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1. Introduction
Determining the optimal price of a product is
a crucial task for retailers, impacting the over-
all success of a retail business. Dynamic Pricing
directly addresses this task, determining opti-
mal selling prices of products or services in set-
tings where prices can easily and frequently be
adjusted. Product interactions are among the
key factors that determine the demand for a
product and its optimal selling price. Two main
types of relationships can be identified between
products: substitutability and complementarity.
Substitutable products refer to goods that can
be used in place of each other to satisfy a partic-
ular need or want while complementary products
enhance the value and utility of each other when
consumed or utilized simultaneously and are fre-
quently bought together. This type of relation
is exploited in pricing to take into account prod-
uct relations when selecting the optimal selling
price.

1.1. Goal and Challenges
Dynamic Pricing algorithms usually face the
problem of finding the optimal prices of a prod-
uct independently from the others and this can
lead to suboptimal solutions as we miss the
chance to exploit product interactions. The goal

of our thesis is to fill this gap by proposing an on-
line learning algorithm for optimizing the pricing
strategy of a set of products, considering both
positive and negative interactions between them.
The main challenges reside in the characteris-
tics of the complementary relationship and in
the complexity of the problem. Complemen-
tarity exhibits asymmetry and non-transitivity,
unlike an equality relation like substitutability.
Moreover, when dynamically pricing a product,
we need to tackle the exploration-exploitation
tradeoff during the learning process. The task
is also computationally complex, dealing with
a combinatorial explosion when considering the
relation a product has with all the others in a
catalogue.

1.2. Original Contribution
Most works in the literature on complementary
pricing focus on Discrete Choice Models [1], ap-
proaches that, compared to Multi-Armed Bandit
solutions, do not effectively address the trade-off
between exploration and exploitation [2]. Fo-
cusing on pricing non-luxury products in retail
e-commerce with unlimited inventory, in this
thesis we present CPP (Complementary Product
Pricing), an online learning algorithm for op-
timizing the pricing strategies of a set of prod-
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ucts, considering the substitutable and comple-
mentary relationships between them. The algo-
rithm makes use of transaction data to learn the
interaction between the different items and then
optimize the pricing strategies through efficient
multi-armed bandit solutions.

2. Problem Formulation
We study the scenario in which we want to find
the optimal pricing strategy for a set of products
J (|J | “ N).
Our goal is, given a time horizon T , to set
for every time t P t1, . . . , T u a vector of per-
centage margins (from now on, margins) mt “

pm1t, . . . , mNtq where mjt P M is the price we
choose for product j at time t, and M is the
(even infinite) set of possible margins. We de-
fine the (percentage) margin mjt as:

mjt :“
pjt ´ cj

cj
,

where pjt is the selling price and the acquisition
cost for product j at time t, and cj is its acquisi-
tion cost. For a generic product j P J we denote
as vjpmtq the demand of product j which we as-
sume to depend on the margin vector mt of all
products. We identify two types of relationships
between products: substitutability and comple-
mentarity. Given two products a, b P J , we call
a and b substitutable products if the increases
in the sales of one product imply a decrease in
the sales of the other while we call a and b com-
plementary products if the increases in the sales
of one product imply an increment also in the
sales of the other. We consider non-perishable
products with unlimited availability, with mono-
tonically non-increasing demand function w.r.t.
its price. The assumption of unlimited avail-
ability virtually holds for e-commerce websites
adopting the dropshipping paradigm, while the
assumption of the monotonic demand holds for
sellers vending products that are different from
Veblen, Giffen or Luxury ones. We assume to
be in a stationary environment. We consider a
scenario in which we assume to have access to
transaction data reporting all the sales for ev-
ery product j P J , divided by baskets. The
only information we have about products is the
groups of substitutable products. The detection
of substitutable products has been thoroughly
discussed in literature and is out of the scope of
this work.

The goal of our learning problem is to find the
vector of the optimal margin m˚, i.e., the vector
maximizing our objective function fpmq. For-
mally:

m˚ P argmax
mPMN

fpmq, (1)

where the objective function fpmq is profit:

fpmq :“
ÿ

jPJ
mj cj vjpmq, (2)

over all the products. We call π a policy return-
ing at each time t a vector of margins mt. The
goal of our algorithm is to find a policy minimiz-
ing the expected cumulative regret:

E rRpπ, T qs :“ Tfpm˚q ´ E

«

T
ÿ

t“1

fpmtq

ff

. (3)

3. Proposed Solution
Our proposed algorithm to identify and price
complementary products in an online manner
consists of two parts: we first deal with the ag-
gregation of substitutable products and the dis-
covery of complementary products, we then pro-
ceed to estimate the demand by employing an
exploration strategy to tackle the exploration-
exploitation tradeoff. In Figure 1 we show an
outline of the proposed algorithm.

3.1. Complementary Products
Discovery

Given the computational complexity of the task,
a way to simplify the problem while focusing on
the most significant relationships between prod-
ucts is necessary, in order to have an algorithm
that scales properly with catalogues containing
hundreds of thousands of products. We repre-
sent the relationships between products as a di-
rected graph, given the asymmetry of comple-
mentarity, where each node is a product and
each edge represents a complementarity relation-
ship between 2 products. In Section 2 we mod-
elled the demand of every product to depend
on the margins of the entire catalogue of prod-
ucts, so our initial representation of the graph of
complementarity relationship (from now on the
complementarity graph) is a connected graph.
We propose an approach to prune the edges of
this graph while maintaining the most meaning-
ful ones. The process makes use of information
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Figure 1: Algorithm outline

about substitutable products and transactional
data and is divided into two steps:

1. Clustering substitutable products
2. Mining complementarity relationships.

Clustering substitutable products Two
substitutable products compete with each other
and are often subject to the phenomenon of can-
nibalization since they satisfy the same need.
Applying dynamic pricing solutions to these
products separately would exacerbate cannibal-
ization and could lead to letting them compete
against each other, with the effect of reducing
profit. Clustering these products together allows
them to be priced with the same pricing policy,
minimizing cannibalization. Following [3], given
the information about substitutable products,
which we assume to have, and a set T of time
instants for which historical transaction data is
available, we cluster a set of substitutable prod-
ucts K Ď J and their historical margin mkτ and
volume vkτ for all products k P K and time τ P T
in the following way:

mKτ :“
ÿ

kPK
mkτ ¨

vkτ
ř

hPK vhτ
,

vKτ :“
ÿ

kPK
vkτ .

Given a time horizon T , the margin mKt chosen
at each time t P t1, . . . , T u will be applied to
every product k P K.
We refer to clustered substitutable products sim-
ply as products and each clustered product is a
node in the complementarity graph. From now
on we assume that there are no substitutable
products in different nodes of the complemen-
tarity graph.

Mining complementarity relationships
We proceed to identify meaningful comple-
mentary relationships between products. Since
complementary products are frequently bought
together, they can be identified using co-
purchases in transactional data. We propose
a way to measure complementarity between
products making use of the binomial test. We
want to test the independence of every pair of
products in order to verify if the co-occurrence
of two products in the same basket is higher
than random chance with a given significance
level. Formally, given two products a, b P J we
denote the total number of baskets as n, the
number of baskets containing both a and b as
nab and with P paq and P pbq the probability of
having respectively product a and product b in
a basket.
Under the assumption of independence, the
probability of having both products a and b in a
basket is P paqP pbq and the hypothesized proba-
bility of success π is H0 : π “ P paqP pbq.
Since we want to test if the probability of the co-
occurrence of a and b is higher than if they were
independent, we perform a right-tailed test and
our alternative hypothesis is H1 : π ą P paqP pbq.
The number of trials in our hypothesis test is
the total number of baskets n while the number
of successes k is the number of co-occurrences of
products a and b: k “ nab.
Finally, we want to perform the test with a sig-
nificance level of 1%, so we reject H0 if the p-
value is smaller than 0.01. For the product pairs
for which we reject the null hypothesis H0, we
have statistical evidence that the probability of
products a and b appearing in the same basket
is higher than if they were independent, and we
can consider product a and b to be complemen-
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tary. We set the direction of the complementar-
ity relationship between two products to be from
the product with the bigger number of baskets
where it appears to the one with less, on the
assumption that the product with more selling
volumes has more influence on the product with
less than vice versa. We call the product that in-
fluences the other product leader while the prod-
uct that is influenced follower. By imposing this
direction we obtain a Weighted Directed Acyclic
Graph (DAG) of complementarity relationships
between products, where the p-values of the hy-
pothesis tests are the weights of the edges. The
absence of cycles is due to the unidirectional flow
of the edges given by the product volumes. In
order to break down combinatorial complexity
when optimizing, we want to reduce the graph
structure to multiple star structures composed
of one leader and multiple followers, where each
node can only be either a leader or a follower.
To do this, we first obtain tree structures from
the DAG by keeping among the inbound edges of
each node only the one with the highest weight,
i.e. the most influential leader. Finally, to cut
the trees into star structures we propose to con-
sider each node that, starting from the leaves
and going up to the roots, is both a leader and a
follower to be only a leader. We have obtained
a structure that allows us to perform optimiza-
tion of the margins of the products breaking
down the intrinsic combinatorial complexity of
the problem.

3.2. Pricing Complementary
Products

We aim to find the margins that maximize the
total profit (2). At each time t, our algo-
rithm outputs the vector margins mt and tackles
the exploration-exploitation dilemma in order to
minimize the expected regret (3). We differen-
tiate the demand estimation between the one
for products whose demand does not depend on
other products and the one for products whose
demand depends on complementary products.

Univariate demand learning The isolated
nodes in the complementarity graph resulting
from the above-mentioned steps indicate prod-
ucts for which no complementary relationships
have been identified, therefore, we model the de-
mand for these products on the assumption that

it depends only on their own margins. The same
assumption is made for the demand of the leader
products. Given the set of products J , we de-
fine the set of isolated products I Ď J and for
the star structures we define the set of leaders
L Ă J and the set of followers for each leader
i P L Fi Ă J , i.e. such that there is a directed
edge pi, jq @j P Fi,@i P L.
We estimate the demand using a Bayesian Lin-
ear Regressor (BLR) because this type of con-
ditional model allows the estimation of uncer-
tainty and will allow us to use a MAB approach
to balance exploration and exploitation.
Using the BLR we build an estimate d̂ip¨q of the
demand function for product i as a linear com-
bination of the basis function taken as input,
formally:

d̂ipmiq “

Z
ÿ

h“0

θh ϕhpmiq,

where θh is the h-th weight distribution and
ϕhpmiq is the h-th basis function of the margin
mi P M.
In order to improve the robustness of our model
we employ a shape-constrained model for which
we impose the shape of the function to learn to
be monotonically decreasing, following the as-
sumption of monotonicity of demand made in
Section 2.
To do so we make use of the set of monotoni-
cally decreasing basis functions employed in [3]
together with the choice of prior distributions
with non-negative support.

Bivariate Demand Learning Unlike the de-
mand for the leader products, we assume the
demand for the follower products to depend on
their own margin and on the margin of their
leader.
Similarly to the univariate demand case, we em-
ploy a BLR to produce the estimate d̂jp¨q of the
demand function for product j P Fi, with i P L.
For each follower product j P Fi of leader prod-
uct i P L, the demand is estimated as:

d̂jpmj ,miq“

Z
ÿ

h“0

θh ϕhpmjq`

Z
ÿ

h“0

θh`Z`1 ϕhpmiq,

where θh is the h-th weight distribution and
ϕhpmq is the h-th basis function of the margin
mj P M.
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Since complementary products exhibit negative
cross-price elasticity, we can assume the ad-
ditive contribution of leader products on fol-
lower volumes to be monotonically decreasing
on their own margin and employ the same set
of monotonically decreasing basis functions for
both margins.

Exploration strategy and joint optimiza-
tion We can naturally frame our problem as
an online learning one, where we want to acquire
new information about the function we want to
learn while at the same time minimizing the cu-
mulative regret. The use of BLR allows us to
measure uncertainty and use this information in
a MAB setting to balance exploration and ex-
ploitation, where the arms of the MAB are the
margins our algorithm chooses at each round.
To drive the exploration we employ an approach
similar to Thompson Sampling (TS): in each
round we draw a sample from each of the pos-
terior distribution of the BLR weights, obtain-
ing an estimation of the demand curve given the
margins on which it depends. Given the estima-
tion of the demand curve, we proceed to choose
the margins that maximize the estimated profit.
We distinguish the case where we price an iso-
lated product and the one where we price related
products.
For an isolated product i P I we can compute
the estimated objective function f̂ipmq,@m P M
as:

f̂ipmq “ m ci d̂ipmq @i P I.

We want to maximize f̂i, to do so we choose at
each time t P t1, . . . , T u the optimal margin m̂˚

it

for product i as:

m̂˚
it “ argmax

mPM
f̂ipmq.

With regard to the products belonging to a star
structure, the estimated objective function for a
leader product i P L is, in the same way as the
isolated products:

f̂ipmiq “ mi ci d̂ipmiq @i P L,

while for the follower products j P Fi of leader
i P L the estimated objective function is:

f̂jpmj ,miq “ mj cj d̂jpmj ,miq.

When choosing the optimal margins for the
products belonging to a star structure, we jointly
optimize the objective functions and obtain the
vector margin m̂t:

m̂t “ argmax
mPMN

ÿ

iPL

«

f̂ipmq `
ÿ

jPFi

f̂jpmq

ff

,

where N is the number of products belonging to
L Y

Ť

iPLFi.

4. Experimental Evaluation
Simulation Environment The experimen-
tal evaluation of our algorithm is carried out
through a synthetic environment with which we
simulate the purchasing dynamics of customers
and their price sensitivity, emulating market dy-
namics with reasonable assumptions. The envi-
ronment is characterized by a fixed number of
potential customers and a catalogue of products
to buy. Each product is characterized by a con-
version rate, the probability of purchasing such
product given its margin. We denote the con-
version rate of product i P J given the vector
margin m P MN as cipmq. Each product is
related to others through fixed complementar-
ity relationships and we assign to each follower
product one leader. In order to simulate the ef-
fect that leaders have on the purchase of follow-
ers in the same basket we model the conversion
rate of followers to be conditioned on the pur-
chase of their leader and to increase in case their
leader is added to the basket. In particular, for
a follower j P Fi with Fi the set of followers
of leader i P L, we scale the conversion rate by
employing a coefficient l in the following way:

cjpmq when i is not in the same basket

l cjpmq when i is in the same basket.

The transactions of the users are generated by
sampling a Bernoulli distribution for each prod-
uct in the catalogue and using as parameter p
the conversion rate of each product, such that:

P pBi “ 1q “ cipmq

P pBi “ 0q “ 1 ´ cipmq,

where Bi is the event of a purchase of product
i P J by a potential customer. The conversion
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Figure 2: Instantaneous profits.

rates used to generate transactions are univari-
ate in the case of the leaders and bivariate on
the margins of the followers of the leaders in the
case of the followers. Specifically, the function
used for the conversion rates is f1pxq “ e´p2xq2{3
for the leaders and f2px, yq “ f1pxq ` 0.7f1pyq

for the followers. We limit the margins domain
in r0, 1s. The conversion rate of the leader i is
cipmiq “ f1pmiq while for the follower j of leader
i is cjpmj ,miq{l when there is not leader i in
the same basket and cjpmj ,miq when leader i is
present. Coefficient l is set to 1.5. We employ
as basis functions in the demand estimators the
monotonically decreasing transformed Bernstein
polynomial mentioned in Section 3 with degree
10. We employ as priors of the BLRs the Lognor-
mal distribution. At each timestep, the agent,
using the transactional data observed up to that
point, infers the complementarity relationships
and fits the BLRs. It then chooses the opti-
mal margins by managing exploration through
Thompson Sampling.

Comparison with independently priced
products We compare the performance of CPP
with an algorithm that prices the products inde-
pendently with the same BLR employed for iso-
lated and leader products. We do so to evaluate
the profit increase obtained thanks to the joint
optimization of complementary product prices.
In Figure 2 we show and compare the instanta-
neous profits obtained by jointly pricing comple-
mentary products with CPP and those obtained
by independent pricing. We can observe that
after 4 timesteps where the performance of the
two approaches are comparable, CPP reaches a
better optimum and unlocks profits up to 30%
more w.r.t. independent pricing.

5. Conclusions
In this thesis, we faced the problem of finding the
optimal pricing strategy for products present-
ing substitutable and complementary relation-
ships. We presented the problem under analysis,
the related assumptions, and the learning prob-
lem, which consists of minimizing the expected
regret. Then, we proposed Complementary
Product Pricing (CPP), a novel strategy for
learning online in this setting. The algorithm
is composed of two main phases. In the former,
we provided a strategy for the online identifica-
tion of complementary relationships. In the lat-
ter, we discussed a model for efficiently jointly
optimizing the margin of the products. We con-
ducted an extensive experimental campaign to
assert the solution’s soundness and goodness.
The results showed that CPP effectively outper-
forms an independent pricing strategy, obtain-
ing an increase of up to 30% in profits compared
to independently priced products in a synthetic
environment.
Future developments may consider removing the
assumption of the knowledge of substitutable
products. Another possible extension is drop-
ping the non-stationary assumption on the envi-
ronment, exploring the evolution of complemen-
tary relationships and demand of products over
time. Finally, we considered relations of prod-
ucts purchased in the same basket. An extension
to this is to investigate the complementarity in
purchases made over time by the same users.

References
[1] Guillermo Gallego and Huseyin Topaloglu.

Revenue Management and Pricing Analytics.
International Series in Operations Research
& Management Science. Springer New York,
2019.

[2] Tor Lattimore and Csaba Szepesvári. Bandit
Algorithms. Cambridge University Press, 1
edition, July 2020.

[3] Marco Mussi, Gianmarco Genalti, Francesco
Trovò, Alessandro Nuara, Nicola Gatti, and
Marcello Restelli. Pricing the Long Tail
by Explainable Product Aggregation and
Monotonic Bandits. In SIGKDD, pages
3623–3633, 2022.

6


	Introduction
	Goal and Challenges
	Original Contribution

	Problem Formulation
	Proposed Solution
	Complementary Products Discovery
	Pricing Complementary Products

	Experimental Evaluation
	Conclusions

