
A Benchmarking Framework
for Performance Evaluation
of Modelica Compilers

Tesi di Laurea Magistrale in
Computer Science and Engineering
Ingegneria Informatica

Author: Marina Nikolic

Student ID: 913154
Advisor: Prof. Giovanni Agosta
Co-advisors: Francesco Casella, Daniele Cattaneo, Stefano Cherubin,
Alberto Leva, Federico Terraneo
Academic Year: 2020/2021





i

Abstract

Industry utilises simulation software to reduce costs, during system design (reducing the
need for physical prototypes) and also during operation, e.g. for diagnostic purposes.
There are various tools on the market, each with their respective language: some are
specific to a single domain (e.g., electronics) while others are domain-neutral (physical
simulations of different kinds). Among the latter, the most used language is Modelica.
The description of a model, often through equations, must be translated into simulation
code. The compiler has the task to make the transition from a language to the other pos-
sible, and the impact of the time spent and memory necessary makes the simulation (and
compilation) of large models unfeasible with the current Modelica tools. This thesis has
the purpose of enriching HiPerMod, a framework for benchmarking Modelica compilers,
with a test case that needs a solver able to handle differential and algebraic equations,
some of which nonlinear. The test cases include hand-written C++ code that can be
taken as an ideal model for the performances of existing simulators. This new benchmark
has been embedded in the existing project, and the simulation and compilation times of
the C++ version have been compared with the performances of the leader-of-the-market
open-source Modelica software, OpenModelica. Spacial and temporal complexities have
been evaluated, and the compilation time complexity has been discussed as well. It has
been shown how the hand-written code, keeping the array structure of the data of the
equations and the for loops, allows to reduce the simulation time and the memory size
of the executable file. Moreover, we show how OpenModelica’s compilation time depends
on the number of scalar equations of the model, while keeping the data structures and for
loops allows for constant compilation time.

Keywords: Benchmarking, Modelica, Compilers, Simulation Software, Modelling





Abstract in lingua italiana

Il mondo dell’industria utilizza i software di simulazione sia durante la progettazione
(riducendo il bisogno di prototipi fisici), sia per scopi diagnostici durante il funziona-
mento. Sono presenti sul mercato tool di vario genere, ognuno con il rispettivo linguag-
gio: da quelli specifici a un singolo ambito (ad esempio, l’elettronica) a quelli più neutrali
(simulazioni fisiche di vario genere). Tra questi ultimi, il linguaggio più utilizzato è Mod-
elica. La descrizione di un modello, spesso attraverso equazioni, deve essere tradotta in
codice di simulazione. Il compilatore ha il compito di rendere possibile il passaggio da
un linguaggio all’altro, e l’impatto del tempo speso e della memoria necessaria rendono
impossibile la simulazione (e compilazione) di grandi modelli scritti in Modelica con gli
strumenti attuali. Questa tesi ha come obiettivo arricchire HiPerMod, un framework per
il benchmarking dei compilatori del linguaggio Modelica, con un caso di test che richieda
un risolutore di sistemi di equazioni differenziali e algebriche anche non lineari. È stato
scritto il codice che funge da modello ideale per le prestazioni dei simulatori esistenti, in-
corporato nel progetto esistente, e confrontato con le prestazioni del software open-source
leader del mercato, OpenModelica. Sono valutate le complessità spaziale e temporale,
ed è discussa la complessità del tempo di compilazione del codice sorgente. Si mostra
come il codice scritto a mano, mantenendo la struttura ad array delle equazioni e i cicli
for, permette di ridurre il tempo di esecuzione e la memoria occupata dal file eseguibile.
Inoltre, si mostra come il tempo di compilazione di OpenModelica dipende dal numero di
equazioni scalari del modello, mentre mantenendo la struttura dei dati e i cicli for questo
rimane costante.

Parole chiave: Benchmark, Modelica, Compilatori, Software di simulazione, Modeling





v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 State of the Art 5
1.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Equation-based languages for simulations . . . . . . . . . . . . . . . . . . . 7
1.3 The Modelica language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Tools for Modelica simulation . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Compilation and simulation . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Open Source software . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Proprietary software . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.4 Other works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Benchmarks for Modelica compilers . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Sundials package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6.1 IDA solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 The PowerGrid model 21

3 Implementation 25
3.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Initial condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 The residual function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 The Jacobian function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Sparse matrix to store the Jacobian . . . . . . . . . . . . . . . . . . 32
3.4 Integration with the HiPerMod benchmark suite . . . . . . . . . . . . . . . 33



4 Evaluation 35
4.1 Correctness of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Scalability of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Compilation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Simulation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Space complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Conclusions and future developments 53
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 55

A Appendix A 59

List of Figures 69

List of Tables 71

List of Listings 73

List of Symbols 75

Acknowledgements 77



1

Introduction

Simulation of a system Simulation of physical systems has brought numerous advan-
tages into many fields of academic and industrial research. The possibility of simulating
a system has reduced development time and costs, and it allows to produce prototypes
more likely to fulfil the requirements. Hence the need for domain-specific languages to
describe such systems, and for tools to simulate them - faster and cheaper, but simple
enough to use for experts of any field.

Modelica One of the languages allowing to describe physical systems is Modelica. It is
used in many fields, and, for this reason, its target users are not software developers but
the same engineers that are tasked with the development of such system.

The Modelica standard library, which is a collection of commonly used physical models,
covers many fields: from electronics to mechanics, but also control systems and hierarchi-
cal state machines. Moreover, it is always possible to model any system described with
equations. It is particularly suited for system-level simulation (i.e. simulation of large
cyber-physical systems, sometimes not fully specified). Improving the performances of
Modelica compilers and simulation engines would impact the other fields of research that
make use of the language, particularly for large-scale systems.

Applications Modelica is nowadays used by many automotive companies to design
energy-efficient vehicles, including Ford, General Motors, Toyota, BMW.

Power plant providers also make use of this language. Recently, Modelica has been con-
sidered for the simulation of large-scale power generation and transmission systems, and
new libraries have been created for that purpose.

The most used tools are Dymola, which is proprietary, and OpenModelica, free and open-
source. Dymola is used for simulations related to automotive, aerospace, defence, energy,
and modelling of industrial equipment among other things. OpenModelica is used for
power systems, plant optimisation, and water treatment among other things.



2 | Introduction

Modelica tools Modelica is a declarative language that models physical systems or
phenomena through equations. It is implemented in tools often made by whole envi-
ronments for simulation and analysis. The core of these tools, however, is the compiler.
The main purpose of such compilers is translating a declarative language into imperative
code. The equations describing a model need to be manipulated before being simulated
and often solved through numerical integration. Most of the tools make use of an exter-
nal solver which has been developed independently. It’s the case of the SUNDIALS suite,
containing, among others, the IDA solver. This thesis focuses on a benchmark test case
using IDA to solve a non-linear differential algebraic equation system.

Benchmark suites The presence of many simulation environments, each with its com-
piler, stimulates the development of benchmark suites to compare their performances and
results. Differently from other fields, the time-to-solution from a Modelica model to the
results’ file takes into account the compilation time. Since models are supposed to be
simulated only once in many usage scenarios, the compilation time becomes as relevant
as the simulation time. Changing a parameter within the model means re-compiling the
whole model from scratch. Hence, simulation and compilation are always executed to-
gether - and only once for each model, for the results are to be stored in a file and later
retrieved for analysis purposes.

Existing tools often show worse performances in the first analysis of the model and com-
pilation than the simulation itself, particularly in the case of very large models. The
simulation code is produced after flattening the models, i.e. getting rid of the complex
data structures or arrays, as well as of any hierarchical structure. It often brings an
increase in the number of equations (e.g. an array equation is transformed into a series
of identical scalar equations). It brings more complexity to the analysis of the model.
Each equation is often mapped into a function of sequential code, and each of those func-
tions has its own header, environment and variables. Identical functions are not merged
into one to be called with different arguments, causing a worse space complexity of the
simulation code and executable file.

Document structure In this thesis, we enrich a benchmark framework for Modelica
compilers with a test case using an external DAE solver, IDA. The first chapter contains
the state of the art and some theoretical background, that is the Modelica language speci-
fication and the tools used for the benchmark tests. In the second chapter, the model used
in the benchmark is presented. The PowerGrid model is part of the HiPerMod benchmark
suite, and the purpose of this thesis is to create an equivalent simulation in C++ code.
The implementation details of the code are given in chapter three. The evaluation and



| Introduction 3

the comparisons with a leader-of-the-market existing tool - that is, OpenModelica - is pre-
sented in the fourth chapter. We also show how the experiments are automated. Finally,
the last chapter of this thesis will summarise the work and propose further developments
in the field of Modelica compilers.





5

1| State of the Art

1.1. Mathematical background

A system of equations can be often used to describe a physical phenomenon. An equation
can be differential or algebraic, depending on whether there are differentiation operators
or not.

System of equations ODE stands for Ordinary Differential Equation. The term or-
dinary is in contrast with the term partial derivative that may be with respect to one or
more variables. ODE refers to a system of equations written in the form

ẋ = f(x, t) (1.1)

where the derivatives of the functions x are explicit with regard to the function f depend-
ing on x and t only.

DAE stands for Differential-Algebraic Equation. It is a generalisation of an ODE, and it
has form

F (x, v, ẋ, t) = 0 (1.2)

where ẋ is the vector of derivatives of x, and v is a vector of algebraic variables whose
derivatives do not appear in F .

A semi-explicit DAE is shown in equation 1.3.ẋ = f(x, v, t)

g(x, v, t) = 0
(1.3)

An IVP, initial value problem, is made of an ODE or DAE and an initial condition which
specifies the value of the unknown function and its derivative at a given point. Equation
1.4 shows the general form of an IVP. F is the (vectorial) residual function of the DAE
(or ODE), y an ẏ are the vectors of variables and derivatives. t0 is the point in time to



6 1| State of the Art

which the known values refer to. 
F (t, y, ẏ) = 0

y(t0) = y0

ẏ(t0) = ẏ0

(1.4)

Residual function It is always possible to express any system in the form 1.2. It is
trivial, in fact, to transform an equation expressed as in 1.1 and obtain a new F as:

F (x, ẋ, t) = f(x, t)− ẋ (1.5)

The function F is called residual function.

Jacobian matrix Some numerical methods need a Jacobian matrix to solve a system
of equations. The Jacobian matrix of a system of equations is the matrix of the partial
derivatives of each equation with respect to each variable. The rows represent the equa-
tions and the columns the variables, so that an element Ji,j, the element in the i-th row
and j-th column is the partial derivative of the i-th component of the residual function
with respect to the j-th variable.

Equation 1.6 shows the Jacobian matrix of a system with n equations and m variables.
If the number of variables and equations is the same, then the Jacobian matrix is square
(it has the same number of rows and columns).

J =


∂F1

∂v1
. . . ∂F1

∂vm... . . . ...
∂Fn

∂v1
. . . ∂Fn

∂vm

 (1.6)

Index of a DAE The index of a DAE measures the distance from a DAE to its related
ODE. There are many index definitions, one of which is the differentiation index. The
differentiation index of a DAE system is the number of times needed to differentiate the
DAE to get an ODE.

Explicit and implicit methods There are several methods to solve DAEs, mostly
depending on the properties of the system. The analysis of discrete systems or discrete-
time systems is out of the scope of this thesis. Here we discuss only continuous-time
systems with continuous input and output signals.



1| State of the Art 7

Explicit methods compute the state of a system at a later time from the state of the system
at the current time. An example of an explicit method is the forward Euler method, which
substitutes the derivative of the functions with the finite differences formula [5].

Implicit methods solve an equation involving both the current state of the system and
the next one, instead of computing the next state directly from the current. Among the
implicit solution methods for systems of equations, there are:

• Backward Euler It is the most basic numerical method to solve ODEs. It computes
the approximations using

yk+1 = yk + hf(tk+1, yk+1) (1.7)

which differs from the explicit forward Euler method in that the latter uses f(tk, yk)
[11].

• Backward Differentiation Formula BDF is a family of methods for the integra-
tion of ODEs. They are linear multi-step methods that, for a given function and
time, approximate the derivative of that function using information from already
computed time points, thereby increasing the accuracy of the approximation [13].

• Runge-Kutta Runge-Kutta methods are a family of implicit and explicit iterative
methods used in temporal discretisation for the approximate solutions of ODEs.It
has been designed by Carl Runge and Wilhelm Kutta around 1900.

1.2. Equation-based languages for simulations

Academic and industrial research often requires studying the behaviour of a physical
system before building a prototype. The mathematical analysis permits to reduce the cost
and time needed for the construction of prototypes. With the advent of computers and
the increase of computational power, the simulation of a virtual model became possible.
The use of simulation tools increased the precision and opportunities of the initial part
of the study of a system. A natural way to describe systems, e.g. in control theory, is
through differential and algebraic equations, but it is not they only one.

A large portion of the simulation software currently on the market is domain-specific. Let
us look at three representative examples: CSSL, ACSL, and SPICE.

The Continuous System Simulation Language (CSSL) is suitable for the simulation of
dynamic systems described by ODEs [6]. ACSL stands for advanced continuous (system)
simulation language [26], and it was designed for modelling and evaluation of systems de-



8 1| State of the Art

scribed by continuous, time-dependent, non-linear differential equations. Block diagrams
are developed on-screen from pre-defined PowerBlocks representing ACSL statements,
operators, functions, and/or user-defined blocks in an unlimited hierarchical structure.
ACSL code is generated directly from the graphical model.

SPICE stands for Simulation Program with Integrated Circuit Emphasis [28]. It is a
language designed for the simulation of electrical circuits. To describe a circuit, the user
gives a name to the element with the initial letter depending on the type of element (e.g.,
if the user is defining a capacitor, the name must begin with C). Then, the user sets the
nodes the element is connected to and the value of its specific property. For example, for
a capacitor, such property is the capacity. The circuit can be simulated, and the results
plotted to be analysed.

Domain-specific tools achieve high performances in their domain, but they can’t model
elements of another sector in a reasonable or performant way. To solve this issue, the Mod-
elica language has been designed [25], unifying the concepts of domain-specific and ear-
lier domain-neutral or multi-domain systems such as ASCEND[30], Dymola[14], VHDL-
AMS[21].

1.3. The Modelica language

Modelica is an equation-based, object-oriented, multi-domain language for simulation of
physical systems [24]. It is suitable for a large range of applications, both industrial
and academic. It was designed for the study of complex systems made of elements from
different domains.

A model in Modelica is defined as a set of parameters, variables, and equations [27]. Initial
values are defined with initial equations, which might need to be solved before proceeding
further with the compilation and simulation of the model.

Listing 1 shows a simple DAE system with two variables and one parameter. As it can
be seen, the model contains first a set of parameters and variables, possibly associated
with their initial value. The set of initial equations describes the system at time zero
(or, more generally, at the initial time). The initial system might be different from the
system described with the equations. Finally, the equation section describes the system
evolution with differential and algebraic equations. In particular, the model in listing 1
has one algebraic variable and one state variable.

The object-oriented nature of the Modelica language permits the designer to define an
element and re-use it throughout the model.



1| State of the Art 9

Listing 1 A simple DAE system

model FirstModel
parameter Real a = 0.5;
Real v(start =0.5);
Real t;
initial equation

t = a;
equation

t = v*a;
der(v) = t*v;

end FirstModel;

Listing 2 Arrays in Modelica

model A //model A in file A.mo
Real input_v;
Real X;

equation
der(X) = input_v;

end A;

model B //model B in file B.mo
parameter Real par = 5.2 "some parameter";
A[2] vars "an array of models A";

equation
vars [1]. input_v = par;
vars [2]. input_v = vars [1].X;

end B;

It is possible to define vectors of variables and models. The notation for vectors is shown
in listing 2. Access to an element of the vector happens through square parenthesis. Also
shown in listing 2, one model can embed other models.

Libraries containing frequently-used models are made available to the modeller. For ex-
ample, when modelling circuits, all the elements (resistances, capacitors, transformers,
etc...) are defined in the Modelica Standard Library. They can be instantiated in a new
model and connected with the command connect. Listing 3 shows the use of connect
and of the elements in the library Modelica.Electrical.Analog. It describes a simple
RC circuit with a resistor and a capacitor connected to a generator.

It is possible to use for loops to define vector equations and exploit the arrays. Listing
4 is an example of the use of loops. The array variable T is the temperature of a wire



10 1| State of the Art

Listing 3 Using Modelica libraries’ models and the construct connect

model RC "A resistor-capacitor circuit model"
parameter Modelica.Units.SI.Voltage vb=24 "Battery voltage

";
parameter Modelica.Units.SI.Resistance rr = 100;
parameter Modelica.Units.SI.Capacitance cc = 1e-3;
Modelica.Electrical.Analog.Basic.Ground G;
Modelica.Electrical.Analog.Basic.Resistor r1(R=rr);
Modelica.Electrical.Analog.Sources.StepVoltage V(V=

vb,startTime =1);
Modelica.Electrical.Analog.Basic.Capacitor c1(C=cc);

equation
connect(r1.n,c1.p);
connect(r1.p,V.p);
connect(V.n,G.p);
connect(c1.n,G.p);

end RC;

heated at one end with a heat source with constant temperature Thi, and the other end
is exposed to the room temperature Tlo. The for-loop allows declaring the equations of
all the variables in T (except for the edges of the wire). These equations are all similar
one to another. Also, this way, changing the value nx (and hence the granularity of
the simulation) doesn’t require any changes to the code. Modelica tools typically don’t
allow choosing a parameter at run-time, so the value nx is a constant when the model is
compiled. However, simulations might need to be carried out with different combinations
of parameters. In this example, changing the granularity of the model wouldn’t require
adding or removing the corresponding equations. However, the new model would need to
be re-compiled (more about this in section 1.4).

Annotations allow setting simulation parameters in the model directly. For example, the
annotation in listing 4 sets the start and stop times, the tolerance and interval values for
simulation. They are instructions for the simulation and do not include data about the
model’s behaviour. They are used extensively to provide all kinds of information about
models [27].



1| State of the Art 11

Listing 4 A Modelica example with for loops. Heat conductivity in a wire made of metal,
heated on one side with a heat source of given temperature Thi

model Thermal1D

parameter Integer nx = 100;

parameter Real g = 0.00314785;

parameter Real c = 0.2707936;

parameter Real Thi = 400 + 273.15; // higher T

parameter Real Tlo = 20 + 273.15; // lower T

Real T[nx](each start = Tlo);

equation

c*der(T[1]) = g*(T[2] - T[1]) + 2*g*(Thi - T[1]);

c*der(T[nx]) = g*(T[nx-1] - T[nx]) + 2*g*(Tlo - T[nx]);

for x in 2 : nx-1 loop

c*der(T[x]) = g*(T[x-1] - T[x]) + g*(T[x+1] - T[x]);

end for;

annotation(experiment(StartTime = 0, StopTime = 100000,

Tolerance = 1e-6, Interval = 20));

end Thermal1D;

1.4. Tools for Modelica simulation

Tools for Modelica simulation are often whole environments which support modelling,
compilation and simulation, data analysis. Modelica software can be divided into two
groups: production-grade tools and partial works. Among the former, another distinction
is between open-source and proprietary software. In this section, we present the most
relevant examples of software for Modelica simulation.

1.4.1. Compilation and simulation

The processing of a Modelica file has several steps.

• Transformation of the equations (which are descriptive and do not impose an



12 1| State of the Art

ordering among themselves) into a sequence of instructions that will produce the
simulation (i.e. the code of a program, typically written in C++ or C).

• Resolution of the DAE system. Depending on the type of system, there are several
methods for numerical integration. There are also solvers on the market that im-
plement some of those algorithms. Examples of solvers are DASSL and IDA, both
solving non-linear systems. The model is firstly evaluated and then transformed
into an intermediary representation that can be processed further.

• Simulation of the model and retrieval, analysis and plotting of the results.

The main challenge for the compiler is the transition from declarative to imperative be-
haviour, which does not happen with other languages. Given that there is no input to
the execution of the sequential code, the simulation is often executed only once, and the
results are stored for future use.

It is common, in Computer Science, to disregard the compilation time analysis because it is
considered a sunk cost, irrelevant to the user of the software. However, the Modelica tools
on the market produce code specific to the model file, and changing a single parameter
requires the whole procedure to be repeated, from the analysis and resolution to the
compiling and simulation. In this context, the compilation time impacts the total time-
to-solution as much as the simulation time does.

Not only compilation time impacts every run, but it also depends on the size of the input,
as it has been shown in the literature when analysing the performance of Modelica tools
[2]. For these reasons, we analyse both compilation and simulation time, as well as the
size of the compiled executable.

Most software environments for Modelica do not implement all the code for the solution
of the system internally but use external packages (for example, Sundials - see section
1.6). The solvers are hereby integrated into the environment.

Modelica compile-time complexity is usually linear (or more than linear) w.r.t. the number
of variables and equations of the model. The cause of this is the flattening process which
unrolls loops, transforming vector equations into scalar equations and causing the loss of
any hierarchical structure of the components in a model [1]. It is a known problem that
flattening causes an increase of the compilation complexity, but the algorithms used for
structural analysis and symbolic manipulation of the system equations can treat scalar
equations only.

New algorithms have been designed to avoid or delay the flattening phase as much as
possible. It has been analysed, for example, how to modify the Pantelides index reduction



1| State of the Art 13

algorithm to make it re-use the repeating structures of the code. The original algorithm
is not able to use and preserve structures, but the new version allows to perform the
Pantelides index reduction for large models independently of how long is the chain of
repeated structures [4].

1.4.2. Open Source software

OpenModelica OpenModelica1 is the most well-known and impactful work related to
Modelica simulation among the open-source software. It is maintained by the OSMC
(Open Source Modelica Consortium) and aims at providing long-term development and
support for the modelling and simulation environment. The research topics the OSMC
is carrying out are language design, symbolic and numerical algorithms and others. One
research activity that is related to compilers is multi-core parallel code generation [32].
Even though OpenModelica might not be the most performing tool on the market, it
represents the most relevant open-source effort in the Modelica community so far. Open-
Modelica covers most parts of the Modelica language, differently from most of the other
tools.

1.4.3. Proprietary software

JModelica JModelica2 is a partially open-source platform for compilation and simula-
tion of Modelica models. It is made of several packages:

• Assimulo is a Python package for simulation.

• PyFMI is a package for loading and interacting with Functional Mock-Up Units for
model exchange and co-simulation.

• FMI library is a software package written in C that enables the import of FMUs in
applications. FMUs are compiled models compliant with the Functional Mock-up
Interface [3].

• Modelica compiler and optimisation tools. This part of the toolkit has been moved
from open to closed source code (contrarily to the formerly mentioned packages
which are still open-source and available on GitHub).

Dymola The most relevant proprietary tool is Dymola3 (DYnamic MOdeling LAbo-
ratory) [15]. It uses the Modelica libraries (both the open-source and some commercial

1openmodelica.org
2JModelica.org
3www.3ds.com/products-services/catia/products/dymola/

https://jmodelica.org/
JModelica.org
https://www.3ds.com/products-services/catia/products/dymola/


14 1| State of the Art

libraries) and supports the FMI standard4. It is based on the Dynamic Modeling Language
(also called Dymola), which can be viewed as the first definition and implementation of
the Modelica language [14].

1.4.4. Other works

Modia Modia5 is an alternative to using Modelica. It is an extension of the Julia6 [9]
language for modelling and simulation of physical systems [16, 17]. Julia is an object-
oriented programming language designed for high performance. It is compiled via LLVM
[22], generating efficient native code, but it uses just-in-time compilation, which is not
always good for performance. In fact, the time required to load a third-party package
can become significant. For example, in Modia, the time to load the simulation packages
ranges between several seconds to nearly a minute.

Modia represents an implementation of Modelica in Julia, its purpose being a playground
for testing new features and fast prototyping. The models are described by equations, just
like in Modelica, and it implements an object-oriented approach. Modia allows defining
array equations, which aren’t flattened during symbolic transformation. This generates
more compact and efficient code. The definition of an array cannot be split among state-
ments. Some algorithms to transform a DAE system into an ODE system are used in
Modia [29]. The simulation of the model returns the solution in a Julia data structure (a
matrix or array).

The Julia language has an API that permits the connection of the Julia scripts to Open-
Modelica (OMJulia) [23]. OMJulia is simply a wrapper over OpenModelica, so there is
nothing new regarding its performance.

MARCO Previous work from our research group [1] introduces the idea of writing a
new Modelica compiler from scratch with performance as the main goal. The new com-
piler would use the LLVM [22] compiler framework and transform the Modelica code into
an intermediate representation that retains structural information from the original code,
allowing the generation of machine code that is optimised for the target hardware archi-
tecture (instead of generating intermediate C code as OpenModelica does) and allowing
faster compilation. The main goal of the research is to preserve arrays, loops and, in
general, the object-oriented structure of the original model. To make this possible, the
idea is to use a single object for the function to compute the residuals of DAE, which has

4fmi-standard.org/
5www.github.com/ModiaSim/Modia.jl
6www.julialang.org

https://fmi-standard.org/


1| State of the Art 15

to be generated only once and then called using different inputs and outputs each time it
is needed.

A prototype of an optimised compiler has been designed [7, 8] and tested with a thermal
conduction model compiled in OpenModelica and Dymola against hand-written C++
code. The results show that the compilation time of the Modelica code grows with the
number of equations, while the hand-written code has nearly constant compile time. As
for the time to solution, it has been shown that the speedup of the C++ code grows with
the size of the model. Finally, the space complexity of the model is shown to be constant
for the C++ code and linear for Modelica. The high performance of the prototype code
is due to the absence of the flattening phase, which results in a smaller model (as it
maintains its hierarchical structure). Another issue discussed is that each equation is
mapped into a C function, resulting in larger code size and overhead due to function calls.
Together with the loop unrolling used in the existing compilers, this causes the presence
of a host of functions that are essentially the same function with different arguments.

Recently, new algorithms which preserve for-loops and the array structures of the variables
have been proposed, in particular for the matching phase. It has also been proved that
the problem of matching and scheduling of the equations is NP-hard if the loops are
preserved [18]. Also, the compiler infrastructure has been improved through the use of
MLIR, and the implementation of functions has been added to allow imperative code
inside models[31].

1.5. Benchmarks for Modelica compilers

Benchmarks suites for Modelica compilers are subject of active research.

In [19], a benchmark for large models is described. The performances are tested using
Python scripting to see how different tools scale with the model size. The compilers tested
are OpenModelica, JModelica and Dymola. The simulation results show that, usually,
Dymola performs better than the open-source tools, but the time complexity is almost
the same (second or third power of the number of the equation, depending on the model
and the compiler).

Most of the existing benchmark suites can’t help with time complexity analysis, for it
needs the possibility to change the size of the input (the number of equations). The Scal-
ableTestSuite benchmark library was designed for this purpose [12]. The ScalableTestSuite
benchmark doesn’t offer an ideal target for Modelica tools, but it allows to analyse time
complexity of different models.



16 1| State of the Art

HiPerMod [2] is a benchmark suite for Modelica compilers that aims at enabling the
comparison between Modelica automatically-generated simulation code, and hand-written
C++ simulation code. The C++ code is optimised by hand, thus can be considered an
ideal target for compiler performance. The test cases will allow studying the time (and
space) complexity by setting a parameter for the simulations (defining the model size).
Each benchmark will be independent from the others, and the optimised code will be
helpful for the design of high-performance compilers in the future. The full suite will
cover different model examples and different solvers, in order to be used as a reference for
future development of Modelica tools. The results of a simple model - solved with explicit
methods - show that the C++ code tends to be one order of magnitude faster. Before
this work, the benchmark models available with both Modelica file and C++ code were
all solvable with explicit methods only.

1.6. Sundials package

SUNDIALS7 stands for SUite of Nonlinear and DIfferential/ALgebraic equation Solvers.
It consists of six solvers, each for a different type of problem. The suite is released open-
source under a BSD license. Its goal is to provide robust time integrators and non-linear
solvers to be incorporated into existing simulation tools. The solvers are designed to
require minimal information from the user and to allow the user to supply their data
structures, as well as to allow for user-supplied linear solvers to be integrated easily.

CVODE and CVODES are used for ODE systems. The latter includes sensitivity analysis
capabilities (hence, the S). CVODE solves the initial problem for stiff and non-stiff ODEs
given the explicit form. It includes, among others, BDFs methods and makes use of
multi-step methods.

ARKODE is another solver for initial problems; it makes use of different methods with
respect to CVODE (Runge-Kutta).

IDA and IDAS solve DAE systems. The latter includes sensitivity analysis. IDA and
IDAS require a residual function provided by the user. They use BDF methods and are
written in C but derived from a package written in Fortran.

KINSOL solves non-linear algebraic systems. It is written in C, but interfaces for Fortran
are provided as well.

All the mentioned solvers allow the user to provide their data structures, together with
the operations on those structures. The code comes with default vector structures for

7computing.llnl.gov/projects/sundials



1| State of the Art 17

both serial and distributed memory parallel environments. All parallelism is contained
within the vector structures and their operations, as the same code is executed in both
cases.

1.6.1. IDA solver

IDA is a package written in C. It solves the Initial Value Problem (IVP) with a DAE and
the initial conditions for variables and derivatives known [20].

Before integrating a DAE system, IDA requires that the vectors with variables and deriva-
tives are both initialised to satisfy the DAE residual equation:

F (t, y, ẏ) = 0 (1.8)

If the user can’t provide such values, there are algorithms to compute consistent initial
conditions for semi-explicit, index-one problems [10]. The information needed for such
algorithms to work are included in the Jacobian and residual functions already required
to solve the time-dependent DAE systems.

The function IDACalcIC(void* ida_mem, int icopt, realtype tout1) computes the
initial conditions of the problem. The argument tout1 refers to the first time for which
a solution for the DAE is requested. The integer icopt can have two values:

• IDA_YA_YDP_INIT directs IDA to compute the components of y and the differential
component of ẏ given the differential components of y. The differential compo-
nents (state variables) are signalled using the function IDASetId(void* ida mem,

N_Vector id), where the vector id contains 0.0 in place of algebraic variables and
1.0 in place of differential variables.

• IDA_Y_INIT directs IDA to compute the components of y given the values of ẏ.

The programmer needs to implement the function for computing the residuals. Some
modes also require the user to provide a Jacobian function. There is an option for IDA to
compute the Jacobian numerically, but numerical robustness can be impaired. The time
complexity increases greatly, and it is feasible only with smaller systems.

When initialising the data structures, the user provides to IDA two vectors for variables
and derivatives respectively. The structure of the problem is lost because IDA does not
require any description of the variables. The structure of the variables (scalars, vectors,
or complex numbers) can still be used in the residual or Jacobian functions.

The programmer has to initialise the linear solver and link it to IDA. A non-linear solver



18 1| State of the Art

Listing 5 C header of user-provided residual function

int residualFunction( real_t tt,
N_Vector yy, N_Vector yp,
N_Vector res ,
void *data)

Listing 6 C header of user-provided Jacobian function

int jacobianFunction( realtype tt , realtype cj ,
N_Vector yy, N_Vector yp,
N_Vector rr,
SUNMatrix Jac ,
void *user_data , N_Vector tmp1 ,
N_Vector tmp2 , N_Vector tmp3

);

might be allocated by the user as well. Both the solvers might be provided by the user
and not among the default alternatives, as long as they provide the methods needed for
the solution of the system.

Listing 5 shows the header of the residual function IDA expects to receive. The variable
real_t tt is the time of the simulation. The three N_Vector variables contain variables,
derivatives, results. void* data is a pointer to the user-defined data structure IDA
provides. It can store whatever data the user needs to keep track of, and it is allocated
during the initialisation of IDA.

The return value of the function shall be 0 if the residual function ends the computation
without errors. The residuals are written in the N_Vector res. Every component of
the vector will store the residual of a single equation, and the corresponding line in the
Jacobian matrix will store the partial derivatives of that equation w.r.t. each variable.

The Jacobian function needs to provide code for the computation of

J =
∂G

∂y
=

∂F

∂y
+ α

∂F

∂ẏ
(1.9)

Listing 6 shows the header of the user-provided Jacobian function.

The variable realtype tt is the time of the simulation. realtype cj refers to the α

parameter for the computation of the Jacobian function in formula 1.9. The N_Vectors

provided contain the variables, the derivatives, the current results of the residual function,
in this order. SUNMatrix Jac is where the resulting Jacobian matrix is saved. void*



1| State of the Art 19

user_data is the pointer to the user-defined data structure IDA provides. The last three
vectors are temporary variables provided for the user, e.g. in case there was a need to
store partial results.

The return value shall be 0 if there are no errors.

Regarding the SUNMatrix Jac, IDA accepts three types of data structures to store the
Jacobian matrix: dense, sparse, and band. Each option works with specific linear and
non-linear solvers.

Dense Jacobian matrices are represented through two-dimensional arrays accessible like
any other. They are preferable for dense systems, i.e. systems where the Jacobian matrix
non-zero elements are more than the zero elements.

Sparse matrices are preferred when the variables appearing in every equation are few w.r.t.
the number of equations. In this case, the growth of the number of non-zero elements is
linear with respect to the number of variables. To use sparse matrices, the programmer
or compiler needs to estimate an upper bound of the non-zero elements of the Jacobian
matrix.

Finally, banded matrices are used with systems where the equations can be divided into
subsets whose Jacobian sub-matrix is dense, but where the non-zero elements w.r.t. vari-
ables out from the dense sub-set are rare.





21

2| The PowerGrid model

As we said, the HiPerMod benchmark suite has been designed to fill the absence of a
benchmark suite that can compare the performance of existing and future tools to a
hand-written, optimised C++ code. This suite, in its current state, contains several test
cases, but not yet a scalable (in the number of equations), hand-written C++ code which
uses a DAE solver for the simulation. One of the benchmark tests, the PowerGrid model,
contains a DAE system with non-linear equations, thus requiring a non-linear solver. The
C++ code is written without flattening the vector variables and exploiting the for-loops
as much as possible.

In this chapter, we present the PowerGrid model. It is a DAE system with vectorial
equations, some of them non-linear w.r.t. the variables. It is solvable using the IDA
solver from the SUNDIALS package.

The PowerGrid model (see Appendix A) describes an electrical circuit with the elements
(generators, and power-consuming resistors) arranged as in a matrix (thus, the name
grid). Figure 2.1 represents the currents of the power grid. Circles are generators while
squares are the power-consuming loads. Nodes exchange current vertically and horizon-
tally through transmission lines. Each node has a voltage and a current output. The
vertical and horizontal line currents depend on the nodes’ voltages. Only generators have
power generated and requested, angle and velocity.

Listing 7 shows the nested for loop which defines the currents and the loop with the
current balance equations of the nodes in the first row of the grid.

Listing 8 shows the state equations of the model. The omega variables represent the

Listing 7 Horizontal-line current equation.

for i in 2:N - 1 loop
i_n[i, 1] + i_h[i, 1] + i_v[i, 1] - i_h[i - 1, 1]

= Complex (0) "Top";
end for;



22 2| The PowerGrid model

Figure 2.1: The power grid with 2 generators and 2 power-consuming units.

Listing 8 Differential equations of the PowerGrid model.

for i in 1:N loop
for j in 1:Ng loop

der(theta[i,j]) = (omega[i,j] - 1)*omega_n;
Ta * omega[i,j] * der(omega[i,j]) =

Pm[i,j] -
(omega[i,j] - 1)/sigma - Pg[i,j];

end for;
end for;

angular velocities of the generators, the theta variables represent the angles.

Currents and voltages are complex numbers, so PowerGridDAE.mo includes the description
of the complex type with the definitions of overloaded operators on complex numbers
(including conjugate, multiplication, sum, etc... used in the model).

The parameter describing the model size is Ne, the number of generators per row (or the
number of even rows). There is the same number of power consumers and generators in
every row and in every column. A generator’s neighbours are only loads, and a resistor’s
neighbours are only generators.

N is the number of rows and columns in the grid. There are, in total, N2 elements (or
nodes). Every element has a voltage and a current. The elements exchange current with
their neighbours on the same row and those on the same column. The total number of
variables hereby introduced is 2N2+2(N−1)N . All these variables are complex numbers,
hence using two real variables to store each. There is a set of variables for the generators



2| The PowerGrid model 23

only: the phase, the derivative of the phase (angular speed), the active power output, and
the power input request. There are 4NeN = 2N2 real variables. Hence, the total number
of variables (and equations) is:

Nv = 2(2N2 + 2(N − 1)N) + 2N2 = 10N2 − 4N ≈ 10N2 (2.1)

Given that the parameter we decided to set is Ne, the relationship between the total
number of variables in 2.1 and the number of generators in each row is:

Nv(Ne) = 10(2Ne)
2 − 4(2Ne) = 40N2

e − 8Ne ≈ 40N2
e (2.2)

Table 2.1: Number of equations for the tests

Ne N N nodes N. equations

1 2 4 32
2 4 16 152
4 8 64 ∼ 600
8 16 256 ∼ 2500
11 22 484 ∼ 4750
16 32 1024 ∼ 10K
23 46 2116 ∼ 21K
32 64 4096 ∼ 41K
45 90 8100 ∼ 81K
64 128 16384 ∼ 163K
90 180 32400 ∼ 324K
128 256 65536 ∼ 655K

A model with one generator has 32 equations. A model with 158 generators per row has
almost a million variables.

Setting the parameter Ne is done so that the total number of equations doubles from one
to the next. In table 2.1, we show the values of Ne and the respective number of nodes
and variables (equations) for which we ran the tests.





25

3| Implementation

In this chapter, we discuss the implementation details of the C++ code simulating the
PowerGrid model. First, we present the initialisation of the IDA solver and then the
notable details of the residual and Jacobian functions provided. The model uses a sparse
matrix of SUNMatrix type to store the Jacobian values, so the section 3.3.1 is dedicated
to the description of the data structure. Finally, we show the integration of the test case
with the rest of the benchmark suite.

To simulate the PowerGrid model with IDA, two functions need to be provided: one
computing the residuals, and one for the Jacobian. The residual function will store the
residuals in an NVector of the same size as the variables. Each element of the vector will
be associated with an equation, and this association should be taken into account when
computing the Jacobian. The Jacobian function will compute and store the values in a
data structure, SUNMatrix, which can be dense, sparse or banded. For this model, the
sparse version is used. Both functions return a control integer value which should be 0 if
no errors occur. All the pointers to input and output data structures and the variables
are passed as arguments.

The residual function is trivial to compute. We chose to associate the state variables to
the differential equations which contain their derivatives. As for the algebraic equations,
we chose to associate them with variables of equal size to better exploit the possibility
to use for loops. For example, the current balance equations’ residuals are stored in the
respective position of the current variable of the node they refer to.

The performance analysis takes into account three measures: time complexity of the
simulation, time complexity of the compilation, size of the file containing the code for the
simulation.

The compilation time is relevant for this experiment because it is always part of the
overall computation time from the Modelica code to the simulation results. In fact, it
is not possible to use the same code generated from a model with different parameters
to simulate a similar model. Every change in the model will require a new execution of
the Modelica compiler. The size of the file containing the simulation code is important



26 3| Implementation

Listing 9 Initialisation of IDA data structures and environment

1 void PowerGrid_ida :: initIDA () {
2 mem = IDACreate ();
3 IDASetUserData(mem ,(void*)this);
4 IDAInit(mem , residualFunction , T0 , variables_v ,

derivatives_v);
5
6 IDASStolerances(mem , rtol , abstol);
7
8 sunindextype nnz = 5* numberOfVariables; //upper bound
9

10 A = SUNSparseMatrix(numberOfVariables ,numberOfVariables ,
nnz ,CSR_MAT);

11 LS = SUNLinSol_KLU(variables_v ,A);
12 IDASetLinearSolver(mem ,LS,A);
13
14 IDASetJacFn(mem ,jacobianFunction);
15
16 NLS = SUNNonlinSol_Newton(variables_v);
17 IDASetNonlinearSolver(mem , NLS);
18 }

because it impacts not only the compilation time but also the memory usage. One of the
known limits of OpenModelica is the memory consumption which makes the simulation
of large models practically unfeasible.

3.1. Initialisation

Listing 9 shows the method initialising all the components of IDA needed for the Power-
Grid model simulation. After allocating an instance of IDA and its memory block mem, we
associate its user-defined data structure to our PowerGrid object. A pointer to this user-
defined data structure (the instance of PowerGrid, in this case) will be made available to
the user in the methods computing Jacobian matrix and residuals.

After providing the residual function (described in section 3.2), the initial time, the vectors
of variables and derivatives, in line 6, we set the tolerances. rtol is the relative tolerance,
while abstol is the absolute tolerance. Both have value 10−6.

Lines 8-10 allocate a SUNMatrix to store the values of the Jacobian matrix. Such a
matrix is sparse, with one row and one column for each variable (or equation). nnz is
the number of non-zero elements expected. In line 8, we compute an upper bound for



3| Implementation 27

nnz. Five is the maximum number of elements - variables or their derivatives - in a single
row (variables appearing in an equation), hence the maximum number of possible non-
zero partial derivatives in an equation. It is necessary to provide an upper bound of the
number of non-zero elements because it impacts the space allocated for the matrix. In
case the number is overestimated, there will be some unused space. In the opposite case,
with less space than needed, the simulation won’t work.

The solvers are allocated in lines 11 and 16. The solver used is SUNLinearSolver_KLU.
The non-linear solver is SUNNonlinearSolver_Newton.

Finally, in line 14, a Jacobian function is provided. The function is described in section
3.3.

3.1.1. Initial condition

The Modelica code of the model provides an initial value for every variable, algebraic or
differential. IDA requires an initial condition satisfying, for both variables and derivatives,
the following equation:

F (t0, y, ẏ) = 0 (3.1)

Listing 10 is used to compute the algebraic components of y and the differential compo-
nents of ẏ. It needs a vector N_Vector id with value 0 associated to algebraic variables
and 1 associated to state variables.

The UserData_t datatype used in line 3 is a custom datatype used to access the variables
(and derivatives) without manually computing their index every time. The definition of
the data type can be seen in listing 11. It is a struct containing pointers to the first
element of each vector variable. The ArrayView2D class was constructed to access the
multi-dimensional (two-dimensional) arrays of variables.

To use the UserData_t datatype, the function UserData_t PowerGrid_ida::getUserData

(N_Vector variables) is called. The function assigns to every pointer of the data struc-
ture the reference to the first element of the corresponding vector. The position of the
first element of each vector depends on the number of variables (i.e. on the size of the
grid).

In the specific case of the PowerGrid model, the generators all rotate at a speed corre-
sponding to 50 Hz frequency, and all the machine angles are initialized to zero. This
would be an equilibrium condition for an infinite grid, that expanded indefinitely in all
directions, since each load is equally surrounded by four generators, and the system would



28 3| Implementation

Listing 10 Initial condition computation with IDA

1 int PowerGrid_ida :: ICcalc (){
2 N_Vector id = N_VNew_Serial(numberOfVariables);
3 UserData_t id_p = getUserData(id);
4 for (int i = 0; i < numberOfRows; i++){
5 for (int j = 0; j < numberOfGenerators; j++){
6 id_p.theta(i,j) = 1.0;
7 id_p.omega(i,j) = 1.0;
8 id_p.Pg(i,j) = 0.0;
9 id_p.Pm(i,j) = 0.0;

10 }
11 for (int j = 0; j < numberOfRows; j++){
12 id_p.i_n(i,j) = complex_t (0.0 ,0.0);
13 id_p.v(i,j) = complex_t (0.0 ,0.0);
14 }
15 for (int j = 0; j < numberOfRows -1; j++){
16 id_p.i_h(j,i) = complex_t (0.0 ,0.0);
17 id_p.i_v(i,j) = complex_t (0.0 ,0.0);
18 }
19 }
20 IDASetId(mem ,id);
21 return IDACalcIC(mem , IDA_YA_YDP_INIT , tout);
22 }



3| Implementation 29

Listing 11 UserData_t datatype definition

typedef struct Data {
Data(){}
ArrayView2D <real_t > theta = ArrayView2D <real_t >(nullptr ,

0, 0);
ArrayView2D <real_t > omega = ArrayView2D <real_t >(nullptr ,

0, 0);
ArrayView2D <real_t > Pg = ArrayView2D <real_t >(nullptr , 0,

0);
ArrayView2D <real_t > Pm = ArrayView2D <real_t >(nullptr , 0,

0);

ArrayView2D <complex_t > i_n = ArrayView2D <complex_t >(
nullptr , 0, 0);

ArrayView2D <complex_t > i_h = ArrayView2D <complex_t >(
nullptr , 0, 0);

ArrayView2D <complex_t > i_v = ArrayView2D <complex_t >(
nullptr , 0, 0);

ArrayView2D <complex_t > v = ArrayView2D <complex_t >(nullptr ,
0, 0);

} UserData_t;



30 3| Implementation

be fully symmetric. Since there are border effects due to the finite extent of the grid, the
equilibrium values of the machine angles are not all equal. Hence, a transient ensues,
during which angles and frequency show damped oscillations, until the system reaches
equilibrium condition. This transient doesn’t correspond to a real operation scenario,
because it never happens in real life that all machine angles are equal. However, it is very
simple to set up in the C code and, most importantly, it has about the same qualitative
behaviour no matter what the size of the system is, hence it is particularly appropriate
to compare the simulation performance for different system sizes.

3.2. The residual function

Listing 12 shows the header of the residual function. The static method residualFunction

is the one used in the initialisation of IDA in listing 9, line 4. The parameters of the model
have been declared as private, as well as the variables and derivatives - even though the
latter are present in the arguments of the method. To use the private variables of an
object, the function can’t be static. At the same time, it is not possible to use a reference
to the object PowerGrid’s method. To by-pass this problem, the static function has the
parameter void* data (not present in the residual function). Such pointer is a reference
to the instance of class PowerGrid containing all parameters, variables and methods for
the simulation.

Listing 12 Header of the residual function

int residual(real_t tt, N_Vector yy, N_Vector yp,

N_Vector res , void *data);

static int residualFunction(real_t tt, N_Vector yy, N_Vector

yp , N_Vector res , void *data) {

PowerGrid_ida *thisObject = (PowerGrid_ida *)data;

return thisObject ->residual(tt, yy, yp, res , data);

}

Listing 13 shows part of the computation of the residual functions. A for loop is used to
compute the residuals of the current balances of the external rows and columns (except
for the corners). For the central part of the grid, a nested for loop is used, exploiting
the structure of the data. Also, current balance equations involve complex numbers: in a
single line of code, the residuals of two equations are defined.



3| Implementation 31

Listing 13 Part of the residual function computing the residual of the current balance
for the first row of the grid (except for the nodes in the corners).

for (int i = 1; i < numberOfRows-1; i++)
residuals.i_n(i,0) = variables.i_n(i,0)

+variables.i_h(i,0)+variables.i_v(i,0)
-variables.i_h(i-1,0);

Listing 14 Header of the Jacobian function

int jacobian(real_t tt, realtype cj,
N_Vector yy, N_Vector yp,
N_Vector res , SUNMatrix JJ , void *data ,

N_Vector tempv1 , N_Vector tempv2 , N_Vector tempv3);

static int jacobianFunction(real_t tt, realtype cj,
N_Vector yy, N_Vector yp, N_Vector res ,
SUNMatrix JJ , void *data ,
N_Vector tempv1 , N_Vector tempv2 ,

N_Vector tempv3) {
PowerGrid_ida *thisObject = (PowerGrid_ida *)data;
return thisObject ->jacobian(tt, cj, yy, yp, res , JJ,

data , tempv1 , tempv2 , tempv3);
}

The correspondent computation of partial derivatives, in the Jacobian function, is shown
in listing 15, in the following section.

3.3. The Jacobian function

Listing 14 shows the header of the Jacobian function. The static method jacobianFunction

is set as the function computing the Jacobian matrix in listing 9, line 14. For the same
reasons as for the residual function, the pointer to the static function is passed to IDA,
and the static method calls a non-static function to compute the values. The matrix
which will contain the partial derivatives is of type SUNMatrix. It has been initialised as
a sparse matrix in CSR format (see listing 9, line 10). The structure and means of access
to a sparse matrix are explained in the following section.



32 3| Implementation

3.3.1. Sparse matrix to store the Jacobian

Figure 3.11 shows a graphic representation of how values are stored in a sparse matrix of
the SUNMATRIX_PARSE type.

Figure 3.1: Storage of the compressed-sparse-column matrix of SUNDIALS sparse type.

There are two types of sparse matrices in the SUNMATRIX package: CSR and CSC,
according to whether the non-zero values of the Jacobian matrix are stored per row or
column. It will be shown in the next chapter that OpenModelica uses a CSC (compressed
sparse column) type. For a matter of convenience and an easier-to-read code, we use the
CSR (compressed sparse row) matrix type.

The matrix uses three arrays to store the data which will be used to reconstruct the
Jacobian matrix. One of the arrays will store, for each row, how many elements are
present in the matrix. More precisely, the array pointed by indexptrs contains the
indexes of the first element referring to the current row. There is an index for each row.

1http://runge.math.smu.edu/arkode_dev/doc/guide/build/html/sunmatrix/SUNMatrix_Sparse.html

http://runge.math.smu.edu/arkode_dev/doc/guide/build/html/sunmatrix/SUNMatrix_Sparse.html


3| Implementation 33

E.g., the number in the second cell j refers to the index of the first element of the second
row (row with index 1). The second array, pointed by data, contains the values of the
partial derivatives. The array pointed by indexvals stores the column indexes of the
correspondent data values.

The insertion of new data must be performed row by row, keeping the order of the rows
defined in the residual function.

Listing 15 shows the computation of the Jacobian regarding the current balance equation
of the nodes in the first row of the grid. The first part is for the real part, and the second
group of lines is for the imaginary part. Listing 16 shows the definition of element and
endr functions. The first inserts the column index in the indexvals array (in this case
referring to columns, in the CSC representation, one inserts the row index) and the value
in the data array. The latter command updates the indexptrs array with the number of
elements written till that point.

The complex<T> type in C++ stores the real and imaginary parts one after the other. An
array of complex numbers doesn’t change the order of imaginary and real parts, so the
Jacobian has to be computed in that same order: for every equation, firstly the real and
then the imaginary part, because IDA expects an array of real double-precision numbers
and can’t see the complex_t data structure.

3.4. Integration with the HiPerMod benchmark suite

The integration of the PowerGrid test case into the HiPerMod benchmark suite happens
through the modelSolutionI interface. PowerGrid extends the interface. There are four
methods to be provided: constructor, destructor, bool step(), and void emitDataTo(

Emitter<CSV_emitter> *outputStream).

The constructor and destructor methods contain respectively the initialisation and the
destruction of the objects (freeing the memory used by the solver).

Function step will be called by HiPerMod to execute the simulation. Listing 17 shows
the function implemented in the PowerGrid class. The return value shall be true unless
the simulation has crossed the end time.

The function void emitDataTo(Emitter<CSV_emitter> *outputStream) is used to print
the results on a file. Using the methods provided by the Emitter class, we can print the
selected variables. In this case, the omega of the corner generators and the v of the corner
nodes.



34 3| Implementation

Listing 15 Part of the Jacobian function, computing the derivatives of the current bal-
ances of the nodes in the first row of the grid.

// residuals.i_n(i,j) = variables.i_n(i,j) +
variables.i_h(i,j) + variables.i_v(i,j) -
variables.i_h(i-1,j) - variables.i_v(i,j-1);

for (int j = 1; j < numberOfRows - 1; j++) {
element(indexes.i_n(i,j).real() , 1.0);
element(indexes.i_h(i-1,j).real() , -1.0);
element(indexes.i_h(i,j).real() , 1.0);
element(indexes.i_v(i,j-1).real() , -1.0);
element(indexes.i_v(i,j).real() , 1.0);

endr();

element(indexes.i_n(i,j).imag() , 1.0);
element(indexes.i_h(i-1,j).imag() , -1.0);
element(indexes.i_h(i,j).imag() , 1.0);
element(indexes.i_v(i,j-1).imag() , -1.0);
element(indexes.i_v(i,j).imag() , 1.0);

endr();
}

Listing 16 Definition of element and endr calls.

*rowptrs ++ = 0;

auto element =[&]( int col, real_t val) {* colvals ++=col; *
jacobianV ++= val;};

auto endr =[&] (){* rowptrs ++ = colvals - colvalsbegin ;};

Listing 17 Step function.

bool PowerGrid_ida ::step(){
steps ++;
int r = IDASolve(mem,

tout, &tret,
variables_v, derivatives_v,
IDA_ONE_STEP);

// exception r != IDA_SUCCESS
assert(r==0);
return (tret < tout); //false if tret >tout

}



35

4| Evaluation

The C++ hand-written code for the simulation of the PowerGrid model needs to be cor-
rect and scalable. Before analysing the time and space complexities, we prove that the
benchmark has the first two proprieties. Then, we proceed by showing the results of
our analysis. We consider both compilation and simulation time, and we also discuss the
space complexity (of the compiler, hence the size of the output executable files). We briefly
discuss the space complexity of the user-provided functions produced by OpenModelica.

4.1. Correctness of the results

To ensure the correctness of the obtained results, the comparison between the results of
the C++ hand-written code and of the OpenModelica tool doesn’t need to be done with
each and every equation.

First of all, the grid modelled is symmetric with respect to the first diagonal. In fact,
the variables of the element in position (n,m) will have the same values as those of the
element (m,n) if we exchange ih with iv. Transposing the grid will have no effect.

Secondly, most of the equations in the model are algebraic. There are only N2 state
variables (and differential equations). The rest are all algebraic. The state variables are
the angular positions (relative to each other) and the angular speeds of the generators.
The angular speed is the derivative of the angular position.

Both in OpenModelica and in the C++ code, we chose to write in the output file the
angular speed (omega) of the generators in the four corners: the first and second-last
node of the first row, and the second and last node of the last row. We also write the
voltage (real and imaginary part) of the nodes in the corners (be it a generator or a load
node).

Figure 4.1 shows how the angular speeds omega are symmetric with respect to the main
diagonal of the grid. The data are from the OpenModelica output of the model with 4
generators per row (64 nodes, around 600 equations). The same happens with the results
of the C++ code.



36 4| Evaluation

Figure 4.1: The angular speed of the four angle generators, symmetric w.r.t. the main
diagonal of the grid.

To prove the correctness of the C++ hand-written code, we analyse the results for the
same model with 64 total nodes. Figures 4.2 and 4.3 show the comparison of the two
outputs each on a plot and one next to the other (since the two are almost identical, one
of the outputs covers the other on the plot).

Figure 4.2: Comparison of the variable omega[1, 1] values.



4| Evaluation 37

Figure 4.3: Comparison of the variable v[1, 8] (real and imaginary part) values.

Figure 4.2 shows the values of variable omega[1, 1]. Figure 4.3 shows the imaginary and
real part of the v[1, 8] values. The initial conditions have been ignored for this analysis.

4.2. Scalability of the model

The experiments have been automatised through bash scripts.

The size of the model in the C++ code can be passed as an argument. Listing 18 shows
a bash line that runs the model with several inputs. The results are stored in the file
resultsNe.csv and the output of the run is directed to the file statsNe.txt.

The computation is repeated several times (in this case, five times) and the arithmetic
mean is used for the complexities and further evaluations. Repeating the simulations more
than once will bring less noise in the data, especially for the simulation of the smaller
models. In fact, repeating the simulation of the big models doesn’t bring much of an
advantage in this sense. Hence, for models with thirty-two or more generators per row,
the simulation can be executed and measured only once or twice. The fluctuations due
to noise won’t be as impacting the overall time, in percentage, as much as it is the case
for smaller models.



38 4| Evaluation

Listing 19 Bash script for the automatisation of the experiments with OMC compiler

#!/bin/bash
ulimit -s unlimited

perl omcwrapper.pl 8 >> simtimes_8.txt
mv PowerGridDAE.GridBase_res.csv omc8.csv
mv PowerGridDAE.GridBase omc8

Listing 18 Bash script for the automatisation of the experiments with the output of the
compilation of the hand-written C++ code

#!/bin/bash

ulimit -s unlimited

for (( i = 1; i < 5; i++ ))

do

echo "iteration $i"

for ne in 1 2 4 8 11 16 23 32 45 64 90 128

do

echo "test $ne"

./ simulation omega$ne.csv $ne >> stats$ne.txt

done

done

To automatise the testing of PowerGrid.mo with OpenModelica, a Perl script was used.
The main operation to perform is to change a line of the source code and overwrite the
definition of the parameter Ne. A bash script is then used to perform the automatic
compilation and simulation of the model. Listing 19 shows part of the bash script for
the OMC compiler. More precisely, it’s the set of lines that simulates the model with 8
generators per line.

The Perl script, other than setting the environment for compilation and execution, prints
the output times in a file. Those are total time, simulation time, solver time of simula-
tion, compilation time, and the total time of the overall process (time to solution). The
script also allows to avoid printing all the variables but selects only four angular speeds
omega_out and four tensions v_out (imaginary and real part) to print in the file CSV.
This mimics the behaviour of real-life large-scale model simulations, where only a minor-
ity of the variables, of some specific interest, will need to be recorded for later analysis,



4| Evaluation 39

while it doesn’t make sense to save all the variables of the model; that would generate
huge and pretty useless data sets.

4.3. Time complexity

Time complexity will be analysed for both compilation and simulation. The experiments
have been run on a server running Linux with Xeon 2650 processor with 20 virtual cores
and 72 GB of RAM.

For the compilation time, the OMC data has been retrieved using the OpenModelica
tool. At the end of the simulation, OMC prints a set of times. Among those, of particular
interest are the total time, simulation time, solver time. Among others, the front-end,
back-end, compilation times are printed.

The analysis of both compilation and simulation time is done separately, and the overall
times are also compared in this section. The total time from the Modelica file to the results
stored for further use includes much more than simply the simulation time (including, but
not limited to, pre-processing, compilation, print of the results...). Also, it will be shown
later how the size of the arrays greatly impacts the time needed for compilation.

Table 4.1: Times to solution in seconds.

Ne N. equations OMC Time (s) C++ Time (s)

1 32 0.741 1.701
2 144 1.32 1.714
4 608 4.08 1.72
8 2.5K 13.2 1.8
11 4.8K 23.1 1.91
16 10K 50.8 2.17
23 21K 114 2.76
32 40K 237 5.13
45 80K 515 10.4
64 163K 1225 24.5
90 324K 3246 65.4
128 640K 231
190 1.4M 882

The total time from Modelica file to results is shown in table 4.1. The data regarding



40 4| Evaluation

Figure 4.4: Time to solution of the OpenModelica and the hand-written C++ code.

the OMC time to solution is taken from the OMC logs. The C++ data consist of the
simulation time which had been added to the compilation time (even though the file was
compiled only once and used with all the models). Figure 4.4 shows a graphic comparison
of the two complexities. It can be noted how the OMC time to solution is lower than
the C++ code time to solution for models smaller than a hundred variables. It will be
shown how that is due to the compilation time of the C++ code, constant and around 1.7

seconds. For larger models, the compilation time becomes negligible in comparison with
the simulation time of the C++ code. On the other hand, OMC compilation time grows
linearly with the number of variables, taking a good part of the time to solution.

4.3.1. Compilation time

The compilation time of the C++ file is around 1.7s. This time includes the compilation
and linking of the PowerGrid simulation file in the HiPerMod project. It is constant
since the size of the model is an input argument. It was obtained by running the bash
command: time make -j 20 simulation.



4| Evaluation 41

Table 4.2: Compilation times in seconds.

OpenModelica compilation time
Ne N. equations Time

1 32 0.614
2 144 0.979
4 608 2.63
8 2.5K 7.27
11 4.8K 11.1
16 10K 24.3
23 21K 56.8
32 40K 120
45 80K 275
64 163K 691
90 323K 2018

C++ compilation time

any 1.71

Figure 4.5: Time complexity of the OpenModelica and the hand-written C++ code
compilation.



42 4| Evaluation

The compilation time of the C++ code refers to the compilation of the benchmark frame-
work, which includes the methods used for the measurements and the print of the results.
Those methods come from common libraries, shared with the other benchmark tests.
Other than for the measurements, they provide a common framework to standardise the
use of the test cases present in the benchmark suite.

The OMC compilation time was taken from the tool’s output prints. For every size of
the model, a new executable is created. Table 4.2 shows the times w.r.t. the number of
equations of each model. Figure 4.5 shows how the OMC tool compilation time crosses
the C++ time from models with around two hundred equations. It can be noticed how
the OpenModelica compiler has good performances with small models, but it degrades
rapidly. The compilation of the test with 90 generators per row (323 thousand equations)
has been attempted but it failed after two hours and a half, likely due to memory issues.

The PowerGrid model has a fixed number of vector variables (four complex types and
four real type variables). Increasing the size of the model doesn’t change the number of
for loops and stand-alone equations, hence the C++ constant compilation time.

OpenModelica, on the other hand, flattens the vectors and unrolls the for-loops, produc-
ing an increasing number of scalar equations. Every equation is translated into a function
(with its arguments and eventual local variables) which is called to compute the residual
function. The Jacobian function is also made of several functions, likely one for each vari-
able or equation (translating into the code computing a column or a row of the Jacobian
matrix).

Keeping the for-loops and avoiding the creation of a set of identical functions with very
little difference from each other (namely, the parameters and variables they use to compute
a result) improves the compilation time and the size of the executable.

4.3.2. Simulation time

Simulation times are shown in figure 4.6 and in table 4.3. The C++ code seems to offer a
slightly faster computation. However, both in OMC and the C++ code, most of the time is
spent in the IDA solver. The residual and Jacobian functions do not play a big part. The
Jacobian function is called around a dozen times to simulate the models, while the residual
function has between three and four hundred calls. Independently from the model size,
the number of calls of the user-provided functions does not increase. Optimising them
further wouldn’t bring much of an advantage.



4| Evaluation 43

Table 4.3: Simulation times in seconds.

Ne N. equations OMC Time (s) C++ Time (s)

1 32 0.00125 0.000846
2 144 0.0161 0.0112
4 608 0.0633 0.0212
8 2.5K 0.257 0.105
11 4.8K 0.434 0.206
16 10K 1.43 0.469
23 21K 3.11 1.06
32 40K 8.9 3.43
45 80K 21.8 8.68
64 163K 63.3 22.8
90 324K 171 63.7
128 640K 229
190 1.44M 880

Figure 4.6: Time complexity of the OpenModelica and the hand-written C++ code
simulation.

The C++ code allows, among the other statistics, to print the number of calls of and the
time spent in the residual and Jacobian functions. Table 4.4 shows the values obtained



44 4| Evaluation

Table 4.4: Time (in seconds) and number of calls of the residual and Jacobian functions
in the C++ code.

Ne N.equations Residual time Residual calls Jacobian time Jacobian calls
1 32 6.209e-06 19 7.817e-06 11
2 144 0.00054311 416 5.5379e-05 20
4 608 0.000761797 309 0.00011919 12
8 2.5K 0.00345356 414 0.000212127 8
11 4.8K 0.00521055 388 0.000448213 10
16 10K 0.00957323 385 0.000750701 10
23 21K 0.0201079 391 0.000965616 7
32 40K 0.0412787 410 0.00193762 7
45 80K 0.0809068 400 0.00383922 7
64 163K 0.144294 383 0.00809147 7
90 324K 0.316378 370 0.0185128 7
128 640K 0.813168 367 0.0641066 10
190 1.3M 2.13611 334 0.144294 10

from the experiments. As can be seen, the number of calls does not depend on the size
of the model. Also, the time complexity of both functions is linear w.r.t. the number
of equations. This is not surprising, given that the residual function computes exactly
as much values as there are equations and the Jacobian function computes at most five
times the number of equations values.

The times used by the functions are at most a couple of seconds for the largest model.
Further optimisations of the residual function or Jacobian wouldn’t bring much advantage
to the overall time. Also, it can be noticed how the residual function, even though it is
faster, is called hundred of times and takes more time than the Jacobian function. If a
future Modelica compiler could use the structure of the array to exploit data locality and
lower compilation time, it might not need to optimise the user-provided functions more
than what is convenient.

4.4. Space complexity

Table 4.5 shows the sizes of the executable files produced by OpenModelica and by the
hand-written optimised C++ code.

OpenModelica produces a different executable file for each value of the parameter Ne,
while the C++ code takes Ne as a parameter after compilation. This allows avoiding
compiling the same model with a different number of nodes more times. The constant
size of the C++ code would be kept even if Ne wasn’t an argument of the program but



4| Evaluation 45

an internal parameter. It would require changing the code to recompile the new model,
but the size would not change (except in the case of compiler optimisations). In fact, the
C++ code makes use of vectors as much as possible. The number of vectorial variables
doesn’t change from one version to the other. Only the size of the variable does, but that
impacts the run-time, not the compilation and size of the output.

The values in table 4.5 are computed using the command size. The command also
shows the BSS and Data segments size (other than the size of the file in hexadecimal
representation). BSS and Data segments are constant for all the OpenModelica executable
outputs. The size of BSS is 8 bytes, and the size of Data is 2200 bytes. The size of the
BSS segment in the C++ file is 568 bytes, and the Data segment is 1864 bytes.

The hand-written C++ code hence allows a constant space complexity, while the Open-
Modelica generated files grow linearly with the number of equations.

This difference is due to the flattening done in OpenModelica, which transforms a single
vector of variables of the same nature into a set of scalar variables. A constant number
of vectorial equations (the for loops) are transformed into scalar equations whose amount
depends on the size of the vector. The user-provided functions IDA uses, the residual and
the Jacobian function, have different sizes depending on the number of variables. The
compilation using OpenModelica produces a number of different files. Among those, the
user-provided functions had their own. The size of these files might influence the size of
the executable. To prove if it’s the case, we compute the size of the files containing the
Jacobian and the residual function.



46 4| Evaluation

Figure 4.7: Space complexity of the OpenModelica output executable file and of the
compiled hand-written C++ code.

Table 4.5: Size of binary executable files

OpenModelica output files
Ne N. equations Total size Text size

1 32 76.6KB 74.4KB
2 144 192KB 190KB
4 ∼ 600 662KB 660KB
8 ∼ 2.5K 2.51MB 2.5MB
11 ∼ 5K 4.71MB 4.7MB
16 ∼ 10K 10MB 10MB
23 ∼ 21K 20.6MB 20.6MB
32 ∼ 41K 39.9MB 39.9MB
45 ∼ 81K 78.9MB 78.9MB

C++ output file
Ne Total size Text size

any 41771 39339



4| Evaluation 47

The residual function computes one value for each equation. One expects to notice an
increase that is linear with the number of equations.

Table 4.6: Size of residual function executable and C files

OpenModelica output files
Ne N. equations File .o size File .c size

1 32 6965 31KB
2 144 27.8KB 126KB
4 ∼ 600 115.6KB 529KB
8 ∼ 2500 474.2KB 2.2MB
11 ∼ 5K 903KB 4.2MB
16 ∼ 10K 1.9MB 9MB
23 ∼ 21K 3.9MB 19MB
32 ∼ 41K 7.5MB 37MB

Table 4.6 shows the size of the C files containing the residual function(s) and the size of
the object file after computation.

Opening one of the files, one can notice how the residual function is in fact a set of
smaller functions computing a single residual value. Listing 20 shows the computation of
the residual of an equation (a current balance equation, in this case). The function has its
header, arguments and executes a single line of code. There are several current balance
equations identical to the one presented, and they all have their function.

Listing 21 shows part of the actual residual function. It’s a sequence of calls to the
smaller functions. Each function call requires building the function environment and then
destroying it, which brings worse performance during simulation.

The Jacobian function computes the partial derivatives with respect to every variable for
every equation. In the worst-case scenario, in a dense matrix, the space complexity of
the data structure is N2. The PowerGrid model, however, uses a sparse matrix. There is
a constant c such that the number of non-zero elements is less than the number of rows
(columns) times c:

nnz = c ∗N ≪ N2

The size complexity of the Jacobian function is expected to be linear as well.



48 4| Evaluation

Listing 20 Residual computation of equation 1619 (numbers go from 1614 to 2257) of
the model with 4 generators per row and around 600 equations.

/*
equation index: 1619
type: SIMPLE_ASSIGN
i_n [8,6].re = i_v [8,5].re - (i_v[8 ,6].re - i_h[7 ,6].re)
*/
void PowerGridDAE_GridBase_eqFunction_1619(DATA *data ,

threadData_t *threadData)
{

TRACE_PUSH
const int equationIndexes [2] = {1 ,1619};
data ->localData [0]-> realVars [429]

/* i_n[8 ,6].re variable */ =
data ->localData [0]-> realVars [541]

/* i_v[8 ,5].re variable */
- (data ->localData [0]-> realVars [542]

/* i_v[8 ,6].re variable */
- data ->localData [0]-> realVars [301]

/* i_h[7 ,6].re variable */
);

TRACE_POP
}

Listing 21 Residual function of the model with 4 generators per row and around 600
equations.

/* for residuals DAE variables */
OMC_DISABLE_OPT
int PowerGridDAE_GridBase_evaluateDAEResiduals(DATA *data ,

threadData_t *threadData , int currentEvalStage)
{

//...
evalStages = 0+1+2+8;
if (( evalStages & currentEvalStage) &&

!(( currentEvalStage != EVAL_DISCRETE)?(0) :0))
PowerGridDAE_GridBase_eqFunction_1618(data , threadData);

threadData ->lastEquationSolved = 1618;
//...

}



4| Evaluation 49

OpenModelica output files
Ne N. equations File .o size File .c size

1 32 3781 20.6KB
2 144 15.8KB 90.7KB
4 ∼ 600 63.2KB 388.8KB
8 ∼ 2500 253.1KB 1.6MB
11 ∼ 5K 478.3KB 3.1MB
16 ∼ 10K 1MB 6.7MB
23 ∼ 21K 2MB 14MB
32 ∼ 41K 4MB 27.4MB

Table 4.7: Size of Jacobian function executable and C files

Table 4.7 shows the sizes of the C files containing the Jacobian function code and the
sizes of the executable files after compilation. As it can be noticed, the size does grow
linearly with the number of equations.

Listing 22 shows the computation of a single value of the Jacobian matrix. Like with the
residual function, the computation is done in a function. Listing 23 is the function calling
several other functions to compute the column of the Jacobian matrix. Computing by
column means computing for every variable instead of for every equation. This approach
allows, when the Jacobian is not symbolic, to compute a numerical Jacobian through
perturbation of variables. Changing a single variable allows us to estimate the derivatives
using the effect the perturbation had on the equations. OpenModelica also uses colouring
to define groups of variables that can be perturbated at the same time. If two variables do
not appear in the same equations, in fact, their effect can’t be summed and the numerical
computation of the Jacobian can be faster.



50 4| Evaluation

Listing 22 Jacobian computation number 423 (numbers go from 233 to 1559) of the
model with 4 generators per row and around 600 equations.

/*

equation index: 423

type: SIMPLE_ASSIGN

$res_NLSJac5_2.$pDERNLSJac5.dummyVarNLSJac5 = i_n[7,6].re.

SeedNLSJac5 + i_h[7,6].re.SeedNLSJac5 + i_v [7,6].re.

SeedNLSJac5 + (-i_h[6 ,6].re.SeedNLSJac5) - i_v[7 ,5].re.

SeedNLSJac5

*/

void PowerGridDAE_GridBase_eqFunction_423(DATA *data ,

threadData_t *threadData , ANALYTIC_JACOBIAN *jacobian ,

ANALYTIC_JACOBIAN *parentJacobian)

{

TRACE_PUSH

const int clockIndex = 0;

const int equationIndexes [2] = {1 ,423};

jacobian ->resultVars [1] /* $res_NLSJac5_2.$pDERNLSJac5.

dummyVarNLSJac5 JACOBIAN_VAR */ = jacobian ->seedVars [3]

/* i_n[7 ,6].re.SeedNLSJac5 SEED_VAR */ + jacobian ->

seedVars [7] /* i_h[7 ,6].re.SeedNLSJac5 SEED_VAR */ +

jacobian ->seedVars [10] /* i_v[7 ,6].re.SeedNLSJac5

SEED_VAR */ + (-jacobian ->seedVars [11] /* i_h[6 ,6].re.

SeedNLSJac5 SEED_VAR */) - jacobian ->seedVars [8] /* i_v

[7,5].re.SeedNLSJac5 SEED_VAR */;

TRACE_POP

}



4| Evaluation 51

Listing 23 Jacobian function computing the values of the 5th column

int PowerGridDAE_GridBase_functionJacNLSJac5_column(void*

inData , threadData_t *threadData , ANALYTIC_JACOBIAN *

jacobian , ANALYTIC_JACOBIAN *parentJacobian)

{

TRACE_PUSH

DATA* data = ((DATA*) inData);

int index = PowerGridDAE_GridBase_INDEX_JAC_NLSJac5;

PowerGridDAE_GridBase_eqFunction_422(data , threadData ,

jacobian , parentJacobian);

PowerGridDAE_GridBase_eqFunction_423(data , threadData ,

jacobian , parentJacobian);

PowerGridDAE_GridBase_eqFunction_424(data , threadData ,

jacobian , parentJacobian);

PowerGridDAE_GridBase_eqFunction_425(data , threadData ,

jacobian , parentJacobian);

PowerGridDAE_GridBase_eqFunction_426(data , threadData ,

jacobian , parentJacobian);

PowerGridDAE_GridBase_eqFunction_427(data , threadData ,

jacobian , parentJacobian);

PowerGridDAE_GridBase_eqFunction_428(data , threadData ,

jacobian , parentJacobian);

PowerGridDAE_GridBase_eqFunction_429(data , threadData ,

jacobian , parentJacobian);

PowerGridDAE_GridBase_eqFunction_430(data , threadData ,

jacobian , parentJacobian);

PowerGridDAE_GridBase_eqFunction_431(data , threadData ,

jacobian , parentJacobian);

PowerGridDAE_GridBase_eqFunction_432(data , threadData ,

jacobian , parentJacobian);

PowerGridDAE_GridBase_eqFunction_433(data , threadData ,

jacobian , parentJacobian);

TRACE_POP

return 0;

}



52 4| Evaluation

An improvement for space complexity for the generated simulation of a Modelica compiler
would come from using vectors in the code generation phase instead of flattening all the
variables in the pre-processing stage.

Another problem is the use of a single function for every equation, no matter how many
times the same equations with different parameters or variables appears. In the PowerGrid
model, the current balance equations of the central part of the grid (excluding the borders)
are the same equation with a different index (referring to a different node), and the
same equation is repeated for the imaginary and the real part. Among the hundreds of
residual functions defined, re-using the same for the current balance equations would have
certainly impacted the memory needed to store the C file of the residual function. The
same reasoning is valid for the computation of the Jacobian. Even if not affecting the
number of operations of the simulation, such an improvement would bring an advantage:
a shorter C code is faster to compile, and the linking process might be impacted as well
by a decrease in the number of symbols to be interpreted. Moreover, every step of the
simulation requires to execute the Jacobian and residual functions. The time to load the
code into the cache impacts the simulation time.



53

5| Conclusions and future

developments

In this document, we have presented a benchmark framework for Modelica tools, with a
particular interest in Modelica compilers. We have implemented the C++ code for the
PowerGrid model described in chapter 2 and 3, and we have analysed the results using the
features of the HiPerMod benchmark. The benchmark enables the comparison of existing
Modelica tools with hand-written code, and the PowerGrid model provides a test case
for models with non-linear DAE equations using the IDA solver. It permits studying the
scalability of the tools by setting a single parameter for the test (Ne).

We have compared the hand-written code with the leading open-source software on the
market, OpenModelica. The results show how preserving the for-loops and data’s struc-
ture has reduced the time for both compilation and simulation. The compilation time
has become constant w.r.t. the size of the array variables, while it scales linearly with
the size of the vectors in OpenModelica. The simulation time speedup of the C++ code
isn’t as evident as for the compilation time, and it is most likely due to better use of data
locality. However, most of the time is spent by the solver IDA. The residual and Jacobian
functions require only a small part of the time, making any further optimisation not very
effective.

Finally, analysing the residual and Jacobian functions of the code compiled by OpenMod-
elica, we have noticed how every equation is mapped to a function, leading to longer code
and compilation time.

5.1. Future work

The poor compilation time taken by OpenModelica makes the simulation of large models
unfeasible. The need for large amounts of memory during compilation is also another issue,
causing the failure of tests with the largest models. Preserving loops and arrays would
transform the complexity of the compilation time from linear (or more than linear) to



54 5| Conclusions and future developments

constant. Future work related to Modelica compilers includes the integration of IDA into
the current version of MARCO. Working with vector equations instead of scalar equations
might bring a great improvement in the compilation time and better performance in the
initial analysis of the model.

Regarding the HiPerMod benchmark, the next step is to include new test cases of interest
to create a benchmark suite covering most if not all of the Modelica language. The final
version of the benchmark suite will cover models solvable with both implicit and explicit
methods, with difficult and easy residual functions, single and multi-rate. An example of
test case yet to be implemented is a model with an almost-fully sparse residual function
(i.e. a residual function with a sparse Jacobian matrix, with a fixed number of partial
derivatives appearing in each row except for a few rows with a non-fixed number of partial
derivatives, growing with the size of the model).



55

Bibliography

[1] G. Agosta, E. Baldino, F. Casella, S. Cherubin, A. Leva, and F. Terraneo. Towards a
High-Performance Modelica Compiler. In Proceedings of the 13th International Mod-
elica Conference. Modelica Association and Linkoeping University Electronic Press,
Mar. 2019. doi: 10.3384/ecp19157313.

[2] G. Agosta, F. Casella, S. Cherubin, A. Leva, and F. Terraneo. Towards a bench-
mark suite for high-performance Modelica compilers. In Proceedings of the 9th In-
ternational Workshop on Equation-Based Object-Oriented Modeling Languages and
Tools, EOOLT ’19, page 21–24, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450377133. doi: 10.1145/3365984.3365988. URL
https://doi.org/10.1145/3365984.3365988.

[3] C. Andersson, J. Åkesson, and C. Führer. PyFMI: A Python package for simulation
of coupled dynamic models with the Functional Mock-up Interface. Technical Report
in Mathematical Sciences, LUTFNA-5008-2016(2), 2016.

[4] M. Arzt, V. Waurich, and J. Wensch. Towards utilizing repeating structures for
constant time compilation of large Modelica models. In Proceedings of the 6th In-
ternational Workshop on Equation-Based Object-Oriented Modeling Languages and
Tools, EOOLT ’14, page 35–38, New York, NY, USA, 2014. Association for Com-
puting Machinery. ISBN 9781450329538. doi: 10.1145/2666202.2666207. URL
https://doi.org/10.1145/2666202.2666207.

[5] K. E. Atkinson. An introduction to numerical analysis. New York, 528:38, 1989.

[6] D. C. Augustin, M. S. Fineberg, B. B. Johnson, R. N. Linebarger, F. J. Sansom, and
J. C. Strauss. The SCI continuous system simulation language(CSSL). 1968.

[7] E. Baldino. Structural pitfalls of state-of-the-art modelica compilers: An explorative
analysis. Master’s thesis, Politecnico di Milano, 2018.

[8] F. Bergero, A. Ranade, and F. Casella. QSS and multi-rate simulation of object-
oriented models. In Proceedings of the 7th International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools, EOOLT ’16, page 69–77, New York,

https://doi.org/10.1145/3365984.3365988
https://doi.org/10.1145/2666202.2666207


56 | Bibliography

NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342025. doi:
10.1145/2904081.2904091. URL https://doi.org/10.1145/2904081.2904091.

[9] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A fast dynamic
language for technical computing. arXiv preprint arXiv:1209.5145, 2012.

[10] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold. Consistent initial condition
calculation for differential-algebraic systems. SIAM Journal on Scientific Computing,
19(5):1495–1512, 1998.

[11] J. C. Butcher. Numerical methods for ordinary differential equations. John Wiley &
Sons, 2016.

[12] F. Casella. Simulation of large-scale models in Modelica: State of the art and future
perspectives. In 11th International Modelica Conference, pages 459–468, 2015.

[13] C. F. Curtiss and J. O. Hirschfelder. Integration of stiff equations. Proceedings of
the National Academy of Sciences of the United States of America, 38(3):235, 1952.

[14] H. Elmqvist. A structured model language for large continuous systems. PhD thesis,
Lund University, 1978.

[15] H. Elmqvist, D. Brück, and M. Otter. Dymola-user’s manual. Dynasim AB, Research
Park Ideon, Lund, Sweden, 1996.

[16] H. Elmqvist, T. Henningsson, and M. Otter. Systems modeling and programming in
a unified environment based on Julia. Leveraging Applications of Formal Methods,
Verification and Validation: Discussion, Dissemination, Applications Lecture Notes
in Computer Science, page 198–217, 2016. doi: 10.1007/978-3-319-47169-3_15.

[17] H. Elmqvist, A. Neumayr, and M. Otter. Modia - dynamic modeling and simulation
with Julia. In JuliaCon 2018, Jan 2018.

[18] M. Fioravanti. M.A.R.C.O.: an experimental high-performance modelica compiler
for large scale systems. 2020.

[19] J. Frenkel, C. Schubert, G. Kunze, P. Fritzson, M. Sjölund, and A. Pop. To-
wards a benchmark suite for modelica compilers: Large models. In Proceedings
of the 8th International Modelica Conference; March 20th-22nd; Technical Uni-
veristy; Dresden; Germany, Linköping Electronic Conference Proceedings, pages
143–152. Linköping University Electronic Press, 2011. ISBN 978-91-7393-096-3. doi:
10.3384/ecp11063143.

[20] A. C. Hindmarsh, C. J. Serban, Radu ande Balos, D. J. Gardner, D. R. Reynolds,

https://doi.org/10.1145/2904081.2904091


| Bibliography 57

and C. S. Woodward. User documentation for IDA v5.8.0 (Sundials 5.8.0). Technical
report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States),
September 2021.

[21] R. J. Holleman. IEEE Standard VHDL Analog and Mixed-Signal Extensions. Design
Automation Standard Committee if the IEEE Computer Society, 1999.

[22] C. Lattner and V. Adve. LLVM: a compilation framework for lifelong program anal-
ysis transformation. In International Symposium on Code Generation and Optimiza-
tion, 2004. CGO 2004., pages 75–86, March 2004. doi: 10.1109/CGO.2004.1281665.

[23] B. Lie, A. Palanisamy, A. Mengist, L. Buffoni, M. Sjölund, A. Asghar, A. Pop, and
P. Fritzson. OMJulia: An OpenModelica API for Julia-Modelica Interaction. In
Proceedings of the 13th International Modelica Conference, Regensburg, Germany,
March 4–6, 2019, page 10. Linköping University Electronic Press, Linköpings univer-
sitet, 2019.

[24] S. E. Mattsson and H. Elmqvist. Modelica-an international effort to design the next
generation modeling language. IFAC Proceedings Volumes, 30(4):151–155, 1997.

[25] S. E. Mattsson, H. Elmqvist, and M. Otter. Physical system modeling with model-
ica. Control Engineering Practice, 6(4):501–510, 1998. doi: 10.1016/S0967-0661(98)
00047-1.

[26] E. E. L. Mitchell and J. S. Gauthier. Advanced continuous simulation language
(ACSL). SIMULATION, 26(3):72–78, 1976. doi: 10.1177/003754977602600302. URL
https://doi.org/10.1177/003754977602600302.

[27] Modelica Association. Modelica—A Unified Object-Oriented Language for Systems
Modelling, Language Specification, Version 3.5. Modelica Association, 2021. URL
http://www.modelica.org.

[28] L. W. Nagel and D. Pederson. SPICE (simulation program with integrated cir-
cuit emphasis). Technical Report UCB/ERL M382, EECS Department, University
of California, Berkeley, Apr 1973. URL http://www2.eecs.berkeley.edu/Pubs/

TechRpts/1973/22871.html.

[29] M. Otter and H. Elmqvist. Transformation of differential algebraic array equations
to index one form. In Proceedings of the 12th International Modelica Conference.
Linköping University Electronic Press, 2017.

[30] P. Piela. Ascend: an object-oriented computer environment for modeling and anal-
ysis. 1989.

https://doi.org/10.1177/003754977602600302
http://www.modelica.org
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html


58 5| BIBLIOGRAPHY

[31] M. Scuttari. Design and implementation of a modelica compiler with MLIR and
LLVM. 2021.

[32] M. Sjölund, M. Gebremedhin, and P. Fritzson. Parallelizing equation-based models
for simulation on multi-core platforms by utilizing model structure. In 17th Interna-
tional Workshop on Compilers for Parallel Computing (CPC 2013), Lyon, France,
July 3-5, 2013, 2013.



59

A| Appendix A

package PowerGridDAE
model GridBase "Base model of rectangular NxM grid"

import CM = PowerGridDAE.ComplexMath;
type PU = Real(final unit = "1");
type Angle = Real(final unit = "rad");
type AngularVelocity = Real(final unit = "rad/s");
type Frequency = Real (final unit = "Hz");
type Time = Real(final unit = "s");
operator record ComplexPU = Complex(re(final unit = "1"), im(final unit = "1"));
constant ComplexPU j = Complex(0,1);
parameter Integer Ne = 4 "Number of even rows and columns of the grid";
parameter PU P = 1 "Load active power";
parameter PU R = 1 "Load nominal resistance";
parameter PU V = 1 "Load nominal voltage";
parameter PU X = 0.3 "Line reactance";
parameter Time Ta = 5 "Time constant of turbogenerators";
parameter PU sigma = 0.05 "Droop";
parameter Frequency f_n = 50 "Nominal grid frequency";
constant PU pi = 3.141592653589793;
final parameter Integer N = 2*Ne "Number of even rows and columns of the grid";
final parameter Integer Ng = Ne "Number of generators on each row and column";
final parameter ComplexPU Y = 1/(j*X) "Line admittance";
final parameter PU Vg = sqrt(P)*sqrt(1 + X^2/(16*R^2)) "Generator voltage to

achieve |Vl| = 1";↪→

final parameter ComplexPU Vl = Complex(Vg)/Complex(1, (X/4)/4*R)*Vg;
final parameter AngularVelocity omega_n = 2*pi*f_n;

ComplexPU i_n[N,N](re(start = i_n_start.re), im(start = i_n_start.im)) "Current
out of each node";↪→

ComplexPU v[N,N](re(start = v_start.re), im(start = v_start.im)) "Node voltages";
ComplexPU i_h[N-1,N] "Horizontal line currents";
ComplexPU i_v[N,N-1] "Vertical line currents";

Angle theta[N, Ng](each start = 0, each fixed = true) "Generator angles";
PU omega[N, Ng](each start = 1, each fixed = true) "Generator angular velocities";



60 A| Appendix A

PU Pg[N, Ng] "Active generator power outputs";

PU Pm[N, Ng] = ones(N, Ng) "Mechanical power input request of generators";

output ComplexPU v_out[4] "Voltage of the four corner nodes of the grid";
output PU omega_out[4] "Frequency of the four corner nodes of the grid";

parameter ComplexPU i_n_start[N,N](re(each fixed = false),im(each fixed = false))
"Guess values of current out of each node";↪→

parameter ComplexPU v_start[N,N](re(each fixed = false),im(each fixed = false))
"Guess values of node voltages";↪→

initial equation
assert(mod(N,2) == 0, "N must be even");

initial equation
for i in 1:N loop

for j in 1:N loop
v_start[i,j] = if mod(i+j, 2) == 0 then Complex(Vg) else Vl;
i_n_start[i,j] = if mod(i+j, 2) == 0 then -Complex(Vg,0)/Complex(R, X/4) else

Vl/R;↪→

end for;
end for;

equation
// Swing equations for generators
for i in 1:N loop

for j in 1:Ng loop
der(theta[i,j]) = (omega[i,j] - 1)*omega_n;
Ta*omega[i,j]*der(omega[i,j]) = Pm[i,j] - (omega[i,j] - 1)/sigma - Pg[i,j];

end for;
end for;

// Generators in even nodes, odd rows
for i in 1:2:N loop

for j in 1:Ng loop
v[i,2*j-1] = CM.fromPolar(Vg, theta[i,j]);
CM.real(v[i,2*j-1]*CM.conj(i_n[i,2*j-1])) = -Pg[i,j];

end for;
end for;

// Generators in even nodes, even rows
for i in 2:2:N loop

for j in 1:Ng loop
v[i,2*j] = CM.fromPolar(Vg, theta[i,j]);



A| Appendix A 61

CM.real(v[i,2*j]*CM.conj(i_n[i,2*j])) = -Pg[i,j];
end for;

end for;

// PQ loads at odd nodes
for i in 1:N loop

for j in 1:N loop
if mod(i+j, 2) == 1 then

v[i,j]*CM.conj(i_n[i,j]) = Complex(P);
end if;

end for;
end for;

// Lines
for i in 1:N - 1 loop

for j in 1:N loop
i_h[i,j] = (v[i,j] - v[i+1,j]) * Y "Horizontal lines";

end for;
end for;
for i in 1:N loop

for j in 1:N-1 loop
i_v[i,j] = (v[i,j] - v[i,j+1])*Y "Vertical lines";

end for;
end for;

// Current balances at corners
i_n[1, 1] + i_h[1, 1] + i_v[1, 1] = Complex(0) "Top left";
i_n[N,1] - i_h[N-1,1] + i_v[N,1] = Complex(0) "Top right";
i_n[1,N] + i_h[1, N] - i_v[1,N-1] = Complex(0) "Bottom left";
i_n[N,N] - i_h[N-1,N] - i_v[N,N-1] = Complex(0) "Bottom right";

// Current balances at edges
for i in 2:N - 1 loop

i_n[i, 1] + i_h[i, 1] + i_v[i, 1] - i_h[i - 1, 1] = Complex(0) "Top";
i_n[i, N] + i_h[i, N] - i_v[i, N - 1] - i_h[i - 1, N] = Complex(0) "Bottom";

end for;
for j in 2:N-1 loop

i_n[1,j] + i_h[1, j] + i_v[1,j] - i_v[1,j-1] = Complex(0) "Left";
i_n[N,j] - i_h[N-1,j] + i_v[N,j] - i_v[N,j-1] = Complex(0) "Right";

end for;

// Current balances at internal nodes
for i in 2:N - 1 loop

for j in 2:N - 1 loop



62 A| Appendix A

i_n[i, j] + i_h[i,j] + i_v[i,j] - i_h[i-1, j] - i_v[i,j-1] = Complex(0);
end for;

end for;

v_out[1] = v[1,1];
v_out[2] = v[1,N];
v_out[3] = v[N,1];
v_out[4] = v[N,N];

omega_out[1] = omega[1,1];
omega_out[2] = omega[1,Ng];
omega_out[3] = omega[N,1];
omega_out[4] = omega[N,Ng];

annotation(experiment(StopTime = 5, Interval = 0.01, StartTime = 0, Tolerance =
1e-06),↪→

__OpenModelica_commandLineOptions= "-d=initialization --daeMode
--tearingMethod=minimalTearing --preOptModules-=resolveLoops",↪→

__OpenModelica_simulationFlags(lv = "LOG_STATS", noEquidistantTimeGrid =
"()", nls = "kinsol"));↪→

end GridBase;

operator record Complex "Complex number with overloaded operators"

replaceable Real re "Real part of complex number" annotation(Dialog);
replaceable Real im "Imaginary part of complex number" annotation(Dialog);

encapsulated operator 'constructor' "Constructor"
function fromReal "Construct Complex from Real"

import PowerGridDAE.Complex;
input Real re "Real part of complex number";
input Real im=0 "Imaginary part of complex number";
output Complex result(re=re, im=im) "Complex number";

algorithm

annotation(Inline=true);
end fromReal;
annotation (Icon(graphics={Rectangle(

lineColor={200,200,200},
fillColor={248,248,248},
fillPattern=FillPattern.HorizontalCylinder,
extent={{-100,-100},{100,100}},
radius=25.0), Rectangle(
lineColor={128,128,128},
extent={{-100,-100},{100,100}},



A| Appendix A 63

radius=25.0)}));
end 'constructor';

encapsulated operator function '0' "Zero-element of addition (= Complex(0))"
import PowerGridDAE.Complex;
output Complex result "Complex(0)";

algorithm
result := Complex(0);
annotation(Inline=true);

end '0';

encapsulated operator '-' "Unary and binary minus"
function negate "Unary minus (multiply complex number by -1)"

import PowerGridDAE.Complex;
input Complex c1 "Complex number";
output Complex c2 "= -c1";

algorithm
c2 := Complex(-c1.re, -c1.im);
annotation(Inline=true);

end negate;

function subtract "Subtract two complex numbers"
import PowerGridDAE.Complex;
input Complex c1 "Complex number 1";
input Complex c2 "Complex number 2";
output Complex c3 "= c1 - c2";

algorithm
c3 := Complex(c1.re - c2.re, c1.im - c2.im);
annotation(Inline=true);

end subtract;
annotation (Icon(coordinateSystem(preserveAspectRatio=false,

extent={{-100,-100},↪→

{100,100}}), graphics={
Rectangle(

lineColor={200,200,200},
fillColor={248,248,248},
fillPattern=FillPattern.HorizontalCylinder,
extent={{-100,-100},{100,100}},
radius=25.0),

Rectangle(
lineColor={128,128,128},
extent={{-100,-100},{100,100}},
radius=25.0),

Line(



64 A| Appendix A

points={{-50,0},{50,0}})}));
end '-';

encapsulated operator '*' "Multiplication"
function multiply "Multiply two complex numbers"

import PowerGridDAE.Complex;
input Complex c1 "Complex number 1";
input Complex c2 "Complex number 2";
output Complex c3 "= c1*c2";

algorithm
c3 := Complex(c1.re*c2.re - c1.im*c2.im, c1.re*c2.im + c1.im*c2.re);

annotation(Inline=true);
end multiply;

function scalarProduct "Scalar product c1*c2 of two complex vectors"
import PowerGridDAE.Complex;
input Complex c1[:] "Vector of Complex numbers 1";
input Complex c2[size(c1,1)] "Vector of Complex numbers 2";
output Complex c3 "= c1*c2";

algorithm
c3 :=Complex(0);
for i in 1:size(c1,1) loop

c3 :=c3 + c1[i]*c2[i];
/*

c3 :=Complex(c3.re + c1[i].re*c2[i].re - c1[i].im*c2[i].im,
c3.im + c1[i].re*c2[i].im + c1[i].im*c2[i].re);

*/
end for;

annotation(Inline=true);
end scalarProduct;
annotation (Icon(coordinateSystem(

preserveAspectRatio=false,
extent={{-100,-100},{100,100}}),
graphics={
Rectangle(

lineColor={200,200,200},
fillColor={248,248,248},
fillPattern=FillPattern.HorizontalCylinder,
extent={{-100,-100},{100,100}},
radius=25.0),

Rectangle(
lineColor={128,128,128},



A| Appendix A 65

extent={{-100,-100},{100,100}},
radius=25.0),

Line(
points={{-42,36},{39,-34}}),

Line(
points={{-42,-35},{39,37}}),

Line(
points={{-55,1},{52,1}}),

Line(
points={{-1.5,55},{-2,-53}})}));

end '*';

encapsulated operator function '+' "Add two complex numbers"
import PowerGridDAE.Complex;
input Complex c1 "Complex number 1";
input Complex c2 "Complex number 2";
output Complex c3 "= c1 + c2";

algorithm
c3 := Complex(c1.re + c2.re, c1.im + c2.im);
annotation(Inline=true);

end '+';

encapsulated operator function '/' "Divide two complex numbers"
import PowerGridDAE.Complex;
input Complex c1 "Complex number 1";
input Complex c2 "Complex number 2";
output Complex c3 "= c1/c2";

algorithm
c3 := Complex((+c1.re*c2.re + c1.im*c2.im)/(c2.re*c2.re + c2.im*c2.im),

(-c1.re*c2.im + c1.im*c2.re)/(c2.re*c2.re + c2.im*c2.im));
annotation(Inline=true);

end '/';

encapsulated operator function '^' "Complex power of complex number"
import PowerGridDAE.Complex;
input Complex c1 "Complex number";
input Complex c2 "Complex exponent";
output Complex c3 "= c1^c2";

protected
Real lnz=0.5*log(c1.re*c1.re + c1.im*c1.im);
Real phi=atan2(c1.im, c1.re);
Real re=lnz*c2.re - phi*c2.im;
Real im=lnz*c2.im + phi*c2.re;

algorithm



66 A| Appendix A

c3 := Complex(exp(re)*cos(im), exp(re)*sin(im));
annotation(Inline=true);

end '^';

encapsulated operator function '=='
"Test whether two complex numbers are identical"
import PowerGridDAE.Complex;
input Complex c1 "Complex number 1";
input Complex c2 "Complex number 2";
output Boolean result "c1 == c2";

algorithm
result := c1.re == c2.re and c1.im == c2.im;
annotation(Inline=true);

end '==';

encapsulated operator function '<>'
"Test whether two complex numbers are not identical"
import PowerGridDAE.Complex;
input Complex c1 "Complex number 1";
input Complex c2 "Complex number 2";
output Boolean result "c1 <> c2";

algorithm
result := c1.re <> c2.re or c1.im <> c2.im;
annotation(Inline=true);

end '<>';

encapsulated operator function 'String'
"Transform Complex number into a String representation"
import PowerGridDAE.Complex;
input Complex c

"Complex number to be transformed in a String representation";
input String name="j"

"Name of variable representing sqrt(-1) in the string";
input Integer significantDigits=6

"Number of significant digits that are shown";
output String s="";

algorithm
s := String(c.re, significantDigits=significantDigits);
if c.im <> 0 then

if c.im > 0 then
s := s + " + ";

else
s := s + " - ";

end if;



A| Appendix A 67

s := s + String(abs(c.im), significantDigits=significantDigits) + "*" + name;
end if;
annotation(Inline=true);

end 'String';

annotation (versionBuild=2,
versionDate="2019-01-23",
dateModified = "2019-03-20 12:00:00Z",
revisionId="8f65f621a 2019-03-20 09:22:19 +0100",
conversion(
noneFromVersion="3.2.2",
noneFromVersion="3.2.1",
noneFromVersion="1.0",
noneFromVersion="1.1"),

Icon(graphics={Rectangle(
lineColor={160,160,164},
fillColor={160,160,164},
fillPattern=FillPattern.Solid,
extent={{-100,-100},{100,100}},
radius=25.0), Text(
lineColor={255,255,255},
extent={{-90,-50},{90,50}},
textString="C")}));

end Complex;

package ComplexMath
"Library of complex mathematical functions (e.g., sin, cos) and of functions

operating on complex vectors and matrices"↪→

final constant Complex j = Complex(0,1) "Imaginary unit";

function conj "Conjugate of complex number"
input Complex c1 "Complex number";
output Complex c2 "= c1.re - j*c1.im";

algorithm
c2 := Complex(c1.re, -c1.im);
annotation(Inline=true);

end conj;

function real "Real part of complex number"
input Complex c "Complex number";
output Real r "= c.re";

algorithm
r := c.re;



68 A| Appendix A

annotation(Inline=true);
end real;

function fromPolar "Complex from polar representation"
input Real len "abs of complex";
input Real phi "arg of complex";
output Complex c "= len*cos(phi) + j*len*sin(phi)";

algorithm
c := Complex(len*cos(phi), len*sin(phi));
annotation(Inline=true);

end fromPolar;

end ComplexMath;
end PowerGridDAE;



69

List of Figures

2.1 The power grid with 2 generators and 2 power-consuming units. . . . . . . 22

3.1 Storage of the compressed-sparse-column matrix of SUNDIALS sparse type. 32

4.1 The angular speed of the four angle generators, symmetric w.r.t. the main
diagonal of the grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Comparison of the variable omega[1, 1] values. . . . . . . . . . . . . . . . . 36
4.3 Comparison of the variable v[1, 8] (real and imaginary part) values. . . . . 37
4.4 Time to solution of the OpenModelica and the hand-written C++ code. . . 40
4.5 Time complexity of the OpenModelica and the hand-written C++ code

compilation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Time complexity of the OpenModelica and the hand-written C++ code

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7 Space complexity of the OpenModelica output executable file and of the

compiled hand-written C++ code. . . . . . . . . . . . . . . . . . . . . . . . 46





71

List of Tables

2.1 Number of equations for the tests . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Times to solution in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Compilation times in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Simulation times in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Time (in seconds) and number of calls of the residual and Jacobian func-

tions in the C++ code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Size of binary executable files . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Size of residual function executable and C files . . . . . . . . . . . . . . . . 47
4.7 Size of Jacobian function executable and C files . . . . . . . . . . . . . . . 49





73

List of Listings
1 A simple DAE system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Arrays in Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Using Modelica libraries’ models and the construct connect . . . . . . . . . 10
4 A Modelica example with for loops. Heat conductivity in a wire made of

metal, heated on one side with a heat source of given temperature Thi . . . 11
5 C header of user-provided residual function . . . . . . . . . . . . . . . . . . 18
6 C header of user-provided Jacobian function . . . . . . . . . . . . . . . . . 18
7 Horizontal-line current equation. . . . . . . . . . . . . . . . . . . . . . . . . 21
8 Differential equations of the PowerGrid model. . . . . . . . . . . . . . . . . 22
9 Initialisation of IDA data structures and environment . . . . . . . . . . . . 26
10 Initial condition computation with IDA . . . . . . . . . . . . . . . . . . . . 28
11 UserData_t datatype definition . . . . . . . . . . . . . . . . . . . . . . . . 29
12 Header of the residual function . . . . . . . . . . . . . . . . . . . . . . . . 30
13 Part of the residual function computing the residual of the current balance

for the first row of the grid (except for the nodes in the corners). . . . . . . 31
14 Header of the Jacobian function . . . . . . . . . . . . . . . . . . . . . . . . 31
15 Part of the Jacobian function, computing the derivatives of the current

balances of the nodes in the first row of the grid. . . . . . . . . . . . . . . . 34
16 Definition of element and endr calls. . . . . . . . . . . . . . . . . . . . . . 34
17 Step function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
19 Bash script for the automatisation of the experiments with OMC compiler 38
18 Bash script for the automatisation of the experiments with the output of

the compilation of the hand-written C++ code . . . . . . . . . . . . . . . . 38
20 Residual computation of equation 1619 (numbers go from 1614 to 2257) of

the model with 4 generators per row and around 600 equations. . . . . . . 48
21 Residual function of the model with 4 generators per row and around 600

equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
22 Jacobian computation number 423 (numbers go from 233 to 1559) of the

model with 4 generators per row and around 600 equations. . . . . . . . . 50
23 Jacobian function computing the values of the 5th column . . . . . . . . . 51





75

List of Symbols

Variable Description SI unit

Ne Number of even rows or generators per row/column -

N Number of nodes (generators and resistances) -

Nv Number of variables in the model -

omega[i, j] Angular velocity of generator [i,j] [rad/s]

theta[i, j] Angle of generator [i,j] [rad]

Pm[i, j] Mechanical power input request of generator [i,j] [p.u.]

Pg[i, j] Active power output of generator [i,j] [p.u.]

in[i, j] Current out of node [i,j] [p.u.]

iv[i, j] Horizontal line current between nodes [i,j] and [i+1,j] [p.u.]

ih[i, j] Vertical line current between nodes [i,j] and [i,j+1] [p.u.]

v[i, j] Voltage of node [i,j] [p.u.]





77

Acknowledgements

This thesis is the final effort of a long journey. I wouldn’t have made it this far without
the help of many people.

First and foremost, I’d like to thank my supervisor, Professor Giovanni Agosta, together
with the Modelica working group, for the endless patience and support.

I would like to thank my family for always believing in me, even when it was difficult.
My gratitude goes to my mother for her years-long efforts, which allowed me to be here
today.

I’d like to thank my friends who supported me during the years. Thank you for bearing
with me. Without your presence, my university years wouldn’t have been this memorable.




	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	State of the Art
	Mathematical background
	Equation-based languages for simulations
	The Modelica language
	Tools for Modelica simulation
	Compilation and simulation
	Open Source software
	Proprietary software
	Other works

	Benchmarks for Modelica compilers
	Sundials package
	IDA solver


	The PowerGrid model
	Implementation
	Initialisation
	Initial condition

	The residual function
	The Jacobian function
	Sparse matrix to store the Jacobian

	Integration with the HiPerMod benchmark suite

	Evaluation
	Correctness of the results
	Scalability of the model
	Time complexity
	Compilation time
	Simulation time

	Space complexity

	Conclusions and future developments
	Future work

	Bibliography
	Appendix A
	List of Figures
	List of Tables
	List of Listings
	List of Symbols
	Acknowledgements

