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Publication III: “Portfolio optimization of safety measures for the
prevention of time-dependent accident scenarios”

Mancuso is the primary author. Salo and Zio proposed the research topic. Man-
cuso and Compare formulated the model under the guidance of Salo. Mancuso
performed numerical analyses and computations for the case study. Mancuso
and Compare wrote the paper under the guidance of Salo and Zio.

7



Author’s Contribution

Publication IV: “Probabilistic model data of time-dependent accident
scenarios for a mixing tank mechanical system”

Mancuso is the primary author. Mancuso and Salo proposed the research topic.
Mancuso performed numerical analyses and computations for the case study.
Mancuso and Compare wrote the paper under the guidance of Salo and Zio.

Publication V: “Risk-based optimization of pipe inspections in large
underground networks with imprecise information”

Mancuso is the primary author. Salo and Laakso proposed the research topic.
Mancuso and Compare formulated the model under the guidance of Salo. Laakso
provided data and expertise on the water network system. Mancuso performed
numerical analyses and computations for the case study. Mancuso and Compare
wrote the paper under the guidance of Salo and Zio.

Publication VI: “Optimal Prognostics and Health
Management-driven inspection and maintenance strategies for
industrial systems”

Mancuso is the primary author. Mancuso and Salo proposed the research topic.
Salo formulated the model, which has been extended by Mancuso and Compare
for applications to Prognostics and Health Management. Mancuso performed
numerical analyses and computations for the case study. Mancuso and Compare
wrote the paper under the guidance of Salo and Zio.

8



Abbreviations

BN Bayesian Network

BT Bow Tie

CVaR Conditional Value at Risk

DBN Dynamic Bayesian Network

ET Event Tree

ETA Event Tree Analysis

FT Fault Tree

FTA Fault Tree Analysis

IIoT Industrial Internet of Things

MAUT Multi Attribute Utility Theory

MAVT Multi Attribute Value Theory

MCDA Multi Criteria Decision Analysis

PDA Portfolio Decision Analysis

PHM Prognostics and Health Management

PRA Probabilistic Risk Assessment

RIM Risk Importance Measure

RPM Robust Portfolio Modeling

VaR Value at Risk

VoPI Value of Perfect Information

VTA Value Tree Analysis

9





1. Introduction

In industrial practice, Probabilistic Risk Assessment (PRA) is employed to
quantitatively assess the failure risk of systems and components [1, 2, 3]. Risk
importance measures, such as Risk Reduction Worth, Fussel-Vesely and Risk
Achievement Worth, define the importance ranking of the components, based on
the impact of component failures on the system. Thus, the resource allocation
for system improvements often relies on such ranking [4].

This iterative practice involves (i) the identification of components with the
highest impact on systemic risk and (ii) the deployment of preventive mitigation
actions to reduce their failure probabilities. The procedure is iterated until the
budget for system improvements is depleted or the risk becomes acceptable with
respect to regulatory criteria [5]. However, the resulting portfolio of preventive
mitigation actions may be sub-optimal due to the lack of systemic perspective
[6], whereby budget and technical constraints are considered only afterwards.
In addition, the many different risk importance measures in the literature
can lead to different rankings of critical components, therefore experts need to
interpret the results to prioritize the resource allocation. Table 1.1 summarizes
the advantages of systemic analysis in the selection of preventive mitigation
strategies for safety-critical systems.

This Dissertation shows that a systemic approach overcomes the limitations of
selecting mitigation actions based on the failure risk of individual components.

Table 1.1. Comparison of practices for reliability analysis.

Individual components Systemic analysis

Analysis of the failure risk of single
components

Analysis of the accident/threat sce-
narios for the overall system

Interpretation of importance mea-
sures to prioritize mitigation actions

Selection of the optimal strategies for
system reliability and safety

Costs and feasibility of mitigation ac-
tions are considered only afterwards

The optimization model accounts for
financial and technical constraints
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Introduction

1.1 Objectives and scope

This Dissertation presents methodological advances to improve reliability,
availability, maintainability and safety of complex technological systems [7].
Specifically, the methodologies support decisions on system design and system
operations to mitigate the failure risk.

The applications of the methodologies to various technical systems show the
potential of systemic analysis in the optimization of risk mitigation strategies.
The contributions in this Dissertation indicate that a comprehensive analysis
of the technical system can lead to relevant improvements in risk mitigation,
compared to current practices.

The optimization models of this Dissertation consider single or multiple ob-
jectives, concerning reliability, availability, maintainability and safety of the
system. Information sources are logical structures from traditional practices
(such as binary gates from Fault Tree analysis), statistical analyses and expert
elicitation. The optimization solutions are robust to imperfect information by
accommodating aleatory and epistemic uncertainties [8].

Table 1.2 summarizes the scope of the Publications in terms of methodolog-
ical differences in the model objectives, information sources and uncertainty
quantification. Publication II and Publication III consider multiple objectives,
in particular the risks on multiple accident outcomes and the risks on multiple
time stages, respectively. Publication IV is not included in Table 1.2 because it is
a data article, which does not constitute an independent research contribution.

Table 1.2. Scope of the Publications.

Publication Focus Objectives Information Uncertainty

Publication I Design Single Statistical analyses Aleatory

Publication II Design Multiple Statistical analyses Aleatory

Publication III Design Multiple Statistical analyses Aleatory

Publication V Operations Multiple Expert Epistemic

Publication VI Operations Single Sensors Aleatory

1.2 Dissertation structure

The Dissertation proposes several contributions both to system design and
system operations in the field of risk-informed optimization of mitigation strate-
gies. Figure 1.1 outlines the Dissertation structure, where squares represent
the main models, circles indicate model variants and double circles refer to the
information sources.

12
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For system design, the Dissertation presents an optimization model to select
the mitigation strategies that minimize the risk of system failure. Specifically,
the accident scenarios are represented through a Bayesian Network to assess
the consequences of the component failures. The Bayesian model is presented
in Publication I and Publication II with applications to accident scenarios and
threat scenarios, respectively. Then, Publication III extends the Bayesian model
to time-dependent accident scenarios. Publication IV describes a case study on
the time-dependent accident scenarios of a mechanical system.

For system operations, the Dissertation includes Publication V and Publication
VI. The former provides a framework to optimize inspection strategies of a pipe
network. The latter presents an optimization model to select the inspection and
maintenance strategies for maximizing the utility of an industrial system [9].
Specifically, the first model is based on expert judgment about the impact of pipe
features on the risk of system failure, whereas the second model is based on
system monitoring through sensors.

In the rest of this introductory summary chapter, Section 2 presents the
methodological foundations of the Dissertation, Section 3 summarizes the con-
tributions of the Publications. Finally, Section 4 discusses potential implications
and outlines extensions for future research.

System Design

Static model
Accident
scenarios

Single objective

Threat
scenarios

Multiple objectives

Time-dependent model

System Operations

Expert-based model

Monitoring-based model

Experts

Sensors

R
is

k
M

it
ig

at
io

n R
isk

M
itigation

Figure 1.1. Dissertation structure.
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2. Methodological Foundations

This Section presents the methodological foundations of the Dissertation.
Specifically, Bayesian models represent the consequences of the component
failures, whereas risk assessment is based on Multi-Attribute Value Theory and
Multi-Attribute Utility Theory. The selection of the optimal mitigation strategies
builds on Portfolio Decision Analysis (PDA).

2.1 Bayesian models for reliability analysis

The analysis of safety-critical systems typically relies on traditional frame-
works, like Fault Trees (FT) and Event Trees (ET). Fault Tree Analysis (FTA) is
based on the identification of an undesired event, called Top Event. Then, the
formulation of the FT proceeds from the failure events to their causes, until the
failure of the basic components. In FTA, failure events are binary and statisti-
cally independent, while their dependencies are represented by means of logic
gates. Event Tree Analysis (ETA) is based on the identification of an initiating
event, which is followed by a sequence of hazardous events. Each hazardous
event leads to a finite set of outcomes which occur with a given probability.
Finally, the ET represents the possible consequences of the accident scenarios
[10, 11].

Bow-Tie (BT) combines the scenario modeling and quantification of FT and ET.
Among the various techniques for the analysis of safety-critical systems, Bow-
Tie analysis is a popular technique as it represents an accident scenario from
causes to effects [12]. The application of BT in reliability analysis is limited due
to: (i) the static nature of FT and ET, (ii) the inability to represent conditional
dependencies and (iii) difficulties in handling imprecise information [13]. In
cybersecurity management, the analysis of individual cyber threat scenarios
is based on attack graphs, multi-leveled diagrams describing threats to cyber-
physical systems and possible attacks to realize such threats [14]. Attack graphs
have largely the same limitations as Bow Ties.

To overcome these limitations, the BT can be mapped into a Bayesian Network
(BN) which makes it possible to employ Bayesian inference and prediction for
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reliability models [15]. Formally, a BN is a directed acyclic graph consisting of

chance nodes representing random events of the accident/threat scenarios,
leading to system failure;

arcs indicating causal dependencies among nodes.

The main feature of BNs is the possibility to include local conditional depen-
dencies by directly specifying the causes that influence a specific effect, based
on expert judgment and quantitative knowledge [16]. Moreover, BNs allow a
multi-state representation of the component failures by combining BT events
into the same chance node [17].

Bayesian Networks are also capable to model time-dependent accident scenar-
ios by explicitly representing the dynamic evolution of component failures in
process systems [18]. For this purpose, Dynamic Bayesian Networks (DBNs)
generalize BNs by connecting nodes over multiple time stages [19].

One limitation of BNs in reliability analysis is the need to elicit the conditional
probability tables for all component failures. Because this task can be difficult
in practice, Bayesian models can be extended to include incomplete information.
In this respect, credal networks accommodate imprecision through probability
intervals, in order to provide robust assessments on the failure risk of the system
[20].

The impact of risk mitigation strategies on system reliability can be evaluated
through influence diagrams [21, 22]. Specifically, decision nodes represent the
choice of mitigation actions, as illustrated in Figure 2.1. Each arc directed from a
decision node (square) to a chance node (circle) indicates that the deployment of
the mitigation action affects the occurrence probability of the event represented
by the chance node. Utility nodes (diamonds) represent the (dis)utility of possible
outcomes of the accident/threat scenarios.

ja j

ℓaℓ

i k

Figure 2.1. Example of influence diagram.

Let mitigation actions be numbered a ∈ {1,2, ..., N} so that the binary variable
za indicates the deployment of the mitigation action a. Specifically, the binary
variable is za = 1 for the deployment of the mitigation action a and za = 0
otherwise. Thus, a portfolio is defined by the binary vector z as a combination
of binary variables za for all the possible mitigation actions. With no loss of
generality, the vector z lists binary variables such that

z= [z1, z2, ... , zN ]. (2.1)
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In influence diagrams, the probability of the cascading events throughout the
accident/threat scenarios is computed through the law of total probability [23].
Thus, the expected impacts of the accidents/threats quantify the risks of the
system, which depend on the deployment of the portfolio of mitigation actions z.
This framework aims to compute the risk of accident/threats for all impact crite-
ria, making it possible to select mitigation strategies based on the minimization
of the expected impacts. The selection of mitigation strategies may depend on
the states of random events of the accident/threat scenarios, if chance nodes
affect decisions in the influence diagram.

2.2 Multi-criteria decision analysis

Multi-Criteria Decision Analysis (MCDA) aims to structure and solve decision
problems by explicitly evaluating alternatives with regard to multiple conflicting
criteria [24]. Typically, such problems may not have a unique optimal solution,
therefore it is necessary to use decision-maker’s preferences to differentiate
between solutions [25]. Several methods for multi-criteria decision analysis are
available in literature, however this Dissertation focuses on Multi-Attribute
Value Theory [26] and Multi-Attribute Utility Theory [27].

In Value Tree Analysis (VTA), a value tree consists of: a fundamental objec-
tive, possible lower-level objectives, attributes that measure the achievement of
the objectives and alternatives whose attribute specific performance are being
measured. The attributes a1,a2, ...,an have measurement scales X i, i = 1,2, ...,n.
Alternatives x = (x1, x2, ..., xn) are characterized by their performance with re-
gard to the attributes. Multi-Attribute Value Theory (MAVT) supports decision
recommendations when attribute-specific values are certain.

A value function v maps the attribute-specific measurement scale onto a numer-
ical scale in accordance with the decision maker’s preferences. Attribute-specific
value functions are assessed by (i) defining measurement scales [x0

i , x∗i ] and (ii)
specifying equally preferred differences in attribute levels. Value functions can
be normalized such that vi(x0

i )= 0 and vi(x∗i )= 1.
If the attributes are mutually preferentially independent and difference inde-

pendent [28], the overall value of the alternative x = (x1, x2, ..., xn) is a function
that aggregates attribute-specific values such that

V (x1, x2, ..., xn)= f (v1(x1),v2(x2), ...,vn(xn)). (2.2)

By defining the attribute weights wi, the overall value function is a weighted
sum of the attribute-specific values

V (x,w,v)=
n∑

i=1

wi vi(xi). (2.3)

The attribute weight wi reflects the increase in overall value when the perfor-
mance level on attribute ai is changed from its worst level to its best, relative
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to similar changes in other attributes. Thus, weights reflect trade-offs between
attributes, not their absolute importance. Several procedures for weight elicita-
tion are available in literature, such as trade-off weighing approaches SMART
[29], SWING [30] or SMARTS [31].

Incomplete information about attribute weights can be modelled as set of feasi-
ble weights that are consistent with the decision maker’s preference statements

Sw ⊆ S0
w = {w ∈Rn|

n∑

i=1

wi = 1,wi ≥ 0∀i}. (2.4)

Incomplete preference statements can be modelled as linear inequalities between
the weights. When the weights are incompletely specified, the alternatives’
overall values are intervals. For this reason, preference over interval-valued
alternatives can be established based on a dominance relation. Specifically,
alternative x j dominates xk in S if

x j ≻S xk ⇔
{

V (x j,w,v)≥V (xk,w,v) for all w ∈ Sw

V (x j,w,v)>V (xk,w,v) for some w ∈ Sw
. (2.5)

The set of non-dominated alternatives is

XND(Sw)= {xk ∈ X |∄ j such that x j ≻Sw xk}, (2.6)

which includes the alternatives for which there is no other alternative that has
at least as high value for all feasible weights and strictly higher for some [32].

Multi-Attribute Utility Theory (MAUT) supports decision recommendations
when attribute-specific performance are uncertain [33]. Specifically, alterna-
tives are evaluated in view of a set of outcomes t ∈ T, each associated with an
occurrence probability pt. A utility function u maps the attribute-specific mea-
surement scale onto a numerical scale in accordance with the decision maker’s
preferences. Attribute-specific utility functions are assessed by (i) defining mea-
surement scales [x0

i , x∗i ] and (ii) specifying equally preferred lotteries. Utility
functions can be normalized such that ui(x0

i )= 0 and ui(x∗i )= 1.
If the attributes are mutually preferentially independent and additive inde-

pendent, the overall utility function in a specific outcome t ∈ T can be expressed
as

Ut(x1, x2, ..., xn)=
n∑

i=1

wi ui(xi). (2.7)

Attribute weights are elicited similarly in MAVT and MAUT. Decision recommen-
dations can be expressed by ranking the alternatives based on their expected
utility

E[U(x)]=
∑

t∈T

pt Ut(x)=
∑

t∈T

pt

n∑

i=1

wi ui(xi). (2.8)

Incomplete information about attribute weights can be also modelled in MAUT,
thus preference over interval-valued alternatives can be established through a
dominance relation on expected utilities.
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2.3 Portfolio models for resource allocation

Portfolio decisions involve the selection of a combination (portfolio) of items
from a large set of alternatives [34]. These decision problems are often char-
acterized by multiple conflicting objectives. In this Dissertation, the optimal
mitigation strategies are cost-efficient solutions that minimize the risks of sys-
tem failure.

Typically, the resource allocation builds on the selection of a portfolio of
projects, subject to resource constraints. Thus, portfolio selection is fundamental
for strategic decisions in public administration [35, 36, 37] and industrial invest-
ments [38, 39, 40]. In this framework, the optimization of resource allocation
relies on Portfolio Decision Analysis (PDA, [41]).

Based on the problem formulation by Liesiö et al. [42, 43], the set X =
{x1, ..., xm} includes m projects which are evaluated on n criteria. The score
matrix v ∈Rm×n is composed of score vectors v j = [v j

1, ...,v j
n], which specify the

evaluation scores of project x j with regard to criteria i = 1, ...,n.
A project portfolio p ⊆ X is a subset of available projects, thus the set of all

possible portfolios is the power set P := 2X . Each portfolio p can be represented
by a binary vector z(p) ∈ {0,1}1×m such that

z j(p)=
{

1 if x j ∈ p

0 if x j ∉ p
. (2.9)

The overall value of portfolio p is captured through an additive value function

V (p,w,v)=
∑

x j∈p

n∑

i=1

wi v j
i = z(p) v w, (2.10)

where the vector w ∈Rn×1 specifies the criteria weights.
The portfolio selection may have to fulfill various budget, logical, positioning

and threshold constraints. Typically, the set of feasible portfolios can be charac-
terized by a set of linear inequalities such that the coefficients are recorded in
matrix A ∈Rq×m and vector B ∈Rq. Thus, the set of feasible portfolios is

PF = {p ∈ P|A z(p)≤ B}, (2.11)

where ≤ holds componentwise.
The optimal feasible portfolio maximizes the overall value through the integer

linear problem

max
p∈PF

V (p,w,v)=max
z(p)

{z(p) v w|A z(p)≤ B, z(p) ∈ {0,1}m}. (2.12)

Because the elicitation of exact weights and scores can be difficult, Robust
Portfolio Modeling (RPM, [42, 43]) supports the selection of portfolios in the
presence of multiple criteria and incomplete information. Specifically, the deci-
sion maker’s preference statements are converted into a set of feasible criteria

19



Methodological Foundations

weights Sw ⊆ S0
w, whereas the set of feasible scores is

Sv = {v ∈Rm×n|v ≤ v ≤ v}. (2.13)

The information set of feasible weights and scores is the Cartesian product

S = Sw ×Sv. (2.14)

For this reason, preference over interval-valued portfolios can be established
through a dominance relation. Specifically, portfolio p∗ dominates p in S if

p∗ ≻S p ⇔
{

V (p∗,w,v)≥V (p,w,v) for all (w,v) ∈ S

V (p∗,w,v)>V (p,w,v) for some (w,v) ∈ S
. (2.15)

The set of non-dominated portfolios is

PN (S)= {p ∈ PF |∄p∗ such that p∗ ≻S p}. (2.16)

To facilitate the analysis of the set of non-dominated portfolios, Liesiö et al.
[42, 43] introduce the notion of core index. The core index of a project x j is the
share of non-dominated portfolios that include the project such that

CI(x j,S)= |{p ∈ PN |x j ∈ p}|
|PN | . (2.17)

The core index values support the selection and rejection of projects. Specifically,
if the core index of a project is one, the project can be selected because it belongs
to all non-dominated portfolios; on the other hand, if the core index of a project is
zero, the project can be rejected because it is not included in any non-dominated
portfolio. Decisions concerning projects whose core index values are in the open
interval (0,1) can be taken based on the elicitation of additional information
about the decision maker’s preferences [44, 45, 46].

The selection of project portfolios can also account for exogenous uncertainties,
which may affect the project performance. For this purpose, it is necessary to
analyze the project performance across several scenarios and select the portfolio
that maximizes the expected utility [47]. Because the elicitation of scenario
probabilities can be difficult, scenario-based portfolio models capture incom-
plete information about scenario probabilities and utility functions through
set inclusion in order to identify all non-dominated portfolios [48]. The non-
dominated portfolios are (i) robust to incomplete information about scenarios
and (ii) proactive by steering the course of change towards the desired scenario
[49].
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3. Contributions of the Dissertation

Table 3.1 summarizes the contributions of the Publications in this Dissertation.
Generally, the Publications present (i) the risk model of the analyzed system
and (ii) the optimization model to select portfolios of risk mitigation actions.

The risk models are represented by various techniques, specifically Bayesian
Networks in Publication I and Publication II, Dynamic Bayesian Networks in
Publication III, Value Tree Analysis in Publication V and influence diagrams in
Publication VI. The choice of the modelling techniques mainly derives from the
information sources for the specific decision problem.

The optimization models build on Portfolio Decision Analysis to minimize
the systemic risk by deploying preventive mitigation actions to the individual
components. In particular, the optimization algorithms rely on implicit portfolio
enumeration in Publication I, Publication II and Publication III, Robust Portfolio
Modelling in Publication V and mixed integer linear programming in Publication
VI.

Each of the Publications presents a case study to show the viability of the
methodology and additional insights on the optimization results. Following the
presentation order of the Publications, the Dissertation shows applications to
the airlock system of a CANDU nuclear power plant, the advanced metering
infrastructure of an electric power system, the mixing tank mechanical system
of a concrete production industry, the underground pipe network of Espoo water
system and a gas turbine with sensor monitoring capabilities. The applications
are illustrative case studies that have been previously analyzed in literature or
real-life case studies based on statistical data and expert elicitation.

Publication I and Publication II also review the current practices to choose pre-
ventive mitigation strategies for industrial systems and cyber-physical systems,
respectively. These analyses compare the current practice with the method-
ologies presented in the Publications in order to discuss the potential and
limitations of both approaches.

The following Sections summarize the main contributions and results of each
Publication.
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Table 3.1. Summary of the Publications.

Publication Research objectives Methodology Main results

Publication I Development of an optimiza-
tion model to select the port-
folio of preventive mitiga-
tion strategies that mini-
mizes the failure risk of in-
dustrial systems.

Bayesian Networks,
Portfolio Decision Anal-
ysis, Risk Importance
Measures.

Formulation of a probabilis-
tic model of the accident
scenarios; Development of
an optimization algorithm;
Model validation on a nu-
clear safety system.

Publication II Development of an optimiza-
tion model to select the
Pareto-optimal mitigation
strategies that minimize the
risks of cyber threats.

Bayesian Networks,
Portfolio Decision Anal-
ysis, Multi-objective
optimization.

Analysis of the current
practice; Formulation of
a Bayesian framework to
model the cyber threat sce-
narios; Model validation on
an electric power system.

Publication III Development of an optimiza-
tion model to select the
Pareto-optimal portfolios of
preventive mitigation strate-
gies that minimize the fail-
ure risk of time-dependent
accident scenarios.

Dynamic Bayesian Net-
works, Portfolio Decision
Analysis, Multi-objective
optimization.

Formulation of a probabilis-
tic model that captures the
temporal evolution of compo-
nent failures; Extension of
the optimization algorithm
to multi-objective optimiza-
tion.

Publication IV Presentation of the case
study on time-dependent
accident scenarios of the
vapour cloud ignition of a
mechanical system.

Probability theory, Data
analysis.

Benchmark data for future
research; Model of time-
dependent accident scenar-
ios through conditional prob-
ability tables.

Publication V Development of a method-
ology to optimize the in-
spection strategies of large
underground infrastructure
networks, based on impre-
cise expert information.

Multi-Attribute Value
Theory, Robust Portfolio
Modelling, Cost benefit
analysis.

Definition of pipe features
that affect likelihood and im-
pact of network ruptures; Se-
lection of the optimal inspec-
tion strategy for the Espoo
water system.

Publication VI Development of a methodol-
ogy to optimize inspection
and maintenance strategies
of industrial systems with
PHM capabilities, based on
imperfect monitoring infor-
mation.

Influence diagrams,
Decision Programming,
Mixed-Integer Linear
Programming.

Definition of causal depen-
dencies between system
state and mitigation strate-
gies; Selection of the optimal
inspection and maintenance
strategies; Computation of
Value of Information.
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3.1 Publication I

The selection of mitigation strategies to limit the risk of accidents is a crucial
decision in safety management. In the framework of Probabilistic Risk Assess-
ment [50], this Publication develops a methodology to support the selection
of cost-efficient portfolios of preventive mitigation actions. This methodology
provides a systemic approach to define the portfolio of mitigation actions that
minimizes the risk of the system failure. Thus, it provides an alternative to risk
importance measures for guiding the selection of preventive mitigation actions
[51].

Bayesian Networks [52] are employed to represent the alternative scenarios
leading to system failure, by deriving the accident scenarios from traditional
Fault Trees. Unlike Fault Trees, Bayesian Networks are capable of encoding
event dependencies and multi-state failure behaviours. Nodes represent random
events of the accident scenarios whereas arcs indicate causal dependencies
among the component failures.

The optimization model considers a single objective so that the optimal strat-
egy is the one that minimizes the residual risk of system failure. The model
includes regulatory, budget and technical constraints. In addition, we devel-
oped an implicit enumeration algorithm [53] to determine the optimal portfolio
of preventive mitigation actions on the system components. By running the
optimization model for different budget levels, the analysis of the risk profile sup-
ports decisions on safety investments based on the convergence of the systemic
risk or the definition of a target risk.

Publication I demonstrates the viability of the methodology by revisiting the
Design Basis Accident that occurred in the airlock system of a CANDU nuclear
power plant in 2011 [54]. The results of the case study indicate that the systemic
risk can be reduced by 21% in comparison to the choice of mitigation actions
based on risk importance measures. The illustrative example proves that risk
importance measures do not necessarily lead to optimal decisions, because the
computation of the risk importance measures depends on the previous decisions
at each iteration. Furthermore, RIM-based decisions involves assumptions and
expert judgment, which can affect the decisions at the following iterations and
the resulting portfolio of preventive mitigation actions.

3.2 Publication II

As cyber-physical systems, electric power systems are highly vulnerable to cy-
ber threats which have led to frequent and costly impacts worldwide [55]. Among
the most relevant episodes, a cyber-attack to an electric grid caused a power
outage in Ukraine in 2015 [56]. These episodes call for the efficient allocation
of resources to minimize the risks of cyber threats. Standard approaches guide
the selection of mitigation strategies by prioritizing the cyber threat scenarios
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through a qualitative assessment [57]. These approaches consider cyber threat
scenarios separately, thus they possibly result in sub-optimal resource alloca-
tions for the system [58]. In this context, Publication II proposes a systemic
analysis based on Bayesian Networks to quantify the risks of cyber threats to
electric power systems. In the Bayesian model, nodes represent the random
events in cyber threat scenarios and arcs show the causal dependencies among
these random events. Mitigation actions reduce the likelihood of potentially
threatening events thus mitigate the risks of cyber threats, evaluated as the
expected impacts on multiple criteria, such as safety, economy and customer
service. Thus, a mitigation strategy is Pareto optimal if no other feasible strat-
egy further reduces the risks of cyber threats for any impact criterion without
increasing the risk for any other criteria. The selection of Pareto optimal strate-
gies is based on an implicit enumeration algorithm that considers budget and
technical constraints.

Publication II illustrates the methodology by analyzing the cyber threat sce-
narios concerning the advanced metering infrastructure of an electric power grid.
The model provides additional insights on risk management when performed
for different budget levels. In particular, increasing the budget level leads to
the implementation of mitigation strategies that are increasingly effective, thus
reducing the risks of cyber threats. In case of multiple Pareto optimal portfolios,
further analyses support the selection of cost-efficient solutions from the set of
Pareto optimal portfolios.

The choice of the optimal mitigation strategy relies on a systemic analysis of
multiple cyber threat scenarios. This framework can be introduced as a novel
practice for assessing the risks of cyber threats and for supporting risk-based
decisions on resource allocation to cyber-physical systems.

3.3 Publication III

The final outcome of accident scenarios can depend on the order, timing and
magnitude of the component failures. If the risk analysis does not account for the
dynamic evolution of failures, it may fail to consider severe accident scenarios
[59]. For this reason, Publication III extends the methodology in Publication I
to support the selection of cost-efficient portfolios for time-dependent accident
scenarios. Dynamic Bayesian Networks are capable of representing alternative
scenarios leading to system failure, by capturing the accident dynamics as
temporal evolution of component failures.

The optimization model in Publication I has been extended to solve multi-
objective optimization over the time stages. Specifically, the optimization model
selects all Pareto optimal portfolios of preventive mitigation actions to minimize
the residual risk of the system throughout the time stages. A feasible portfolio
is Pareto optimal if no other feasible portfolio decreases the residual risk of the
system at some time stages without increasing the risk at any other time stage.
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The implicit enumeration algorithm in Publication I has been extended to
compute the set of Pareto optimal portfolios of preventive mitigation actions. In
addition, we discuss several approaches to select the optimal solution among the
set of Pareto optimal portfolios, for instance supporting the selection/rejection of
mitigation actions through the computation of the core index [43].

Publication III demonstrates the viability of the methodology by revisiting
the accident scenario of a vapour cloud ignition occurred at Universal Form
Clamp in Bellwood (Illinois, U.S.) on 14 June 2006 [60]. The model represents
the causal dependencies of the component failures of a mixing tank mechanical
system throughout multiple time stages. The results show a sharp reduction of
the residual risk of the system by increasing the budget level. The computation
of the core index facilitates the selection of the optimal portfolio. The analysis of
the risk profile provides additional insights on risk management.

3.4 Publication IV

This article presents the probabilistic model data of the case study presented in
Publication III. Specifically, data refers to the time-dependent accident scenarios
of a mixing tank mechanical system in concrete production industry. The risk
assessment of the accident scenarios is based on the failure probabilities of the
system components.

Possible component failures can cause accidents, which evolve over multiple
time stages and can lead to system failure. Publication IV provides an example
of time-dependent probabilistic model by representing the causal dependence of
Ignition and Sprinkler activation over multiple time stages.

The consequences of these accident scenarios are analyzed by quantifying the
failure probabilities and severity of their outcomes. Finally, the data article
presents a list of preventive mitigation actions for the mixing tank mechanical
system, including illustrative costs and updated failure probabilities.

3.5 Publication V

The correct operation of large infrastructure networks depends on condition
inspections and preventive maintenance actions, which significantly affect the
network operating costs [61]. Therefore, the efficient management of these
complex networks requires the optimization of the inspection strategies.

This article presents a risk-based methodology to prioritize the inspections of a
large underground infrastructure networks by (i) performing the risk assessment
of the network components and (ii) optimizing the inspection strategies of the
critical components. The identification of the high-risk components out of the
large number of network components is driven by the definition of a portfolio
optimization model which is computationally tractable.
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Based on Value Tree Analysis [62], the risk assessment of each component
builds on the failure likelihood and severity on the network disruption. Risk
assessment of large underground networks is typically based on incomplete
information about the network components. For this reason, the quantification
of likelihood and severity relies on the imprecise information provided by expert
judgment. Thus, the dominance relation on likelihood and severity defines the
ranking of the network components based on the risk of network disruption.

The optimization model selects the cost-efficient inspection strategies that
maximize the inspection benefit, achieved through the reduction of expected
disruption costs as a result of pipe renovations. An inspection strategy is cost-
efficient if no other feasible strategy provides a higher benefit at a lower cost.
Specifically, costs and benefits are defined as interval values to consider the
variability on the component degradation and the uncertainty on renovations.

Due to the large number of critical components, the approximate algorithm
of Robust Portfolio Modelling [63] determines a subset of the Pareto optimal
inspection strategies. The optimization model accommodates imprecise informa-
tion about costs and benefits, as well as logic constraints on inspection activities.
Appropriate decision rules support the selection among the set of Pareto optimal
solutions, such as maximin or minimax regret rules.

Publication V demonstrates the viability of the methodology on the inspection
optimization of the sewerage network system of Espoo in the Finnish Capital
Region. In this case study, likelihood depends on pipe features, past events and
local circumstances, whereas severity quantifies the effect of a pipe failure on the
network and the surroundings [64]. The risk assessment shows that the critical
pipes represent 34% of the initial data set. The optimization of the inspection
strategies is performed through the RPM algorithm, where the termination
condition is the convergence of the core index of the pipes.

Publication V also inspired a novel application on the risk-based maintenance
of gas networks [65].

3.6 Publication VI

Digitalization is a fundamental driver of Industry 4.0 [66], which enables the
development of predictive maintenance for industrial systems [67]. Predictive
maintenance employs condition monitoring data recorded by Industrial Internet
of Things (IIoT) devices to monitor the health of the system. This information is
employed for Prognostics and Health Management (PHM, [68]) to perform

detection by identifying deviations from normal operating conditions in pro-
duction processes, manufacturing equipment and products;

diagnostics by classifying abnormal states;

prognostics by predicting the evolution of abnormal states up to failure.
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However, IIoT devices may provide imprecise measurements of the monitored
physical parameters, which affect the performance of the PHM algorithms by
conveying inaccurate or misleading information about the actual system state.
Thus, these failures can cause missing alarms or unnecessary system downtimes,
resulting in large financial losses.

For this reason, the definition of inspection and maintenance strategies must
consider the state of the industrial system and the state of the monitoring
sensors. The causal dependencies between the monitored system and the PHM
capabilities are represented through influence diagrams [22]. In particular, the
decisions on inspection and maintenance activities are based on the sensor data
and inspection results. Information sources for the conditional probability tables
are statistical analyses of equipment history, simulations and expert judgement.

This article presents a novel methodology to support inspection and main-
tenance decisions for industrial systems with PHM capabilities. Specifically,
the optimal strategy maximizes the utility of system operations, discounted by
the costs of inspection and maintenance activities. The solution to this multi-
stage decision problem derives from Decision Programming [69]. Specifically,
the influence diagram is first converted into a sequence of decision and chance
nodes while preserving their information dependencies. Then, this sequence is
transformed into an equivalent mixed-integer linear programming formulation
of the multi-stage decision problem. This optimization problem can include
budget and technical constraints, as well as chance constraints, for instance to
curtail the Value at Risk (VaR) and the Conditional Value at Risk (CVaR) of
system operations.

Publication VI demonstrates the viability of the methodology on the opti-
mization of inspection and maintenance strategy for a gas turbine with PHM
capabilities. The case study shows the computation of the Value of Perfect Infor-
mation (VoPI) deriving from monitoring sensors and inspections [70]. Formally,
the VoPI is the difference between the optimal expected value for two situations:
(i) when the system state is correctly observed and (ii) when the system state is
observed with possible errors. The computation of VoPI provides insights into
the value of investments in the renovation of the PHM capabilities, based on a
comparison between the VoPI and the renovation costs.
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4. Discussion

4.1 Theoretical and practical implications

The Publications of this Dissertation demonstrate the importance of systemic
analysis in risk prevention, which arises from resilient design and optimal
operations management. The comparison with traditional approaches shows a
significant reduction of systemic risks due to a comprehensive analysis of the
scenario accidents [71].

The methodologies and results of this Dissertation provide relevant contribu-
tions to academia and industry. Specifically, novel practices can be introduced in
industry for a systemic analysis of the possible hazards, both accidental and ma-
licious. As demonstrated by the Publications, this analysis leads to the selection
of optimal mitigation strategies to minimize the systemic risk. For instance, the
risk minimization can be achieved by increasing the reliability of an individual
component or by installing a system of parallel components. This choice can
make a relevant difference on the reliability, availability, maintainability and
safety of the industrial system, as well as on the company profitability.

In recent years, maintenance business is rapidly evolving due to the high avail-
ability of Industrial Internet of Things (IIoT) devices to monitor the condition
of the system components [72]. As a consequence, this monitoring information
facilitates the systemic analysis of safety-critical system to define the need for
inspection and maintenance activities. These late developments are enabling
new models for maintenance business by combining standard maintenance vis-
its and predictive maintenance [73]. For instance, the TotalCare maintenance
model by Rolls-Royce strongly relies on the monitoring information of the engine
performance through Engine Health Monitoring [74]. In addition, companies are
responsible for the reliability, availability and safety of their assets for the entire
life cycle. For this reason, operational excellence drives company profitability by
optimizing maintenance decisions based on systemic failure risks.

In this framework, component-based analyses (such as Risk Importance Mea-
sures) are not excluded from the risk analysis of the system, instead they are
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complementary to systemic approaches. This synergy provides a comprehen-
sive analysis, enhancing the risk management through clear representations
of the possible accident/threat scenarios and detailed measures on the risk of
the individual components. The analysis of the accident/threat scenarios makes
also possible to evaluate the Value at Risk (VaR) and Conditional Value at Risk
(CVaR) to improve the risk management of the system [75].

4.2 Prospective research directions

The models of this Dissertation show some limitations that need to be ad-
dressed in future research, for this reason here I suggest some prospective
research directions. In particular, risk models need to account for the impre-
cision and uncertainty stemming from incomplete datasets or the qualitative
statements provided by the experts. For example, the expert may provide im-
precise values about costs and impacts of mitigation actions. Such imprecision
and uncertainty must be properly represented and propagated throughout the
optimization model to obtain robust solutions. Credal networks can be employed
to accommodate the imprecision through intervals of lower and upper bounds on
the occurrence probabilities [76]. Then, the optimization would provide solutions
that are robust to variations in the model parameters.

Furthermore, methods to facilitate the elicitation of parameters need to be
developed so that experts need not to answer many and/or complex questions on
the model parameters, which could introduce biases as well. A possible solution
to limit the need for expert judgement is the extension of the Bayesian models to
continuous and discrete variables, which is feasible under specific conditions [77].
Another possible solution is to introduce machine learning models by developing
software that implements the scientific principle: (i) formulate a hypothesis
(choose a model) about the failure events, (ii) collect data to test the hypothesis
(validate the model) and (iii) refine the hypothesis (iterate) [78].

An additional challenge for future research in portfolio optimization is the
improvement of the computational viability of the optimization algorithms. The
algorithms presented in this Dissertation are computationally efficient, thus
they can solve meaningful problems for real-life industrial systems. However,
they may require a long computational time for a large number of mitigation
actions due to the curse of dimensionality. Decomposition of large problems into
a hierarchic pyramid of sub-problems has been proposed in the literature to
optimize large problems for engineering systems [79]. Furthermore, the recent
advances in quantum computing prove that certain computational tasks can be
executed exponentially faster on a quantum processor than on a classical proces-
sor. By relying on quantum algorithms, the methodologies in this Dissertation
may be capable in future to solve portfolio optimization problems in an exponen-
tially large computational space [80]. The dramatic increase in computational
speed is due to the quality of superposition of qubits (quantum bits), which they
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do not necessarily represent binary bits but they can take all intermediary val-
ues in the interval [0,1]. Although the final readout of each qubit is 0 or 1, this
quality of superposition allows each qubit to perform more than one calculation
at a time, reducing the computational time of the optimization algorithm [81].

A relevant application area for risk analysis is cybersecurity, discussed in
Publication II. Unlike accident scenarios in industry, cyber threat scenarios do
not only include random events, but also intentional attacks. For this reason,
the risk model needs to consider the objectives of the threat agent(s) in order
to provide one-sided decision support [82]. In this regard, Adversarial Risk
Analysis supports decisions for risks in which probabilities and outcomes depend
on the decisions of other self-interested agents [83].

Future research on this topic also includes the comparison of the criticality
of cyber threat scenarios. Criticality could be quantified through a topological
analysis of the network to quantify the in-coming and out-coming nodes or
ranking the scenarios based on risk measures of the cyber threats, meaning the
ratio between the current expected impact and the expected impact when the
occurrence probability of that cyber threat scenario is null.

Finally, research should properly address cyber resilience, meaning the ability
to continuously deliver the service despite adverse cyber events [84]. In this re-
gard, Dynamic Bayesian Networks are capable to represent the time-dependent
evolution of the outcome of cyber attacks in order to (i) compare the resilience
of different systems and (ii) optimize the capacity of energy storage for electric
power systems [85]. For this purpose, it is necessary to introduce temporal
variables to model the system recovery over time stages: the analysis of cyber
threat scenarios requires the ability to anticipate not only an unprecedented
event but also the ripple effects that it could cause [86].
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a b s t r a c t 

In the framework of Probabilistic Risk Assessment (PRA), we develop a method to support the selection of cost- 

effective portfolios of safety measures. This method provides a systemic approach to determining the optimal 

portfolio of safety measures that minimizes the risk of the system and thus provides an alternative to using risk 

importance measures for guiding the selection of safety measures. We represent combinations of events leading to 

system failure with Bayesian Belief Networks (BBNs) which can be derived from traditional Fault Trees (FTs) and 

are capable of encoding event dependencies and multi-state failure behaviours. We also develop a computationally 

efficient enumeration algorithm to identify which combinations (portfolios) of safety measures minimize the risk 

of failure at different costs of implementing the safety measures. The method is illustrated by revisiting an earlier 

case study concerning the airlock system of a CANDU Nuclear Power Plant (NPP). The comparison of results 

with those of choosing safety measures based on risk importance measures shows that our approach leads to 

considerably lower residual risk at different cost levels. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the nuclear industry, Probabilistic Risk Assessment (PRA) is used 
for identifying the risk importance of events or components [1] . For 
quantifying importance, Risk Importance Measures (RIMs), such as Risk 
Reduction Worth (RRW), Fussel–Vesely (FV), Risk Achievement Worth 
(RAW), are used to rank the component failure events, whereafter the 
available budget for system safety improvements [2,3] is allocated based 
on this ranking. This leads to an iterative procedure in which the most 
risky components are identified sequentially and safety measures are 
then applied to reduce their failure probabilities [1] . The procedure is 
repeated until the budget for safety measures is depleted or the risk 
becomes acceptable with respect to a given predefined criterion [4] . 

However, the resulting portfolio of safety measures may not be opti- 
mal, because the safety measures for the identified risk-important com- 
ponents are chosen one at a time, while systemic cost and feasibility 
constraints are considered only later. To address this issue, Zio and Pod- 
ofillini [5] propose an approach based on genetic algorithms to find op- 
timal inspection periods of system components with respect to (i) cost 
reduction, (ii) increase in system reliability and (iii) reduction of the mu- 
tual differences among the importance values of the components. Even 

∗ Corresponding author at: Department of Mathematics and Systems Analysis, Aalto University, Finland. 

E-mail address: alessandro.mancuso@aalto.fi (A. Mancuso). 

so, this approach does not ensure that the portfolios of safety measures 
are cost-efficient in terms of reducing the risk of the system most. 

Building on the principles of cost-benefit analysis, Vesely [6] devel- 
ops a method to reallocate resources so that the relative cost expended 
on an activity or requirement is equal to its relative risk importance. This 
approach evaluates single activities and consequently does not analyse 
all the combinations (portfolios) of events leading to system failure. As 
a result, the identified strategies can be suboptimal. 

In the framework of Portfolio Decision Analysis (PDA, [7] ), Toppila 
and Salo [8] propose a portfolio optimization approach in which coher- 
ent Fault Trees [9] are used to model the system reliability and to solve 
the redundancy allocation problem [10] , accounting also for the uncer- 
tainties in the occurrence probabilities of the basic events. However, this 
approach focuses mainly on modelling how the risk reduction portfolios 
impact the probability of system failure in order to determine when op- 
timal portfolios lead to biggest improvements in system reliability at 
different cost levels. 

As pointed out also by Toppila and Salo [8] , using FTs for risk 
analysis has some limitations. Indeed, in spite of the clear visual 
representation of the analysed combinations of events leading to 
system failure [11,12] , they are not suitable for describing multi-state 
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Nomenclature 

V set of nodes 
N number of nodes 
V 

L ⊂V set of leaf nodes 
V 

D ⊂V set of dependent nodes 
V 

T ⊂V set of target nodes 
V 

A ⊆V set of nodes at which safety measures can be applied 
E set of arcs 
𝑉 𝑖 − set of predecessors of node i ∈ V 

d i depth of node i ∈ V 

𝔸 

𝑖 set of possible safety measures at node i ∈ V 

A 

𝑧 𝑖 𝑎 ∈ {0 , 1} binary decision variable for indicating safety measure 
𝑎 ∈ 𝔸 

𝑖 

X 

𝑖 random variable representing the uncertainty in the 
state of the event at node i ∈ V 

𝕊 𝑖 set of states of the event at node i ∈ V 

ℙ 𝑋 𝑖 ( 𝑠 ) probability of the event that node i ∈ V 

L is in state 
𝑠 ∈ 𝕊 𝑖 

ℙ 𝑋 𝑖 𝑎 
( 𝑠 ) probability of the event that node i ∈ V 

L is in state 

𝑠 ∈ 𝕊 𝑖 given that the safety measure 𝑎 ∈ 𝔸 

𝑖 is applied 
ℚ 𝑋 𝑖 ( 𝑠 ) total probability of the event that node i ∈ V is in state 

𝑠 ∈ 𝕊 𝑖 
u t ( s ) disutility function of state 𝑠 ∈ 𝕊 𝑡 at node t ∈ V 

𝕌 

𝑡 ( 𝑠 ) expected disutility of state 𝑠 ∈ 𝕊 𝑡 at node t ∈ V 

R a ( s ) Risk Reduction Rate of safety measure 𝑎 ∈ 𝔸 

𝑖 in state 
𝑠 ∈ 𝕊 𝑖 

c a cost of safety measure 𝑎 ∈ 𝔸 

𝑖 

Λ time periods 
r annualized discount rate 

component behaviours (e.g., “No leakage ”, “Minor leakage ” and “Major 
leakage ” for a component leakage failure, [13,14] ). 

In this paper, we propose a PRA-based decision support methodol- 
ogy to identify the optimal portfolio of safety measures that minimizes 
the residual system risk while accounting for feasibility and budget con- 
straints. The methodology represents the combinations of events leading 
to system failure as BBNs [15,16] , which overcome the limitations of FTs 
by offering the possibility of modelling multi-state events and extending 
the concepts of AND/OR gates. 

The approach can be readily deployed by mapping FTs into BBNs 
[17] in which the BBN nodes represent events of the FT and the arcs 
represent causal dependencies among them. The occurrence probabil- 
ities of the basic events, and the conditional probability tables of the 
intermediate events and top event, can be either inferred by statistical 
analysis or elicited from experts, depending on the available knowledge, 
information and data. 

The rest of the paper is structured as follows. Section 2 presents the 
methodology, i.e., the BBN representation, the optimization formulation 
and its implementation as an enumeration algorithm. Section 3 revisits 
the case study concerning the airlock system of a CANDU NPP [18] and 
gives a comparison with the selection of safety measures based on RIMs. 
Section 4 discusses the potential of the proposed method further. Fi- 
nally, Section 5 concludes the paper and outlines extensions for future 
research. 

2. Problem formulation 

We assume that the FT has already been converted into the corre- 
sponding BBN, for instance by the method proposed by Khakzad et al. 
[17] . Formally, a BBN is a directed acyclic graph consisting of: 

• Nodes 𝑉 = {1 , … , 𝑁} , shown as circles, represent the FT random 

events whose combinations can lead to system failure. More specifi- 
cally, when the FT is converted into the BBN, some FT events can be 

merged to the same node; in general, there is no one-to-one corre- 
spondence between FT events and BBN nodes [17] . The target nodes 
for the risk analysis are indicated by the set V 

T ⊂V and are shown 
as rounded squares. The set V 

T includes the node associated with 
the top event of the FT [9] , but it can contain other nodes which 
represent possible failures that deserve attention in risk analysis. 

• Directed arcs E ⊆{( i, j )| i, j ∈ V , i ≠ j } indicate conditional dependen- 
cies among nodes. Specifically, the arc ( j, i ) ∈ E which connects node 
j ∈ V to node i ∈ V indicates that the event at node i is conditionally 
dependent on the event at node j . 

The immediate follower nodes of i ∈ V form the set 𝑉 𝑖 + = { 𝑗 |( 𝑖, 𝑗 ) ∈
𝐸} , whereas its immediate predecessor nodes are in the set 𝑉 𝑖 − = 

{ 𝑗 |( 𝑗 , 𝑖 ) ∈ 𝐸} . Thus, all nodes can be partitioned into the set of leaf 

nodes 𝑉 𝐿 = { 𝑖 ∈ 𝑉 |𝑉 𝑖 − = ∅} and its complement set of dependent nodes 

𝑉 𝐷 = 𝑉 ∖ 𝑉 𝐿 = { 𝑖 ∈ 𝑉 |𝑉 𝑖 − ≠ ∅} . 
A path is a sequence of nodes ( 𝑖 1 , 𝑖 2 , … , 𝑖 𝜂) , 𝜂 > 1 such that ( 𝑖 𝑗 , 𝑖 𝑗+1 ) ∈

𝐸, 𝑗 < 𝜂. Because the BBN is acyclic, there is no path ( 𝑖 1 , 𝑖 2 , … , 𝑖 𝜂) , 𝜂 > 1 
such that ( 𝑖 𝑗 , 𝑖 𝑗+1 ) ∈ 𝐸, 𝑗 < 𝜂 and 𝑖 1 = 𝑖 𝜂 . 

For every node i ∈ V , its depth in the network can be calculated 
recursively by 

𝑑 𝑖 = 

{ 

0 , 𝑉 𝑖 − = ∅
1 + 𝑚𝑎𝑥 𝑗∈𝑉 𝑖 − 𝑑 

𝑗 , 𝑉 𝑖 − ≠ ∅. (1) 

In our methodology, it is possible to apply safety measures at a set 
of action nodes V 

A ⊆V at which the probability distribution for random 

events can be modified. Specifically, at each action node, there is a deci- 
sion on which of a finite number of alternative safety measure(s) will be 
applied, if any. The nodes V 

A are indicated by a square over the circle. 
Formally, at node i ∈ V 

A , the set of alternative safety measures is 
𝔸 

𝑖 = {1 , … , |𝔸 

𝑖 |} , where | · | is the cardinality of the set. In general, the 
safety measures differ in terms of their impact on risk reduction and cost 
of implementation. 

Specifically, the choice on the safety measure at node i ∈ V 

A is indi- 
cated by the binary decision variable 𝑧 𝑖 𝑎 , which is 1 if 𝑎 ∈ 𝔸 

𝑖 is applied 
and 0 if not. Thus, the portfolio of safety measures 𝐴 ⊆ 𝖷 𝑖 ∈𝑉 𝐴 𝔸 

𝑖 is de- 
fined by the binary vectors z 𝑖 = [ 𝑧 𝑖 𝑎 ] , ∀𝑎 ∈ 𝔸 

𝑖 , where 𝖷 𝑖 ∈𝑉 𝐴 indicates the 
Cartesian product of sets 𝔸 

𝑖 . There are no safety measures available for 
nodes i ∈ V \ V 

A : this is modelled by 𝔸 

𝑖 = ∅ so that |𝔸 

𝑖 | = 0 . 
Fig. 2 illustrates an example of a BBN, where 𝑉 𝐿 = {1 , 2 , 3 , 4 , 

5 , 6 , 7 , 8} , 𝑉 𝐷 = {9 , 10 , 11 , 12 , 13 , 14} , 𝑉 𝑇 = 14 and safety measures can 
be applied at nodes 𝑖 ∈ 𝑉 𝐴 = {1 , 2 , 3 , 4 , 5 , 6, 7, 8, 13}. For instance, if 
there are three possible safety measures at nodes i ∈ V 

A , then one pos- 
sible portfolio of safety measures is 𝐴 = { 𝑎 1 2 , 𝑎 

2 
1 , 𝑎 

3 
3 , 𝑎 

4 
1 , 𝑎 

5 
3 , 𝑎 

6 
2 , 𝑎 

7 
1 , 𝑎 

8 
2 , 𝑎 

13 
3 } , 

where the superscript and the subscript indicate the node and the safety 
measure index, respectively. Thus, the portfolio A is uniquely defined 
by the binary vectors 

𝐳 𝑖 = [1 , 0 , 0] , 𝑖 ∈ {2 , 4 , 7} 
𝐳 𝑖 = [0 , 1 , 0] , 𝑖 ∈ {1 , 6 , 8} 
𝐳 𝑖 = [0 , 0 , 1] , 𝑖 ∈ {3 , 5 , 13} . 

We define the binary vector z as the concatenation of vectors z 𝑖 , ∀𝑖 ∈
𝑉 𝐴 such that 

𝑧 𝑘 = 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝑧 𝑖 ∗ 𝑘 , 𝑖 ∗ = min { 𝑗|𝑗 ∈ 𝑉 𝐴 } , 𝑘 = 1 , 2 , … , |𝔸 

𝑖 ∗ |
𝑧 𝑗 

∗ 

𝑘 − 𝑞 , 𝑘 = |𝔸 

𝑖 ∗ | + 1 , … , 
∑
𝑖 ∈𝑉 𝐴 |𝔸 

𝑖 |, 
(2) 

where 

𝑗 ∗ = min 

{ 

𝑗 ∈ 𝑉 𝐴 
|||||

𝑗 ∑
𝑖 =1 

|𝔸 

𝑖 | ≥ 𝑘 

} 

, (3) 

𝑞 = 

𝑗 ∗ −1 ∑
𝑖 =1 

|𝔸 

𝑖 |. (4) 
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Fig. 1. Correspondence between FT (left) and BBN (right). 

Table 1 

Conditional probability tables for FT (left) and BBN (right). 

ℙ 𝑋 𝐶 C 𝐶 ℙ 𝑋 𝐶 C 𝐶 

A B 1 0 A B 0.98 0.02 

𝐵 0 1 𝐵 0.03 0.97 

𝐴 B 0 1 𝐴 B 0.03 0.97 

𝐵 0 1 𝐵 0.01 0.99 

Thus, the relation between z and the portfolio A is a bijection. In the 
previous example, the vector z for the portfolio A is 

𝐳 = [0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1] . 

The size of the binary vector z is 𝑚 = 

∑
𝑖 ∈𝑉 𝐴 |𝔸 

𝑖 |. 

2.1. Characterization of conditional probability tables 

The conditional probability distributions extend the concept of the 
AND/OR gates in the FT. This gives more flexibility than FTs for mod- 
elling how combinations of events can lead to system failure. For exam- 
ple, Fig. 1 shows a generic FT characterized by an AND gate and its cor- 
responding BBN obtained with the methodology proposed by Khakzad 
et al. [17] . 

The rules provided by the AND gate in Fig. 1 are reported on the left 
side in Table 1 . This information leads to the conditional probability ta- 
ble of the BBN. Specifically, the right side in Table 1 relies on the BBN 

in Fig. 1 reflecting the logic of the AND gate. However, in contrast to 
the binary logic of the FT, the BBN makes it possible to specify the prob- 
ability distribution. For instance, in the right side in Table 1 the event C 

occurs with probability 98% if the events A and B occur simultaneously, 
whereas the probability is reduced to 3% if either A or B does not occur 
and to 1% if none of them occurs. 

Conditional probabilities can be derived from expert judgements and 
statistical analyses. When the conditional probability tables are elicited 
from experts, systematic approaches can be adopted to reduce the num- 
ber of statements needed. For instance, the noisy-OR model [19,20] or 
the 𝛽-factor model [21,22] can be used for this purpose. 

2.2. Optimization model 

The impact of a safety measure on what combination of events causes 
system failure depends on the severity of the failure and how effective 
the safety measure is in counteracting this combination. 

Let X 

𝑖 be the random variable representing the uncertainty in the 
state of event at node i ∈ V . The realization s of X 

𝑖 belongs to the set of 
states 𝕊 𝑖 = {0 , … , |𝕊 𝑖 |} , where state 𝑠 = 0 indicates that the event at node 
i ∈ V does not occur whereas states s > 0 refer to events of increasing 
magnitude of failure and thus increasing severity of consequences [9] . 
For example, in Fig. 2 the different states of node “Pipe leakage ” ( 𝑖 = 3 ) 
are: “No pipe leakage ” ( 𝑠 = 0 ), “Minor pipe leakage ” ( 𝑠 = 1 ), “Major pipe 
leakage ” ( 𝑠 = 2 ). 

Uncertainty about the realization of X 

𝑖 of the event at node i ∈ V 

L 

is modelled through the probability mass distribution ℙ 𝑋 𝑖 ( 𝑠 ) = 𝑝 ({ X 

𝑖 = 

𝑠 }) ≥ 0 such that 
∑
𝑠 ∈𝕊 𝑖 

ℙ 𝑋 𝑖 ( 𝑠 ) = 1 , ∀𝑖 ∈ 𝑉 𝐿 . (5) 

At leaf nodes i ∈ V 

L ∩V 

A where safety measures can be applied, ap- 
plying a safety measure 𝑎 ∈ 𝔸 

𝑖 modifies the probability distribution by 
turning ℙ 𝑋 𝑖 ( 𝑠 ) into ℙ 𝑋 𝑖 𝑎 

( 𝑠 ) , where 

∑
𝑠 ∈𝕊 𝑖 

ℙ 𝑋 𝑖 𝑎 
( 𝑠 ) = 1 , ∀𝑎 ∈ 𝔸 

𝑖 . (6) 

Without losing generality, we can assume that the safety measures at 
node i ∈ V 

A are mutually exclusive. This implies that at most one safety 
measure can be selected from set 𝔸 

𝑖 so that the following inequality 
holds 
∑
𝑎 ∈𝔸 𝑖 

𝑧 𝑖 𝑎 ≤ 1 , ∀𝑖 ∈ 𝑉 𝐴 . (7) 

Thus, the probability that the event at node i ∈ V 

L ∩V 

A is in state 𝑠 ∈ 𝕊 𝑖 
is 

ℚ 𝑋 𝑖 ( 𝑠 ) = 

∑
𝑎 ∈𝔸 𝑖 

𝑧 𝑖 𝑎 ℙ 𝑋 𝑖 𝑎 
( 𝑠 ) . (8) 

At every dependent node i ∈ V 

D , the probability ℙ 𝑋 𝑖 ( 𝑠 ) is conditional on 
the states of the random variables at its predecessor nodes. To model this 
relationship, we define the random variable X 

𝑖 
− as the |𝑉 𝑖 − |-dimensional 

vector composed of the random variables X 

𝑗 , ∀𝑗 ∈ 𝑉 𝑖 − . 
Let 𝕊 𝑖 − be the set of the Cartesian product of all the sets of states 

𝕊 𝑗 , 𝑗 ∈ 𝑉 𝑗 − . Then, a possible realization of X 

𝑖 
− is indicated by the vec- 

tor x 𝑖 ∈ 𝕊 𝑖 − , whose j th entry 𝑥 𝑖 𝑗 represents the realization of the corre- 

sponding random variable X 

𝑗 , 𝑗 ∈ 𝑉 𝑖 − . Then, the conditional probability 
of state 𝑠 ∈ 𝕊 𝑖 of the event at node i ∈ V 

D ∩V 

A , given x 𝑖 ∈ 𝕊 𝑖 − , is 

ℚ 𝑋 𝑖 |𝐱 𝑖 ( 𝑠 ) = 

∑
𝑎 ∈𝔸 𝑖 

𝑧 𝑖 𝑎 ℙ 𝑋 𝑖 𝑎 |𝐱 𝑖 ( 𝑠 ) (9) 

where ℙ 𝑋 𝑖 𝑎 |𝐱 𝑖 ( 𝑠 ) is the conditional probability of state 𝑠 ∈ 𝕊 𝑖 of the event 

at node i ∈ V 

D ∩V 

A , given the realization x 𝑖 of its predecessors and that 
the safety measure 𝑎 ∈ 𝔸 

𝑖 is applied to mitigate the event at node i ∈
V 

D ∩V 

A . 
The total probability of state 𝑠 ∈ 𝕊 𝑖 of the event at node i ∈ V 

D ∩V 

A 

can now be expressed recursively as 

ℚ 𝑋 𝑖 ( 𝑠 ) = 

∑
x 𝑖 ∈𝕊 𝑖 − 

[ ∑
𝑎 ∈𝔸 𝑖 

𝑧 𝑖 𝑎 ℙ 𝑋 𝑖 𝑎 |𝐱 𝑖 ( 𝑠 ) 
] ∏
𝑗∈𝑉 𝑖 − 

ℚ 𝑋 𝑗 ( 𝑥 𝑖 𝑗 ) , (10) 

where the first summation is taken over all possible realizations x 𝑖 ∈ 𝕊 𝑖 − . 
Here the total probability ℚ 𝑋 𝑖 ( 𝑠 ) is a multiplicative function of the safety 
measures that have been applied along the paths leading from the leaf 
nodes to i ∈ V 

D . Note that for leaf nodes, the term ℚ 𝑋 𝑗 ( 𝑥 𝑖 𝑗 ) on the right 
side is obtained from (8) . 

As mentioned in Section 1 , the objective of the analysis is to evaluate 
the risk at the target nodes t ∈ V 

T for different impacts of the portfolio 
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Fig. 2. BBN for the airlock system failure. 

of safety measures. The risk at node t ∈ V 

T is not acceptable if the prob- 
ability ℙ 𝑋 𝑡 ( 𝑠 ) is greater than the accepted threshold for at least one state 
𝑠 ∈ {1 , … , 𝕊 𝑡 } . We assume that the larger the value of the realized state 
X 

𝑖 = 𝑠, the larger the magnitude of failure, then the smaller the proba- 
bility threshold. 

The expected disutility assigned to the target node t ∈ V 

T given the 
portfolio z is 

𝕌 

𝑡 ( 𝐳) = 

∑
𝑠 ∈𝕊 𝑡 

ℚ 𝑋 𝑡 ( 𝑠 ) 𝑢 𝑡 ( 𝑠 ) (11) 

where u t ( · ) is the disutility function for quantifying the severity of state 
𝑠 ∈ 𝕊 𝑡 [24] . Namely, 𝑢 𝑡 ( 𝑠 ) = 0 if state 𝑠 ∈ 𝕊 𝑡 refers to an event of neg- 
ligible consequences, whereas 𝑢 𝑡 ( |𝑆 𝑡 |) = 100 . If |𝕊 𝑡 | > 2 , then the other 
intermediate states 𝑠 ∈ 𝕊 𝑡 ∖{0 , |𝑆 𝑡 |} can be assigned disutilities u t ( s ) ∈
]0, 100[ by expert judgements, with reference to the enclosing points 
u t (0) and u t (| S t |). 

Estimates for 𝑢 𝑡 ( 𝑠 ) , ∀𝑠 ∈ 𝕊 𝑡 can be elicited through trade-off weigh- 
ing approaches SMART [23] , SWING [24] or SMARTS [25] by treating 
the states 𝑠 ∈ 𝕊 𝑡 as alternatives. If the target node t ∈ V 

T represents a bi- 
nary event, the goal is to minimize the total probability ℚ 𝑋 𝑡 (1) by setting 
𝑢 𝑡 (0) = 0 and 𝑢 𝑡 (1) = 100 . 

Finally, different safety measures 𝑎 ∈ 𝔸 

𝑖 have different costs c a : the 
optimization model accounts for the overall cost of the portfolio, which 
must not exceed the available budget B . 

Let 𝑚 = 

∑
𝑖 ∈𝑉 𝐴 |𝔸 

𝑖 | be the size of the binary vector z , the selection 
of safety measures for a single target node t ∈ V 

T is formalized as the 
following portfolio optimization problem 

𝐳 ∗ = arg min 
𝐳⊆{0 , 1} 𝑚 

𝕌 

𝑡 ( 𝐳) (12) 

ℚ 𝑋 𝑖 ( 𝑠 ) = 

∑
𝑎 ∈𝔸 𝑖 

𝑧 𝑖 𝑎 ℙ 𝑋 𝑖 𝑎 
( 𝑠 ) ∀𝑖 ∈ 𝑉 𝐿 ∩ 𝑉 𝐴 (13) 

ℚ 𝑋 𝑖 ( 𝑠 ) = 

∑
x 𝑖 − ∈𝕊 𝑖 − 

[ ∑
𝑎 ∈𝔸 𝑖 

𝑧 𝑖 𝑎 ℙ 𝑋 𝑖 𝑎 |𝐱 𝑖 ( 𝑠 ) 
] ∏
𝑗∈𝑉 𝑖 − 

ℚ 𝑋 𝑗 ( 𝑥 𝑖 𝑗 ) ∀𝑖 ∈ 𝑉 𝐷 ∩ 𝑉 𝐴 (14) 

subject to the constraints 
∑
𝑎 ∈𝔸 𝑖 

𝑧 𝑖 𝑎 ≤ 1 , ∀𝑖 ∈ 𝑉 𝐴 (15) 

∑
𝑖 ∈𝑉 𝐴 

∑
𝑎 ∈𝔸 𝑖 

𝑧 𝑖 𝑎 𝑐 𝑎 ≤ 𝐵 (16) 

z 𝑖 ∈ {0 , 1} |𝔸 𝑖 | ∀𝑖 ∈ 𝑉 𝐴 . (17) 

The calculation of the total probabilities ℚ 𝑋 𝑖 ( 𝑠 ) starts from the leaf 
nodes i ∈ V 

L and proceeds to those at the dependent nodes i ∈ V 

D by 
increasing the node depth d i in (1) . This is necessary because the cal- 
culation of the total probability ℚ 𝑋 𝑖 ( 𝑠 ) requires the total probabilities 
ℚ 𝑋 𝑗 ( 𝑠 ) of all the predecessors 𝑗 ∈ 𝑉 𝑖 − . 

It is possible to introduce additional constraints which specify re- 
quirements of the system. For instance, with reference to Fig. 2 , if the 
safety measures for reducing the probability of “Gearbox failure ” ( 𝑖 = 6 ) 
and “Exhaust pipe failure ” ( 𝑖 = 7 ) are mutually exclusive, the following 
constraint holds 
∑
𝑎 ∈𝔸 6 

𝑧 6 𝑎 + 

∑
𝑎 ∈𝔸 7 

𝑧 7 𝑎 ≤ 1 . (18) 

On the other hand, if at least one safety measure at nodes 𝑖 = 6 and 
𝑖 = 7 must be applied, the corresponding constraint is 
∑
𝑎 ∈𝔸 6 

𝑧 6 𝑎 + 

∑
𝑎 ∈𝔸 7 

𝑧 7 𝑎 ≥ 1 . (19) 

23 



A. Mancuso et al. Reliability Engineering and System Safety 167 (2017) 20–29 

The same safety measure can impact different nodes or several safety 
measures must be applied simultaneously. If a safety measure a impacts 
two different nodes i, j ∈ V 

A , then this measure must be included in both 
sets 𝔸 

𝑖 and 𝔸 

𝑗 , making it necessary to introduce the constraint 

𝑧 𝑖 𝑎 = 𝑧 𝑗 𝑎 . (20) 

Furthermore, to avoid the double-counting of the cost c a of such safety 
measure a , this cost can be fully allocated to the safety measure 𝑎 ∈ 𝔸 

𝑖 

and set the cost of the safety measure 𝑎 ∈ 𝔸 

𝑗 to zero. 
If two different safety measures 𝑎 ∈ 𝔸 

𝑖 and 𝑎 ′ ∈ 𝔸 

𝑗 must be applied 
simultaneously (i.e., safety measure 𝑎 ∈ 𝔸 

𝑖 can be applied if and only if 
safety measure 𝑎 ′ ∈ 𝔸 

𝑗 is applied too), the corresponding constraint is 

𝑧 𝑖 𝑎 = 𝑧 𝑗 𝑎 ′ . (21) 

Such additional constraints limit the set of feasible solutions and, thus, 
affect the resulting optimal portfolio of safety measures. 

2.3. Optimization algorithm 

For identifying the optimal portfolio of safety measures, we have de- 
veloped the implicit enumeration algorithm in Appendix A , based on 
Liesiö [26] . While the algorithm is computationally viable, its computa- 
tional time depends on the number of nodes of the BBN and the amount 
of alternative safety measures per node. 

The algorithm identifies the optimal portfolio z ∗ by first discarding 
the non-feasible solutions and, then, by evaluating the ones minimizing 
the expected disutility 𝕌 

𝑡 of the single target node t ∈ V 

T . Although the 
detailed algorithm is presented for the single-objective problem ( |𝑉 𝑇 | = 

1 ), we note that it can be readily extended to multiple target nodes (| V 

T | 
> 1). To this aim, we propose two different approaches. 

First, according to the traditional risk analysis approach, the experts 
can introduce additional constraints so that the total probability ℚ 

𝑡 ( 𝑠 ) 
of states 𝑠 ∈ 𝕊 𝑡 ∖0 must not exceed the acceptable threshold 𝜖t ( s ) such 
that 

ℚ 

𝑡 ( 𝑠 ) ≤ 𝜖𝑡 ( 𝑠 ) , ∀𝑡 ∈ 𝑉 𝑇 . (22) 

The values of 𝜖t ( s ) are usually provided by regulatory committees for 
NPP applications, for instance the United States Nuclear Regulatory 
Commission. The constraints must be fulfilled so that the risk of each tar- 
get node is acceptable. However, it is also possible that the constraints 
limit the set of feasible solutions so much that no portfolios are feasi- 
ble. By applying this approach, the problem would still be modelled as 
a single-objective optimization. 

On the other hand, a multi-objective optimization problem would 
account for the expected disutility 𝕌 

𝑡 of all the target nodes t ∈ V 

T . This 
way, the optimal portfolio of safety measures would be selected among 
the Pareto optimal frontier, i.e. the set of non dominated portfolios of 
safety measures [27] . Specifically, let t 1 ∈ V 

T and t 2 ∈ V 

T be two tar- 
get nodes whose expected disutilities are 𝕌 

𝑡 1 and 𝕌 

𝑡 2 . In risk analysis 
there is often no explicit preference structure between the nodes. In this 
case, it is helpful to identify the entire Pareto optimal frontier, whose 
dominance condition between two portfolios z ′ and z ′′ is defined by 

𝐳 ′ ≻ 𝐳 ′′ ⇔
{ 

𝕌 

𝑡 1 ( 𝐳 ′) ≤ 𝕌 

𝑡 1 ( 𝐳 ′′) ∧ 𝕌 

𝑡 2 ( 𝐳 ′) < 𝕌 

𝑡 2 ( 𝐳 ′′) 
𝕌 

𝑡 1 ( 𝐳 ′) < 𝕌 

𝑡 1 ( 𝐳 ′′) ∧ 𝕌 

𝑡 2 ( 𝐳 ′) ≤ 𝕌 

𝑡 2 ( 𝐳 ′′) 
, (23) 

where 𝕌 

𝑡 ( 𝐳) represents the expected disutility at node t ∈ V given by the 
portfolio z . 

3. CANDU NPP airlock system case study 

We illustrate our methodology by revisiting the Design Basis Acci- 
dent (DBA) that occurred in the airlock system of a CANDU NPP in 2011 
[18,28] . The Airlock System (AS) is a safety system which keeps the 
pressure of the inner side of the reactor vault lower than the outer side. 
This pressure difference prevents the dispersion of contaminants from 

the reactor bay in case of failure. Specifically, the AS consists of a vessel 

Table 2 

Parameters of the safety measures. 

Node Index Safety measure c a [k€ ] R a (1) R a (2) 

Cracked seals 𝑎 1 1 Inspection plan 60 10 −3 –

𝑎 1 2 Duplicating 80 10 −4 –

Valve failure 𝑎 2 1 Calibration test 30 10 −1 –

𝑎 2 2 Sensor 40 10 −2 –

𝑎 2 3 Joined actions 60 10 −4 –

Pipe leakage 𝑎 3 1 Outer inspection 30 10 −1 10 −1 . 5 
𝑎 3 2 Inner and outer inspection 45 10 −2 10 −2 . 5 
𝑎 3 3 Protection coating 70 10 −3 10 −3 

Tank failure 𝑎 4 1 Improving reliability 80 10 −4 –

Empty tank 𝑎 5 1 Level sensor 60 10 −3 –

Gearbox failure 𝑎 6 1 Periodic test 40 10 −2 –

𝑎 6 2 Condition monitoring 100 10 −5 –

Exhaust pipe failure 𝑎 7 1 Inspection plan 40 10 −2 –

Door failure 𝑎 8 1 Periodic test 60 10 −4 –

Pressure equalizer failure 𝑎 13 1 Synergy − 30 1 –

in the containment wall of the reactor vault and its doors allow the op- 
erators to access the vault for inspection. One door opens towards the 
inside, the other towards the outside. 

At least one airlock door must be closed to guarantee the negative 
pressure drop. Each door is closed by a latch and by seals which are 
inflated by the air system. In case of a failure, the inflation of the seals 
must be switched to the back-up air supply tank. A pressure equalizer 
system, which can be activated only once the door latch is detected in 
closed position, is designed to equalize the pressure between the reactor 
bay and the service side and, therefore, to control the air flow between 
these two areas. 

The target node represents the event that the single door cannot be 
tightened so that the airlock system fails to maintain the pressure bound- 
ary ( Appendix A.2 , [18] ). For simplicity, we do not replicate the same 
FT for the second door of the airlock system. 

Possible causes for the occurrence of this target node are: 

• Failure of the pressure equalizer system: This event is due to the 
combination of the gear box failure (which does not allow vents to 
open and close on-demand) and the failure to close the exhaust pipe 
(which prevents the equalizer from reaching the desired pressure 
level). 

• Door failure: The door fails to close because the latches are not 
locked. 

• Sealing system failure: This event can be caused by either (i) a failure 
in inflating the seals (which is due to a failure to open the valve con- 
trolling the inflation, a major pipe leakage spreading out the inflat- 
ing air or a failure to engage the back-up tank) or (ii) continuous air 
deflating (which requires that (i) the back-up tank is already empty 
and can no longer compensate the air deflating and that (ii) there is 
a failure in the inflating air piping system). The piping failure can 
be caused by a crack in the seal, a pipe leakage or a valve failure. 

The FT in Appendix A.2 is transformed into the BBN in Fig. 2 in 
which every leaf node corresponds to a basic event of the FT, except for 
the two events “Minor pipe leakage ” and “Major pipe leakage ”, which 
are combined into the joint event “Pipe leakage ” with three states: “No 
leakage ”, “Minor leakage ” and “Major leakage ”. In particular, the events 
“Minor pipe leakage ” and “Major pipe leakage ” are not independent. 
This would be difficult to model in a FT, whereas a BBN can handle 
this situation by combining the events into one single node defined by 
different states. 

The BBN resembles the top-down structure of the FT, with arcs con- 
necting consequent events to model the failure scenarios. Statistical 
analyses and expert opinions can be used to define the prior probabili- 
ties and the conditional probability tables of the BBN. These tables also 
capture the rules of the AND/OR gates of FT. 

Table 2 lists the safety measures 𝑎 𝑖 𝑗 , 𝑖 ∈ 𝑉 
𝐴 = {1 , 2 , 3 , 4 , 5 , 

6 , 7 , 8 , 13} , 𝑗 ∈ {1 , 2 , … , |𝔸 

𝑖 |} that can be applied to the events at 
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nodes i ∈ V 

A to mitigate the event at the target node 𝑡 = 14 . Although 
most safety measures apply to leaf nodes, our approach can accommo- 
date situations in which safety measures are applied at nodes whose 
depth is d i > 1. 

Specifically, we consider the safety measure “Synergy ” ( 𝑎 13 1 ∈ 𝔸 

13 ) 
applied to mitigate the event “Pressure equalizer failure ” ( 𝑖 = 13 ) at the 
second level 𝑑 13 = 2 . This safety measure represents the combination of 
safety measures “Periodic test ” ( 𝑎 6 1 ∈ 𝔸 

6 ) and “Inspection plan ” ( 𝑎 7 1 ∈
𝔸 

7 ), such that 

2 𝑧 𝑎 13 1 
≤ 𝑧 𝑎 6 1 

+ 𝑧 𝑎 7 1 
𝑧 𝑎 13 1 

≥ 𝑧 𝑎 6 1 
+ 𝑧 𝑎 7 1 

− 1 . 
(24) 

The synergy does not reduce risks, but saves costs by 𝑐 13 1 = −30 k€ for 
joined inspections at the gearbox and the exhaust pipe. We define the 
cost of the safety measure 𝑎 𝑖 𝑗 ∈ 𝔸 

𝑖 as 𝑐 𝑖 𝑗 = 𝑐 𝑎 𝑖 𝑗 (fourth column in Table 2 ). 

Furthermore, the possibility to take several alternative safety mea- 
sures simultaneously at the same node can be captured by explicitly 
modelling different combinations of safety measures. For example, con- 
sider the safety measure “Joined actions ” ( 𝑎 2 3 ∈ 𝔸 

2 ) which represents 
a combination of the safety measures “Calibration test ” ( 𝑎 2 1 ∈ 𝔸 

2 ) and 
“Sensor ” ( 𝑎 2 2 ∈ 𝔸 

2 ) at the node “Valve failure ” ( 𝑖 = 2 ) such that the opti- 
mization model can select either one of the two separate safety measures 
or both. To this aim, the safety measure “Joined actions ” is modelled as 
an additional safety measure, which accounts for the joint impact on the 
probability of “Valve failure ” and the cost of the combined safety mea- 
sures “Calibration test ” and “Sensor ”. This additional safety measure 
avoids the need to account for the same probabilities multiple times 
and circumvents the limitation of applying a single safety measure at 
each node. 

In this example, we simplify the data elicitation process by assigning 
Risk Reduction Rates R a ( s ) to every safety measure 𝑎 ∈ 𝔸 

𝑖 . These safety 
measures modify the occurrence probability of the state 𝑠 ∈ 𝕊 𝑖 ∖0 of the 
event at node i ∈ V 

A so that 

ℙ 𝑋 𝑖 𝑎 
( 𝑠 ) = ℙ 𝑋 𝑖 ( 𝑠 ) ⋅ 𝑅 𝑎 ( 𝑠 ) . (25) 

In general, the Risk Reduction Rates R a ( s ) can depend on the states s , but 
they can be equal for all 𝑠 ∈ 𝕊 𝑖 . Illustrative values of the Risk Reduction 
Rates are shown in the fifth and sixth columns of Table 2 . 

Finally, the cost of a safety measure (fourth column in Table 2 ) can be 
due to large initial capital investments or the accumulation of periodic 
expenses over the life cycle. To compare portfolios of safety measures, 
the cost of a safety measure can be discounted over the life cycle. In 
this respect, the annualized cost of a safety measure 𝑎 ∈ 𝔸 

𝑖 is calculated 
over the set Λ of time periods as 

𝑐 𝑎 = 

∑
𝜆∈Λ

𝑐 𝜆𝑎 
(1 + 𝑟 ) 𝜆

, (26) 

where 𝑐 𝜆𝑎 represents the cost of safety measure 𝑎 ∈ 𝔸 

𝑖 at period 𝜆 ∈ Λ
and r is the discounted rate to account for the life cycle of the system 

[29] . 
For instance, in Table 2 , we consider three different safety mea- 

sures for reducing the probability of “Pipe leakage ” ( 𝑖 = 3 ): “Outer in- 
spection ” ( 𝑎 3 1 ∈ 𝔸 

3 ), “Inner and outer inspection ” ( 𝑎 3 2 ∈ 𝔸 

3 ) and “Protec- 
tion coating ” ( 𝑎 3 3 ∈ 𝔸 

3 ). The first two involve planned inspections over 
Λ = {0 , 1 , 2 , 3} time periods, whereas the last one is an asset investment 
over the same planning horizon. If the two inspections per period cost 
𝑐 𝜆
𝑎 3 1 

= 4 k€/inspection and 𝑐 𝜆
𝑎 3 2 

= 6 k€/inspection, the discounted costs of 

these two safety measures using an annualized rate 𝑟 = 0 . 05 , are 

𝑐 3 1 = 8 + 

8 
1 . 05 

+ 

8 
1 . 05 2 

+ 

8 
1 . 05 3 

= 29 . 8 ≈ 30 k e (27) 

𝑐 3 2 = 12 + 

12 
1 . 05 

+ 

12 
1 . 05 2 

+ 

12 
1 . 05 3 

= 44 . 7 ≈ 45 k e . (28) 

On the other hand, the safety measure “Protection coating ” has an 
initial expense of 60 k€ and a further maintenance intervention of 12 k€

Fig. 3. Probability of airlock system failure. 

at the third time period. Thus, the annualized cost of this safety measure 
is 

𝑐 3 3 = 60 + 

12 
1 . 05 3 

= 70 . 3 ≈ 70 k e . (29) 

Illustrative annualized costs of the safety measures are reported in 
Table 2 . 

The optimization model in Section 2.2 determines the optimal port- 
folios of safety measures that minimize the risk of the target node. So- 
lutions have been found for different values B of the budget constraint 
(horizontal axis in Figs. 3 and 4 ). 

Fig. 3 shows the minimum probability of the airlock system failure 
that can be obtained by applying the optimal portfolio of safety mea- 
sures, Fig. 4 shows the optimal safety measure for every action node i ∈
V 

A in Fig. 2 as a function of the available budget. 
From Fig. 3 , we see that the minimum probability of airlock system 

failure remains practically the same for B ≥ 230 k€ whereafter the 
risk reduction due to additional safety measures becomes negligible. As 
shown in Fig. 4 , if the budget is at least 230 k€, the optimal portfolio 
already contains the inspection of the door, the joined actions on the 
valve and the reliability improvement of the tank. These events are di- 
rectly linked to the target node by OR gates; thus, reducing their failure 
probabilities significantly reduces the probability of the airlock system 

failure. In contrast, the effects of other safety measures become negligi- 
ble. 

If the budget is low, safety measures should be applied to limit the 
events “Valve failure ” and “Pipe leakage ” because they impact two dif- 
ferent nodes, “Piping failure ” and “Not inflating seals ”. The safety mea- 
sure “Synergy ” ( 𝑎 13 1 ∈ 𝔸 

13 ) is applied only if “Periodic test ” ( 𝑎 6 1 ∈ 𝔸 

6 ) 
and “Inspection plan ” ( 𝑎 7 1 ∈ 𝔸 

7 ) also belong to the optimal portfolio, as 
modelled in (24) . 

The portfolios of safety measures in Fig. 4 are globally optimal in 
the sense that they minimize the failure probability of the airlock sys- 
tem while accounting for feasibility and budget constraints, instead of 
selecting safety measures that target the riskiness of the single events. 

3.1. Comparison with a Risk Reduction Worth-based procedure 

Risk Reduction Worth (RRW) is a risk importance measure which 
quantifies the maximum risk reduction that can be attained by setting 
the probability ℙ 𝑋 𝑖 ( 𝑠 ) , 𝑠 > 0 at node i ∈ V 

A to zero (see [2–4] for details). 
This measure only applies to binary FTs, in which 𝕊 𝑖 = {0 , 1} , ∀𝑖 ∈ 𝑉 
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Fig. 4. Optimal safety measure per event. 

in our framework. Thus, it is necessary to apply small changes to the 
example in Section 3 . 

Once the components which contribute most to the improvement are 
identified, the expert can iteratively select safety measures to be applied. 
Namely, at iteration 𝜏 = 1 , the RRW values are computed for every node 
i ∈ V 

A as 

𝑅𝑅𝑊 

𝑖 
𝜏 = 

𝕎 

𝑡 
𝜏

𝕎 

𝑡 |𝑖 
𝜏

, (30) 

where 𝕎 

𝑡 
𝜏 is the risk of the realization of the event X 

𝑡 = 1 at the target 
node t ∈ V 

T (i.e., the node related to the event of “Airlock system fail- 
ure ”) and 𝕎 

𝑡 |𝑖 
𝜏 is the risk of the realization X 

𝑡 = 1 of the target node t ∈
V 

T assuming ℙ 𝑋 𝑖 (0) = 1 , i.e. the realizations X 

𝑖 ≥ 1 of the event at node 
i ∈ V 

A have been eliminated. We evaluate the risk 𝕎 

𝑡 of the target node 
by the expected disutility 𝕌 

𝑡 in (11) . On this basis, at iteration 𝜏 = 1 , the 
node 𝑖 ∗ 𝜏 is selected so that 

𝑖 ∗ 𝜏 = arg max 
𝑖 ∈𝑉 𝐿 

𝑅𝑅𝑊 

𝑖 
𝜏 , (31) 

whereafter experts decide which one out of appropriate safety mea- 
sure(s) will be applied to reduce the risk of the event 𝑖 ∗ 𝜏 ∈ 𝑉 

𝐿 ∩ 𝑉 𝐴 . 
This procedure can be repeated at iteration 𝜏 = 2 to determine the 

node 𝑖 ∗ 𝜏=2 , which has the most risk reduction potential, given that a safety 
measure has been applied at node 𝑖 ∗ 𝜏=1 . Then, the procedure is iterated 
until the budget has been depleted or the residual risk of the target node 
has been reduced to an acceptable level. 

We illustrate this approach by analysing the airlock system. At 
each iteration 𝜏, we calculate the values of RRW for nodes 𝑖 ∈ 𝑉 𝐴 = 

{1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} of which safety measures can be applied ( Fig. 2 ). 
We do not consider the safety measure “Synergy ” ( 𝑎 13 1 ∈ 𝔸 

13 ), because 
𝑅 𝑎 13 1 

(1) = 1 , i.e. it does not have any additional impact on risk with re- 

spect to the two safety measures 𝑎 6 1 and 𝑎 7 1 that lead to this synergy. 
At iteration 𝜏 = 1 , “Valve failure ” ( 𝑖 = 2 ) has the largest RRW value 

𝑅𝑅𝑊 1 = [≈ 1; ≈ 10; ≈ 1; 1 . 01; ≈ 1; ≈ 1; ≈ 1; 1 . 009] . (32) 

At node “Valve failure ” ( 𝑖 = 2 ), two possible safety measures can re- 
duce the risk of the target node. If the safety measure “Sensor ” ( 𝑎 2 2 ∈ 𝔸 

2 ) 
is chosen to prevent “Valve failure ”, the RRW values at iteration 𝜏 = 2 

are 

𝑅𝑅𝑊 2 = [≈ 1; 1 . 09; ≈ 1; 5 . 76; ≈ 1; ≈ 1; ≈ 1; 1 . 1] . (33) 

Continuing, after the safety measure “Sensor ” to reduce the probabil- 
ity of “Valve failure ” ( 𝑖 = 2 ) has been applied, the event “Tank failure ”
( 𝑖 = 4 ) has the most potential for risk reduction. At this node, the only 
safety measure “Improving reliability ” ( 𝑎 4 1 ∈ 𝔸 

4 ) is also one of the most 
expensive, meaning that most of the available budget will be used, so 
that less expensive safety measures cannot be applied. 

At iteration 𝜏 = 3 , after the safety measure to prevent “Tank failure ”
has been applied, we calculate the RRW values 

𝑅𝑅𝑊 3 = [≈ 1; 1 . 9; 1 . 05; ≈ 1; ≈ 1; ≈ 1; ≈ 1; 1 . 9] . (34) 

The events “Valve failure ” ( 𝑖 = 2 ) and “Door failure ” ( 𝑖 = 8 ) have the 
highest RRW values, in particular 𝑅𝑅𝑊 

2 
3 = 𝑅𝑅𝑊 

8 
3 . 

If the safety measure “Sensor ” ( 𝑎 2 2 ∈ 𝔸 

2 ) is applied to mitigate the 
event “Valve failure ”, the safety measure “Periodic test ” ( 𝑎 8 1 ∈ 𝔸 

8 ) is 
applied to prevent the event “Door failure ”. This way, at iteration 𝜏 = 4 , 
this approach would lead again to safety measures on the event “Valve 
failure ” ( 𝑖 = 2 ), given that 

𝑅𝑅𝑊 4 = [≈ 1; 10 . 9; 1 . 01; ≈ 1; ≈ 1; ≈ 1; ≈ 1; ≈ 1] . (35) 

If a second safety measure is applied to reduce the risk of this event, the 
joined actions may not have the same parameters of the two separate 
safety measures. Table 2 shows that 

𝑅 𝑎 2 3 
(1) ≠ 𝑅 𝑎 2 1 

(1) ⋅ 𝑅 𝑎 2 2 
(1) (36) 

𝑐 2 3 ≠ 𝑐 2 1 + 𝑐 2 2 . (37) 

Thus, if both safety measures at node “Valve failure ” ( 𝑖 = 2 ) are applied, 
the solution would change, because the synergy in their Risk Reduc- 
tion Rates would modify the RRW values at the iteration where the first 
safety measure has been applied ( 𝜏 = 1 ). Moreover, unlike our method- 
ology, RIM-based procedures do not account for the eventual cost sav- 
ing given by the combination of the safety measures “Inspection plan ”
( 𝑎 6 1 ∈ 𝔸 

6 ) and “Periodic test ” ( 𝑎 7 1 ∈ 𝔸 

7 ). 
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4. Discussion 

The case study highlights one of the main advantages of framing 
the problem of selection of safety measures through PDA. The model 
does not target the riskiness of the single events; rather, it identifies 
the optimal portfolio of safety measures for the overall system and thus 
overcomes the limitations of taking decisions based on the iterative com- 
putation of RIMs and the choice of safety measures one-by-one. 

Moreover, the BBN model of the system failure makes it possible 
to generalize the concepts of AND/OR gates. The impacts of the safety 
measures are modelled by updating the probability distributions of the 
affected nodes in the BBN. As a result, structural changes to the sys- 
tem, most notably those that correspond to the introduction/removal 
of nodes or dependencies between the nodes, call for revisions to the 
model itself. Specifically, the introduction/removal of dependencies 
call for changes in the dimensions and parameters of the conditional 
probability tables. In contrast, changes resulting from the introduc- 
tion/removal of new nodes makes it necessary to introduce/remove 
these nodes and to elicit/revise the corresponding probability tables, 
too. 

The framework is flexible in that multiple states at every node can 
be modelled. For example, consider the event “Pipe leakage ” ( 𝑖 = 3 ) in 
Fig. 2 . The states of the leakage can be modelled as “No leakage ”, “Minor 
leakage ” and “Major leakage ” and even further states can be introduced 
as needed. Thus, the system representation is more realistic, although 
it increases the effort in the elicitation of the conditional probability 
tables. 

On the other hand, RIM-based procedures are limited in that they 
cannot be applied in case of multi-state events or multiple target nodes. 
In fact, they are based on the definition of a single target node, while 
our methodology can accommodate multiple target nodes as described 
in Section 2.2 . 

Furthermore, RIM-based procedures apply to binary FTs in which 
safety measures can be applied to basic events only without account- 
ing for synergies of joined safety measures. As shown in the preceding 
example, feasibility constraints or costs are considered only after the 
procedure has already selected the event that seemingly offers the most 
potential for risk reduction of the system failure: this could lead to an 
infeasible or cost-inefficient portfolio of safety measures. For example, 
the budget could be run out after few expensive safety measures, while 
it could be the case that combinations of less expensive safety measures 
would lead to reduce the risk of the target node more. 

Cost-benefit analyses based on the ratio between the RIM and the 
cost of the safety measure can also lead to infeasible or cost-inefficient 
portfolios of safety measures, because RIMs evaluate the riskiness of the 
events while cost is a parameter of the safety measure. For this reason, a 
cost-benefit analysis would support safety measures which have minimal 
cost in one-by-one comparisons. 

In summary, this example illustrates that RIM-based procedures, 
such as those based on RRW, do not necessarily lead to an optimal solu- 
tion, because at each iteration the importance measures are dependent 
on the previous decisions. Furthermore, the procedure involves assump- 
tions and expert judgements, which can affect the decisions at the fol- 
lowing iterations and the resulting portfolio of safety measures. 

First, the RIM-based procedure does not select a specific safety mea- 
sure; rather, the experts choose the most appropriate one(s) in view of 
the parameters of the safety measure parameters (annualized cost and 
impact on risk reduction) and the available budget. Second, different 
RIMs could give different and even conflicting indications to the experts 
[4] . Finally, the iteration 𝜏 = 3 in this example highlights a further pit- 
fall of a RIM-based procedure: the experts need support for selecting 
events which should be improved first. Our PDA framework addresses 
these issues explicitly. 

If budget is 𝐵 = 350 k€, the portfolios of safety measures for the two 
methodologies are in Table 3 . The last row in Table 3 shows the proba- 
bility of the event “Airlock system failure ” for both solutions. The solu- 

Table 3 

Optimal set of safety measures for the two methodologies. 

Node RRW approach Portfolio optimization 

Cracked seals Duplicating –

Valve failure Sensor Sensor 

Calibration test Calibration test 

Pipe leakage Protection coating Protection coating 

Tank failure Improving reliability Improving reliability 

Empty tank – –

Gearbox failure – Periodic test 

Exhaust pipe failure – Inspection plan 

Door failure Periodic test Periodic test 

ℚ 𝑋 14 (1) 1 . 4173 ⋅ 10 −8 1 . 1201 ⋅ 10 −8 

tion resulting from the RRW-based procedure depends on the authors ’
decisions at each iteration. 

While safety measures are applied in both methodologies, there are 
also significant differences due to the lack of systemic view of the RRW- 
based procedure. For example, at iteration 𝜏 = 6 the RRW-based proce- 
dure identifies “Cracked seals ” ( 𝑖 = 1 ) as the most risky event so that 
safety measure “Duplicating ” ( 𝑎 1 2 ∈ 𝔸 

1 ) is applied. On the other hand, 
the portfolio optimization recognizes that safety measures to prevent 
“Gearbox failure ” ( 𝑖 = 6 ) and “Exhaust pipe failure ” ( 𝑖 = 7 ) would re- 
duce the risk of “Airlock system failure ” at the same cost. Moreover, for 
the budget 𝐵 = 350 k€, our solution reduces the risk of “Airlock system 

failure ” to a level which is 21% less than the solution based on RRW 

(last row in Table 3 ). Note that RRW has been adopted as a reference 
for the comparison, but similar issues can be expected with the use of 
other RIMs as well. 

In industries such as nuclear and aerospace, PRA models contain sev- 
eral thousands of components to which safety measures can be applied 
in order to reduce the probability of accident scenarios. In these cases, 
the standard approach based on RIMs is computationally straightfor- 
ward in that the potentially most important components are first iden- 
tified, albeit without analysing how effective the available safety mea- 
sures or combinations thereof are in mitigating the probability of acci- 
dent scenarios. By design, the PDA approach is computationally more 
demanding, but it does account for the impact of the available safety 
measures while analysing the relative importance of the components. 

The PDA approach can be utilized in several ways for large systems. 
For instance, the experts can first employ RIMs to select computation- 
ally manageable portfolios consisting of the most risky components and 
then apply the PDA approach to make cost-effective decisions on the 
components within these pre-selected portfolios. The experts can also 
analyse portfolios consisting of similar or comparable components to 
generate guidelines as to what kinds of safety measures are most cost- 
efficient for these components. Furthermore, complex PSA models are 
typically hierarchically structured and can be decomposed into several 
indenture levels. Then, the PDA approach can be used iteratively to first 
select the optimal portfolios of systems at the highest indenture levels 
and to determine corresponding risk reduction rates and costs. These 
solutions can be converted into requirements for the portfolio selection 
at the following lower indenture levels. Future research will focus on 
the computational and modelling issues arising from the application of 
the PDA approach to large-scale complex systems. 

5. Conclusion and future research 

In this paper, we have developed a methodology to support the selec- 
tion of cost-efficient portfolios of safety measures in high-risk installa- 
tions. The problem has been framed within the Portfolio Decision Anal- 
ysis to support the selection of safety measures that improve the safety 
of the system cost-efficiently. The feasibility of the method has been il- 
lustrated with an example concerning an Airlock System in a CANDU 

NPP. 
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There are various opportunities for improving and extending this 
method. Specifically, one limitation of the methodology can be the ef- 
fort in getting sufficient information to determine the failure probabili- 
ties and the conditional probability tables. This suggests two topics for 
further work. On one hand, the optimization model could be extended to 
account for the imprecision and uncertainty stemming from incomplete 
datasets or the qualitative statements provided by the experts. For ex- 
ample, the expert may provide imprecise values of both Risk Reduction 
Rates and costs of the safety measures. Such imprecision and uncertainty 
must be properly represented and propagated throughout the optimiza- 
tion model to obtain robust solutions. On the other hand, methods to 
facilitate the elicitation of parameters need to be developed so that ex- 
perts need not to answer many and complex questions, which could 
introduce biases as well. 

A further possibility is to extend the proposed methodology to time- 
dependent systems, for example to the analysis of fire scenarios [30] . In 
this case, the modelling of failure scenarios and impact of safety mea- 
sures become more complicated. Techniques of Integrated Deterministic 
and Probabilistic Safety Assessment [31] could be used to address these 
issues. 
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A1. Algorithm for selecting the optimal portfolio of safety measures 

The algorithm determines the optimal portfolio z ∗ for the objective 
function 𝕌 

𝑡 
∗ = 𝕌 

𝑡 ( z ∗ ) . Every portfolio of safety measures corresponds to 
a binary vector z = [ 𝑧 1 , … , 𝑧 𝑚 ] which is the concatenation of vectors 
z 𝑖 , ∀𝑖 ∈ 𝑉 𝐴 as described in (2) . The size of the binary vector z is 𝑚 = ∑
𝑖 ∈𝑉 𝐴 |𝔸 

𝑖 |. 
The model also accounts for the objective function 𝕌 

𝑡 ( ⋅) , the budget 
and the feasibility constraints. In particular, the set of feasible portfolios 
is defined by a set of linear inequalities, whose coefficients are recorded 

in matrix 𝑅 ∈ ℝ 

 ×𝑚 ( 𝑟 𝑙 𝑗 = [ 𝑅 ] 𝑙𝑗 ) and vector 𝐛 = [ 𝑏 1 , … , 𝑏  ] ∈ ℝ 

 . The set 
of feasible portfolios is 

𝑍 𝐹 = { z ∈ {0 , 1} 𝑚 |𝑅 z ≤ 𝐛 } (A.1) 

where ≤ holds component-wise. 
In addition to the constraints which ensure the uniqueness of the 

safety measure at each node in (15) , the set Z F accounts for feasibility 
and budget constraints in (16) . 

Algorithm 1: The implicit enumeration algorithm. 

Data : 𝕌 

𝑡 ( ⋅) , 𝑅 , 𝐛 , 𝜖𝑖 ( 𝑠 ) 
Result : z ∗ , 𝕌 

𝑡 
∗ 

z = [0 , …, 0] 𝑇 , 𝑘 ← 1 , z ∗ ← ∅, 𝕌 

𝑡 
∗ ← ∞; 

if z ∈ 𝑍 𝐹 then 

z ∗ ← z , 𝕌 

𝑡 
∗ ← 𝕌 

𝑡 ( z ) ; 
end 

Loop A : while 𝑘 > 0 do 

Loop B : while 𝑘 ≤ 𝑚 do 

𝑧 𝑘 ← 1 ; 
if z ∈ 𝑍 𝐹 and 𝕌 

𝑡 ( z ) < 𝕌 

𝑡 
∗ then 

z ∗ ← z , 𝕌 

𝑡 
∗ ← 𝕌 

𝑡 ( z ) ; 
end 

if 
∑𝑘 
𝑗=1 𝑧 𝑗 𝑟 

𝑙 
𝑗 + 

∑𝑚 
𝑗= 𝑘 +1 min {0 , 𝑟 𝑙 𝑗 } > 𝑏 

𝑙 ∀𝑙 = 1 , …,  then 

Break Loop B 

end 

𝑘 ← 𝑘 + 1 ; 
end 

𝑧 𝑚 ← 0 ; 
𝑘 ← max ({ 𝑗|𝑧 𝑗 = 1} ∪ {0}) ; 
if 𝑘 > 0 then 

𝑧 𝑘 ← 0 ; 
𝑘 ← 𝑘 + 1 

end 

end 

A2. Airlock system Fault Tree 
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Abstract

Electric power systems extensively rely on cyber physical systems to control physical components

through cyber-based commands. Thus, the vulnerability to cyber threats requires an efficient alloca-

tion of resources to mitigate the risk of attacks. Common practices guide the selection of mitigation

actions by prioritizing the cyber threat scenarios through a qualitative assessment. These practices

can result in sub-optimal allocations of resources to protect the system. To overcome these draw-

backs, we quantify the risk of cyber threats to the system through a comprehensive analysis of the

system vulnerabilities. This analysis relies on Bayesian networks, which provide a solid framework

for probabilistic risk assessment by representing cyber threat scenarios as combinations of cascading

events. In addition, we develop an optimization model to determine the non-dominated mitigation

strategies to protect the system from cyber threats. Specifically, the minimization of the risk of cyber

threats supports the selection of mitigation actions, considering budget and technical constraints.

The optimization model provides additional insight into risk management at different budget levels.

Keywords: Cyber Physical Systems, Cybersecurity, Electric Power Grids, Risk Management,

Multi-Objective Optimization.
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1 Introduction

Cyber physical systems are physical systems in which operations are integrated, monitored and controlled

through multi-core processors [1]. Such systems are increasingly employed in a wide range of industries,

including electric power industry. Despite the substantial benefits to our society, the rapid proliferation

of cyber physical systems also provides potential attackers with new opportunities to disrupt critical

infrastructures [2].

Costly impacts can result from such attacks, for instance a cyber attack in 2015 caused the power

outage of 225000 customers in Ukraine that lasted up to six hours. In that occasion, the operators at the

three operations centers were unable to regain remote control of more than 50 substations affected by

the incident. After the loss of over 130MW of load, the operators restored power by sending technicians

to the substations and manually controlling the power system [3]. Besides critical infrastructures, cyber

threats may affect all kind of institutions with potentially severe and costly impacts worldwide. For

instance, the Petya and WannaCry cyber-attacks hit thousands of companies across the globe in 2017 [4].

Other relevant cases include the Stuxnet attack in 2010 to target an uranium enrichment centrifuge in

Iran [5] and the attack on a German steel mill in 2014 to take over the plant control systems [6]. In

recent years, cyber attacks have increased dramatically in terms of quantity, diversity and sophistication

with significant economic losses [7].

These episodes prove the need for an effective deployment of security measures to mitigate the risk

of cyber threats. Poolsappasit et al. [8] develop a mitigation strategy based on the likelihood of cyber

attacks. A genetic algorithm supports the selection of a subset of mitigation actions by minimizing

the cost of deployment and the expected damage to the system. Shameli-Sendi et al. [9] propose a

dynamic framework for selecting optimal countermeasures to mitigate attacks. The selection is based on

minimizing the cost of deployment and the impact on users and services. However, these optimization

models do not consider the multiple impacts deriving from the cyber threat scenarios. Instead, mitigation

strategies are selected on the cost and performance of individual actions. The resulting resource allocation

could be sub-optimal for the cyber physical systems due to the lack of modeling the multiple impacts of

cyber attacks [10]. Thus, the efficient allocation of resources to secure cyber physical systems involves

challenges that we address in this paper.

Specifically, this paper fits into the first two functions of the National Institute of Standards and

Technology (NIST) cybersecurity framework [11] in detecting system vulnerabilities and protecting the

system from cybersecurity incidents. The NIST cybersecurity framework sets broadly accepted guidelines

to improve the security of cyber physical systems. In this framework, we propose a methodology for the

risk assessment of cyber threats based on a comprehensive analysis of the system vulnerabilities. This
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methodology relies on Bayesian networks that model a probabilistic representation of combinations of

events, possibly leading to severe outcomes. This model responds to the need for intuitive and compu-

tationally efficient methods for risk analysis, combining expert judgment and statistical analyses for the

quantitative assessment of risks [12].

The proposed methodology leads to select the optimal portfolios of mitigation actions, based on the

minimization of the risk of multiple impacts of cyber attacks. In particular, this paper focuses on mitiga-

tion strategies for protecting electric power systems, yet the framework has broader applications on cyber

physical systems. Recently, the Electric Power Research Institute (EPRI) analyzed the cybersecurity

failure scenarios and impacts for the electric sector [13]. The report provides insights on cybersecurity

risks and potential mitigation actions to support risk assessment and resource allocation. Among appli-

cations on electric power systems, Ciapessoni et al. [14] propose a methodology to assess the security of

such systems by analyzing the vulnerabilities to natural and human threats. On the other hand, Shelar

and Amin [15] formulate a game theoretic framework to assess the security of an electricity distribution

network, based on which the defender optimizes the security strategy of the network nodes.

In this paper, Section 2 reviews the practice proposed by the EPRI to select appropriate mitigation

actions for the electric power system. Specifically, we present a critical analysis of the ranking procedure

of individual cyber threats, which could lead to inefficient or unfeasible allocations for the system. This

problem is addressed in Section 3, which provides an alternative to the EPRI practice by evaluating port-

folios of mitigation actions to protect the cyber physical system against multiple cyber threat scenarios.

In addition, an optimization model supports the selection of the mitigation strategies that minimize the

expected impacts of cyber attacks, based on financial and technical constraints. Section 4 illustrates the

methodology by analyzing the cyber threat scenarios concerning the Advanced Metering Infrastructure

(AMI) of an electric power system. Section 5 discusses the potential and limits of the proposed frame-

work, suggesting possible ways to overcome some inconveniences. Finally, Section 6 concludes the paper

and outlines extensions for future research.

2 Analysis of the EPRI practice

Cybersecurity management calls for an extensive analysis of the system vulnerabilities, which leads to an

efficient allocation of resources to protect the electric power system. In particular, the EPRI proposes the

analysis of individual cyber threat scenarios based on attack graphs, multi-leveled diagrams describing

threats on cyber physical systems and possible attacks to realize such threats [16]. Attack graphs are

increasingly being applied to computer control systems, especially related to electric power systems, but

they have also been used to analyze threats to physical systems [17]. Figure 1 illustrates the graphical
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notation of two attack graphs, where a cyber threat scenario is represented through sequences of events

(shown as diamonds) leading to the possible impacts of the cyber attack (shown as ellipses). The impacts

of the cyber attack occur if a combination of events of the cyber threat scenario has proven to be successful,

based on the binary representation of AND and OR gates (shown as solid and dashed lines, respectively).

Attack graphs represents cyber threat scenarios, which are evaluated based on the likelihood of oc-

currence and impact. According to the EPRI analyses, the likelihood depends on 5 criteria whereas the

impact depends on 15 criteria which are reported in Tables 3 and 4, respectively. These tables also report

the EPRI scoring system for quantifying the likelihood and impact of cyber threat scenarios. Each score

is an integer value in the range 0−9, thus the likelihood and impact are computed by summing the scores

over the respective criteria. However, this scoring system can be questioned on the meaningfulness of

the 0− 9 scale. For instance, is a public accessible asset three times more accessible than a fenced asset

with standard locks and nine times more accessible than a guarded/monitored asset? Furthermore, the

additive model can be questioned on the sum of scores across different criteria. For instance, is “Public

safety concern” comparable to “Long term economic damage”?

Mapping the likelihood and impact of all cyber threat scenarios in a risk matrix [18] makes it possible to

rank the priority of individual cyber threats. This procedure clusters each cyber threat into High, Medium

or Low likelihood and High, Medium or Low impact in order to prioritize the selection of mitigation

actions. Specifically, cyber threats with High likelihood and High impact deserve the highest priority in

the choice of mitigation actions, whereas priority decreases for cyber threats with lower likelihood and/or

impact until the budget is depleted.

(a) (b)

Figure 1: Attack graphs for (a) “Invalid disconnect messages to meters impact customers and utility” and (b) “Reverse
engineering of AMI equipment allows unauthorized mass control” [13].
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Despite the intuitive appeal and simplicity, risk matrices do not necessarily recommend effective risk

management decisions, instead they may lead to incorrect risk prioritization [19,20]. Thus, the sequential

choices of mitigation actions may result in a sub-optimal resource allocation because they are based on

an incorrect prioritization of cyber threats [21]. Furthermore, this procedure does not consider technical

and budget constraints across different scenarios. In conclusion, the EPRI practice presents several

inconsistencies in assessing the risk of cyber threats and supporting the selection of mitigation actions.

3 Bayesian framework

We propose a Bayesian framework, which provides an alternative to the EPRI practice for the risk

assessment of cyber threats and the risk-based selection of mitigation strategies. In particular, the

proposed risk assessment is based on a comprehensive analysis of multiple cyber threats that can affect

the cyber physical system [22]. The framework also includes an optimization model for determining

non-dominated mitigation strategies in order to protect the system from cyber threats. Specifically, an

optimization algorithm computes the portfolios of mitigation actions that minimize the expected impacts

of cyber attacks, considering budget and technical constraints.

3.1 From attack graphs to Bayesian network

In contrast to the EPRI analysis of individual cyber threat scenarios, the Bayesian framework relies on

a comprehensive analysis of multiple attack graphs [23]. Each attack graph represents a single cyber

threat scenario, however some events could be equivalent among different attack graphs. For instance,

in Figures 1a and 1b the event “Threat agent obtains credentials for the meter disconnect function” is

equivalent among both attack graphs. For this reason, multiple attack graphs can be integrated into a

directed acyclic graph by combining the corresponding events into single nodes. This integration leads

to a comprehensive representation of cyber threat scenarios that overviews the alternative opportunities

to attack the system [24].

This directed acyclic graph can be converted into a Bayesian network [25], a probabilistic graphical

model that consists of:

- chance nodes (shown as circles) representing the random events of cyber threat scenarios;

- value nodes (shown as diamonds) representing the possible impacts of the cyber attacks;

- arcs (shown as directed edges) indicating causal dependencies between nodes.

Specifically, chance nodes are connected by arcs to represent combinations of events leading to the re-

spective final impacts [26]. In this framework, the combinations of events indicate the stages of cyber
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Figure 2: Example of a Bayesian network.

threat scenarios, whereas the final impacts indicate the possible outcomes of the cyber attacks. Arcs

connects the nodes to represent the causal dependencies between the events of the attack graph. Figure

2 illustrates a Bayesian network, where each chance node represents a random event that encodes a finite

set of discrete states, including a state of No occurrence of the event. Bayesian networks typically consider

discrete states, nevertheless it is possible to include continuous variables under specific conditions [25].

Statistical analyses and expert judgment provide information to define the probability distributions

of events that do not depend on any other chance node (nodes j and ` in Figure 2). For events that show

causal dependencies on other chance nodes through directed arcs (node i in Figure 2), the probabilistic

representation is based on the state of the events they are depending on. Thus, it is necessary to define

conditional probability tables for such nodes. Following the binary representation of attack graphs, con-

ditional probability tables are derived from the information provided by AND and OR gates. Specifically,

if the event i depends on the events j and ` through AND(OR) gates, then the occurrence probability

of the event i is 1 if the events j and(or) ` occur as well, and 0 otherwise. For illustrative purposes, we

consider the event “Threat agent performs mass disconnects” in Figure 1b as an example throughout the

paper. Table 1 displays the conditional probability table of the event, based on the binary representation

of Occurrence and No occurrence of the dependent events. The conditional probability table is derived

from the information provided by AND and OR gates of the attack graph in Figure 1b.

Bayesian networks represent the events such that the occurrence probability is not necessarily limited

to 0 and 1, but it is a real value in the set [0, 1]. This model leads to a more realistic representation of the

stages of cyber threat scenarios, in contrast to the binary representation. Table 2 displays the conditional

probability table of the event “Threat agent performs mass disconnects”, based on the multiple states of

the events. This conditional probability table is not meant to represent any actual electric power system.

According to the EPRI analyses, the occurrence probability of each event depends on (i) skill required,

(ii) physical accessibility, (iii) logical accessibility and (iv) attack vector. In particular, the occurrence

probability increases by enhancing the accessibility to equipment and information, while it decreases by

requiring specialized knowledge and technical means to pursue the cyber threat.

The cascading events of the cyber threat scenarios finally lead to the possible impacts, assessed

according to a set of criteria represented by the set K of value nodes [27]. The EPRI lists 14 possible

6



Table 1: Conditional Probability Table Based on Binary States.
Threat agent performs

mass disconnects
Threat agent reverse Threat agent Threat agent gains

Occurrence No occurrence
engineers AMI equipment obtains credentials control of devices

Occurrence
Occurrence

Occurrence 1 0
No occurrence 0 1

No occurrence
Occurrence 1 0

No occurrence 0 1

No occurrence
Occurrence

Occurrence 1 0
No occurrence 0 1

No occurrence
Occurrence 0 1

No occurrence 0 1

Table 2: Conditional Probability Table Based on Multiple States.

Threat agent performs mass disconnects [MW]
Threat agent reverse Threat agent Threat agent gains

No occurrence (0 50] (50 100] > 100
engineers AMI equipment obtains credentials control of devices

Occurrence

Occurrence

None 1 0 0 0
Few 0.6 0.4 0 0

Moderate 0.4 0.2 0.4 0
High 0.3 0.1 0.2 0.4

No occurrence

None 1 0 0 0
Few 0.6 0.4 0 0

Moderate 0.4 0.2 0.4 0
High 0.3 0.1 0.2 0.4

No occurrence

Occurrence

None 1 0 0 0
Few 0.6 0.4 0 0

Moderate 0.4 0.2 0.4 0
High 0.3 0.1 0.2 0.4

No occurrence

None 1 0 0 0
Few 1 0 0 0

Moderate 1 0 0 0
High 1 0 0 0

impact criteria of cyber attacks on electric power systems, including financial, safety and service impacts.

As a result, each value node of the Bayesian network represents a single impact criterion k, whose score

depends on the state of events leading to that specific outcome. Ideally, the scores should be evaluated

by a specific scale that reflects its unit of measure.

3.2 Probabilistic risk assessment

The probabilistic risk assessment of cyber threats is based on the computation of the expected impact

for every impact criteria. Each chance node i represents a random event that encodes a finite set Si of

discrete states, including a state of No occurrence of the event. In particular, the occurrence probability

of events that show causal dependencies relies on the occurrence probability of the events they depend

on. For this reason, we define ∆i as the set of all possible combinations of states of the chance nodes
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affecting the event i, such that

∆i =
∏

j|(j,i)∈E
Sj , (1)

where E denotes the set of all arcs.

Let the random variable Xi represent the probability distribution of event i over the states si ∈ Si.

Then, X̂i is a vector of random events on which Xi directly depends, meaning the vector of random

variables Xj for all nodes j such that (j, i) ∈ E. For the d-separation property of Bayesian networks [25],

the probability that the events affecting the event i meets a specific combination of states δi ∈ ∆i is

P[X̂i = δi] =
∏

sj∈δi
P[Xj = sj ] ∀δi ∈ ∆i. (2)

Thus, the occurrence probability of the event i is computed by the law of total probability as the weighted

average of the posterior probabilities across all δi ∈ ∆i, such that

P[Xi = si] =
∑

δi∈∆i

P[Xi = si|X̂i = δi] P[X̂i = δi]. (3)

Because the occurrence probabilities are computed recursively, it is necessary to start the computation

from the initial events throughout the dependent events of the cyber threat scenarios. The risk of cyber

threats is then evaluated as the expected impact of the scenarios for each criterion k ∈ K, such that

E[Vk] =
∑

δk∈∆k

P[X̂k = δk] Vk[X̂k = δk], (4)

where Vk[X̂k = δk] is the score of the impact criterion k depending on the combination of states δk of

the events leading to that specific impact.

The expected impacts can be significantly reduced by deploying mitigation actions on the cyber

physical system. Specifically, the mitigation actions affect the occurrence probability of one or multiple

events in the cyber threat scenarios. In Bayesian networks, decision nodes (shown as squares) represent

the choice of mitigation actions, as illustrated in Figure 3. Each arc directed from a decision node to

jaj

`a`

i k

Figure 3: Example of a Bayesian network with decision nodes.
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a chance node indicates that the deployment of the mitigation action affects the occurrence probability

of the event represented by the chance node. Because this paper focuses on system design, the decision

nodes do not depend on any event (no incoming arcs). Future research will focus on system control with

decision nodes depending on other events.

Mitigation actions are numbered a ∈ {1, 2, ..., N}, such that the binary variable za indicates the

deployment of the mitigation action a. Specifically, the binary variable is za = 1 for the deployment of

the mitigation action a and za = 0 otherwise. Thus, a portfolio is defined by the binary vector z as a

combination of binary variables za for all the possible mitigation actions. With no loss of generality, the

vector z lists binary variables such that

z = [z1, z2, ... , zN ]. (5)

The deployment of mitigation actions reduces the occurrence probabilities of affected events. Bayesian

networks compute probability updates of the cascading events throughout the cyber threat scenarios by

the law of total probability, such that

P[Xi = si|z] =
∑

δi∈∆i

P[Xi = si|X̂i = δi] P[X̂i = δi|z]. (6)

Thus, the risk of cyber threats depends on the portfolio z so that the expected impact of each criterion

k ∈ K is

E[Vk](z) =
∑

δk∈∆k

P[X̂k = δk|z] Vk[X̂k = δk]. (7)

This framework aims to compute the risk of cyber threats for each impact criterion, making it possible

to select mitigation strategies based on the minimization of the expected impacts.

3.3 Optimization model

The risk-based selection of mitigation strategies is performed through a multi-objective optimization

model. Unlike the EPRI practice, the selection of mitigation actions is not based on the additive model

of scores across different impact criteria. Instead, our optimization model determines the portfolios of

mitigation actions that minimize the risk of cyber threats for every impact criteria. The selection is based

on the analysis of expected impacts derived from the deployment of different mitigation strategies, so

that the optimization model determines the portfolios that fulfill the Pareto condition

z∗ � z⇐⇒





E[Vk](z∗) ≤ E[Vk](z) for all k

E[Vk](z∗) < E[Vk](z) for some k
. (8)
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This condition states that portfolio z∗ dominates z if it reduces the risk of cyber threats for any impact

criterion without increasing the risk for other impact criteria.

In addition to the Pareto condition, the optimal mitigation strategies need to fulfill budget and

technical constraints. Budget constraints specify the financial feasibility of the deployment of a mitigation

strategy. Each mitigation action a is associated to a cost ca, thus the overall cost of portfolio z must not

exceed the budget B such that
∑

a

za ca ≤ B. (9)

Technical constraints specify the properties of the system, such as mutually exclusive or mutually inclusive

conditions of mitigation actions. For instance in Figure 3, the linear constraints

zaj + za` ≤ 1 (10)

zaj − za` = 0 (11)

indicate that mitigation actions aj and a` cannot be deployed together or they must be deployed together,

respectively.

Technical constraints also include risk acceptability limits that are represented by non-linear inequal-

ities. In particular, specific regulatory conditions may apply to some events of the cyber threat scenarios.

For such event i, the subset S̃i ⊂ Si includes the critical states whose occurrence probability must not

exceed a risk acceptability threshold εi, such that

∑

si∈S̃i
P[Xi = si|z] ≤ εi. (12)

Risk acceptability thresholds are usually provided by regulatory offices or internal company policies.

Feasible portfolios belong to the set ZF , which includes all binary vector z that fulfill linear and

non-linear constraints. Then, the set of non-dominated solutions consists of the feasible portfolios that

fulfill the Pareto condition for any other feasible portfolio, meaning that

ZND = {z∗ ∈ ZF |@ z ∈ ZF such that z � z∗}. (13)

Generally, the set of non-dominated portfolios can include multiple alternative solutions, so the selection

of a single mitigation strategy is not straightforward. For this reason, it is necessary to support the

selection of the optimal mitigation strategy through additional analyses. A possible approach is the
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computation of the core index of each mitigation action. Analogously to Liesiö et al. [28], the core index

CI(a) is defined as the fraction of non-dominated portfolios that include the mitigation action a, such

that

CI(a) =
|{z∗ ∈ ZND|za = 1}|

|ZND|
. (14)

The analysis of the core indexes helps determine the mitigation actions that should be selected or rejected.

If the core index of a mitigation action is 1, that measure is included in all non-dominated portfolios;

on the other hand, if the core index is 0, that measure is not included in any non-dominated portfolio.

Finally, mitigation actions whose core index is in the range (0, 1) require further analyses in order to be

selected or rejected.

An implicit enumeration algorithm computes the set of non-dominated portfolios that minimize the

risk of cyber threats over the impact criteria. The algorithm is an adaptation of Liesiö [29] and has

been proposed by Mancuso et al. [30] for multi-objective optimization. This optimization algorithm is

computationally efficient but it may be time consuming for a large amount of mitigation actions (over 40).

In this case, evolutionary algorithms are a possible alternative to approximate non-dominated solutions

for a lower computational time [31].

4 Case study

We illustrate the potential of the Bayesian framework by optimizing the selection of mitigation strategies

for the Advanced Metering Infrastructure (AMI) of an electric power system. AMI systems have raised

many security concerns since they connect traditionally self-contained power system operations with

unreliable customer sites that are widely dispersed. The deployment of AMI systems is introducing

millions of components to the electric grid that support two-way communication for next-generation grid

applications. Although these systems can increase operational efficiency and enable new capabilities such

as demand-response, they also increase the attack opportunity for potential adversaries. For this reason,

electric power companies must address these new cybersecurity risks as part of their risk management

strategy.

Information about AMI systems is provided by the National Electric Sector Cybersecurity Organiza-

tion Resource (NESCOR), a program funded by the U.S. Department of Energy to protect electric power

systems from cybersecurity incidents, both malicious and non-malicious. The NESCOR document “Elec-

tric Sector Failure Scenarios and Impact Analyses” [16] provides short descriptions of approximately

125 cyber threat scenarios in seven domains of the electric sector: Advanced Metering Infrastructure,

Distributed Energy Resources, Wide Area Monitoring, Protection and Control, Electric Transportation,
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Demand Response and Distribution Grid Management. Furthermore, the NESCOR document “Analysis

of Selected Electric Sector High Risk Failure Scenarios” [13] presents the analyses of a selection of these

cyber threat scenarios. Specifically, each analysis includes an attack graph that details the logical de-

pendencies of events leading to a successful cyber attack. In addition to the attack graph, several of the

analyses also provide a detailed description of each scenario.

Based on the NESCOR analyses, we select 8 cyber threats with the highest priority for AMI systems,

in particular: invalid disconnect messages to meters impact customers and utility; reverse engineering of

AMI equipment allows unauthorized mass control; threat agent obtains credentials for system or function;

threat agent uses social engineering; threat agent gains access to network; threat agent exfiltrates data;

Figure 4: Bayesian network for selected cyber threat scenarios to the Advanced Metering Infrastructure
of an electric power system.
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authorized employee brings malware into system or network; threat agent exploits firewall gap.

These cyber threats potentially lead to “Threat agent performs mass disconnects”, “Threat agent

sends demand-response messages to drastically raise electricity usage” and “Threat agent causes devices

to send last gasps or self-test failure messages”, which indicate the possible outcomes of cyber attacks

to the AMI systems. In Figure 4, the Bayesian network is based on the attack graphs of the 8 cyber

threat scenarios to represent the alternative opportunities to attack the system. In particular, the circles

represent the events of the cyber threat scenarios, the diamonds indicate the possible impacts of cyber

attacks whereas the squares show mitigation actions that could be deployed for protecting the AMI system

from cyber threats. Note that the event “Threat agent obtains credentials for the meter disconnect

function” is equivalent among both cyber threat scenarios in Figures 1a and 1b. For this reason, this

event has been represented by one chance node named “Credentials for meter disconnect function” in

the Bayesian network. Reducing redundancies of equivalent events in multiple cyber threat scenarios

facilitates the comprehensive analysis of cyber threats as a Bayesian network. In addition, the events

“Threat agent has headend credentials and initiates disconnect(s) at headend” and “Threat agent has

business system credentials and initiates disconnect(s) at business system” in Figure 1a are not considered

in the Bayesian network because it is sufficient that the threat agent gains access to the network hosting

the meter disconnect function and obtains the relative credentials to cause “Possible voltage/frequency

fluctuations with disconnected customers”.

In the Bayesian network, probability distributions of the chance nodes have been set according to

information provided by the NESCOR documents. For instance, the psychological manipulation (social

engineering) of an employee may be expensive and it could lead to a public disclosure if the attempt

No occurrence (0 50] (50 100] > 100
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Figure 5: Illustrative impact scores for “Restoration costs”.
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fails, which summarizes to a low occurrence probability. However, such information is not sufficient

to specifically quantify the occurrence probability. For this reason, the occurrence probabilities of this

example are not meant to be representative of any existing AMI system, but they are illustrative values

to prove the viability of the Bayesian framework. The value nodes list the impact criteria of Table 4, in

particular the ones affected by a possible cyber attack to the AMI systems. For illustrative purposes,

impacts Vk have been quantified based on the scoring system of Table 4 due to the lack of detailed

information in literature. For instance, the event “Threat agent performs mass disconnects” is quantified

in different states of mass disconnects: No occurrence, (0 50]MW, (50 100]MW, > 100MW. Thus, each

value node maps the impact score depending on the states of that event, as illustrated in Figure 5 for the

impact criterion “Restoration costs”. Note that the impacts of cyber threats are not necessarily evaluated

by every criteria of Table 4. For instance, the event “Threat agent performs mass disconnects” does not

affect the impact criterion “Loss of privacy” for any state.

Assuming that event i is “Threat agent performs mass disconnects” and the value node represents the

impact criterion “Restoration costs” in Figure 2, the expected impact of “Restoration costs” [k = RC] is

the weighted average of the impact scores for every state in Figure 5, such that

E[VRC ] = P[Xi ≤ 50MW ] VRC [Xi ≤ 50MW ] + ...+ P[Xi ≥ 100MW ] VRC [Xi ≥ 100MW ]. (15)

The NESCOR documents also list possible mitigation actions that could be deployed to protect the AMI

systems from cyber threats, specifying the events affected by each mitigation action. The deployment

of a mitigation action affects the occurrence probability of the cyber threats according to the effect of

No occurrence ≤ 50 50 < ... ≤ 100 > 100
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Figure 6: Illustrative probability distribution for mass disconnects.
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the action. In particular, this case study accounts for 22 possible mitigation actions, which lead to 222

mitigation strategies. Tables 5-10 list the 22 mitigation actions for the selected cyber threat scenarios,

specifying the affected events based on the NESCOR analyses. The first column of the tables lists

the index of the action in the portfolio z, whereas the third column lists the cost of each mitigation

action. The illustrative costs of mitigation actions aim to include a budget constraint to the optimization

model. In addition, the optimization model includes a technical constraint on the risk acceptability of

mass disconnects above 50MW. Figure 6 illustrates the probability distribution of the event “Threat

agent performs mass disconnects” deriving from the deployment of a generic portfolio z. Assuming that

experts set the risk acceptability threshold to 0.5%, then the occurrence probability of the critical states

must fulfill the constraint

P[Xi > 50MW |z] ≤ 0.5%. (16)

The results of the multi-objective optimization show a decrease of the risk of every impact criteria by

increasing the budget level. Figure 7 shows that larger budgets lead to more effective mitigation strategies

to reduce the risk of every impact criteria. In this case study, the risk profiles of some impact criteria are

overlapping because the impact scores are based on the same 0− 9 scale that limit the quantification of

the impacts. The analysis of the risk profiles supports the definition of the optimal budget by selecting

the budget level above which the risk converges for every impact criteria, such as B ≥ 400 in this example.

Computational time is around one hour on a regular laptop, however it depends on the constraints limiting

the set of feasible portfolios. For instance, relaxing the budget constraint leads to higher computational

time because the algorithm considers a larger set of feasible portfolios. In Figure 7, the risk profiles

Figure 7: Expected impact of each impact criterion for different budget levels.

15



Figure 8: Core index map of mitigation actions for different budget levels.

consider all the non-dominated portfolios selected by the optimization algorithm for each budget level.

Then, the core index of each mitigation action is computed to support the choice of actions that should

be selected or rejected. Figure 8 maps the core index of each mitigation action through a gray scale.

Specifically, a black square indicates that the action is included in every non-dominated portfolio, whereas

a white square indicates that the action is not included in any non-dominated portfolio. Gray squares

indicate a core index in the range (0, 1), meaning that the mitigation action is included in some non-

dominated portfolios, but not all.

As a result, the black-squared actions should be selected whereas the white-squared actions should

be rejected. On the other hand, gray-squared actions need additional analyses to support the selection

or rejection of the deployment on the AMI system. In this case study, the additional analyses would

be necessary only for a limited number of mitigation actions for some budget levels. For instance, for

budget B = 500k$ the mitigation actions z5, z6 and z16 belong to 50% of the non-dominated portfolios.

The other mitigation actions belongs to either all or none of the non-dominated portfolios, so they do

not require any additional analysis.

5 Discussion

The case study shows the potential of a comprehensive analysis of multiple cyber threats. Integrating

the cyber threat scenarios into a Bayesian network facilitates the detection of system vulnerabilities and

the definition of appropriate mitigation actions for protecting the cyber physical system. In this respect,

actions affecting multiple cyber threats and synergies of actions affecting the same event(s) can be easily
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represented in a single model. This model results in a clear graphical representation of the possible cyber

threats to the system by erasing the redundancies deriving from equivalent events in multiple scenarios.

The model relies on the definition of the occurrence probability of cyber threats, which could be

a troublesome task. However, the decomposition of the cyber threat scenario into cascading events

facilitates the definition of the occurrence probabilities of the single events. In addition, the collection

of information on successful and unsuccessful cyber attacks could provide valuable data to estimate the

occurrence probability of specific events [32]. These statistical analyses are not sufficient because the

threat agents would exploit system vulnerabilities that were not necessarily available in past attacks,

which by definition are not included in the existing data [33]. Specifically, a cyber threat may not be

recognized until it manifests, thus it may be missed in threat scenarios that are examined as part of the

risk assessment [34]. For this reason, it is necessary to integrate statistical analyses with information

provided by experts based on investigations on possible system vulnerabilities.

The probabilistic representation of cyber threat scenarios provides a solid framework for the risk

assessment of cyber physical system. It also enhances detailed analyses for risk management, in contrast

to the binary representation through the attack graphs. Moreover, Bayesian networks make it possible to

update the probability of the cascading events of cyber threat scenarios. As a result, the model represents

the effect of the deployment of mitigation actions on the system, even considering intrusion detectors to

tackle cyber threats that have not been examined for the risk assessment [35]. The evaluation of the risk

for each impact criteria provides additional insights into risk management, which would not be possible

with the additive model of scores proposed by the EPRI.

In the case study, the impacts of the cyber threats have been set according to the scoring system in

Table 4. However, it is advisable to set different numeric scales based on the specificity of the impact

criterion, for instance the criterion “Restoration costs” should be evaluated through a monetary scale.

Note that the choice of the scale could lead to different solutions of the optimization model [36].

Finally, the Bayesian framework has broader applications than electric power systems to consider

cyber threats on any cyber physical system. For instance, the National Vulnerability Database provides

information about vulnerabilities of IT systems through the Common Vulnerability Scoring System [37].

6 Conclusions

In this paper, we have developed a Bayesian framework to analyze the vulnerabilities of cyber physical

systems and optimize the resource allocation to protect the system from cyber threats. In particular, the

selection of mitigation actions is based on the analysis of multiple outcomes of cyber attacks, including

financial, safety and service impacts. Cyber threat scenarios are modeled through Bayesian networks
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to overview the alternative opportunities to pursue a cyber attack leading to such impacts. Thus, the

minimization of the expected impacts supports the choice of mitigation strategies based on a multi-

objective optimization model.

The optimization model integrates budget and technical constraints that limit the set of feasible port-

folios in order to select the optimal mitigation strategies. Specifically, the optimal mitigation strategies

correspond to the portfolios that reduce the risk of cyber threats for any impact criterion without in-

creasing the risk for other impact criteria. As a result, we have showed that a comprehensive analysis

of the cyber threat scenarios leads to an optimal mitigation strategy for the system. The viability of

the Bayesian framework has been illustrated through a case study concerning the Advanced Metering

Infrastructure of an electric power system, which have raised several security concerns.

In conclusion, this framework can be introduced as a novel practice for assessing the risks of cyber

threats and for supporting risk-based decisions on resource allocation to cyber physical systems. Possi-

ble extensions need to be investigated, such as modeling the objectives of the threat agent(s) through

Adversarial Risk Analysis [38, 39]. Future research will focus on the analysis of the cyber resilience [40],

meaning the ability of the cyber physical system to continuously deliver the intended outcome despite

adverse cyber events.
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Supplementary tables

Table 3: Likelihood Criteria With Scoring System [16].
Likelihood criterion Scoring system

Skill required 0: Deep domain/insider knowledge and ability to build custom attack tools;
1: Domain knowledge and cyber attack techniques;

3: Special insider knowledge needed;
9: Basic domain understanding and computer skills.

Accessibility 0: Inaccessible; 1: Guarded, monitored;
(physical) 3: Fence, standard locks; 9: Publicly accessible.

Accessibility 0: High expertise to gain access; 1: Not readily accessible;
(logical, assume have 3: Publicly accessible but not common knowledge;

physical access) 9: Common knowledge or none needed.
Attack vector 0: Theoretical; 1: Similar attack has been described;

(assume have physical 3: Similar attack has occurred;
and logical access) 9: Straightforward, for example script or tools available.

Common vulnerability 0: Isolated occurrence; 1: More than one utility;
among others 3: Half or more of power infrastructure; 9: Nearly all utilities.
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Table 4: Impact Criteria With Scoring System [16].
Impact criterion Scoring system

Public safety concern 0: none; 1: 10-20 injuries possible;
3: 100 injured possible; 9: one death possible.

Workforce safety concern 0: none; 3: any possible injury; 9: any possible death.
Ecological concern 0: none; 1: logical ecological damage such as localized fire or spill,

repairable; 3: permanent local ecological damage; 9: widespread
temporary or permanent damage to one or more ecosystems.

Financial impact of 0: petty cash or less; 1: up to 2% of utility
compromise on utility revenue; 3: up to 5 %; 9: greater than 5 %.

Restoration costs 0: petty cash or less; 1: up to 1% of utility organization
O&M budget; 3: up to 10%; 9: greater than 10%.

Negative impact on 0: no effect; 1: small generation facility off-line or degraded operation of
generation capacity large facility; 3: more than 10% loss of generation capacity for 8 hours or

less; 9: more than 10% loss of generation capacity for more than 8 hours.
Negative impact on the 0: no effect; 1: localized price manipulation, lost transactions, loss of

energy market market participation; 3: price manipulation. lost transactions, loss of
market participation impacting a large metro area; 9: market or key

aspects of market non operational.
Negative impact on the 0: no; 1: loss of transmission capability to meet peak demand or

bulk transmission system isolate problem areas; 3: major transmission system interruption;
9: complete operational failure or shut down of the transmission system.

Negative impact on 0: no; 1: up to 4 hour delay in customer ability to contact utility and gain
customer service resolution, lasting one day; 3: up to 4 hour delay in customer ability to

contact utility and gain resolution, lasting a week; 9: complete operational
failure or shut-down of the transmission system.

Negative impact on 0: none; 1: isolated recoverable errors in customer bills; 3: widespread but
billing functions correctible errors in bills; 9: widespread loss of accurate power usage data.

Damage to goodwill 0: no effect; 1: negative publicity but this does not cause financial loss to
toward utility utility; 3: negative publicity causing up to 20% less interest in programs;

9: negative publicity causing more than 20% less interest in programs.
Immediate macro 0: none; 1: local businesses down for a week; 3: regional infrastructure
economic damage damage; 9: widespread runs on banks.

Long term 0: none; 3: several years of local recession;
economic damage 9: several years of national recession.
Loss of privacy 0: none; 1: 1000 or less individuals; 3: thousands of individuals;

9: millions of individuals.
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Table 5: Mitigation Actions for Scenario “Authorized Employee Brings Malware Into System or Network”.
Index Mitigation actions Cost [k$] Affected event(s)

1 Train personnel on possible paths for infection 30
Compromised mobile device

Compromised computer peripherals
Unintentional installation of malware

2 Maintain patches and anti-virus 70

Compromised mobile device
Compromised computer peripherals

Unintentional installation of malware
Intentional installation of malware

3 Test for malware before connection 50
Compromised mobile device

Compromised computer peripherals

Table 6: Mitigation Actions for Scenario “Threat Agent Exploits Firewall Gap”.
Index Mitigation actions Cost [k$] Affected event(s)

4 Implement configuration management 40

Intentional set of firewall rule
that permits access between two networks

Accidental set of firewall rule
that permits access between two networks

5 Verify all firewall changes 60

Intentional set of firewall rule
that permits access between two networks

Accidental set of firewall rule
that permits access between two networks

6 Require intrusion detection 30

Intentional set of firewall rule
that permits access between two networks

Accidental set of firewall rule
that permits access between two networks

7 Require authentication to access firewall 50

Intentional set of firewall rule
that permits access between two networks

Accidental set of firewall rule
that permits access between two networks

Table 7: Mitigation Actions for Scenario “Threat Agent Uses Social Engineering”.
Index Mitigation actions Cost [k$] Affected event(s)

8 Conduct penetration testing periodically 70

Info from Internet
Info from dumpster diving

Info from other means
Threat agent posing as

trustworthy party

9 Train personnel on social engineering attacks 40
Threat agent posing as

trustworthy party
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Table 8: Mitigation Actions for Scenario “Threat Agent Obtains Credentials for System or Function”.
Index Mitigation actions Cost [k$] Affected event(s)

10 Strong passwords 30 Crack of passwords

11 Encrypt communication paths 80
Capture of passwords on network

or through keystroke logger

12 Protect against replay 60
Capture of passwords on network

or through keystroke logger
13 Strong security questions 30 Reset passwords
14 Require multi-factor authentication 50 No assistance from authorized user
15 Use a token with PIN 20 Theft of an authentication token

Table 9: Mitigation Actions for Scenario “Threat Agent Gains Access to Network”.
Index Mitigation actions Cost [k$] Affected event(s)

16 Limit individuals with privilege 30

Having privilege to access network
hosting disconnect function

Privilege to access a network connected to
network hosting disconnect function

17 Isolate network 90
Privilege to access a network connected to

network hosting disconnect function

18
Enforce restrictive firewall rules

70
Path to gain privilege to access

to access connected network network hosting disconnect function

19
Require authentication

40
Path to gain privilege to access

to access connected network network hosting disconnect function

Table 10: Mitigation Actions for Scenario “Reverse Engineering of AMI Equipment Allows Unauthorized
Mass Control”.

Index Mitigation actions Cost [k$] Affected event(s)
20 Remove unsecure development features 80 Reverse engineering of AMI meters
21 Include credentials in equipment design 50 Control of many devices simultaneously
22 Configure for least functionality 30 Control of many devices simultaneously
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A B S T R A C T

This paper presents a methodology to support the selection of optimal portfolios of preventive safety measures
for time-dependent accident scenarios. This methodology captures the dynamics of accident scenarios through
Dynamic Bayesian Networks which represent the temporal evolution of component failures that can lead to
system failure. An optimization model is presented to determine all Pareto optimal portfolios for which the
residual risk of the system at different time stages is minimized, subject to budget and technical constraints on
the set of feasible portfolios. The resulting portfolios are then analyzed to support the optimal selection of
preventive safety measures. We also develop a computationally efficient algorithm for solving the multi-ob-
jective optimization model. The method is illustrated by revisiting the accident scenario of a vapour cloud
ignition which occurred at Universal Form Clamp in Bellwood (Illinois, U.S.) on 14 June 2006. Results are
presented for different cost levels of implementing preventive safety measures, which provides additional
management insights.

1. Introduction

The selection of measures to reduce the risk of industrial accidents is
a crucial decision in safety management. Generally, this task is often
addressed through an iterative procedure based on Risk Importance
Measures [1] which provide information about how changes in the
reliability of individual components impact the risk of the system.
Preventive safety measures are then selected to mitigate the failure of
those components whose impact on the risk of the system is greatest.
The procedure is iterated until the budget for preventive safety mea-
sures is depleted or the risk is reduced to acceptable levels.

In a recent paper [2], we showed that this iterative procedure does
not necessarily lead to the optimal selection of preventive safety mea-
sures; rather, Portfolio Decision Analysis (PDA) [3] is needed to opti-
mize the allocation of resources to the system. Therefore, we proposed a
PDA methodology which employs Bayesian Networks (BNs) [4] to re-
present sequences of events that can cause accidents. The resulting BN
models help assess the residual risk of the system and can be used to
identify the optimal portfolios of preventive safety measures that
minimize such risk. Thus, this approach responds to the need for in-
tuitive and computationally efficient methodologies for risk analysis

[5–7]. Specifically, BNs make it possible (i) to circumvent the limita-
tions of the binary representation of failure processes by encoding
multi-state events, (ii) to extend the concepts of AND/OR gates to gain
more flexibility in modelling the accident scenarios and (iii) to combine
expert judgments and quantitative knowledge for risk estimation. Yet,
our earlier methodology does not account for the time-dependent in-
teractions of failure events [8]. As a result, it is not applicable to the
modelling of accident scenarios which depend on the order, timing and
magnitude of component failures [9–11].

In this paper, we extend the PDA methodology to time-dependent
accident scenarios by explicitly modelling the dynamic evolution of
component failures in process systems. For this purpose, we use
Dynamic Bayesian Networks (DBNs), which generalize BNs by con-
necting nodes over multiple time stages [12]. DBNs have been suc-
cessfully applied in various fields, including networked information
systems [13], medical science [14], simulation analysis [15] and also
reliability engineering. For instance, Boudali et al. [16] investigate
discrete-time BNs for process systems and illustrate their potential in
the risk assessment and safety analysis of complex process systems.
Barua et al. [17] propose a risk assessment methodology for process
systems based on a DBN that captures the changes in the failure states
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over time. However, neither one of these approaches supports the se-
lection of preventive safety measures.

Khakzad et al. [18] employ discrete-time BNs to allocate safety
systems optimally in process facilities. Their approach targets the ris-
kiness of individual accident scenarios by comparing the impacts of
alternative measures before the most effective ones are selected.
However, the analysis of individual accident scenarios can be very
demanding in complex systems, because the number of such scenarios
can be large. Furthermore, Khakzad et al. do not consider the impact of
combinations of preventive safety measures on the system; instead, they
identify the most critical failures for designing preventive safety mea-
sures. Still, the resulting sequential decisions may not lead to the op-
timal resource allocation. By contrast, we propose an optimization
model for computing all optimal portfolios of preventive safety mea-
sures for time-dependent accident scenarios. Preventive safety mea-
sures are installed at the outset of the accident scenario, thus they are
not selected dynamically based on the evolving states of the system
components.

In the previous paper [2], the optimization model was built for
static systems. In this paper, the methodology is extended to time-de-
pendent accident scenarios by modelling Dynamic Bayesian Networks.
Furthermore, the optimization algorithm is updated for multi-objective
optimization. In particular, Pareto-optimal portfolios are selected
through the non-dominance condition. We also discuss several ap-
proaches to select the optimal solution among the set of non-dominated
portfolios.

The rest of the paper is structured as follows. Section 2 presents the
portfolio optimization model in the context of DBNs. It also presents the
procedure for risk assessment through multiple time stages and the
algorithm for computing the optimal allocation of preventive safety
measures. Section 3 revisits an earlier case study on the accident sce-
nario of a vapour cloud ignition [19] and analyzes the portfolios of
preventive safety measures based on the dominance condition over
multiple time stages. Section 4 discusses the potential and limitations of
the proposed methodology. Finally, Section 5 concludes the paper and
outlines extensions for future research.

2. Problem formulation

The formulation of a DBN for reliability engineering is based on a
detailed analysis of the accident scenarios, which often builds on the
development of Fault Trees and Event Trees [20]. Formally, a DBN is a
directed acyclic graph, which consists of a sequence of BNs for the time
stages  �= {0, 1, ..., }. In this paper, DBNs are built to represent acci-
dent scenarios in time-dependent systems where failure events evolve
over multiple time stages. Fig. 1 shows an example of a DBN which
consists of:

- chance nodes VC, indicated by circles and representing random
events occurring during the accident scenarios;
- target nodes VT, indicated by hexagons and representing the

outcomes of the accident scenarios;
- arcs E, indicated by directed edges and representing the causal
dependencies among the nodes that define the accident scenarios.

In particular, node Vi(τ) encodes the possible states of the failure
event i at time ∈τ . In Fig. 1, the sets of chance and target nodes are

= ∀ ∈ =V V τ V τ V τ V τ τ{ ( ), ( ), ( ), ( )} {0, 1, 2},C j h kℓ (1)

=V V V V{ (0), (1), (2)}.T t t t (2)

The directed arcs in the set E(τ) show causal dependencies among
failure events, both at the same time stage τ and at previous time stages

− ∈τ δ where δ∈ {0, 1, 2, ..., τ} indicates the temporal delay in the
causal dependence. The set of nodes −V τ( )i that affect event i at time τ
includes the immediate predecessors of node Vi(τ) such that

= − − → ∈ ≤ ≤−V τ V τ δ V τ δ V τ E τ δ τ( ) { ( )|[ ( ) ( )] ( ), 0 }}.i j j i (3)

where − →V τ δ V τ[ ( ) ( )]j i shows that the state of event j at time −τ δ
affects the state of event i at time τ. It is not required that i≠ j, so the
event i at time −τ δ can affect the same event or other events at time τ.
For instance, in Fig. 1 the event k at time =τ 0 affects the events k and ℓ
at time =τ 1, thus

=−V V V(1) { (0), (0)}.kℓ ℓ (4)

The set of all nodes V can be partitioned into the set of leaf nodes VL and
its complement set of dependent nodes VD as

= ∈ = ∅ ∈−V V τ V V τ τ{ ( ) | ( ) , },L i i (5)

= ∈ ≠ ∅ ∈−V V τ V V τ τ{ ( ) | ( ) , }.D i i (6)

The residual risk of the system is evaluated at one or multiple safety
target nodes which represent the final outcomes of the accident sce-
narios on safety, asset operation and environment. In Fig. 1, the target
node represents the event t through the time stages ∈τ .

2.1. Probability model

Each system component can be in different failure states, which
possibly cause a sequence of cascading failures leading to system
failure. The probability distribution of the random variable Xi(τ) de-
scribes the uncertainty in the state of the failure event i at time τ. The
realization of the random variable Xi(τ) belongs to the discrete set of
states  τ( )i with different contributions to the system risk [21]. Thus, it
is possible to define a probability distribution  = =X τ s[ ( ) ]

X τ
s i

( )i

across the failure states ∈s τ( )i so that




∑ = ∀ ∈
∈

i V τ V1, such that ( ) .
s τ

X τ
s i L

( )
( )

i
i

(7)

The deployment of preventive safety measures on a subset of nodes
VA⊆V can mitigate the system risk by affecting the occurrence prob-
ability of the failure events in the accident scenario. Formally, the set of

Fig. 1. Example of a Dynamic Bayesian Network.
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alternative preventive safety measures is  = {1, ...,| |}i i for the event i,
where the operator | · | indicates the cardinality of the set. The binary
variable za

i represents the choice of preventive safety measure ∈a i

such that =z 1a
i if the measure is installed for all time stages ∈τ , and

0 otherwise. No preventive safety measures are available for nodes
∉V τ V( )i A: this is modelled by  = ∅i so that  =| | 0i . Thus, the binary

vector z defines the portfolio of preventive safety measures as the
concatenation of vectors


= [ ]z zz , ...,i i i

1 | |i
for all failure events. Without

losing generality, we assume that the preventive safety measures for the
failure event i are mutually exclusive. This implies that at most one
preventive safety measure can be selected from the set i so that



∑ ≤ ∀ ∈
∈

z i V τ V1, such that ( ) .
a

a
i i A

i (8)

Synergies between preventive safety measures can be modelled through
logical constraints. Preventive safety measures are implemented at the
outset of the accident scenarios, affecting the probability distributions
at any later time stage. Specifically, the deployment of a preventive
safety measure ∈a i affects the probability distribution of event i at
time τ by reducing the failure probability 

X τ
s

( )i to 
X τ
s

( )a
i for each time

∈τ . Then, the marginal probability of the realization ∈s τ( )i is

  
 

∑ ⎡
⎣⎢

⎤
⎦⎥

∏= + −

∀ ∈

∈ ∈
z z

i V τ V

z( ) [1 ],

such that ( ) .

X τ
s

a
X τ
s

a
i

X τ
s

a
a
i

i L

( ) ( ) ( )i
i a

i i
i

(9)

The Bayesian model computes the probabilities of cascading failure
events through the law of total probability. Specifically, the total prob-
ability of the realization ∈s τ( )i at node Vi(τ)∈ VD depends on the
states of its predecessors. To model this relationship, let − τ( )i be the
Cartesian product of the sets of states of the predecessors such that

(10)

The notation 
−X τ τ

s
x( )| ( )i i refers to the probability of the state ∈s τ( )i of

the event i, conditioned on the realization of states ∈− −τ τx ( ) ( )i i of its
predecessors. Similarly, the notation 

−X τ τ
s

x( )| ( )a
i i is the conditional

probability of the state ∈s τ( )i for the realization − τx ( )i and the de-
ployment of the preventive safety measure ∈a i. Thus, the conditional
probability of state ∈s τ( )i at dependent nodes Vi(τ)∈ VD is

  
 

∑ ⎡
⎣⎢

⎤
⎦⎥

∏= + −
∈ ∈

− − −
z zz( ) [1 ].

X τ τ
s

a
X τ τ
s

a
i

X τ τ
s

a
a
i

x x x( )| ( ) ( )| ( ) ( )| ( )i i
i a

i i i i
i (11)

Based on the conditional independence of the predecessors [22], the
total probability of the realization ∈s τ( )i can be expressed recur-
sively as

  


∑ ∏=
∈ − ∈

≤ ≤

−
−

− −
−

−

z z z( ) ( ) ( ).
X τ
s

τ τ
X τ τ
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j δ V τ δ V τ
δ τ

X τ δ
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{( , ) | ( ) ( )}
0
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( )

i
i i

i i
j i

j
j

(12)

The first summation is taken over all possible realizations ∈− −τ τx ( ) ( )i i

of the states of the predecessors, whereas −x τ δ( )j is the element of
− τx ( )i which corresponds to event j at time −τ δ. The total probability is

a multiplicative function of the portfolio z of preventive safety mea-
sures that have been applied along the scenarios leading to the system
failure.

The portfolio z of preventive safety measures is evaluated by the
expected disutility at safety target nodes VT over multiple time stages.
The disutility u

X
s

t represents the severity of the state ∈s τ( )t of the
failure event t at target node VT. Then, the expected disutility resulting
from portfolio z is

 


∑=
∈

uz z( ) ( )· .X τ
s τ

X τ
s

X
s

( )
( )

( )
t

t
t t

(13)

Specifically, the disutilities are quantified such that =u 0
X
s

t if state
∈s τ( )t does not involve any harmful consequences and =u 100

X
s

t if
state ∈s τ( )t is the consequence of highest severity. If  >τ| ( )| 2,t the
other intermediate states can be assigned disutilities in the range
(0,100) by expert judgments relative to the most and least severe states
whose disutilities are equal to 0 and 100, respectively. Estimates for
such disutilities can be elicited through trade-off weighing approaches
SWING [23] or SMARTS [24].

2.2. Dominance structure

Recommendations for selecting the optimal portfolio of preventive
safety measures are generated by minimizing the expected disutility
throughout the time stages ∈τ . In particular, the multi-objective
optimization model limits the set of feasible portfolios through linear
and non-linear constraints. LetM be the size of the binary vector z, then
the set ZF of feasible portfolios can be defined by a set of L linear in-
equalities whose coefficients are in the matrix ∈ ×H L M and vector

∈b ,L so that

= ∈ ≤HZ z z b{ {0, 1} | },F
M (14)

where ≤ holds componentwise. Among the feasibility constraints, the
overall cost (based on the cost ca

i of deployment of the preventive safety
measure ∈a i) of the portfolio must not exceed the budget constraint
B, thus



∑ ∑ ≤
∈ ∈

z c B.
i V τ V a

a
i

a
i

{ | ( ) }i A i (15)

It is possible to specify additional constraints to represent the properties
of the system. For instance, if the preventive safety measures for miti-
gating the occurrence of the failure events i and j are mutually ex-
clusive, then

 

∑ ∑+ ≤
∈ ∈

z z 1.
a

a
i

a
a
j

i j (16)

Conversely, if at least one preventive safety measure must be applied,
the corresponding constraint is

 

∑ ∑+ ≥
∈ ∈

z z 1.
a

a
i

a
a
j

i j (17)

If there are components to which specific regulatory limits apply, it is
possible to introduce additional constraints to ensure that the total
probability of the failure states does not exceed an acceptable threshold
ϵ

X
s

t so that

 ≤ ∀ ∈τz( ) ϵ , .
X τ
s

X
s

( )t t (18)

The values of ϵ
X
s

t are usually provided by regulatory offices: the con-
straints must be respected for the risk to be acceptable.

The set of non-dominated portfolios of preventive safety measures
consists of those feasible portfolios for which there exists no other
feasible portfolio which would decrease the residual risk of the system
at some time stage without increasing it at any other time stage. This set
includes all Pareto-optimal solutions defined by the dominance condi-
tion

  

  
≻ ⇔ ⎧

⎨⎩

≤ ∈
< ∈

τ
τ

z z
z z
z z

*
( *) ( ) for all
( *) ( ) for some

,X τ X τ

X τ X τ

( ) ( )

( ) ( )

t t

t t (19)

for any pair of feasible portfolios. Thus, the multi-objective optimiza-
tion model determines the set of non-dominated portfolios of pre-
ventive safety measures

= ∈ ∄ ∈ ≻Z z Z z Z z z{ * | such that *}.ND F F (20)

Generally, the set of non-dominated portfolios can include multiple
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solutions of which one must be selected and deployed. For this purpose,
we propose four possible procedures:

- The decision maker(s) can focus on Pareto-optimal solutions for
specific time stages, depending on whether the accident scenarios
have immediate or delayed impacts. For instance, the decision-
maker(s) can disregard late time stages if the accident leads to
harmful consequences very rapidly.

- The decision maker(s) can select the Pareto-optimal solution ZE that
minimizes the overall cost of deployment such that

∑=
∈ ∈

z cZ arg minE
i V τ V

a
i

a
i

z Z* { | ( ) }ND i A (21)

- The decision-maker(s) can select specific preventive safety measures
among the Pareto-optimal solutions by computing the core index of
each measure. Based on Liesiö et al. [25,26], the core index CI(a) is
the fraction of non-dominated portfolios that include the measure

∈a i. In these portfolios, the binary variable za
i is equal to 1 so that

=
∈ =

CI a
zz Z

Z
( )

|{ * | 1}|
| |

.ND a
i

ND (22)

The core index values help identify preventive safety measures that
can be surely selected or rejected. If the core index of a preventive
safety measure is 1, then that measure belongs to all non-dominated
portfolios; on the other hand, if the core index is 0, the preventive
safety measure is not included in any non-dominated portfolio.
Decisions concerning safety measures whose core index values are in
the open interval (0,1) can be taken based on further technical
considerations, such as the installation time of these measures.

- The definition of the optimal strategy can also be defined based on
the minimum Euclidean distance of the expected disutilities from
the origin of the axes, which represents an ideal point of the system
risk through the time stages. Thus, the decision maker(s) can select

the portfolio ZL such that

   �= ∥ ∥
∈

Z z z zarg min [ ( *), ( *), ..., ( *)] .L X X X
z Z*

(0) (1) ( )
ND

t t t
(23)

However, this selection does not consider the time stages explicitly,
thus it does not account for the variations of the risk over the time
stages.

2.3. Optimization algorithm

We develop an implicit enumeration algorithm for computing the
set of non-dominated portfolios of preventive safety measures that
minimize the residual risk of the system throughout the time stages. The
algorithm is an adaptation of the one proposed by Liesiö [27] for sol-
ving a multi-objective optimization problem.

The set Z* includes potential non-dominated portfolios, which is
initially empty. This set is updated at every iteration of the algorithm. If
it is feasible not to deploy any preventive safety measure, the portfolio

=z [0, ...,0] is included in the set Z* as a potential non-dominated so-
lution.

The algorithm enumerates the portfolios starting from =z [0, ...,0]
through two main iterations: Forward-loop and Backtrack step. The
Forward-loop sets =z 1m in increasing order of the index m. If the re-
sulting portfolio z∈ ZF is not dominated by any z*∈ Z*, the algorithm
updates the set Z* by including the portfolio z and removing any
portfolio z*∈ Z* that is dominated by z.

The Forward-loop can only increment the values +z z, ...,m M1 . If the
portfolio z is unfeasible and cannot be made feasible by setting =z 1r

for some indexes ∈ +r m M{ 1, ..., }, there is no need to continue the
Forward-loop because it would generate unfeasible portfolios only. This
fathoming condition avoids the enumeration of all 2M possible portfo-
lios. Alternatively, the Forward-loop terminates when m reaches M,
whereafter the algorithm backtracks. The Backtrack step sets =z 0,M

detects the greatest index m such that =z 1m and sets =z 0m . If such an

Initialization: z = [0, ..., 0]; m← 1; Z∗ ← ∅;
if z ∈ ZF then

Z∗ ← z;
end
while m > 0 do

Forward-loop:
while m ≤ M do

zm ← 1;
if z ∈ ZF and z∗ � z ∀z∗ ∈ Z∗ then

Z∗ ← z ∪ {z∗ ∈ Z∗|z � z∗};
end
if
∑m

j=1 z j H�j +
∑M

j=m+1 min{0,H�j } > b� for any � = 1, ...,L then
Break Forward-loop;

end
m← m + 1;

end
Backtrack step:
zM ← 0;

m← max
[
{ j|z j = 1} ∪ {0}

]
;

if m > 0 then
zm ← 0;
m← m + 1;

end
end
ZND ← Z∗;

Algorithm 1. The implicit enumeration algorithm for multi-objective optimization.
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index does not exist, the algorithm terminates; otherwise, the Forward-
loop is repeated. At termination, the set Z* consists of the set of non-
dominated portfolios ZND.

The pseudocode is presented in Algorithm 1. It has been coded in
C++ programming language and linked to GeNIe Modeler, a devel-
opment environment for reasoning in graphical probabilistic models.

3. Case study

We illustrate our methodology by revisiting the accident scenario of
a vapour cloud ignition occurred at Universal Form Clamp in Bellwood
(Illinois, U.S.) on 14 June 2006. In this accident, a flammable vapour
cloud of heptane and mineral spirits overflowed from an open top
mixing and heating tank. The vapour cloud ignited when it came into
contact with unknown ignition sources. The accident led to one death,
two injuries andsignificant business interruption.

In this system, the heat is provided to the tank by steam coils,
whereas a temperature sensor and a pneumatic unit are installed on the
tank to control operations. In addition, an operator checks the tem-
perature with an infrared thermometer and is expected to intervene in
case of emergency. Finally, the exhaust ventilation system is installed
on top of the tank to control possible vapour emissions. Fig. 2 illustrates
the process system.

According to the full-scale investigation conducted by the Chemical
Safety Board [28], a malfunction of the temperature control system
allowed the steam valves to be open so long that the mixture heated to
its boiling point, thus generating a high volume of vapour. Because the

Fig. 2. Mixing tank mechanical system [28].

Fig. 3. Fault Tree and Event Tree for the accident scenarios of a mixing tank mechanical system [19].
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local ventilation system failed due to a broken fan belt, the vapour
cloud spilled from the tank and finally ignited when exposed to an
unknown ignition source. It was also found that the ventilation system
would not have had enough capacity to collect such a high volume of
vapour, even if it had been working. Following the accident in-
vestigation, Khakzad et al. [19] developed the Fault Tree and Event
Tree in Fig. 3 to model the accident scenarios and investigate the ef-
fectiveness of the preventive safety measures. In addition, they con-
verted the Fault Tree and Event Tree to a Bayesian Network.

In this case study, we extend the Bayesian Network to a DBN in
order to consider the temporal evolution of some events (immediate/
delayed ignition) and the performance of the detection systems
Sprinkler and Alarm. Fig. 4 shows our probability model based on a
DBN, where the node Consq represents the safety target. Depending on
the success or failure of the preventive safety measures, the accident
scenarios lead to nine possible outcomes of increasing severity. In
particular, the state Safe represents the outcome following the non-
occurrence of the system failure (Vapor=Controlled), while the other
outcomes follow from malfunctions of some system components.

Specifically, the Bayesian model considers � = 5 time stages for the

failure events following the Top Event Vapor due to the rapid dynamics
of the accident scenario in case of vapour overflow. In Fig. 4, the
temporal delay δ is specified by the squared number over the respective
arc. If no squared number is associated with the arc, there is no delay.
For instance, the squared number =δ 1 on the arc connecting Sprinkler
to Ignition indicates the causal dependence of Ignition=Spark at time τ
to the event Sprinkler=Activation at time −τ 1. Fig. 5 shows the causal
dependence of Sprinkler and Ignition throughout multiple time stages.
Time dependence represents the possible occurrence of delayed igni-
tions, overcoming the limitations of the model of Khakzad et al. in
which delayed ignitions are considered only as possible outcomes of
accident scenarios.

Because the vapour cloud is not toxic, any fatalities or injuries can
be attributed to the vapour ignition. The activation of Sprinkler and
Alarm are influenced by Ignition=Spark or Vapor=Overflow, as shown
by the causal dependence represented by the arcs. Specifically, the
activation of Sprinkler and Alarm occur if the vapour is ignited
(Vapor=Overflow and Ignition=Spark) with failure probabilities equal
to 0.04 and 0.0013, respectively. However, Sprinkler and Alarm can also
be activated by a specific amount of vapour concentration in the air
even if the vapour is not ignited (Vapor=Overflow and
Ignition=No_spark). The activation of Sprinkler and Alarm for a vapour
concentration occur with failure probabilities equal to 0.3 and 0.225,
respectively. For more details on the definition of the probabilistic
model, please refer to our Data in Brief article [29].

Preventive safety measures reduce the expected disutility of the
negative outcomes at the safety target Consq. Our Data in Brief article
[29] reports the 18 preventive safety measures, including illustrative
costs and updated failure probability of the components. The optimi-
zation model determines the entire set of non-dominated portfolios of

Fig. 4. DBN for the accident scenarios of a mixing tank mechanical system.

Fig. 5. Causal dependence of Ignition to Sprinkler throughout multiple time
stages.
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preventive safety measures which minimize the expected disutility of
the safety target Consq throughout multiple time stages. The

optimization algorithm has been run for different budget constraints.
Fig. 6 shows the minimum expected disutility of the accident sce-

narios for each time stage. For multiple non-dominated portfolios at a
given budget level B (horizontal axis in Fig. 6), the graph shows the
minimum value of expected disutility of the safety target. At the budget
level =B 0, the graph shows the expected disutility for no preventive
safety measure to the system. By increasing the budget, the Pareto-
optimal portfolios of preventive safety measures further reduce the
residual risk of the system, as evaluated by the expected disutility of
safety target Consq.

The possibility of immediate ignition is the underlying cause for the
expected disutility at time =τ 0. At time stage =τ 1, the activation of
Sprinkler decreases the probability of ignition and consequently the
expected disutility. Finally, the expected disutility of the later time
stages increases due to the possibility of delayed ignition. Fig. 6 also
provides additional risk management insights, for instance for defining

Fig. 6. Minimum expected disutility of safety target Consq.

Table 1
Non-dominated portfolios for budget constraint at =B 600 k€.

Component z1 z2 z3

P_unit Duplication Duplication Duplication
M_valve Synergy Synergy Synergy
A_valve Synergy Sensor Calibration test
Belt Condition

monitoring
Condition
monitoring

Condition monitoring

Ignition Hypoxic air
technology

Hypoxic air
technology

Hypoxic air technology

Sprinkler Quick response Quick response Quick response
Alarm Semi conductor

sensor
Catalyic gas sensor Electrochemical cells

Fig. 7. Core index analysis of preventive safety measures.
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the requisite budget to meet safety targets and for assessing how in-
creases in the budget reduce the system risk [30].

For the budget constraint at =B 600 k€, the optimization model
provides the three non-dominated portfolios in Table 1.

The analysis of the core indexes in Fig. 7 recommends deploying the
preventive safety measures Duplication, Synergy, Condition monitoring,
Hypoxic air technology and Quick response, whereas the selection of
preventive safety measures on A_valve and Alarm may require further
analysis.

Because there are only few non-dominated portfolios, the solutions
can be analyzed individually to select the optimal allocation of risk
management resources. The overall cost of the first two non-dominated
portfolios is 590 k€ and 600 k€ for the third one. Thus, portfolios z1
and z2 are the Pareto-optimal solutions that minimize the overall cost.
In addition, Fig. 8 shows that portfolio z1 dominates the other two so-
lutions at time stages τ≥ 1, but the zoomed frame at the initial time
stage =τ 0 highlights a higher expected disutility of 0.13% and 0.45%
in comparison to portfolios z2 and z ,3 respectively. If such increases are
significant, then portfolio z1 is recommended as the optimal allocation
for the system.

4. Discussion

The case study illustrates the main advantages of employing
Portfolio Decision Analysis to select the optimal allocation of pre-
ventive safety measures for the system. The proposed methodology does
not target the failure of the individual components; instead, it de-
termines non-dominated portfolios that minimize the residual risk of
the system throughout multiple time stages. This approach helps
overcome the limitations of sequential decisions in the selection of
preventive safety measures for the system, which could lead to sub-
optimal solutions.

The optimization algorithm is computationally efficient in gen-
erating Pareto-optimal solutions. In the case study, the computation of
all non-dominated portfolios from the initial set of 218 possible alter-
natives took approximately one minute on a regular laptop (Intel Core
i5 CPU @ 2.3 GHz). Nonetheless, the algorithm may require a long

computational time when the number of possible measures is large
(over 40). In this case, it is possible to decompose the optimization
problem into sub-problems for subsystems. The optimization algorithm
has been linked to GeNIe Modeler to compute the occurrence prob-
ability of the safety targets at each time stage. The computational time
depends on the constraints limiting the set of feasible portfolios. For
instance, relaxing the budget constraint increases the computational
time, because the set of feasible solutions is larger. However, the fa-
thoming condition improves the algorithm efficiency by avoiding the
enumeration of all portfolios.

In addition, GeNIe Modeler makes it possible to revise the prob-
abilistic model through changes of the nodes and/or arcs of the DBN.
The code accounts for preventive safety measures that involve the in-
troduction/removal of components or dependencies between them.
Specifically, changes due to the introduction/removal of components
make it necessary to introduce/remove the respective nodes and to
elicit/revise the corresponding probability tables. By contrast, changes
in dependencies modify the dimensions and parameters of the condi-
tional probability tables. Furthermore, the model can handle multiple
states for each failure event. This representation makes the model more
realistic, even if it increases the effort of eliciting the conditional
probability tables.

Thanks to this comprehensive representation, the optimization
model makes it possible to identify optimal choices between a single
reliable component and a combination of less reliable ones. For mul-
tiple non-dominated portfolios, the core indexes support the selection/
rejection of some preventive safety measures. However, the final se-
lection calls for a detailed analysis of the alternative non-dominated
portfolios according to case-specific criteria. For instance, in the case
study the experts could be interested in the portfolio for minimizing the
expected disutility at the initial time stages to prevent the ignition and
allow people to escape the factory. In other situations, it could be op-
timal to choose the portfolio for which the safety target can be re-
spected as long as possible to provide time for intervening and limiting
the severity of the accident scenario.

One limitation of this methodology is the need to specify the pre-
ventive safety measures in advance, including information about their

Fig. 8. Expected disutility of non-dominated portfolios by setting =B 600 k€.
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costs and impacts on the reliability of system components. Because this
can be difficult in practice, future research will focus on extending this
methodology to include incomplete information in the parameters of
the preventive safety measures. In this respect, credal networks [31]
can be employed to accommodate the imprecision through intervals of
lower and upper bounds. Then, the optimization would provide solu-
tions that are robust to changes in the model parameters.

5. Conclusions

In this paper, we have extended our earlier methodology for static
systems [2] to time-dependent accident scenarios through Dynamic
Bayesian Networks. The methodology employs Portfolio Decision
Analysis to support the selection of preventive safety measures through
multi-objective optimization. We have proposed several approaches for
selecting the final decision from the set of non-dominated portfolio. We
have also demonstrated the viability of the methodology by analyzing
the accident scenarios of a vapour cloud ignition which occurred at
Universal Form Clamp in Bellwood (Illinois, U.S.) on 14 June 2006.

The PDA methodology can be employed especially in the design
phase of process systems to choose the optimal combination of pre-
ventive safety measures that minimizes the residual risk at different
time stages. Moreover, the improved availability of sensors for condi-
tion monitoring of industrial systems makes it is possible to update the
required probability distributions of component states with the aim of
gaining further improvements in system safety. In particular, additional
preventive safety measures can then be selected based on new ob-
servations on component reliability.

One possible extension of the proposed methodology is to optimize
the implementation and deployment of preventive safety measures
which are activated or deactivated dynamically depending on the
specific states of the system components. Such extensions can be built
through advances in dynamic optimization and contingent portfolio
programming [32].
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1. Data

This article presents the probabilistic model data of the time-dependent accident scenarios for a
mixing tankmechanical system. Specifically, we revisit the earlier analyses of the accident scenarios by
Khakzad et al. [2] to illustrate the methodology presented in our research article [1]. One of such
accident scenarios occurred on 14 June 2006 at Universal Form Clamp in Bellwood (Illinois, U.S.)
through a vapor cloud ignition [3].

Table 1 shows the failure probabilities of Alarm and Sprinkler for different ways of activating such
components during an accident. In particular, the activation occurs if the vapor is ignited or if there is a
specific amount of vapor concentration in the air, even though the vapor is not ignited.

Based on the analyses by Khakzad et al. [2], Table 2 lists the system components and their failure
probabilities. In addition, we assume that the activation of Sprinkler reduces the probability of delayed
ignitions by 50%, as detailed in Table 3 (last row, first and second columns). For this reason, the
activation of the Sprinkler for a vapor concentration in the air could prevent delayed ignitions.

Table 4 lists the nine possible outcomes of the accident scenarios where the state Safe represents the
outcome following the non-occurrence of the system failure (Vapor ¼ Controlled). The other outcomes
are caused by malfunctions of some system components. Due to the activation of Sprinkler, accident
consequences C1 and C2 are less severe than C3 and C4, respectively. This information is helpful in
eliciting the disutility functions to specify the ranking of the outcome severity. The last column of Table
4 shows illustrative disutility values that quantify the severity of the outcomes.

Based on the failure probabilities in Table 2, the Bayesian model computes the occurrence
probabilities of the outcomes of the accident scenarios, reported in Table 5 for each time stage.
The deployment of preventive safety measures on some selected components mitigates the risk of
the negative outcomes. Table 6 lists the alternative preventive safety measures (second column) that
affect the occurrence of failures of specific components (first column). The last two columns of
Table 6 report illustrative costs and updated failure probabilities of the components. In particular, the
preventive safety measure Synergy refers to a combination of Calibration test and Sensor: if both

Specifications table

Subject Safety, Risk, Reliability and Quality
Specific subject area Portfolio optimization for risk mitigation
Type of data Tables
How data were
acquired

Analysis of the numerical results of the Bayesian model [1]

Data format Analyzed data
Parameters for data
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Journal reputation

Description of data
collection

Literature review

Data source location Institution: Aalto University
City: Helsinki
Country: Finland

Data accessibility With the article
Related research article Mancuso, A., Compare, M., Salo, A. and Zio, E., 2019. Portfolio optimization of safety measures for

the prevention of time-dependent accident scenarios. Reliability Engineering & System Safety, 190
(106500).
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Value of the data
� The failure probabilities of the components of a mixing tank mechanical system can be used for benchmarking in future
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� Examples of conditional probability tables illustrate the modelling of time-dependent accident scenarios.
� Novel applications for probabilistic risk assessment are possible based on the data in this article.
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Table 1
Conditional probabilities of Alarm and Sprinkler at t ¼ 0 (t refers to the time stage of the Bayesian model).

Vapor Controlled Overflow

Ignition No spark Spark No spark Spark

Alarm Activation 0 0 0.7750 0.9987
No activation 1 1 0.2250 0.0013

Sprinkler Activation 0 0 0.70 0.96
No activation 1 1 0.30 0.04

Table 2
List of components and respective failure probability.

Component Symbol Failure probability

Sensor Sensor 0.0400
Pneumatic unit P_unit 0.2015
Temperature control system T_ctrl_sys OR gate
Operator Operator 0.0200
Infrared thermometer Thermo 0.0468
Temperature measurement system T_sys OR gate
Manual steam valve M_valve 0.0243
Automatic steam valve A_valve 0.0276
Automatic temperature control system ATCS OR gate
Manual temperature control system MTCS OR gate
High temperature protection system HTPS AND gate
Ventilation Vent 0.0150
Fan Fan 0.0100
Belt Belt 0.0500
Duct Duct 0.0010
Ventilation system Vent_sys OR gate
Vapor overflow Vapor AND gate
Ignition barrier Ignition 0.1000
Water sprinkler system Sprinkler 0.0400, 0.3000
Alarm system Alarm 0.0013, 0.2250

Table 3
Conditional probabilities of Ignition at t>0 (t refers to the time stage of the Bayesian model).

Ignition [t� 1] No spark Spark

Sprinkler [t� 1] Activation No activation Activation No activation

Ignition [t] No spark 0.95 0.9 0 0
Spark 0.05 0.1 1 1

Table 4
List of accident outcomes (C refers to the accident consequences, numbered based on increasing severity).

Outcome Symbol Disutility

Controlled vapor Safe 0
Safe evacuation C1 10
Wet vapor cloud near the ground C2 15
Safe evacuation with possibility of delayed ignition C3 30
Vapor cloud with possibility of delayed ignition C4 40
Fire, moderate property damage, low death toll C5 60
Fire, high property damage, low death toll C6 80
Fire, moderate property damage, high death toll C7 90
Fire, high property damage, high death toll C8 100
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measures are installed, this synergy effect yields more benefits than installing independent mea-
sures. The updated failure probabilities of Sprinkler and Alarm refer to the two different failure
scenarios detailed in Table 1.

2. Experimental design, materials, and methods

The failure probabilities of the components in Table 2 are provided by the article by Khakzad et al.
[2]. Gates represents logic structures of the Bayesian model in our research article [1]. The failure
probabilities in Table 6 have been obtained by reducing the initial failure probability of the compo-
nents, based on a specific reduction rate for each preventive safety measure. These values illustrate the
viability of the Bayesianmodel [1], but do not represent any actual system. The occurrence probabilities
of the outcomes of the accident scenarios have been computed by GeNIe Modeler [4] through the
Dynamic Bayesian Network presented in our research article [1]. Finally, the severity of the outcomes
has been quantified through the trade-off weighing approach SWING [5].
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Table 5
Probabilities of accident outcomes at each time stage (C refers to the accident consequences).

Outcome t ¼ 0 t ¼ 1 t ¼ 2 t ¼ 3 t � ¼ 4 t ¼ 5

Safe 0.998319 0.998319 0.998319 0.998319 0.998319 0.998319
C1 0.000820 0.001226 0.001289 0.001256 0.001202 0.001144
C2 0.000238 6.539252e-05 1.485681e-05 3.229053e-06 6.934547e-07 1.484231e-07
C3 0.000352 0.000116 3.270228e-05 8.908458e-06 2.410073e-06 6.510108e-07
C4 0.000102 6.202325e-06 3.767917e-07 2.289007e-08 1.390572e-09 8.447723e-11
C5 0.000161 0.000264 0.000343 0.000411 0.000475 0.000536
C6 6.713624e-06 2.083401e-06 5.733853e-07 1.552510e-07 4.193539e-08 1.132327e-08
C7 2.097377e-07 2.850967e-08 5.062283e-09 1.019337e-09 2.140727e-10 4.552654e-11
C8 8.739072e-09 5.313530e-10 3.227972e-11 1.960993e-12 1.191303e-13 7.237167e-15

Table 6
List of preventive safety measures and respective failure probability.

Component Preventive safety measure Cost [kV] Failure probability

P_unit Inspection plan 60 0.1500
Duplication 80 0.100

M_valve Calibration test 30 0.0200
Sensor 40 0.0150
Synergy 60 0.0100

A_valve Calibration test 30 0.0200
Sensor 40 0.0150
Synergy 60 0.0100

Belt Periodic test 40 0.0300
Condition monitoring 100 0.0100

Ignition Tank blanketing 70 0.0800
Inerting systems 100 0.0600
Hypoxic air technology 150 0.0400

Sprinkler Standard response 40 0.0300, 0.2000
Quick response 80 0.0100,0.1000

Alarm Semi-conductor sensor 60 0.0013, 0.2000
Catalytic gas sensor 80 0.0013, 0.1500
Electrochemical cells 100 0.0013, 0.1000
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a b s t r a c t

In this paper, we present a novel risk-based methodology for optimizing the inspections of large
underground infrastructure networks in the presence of incomplete information about the network
features and parameters. The methodology employs Multi Attribute Value Theory to assess the risk of
each pipe in the network, whereafter the optimal inspection campaign is built with Portfolio Decision
Analysis (PDA). Specifically, Robust Portfolio Modeling (RPM) is employed to identify Pareto-optimal
portfolios of pipe inspections. The proposed methodology is illustrated by reporting a real case study on
the large-scale maintenance optimization of the sewerage network in Espoo, Finland.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Large infrastructure networks, such as gas or water pipelines,
are subjected to preventive renovation and condition inspection
programs which account for a significant portion of the network
operating costs [41,42]. The optimization of inspections is there-
fore fundamental for the efficient management and competitive-
ness of these complex networks. Information about the current
condition of the network items is needed for developing the
optimal renovation program; however, in practice, the actual
conditions of network items such as pipes can be determined only
approximately through inspections that can be very costly, espe-
cially in the case of large underground networks.

This calls for the optimization of renovation planning, which
can be seen as a two-step process:

(i) identification of an optimal set of inspections of the network
items whose subsequent renovation actions (if necessary) can
be expected to reduce network-related risks most while
reducing the cost of expected negative consequences as much
as possible;

(ii) assessment by inspection of the degradation state of the net-
work items in the selected portfolio and optimal planning of
maintenance actions for the whole network.

In this paper, we develop a novel risk-based methodology for
addressing the first issue, whereas the second issue is left for
future research. The methodology has been motivated by and
developed in the context of a real case study.

Although there are several definitions for risk (e.g., see [3,4,18]
for reviews and comparisons), in maintenance engineering it has
always been viewed as a combination of two attributes: likelihood
(i.e., a description, even rough, of the uncertainty in the occur-
rence of the failure event) and severity (i.e., a quantification of the
impact of the failure on properties, environment, safety, produc-
tion, etc.) [17].

The idea of optimizing maintenance actions on the basis of a
risk evaluation in view of likelihood and severity dates back to the
1980s, when the American Petroleum Institute (API) started the
Risk-Based Inspection (RBI, [7,16,25]) project whose aim was to
define a procedure for prioritizing and managing the efforts of an
inspection program. In this procedure, resources are allocated to
provide a higher level of coverage to high-risk items while main-
taining an adequate effort on lower-risk equipment [14]. This
methodology has become popular also in the nuclear industry
(e.g., [37]) in which Probabilistic Risk Assessment (PRA) is used for
maintenance prioritization: the more a given maintenance action
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on a basic event can reduce the overall plant risk, the higher the
priority of this action.

Later, especially after the year 2000, Risk-Based Maintenance
(RBM, [6]) has gained popularity with the inclusion of risk-based
inspection within the Reliability Centered Maintenance (RCM)
paradigm and the Condition-Based Maintenance (CBM) strategies
[1,20,29,36]. Subsequently, it has been applied in different indus-
trial contexts (e.g., [1]), including critical infrastructures. For
example, RBM models have been developed by Dey [10,11] for oil
and gas pipelines by using the Analytic Hierarchy Process (AHP)
[28] to guide the allocation of maintenance resources on the most
risky pipeline stretches. However, the AHP method suffers from
limitations such as the rank reversal phenomenon (i.e., the relative
ranking of two alternatives may change when a new alternative is
introduced), shortcomings of the 1–9 ratio scale, and pitfalls in
quantification of qualitatively stated pairwise comparisons [30].
Moreover, the methodology proposed in [13,14] does not tackle
the problem of how to optimize the inspection campaign, which,
as a topic, has been addressed by researchers who have built RBI
plans for wastewater networks (e.g., [6,18]).

Hahn et al. [18] proposed an approach to RBI based on Bayesian
Belief Networks (BBN) for prioritizing the sewerage inspections
(i.e., the domain of the case study discussed in this work). The
model accounts for the uncertainty in the expert beliefs. However,
the resulting decision recommendation considers neither the
uncertainty in the state of the pipe nor any budget constraint.
Moreover, it does not account for possible project inter-
dependencies (e.g., cost synergies of checking pipes in the same
region) and constraints concerning portfolio balance (e.g. to
ensure that portfolios contain sufficiently many pipes with dif-
ferent characteristics).

A Multi-Objective Genetic Algorithms (MOGA, [8,12]) has been
developed in [5] to identify the set of Pareto-optimal inspection
programs. Network items are ranked based on how many times
they are selected by the multi-objective algorithm to create an
archive of “optimal” inspection policies. Although the selection of
the items with the highest selection frequency approximately
maximizes the expected number of correct item choices [26], this
methodology for prioritizing network item inspections lacks a
sound theoretical justification. Furthermore, the solution can be
heavily dependent on the algorithm settings (e.g., number of
generations, mutation rates, etc.). As a result, the Decision Maker
(DM) cannot be sure that the proposed final solution belongs to
the set of optimal solutions. Finally, this methodology is not able to
deal with uncertain and imprecise information.

Against these backdrops, we propose a rigorous methodology
for the optimal targeting of inspection activities in a generic
underground network, with the aim of maximizing the aggregate

value of these inspections as achieved through their contribution
to risk reduction, subject to budget constraints and the presence of
possible interdependencies among inspections and uncertainties
about the model parameters. Our methodology combines aspects
of Robust Portfolio Modeling (RPM, [23,24,26]) with the dynamic
modeling approach [34] which uses multi-attribute value func-
tions to model preferences on the quality distributions of assets
and provides guidance for the optimal allocation of maintenance
resources at the Finnish Road Administration. In particular, our
methodology accommodates qualitative expert judgements about
the risk of network items.

Our risk-based methodology for prioritizing network item
inspections consists of two steps:

1. Rank all items of the network based on their risk level.
2. Select optimal portfolios of inspections among the items that

have been ranked highest.

The separation of the two parts is motivated by practical rea-
sons: the direct application of the procedure at the second step to
all the items would require an excessive computational effort.
Nonetheless, in the case of large networks, the number of risky
items selected at step 1 is typically in the order of thousands and
searching such a large search space is not computationally feasible.
Thus, we have implemented the non-exhaustive search of the
algorithm proposed by Mild et al. [26] to determine a large subset
of optimal portfolios.

The proposed approach is able to guide risk-based inspection
planning based on rough field data and qualitative statements from
experts who have knowledge about the pipe degradation process as
well as the risk scenarios caused by pipe failures. Alternatively,
model-based risk estimates can be derived through analytical
approaches and associated models. However, such models involve
parameters whose values are usually not precisely known and may
have to be fine-tuned on case-by-case basis; moreover, the more
advanced analytical approaches also require model simulation [38].
In this sense, one advantage of our approach is that it offers a viable
compromise between the need to incorporate sound risk estimates
based on field data about the physical phenomena and the need to
build a parsimonious model for the risk assessment of a very large
number of maintenance items.

We also note that this methodology for identifying optimal
portfolios of risk-based inspection programs is generic in that it
can be applied to different types of underground networks (gas,
water, wastewater, etc.). We illustrate this methodology by
reporting a real case study in which it was applied to a large
sewerage network in Espoo, Finland.
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The rest of the paper is structured as follows. Section 2 presents
the methodology, focusing on risk identification, risk value trees
definition and risk assessment in its first section, and describing
the methodological steps to assess the inspection benefits and, on
this basis, select the cost efficient inspection portfolios, in the
second section. Section 3 presents the case study and describes the
process and outcomes of eliciting statements by experts to build
the value trees. Finally, Section 4 concludes the paper and outlines
extensions for future research.

2. Overview of the methodology

Our approach builds on Multi-Attribute Value Theory (MAVT,
[16,23]), which is a systematic methodology for evaluating deci-
sion alternatives with regard to multiple objectives. In MAVT, these
objectives are operationalized by defining corresponding attri-
butes which have performance scales for measuring the perfor-
mance of alternatives. In our paper, the alternatives are network
items which are evaluated with regard to the two main objectives
of impacting most the likelihood of failures and contributing most
to the severity of failure consequences, in order to establish
inspection priorities. Each subset of these network items is called a
“portfolio”.

Fig. 1 summarizes the two-step risk-based methodology pro-
posed for prioritizing item inspections in the presence of incom-
plete knowledge. The steps are detailed in next sections.

2.1. Rating of network items based on risk

In the proposed MAVT-based framework, the risk-based rating
of network items has two main objectives:

1. Identify items which are most likely to fail.
2. Identify items whose failure has the most severe consequences.

For each objective, a team of experts analyzes which attributes
contribute to failure likelihood and severity. These attributes are
structured as a hierarchy when the overall objective (i.e. failure
likelihood and failure severity) is decomposed into subobjectives
until the lowest level of the hierarchy, which contains attributes
with regard to which the alternatives can be meaningfully eval-
uated [19]. In particular, the hierarchy provides the DM with an
overall view of the relationships between the different sub-
objectives and facilitates the assessment of the relative importance
of objectives on each level. The decomposition proceeds until the
experts agree that attributes do not need to be further dis-
aggregated. The attributes at the lowest level of the hierarchy are
called leaf attributes. For example, in the value tree for the
objective of impacting most the likelihood of failure, the leaf
attribute “Material” of a pipe has several material quality classes so
that a pipe matches one of the following: “PVC”, “cast iron”,
“concrete”, “polyethylene”, “renovated with trenchless socks”.

For simplicity, suppose that the value tree of failure likelihood
is composed of two levels. Specifically, assume that the first level l1
represents the failure likelihood VLðxjÞ of alternative xj and the
second level l2 includes the set of leaf attributes AL of failure
likelihood (the same approach is used to build the value tree of
failure severity). Each alternative xj is characterized by specific
quality classes xji for each attribute i. For example, a pipe is char-
acterized by a specific material among “PVC”, “cast iron”, “con-
crete”, “polyethylene” and “renovated by trenchless socks”. Each of
these quality classes is assigned a score viðxjiÞ, which is evaluated
through a modified SWING procedure [40] so that the expert
assesses the relative importance of different quality classes xji in
determining the failure likelihood. Specifically, the weakest

material (“renovated by trenchless socks”) is assigned score
viðxjiÞ ¼ 100, whereas the most reliable one (“concrete”) is assigned
score viðxjiÞ ¼ 0: every other quality class is scored according to
these two reference points, whereby scores viðxjiÞ can alternatively
be evaluated through interval valued scores so that
viðxjiÞ ¼ ½viðx

j
iÞ; viðx

j
iÞ�. For example, score 60�80½ � is assigned to

quality class “cast iron” given that its reliability is much closer to
“concrete” than “renovated by trenchless socks”. Once the quality
classes of every attribute have been scored, each alternative xj is
fully defined by the set of interval-valued scores viðxjiÞ of the
quality classes that characterize that alternative. Thus, the values
of failure likelihood VL xj

� �¼ vL xj
� �

; vL xj
� �h i

are calculated as the
intervals

vL xj
� �

¼ min
X
iAAL

wivi xji
� �" #

ð1Þ

vL xj
� �

¼max
X
iAAL

wivi xji
� �" #

ð2Þ

where wi represents the weight of attribute i.
In this context, weights wi are specified by the experts who

may give imprecise preference statements about attributes such as
“attribute iAAL is more important than attribute i0AAL which in
turn is more important than attribute i00AAL”. These preference
statements imply weight constraints that limit the set of feasible
weights. In the previous example, the imprecise statements lead to
the weight constraints wiZwi0 Zwi00 so that the feasible weight set
consists of the extreme points 1 0 0ð Þ; 1

2
1
2 0

� �
; 1

3
1
3
1
3

� �
and their

convex combinations. Under mild assumptions, which are here
fulfilled, the maximum and minimum values of Eqs. (1) and (2) are
attained at the extreme points of the feasible weight set [35].

In value trees with multiple levels, the calculation of
Eqs. (1) and (2) is propagated throughout the hierarchical struc-
ture until the topmost objective (i.e. failure likelihood or failure
severity) is reached. The definition of failure likelihood and failure
severity of each alternative xj is based on the extension [32] of the
PAIRS method [31], which admits imprecise preference statements
about attributes. Specifically, PAIRS solves linear problems of Eqs.
(1) and (2) at level lh to identify the interval-valued scores at the
next higher level lh�1, and the computations are then repeated
until the topmost objective of the value tree is reached. Note that
Eqs. (1) and (2) are based on the assumption that the leaf attri-
butes are mutually preferentially independent [15] which can
usually be guaranteed by structuring the problem so that the
contribution of a higher score on some leaf attribute to the overall
performance does not depend on what the performance levels on
other leaf attributes are.

Note that every item is characterized by a quality class for each
leaf attribute. For instance, a pipe is characterized by a specific
material, a specific diameter, etc. Thus, the score elicitation is
applied to the quality classes of every leaf attribute so that the
overall values of failure likelihood and failure severity of every
pipe can be estimated once the pipe quality classes of every leaf
attribute have been assessed. As a result, the calculation of failure
likelihood and failure severity values does not take much com-
putation time even if the number of items is large.

In the risk assessment part of the methodology, the aim is to
identify the most critical network items with respect to failure
likelihood and failure severity. These items form the Pareto opti-
mal set, because they are not dominated by any other item, i.e.,
another item with a greater failure likelihood will have a lower
failure severity or vice versa.

However, this concept of dominance needs to be extended for
our analysis, because the overall values of both likelihood and
severity are intervals (VL and VC , respectively). That is, for interval
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scores, item xj is said to dominate item xk (ka j) if and only if the
intervals VLðxjÞ and VCðxjÞ both lie above VLðxkÞ and VCðxkÞ,
respectively

xjgxk2
vL xj
� �

ZvL xk
� �

vC xj
� �

4vC xk
� � 3 vL xj

� �
4vL xk

� �
vC xj

� �
ZvC xk

� �
8<
:

9=
; ð3Þ

This dominance definition allows us to identify the different
Pareto-optimal frontiers Fi [9,19], where iA1;2;3;… represents
the index of the non-dominated frontiers [10,12] and j∙j indicates
the dimension of the set.

On this basis, the items of the network can be compared to
each other to identify those that have the highest failure likelihood
and highest failure severity. In this respect, given the uncertainty
in both the likelihood and severity values, the pairwise dominance
concept of [32] is applied to select non-dominated items (i.e., the
Pareto optimal set) in the two-dimensional space failure like-
lihood–failure severity. The second step of the analysis (i.e. port-
folio optimization) is carried out on this reduced set F1, containing
the items which have been assessed to have the highest risk.

2.2. Portfolio optimization

The purpose of portfolio optimization is that of performing a
cost-benefit analysis of the most critical network items with the
aim of identifying the subset of those items whose inspection is
expected to give the highest benefit in terms of reducing the cost
of disruption.

The main goal is to make those inspection and renovation
decisions that maximize the benefit-cost ratio of performing
inspections in order to reduce expected disruption costs. We also
account for the uncertainty in the direct and indirect costs asso-
ciated to the pair of decisions, as well as the uncertainty in the
actual degradation state of the pipe. In our setting, inspection
plans are revised annually based on the available budget and the
historical record of past inspection outcomes and maintenance
actions. The prioritization of inspections is updated annually by
relying on expert judgements, which, if needed, can also be eli-
cited to revise the definition of the attributes and to adjust the
weights.

Towards this end, we first build a decision tree model [16,23] to
help experts decide whether an item needs inspection and whe-
ther or not it pays off to carry out maintenance actions on it. A
decision tree shows the relationships between the decisions, the
chance events that may occur, and the values that are generated
through sequences of decisions and events. Probabilities are
assigned to the chance events so that expected values are deter-
mined for each possible outcome.

For every network item in the previously selected set of risky
items, the experts have two successive decisions to make:

1. Decide whether the item should be inspected. This decision tree
is indicated by two branches corresponding to the two possible
decisions: ‘Yes’ and ‘No’.

2. If the item has been inspected, the next decision is whether or
not to carry out renovation actions which may reduce the net-
work disruption probability and consequently the expected
severity of consequences. Otherwise, the indirect costs of not
inspecting the item are considered (i.e., the expected disruption
consequences). This second part of the decision tree is case-
specific.

Consider the decision tree in Fig. 2, which is employed in the
case study in Section 3. The DM first has to decide whether pipe xj,
jAF1 should be inspected to determine its degradation state (part
1 in Fig. 2). In this paper we employ a discrete, multi-state

description of the degradation level of the network maintenance
items, which is often the case in many industrial applications [22].
If no inspection is carried out, then the DM needs to associate with
this decision the cost of indirect consequences. We assume that
renovations are always preceded by item inspection, because it is
not meaningful to carry out renovation activities without
inspecting first. The expected value of disruption is calculated over
the possible pipe degradation states (Fig. 2, bottom part). The
more degraded the item state, the higher the probability of
disruption.

If the item is inspected, the next decision is what renovation
actions (part 2 in Fig. 2), if any, should be taken to improve the
state of the items and, thus, to reduce the probability of disruption.
In particular, items that have been renewed are all assumed as
good as new, with disruption probability equal to that of the
State 1.

To solve the decision tree, it is necessary to elicit case-specific
probability and cost information which are attached to its
branches.

Firstly, we need to estimate the probability of item xj belonging
to degradation state sAS¼ 1; :::;Σgf . Here, different methodologies
of probability elicitation can be employed, based on the available
data and the specific case.

In our case, we considered the actual inspection outcomes on
the J items and calculated the corresponding likelihood intervals
VL xj

� �¼ vL xj
� �

; vL xj
� �h i

derived from expert statements. Then, for
every likelihood score vL ¼ vLANj0rvLr100gf , we selected all
items xj for which vLAVL xj

� �
. The resulting intervals were used to

estimate the probability p sj ¼ s
� �

of item xj being in state sAS.
Namely, consider the interval VL xj

� �
of likelihood values vL xj

� �
,

then the probability p sj ¼ s
� �

is

pðsj ¼ sÞ ¼
X

vL AvL xjð Þ
½pðsj ¼ sjvLðxjÞ ¼ vLÞ∙pðvLðxjÞ ¼ vLÞ�; ð4Þ

where

pðsj ¼ sjvLðxjÞ ¼ vLÞ ¼
j fjA⋃φFφjvLAVL xj

� �
∧sj ¼ sgj

j fjA∪φFφjvLAVL xj
� �gj ð5Þ

pðvLðxjÞ ¼ vLÞ ¼
1

vL xj
� ��vL xj

� �; ð6Þ

if we assume a uniform distribution over the likelihood interval
scores vLAVL xj

� �
. For simplicity, we only considered integer

Fig. 2. Decision tree.
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likelihood values. This makes it possible to solve Eq. (4) as a sum
rather than as an integral.

The disruption probabilities are contingent on the item states.
To account for the corresponding uncertainty about disruption
probability, experts were asked to estimate lower bounds pd

s
and

upper bounds pds of the disruption probability of each degradation
state sAS. As mentioned before, if the item is renovated, then the
corresponding disruption probability is the one for the best State 1,
i.e. pd

1
; pd1

h i
.

In addition, it is necessary to estimate (i) the disruption con-
sequences, which are estimated as one number representing both
direct and indirect costs cdj ¼ ½cdj ; c

d
j � ; (ii) the renovation costs csj ¼

½csj ; c
s
j � , sAS and (iii) the inspection costs ctj ¼ ½ctj ; c

t
j �.

These parameters can be elicited as intervals defined by lower
and upper bounds that are stated by the experts. Note that the
choice of describing by intervals the uncertainty in the expert-
estimated probability and consequence values is justified by the
sake of generality of the proposed methodology. In fact, other
approaches to represent uncertainty (e.g. by median and variance)
would require more specific knowledge from experts, which is not
always available. Note also that the interval-valued representation
of uncertainty is compliant with non-probabilistic approaches to
handle uncertainty, such as p-box and Dempster Shafer Theory of
Evidence (e.g. [2,21]).

After the elicitation process, the analysis is based on the deci-
sion tree in Fig. 2 in which the goal is to select the optimal decision
between committing or not committing renovation actions, which
is applicable only when the item is inspected (top right part of the
tree in Fig. 2). Specifically, we define the set R¼ rþ ; r�

� �
such that

r¼ rþ stands for committing renovation actions while r¼ r�

stands for not committing any renovation action.
The expected cost ϑrs for action r¼ rþ on item xj in degrada-

tion state sAS is given by the sum of the actual cost for item
renovation and the expected disruption cost in case of item
renovation. Then, the interval of possible values of ϑrs is given by

ϑ jðrþs Þ ¼ min cdj Up
d
s

n oh i
þcsj ¼ cdj Up

d
1
þcsj 8sAS; jAF1 ð7Þ

ϑ j r
þ
s

� �¼ max cdj Up
d
s

n oh i
þcsj ¼ cdj Up

d
1þcsj 8sAS; jAF1: ð8Þ

On the other hand, the expected cost ϑrs for action r¼ r� on
item xj in degradation state sAS is given by the expected disrup-
tion cost, where the disruption probability is contingent to the
item states

ϑ jðr�s Þ ¼ min cdj Up
d
s

n oh i
¼ cdj Up

d
s

8sAS; jAF1 ð9Þ

ϑjðr�s Þ ¼ max cdj Up
d
s

n oh i
¼ cdj Up

d
s 8sAS; jAF1: ð10Þ

In the presence of incomplete information, the optimal alter-
native r�s ðxjÞAR, given that the item is in degradation state sAS, is
the one which minimizes the expected cost:

r�s xj
� �

¼ rþ 2 ϑ jðrþs Þoϑjðr�s Þ
r� otherwise

( )
8sAS; jAF1: ð11Þ

Note that renovation is an optimal decision only if the total
costs of renovation are lower than the cost of not renovating. Thus,
if the intervals overlap (i.e., there is no dominance structure), r�s
xj
� �¼ r� is the preferred action in state sAS.

For every possible state sAS, we know the optimal decision r�s
ðxjÞAR for item xj. To determine whether item xj needs to be
inspected, we consider the benefit from the inspection, which
results from reduced cost of eventual disruption. That is, if the
optimal choice in state sAS is not to renovate the item, then there
is nothing to be gained from the inspection. On the other hand, if
the optimal choice in state sAS is to renovate, then there is the

benefit of reducing the expected disruption costs due to
renovation.

From this, the benefit Bs
j ¼ ½Bs

j ;B
s
j � for item xj in state sAS turns

out to be an interval of values such that:

Bs
j ¼

0; if r�s ðxjÞ ¼ r�

ϑ j r
þ
s

� ��ϑ j r�s
� �

; if r�s ðxjÞ ¼ rþ

8<
:

9=
; ð12Þ

B
s
j1 ¼

0; if r�s ðxjÞ ¼ r�

ϑ j rþs
� ��ϑ j r

�
s

� �
; if r�s ðxjÞ ¼ rþ

8<
:

9=
; ð13Þ

When the benefit for every state sAS has been assessed, the
aggregate inspection benefit Bj ¼ ½Bj;Bj� for item xj is modeled as
the weighed sum of the state benefits, whose bounds are

Bj ¼
X
sA S

psj UB
s
j 8 jAF1 ð14Þ

Bj ¼
X
sA S

psj UB
s
j 8 jAF1; ð15Þ

where psj ¼ p sj ¼ s
� �

is the probability of item xj being in state sAS.
The decision tree provides useful insights for the next step of

the renovation management process in which the decision is
whether or not to perform renovation actions based on the
inspection result. Specifically, from the decision tree of each item
xj, we determine the lowest item state s�j AS in which renovation is
the preferred action

s�j ¼min
sA S

sjr�s ðxjÞ ¼ rþ
n o

8 jAF1: ð16Þ

This helps the DM decide when to renovate, assuming that
there is no uncertainty in the inspection outcomes. However, this
decision also depends on the optimization of the renovation
actions based on the inspection outcomes.

Finally, Portfolio Decision Analysis [33] is used to identify the
cost efficient portfolios of item inspections. An inspection portfolio
is cost-efficient if no other feasible portfolio gives a higher overall
benefit B at a lower inspection cost c. Such portfolios can be
determined from an optimization problem which has two objec-
tives T ¼ c;Bf g, where the former is to be minimized and the latter
maximized.

Given that costs and benefits are measures by intervals, we
employ RPM ([23,24,26]) to identify efficient inspection portfolios.
In RPM it is possible to incorporate network synergies and/or logic
constraints among the inspection activities as well.

The optimization problem we are tackling is very complex,
because the search space of the possible inspection portfolios
contains 2jF1 j solutions, with jF1jc1 (e.g., 2000). Consequently,
the exact dynamic programming algorithms proposed in [23,24]
are not applicable. We therefore use the extended RPM developed
in [26].

In this approximate methodology, which is summarized
in Appendix, we employ uniform distribution to draw weights w
ASw and random scores from vASv, defined by

Sw ¼ fwARj T j jwτZ0 ∀τAT ;
X

τAT
wτ ¼ 1g ð17Þ

Sv ¼ fv¼ ½v1; v2�ARJ1� Tj j jv1j A �ctj ; �ctj
h i

; v2j A Bj;Bj

h i
8 jAF1g

ð18Þ
Note that the minus sign for v1j is introduced to change the

minimization problem into a maximization one.
In the RPM framework, an inspection portfolio pDF1 is a

subset of possible item inspections; thus, the set of all possible
portfolios is the power set P≔2F1 . The overall value of a portfolio is
the sum of the overall values of its item inspections. For a given
score matrix v and attribute weights w, the overall value of
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portfolio p is

V p;w; vð Þ ≔ z pð Þ v w; ð19Þ
where z Uð Þ is a bijection z:P-0;1jF1jsuch that zj pð Þ ¼ 1 if xjAp and
zj pð Þ ¼ 0 if xj =2p.

Under incomplete information about attribute weights and
scores Υ ¼ Sw � Sv, portfolio p dominates portfolio p0 if p has an
overall value greater than or equal to the one of p0 for all feasible
attributes weights and scores and strictly greater for some, i.e.,

V p;w; vð ÞZV p0;w; vð Þ for all w; vð ÞAΥ ð20Þ

V p;w; vð Þ4V p0;w; vð Þ for some w; vð ÞAΥ ð21Þ
Thus, a non-dominated portfolio is identified by maximizing

the overall value Vðp; v;wÞ of the inspection portfolio pAPF from
the Integer Linear Programing Problem (ILP)

max
pAPF

V p; v;wð Þ ¼ z pð Þvwj zðpÞAf0;1gj F1 j� � ð22Þ

The set of feasible portfolios PF is defined by a set of q linear
inequalities, whose coefficients are recorded in matrix AARq�jF1 j

and vector UARq such that PF≔ pAPjAUz pð ÞrUg�
.

This procedure of sampling values of w and v, is repeated until
a sufficient number of non-dominated portfolios have been iden-
tified. Hence, the output consists of portfolios, which are known to
be potentially optimal, although the algorithm may not find all
non-dominated portfolios very quickly.

To analyze the solutions provided by the algorithm, we con-
sider the Core Index (CI) metric. Namely, the CI of item xj repre-
sents the percentage of efficient portfolios which include inspec-
tion on that specific item xj. When the CI of an item inspection is 1,
then the item is included in all the identified efficient portfolios.

3. Case study

Helsinki Region Environmental Services Authority (HSY) provides
water and wastewater services to one million customers. It was
founded in 2010 through the merger of four separate water com-
panies. Currently, this water utility is harmonizing its practices for
network renovation, condition inspection and renovation planning.

The analyses in this paper are based on the large sewerage
network in Espoo (a neighboring city of Helsinki) where there are
more than 33,000 pipes with a total length of about 900 km. In
this case study, we analyze a subset of J ¼ 6103 pipes for which
earlier inspection outcomes are available. This makes it possible to
compare the results of our methodology with real inspection
outcomes and to derive insights to calibrate the methodology. The
analysis accounts for individual pipes, because the inspection and
renovation decisions are typically made on this scale. However, the
methodology could be applied on smaller scale network items as
well, such as pipe length of one meter.

To support the effective management of the network, HSY has a
database which contains the following information about every
pipe:

� Pipe features: The ID code, installation year, location (in terms of
spatial coordinates for both endpoints), diameter, type (gravita-
tional or pressure sewer), renovation year (in case the pipe has
been renovated) and material. The most common pipe material
is concrete but some pipes are made of cast iron, polyethylene,
PVC or they have been renovated by trenchless socks.

� Inspection results: The possible inspection year and outcome.
For each inspected pipe, the inspection result is stored in the
database together with the location and type of each defect that
has been detected during inspection (e.g., slump, hole, tree
roots, pile-up).

� Maintenance history: The number of blockages and flushing
events.

� External context of the pipe: Other significant information
related to the surrounding environment in which the pipe is
located (i.e., buildings, traffic load, groundwater areas, and
soil type).

In this case study, the methodology was tested using state-
ments from one expert only. Further research will focus on
incorporating the expertise of a group of experts, such as utility
employees [39].

3.1. Failure likelihood and severity

A well-founded risk analysis forms the basis of the risk-based
maintenance methodology [27], which, in this case, helps under-
stand the risks associated with pipes by encoding expert state-
ments about the likelihood and consequences of failures.

Fig. 3 shows the hierarchical objective structure of failure
likelihood, identified by expert interviews. The attributes on the
second level are:

� Pipe features: Pipe-specific characteristics, such as pipe mate-
rial, age since last renovation and diameter are important
determinants of failure likelihood.

� Past events: This attribute is relevant because it comes from the
consideration that the larger the number of past blockages and
flushing, the higher the probability of failures in the near future.

� Local circumstances: The elements of the surrounding envir-
onment can significantly contribute to the failure likelihood. In
our case study, soil type and traffic load were considered the
most important factors by expert judgement.

The weights were elicited with the PAIRS method [31]: for
every objective at the second level, l2, of the hierarchical tree, the
attributes were ranked according to expert assessment on how
important determinants of failure likelihood they were. The
attribute ‘Local circumstances’ was reported to be the least
important for failure likelihood, with no preference between ‘Pipe
Features’ and ‘Past Events’. These statements correspond to the
following inequalities on attribute weights

wpipe featuresZwlocal circumstances ð23Þ

wpast eventsZwlocal circumstances; ð24Þ
which, together with the constraint that the weights have to sum
to 1, define the feasible region which contains the weight vector
ðwpipe features;wpast events;wlocal circumstancesÞ.

When evaluating the importance of the attributes on the third
level, l3, with regard to those at the second level, l2, the expert
stated that:

� ‘Diameter’ is the most important sub-indicator among those of
the pipe features–the smaller the diameter, the higher the
failure likelihood.

� The number of past ‘Blockages’ is more important than the
number of past ‘Flushings’.

� ‘Soil’ is as important as ‘Traffic Load’.

Likelihood

Pipe Features

Material Pipe Age Diameter

Past Events

Blockages Flushings

Local 
Circumstances

Soil Traffic 
Load

Fig. 3. Likelihood attribute hierarchical structure.
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On the other hand, the consequence tree is a hierarchical
representation of the conditions which define how severe impacts
pipe failures have on properties, environment, and safety and how
possible network malfunctions affect water consumers. In princi-
ple, the same methodology for assigning a likelihood value to the
pipes could be adopted to evaluate the severity values. However,
in this study, we derived these estimates from recent results on
the evaluation of consequences mainly based on pipe location and
surroundings as well as the estimated annual pipe specific sewage
flow [21].

A severity value was assigned to each pipe based on the con-
ditions in Table 1. A pipe was assigned to Class 1 only if it met at
least one of the conditions 1–8; otherwise, if the pipe met one of
the conditions 9–19, it was assigned to Class 2. The other pipes
were assigned to the third class.

The SWING methodology [40] was applied to elicit scores by
rating the pipes on each leaf attribute. For each attribute, the best
measurement value (i.e., the one impacting the failure likelihood
or severity the most) and the worst one (i.e., the one impacting the
failure likelihood or severity the least) were assigned rates 100
and 0, respectively. Reminding the example of Section 2.1, for the
leaf attribute ‘Material’ in the failure likelihood tree, the most
reliable material is “concrete”, while the least reliable material is
“renovated by trenchless socks”: these two have ratings 100 and 0,
respectively.

Next, elicitation questions were posed by first mapping out
expert opinions on ordinal preferences for quality differences.
Specifically, the expert was asked which ‘swing’ from a specific
attribute value to the best one would result in the largest
improvement, the second largest improvement, etc. Again using
the ‘Material’ attribute as an example, the answers to these
questions led to the following ranking in ascending order: “con-
crete”, “polyethylene”, “cast iron”, “PVC” and “renovated by tren-
chless socks”.

Finally, the intermediate quality classes were evaluated with
the extreme values and, for validation, with respect to each other,
too. For example, one of the questions for the ‘Material’ attribute
was: “Is the quality difference between cast iron and concrete
pipes more or less significant than that between PVC and cast iron
pipes?”. The criticality of cast iron pipes is closer to concrete pipes
than pipes renovated by trenchless socks, therefore, its interval
score is closer to 0 (criticality score of concrete pipes) than 100
(criticality score of pipes renovated by trenchless socks).

In this way, interval scores were assigned to each class: after
being recorded into an Excel file, they were adjusted and validated.
By this procedure, an interval cardinal score in the range of 0�100
was assigned to each leaf attribute class of the failure likelihood
tree based on expert opinion.

Failure severity was evaluated for each pipe in view of the
conditions in Table 1, which lists them according to their level of
severity. For example, a pipe disruption close to a railway is more
severe than a pipe failure near a beach. For this reason, the interval
score of the former pipe is larger than that of the latter.

These critical conditions, then, were assigned uncertain ratings
by applying the SWING procedure. Specifically, zero score was
assigned to pipes of class 3, whereas a score of 100 was assigned to
the most critical condition in class 1 (no. 8: “Very high pipe-
specific sewage flow”). The remaining 18 intermediate conditions
of severity conditions were evaluated by comparing the two
extreme conditions and the other elicited ratings, which resulted
in score intervals. This way, interval scores in the range of 0�100
were identified for all intermediate conditions by expert opinion.

Alternative overall value VL xj
� �

was determined following the
procedure detailed in Section 2.1, so that the uncertainty with the
score intervals of the leaf attributes was propagated through the

likelihood value tree. The overall value VL xj
� �

of failure likelihood
was obtained per each pipe xj; jA J.

On the other hand, the severity overall value VC xj
� �

was
determined by the interval scores of the critical conditions that
pipe xj met. As in the paper by Laakso et al. [21], it was assumed
that the pipe belonged to more than one condition and, then, the
most critical one met by that pipe was considered.

3.2. Risk assessment

Risks were assessed by accounting for pipe overall values in the
two-dimensional space failure likelihood–failure severity. That is,
we first selected the jF1j ¼ 2079 non-dominated solutions among
the J¼6103, which belonged to the first Pareto front F1 (circle
marker and solid line in Fig. 4) in the remaining set. This proce-
dure was applied until the set of remaining non-dominated solu-
tions was empty. In the case study of Espoo sewerage system,
three Pareto frontiers were identified; the third, F3, is marked by
squares in Fig. 4. The three frontiers indicate three different levels
of criticality, which are defined according to the dominance rela-
tions between the pipes, as detailed in Eq. (3). In particular, the
first Pareto frontier represents the set of most critical pipes, on
which we focus the following analysis.

3.3. Decision tree

In order to identify optimal inspection strategies, we accounted
not only for the actual inspection costs but also for the expected
costs of future renovation actions or consequences of possible
failures, given that the expected total pipe inspection cost depends
on two decisions: whether or not to inspect, and whether or not to
renovate.

To estimate the inspection costs in this situation, we used
decision tree modeling [13,19].

Table 1
Conditions used for evaluating the pipe-specific criticality classification for sew-
erage pipes [25].

Class 1 Disruption cost
estimate

1 Undoubled pressure pipes from critical pump stations 40,000€
2 Main tunnels 50,000€
3 Sewer mains and pressure sewers that are within sig-

nificant groundwater areas
40,000€

4 Sewers close to primary or secondary raw water
resources

30,000€

5 Pipes under railways 24,000€
6 Pipes under significant roads 35,000€
7 Sewer mains of crucial functional importance for the

whole network
50,000€

8 Very high pipe-specific flow 50,000€

Class 2
9 Sewer mains not included in Class 1 30,000€

10 Sewers in protected areas/nature conservation areas 10,000€
11 Pipes crossing main water tunnels 24,000€
12 Pipes going under a water body (river, lake, sea) 35,000€
13 Pipes under buildings 40,000€
14 Pipes close to protected ditches 14,000€
15 Pipes close to swimming beaches 10,000€
16 Pipes other than sewer mains which are within sig-

nificant groundwater areas
30,000€

17 Sewer mains within groundwater areas of less
significance

24,000€

18 Sewers close to critical underground structures (e.g.
subway)

20,000€

19 High pipe-specific flow 30,000€

Class 3
20 Every remaining pipe 10,000€
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The condition data input in this case study consisted of the
CCTV inspection results which included information on several
types of defects found in inspected pipes. For simplicity, the defect
scores were aggregated into 6 states for each pipe, denoted by
sAS¼ f1;2;3;4;5;6g. The inspection results in Fig. 5 indicate the
states of the inspected pipes as determined in the past inspec-
tions; the dash-dot lines in Fig. 5 represent the thresholds that
map the underlying states of the HSY model into the 6 states
considered in the case study.

In Fig. 5, we map the failure likelihood values (abscissa) onto
the most significant percentiles (i.e., 5th, 50th and 95th) of the
pipe states upon inspection. Specifically, for each value of like-
lihood vL, we consider the subset of pipes xj; jA J whose estimated
likelihood value interval VLðxjÞ includes vL. The distribution of the
degradation states at inspection of the pipes in such subset is
summarized by its 5th, 50th and 95th percentiles, which are
shown in Fig. 5 by squares, circles and diamonds, respectively.

The resulting statistics, which are summarized by their most
significant percentiles in Fig. 5 (i.e., 5th, 50th and 95th), were used
to estimate the probability p sj ¼ s

� �
of the most critical pipes, as

discussed in Section 2.2. Note that the most valuable information
arises from high likelihood scores, given that our analysis focuses
on the most risky pipes.

Fig. 6 summarizes the information available in the HSY dataset.
Specifically, Fig. 6 shows the probability of a generic pipe being in
state sAS given a specific value of failure likelihood (abscissa). The
calculation of these probabilities (see Section 2.2) is based on the
results of the past pipe inspections as recorded in the HSY dataset.

The probability of low degradation states decreases as the like-
lihood estimated by expert opinion increases, and the probability for
the highest degradation states becomes larger with increasing level of
estimated failure likelihood. The correspondence for State 4 and State
5 is not strong, partly because there are few pipes in these degrada-
tion states. As more condition inspections will be carried out, the
growing dataset is expected to reveal a clearer connection between
estimated failure likelihood and state probability.

Based on the above analysis and the information elicited from
expert views (knowledge and information resulting from experi-
ence and past events), the link was established between the
degradation state of the pipes and the probability of disruption
(Table 2).

Estimates of disruption costs were provided by the expert for
each identified critical condition in Table 1, whereby both direct
and indirect costs were taken into account. From these estimates,
we calculated for each pipe xj the expected disruption cost
cdj ¼ ½cdj ; c

d
j � as the sum of the costs of the critical conditions

it meets.
Estimates of both inspection costs ct and renovation costs cs

were based on the length of each pipe (Table 3). Renovation costs
can be contingent to the pipe states, but for the sake of simplicity
we assumed the pipe replacement is always preferable to tren-
chless rehabilitation or patch repair. Note that rehabilitation and
repairing techniques can be included in the decision process by
increasing the complexity of the model.

Finally, the inspection benefits Bj ¼ ½Bj;Bj� for each pipe xj were
determined by following the procedure explained in Section 2.2.

Thus, from the decision tree of each pipe xj we determined the
lowest pipe state s�j AS in which renovation becomes the dominant

solution. Fig. 7 shows the distributions of s�φ ¼ s�j ASjxjAFφ
n o

, φ¼1,
2, 3, where Fφ represents the set of pipes belonging to the φ-th risk-
based Pareto frontier and the additional pipe state 0 refers to the
pipes for which renovation is never a dominant alternative, not even
in case the pipe is in the worst condition state (s¼ 6).

From Fig. 7, one can note that large ranks of risk-based Pareto
frontiers correspond to large portions of pipes for which the
renovation is not worthwhile. In the case of the least critical pipes
(third Pareto frontier in Fig. 4), the percentage of these pipes is
more than 90%.

As can be expected, the portion of pipes in state 1 is always 0.
This is due to the fact that there is no benefit from renovating a
pipe in state 1, as this action does not improve pipe condition.

3.4. Results

The implementation of the approximate RPM accounted for the
inspection benefits Bj ¼ ½Bj;Bj� and costs ctj ¼ ½ctj ; c

t
j � , for each pipe

xj. To identify the set of feasible inspection portfolios, the expert
estimated the maximum yearly budget for inspections to be
300,000€ and indicated that there is a need to inspect at least
40 km of pipelines per year.

With respect to the approximate RPM algorithm, its termina-
tion condition was set as the convergence of the projects’ Core
Indexes. More specifically, the algorithm was set to stop when the
difference of each project CI among the last 1000 iterations was
lower than 1%. With this setting, the RPM algorithm provided
more than 2000 efficient solutions in approximately 30 min (6529
iterations). Fig. 8 presents the CIs of the 2079 critical pipes (i.e.,
selected by risk assessment (Section 2.1)).

Recognizing that it can be difficult to choose from the set of
non-dominated portfolios, the choice of the portfolio could be
determined according to appropriate decision rules such as the
maximin rule, which recommends the portfolio that yields the
highest minimum overall benefit, or the minimax-regret rule,
which recommends the action for which the worst case overall
benefit difference is the smallest compared to the other portfolios.
These rules coincide with the absolute robustness and robust
deviation measures, respectively, in robust discrete optimization
[24]. The results of decision rules depend on the set of non-
dominated portfolios. This emphasizes the importance of finding
as many non-dominated portfolios as possible.

Finally, as stressed in [23,24], one way to limit the number of
optimal portfolios is to reduce the uncertainty in the expert pre-
ference statement and estimation and to choose appropriate con-
straints (positioning, strategic, budget, etc.) to limit the search space.
In this respect, the continuous updating of inspection and

Fig. 4. Overall values of failure likelihood and severity of the 6103 pipes considered
in the Espoo sewerage system.
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maintenance data on the HSY network will reduce uncertainties in the
model parameters and therefore lead to more conclusive results.

4. Conclusions

We have developed a risk-based inspection methodology for
large infrastructure networks and described its application to the

underground sewerage network in Espoo, Finland. The risk
assessment based on failure likelihood and failure severity helps
identify the most critical pipes among which the optimal portfo-
lios of inspections can be found.

Another clear advantage of the methodology is that it allows
for iterative improvement. Expert judgements may be biased or
erroneous, especially regarding factors which have an impact on
pipe states. This can lead to suboptimal pipes being included in the
final portfolio for inspections. However, as inspections are carried
out annually, the validity of decision attributes can be evaluated
recurrently and modified if necessary.

Moreover, our methodology is capable of handling incomplete
information by the use of SWING weighting, decision tree mod-
eling and RPM. In particular, it accommodates incomplete infor-
mation about state probabilities. In this respect, other ways to
estimate the state probabilities are possible, such as logit
regression or clustering. These will be investigated in future
work.

In this case study on the underground sewerage network in
Espoo, the large number of critical pipes in the network gives rise
to a huge search space of inspection portfolios. Therefore, it is
useful to perform the pipe risk assessment before the portfolio
analysis. On the other hand, even if the set of pipes is reduced,
there are still computational challenges in finding all solutions.
Therefore, future research will focus on investigating the capability

Fig. 5. Mapping between likelihood scores and past inspection results. (For interpretation of the references to color in this figure, the reader is referred to the web version of
this article.)

Fig. 6. Correspondence between failure likelihood and degradation state probability.

Table 2
Disruption probabilities for every degradation state: lower and upper bounds.

Degradation state pd
s pds

s¼ 1 0 0:3
s¼ 2 0:3 0:5
s¼ 3 0:4 0:6
s¼ 4 0:5 0:7
s¼ 5 0:6 0:8
s¼ 6 0:7 0:9

Table 3
Direct inspection and renovation costs, expressed in euro per meter.

Cost estimates Lower bound ½€=m� Upper bound ½€=m�

ct ; ct
� 	

5 5

cs; cs
� 	

; s¼ 1;…;6 343 370
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of other algorithms in exploring large search spaces and in com-
paring its performance to that of RPM. Finally, future work will
also focus on the definition of optimal renovation actions after
pipe inspections, eventually avoiding the assumption of indepen-
dence among pipe failures.

The proposed methodology can potentially be adapted for
optimizing the inspections of other types of networks, such as gas
distribution networks. In the future, we plan to investigate how
the methodology can be extended to other systems by modifying
the parameters affecting failure likelihood, failure severity as well
as the costs of inspections and renovation actions.
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Appendix

Approximate computation of Non-Dominated Portfolios in RPM ([26])

Let Vu ¼ ½Vu
1;V

u
2� denote a utopian vector that sets strict upper

bounds for the overall value of feasible portfolios in the extreme
points wT ¼ ct

ext ¼ ½1;0� and wT ¼ B
ext ¼ ½0;1� of Sw, such that:

Vu
τ4max

pAPF

½Vðp;wτ
ext; vÞ� ∀τAT

where v ¼ ½�c;B�.
The weighted max-norm distance of a portfolio p to the utopian

vector is:

d p;μ; v
� �¼max

τAT
μτ Vu

τ�V p; wτ
ext; v

� �� �� 	¼max
τAT

μτ V
u
τ�μτ zðpÞ v wτ

ext

� 	
where μAM¼ fμAR2jμτZ0;

P
τATμτ ¼ 1g and vASv. With given

μAM and sASv the set of feasible portfolios that minimize the
distance to the utopian vector and are not dominated by another
portfolio within the equal distance, is:

PQ μ; v
� �¼ fp0

Aarg min
pAPF

d p;μ; v
� �j∄p00Aarg min

pAPF

d p;μ; v
� �

s:t:p00g Sp
0 g

where S¼ Sv � Sw.
The set of portfolios arg min

pAPF

½d p;μ; v
� �� is obtained by solving

the MILP problem

min
pAPF

dðp;μ; vÞ ¼

min
z pð ÞA 0;1f gJ1

ΔAR

ΔjΔZμτ V
u
τ�μτ z pð Þ v wτ

ext ∀τAT ; AzðpÞrU
� �

Portfolios in PQ μ; v
� �

are non-dominated for any μAM and
vASv, and any non-dominated portfolio belongs to PQ μ; v

� �
for

some μAM and vASv (proof presented in [26]).
The algorithm that identifies a set of non-dominated portfolios

P̂NDPF can be formulated as follows:
1. Initialization. Construct the utopian vector Vu as explained

previously. Set P̂N’∅.
2. Computation. Repeat until enough non-dominated portfolios

have been found:
a. Generate random μAM and vASv.

Fig. 7. Renovation policy.

Fig. 8. RPM sorted Core Indexes of the most critical pipes.
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b. Determine arg min ½
pAPF

d p;μ; v
� ��.

c. Define PQ μ; v
� �

.
d. Set P̂N’P̂N [ PQ μ; v

� �
.

There are several methodologies for specifying the termination
condition for the Computation loop consisting of steps 2a–2d. One
methodology is tracking the number of new non-dominated
portfolios found per iteration and, then, terminate the loop if, for
instance, no new non-dominated portfolios have been found in the
last 100 iterations. Another methodology is to compute the pro-
jects’ Core Index values at each iteration based on the set of
portfolios P̂N and then terminate the loop when these values
stabilize.

Generating values for scores and the max-norm weights in Step
2a can be implemented by considering systematic grid of values or
by randomly choosing these values from suitable distributions. In
this work, we have mainly relied on uniformly distributed weights
within the simplex M and scores that have equal probability to be
set to their lower or upper bounds per project.

Uniformly distributed max-norm weights are given by
μτ ¼ ρτ=

P
τρτ , where ρτ:s are drawn from an exponential dis-

tribution with expectation equal to one (Rubinstein, 1982).
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Abstract

The performance of the Prognostics and Health Management (PHM) depends both on the func-

tioning of the measurement acquisition system and on the actual state of the system being monitored.

The dependencies between these systems must be considered when developing optimal inspection and

maintenance strategies. This paper develops a methodology to support maintenance decisions for in-

dustrial systems with PHM capabilities. The methodology employs influence diagrams when seeking

to maximize the expected utility of system operation. The optimization problem is solved by mixed-

integer linear programming, subject to budget and technical constraints. Chance constraints can

be also included, for instance to curtail risks based on measures such as the Value at Risk (VaR)

and the Conditional Value at Risk (CVaR) of system operation. The viability of the methodology is

demonstrated by optimizing the inspection and maintenance strategy for a gas turbine equipped with

PHM capabilities. The computation of the Value of Perfect Information (VoPI) provides additional

insights on maintenance management.
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Decision Programming, Value of Perfect Information, Gas Turbine.
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1 Introduction

Digitalization is a fundamental driver of Industry 4.0, a novel paradigm which enhances production

efficiency through information and communication technologies [1, 2]. These technologies also provide a

foundation for Predictive Maintenance (PM) for industrial components and systems, whereby condition

monitoring data is employed to perform three tasks:

(i) detection of abnormal states, by identifying deviations from normal operating conditions in pro-

duction processes, manufacturing equipment and products;

(ii) diagnostics, by classifying abnormal states;

(iii) prognostics, by predicting the evolution of abnormal states up to failure.

Detection, diagnostics and prognostics constitute the Prognostics and Health Management (PHM, [3,

4, 5, 6]). These tasks help implement efficient, just-in-time and just-right maintenance strategies by

selecting the right action for the right component at the right time, thus maximizing production revenues

and minimizing costs and losses, including assets [7]. Furthermore, PHM performance metrics have been

introduced to characterize errors in detection, diagnostics and prognostics [8, 9]. Based on these metrics,

several models have been developed to optimize Operations and Maintenance (O&M) decisions [7] and

investments in PHM capabilities [10, 11, 12, 13].

A main limitation of earlier PM models is the assumption that sensors always work correctly, although

in practice sensors may malfunction: freezing (or constant), noise, spike (or short), drift and quantization

are the most common sensor malfunctions [14]. Faulty sensors may provide inaccurate measurements

of the monitored physical parameters, affecting the performance of the PHM algorithms by conveying

inaccurate or misleading information about the actual system state. This can cause missing alarms or

unnecessary system downtimes, resulting in large financial losses. For example, the spillover effect (cross-

sensitivity [15]) is known to propagate the anomalous monitoring data from a faulty sensor to other

healthy signals, causing difficulties in choosing the correct maintenance action (i.e., fix or replace the

sensor).

The detection of a sensor malfunction, which is often performed through sensor data validation,

has been addressed by different methods, including Auto Associative Neural Network (AANN, [16]),

Nonlinear Partial Least Squares Modeling (NLPLS, [17]), Principal Component Analysis (PCA, [18, 19]),

Auto Associative Kernel Regression [20, 21] and Multivariate State Estimation Technique (MSET, [22]).

However, algorithms for sensor validation too are affected by errors that depend on the health state of

the monitored system. Specifically, if the monitored system does not work correctly, sensor validation is

less effective in detecting incoherent deviations of the faulty sensor values with respect to data provided
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by other sensors. The main reason is that sensor validation algorithms are generally trained by signal

data which is generated by healthy system operation only. Based on this training data, the algorithm

learns to reconstruct the behaviors of the monitored signals when the system operates normally, which

differs from those acquired when the system operates in a degraded state. Although the change in the

signal behaviors is fundamental to the early detection of the system anomaly, it nonetheless lowers the

performance of the sensor validation algorithms, because they have not been trained in the degraded

setting.

When a system is equipped with PHM capabilities, maintenance decisions refer to two sequential

actions: first, the inspection of either the sensors or the industrial system; second, the necessary repairs

depending on the inspection outcomes. The costs of the sequential actions are very different, with different

effects on the health state of the system and uncertainties about the performance of the PHM algorithms.

The above considerations suggest that optimal maintenance decision problems in a PM setting must

be framed as a multi-stage decision problem, encoding the mutual dependence of the PHM algorithms

tracking the system health state on those for sensor validation [23, 24]. On this topic, Driessen et al. [25]

present a cost evaluation of maintenance policies for a single-component system, which is periodically

subject to imperfect inspections. Do et al. [26] evaluate different maintenance policies for a deteriorating

system in which the inspection policy is based on the residual useful life. Papakonstantinou and Shinozuka

[27] employ Partially Observable Markov Decision Processes (POMDP) to optimize inspection and main-

tenance policies based on stochastic models and uncertain structural data in real time. Literature reviews

(e.g., [28, 29]) call for increased attention to optimization models on condition-based maintenance, but

they do not account for the imperfect performance of condition monitoring and inspections [30, 31, 32].

Influence diagrams [33] are one of the well-established techniques for structuring and solving multi-

stage decision problems. They are commonly solved, for instance, through local transformations such

as arc reversals and node removals in the diagram [34]. Tatman et al. [35] develop the equivalent

decision tree representation, which is solved by dynamic programming [36]. Nonetheless, these standard

techniques have limitations. First, they rely on the “no-forgetting” assumption, meaning that earlier

decisions are known when making later ones. Although this may be not too limiting in practice, the

information flow in industrial practice can at times be disrupted due to communication failures. Second,

the use of dynamic programming is restrictive in that the objective function cannot include risk measures

such as Value-at-Risk or semi-absolute deviation, which reflect the variability of consequences across all

possible outcomes.

To overcome these limitations, we employ the Decision Programming approach proposed by Salo

et al. [37], which employs Mixed Integer Linear Programming (MILP, [38, 39]) to solve multi-stage

decision problems under uncertainty. Specifically, we employ Decision Programming to identify the
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optimal inspection and maintenance strategy for an industrial system with realistic PHM capabilities

and sensor validation algorithms: each combination of states of the nodes of the influence diagram is

mapped onto the two-stage decision maximizing the system utility. To the authors’ best knowledge,

this is the first time that a maintenance decision support model is developed in this practical setting,

considering realistic PHM and sensor validation systems. In current industrial practice, the choice of

maintenance strategies for industrial systems with PHM capabilities has been driven mainly by expert

judgment [40].

The remainder of the paper is as follows. Section 2 introduces the influence diagrams and the problem

formulation. Section 3 presents the optimization model and additional constraints. Section 4 proposes a

case study from industry, concerning the optimization of inspection and maintenance strategies of a gas

turbine. Section 5 discusses the potential and limitations of the proposed methodology. Finally, Section

6 concludes the paper and outlines extensions for future research.

2 Formulation of the influence diagram

An influence diagram is a directed acyclic graph that represents probabilistic causal dependencies between

events and decisions [33]. Figure 1 shows an example of influence diagram which consists of three types

of nodes:

(i) chance nodes C (indicated by circles) represent the random events of the scenarios;

(ii) decision nodes D (indicated by squares) represent possible choices of actions;

(iii) value nodes U (indicated by hexagons) represent the utility of system operation.

Causal dependencies in the set of nodes N = C ∪D∪U are represented by directed arcs A ⊆ {(i, j)|i, j ∈

N, i 6= j}. Specifically, arc (i, j) ∈ A connects node i to node j to show that the state at node j is

conditionally dependent on that at node i. The direct predecessors of node j belong to the information

set I(j) = {i ∈ N |(i, j) ∈ A}. The arcs directed to chance nodes indicate probabilistic dependencies,

whereas those directed to decision nodes denote the availability of information [34]. Because the network

is acyclic, the nodes can be indexed with consecutive integers so that the indexes of nodes i ∈ I(j) are

lower than the index of node j.

Node j ∈ C ∪D corresponds to the variable Xj , whose realization sj assumes values in the discrete

set of states Sj . The meaning of these variables is different for chance and decision nodes. Specifically,

the states of decision nodes denote the choice of the risk mitigation actions that can be taken to reduce

the probability of system failure. The decision Xj at node j ∈ D depends on the information state sI(j)
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which belongs to the Cartesian product

SI(j) = ×
i∈I(j)

Si, (1)

defined by the combinations of states for all nodes in the information set. The information state deter-

mines what information is available when making the decision.

On the other hand, the states of chance nodes denote the health state of the system components [41].

These states represent mutually exclusive events, for which the uncertainty in the realization is described

by the probability distribution on the states Sj . If the chance node does not depend on other nodes (no

incoming arcs), there is an unconditional probability distribution P[Xj ]on the set Sj . For each chance

node j ∈ C which has a non-empty information set I(j), the conditional probability of the state sj ∈ Sj
is P[Xj = sj |XI(j) = sI(j)], where XI(j) = sI(j) denotes that the realizations of the variables Xi for nodes

i ∈ I(j) are the same as those in the information state sI(j).

A policy for decision node j ∈ D is a function Zj that maps information state to corresponding

decisions Zj : SI(j) 7→ Sj . The binary variables z[sj |sI(j)] model the policy Zj such that

Zj [sI(j)] = sj ⇐⇒ z[sj |sI(j)] = 1. (2)

Specifically, the policy of decision node j ∈ D depends on the information state sI(j), meaning that the

choices of actions depend on the information provided by sensors and inspections. The set of combinations

of policies for all decision nodes D is a strategy Z.

A scenario s is a specific combination of states si of all chance and decision nodes. Thus, the set of

all possible scenarios is S =×i∈C∪D Si, each scenario defining a specific combination of random events

and a respective strategy of actions. For a specific strategy Z, the probability of scenario s is

p(s) =
∏

j∈C
P[Xj = sj |XI(j) = sI(j)], (3)

if Z is such that it consists of policies Zj such that Zj [sI(j)] = sj , and 0 otherwise. In summary, the

probability π(s) of scenario s is

π(s) =





p(s), if z[sj |sI(j)] = 1∀j ∈ D

0, otherwise
. (4)

Finally, each scenario s is associated with a consequence whose value V (s) represents the utility of system

operation discounted by the costs of deploying of the selected actions. The value nodes U encode the
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values V (s) for all scenarios s. While it is possible to consider multiple value nodes, this paper focuses on

a single objective optimization in which the aim is to maximize the utility of system operation, subject

to possible resource and risk constraints.

3 Optimization model

The optimal strategy can be found through a mixed-integer linear programming model formulation,

proposed by Salo et al. [37]. In this model, the probability π(s) of scenario s is defined through the

equations:
∑

sj∈Sj
z[sj |sI(j)] = 1, ∀j ∈ D,∀sI(j) ∈ SI(j) (5)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (6)

π(s) ≥ p(s) +
∑

j∈D
z[sj |sI(j)]− |D|, ∀s ∈ S (7)

π(s) ≤ z[sj |sI(j)], ∀s ∈ S (8)

z[sj |sI(j)] ∈ {0, 1}, ∀j ∈ D,∀sj ∈ Sj ,∀sI(j) ∈ SI(j). (9)

If z[sj |sI(j)] = 1 for all sj in scenario s, then probability π(s) is the upper bound p(s) because constraints

(6) and (7) imply 



0 ≤ π(s) ≤ p(s)

π(s) ≥ p(s).
(10)

On the other hand, if any binary variable z[sj |sI(j)] = 0 for any sj in scenario s, then probability π(s) = 0

because constraint (8) implies π(s) ≤ 0.

The optimal strategy Z∗ is the strategy that maximizes the expected utility of system operation so

that

E[V (Z)] =
∑

s∈S
π(s)V (s) (11)

subject to constraints (5)-(9). Specifically, constraints (5) ensure that only one decision sj ∈ Sj is taken at

each decision node j ∈ D for every information state sI(j) ∈ SI(j). Constraints (6) bound the probabilities

π(s) of scenarios s ∈ S. Constraints (7) ensure that the scenario probabilities π(s) cannot be smaller than

6



their upper bounds p(s) for scenario s such that z[sj |sI(j)] = 1, j ∈ D. Constraints (8) ensure that only

those scenarios for which z[sj |sI(j)] = 1 for all j ∈ D can have positive probabilities. Finally, constraints

(9) specify the domain of all binary variables z[sj |sI(j)].

In addition, the optimization model can include technical constraints that affect the deployment of

risk mitigation actions. For instance, the constraint

z[sj |sI(j)] ≤ z[s`|sI(`)] ∀(sI(j), sI(`)) ∈ SI(j) × SI(`) (12)

means that the action sj cannot be deployed unless action s` is employed, regardless of the information

states sI(j) and sI(`) of nodes j and `.

3.1 Additional constraints

Let Q(sj |sI(j)) be the cost of risk mitigation action sj at decision node j ∈ D for the information state

sI(j), then the total cost Q(s) of implementing the actions for scenario s ∈ S is

Q(s) =
∑

j∈D
Q(sj |sI(j)) z[sj |sI(j)]. (13)

For each scenario s ∈ S, it is possible to require that the total cost of risk mitigation actions is lower than

the budget B, so that Q(s) ≤ B. If this constraint is too strict, chance constraints can be introduced,

for instance to limit the probability of exceeding the budget to β ∈ [0, 1) as

∑

{s∈S|Q(s)>B}
π(s) ≤ β. (14)

One can also consider constraints on risk measures, for instance to bound the Value at Risk (VaR) and

the Conditional Value at Risk (CVaR) of system operation [42]. At probability level α > 0, the Value at

Risk of strategy Z is

VaRα(Z) = sup {t ∈ R |
∑

{s∈S|V (s)≤t}
π(s) < α}, (15)

where the sum of probabilities considers only the scenarios for which the value V (s) meets or exceeds the

target level t ∈ R.

In addition to the VaR, constraints on the Conditional Value at Risk (CVaR) limit the expected

shortfall in the worst performing scenarios [43]. Thus, the Conditional Value at Risk of strategy Z is the

7



expected value of the α-tail distribution of the utility function so that

CVaRα(Z) = VaRα(Z) [α−
∑

{s∈S|V (s)<VaRα(Z)}
π(s)] +

∑

{s∈S|V (s)<VaRα(Z)}
π(s)V (s). (16)

Conditional Value at Risk is a coherent risk measure: unlike VaR, it also reflects the shape of the

distribution tail. For this reason, it is commonly considered a more informative risk measure than VaR

[44].

3.2 Value of Perfect Information

The Value of Perfect Information (VoPI) refers to the additional value that can be gained by obtaining

perfect information about the system state, based on which the operations are optimized. Thus, VoPI

quantifies the willingness to pay for the transition from the current PHM system to the perfect one [45].

As mentioned in Section 1, PHM monitoring and system inspections provide imperfect information about

the state of the industrial system. In this framework, it is possible to compute VoPI as the difference

between the optimal expected value for two situations: (i) when the system state is correctly observed

and (ii) when the system state is observed with possible errors. The first situation corresponds to perfect

information on the system state, whereas the second situation to imperfect information. Consequently,

the VoPI can be computed as

VoPI = E[V (Z∗∗|Perfect Information)]− E[V (Z∗)]. (17)

In the case of inspection and maintenance decisions, perfect information refers to a situation in which

sensors and inspections correctly indicate the state of the industrial system [46]. Specifically, the system

state is reported correctly by the monitoring system with probability one if and only if the monitored

state equals the actual system state, and 0 otherwise. Perfect information makes it possible to select the

optimal strategy Z∗∗, which may differ from the optimal strategy Z∗ with imperfect information.

The VoPI represents the increase in expected value when the maintenance strategy can be decided

based on perfect information about the system state [47]. This provides insights into the value of investing

in improving the PHM capabilities. Note that this analysis can be performed before any additional

information, by assuming that perfect measurement information is obtained.
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4 Case study

The case study presents a maintenance decision framework for a Gas Turbine (GT) equipped with PHM

and sensor validation capabilities, which provide imperfect information on the current state of the GT

and its sensors. In industrial practice, the PHM of a GT relies on hundreds of sensors tracking the health

states of a large number of components with different impacts on GT operation. For illustrative purposes,

we assume that global indicators on the states of the GT and PHM system are available.

The GT undergoes periodic inspection and maintenance actions on which decisions are taken every

4000 working hours. Figure 1 represents the influence diagram for planning the GT inspections and

maintenance, composed of the set of chance nodes (circles), the set of decision nodes (squares) and the

value node (hexagon). In particular, node H refers to the working hours of the GT, which are technically

referred to as fired hours. The realizations are discrete states with time interval of 4000 hours so that

sH ∈ {0, 4000, 8000, 12000, 16000, 20000, ...}. (18)

Node H is deterministic, which can be considered as a degenerate chance node with probability one for

the current state only. This representation is useful for modelling the causal dependence between (i) the

GT states and (ii) sensor states from the working hours of the GT, allowing the optimization problem

can be solved for each of the states of working hours.

The fired hours affect the sensor state sSS and the turbine state sTS , which implies I(SS) = I(TS) =

{H}. The sensor and the GT health states are qualitative evaluations included in the sets

sSS , sTS ∈ {Excellent,Good, Fair, Poor, Failing}, (19)

Figures 2 and 3 illustrate the probability distributions of turbine and sensor states, respectively. Specif-

ically, the probability of these states depend on the fired hours H (horizontal line), in keeping with the

conditional probabilities P[XSS = sSS |XH = sH ] and P[XTS = sTS |XH = sH ]. These values can be

inferred from the inspection outcomes, when the multi-state degradation setting is adopted in the GT

maintenance practice [31, 48].
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Figure 1: Influence diagram for programming inspections and maintenance of a turbine.
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Figure 2: Probability distribution for Turbine state.
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Figure 3: Probability distribution for Sensor state.

11



Based on machine-learning models [49], the PHM algorithms provide following estimates of the sensor

state and the turbine state

sSE , sTE ∈ {Excellent,Good, Fair, Poor, Failing}, (20)

The estimate sSE of the sensor state depends on both the actual state of the sensor and the actual state

of the GT. The estimate sTE of the GT state depends on both its actual state and the estimate of the

sensor state, because the sensor validation affects the PHM performance.

The PHM estimates on sensors and turbine provide information for the Inspection Decision, in the

set

sID ∈ {None, Sensor Check, ConditionMonitoring}, (21)

where Sensor Check indicates an analysis of the signal data and ConditionMonitoring refers to a

maintenance action on the sensor acquisition chain. Neither action requires the GT to stop, and the

result sSR on the sensor state is in the set

sSR ∈ {Excellent,Good, Fair, Poor, Failing}. (22)

Without inspection, the results sSR on the sensor state correspond to the sensor estimate sSE provided

by the PHM. If any inspection is performed, the results sSR on the sensor state report the actual sensor

state sSS correctly with 95% probability. The observation is erroneous with 5% probability, which has

been equally distributed across the two incorrect states close to the actual state.

The sensor inspection provides relevant information on the accuracy of the estimate sTE . Specifically,

it supports the definition of an updated estimate sTR of the turbine state such that

sTR ∈ {Excellent,Good, Fair, Poor, Failing}. (23)

The results sTR on the turbine state depend also on the results sSR on sensor state and on the actual

and estimated turbine states (i.e, sTS and sTE , respectively). Without inspection, the results sTR on the

turbine state correspond to the estimate sTE of the turbine state, provided by the PHM. If the inspection

is Sensor Check, the results sTR on the turbine state correspond to the actual turbine state sTS with a

probability which depends on the sensor results sSR. Finally, if the inspection is ConditionMonitoring,

the results sTR on the turbine state report the actual turbine state sTS correctly with 98% probability.

The observation is erroneous with 2% probability, which has been equally distributed across the two

incorrect states close to the actual state.
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The results sSR and sTR on the sensor state and the turbine state provide information for the Main-

tenance Decision, in the set

sMD ∈ {None, Level1, Level2}, (24)

where Level1 restores the turbine state to 4000 hours earlier and Level2 restores the turbine state

effectively to 0 hours of operation, i.e. as good as new. In this respect, Figure 4 represents the model of

degradation and restoration processes of the GT and the PHM. Arrows indicate probabilistic transitions

between states during the next 4000 hours, based on the maintenance decision. For illustration, Table

1 reports the transition probabilities for the degradation and renovation of the GT. For example, if the

turbine is currently in state sTS = Good and the maintenance decision sMD = Level2 is deployed, the

turbine is in state sTS = Excellent with probability 99% and in state sTS = Good with probability 1%

during the next 4000 hours.

Excellent Good Fair Poor Failing

degradation

restoration

Figure 4: Probabilistic model of the degradation and restoration process of the turbine.
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Table 1: Probabilistic transitions between turbine states.

sTF

sTS sMD Excellent Good Fair Poor Failing

Excellent

None 0.80 0.10 0.05 0.03 0.02

Level 1 0.90 0.05 0.03 0.02 0

Level 2 0.99 0.01 0 0 0

Good

None 0 0.80 0.10 0.07 0.03

Level 1 0.03 0.90 0.05 0.02 0

Level 2 0.99 0.01 0 0 0

Fair

None 0 0 0.75 0.15 0.1

Level 1 0 0.03 0.90 0.05 0.02

Level 2 0.99 0.01 0 0 0

Poor

None 0 0 0 0.75 0.25

Level 1 0 0.05 0.85 0.07 0.03

Level 2 0.99 0.01 0 0 0

Failing

None 0 0 0 0 1

Level 1 0 0 0.75 0.15 0.1

Level 2 0.99 0.01 0 0 0

The turbine state sTS and maintenance decision sMD affect the Turbine Flow, which has the following

discrete values

sTF ∈ {Excellent,Good, Fair, Poor, Failing}. (25)

The GT flow rate impacts the utility of the system operation, reduced by the costs of inspections sID and

maintenance sMD. Figure 5 shows illustrative utilities based on the state of the turbine flow, whereas

Table 2 shows the costs for inspection and maintenance actions. The utilities and costs are illustrative

units but have not been derived from an actual industrial system.
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Figure 5: Illustrative utilities of the system operation.

Table 2: Costs for inspection and maintenance actions.

sMD

None Level 1 Level 2

sID

None 0 25 50

Sensor check 2 27 52

Condition monitoring 8 33 58

The solution of the optimization model provides the optimal inspection and maintenance strategies for

every level of fired hours and for each information state which is available when making these decisions.

For illustration, Tables 3 and 4 present the optimal inspection and maintenance strategies of the GT at

H = 16000 fired hours, respectively. Specifically, the inspection strategy depends on the estimates sSE

and sTE of the sensor and turbine states, whereas the maintenance strategy depends on the results of

the inspections sSR and sTR.
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Table 3: Optimal inspection strategy at H = 16000 hours.

sTE

Excellent Good Fair Poor Failing

sSE

Excellent None None None None None

Good None None None None None

Fair None None None None None

Poor None None Monitoring None None

Failing Monitoring Monitoring Monitoring None None

Table 4: Optimal maintenance strategy at H = 16000 hours.

sTR

Excellent Good Fair Poor Failing

sSR

Excellent None None None Level 1 Level 2

Good None None None Level 1 Level 2

Fair None None None Level 1 Level 1

Poor None None None Level 1 Level 1

Failing None None None Level 1 Level 1

The optimal inspection strategy is such that no inspection is performed if the sensor state estimate

is Excellent, Good or Fair and if the turbine state estimate is Poor or Failing. On the other hand,

Condition Monitoring needs to be performed if the sensor state estimate is Poor or Failing for specific

circumstances of the turbine state estimate. Furthermore, the optimal maintenance strategy shows not to

perform any maintenance if the turbine state estimate is Excellent, Good or Fair, but Level 1 maintenance

should be performed if the turbine state is Poor. If the turbine state estimate is Failing, the optimal

maintenance strategy depends on the sensor state estimate: Level 2 maintenance is necessary if the sensor

state estimate is Excellent or Good and Level 1 maintenance otherwise.

The solutions in Tables 3 and 4 need to be examined together. Specifically, when the turbine is

estimated to be in a degraded state (Poor or Failing), the optimal strategy is to proceed with maintenance

actions, without improving the accuracy of the estimate of the turbine state through inspections. This

choice depends on the high reliability of the monitoring sensors. On the other hand, when the estimate

of the turbine is in a healthy state (Excellent, Good or Fair), the choice on the inspections depends on

the estimated state of the monitoring sensors. Thus, the optimal strategy is to inspect the turbine when

the sensors are expected to be degraded. Note that the optimization results are not generic in that they

depend on the parameters of this case study.
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Figure 6 illustrates the optimal expected utility of the system and the respective Value of Perfect

Information, for each discrete state of the turbine fired hours. To model perfect information on the

system state, the probabilities of the estimates sSE and sTE of the sensor and turbine states are defined

as

P[XSE = sSE |XSS = sSS , XTS = sTS ] =





1, if sSE = sSS

0, otherwise,
(26)

P[XTE = sTE |XSE = sSE , XTS = sTS ] =





1, if sTE = sTS

0, otherwise.
(27)

By increasing the fired hours, the expected utility decreases due to increasing chances of degradation of

the GT. For the same reason, the VoPI increases as information on the actual state of the GT yields

more value for system operation [50]. Thus, investments in improving the PHM and sensor validation

can be expected to yield higher returns when the GT has degraded more. The computation of the VoPI

is obtained by assuming that the PHM provides perfect information on the system state.
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62.16
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Expected Value Value of Perfect Information

Figure 6: Expected Value and Value of Perfect Information of the turbine operation.

Besides employing risk measures as constraints of the optimization model, it is possible to analyse

the VaR and CVaR of the optimization solutions to better understand the results. This analysis provides

additional insights on these solutions without the need to specify the threshold probability α and target

level t before the optimization. For some choices of the parameters α and t, these parameters could be

so stringent that the optimization model has no feasible solutions. For this reason, an ex-post analysis

of the results bypasses this issue, avoiding optimization runs with long computational times.

Figure 7 shows the cumulative probability of the utility for the optimal strategy Z∗ at H = 16000
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hours. From this probability distribution, it is possible to compute VaRα(Z∗) and CVaRα(Z∗) at prob-

ability level α, as defined in Eqs. (15) and (16). Table 5 lists the VaR and CVaR of system operation at

different probability levels α: by increasing the α value, both the VaR and the CVaR also increase.

For the analysed probability levels α, the CVaR is higher than zero only for α > 0.1. In view of these

results, the optimal strategy for H = 16000 hours involves limited risks in that the expected utilities will

be negative with probability of less than 10%.
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Figure 7: Cumulative probability distribution of system utility.

Table 5: VaR and CVaR for different α values.

α VaR CVaR

0.01 -25 -26.466

0.05 0 -10.3156

0.1 0 -5.1578

0.15 32 1.6781
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5 Discussion

The computation of the VoPI makes it possible to assess investments which seek to improve the PHM

capabilities. In this case, it is necessary to compare the VoPI with the costs for improving the PHM

capabilities. Specifically, if the costs for improvement are lower than the VoPI, it is recommended to

renovate the monitoring sensors, because the renovation leads to savings on system inspections.

The value of the PHM capabilities would increase if the company owns a fleet of industrial systems.

In this case, the influence diagram represents the states of all the systems and the state of the monitoring

sensors with a unique value node. The optimization model would then suggest the optimal combination

of inspections for the fleet of systems, leading to additional savings for the company due to sharing fixed

costs among several systems. In addition, the cost of the PHM capabilities would be shared among the

fleet of systems with benefits on the failure detection, diagnostics and prognostics, due to the collection

of a larger amount of data to build statistical analyses. However, the optimization may require more

computational time for a large number of node states due to the curse of dimensionality. For this purpose,

it is possible to decompose the large problem into a hierarchy of sub-problems to optimize the resource

allocation across the fleet of industrial systems.

This framework can be extended to account for decisions in multiple time stages through Dynamic

Bayesian Networks [51]. In this case, the chance nodes represent the random events of the state of the

system components over the time stages and the decision nodes represent the decisions on inspections and

maintenance at each time stage [52]. This gives rise to a model for long-term decisions on the industrial

system in order to anticipate or postpone inspections and maintenance actions according to the predicted

development of system failure. However, the number of decision variables will grow with the number of

time stages, meaning that the computational time for the optimization solutions would increase.

Finally, the optimization results rely on the discretization of the probability distribution on the states

of industrial systems and sensors [53]. Increasing the number of component states improves the accuracy

of the model in the definition of the probability distribution, but it also increases the number of scenarios

to be evaluated to define the optimal strategy. If the optimal strategy is the same for different information

sets, it can be helpful to aggregate the information sets in order to limit the probability elicitation of the

states and the computational time of the following runs of the optimization problem.

6 Conclusion

In this paper, we have developed a methodology for the optimal selection of inspection and maintenance

strategies for industrial systems equipped with PHM. These strategies maximize the value for the company
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deriving from system operation, computed as the system utility discounted by the costs for inspection

and maintenance actions.

The framework employs influence diagrams to model causal dependencies between system states and

decisions on risk mitigation actions. Based on Decision Programming, the optimization model defines

the optimal strategies for the system, accounting for budget and technical constraints. The solution is

obtained through a mixed-integer linear problem, which considers all possible scenarios on the system

states and decisions. The viability of the methodology has been illustrated with an example concerning

a gas turbine equipped with PHM.

Overall, we have demonstrated that in the choice for inspection and maintenance strategies, there is

a need to consider the unreliability of the PHM as well, given that the optimal strategies depend on both

the healthy or degraded state of the industrial system and the state of the monitoring sensors.

This framework requires that the conditional probability tables can be specified, depending on the

amount of health states of the system and the sensors. Possible extensions include the introduction of

imprecise and uncertain information about the model parameters. For instance, an expert may provide

imprecise values about state probabilities and impacts of risk mitigation actions. Such imprecision and

uncertainty must be properly represented and propagated throughout the optimization model to obtain

robust solutions.

Acknowledgements

The research has been supported by the Strategic Research Council of the Academy of Finland, specifically

the research project Platform Value Now. The case study has been performed using Julia Programming

language with the technical support of M.Sc. Juho Andelmin.

References

[1] M. Hermann, T. Pentek, and B. Otto. Design principles for industrie 4.0 scenarios. In Proceedings

of the 2016 49th Hawaii International Conference on System Sciences (HICSS), pages 3928–3937.

IEEE, 2016.

[2] H. Lasi, P. Fettke, H.G. Kemper, T. Feld, and M. Hoffmann. Industry 4.0. Business and Information

Systems Engineering, 6(4):239–242, 2014.

[3] E. Zio and M. Compare. Evaluating maintenance policies by quantitative modeling and analysis.

Reliability Engineering and System Safety, 109:53–65, 2013.

20



[4] E. Zio. Some challenges and opportunities in reliability engineering. IEEE Transactions on Relia-

bility, 65(4):1769–1782, 2016.

[5] M. Pecht. Prognostics and Health Management of Electronics. Encyclopedia of Structural Health

Monitoring, 2009.

[6] J.M. Simões, C.F. Gomes, and M.M. Yasin. A literature review of maintenance performance measure-

ment: A conceptual framework and directions for future research. Journal of Quality in Maintenance

Engineering, 17(2):116–137, 2011.

[7] R Rocchetta, L Bellani, M Compare, E Zio, and E Patelli. A reinforcement learning framework for

optimal operation and maintenance of power grids. Applied Energy, 241:291–301, 2019.

[8] A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel. Evaluating algorithm performance metrics

tailored for prognostics. In Proceedings of the 2009 IEEE Aerospace Conference, pages 1–13. IEEE,

2009.

[9] A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel. Metrics for offline evaluation of prognostic

performance. International Journal of Prognostics and Health Management, 1(1):4–23, 2010.

[10] K. Feldman, T. Jazouli, and P.A. Sandborn. A methodology for determining the return on investment

associated with Prognostics and Health Management. IEEE Transactions on Reliability, 58(2):305–

316, 2009.

[11] B.D. Youn, C. Hu, and P. Wang. Resilience-driven system design of complex engineered systems.

Journal of Mechanical Design, 133(10):1–15, 2011.

[12] M. Compare, L. Bellani, and E. Zio. Reliability model of a component equipped with PHM capa-

bilities. Reliability Engineering and System Safety, 168:4–11, 2017.

[13] M. Compare, L. Bellani, and E. Zio. Availability model of a PHM-equipped component. IEEE

Transactions on Reliability, 66(2):487–501, 2017.

[14] A.B. Sharma, L. Golubchik, and R. Govindan. Sensor faults: Detection methods and prevalence in

real-world datasets. ACM Transactions on Sensor Networks (TOSN), 6(3):23, 2010.

[15] J. Coble, P. Ramuhalli, R. Meyer, and H. Hashemian. Online sensor calibration assessment in nuclear

power systems. IEEE Instrumentation & Measurement Magazine, 16(3):32–37, 2013.

[16] J.W. Hines, D.J. Wrest, and R.E. Uhrig. Signal validation using an adaptive neural fuzzy inference

system. Nuclear Technology, 119(2):181–193, 1997.

21



[17] B. Rasmussen, J.W. Hines, and R.E. Uhrig. A novel approach to process modeling for instrument

surveillance and calibration verification. Nuclear Technology, 143(2):217–226, 2003.

[18] G. Kerschen, P. De Boe, J.C. Golinval, and K. Worden. Sensor validation using principal component

analysis. Smart Materials and Structures, 14(1):36–42, 2005.

[19] P. Baraldi, G. Gola, E. Zio, D. Roverso, and M. Hoffmann. A randomized model ensemble approach

for reconstructing signals from faulty sensors. Expert Systems with Applications, 38(8):9211–9224,

2011.

[20] P. Baraldi, F. Di Maio, P. Turati, and E. Zio. Robust signal reconstruction for condition monitoring of

industrial components via a modified auto associative kernel regression method. Mechanical Systems

and Signal Processing, 60:29–44, 2015.

[21] D. Garvey, J. Garvey, R. Seibert, J.W. Hines, and S.A. Arndt. Application of on-line monitoring

techniques to nuclear plant data. In Proceedings of the 5th International Topical Meeting on Nuclear

Plant Instrumentation Controls, and Human Machine Interface Technology, 2006.

[22] K.C. Gross, R.M. Singer, S.W. Wegerich, J.P. Herzog, R. VanAlstine, and F. Bockhorst. Application

of a model-based fault detection system to nuclear plant signals. In Proceedings of the International

Conference on Intelligent Systems Applications to Power Systems, 1997.

[23] F. Khan and M. Haddara. Risk-based maintenance (RBM): a quantitative approach for mainte-

nance/inspection scheduling and planning. Journal of Loss Prevention in the Process Industries,

16(6):561–573, 2003.

[24] L. Krishnasamy, F. Khan, and M. Haddara. Development of a risk-based maintenance (RBM)

strategy for a power-generating plant. Journal of Loss Prevention in the Process Industries, 18(2):69–

81, 2005.

[25] J.P.C. Driessen, H. Peng, and G.J. Van Houtum. Maintenance optimization under non-constant

probabilities of imperfect inspections. Reliability Engineering & System Safety, 165:115–123, 2017.

[26] P. Do, A. Voisin, E. Levrat, and B. Iung. A proactive condition-based maintenance strategy with

both perfect and imperfect maintenance actions. Reliability Engineering & System Safety, 133:22–32,

2015.

[27] K.G. Papakonstantinou and M. Shinozuka. Planning structural inspection and maintenance policies

via dynamic programming and Markov processes. Part I: Theory. Reliability Engineering & System

Safety, 130:202–213, 2014.

22



[28] S. Alaswad and Y. Xiang. A review on condition-based maintenance optimization models for stochas-

tically deteriorating system. Reliability Engineering & System Safety, 157:54–63, 2017.

[29] M. Keizer, S.D.P. Flapper, and R.H. Teunter. Condition-based maintenance policies for systems with

multiple dependent components: A review. European Journal of Operational Research, 261(2):405–

420, 2017.

[30] S. Panagiotidou and G. Tagaras. Optimal integrated process control and maintenance under general

deterioration. Reliability Engineering & System Safety, 104:58–70, 2012.

[31] M. Compare, F. Martini, and E. Zio. Genetic algorithms for condition-based maintenance optimiza-

tion under uncertainty. European Journal of Operational Research, 244(2):611–623, 2015.

[32] N. Rasmekomen and A.K. Parlikad. Condition-based maintenance of multi-component systems with

degradation state-rate interactions. Reliability Engineering & System Safety, 148:1–10, 2016.

[33] T.D. Nielsen and F.V. Jensen. Bayesian Networks and Decision Graphs. Springer Science & Business

Media, 2009.

[34] R.D. Shachter. Evaluating influence diagrams. Operations Research, 34(6):871–882, 1986.

[35] J.A. Tatman and R.D. Shachter. Dynamic programming and influence diagrams. IEEE Transactions

on Systems, Man, and Cybernetics, 20(2):365–379, 1990.

[36] D.P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena scientific Belmont,

MA, 1995.

[37] A. Salo, J. Andelmin, and F. Oliveira. Decision programming for multi-stage optimization under un-

certainty. https://arxiv.org/pdf/1910.09196.pdf, 2019. [Online: accessed 11-December-2019].

[38] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization, volume 6. Athena Scientific

Belmont, MA, 1997.

[39] C.A. Floudas and X. Lin. Mixed integer linear programming in process scheduling: Modeling,

algorithms, and applications. Annals of Operations Research, 139(1):131–162, 2005.

[40] A.J. Guillén, A. Crespo, M. Macchi, and J. Gómez. On the role of Prognostics and Health Manage-
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