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1. Introduction
The Foreign Exchange market (also called Forex
Market) is considered the largest and most liquid
market in the world, thanks to these qualities
and great availability, it attracts a growing num-
ber of potential investors every day. Through
the improvement of computational resources and
the growing knowledge and popularity of Ma-
chine Learning (ML), artificial intelligence (AI)
techniques have become a tool capable of de-
veloping powerful automatic trading systems.
These techniques offer strategies able to gener-
ate large profits and in the same way, mitigate
losses due to the market’s inherent stochasticity.
One of the possible approaches for automatic
trading consists of modelling the Forex market
as a Markov Decision Process (MDP, [12]) and
solving it through the application of Reinforce-
ment Learning (RL) techniques. This thesis is
driven by the necessity to explore and expand
current reinforcement learning (RL) approaches,
enabling them to interact with a more realis-
tic environment. This environment should inte-
grate the use of continuous actions and be able
to process orders of different magnitudes, allow-
ing to use transaction costs that depend on the
size of each order. Additionally, the objective is

to integrate risk-averse approaches that can ef-
fectively manage market uncertainty. In order to
do this, we explored the use of an actor-critic ar-
chitecture to combine the benefits of value-based
and policy-based approaches. The contributions
provided in this thesis can be summarized as fol-
lows: we developed the Fitted Natural Actor-
Critic algorithm (FNAC, [7]) from scratch and,
based on our knowledge, we applied it for the
first time in a real trading environment. More-
over, we modelled the interaction between the
agent and the environment through the use of
a continuous action space. This allowed us to
model transaction costs in a more realistic way,
reflecting the real costs brokers charge for large
orders. Finally, we used the concept of persis-
tence and integrated risk-aversion approaches to
induce more effective behaviours in our models.

2. Reinforcement Learning
Reinforcement Learning (RL) is one of the
branches of ML, and can be defined as a com-
putational trial and error approach for train-
ing agents to learn an optimal behaviour to
achieve a specific goal. The learning process
is driven by the sequential interaction between
an agent and an external environment, modelled
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through the MDP framework. An MDP is a
stochastic dynamical process defined by the tu-
ple ⟨S,A, P,R, γ, µ⟩, where S is the set of states,
A is the set of actions, P is the state-transition
probability function defined as P (s′|s, a), R is a
reward function, γ ∈ [0, 1] is a discount factor
for future rewards and finally µ is the distribu-
tion of the initial state. The chosen action is
retrieved through the policy π, which assigns a
probability distribution over the action space for
each state. In this work, we focus on stationary
Markovian policies, where the distribution de-
pends only on the current state and not on the
history of the previous states. In general, the
goal of an agent is to maximize the return col-
lected through the interaction with the environ-
ment. When the agent follows a policy π, we can
define the State-Value Function V π(s) that rep-
resents the expected return that an agent can
achieve starting from a particular state. Simi-
larly, the Action-Value function Qπ(s, a) repre-
sents the expected return starting from a partic-
ular state s and taking an action a under a policy
π. Solving an RL task involves finding the opti-
mal policy that ensures the maximum expected
return. This process can be performed using
techniques derived from the Bellman Optimal-
ity Equation, which exploits the Dynamic Pro-
gramming approach for decomposing the prob-
lem between the policy evaluation and the policy
improvement tasks. When the full knowledge of
the MDP is not fully available, techniques such
as Monte-Carlo Learning and Time-Difference
Learning (TD) techniques can be employed. TD
methods are model-free approaches, which can
learn directly from episodes of experience and
update the new estimates using the previously
computed one (using the so-called bootstrapping
approach). Unfortunately, in real-world prob-
lems, it is common to encounter continuous or
extremely large state-action spaces. As a result,
there might be no available information on the
vast majority of the state-action space. These
issues highlight the necessity to generalize the
experience gathered from the collected samples
encountered in the past. For this reason, it
is necessary to use function approximation ap-
proaches in order to approximate the value func-
tion and the agent’s policy. Usually, the value
function approximator relies on the minimiza-
tion of the mean squared value error, obtained

by the mean squared error between the approxi-
mate value function and the true value function.
Instead, the policy approximator commonly uti-
lizes the Policy Gradient theorem [16] in order to
update the parameters and optimize a parame-
terized policy. One possible approach for imple-
menting this update is by employing the natural
gradient. Unlike vanilla gradients, natural gra-
dients follow the steepest ascent direction in a
space defined by the Fisher Information Matrix.
This approach enables stable and efficient up-
dates by opting for a more direct path to the
optimal solution.

3. Actor-Critic Methods
Actor-Critic (AC) methods try to combine the
best characteristics of value-based methods,
which try to learn the optimal value function,
and policy-based methods, which try to learn
the optimal policy following the gradient in pa-
rameter space, using two components called Ac-
tor and Critic. The Actor represents the pol-
icy approximation, used for selecting the actions
performed by the agents, and the Critic rep-
resent the value function approximator which,
following a TD approach, evaluates the actor’s
choices to determine if the produced outcome is
better or worse than expected.

3.1. Fitted Natural Actor-Critic
Fitted Natural Actor-Critic is an extension of
the Natural Actor-Critic algorithm [11]: it mod-
ifies the TD-based critic to allow the use of gen-
eral value function approximators, using the nat-
ural gradient to update the policy of the actor.
The algorithm uses a dataset D of samples ob-
tained from the environment: during each iter-
ation, the critic component processes the sam-
ples to compute an approximation V̂θ related to
the policy πθ. This approximation is then used
to estimate an approximate form of the advan-
tage function Âθ by employing a linear function
approximation with compatible basis functions,
which is used to perform the natural policy gra-
dient update of the θ parameters of the actor
component.

4. Related Works
One of the initially significant successes in ap-
plying RL to trading was the application of Re-
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current Reinforcement Learning. In [10] RRL
was applied to the USD/GBP currency train-
ing the model by maximizing a variant of the
Sharpe Ratio. Afterwards, with the increasing
popularity of Deep Learning, Deep Q-Network
[9] algorithm was used in various settings, e.g.
with OHLC Forex data and in different curren-
cies, also obtaining surprising results thanks to
its excellent generalization properties [15]. In
order to control and deal with uncertainties in
the market, Bisi et al. [1] employ the Fitted
Q-Iteration (FQI, [5]) algorithm in the Forex
market using a Multi-Objective formulation for
keeping the risk of noisy profits under control
and increment the risk-aversion behaviour of the
algorithm. Lately, Riva et al. [13] use FQI inte-
grating the concept of persistence for tuning the
control frequency and handling in a better way
the signal-to-noise ratio. In any case, the works
in the financial context that is of most interest
to us are the policy-based and actor-critic ones,
in fact, unlike the previous ones, these methods
are able to obtain a policy that supports actions
in a continuous state, with which it is possible
to integrate risk-averse approaches exploring the
gradient nature of the actor component. Bisi et
al. [2] incorporated the mean-volatility objective
into the TRPO [14] algorithm to guarantee risk-
averse behaviour throughout the learning pro-
cess. This model was tested using data from
S&P 500 index, by considering buy, sell, and flat
as possible actions and utilizing daily price data
from the 1980s to 2019, obtaining performance
domination with regard to the reward-volatility
and expected return frontier compared to the
classical TRPO algorithm.

5. Problem Formulation
5.1. Forex Trading Enviroment
For modelling the Forex trading environment we
use a EUR/USD dataset retrieved through the
website HistData.com [6].1 We formalize the
problem as an episodic task, where an episode
corresponds with a unique market opening day
consisting of a total of 600 minutes between 8:00
a.m. and 6:00 p.m. (CET).

1We transform the spreads in the dataset by a factor
equal to 0.5 to align the data with real-world markets.

5.1.1. State Formulation
To ensure the Markovian property we have in-
cluded data from past observations in each state.
More precisely, we have included the last 45 mid-
price variations with one minute frequency, the
values of the spread, the day of the week and the
minute of the specific trading day. Moreover,
we included the current portfolio allocation de-
rived from the previously performed action, in
order to take into account the possible costs in-
curred with the next actions. In the discrete
action space setting this portfolio allocation is
expressed by x ∈ {−1, 0,−1} that corresponds
to the actions Short, Flat, and Long. Instead in
the continuous action space setting this feature
is a real number x ∈ R such that −1 ≤ x ≤ 1,
that expresses the percentual of the maximum
traded amount available in the current portfo-
lio, where in our formulation is equal to 1e5$.

5.1.2. Action Formulation
The action defines the portfolio allocation that
the agent wants to keep in the next state and
follows the same formulation of the allocation
feature state. In this case, the sign represents
the type of position, while the absolute value
expresses the percentage of the subsequent posi-
tion with respect to the maximum amount avail-
able in the portfolio. Furthermore, we decided
to close all positions at the end of the trading
day, resulting to have only action 0 (Flat) at the
last minute of the day.

5.1.3. Reward Formulation
The reward received by the agent after perform-
ing its action is defined by the following equa-
tion:

rt = at(pt+1 − pt)− ct|at − xt|, (1)

with
ct = f +

1

2
σt. (2)

where pt is the current exchange rate at time
t, t + 1 is the next timestep, with a frequency
equal to one minute, xt is the current portfolio
allocation, f is a fixed transaction cost and σt is
the current value of the bid-ask spread at time t.
This formula can be divided into two parts: the
first represents gain (or loss) due to the exchange
rate variation, and the latest is the total cost
charged by the FX brokers due to the allocation
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changes performed by the agent. Thanks to the
use of continuous actions the policy is able to ex-
ecute orders with a variable size: this allows us
to consider more realistic transaction costs that
depend on the size of the order placed. We have
formalized this concept by using a spread cor-
rection factor obtained by an auxiliary positive
function g : X → Y,Y ∈ R+ where X defines
the size of the performed order. By setting the
maximum size allocation to z = 1e5$, we can re-
flect real market conditions by adopting a spread
step function defined as:

g(x) =


1 0 ≤ x <

3

4
z

11

4
x >

5

4
z

7

4
otherwise

(3)

5.2. Action Persistence
In the financial context, the frequency of interac-
tion with the market is a fundamental aspect. In
fact, higher frequencies of interaction allow bet-
ter control opportunities with higher potential
profits. On the other hand, the observation noise
and the sample complexity might become too
high to be able to learn profitable behaviour. In
order to efficiently modify the control frequency
and to obtain a better signal-to-noise ratio, we
use the concept of action-persistence [8]. Finally,
to be compliant with the action-persistence def-
inition in which each action is repeated by a
number of times equal to k, we have modified
the general reward formula in Equation (1) to
consider the next persisted exchange price pt+k.

5.2.1. Algorithm Implementation
In order to create a model that can efficiently
handle the previous Forex MDP formulation, we
implemented from scratch the FNAC Algorithm
described in Section 3.1. For its implementa-
tion, we use three main components: the main
critic, for which we mainly use the XGBoost [4]
regressor; the secondary critic, in charge of com-
puting the w parameters for the natural gradient
update, for which we adopt a Ridge Regressor.
The final component is the actor, for which we
take into account a Feed-Forward Neural Net-
work (FFNN). The actor architecture built dif-
fers depending on the action space used: in the
discrete actions space setting we used an FFNN

with three hidden layers, with the final out-
put layer composed of three neurons each cor-
responding to each available action; thanks to
a softmax function, we normalize the output to
obtain the probabilities from which each action
will be selected. Instead in the continuous action
space setting, we use an FFNN with four hidden
layers, with the final output layer composed of
two neurons, respectively corresponding to the
mean µ and the standard deviation σ of a normal
distribution. In order to restrict the output sam-
ple retrieved from the distribution and to ensure
an efficient back-propagation, we substitute the
normal distribution with the Truncated Normal
distribution restricted in the range x ∈ [−1, 1].

5.2.2. Risk-Aversion approaches
In order to keep the risk of potential losses under
control, we extend the previous risk-neutral for-
mulation modifying the objective function in or-
der to optimize two different risk measures: the
Reward Conditional Value-at-Risk (RCVaR, [3])
that is a reward-based version of the classic Con-
ditional Value-at-Risk (CVaR) and the Mean-
Volatility risk measure objective [2]. While the
former risk measure is aimed at optimizing the
worst-case scenarios, the latter is focused on a
trade-off between the maximization of the ex-
pected return and the minimization of the vari-
ance of the observed rewards. In order to con-
sider the RCVaR, we can use an equivalent MDP
formulation using the following transformed re-
ward:

R̃(s, a) = ρ− 1

α
(R(s, a)− ρ)− , (4)

where ρ is a risk aversion hyperparameter used
to define the level of risky rewards to discard.
Regarding the Mean-Volatility optimization, we
use instead the following reward transformation:

Rλ
π(s, a) = R(s, a)− λ(R(s, a)− Jπ)

2, (5)

where λ is the risk-aversion level parameter. In-
stead, Jπ is the normalized expected return, cal-
culated by using a Monte-Carlo procedure under
the current policy π.

6. Experimental Results
In this section, we initially describe the model
selection procedures used to train our algorithm.
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Next, we will provide the results obtained us-
ing Forex market data, showing the outcomes
of the application of the fee function described
in Equation 3 and of the risk-averse approaches.
For all of the results shown, we will assume the
fixed transaction costs f equal to 0.

6.1. Model Selection
Due to the actor-critic architecture of the FNAC
algorithm, we used two different algorithms for
implementing the primary critic and the actor
components, with one additional critic repre-
sented by a linear regressor (with Ridge reg-
ularization) to compute the advantage estima-
tion. As mentioned above, we have chosen to use
the XGBoost algorithm for the value function
approximation: this choice is motivated by its
excellent capability to handle diverse and large
datasets, along with its high prediction perfor-
mance and efficient computational processing.
Being an optimized ensemble implementation
that combines gradient boosting and bagging
approaches, its hyperparameters are mainly re-
lated to these latest techniques. Once we found
an adequate number of trees to ensure a fair
trade-off between the computational complex-
ity and the generalization capabilities, we per-
formed selection procedures only among a sub-
set of all the available hyperparameters. This
subset includes the learning rate and the boost-
ing rounds related to the gradient boosting ap-
proach and the min-child weight that indicates
the minimum sum of the weights of the leaf
observations to perform the node splitting. In
addition, to better control overfitting, we used
an early stopping procedure to limit boosting
rounds. Regarding the critic of the advantage
function approximation, we use a Ridge Regres-
sor, mainly tuning the coefficient for regulating
the L2 term. Finally, since we used an FFNN for
the actor component, we tuned the learning rate
and the number of parameters of the network.
For the learning process, we decide to split the
available data, which includes the observation
between the years 2018 to 2022, into four parts:
We used the years 2018-2019 for the training set,
2020 as the validation year to perform the early
stopping on the XGBoost regressor, 2021 as vali-
dation for the actor component performance and
finally the year 2022 as test set.

(a) FNAC Discrete validation year 2021

(b) FNAC Discrete test year 2022

Figure 1: Plot of the percentage P&L in the
validation year 2021 and test year 2022, using
FNAC discrete with different values of action
persistence.

6.2. Discrete Setting
Firstly, we investigated the performance of
FNAC in the discrete action space using the per-
sistence values 1,5 and 10 (on a one-minute ba-
sis, this means that the actions are respectively
performed every 1, 5 or 10 minutes). The results
show how persistence helps the generalisation
capabilities of the model. Indeed, while obtain-
ing positive performances in the validation year
2021 (Figure 1a), models with lower persistence
performed much worse in the test year 2022 (Fig-
ure 1b). To have a better interpretation of the
results, we then analyzed the feature importance
(Figure 2) and the heatmaps of the allocations
chosen by the agents. We have observed how the
most important features for the approximation
of the value function are the temporal ones, use-
ful for identifying temporal patterns within the
trading day.
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(a) Persistence 5 (b) Persistence 10

Figure 2: Bar Plot feature importance of the
first 10 features using the number of split as a
measure.

Figure 3: Plot of the percentage P&L in the test
year 2022, using FNAC discrete and continuous
models with persistence 10.

6.3. Continuous Setting
In the continuous action space settings, we ana-
lyzed only the results with persistence 10: this is
because the results obtained with smaller values
of persistence showed the generalization prob-
lems present in the discrete case. In Figure 3
we compare the results obtained in the test year
2022 from models trained with continuous and
discrete action spaces, also including the results
of FQI and from the baselines Buy&Hold and
Sell&Hold. As we expected, due to the diffi-
culty to handle a continuous actions space, we
generally obtained slightly worse performances
than the discrete case. Precisely, in the last 4
months of 2022, we noticed higher drawdowns
and a significant rise in the standard deviation
of the cumulative return. In any case, the train-
ing process showed greater stability than the dis-
crete one, indicating a greater predisposition to
decrease the model-risk.

Figure 4: Heatmaps allocations of the base and
the step fee function FNAC models in the test
year 2022.

Figure 5: Histogram of the allocations changes
in the test year 2022 using the base and the Step
Fee function FNAC models.

6.3.1. Step Fee Function Setting
Using the step function in Equation (3), we
study the learned models in a scenario with size-
dependent transaction costs. The results ob-
tained showed how the agent correctly learned
to manage the size of the orders. From Figure
4 it can be observed the presence of continu-
ous colour stripes, this provides a representation
of how the model has acquired the capacity to
incrementally modify the allocations, effectively
decreasing the impact of high transaction costs.
Additionally, this behaviour can be better ob-
served in Figure 5, which shows the difference of
the chosen allocations between two subsequent
time steps, demonstrating how the model with
the size-dependent function chooses to execute
smaller orders. However, the performances fol-
low the same trend compared to the base case,
showing also here a noticeable and worse drop
at the end of the test year.
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(a) RCVaR

(b) Mean-Volatility

Figure 6: Kernel density estimation of the re-
wards obtained by the risk-averse models and
risk-neutral model in the test year 2022.

6.3.2. RCVaR Setting
As previously mentioned, to use RCVaR as a
measure of risk we used the transformation of
rewards (Equation 4). We analyzed the distribu-
tion of the rewards obtained by the risk-neutral
models to find proper values for the hyperpa-
rameters ρ; using the risk levels discovered, we
trained and tested the models in the test year
2022. Through the performances obtained, we
have verified how ρ modifies the actions chosen
by the models. In fact, even if the RCVaR op-
timization is not fully effective, lower values of
ρ induce a more conservative behaviour, deter-
mining which risky rewards to discard and de-
creasing the variability of the rewards obtained
(Figure 6a).

6.3.3. Mean-Volatility Setting
Similarly to the RCVaR approach, we initially
examine the mean-volatility of the risk-neutral
results. Through this study, we find a range of
potential values for λ around 10−3. Analyzing
the performances obtained by the model trained
with this objective function, we have noticed
that at high λ values, the model tends to have a
more risk-averse behaviour. Unfortunately, the
non-stationarity makes the performance in 2022
much worse than the risk-neutral model, espe-
cially for high values of the risk-aversion param-
eter. Finally, analyzing the distribution of the
reward obtained by the risk-averse model, it is
possible to notice how by imposing high λ val-
ues it is possible to decrease the variability of
the rewards obtained (Figure 6b).

7. Conclusions
Reinforcement learning offers exciting opportu-
nities for financial applications. The Forex mar-
ket, thanks to its enormous liquidity and flexi-
bility, is one of the places to design potentially
profitable algorithms. Unfortunately, due to its
non-stationarity and volatility, it presents dif-
ficult challenges to face. By implementing the
FNAC algorithm, we modelled an agent capa-
ble of interacting with the market using contin-
uous actions. Through the integration of a size-
dependent fee function, we were able to train
an agent capable of limiting order volume. Fur-
thermore, through the use of risk measures, the
trained agents developed risk-averse behaviour,
decreasing the variance of the rewards obtained.
Although positive performances were achieved,
the non-stationarity of the data caused perfor-
mance to deteriorate in the last months of the
test year 2022. This can be attributed to the
model’s limited ability to generalize, which is
partly due to the difficulty of creating optimal
policies from different initializations of the pol-
icy and the use of training data with different
trends from the test year. Several approaches
can be considered to limit the impact of non-
stationarity. One of these is the use of multi-
expert learning algorithms, through which mar-
ket drifts can be managed in a better way thanks
to the experience of different models. Further
possible optimizations result from the computa-
tional effort required for the training of the dif-
ferent components of FNAC. This can be done
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by performing a more in-depth tuning of the
hyperparameters used, which is however made
difficult by the computational time required.
Finally, the differentiable nature of the policy
opens up possibilities for investigating trans-
fer learning techniques on currencies other than
EUR/USD. This is especially relevant for cur-
rencies with lower liquidity, where finding suc-
cessful strategies can be more challenging.
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