x1x2 + [
√

x + 0.8sin(x1)]θ̂2 + ψ2 − ẋ2,c − k2x̃2)

u = − 1
2 + 0.5x2

3
((1 + x2

3)θ̂3 + ψ3 − ẋ3,c − k3x̃3)

where k1, k2 and k3 are tuning parameters.
The parameters θ1, θ2 and θ3 will be estimated by using the following adaptive
laws for θ̂1, θ̂2 and θ̂3

θ̂1 = Γ1

∫
x̃1x2

1

θ̂2 = Γ2

∫
x̃2[
√

x + 0.8sin(x1)]

θ̂2 = Γ3

∫
x̃3(1 + x2

3)

where Γ1, Γ2 and Γ3 are tuning parameters.
The parameters of the two implemented Command Filters were chosen as:
ζ1, ζ2 = 1 and ωn1, ωn2 = 300.
The following function ψ1(x), ψ2(x) and ψ3(x) are used as estimations of the three
unknown disturbances ∆1, ∆2 and ∆3 respectively:

ψ1(xt,1) =
N

∑
k=1

αk,1e

(
−γ1‖xt,1−xk,1‖2

)
+ b1 (5.7)

ψ2(xt,2) =
N

∑
k=1

αk,2e

(
−γ2‖xt,2−xk,2‖2

)
+ b2 (5.8)

ψ3(xt,3) =
N

∑
k=1

αk,3e

(
−γ3‖xt,3−xk,3‖2

)
+ b3 (5.9)
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where:

• αk,1 for i = 1, . . . , N, αk,2 for i = 1, . . . , N, αk,3 for i = 1, . . . , N and b1, b2 and
b3 are the solution of the optimization problem discussed in the previous
chapter. The number of samples N depends on the accumulation tacc and
the sampling time.

• γ1, γ2, γ3 > 0 are tuning parameters.

• The samples xk,1,xk,2 and xk,3 are the training data and xt,1,xt,2 and xt,3 are
the testing data, and both are acquired during the accumulation time tacc.

LS-SVR parameter tuning

The value of the regularization parameter C was initially set to C = 1000. The
impact of choosing a different values of C was not enough important on the func-
tion approximation and so it has been fixed to its initial chosen value C = 1000.
The approximated functions ψ1, ψ2 and ψ3 are generated by using a training
data and validated with a testing data. In this work, the training data consists
of pairs {xi, yi}N

1 that have been accumulated for tacc = 40s using a sampling
time Ts = 0.05, resulting in N = 800 samples. The unknown disturbances are
considered to be only time dependent functions, so the input is the sample time
and the output is the amplitude. For this reason, the plain data is in the form
of {sample timei, amplitudei}N

i=1. The training data {xi}N
i=1 was accumulated for

tacc = 40s using a sampling time Ts = 0.1, resulting in N = 400 samples. The
effect on the estimated functions by SVR when choosing different values for the
learning rates was shown in the second order system control case. For this reason,
in this section only the plots showing a satisfying fit between the original distur-
bances and the estimated functions will be shown. By choosing γ1 = 0.1, the
following plot shows that the estimated function ψ1 fits the original disturbance
∆1.

Figure 5.27: Correct value of the learning rate for ψ1
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By choosing γ2 = 0.8, the following plot shows that the estimated function ψ2
fits the original disturbance ∆2.

Figure 5.28: Correct value of the learning rate for ψ2

By choosing γ3 = 0.14, the following plot shows that the estimated function
ψ3 fits the original disturbance ∆3.

Figure 5.29: Correct value of the learning rate for ψ3
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Constant unknown parameters

Without disturbance compensation

First, the case where the unknown parameters θ1, θ2 and θ3 are constant will be
considered.
The following plot shows a comparison between the output of the system and the
reference signal.

Figure 5.30: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30, k2 = 30 and k3 = 20.

• Constant unknown parameters original values: θ1=5, θ2=3 and θ2=4.

• Adaptive Control tuning parameters: Γ1=10 and Γ2=10 and Γ3=10.

The following plot shows the error between the output of the system and the
reference signal

Figure 5.31: Error between system output and reference signal
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With disturbance compensation

In this section, the LS-SVRs models ψ1, ψ2 and ψ3 will be implemented in the
control system to compensate the disturbances.
Tracking performance plot:

Figure 5.32: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30, k2 = 30 and k3 = 20.

• Constant unknown parameters original values: θ1=5, θ2=3 and θ2=4.

• Adaptive Control tuning parameters: Γ1=10 and Γ2=10 and Γ3=10.

• LS-SVR parameters: γ1 = 0.1, γ2 = 0.8, γ3 = 0.14 and C1 = 1000, C2 =
1000, C3 = 1000.

The following plot shows the error between the output of the system and the
reference signal

Figure 5.33: Error between system output and reference signal
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Variable unknown parameters

Without disturbance compensation

In this section, the case where the unknown parameters change during the ex-
ecution will be considered in order to test the robustness of the implemented
adaptive control laws.
Tracking performance plot:

Figure 5.34: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30, k2 = 30 and k3 = 20.

• Unknown parameters original values: θ1=5 and θ2=5 and θ3=4
from t = 5s: θ2=8 , from t = 15s: θ1=7 and from t = 20s: θ3=8

• Adaptive Control tuning parameters: Γ1=30 and Γ2=20 and Γ3=20

Tracking error plot:

Figure 5.35: Error between system output and reference signal
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With disturbance compensation

Finally, the compensation of the disturbances by Least Squares Support Vector
Regression will be implemented to the case where the unknown parameters vary
during the execution. It will be shown that the tracking performance is compara-
ble to the non disturbance case.
Tracking performance plot:

Figure 5.36: A comparison of the system output and reference signal

The tuning parameters were chosen as:

• Backstepping gains: k1 = 30, k2 = 30 and k3 = 20.

• Unknown parameters original values: θ1=5 and θ2=5 and θ3=4
from t = 5s: θ2=8 , from t = 15s: θ1=7 and from t = 20s: θ3=8

• Adaptive Control tuning parameters: Γ1=30 and Γ2=20 and Γ3=20

• LS-SVR parameters: γ1 = 0.1, γ2 = 0.8, γ3 = 0.14 and C1 = 1000, C2 =
1000, C3 = 1000.

Tracking error plot :

Figure 5.37: Error between system output and reference signal
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Conclusion and Future Work

A Command Filtered Adaptive Backstepping control for nonlinear systems with
unknown parameters and an extension to the case where external disturbances
are included in the controlled system have been developed in this thesis. In this
work, the control systems have been designed for a second and third order non-
linear systems, but the control design can be extended to higher order systems by
recursively applying the developed backstepping approach. The command filters
avoided the high computational complexity required in the standard backstep-
ping control when calculating the stabilizing functions. Moreover, an adaptive
extension of the developed command filtered backstepping control has been de-
signed in the case where the controlled system presented unknown parameters.
In the simulations section, the results showed that the adaptive control laws could
estimate the unknown parameters both in the case where these were unknown
but constant and where they were varying during the execution. When no distur-
bances were considered in the controlled systems, the tracking error asymptoti-
cally had an absolute value of e = |0.02|, which has been used as an optimal target
value for the tracking error in the case where the disturbances were included in
the controlled systems. Later, a degradation in the performance was shown when
the command filtered adaptive backstepping control developed in chapter 2 was
used to control the system in the case where external disturbances were added to
the system. To improve the tracking performance in the presence of disturbances,
a novel Command Filtered Adaptive Backstepping control that included estima-
tions of the original external disturbances was developed. The external distur-
bances have been estimated using a Support Vector Machine regression method
called Least Squares Support Vector Regression. The Least Squares Support Vec-
tor Regression models were trained and tested using an available noisy set of
data of the disturbances and then implemented to the control system to reject
the original disturbances. The results showed that the novel controller was able
to guarantee a tracking error value with asymptotic value e = |0.02| as in the
non disturbance case. The Least Squares Support Vector Regression tuning pa-
rameters had to be chosen by Trial and Error, so future works could potentially
focus on finding a way to obtain the optimal parameters by using a more efficient
method. Moreover, the LS-SVR was implemented to estimate only time depen-
dent function, so for future works the developed control system could be tested
in the case where the external disturbances are multivariate functions.
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