
Pose Estimation and Semantic
Meaning Extraction for Robotics
Using Neural Networks

Tesi di Laurea Magistrale in
Automation and Control Engineering - Ingegneria
dell’Automazione

Author: Davide Figundio

Student ID: 965898
Advisor: Prof. Andrea Maria Zanchettin
Co-advisors: Ing. Niccolo’ Lucci, Prof. Paolo Rocco
Academic Year: 2021-22

i

Abstract

With the introduction of Convolutional Neural Networks (CNN), we have witnessed large
advancements in accuracy and precision in the fields of object detection and 6D pose
estimation from RGB images. We investigate the use of CNNs to verify their applicability
for perception tasks in the fields of industrial and collaborative robotics. In particular, we
devise a method for generating realistic training datasets for objects in a predetermined
environment starting from photographs, greatly facilitating the usually laborious and
expensive data acquisition phase that is considered to be a pre-requisite for machine
learning applications. We then trained a neural network on various experimental datasets
of this sort to evaluate its performance. We also devised an approach to extrapolate
the semantic state of a scene from the ouputs of a pose estimation network. Finally,
we demonstrated the performance of our methods in a real-world scenario by using the
output of a trained neural network to plan the movement of a robotic manipulator.

Keywords: Robotics, Machine Learning, AI, Neural Networks, Semantics, Pose Estima-
tion.

Abstract in lingua italiana

L’introduzione delle Reti Neurali Convoluzionali (CNN) ha dato il via ad enormi sviluppi
nei campi dell’identificazione di oggetti e stima della posa 6D partendo da immagini a
colori. In questa tesi studiamo l’utilizzo delle CNN per verificarne l’applicabilita’ alla
percezione nei campi della robotica industriale e collaborativa. In particolare, presenti-
amo un metodo per generare dataset realistici per allenare reti neurali, facilitando notevol-
mente il laborioso processo di acquisizione dati richiesto dal machine learning. Avendo
poi allenato una rete neurale per verificarne la precisione, sviluppiamo un metodo per
estrapolare lo stato semantico di una scena utilizzando le stime della posa fornite dalla
rete. Finalemente, dimostriamo l’affidabilita’ dei nostri metodi in uno scenario reale,
utilizzandone i risultati per pianificare il movimento di un manipolatore robotico.

Parole chiave: Robotica, Machine Learning, Intelligenza Artificiale, Reti Neurali, Se-
mantica, Stima della Posa.

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1
0.1 General Overview . 1
0.2 Thesis Goals . 3
0.3 Achieved Results . 4
0.4 Thesis structure . 4

1 State of the Art 5
1.1 Non-Learning-Based Methods . 5
1.2 Learning-Based Methods . 6

1.2.1 2D-3D Correspondence . 6
1.2.2 Direct Estimation . 7
1.2.3 Pose Refinement . 7
1.2.4 Conclusions on Learning Approaches 8

1.3 Semantic Description Approaches . 9

2 EfficientPose Background 11
2.1 Parent Networks . 11
2.2 Pose Estimation Methodology . 13
2.3 Network Performance . 14

3 Methodology 15
3.1 Fully Rendered Datasets . 15

3.1.1 Motivations and Objective . 15
3.1.2 Dataset Generation . 16

3.1.3 Network Training . 18
3.2 Augmented Reality Datasets . 18

3.2.1 Motivations and Objective . 18
3.2.2 Dataset Generation . 19
3.2.3 Data Augmentation and Network Training 22

3.3 Semantics Understanding . 23
3.3.1 Motivations and Objective . 23
3.3.2 Dataset Generation and Training 23
3.3.3 Semantic Meaning Extraction . 26

4 Experiments and Evaluation Metrics 31
4.1 Evaluation Metrics for Pose Esitmation and Object Detection 31

4.1.1 Average Precision . 31
4.1.2 Average Distance and ADD . 33

4.2 Semantics Evaluation Methodology . 34
4.3 Real-Life Experimental Setup . 35

5 Results 41
5.1 Model Training Results . 41

5.1.1 Impact of object dimensions and distance 45
5.1.2 False Positive Issues . 46

5.2 Semantic Meaning Extraction Results . 48
5.3 Real-World Application Results . 50

6 Conclusions and Future Developments 51

Bibliography 55

List of Figures 59

List of Tables 63

1

Introduction

0.1. General Overview

Perception has always been a fundamental task in the field of robotics. To perform
actions and modify its environment in an automated manner, a robot must be provided
with proper knowledge of its surroundings via sensor data and appropriate processing
methods.

Figure 1: The main ways a robot interacts with the environment: perception and action.

One of the most readily available sensors applicable to such a scenario is the color camera;
however, effectively utilizing a camera in a real-time control scenario brings about a series
of difficulties and complications. While commonly used sensors, such as thermometers
or encoders, usually output a single value which represents a measurement of a physical
quantity, cameras generate data with an entirely different scale an meaning. A relatively
low resolution 1280x720 pixel RGB sensor outputs an array of 2’774’800 values, at a rate
that is anywhere between five to sixty times per second, or more. Furthermore, contrary
to what occurs with traditional sensors, these values do not directly reflect a measurment
of a physical quantity, but are linked through complex interactions that are difficult to
express in an analytical manner. Thus devising a method to process all this data and
make it available to a control algorithm is a daunting task.

Neural networks, however, are suited to face these challenges, since they are built to
work with a large number of inputs in parallel, and are capable of modelling unknown

2 | Introduction

and complex functions through proper training. In particular, Convolutional Neural Net-
works (CNNs) have been widely applied to the field of image processing, due to their
independance from prior knowledge, the relatively little amount of pre-processing they
require, and a decreased tendency to overfit when compared with their fully-connected
counterparts.

Figure 2: Multi-object inference on an image from the LINEMOD[17] dataset performed
by EfficientPose[5], a 6D pose estimation CNN. Green bounding boxes visualize ground
truth poses while other colors represent estimations.

Since the introduction of CNNs, most tasks related to image processing have therefore
seen rapid advancements in recent years. Two particular subfields of interest for robotics
that have advanced by leaps and bounds are object detection and pose estimation. Object
detection tackles the problem of verifying whether an image contains a particular object,
while pose estimation techniques provide the position and orientation of the detected
object in relation to the camera. A combination of these tasks could cover the issues
impeding RGB cameras from being effectively used in control scenarios.

However, obtaining accurate and reliable sensor data is only part of the overall perception
task in autonomous systems. Another important issue often encountered is the necessity
of transforming the raw outputs obatined from an array of sensors into abstract high-
level information. This is ultimately essential for high-level decision making, since is
often performed using semantic planners, such as PDDL planners, which rely on symbolic
represenations of the state, and are ubiquitous in industrial and collaborative robotics
applications.

| Introduction 3

0.2. Thesis Goals

Our objective in this thesis is therefore to verify the applicability and performance of
a state-of-the-art 6D pose estimation CNN to a robotics scenario, and the difficulties
involved in doing so. When working with machine learning approaches, we face the
issue that neural networks in general are incapable of understanding cause and effect
relationships, being only practiced in percieving and optimizing the relationship between
input and output data. Therefore the only way to ensure correct behaviour is to train
them with proper training inputs, and associated ideal outputs (the ground truth), which
together form a dataset.

However, acquiring the necessary data to build a high-quality dataset is often time-
consuming and expensive. Our initial goal is therefore to improve the applicability of
machine learning approaches to pose estimation tasks by facilitating this initial process.
For this purpose, we demonstrate an approach for quickly and easily generating large
amounts of synthetic labelled data starting from a set of background images, providing
realistic depictions of a small number of objects of interest in a determined environment.

Figure 3: Side-by-side comparison of a real image and a generated training image resulting
from our pipeline.

We then verify the performance of a model trained on synthetic data, and whether it is
capable of effectively generalising to real world conditions.

For many applications in industrial and collaborative robotics, estimations of the pose
may not be sufficient to complete a task, but more high-level knowledge of the semantic
state of a scene is required. Therefore we developed a method that uses the outputs from
a pose estimation network to compute this semantic state, and tested its reliability in a
simple assembly scenario.

Finally, by combining the results of the previous two methods, we verified the perfor-
mance of the complete system in a real-world application by using the estimations from

4 | Introduction

the trained network and from our semantic meaning extraction algorithm to plan the
movement of a robotic manipulator.

0.3. Achieved Results

Our dataset generation methodology proved to be crucial when testing out different vari-
ations of traning inputs and their effect on the final performance of the network. Overall,
the resulting system was able to obtain good results and generalise in a satisfactory man-
ner to real-world conditions. Our best performing model resulted in an average error of
1.9052 mm when predicting the pose, corresponging to 98.46% correct predictions. The
semantics extrapolation method also achieved remarkably good performance, reaching a
top F1 score of 0.9763, which however is highly dependant on the quality of the initial
pose estimations from the network. Finally, applying the combination of pose estima-
tion and semantics extraction methods to a real-life scenario made our robot capable of
planning and completing simple assembly tasks, all while relying only on an RGB camera
for sensing. However, its reliability may not be sufficient for tasks that require very high
precision, and is once again highly dependant on the performance of the underlying neural
network.

0.4. Thesis structure

The rest of this thesis is organized as follows. We will begin by examining the current
state-of-the-art for pose estimation and semantics approaches (Chapter 1), and we will
give some background on the pose estimation network we chose as the basis of our ap-
proach, EfficientPose (Chapter 2). We will then go over our methodologies and underlying
motivations (Chapter 3), and the metrics and experiments used to evaluate them (Chap-
ter 4). Finally, we will lay out the results of our experiments (Chapter 5), and conclude
the thesis (Chapter 6).

5

1| State of the Art

In this chapter we will give an overview of 6D pose estimation and semantics methodologies
in the state-of-the-art.

Pose estimation is subject to ongoing research, as it has wide applicability in a variety of
fields, including but not limited to robotics, autonomous vehicles, augmented reality and
computer vision. The methodologies supporting this issue can be divided into two main
categories: learning-based and non-learning based, as explained hereafter.

1.1. Non-Learning-Based Methods

The first pose estimation algorithms worked through image segmentation and voting
schemes. In 1972, Dula and Hart started using Hough[18] voting to detect lines and
curves in images[11], and Ballard later generalised this procedure to analytically defined
shapes[1], popularizing its application for computer vision. In parallel, Lamdan and Wolf-
son published their Geometric Hashing[22] method, which is based on the representation
and matching of objects using their minimal features, such as points or lines.

Modern approaches can be divided into three sub-categories. 2D-3D correspondence meth-
ods aim to recognize features in an image and match them to known object character-
istics [3], but often rely on texture information, and cannot be applied to textureless
objects. Real-image-based methods[16] transform the pose estimation problem into an
image-matching problem, associating the detected image to a database of previously saved
templates. This requires a difficult and time consuming process to acquire these reference
images. CAD image-based methods[26] aim to circumvent this by rendering the references
using a 3D model. All of these approaches have issues with adapting to new situations,
such as strong changes in illumination, cluttered scenes, and repeated objects.

A much easier way of identifying the 6D pose is through the usage of specialized mark-
ers. When placed on an object and photographed, these markers highlight the points on
the image that correspond to the 3D location of the marker, and the pose can then be
obtained by solving a Perpective-n-Points[37] (PnP) problem. For example, an ArUco

6 1| State of the Art

marker[13], can be easily and robustly detected by applying image thresholding and con-
tour extraction, and its pose estimated by using its corners as keypoints[28]. The obvious
downside of this method is that it requires markers to be applied to objects, which is not
feasible at an industrial level. Another downside is that it also does not deal with partial
or total occlusions of the marker(s).

Figure 1.1: An example of pose identification using ArUco markers.

Overall, non-learning based methods, while simple and computationally efficient, often
require strictly controlled enviroments and specific conditions to be functional. This
greatly restricts their applicability, and therefore learning-based methods are more widely
used.

1.2. Learning-Based Methods

Since the introduction of Convolutional Neural Networks (CNN), artifical intelligence and
deep learning have been widely applied to the field of image processing, including its sub-
fields of object detection and 6D pose estimation. The methods described in this section
aim to train a CNN on vast quantities of data to perform a certain task. Based on this
task, we can categorize these approaches into three main branches: 2D-3D correspon-
dence, direct estimation, and pose refinement. We will give a couple of examples for each
of these categories.

1.2.1. 2D-3D Correspondence

This class of methods uses a two step approach: they first implement a neural network to
regress a set of 2-D points from an image, corresponding to a set of known feature points,
and then use PnP to obtain the 6D pose of the object.

BB8[30] uses object segmentation to perform 2D object detection, then regresses the

1| State of the Art 7

8 points that form the 3D bounding box of an object, but struggles with textureless
symmetric or partially occluded objects. To combat these issues, PVNet[29] uses farthest
point sampling to select keypoints on the surface of the object, and then implements a
dense pixel-wise voting network, where each pixel "votes" on locations for the keypoints.
RANSAC[12] is then used to exclude outliers and obtain predictions with their probability
distribution, which are then used for uncertainty-driven PnP.

Most approaches in this class share two common weaknesses. First, they are very perfomance-
intensive when estimating the pose of multiple objects, since keypoint regression and PnP
have to be computed for each object individually[5]. Second, they are not end-to-end
trainable, as the loss functions implemented do not reflect the final perfomance on the
pose estimation task[19]. However, recent approaches have faced this issue by implement-
ing learned or differentiable PnP algorithms, so as to enable end-to-end training[6].

1.2.2. Direct Estimation

The approaches in this category exploit convolutional neural networks to directly regress
the pose of an object in a single step. They are end-to-end trainable and boast better run
times than the previously seen 2D-3D methods.

PoseNet[20] was one of the first implementations of this concept, and was originally con-
ceptualized for obtaining the camera pose from outdoor or indoor enviroments, and not
for object pose estimation. Deep-6DPose[10] works by extending the Mask R-CNN[15]
instance segmentator, which in turn extends the Faster R-CNN[31] object detector, and
introduced a key technical feature by decoupling rotation and translation parameters, so
as to make the pose regression loss differential. PoseCNN[40] expanded on this idea, and
introduced a novel loss function that enabled it to properly handle symmetrical objects.

Most networks in this category are fast and computationally efficient, but struggle in
situations with partial occlusions.

1.2.3. Pose Refinement

The previously mentioned algorithms may only give a rough estimate of the object pose.
If greater accuracy is required, it is often necessary to use pose refinement algorithms.
Approaches in this category start from an inital estimate, and then use various methods
to refine it, obtaining a more accurate prediction.

DeepIM[23] employs an iterative approach, by repeatedly rendering a 3D model of the
object and matching it against the observed image. To ensure successive iteraterations

8 1| State of the Art

Rank Model Name Mean ADD Method Year

1 RNNPose 97.37 Refinement 2022
2 EfficientPose 97.35 Direct + Refinement 2020
3 RePOSE 96.1 Refinement 2021
4 EPro-PnP-6DoF v1 95.8 2D-3D 2022
5 ROPE 95.61 2D-3D 2021
6 DPOD 95.2 2D-3D + Refinement 2019
7 HRNet 93.3 2D-3D 2019
8 HybridPose 91.3 2D-3D 2020
9 CDPN 89.86 2D-3D + Direct 2019
10 PoseCNN + DeepIM 88.6 Direct + Refinement 2018

Table 1.1: Top ten performing models on the LINEMOD dataset[17] as of November 2022,
ranked by their ADD metric (see section 4.1.2).

gain in precision, it is trained not only on an annotated dataset, but also on previous
outputs of the network. RNNPose[41], while also starting from a rendering and the
observed image, formulates the task as a nonlinear optimization problem: it minimizes
differences between correspondence fields by leveraging recent discoveries in the field of
optical flow estimation, while recurrently calling itself. RNNPose currently boasts the best
performance on the widely used LINEMOD[17] dataset by a narrow margin, as highlighted
by table 1.1.

While refinement methods achieve remarkable performance, they have two main down-
sides. First, they rely on an inital estimate of the pose, so they cannot be applied inde-
pendently, and second, they are computationally intensive, especially when one considers
that they must be run in parallel with another estimation method to generate the initial
poses.

1.2.4. Conclusions on Learning Approaches

Data-driven models based on deep learning are more widely applied than non-learning-
based models, as a large variety of approaches exists, and each approach brings its own
distinct advantages. When choosing a model, special attention must be given to the
application the model is destined for. For single object pose estimation, especially in
highly occluded enviroments, 2D-3D methods are the best choice. For multi-object pose
estimation, direct estimation methods provide greater computational efficency. Whenever
greater accuracy is required, pose refinement algorithms offer the best results.

1| State of the Art 9

Figure 1.2: Performance on LINEMOD of recent pose estimation algorithms by year.
Graphic originates from paperswithcode.com/sota/6d-pose-estimation-on-linemod.

1.3. Semantic Description Approaches

The problem of building abstract descriptions from low level data in robotics has persisted
for as long as high-level planners have been in use. Robots percieve the world through
sensor inputs, and act upon these perceptions by supplying their motors and drives with
appropriate control targets. However, it is very difficult to plan actions while purely
relying on a low-level representation: therefore high-level descriptions simplify planning
for complicated tasks considerably.

Initial approaches face this issue by abstracting the lower details of control (procedu-
ral abstraction). Researchers at Stanford in 1984, while developing their mobile robot
"Shakey"[27], developed an approach that would combine individual low-level actions,
into progressively higher hierarchies of subroutines, each representing the combination of
a sequence of actions to perform a task. A plan then consists in series of high-level skills
necessary in order to reach the goal, a concept that has been re-applied numerous times
[2][32].

Koindaris et al. [21], however, show that performance can be further improved through
state abstraction: by defining a set of questions that an abstract representation will be
used to answer, we can construct a representation that has the capability of answering
them. This further simplifies planning, bypassing the inherent complexity of the robot’s
sensing space by providing a simplified representation of the state to the decision-making
process. Koindaris also shows how this representation can be converted into commonly
used planning formats, such as Planning Domain Definition Language[14].

11

2| EfficientPose Background

In this chapter, we will be providing a brief insight into the EfficientPose 6D pose estima-
tion neural network. EfficientPose was chosen as the starting point for this thesis, as it
boasts state-of-the-art results while maintaining relative simplicity and low computational
costs. It is designed with multi-object estimation in mind, which is especially significant
for robotics applications, as other approaches do not scale well with the number of total
detections.

2.1. Parent Networks

Similarly to Deep-6DPose (previously mentioned in section 1.2.2), EfficientPose is an end-
to-end direct 6D pose estimation approach that extends the functionality of a 2D network.
While Deep-6D extends the segmentation network Mask-R-CNN, EfficientPose extends
Google’s object classification network EfficientDet[34], which in turn builds on Google’s
backbone network EfficientNet[33].

Both of these parent networks are based on the concept of scalability: the possibility
of increasing network dimensions to achieve better performance in exchange for greater
computational cost. These approaches scale using a single hyperparameter, ϕ. For ϕ = 0,
we have a base network with minimum depth, width and resolution in an optimal ratio.
By increasing the value of ϕ, we can scale up these dimensions while mainining the ratio,
thus obtaining better performance than if we had just increased the depth, width or
resolution of the network individually.

The backbone of this approach is EfficientNet: a network, or more precisely a family of
networks, that was designed using Network Architecture Search (NAS)[42] to provide an
optimal ratio of depth, width and resolution. This allows it to obtain a performance that
is similar or better than other backbone networks while requiring much fewer parameters,
thus greatly lowering computational costs.

EfficientDet then expands on EfficientNet by adding a Feature Pyramid Network (FPN)[25],
which performs multi-scale feature fusion, combining data from low-resolution, semanti-

12 2| EfficientPose Background

(a) EfficientNet: X values are the number of parameters used in the net-
work, Y values are the percentage of correct answers on the Imagenet
dataset[9].

(b) EfficientDet: X values are the number of Floating Point Operations
per second (FLOPs), Y values are the Average Precision (AP) tested on
the Microsoft Commmon Objects in Context dataset[24].

Figure 2.1: Performance of the EfficientNet and EfficientDet families compared to other
approaches.

2| EfficientPose Background 13

cally strong layers with data from high-resolution, semantically weak layers. In partic-
ular, EfficientDet uses a new form of bi-directional feature pyramids, providing multiple
top-down and bottom-up aggregation paths with learnable weights. The outputs of this
feature network are then fed into multiple subnetworks that use them to perform single
tasks, such as object class and 2-D bounding box estimations. This structure is depicted
in figure 2.2.

Figure 2.2: Overview of the EfficientDet architecture. BiFPN layers and subnet layers
may be repeated multiple times according to resource constraints.

One advantage EfficientDet has over many other 2-D object detectors is that it is single-
shot: while other methods require an intermediate region proposal step, EfficientDet
performs inference directly on the input image. This means that it requires significantly
lower computational costs, while maintaining state-of-the-art performance.

2.2. Pose Estimation Methodology

EfficientPose expands on EfficientDet’s architecture with the addition of two additional
subnets, which predict translation and rotation for each object class. Since these networks
are relatively small, the additional computational costs are minimal.

The rotation network outputs a vector R ∈ R3 containing a minimal representation of the
rotation in Rodrigues angles, and then employs an additional iterative refinement strategy
similar to what has been utilised in other pose refinement methods. Both the network
size and the number of iterations are controlled by the hyperparameter ϕ.

The translation network instead splits the task of predicting the position p = [x, y, z]T

of the object into separate predictions of the 2D center c = [cx, cy]
T and of the depth z,

14 2| EfficientPose Background

analogously to what is done in other direct estimation networks such as PoseCNN [40].
The final position p can be computed using the camera intrinsic parameters by inverting
the relationship:

cxcy
1

 =
1

z

fx 0 px

0 fy py

0 0 1

xy
z

where fx, fy are the focal lengths and (px, py) is the principal point. Thus we obtain:

xy
z

 = z

1
fx

0 px
fx

0 1
fy

py
fy

0 0 1

cxcy
1

This also means that EfficientPose is trained on a single set of camera parameters, since
the estimation of the depth would be thrown off by changes in the focal distance.

An advantage of EfficientPose’s approach is that multiple class, box, rotation and trans-
lation networks for different object instances can share the same backbone and feature
network. This minimizes additional computation costs for multi-object pose estimation
and training, with the downside of losing accuracy compared to a network trained on a
single object.

2.3. Network Performance

EfficientPose is trained and evaluated on the LINEMOD and Occulsion-LINEMOD datasets,
which are standard benchmarks for pose estimation methods.

For single-object estimation on LINEMOD, EfficientPose obtains 97.35% ADD, placing
it at the very top of the state-of-the-art, while for multi-object-estimation on Occlusion-
LINEMOD, it obtains 79.04% ADD with ϕ = 0 and 83.90% ADD with ϕ = 3.

The computational performance also deserves a comment: while running on an Nvidia
RTX 2080 Ti graphics card, with ϕ = 0 it maintained 27.45 FPS for single-object estima-
tion and 26.22 FPS for multi-object estimation.

15

3| Methodology

In this chapter we will go over the methods used to train our own pose estimation model.
These are structured into three sections, depending on the strategies implemented and
their objective.

Our starting point is the EfficientPose pose estimation network, as described in the pre-
vious chapter. The first section describes our attempt to train this network using purely
synthetic data, with the objective of verifying whether it is possible to facilitate the labo-
rious real-world dataset acquisition phase that is considered to be a prerequisite for deep
learning.

The second section takes from the first and introduces a novel dataset generation method,
that makes use of "augmented reality" to create arbitrarily large datasets for specific
objects in specific environments.

Finally, the third section exploits this method to generate a dataset for new objects,
and evaluates the possibility and strategies required for extracting additional semantic
information from the output of the pose estimation network.

3.1. Fully Rendered Datasets

3.1.1. Motivations and Objective

Since we are starting with a given pose estimation network, we must train it in order to
fit our own needs. In the vast majority of situations, the objects we would like to identify
will not be present in any available dataset: therefore the first essential step to develop
our model is the creation of our own datasets for training and evaluation.

These datasets consist in a collection of images containing the object we wish to track,
with associated ground truths encoding the pose of the tracked object for each image.
Collecting this data in the real world is tedious and difficult, considering both the number
of samples required for deep learning, and that any errors or biases will strongly affect
the perfomance of the trained model.

16 3| Methodology

Various methods have been attempted to perform this step. LINEMOD[17], one of the
most popular pose estimation datasets, was generated by setting the dataset objects onto
a board lined by ArUco markers. The pose of the objects relative to the board is then
computed with good accuracy using depth information; thus by photographing the board
from different angles it is possible to obtain a complete and accurate set of poses for
each object by first computing the pose of the reference board. Similarly, the YCB-Video
dataset[40], another popular choice, also uses depth information to accurately obtain an
initial estimate for the first frame in a video, and then tracks the camera trajectory to
obtain poses for the successive frames, concluding with a final optimization step that
minimizes the average error of the ground truths.

Both of these methods require costly equipment and a significant time investment even
before training. We would like to investigate whether it is feasible to instead use ren-
dering software, which can generate potentially infinite quantites of training images with
associated, perfectly accurate ground truths at low cost.

The largest issue with using synthetic datasets is that, while a model trained in this
manner could function perfectly in a simulation, we have no guarantee whether it would
also perform similarly in real world conditions. This is because a simulated sensor and
simulated enviroment are unable to reproduce unmodeled physical effects and noise in the
same way a real sensor would with a real environment, an issue commonly dubbed as the
"reality gap"[38].

Domain Randomization[35] is one of the most utilised methods for solving this problem.
Its principle states that the introduction of sufficient variability in the simulated domain
will allow the model to generalise to the real world with no additional training. This
would allow us to entirely skip the laborious data collection step and instead rely on a
3D model of the object we wish to track, which is usually readily available and accurate.

3.1.2. Dataset Generation

To render the images for our dataset, we used the Unity Perception package[36], which
integrates domain randomization features into its pipeline. Unity Perception works by
simulating a scene, and then rendering each simulated frame from the perspective of a
virtual camera.

When setting up the simulation, we specify the number of iterations to simulate and the
number of frames to render for each iteration. At the beginning of each iteration, we call
a set of randomizer scripts: each one sets one of the domain variables for the iteration,
such as the pose of an object or the colour of the light source, by extracting its value

3| Methodology 17

Figure 3.1: One of the images generated with Unity’s Perception package for training our
model.

from a pre-defined probability distribution. The scene is then updated according to these
variables, rendered, and the associated ground truth saved.

As a test case, we decided to generate a dataset for a standard M6x30 hexagonal head
screw. This is a very challenging object for pose estimation, as it is small and symmetrical.
Symmetrical objects have always been difficult for pose estimation algorithms, due to
reasons explained in depth in section 4.1.2. The model of the M6x30 screw was obtained
from the FreeCAD Fasteners workbench[4] and colored with a metallic texture.

The domain for this dataset consists of images of the screw placed inside of a scene: thus
the primary domain variables are the pose, the background, and the lighting. We used a
custom randomizer to set position and rotation for each iteration, and default randomizers
provided as part of the Perception package to generate a background, composed by random
3D shapes placed with random positions, orientations and textures. Finally, we used a
custom randomizer to set the lighting color, intensity and origin. A sample image from
this dataset appears in figure 3.1.

We can then interface the output of this procedure with EfficientPose using a conversion
script, which performs the necessary tasks to make the dataset compatible with the net-
work. In this manner we can quickly and easily generate arbitrarily large datasets for
training, by first running the Unity scenario, and then running the conversion script for
EfficientPose.

18 3| Methodology

3.1.3. Network Training

The original version of EfficientPose is trained on LINEMOD. However, the specifics of
LINEMOD and of our own dataset are widely different: LINEMOD has around 1200
images per object, and only about 200 of these are used for training, while our dataset
has 10000 images, 9000 of which are used for training. This means that we must set
proper training parameters for our own dataset.

First, we reduced the number of epochs from 5000 to 100. Since our dataset contains 45
times more images, these two values represent a similar training time. EfficientPose by
default evaluates the model every 10 epochs due to the small epoch size; we change this
value and evaluate the netowrk at the end of every epoch.

EfficientPose implements Keras’ ReduceLRonPlateau callback to dynamically set the
learning rate during training. This is standard practice: large learning rates quickly ad-
just the model but can lead to fluctuations, local minima and divergence; smaller learning
rates avoid these issues but take an excessive amount of time to improve the model[39].
This method instead starts with a large learning rate, and then automatically reduces the
learning rate whenever training stagnates, thus maintaining a value closer to the ideal. By
default, EfficientPose halves the learning rate every time the accuracy does not improve
for 25 epochs; we changed this to an 80% reduction every 5 epochs, to account for the
increased number of samples per epoch.

The initial and minimum learning rates are mantained identical to EfficientPose’s, set at
10−4 and 10−7 respectively. For all purposes in this thesis, we will be using the networks
scaled to their lowest hyperparameter ϕ = 0, as going any higher requires excessive
amounts of time to train.

The results of this training are presented in section 5.1.

3.2. Augmented Reality Datasets

3.2.1. Motivations and Objective

In the previous section, we explored the option of generating fully synthetic training
images using domain randomization. This represents a generic approach: by representing
a wide variety of environments and conditions in the dataset, we hope that the model
learns to generalise to more situations, including eventually our usecase. However, this
is only one way of bridging the reality gap. Another approach could be to "reduce" the
gap between simulation and reality, by making the training images as similar as possible

3| Methodology 19

to the real-world environment the model will then be tested in.

This approach has the disadvantage of fewer guarantees on performance outside of the
selected environment, which makes it better for usecases which are stationary or limited to
fewer settings. However, this is often not an issue for applications in industrial scenarios.

To generate realistic images, we considered two options: either re-creating the environment
inside the simulator, or using an "augmented reality" approach by rendering the 3D
models of the dataset objects on top of real photographed images taken from the testing
environment. We decided on the second option, since it is both faster and gives more
realistic final results compared to a fully simulated environment. Furthermore, changing
the environment is also as simple as capturing a new set of background images.

Thus our objective is to create a method to easily and quickly generate a realistic training
dataset for our testing environment, which is a simple table with a set of objects placed
on its surface.

3.2.2. Dataset Generation

We again used Unity Perception to generate our training dataset, as described in 3.1.2.
We used models for 5 objects: the same M6x30 screw used previously, a M8x16 round
head screw, a M8x25 and M8x50 socket head screws, and a M4x40 countersunk screw.
As previously stated, these are small, symmetric objects that are generally challenging
to identify, with the additional complication that they all have similar shapes and sizes.
Only the first four are annotated, while the M4x40 is included as a "decoy" to reduce the
number of false positives (a concept further explained in subsection 5.1.2).

The key issue now becomes the positioning of the objects in the image. Since in real-
life conditions, the pose of an object is almost always influenced to some degree by its
environment, we believe that simply placing the item freely in 6D space as we did in
the previous approach would lose information compared to a realistic placement. In an
example setting where the objects are placed on a horizontal surface, this would constrain
three degrees of freedom for each object: the vertical position relative to the surface, and
the two rotations around the axises that determine the surface itself. Thus our objective
is, for each background image, to start from the pose of the surface relative to the camera,
and from there generate a realistic pose for each dataset object.

This pose is generated using the composition in sequence of three roto-translations:

1. An initial transformation (ts,Rs) from the camera frame to the surface’s reference
frame.

20 3| Methodology

2. A second transformation (tr,Rr) that shifts the object from the surface frame to a
random position and rotation.

3. A final correcting transformation (tc,Rc) that takes into consideration the object’s
geometry to obtain a realistic placement.

Figure 3.2: Visualization of the three roto-translations used to obtain a realistic place-
ment.

We can obtain the initial transformation (ts,Rs) by preparing the testing surface with an
ArUco marker. In this manner, by capturing a video of the surface, eliminating off-center
and blurry frames, and undistorting the resulting images, we obtain backgrounds for our
scene that are then associated with the pose of the marker, as previously described in
section 1.1.

We then compute values of tr and Rr considering the degrees of freedom afforded to each
object by the surface: that it is free to translate along the surface’s x and y axes, and to
rotate around its z axis.

tr =

xr

yr

0

 , Rr =

cos θr − sin θr 0

sin θr cosθr 0

0 0 1

xr, yr, and θr can be extracted from pre-defined probability distributions; in our case
three uniform distributions U(xmin, xmax), U(ymin, ymax), and U(θmin, θmax).

The final correction transformation (tc,Rc) differs based on the object geometry, thus
must be computed individually for each object. For example, if we consider the M6x30
screw, (tc,Rc) is given by a translation zc along the z-axis and a rotation by θc around
the y-axis:

3| Methodology 21

tc =

 0

0

zc

 , Rc =

cos θc 0 − sin θc

0 1 0

sin θc 0 cos θc

The resulting transformation is shown in figure 3.3, while zc and θc depend on the dimen-
sions of the screw as follows:

Figure 3.3: Dimensions and pose corrections for the M6x30 hexagonal head screw.

θc =
π

2
− arctan

r2
l1

zc = r1 sin θc +
1

2
l2 cos θc

One thing to note is that if an object can have multiple positions on the surface, we
consequently have multiple correction transformations to choose from. For example, each
screw could be on its side or on its head, which implies a choice between two sets of tc,
Rc.

Once we have the three transformations (ts,Rs), (tr,Rr) and (tc,Rc), the final pose (t,R)

in camera reference is computed as:

t = ts + Rstr + RsRrtc

R = RsRrRc

Eventual intersections between objects resulting from successive placements are resolved
using a simple brute-force approach: whenever a placement would generate a collision,

22 3| Methodology

the process is re-attempted from the second step, with a limit on the maximum number
of attempts allowed.

With this method, for each background we can quickly generate a series of training images
with associated ground truths. While we considered the particular situation of a set of
objects placed on a flat surface, the three steps of this approach can be applied to other
conditions. In general, these steps are:

1. The identification of the area of interest, and primary placement inside that area.

2. A random transformation within the area of interest, dictated by the degrees of
freedom present.

3. A final transformation dictated by the specifics of the object to be placed.

3.2.3. Data Augmentation and Network Training

Figure 3.4: An example of a training image before and after data augmentation.

The dataset generated with the previous methodology has two major weaknesses. First,
there is a limited number of background images, which means that the model has a finite
number of camera positions to learn from. This may lead to overfitting and unreliable
results for positions that don’t have sufficient representation. Second, it is difficult to ran-
domize light intensity and color for the background images inside Unity, as it is decoupled
from the 3D models.

We can remedy these issues using data augmentation. This is a technique that involves
applying random changes to data during training, similarly to how domain randomiza-
tion would apply them during dataset generation. EfficientPose already provides two
data augmentation methods: 6 Degree-of-Freedom augmentation and color augmenta-
tion. 6 Degree-of-Freedom augmentation involves randomly rescaling and rotating the
input image and consequently adjusting the ground truth, so as to greatly increase the

3| Methodology 23

number of possible poses each image can provide. Color augumentation instead imple-
ments RandAugment[8] to change the color and grain for the entire image. Applying both
these methods results in images such as the one depicted in figure 3.4, conveniently fixing
the issues of our dataset.

Other training parameters are identical to the previous attempt with the fully synthetic
dataset: 100 epochs, with an 80% learning rate reduction if the model stagnates for 5
epochs. The results of training a network on this dataset are presented in section 5.1.

3.3. Semantics Understanding

3.3.1. Motivations and Objective

In many applications, raw sensor data on its own is not sufficient to perform a task.
For example, when using high-level planning algorithms, it is often necessary to provide
information on the overall semantic state of a scene. The issue then becomes how to
deduce this state using the available data, which in our case is the output of a pose
estimation network.

The example situation we will be considering is the assembly of a workpiece starting from
its components. By tracking the pose of each individual component, we attempt to track
the state of the overall assembly task. This could be necessary information for planning
out a sequence of actions that would then lead to the task’s completion.

3.3.2. Dataset Generation and Training

The first step to work with the neural network is again the generation of the datasets
required for training and evaluation. For our task, we are considering the assembly of a
set of modular button boards. We have two boards, one with two slots, and one with
three slots. These slots can be filled in any order with one of three buttons: a larger safety
button, and two smaller buttons with different designs on their faces, but identical shape.
The CAD models for these objects were available online from the supplier’s website, and
we used Blender to color them appropriately. Renders for these objects are depicted in
figure 3.5.

To generate the dataset images we exploited the previously mentioned Augmented Reality
method, however we have a few noticeable differences that require consideration. The first
obvious one is that we would like to represent the buttons not only while they are freely
placed on the table surface, but also when they are slotted into a board, as can be see in

24 3| Methodology

Figure 3.5: Orthographic rendering of dataset objects: two modular button boards and
three buttons.

Figure 3.6: Sample image generated for the set of modular buttons and boards in figure
3.5.

figure 3.6. We compute these transformations in advance and simply apply them when
necessary. One important thing to note is that these roto-translations depend on the
shape of the button: thus the larger safety button will require different values compared
to the other two.

The second issue deals with the two smaller buttons with identical shape. These buttons
are distinguishable only by the different designs on their faces, but when placing them
randomly, there is a good chance that these faces are not visible. This leads to a situ-
ations where it is impossible to differentiate between the two, causing a drastic drop in
performance, as during training the network will percieve a large number of false positives.

To solve this issue, we add a fictional object to the dataset, the "unidentified button". In
particular, we categorize buttons without their unique face visible as a new object class,
since it is impossible for the network to directly identify them as one type or the other.

We can use a simple geometric method to determine if a button’s face is visible during
generation, explained in figure 3.7. Considering the origin of the camera reference frame

3| Methodology 25

Figure 3.7: Schematic representation of the button relative to the camera, and of the
variables used when evaluating occlusion of the button face.

O = [0, 0, 0]T , the button’s pose is given by the translation vector t and the rotation
matrix R. t also indicates the position of the center of the button C, due to it being the
origin of the button’s 3D model. If we then consider the vector b = [bx, by, bz]

T indicating
the position of the center of the button’s face F in the button’s reference frame, the
position of this point in the camera frame is given by:

F = t+ Rb = f

We can then compute the amplitude of the angle α = CF̂O by applying the law of cosines:

tT t = bT b+ fTf − 2||b|| · ||f || · cosα

By making α explicit in this equation we obtain:

α = cos−1

(
tT t− bT b− fTf

2||b|| · ||f ||

)
It is simple to verify geometrically that the button’s face is occluded whenever α < 90◦,
and viceversa. To reduce edge cases where the button’s face is barely visible in the
proximity of α = 90◦, we introduce a small buffer angle β, usually around 5◦. Thus we
categorize a button as unrecognizeable whenever α < 90◦ + β, overwriting its class in
the ground truth with the "unknown button" class. The complete method for placing an
object is therefore described with a flowchart in figure 3.8.

We decided to generate 20’000 images in this manner, where 18’000 are used for training

26 3| Methodology

Figure 3.8: Flowchart representing the algorithm for placement of dataset objects, when
placing buttons inside of slots and checking for face occlusion.

and 2’000 for verification. The increased dataset size is due to us giving more represen-
tation to each of the unique positions each object can have. We subsequently reduced
the number of epochs to 40, and the patience for learning rate reduction to 3 epochs. All
other parameters are identical to our previous attempts.

Results for training a model on this dataset can be found in section 5.1.

3.3.3. Semantic Meaning Extraction

Now that we have a dataset and a model trained on it, we can begin the task of creating
a method to identify the state of the overall scene. There are two pieces in this assembly:
the buttons and the boards they are to be slotted in. The problem now becomes: given
the position of a button and the position of a board, how does one determine whether the
button is slotted into the board, and in which slot?

We handle this using a threshold comparison approach, described by the following three
steps:

1. For each button and slot, we compute a distance metric that represents the button’s
"distance" from that slot.

2. We compare this metric with a distance threshold : if it is less than this value, the
button is considered a viable candidate for filling the slot.

3. We resolve conflicts between multiple buttons competing for the same slot and vice-
versa.

3| Methodology 27

For distance metrics, we considered two possible candidates: Center-to-Center distance
and Average Symmetric Distance.

Figure 3.9: Depiction of the method for obtaining a button’s reference position. The
network’s estimation of the position of the button and board is in blue, while the reference
position is in red.

Center-to-Center is the distance between the estimated position of the center of the button
C, and a reference position, representing an estimation of the position this center would
have if the button was already in the slot, C ′. As depicted in figure 3.9, while the first
position is a direct output of our network, the second one must be obtained from the
succession of three roto-translations: one from the camera reference to the estimated
position of the board, b, which is a direct output of the network; a second to the position
of the slot relative to the board, s, which is known for each slot; and the last one from the
position of the slot to the position of the hypothetical button center, c, which varies based
on the geometry of the button. The Center-to-Center distance is then given by ||CC ′||2.

The Average Symmetric Distance is instead identical to the AD-S computed as a metric
during training and evaluation. Considering if the estimated pose of the button is given
by (R, t) and the reference position is given by (R′, t′), AD-S is computed as:

AD-S =
1

n

∑
x1∈M

min
x2∈M

||(Rx2 + t)− (R′x1 + t′)||2

where M is the set of the points composing the button’s 3D model, and n is the number of
points considered. This metric is further explained in section 4.1.2. While this metric has
the advantage of considering differences in rotation, which Center-to-Center is unable to
do, it is also much more computationally demanding, depending on the number of points
considered.

28 3| Methodology

Once we have a distance metric, it is necessary to develop a conflict resolution algorithm.
This is of fundamental importance for higher values of the threshold, since multiple slots
will be within range of the same button or multiple buttons will be in range of the same
slot, as depicted in figure 3.10.

Figure 3.10: Schematic depiction of two hypothetical situations that would generate con-
flicts by placing multiple buttons within the threshold of a single slot or vice-versa.

For this purpose we introduce a "double check" method that provides excellent results
with minimal complexity. This method is composed of three steps:

1. For each button, we assign it to the closest slot within the threshold, if there is one.

2. For each slot, we assign it to the closest button within the threshold, if there is one.

3. For each assignment, it is confirmed only if it is reciprocated, and otherwise it is
ignored.

An assignment from a slot to a button is considrered reciprocated only if the button is
also assigned to the slot, and vice-versa.

Figure 3.11: Schematic depiction of the resolution of the conflicts previously depicted in
figure 3.10. Green arrows represent reciprocating assignments, which are confirmed, while
red arrows represent non-reciprocating assignments, which are ignored.

3| Methodology 29

In this way we can resolve most possible ambiguites that may result during evaluation of
the semantic state.

31

4| Experiments and Evaluation

Metrics

In this chapter we will go over the various experiments and metrics used to evaluate
the performance of our methods. This chapter is subsequently divided into three main
sections.

In the first section we will show the metrics used to describe the performance of the
pose estimation network. In the second section we will then show how we evaluated the
performance of our semantic meaning extraction strategy. Finally, in the third section
we will discuss the experimental setup we used to test the performance of our complete
model in a real-life robotics application.

4.1. Evaluation Metrics for Pose Esitmation and Ob-

ject Detection

Most pose estimation and object detection methods share a common set of metrics on
which their performance is evaluated. These are namely Average Precision for object
detection strategies, and Average Distance and ADD for pose estimation strategies. In
this section we will describe each metric, its meaning and how it is computed.

4.1.1. Average Precision

The performance of object detectors and 2D bounding box regressors is usually evalu-
ated using Average Precision (AP), which is a descriptor of the reliability of a method’s
predictions. It exploits the intersection over union (IoU), computed as:

IoU =
BGT ∩BP

BGT ∪BP

where BGT is the area of the ground truth bounding box and BP is the area of the

32 4| Experiments and Evaluation Metrics

network’s predicion. A prediction is considered true if its IoU is greater than a threshold ;
based on this, we can generate the model’s confusion matrix, as described in table 4.1.

Actual Positives Actual Negatives
Predicted Positives True Positives (TP) False Positives (FP)
Predicted Negatives False Negatives (FN) True Negatives (TN)

Table 4.1: Generation of the confusion matrix.

This matrix is the basis for the definition of the precision and recall metrics. Precision is
an indicator of how well the model avoids false positives, while recall is an indicator of
how well a model avoids false negatives. They are computed as follows:

Precision (P) =
TP

TP + FP

Recall (R) =
TP

TP + FN

Precision and recall both depend on the value of the IoU threshold : larger values will
result in a more restrictive model, thus less false positives and more false negatives,
high precision and low recall, while smaller values will result in the opposite: more false
positives, less false negatives, low precision and high recall.

Figure 4.1: Example of precision recall curves. The red line indicates a model with zero
precision; the blue line a typical model; the green line is the ideal behavior with maximum
precision and recall at all times.

It is common practice to plot the precision as a function of the recall in what is called

4| Experiments and Evaluation Metrics 33

a precision-recall curve, P = f(R). Each point in the curve represents a value of the
threshold, corresponding to its own confusion matrix and subsequent precision and recall
metrics. An example plot is shown in figure 4.1.

At this point we can describe the Average Precision (AP) as the mean value of the preci-
sion, corresponding to the area under the precision-recall curve:

AP =

∫ 1

0

f(R)dR

Therefore it is a real value between 0 and 1, with 0 representing the model with zero
precision, and 1 representing the ideal behavior.

4.1.2. Average Distance and ADD

Evaluation of pose estimation methods is almost exclusively done using the ADD metric,
and by extension the Average Distance (AD). While the first is a ratio of correct estima-
tions against total estimations, the second is instead a representation of the average error
the network commits when estimating the pose of an object.

Given n points belonging to the 3D model M of an object, the AD represents the average
of the distance between these points transformed according to the ground truth (R, t) and
according to the prediction (R̂, t̂):

AD =
1

n

∑
x∈M

||(Rx+ t)− (R̂x+ t̂)||2

The ADD is then given by the percentage of correct poses given by the model. A pose
is generally considered to be correct if its AD metric is less than 10% of the 3D model’s
largest dimension.

This metric however has serious issues when dealing with objects that have rotational
symmetries, as these present no visual differences for multiple different orientations. For
example, one image of the M6x30 screw we use for inferencing could correspond to six
different poses, each varying 60◦from the previous one. This means that the model will
eventually stabilize at a value that minimizes the average error, which is ususally large.

To combat this issue, we use the Symmetric Average Distance (AD-S)[40] metric, defined
as the average minimum distance between points in the predicted pose and the ground
truth:

34 4| Experiments and Evaluation Metrics

AD-S =
1

n

∑
x1∈M

min
x2∈M

||(Rx2 + t)− (R̂x1 + t̂)||2

This considers the distance from each point to its closest correspodent in the ground truth.
Analogously to ADD, we then implement ADD-S as the percentage of correct poses.

We would like our model to obtain the highest possible ADD-S, however in an industrial
environment it is important to also evaluate the AD-S. This is because for larger objects
the ADD will tolerate greater estimation errors, as it is based on the diameter of the
objects; these errors however may not be compatible with the precision required for a
determined task.

4.2. Semantics Evaluation Methodology

To evaluate the semantic meaning extraction method, we must compare ground truth
values for the semantic state of each scene, associated with its own image, with the
outputs of our method.

Our strategy therefore is to save the semantic state for each image during dataset genera-
tion as the ground truth. We then run the trained model on the test dataset to obtain pose
and class predictions, use these results to run our semantic meaning extraction method,
and evaluate the results against the ground truth. In particular, we select a button-slot
distance metric and distance threshold for each experiment, and compare the estimate of
the state of each slot, for each board in each scene, against its true value.

However, an issue arises from this application: due to the symmetry of the boards, it is
impossible to determine visually which slot is which. For example in figure 4.2, the ground
truth is that there is a button in the first slot and the second slot is empty, however, the
model may output that the button is in the second slot, while the first slot is empty.
Visually, both of these interpretations are correct, since the board is symmetrical, but
directly comparing the prediction with the ground truth results in two "false" values: a
false negative for the first slot and a false positive for the second, resulting in an erroneous
evaluation.

To counter this issue, for each board we take into account both the model’s prediction, and
its symmetrical, obtained by simply reversing the order of its slots. For the example in
figure 4.2, the prediction is [empty, button], therefore its symmetrical is [button, empty].
We then only consider configuration with the greatest number of "true" values when
compared with the ground truth. In the example shown in figure 4.2, since the symmetrical

4| Experiments and Evaluation Metrics 35

Figure 4.2: Schematic depiction of a board with a button slotted into the first slot. The
model runs into issues because the prediction and its symmetrical are visually undistin-
guishable and give different results.

results in two "true" values, the final output of the comparison is two "true" values: a true
positive and a true negative. These values are then summed for all estimations computed
using a determined distance metric and distance threshold, and the sums are used to build
a precision-recall curve, as described in the previous section.

The selection of the optimal distance threshold is done by considering the F1 score: a
balanced function of precision and recall, computed as:

F1 = 2× Precision × Recall
Precision + Recall

We consider the optimal threshold to be the one that maximises this value.

4.3. Real-Life Experimental Setup

To test the effectiveness of our vision and semantics model, we implemented it in a real
robotic setup where we have to complete a simple assembly task. We used a Doosan
A0509s robotic manipulator equipped with a pneumatic gripper, and an Azure Kinect
camera. We then re-implemented previously developed code for this system that generates
behavior trees [7] to drive the robot based on previous demostrations of actions and their
effects on the scene.

Our contribution is mostly in the perception phase of this architecture, where we perform
three tasks:

36 4| Experiments and Evaluation Metrics

1. From the RGB image provided by the camera, detecting objects of interest and
estimating their position.

2. Understanding the state of the interactions between the detected objects.

3. Building a list of predicates that describes the scene.

Figure 4.3: Schematic representation of the overall vision system.

While the first step is performed by the network, the final two are performed by what
is known as the Scene Manager (see figure 4.3). The ultimate objective of the Scene
Manager is to describe a scene using a set of predicates: first-order logic functions that
can be either true or false. Their value is updated for each object whenever we obtain
new information on the scene, with the ones resulting true then being compiled into the
state. For our application, this is accomplished using the predicates in table 4.2.

Predicate Description
IsGripperEmpty(gripper) True when no objects are in the gripper.

IsGrasped(button, gripper) True when the button is grasped by the gripper.
IsButtonInSlot(button, slot) True when the button is inserted in the slot.

IsSlotEmpty(slot) True when no buttons are in the slot.

Table 4.2: List of predicates used to describe the state in our application.

The experiments with the robot consist of two phases: teaching and evaluation.

In the teaching phase, we show the robot how to perform actions through kinesthetic
demostrations. During these demostrations, the robot, moved by a human operator, will
modify the environment and thus change the scene. The actions performed during this
phase, can be divided into move actions and interactions, which in our case are limited to
opening and closing the gripper. Move actions reference a destination position, which we
save relative to a manually defined reference object. For example, if we want to pick up a
button, we set the reference to the button itself: this way when we require repeating the
same actions but the button is in a different position, we can compute the new position
by changing the initial reference pose, so as to not lose in generality.

4| Experiments and Evaluation Metrics 37

Figure 4.4: Evolution of the state and actions for the example task of picking up a button
and inserting it into a slot.

By examining the differences between the state before and after the demonstration, we can
use Planning Domain Definition Language (PDDL) [14] to generate a set of preconditions
and effects expressed in predicate form, and combine them with the low level robotic
actions to obtain a skill. For our example case shown in figure 4.4, we define two actions
as shown below. The domain for this task then consists of the set of all defined objects,
predicates and skills, as shown in figure 4.5.

(:action action_0
:parameters(

?Gripper1 - Gripper
?SmallButton1 - SmallButton

);end_of_parameter
:precondition (and

(is_gripper_empty ?Gripper1)
);end_of_precondition
:effect (and

(is_grasped ?SmallButton1 ?Gripper1)
(not (is_gripper_empty ?Gripper1))
(increase (total-cost) 50)

);end_of_effect
);end_of_action

(:action action_1
:parameters(

?SmallButton1 - SmallButton
?Gripper1 - Gripper
?Slot1 - Slot

);end_of_parameter
:precondition (and

(is_grasped ?SmallButton1 ?Gripper1)
(is_slot_empty ?Slot1)

);end_of_precondition
:effect (and

(is_gripper_empty ?Gripper1)
(is_button_in_slot ?SmallButton1 ?

Slot1)
(not (is_grasped ?SmallButton1 ?

Gripper1))
(not (is_slot_empty ?Slot1))
(increase (total-cost) 50)

);end_of_effect
);end_of_action

In evaluation mode we instead specify what is known as the problem. This consists of

38 4| Experiments and Evaluation Metrics

Figure 4.5: Construction of the domain in the teaching phase, through evaluation of the
state before and after the kinesthetic demonstration.

a combination of the semantic meaning of the scene’s initial state (init) and the final
state we would like to achieve (goal). By providing a PDDL planner with a domain and
problem, it will compute the ordered set of actions necessary to pass from the initial to
the final states described in the problem.

A behavior tree is then built by combining the individual trees for each action, in the
order defined by the planner. This process is demonstrated in figure 4.6. These trees,
combined with our prior modelling of the task in the form of the domain and the problem,
form a knowledge base that is fundamental for the task’s execution. The robot’s actions
are then performed by evaluating the tree.

Apart from the introduction of the new vision system and predicates, the other main
modification applied to the pre-existing code was the decision to evaluate the semantic
state only at specific instants. Therefore instead of constantly computing the state of the
scene, we evaluate it only at the beginning and at the end of each action. The reason for
this is the susceptibility of the vision model to false positives for untrained objects. More
information on this can be found in section 5.1.2, but essentially in this manner we ensure
that the state is evaluated only when the gripper and human operator are outside of the
camera’s field of view.

Finally, we tested this setup by having it perform the simple assembly task of picking up
a button in various positions and inserting it into various different slots on the two button
boards.

4| Experiments and Evaluation Metrics 39

Figure 4.6: Construction of the behavior tree using the PDDL planner during the evalu-
ation phase.

41

5| Results

In this chapter we will go over the results we obtained by testing our methods.

In the first section we will show the results of training the EfficientPose network on our
datasets, and subsequent observations. In the second section we test the performance
of our semantic meaning extraction strategy. Finally, in the third section we show how
effective our overall system is in the real-world robotics application.

5.1. Model Training Results

In this section we will show the results of training the EfficientPose network on the three
datasets presented in the previous chapter: the fully rendered dataset representing an
M6x30 screw, henceforth referenced as "ScrewDataset", the augmented reality dataset
representing a set of screws, henceforth "ScrewPose", and the augmented reality dataset
representing the set of buttons and boards, henceforth "ButtonPose".

We will then be comparing these results with those obtained by EfficientPose on other
datasets, namely LINEMOD for single object estimation and Occlusion-LINEMOD for
multi-object estimation.

The evolution of the loss and ADD-S metrics during training for these three datasets is
shown in figure 5.1. As we can see, the model’s performance gradually improves over the
training period, eventually stabilizing at a plateau for all three datasets. Also visible is
the effect of the learning rate reduction, which has visible results when appiled.

As for training results, visible in figure 5.2, we will examine them independantly for each
dataset below.

On ScrewDataset, after 100 epochs of training the model has a final ADD of 22.20%,
with a peak value obtained during training of 24.8%, much lower than the 97.35% with
ϕ = 0 reported by EfficientPose on LINEMOD. We can hypothesize that the reason for
this performance gap is that the rendered dataset is much more difficult than LINEMOD,
since we are dealing with a very small, symmetric object hidden inside a chaotic, colorful

42 5| Results

(a) Evolution using ScrewDataset for training.

(b) Evolution using ScrewPose for training.

(c) Evolution using ButtonPose for training.

Figure 5.1: Training progress for EfficientPose on the ScrewDatset, ScrewPose and But-
tonPose datsets, represented as the evolution of the AD-S and ADD-S metrics in evalua-
tion for each epoch.

5| Results 43

background with widely differing light conditions. Another serious issue with this dataset
is that the model is not able to bridge the reality gap: while testing in real-life scenarios,
it failed to identify the screw in most conditions, let alone produce accurate estimations.
This means that it generalises poorly outside of the simulated environment, making it
essentially unuseable in real world applications.

On the flip side, the ScrewPose datset obtainined an average ADD-S of 82.05%, which is
better than EfficientPose’s 79.04% with ϕ = 0 on Occlusion-LINEMOD, and comparable
to its 83.98% with ϕ = 3. This is a good result considering that the objects for our
dataset are smaller, symmetric and all visually similar. Even though the Occlusion dataset
is notoriously challenging, this anyways demonstrates the good performance of our own
dataset.

Object AP AD-S [mm] ADD-S
M6x30 0.9675 11.4921 22.20%

(a) ScrewDataset.

Object AP AD-S [mm] ADD-S
M6x30 0.9399 2.1434 82.30%
M8x16 0.9538 1.9988 67.54%
M8x25 0.9645 2.1179 85.07%
M8x50 0.9880 3.4482 93.30%
Average 0.9615 2.4271 82.05%

(b) ScrewPose.

Object AP AD-S [mm] ADD-S
2-slot 0.9990 3.5420 99.90%
3-slot 0.9985 3.9304 99.85%

red button 0.9260 1.9825 86.01%
arrow button 0.9349 2.0497 86.05%
safety button 0.9962 2.6053 98.01%

unknown button 0.9561 2.4757 82.95%
Average 0.9685 2.76 92.13%

(c) ButtonPose.

Figure 5.2: Evaluation of the Average Precision, Average Symmetric Distance, and ADD-
S metrics on the ScrewDataset, ScrewPose and ButtonPose datasets after training.

Finally, training on the ButtonPose dataset resulted in optimal performance for the
boards, reaching over 99% ADD-S and AP for both. The larger safety button also ob-
tained great results, with a 98% ADD-S, while the other buttons achieved more middling
performances, but still better than the Occlusion-LINEMOD benchmark, showing that

44 5| Results

(a) ScrewPose.

(b) ButtonPose.

Figure 5.3: Images displaying pose estimations from the network for the ScrewPose and
ButtonPose datasets. The left images are part of evaluation and display ground truths
with green bounding boxes, the right ones are captures from a real camera in the testing
environment.

5| Results 45

our approach is valid for more object sets.

The ScrewPose and ButtonPose datasets were also able to generalise to real-life conditions
without noticeable losses in performance, as can be observed in figure 5.3.

5.1.1. Impact of object dimensions and distance

One noticeable result we observed after training was the impact that physical dimensions
have on the final performance of the model for each object. Namely, larger and closer
objects have much better performance than smaller and further objects. This is imme-
diately noticeable in the ScrewPose dataset, where the larger M8x50 screw obtained the
best results and the M8x16 obtained the worst.

Figure 5.4: Photographs of the different capture positions for the ButtonPose-near (left)
and ButtonPose-far (right) datasets, with a sample image presented for each.

To show how extreme these differences can be, we trained two additional models using
new datasets based on the ButtonPose dataset. These two differ solely based on the
background images: for the first one the backgrounds were captured from a further dis-
tance, while for the second one the backgrounds were captured from close up. For each of
these conditions, we captured 50 backgrounds from a variety of positions, and fed them
through our dataset generation pipeline. Sample images for these datasets and example
positions are shown in figure 5.4. The close-up dataset (ButtonPose-near hereafter) ended
up having an average camera-marker distance of 27.64 cm while the further away dataset

46 5| Results

(ButtonPose-far hereafter) had an average distance of 49.33 cm.

We can then compare the performance of the models trained on the two different datasets,
shown in figure 5.5. As can be seen, the near dataset obtained significantly better results
than both the far dataset and the regular dataset.

Object AP AD-S [mm] ADD-S
2-slot 0.9994 2.6850 99.94%
3-slot 1.0 2.8913 99.95%

red button 0.9663 1.3550 95.84%
arrow button 0.9729 1.4384 96.47%
safety button 1.0 1.7229 99.84%

unknown button 0.9948 1.3384 98.74%
Average 0.9889 1.9052 98.46%

(a) ButtonPose-near.

Object AP AD-S [mm] ADD-S
2-slot 1.0 2.9985 99.90%
3-slot 1.0 3.1377 99.95%

red button 0.5477 4.3679 29.57%
arrow button 0.4902 4.4586 22.06%
safety button 0.9381 4.3261 79.49%

unknown button 0.7489 3.7920 44.68%
Average 0.7875 3.8468 62.61%

(b) ButtonPose-far.

Figure 5.5: Evaluation of the Average Precision, Average Symmetric Distance, and ADD-
S metrics on the ButtonPose-near and ButtonPose-far datasets after training.

We can hypothesize that the reason for such a large gap between the two models lies in
the input resolution of the network, which for ϕ = 0 is set at 512 pixels. This makes it
much more difficult for the network to make out fine details at a distance; in particular
it would struggle to distinguish between the arrow button and the red button, since their
faces would appear similar. This issue could therefore probably be alleviated by using
higher values of ϕ.

5.1.2. False Positive Issues

A noticeable issue we encountered when testing our models in real world conditions was
the difficulties they expressed in dealing with objects that are not present in the original
dataset. In almost all cases, introduction of a never-before-seen object results in multiple
false positives, as shown in figure 5.6. This is because the model is not trained to "ignore"

5| Results 47

Figure 5.6: An example of how introducing untrained objects results in false positives.

these objects, and thus attempts to classify them according to what it effectively "knows".

There are ways to approach and mitigate this issue. For example, if there is a high proba-
bility that a certain object that should not be tracked by the model will appear frequently
in the scene, one could include that object within the dataset generation method without
labelling it. In this manner, since the object would appear with a certain frequency during
training, eventual false positives resulting from its presence would be recognized as such,
and the model’s behavior corrected.

We tested this method with the ScrewPose dataset: since all of its objects have a similar
shape, a model trained on ScrewPose would tend to categorize any long and thin object
as a screw, making it especially susceptible to false positives. However, introducing a
decoy screw into most images, without labelling it as a dataset object, led to the model
subsequently ignoring its appearance in most scenes. It was also able to generalise this
behavior to a certain extent, ignoring other never-before-seen screws when they were
introduced into the scene (see figure 5.3). Therefore in a case such as the one represented
in figure 5.6, if we were certain of the appearance of the gripper in many scenes, it would
be worthwile to include its 3D model in some training images, so that the network could
effectively learn to ignore it.

We hypothesize that by including a general enough set of decoy items in the training
images, the model could then generalize this behavior to a wider variety of previously
unseen objects. However, due to the nature of black-box methods, more research is
necessary to verify whether this is feasible.

48 5| Results

5.2. Semantic Meaning Extraction Results

In this section we will evaluate the performance of our semantic meaning extraction
method. The precision-recall curves in figure 5.7 were computed using the methodology
described in section 4.2 on the ButtonPose and ButtonPose-near datasets. The optimal
thresholds and F1 scores are laid out in figure 5.8.

(a) ButtonPose

(b) ButtonPose-near

Figure 5.7: Precision and recall for both distance metrics on the ButtonPose and
ButtonPose-near datasets. The point with the best F1 score is highlighted with a red
circle in both cases.

Overall our method shows promising results, with precision-recall curves that are similar

5| Results 49

Metric F1 Threshold
AD 0.9369 56mm
CC 0.9255 78mm

(a) ButtonPose

Metric F1 Threshold
AD 0.9763 52mm
CC 0.9746 56mm

(b) ButtonPose-near

Figure 5.8: Optimal F1 scores and thresholds for both the Average Distance (AD) and
Center-to-Center (CC) metrics on the ButtonPose and ButtonPose-near datasets.

to the ideal, and high F1 scores.

We observe that our application obtained no great advantage in using Average Distance
over Center-to-Center distance. Given the additional complexity and computation time,
the increase in performance is not significant: for reference, computing the values for
figure 5.7 took 23.67 seconds using Center-to-Center, and 2650.34 seconds using Average
Distance, making the second approximately 112 times slower.

We also obtained high values for the optimal distance thresholds, above 5 cm in all testing
conditions. We consider this value as the threshold to determine whether a button is in a
slot at all, while the slot itself is selected using the conflict resolution strategy previously
described.

We hypothesize that the reason for such a high value for the threshold lies in the dataset
generation algorithm: by stating that the buttons can exclusively be either inside a slot
or placed on the surface, we are in fact considering an ideal situation where a theoretical
manipulator does not commit any errors in picking up and inserting the buttons. If
failed robotic attempts in performing this task were considered in the dataset, it is likely
that the optimal threshold would be lower, and the Average Distance method, being
more sensible to situations with different rotations, would likely give better results than
Center-to-Center.

Finally, the value of the threshold is also influenced by the probability distribution used
for generating the poses for the button dataset, which in our case being a uniform distri-
bution, resulted in a more spread-out placement, thus a higher optimal threshold. This
is further exasperated by the brute-force collision avoidance strategy implemented within
the placement algorithm: if a placement attempt would generate an intersection with an
already placed object, the placement is simply re-attempted from scratch. This naturally
results in less conditions where dataset objects are in close proximity, and therefore in a
higher threshold.

50 5| Results

Button Type Small Large
Total Attempts 10 10

Successful Pick-Ups 7 10
Successful Insertions 5 7

5.3. Real-World Application Results

As previously described in section 4.2, we tested the performance of our vision method in
a real-world application where the robot had to pick up a button from the ButtonPose
dataset and insert it into a slot on one of the button boards.

In our testing, the robot was able to pick up the smaller buttons seven times out of ten,
while it was able to pick up the larger button in all test cases. Out of the times it was
able to pick up a button, the following insertion was performed correctly in 71% of cases.

The main issue encountered during testing was the prevalence of small errors in the
rotation of the gripper relative to the button. These errors are usually in the neighborhood
of ±5◦, but they are noticeable and can lead to mistakes, as the button may be gripped
in an awkward manner.

Figure 5.9: Examples of small rotation errors when attempting to pick up a button with
the robotic arm. The green line indicates the button’s central axis, while the red line is
the robot’s.

Positioning relative to the boards was instead very accurate, and errors is the insertion
phase were mostly due to mistakes in grasping the necessary buttons. Overall the robot
performed much better when dealing with the larger buttons and boards than when
dealing with the smaller buttons, making its reliability very dependant on the accuracy
of the pose estimation network for the specific object.

51

6| Conclusions and Future

Developments

In the field of robotics, and automation in general, the interactions between the robot and
the environment are of fundamental importance. The perception of the robot’s surround-
ings in particular requires the system to have a certain number of sensors that provide
it with data from the environment, which it then processes to obtain the information
necessary to perform its purposed task.

RGB Color cameras, while being relatively cheap and easily obtainable sensors, introduce
a series of difficulties that limit their applicability in real-time control applications: they
produce a huge amount of data that does not directly reflect any physical measurments,
instead being linked together through complex interactions that are difficult to express
analyitically. However, neural networks, and convolutional neural networks in particular,
are perfectly suited to cover these issues, since they work efficiently on large amounts of
inputs in parallel, and can model unknown and complex functions with proper training.

Due to these advantages, machine learning approaches have been widely applied to image
processing tasks. In particular, the fields of object identification and pose estimation have
gone through rapid development, and there has been an increased interest in applying
these techniques to tasks for industrial and collaborative robotics. However, machine
learning approaches introduce a series of additional challenges, including but not limited
to: the necessity of acquiring vast amounts of labelled data for training, the opaqueness
of trained networks to conventional analysis, and the necessity of abstracting low-level
data into high-level information for use in planning algorithms.

To tackle these issues, we began by developing a dataset generation algorithm to sim-
plify the data acquisition phase. While unfortunately a more general approach involving
fully simulated training images failed to produce acceptable results, we developed a more
specific technique that involves realistically rendering objects of interest on top of pho-
tographed backgrounds of the testing environment. These "Augmented Reality" datasets
resulted in satisfactory performance, that did not decline in a noticeable manner when

52 6| Conclusions and Future Developments

tested in a real-world environment. However, our approach struggles when presented with
objects it has not seen in training, which lead to large amounts of false positives. Further-
more, training benefited greatly from better testing conditions, with objects being placed
closer to the camera resulting in much greater accuracy.

We then developed a method to extract the high-level semantic state of a scene, starting
from low-level pose estimations performed by a trained network. We applied a threshold-
ing technique, while devising methods to deal with several issues, such as the occlusion of
identifying features and conflicts resulting from higher values of the distance threshold.
The performance of the resulting method was excellent, though it is highly dependant on
the performance of the underlying network.

Finally, we applied the complete network and semantics method to a real-world applica-
tion. By "teaching" a robotic manipulator how to perform basic actions using kinesthetic
demonstrations, the overall system was able to plan and complete simple assembly tasks.
However, these experiments highlighted how the system struggled with smaller objects,
with consistent small errors in rotation estimations that detracted from its overall relia-
bility.

In conclusion, object detection and pose estimation approaches have remarkable perfor-
mance in robotics applications, but may be insufficient for tasks that require high precision
and reliability, or tasks involving small objects, or objects that are difficult to identify in
other ways.

Furthermore, the black-box nature of neural networks means that the performance of our
own approach and datasets may be compromised when applied to a radically different
environment than the one used for dataset generation and training, thus requiring a new
dataset and training for the new environment. This is the main disadvantage of our
approach, that it is specific on one environment.

In the future, it could be possible to progress and improve upon our work. Possible
developments include:

• Comparing the performance of a network trained on one of our generated datasets
with a network trained on real-world labelled data, with the same objects and in
the same environment.

• Verifying the possibility of avoiding false positives by training a model to ignore a
wider variety of objects.

• When generating a dataset, verifying whether including multiple different environ-
ments in the background improves generalisiation, or whether this is unnecessary.

6| Conclusions and Future Developments 53

• If future pose estimation approaches increase performance in a significant manner,
verifying whether they obtain the accuracy required for high precision robotics ap-
plications.

55

Bibliography

[1] D. H. Ballard. Generalising the Hough transform to detect arbitrary shapes. Pattern
Recognition, 13(2), 1981.

[2] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems, 13:41–77, 2003.

[3] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In
H. Leonardis, Alešand Bischof and A. Pinz, editors, Computer Vision – ECCV 2006,
pages 404–417, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[4] U. Brammer and S. Seger. Freecad fasteners workbench 0.4.19, 2022. URL https:

//github.com/shaise/FreeCAD_FastenersWB.

[5] Y. Bukschat and M. Vetter. Efficientpose: An efficient, accurate and scalable end-
to-end 6d multi object pose estimation approach, 2020.

[6] H. Chen, P. Wang, F. Wang, W. Tian, L. Xiong, and H. Li. Epro-pnp: Generalized
end-to-end probabilistic perspective-n-points for monocular object pose estimation,
2022. URL https://arxiv.org/abs/2203.13254.

[7] M. Colledanchise and P. Ögren. Behavior Trees in Robotics and AI. CRC
Press, jul 2018. doi: 10.1201/9780429489105. URL https://doi.org/10.1201%

2F9780429489105.

[8] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment: Practical automated
data augmentation with a reduced search space, 2019. URL https://arxiv.org/

abs/1909.13719.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[10] T.-T. Do, M. Cai, T. Pham, and I. Reid. Deep-6dpose: Recovering 6d object pose
from a single rgb image, 2018. URL https://arxiv.org/abs/1802.10367.

https://github.com/shaise/FreeCAD_FastenersWB
https://github.com/shaise/FreeCAD_FastenersWB
https://arxiv.org/abs/2203.13254
https://doi.org/10.1201%2F9780429489105
https://doi.org/10.1201%2F9780429489105
https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1802.10367

56 | Bibliography

[11] R. O. Duda and P. E. Hart. Use of the hough transformation to detect lines and
curves in pictures. Commun. ACM, 15(1):11–15, 1 1972.

[12] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM, 24(6):381–395, 6 1981. ISSN 0001-0782. doi: 10.1145/358669.358692. URL
https://doi.org/10.1145/358669.358692.

[13] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez.
Automatic generation and detection of highly reliable fiducial markers under occlu-
sion. Pattern Recognition, 47(6):2280–2292, 2014. ISSN 0031-3203.

[14] M. Ghallab, A. Howe, C. Knoblock, D. Mcdermott, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. PDDL—The Planning Domain Definition Language, 1998. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212.

[15] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn, 2017. URL https:

//arxiv.org/abs/1703.06870.

[16] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit.
Gradient response maps for real-time detection of textureless objects. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 34(5):876–888, 2012. doi:
10.1109/TPAMI.2011.206.

[17] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab.
Model based training, detection and pose estimation of texture-less 3d objects in
heavily cluttered scenes. In Proc. Asian Conf. Computer Vision, volume 7724, 10
2012. ISBN 978-3-642-37330-5. doi: 10.1007/978-3-642-33885-4_60.

[18] P. V. C. Hough. Method and means for recognizing complex patterns, U. S. Patent
3069654, Dec. 18, 1962.

[19] Y. Hu, P. Fua, W. Wang, and M. Salzmann. Single-stage 6d object pose estimation,
2019. URL https://arxiv.org/abs/1911.08324.

[20] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional network for real-
time 6-dof camera relocalization, 2015. URL https://arxiv.org/abs/1505.07427.

[21] G. D. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. From skills to symbols:
Learning symbolic representations for abstract high-level planning. J. Artif. Intell.
Res., 61:215–289, 2018.

[22] Y. Lamdan and H. Wolfson. Geometric hashing: A general and efficient model-based

https://doi.org/10.1145/358669.358692
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1911.08324
https://arxiv.org/abs/1505.07427

| Bibliography 57

recognition scheme. In Second International Conference on Computer Vision, pages
238–249, 1988.

[23] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox. DeepIM: Deep iterative match-
ing for 6d pose estimation. International Journal of Computer Vision, 128(3):657–
678, 11 2019. doi: 10.1007/s11263-019-01250-9. URL https://doi.org/10.1007%

2Fs11263-019-01250-9.

[24] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona,
D. Ramanan, P. Doll’a r, and C. L. Zitnick. Microsoft COCO: common objects in
context. CoRR, abs/1405.0312, 2014. URL http://arxiv.org/abs/1405.0312.

[25] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature
pyramid networks for object detection, 2016. URL https://arxiv.org/abs/1612.

03144.

[26] E. Muñoz, Y. Konishi, C. Beltran, V. Murino, and A. D. Bue. Fast 6d pose from a
single rgb image using cascaded forests templates. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4062–4069, 2016. doi:
10.1109/IROS.2016.7759598.

[27] N. J. Nilsson. Shakey the robot. 1984.

[28] OpenCV. Detection of aruco markers, accessed 24 October 2022. URL docs.opencv.

org/4.x/d5/dae/tutorial_aruco_detection.html.

[29] S. Peng, Y. Liu, Q. Huang, H. Bao, and X. Zhou. Pvnet: Pixel-wise voting network
for 6dof pose estimation, 2018. URL https://arxiv.org/abs/1812.11788.

[30] M. Rad and V. Lepetit. Bb8: A scalable, accurate, robust to partial occlusion method
for predicting the 3d poses of challenging objects without using depth, 2017. URL
https://arxiv.org/abs/1703.10896.

[31] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks, 2015. URL https://arxiv.org/abs/1506.

01497.

[32] R. S. Sutton, D. Precup, and S. P. Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence,
112(1–2):181–211, 1999. URL http://webdocs.cs.ualberta.ca/~sutton/papers/

SPS-aij.pdf.

https://doi.org/10.1007%2Fs11263-019-01250-9
https://doi.org/10.1007%2Fs11263-019-01250-9
http://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1612.03144
docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://arxiv.org/abs/1812.11788
https://arxiv.org/abs/1703.10896
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
http://webdocs.cs.ualberta.ca/~sutton/papers/SPS-aij.pdf
http://webdocs.cs.ualberta.ca/~sutton/papers/SPS-aij.pdf

58 6| BIBLIOGRAPHY

[33] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks, 2019. URL https://arxiv.org/abs/1905.11946.

[34] M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and efficient object detection,
2019. URL https://arxiv.org/abs/1911.09070.

[35] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain ran-
domization for transferring deep neural networks from simulation to the real world,
2017. URL https://arxiv.org/abs/1703.06907.

[36] Unity Technologies. Unity Perception package. https://github.com/

Unity-Technologies/com.unity.perception, 2020.

[37] P. F. V. Lepetit, M. Moreno-Noguer. Epnp: An accurate o(n) solution to the pnp
problem. International Journal of Computer Vision., 2(81), 2009.

[38] L. Weng. Domain randomization for sim2real transfer. lilian-
weng.github.io, 2019. URL https://lilianweng.github.io/posts/

2019-05-05-domain-randomization/.

[39] Y. Wu, L. Liu, J. Bae, K.-H. Chow, A. Iyengar, C. Pu, W. Wei, L. Yu, and Q. Zhang.
Demystifying learning rate policies for high accuracy training of deep neural networks,
2019. URL https://arxiv.org/abs/1908.06477.

[40] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural
network for 6d object pose estimation in cluttered scenes, 2017. URL https://

arxiv.org/abs/1711.00199.

[41] Y. Xu, K.-Y. Lin, G. Zhang, X. Wang, and H. Li. Rnnpose: Recurrent 6-dof object
pose refinement with robust correspondence field estimation and pose optimization,
2022. URL https://arxiv.org/abs/2203.12870.

[42] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning, 2016.
URL https://arxiv.org/abs/1611.01578.

https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1911.09070
https://arxiv.org/abs/1703.06907
https://github.com/Unity-Technologies/com.unity.perception
https://github.com/Unity-Technologies/com.unity.perception
https://lilianweng.github.io/posts/2019-05-05-domain-randomization/
https://lilianweng.github.io/posts/2019-05-05-domain-randomization/
https://arxiv.org/abs/1908.06477
https://arxiv.org/abs/1711.00199
https://arxiv.org/abs/1711.00199
https://arxiv.org/abs/2203.12870
https://arxiv.org/abs/1611.01578

59

List of Figures

1 The main ways a robot interacts with the environment: perception and
action. 1

2 Multi-object inference on an image from the LINEMOD[17] dataset per-
formed by EfficientPose[5], a 6D pose estimation CNN. Green bounding
boxes visualize ground truth poses while other colors represent estimations. 2

3 Side-by-side comparison of a real image and a generated training image
resulting from our pipeline. 3

1.1 An example of pose identification using ArUco markers. 6
1.2 Performance on LINEMOD of recent pose estimation algorithms by year.

Graphic originates from paperswithcode.com/sota/6d-pose-estimation-on-
linemod. 9

2.1 Performance of the EfficientNet and EfficientDet families compared to other
approaches. 12

2.2 Overview of the EfficientDet architecture. BiFPN layers and subnet layers
may be repeated multiple times according to resource constraints. 13

3.1 One of the images generated with Unity’s Perception package for training
our model. 17

3.2 Visualization of the three roto-translations used to obtain a realistic place-
ment. 20

3.3 Dimensions and pose corrections for the M6x30 hexagonal head screw. . . . 21
3.4 An example of a training image before and after data augmentation. 22
3.5 Orthographic rendering of dataset objects: two modular button boards and

three buttons. 24
3.6 Sample image generated for the set of modular buttons and boards in figure

3.5. 24
3.7 Schematic representation of the button relative to the camera, and of the

variables used when evaluating occlusion of the button face. 25

60 | List of Figures

3.8 Flowchart representing the algorithm for placement of dataset objects,
when placing buttons inside of slots and checking for face occlusion. 26

3.9 Depiction of the method for obtaining a button’s reference position. The
network’s estimation of the position of the button and board is in blue,
while the reference position is in red. 27

3.10 Schematic depiction of two hypothetical situations that would generate
conflicts by placing multiple buttons within the threshold of a single slot
or vice-versa. 28

3.11 Schematic depiction of the resolution of the conflicts previously depicted
in figure 3.10. Green arrows represent reciprocating assignments, which
are confirmed, while red arrows represent non-reciprocating assignments,
which are ignored. 28

4.1 Example of precision recall curves. The red line indicates a model with zero
precision; the blue line a typical model; the green line is the ideal behavior
with maximum precision and recall at all times. 32

4.2 Schematic depiction of a board with a button slotted into the first slot.
The model runs into issues because the prediction and its symmetrical are
visually undistinguishable and give different results. 35

4.3 Schematic representation of the overall vision system. 36
4.4 Evolution of the state and actions for the example task of picking up a

button and inserting it into a slot. 37
4.5 Construction of the domain in the teaching phase, through evaluation of

the state before and after the kinesthetic demonstration. 38
4.6 Construction of the behavior tree using the PDDL planner during the eval-

uation phase. 39

5.1 Training progress for EfficientPose on the ScrewDatset, ScrewPose and
ButtonPose datsets, represented as the evolution of the AD-S and ADD-S
metrics in evaluation for each epoch. 42

5.2 Evaluation of the Average Precision, Average Symmetric Distance, and
ADD-S metrics on the ScrewDataset, ScrewPose and ButtonPose datasets
after training. 43

5.3 Images displaying pose estimations from the network for the ScrewPose and
ButtonPose datasets. The left images are part of evaluation and display
ground truths with green bounding boxes, the right ones are captures from
a real camera in the testing environment. 44

| List of Figures 61

5.4 Photographs of the different capture positions for the ButtonPose-near
(left) and ButtonPose-far (right) datasets, with a sample image presented
for each. 45

5.5 Evaluation of the Average Precision, Average Symmetric Distance, and
ADD-S metrics on the ButtonPose-near and ButtonPose-far datasets after
training. 46

5.6 An example of how introducing untrained objects results in false positives. 47
5.7 Precision and recall for both distance metrics on the ButtonPose and

ButtonPose-near datasets. The point with the best F1 score is highlighted
with a red circle in both cases. 48

5.8 Optimal F1 scores and thresholds for both the Average Distance (AD) and
Center-to-Center (CC) metrics on the ButtonPose and ButtonPose-near
datasets. 49

5.9 Examples of small rotation errors when attempting to pick up a button
with the robotic arm. The green line indicates the button’s central axis,
while the red line is the robot’s. 50

63

List of Tables

1.1 Top ten performing models on the LINEMOD dataset[17] as of November
2022, ranked by their ADD metric (see section 4.1.2). 8

4.1 Generation of the confusion matrix. 32
4.2 List of predicates used to describe the state in our application. 36

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	General Overview
	Thesis Goals
	Achieved Results
	Thesis structure

	State of the Art
	Non-Learning-Based Methods
	Learning-Based Methods
	2D-3D Correspondence
	Direct Estimation
	Pose Refinement
	Conclusions on Learning Approaches

	Semantic Description Approaches

	EfficientPose Background
	Parent Networks
	Pose Estimation Methodology
	Network Performance

	Methodology
	Fully Rendered Datasets
	Motivations and Objective
	Dataset Generation
	Network Training

	Augmented Reality Datasets
	Motivations and Objective
	Dataset Generation
	Data Augmentation and Network Training

	Semantics Understanding
	Motivations and Objective
	Dataset Generation and Training
	Semantic Meaning Extraction

	Experiments and Evaluation Metrics
	Evaluation Metrics for Pose Esitmation and Object Detection
	Average Precision
	Average Distance and ADD

	Semantics Evaluation Methodology
	Real-Life Experimental Setup

	Results
	Model Training Results
	Impact of object dimensions and distance
	False Positive Issues

	Semantic Meaning Extraction Results
	Real-World Application Results

	Conclusions and Future Developments
	Bibliography
	List of Figures
	List of Tables

