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Abstract

Performing real time and robust space object detection by means of optical acquisitions is
a challenging task in space surveillance, especially when the tracking involves uncatalogued
objects. Conventionally, this engineering problem is addressed by means of traditional detection
or segmentation, based on computer vision techniques, in order to identify the tracklets and
extract their relative position with respect to the sensor position and attitude and the position
of the stars in the field of view. Nevertheless, the high computational time required to perform
this task represents the main limitation for real time applications. This thesis proposes two
innovative tools based on machine learning techniques, respectively to detect and track the
objects in real-time. The tracklet detection and localization tool was generated by training
a Convolutional Neural Network (CNN) based on YOLOv5 architecture. The development of
a machine learning system requires several steps, including dataset creation, pre-processing,
training, and testing. To optimise network accuracy and execution time, the whole process
was repeated for different datasets, based on synthetic and real telescope acquisitions, and for
different combinations of the neural network hyper-parameters. The results obtained on the
validation dataset showed an accuracy of 98% and a computational time of 0.5 seconds for the
inference phase. Faster configurations were investigated as well, showing a limited degradation
in terms of detection accuracy. However, the application of the method on a real-case scenario
requires to consider the image pre-processing into the computational performance, showing that
the end-to-end process requires about 7 seconds to be executed, being still suitable for real time
applications as it is comparable to the characteristic time of a typical single telescope acquisition.
The tracker estimates the object angular path with a linear regression performed on multiple
detections in successive pictures. Therefore, by updating the telescope pointing angles with
the predicted path, the number of target acquisitions is maximized, especially for uncatalogued
space objects. Since trajectory estimation is based on bounding boxes, the network plays a
crucial role in object identification because it must be as accurate as possible. In order to be
a real-time software, this technique adopts a faster but less efficient image processing, followed
by detection and finally a tracking script. The total time required by the tracker is about 1.5
seconds. The accuracy of this process is 91%, mainly because of time limitations for fast image
processing. The algorithms are based on Python codes executed on a 2017 machine with an
i7-7700HQ CPU, 16Gb of RAM and a GTX 1050 graphics card with 4Gb of VRAM.

The results based on the proposed tools showed that the accuracy achieved by the detec-
tor network in identifying tracks could represent a valid alternative to traditional techniques,
and conventional telescope survey, based on predefined path, can be replaced by more effi-
cient approaches that include artificial intelligence, real-time object detection, and tracking. In
particular, the tracker achieved promising results during simulations.
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Sommario

Eseguire in tempo reale e in modo robusto il rilevamento di oggetti spaziali per mezzo di ac-
quisizioni ottiche è un compito impegnativo nella sorveglianza spaziale, soprattutto quando il
tracciamento coinvolge oggetti non catalogati. Convenzionalmente, questo problema ingegner-
istico viene affrontato per mezzo del rilevamento tradizionale o della segmentazione, basata
su tecniche di computer vision, al fine di identificare le tracklet ed estrarre la loro posizione
relativa rispetto alla posizione del sensore e alla posizione delle stelle nel campo visivo. Tut-
tavia, l’alto tempo di calcolo richiesto per eseguire questo compito rappresenta la principale
limitazione per le applicazioni in tempo reale. Questa tesi propone due strumenti innovativi
basati su tecniche di apprendimento automatico, rispettivamente per rilevare e tracciare gli
oggetti in tempo reale. Lo strumento di rilevamento e localizzazione di tracklet è stato generato
addestrando una CNN (Convolutional Neural Network) basata sull’architettura YOLOv5. Lo
sviluppo di un sistema di apprendimento automatico richiede diverse fasi, tra cui la creazione di
dataset, la pre-elaborazione, l’addestramento, il test e la post-elaborazione. L’intero processo
è stato ripetuto per diversi dataset, basati su acquisizioni sintetiche e reali del telescopio, e
per diverse combinazioni di iper-parametri della rete neurale per ottimizzare l’accuratezza della
rete e il tempo di esecuzione. I risultati ottenuti sul dataset di validazione hanno mostrato una
precisione del 98% e un tempo di calcolo di 0, 5 secondi per la fase di rilevamento. Sono state
studiate anche configurazioni più veloci, mostrando una degradazione limitata in termini di
accuratezza di rilevamento. Tuttavia, l’applicazione del metodo su uno scenario reale richiede
di considerare la pre-elaborazione dell’immagine nelle prestazioni di calcolo, mostrando che il
processo end-to-end richiede circa 7 secondi per essere eseguito, essendo ancora adatto per appli-
cazioni in tempo reale in quanto è paragonabile al tempo caratteristico di una tipica acquisizione
con singolo telescopio. Il tracker stima il percorso angolare dell’oggetto con una regressione lin-
eare eseguita su rilevazioni multiple di immagini successive. Pertanto, aggiornando gli angoli
di puntamento del telescopio con il percorso previsto, il numero di acquisizioni del bersaglio è
massimizzato, soprattutto per gli oggetti spaziali non catalogati. La rete svolge un ruolo cru-
ciale nell’identificazione delle tracce dato che la stima della traiettoria dipende dalle bounding
box, perciò, essa deve essere più accurata possibile. Per lavorare in tempo reale, questa tecnica
adotta un’elaborazione dell’immagine più veloce ma meno efficiente, seguita dal rilevamento e
infine da uno script di inseguimento. Il tempo totale richiesto dal tracker è di circa 1, 5 secondi.
La precisione di questo processo è del 91%, principalmente a causa delle limitazioni di tempo
per l’elaborazione veloce delle immagini. Gli algoritmi sono basati su codici Python eseguiti
su una macchina del 2017 con una CPU i7-7700HQ, 16 Gb di RAM e una scheda grafica GTX
1050 con 4 Gb di VRAM.

I risultati basati sugli algoritmi proposti hanno mostrato che l’accuratezza raggiunta dalla
rete di detector nell’identificare le tracce potrebbe rappresentare una valida alternativa alle tec-
niche tradizionali, e il tracciamento convenzionale tramite telescopio, basato su una traiettoria
predefinita, può essere sostituito da approcci più efficienti che includono l’intelligenza artificiale,
il rilevamento di oggetti in tempo reale e il tracciamento. In particolare, il tracker ha ottenuto
risultati promettenti durante le simulazioni.
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Chapter 1

Introduction

1.1 Space debris surveillance

A space debris is defined as a man-made and non operational objects orbiting the earth. In
most cases, they are generated due to tank explosions and impacts between detritus and satel-
lites. Even small objects can represent a threat because of their high velocity and therefore high
kinetic energy. In recent years the number of launches has drastically decreased [1], but this
does not mean that space pollution has slowed down, because the mass transported is greater.
Nowadays a launcher can carry several satellites and it is made up of several stages and de-
tachable parts, which are released during the orbit insertion phase of the payload (examples:
payload, protections, adapter rings, bolts, tool covers, etc). The increasing overpopulation of
space objects could jeopardize the realization of future space missions, both in the short and
long term.
The vast majority of space junk population is composed of small objects. Most are generated
by the deterioration due to the hostile space environment, and by the waste products of solid
propellant engines. The typical diameter of these particles is on the order of millimeters and
sub-millimeters.

The in-orbit objects are identified by their type (according to SATCAT classification): PL
(Payload), RB (Rocket Body), DEB (Debris), OTHERS (not catalogued). Recent evaluations
have estimated that these objects are [2]:

• About 20000 with a size larger than 10 cm.

• About 300000 with a size between 1 and 10 cm (based on statistical models).

• Several tens of millions with a size between 1 mm and 1 cm (still based on statistical
models).

• Much more with a size smaller than 1 mm.

They are mainly located in two orbital regimes [3]:

• Low Earth Orbit (LEO): all satellites orbiting the earth at an altitude ranging from 160
to 2000 kilometers. The rotation period of these types of satellites ranges from about 90
minutes to 120 minutes. Approximately 55% of satellites are in this category due to the
high quality of ground observations, environmental studies, military, and meteorological
objectives.

• Geostationary Orbit (GEO): satellites with an altitude of about 35,786 km. This guar-
antees an orbital period equal to Earth’s rotational period. Around 35% of the satellites
belong to this region, making it the second most populous range. GEO orbits are typically
used for telecommunications, defense, and meteorology.
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Whole objects (e.g. inactive satellites or upper stages of launchers) constitute about half of
the debris in orbit, while the other half is composed of fragments of various shapes and sizes
(resulting from explosions, collisions, and various erosions), objects lost during previous missions
(cover, belt, etc.) and fuel ejected from engines and tanks (via vent valves).

Figure 1.1 Effect of debris impact on solar panels of SENTINEL-1A satellite [4].

This naturally leads to a risk of collision between satellites and/or debris and the increase of
debris itself. Fig. 1.1 illustrates the impact of 5mm debris on the solar panels of the Sentinel-1A
satellite [5], the damaged area is 40cm2 and caused a significant loss of power to the satellite.
Space Surveillance and Tracking (SST) covers a key role in monitoring and tracking objects in
orbit. It defines the set of operations to be performed to keep space pollution under control and
track population changes of man-made space debris. Some of its main objectives are to support
safe operations of space activities, risk management, and liability assessment, to characterize
the physical properties of space objects.
SST activities span from observations of RSOs (Resident Space Objects) by optical and radar
networks, to launch information (date, country, payload, etc.), reentered objects, and own-
er/operator of each object. This range of operations can help mission planning and satellite
maintenance reducing as much as possible collisions and failures. A catalogued and monitored
environment can in fact support different steps of a space program [6]:

• launch and early operations, by confirming separation of the satellite from the launcher
and providing information on initial orbit for tracking operations;

• contingencies, by tracking malfunctioning or passive satellites;

• collision warnings, by detecting conjunctions between satellites and other objects;

• search for released or lost objects;

• controlled and uncontrolled re-entry, by estimating trajectory, re-entry time and location,
and risk to the ground;

• identification of new objects, detection, and characterization of in-orbit fragmentations.

Fig 1.2 represents a possible diagram of the SST activities.
The first block, colored in blue, is the observation block. Observation and measurement are
fundamental activities for any SST network as they represent the only source of information to
create a catalogue.
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Figure 1.2 The scheme shows, as a block diagram, the Space Surveillance and Tracking
environment in which the track reconstruction algorithms (inside the orbit determination block)
is placed [7].

Several international actors are involved in SST: US SST (Space Surveillance Network), a Rus-
sian surveillance network, and two European SST programs (Space Surveillance and Tracking).
The last 2 just mentioned are ESST (European Space Surveillance and Tracking), managed by
the European Commission, and SSA (Space Situation Awareness), controlled by the European
Space Agency (ESA). The above programs use a large number of radars and electro-optical
sensors placed all over the world with a detection threshold of a few centimeters in diameter
for LEO objects and tens of centimeters in diameter for GEO objects [8]. Smaller sized debris
can be detected in orbit, through active or passive instrumentation and subsequently cataloged.
Through analysis of impacts on the outer surfaces of satellites, it is possible to characterize
the density of small fragments. The sensors employed can be dedicated detectors, or on-orbit
equipment meant for different tasks, such as the solar panels of the Hubble Space Telescope.
The data obtained from observations (mainly radar and optical) is then processed to determine
the orbital elements that are required to forecast the future trajectory of the object, through
the algorithms contained in the orbit determination block. In addition to the six orbital pa-
rameters, also ballistic coefficients and area-to-mass ratios are estimated, which are needed to
correctly model solar radiation pressure and air resistance.The information obtained is stored
in a catalog, to be available when needed. The log is also useful to plan new observations and
track known objects. This activity is especially critical for such elements whose orbit is greatly
affected by perturbations, such as objects undergoing the reentry phase in the next few days
or weeks. Moreover, the information contained in the catalogue could be used during the orbit
determination phase. An object is defined as cataloged if it has received an international desig-
nation (COSPAR number), an orbit, and various characteristics and if these data are regularly
updated.
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Figure 1.3 Timeline of the number of space debris in orbit (plot available on the ESA website
[9]

Fig. 1.3 reports the evolution of space debris population in orbit and the peaks resulting from
previous collisions. Nowadays the regulation of orbital pollution is increasing more and more.
The lifetime of space vehicles is reduced (25 years rule) by de-orbiting to the ground, or they
can be placed in graveyard orbits. The probability of explosions is decreased by preventive
systems, such as liquid and thermal passivation of the spacecraft at the end of its mission. In
the future, the main source of space debris will likely be impacts between debris and operational
systems [2]. The schedule of new observations must be as precise and reliable as possible to
ensure sufficiently small uncertainties for accurate calculation of the collision risk assessment.
Its operational management is in fact of maximum concern, although it only regards a very
small number of objects in orbit (given that 5% of space objects are operational satellites).
Indeed, fragmentation by collision with one of these objects can generate several additional
thousands of debris [6].

1.2 State of the Art and proposed approach

1.2.1 Optical Telescope Observation

Space debris and satellites can be detected only and exclusively if the following conditions are
met [10]:

• The object must be above the station’s horizon;

• It must be illuminated by the sun;

• Its brightness must exceed that of the background sky by a certain margin.

There are two different techniques for optical debris tracking: staring (or survey) mode and
chasing (or tasking) mode (see Fig. 1.4):

• Staring mode: the telescope is pointed at the sky and moves at sidereal speed, such that
stars appear as dots in the background and debris as streaks, so the debris appears as a
bright trail on the image. It sometimes happens that if more than one space object is in
the telescope’s FoV, multiple tracks are detected in a single observation. The light trail
left by objects can be more or less long, depending on the orbit of the object.
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• Chasing mode: as soon as the sensor detects an object, it starts moving at the same
speed as the target, while acquiring the image. The object in the image appears as a
single point, while other light sources appear as stripes. In this mode, there is no change
in the brightness of the tracklets along the tracking.

(a) (b)

Figure 1.4 In (a) staring, (b) chasing. Telescope observations of a GEO debris during an
IADC debris campaign [11].

The absence of clear sky conditions hinders the detection of the satellite inside the FoV. Light
and particle pollution are sources of disturbance in the vicinity of an observatory and should
be as small as possible because they hamper the proper detection of tracks inside the FoV. It is
worth noting that the debris does not emit its own light but must be illuminated by the sun or
terrestrial light sources such as lasers, and its magnitude must be lower than that of the sky so
that it is distinguishable and detectable from the background. An additional complication is the
detection of objects with unknown characteristics (such as trajectory, distance from the ground,
albedo, material, and size), in which case staring mode is adopted, as the observer is interested
in detecting uncategorized objects. The speed at which an object passes can be problematic,
as the telescope requires a certain amount of light to detect the bright signature. Then, if the
object is too fast the instrument will not be able to identify the trace and the observation may
fail. Focusing on tracking mode, if the object is moving too rapidly the telescope will not be
able to spot it and the detection will fail.

1.2.2 Object Detection

One of the main applications of computer vision is object detection. Its methods generally fall
into either neural network-based or non-neural approaches [12]. For non-neural approaches,
it becomes necessary to first define targets features and then design an algorithm to detect
them. Edge detection is an image processing technique for finding the boundaries of objects
within images identifying discontinuities in brightness. ASTRiDE is one of the most used on
astronomical images [13].
As explained by Zou et al. [14], neural network-based object detection consists in identifying
instances of targets within an image and classifying them as belonging to a certain class (such
as human, animal, or car). From the application point of view, it is possible to group object
detection into two categories: "general object detection" and "detection applications" [15]. For
the former, the goal is to investigate methods to detect different types of objects using a single
framework, in order to simulate human vision and cognition. The latter refers to the recognition,
under specific application scenarios, of objects of a certain class: this is the case of applications
for pedestrian, face, or text detection. The currently developed models can be divided into
two macro-categories: two-stage and one-stage detectors. The first case includes models that
divide the task of object detection into several stages, following a "coarse-to-fine" policy. The
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second one employs process attempts to complete the recognition in a single step using a single
network. As shown in Fig. 1.5 several models exist for each category. The most prominent
two-stage detector is Faster R-CNN, while the most popular one-stage detectors are SSD and
YOLO.

Figure 1.5 Timeline of the different Object Detection [16].

Edge detection

One of the best known algorithms for border detection is ASTRiDE (Automated Streak Detec-
tion for Astronomical Images) [13]. It is a Python package that implements the functionality
of streaks detection in astronomical images using the “border” for each object, i.e. “boundary-
tracing” and their morphological parameters. Any streak-like traces in an astronomical image,
caused by the passage of moving objects like satellites, space debris, or near-Earth objects, can
be detected due to this improved method, capable of quantifying the shape of each border to
determine whether or not it is a streak. The usual steps are:

1. Background removal: ASTRiDE first removes the background from the fits image. By
default, It calculates background level and its standard deviation using sigma-clipped
statistics. The background map is derived using Phoutils (an affiliated package of As-
tropy).

2. Contour map: using the scikit-image library, ASTRiDE derives the contour map of the
fits image. The level of the contour is controlled by a threshold that is set automatically.

3. Streak determination: the algorithm recognises and removes stellar sources using mor-
phological parameters derived from each boundary and keeps the tracklets to generate
outputs.

However, this approach tends to fail if the brightness of the traces is not bright enough to stand
out from the noise (clouds and light sources) and the background.

Faster R-CNN

R-CNN series was developed by Ross Girshick et al. in 2014 improved with Fast R-CNN and
Faster R-CNN. The idea behind RCNNs is relatively simple: they start by extracting a set of
object proposals (object candidate boxes) using a selective search [17]. So, for each proposal, a
fixed-size image is cropped and analysed by a trained CNN to extract its key features. Finally,
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linear Support Vector Machine (SVM) classifiers are used to decide the presence of an object
in each region and to recognize the categories of the found objects.
The main innovation introduced by Faster R-CNN is the Region Proposal Network (RPN) that
implements a very efficient region proposal system, almost free of computational costs when
compared to previous models.

Figure 1.6 Architecture of Faster R-CNN [18].

The RPN consists of a series of convolutional layers applied to the feature maps obtained from
the initial layers of the Fast R-CNN network. To generate the region proposal, Ross Girshick
et al. opt to integrate a small network that takes as input a feature map of dimension nxn and
consists of three convolutional layers. A first shared level of dimension nxn and two "twin"
levels entirely connected of dimension 1x1 (see Fig. 1.6): fixed the hyperparameter k, which
denotes the maximum number of proposals to be advanced for each location, one of the two
twin levels (reg) produces in the output the coordinates of k "bounding boxes"; the other twin
level, (cls) returns, for each proposed bounding box, the probability that there is or is not an
object in it.
Starting from the R-CNNs, to reach the Faster R-CNN models, the majority of the individual
modules of an object recognition system have been gradually integrated into a single end-to-end
framework. Although Faster R-CNN greatly exceeds the speed of Fast R-CNN, there is still
redundancy in computation. A wide variety of network enhancements have been introduced
subsequently, including RFCN and Light head RCNN.

YOLO

YOLO algorithm was proposed by J. Redmon et al. in 2015. It was the first one-stage detector
in the deep learning era. It is extremely fast: the fastest version runs at 155 fps with a mean
Average Precision (mAP) equals to 52.7% on the test dataset VOC07, while a more accurate
version runs at 45 fps with a mAP = 63.4% on VOC07. The name YOLO stands for "You Only
Look Once". In this case, the approach differs from the previous algorithms since it applies a
single model to the entire image. YOLO divides the image into regions, predicts the bounding
boxes, and, for each of them, determines the probability of belonging to a certain class.
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Figure 1.7 YOLOv5 models’ performance [19].

The latest official version of YOLO published in scientific papers is v4, but in June 2020 Gleen
Rocher released a GitHub repository containing the code of a new version 5, which has sparked
controversy in the scientific community. These two versions are based on different architectures,
discussed in more detail in Chap. 3. The new releases have better recognition accuracy while
maintaining very high execution speed. Fig. 1.7 shows the performances obtained by the
several models of YOLOv5. However, despite the vast improvement in recognition times, YOLO
suffers from reduced accuracy in object detection compared to two-stage detectors, especially
for smaller objects.

SSD

Single-Shot Detector, or SSD, was proposed by W. Liu et al. in 2015. It was the second one-
stage detector in the era of deep learning. The main contribution of SSD was the change of
perspective towards the bounding box generation: unlike previous models that were concerned
with accurately predicting the location of an object within the image, SSD starts from a set of
default bounding boxes. Starting from this set, SSD infere, for each of these default bounding
boxes, a deviation. For each bounding box, translated by the predicted deviation, the model
performs the classification. SSD achieves good prediction accuracy thanks to different filters,
chosen according to the image proportions and the "multiple" feature maps, each obtained in
a different point of the convolutional layers (see Fig. 1.8).

Figure 1.8 SSD architecture [20].

Avoiding the bounding box prediction step saves the SSD model a significant amount of exe-
cution time. On the other hand, the use of different feature maps significantly improves the

8



Jason Calvi 2020-2021

accuracy of the model on low resolution images, especially when recognizing small objects. SSD
has advantages in both speed and recognition accuracy, running at 59 fps using one of its fastest
implementations.
The main difference between SSD models and previous networks is that it recognizes objects of
different sizes and layers, whereas previously it was performed across the very last layers.

1.2.3 Object Tracking

Object tracking is the process of locating moving objects over time in videos. There are many
types of trackers used for different applications, but all of them use the process of linking objects
in different frames. They are able to identify an object that exits the FoV for a few photograms
(even tens) and then re-enters it. A detector is not able to track by itself, even through multiple
detections, because it cannot identify targets in different frames unless it is supported by a
dedicated software. A moving object is contained in a frame sequence the visual appearance
of the object is not clear. In all such cases, detection would fail while tracking succeeds as it
also considers the motion model and history of the object [21]. A lot of traditional tracking
algorithms are built into the OpenCV [22] tracking API. Most of these trackers are not very
accurate compared to those that are based on machine learning. However, they can sometimes
be useful to run in a resource-limited environment such as an embedded system. In terms
of accuracy instead, deep learning based trackers are much more advanced than traditional
trackers. The most widely used trackers are of three types: Offline Training Trackers, Online
Training Trackers, LSTM + CNN video object trackers.

Conventional tracking methods

These types of algorithms are designed in order to be independent from the specific detector or
tracker, coming from the CNN training and OpenCV [22] library respectively [23]. Basically, the
pipeline performs a decision between applying a new detection or tracking the existing objects.
The former algorithm looks for new objects and identifies very precise bounding boxes around
the existing ones, but it is time consuming. The latter propagates the detected bounding boxes
without searching for additional ones, but it saves computational time. After the first frame, in
which the detector is always applied, the OpenCV [22] tracker follows the identified objects and
generates new bounding boxes around them. At this point, for each couple of adjacent frames,
the pipeline checks if the targets tracks are moving too fast or the targets shapes are changing
significantly (by measuring the intersection of the corresponding bounding boxes coming from
the adjacent frames). Then, the local and global image similarity are computed to assess if
something changed in the scene. In any case, the pipeline takes advantage of an exit strategy
based on a maximum frames interval for a new detection. If no relevant changes are detected
in the scenario after a tunable number of frames, the algorithm performs a detection in order
to refine the existing bounding boxes and verify if new objects appeared in the scene without
triggering the similarity indexes [23].

CNN offline training trackers

These trackers were the first to use CNNs to detect objects in videos. The architecture is based
on offline learning and consists of an offline convolutional neural network trained through many
videos for general object tracking. These softwares can track objects that are not part of the
training dataset. GOTURN is the most famous offline tracker and thanks to the analysis of
several frames at the same time it is able to identify and track objects in the input video. Both
frames pass through a bank of convolutional layers (see Fig. 1.9). The layers are simply the first
five convolutional layers of the CaffeNet architecture (a deep learning framework). The outputs
of these convolutional layers are concatenated into a single vector of length 4096 elements. This
vector is the input for 3 fully connected layers. The last fully connected layer is finally connected
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to the output layer containing 4 nodes representing the top and bottom points of the bounding
box. Due to the use of GPU this software has a speed of 100 fps with fairly good accuracy.

Figure 1.9 GOTURN operating diagram [24].

CNN online training trackers

These are online training trackers which use Convolutional neural networks. Due to the high
computational cost associated to their training, small networks are used. As a consequence,
their shallow structure prevents them from reaching high accuracy. One possible solution to this
issue is to train a large network and use only the top layers to extract features from objects.
In this way, the last layers can be trained online. The goal is to train a CNN that detects
targets and background, but since the target of one video can be the background of another,
the network is usually organized in two parts (see Fig. 1.10): the first section is shared, while
the second one is independent for each domain (meaning an independent training video).

Figure 1.10 Online training tracker architecture [21].

The training iteratively relies on K-domains that classify the target and the background. This
helps to extract information from the videos to learn a better generic representation of the
tracking task. After this step, the domain-specific binary layers are removed and a feature
extractor (shared network) is obtained that can distinguish between any target object and the
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background in a generic way. During inference, the initial shared part is used as a feature
extractor and the domain-specific layers are replaced with a binary classification layer. This
layer is trained online. In each step, the region around the previous target state is searched for
the object by random sampling. One of the most used trackers is DeepSORT, an extension to
SORT (Simple Real time Tracker). It is based on multiple detections of the YOLO network
(see chapter 3.3). Sequentially, it analyses frames of video tracks to detect and track objects
giving them an identification code (ID). In order to work, it is necessary that, between the
current frame and the previous one, the bounding boxes of the detected targets are overlapped
(a threshold value must be set). Thanks to the ID and the overlapping, the framework tracks
the various objects.

LSTM + CNN detection video object tracker

Trackers based on Long Short Term Memory (LSTM) and CNN are becoming very popular in
recent years because they use the advantages of both these methods. There are two reasons
why LSTM with CNN are increasingly employed:

• LSTM networks are particularly good at learning historical patterns, so they are partic-
ularly well suited to visual object tracking.

• LSTM networks are not very computationally expensive, so it is possible to build very
fast real-world trackers.

Recurrent YOLO (ROLO) is one such tracking algorithm based on the online detection of a
single object. It uses the YOLO network to detect the object and an LSTM network to find
the trajectory of the target object. As Fig. 1.11 shows: the input frames go through the
YOLO network, from the YOLO network two different outputs (Image Features and bounding
box coordinates) are taken, these two are given to the LSTM section, which elaborates the
trajectories and the bounding box of the object to be tracked.

Figure 1.11 ROLO operating diagram [21].

The preliminary location inference (from YOLO) helps the LSTM to pay attention to certain
visual elements. Thus, ROLO explores the spatio-temporal history along with location history.
Even when YOLO detection is flawed due to motion blur, ROLO tracking stays stable. Such
trackers are less likely to fail when the target object is occluded.
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Criticalities

Even with these valid methods, some criticalities remain unsolved:

• One-stage detectors are efficient and suitable for fast analysis of telescope observations
but have difficulties with very small objects, e.g. GEO satellite tracks with short exposure
times.

• Two-stage detectors, on the other hand, do not suffer from a drop in performance when
detecting small objects but are much slower, so they cannot be used to design fast systems.

• Most open-source and commercial trackers require video as input, i.e. a sequence of
images in which the bounding boxes of the targets overlap frame by frame. In case of real
observations, this does not happen due to the lag of the telescopes.

• Most of today’s track detection systems use a mapping of the sky, in particular maps, to
check for extraneous light streaks and then detect passing tracks. This process is very
computationally intensive.

1.2.4 Thesis purpose and workflow

This thesis aims to explore new approaches to the problem of spatial object detection and
tracking by analysing their spatial trace using real images, as opposed to traditional methods.
As far as object detection is concerned, it aims at reducing the computational time that usual
telescope stations activity of processing and extracting traces present while maintaining high
quality. For the processing and analysis of the observations, an algorithm was design to processes
the images and then uses artificial intelligence to detect the targets. It is a complex task due
to the variable brightness of the tracks in relation to noise and background, and the effort
required to generate an efficient and accurate model. It could be a viable alternative to the
heavy and often intricate algorithms used by observers. The LEO and MEO objects tracking
part is the most challenging. There are many open source and commercial trackers that track
the movement of targets by analysing the overlap of the bounding boxes of the various frames.
This is not the case for real observations, as the telescope has a lag between shots. Therefore, a
tracker was designed which is based on a statistical analysis of the objects’ trajectory and makes
decisions thanks to the machine learning model developed. The purposes of this algorithm are
to improve the accuracy with which observed known objects are catalogued and to catalogue
unknown objects automatically. It has been tested using simulations of real object passages.
This tracker could be a valid alternative to address space surveillance.

The document is structured as follows: Chap. 2 presents the main notions of telescopes, Machine
Learning (with a focus on fully connected and convolutional neural networks, Deep Learning,
and YOLO), and finally, a focus on the tools used. Chap. 3 describes the datasets employed
to create the artificial intelligence models needed to build algorithms. With chapters 4 and 5
the focus shifts to the design of two scripts that aims at improving the traditional techniques
of detection and tracking of tracklets. In particular, Chap. 4 explains the design of a detector
based on real observations and artificial intelligence for the detection and location of tracklets
in the FoV (real images were provided by a military observatory at Pratica di Mare). Chap. 5
outlines the design of a tracker. It estimates the position of the object in the FoV by statistical
analysis of the trajectory of orbiting objects in order to observe it again by moving the telescope
automatically. Finally, conclusions and possible future developments are discussed.
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Chapter 2

Fundamentals

2.1 Ground based telescopes

During astronomical observations, the main tasks of a telescope are [25]:

1. collect light from a large area, making it possible to study very faint sources;

2. increase the apparent angular diameter of the object and thus improve the resolution of
the measurement;

3. measure the positions of objects in the sky.

Optical telescopes are divided into two categories according to the surface that collects light:
lens telescopes or refractors if the surface is a lens, mirror telescopes or reflectors if the surface
is a mirror (see Fig. 2.1). With ground based telescope the atmosphere affects observations in
many ways. The air is never quite steady and there are layers with different temperatures and
densities; this causes convection and turbulence [6]. When light from a star passes through the
various layers of the atmosphere there are continuous refractive changes in different directions,
so the amount of light reaching a detector varies constantly, which is why the star appears to
scintillate. A telescope gathers light over a larger area, so the rapid changes are smoothed out
and the scintillation diminishes. Instead, differences in refraction along different light paths
through the atmosphere speckle the image, and point sources appear as vibrating specks. The
phenomenon just described is called seeing, the size of the seeing disk can be less than a second
of arc, up to several tens of seconds of arc. Therefore, when looking through a telescope, small
details, such as a planet, are obscured due to seeing and scintillation.

Figure 2.1 Refractor and reflector telescope [25].
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Most of the wavelengths in the electromagnetic spectrum are absorbed entirely by the atmo-
sphere. A very important range of transparency exists between 300 and 800 nm, which coincides
with the sensitivity region of the human eye (about 400-700 nm). To reduce light pollution as
much as possible, ground-based telescopes are placed far from urban areas. They are also lo-
cated in places with high altitudes and in dry regions, where the absorption of water vapor is
reduced, in order to reduce the amount of light pollution.

Refractor telescopes

Refractors consist of two types of lenses: the objective, which collects incoming light to form
an image on the focal plane, and the eyepiece, which is a small magnifying glass that allows
looking at the image. The lenses are mounted at opposite points on the cylinder, which is
the structure of the telescope, and it can be directed to any desired point (see Fig. 2.2). The
distance between the eyepiece and the focal plane can be adjusted to bring the image into focus,
possibly using a sensor.

Figure 2.2 A simplified scheme of a refractor telescope, highlighting the main components
and geometrical quantities [26].

The focal length is effectively the length of the telescope. It is measured as the distance from
the main optic to the point where the image is formed [6]. The diameter of the objective is
named aperture. The ratio between aperture and focal length is called the aperture ratio and
is used to characterize the light-gathering power of the telescope. If the aperture ratio is large,
tending toward unity, you have a powerful and ’fast’ telescope, i.e., photographs can be taken
with short exposure times as the image is bright. Conversely, a small aperture ratio (so the
focal length is much greater than the aperture) implies a ’slow’ telescope. The inverse of the
aperture ratio is the f/N focal ratio.
The first refractors built acquired poor quality images, due to the chromatic aberration of the
simple lenses installed [26]. The glass employed refracts different colors in different quantities,
so the colors do not collide in a single focal point. In particular, the focal length increases as the
wavelength of the received signal increases. In the 18th century, achromatic lenses composed of
two parts were used to eliminate aberration. The color dependence of the focal length is much
less than for a single lens, and at a certain wavelength λ0 the focal length has an extreme (usually
a minimum). Below this minimum, the variation of focal length with respect to wavelength is
very small. Combining three or more lenses further improves chromatic aberration (such as
apochromatic lenses).
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Reflector telescopes

Most telescopes employed for space missions are mirror or reflector telescopes (see Fig. 2.1)
[25]. They are characterized by a mirror, usually parabolic in shape, covered by an aluminum
layer that acts as a collecting surface. The advantage of the parabolic shape is that it converges
all light rays, which enter parallel to the telescope axis, through a single point. Once shaped,
the image can be visualized through an eyepiece or recorded through a detector.
The greatest advantage of reflectors is that they do not suffer from chromatic aberration due to
the design of their lens. However, its architecture has the following limitations: first of all, the
coma aberration makes point sources (stars) at the center of the image focused to a point appear
as "comet-like" radial smudges, that get worse towards the edges of the image [6]. Secondly,
the curvature of the field causes the image plane to be curved but this may not correspond to
the shape of the detector and leads to focus error. This problem can be corrected by a field
flattening lens. Another flaw is astigmatism, which is responsible for the azimuthal variation
of the focus around the aperture generating images off-axis point sources to appear elliptical.
This problem is usually experienced analysing large fields of view, while it does not influence
narrow ones, as it varies quadratically with the angle of view. Lastly, distortion does not affect
image quality (sharpness) but does affect object shapes. It is sometimes corrected by image
processing.

Optical sensor

Optical sensors work by gathering light in the visible and infrared range from an external source
of interest (see Fig. 2.3).

Light

Anti−reflection coating

Collimating optics

Optics

F iltering

Trasmitted light

Detector or

array of detectors

A to D conversion

Processing

Interpretation

Figure 2.3 Optical sensor scheme [6].

The static optic is the first component of the receiving chain, it is coated with an anti-reflective
layer to capture all incident light [27]. The beams are collimated to fit subsequent lenses
that use additional collimation optics and filters to select subsets of wavelengths. Finally, the
light radiation is converged into a detector that converts the photons into voltage, followed by
amplification, digitization, and then processing. CCD (charge coupled device) and CMOS (com-
plementary metal oxide semiconductor) image sensors are the most widely used technologies
for capturing images digitally [28]. Both types of imagers convert light into electric charge and
process it into electronic signals. In a CCD sensor, every pixel’s charge is transferred through
a very limited number of output nodes (often just one) to be converted to voltage, buffered,
and sent off-chip as an analog signal. All of the pixels can be devoted to light capture, and
the output’s uniformity (a key factor in image quality) is high. In a CMOS sensor, each pixel
has its own charge-to-voltage conversion, and the sensor often also includes amplifiers, noise-
correction, and digitization circuits, so that the chip outputs digital bits. These other functions
increase the design complexity and reduce the area available for light capture. With each pixel
doing its own conversion, uniformity is lower, but it is also massively parallel, allowing high
total bandwidth for high speed.
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Figure 2.4 CCD and CMOS architecture scheme. [28].

CCD and CMOS imagers differ in the way that signals are converted from signal charge to an
analog signal and finally to a digital signal (see Fig. 2.4). In CMOS area and line scan imagers,
the front end of this data path is massively parallel. This allows each amplifier to have low
bandwidth. By the time the signal reaches the data path bottleneck, which is normally the
interface between the imager and the off-chip circuitry, CMOS data are firmly in the digital
domain. In contrast, high speed CCDs have a large number of parallel fast output channels,
but not as massively parallel as fast CMOS imagers. Hence, each CCD amplifier has higher
bandwidth, which results in higher noise. Consequently, quick CMOS imagers can be designed
to have much lower noise than high speed CCDs.

Pratica di Mare ground station

ITAF (Italian Air Force) has recently installed an optical sensor for SST in Pratica di Mare
AFB (Air Force Base) that is operated by personnel of Aero-Space System Engineering Group of
Flight Test Wing [29]. PdM-MITE (Pratica di Mare Military Telescope) is a telescope properly
designed for SST by GMSpazio and Officina Stellare and is able to observe the portion of space
above it with coverage of 360°x90° in azimuth and elevation (see Fig. 2.5). It is built with an
exclusive Riccardi-Honders flat field optical design, with a diameter of 350 mm and a focal ratio
f/2.8 (see the Officina stellare website for further information [30]) [6].

Figure 2.5 The telescope for SST at PdM-MITE [31].

The telescope is equipped with two CCD sensors, one with a wide field of view used for surveil-
lance and the second with a narrow FoV used for tracking specific objects. The second one ( from
which the images used for this thesis were taken) has a resolution of 4096x4096 pixels, leading
to 16mpxl detector. It measures approximately 37mm on both sides. The platform on which
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the telescope is mounted is an equatorial arrangement and is set up for high speed movement
for tracking and pointing. It is also equipped with a remotely controlled filter wheel capable
of supporting five standard filters allowing it to investigate the spectrum of light reflected from
the target. The sensor has been designed for the following operating modes [6]:

• Survey: the sensor can scan a portion of the sky selected by the user in order to detect any
objects in that area; as default, it can scan the area following spiral or linear movements,
otherwise the operator can set some waypoints for a specific search path;

• Tracking: cued by an ephemeris file, the sensor can track an object passing in the sensor’s
field of view.

The acquired images are analyzed and processed for orbital parameter extraction, then for each
image there is an automatic star matching process (based on known stars found in the stellar
database). Time synchronization is performed by a GPS sensor, which allows knowing the exact
time of the shot. The extraction of the coordinates of the first and last pixel is a choice still in
testing phase that was made to increase the number of data available for orbit determination
(see Fig. 2.6).

Figure 2.6 Tracklet extraction during an observation campaign at PdM-MITE [29].

Most observed satellites are LEO, MEO (Mid Earth Orbit), and GEO, so assuming favorable
weather conditions and full-time sensor availability, the number of data available in different
cases are [6]:

• for a LEO satellite, typical in-sight times are within 5-8 minutes. So, assuming a shot
every 30 seconds, up to 16 images can be obtained from a single transit. Considering that
a LEO satellite is in-sight for up to three passes per night, usually two, the number of
images can significantly increase (40-50);

• for a MEO satellite, typical in-sight times are up to 6 hours so the number of images
acquired per night can be up to several hundred;

• or a GEO satellite, in-sight times are all night long so the number of images acquired per
night can be more than one thousand.

After analyzing the tracks and extracting the coordinates, the parser program generates a
".geosc" file containing all the data to feed the orbit determination software together with a
FITS file containing the main information of the analysed passage. Once the orbital parameters
have been retrieved from the images and the .geosc file has been created, the AGI software Orbit
Determination Tool Kit (ODTK) is used to perform orbit determination. The data are processed
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by the program to extract the ephemeris of the tracked object, with the purpose of progressively
refining the determination by performing day-by-day observations. The complicated ODTK
software can be modified by adapting the numerical model to achieve accurate determination
and prediction of the orbit of a recorded target. In particular, the more accurate the numerical
model, the more accurate the orbit obtained will be.

2.2 Machine Learning

Machine learning is a subsystem of artificial intelligence that allows systems to automatically
learn and improve their performance from experience without being explicitly programmed.
The learning process relies on observations, data, or instructions in order to look for patterns
in them to make decisions in the future based on the examples provided. The goal is to build
a system that autonomously takes sensible decisions without regular human assistance and
support [32]. There are three different categories based on the learning process [6]:

• Supervised learning: the machine receives examples coupled with their labels, i.e. the
solution of the problem. Starting from the provided dataset, the system generates a
correlation, therefore a set of rules, between input and output.

• Unsupervised learning: In this case, there are no labels attached to input data, so the
machine elaborates models grouping them in clusters according to similarities.

• Reinforcement learning: the machine follows a goal-oriented algorithm to accomplish a
complex objective. This method allows agents to automatically determine the ideal be-
havior within a specific context in order to maximize its performance. Simple reward
feedback is required for the agent to learn which action is best; this is known as the
"reinforcement signal".

The first case is the one used for this work.

Supervised learning applications

There are two tasks in which Supervised Learning is commonly used [32]:

• Regression: the algorithm must predict the value of a continuous response variable. Gen-
erally, this type includes predicting sales of a new product, or the salary for a job based
on its description.

• Classification: the software must establish discrete values. That is, predict the most
likely class, category, or label for new examples. Applications of classification include
spam detection, revenue prediction, sentiment analysis, dog breed detection, and so on.

In both cases, the algorithm is based on the minimization of a loss function, built on input data
and weights. The latter are usually clustered in a W matrix. To make the topic more useful
to understand the linear regression case is firstly explained to introduce typical parameters
and functions involved in neural networks since the classification problems are similar to the
regression ones.

Linear Regression

Simple linear regression is a type of regression analysis in which there is only one indepen-
dent variable and there is a linear relationship between the independent variable (x) and the
dependent variable (y) [33]. This relationship is formally represented as a mapping function g:

g(w, x) = wx+ b (2.1)
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Where W is a weighting coefficient and b is a bias term (or intercept). The identity y = g(w, x)
must be satisfied to link the input and output of the regression problem (see Fig. 2.7). The
formulation described is used for the scalar case, i.e., x and y are scalar quantities, but it can
also be easily applied to the vector case where x and y are vectors:

g(W,x) = Wx + b (2.2)

where W is the weighting matrix and b is the biases vector. In this case the input-output
relationship is y = g(W,x). The statistical technique described attempts to compute the best
values of W and b to better describe the regression passing through the input points.

Figure 2.7 An example of a scalar linear regression: the blue dots represent the input data
points, while the red line is the function obtained as output [6].

As regards loss function definition, the scalar case is reported for the sake of simplicity. The
loss (usually J) is used to better understand the values of W and b and thus to generate the
best regression line. The search problem is converted into a minimization problem whose goal
is to reduce the error between the predicted and true values as much as possible. The usual
loss functions are MAE (Mean Absolute Error) and MSE (Mean Squared Error) [18]. Mean
Absolute Error is defined as:

JMAE =
1

n

∑
i

| yi,pred − yi,exact | (2.3)

where n is the number of samples, yi,pred = Wxi + b is the problem predicted solution, and
yi,exact is the exact one. As for the Mean Squared Error [6]:

JMSE =
1

n

∑
i

(yi,pred − yi,exact)2 (2.4)

The idea is to start with some values for w and b and then to change these values iteratively to
reduce the loss. Gradient descent helps to enhance the values.
The method is based on a progressive update of w and b using gradients from the loss function
[6]. To find these gradients, partial derivatives of J are computed concerning the parameters
to be tuned. They are then multiplied by a scalar, also called learning rate (α) to define the
update step in the following way:
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Wi+1 = Wi − α ·

∂J

∂W

bi+1 = bi − α ·
∂J

∂b

(2.5)

Learning rate α is a hyperparameter, which means that it must be chosen a priori and tuned
according to the performance of the algorithm. A smaller learning rate might approach the
minima but take more time to reach them, a larger learning rate converges faster but there is
a chance of overshooting the minima. Also, sometimes the cost function may be a nonconvex
function where local minima increase the difficulty of convergence, but for linear regression, it
is always a convex function.
More elaborate minimization procedures are adopted as the complexity of regression problems
increases (see Sec. 2.2) [6].

Linear Classification

Classification predictive modeling is the task of approximating a mapping function (g) from
input variables (x) to discrete output variables (y) [34].

x1

x
2

Class1

Class2

Figure 2.8 The red points are associated to Class1, the blue ones to Class2. The two regions
are split by a line defining a possible decision boundary [6].

The output variables are often called labels or categories. The mapping function predicts the
class or category for a given observation [6]. For the linear case shown in Fig. 2.8, the mapping
function is a linear combination:

g(W,x) = W x + b (2.6)

where W is a matrix of weights (consisting of 2 rows, one per class, and 2 columns, one per
input item) and b is a bias vector (2 items, one per class). The output of the mapping function
is a percentage score used as input for a loss function. The problem can be visualized as in
Fig. 2.8: the blue and red dots correspond to two different classes, the black line was drawn to
show this distinction between the two classes. Linear classification is used very frequently for
the analysis of images, which are converted into 3D matrices if colored, or into 2D matrices if
in grayscale. To simplify the concept, we consider an image as a 2D matrix of 4 pixels (see Fig.
2.9).
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Figure 2.9 Example of linear classification on a 4 pixels picture [18].

The first step is to deploy the image, hence the 2D matrix, into an input vector x. From here on,
the procedure is the same as in standard linear classification: a vector of scores is constructed
for each sample and each of its elements is associated with a class. The loss function J is
useful to figure out the best possible values for W and b which would provide the right class
attribution for each input x. This search problem is again converted into a minimization of some
particular function. A typical example of loss used in classification problems is the Multiclass
SVM (Support Vector Machine) [18]:

Ji =
∑
j 6=yi

{
0 if syi >= sj + 1

sj − syi + 1 otherwise
(2.7)

Where s = g(W,x) is the vector of predicted scores, Ji is the loss, and the subscripts i refer to
its elements. Whereas sj are the scores that refer to the wrong classes (relative to the sample),
and syi are those associated with the right class. The safety margin chosen is one, which is the
difference between correct and incorrect scores. If the score referred to a class increases, its loss
value decreases, reaching zero once the safety margin reaches or exceeds the value of one. This
loss function is also called hinge loss because of the characteristic shape of its graph (see Fig.
2.10).

Figure 2.10 Hinge Loss representation.

Finally, the average of Ji’s values constitutes the total J :
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J =
1

N

∑
i

Ji(g(xi,W),yi) (2.8)

The process starts with proper initialization of W and b. They are updated at each iteration in
a manner similar to linear regression, usually following a Gradient descent algorithm, or more
sophisticated ones, if required.

Neural Networks

A neural network is a series of algorithms that endeavors to recognize underlying relationships
in a set of data through a process that mimics the way the human brain operates. In this
sense, neural networks refer to systems of neurons, either organic or artificial in nature. Neural
networks can adapt to changing input, so the network generates the best possible result without
needing to redesign the output criteria [35].
Simplistically, a neuron [18]:

• takes input data;

• its dendrites perform complex computations;

• its synapses are a complex non linear dynamical system;

• its output is then transmitted to the following nodes.

A mathematical neuron instead is characterised by:

• an input x, coming from out of the network or from previous neurons, by means of
connections;

• a weight matrix W (it can be also a vector or a scalar, depending on input and output);

• a bias term b (it can be a vector or a scalar, depending on the output);

• an activation function f(Wj xj + bj), where Wj is the j − th row of a weighting matrix,
xj and bj are the j − th element of their respective vectors. This function "modulates"
element-wise (j) every quantity exiting the neuron;

• connections with other neurons.

Once the input enters the neuron, it is linearly combined by the weight and bias terms. This
quantity is then given to the activation function as input. Activation functions are used to
determine the output of a neural network in terms of yes/no opposition [36]. They map the
resulting values from a neuron between 0 and 1 or between −1 and 1 etc. (depending on
the function). The information that travels from input to output changes accordingly. These
functions are usually divided into two types:

• linear activation functions;

• non-linear activation functions.

The first category basically includes the identical activation function, which varies between -∞
and +∞. In this case, the output is not limited in any way [6]. On the other hand, the second
category consists of several functions as shown in Fig. 2.11.

22



Jason Calvi 2020-2021

Figure 2.11 The most used activation functions [18].

Neural networks are composed by groups of neurons interconnected with preceding and/or
following neurons (depends on the location and type of the layer). There are generally three
types of layers (see Fig. 2.12):

• Input layer: the elements of each sample are placed to act as input for the following layers.

• Hidden layer(s): it is made of a fixed number of neurons, taking as input processed
information from neurons belonging to the previous layer. The output of each neuron,
downstream of its activation function, becomes the input of the neurons belonging to the
following layer.

• Output layer: the final layer, in which the data processed in the inner structure of the net
are obtained.

Figure 2.12 An example of the typical structure of a Fully Connected Neural Network with
a single hidden layer [37].

The simplest model of a neural network is the one illustrated in Fig. 2.12: a single-layer Fully
Connected neural network, also known as Multi-Layer Perceptron. Its name highlights all its
features: its architecture is characterized by connections that connect all the neurons of one
layer to the previous and next. The adjective ’single layer’ refers to the number of hidden layers
(they do not include the first and last layers). By increasing the number of hidden layers the
network becomes a Deep Neural Network (DNN), because the depth is increased. Generally,
the more neurons are placed in the same hidden layer, the more degrees of freedom the loss
function will have. In the same way, keeping a lower amount of neurons per hidden layer but
increasing their total number gives the same result. Moreover, depth helps the network to
generalize and to better cope with non-linearities of the regression function. Just like in simple
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linear regression and classification, each neuron is characterised by a weight term W and a bias
term b. The entire network aim is to find the best values of Ws and bs to provide:

• a function that models the given input-output relationship the best, in the regression case;

• the right class attribution for each input, in the classification case.

Once again, the problem is turned into a minimization one by means of a loss function J : for
every sample i, Ji consists in a partial loss function, evaluated in the output of the neural
network (prediction) [6].
The total loss instead is expressed as the average of each Ji (see Eq.2.8). An additional feature
of the loss function in this application is the regularization term. It is usually added to the
formulation of the total loss in equation Eq.2.8 (modulated by a λ parameter): its purpose is
penalizing its complexity, building up sample after sample. There are a variety of regularization
terms [19]:

• One of the most common is the L2 regularization R(W) =
∑

k

∑
l W

2
k,l (in this case it

spreads the Wi across all the vector).

• L1 regularization, R(W) =
∑

k

∑
l |Wk,l|. It has a different conception of complexity (in

this case the number of zeros in the weight matrix/vector).

To tune and refine the input-output relationship that is built into a neural network, it is neces-
sary to use many samples and thus create a very large dataset: adding a new sample to those
used to perform regression or classification adds a new loss term to the aforementioned Jis
average. In the case of regression, a sample is a pair of terms representing the values of the
expected input and output of the regression function. In the case of classification, on the other
hand, it consists of an input object (an image for example) and the class to which it belongs.
Due to the multidimensional nature of the total loss function of the neural network, a complex
process is required to minimize it. This minimization process, exploiting the number of samples,
is called neural network training. A general dataset employed to build a working neural network
is divided into three different subsets: the training subset, the validation subset, and the testing
subset. The first consists of most of the available dataset (usually 70%), the second comprises
about 20% and the third includes the remainder. Training is a fundamental process of the
algorithm, necessary to generate a model that can predict new cases with a certain level of
accuracy. Validation is important because the model compares its learning with data that have
solutions to increase the confidence of the detections and thus improve from epoch to epoch.
The test consists in the evaluation of the accuracy: the obtained model is used to predict new
cases (different from the training ones), whose solution is known. If the results of the test phase
do not attest to a sufficient level of goodness of the model, the training phase is repeated. To
obtain a well-trained model, there are two kinds of occurrences to avoid during training [38]:

• Overfitting: the function fits the data pattern too much. The absolute distances between
the single data points and the fit are low but the fit function tries to fit each data point
by one, while not recognizing the true function that describes the data distribution.

• Underfitting: it refers to a model that neither can fit the training data nor new data from
the problem domain.

These two conditions are mainly due to the loss function complexity: if it is too high, the model
fits every single training point, but loses its generalization ability, if it is too low, it is not able
to fit training points due to a lack of degrees of freedom [6]. Regularization plays a key role in
determining loss function complexity. Another parameter is the proportion followed to divide
the total dataset in training and testing: too many samples in the training subset increase the
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probability of overfitting, on the contrary, too few can turn out to be an underfitted model. The
starting point for the above mentioned minimization process is the initialization of the variables
of interest W and b. The initial value assigned to each weight can be chosen with different
procedures [18]:

• All weights can be set to 0 and all the neurons will have the same behaviour. This,
however, could turn out to be problematic.

• They can be set to small random numbers, produced following a Gaussian distribution
with null mean and 0.01 standard deviation. This approach could generate issues with
deep networks: if standard deviation collapses to 0, weights are updated with very small
gradients, remaining practically unchanged.

• They can be fixed to small random numbers, inside a Gaussian bell with null mean and
1 standard deviation. The only flaw is the fact that by multiplying by high weights over
and over, neurons could saturate and gradients could flatten to zero.

• Xavier initialization, scaling on the square root of the number of the inputs. It could have
issues when working in a linear environment, but still, it is the most used initialization
technique.

As regards input data x instead, they can be pre-processed to make the learning phase easier for
the network. Batch normalization for example is a way to boost the speed, performance, and
stability of neural networks. It is utilized to normalize the input layer by adjusting and scaling
the entries. Consider a batch of them at some layer. To make each dimension unit Gaussian,
the following formulation is applied [6]:

x̂k =
xk − E(xk)√
V ar(xk)

(2.9)

Where x̂k is the normalized k − th batch, while xk is the non-normalized one. E(xk) and
V ar(xk) are respectively the expected value and the variance of the selected dataset batch [6].
The way forward consists of computing the empirical mean and variance independently for each
dimension and then normalize. The positive aspects about batch normalization are:

• Improves gradient flow through the network.

• Allows higher learning rates.

• Reduces the strong dependence on initialization.

• Acts as a form of regularization, and slightly reduces the need for dropout (turning off
some neurons to prevent overfitting).

Below are shown the various steps to create a normalization:

Mini-batch mean

µb =
1

m

m∑
i=1

xi (2.10)

Mini-batch variance

σb =
1

m

m∑
i=1

(xi − µb)2 (2.11)

Normalize

x̂i =
xi − E(x)√
V ar(xk)

(2.12)

Scale and shift

yi = γxi + β = BN(xi)γ,β (2.13)
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Inserting γ and β to re-scale input variables gives flexibility to the network training phase.
Moreover, when sometimes taking the same normalization for each batch becomes ineffective,
the original mapping is recovered and another normalization is adopted (or scaled using other
learned parameters). Mean and standard deviation used at testing time are the same employed
in the inputs scaling at training time, in order to feed the network with testing entries that are
pre-processed in the same way as the original training ones [6]. Once both inputs and variables
are configured, the minimization process can start. The Gradient Descent algorithm is the most
used method to drive it (see Eq. 2.5). In addition to the standard one, some variants are more
suitable for this case, in order to avoid convergence to local minima as much as possible [18]:

• Batch Gradient Descent: the total training set is used to update weight values.

• Minibatch Gradient Descent: the training set is divided into subsets called batches. These
are iteratively used to tune the weights at each step.

• Stochastic Gradient Descent (SGD): it updates the parameters using only a single training
batch at each iteration. The training batch is usually selected randomly. It is often
preferable to optimize cost functions when there are hundreds of thousands of training
instances or more, as it converges more quickly than batch gradient descent.

SGD is the most popular among these categories of Gradient Descent, although it has various
drawbacks:

• Very slow progress along its shallow dimension, jittering along the steep one.

• Local minima can get SGD stuck due to gradients becoming 0. With saddle points the
same occurs.

In order to cope with these flaws of the basic SGD, a momentum term ρ can be added to:

• Build up velocity as a running mean of gradient

• Give friction

The formulations are the following:

SGD

xt+1 = xt − α∇f(xt) (2.14)

SGD + momentum{
vt+1 = ρvt +∇f(xt)

xt+1 = xt − αvt+1

(2.15)

Where α is the step-size (learning rate) of the algorithm, while v is the velocity term composed
of the gradient and ρ is an additive momentum term. It usually ranges between 0.9 and 0.99,
while initial velocity is set to 0.
Adagrad is the evolution of SGD +momentum method: it consists in keeping a running estimate
or a running sum of all the squared gradients seen during previous training, throughout the
course of the optimization process. Instead of having a velocity term, there is a squared gradient
term. Weights are updated as follows:

∇sqnew = ∇sqold +∇WL(Wold)T · ∇WL(Wold)

Wnew = Wold + α
∇WL(Wold)√
∇sqnew + 10−7

(2.16)
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Where ∇sq is the squared gradient term, ∇WL is the gradient, W is the weight term and α is
the learning rate.
Using the following scaling in Adagrad, the step becomes smaller and smaller over time and
slows down in the wiggling dimension. In the convex case, this is a good feature for the system:
it is better to reduce the step size when it is close to the minimum. The problem occurs in the
case of non-convex areas, such as saddle points, where the method may be get trapped without
making any progress.
A further step in eliminating minimization drawbacks is the RMSprop model, based on Adagrad.
With the introduction of a decay rate, it is able to avoid the difficulties at saddle points, unlike
Adagrad [6]. The state of the art in loss function minimization is the Adam method, which
realizes the advantages of both AdaGrad and RMSprop. It uses two variables: the learning
rates of the parameters based on the average of the first moment (the mean) and the average
of the second moments of the gradients (the uncentered variance) [39].
The optimization procedures described involve the learning rate hyperparameter. In the sim-
plest configurations, it is set to a fixed value. On the contrary, when minimization complexity
increases, it gets progressively updated during the training: it is usually set as a large value at
the beginning and then decreased progressively (step decaying or decaying driven by a law) [6].
Differently from linear regression and classification, a neural network is composed of many
neurons, all of them contributing to the network output (and consequently to the loss function
value). The gradient employed in the minimization process is thus built taking into account all
of the intermediate neurons lying between input and output, so that a direct gradient between
loss and weights (and biases) can be obtained. The procedure followed to achieve this result
is called Back-propagation. It is the practice of fine-tuning the weights of a neural net based
on the error rate (i.e. loss) obtained in the previous epoch. Proper tuning of the weights
ensures lower error rates, making the model reliable by increasing its generalization [40]. The
starting point for calculating gradients is from the end of the network, moving backwards to
the beginning of it. Following the example in Fig. 2.13, i.e., from the point of view of a node,
the gradients are computed and multiplied to go back to the beginning. The red lines show the
back-propagation workflow: entering the z2 intermediate variable block, partial derivatives ∂L

∂z2

, ∂z2
∂b2

, ∂z2
∂h and ∂z2

∂w2
are computed. The first one is then multiplied by the remaining three to

obtain the direct gradients between L and b2, h and w2 [6].

Figure 2.13 Gradient computational graph: given the loss function L and three generic
variables b2, h and w2 (in the case of a linear regressor they could be weight and input variable),
the gradients are computed and multiplied to trace back to the beginning. The red lines show
the back-propagation workflow: entering the z2 intermediate variable block, partial derivatives
∂L
∂z2

, ∂z2∂b2
, ∂z2∂h and ∂z2

∂w2
are computed. The first one is then multiplied by the remaining three

to obtain the direct gradients between L and b2, h and w2 [18].
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The granulation of the computational graph is arbitrary, according to the wanted explicit cal-
culation. The underlying idea is to get the gradient in a particular position of the graph.
Dealing with multidimensional problems, instead, attention must be paid to the tensors’ relative
dimensions during the backpropagation in the computational graph. All these passages in a
computer environment are done by the processor unit.

CNN

A Convolutional Neural Network (CNN or ConvNet) is a Deep Learning algorithm that can take
in an input image, assign importance (learnable weights and biases) to various aspects/objects
in the image, and be able to differentiate one from the other. The pre-processing required in a
ConvNet is much lower as compared to other classification algorithms [41]. As seen before, a
color image is processed by the system as a 3D matrix, where 2 dimensions correspond to the
number of pixels given by the resolution, while the third is its color depth. A Fully Connected
neural network decomposes the input matrix into a vector, so the information on the structure is
lost, and therefore if the input image is too defined, the algorithm becomes too computationally
heavy.
The ConvNet task is to reduce the images into a more streamlined form to be processed and
analysed, without losing critical and useful data to perform a proper prediction. This is impor-
tant not only for efficient and faster learning but also to be able to use massive datasets that
would require a high computational time.
The architecture of the network is organized into several layers combined to achieve the best
possible performance (see Fig. 2.14). The most important ones are:

• Convolutional

• Max pooling

• Fully Connected

Figure 2.14 A simple example of a CNN architecture [42].

Convolutional layer

Convolutional layers are the major building blocks used in convolutional neural networks. A
convolution is the simple application of a filter to input images that results in an activation.
Repeated application of the same filter plus a bias term to an input results in a map of activations
(see Fig. 2.15) [43].
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Figure 2.15 The figure shows the product of the convolution, called activation map [18].

Different filters can be applied to an image to extract multiple features, forming different acti-
vation maps. They are the output of the convolutional layers and represent the input for the
successive layer.
To represent the operation of the filter consider as input a matrix (7, 7) and a filter (3, 3) (see
Fig. 2.16): starting from the upper left corner a term-by-term multiplication is done. Then, it
is shifted horizontally by one value (in the case of an image it corresponds to one pixel) and
the procedure is repeated. The output obtained is an activation map with reduced dimensions
with respect to the starting input, in this case, the map has dimensions (5, 5).
Pixel stride can vary depending on the problem. The best results are obtained when the whole
image is mapped.

Figure 2.16 Sliding rule of a convolutional layer filter [18].

A way to understand whether the stride is appropriate is proposed by the following formula:

outputsize =
(N − F )

stride
+ 1 (2.17)

where N is the image size and F is the filter size. The output can be an integer number or a
fraction. In the second case, there are two solutions: change the value of the stride or by zero
padding to the border, namely hemming the matrix with zeros. In general, is customary to use
convolutional layers with stride 1, filters of size (F, F ), and zero padding with F−1

2 .
The size of the activation maps is smaller than the input. The practice is to gradually reduce
the size. Along the sequence of convolutional layers, the peculiarities that the network is able
to recognize become increasingly sophisticated and complex.
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Max pooling layer

The purpose of these types of layers is to reduce the size of the data to optimize processing
time by replacing the output with a maximum synthesis [44]. This allows us to determine the
features that produce the greatest impact and reduce the risk of overfitting. Max pooling takes
two hyperparameters: stride and size. The stride determines how far the value pools jump,
while the size determines how large the value pools are in each jump. The procedure is shown
in Fig. 2.17.

Figure 2.17 The image shows how the Max pooling technique works [44].

Fully Connected layer

This layer coincides with a single-layer Fully Connected neural network. Adding a Fully-
Connected layer is a (usually) cheap way of learning non-linear combinations of the high-level
features as represented by the output of the convolutional layer. The Fully-Connected layer is
learning a possibly non-linear function in that space. The capability of this layer is to learn
about possible nonlinear functions in the space in which it is placed. This network receives as
input the rescaled image rendered as a column vector. The output is a vector of scores whose
number of elements corresponds to the number of the classes of the model.
Every time that a training epoch (complete presentations of the dataset to be learned by a
machine) is concluded the algorithm of backpropagation is applied. [45]. It is the practice of
fine-tuning the weights of a neural net based on the error rate obtained in the previous iteration.
Proper tuning of the weights ensures lower error rates, making the model reliable by increasing
its generalization. Over a series of epochs, the model can distinguish between dominating and
certain low-level features in images and classify them.

Loss function

The training phase is also based on loss functions. It is a way to evaluate the learning ability of
the network and if the prediction deviates too much from the actual results, the loss function
returns large values. With the assistance of some optimization function, the loss function learns
to reduce the prediction error iteration after iteration. [46].
No loss function satisfies every type of machine learning. Various factors influence the choice
of a loss function for a specific problem such as the type of machine learning algorithm chosen,
the ease of computing derivatives, and the type of data set. The most commonly used one for
image segmentation is a pixel-wise cross entropy loss. This examines each pixel individually,
comparing the class predictions (depth-wise pixel vector) to one-hot encoded target vector (see
Fig. 2.18). Because the cross entropy loss evaluates the class predictions for each pixel vector
individually and then averages over all pixels, it is essentially asserting equal learning to each
pixel in the image [6].
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Figure 2.18 Logarithmic binary cross entropy [47].

2.3 YOLO

You Only Look Once (YOLO) is a real-time object detection framework, in which the image is
only passed once through a Convolutional Neural Network (CNN). By means of a publication
in 2015, Joseph Redmon announced the creation of YOLO. It is a family of compound-scaled
object detection models trained on the COCO dataset, and includes simple functionality for
Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to
ONNX, CoreML and TFLite [19]. The models are famous for being highly performant yet
incredibly small, making them ideal candidates for real time conditions and on-device deploy-
ment environments. The architecture of this framework (from version 1 to version 4) is based
on Darknet, a flexible research framework used by few users, difficult to configure, and not
very useful for production. In 2020 Glen Jocher created its most recent version with several
differences and improvements, including the implementation of the famous mosaic augmenta-
tion technique. This updated version is based on PyTorch, which is an open source machine
learning framework easy to configure and popular among the community. Compared to other
object detection systems:

• it is extremely fast;

• it sees the whole image during training and testing, then implicitly encodes contextual
information about classes and their appearance;

• it learns generalizable representations of objects so that when trained on natural images
and tested on works of art, the algorithm outperforms other high-level detection methods.

YOLO is popular because it achieves high accuracy while still being able to work in real-
time. The algorithm "looks only once" at the image, meaning that it requires only one pass of
forwarding propagation through the neural network to make predictions.

Architecture

An object detector is designed to create features from input images and then to feed these
features through a prediction system to draw boxes around objects and predict their classes
(see Fig. 2.19).
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Figure 2.19 Architecture of the layers of YOLO [19].

The YOLO models were the first object detectors to connect the procedure of predicting bound-
ing boxes with class labels in an end to end differentiable network, as shown in figure [48]. The
network is structured in three main components (see Fig. 2.20):

1. Backbone: is a convolutional neural network that aggregates and forms image features at
different granularities.

2. Neck: is a series of layers to mix and combine image features to pass them forward to
prediction.

3. Head: is composed of consumers’ features from the neck, and it takes the box and class
prediction steps.

Figure 2.20 Main components architecture of YOLO [19].

Training procedure

The training dataset is composed of images associated with bounding boxes that highlight the
desired solution. YOLO analyses the entire images and learns the characteristics of the selected
classes and the background surrounding them. This makes the analysis very general and flexible.
Moreover, it allows detecting multiple objects in a single image, returning as output the class,
the characteristics of the bounding box, and the detection probability. The learning process is
composed of two phases, which are repeated at each epoch:

• training part: commonly composed of about 70% of the complete dataset. This phase
aims to find patterns and generalizations among the various classes. Hence, the model
learns to distinguish features and make predictions based on the provided examples;

• validation part: commonly composed of about 20% of the complete dataset, it is the phase
in which an accuracy analysis of the model happens and subsequently it provides weights
modifications for effective learning.
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Once the training is complete, the quality of the model can be checked through the testing
phase. It uses the remaining 10% of the dataset to calculate Average Precision (AP), mean
Average Precision (mAP), Precision (P), and Recall (R).
There are two fundamental procedures for successful learning:

1. Data Augmentation: makes transformation to the base training data to expose the model
to a wider range of semantic variation than the training set in isolation.

2. Loss Calculations: YOLO calculates a total loss function from constituent loss functions,
which are Generalized Intersection over Union (GIoU), objectness (obj), and class losses.
These can be carefully constructed to maximize the objective of mean average precision
[48].

Data augmentation

With each training batch, YOLOv5 passes training data through a data loader, which aug-
ments data online. The data loader makes three kinds of augmentations: scaling, color space
adjustments, and mosaic augmentation. The most novel of these is mosaic data augmentation
combining four images into four tiles of random ratio. The Fig. 2.21 shows an example of an
images mosaic:

Figure 2.21 Example of images mosaic for the YOLOv5 training phase.

Mosaic augmentation is especially useful to address the "small object problem", therefore where
small objects are not as accurately detected as larger objects.

Auto learning bounding box anchors

In order to make box predictions, the YOLO network predicts bounding boxes as deviations
from a list of anchor box dimensions [48].
In the YOLOv3 PyTorch repo, Glenn Jocher introduced the idea of learning anchor boxes based
on the distribution of bounding boxes in the custom dataset with K-means and genetic learning
algorithms. This is very important for custom tasks, because the distribution of bounding box
sizes and locations may be dramatically different from the preset bounding box anchors in the
COCO dataset (which is the default).

33



Jason Calvi 2020-2021

The most extreme difference in anchor boxes can occur when the objects to be detected are
very vertical and narrow or horizontal and fine, such as vertical or horizontal tracklets.

CSP backbone

YOLOv5 implements the CSP Bottleneck (Cross Stage Partial) to formulate image features.
The CSP addresses duplicate gradient problems in other larger ConvNet backbones resulting
in fewer parameters and fewer FLOPS for comparable importance. This is extremely useful to
the YOLO family, where inference speed and small model size are of utmost importance [48].
Fig. 2.22 shows the architecture of DenseNet, which is the network on which the CSP models
are based. They were designed to connect layers in convolutional neural networks with the
following motivations: to alleviate the vanishing gradient problem (it is hard to backprop loss
signals through a very deep network), to bolster peculiarity propagation, encourage the network
to reuse features, and reduce the number of network parameters.

Figure 2.22 CSP DenseNet layers [48].

Fig. 2.23 shows how the DenseNet used in YOLOv5 has been edited to separate the feature
map of the base layer by copying it and sending one copy through the dense block and sending
another straight on to the next stage. The idea is to remove computational bottlenecks in the
DenseNet and improve learning by passing on an unedited version of the feature map.

Figure 2.23 CSP DenseNet employed in YOLOv5 [48].

Performance analysis

Many object detection algorithms, such as Faster R-CNN, MobileNet SSD, and YOLO, use
mAP to evaluate their models and publishing their research. Also in this thesis, this parameter
is used as reference to measure the system performance and to compare different systems. For
object detection tasks, Precision and Recall are calculated using the Intersection Over Union
(IoU) value for a given IoU threshold. This parameter is calculated for each detected object and
is defined as the overlap between the predicted bounding box and the ground truth bounding
box (see Fig. 2.24) [49].
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Figure 2.24 Intersection over Union representation [50].

The typical value used for IoU threshold is 0.5, so:

• If the IoU value for a prediction is > 0.5, then the prediction is classified as True Positive
(TP).

• If IoU is < 0.5, it is classified as False Positive (FP).

• If the element is not detected or if the IoU is > 0.5 but the classification is wrong, it is
classified as False Negative (FN).

Precision and Recall are the most concise and useful metrics for understanding the behaviour
of a network. They are defined as [51]:

• Precision: the ability of a model to identify only the relevant objects;

• Recall: the ability of a model to find all the relevant cases.

With the TP, FP and FN formally defined, the precision and recall of detection for a given class
across the test set are calculated as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(2.18)

The AP is then calculated by taking the area under the Precision-Recall curve. The mAP is
the average of the AP calculated for all the classes.

2.4 Instruments

Is worth noting that all the codes described from now on are written in Python programming
language with notebook as editor (for further information see [52]).
Below there are brief descriptions of the tools used for the programming phase, and then a
description of the TIG software used to generate synthetic images is provided.
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2.4.1 Jupyter Notebook

The notebook extends the console-based approach to interactive computing in a qualitatively
new direction, providing a web-based application suitable for capturing the whole computation
process: developing, documenting, and executing code, as well as communicating the results
[53]. The Jupyter notebook combines two components:

• A web application: a browser-based tool for interactive authoring of documents that
combine explanatory text, mathematics, computations, and their rich media output.

• Notebook documents: a representation of all content visible in the web application, in-
cluding inputs and outputs of the computations, explanatory text, mathematics, images,
and rich media representations of objects.

Unlike classic editors, notebooks present the following advantages [53]:

• In-browser editing for code, with automatic syntax highlighting, indentation, and tab
completion/introspection.

• The ability to execute code from the browser, with the results of computations attached
to the code which generated them.

• Displaying the result of computation using rich media representations, such as HTML, La-
TeX, PNG, SVG, etc. For example, publication-quality figures rendered by the matplotlib
library, can be included inline.

• In-browser editing for rich text using the Markdown markup language, which can provide
commentary for the code, is not limited to plain text.

• The ability to easily include mathematical notation within markdown cells using LaTeX
[54], and rendered natively by MathJax.

The normal workflow in a notebook is, then, quite similar to a standard IPython session, with
the difference that you can edit cells in-place multiple times until you obtain the desired results,
rather than having to rerun separate scripts with the "run" command [53]. Typically, a compu-
tational problem is divided into pieces, organizing related ideas into cells and moving forward
once previous parts work correctly. This is much more convenient for interactive exploration
than breaking up a computation into scripts that must be executed together, as was previously
necessary, especially if parts of them take a long time to run.

2.4.2 Google Colaboratory

Any developer who has dealt with artificial intelligence and machine learning applications is
aware of how much computing power can be required to implement sufficiently robust and
efficient models. While relying on the local computer may be sufficient for initial testing, as
the size of datasets increases, running complex training algorithms such as deep learning ones
quickly becomes prohibitively expensive.
The problem can be solved by relying on cloud services that offer computing power, often for
a fee and with various limitations. As an alternative to them, there is Google Colaboratory,
an interesting platform that, albeit with some limitations, allows to run code directly on the
cloud, taking advantage of the computing power provided by Google.
Colaboratory, or “Colab” for short, is a product from Google Research. Colab allows any-
body to write and execute arbitrary python code through the browser, and is especially well
suited to machine learning, data analysis and education. More technically, Colab is a hosted
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Jupyter notebook service that requires no setup to use, while providing free access to computing
resources including GPUs (see Fig. 2.25) [55].

Figure 2.25 Google Colaboratory architecture [55].

2.4.3 Tracklet Image Generator

Before diving into the description of the TIG algorithm architecture it is better to give concise
descriptions of TLE files and SCOOP software.

TLE

Two-Line Orbital Element Sets are provided in an ASCII formatted text file and each file could
contain TLEs for multiple objects [56]. A typical TLE entry can contain the name of the object
on the first line (line 0), however this is not a requirement. The next two lines (lines 1 and 2)
contain 69 characters which describe the orbit of the object in the NORAD Mean Element set
(see Fig. 2.26) [6].

Figure 2.26 Two Line Elements example [57].

SCOOP

TLEs alone are meaningless unless an intermediary program translates the input in azimuth
and elevation angular coordinates linked to a desired location. SCOOP (namely SpaceCraft
and Objects Observation Planning), an application internally developed in the Department
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of Aerospace Science and Technology, comes handy in this tedious process. In particular, it
computes satellite passages, given their Two-Line Elements, visible from a set of ground stations
[58].

Results
Computation

- Sensors
- TLEs
- Obs. windows

Data export

Figure 2.27 SCOOP working principle [58].

The software requires to define the location of the sensor, which TLEs to use, and the observation
windows. These data remain saved for later processing. The program’s outputs are multiple:

1. The satellite state [Az, El], [R.A, Dec], [Lat, Lon], distance and radial velocity.

2. Illumination condition, phase angle, estimated magnitude.

3. Doppler shift, slant range.

4. Angular distance from the Sun and the Moon and the elevation of the Sun.

There is the possibility to select through a drop-down menu which output to store and then
save the file. It is a text file that can be easily interpreted and read by today’s programming
(see Fig. 2.28).

Figure 2.28 An example of a SCOOP text output file, displaying the relevant information of
the selected passages.

In Fig. 2.28 it is worth noting that inessential fields are not displayed for the sake of clarity.
Concerning the ground station, Milan is chosen for illustration purposes. The initial start
observation time is set to 06 Dec 2019 01:00:00 UTC and the ending one, to 08 Dec 2019
01:00:00 UTC. The most important aspect is that time step between two following recordings
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of the same passage is one second. The thesis work, indeed, has the target of identifying trails
in a short while, so the exposure time must be reduced to the minimum [6].

Architecture

As already mentioned, the great power of machine learning systems lies in the fact that neural
networks can autonomously learn the characteristics of the objects they need to detect and
classify [49]. This process requires a large number of reference images to train the network.
Moreover, the dataset must be as varied as possible to teach the network all possible scenarios
that could occur in practice.
Finding such a large number of real images with these characteristics is a difficult task due to
many reasons, including copyrights that the government and companies impose, and the cost
to create a data collection system is very high. This problem is overcome by creating artificial
images using special software, which can faithfully reproduce the original context.
In 2020, Cipollone De Vittori developed the Tracklet Image Generator (TIG) software that
generates synthetic images. It is able to faithfully reproduce the necessary scenario, therefore
images captured in staring mode with a background of stars and one or more transient objects.
During the first phase of this thesis, the software generated thousands of images to build the
first dataset.
The software is concerned with characterizing the elements within the image in such a way that
they really seem captured from a real observation point. Its input is calculated in two steps
[49]:

1. First step: it is necessary to select one or more TLEs and verify that the chosen observation
window coincides with the operational life of the selected objects (otherwise SCOOP will
not generate output). They can be found directly on SCOOP or in online databases.

2. Second step: Once the SCOOP inputs are selected, the program is launched. It will
generate passes based on the settings made. The useful output to TIG is a text file in
which the azimuth and elevation coordinates and their associated times are printed.

This information is combined with simulated images of the night sky and allows TIG to generate
both the astronomical images containing the simulated streak and the relative mask. The files
are saved in png and fits format and contain both the image produced and the astronomical
information of the framed portion of the sky.
For some applications of this thesis, TIG has been modified. The modifications will be described
in the interested chapters.
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Chapter 3

Datasets Generation

Gathering data is one of the most important stages of machine learning workflows. The potential
usefulness and accuracy of a trained network are closely related to the quality of the data.
Therefore, dataset preparation is a fundamental step and a well trained network needs valuable
data (this requires a lot of time and effort). This chapter outlines in detail everything concerning
the datasets creation and the elaboration of the images with a briefly focus on .fits format.

3.1 Synthetic dataset

At the beginning of this thesis work, thousands of synthetic images were generated using TIG
software due to the unavailability of real images. It allows randomness in length, thickness,
position, and inclination of the tracklets and background noise.
With these it was possible to create a dataset comprising a wide variety of cases. The dataset
consists of about 4000 images: 70% of them are used for the training phase, 20% for the
validation phase, and the remaining 10% for the testing phase.

Preparing dataset

One of the most onerous operations when doing object detection is certainly the creation of
bounding boxes, e.g. the identification of those areas of the image that contain the searched
elements. This information is essential in the training phase to let the network learn the char-
acteristics of the elements it will have to search for. Generally, this task cannot be automated,
but it is necessary for an operator to manually label every single image and for large datasets,
this requires considerable effort.
TIG outputs do not include tracklet labels, so the software was modified to provide text files
with the labels automatically. This step was carefully designed to reduce the error concerning
the bounding boxes position and dimensions estimate, thanks to the prior knowledge of the
tracklets vertices location. These two information are stored as Cartesian coordinates line by
line for each object in a text file as follows:

[class ID] [object center in X] [object center in Y] [object width in X] [object width in Y]

At the end of this routine, each image will be associated to a text file containing the coordinates
of its bounding boxes, if the target is present, otherwise nothing.

3.2 Real images datasets

Real observations were processed and employed in two different networks. In this case, manual
labeling was necessary. Luckily, this tedious operation has been made simpler thanks to the
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CVAT open-source software, an interactive video and image annotation tool for computer vision.
It was used to generate the text file with the bounding boxes [59]. The software inputs are the
images to be processed, while the outputs are text files compatible with YOLO.
The datasets generated by processing .fits observations are the following

• Scikit-Image model-based: used for the detector as it achieves the highest performance at
the expense of computational time. It consists of about 2100 images with attached labels.

• Mathplotlib.PyPlot model-based: used by the tracker due to the high conversion efficiency
of the images which results in a reduction in detection quality. For this reason, the dataset
consists of about 4000 images with associated labels. However, the performance is still
lower than the skimage based model.

The training phase and the results of the two networks are described in Chap. 4 for skimage
based dataset and Chap. 5 for PyPlot based dataset.

3.3 FITS format

Flexible Image Transport System (FITS) was initially developed by astronomers in the USA
and Europe in the late 1970s to serve the interchange of data between observatories and was
brought under the auspices of the International Astronomical Union in 1982 [60]. In 2012, FITS
is still in widespread use as a data interchange and archiving format by astronomers. FITS is
a file format designed to store, transmit, and manipulate scientific images and associated data.
The term "image" in the standard’s name is loosely applied and FITS files often contain only
non-image data. FITS was designed to facilitate the unambiguous transmission of n-dimensional
regularly spaced data arrays, an n-cube. These multi-dimensional arrays may be 1-D spectra,
2-D images or data cubes of three or more dimensions. Two-dimensional tables containing rows
and columns of data can also be stored in a FITS file. Therefore, FITS is categorized primarily
as a dataset format, with use for image data as secondary.

Figure 3.1 FITS format structure [61].

The FITS images provided for this work by the Pratica di Mare observatory are two-dimensional
(X, Y ). They are based on a 16 bit integer architecture, therefore, a pixel color depth ranging
from 0 (absolute black) to 65536 (absolute white). An additional a header describing the
characteristics of the shot, including sensor name, location, and other parameters (see Fig.
3.1). To view this format file a free software ESO/ESA/NASA FITS Liberator [62] was used. It
allows to perfectly adjust the content viewing and editing options. It is not thought to directly
interact with the python code, hence custom libraries are employed to bring the trail out.
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3.4 Image processing

The images produced by the telescope cannot be used directly for the analysis, it is necessary
to apply a series of transformations, in order to highlight the moving object, reduce noise, and
vignetting. Moreover, they are not compatible with YOLO, due to the 16-bit architecture. Two
different image elaboration processes based on two distinct libraries have been used to create
the datasets for the detector and the tracker:

• First dataset: employs the Scikit-Image Python library (shortened Skimage). It includes
algorithms for segmentation, geometric transformations, color space manipulation, analy-
sis, filtering, morphology, feature detection, and more. It is designed to interoperate with
the Python numerical and scientific libraries NumPy and SciPy [63].

• Second dataset: it is based on the Python library Matplotlib.pyplot (shortened PyPlot).
It is a collection of native MATLAB functions translated to the Python environment. It
can edit and interact with figures, for example by adding lines and points or displaying
images with a certain scale of values. Its advantage is the optimization of transformations
using CPU, even if they are limited in number.

Skimage transformations aim to obtain the highest possible quality for improving the output
prediction in the only detection case. PyPlot processing converts images in a shorter time
without penalizing quality too much in order to create an efficient and responsive tracker.

3.4.1 Scikit-Image

Once the FITS image is converted to a 4096x4096 matrix (it corresponds to the telescope
acquisition resolution) is possible to modify it using the scikit-image exposure, util, filters,
and transform modules. Finally, the image is saved in PNG. The following figures show the
transformations applied to an input image array.

Logarithmic correction

The transformation is defined by the formula:

s = c · log(r + 1) (3.1)

Where s and r are respectively the pixel values of the output and input image while c is a
constant (see Fig. 3.2) [64].
The value 1 is added to each pixel value of the image so that the logarithm is always finite.
During registry transformation, dark pixels in an image are expanded relative to higher pixel
values while the higher pixels are compressed. The value of c in the logarithmic correction
varies the intensity of the improvement.
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(a) (b)

Figure 3.2 Logarithmic correction transformation. (a) is the raw images, while (b) is the
same image elaborated through logarithmic correction [64].

Contrast Limited Adaptive Histogram Equalization

CLAHE is an algorithm for local contrast enhancement by means of histograms computed over
different tile regions of the image. Details can therefore be emphasized even in regions that are
darker or lighter than others. Fig. 3.3 shows the visible tracklet for the first time [64].

Figure 3.3 Adaptive equalization of the Fig. 3.2 (b) [64].

Performs Gamma Correction

PGC, also known as Power Law Transform, function transforms the input image pixelwise
according to the equation:

O = Iγ (3.2)
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Each pixel is scaled into the range 0 to 1. Fig. 3.4 shows how the transformation increases
contrast and improves the visibility of clear objects [64].

Figure 3.4 Gamma correction for scaling pixels of the previous Fig. 3.3 [64].

Noise removal

It is a common digital filtering technique to remove noise from an image or signal [65]. A well-
known techinque is the median filtering because, under certain conditions, it preserves edges.
The main idea of the median filter is to loop the signal input by input, replacing each pixel value
with the median of the neighboring pixel values. The neighbor pattern is called a "window",
which runs, entry by entry, over the entire signal. It is the last transformation undergone by
the image, before being resized. Fig. 3.5 shows how noise removal gives better sharpness, and
this results in better performance in the model that will be based on these images.

Figure 3.5 Noise removal through local median of the previous Fig. 3.4 [65].
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Image resize

This is not a transformation but consists of scaling the image by a certain scale factor. The
scale factor can be a single floating-point value or multiple values, one along each axis. The
images have an initial resolution of 4096 and are reduced to 1024 to improve the speed of the
training.

3.4.2 Mathplotlib.pyplot

Compared to the previous case, the needed image tranformations from the acquisition to the
.png conversion should not take too much, because especially with fast LEO objects (with
angular velocities up to 0.5 deg/s) observed by narrowed FoV telescopes (roughly 3◦), timing
is essential to detect and track a target. The goal is to obtain a good image quality and a
low computational time, i.e. at most a couple of seconds. Once the fits file is converted into
a matrix of 4096x4096 elements, it is resized keeping the same color range of values and an
anti-aliasing filter is applied. Fig. 3.6 shows the difference between a resolution down-scaling
with preserving range and antialiasing filter options enabled on the left and not on the right.
Figure 3.6 shows almost identical images, except that the one on the left is less jagged and
better defined due to the antialiasing filter.

(a) (b)

Figure 3.6 Antialiasing filter improves track definition: image (a) presents the pyplot an-
tialiasing filter, while (b) not.

Subsequently, thanks to the imshow visualization function of pyplot are applied some transfor-
mations to the image:

• vmin/vmax: define the data range that the colormap covers. It emphasizes low light
sources but at the same time can generate noise. It allows low light or cloudy tracklets to
be seen and detected;

• Lanczos interpolation: it is best suited interpolation for predominantly black images with
some light sources. It consists of re-pixeling the image to make it more uniform and more
grainy. Thus, the quality of the tracklets is improved and they appear smoother so easier
to detect.

Fig. 3.7 shows how the transformations allow the images to be usable and subsequently analyzed
by detectors. In particular, the image on the left (Fig. 3.7 (a)) has neither interpolation nor
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changes in the range of values, the central one (Fig. 3.7 (b)) has the only change in the range
of values producing a non completely clear image with a still recognizable trail. The one on the
right (Fig. 3.7 (c)) has undergone all the transformations listed so it appears bright and sharp.

(a) (b) (c)

Figure 3.7 Different Pyplot transformations. Image (a) is almost completely black due to
low average luminosity level of the original .fits image (about 1100 value over a maximum value
of 65536), while, image (b) presents a visible tracklet due to the range change transformation,
and finally, image (c) is the interpolated version of the previous one that results more bright
and sharp.

Finally, the image is saved in .png format.

Conversion differences

It is important to note that the two conversion scripts that are based on the two libraries
mentioned above have different purposes: the script based on skimage aims to obtain the
highest possible quality for improving the output prediction in the only detection case. The
other one based on PyPlot converts images in a shorter time and without penalizing quality
too much in order to create an efficient and responsive tracker. The first algorithm takes on
average 7 seconds to convert an image, and the second about 0.8 seconds on average. Fig. 3.8
shows on the right an image converted with Skimage, while on the left the same converted with
PyPlot. The former has more details, greater sharpness, and better resolution.

(a) (b)

Figure 3.8 Image processing quality comparison, (a) is elaborated through Skimage, while
(b) through Pyplot.
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A critical case occurs when the fits image to be converted has a faintly visible tracklet or
pronounced noise, such as clouds or light sources, making hard its dentification. Fig. 3.9 shows
the case where the first script brings out the tracklet while the second does not.

(a) (b)

Figure 3.9 Faint tracklet different transformation, (a) is elaborated through Skimage, while
(b) through Pyplot.
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Figure 4.1 RID working principle.

The structure of RID (Real Images Detector) can be divided into two parts (see Fig. 4.1): one
dealing with the neural network design and the second focuses on real observations processing
and conversion. The first section of this chapter deals with training, results, and testing of
the model, while the latter outlines the structure of the algorithm, in terms of accuracy and
performance. The aim of RID is to act as a filter to speed up the tracklet extraction processes.
These are rather complicated and cumbersome processes that require very detailed mapping
of the sky. The observations resulting from a night of acquisitions are no longer all processed
through classical techniques, but are initially analysed by RID, and only the shots containing
tracklets will be eventually analysed by tracklet extraction systems. This procedure should
reduce the total process time of track extraction conventional techniques, which is generally
around 15− 20 seconds on average for every observation.

4.1 RID architecture

As previously mentioned, the detector can be divided to read: the machine learning part,
discussed in the previous sections, and the one related to the conversion of real fits observations
as described in Chap. 3.
The union of these two parts forms RID. Fig. 4.2 shows the strucure:
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Figure 4.2 RID flowchart architecture.

The input required by the script is a directory containing the .fits files to be processed. The
diagram shows the whole operation. Before all, a folder is created within the input one where
the processed images will be saved in .png format (YOLOv5 compatible).
Once all the images have been converted, the detection phase begins by means of artificial
intelligence, through the following processes:

• image check: YOLO performs a check on the extension of the files to be processed, if none
of them is compatible, an error message will be printed on the screen and the process will
stop.

• output folder creation: if a path is indicated in the options, the script generates the
desired folder, otherwise it is automatically created with a custom name. It features the
.png images.

• loading the model: if the computer is equipped with a GPU, the model will be loaded on
it via PyTorch, otherwise the CPU will be employed.

• detection: the images are analysed and then the outputs are produced.
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• results: a screen shows the detected objects, the inference times for each image, and the
total time of the process (see Fig. 4.3).

Figure 4.3 The printed screen shows the characteristics of the image, the network, the hard-
ware employed, the targets detected, and the inference time.

4.2 Folder organization

Several files are required for the detector correct working (see Fig. 5.4):

• Utils: is a folder that contains the functions useful for detection.

• Models: is a folder comprising the models of YOLOv5.

• Main.ipynb: is the main file for the functioning of the algorithm.

• FITStoPNG.py: is the python function that allows the processing of the .fits observations
described in the previous chapter (Chap. 3).

• weight.pt: is the detector trained model.

• detect.py: is the function that allows the analysis of the images. It uses the functions in
the Utils and Models folders and the weights best.pt to generate the bounding boxes and
outputs.

• requirements.txt: contains the versions to be installed of all the libraries.

• README.txt: is a text file that helps a new user to set up directories and inputs.

/
RID/

utils/
_init_.py
general.py
...

models/
yolov5m.yaml
...

Main.ipynb
FITStoPNG.py
weight.pt
detect.py
requirements.txt
README.txt

Figure 4.4 RID directory tree.
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The latest version of YOLO introduces an option to increase performance by about 2−3% while
increasing detection times by about 50%. The "augment-inference" option transforms images
with resizes, distortions, and rotations to search for targets that in some cases would not be
detected. It is enabled by default by RID.

4.3 Detectors outputs

Once the detection process is complete, the algorithm prints a list of the input images on the
screen with the detected objects, the class they belong to, and the inference time.
The output generated by the YOLOv5 network is saved in the directory chosen before launching
the script (if no directory is specified, the script will generate a folder in the input images folder):

• A copy of all images with bounding boxes printed around the objects, the class name, and
confidence value.

• A folder named "labels" where are stored all the text files containing the characteristics
of the bounding boxes.

• A folder called "Crop" where cropped images of the tracklets of the size of one degree
FoV are saved (382x382 pixels).

The detect.py file created by Glen Jocher has been modified to only crop tracklets automatically.
The crop procedure is designed to minimise processing time of track extraction conventional
techniques. It uses the coordinates of the centroid of the bounding box. In most cases, the trace
is in the centre of the cropped image, if it is on the sides of the original image, the tracklet will
appear on the side of the cropped image.
The name of these files consists of three parts (considering the extension):

[original image name] + [confidence value] + [extension .png]

The confidence score indicates how sure the model is that the bounding box contains an object
and also how accurate it thinks the box is that predicts [66]. It can be calculated using the
formula:

C = Pobject · IoU (4.1)

Where C is the confidence value, Pobject is the precision referred to the object detected, and
IoU is the intersection over union value between the predicted bounding box and the ground
truth.

4.4 Training phase

Before the training phase, two steps are required to organize data and structure:

1. Environment setup

2. Files and directories structure
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Environment setup

The training of a neural network generally requires considerable hardware resources to be per-
formed, this demand increases as the complexity of the model, and if the size of the training set
increases. In order to ensure adequate computing power to perform the necessary tasks, most
of the project was developed using Google Colab. Due to Google GPU allocation restrictions,
development progressed locally on Jupyter Notebook and local graphic card.

Files and directories structure

YOLOv5 requires that the files and directories containing the dataset and the configuration
files be structured in a precise way (see Fig. 4.5):

• In the dataset folder must be present two sub-folders named "images" and "labels".

• Within these there must be other two sub-folders: "train" and "valid" which contains
the images if the main sub-folder is "images" and the associated text files if the main
sub-folder is "labels".

• Finally, a .yaml file describing the directories’ paths must be written, structured as follows:

train: “train folder path file”
val: “val folder path file”
nc: “number of classes”
names: “names of the classes”

/
Dataset/

images/
train/

Img_01.png
Img_02.png
Img_03.png
...

valid/
Img_07.png
Img_08.png
Img_09.png
...

labels/
train/

Img_01.txt
Img_02.txt
Img_03.txt
...

valid/
Img_07.txt
Img_08.txt
Img_09.txt
...

Figure 4.5 Directory tree organization for YOLOv5 training phase.

By structuring the data in this way, the system has all the information it needs to access the
data.
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Synthetic network training phase

Glenn proposed 4 versions of YOLOv5, the mAP values on the COCO reference dataset increases
proportionally with the size of the model, but the system suffers in terms of FPS analyzed.
The search for space debris is a delicate task due to diverse tracklets length and to possible low
SNR values in the captured images. Thus, the acquisition strategy has to be suitably arranged
by selecting the exposure time in accordance to the orbital regime of interest, granting at the
same time multiple shots and sufficient image quality for each analyzed target. Meanwhile,
the algorithm aimed at trails identification has to be fast and accurate to allow follow-up
observations. Hence, the YOLOv5 medium version has been chosen because it is a middle
ground between performances and speed.
The following parameters have been set at the training command:

• img: the size of the image side, set at 1024 pixels to accelerate the learning process (by a
factor of ten);

• batch: batch size, i.e. number of images propagated within the network in a single epoch.
Several tests were made and the one that gave the best result was 1;

• epochs: number of training epochs, initially the behavior of the system was observed in a
dozen epochs but the maximum validation in terms of mAP is reached in 100;

• data: the path of the streak.yaml configuration file, created in the previous step;

• cfg: the model used in this case is the “medium”;

• weights: The starting weights for training the network, in this case, a first experiment
was done ’from scratch’ then using random starting weights, but the best performance
was obtained by finetuning on pre-trained weights on the COCO dataset.

Skimage network based training phase

Initially, as with the network built using synthetic images, the model based on real observations
processed by Skimage is characterised by a single class of objects, named "Tracklets". After a
training of 100 epochs, with batch equal to 1, using the medium model proposed by YOLOv5,
the network reached very high performance, but one aspect that has not yet been considered is
how disturbances appear in telescope shots. Clouds and some light sources can take on a variety
of shapes, including tapered, rectilinear ones, sometimes resembling the tracks left by satellites
or other orbiting objects. The risk in this case is that the network will not be able to distinguish
the disturbances as background objects but will attribute them to the tracklet class. Fig. 4.6
shows an observation in which there are two tracklets, one very bright and the other faint, and
many others (most likely clouds) quite similar to tracks. The network analysis highlighted the
concern just discussed: Fig. 4.6 (b) shows that many disturbances and/or clouds are identified
and classified as tracklets.
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(a) (b)

Figure 4.6 Output detection using one class network.

This behaviour is not an isolated case but it happens every time the disturbances have an elon-
gated shape. Therefore, the model suffers from a significant limitation since it is not able to
correctly discretize the background from the targets.

A possible solution is to eliminate from the output all those traces with a confidence value below
a certain threshold according to the number of objects detected in the observations:

• 1 track: this is the most likely case. The threshold value is about 0.4. It is low in order
to detect even less bright traces.

• 2 tracks: less likely than the previous case. The threshold value is about 0.55, it is
increased to avoid false tracklets.

• 3 tracks: is unlikely, so the threshold value is about 0.65 to exclude disturbances.

• more than 3 tracks: the threshold value is about 0.7, it is set high, because it is highly
improbable to detect four or more satellites and/or debris.

The risk using this approach is that the less bright traces are not recognized by the detector.
In fact, observing again Fig. 4.6: the tracklet at the bottom right has a lower confidence value
than some disturbances. Therefore, it would be excluded from the detection outputs.
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Figure 4.7 Two classes network output works better than one class due to its ability to detect
disturbances.

It is important to note that the network does not fail to identify traces but fails to distinguish
disturbances with respect to the background. To overcome this problem, a new class named
"Clouds" has been added in addition to the "Tracklets" one. To include this class, the dataset
had to be implemented by adding new bounding boxes in the text files via CVAT [59]. The
newtwork architecture and parameters are the same as the previous described implementation.
Once the learning phase is complete, some images similar to the one in Fig 4.6 were analysed.
Fig. 4.7 shows the correct classification of the two-class network that does not generate false
positives. The model is now able to correctly and accurately detect tracklets.
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4.5 Training results

Synthetic network training results

As configured, the network achieves outstanding results when analysing synthetic images: max-
imum validation in terms of mAP is achieved in just a few epochs (see Fig. 4.8). Figure 4.8 (a)
shows the model loss value evolution along the training epochs, while Fig. 4.8 (d) represents
the network objectness along the epochs, that is essentially a measure of the probability that
an object exists in a proposed region of interest.
If the analysis shifts to real images, performance drops considerably.

(a) (b) (c)

(d) (e) (f)

Figure 4.8 Synthetic network results after 100 epochs.

The quality parameter of a network is the mean Average Precision (mAP), which is the average
accuracy of each class. The mAP value is about 1 in case of confidence value greater than 0.5
and 0.85 when the confidence lies between 0.5 and 0.95.

Another figure of merit is the F-value (F1), a function of precision and recall, defined in the Eq.
4.2 where P is the Precision and R is the Recall of the network for different confidence values.
It calculates the goodness of a test, especially if there is a non-uniform distribution of classes
(as in the Skimage based network case).

F1 = 2 · P ·R
P +R

(4.2)

Figure 4.9 shows that the synthetic model is a well trained model for almost all confidence
values.
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Figure 4.9 Synthetic network F1 curve.

Figure 4.10 show three performance graphs: the first one shows the precision of the network
over the confidence values, i.e. how accurate is the predictions along the different confidence
values. The second one is related to the recall over confidence, i.e. how many relevant target
are identified. The last graph displays precision over recall, where the area under the curve is
the Average Precision (AP) of the various classes (one for this case). The curve should ideally
go from P = 1, R = 0 in the top left towards P = 0, R = 1 at the bottom right to capture the
full AP.

(a) (b)

Figure 4.10 in (a) the Precision over confidence and in (b) the Recall over confidence.
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Figure 4.11 Precision over Recall.

Skimage based network training results

Now the network has achieved good performances, in particular Fig. 4.12 shows the quality of
the network considering the performance average of the two classes.

(a) (b) (c)

(d) (e) (f)

Figure 4.12 Skimage based network results after 100 epochs.

The mAP exceeds the value of 0.8 in case of confidence values greater than 0.5 and 0.6 when
the confidence lies between 0.5 and 0.95.
Fig. 4.13 shows three different curves: the light blue one refers to the class of "Traklets" and
for most confidence values its F1 value tends to one (this means that the class has been well
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trained), on the contrary, the orange one is referred to the "Clouds" class and presents low F1

values (due to few samples for this case), and finally, the bold blue one represents the average
of the two curves and indicates good general behaviour of the network. The Fig. 4.13 legend
emphasises that the highest F1 value is achieved with a Confidence value of 0.2, meaning that
the model can identify accurately poorly visible traces.

Figure 4.13 Skimage based network F1 curve.

In particular, in all three cases Fig. 5.22 shows how the tracklet class obtains excellent per-
formance, due to a numerous dataset (about 1500 items), while the disturbance class performs
worse, due to less objects (about 600 elements).

(a) (b)

Figure 4.14 in (a) the Precision over confidence and in (b) the Recall over confidence (the
light blue curve is referred to the "Tracklets" class, the orange one to the "Clouds" class, and
the bold blue to the average of the previous two).
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Figure 4.15 Precision over Recall (the light blue curve is referred to the "Tracklets" class,
the orange one to the "Clouds" class, and the bold blue to the average of the previous two).

4.6 Testing phase

The testing phase is the most challenging one because it tells how the trained model will perform
with unknown inputs. It processes the remaining 10% of the dataset, which was not used for the
previous phase, to calculate the mPA, Precision, and Recall values of all classes. The procedure
requires input images with their labels so that the network can detect these and compare the
input bounding boxes, with the generated ones.

Synthetic network testing phase

The neural network was then tested on the remaining 10% of the dataset, which was never
used during the training phase, this further demonstrates that the network has learned the
information necessary to recognize the strips without overtraining, the results are illustrated in
Table 4.1. Furthermore, the network was tested on an additional 250 real hand-labeled images
and the results, as mentioned before, are much lower and are shown in Table 4.1.

Class Precision Recall mAP@.5 mAP@.5 : .95

Tracklets 1 1 0.997 0.883

Table 4.1 Synthetic network test results.

The trained model was aimed at verifying whether it was possible to correctly detect tracklets of
real objects acquired by telescopes. The accuracy achieved is about 65%, because the model was
not trained to analyse real scenarios, such as clouds, glare, light pollution, etc., which complicate
the detection phase. Therefore, the model can detect real targets, but major improvements are
needed to achieve a reliable and accurate detector.

Skimage based network testing phase

Once again the tracklets class achieves excellent results, while the noises class achieves fair
results. The Table 4.2 shows the output values of the test (in particular: "All" represents the
average of the two classes):
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Class Precision Recall mAP@.5 mAP@.5 : .95

All 0.782 0.81 0.805 0.596

Tracklet 0.968 0.975 0.988 0.792

Cloud 0.597 0.644 0.622 0.399

Table 4.2 Skimage based network testing phase results.

4.7 Network comparison

In order to obtain a complete overview, the model trained on real observations was compared
with the synthetic model and the ASTRiDE trace detection algorithm. They were assessed by
analysing the quality of their detection. Fig. 4.16 shows the number of real images correctly
detected by the software out of a total of 100 randomly selected (ASTRiDE analyses the original
.fits files, while the networks detect the corresponding .png elaborated images).

Figure 4.16 Networks comparison bar chart. The Skimage based model achieves much better
results due to efficient image processing and a well-trained model.

What has been revealed is that the synthetic network and ASTRiDE can recognise trails that
are sufficiently bright if the sky is slightly covered by clouds, while Skimage based network can
detect hardly visible streaks ( see Fig. 4.17, Fig. 4.18, and Fig. 4.19).
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(a) (b)

Figure 4.17 Synthetic network can easily detect sufficiently bright tracklets, while fails if
some disturbances are present or if the trace is faint.

(a) (b)

Figure 4.18 ASTRiDE can easily detect sufficiently bright tracklets, while mistakes noises
for tracks.
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(a) (b)

Figure 4.19 Skimage based network detects easily most of the streaks (even in the presence
of disturbances), it fails in case of very faint tracklets.

ASTRiDE and the synthetic image-based network achieve about the same performance, due to
their limited ability to detect faint traces. In addition, ASTRiDE has a similar problem to the
real one-class model, i.e., it mistakes noise for tracks (see Fig 4.20).

Figure 4.20 ASTRiDE tracklet detection problem.
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4.8 Algorithm timing performances

The times can be divided into three processes:

1. image conversion (from .fits file to .png image);

2. loading the model on the graphic card via PyTorch (if GPU available);

3. detection.

The first should be limited as much as possible by finding a fast and efficient observation
processing. Unluckily, this lies in the programmer’s hands who must implement an efficient
algorithm and also find the most suitable image transformations to reduce possible downtime.
Regarding instead the second and third one, they cannot be improved unless upgrading the
computer hardware. The timing calculation was done both in the cloud on Colab and on a local
computer. Table 4.3 shows the values of the two cases (in both cases, the same .fits file was
processed):

Computer Images
Elaboration Inference Time Total Time

PC 6.5s 0.25s 6.75s

Colab 7.1s 0.022s 7.122s

Table 4.3 Processes times required

It is quite clear from the Table 4.3 that the time required for image processing is the most
time consuming, considering that the model loading time on the GPU via PyTorch is only once
per process and requires about 7 seconds on average for both the local computer and Colab.
Assuming 1000 images are processed (the equivalent of about one night of acquisitions): 3.7%
of the time is required for detection, 0.1% for GPU model loading, and the remaining 96.2% for
image conversion. Timing depends mainly on the processing, i.e. the choice of transformations
to be used and partially depends also on the hardware at disposal.

The personal computer hardware is an Intel i7-7700HQ quad-core and eight-threads CPU (max
frequency 2.8GHz, using Turbo Boost 3.8GHz), 16Gb of RAM, and an Nvidia GTX 1050 GPU
with 4Gb of VRAM.

In terms of inference times, YOLO algorithms can use GPUs due to the support on CUDA
libraries [67], while ASTRiDE uses CPUs because it does not have this option. The Table 4.4
shows the inference times required for each image using CPU:

Network Synthetic ASTRiDE Two Classes

Time (s) 0.677 1.67 0.734

Table 4.4 Networks inference time using CPU

While, the Table 4.5 shows the GPU inference time (in this case, ASTRiDE is not compared
with other networks due to the impossibility of running on GPUs):

Network Synthetic Two Classes

Time (s) 0.052 0.061

Table 4.5 Networks inference time using GPU
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The processor employed is an Intel Xeon 2.20 GHz dual-core, and the GPU is a Tesla T4 with
16 Gb of VRAM.

4.9 Conclusion and future developments

As the results showed (see Table 4.6), the ability of the network to analyse real observations
quickly and accurately is excellent. In almost all cases the detection is successful and the time
of this process is about 0.25 seconds with a low-level 2017 GPU. The critical point of RID lies
in the rather slow processing of the observations run on processors only. Surely the performance
would improve if the algorithm ran on a newer computer with updated hardware. Therefore,
RID could be a viable alternative to classical trace extraction methods used by observers, due
to its low computational speed.

Quantity Performance

Images Detected 98%

Conversion Time 6.5s

Inference Time 0.25s

Table 4.6 RID results

A fundamental advantage with respect to conventional methods, is that, once data are collected
in the correct way, the algorithm can be re-trained, upgrading the training set with further
information, and making the network more and more robust to new cases.
In addition, the learning capability of the network could be improved by the evolution of hyper-
parameters, but this requires a lot of hardware effort and time consuming ten to one hundred
times longer than normal training.
One of the most challenging tasks in object detection is to estimate the direction of the detected
body from a single observation. A future development could start from this problem to find
a solution involving both the telescope and the detector. This could lead to a model that not
only identifies and locates an object, but also determines its direction very quickly.
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Figure 5.1 LOT working principle.

The tracker structure can be divided into three parts: the processing of .fits observations into
.png images, the trained network, and the analysis of bounding boxes (see Fig. 5.1). Initially,
this chapter describes the tracker architecture with a focus on the functions used and the
outputs. Folllowing, the training and testing phases are presented, and then a comparison with
other networks and ASTRiDE algorithm, and finally the results of the tests carried out thanks
to real satellite passages simulated with the TIG software (the part of image transformation
and conversion is described in Chap. 3).

5.1 LOT architecture

In Fig. 5.2 a basic flowchart that underlines LOT inputs and outputs is represented. First, some
directories need to be defined: the folder in which the telescope images are downloaded; the
one devoted to the processed images; the output folder, which will contain subfolders divided
according to the objects detected. The network is then uploaded to the GPU for a faster (almost
instantaneous) response. This information combined with the actual sensor images is enough
for LOT to identify and organize the detected objects into subfolders.

FITS. file LOT

Steady
Telescope

Telescope
Repositioning

New
Acquisition

Figure 5.2 Schematic representation of LOT I/O.

The objectives of LOT are to accurately identify LEO and MEO objects within the telescope’s
FoV and to track and predict their position over time through consecutive observations. The
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algorithm is able to identify when the observed object leaves the telescope’s FoV and then the
sensor position can be updated to maximise the number of observations. Once a target has
been identified, the script estimates the four possible straight-line trajectories and saves the
slope and intercept parameters in a text file. It is important to emphasise that the system does
not ’see’ tracklets as white stripes with a given direction and length but uses bounding boxes
which therefore do not define a priori the inclination of a track. Fig. 5.3 shows the possible
trajectories, which are calculated through statistical estimation.

Figure 5.3 Possible trajectories from a bounding box. The orange rectangles are the bounding
boxes, the black points are the centroids, and the yellow arrows are the trajectories direction.

During this process, the telescope continues to take images and when a tracklet is identified
in two consecutive images, the script compares the new bounding box with the previous one
by analysing the possible trajectory and position of the centroids. This algorithm grants the
possibility of acquiring more images of the same object throughout its passage in the sensor
field-of-view. In the following, the detailed functioning will be described, with all the different
cases, the necessary inputs, the timing, the statistical analysis, the outputs and finally the
performance and the tests carried out.

5.2 Folder organization

In order to work correctly, LOT needs folders, functions, and the main file notebook. Hereafter,
all of them are listed, together with a brief description of their function (see Fig. 5.4).

• Input_Images: is an empty folder where observations made by the telescope will be
downloaded for processing.

• MODEL_FILES: is a folder containing all the functions required for the network to
operate. It also contains the weights file weight.pt and the detect.py identification file.

• Imm_elab.py: enables the processing of real observations .fits into .png images through
the PyPlot library (the complete process is explained in Chap. 3)

• LOT.ipynb: is the main file of the tracker. It is written in notebook, then divided into
cells. It will be described in detail in a later section.

• Functions.py: is a set of functions used by LOT to organise folders, before and after
observations, and to calculate the parameters of possible trajectories.
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• First_det.py: is a set of functions that elaborate the network output labels when the
detected object is the first in the process. This script creates a text file composed of two
lines, one for each direction (if the tracklets were two, we would have two text files) and
represent the inputs of the Pendenza.py script.

• Slope.py: is a Python file to calculate possible trajectories and compare the bounding
boxes of successive observations. It is capable of working and tracking up to two tracklets
simultaneously. It is only used after the first observation and is the core of the tracker.

• Second_det.py: is a set of functions with the purpose of comparing the current observation
with the previous one. The YOLO output text files represent the inputs of this function.
This script, based on the function Slope.py, decides whether the object detected in the
current and the previous image is the same. When the object is the same, LOT calculates
its direction and also estimates its future position. In this scenario, LOT knows the
direction and heading of the object, and is able to estimate its future position. If not,
the files of the previous images are moved to a folder named as the first observation. In
this way, the algorithm can group multiple observations and text files of the same object,
creating a new folder for each object.

• Dislocation.py: once two shots of the same body have been obtained, LOT is able to
predict the position of the third shot by analysing the positions of the centroids over time.
If the object leaves the telescope’s FoV, the coordinates must be updated to maximise the
object’s detection.

/
LOT/

Input_Images/
MODEL_FILES/

models/
utils/
weight.py
detect.py
...

Imm_elab.py
LOT.ipynb
Functions.py
First_det.py
Slope.py
Second_det.py
Dislocation.py

Figure 5.4 RID directory tree.

It is important to focus on the functions of the Python Functions.py file that manage the
directories, to better understand how the tracker works: every time LOT is used it creates an
Output folder, where all the input observations are saved, grouped in subfolders (as described
before). In addition to it, the algorithm needs two auxiliary and temporary subfolders (one for
the images and one for the text files) (see Fig. 5.5).
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/
LOT/

Input_Images/
Img_02.fits

Output/
Images_aux/

Img_01.fits
Img_01.png

Text_aux/
Img_01.txt

...

Figure 5.5 Auxiliary directory tree example.

Once the detection is done and the first trajectories calculations are performed, the image is
moved from the "Input_Images" folder to the auxiliary images folder and the text files related
to it are saved in the temporary text files folder waiting for a new observation. At this point,
once a new capture is obtained, three scenarios can happen:

1. same object: the streaks of the new observation and the previous one represent the passage
of the same object. LOT detects that the traces in the current and previous image
refer to the same body, then now the auxiliary folders contain the files referring to both
observations. In case there is a third observation referring again to that object the folders
will continue to fill with more and more data;

2. no object: no trace appears in the new observation, thus the algorithm creates a folder
named as the image and moves the photo in it. The tracklet at the second time instant
may be obscured by a cloud or a disturbance, while at the third time instant it becomes
visible again, so the tracker can correlate shot 1 to shot 3;

3. different object: the trace of the new observation does not represent the same object as
the previous one. Therefore, if the trajectory analysis produces a negative result, all the
files in the auxiliary folders are moved to a folder named as the first observation related
to the previous object. For example, there are five observations related to the same body,
if the sixth one is related to another body, all the first five will be moved, and only the
last observation will remain in the auxiliary folders.

All the scenarios above refer to the case with one trace in each image for the sake of simplicity.
In case two traces are present in the image, the system is able to track both by applying the
same procedure.

5.3 Network loading on GPU

This tracker is designed to work for entire observation nights autonomously and automatically.
Thus, the network must always be running to analyze the images just taken by the telescope.
As it was described in Chap. 2, YOLOv5 analyzes the input folder looking for compatible files,
then loads the model on the graphic card, and finally starts the detection. This procedure takes
about 7 seconds and it represents a limitation for a real-time tracker. The adopted solution is
the loading of the pretrained model on GPU via PyTorch [68]. This approach allows bypassing
the control phase since it requires that the input images are first converted into matrices. In
this case, it was necessary to create a script to define the directories of the weights and the
device to be used for inference via CUDA library (GPU) [67].
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Finally, a function was written to save the features of the bounding boxes of the detected objects
in text files, as it happens with the normal inference of YOLOv5 because the output of PyTorch
is a vector that describes the features of the bounding boxes.

5.4 Statistical analysis for trajectory prediction

In order to estimate whether two bounding boxes of two successive observations refer to the
same object, it is necessary to calculate the possible trajectories and compare them through
statistical analysis. Assuming that bodies move in a rectilinear motion in the images for short
arcs, the trajectories are calculated from the vertices of bounding boxes through regression lines.

(a) (b)

Figure 5.6 (a): shows the slope empirical rule, (b): presents the intercept empirical rule.
Orange elements are referred to the previous observation, while yellow ones to the current.
"CCx" elements are related to the centroids, "rx" to the straight lines, and "σx" to standard
deviation.

Therefore, the purpose of the analysis for each new observation is to calculate the Root Mean
Square (RMS) of the slope and intercept, and subsequently, to verify that the new object
simultaneously has a slope and intercept that satisfy rule Empirical rule (also known as 68-95-
99.7 rule) (see Fig. 5.6). This is a statistical rule which states that for a normal distribution,
almost all observed data will fall within three standard deviations (denoted by σ) of the mean
or average (denoted by µ). In particular, the empirical rule predicts that 68% of observations
falls within the first standard deviation (µ ± σ), 95% within the first two standard deviations
(µ± 2σ), and 99.7% within the first three standard deviations (µ± 3σ) (see Fig. 5.7).

Figure 5.7 Empirical rule: 68% of the data is within one standard deviation (±σ), 95% is
within two standard deviation (±2σ), 99.7% is within three standard deviations (±3σ) [69].

Several steps were necessary to calculate the RMSs. At the beginning of the process, 250 images
were generated using the TIG software, each containing a tracklet of different length, thickness
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and position, and their labels. As mentioned in Chap. 2, the bounding boxes are pixel accurate
and therefore can be used to accurately verify the accuracy of the LOT network. Once the
250 images have been detected with the tracker model, each track has two text files: the exact
one from TIG and the output from detection. The points used for the RMS calculation are
those shown in Fig. 5.8, i.e. the point closest to the origin (x1, y1), and the one furthest away
(x2, y2).

Figure 5.8 The statistical analysis relevant points of a bounding box are the top left (i.e. the
one closest to the origin) and the bottom right (i.e. the one furthest from the origin).

The procedure is now divided into two parts: the calculation of the covariance matrix and the
calculation of the Jacobian of the slope and intercept vectors. For each coordinate, it is then
possible to calculate the difference between the precise value and the value obtained from the
network, and then to square it (the procedure should be extended to all 4 coordinates, for
simplicity it is only shown on the x1 coordinate), in particular, x1ip is referred to the correct
value (obtained through TIG), and x1id is the detected value (inference network output):

∆x1i = x1ip − x1id
σx1i = (∆x1i)

2
(5.1)

Therefore, all that remains is to calculate the total µx1 of x1i using the formula:

µx1 =

√∑N
i=1 σx1i
N

(5.2)

Where µx1 is the average, σxi is the standard deviation referred to the various x1 analysed, and
N is the number of images examinated.
Once the µs of all 4 coordinates have been calculated, it is possible to compose the diagonal
Covariance matrix:

Cov =


µ2x1 0 0 0

0 µ2x2 0 0

0 0 µ2y1 0

0 0 0 µ2y2



It remains constant during the calculation of the σ of both slope and intercept.
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On the contrary, the Jacobian vector varies for each pair of points, and consequently the σ
values also vary. The following formula shows the slope and intercept functions as a function
of the two points considered:

s = fs(x1, y1, x2, y2) =
y2 − y1
x2 − x1

i = fi(x1, y1, x2, y2) =
x2 · y1 − x1 · y2

x2 − x1

(5.3)

The Jacobian vector is formed by the derivatives of the functions s and i:

Js =



∂fs
∂x1

∂fs
∂x2

∂fs
∂y1

∂fs
∂y2


=



x1·(y2−y1)
(x2−x1)2

−x2·(y2−y1)
(x2−x1)2

−(x2−x1)
(x2−x1)2

(x2−x1)
(x2−x1)2


; Ji =



∂fi
∂x1

∂fi
∂x2

∂fi
∂y1

∂fi
∂y2


=



−x2·(y2−y1)
(x2−x1)2

x1·(y2−y1)
(x2−x1)2

x2
(x2−x1)

−x1
(x2−x1)


(5.4)

Finally, it is possible to calculate the σ of the slope and the σ of the intercept for each pair of
points:

σ2s = Js · Cov · JTs ⇒ σs =
√
σ2s

σ2i = Ji · Cov · JTi ⇒ σi =
√
σ2i

(5.5)

In conclusion, to identify if two traces refer to the same object, the algorithm calculates the
direction of the trajectory by analysing the two centroids, and then checks that the slope
and intercept (with the same direction as the centroids) of the most recent object satisfie the
empirical rule:

spr − 3 · σs < snew < spr + 3 · σs
ipr − 3 · σi < inew < ipr + 3 · σi

(5.6)

Where spr and ipr are referred to the previous observation object, while, snew and inew to the
current target.
If both conditions are met, the detections are assumed to refer to the same object.
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5.5 LOT structure

Input Directories
Definition

Temporary Folder
Creation

"Infinite" While
Cycle

Extension
File Check

Image
Elaboration

Network
Detection

File Number
Check

10 >1

yes no

Initial Part

Dev. 0 and
Dev. 1 Dev. 2

Figure 5.9 Initial part of LOT architecture.

The implementation of this program turned out to be particularly challenging. Fig. 5.9 shows
the application of LOT with a workflow, beginning with the definition of directories and ending
with three cases which will be described separately to help the reader.

Initial part

Once the inputs are defined and the network is loaded on the GPU, LOT is ready to be employed.
It consists of an infinite while loop that encapsulates all the tracker processes. It requires a
manual stop to allow the algorithm to run through the night without error or failure. "While"
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loop will run indefinitely as long as the condition that it is given remains True. To the loop
used was given True as its condition, which will never not be true. In addition, the sleep time
must be specified, i.e. after how many seconds the script will restart once it has finished. The
time is the machine epsilon which is the minimum possible.
Within this loop, a for loop has been added to check if there is a .fits file in the input folder
(where the telescope observations are downloaded). If not, the algorithm continues to scan for
a file with the .fits extension. If yes, the newly found observation is processed and converted to
.png format and then detected by the GPU preloaded network. The observation is then moved
to the auxiliary image folder to prevent the system from processing it again. Depending on
how many objects are detected, the tracker now has three possible developments (the check is
done in the auxiliary text files folder because the detection files and all text files needed by the
algorithm are saved there).

Development 0

File Number
Check

Text Output
Network
Loading

No Object
Detected

>1

Elaboration of
One Tracklet

Elaboration of
Two Tracklets

Text Files
Generation

Turn to: Extension
File Check

0 1

1 2

Final Component
of the Initial PartDev. 0 and Dev. 1

Dev. 2

Figure 5.10 LOT flowchart for the case with no objects detected, and the case of first object
detection.

This is the case when no target has been detected either in the current detection or in previous
processing. The auxiliary image folder contains the .fits shot and the processed .png image,
while the text file folder is empty. The script creates a folder named as the pictures, and moves
the two observations into it, in order to empty the auxiliary folders for future observations. In
this way, the algorithm can resume searching for .fits files in the input folder.
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Development 1

The auxiliary text file folder contains one file. This means that only the detection of the current
image has identified one or two tracklets. Previous detections have not detected any tracklets
(so they have been moved, as described above). Once the network output file is generated in
the auxiliary directory, it is processed to calculate the parameters of possible body trajectories
through statistical analysis, which are saved in a new text file (two in case of two tracklets) also
located in the same auxiliary directory. Besides, a folder named as the observation is created
and will be used to transfer the current object files when a new object is detected.

Development 2

File Number
Check

10 Loading Text File
of Previous Detection

Check: how many
Objects Detected in
Current Detection?

Current Obs Files
Moved in
New Folder

Determination
of Possible
Trajectories

Check: is the
same Object?

Creation Cen-
troid Position

Text File

Previous Obs Files
moved in New Folder

Check: how many
Obs of the same

Target?

Trajectory Estimation
Trajectory Estimation

+
Deviation Determination

>1

0 1,>1

yes no

2 >2

Dev. 2

Final Component
of the Initial Part

Dev. 0 and Dev. 1

Figure 5.11 Flowchart of the main part of the tracker. Thanks to this part, LOT correlates
different observations to the same objects.
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After the current image has been analysed, the script counts how many files the text support
folder contains and determines that there are more than one. This means that in the previous
detections (minimum one) there are traces that have been processed by LOT.
Subsequently, the algorithm checks whether the current detection has identified any targets (if
the network output text file exists) and there are two possible scenarios:

• The detection has not detected any track, then a folder is created in which the .fits file and
its processed image are moved, and then LOT continues to search for real observations.
The data from the previous observation remains available for comparison in case a new
track is spotted.

• The network has identified a target, so it generates a text file containing the characteristics
of the bounding box (for simplicity the case with one current track is treated, later the two-
track case will also be described). Using this data, LOT calculates the possible rectilinear
trajectories of the object and the σs of the lines passing through the opposite vertices
of the bounding box. At this point, the tracker has all the information needed to check
whether the current track and the previous one correspond to the same orbiting body (see
Formula 5.6).

If they are found to belong to the same object: the script saves the position of the centroids
in a new text file and predicts the position of the next centroid. If the future position is
outside the FoV, the telescope would update its position to maximise acquisitions. From
the third detection of the same body on, LOT calculates the deviation of the prediction
from the actual position of the centroid. These values are saved in a text file where each
line corresponds to a deviation.

This procedure is also applied in case two tracklets are present in the previous observation,
i.e. the trajectory check is done on both tracks. If one of them represents the object of
the current observation the procedure continues as described, and the files referring to the
other trackets will be moved to a new folder.

The algorithm works differently if there are two bodies in the current observation and
one in the previous one. In this case, no file will be moved because it is possible that
in the next observation there are both objects, or only one of them, without knowing in
advance which one. The combination of these last two cases explains how LOT reacts if
both the current and the previous image present two tracklets. It is able to track both
of them in the FoV, and chase the one with a higher probability of detection, i.e. higher
confidence values. Besides, at the beginning of each process it creates a folder named as
the observation, which will be used to transfer the files of the current object when a new
object is detected.

Once the process ends, for example after one night of acquisitions, the tracker will continue
searching for .fits files automatically. When LOT is interrupted manually, it is necessary to
launch one last function to organize the last files into auxiliary folders and then delete them.
In this way, the Output folder will be composed of sub-folders divided according to the objects
detected.

5.6 Algorithm accuray

Tracking telescopes base their observations on the predictions obtained with orbital estimates of
catalogued bodies. The sensor is programmed to predict the trajectory described by the orbital
parameters of the orbiting body and to acquire images at certain times and certain positions. If
the orbital parameters are not accurate the observations may end up to fail. In case an unknown
object enters the FoV, the instrument cannot track it to acquire measurements useful to orbit
prediction and object cataloguing.
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The approach proposed by LOT involves a mix of stationary and dynamic tracking. Once
the tracker identifies an object through multiple observations it calculates its future linear
trajectory. As long as the target remains in the telescope FoV, it remains stationary. When
LOT estimates that the body leaves the FoV it calculates its future straight-line position and
updates the target pointing angles of the sensor to capture again the object. The performance
of the algorithm was assessed on synthetic images as no adapt real images where available. The
TIG software was modified for this purpose.
Before describing the modifications of TIG and the tests performed, it is important to specify
the assumptions made about the timing of the telescope at PoliMi:

• downloading a shot from the telescope to the computer on which the tracker is mounted
takes about 0.5 seconds. This is a fixed time that always elapses between observations;

• repositioning the sensor after the orbiting body has left the FoV takes about 5 seconds.
However, it is a variable quantity directly proportional with distance, but it was decided
to consider the worst-case to perform a better analysis.This time is taken into account
only when the telescope pointing angles needed to be modified during the tracking phase.

Furthermore, Table 5.1 shows all the times that LOT requires, starting from the download of
the image.

Process Time (s)

Image Download 0.5

Image Elaboration 0.9

Detection 0.1

Tracker phase 0.5

Telescope Repositioning 5

Total Time 7

Table 5.1 LOT Timing.

The time elapsing between the current acquisition and the next one depends on the position of
the object with respect to the sensor: it is equal to 0.5 seconds if LOT expects that the next
tracklet will be in the FoV, while it is equal to 7 seconds if it expects that the telescope has to
be repointed.

5.7 TIG modification

TIG was designed to plot tracklets with random thickness, length, and position on random noise
backgrounds (see Chap. 2). It has been modified to generate images representing true passages
of real satellites (while maintaining random background noise). Thanks to the SCOOP output
file, which contains the angular coordinates of Az and El of the chosen satellites, the software
calculates the position vectors of the tracklet. These are printed to images with a very high FoV
(18◦) and resolution (4096x4096 pixels) and then parts of the image are cropped to simulate
the acquisitions of a sequence of images woth a telescope with a narrow field-of-view.
Fig. 5.12 (a) shows the full-size image, while Fig. 5.12 (b) is the cropped image that LOT will
detect.
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(a) (b)

Figure 5.12 (a) is the output of TIG, while (b) is the cropped images whit a 6◦ FoV.

5.8 Training phase

Due to less efficient and cleaner processing, the images that compose the dataset do not show
disturbances that resemble tracklets. Therefore, the model is better able to distinguish targets
from the background in both the one-class and two-class models. In this case, the main problem
was the need of very large dataset, about 3100 images, to accurately identify the tracklets.
The directories were organised as described in Chap. 3 and in some cases, manual labelling
through CVAT [59] was required.
Fig. 3.6 shows a comparison between an image processed with the method used by the detector
and the other one by LOT.
As for the previously described networks, the dataset was divided into three parts: 70% for
training, 20% for validation, and the remaining 10% for the testing phase. The images used
have a definition of 512x512 pixels to speed up processing and detection. Thanks to the lower
definition, the training phase was also faster. As in the previous case, the epochs set were 100,
the batch was one and the selected model was the YOLOv5m (the medium one).

5.9 Training results

The network achieved excellent results, in particular after 100 epochs the mAP at 0.5 tends to
one and the mAP at 0.5:0.95 reaches approximately 0.8, as shown in Fig. 5.13.
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(a) (b) (c)

(d) (e) (f)

Figure 5.13 Pyplot network results after 100 epochs training.

Furthermore, by analysing Precision and Recall from Fig. 5.15 it can be seen that the model is
able to recognise traces from the background very well (in accordance with the F1 parameter).

(a) (b)

Figure 5.14 Pyplot based network performance graphs: (a) is related to Precision over
confidence, (b) to Recall over confidence.
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(a) (b)

Figure 5.15 Pyplot based network performance graphs: (a) to Precision over Recall, and
(b) is F1 graph.

Analysing these graphs, leads to think that this model is better than the one used for the
detector in all aspects, starting from the conversion time. On the other hand, it show its
weaknesses when it comes to the data preprocessing since waekly illuminated trails do not
appear on screen.

5.10 Testing phase

The testing procedure is described in Chap. 3. It is based on the remaining 10% of the dataset
and the following Table 5.2 shows the network performance:

Class Precision Recall mAP@.5 mAP@.5 : .95

Tracklet 0.981 0.986 0.991 0.779

Table 5.2 Pyplot based network testing phase results

In order to have a complete overview of the performance of this model, it was subjected to
a comparison with the other networks and the ASTRiDE algorithm through the analysis of
100 .fits images, in particular the same ones used in the previous test (see Chap. 4). The
outputs were checked manually to be as accurate as possible. As can be seen in Fig. 5.16, the
LOT network obtains good results: about 91% of the observations are detected correctly. LOT
identifies more tracks than the synthetic model and the ASTRiDE algorithm, but fewer than
the RID detector network. The quality of detection drops due to fast image processing (and
not to the badly trained model).
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Figure 5.16 Networks comparison bar chart. The Pyplot-based model achieves worse results
than the Skimage-based model due to less effective image processing.
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5.11 LEO satellites test

The satellites used for the algorithm testing phase are Explorer 7, Echo 1 Deb, Vanguard 1,
Vanguard 2 and Solrad 3 Injun 1. Multiple passages of them were analysed to check LOT
performances, and they are characterised by an elevation angle ranging from about 5◦ up to
about 50◦.
Generally, the exposure time to capture LEO bodies is about 3 seconds. Sometimes, when the
elevation angle is very high, satellites travel about 0.5◦/s and this means that the tracklet is
about as long as half an image. The excessive length of the trace could cause issues in the
detection phase if the network is not trained on such long target traces. The most challenging
case is when El is large, as the satellite moves very fast and its trajectory is increasingly curved.
Therefore, the risk is that the estimated position of the object deviates too much from the real
position, so the target leaves the FoV and the tracker fails to detect it again and loses it. The
most interesting cases are reported below.

Echo 1 Deb

Fig. 5.17 shows the passage of the Echo 1 Deb satellite at an elevation of about 25◦, and Table
5.3 shows the LOT-processed values of the deviation of image (c), with respect to the prediction
calculated using images (a) and (b), and the deviation after telescope repositioning of image
(d), calculated from images (b) and (c).

(a) (b)

(c) (d)

Figure 5.17 Echo 1 Deb passage, the rectangles represent 3◦ FoV, the orange ones show the
first position of the telescope, while the yellow one is after the satellite has left the FoV and
thus the position of the sensor has been moved.
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Deviation (pixels) Images ∆t (s)

2.4927 (a)(b)→ (c) 2

1.7381 (b)(c)→ (d) 7

Table 5.3 Echo 1 Deb deviation values.

The values show that the deviations are very small, so LOT can track the object by updating
the telescope position.

Figure 5.18 The orange point is the centroid position of the detected bounding box, while
the yellow one is the LOT predicted position centroid (this image is a zoom of the Fig. 5.17
(d)).

Figure 5.18 emphasises the small centroids deviation through a zoom of the Fig. 5.17 (d).

Vanguard 1

Fig. 5.20 shows the passage of the Vanguard 1 satellite at an elevation of 35◦. As in the previous
case, Table 5.4 shows low deviation values and therefore the tracker is able to track the object
correctly.

(a) (b)

Figure 5.19 Vanguard 1 passage part 1, the rectangles represent 3◦ FoV, the orange ones
show the first position of the telescope, while the yellow one is after the satellite has left the
FoV and thus the position of the sensor has been moved.
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(a) (b)

Figure 5.20 Vanguard 1 passage part 2, the rectangles represent 3◦ FoV, the orange ones
show the first position of the telescope, while the yellow one is after the satellite has left the
FoV and thus the position of the sensor has been moved.

Deviation (pixels) Images ∆t (s)

0.4196 (a)(b)→ (c) 2

5.5215 (b)(c)→ (d) 7

Table 5.4 Vanguard 1 deviation values.

Explorer 7

The tracklets shown in Fig. 5.22 are from the Explorer 7 satellite, with an elevation of about
50◦. As described before, the object is very fast and in 3 seconds of exposure time covers about
1.5◦. The network had no problems detecting the tracks and the Table 5.5 shows the deviation
value. Once again, the algorithm performs well and the linear trajectory estimation reveals to
be accurate.

(a) (b)

Figure 5.21 Explorer 7 passage part 1, the rectangles represent 3 degrees of FoV, the orange
ones show the first position of the telescope, while the yellow one is after the satellite has left
the FoV and thus the position of the sensor has been moved.
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(a)

Figure 5.22 Explorer 7 passage part 2, the rectangles represent 3 degrees of FoV, the orange
ones show the first position of the telescope, while the yellow one is after the satellite has left
the FoV and thus the position of the sensor has been moved.

Deviation (pixels) Images ∆t (s)

4.1958 (a)(b)→ (c) 7

Table 5.5 Explorer 7 deviation values.
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5.12 MEO satellites test

The procedure followed is the same as for the LEO case. The Arthemis P2, Ops 3662 (Vela 3),
Ops 6577 (Vela 5), Ops 6909 (Vela 9), SL-12 RB(2) and Galileo FM2 satellites were analysed
for the MEO case. The main difference is that these bodies, located on more distant orbits,
travel at lower speeds, so the exposure time is about 30 seconds per image.
The most interesting cases are reported below.

Ops 6577 (Vela 5)

Figure 5.23 shows the tracks of the satellite Ops 6577 (Vela 5) at an elevation of about 50◦:

(a) (b)

(c) (d)

Figure 5.23 Ops 6577 (Vela 5), the rectangles represent 3◦ FoV, the orange ones show the
first position of the telescope, while the yellow one is after the satellite has left the FoV and
thus the position of the sensor has been moved.

The deviation values shown in Table 5.6 are very low, less than one pixel, because the object’s
trajectory curves very slowly for short periods of time.
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Deviation (pixels) Images ∆t (s)

0.1664 (a)(b)→ (c) 2

0.7453 (b)(c)→ (d) 7

Table 5.6 Ops 6577 (Vela 5) deviation values.

SL-12 RB(2)

The case shown in Fig. 5.24 is related to the passage of the SL-12 RB(2) satellite, with an
elevation of about 80°. Although the orbiting body is faster than in the previous case (higher
El), the deviation values shown in Table 5.7 are similar and very small.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5.24 SL-12 RB(2), the rectangles represent 3◦ FoV, the orange ones show the first
position of the telescope, while the yellow one is after the satellite has left the FoV and thus
the position of the sensor has been moved.

Deviation (pixels) Images ∆t (s)

0.7113 (a)(b)→ (c) 2

0.1435 (b)(c)→ (d) 2

0.4809 (c)(d)→ (e) 7

0.6003 (d)(e)→ (f) 2

0.3801 (e)(f)→ (g) 2

Table 5.7 SL-12 RB(2) deviation values.
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Arthemis P2 (Themis C)

LOT shows more difficulties in estimating the position of satellites with very vertical tracklets.
Figure 5.25 shows the Arthemis P2 (Themis C) satellite with an elevation of about 35◦ and
Table 5.8 shows the deviation values which are much larger than in the two previous cases.
These values must be compared with the image definition, which is 680x680 pixels, so the
tracker will not fail to track this object, and in general, it is capable of tracking objects with
very vertical passages.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.25 Arthemis P2 (Themis C) passage, the rectangles represent 3◦ FoV, the orange
ones show the first position of the telescope, while the yellow one is after the satellite has left
the FoV and thus the position of the sensor has been moved.

Deviation (pixels) Images ∆t (s)

25.02 (a)(b)→ (c) 2

1.026 (b)(c)→ (d) 2

8.522 (c)(d)→ (e) 2

6.244 (d)(e)→ (f) 7

11.33 (e)(f)→ (g) 2

7.649 (f)(g)→ (h) 2

Table 5.8 Arthemis P2 (Themis C) deviation values.
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Figure 5.26 In this case the centroids deviation is greater than the 5.18, due to the vertical
tracklets. The orange point is the centroid position of the detected bounding box, while the
yellow one is the LOT predicted position centroid (is a zoom of the Fig. 5.25 (c)).

Figure 5.26 shows a more distant centroids deviation with respect the Fig. 5.18, through a
zoom of the Fig. 5.25 (b).

Galileo FM2

The latter case is based on a series of real observations made by the Pulsar2 telescope at PoliMi.
The telescope was used to track the object Galileo FM2 with an exposure of about 3 seconds
and an interval between one acquisition and the next of about 17 seconds. Figure 5.27 shows
the passage tracklets and Table 5.9 shows the deviation values and the times between one shot
and the next. The values never exceed 2 pixels and refer to images with a resolution of 512x512
pixels.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.27 Galileo FM2 passage, each synthetic image covers a FoV of 3◦.

89



Jason Calvi 2020-2021

Deviation (pixels) Images ∆t (s)

1.885 (a)(b)→ (c) 17

1.527 (b)(c)→ (d) 16.136

0.6897 (c)(d)→ (e) 16.867

0.6798 (d)(e)→ (f) 19.001

0.9443 (e)(f)→ (g) 16.332

0.9118 (f)(g)→ (h) 16.436

Table 5.9 Galileo FM2 deviation values.

The performances of LOT are very good for the MEO case. The algorithm was stressed in the
vertical case but it is still possible to track objects with such passages without any failure.

5.13 Algorithm timing performances

LOT consists of several processes that occur sequentially. They can be divided into two groups:

1. hardware-dependent

2. programming-dependent

The first group includes the telescope characteristics, i.e. the download times of the observations
and the repointing times, and the network speed, which depend on the computer components.
While, the second group includes image conversion and tracker architecture, which depend on
the skills of the programmer. He must implement an efficient algorithm to try to reduce the
calculation time as much as possible.
By the way, in a real observation campaign few adjustments should be done to improve this
performance:

• avoid moving the real .fits image from the input folder to not be detected again, because
normally .fist files weigh a few Mb and take a few moments to be moved.

• use the algorithm directly on the local telescope’s computer. In this way, the download
time of the observations would be eliminated and the process would start instantly once
the photo is taken.

With these small steps, the time taken by the tracker would be reduced and it would be possible
to optimise LOT to make it faster. It is quite clear from Table 5.10 that the observation
processing, detection, and trajectory estimation phases take about 1.5 seconds, and represent
about 75% of the time without telescope movement, and about 30% with telescope movement.

LOT + steady telescopes (s) LOT + telescope respositioning (s)

2 7

Table 5.10 LOT times.

Unfortunately, it is impossible to compare the results with a similar tracker because it is difficult
to find one that works in this way and because they would have to be tested on the same
computer otherwise it would lead to misleading final considerations.
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5.14 Conclusion and future developments

As simulations have shown, LOT’s ability to track satellites is excellent. For all cases analysed,
the tracker never failed to track the object without a priori knowledge on its orbit. and the
calculated deviations were always very small compared to the FoV. The algorithm also succeded
on vertical cases, for very fast satellites, and even in the case of the actual observations of the
MEO Galileo FM2 satellite. As described above, the processing phase of the observations takes
a couple of seconds and this allows the software to track the objects assuming straight trajec-
tories. The conversion process used limits the quality of the image conversion and therefore
the number of tracklets detected. It could be improved by simply upgrading computer hard-
ware or by implementing the use of graphics cards for Python’s main image processing libraries.

Quality Performance

Network 91%

Elaboration image 0.9s

Detection 0.1s

Tracker 0.5s

Table 5.11 LOT performance

First of all, the behaviour of the tracker should be tested on real observation campaigns. There-
fore, all the criticalities related to practical implementation may be better defined and strategies
can be modified in order to cope with them and improve the algorithm’s capability. A possible
future development is to implement LOT with a script that calculates the orbital parameters
every time it identifies and tracks a new object. In this way, the orbital estimate can be used
to command new pointing angles for the telescope, instead of relying on local linearizations as
in the current work. Another accessible future development is to extend the tracking procedure
to GEO objects and estimate the trajectory prediction through artificial intelligence to increase
the efficiency of the process since the observations are only analysed once.
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Chapter 6

Conclusions

The observation of space debris has assumed a fundamental role in future access to space,
allowing to acquire the knowledge of an increasingly number of orbiting bodies, helping in the
fulfilment of SSN and SSA purposes. The space debris number is expected to increase in the
next years [70] and this will require a greater effort in space mission planning and satellite
maintenance if no action is taken. A network of sensors capable of surveying portions of the
sky is fundamental to characterize the population distribution that turns out to be useful when
designing a new space mission, and for collision risk assessment that is built upon catalogued
objects. What has been proved by this thesis is that not only traditional methods can be used
to perform such calculations, but also Artificial Intelligence, and neural networks, in particular,
can succeed in this kind of problem too.
As regards the design of the detector, RID ensures a fairly low processing time compared to
conventional techniques. The network is efficient and accurate in detecting even the least visible
tracks with very limited inference times. Regarding object tracking, an innovative approach was
designed for the identification and tracking of orbiting bodies (both catalogued and unknown)
based on sequence of successive images. Also, this algorithm relies on artificial intelligence for
target detection, obtaining good results. The biggest limitation of LOT lies in the processing of
the observations due to the high computational speed required by the algorithm, which degrades
the quality. The tests done produced results with a high level of accuracy and show that this
new technique can be a valid alternative to conventional ones.
An interesting aspect of both RID and LOT software is that the performance of the algorithms
can be improved by augmenting the datasets with new observations for deeper learning. Besides,
to reduce computation time the complete algorithm could be implemented through CUDA
libraries by moving the onerous computational processes on the GPU.
The space sector is increasingly approaching artificial intelligence techniques intending to au-
tomate many of its processes. Major companies and entities, such as ESA, collect "Big Data",
which can then be analysed to facilitate and improve certain tasks. This could lead to the
development of new techniques both for debris population characterisation collision avoidance
and collision risk assessment manoeuvre planning. In the future, these automated decisions
could take place onboard satellites that would communicate decisions to ground stations to
ensure that there is no interference between the various manoeuvring plans of other satellites
[6]. As these intelligent systems gather more data and experience, they get better at predicting
how risky situations evolve, meaning errors in decision making would fall as well as the cost of
operations. This new kind of approach will become fundamental in a near future, where more
and more companies will access to space by means of constellation satellites. In conclusion,
Artificial Intelligence, employed both for ground and space applications, can be the means to
the next step of automation in the space field.
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