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1. Introduction
Nuclear fusion is a promising technology for en-
ergy production, consisting of the fusion of light
nuclei with the release of heat. The fusion mix-
ture, in the form of a fully ionised gas, called
plasma, is contained by powerful magnetic fields
(∼ 10T ) in axial-symmetric machines called
tokamak. Within these machines, the matter
stratifies, forming three main zones: the core,
at the centre, the hottest (∼ 10keV ), densest
and most nested region is where fusion occurs,
the edge region, characterised by strong gradi-
ents, wraps the core. The outermost region, the
Scrape Off Layer (SOL), where the temperature
is lower (∼ 10eV ) but fluctuations caused by
turbulence are very important is in contact with
the machine walls. The last two layers, called
tokamak periphery, control the confinement and
transport properties of the plasma, thus both
the effectiveness of keeping the plasma in sta-
ble, stationary conditions and the flows of parti-
cles and heat reaching the walls of the machine.
By means of additional poloidal magnetic fields
it is possible to shape the tokamak periphery
cross section into complex geometries that can
improve these latter properties. One of the most
important parameter describing the shaping ef-

fects is the triangularity. A configuration is said
to be with triangularity when its cross section
assume a "D" shape.
In this thesis the results of some linear and non-
linear simulations will be analysed in order to
investigate the properties of some of these ge-
ometries after presenting the model used and the
implementation of its linearization.

2. Modelling of Tokamak Pe-
riphery

This thesis work relies on GBS equations to de-
scribe plasma. These dimensionless laws can
picture the self-consistent behaviour of a plasma
composed by electrons and hydrogen ions im-
mersed in an external magnetic field B⃗, de-
scribed by its scalar intensity B = ||B⃗||2 and
its versor b⃗ = B⃗

B . The model decomposes the
particle dynamics into one parallel to the mag-
netic field, free to vary, and one perpendicular to
it, dependent on the other described fields. This
approximation is called drift-reduced. In this
way it is possible to describe the field by means
of six mutually independent scalar variables: the
number density n i.e. the number of particle of
each species per unit volume, the electronic tem-
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perature Te, the ion temperature Ti, the electric
potential ϕ, the magnetic potential ψ, and the
parallel ion velocity V∥,i. The two potentials
describe the electromagnetic fields trough the
equations E⃗ = ∇ϕ− 1

c
∂ψb⃗
∂t and B⃗ = ∇×(ψb⃗). In

order not to include phenomena not physically
relevant the magnetic potential ψb⃗ has been im-
posed to be parallel to the equilibrium magnetic
field. To make GBS equations more handily, the
curvature field is introduce κ⃗ = b⃗ · ∇b⃗ and the
further operators are used: the parallel gradi-
ent ∇∥ = b⃗ · ∇ and the perpendicular gradi-
ent ∇⊥ = b⃗ × (∇ × b⃗), the curvature operator
C(·) = B

2 (∇ × b⃗
B ) · ∇(·). Also, two dependent

variables are included: the vorticity ω = ∇2
⊥ϕ

and electron parallel velocity V∥,e = ∇2
⊥ψ. The

set of equations is too long to be reported here,
for a complete discussion please refer to [1, 2].
From adimensionalisation, two important pa-
rameters emerge. The first, the dimensionless
resistance ν, takes into account collisions be-
tween particles within the plasma, the second,
the ion to electron temperature ratio τ , mea-
sures the importance of typical ion tempera-
ture with respect to electrons’ one. The val-
ues at which temperature and density are nor-
malised are those typical in the edge of a toka-
mak such as TCV, in Lausanne, Switzerland:
n0 = 10−19m−3, T0e = 20eV .

2.1. Simulations Geometry
GBS equations portray the plasma dynamics in
the entire volume of the tokamak. The prob-
lem, therefore, through the fields describing the
plasma, depends on the four space-time coordi-
nates. Since a non-relativistic description is pur-
sued spatial and temporal variable are treated
separately. In a tokamak the plasma is, in gen-
eral, shaped in axial-symmetric topological solid
torus, stratified as discussed in 1. The magnetic
field lines wraps around toroidal surfaces called
magnetic surfaces, one of them represented in
figure 1. This surfaces allow to define a local
right-handed reference system [y,x,z] describing
the whole space. x is the flux coordinate, per-
pendicular everywhere to magnetic surfaces, z is
the toroidal direction and y is the poloidal1 one.

1The poloidal direction is that which follows the
minor circumference of the torus and therefore passes
through the central hole, the toroidal direction is that
which follows the major circumference.

The (x,y) plane is said poloidal plane. Another
reference system will come in handy in the lin-
ear analysis, the right-handed cylindrical system
[R, Φ, Z], describing respectively the radial, an-
gular and vertical directions.

Figure 1: Portion of a magnetic sourface with
a magnetic field line (red line) wrapping around
it. The two reference systems [y,x,z] and [R,Φ,Z]
are highlighted.

2.2. Ballooning Mode
Ballooning mode is one of the principal insta-
bilities present in edge and SOL layer. It is
driven by the bad curvature region, i.e. a region
where density gradient and curvature points to-
ward opposite directions: κ⃗∇n < 0. The mode
is made unstable by the presence of plasma col-
lisions, which can be represented by not null re-
sistivity ν in the model. This branch is called
Resistive Ballooning Mode (RBM). A more com-
plete treatment can be found in [2].

3. The Linear Solver
It is first necessary to linearise the set of
GBS equations using a first-order perturbative
method. In linear approximation, the work is
carried in the condition ε = a

R → 0, said infinite
aspect ratio, a and R being the minor and ma-
jor radius of the tokamak torus. It was assumed
that each field f∗ described in 2, was describable
as the sum of an equilibrium field f0 plus a per-
turbation f , such that f ≪ f0: f∗ = f0 + f . It
is assumed that the equilibrium for n and Te can
be expressed as f0 = f00(1 + x/Lf ), f00 being a
scalar, and it is null for the other fields ϕ, ψ, V∥,i.
Ti is neglected since the linear analysis has been
carried in the hypothesis Ti ≪ Te, or τ ∼ 0, said
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cold ion approximation. According to non-local,
linear theories on curvature driven modes, the
turbulence in radial direction develops less than
in poloidal one [2]. Therefore the x-direction is
negligible and consequently the analysis devel-
ops on a single magnetic surface.
With this in mind, it is possible to simplify the
operators introduced in 2 to:

Ĉ = bZ(y)
by(y)

∂y

∇2
⊥ = ∂2y

∇∥ =
1
Rby(y)∂y + ∂z

(1)

(2)

(3)

Here, bj is the component of b⃗ in j-th direction.
It is adopted the dependence of any perturbation
f as:

f(y, z, t) = f(y)eγ̃t−inzz (4)

Here i is the immaginary unit. In this way it is
possible to perform the analysis of each individ-
ual modes in z, described by wave number nz,
justified by the superposition principle for linear
systems. It is not possible to follow the same
procedure for the y direction because of the y-
dependant coefficient in geometrical operators.
Finally, since γ̃ = γ + iω ∈ C, because of the
properties of complex numbers, γ = ℜ(γ̃), called
growth rate, describes the exponential growth of
the perturbation, ω = ℑ(γ̃) describes the oscil-
latory behaviour of the mode.
From eq. 4 it is possible to retrieve a simplified
version of eq. 3.

∇∥ =
1
Rby(y)∂y − inZ (5)

The retrieved eigenvalue problem for the y de-
pendence is

γ̃n = R
Ln
∂yϕ+ 2Ĉ(Te + n− ϕ)

−∇⊥V∥,e

γ̃∇2
⊥ϕ = 2Ĉ(Te + n) +∇∥(V∥,i − V∥,e)

γ̃
(
me
mi
V∥,e +

β
2ψ
)
= ν(V∥,i − V∥,e)

∇⊥(ϕ− n− 1.71Te)

γ̃V∥,i = −∇∥(n+ Te)

γ̃Te = η R
Ln
∂yϕ+ 4

3 Ĉ(
7
2Te + n− ϕ)

+2
3∇∥(0.71V∥,i − 1.71V∥,e)

(6a)

(6b)

(6c)

(6d)

(6e)

If we assume that we have an evenly spaced grid
points discretizing the y-direction we can ad-
dress this problem numerically. By defining a

vector x⃗ as the collection of values that the var-
ious fields take on the grid points and replacing
the differential operators with matrices that ap-
proximate them through finite differences it is
possible to lead to the symbolic problem:

γ̃Lx⃗ =Mx⃗ (7)

Here, L and M are the two matrices collecting
all the finite difference approximations. Solving
for the generalised eigenvalue of M with respect
to L it is possible to find the growth rate as the
eigenvalue with maximum real part.

3.1. Field Lines Discretisation
It has been assumed the existence of a grid dis-
cretizing the y direction, and therefore the mag-
netic surface poloidal cross section. To handle
efficiently the discretisation it is firstly assumed
that the current flowing in the plasma presents
a gaussian distribution Ip = e−(R2+Z2)/(2a2g).
Dedicated coils for plasma shaping, instead, are
modeled as current filaments, i.e., concentrated
at a single point (Rj , Zj). Their current inten-
sity Ij is given relative to that passing through
the plasma.
From theory it is known that magnetic surfaces
are characterised by a constant flux function Ψ,
related to the poloidal magnetic field through
the dimensional equation

B⃗p =
1

R
∇Ψ× e⃗ϕ (8)

Here e⃗ϕ is the ϕ direction versor. To be able
to write an analytical dependence of Ψ in the
(R,Z) plane the coils are confounded with in-
finitely long straight filaments. This is justified
by the infinite aspect ratio we are working in. Is
therefore possible to express Ψ as:

Ψ =
A

2

[
log(R2 + Z2) + Ei(

R2 + Z2

2a2g
)

]

+
A

2

N∑
j=1

Ij log((R−Rj)
2 + (Z − Zj)

2)

(9)

In eq. 9, A is a coefficient proportional to the
plasma current.From that the implicit equation
Ψ(R,Z) = Ψ0 allows to retrieve numerically
the magnetic surface’s cross section coordinates.
From that the curve can be discretized in Ny

equally spaced points and two array contain-
ing each grid points’ coordinates. The mag-
netic field on the grid points bZ(yi), bR(yi) and
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by(yi) =
√
b2Z + b2R can be evaluated analyti-

cally, with Biot-Savart like solutions.

3.2. Magnetic configurations
In this work four magnetic configuration has
been used.
• Circular (C): Magnetic poloidal cross sec-

tions are circular.
• Global Symmetric (GS): A coil it is used to

confer elongation in the lower part of the
configuration, conferring the shape of a re-
versed drop. In the lower part the magnetic
field is weaker and therefore the safety fac-
tor q ∝ dz

dy ∝ 1
by

can reach high values.
Therefore, magnetic lines stay at the bot-
tom of the configuration longer than at the
top.

• Global Positive (GP): Three coils are ar-
ranged asymmetrically to confer positive
triangularity, i.e. the cross section assume
a D shape that points toward the Low Field
Side (LFS). q behaves similarly to GS.

• Global Negative (GN): This configuration is
obtained from GP through a symmetry in
the poloidal plane with respect a vertical
axis intersecting the magnetic one. In this
case, therefore, the D shape points towards
the High Field Side (HFS).

4. Linear GBS Results
4.1. Resistive Ballooning Mode
The set 6 is not analytically soluble, neither if
the it simplified in order to describe RBM only.
To solve this issue a local analysis is pursuit into
the most unstable point in a circular geometry,
i.e. the point where bR(y) = 0 and bZ(y) > 0,
where the coefficient of the curvature 1 is maxi-
mum. Eq. 10 is retrieved:(

γ̃2 +
1

ν

(
k∥

ky

)2

γ̃ − (γRBMid )2

)
ϕ = 0 (10)

being ky the y-wave-vector, characterising the y-
eigensolution, and k∥ = R(byky − kz), kz = nz

R ,
and γRBMid =

√
2(1 + η)R/Ln the eigenvalue it

would be retrieved if the parallel electron ve-
locity would be neglected. To maximise the re-
sult of eq. 10 it is needed that kz ≃ byky, the
"≃" relation due to the discrete set of values kz
and ky can assume. This corresponds to what is

retrieved from simulations in C geometry. For
what concerns the others, linearity is found, but
with a reduced coefficient,even less pronounced
in GP. This behaviour can be attributed to the
increase of length in a shaped curve.

C GS GP GN

(ky/kz)avg 15.1 7.6 10.4 11.6

by(ky/kz)avg 1.03 0.73 0.80 0.88

Table 1: Proportionality between the evaluated
ky for every kz. In the second line the value is
multiplied by the average by along the curve.

In addition, circular geometry was used to
successfully perform a linear code validation
process on previous literature [2].

Shaped configurations’ growth rate γ = ℜ(γ̃) is
summed up in figure 2. In all the three geome-
tries it is a monotonically increasing function al-
ways smaller than γRBMid , and sharply decreas-
ing for small values of ky. This is due to the
fact that in the presence of shaping the pertur-
bation is localized in the Low Field Size (LFS),
also for low values of nZ , where it is made un-
stable, increasing its growth rate. Moreover the
retrieved y dependencies shows the maximum of
the perturbation lowest region, where the q in-
crease and the field line wrap less around the
surface.

Figure 2: Dispersion relation for RBM simula-
tion in GS, GP, GN, configurations

Results in fig. 2 suggest also that negative tri-
angularity is detrimental to the stability of the
system since γ is increased with respect to other

4



Executive summary Riccardo Saura

configurations, particularly for the modes with
low ky. Positive triangularity, instead seems to
be slightly advantageous for stability, and takes
place on higher ky.

4.2. Full case
In the full frame eq. 6 are tackled without any
simplifications, allowing to picture the whole
complexity but loosing on analytical manage-
ability.
Also in this case the proportionality between ky
and kz is respected in circular shape with the
same coefficient than in table 2. In the other
configurations the proportionality is less strict.
Anyway, also in this case ky is increased for the
GP and GN configuration with respect GS.
The growth rate is pictured in figure 3. While
the main features are kept unchanged some im-
portant differences deserve to be observed. As
in 4.1 negative triangularity configuration is ap-
praised as the most unstable, the maximum
growth rate being in the same range. In full pic-
ture, also GP is unfavourable with respect GS,
with its curve crossing GN curve at high ky.

Figure 3: Dispersion relation for RBM simula-
tion in GS, GP, GN, configurations

Differently on the RBM case, the full simulation
pictures a not null behaviour in the small ky,
atypical for Ballooning Mode regime. Therefore,
something else other than such must intervene.

4.3. Lp Evaluation
Pressure gradient length Lp in the edge region
allows to comprehend how effectively the plasma
is confined. High values of Lp are symptoms of
mild gradients and loose confinements. In the
present work it was evaluated firstly through the

linear solver’s results, through a non-local the-
ory called gradient removal [3] where the turbu-
lence saturation causes a flattening of the pres-
sure profile and therefore the disappearance of
the turbulence’s drive.

Lp =
q

cs

(
γ

ky

)
max

(11)

Eq. 11 is a non-linear one and it needs to be
solved numerically, scanning through various
values of Lp and nZ and linearly interpolating
to find the solution. Also to remove the
y-dependence on q it has been chosen to use the
q at LFS mid plane.

GS GP GN

Lp ν = 0.1 linear [ρs] 42.4 34.9 52.0

Table 2: Pressure length evaluated in different
geometries.

The linear code evaluates as positive the effect of
GP leading to a steeper gradient. The GN con-
figuration, instead, is largely detrimental also
in this case. However all the three evaluated
pressure gradients lengths are in the order of
the edge thickness, suggesting very poor con-
finement properties. What is found agrees with
Riva’s results [3], in an elongation-less configu-
rations.

5. Nonlinear GBS Results
Two sets of nonlinear simulations have been car-
ried for each shape through nonlinear GBS code.
The two sets differ for the different value of re-
sistivity, ν = 0.1 and ν = 0.3. Simulation have
been run until convergence of the average value
of each field. Emerging data have been averaged
on time and on the toroidal angle. The radial
dependence is extrapolated for the LFS outer-
midplane. An exponential fit is performed for
density and temperature field, to capture a first
approximation of their gradient length accord-
ing to the equation f(x) ∝ e(−x/Ln). Pressure
gradient length is retrieved through

1

Lp
=

1

Ln
+

1

LTe
(12)

Results are reported in table 3.
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ν GS GP GN

Lp [ρs] n-linear 0.1 17.5 24.8 15.2

Lp [ρs] n-linear 0.3 19.7 36.9 18.4

Lp [ρs] linear 0.1 42.4 34.9 59

Table 3: Pressure length evaluated in different
geometries, and models.

Positive triangularity presents the worse con-
finement properties, exhibiting higher pressure
gradient length. Negative one, on the contrary,
seems the most suitable to confine plasma. The
effect of the resistivity is to increase transport
properties, causing milder gradients. This effect
is particularly evident for positive triangularity.
Non linear result are completely in disagree with
the ones reported in 4.3. This can be partially
attributed to the simplifications in the linearisa-
tion process. Also, a finite aspect ratio has been
considered, leading to stabilising effect. These
results, in fact, agree with the one found in lit-
erature [3], where it emerges that negative tri-
angularity has the best confinement properties.

6. Conclusions and Outlooks
Understanding plasma turbulence in the toka-
mak edge is of fundamental importance since it
regulates the overall performance of a tokamak,
it controls the heat exhaust to the wall, the core
confinements features and the transport proper-
ties of the plasma.
In this work, firstly a linear method has been
presented. Successively, the triangularity role in
RBM branch has been investigated in a linear
frame, leading to the evidence that negative tri-
angularity is essentially detrimental for the sys-
tem, the pressure gradient has been evaluated
with a linear and linear-based solved. Finally
the confinement properties have been analysed
also through non-linear simulations.
Nonlinear, most reliable, data portray negative
triangularity as advantageous for the stability
of the magnetic configuration. Plasma confine-
ment capabilities were found to be better when
negative triangularity shaping is imposed. In
any case, this is not unequivocally found in both
discussions and therefore a deeper analysis is
necessary.
The discordance between the linear analysis, the

non linear one and that reported in [3] leads to
questioning the validity of the results, in partic-
ular the linear ones. The succeeding of linear
simulations in the circular benchmark suggests
problems in the linear solver dealing with shaped
configurations. Since only the geometric opera-
tors change between the two cases, this gives
clear clues as to where the problem may be.
Nevertheless, only three particular configura-
tions and a single set of parameters were anal-
ysed. The analysis is therefore limited and dif-
ferent shaping of plasma conditions might lead
to different results.
Future extensions of the present work can be
found mainly in an extended analysis of different
magnetic configurations and plasma parameters.
Furthermore, it has been reported in previous
literature that the aspect ratio and the Shafra-
nov shift are stabilising parameters [3]. The in-
clusion of these variables, excluded in this work,
may lead to results more in agreement with cur-
rent literature.
In addition, a more thorough analysis of the ge-
ometric operators is desirable, especially with
regard to their well-posedness. Such work has
been initiated in the course of this thesis and
there is evidence pointing to problems in the
parallel gradient. Finally, extension to other
branches of instability could lead to a more com-
plete understanding of the phenomena involved,
particularly when integrated with the Scrape
Off Layer study. In that case, the linear solver
should be modified to deal also with open sur-
faces, and the edge conditions should be dis-
cussed.
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Abstract

Plasma dynamics in the boundary of magnetic fusion devices plays a key role on the
overall confinement properties.
The tokamak boundary description is intrinsically nonlinear and characterised by a wide
range of spatial and temporal scale and it is patterned after a complex magnetic geometry
that guarantees good confinement in the core region, while mitigating the heat flux to
the wall. The moulding of the plasma in "D" shapes, commonly said triangularity, allows
to deeply influence stability and transport properties, granting more steady confinement
configuration characterised by lower turbulent fluctuation. In the present thesis the tur-
bulence in the tokamak boundary is studied with a two-fluid Braginiskii model. The focus
is firstly on a linear analysis, allowing to determine the dominant instabilities’ growth rate
and the confinement properties.
Therefore, a nonlinear, preliminary, study it has been carried out through the GBS code

Keywords: plasma physics, plasma confinement, triangularity, plasma turbulence simu-
lation, GBS code, pressure gradient length
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Abstract in lingua italiana

La dinamica di un plasma al bordo di macchine per la fusione a confinamento magnetico,
gioca un ruolo chiave nella determinazione delle proprietà globali di confinamento.
La descrizione dei limiti esterni di un tokamak è intrinsecamente non lineare e caratter-
izzata da scale spaziali e temporali molto ampie e si basa su una geometria magnetica
complessa che garantisce un buon confinamento nella regione di core e limita gli effetti
del flusso di calore sulle pareti della macchina. Modellare il plasma in forme a "D", co-
munemente dette configurazioni con triangolarità, permette di influenzare profondamente
le proprietà di stabilità e trasporto, garantendo un confinamento più stabile nel tempo e
caratterizzato da basse fluttuazioni dovute alla turbolenza.
Nella presente tesi la turbolenza nel bordo di un tokamak è analizzata con un modello a
due fluidi di tipo Braginiskii. Il lavoro si focalizzerà in primo luogo su una analisi lineare,
permettendo di determinare la velocità di crescita delle instabilità dominanti e le propri-
età di confinamento.
Quindi, uno studio preliminare non lineare è compito attraverso il codice GBS.

Parole chiave: fisica dei plasmi, confinamento magnetico dei plasmi, triangolarità, sim-
ulazione della turbolenza nei plasmi, codice GBS, lunghezza di equilibrio della pressione
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1| Introduction

In this chapter it is provided a brief overview on nuclear fusion and machines used to
perform it.
The energetic problem (§ 1.1) is firstly addressed with the aim to better appreciate the
impact the nuclear fusion promise to have in such an environment.
Right after, the physical fundamentals of such a technique are sifted through (§ 1.2) with
a special eye for the suitable reactions (§ 1.2.1), the Lawson Criterion (§ 1.2.2) and the
plasma state (§ 1.2.3). Plasma confinement techniques are also discussed (§ 1.2.4).
In a second moment the machine used for nuclear fusion is analysed (§ 1.3) focusing on
the different regions that compose the plasma (§ 1.3.1).
Then, in a further section plasma shaping is addressed (§ 1.4), tackling the periphery
dynamics (§ 1.4.1) and triangularity (§ 1.4.2).
Once detailed all the previous themes the discussion will by nature close on the definition
of the goal and the motivation behind this thesis work (§ 1.5)
The results of the present thesis extend the previous work of [25], carried out in limited
geometry, to more complex magnetic configurations that include a null of the poloidal
magnetic field, and of [34] implementing a different approach.

1.1. International Energy production and consump-

tion

In the last four centuries the western countries have developed a lifestyle based on the
heavy labour proxy to machines able to perform increasingly complicated tasks relatively
promptly and accurately. Rapidly this costume spread all around the globe affecting every
nation lifestyle. As a matter of fact, then, each country needs nowadays energy to power
up everyday life, industries and human activities in general.
It is well agreed that the wellness in a society’s lifestyle is directly proportional to the
energy consumption of the country it belongs to, especially in the developing phase of the
state [6], this last observation excepted only by last decades energy consumption history
in highly developed countries because of the relatively recent tendency to consumption
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efficiency [16]. An increase of global primary source in the next century is then forecast
on the basis of the actual socio-political assets and the way to produce that energy is an
issue that has to be assessed in the present.
The energetic problem, as worldwide and intimately connected with human life, is a con-
voluted and multifaceted problem with difficult resolution, with a widespread fallout as
on society, environment and economy.

Figure 1.1: World primary direct energy consumption by source in 2020. [26]

Despite the increasing need, energy comes with a cost. The actual primary source mix
is based on fossil fuel such as oil, natural gas and coal, (figure 1.1) which combustion
releases a huge amount of CO2, pollutant and greenhouse gasses in the atmosphere, rep-
resenting an important threat for the environment. Also, gas and oil are not diffused
sources, resulting in few countries that control the greatest part of their production, e.g.
Europe produces only about 10% of the gas it consumes. Fossil fuel needs confer an im-
portant international political power to oil and gas producers, leading to critical tensions
such as the Iranian crisis in 1946 or Russia-Ukraine political crisis in 2006-2014. Because
all of this reasons such an important source presents a highly unstable price (figure 1.2)
impacting adversely on the energy security of any population.

It is then crucial for many extents to exit from the oil’s centrality in energy production
and some alternatives have been taken into action as renewable energy source and nuclear
fission energy. Despite the last being somehow diffused at worldwide scale and producing
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Figure 1.2: Crude oil spot price of the most common oil blends, measured in current US
dollars per barrel. [27]

a great amount of energy it is quite controversial among some populations causing the
shutdown of various facilities as in California in 2020. Some more welcome nuclear sources,
the nuclear fusion techniques, have been under study for many years.

1.2. Energy Production by Nuclear Fusion

Nuclear fusion is the physical process that lights up stars. The basic is based on the
difference in binding energy between the reactants and the products in some nuclear
reaction. The binding energy is the energy due to the force that keeps together the protons
and neutrons in nuclei, called strong force and being much stronger and short ranged then
electromagnetic force. The great magnitude of this force causes a huge difference in mass
along the reaction. The mass defect is then converted in kinetic energy for the products,
and it is quantified according to the notorious Einstein equation

E = (mi −mf )c
2 (1.1)

with mi and mf respectively the initial and the final total mass of the matter involved in
the reaction. If it occurs that mi > mf the reaction is said to be exothermic and some
energy is conferred to the products.
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1.2.1. Nuclear Fusion Reactions

In fusion reactions light nuclei fuse together to form a heavier and stabler product. As
a matter of principle every reactant leading to a nucleus lighter than Fe56 will release
energy. Anyway, lighter nuclei are a better and more common choice.

Figure 1.3: Binding energy per nucleon against number of nucleons.

Firstly, as clearly shown by figure 1.3, as long as A < 4, the binding energy is characterised
by sharp increases per each nucleon added to the nucleus, leading to a higher energy
release. This behaviour peaks with the He42, a double magic nucleus, with both, protons
and neutrons’, energetic levels completed, leading to a particularly stable structure. There
are then many possible fusion reactions, the most common of which are summarised in
table 1.1.

Reaction Branch Ef [MeV]

D +D
−→ He3 + n 50% 3.27
−→ T +H 50% 4.03

D +He3 −→ He4 +H 100% 18.3
D + T −→ He4 + n 100% 17.6

Table 1.1: Different fusion reaction having as reactants D, T , He3

The first important figure of merit is explicit in the table 1.1. As it was possible to
anticipate the highest yields refer to reactions that have He4 in the products, due to its
high stability. Such reactions then would be possibly preferred.
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A second reason to use light nuclei is due to the process’ dynamic. To describe the
characteristic of the process in which two particles collide, said scattering, an important
parameter, the cross section σ, comes in handy. This concept is a very general one,
applicable to a great variety of phenomena, from scattering to fiscal reactions. It emerges
in the hypothesis that a spatially homogeneous, temporally constant, monochromatic and
well collimated beam of particle impinges on an ideal target, thin enough not to make the
flux varies significantly during the reactions. The cross section, though, represents the
proportionality that can be found between the reaction rate R and the incoming particle
flux and it is associated with the likelihood that a reaction takes place.

R = σvn (1.2)

In general the cross section can depend on various reaction parameters as the energy of
the incoming particles or the scattering angle. A well-known result is the Rutherford cross
section [22], describing the scattering in a classical theory frame between two particles,
in the target reference system, provided the force they interchange has a potential in the
form U = α

r
. In case of the Coulomb force between two nuclei α = A1A2e

2 where Ai is
the nucleus mass number and e is the unitary charge. The differential cross section with
respect the deflection angle χ is

dσC
dχ

= π

(
α

mv2∞

)2 cos(χ/2)
sin3(χ/2)

(1.3)

where m =
(

1
m1

+ 1
m2

)−1

is the reduced mass of the system, mi = Aimu, mu being the
mass corresponding to 1 atomic mass and v∞ the velocity of the impinging particle at
infinity. From energy conservation the minimum distance ρmin they can reach is

ρmin =
2α

mv2∞
= (A1 + A2)

2e2

muv2∞
(1.4)

Therefore two nuclei will interact more strongly as the sum of their atomic mass number
increases and consequently they will be able to get less close. To allow two nuclei to
merge, instead, it is desirable they come as near as possible so that nuclear interaction,
which has a finite and short range, can overcome Coulomb repulsion. From 1.4, for every
couple of ions it is possible to get them arbitrarily close, provided enough initial energy is
supplied. It is advisable, however, to have to confer the minor amount of it, either in the
form of ordered beam velocity than as disordered thermal energy. Lighter nuclei, then,
suffer lower Coulomb repulsion and have a smaller potential barrier to overcome. It must
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be said, however that quantum effects as tunnelling intervene and therefore the reaction
is possible also when it would classically forbidden, i.e. when ρmin > ρsnf , ρsnf being the
strong nuclear force range. To take in account also this effect it is usually employed the
Gamow cross section [18]:

σG(E) =
1

E
f(E)e−

√
EG
E (1.5)

where E is the kinetic energy at the beginning of the reaction, EG is the Gamow energy,
which scales as the square of the mass numbers, and f(E) is a slowly varying factor.
This, globally, results in a higher probability that the two nuclei will fuse together and
consequently they will display a steeper fusion frequency other condition being equal.
Volumetric reaction rate is important feature that must be considered in order to choose
the most suitable redaction. It is the expressed by the relation

Rij = ninj < σvr >E (1.6)

with nα the numeric density 1 of the α-th population, and < σvr >E the averaged cross
section on the relative velocity distribution between the two population. The reaction
rate is an important parameter because it is connected with the volumetric power trough

p′′′f = RfEf (1.7)

Where Rf is the reaction rate of the fusion reaction and Ef is the energy released by this
last. The interest will be therefore to chose the reaction that maximise this last. Assuming
a Boltzmann distribution of the particle along the energy, cross section and then < σvr >E

depends only on species temperatures, assumed to be equal for the current evaluation.

From table 1.1 and figure 1.4 it is manifest that the best reaction to work with will be
D-T reaction, with the reactants at a temperature of tens of keV to maximise the reaction
rate. Incidentally, this is an order of magnitude higher than the Sun’s core. It is worth to
remark that since in the mixture there is deuterium, D-D reaction will occur as well but
with a frequency some order of magnitude lower. Then, and also due to the lower energy
yield, the last reaction is negligible.

1.2.2. Lawson Criterion

The products of D-T reaction are well suited for the application we are looking at. By
a simple physical observation deriving from momentum and energy conservation, it is

1since now we will address the numeric density as density
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Figure 1.4: ⟨σvr⟩ as a function of T for commonest fusion reactions. [11].

possible to infer that the energy will be shared between helium nucleus and the neutron in
the ratio of the inverse of the masses, roughly 1:4. Immediately after the fusion reaction,
helium carries 3.5 MeV of kinetic energy, being much energetic than the surrounding
particles, but as a heavy charged particle it interacts with them, losing his momentum and
contributing to heat the plasma up. This mechanism plays a crucial role in maintaining
stable plasma conditions during the time fusions take place2 balancing the unavoidable
losses that will be present. A way to measure the losses is provided by the confinement
time, defined as

τE =
W

Ploss

(1.8)

where W =
∑

a

∫
D
naTa is the thermal energy of the whole system. The other reaction

product, the neutron, instead, carry the most of energy, 14 MeV. Since the neutron is a
chargeless particle and the surrounding matter is, in the applications, loose or very thin,
it is able to escape. If a moderating material3 is placed near the plasma it is possible to
use the neutron to extract heat from the reaction and use it for electric energy production.
It must be underlined that an important neutron field will have some consequences on
structural materials, causing a volumetric heat source inside them - the phenomena is
called γ-heating -, swelling, embrittlement and structural problems in general [37]. These

2It is a quite different time depending on the techniques used. As discussed in this subsection, the
aim in magnetic confined fusion is to reach a stable continuous regime despite inertial confinement works
on the repetition of short shots because of the intrinsic way they are projected.

3A moderating material, or moderator, is a material composed, at least partially, by light nuclei able to
scatter neutrons. From energy and momentum conservation neutron loses part of its energy. The energy
gained by the collided nucleus is transformed into heat by phononic interactions. Typical moderator
materials are hydrogen (H), boron (B), lithium (Li) and carbon (C).
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phenomena are very severe due to the neutrons’ high energy - actual fast reactor cope
with up to 5 MeV neutrons - and lead to a still open issue. Moreover wherever there is a
neutronic field some atoms will be activated leading to radioactive material to dispose at
the facility’s end of life (EOF). With the right material choices, anyway, it is possible to
reduce waste half-lives to some dozens of year achieving a remarkable result since activated
material would be the only radioactive waste of the process, as nuclear ashes (He4) are
stable.

To reach ignition, the condition in which fusion can self-sustain, it must hold that

RfEf,α ≥ Ploss (1.9)

Assuming a plasma composed by Deuterium and Tritium ions and electrons, sharing the
same density and temperature roughly and distributed on a Maxwell-Boltzmann distri-
bution on energy [43] it is possible to show that the ignition condition 1.9 is equivalent
to the Lawson criterion

τEnT > 5 · 1021sm−3keV (1.10)

Since from figure 1.4 the temperature is settled as T ∼ 10keV this reduces to the condition

τCn > 1020sm−3 (1.11)

Nuclear reactions take place in stars due to very high gravitational force that cannot be
achieved on Earth. [3]. The two main solution proposed by modern technology are the
inertial confinement and the magnetic one. The first consist in shining a small spherical
pellet of D-T fuel trough a high intensity laser pulse. The particle inertia is exploited
to increase the density in the very centre of the fuel, because of the inward momentum
transferred by the electromagnetic radiation. This kind of technique has a very short con-
finement time (τE ∼ 10−9s) requesting very high densities (n ∼ 1030m−3). On the other
hand, magnetic confinement uses strong magnetic fields to confine the plasma at a con-
siderably lower density (n ∼ 1020m−3)4. This is allowed by the much higher confinement
time that such a design can guarantee (τE ∼ 1s).

4For reference, the air density at room temperature is in the order of nair ∼ 1025m−3
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1.2.3. The Macroscopic State of Plasma

The stiff temperatures evaluated in the last paragraph have heavy consequences on the
sate of matter the nuclear fuel is found in. Such energies are much higher than the one
needed to ionise matter - the ionisation potential are in the order of tens of eV [30]. This
will cause the nuclear fuel to behave as a plasma.
The plasma state, commonly known as the fourth state of matter, is a macroscopically
neutral gas composed by charged particles. Those particles, unlike in a gas, will inter-
act both by short range interaction, e.g. scattering, and by long range electromagnetic
interaction through electric and magnetic field. The region in which the charged nature
of particles plays a role is called Debby region, a sphere of radius λD =

√
T

4πe2n
. Each

particle will interact only with particles within the Debby radius, out of this region it is
said to be shielded. The magnitude of this parameter has a great variability and depends
on the thermodynamic state of the plasma. It usually goes from really small values as
7 ·10−7cm in laser plasma up to meters in interstellar gases [15]. For reference, thermonu-
clear plasma are characterised by a Debye length in the order of 2 · 10−3 cm
Electromagnetic forces then play a crucial role in plasma dynamic giving rise to collective
motion and determining the kind of wave the matter can sustain. On the other hand, the
ionised matter will influence the electromagnetic fields through charges and currents. It
is not possible then to split the treatment of matter and electromagnetic fields when it
comes up to plasma, but a self-consistent integral description must be taken into account.
Such a description will be further analysed in chapter 2.

1.2.4. Plasma Confinement Principles

The motion of a charged particle in a constant and uniform magnetic field B⃗ is a well know
result [20]. The particle, due to the Lorentz force keep being confined in the direction
perpendicular to the magnetic field in a circular uniform motion, characterised by the
gyro-frequency ΩL and the Larmor radius ρL

ΩL =
qB

mc
ρL =

v⊥
ΩL

(1.12)

where q is the charge of the particle, m its mass, B the magnetic field magnitude, c
the speed of light and v⊥ the perpendicular velocity. Instead, on the magnetic field
direction the particle is free to move, resulting in a spiral unbounded motion. As a first
approximation, in presence of a static magnetic field, characterised by gradients much
higher than the inverse of the Larmor radius, the particle streams along a magnetic field
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line in a helical trajectory. This approximation is called guiding centre approximation
[29]. To confine a particle in a closed region, then, some more efforts are needed.

By a balance of force is it possible to find the condition needed to ensure equilibrium [11]

J⃗ × B⃗ = ∇p (1.13)

where J⃗ is the plasma current. It holds that

∇× B⃗ =
4π

c
J⃗ (1.14)

in a magneto-static picture, and p is the plasma picture. The balance equation 1.13 derive
from the magnetohydrodynamic motion equation in the steady state limit without flows.
Such equation can be derived with some work starting from the equations in 2.1. Equation
1.13 allows to find the plasma current necessary to magnetically confine a plasma with
finite pressure. It is important to point out that J⃗ include the plasma current, that means
that at least part of the magnetic field needed to confine the plasma is created by the
plasma itself. This lead to some instabilities, some of it analysed in the following.
Manipulating equation 1.13 it is easy to show that both the vectors B⃗ and J⃗ lay on
surfaces of constant pressure, called magnetic surfaces, as B⃗ ·⃗ ∇p = J⃗ ·⃗ ∇p = 0. This,
according to the Poincaré’s theorem, stating that a compact surface which is everywhere
tangential to a non-vanishing vector field free of singularities must have the topology of a
torus [14], clearly define the shape of the isobaric surfaces. The two fields will then wrap
around the torus.
For sake of completeness, it must be said that there is a way to confine particles also
without a compact surface. A linear machine, as a matter of fact, it works with open
cylinders, that in practical scenarios ends with some physical walls. Here particles are
confined by magnetic mirrors, i.e. a non-constant magnetic field with a higher field at the
two end of the machine. If the gradient is steep enough and the initial velocity satisfies
some condition, the particle is not able to reach the ending wall and it is reflected toward
the centre. Such kind of machines are thought not for an industrial energetic use, but
instead within a research purpose.
The easiest configuration for a toroidal magnetic geometry it would be a purely toroidal
magnetic field B⃗T created by some toroidal coils. This kind of choice, however, do not
allow to confine properly particle. As a matter of fact, because of the curvature of the
field and the field magnitude gradient some drift establish. The first order approximation
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of those are:

v⃗∇B =
cµ

q

B⃗ ×∇B
B2

v⃗κ =
cmV 2

∥

qRc

n⃗× B⃗

B2

(1.15)

(1.16)

where µ =
mV 2

⊥
2B

, q and m are the particle’s charge and mass, V⊥,∥ are the perpendicular
and parallel velocity of the particle respectively and Rc is the curvature radius of magnetic
field line. Moreover, since those velocity depend on the charge, they will tend to split
particle with opposite charge and consequently an electric field E⃗ will form, causing a
further drift.

vE×B = c
E⃗ × B⃗

B2
(1.17)

Finally, further forethought is needed when the description passes from a single particle
picture to a macroscopic one. To stabilise particle’s orbits magnetic lines should twist
around the magnetic surfaces, averaging out the 1.15-1.16 drift motions. Mainly, there
are two way to make this happen: by adding a poloidal magnetic component B⃗P allowing
some electric current flow through the plasma or by rotating poloidal cross section of flux
surfaces along the toroidal angle, making the magnetic axis5 not a planar curve, this latter
called magnetic torsion ([14, 24]). The choice of one solution in lieu of others determines
the machine specifications and distinguishes tokamak from stellarators. In the first ma-
chines, indeed, twisting is provided by a plasma current creating a poloidal magnetic field
10 times smaller than the toroidal one, in stellarators, magnetic torsion and flux surfaces
rotation are applied.

1.3. The Tokamak Device

Across the world several tokamak-type machines are still in construction, consisting finally
in a toroidal chamber where plasma is confined by mean of magnetic fields. Three different
sets of coils are fielded.
The first group is arranged to form a toroidal solenoid wrapping the void chamber and
producing the only toroidal magnetic component present. Because of this configuration
the magnetic field is not constant along the whole magnetic surface. In [R,θ,Z] reference
system, an orthonormal cylindrical system, R,θ,Z being respectively the radial, poloidal

5A brief discussion of what the magnetic axis is, it is found in A
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and vertical coordinate, is possible to express BT [20] as function of the distance from the
centre R, the number of coils N and the current flowing through each coil Ic

BT (R) =
2NIc
cR

(1.18)

Since equation 1.18 displays a monotonically decreasing behaviour it allows to divide the
poloidal cross section in two different zone. The inner part of the tokamak is said High
Field Side (HFS), the outer Low Field Size (LFS). Such field can reach values of tens
of T 6 [29], needing high currents in the coils, in the order of hundreds of MA 7. Such
high currents would be unsustainable for ordinary coils, need the use of superconducting
technology. The coils used to this purpose are pictured in figure 1.5 in blue.

Figure 1.5: Schematic representation of a tokamak machine’s set of coils. The blue ones
are the one generating the toroidal magnetic field. In green is highlighted the central coil
inducing the plasma current. The grey coils are used for shaping and positioning. [38]

As discussed previously, in subsection 1.2.4, a single poloidal field is not sufficient to con-
fine the plasma and a further poloidal field Bp is needed, usually at least 10 times weaker
than BT . Tokamak machine induce in the plasma a current in order to accomplish this
requirement, through a central coil working as the primary circuit of a transformer is used
- the secondary circuit being the plasma itself. This confers to the machine an intrinsic
pulsed behaviour since such a technology cannot work with continuous current unlike

6Tesla, SI unit for the magnetic B field.
7Ampère: SI unit for electric current.
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ordinary coils. Indeed, in order to keep the plasma current as more constant as possible
the current flowing in the primary circuit increases linearly. Such a temporal behaviour,
clearly, is technically impossible, therefore repeated discharges are needed. The central
coil is pictured in green in figure 1.5.

Finally, a third order of coils are placed horizontally, pictured in grey in figure 1.5. Those
coils contribute to poloidal component and they are used for plasma positioning and
shaping. Theirs effects are quite important for stability purposes, the topic investigated
in this work.
Since the magnetic field presents a continuous and differentiable law, it is possible to
define a set of lines everywhere tangent to the field itself, called magnetic field lines.
Those constitutes a very important figure of merit in the tokamak since they allow to
define the magnetic surfaces that compose the layer structure of the magnetic field. Since
they are everywhere tangent to magnetic field they obey the law:

d⃗l × B⃗ = 0 (1.19)

Here d⃗l is the vector between two infinitesimally close points belonging to the field line.
From that, in the proper coordinate system, where ϕ is the poloidal angle, θ is the toroidal
one and a is the distance of the line from the magnetic axis (§ A) it is possible to retrieve
the equation

q =
dθ

dϕ
=
aBT

RBp

(1.20)

This important parameter is called safety factor. It is not constant in general in the
tokamak cross section nor along the magnetic surface. As its definition 1.20 suggests it is
proportional to the variation of the toroidal angle with the poloidal one. If this parameter
is constant along all the curve it represents also the number of toroidal turns accomplished
every poloidal one, otherwise, the relation is only local. This parameter allows to distin-
guish between two different kind of curves. The first, with 1

2π

∫ 2π

0
1

q(θ)
dθ ∈ Q, are closed

curves that come back to the starting point after an integer number of turns along the
magnetic surface. If the condition does not hold, the curve wraps forever on the magnetic
surface without ever closing.
A second important parameter for what concerns tokamak geometry it is the aspect ratio.
This is defined as the ratio between the tokamak major and minor radius, R0, a. The
major radius is the average distance from the tokamak symmetry axis, a is the distance
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of the walls from the magnetic axis.

AR =
1

ε
=
R0

a
(1.21)

ε is therefore a measure of how much the tokamak torus can be confused with a straight
cylinder. This happens in the limit ε→ 0 said large aspect ratio limit. In usual tokamak
the aspect ratio is in the order of AR ≃ 3, e.g. a 1GW th tokamak8 could be characterised
by R = 6m, a = 2m leading to a volume of, roughly, V = 10m3 .

Finally, another important figure of merit is the β parameter, defined as a dimensionless
pressure through the equation

β =
nTe
B2/8π

(1.22)

It is possible to define also the poloidal and toroidal one, respectively βp and βT , substi-
tuting in equation 1.22 the poloidal or toroidal component instead of the magnetic field.
Usually, to evaluate β average values are used. The importance of this last constant lies
in his interpretation as the confinement efficiency. As a matter of fact, if all the magnetic
energy were used to compress the plasma would lead to β = 1. This implies also that it
holds always β < 1.

Parameters 1.20, 1.21 and 1.22 are intimately connected since it holds

β = βp
ε2

q2|a=a
(1.23)

Since in tokamak’s configuration are characterised by q ∼ 1, 1.20 implies βP ∼ 1 and
therefore equation 1.23 states that β ∼ ε2. This classifies tokamaks as intrinsically low β

machines.

The heating of the plasma is firstly on charge to ohmic losses in plasma up to the tem-
perature of some keV. To reach the ignition regime, anyway, this is not sufficient yet and
additional power is injected trough accelerated particle beams and electromagnetic wave.
Both coils feeding and power injection are energetically greedy processes, impacting on
the machine energetic balance. An important parameter describes this

Q =
Ef

Eext

(1.24)

being the ratio between energy produced by fusion processes Ef and the energy Eext

8Such a wording denote a facility’s thermal output and it is read "thermal GW"
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inserted in the system. Despite theoretically ignition condition correspond to Q = ∞, the
highest value achieved for the moment is Q = 0.7 in JET facility [17], but it is foreseen
to reach Q = 10 with ITER in 2050 [32].

1.3.1. The Plasma Poloidal Cross Section

The poloidal cross section of a plasma is characterised by three main zones. The first to
be found starting from the innermost region is the core. This region is where the fusion
occurs and therefore it needs high pressures. Magnetic pressure (B2/8π) can scale up to
300 atm [15]. The temperature and the density inside it are in the order respectively of
10 keV, and 1015cm−3. The core is compressed by the outer layers and the fluctuation of
the various fields are very small: the relative variation of it in the order of 1%.
Facing the core, it is present the edge region. Such a region is a layer connecting innermost
and the outermost values, and it is a transitional region. It is characterised by important
thermal gradient and is very thin. Gradients can be stepper than 10 keV/m. Here, also
the density drops of several order of magnitude. The edge region is limited on the outward
from the Last Closed Flux Surface (LCFS) or separatrix, consisting, as the name says, in
the last closed flux surface. The outer ones will end on some solid part of the wall.

Figure 1.6: Circular plasma cross section, in which the three main regions are highlighted.
The inner region corresponds to the core one, the orange to the edge and the blue one
to the SOL. The black object on the left represents a limiter, a device used to limit the
plasma-wall interaction. It causes the appearance of the LCFS, which poloidal section is
the black solid line between the blue and the orange area.
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The outer region of a confined plasma is called Scrape Off Layer (SOL). This, together to
the edge region form the periphery. It is characterised by very loose plasma and temper-
atures in the order of 10eV. Since the temperature is low electromagnetic effects become
more important making this region the cause of almost the totality of the radiation the
machine causes. The low pressure, also, causes the fluctuations in the plasma to be very
important, being even higher than the equilibrium values themselves in the outmost layers
of this region, the outer-SOL. Despite this layer is populated only a few percent of the
total plasma’s particles are present, it is crucial for the machine well behaviour since it
controls most of the instabilities present in the configuration, with the edge layer and
determines the heat and particle flux exchanges with the tokamak’s wall, a complex phe-
nomenology called plasma-wall interaction. SOL’s Magnetic surfaces, indeed, are open
and they end on some region of the tokamak wall. Since 1eV corresponds to roughly
10’000 K SOL’s average temperature is way higher than common materials can suffer.
To handle this, it has been chosen to localise the region where the most of plasma-wall
interactions occur to a single component in order to allow the rest of the wall to milder
conditions. The component that directly face the SOL’s plasma are the limiter, a slab
inserted at HFS along all the toroidal perimeter. In more complex geometries a divertor
can be implemented, i.e. a long plate in the lower part of the plasma chamber on which
all the magnetic surfaces of SOL closes. Both the divertor and the limiter have better
thermomechanical properties than the rest of the wall.

1.4. Importance of Plasma Shaping

In modern tokamak, as anticipated in section 1.3, there is present an additional order
of coils with the precise purpose of conferring a complex geometry to the plasma. Such
technical solution is called plasma shaping. It consists in using additional poloidal fields
to bend the magnetic surfaces, otherwise tori. This technique has mainly importance on
the plasma periphery, and much less on the core that maintains a more or less circular
shape.

Plasma shaping has many motivations and scopes. First of all, it allows to confine the
plasma minimising the plasma-wall interaction, causing the knockout of wall’s atoms
due to highly energetic plasma’s particle. The ablated atoms enter in the plasma and
are quickly partially ionised, causing an increase of radiative losses and decreasing the
confinement and fusion properties. On the wall side, it loses integrity and structural
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properties. Moreover, the shape in which the plasma is moulded influence the heat and
particle fluxes, i.e. the plasma transport properties, diminishing them and securing them
below the maximum ones the structural materials can handle.

Moreover, bending the field lines it is possible to redirect them on the divertor plate, as
implemented in ITER and DTT9. In that way, particle streaming along the magnetic lines
are collected in the divertor, diminishing the average damages to the walls. Clearly, since
a perpendicular diffusion is present in the plasma, some particles will end impacting on
the wall, anyway.
As it pictured in figure 1.7 in such configurations this line is characterised by the so-called
X-point, where it intersects itself.
Shaped geometries are usually characterised by the LCFS presenting an X-point, or null-
point, where the poloidal magnetic component is zero and the field is purely poloidal. In
this point the magnetic surface cross itself forming, in the poloidal cross section, a typical
"X" shape as in the blue circle of figure 1.7.

Figure 1.7: Shaped plasma cross section. In the figure is easy to distinguish the core
region, the edge and the SOL In the blue circle it is highlighted the X-point. [12]

9Research tokamak that will be built in Rome at ENEA research facility in the next years.
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1.4.1. Periphery Dynamics

As many studies pointed out, the periphery dynamics is responsible for most of the overall
confinement of tokamak device [33].
Two working modes are mainly observed: H and L modes. L mode, or low confinement
mode is the characterised by a relatively large amount of turbulence which allows energy
to escape the confined plasma. In H-mode, or high-confinement mode, a pedestal develops
in pressure distribution, in the edge region, stepping near the separatrix. That causes a
radial electric field to establish, implying a strong reduction of turbulence level [10]. The
H-mode pedestal is periodically released by the injection of high energy particle from the
core in a phenomenon called edge-localised modes (ELMs) causing sudden variations in
the energy and mass fluxes that the walls suffer. The settling of one of the two modes is
controlled by the transport properties of the plasma that depends on the thermodynamic
state, on the magnetic field present, the shaping and various other parameters.
Since in the peripheral region the temperature is quite low, a high collisionality is ex-
pected and therefore it is possible to infer a near equilibrium energy distribution. This
will have a major role in the treatment done in subsection 2.1.1 and in chapter 2 generally.
Finally, the highly non-linear turbulent processes imply the presence of a large spectrum
of relevant time and space scales. At this simulation complication it adds the strong
anisotropy typical of this phenomenon, where the parallel wavevectors are much smaller
than the perpendicular ones (k∥ = k⃗ · b⃗≪ k⊥ = || k⃗ − k∥⃗b ||) [4].
In the peripheral region, finally, occurs many modes that are potentially unstable. Such
modes could lead to the destabilisation and the disruption of the plasma equilibrium, caus-
ing the fading in the confinement properties and therefore the loss of ignition condition.
This would be detrimental for a tokamak and would lead the machine into failure.

1.4.2. The Effect of Triangularity

It is said that a magnetic surface presents a not null triangularity when the poloidal cross
section is characterised by a "D" shape, as in case of figure 1.7. If the D points outward,
toward the LFS, the triangularity is said positive, if points towards the HFS, it is said neg-
ative. The triangularity parameter can be retrieved explicitly in the Sobolëv equilibrium
(§ A), a special set of self-consistent magnetic equilibria, but is a more general concept,
applicable also to other configurations. Edge dynamics is intimately influenced by such a
parameter, this last impacting on turbulence and then on fluctuation and instabilities as
clearly showed in [7, 9]. In their works Fontana et al. and Huang and al. analysed shots in
TCV in Lausanne, Switzerland, over a wide range of elongation and triangularity values.
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What they found was a better confinement in negative triangularity and a substantial
reduction of turbulent density fluctuation. As showed in previous works [23, 34] the tri-
angularity, especially the negative one, has a huge impact on the transport properties in
the peripheral region. The equilibrium that establishes is similar to the H-mode, ensuring
therefore a good confinement, but do no present the periodical release due to the ELMs,
leading to more steady fluxes on the plasma wall and, in general, to a better confinement.

1.5. Motivation and Scope of the Work

The plasma behaviour in the edge layer in turbulent regime is an important topic in
nuclear fusion devices, the complete characterisation of the turbulent regimes and the
transport characteristics being an important threat in the current research field.
The external region in a tokamak, formed by the SOL and edge layer, sets and directs a
wide compendium of phenomena at the basis of the machine performance. It is in this
region that L-H modes settle determining the confinement properties in the core. The
edge, through the developed mode and the ELMs, controls the magnitude of heat and
particles fluxes arriving to the machine’s walls, contributing to setup the properties of
the plasma-wall interaction. Finally, through diffusion, edge allow nuclear ashes to flow
toward the outer region where they can be collected and removed in order to keep a steady
plasma composition. Also, the edge and SOL region determines the stability of the mag-
netic configuration. The knowledge of them allows to control and correct eventual bad
behaviour of the configuration.
All those phenomena’s importance is heavily dependent on the shaping attributed to the
plasma, in a particular way on triangularity. Moreover, except for some special machine
as the TCV10 at the Swiss Plasma Centre in Lausanne, tokamaks do not have an elevated
flexibility for what concerns the magnetic configuration, since their coils are fixed. For
that the magnetic configuration of the machine is a parameter that is assessed in the early
phase of the device’s project. With new machines and tests to be designed, as the DTT
in Frascati, Rome and the more important DEMO in the Eurofusion research project, in
the near future, the magnetic configuration is a major and meaningful aspect to study.
This work frames in such a contest, basing its result on numeric simulations and some
analytical tool. It will be proposed a method to evaluate the magnetic surfaces poloidal
section without the recurrence to complex and heavy MHD equilibrium solver. The in-
stabilities growth rate analysis and the pressure gradient length evaluation then, will be

10TCV, as a matter of facts, stands for "Tokamak à Configuration Variable" that literally translates
in "Variable Configuration Tokamak".
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carried out through GBS code, in both linear and nonlinear case, a complete code capable
to keep in account the plasma turbulence in a self-consistent way, without the need to
artificially dissociate the driving phenomena. The linear one will be coupled to the code
implementing the surface’s discretization method.
This thesis sets as his goal is to provide firstly a description of the physical basis of the
poloidal cross section discretization method. Then the effect of the shaping on the plasma
instabilities and on the turbulence will be analysed, finally comparing it to the full model.
A non-linear model will be presented to the auto-consistent evaluation of the pressure
gradient length, fundamental for the evaluation of the predicted confinement mode.
The document is organised as follows:
In Chapter 1 a brief resumé is displayed in order to better frame the technology at the
basis of the discussed matter. In such an optics the aim is to provide some insight on
the role of the nuclear fusion in modern energy source mix, its physical grounds and the
machines used to exploit it. Particular focus is let to magnetic surfaces cross section
shaping, constituting the core underneath the discussion.
In Chapter 2 it is provided a more complete treatment of the physical description of the
phenomena. The derivation begins with the retrieval of multifluid equations for plasma
and then develops towards the assumption made to reach the Braginiskii fluid equations.
Finally, some further operations are made in order to adimensionalise the treated set.
With such a work some new operators are defined. At the end, the linear GBS code
approach is made explicit.
In Chapter 3 an agile discussion is carried on the code used in the linear analysis. Firstly,
the linearisation of the GBS equation is tackled. Then the approach used to discretise
the magnetic configuration is resumed. Such an approach constitutes an original aspect
of this work and for that it has been chosen to deepen the procedure. At the end of the
unit the four magnetic configurations used, Circular, Global Symmetric, Global Positive,
Global Negative are presented.
In Chapter 4 the main linear results retrieved through the combination of the discretiza-
tion code and linear GBS are presented, starting from a particular instability to land to
the full model. Along the line of argument, the reduced sets of equation are presented and
some analytical treatments are carried. The last section, finally, will display the method
for the self-consistent evaluation of the pressure gradient length and its application.
In Chaptercap:cap5 the non-linear results of GBS code are displayed and discussed and
then the evaluation pressure gradient length is evaluated. In Chapter 6 a resumé of the
results is presented and some possible future steps are outlined.
In Appendix A, finally, it is briefly deduced the Grad-Shafranov equation and the Solov’ëv
equilibrium is described in the main optics to provide an extended background on the
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magnetohydrodynamic self-consistent configurations and to complete the meaning of the
triangularity parameter.
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Periphery

In chapter 1 a synopsis of nuclear fusion and its placement in energetic problem is given,
in which, as discussed in subsection 1.2.3, the plasma plays an unquestionable role. To
be allowed to make quantitative prediction, however, some more forethought is needed in
order to comprehend some more details on plasma modelling and its numerical treatment.
Firstly, some insights on plasma description will be given, with focus on two-fluid Braginiskii
model (§ 2.1) and its closure in the case of edge plasma (§ 2.1.2). Some attention will be
given to discuss the conditions for which the approximation is valid (§ 2.1.1). Then, some
furthers approximation will be discussed (§ 2.1.3) in order to obtain some handy set of
equations, the drift-reduced Zeiler equations.
Then the set of equation GBS code solve are discussed (§ 2.2), treating the involved
differential operators (§ 2.2.1), the adimensionalised set of equations (§ 2.2.2) and the
geometry (§ 2.2.3). A brief insight in one of the principal unsuitable modes is provided.
(§ 2.2.4). Finally, the chapter concludes with a brief discussion of previous work present
in literature (§ 2.3).

2.1. The Two-Fluid Model

To get to a multiphase portrait is possible to lead from the Boltzmann equation stating
the conservation of the number of particle through the evolution of fa(t, x⃗, v⃗). This field
describes the particles’ density per unit of volume in phase space and the label a refers
to a single charged particle population.

∂fa
∂t

+ v⃗ · ∂fa
∂x⃗

+
F⃗a

ma

· ∂fa
∂v⃗

= Ca (2.1)

In this equation F⃗a is the Lorentz force F⃗a(t, x⃗, v⃗) = qa(E⃗(t, x⃗) +
1
c
v⃗ × B⃗(t, x⃗)), ma is the
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mass of the a-th species, qa its charge and Ca is the collisional term that describes all
collisional interaction between particles. In the specific it is this term who causes to the
population to tend trough a Maxwellian distribution. The typical scale time in which this
occurs it’s said relaxation time.

Electromagnetic fields can be described through Maxwell equations

∇ · E⃗ = 4πρext + 4π
∑
a

∫
qafa(t, x⃗, v⃗)dv⃗

∇× E⃗ = −1

c

∂B⃗

∂t

∇ · B⃗ = 0

∇× B⃗ =
4π

c
j⃗ext +

4π

c

∑
a

∫
qav⃗fa(t, x⃗, v⃗)dv⃗ +

1

c

∂E⃗

∂t

(2.2)

(2.3)

(2.4)

(2.5)

where the charge density and the current density due to plasma’s particles are expresses
throughout the particle density function. Those fields do not refer to microscopic value
of the field since too many details would arise from such a picture but instead there are
smoothed fields throughout some sort of average or filter. In that way the force Fa do
not suffer from rapidly fluctuating microfields due to particle getting close each other.
Anyway, such phenomena are not neglected but are summarized in the Ca operator of
equation 2.1. For generality’s sake it must be said that those are not the only phenomena
described by the collision operator. In fact, ionisation, chemical reactions and atomic
reactions can be inserted in the model through this therm. Anyway, in the following
all those reactions can be neglected, so the collision operator will essentially describe
scattering. This leads to the important property that∫

Cadv⃗ = 0 (2.6)

Lastly is worthy to remember that the electromagnetic fields in equations 2.2-2.5 can be
represented effectively with the potentials ϕ and A⃗. The relation between those and E⃗

and B⃗ is not unique (cfr. [20]). In the further we will use

E⃗ = −∇ϕ− 1

c

∂A⃗

∂t

B⃗ = ∇× A⃗

(2.7)

(2.8)

To get to the multifluid description the time evolution of the first three fa’s momenta are
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taken into account. Thereby, density, mean velocity and temperature are introduced.

na(t, x⃗) =

∫
fa(t, x⃗, v⃗)dv⃗

V⃗a(t, x⃗) =
1

na

∫
v⃗fa(t, x⃗, v⃗)dv⃗

Ta(t, x⃗) =
1

na

∫
ma

3
(v⃗ − V⃗a)

2fa(t, x⃗, v⃗)dv⃗

(2.9)

(2.10)

(2.11)

Those three new variables describe respectively the number of particles per unit space
volume, the ordered velocity of the particles i.e. the velocity describing the local common
motion of particles and, finally, the energy raising from the disordered velocity.

From equation 2.1, multiplying by the velocity functions, respectively, 1, mav⃗ and ma

3
v

and integrating along all the velocity space, we retrieve the multi-fluid equations, called
thys way because to describe completely the plasma the three Navier-Stokes-like equation
2.12, 2.13 and 2.14 are needed for each species of the plasma:

∂na

∂t
+∇ · (naV⃗a) = 0

mana(
∂V⃗a
∂t

+ V⃗a · ∇V⃗a) = −∇pa −∇ · πa − qana[E⃗ +
1

c
V⃗a × B⃗] + R⃗a

3

2
na(

∂Ta
∂t

+ V⃗a · ∇Ta) + pa∇ · V⃗a = −∇ · q⃗a − πa : ∇V⃗a +Qa

(2.12)

(2.13)

(2.14)

As it easily stands out new quantities arises in the equations due to the decomposition in
ordered and disordered velocity, i.e. v⃗ = V⃗a + v⃗′. The explicit formulations of those new
symbols are summarised in the table 2.1.

name symbol expression
Pressure pa nama < v′2 >a /3

Viscous stress tensor [πa]i,j nama < v′iv
′
j − v′2/3δij >a

Momentum density due to collision R⃗a

∫
mv⃗′Ca

Heat flux q⃗a < m/2v′2v⃗ >a

Heat density due to collisions Qa

∫
m/2v′2Cadv⃗

Table 2.1: Summary of different new symbols introduced in the equations 2.12 -2.14

In table 2.1 the operator < · >a corresponds to 1
na

∫
·fa(t, x⃗, v⃗)dv⃗. The explicit dependence

of π, Ra, qa, Qa on the density function’s momenta and their derivatives is not trivial. To
express them the subsequent momentum would be needed and then its evolution equation,
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This would lead to an infinite hierarchy of equation that, mathematically, is equivalent
to the leading Boltzmann equation. This is called closure problem. A way to address this
was proposed by Braginiskii in 1965. It is worth to notice that, instead, the expression of
pa is quite easy, as it holds that

pa = naTa (2.15)

2.1.1. The Braginiskii Equation

As pointed out in [41] as long all quantities vary slowly in space and time is possible to use a
local solution that derive from the existence of the relaxation process. Indeed, Boltzmann
H theorem suggests (cfr. [21]) that this process causes any arbitrary distribution to evolve
toward a maxwelian one, as it is the solution for the homogeneous Boltzmann equation,
where the gradients and time derivative vanish identically. This mean that as long all
phase space density’s momenta are characterised by small gradients in time and space
the actual distribution will be close to a maxwellian one and the error will be somehow
proportional to those gradients. Since the maxellian distribution of the a-th specie is
characterised completely by na, Va and Ta the same quantities can be used to express the
correction to the Maxwellian distribution and therefore π, q⃗, R⃗ andQ. The proportionality
coefficients are called transport coefficients.
The smallness of gradients must anyway be quantified. For time variable it is possible to
address that the collision time τR is much faster than the evolution time scale

1

g

∂g

∂t
≃ 1

τ
≪ 1

τR
(2.16)

where g is any field describing plasma properties. For what concerns the spatial derivatives
it must hold that the scale length is big with respect the excursion of particles:

g

∇⊥g
≫ ρL

g

∇∥g
≫ lmfp (2.17)

where ρL is the Larmor radius or the gyroradius and lmfp is the mean free path i.e. the
mean path done by particle between any collision and the subsequent. 1

As Braginiskii did, from now on we will consider a completely ionised plasma formed only
by a single species of ions, whose charge is namely Ze and the relative electrons e to

1The two operators are called parallel gradient and perpendicular gradient and they are defined as
∇∥f = b⃗ · ∇f and ∇⊥f = b⃗× (⃗b×∇f) where b⃗ = B⃗

B is the magnetic field versor.
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assure quasineutrality. The two components of the plasma will be labelled "i" for ion and
"e" for electron. This will not lead to a lack of generality since is still possible to follow
the same strategy for a multiple ion species plasma. Moreover, the transport coefficients
described in the following are evaluated in a strong magnetic field approximation

ωe,iτei ≫ 1 (2.18)

Here, ωe,i is the gyrofrequency ωe,i =
qe,iB

me,ic
and τe,i is the electron/ion collision time

τe =
3
√
meT

3/2
e

4
√
2πλe4Z2ni

, τi =
3
√
miT

3/2
i

4
√
πλe4Z4ni

and λ is the Coulomb logarithm.

2.1.2. Transport Coefficients

Firstly, a model for R⃗ in equation 2.13 is proposed. It is useful to remark that because
of its physical interpretation, i.e. the force arising from the presence of collisions between
the two species, and momentum balance it must hold

R⃗i = R⃗e (2.19)

Moreover, each one is the sum of two contributions: a friction force arising from ion/electron
collisions and a thermal force due to the simultaneous presence of a thermal gradient and
collisions.

R⃗e = R⃗u + R⃗i

R⃗u = ene(
j⃗∥
σ∥

+
j⃗⊥
σ⊥

)

R⃗t = −0.71ne∇∥Te −
3

2

ne

ωeτe
b⃗×∇⊥Te

(2.20)

(2.21)

(2.22)

(2.23)

Where ⃗j∥,⊥ = ene(V∥,⊥,i − V∥,⊥,e), ∥ and ⊥ are with respect to B⃗ and σ∥,⊥ is the paral-
lel/perpendicular conductivity. Their expressions will be listed in table 2.2.
At the same way is possible to split q⃗e in two terms, the first ⃗qu,e related to the ther-
mal force R⃗t, the second ⃗qe,u mainly due to thermal gradients. For what concerns q⃗i, its
expression is easier since is possible to neglect terms of order ωτi:
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⃗qu,e = 0.71neTe(V⃗∥,e − V⃗∥,i) +
3

2

neTe
ωeτe

b⃗× (V⃗∥,e − V⃗∥,i)

q⃗t,e = −χe
∥∇∥Te − χe

⊥∇⊥Te −
5

2

cneTe
eB

b⃗×∇Te

q⃗i = −χi
∥∇∥Ti − χi

⊥∇⊥Ti −
5

2

cniTi
ZeB

b⃗×∇Ti

(2.24)

(2.25)

(2.26)

Here, χe,i
∥,⊥ is the electron/ion parallel/perpendicular thermal conductivity.

As the second rank tensor π is considered, a reference system is needed to express its
component. For that, z-direction is imposed to be aligned to the magnetic field. Moreover,
the rate-of strain tensor W must be defined

Wij =
∂Vi
∂xj

+
∂Vj
∂xi

− 2

3

∂Vl
∂xl

δij (2.27)

And therefore

πzz = −η0Wzz

πxx = −η0
2
(Wxx +Wyy)−

η1
2
(Wxx −Wyy)− η3Wxy

πyy = −η0
2
(Wxx +Wyy)−

η1
2
(Wxx −Wyy) + η3Wxy

πxy = πyx = −η1Wxy −
η3
2
(Wxx −Wyy)

πxz = πzx = −η2Wxz − η4Wyz

πyz = πzy = −η2Wyz − η4Wxz

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

Also, the viscosities η0, η1, η2, η3, η4 are listed below.

Finally, the heat generation term appearing in 2.14 can be made explicit as:

Qe = −R⃗e · ⃗(Ve − Vi)−Qi

Qi =
3mene

miτe
(Te − Ti)

(2.34)

(2.35)

Of those terms the fist can be interpreted as Joule heating due to friction between ions
and electrons and the second term as due to the temperature difference between the two
species. In line of principle the Joule heating should appear also in Qi but it is negligible
with respect the other term.
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symbol expression
σ∥

e2neτe
me

σ⊥ 1.96σ∥

χe
∥ 3.16neTeτe

me

χe
⊥ 4.66 neTe

meω2
eτe

χi
∥ 3.9niTiτi

mi

χi
⊥ 2 niTi

miω2
i τi

ηe0 0.73neTeτe
ηe1 0.51neTe

τeω2
e

ηe2 4ηe1
ηe3 −neTe

2ωe

ηe4 2ηe3
ηi0 0.96niTiτi
ηi1

3
10

niTi

τiω2
i

ηi2 4ηi1
ηi3

niTi

2ωi

ηi4 2ηi3

Table 2.2: Coefficients for the Braginskii closure [25]

2.1.3. Drift Reduced Approximation

The multifluid equations in the previous section (2.12-2.14) with the Braginiskii closure
(§ 2.1.1, 2.1.2) still need further simplifications in order to be numerically handled.
As a matter of facts those equation allow to describe the plasma dynamics in a wide range
of time and spatial scales, spanning from electron cyclotron frequency and electron Larmor
radius, up to machine size and confinement time. In the edge region time variations are
quite slower than ion gyromotion and spatial variations are in the order of ρs = Cs/ωi,
the Larmor radius at the sound speed cs approximation, assuming:

∂

∂t
∼ ⃗VE×B · ∇ ∼ ρ2s

L⊥
ωi ≪ ωi (2.36)

since the equilibrium scale length, L⊥, is much larger than ρs. (−∇ϕ × b⃗ ) is the E×B
velocity. As anticipated, moreover, the plasma will be considered to be quasineutral since
turbulence plays a role at spacial scales ρs ≫ λD where λD =

√
Te/(2πe2n) is the Debye
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length. As consequence ne = ni = n.

The main idea is therefore to split the dynamic in parallel and perpendicular direction,
saving corrections up to first order:

⃗V⊥,e = V⃗E×B + V⃗∗,e

V⃗⊥,i = V⃗E×B + V⃗∗,i + V⃗pol

(2.37)

(2.38)

where V⃗∗,a is the a-th species diamagnetic drift

V⃗∗,a =
c

enB
b⃗×∇pa (2.39)

and V⃗pol is the polarization drift, a first order correction. A complete derivation of 2.37 -
2.38 and the consequences of such approach can be found in [44]

Continuity Equations

Since the particles motion along the perpendicular and the parallel directions have been
split, the continuity equations reads:

∂ne

∂t
+∇ ·

[
n
(
V⃗E×B + V⃗∗,e + V⃗∥,e

)]
= 0

∂ni

∂t
+∇ ·

[
n
(
V⃗E×B + V⃗∗,i + V⃗pol + V⃗∥,e

)]
= 0

(2.40)

(2.41)

Vorticity Equation

It is useful to define a new variable, ω = ∇2
⊥ϕ, the vorticity, which is related to the

fluid rotation on the plane perpendicular to the magnetic field. An equation describing
the evolution of such variable can be obtained by subtracting the equation 2.12 for both
ions and electron and decomposing velocity as proposed in ??, and applying Boussinesq
approximation2 [13] leading us to

nc

Bωi

d

dt
(−∇2

⊥ϕ− ∇2
⊥pi
en

) +
1

3miωi

b⃗× κ⃗ · ∇Gi +∇∥
j∥
e
+∇ · n(V⃗∗,i − V⃗∗,e) = 0 (2.42)

where κ⃗ = b⃗ ·∇b⃗ is the field curvature, d
dt
= ∂

∂t
+(V⃗E×B + V⃗∥,i) ·∇ and Gi = −η0(2∇∥V⃗∥,i−

κ⃗ · Vi − 1
3
∇ · V⃗i) being the stress function.

2Boussinesq approximation consist in ∇⊥
nc
Bωi

d
dt (E⃗ − ∇⊥pi

en ) ≃ nc
Bωi

d
dt (−∇2

⊥ϕ− ∇2
⊥pi

en )
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Semi-Electrostatic Limit

To exclude unwanted modes the vector potential (cfr. equations 2.7-2.8) is chosen to be
purely parallel to the magnetic field. The magnitude of the vector potential is symbolised
by ψ and it is said poloidal flux function.

δA⃗ = −ψb⃗ (2.43)

Therefore, the electric field is given by

E⃗ = −∇ϕ+
1

c

∂ψ

∂t
b⃗ (2.44)

and therefore

∇∥ = b⃗ · ∇+
b⃗

B
×∇⊥ψ · ∇ (2.45)

.

It is worth to notice that the Ampere’s law now reads as:

∇2
⊥ψ =

4π

c
j∥ (2.46)

Parallel Motion

Time evolution equation for parallel motion can be obtained from equation 2.13 taking
the parallel component only, and neglecting R⃗e,∥. The equation reads:

me

deV∥,e
dt

= − 1

n
∇∥pe −

2

3
∇∥Ge + e∇∥ϕ− e

c

∂ψ

∂t
+ e

j∥
σ∥

− 0.71∇∥Te (2.47)

Here de

dt
= ∂

∂t
+ (V⃗E×B + V⃗∥,e) · ∇, the velocity being advected by V⃗E×B + V⃗∥,e only.

The equation for ion parallel velocity, instead, can be retrieved summing up the parallel
component of electron and ion momentum equation 2.13

mi

dV∥,i
dt

= − 1

n
∇(pi + pe)− pi∇× b⃗

ωi

· ∇V∥,i −
2

3
∇∥Gi (2.48)

Temperature Equations

The electron temperature equation can be obtained from 2.14. Here the frictional heat
generation Qe and the perpendicular conductivity have been neglected. The obtained
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equation reads:

3

2
n
deTe
dt

+
3

2
nV⃗∗,e · ∇Te + pe∇ · V⃗e −

5

2

c

e
∇ · pe

(
b⃗

B
×∇Te

)
− 0.71Te∇∥j∥

−∇ · (χ∥∇∥Te) = 0 (2.49)

For what concerns ion temperature, by some handling, making use of the ion continuity
equation 2.41, and neglecting the advection of V⃗pol in the total derivative the equation
2.50 is recovered:

3

2
n
dTi
dt

+ Ti

[
n∇ ·

(
V⃗E×B + V⃗∥,e

)
+∇ ·

(
nV⃗∗,e

)]
+

5

2

c

e
pi

(
∇× b⃗

B

)
· ∇Ti = 0 (2.50)

2.1.4. Summary of Results

In the previous section various different approximation have been examined. The only
equation left out is the one for the parallel motion which is simply resumed by projecting
eq.2.13 on the parallel direction. Some terms can be neglected though. For a better
description of the whole process we once more refer to [1].
The complete set of equation is therefore

∂n

∂t
+∇ · (V⃗E×B + V⃗∗,e + V⃗∥,e) = 0
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Bωi

d

dt
(−∇2

⊥ϕ) +
1

3miωi

b⃗× κ⃗ · ∇Gi +∇∥
j∥
e
+∇ · n(V⃗∗,i − V⃗∗,e) = 0

me

∂eV∥,e
∂t

= − 1

n
∇∥pe −

2

3
∇∥Ge + e∇∥ϕ− e

c

∂ψ

∂t
+ e

j∥
σ∥

− 0.71∇∥Te
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∂V∥,i
∂t

= − 1

n
∇∥(pi + pe)− pi∇× b⃗

ωi

· ∇V∥,i −
2

3
∇∥Gi

3
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deTe
dt

+
3

2
nV⃗∗,e · ∇Te + pe∇ · V⃗e −

5

2

c

e
∇ · pe

(
b⃗

B
×∇Te

)
− 0.71Te∇∥j∥

−∇ · (χ∥∇∥Te) = 0

3

2
n
dTi
dt

+ Ti

[
n∇ ·

(
V⃗E×B + V⃗∥,e

)
+∇ ·

(
nV⃗∗,e

)]
+

5

2

c

e
pi

(
∇× b⃗

B

)
· ∇Ti = 0

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

2.2. The GBS code

In line of principle the above equations 2.51-2.56 could be handled in a numeric code to
obtain some results but some further simplifications will be taken into place
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2.2.1. Some Mathematical Operators

Firstly, some new mathematical operators are introduced.

• Curvature Operator: This operator, C(·) = B
2

(
∇× b⃗

B

)
· ∇(·), emerges from terms

in the form ∇ · (nV⃗∗,e). It holds:

∇ · (nV⃗∗,e) = −c
e

(
∇× b⃗

B

)
· ∇pe −

2c

eB
C(pe) (2.57)

• Poisson brackets: This operator, [ϕ, ·] = b⃗ · (∇ϕ×∇(·)), is found in:

∇ · (nV⃗E×B) = c∇n ·

(
−∇ϕ× b⃗

B

)
+ cn∇ ·

(
∇ϕ× b⃗

B

)
=

c

B
[ϕ, n] +

2cn

B
C(ϕ)

(2.58)

• The subsequent term is treated as follow:

∇ · (nV⃗∥,e) = ∇n · V⃗∥,e + n∇ · V⃗∥,e ≃ V∥,e∇∥n+ n∇∥V∥,e (2.59)

In that way ∇· b⃗ term is neglected, with the finite aspect ratio effects. The outcomes
due to finite aspect ratio are investigated in [42]

2.2.2. GBS Equations

In order to make more manageable the equations 2.51-2.55 some sort of adimensionalisa-
tion is needed. To not further complicate the notation, the same symbol is used for the
dimensionless and dimensional quantity.
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The dimensionless set of equation used in GBS is the following

∂n

∂t
= − R

Bρs0
[ϕ, n] +

2

B
[nC(Te) + TeC(n)− nC(ϕ)]− n∇∥V∥,e − V∥,e∇∥n

+Dn(n) + Sn

∂ω

∂t
+ τ

∂∇2
⊥Ti
∂t

= − R

Bρs0
[ϕ, ω]− τ

R

Bρs0
[ϕ,∇2

∥Ti]− V∥,i∇∥ω − τV∥,i∇∥∇2
⊥Ti+

+B2
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∇∥(V∥,i − V∥,e) + (V∥,i − V∥,e)

∇∥n

n

]
+
B

2n
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+2B
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τC(Ti) + τ

Ti
n
C(n) + C(Te) +

Te
n
C(n)

]
+Dω(ω) + Sω

∂V∥,e
∂t

+
mi

me

β
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∂ψ
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[ϕ, V∥,e]− V∥,e∇∥V∥,e −

mi
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∇∥Ge +

mi
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∇∥ϕ+

−mi
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ν(V∥,e − V∥,i)−
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n
∇∥n− 1.71
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∇∥Te +DV∥,e(V∥,e) + SV∥,e

∂V∥,i
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− τ∇∥Ti

−τTi
∇∥n
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∂Te
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Bρs0
[ϕ, Te]− V∥,e∇∥Te +
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]
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+
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0.71∇∥V∥,i − 1.71∇∥V∥,e

)
+ 0.71Te(V∥,i − V∥,e)

∇∥n

n
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+DTe(Te) +D∥
Te
(Te) + STe

∂Ti
∂t

= − R

Bρs0
[ϕ, Te] +

4Ti
3B

[
C(Te) +

Te
n
C(n)

]
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3B
TiC(ϕ)−
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3
Ti∇∥V∥,e+

+
2

3
Ti(V∥,i − V∥,e)

∇∥n

n
− V∥,i∇∥Ti − τ

10

3B
TiC(Ti) +DTi

(Ti) + STi

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

the details on the physical model for the giroviscous terms Gi, Ge and the source ones Sn,
Sω, SV∥,e , SV∥,i , STe , STi

the parallel thermal diffusion D∥
Te

and the numerical implementa-
tion of diffusion operators Dn(n), Dω(ω), DV∥,e(V∥,e), DV∥,i(V∥,i), DTe(Te), DTi

(Ti) can be
found in [23]. The diffusion operators D have been introduced in the code for numerical
purposes.

The non-dimensionalization process has been resumed in table 2.3, reporting the reference
values for each variable in equation 2.60-2.65
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reference normalised quantities
n0 n
Te0 Te, Ti

cs0 =
√
Teo/mi V∥,e, V∥,i, cs

Te0/e ϕ
βcmics0/(2e) ψ

R0/cs0 t
ρs0 = cs0/ωi all perpendicular directions

R0 all parallel directions

Table 2.3: List of reference quantities and the quantities adimensionalised with respect
each reference, R0 being the major radius and β = 8πn0Te0

B2 the compression ratio. Please
note that for what concerns temperature and density, reference quantities are arbitrary

Moreover, in equation 2.62 the adimensionalised resistivity has been introduced:

ν =
e2n0R0

miσ∥cs0
(2.66)

and the ion to electron temperature ratio in equations 2.61, 2.63, 2.65:

τ =
Ti0
Te0

(2.67)

and the curvature operator (§ 2.2.1) is redefined multiplied by R0 to keep it dimensionless.

As every differential equation, also 2.60-2.65 need some boundary and initial conditions.
Since the tokamak is an axial-symmetric machine, in the toroidal direction ,a periodic
boundary condition it is imposed. Moreover, because of the 3-D nature of the simulation,
no boundary conditions are needed in the poloidal direction of the edge or the core. For
what concern the SOL, some complex boundary conditions apply where the magnetic
surface touches the wall. A complete treatment of them can be found in [23, 25]. On
the temporal domain, instead the initial conditions are some arbitrary reasonable ones
for a tokamak. Such approach is implemented because the simulations are run until the
average field values reaches a stationary condition.

2.2.3. Simulations Geometry

It is worth to analyse in some details the geometry in which the analysis takes place. The
thesis studies the behaviour of a plasma shaped in a topological solid torus throughout
magnetic fields. This reflects into the model in the operator which have an explicit
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Figure 2.1: Portion of a toroidal surface with circular section. The two reference system
[y,x,z] and [R,Φ,Z] are highlighted. The red line is a field line which wrap around the
toroidal magnetic surface.

dependence on the magnetic field. Because of the tokamak design the magnetic field is
in first approximation axial symmetric, our space of interest delimited by some surface
obtained by revolving some closed line around the central vertical axis. The derivation
of this shape will be part of this thesis’s work. Since the focus is on the behaviour
of edge region which is within the LCFS, the confinement design, both throughout a
limiter or a divertor, does not affect the results. It is not worth, then, to analyse this
detail further. Two different reference system will be used, mainly a right-handed local
coordinate system [y, x, z], and a cylindrical right-handed coordinate system, noted with
[R, Φ, Z]. x-coordinate is the flux coordinate i.e. in a circular configuration the radial
direction, z is aligned with the toroidal direction and finally y is perpendicular to both
x and z (figure 2.1). In the large aspect ratio limit the (x,y) plane correspond to the
poloidal one. The [R, ϕ, Z] reference system is instead a right-handed cylindrical system,
with Z direction aligned with the vertical axis, R the radial coordinate, and Φ the angle
between the point and a given direction. This reference system is mainly useful to handle
geometrical operators: curvature operator C and parallel gradient ∇∥.
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2.2.4. Ballooning Mode

An important instability that is studied in this thesis is the so-called Ballooning Mode. It
is an instability driven by the bad curvature region. For such a region is usually meant the
portion of magnetic surface where it holds κ⃗ ·∇n < 0. The phenomenon is driven unstable
by the presence of collision in plasma, i.e. a finite resistance or by a finite electronic mass
[44]. The instability is mainly governed by the diamagnetic electronic velocity and the
E ×B drift (§ 2.1.3).

V⃗∗,e =
c

en
∇× pe⃗b

B
− 2

cTe
eB

b⃗× κ⃗

V⃗E×B =
c

B
(−∇ϕ⃗× b⃗)

(2.68)

(2.69)

Both velocities appear in the continuity equation (equation 2.60) in the form of ∇ · (nV⃗ )

determining the local variation of the electron particle density. Therefore, the first com-
ponent of equation 2.68 has any influence on the instability being described now. The
second term, au contraire, advects the electrons in a direction perpendicular to both b⃗3

and κ⃗. In presence of a density perturbation the divergence is not null and some charge
separation arises, due to the electrons accumulating in some regions and leaving in some
other unbalanced positive charges due to the ionic background. Following the build-up
of charge separation an electric potential develops and therefore an electric field. The
particles are finally advected by the E×B drift. If this last has the same direction of the
density gradient the phenomenon is unstable, since the advected particles will increase
even more the original perturbation. The mode is instead damped down if κ⃗ ·⃗ ∇n < 0.
This, as a matter of fact, splits the tokamak in two areas, the high field zone, characterised
by a dumped Ballooning Mode and the low field zone where the opposite happens.
As it has been said before there are two main branches, the resistive one (RBM), in which
is the plasma collisionality that cause a non-zero shift between the density and potential
perturbation’s phases, and the inertial (InBM) one, in which is caused by the finite elec-
tron mass. It should be said, for completeness, that a third branch can be present. This
last is called ideal Ballooning Mode (IdBM) and it is characterised by a β high enough
to let electromagnetic effect to bend magnetic lines.
Anyway, along this work the focus will be on the resistive branch.

3As a remark it is useful to remember that b⃗ is the total magnetic field versor, i.e. b⃗ = B⃗
B , including

therefore also the toroidal magnetic field and being essentially in the toroidal direction.
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2.3. Previous Studies on Periphery Dynamics

Since 1990s large efforts has been carried to study turbulent regime in tokamak edge as by
Scott [39, 40], Rogers [2, 36] and Zeiler [1]. Using a similar set of equation derived from
Braginiskii model they studied competition between different regimes: the two branches
of ballooning mode (§ 2.2.4) resistive and ideal, and ion temperature gradient induced
modes. In 2014 an enhanced analysis has been performed by Mosetto [25].
Scott inspected edge turbulence as the result of transfer of energy provided by a free en-
ergy source to the sinks [40]. The free energy source has been identified in the background
pressure gradient advected by E×B drift and the dissipative sinks in the resistive current
dumping at small scales.
Rogers et al. studied the edge turbulence as the competition of fore-mentioned regimes,
trying to find the parametric subspaces in which one regime prevails on the other.
Both authors identified similar dimensionless control parameters. Among them it is worth
to mention one taking into account β parameter (β = (8πnTe)/B

2), and one resuming
the effect of electron-ion collisions and the importance of adiabatic coupling.
It is valuable to stress that in the mentioned work pressure gradient is set a priori when
numerical simulations are performed. Besides in experimental applications pressure gra-
dient length is the self-consistent result of the interplay between all phenomena occurring
in plasma.
Mosetto further investigate those aspects, elaborating a numerical theory to evaluate
which ballooning mode or drift branch wave emerge and their interplay, sorting a set of
parameters. Despite this analysis is carried in a circular limited geometry its analysis
overcame self-consistency of pressure gradient problem, allowing to describe dependency
of R/Ln over the space parameters.
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The chapter will provide a discussion of how you can apply the GBS code in a linear
context.
Firstly, the mathematical problem is settled (§ 3.1). After the equations linearisation (§
3.1.1), the arise of an eigenvalue problem is outlined (§ 3.1.2) and the way to treat it
numerically is investigated (§ 3.1.3). At the end of the section a way to evaluate the
poloidal wave-vector is proposed (§ 3.1.4).
In a second moment, the field line discretisation is tackled (§ 3.2), with particular at-
tention to the physical basis (§ 3.2.1). At the end a brief display of the four magnetic
configurations used in this work is presented (§ 3.3).

3.1. The linear GBS code

3.1.1. Linearisation

To perform a linear analysis the set of equations 2.60-2.65 must be linearised. In such
form the equations can be handled throughout a linear solver.
So that such proceeding could be performed, operator’s dependence on coordinates must
be made explicit. The coordinates used in this chapter and in chapter 4 are the ones
clarified in section 2.2.3, more precisely, the local reference system, [y,x,z]. However,
operators’ dependence on magnetic field will be written as a function of the magnetic
field components in both [y,x,z] and the cylindrical reference system [R,Φ,Z].
The linearisation is carried out by a first order perturbation scheme. For each variable it
will be assumed to correspond, in fist approximation, to an equilibrium value plus a first
order perturbation. For every field f ∗ in equations 2.60-2.65 it is assumed that f ∗ = f0+f

where f0 is the equilibrium field, i.e. the equilibrium that solve the system 2.60-2.65 when
the time derivative is null. As it is usually done in perturbation theory, it is assumed that
f ≪ f0.
It is assumed that the equilibrium for n e Te can be described as f0 = f00(1 + x/Lf ), the
Taylor polynomial of exponential function. Since it is a dimensionless value, it holds that
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f00 = 1 if the reference in tab. 2.3 is chosen to be coincident to the equilibrium value. We
will assume that from now on. For all the other fields, equilibrium value is null. In this
work, in linear framework, it has been also assumed the cold ion limit. The underlying
hypothesis states that ion temperature is negligible with respect electron one. Therefore
τ = 0 in equation 2.67, Ti ∼ 0 and equation 2.65 reduce to a tautology. Therefore, only
five equations are needed to describe the whole plasma. It is finally worth to recall that,
since we are working in infinite aspect ratio, i.e. ε = a/R → 0 the distance from the
magnetic axis R does not vary and therefore in can be confused with the tokamak major
radius R0 and treated as a constant.

∂n

∂t
=

R

Ln

∂ϕ

∂y
+

2

B
Ĉ(Te) +

2

B
Ĉ(n)− 2

B
Ĉ(ϕ)−∇∥V∥,e

∂

∂t
(∇2

⊥ϕ) = 2B[Ĉ(Te) + Ĉ(n)] +B2(∇∥V∥,i −∇∥V∥,e)

∂

∂t

(
me

mi

V∥,e +
β

2
ψ

)
= −∇∥n+∇∥ϕ− 1.71∇∥Te + ν(V∥,i − V∥,e)

∂V∥,i
∂t

= −∇∥n−∇∥Te

∂Te
∂t

= η
R

Ln

∂ϕ

∂y
+

4

3B

[
7

2
Ĉ(Te) + Ĉ(n)− Ĉ(ϕ)

]
+

2

3
0.71(∇∥V∥,i −∇∥V∥,e)−

2

3
∇∥V∥,e

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

Where η = Ln

LTe
and Ĉ is the adimensionalised linear curvature operator. If β is not null, to

close the system, since six variables are present, (n, Te, ϕ, ψ, V∥,e, V∥,i), Ampère equation
2.46 is used.

∇2
⊥ψ = −V∥,e (3.6)

Here both ψ and V⊥,e as the operator are in the adimensionalised and the equation has
been linearised. This allows us to reduce the unknown fields to five. A complete derivation
of equations 3.1-3.5 can be found in [25]. Moreover, according to non-local, linear theories
of curvature driven modes ([28], [35]), the turbulence in radial direction develops less than
in poloidal direction since holds that ky

kx
∼
√
kxLp ≫ 1. Is possible then to ignore radial

mode dependence assuming ky ≫ kx.

Because the x direction is negligible with respect to the other directions, the work develops
only on the toroidal surface defined by the two variables (y,z). Therefore is finally possible
to evaluate the geometric operators: the curvature operator

Ĉ =
BZ(y)

By(y)

∂

∂y
=
bZ(y)

by(y)

∂

∂y
(3.7)
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the perpendicular laplacian:

∇2
⊥ =

∂2

∂y2
(3.8)

and the parallel gradient:

∇∥ =
by(y)

R

∂

∂y
+

∂

∂z
. (3.9)

In equations 3.7-3.11 Bi is the total magnetic field’s component in i-th direction, bi is the
same component but normalised with respect to the magnetic field itself. Please note that
in large aspect ratio, if the safety factor q is kept finite, the ratio between the poloidal
and the toroidal field is small, i.e. Bp/Bt = by = ε/q.

3.1.2. The Eigenvalue Problem

Since x direction is negligible with respect to the other directions the linear analysis is
carried on a two-dimensional manifold, described by the dimensionless coordinates [y,z].
Since R in large aspect ratio is a constant the adimensionalised coordinate z spans in the
interval [0,2π], being oriented in the toroidal direction. The perpendicular direction, the
poloidal one, instead, is described by y. Since the work takes place in the edge region,
magnetic surfaces are closed and y is also periodic with period Ly, the length of the
magnetic surface cross section.
To assure periodicity it has been chosen to carry a spectral analysis on the toroidal
direction, i.e. to assume the perturbation

f(y, z, t) ∝ e−inzz (3.10)

Here i is the imaginary unit. This is enforced by Fourier theorem, stating that any
periodical function can be written as the sum of complex exponential functions, each
with an imaginary argument. Fourier theorem states also that the wave-number nz must
be an integer number. Being the equations 3.1-3.5 linear, the solution for any linear
combination of toroidal modes is the linear combination of the solution for each mode.
Therefore, it has been chosen to analyse each toroidal mode separately. Moreover, being
the equation invariant for any angular displacement, the solution is undetermined up to
a phase value in z. For this reason, it has been decided to choose the phase in such a way
f(y,z,t) is even in the z direction. For that we will limit the analysis for positive values
of nz, the opposites leading to same results. The minus sign in the argument in equation
3.10 has been chosen for convenience.
It view of definition 3.10 it is possible to write the parallel gradient stated in 3.9 in its
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final form:

∇∥ = Rby(y)
∂

∂y
− inz (3.11)

It is not possible to apply for y coordinate the procedure implemented for z coordinate,
since the equations 3.1-3.5 are not linear in y for. The presence of the geometrical oper-
ators that depend on y themselves, indeed, spoils this property.
We assume, also, separability for the spatial and temporal variables. What it is therefore
retrieved is that

f(y, z, t) ∝ eγ̃t (3.12)

Since the zϕ eigenfunctions has been allowed to be a complex value, the same condition
must be granted for the temporal one, this last resumed in γ̃ ∈ C. Inspecting equation
3.12, it is possible to assign a physical meaning to γ̃ real and imaginary part. γ = ℜ(γ̃)
is called mode growth rate and determine the exponential growth of this last. On the
opposite, ω = ℑ(γ̃) is the pulsation of the mode and describe its temporal oscillation.
The final expression for any perturbation field is therefore

f(y, z, t) = f(y)eγ̃t−inzz (3.13)

The linear problem 3.1-3.5 can be therefore reduced to the eigenproblem:
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(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Problem 3.14-3.18 is a one-dimensional functional eigenproblem admitting in general a
countable infinity of eigensolutions and eigenvalues because of the periodicity and nonlin-
ear dependence on y and the temporal evolution of the nz-th mode is a linear combination
of each eigensolutions. By denoting γ = maxj(γj), where γj is the real part of the j-th
eigenvalue, the asymptotic temporal z-mode’s behaviour is characterised by a growth-rate
γ. In this way, it is possible to associate to each z-mode a single value of growth-rate γ.
The y dependence can be retrieved by looking at the eigenfunction corresponding to the
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picked eigenvalue.
However, the problem is solvable provided that a null average condition on ϕ is imposed,
to allow the invertibility of the perpendicular laplacian in periodic boundary conditions.

3.1.3. Linear Solver Discretization and Solution Methods

In precise algebra eigenproblem 3.14-3.18 would be a functional analysis problem but
would be hardly handled by a computer.
To overcame this issue, it has been opted for a discrete approach. Assuming to have
an evenly spaced grid for the y-direction, it is possible to approximate the exact so-
lution of perturbed fields to the value they assume on each grid point. The vector
x⃗ = [n1, . . . , nNy , ϕ1, . . . , ϕNy , ψ1, . . . , ψNy , Te,1, . . . , Te,Ny , V∥,i,1, . . . , V∥,i,Ny ] is introduced as
the one containing the values of the different fields on the grid points. For stability pur-
poses two grids are used [25]: an unshifted grid where nj, ϕj, Te,j are evaluated, and a
shifted grid on which ψj, V∥,i,j and V∥,e,j are defined.
The differential operators in the y direction, instead, can be approximated throughout a
finite differences scheme to the matrix Dy,k

α,β according to the expression:

∂kf ∗

∂yk
|y=yβ,i ≃ [Dy,k

α,β f⃗α]i (3.19)

where f⃗ is a vector discretizing any Ly-periodic function f ∗ on Ny evenly spaced points.
The k superscript is the order of the derivative. The subscripts, instead describes the
grid we are working on. In Dy,k

α,β notation, therefore, α represent the grid to which the
derived vector fα belongs, β the grid on which the derivative is evaluated through yβ.
All derivatives are square matrices Ny × Ny since the grid is periodic and present non
null elements in the first p/2 upper and lower diagonals and in the upper-right and the
lower-left corner where the periodicity conditions apply.

The other operators are built according to their definition. It must be noted that parallel
gradient D∥,1 and curvature Ĉ present a dependence on y. This is obtained by multiplying
each row of the matrix Dy,1

α,β by the corresponding coefficient, consistently with the finite
difference scheme and its definition. It holds, then:

[D
∥,1
α,β]i,j =

1

R
by(yβ,i)[D

y,1
α,β]i,j − inz[1α,β]i,j (3.20)

and

[Ĉα,β]i,j =
bZ(yβ,i)

by(yβ,i)
[Dy,1

α,β]i,j. (3.21)
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where 1α,β is the interpolation matrix between the two grid α and β and the first subscript
of yβ,i points out the grid on which the magnetic field is evaluated.

It is then possible to summarise equations 3.14-3.18 in symbolic form:

γLx⃗ =Mx⃗ (3.22)

with

L =


1u,u 0u,u 0s,u 0u,u 0s,u

0u,u Dy,2
u,u 0s,u 0u,u 0s,u

0u,s 0u,s (me

mi
Lem
s,s +

β
2
1s,s) 0u,s 0s,s

0u,u 0u,u 0s,u 1u,u 0s,u

0u,s 0u,s 0s,s 0u,s 1s,s

 (3.23)

and

M =


2Ĉu,u

R
Ln
Dy,1

u,u − 2Ĉu,u −D∥,1
s,uLem

s,s 2Ĉu,u 0u,u

2Ĉu,u 0u,u −D∥,1
s,uLem

s,s 2Ĉu,u D
∥,1
s,u

−D∥,1
u,s D

∥,1
u,s −ν1s,sL

em
s,s −1.71Dem

u,s ν1s,s

4
3
Ĉu,u η R

Ln
Dy,1

u,u − 4
3
Ĉu,u −0.712

3
D

∥,1
s,uLem

s,s
14
3
Ĉu,u 0.712

3
D

∥,1
s,u

−D∥,1
u,s 0u,s

β
2

R
Ln

(1 + η)Dy,1
s,s −Dy,1

s,s 0s,s

 (3.24)

In the matrices 1u,u and 1s,s are the identity matrix, 0 the empty one.
The Lem

s,s notation allow to switch from ψ to V∥,e without changing the whole structure
of M matrix. As a matter of fact, ψ appear in equation 2.53 only if β ̸= 0. Therefore,
Lem
s,s = −Dy,2

s,s when β ̸= 0, making possible to insert naturally the Ampère equation clo-
sure 3.6 in the solver. Otherwise, for a null compression ratio, the closure is not needed
anymore since ψ do not appear in the resolved set of equations. Therefore it is possible
to let Lem

s,s = 1s,s [25].

It must be noted that a little change in the matrices is needed to allow inversibility of L.
As a matter of fact, periodic laplacian is not invertible. For that a zero average condition
is imposed on ϕ. To implement it the Ny-th line in L and M operators are replaced
respectively with the lines

[0, . . . , 0︸ ︷︷ ︸
Ny

, 1, . . . , 1︸ ︷︷ ︸
Ny

, 0, . . . , 0︸ ︷︷ ︸
3Ny

]

[0, . . . , 0︸ ︷︷ ︸
5Ny

]

To solve the 3.22, remembering that it is the discrete problem of 3.14-3.18, it can be
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solved addressing it as a generalised eigenvalue problem. The generalised eigenvalue of
the matrix M with respect to L with the maximum real part is evaluated as the growth-
rate of the mode taken into account. The corresponding eigenvalue, generally complex, is
then the discretization for the perturbation of the different field along y.

Another way to address the problem is throughout the so called Θ-method [31], remember-
ing that the equation 3.22, we are trying to solve, firstly derives from 3.1-3.5. Therefore,
it is treated as a PDE, with a time advancing scheme. The initial values are assessed
randomly and then gamma is evaluated as

γi,t =
1

∆t
log

∣∣∣∣ xi,txi,t−1

∣∣∣∣ (3.25)

The resolving scheme is

x⃗t+1 = x⃗t +∆t[(1−Θ)L−1Mx⃗t +ΘL−1Mx⃗t+1] (3.26)

where t describe the time step advancing. If Θ = 0 the method is fully explicit, and
implicit otherwise. If Θ = 1/2 the scheme is second order convergent in time [31], first
order otherwise. We will use mainly the first approach to get result and the second one
to confirm them or as a diagnostic tool.

3.1.4. Poloidal Wave-Vector Evaluation

As it has been said in previous subsection 3.1.2, the general eigensolution of problem 3.14-
3.18 is not characterised by a well-defined ky. As will be treated in chapter 4, however, ky
is an important parameter in the study of the tokamak transport properties. Therefore,
it would be desirable to have a way to evaluate it anyway. Clearly, such method must
reduce to the proper wave-vector if the eigenvalue is a sinusoidal function.
In the present work it has been assumed the perturbation ky to be evaluated through an
integral mean. The Fourier transform of problem 3.14-3.18’s eigenfunction corresponding
to the maximum growth rate is taken. Then, the first momentum of Fourier transform’s
absolute value is used to evaluate the averaged ky. It is assumed, then, that the chosen
component has a normalised Fourier Transform, i.e.

∫ +∞
0

|F{ψ}(k)|dk = 1. This does
not lack in generality since the eignesolutions are defined up to a multiplicative constant.
For convention, in this work, it will be used the ϕ component of the whole eigenvalue
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[n, ϕ, ψ, V∥,i, Te] to the evaluation of ky. Therefore

ky =

∫ +∞

0

k|F{ψ}(k)|dk (3.27)

This is easily transposed to the discrete approximation described in subsection 3.1.3 sub-
stituting the Fourier transform F{·} with the discrete Fourier transform FD{·} and the
integration process with a trapezoidal numerical integration.

3.2. Field Lines Disctetisation

In previous subsection, 3.1.3 it has been assumed the existence of a grid discretizing the
y direction. Because of the definition of y, the grid discretizes also the magnetic sur-
faces’ poloidal cross section. In subsection 1.3 it has been briefly recalled that shaping
is the effect obtained through additional coils placed horizontally and it consists in the
plasma cross section and the magnetic surfaces taking some sort of shape different from
the circular one. The obtained shape mostly depends on the external coils, notably on
their position and on the amount of current that flows through them. Those parameters,
naturally, must be made explicit as inputs. The choice that has been made is to request
the position with respect to the plasma current centre and the relative current intensity
magnitude with respect to the plasma current flowing in the machine.
For what concerns the plasma current some important assumptions have been allowed.
Firstly, the plasma current density has been estimated as proportional to a circular gaus-
sian distribution. This is mainly due to avoid divergences in the magnetic field in prox-
imity of the plasma current. This hypothesis is reasonable and sufficiently supported by
experimental shots [7, 9] and is adequately effortless to handle analytically. The circu-
larity assumption is a bit more subtle but is still legitimate: the most of the current,
because of the density radial dependence, flows in the core, this last being the region less
influenced by the shaping effects.

Secondly the position of the plasma current’s centre has been assumed fixed with re-
spect to the external shaping coils. This is not true in general, since it depends on the
self-consistent equilibrium that establishes. For sake of simplicity the magnetic axis it as-
sumed fixed. Said that, once specified the intensity of the plasma current and the typical
length for the gaussian dependence the plasma current is completely characterised. It is
worth to notice that the plasma current intensity is redundant and not necessary for the
magnetic surfaces’ evaluation, since scaling all the currents the same magnetic surfaces



3| The Linear Solver 47

are obtained. Instead, they are essential for the poloidal magnetic field, evaluated for the
curvature and parallel gradient operators (equations 3.7, 3.11).
With all the above-mentioned parameters on plasma current and coil filaments it is pos-
sible to assemble the complete structure of nested magnetic surfaces. A last information
must be provided: a point belonging to the surface itself. In that way the working space
is determined uniquely.

3.2.1. Physical Basis of Grid and Magnetic Field Definition

With all those information it is possible to evaluate magnetic surfaces. Starting from
MHD it is possible to state that magnetic surfaces are also characterised by a constant
value of the flux function Ψ, a field related to the magnetic poloidal field through the
dimensional equation:

B⃗p =
1

R
∇Ψ× e⃗ϕ (3.28)

where ϕ is the poloidal direction and e⃗ϕ the versor oriented positively with respect to it.
For a more complete treatment it is possible to refers to A.
As stated in subsection 2.2.3 the work takes place in large aspect ratio. This means that
it is possible to reduce the expression of the magnetic field produced by a coil into the
one of an infinitely long filament, an analytic well know result given by the Ampère law:

B⃗p =
2IT

c
√

(R−R0)2 + (Z − Z0)2
e⃗α (3.29)

where IT is the current flowing in the filament and (R0, Z0) is the filament position. In
equations 3.29 and 3.30 the α direction is the one perpendicular to the radius (R−R0, Z − Z0)

in the RZ plane, positive in counter-clockwise direction.
For a gaussian-distributed current, instead, the expression is somehow more complicated
but it can still be expressed as:

B⃗p,gauss =
2IT

c
√

(R−R0)2 + (Z − Z0)2

(
1− e

− (R−R0)
2+(Z−Z0)

2

2a2g

)
e⃗α (3.30)
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It is therefore possible to write the flux function of the whole system.

Ψ(R,Z) =
A

2

[
log(R2 + Z2) + Ei

(
R2 + Z2

2a2g

)
+

N∑
j=1

Ij log((R−Rj)
2 + (Z − Zj)

2)

]

(3.31)

Here A resumes a coefficient proportional to the flowing current, ag is the gaussian at-
tenuation length, (Rj, Zj) are the coordinates of the j-th current filament and Ij is its
relative intensity with respect to the plasma current.

Once such a function is built, it is possible to determine numerically the contour on which
it hold the condition

Ψ(R,Z) = Ψ(P0) = Ψ0 (3.32)

P0 being the expressed point in order to define uniquely the magnetic surface. The nu-
merical discretisation is carried out in order to have evenly spaced points in the grid.
In that way the code is able to produce two vectors containing the R and Z coordinate of
each grid point and a third one displaying the value of the curvilinear abscissa, coinciding
with the value of y in the local reference system. Variable’s origin has been chosen to lay
in where the curve meets the HFS mid-plane.

The values of R and Z also allow to evaluate the magnetic field along the curve. Those
values are needed to compute the geometrical operators: the curvature Ĉ (equation 3.7)
and the parallel gradient ∇∥ (equation 3.11). The magnetic poloidal field is assessed with
the same approach of Ψ, i.e. the sum of the different analytical solutions for infinite
current wires translated in the filament position.

bR(R,Z) = −A
(
1− e

−R2+Z2

a2g

)
Z

R2 + Z2
− A

N∑
j=1

Ij
Z − Zj

(R−Rj)2 + (Z − Zj)2

bZ(R,Z) = A

(
1− e

−R2+Z2

a2g

)
R

R2 + Z2
+ A

N∑
j=1

Ij
R−Rj

(R−Rj)2 + (Z − Zj)2

(3.33)

(3.34)

Clearly, since we have imposed a scalar condition (equation 3.32) in a two-dimensional
space, the analysis takes place on a one-dimensional variety. R and Z are a function of
the curvilinear abscissa y and so bR and bZ do.
It is finally possible to evaluate also by, simply as the 2-norm of the b⃗p = (bR, bZ) vector in
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the RZ space. It is possible to do this, since the local coordinate system is defined in such
a way that y is always parallel to the magnetic field (§ 2.2.3 ). Therefore, its component
is equal to the modulus since the poloidal magnetic vector is always directed in y direction.

by(y) = ||⃗b(y)||2 =
√
b2R(y) + b2Z(y) (3.35)

It is worth to recall that those expressions are coincident to the poloidal magnetic field
ones. As a matter of fact, since we are using adimensionalised variables, the b parameters
correspond numerically to the various poloidal magnetic field’s components Bp,i, since
b⃗ = B⃗p

B
∼ B⃗p

BT
and the reference value is the toroidal field, its dimensionless value being

one.

3.3. Magnetic Configurations

In this last section the four configuration used in the simulation work to study the plasma
instabilities are made explicit with all their parameters.

3.3.1. Circular Configuration

In circular configuration the plasma current alone is sufficient to create the magnetohy-
drodinamic equilibrium, since no shaping is present. In figure 3.1 it can be appreciated
that, as a result of the absence of other shaping filaments, all lines are closed and there
is no X-point. The LCFS corresponding to the first surface intersecting the wall.

Here below the main parameters used for Circular configuration in this work are listed in
table 3.1.

Parameters

Rj [− ]

Zj [− ]

Ij [− ]

A 250/33

ag 25/
√
2

P0 [ 100 , 0 ]

Table 3.1: Summary of the parameter used to build the Circular configuration
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Figure 3.1: Circular magnetic configuration. In the picture the plasma current is denoted
by a circular blue dot, the point P0 through a void red circlet. The thick dashed line
is the cross section of the magnetic surface on which simulations are run. The thinner
coloured lines are other magnetic surfaces’ sections.

3.3.2. X-Point Configurations

Null triangularity

In this configuration, that in this work will be named Global Symmetric (GS), a cur-
rent is inserted with the aim to shape the plasma. Since the coil is centred it has not a
triangularity effect. It causes, instead, a variation on the safety factor q along the field
line. As a matter of fact, since q = a

Rby
and by goes quickly to zero in the proximity

of the X-point, q increases sharply when it passes through the bottom of the magnetic
surface. Since in MHD q is defined as q = dθ

dϕ
the number of toroidal turns per poloidal

turns peaks sharply as q upturns and then the magnetic field line stays more recurrently
in lower part of the tokamak. The global symmetric configuration is displayed in figure 3.2.

Here below main parameters used for Global Symmetric configuration in this work are
listed in table 3.2.
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Parameters

Rj [ 0 ]

Zj [ −664 ]

Ij [ 0.72 ]

A 23

ag 90

P0 [ 190 , 0 ]

Table 3.2: Summary of the parameter used to build the Circular configuration

Figure 3.2: Global Symmetric configuration. In the picture the plasma current is denoted
by a circular blue dot, current filament is flagged by a blue triangle, the point P0 through
a void red circlet. The thick dashed line is the cross section of the magnetic surface
on which simulations are run. The thinner coloured lines are other magnetic surfaces’
sections. The separatrix is stressed through a solid thick line. It is easy to descry the
inner closed lines and the outer open lines. The abrupt interruption on the outer part
are due to the limit of our computational region, that can be correspond loosely to the
tokamak walls.
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Positive Triangularity

In the positive triangularity configuration, called in this work Global Positive (GP), the
shape is characterised by a "D" shape pointing towards the LFS. This result is achieved
by three magnetic coils disposed asymmetrically around the plasma. This causes the
safety factor to bump up and down along the poloidal section, with its maxima in the
section nearest to the shaping filaments. To this, it adds the fact that the shape is not
symmetric anymore and the arc in which the curvature - that points inward - has the
same direction to the density gradient1 - that points outwards - is much longer than the
one having the parallel configuration. To make this discussion clear it must be specified
that the tokamak’s symmetry axis is on the left of figure 3.3

Here below main parameters used for Global Positive configuration in this work are listed
in table 3.3.

Parameters

Rj [ −180, −180, 390 ]

Zj [ −664, 456, 0 ]

Ij [ 1.5, 0.72, 0.37 ]

A 17.2

ag 78

P0 [−190 , 0 ]

Table 3.3: Summary of the parameter used to build the Circular configuration

1In few words, the outer part, the arc facing the exterior of the tokamak in the LFS
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Figure 3.3: Positive Symmetric configuration. In the picture the plasma current is denoted
by a circular blue dot, current filaments are flagged by a blue triangle, the point P0
through a void red circlet. The thick dashed line is the cross section of the magnetic
surface on which simulations are run. The thinner coloured lines are other magnetic
surfaces’ sections. The separatrix is stressed through a solid thick line. It is easy to
descry the inner closed lines and the outer open lines. The abrupt interruption on the
outer part are due to the limit of our computational region, that can be correspond loosely
to the tokamak walls.

Negative Triangularity

The negative triangulation configuration, in this work called Global Negative (GN), is the
symmetric transformation of GP with respect to a vertical axis due to the change in sign
in the R-coordinates of the shaping filaments. It is characterised by a "D" shape pointing
toward the HFS.
All considerations made on the Global Positive configurations are still valid but they must
be flipped. The tokamak’s symmetry axis is on the left of figure 3.4

Here below main parameters used for Global Negative configuration in this work are listed
in table 3.4.
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Parameters

Rj [ 180, 180, −390 ]

Zj [ −664, 456, 0 ]

Ij [ 1.5, 0.72, 0.37 ]

A 17.2

ag 78

P0 [ 190 , 0 ]

Table 3.4: Summary of the parameter used to build the Circular configuration

Figure 3.4: Negative Symmetric configuration. In the picture the plasma current is de-
noted by a circular blue dot, current filaments are flagged by a blue triangle, the point
P0 through a void red circlet. The thick dashed line is the cross section of the magnetic
surface on which simulations are run. The thinner coloured lines are other magnetic sur-
faces’ sections. The separatrix is stressed through a solid thick line. It is easy to descry
the inner closed lines and the outer open lines. The abrupt interruption on the outer part
are due to the limit of our computational region, that can be correspond loosely to the
tokamak walls.
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4| Linear GBS Results

In this chapter the main results of the linear GBS code are resumed.
Firstly, after a brief discussion on the instabilities’ drive (§ 4.1), the topic is focalised on
the Ballooning Mode dispersion relation (§ 4.2), deriving some analytical discussions (§
4.2.1).
Then the results of GBS linear calculations are presented. Firstly the ones referring to
the circular configuration (§ 4.3), in both RBM model (§ 4.3.1) and in full model (§ 4.3.2).
Then the results for the shaped configurations are tackled (§ 4.4), always in RBM model
(§ 4.4.1) and full one (§ 4.4.2).
The chapter continues with the evaluation of the pressure gradient length Lp (§ 4.5) and
converges finally on a comparison with the previous literature (§ 4.6).

4.1. The Instabilities’ Drive

In literature [5, 44] the main drive causing plasma instabilities has been identified as
the pressure gradient that develops along the x direction. In linear analysis this last is
restricted only to the equilibrium values for temperature and density fields, in the form
of an exponential decay. A further approximation has been included, confounding the
exponential function with its first order Taylor polynomial, an inaccuracy justified by the
narrowness of the edge region with respect to the radius of the whole cross section. This
spatial evolution, as a matter of fact, it has been observed to be a good approximation
for what happen in the edge region both on the basis of experimental discharges [7, 9]
and for nonlinear numerical simulations of the whole plasma.
The x dependency is fundamental since it is the drive of the simulated phenomenon. It
is due to the pressure gradient, indeed, that the various fields can be cross-dependant,
through the Poisson brackets operator. It is important, therefore, to deepen slightly the
two parameters on which the pressure profile depends, η and R/Ln, being the first the
ratio between density gradient length and temperature gradient length, and Ln/R the
adimensionalisation of Ln. Given what recalled from section 3.1.1 and equation 2.15 it is
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possible to state that

p0 = p00

[
1 +

(
1

LTe

+
1

Ln

)
x

]
(4.1)

Holding that

Lp =

(
1

LTe

+
1

Ln

)−1

=
Ln

1 + η
(4.2)

It must be stressed that the two parameters that describe the pressure gradient length,
are both an input and an output of the problem. Despite the code needs them to run,
it is possible to give as an input only a fist approximation of their value on the basis of
previous experiences. The effective value of this parameters depends on a self-consistent
description of the whole phenomena. The way to treat it will be discussed in 4.5.

4.2. RBM Dispersion Relation

To describe properly the Ballooning Mode some assumptions must be made. It is quite
straightforward that the description is embedded in the GBS set of equations 3.14-3.18
but some simplifications must be carried out in order to remove coupling with other
phenomena. To avoid coupling with sound waves, k∥ ≪ γ (in dimensionless form) is
imposed, de facto corresponding into neglecting the V∥ dynamics. The compressibility
terms are dropped in continuity equations being smaller than R/Ln. Finally, to avoid
Drift Waves coupling, the diamagnetic term ∇∥(n + 1.71Te) is dropped. A complete
discussion is found in [25].
The resulting eigenvalue equations for RBM is therefore:

γn =
R

Ln

∂ϕ

∂y

γ∇2
⊥ϕ = 2Ĉ(n+ Te) +∇∥∇2

⊥ψ

γ
β

2
ψ = ν∇2

⊥ψ +∇∥ϕ+ (1 + 1.71η)
β

2

R

Ln

∂ψ

∂y

γTe = η
R

Ln

∂ϕ

∂y

(4.3)

(4.4)

(4.5)

(4.6)

L and M matrixes in equation 3.22 being therefore

L =


1u,u 0u,u 0s,u 0u,u

0u,u Dy,2
u,u 0s,u 0u,u

0u,s 0u,s
β
2
1s,s 0u,s

0u,u 0u,u 0s,u 1u,u

 (4.7)
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and

M =


0u,u

R
Ln
Dy,1

u,u 0s,u 0u,u

2Ĉu,u 0u,u −D∥,1
s,uLem

s,s 2Ĉu,u

0u,s D
∥,1
u,s −ν1s,sL

em
s,s + (1 + 1.71η)β

2
R
Ln
Dy,1

s,s 0u,s

0u,u η R
Ln
Dy,1

u,u 0s,u 0u,u

 (4.8)

It is worth to highlight the role of β parameter in the current work. As a matter of fact,
the aim is to study the phenomena in the β = 0 limit. Unfortunately, if this condition is
met, L matrix become singular and therefore not invertible, since Ohm’s equation would
set an algebraic constrain on the magnetic potential ψ instead of describing its evolution.
This could be addressed by reducing the number of variables to n, ϕ and Te only and the
number of equations as a consequence. This, however, would lead to the occurrence of
the parallel laplacian operator ∇2

∥ that contain the term ∂yby which analytical evaluation
can be tricky. Since a smoother solution was present, letting beta be small but not zero,
it has been opted for this last.

4.2.1. Analytical Results for RBM

It is not possible to tackle analytically set of equations 4.3-4.6 in an arbitrary geometry.
Anyway, it is possible to retrieve some important, however partial, information.
Firstly, it is readily achievable to assess, from equations 4.3 and 4.6 that the perturbations
on temperature and density are proportional, leading to hot and dense regions, facing
colder and looser ones.
It is not possible to easily say much more on an arbitrary geometry and therefore it can
be worthy to study the behaviour in a circular, simplified geometry. In such geometry the
most problematic term is the curvature operator, that would lead to a convolution integral
in a Fourier approach. To overcome this obstacle the procedure is to study, in a local
frame, what it happens to the most unstable point, i.e., where the curvature drive is the
most intense. Remembering equation 3.7, this point is where the y-dependant coefficient
of the curvature is maximum. Since this last has the arrangement of č(y) = bZ(y)√

bZ(y)2+bR(y)2
,

it is unambiguous that the two conditions to find it are bR(y) = 0 and bz(y) > 0. The first
condition lead to the two points where the magnetic surface cross section has a vertical
tangent. Since it is a closed curve there must be at least two of those point because of
the Rolle theorem. The one with negative č, the innermost of the two, has a stabilising
role and therefore it is not interesting in this evaluation.
In such frame, neglecting the effect of the Ohm’s equation 4.5 and assuming a vanishing
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gradient for electron velocity, following the steps of [5] it is retrieved the equation

γ2k2yϕ− 2(1 + η)
R

Ln

k2yϕ = 0 (4.9)

To have a non null perturbation on ϕ, the following condition it must hold:

γ = γRBM
id =

√
2
R

Lp

(4.10)

Such equation, does not discriminate between the different modes but foreseen a behaviour
independent of the wave-vector. If, instead, we take into account the effect of the resistance
ν, the evaluation of a similar process leads to(

γ2 +
1

ν

k2∥
k2y
γ − (γRBM

id )2

)
ϕ = 0 (4.11)

By some manipulation of 3.11, taking into account that by is constant in a circular ge-
ometry, it is possible to express k∥

ky
as a function of poloidal and toroidal wave-numbers.

It holds that k∥
ky

= a
(

1
q
− nZ

m

)
, where nz is the wave-number of z-direction, and therefore

an input of the problem, and m the one in y-direction, and therefore an output. It holds,
also, that the local worst growth rate in the resistive case can be expressed as

γ =

√
(γRBM

id )2 +

(
a2

2ν

)2(
1

q
− nZ

m

)4

−
(
a2

2ν

)(
1

q
− nZ

m

)2

(4.12)

It emerges, in this last equation a dependence on the mode, trough the z-wave-number nZ

and the evaluated y-wave-vector ky = (2πm)/Ly. The maximum instability it is obtained
if the condition m = qnZ is fulfilled.

4.3. Circular Configuration Simulations Results

Circular geometry is the starting point of this thesis work. It’s role has been mainly for
benchmark purposes but it shows, anyhow, some important characteristic with the re-
spect the shaped configurations. Two linear simulations have been performed in circular
geometry, in RBM model (equations 4.3-4.6) and in full model (equations 3.14-3.18)
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4.3.1. RBM Branch

The analysis of the RBM branch in circular geometry has been carried solving with GBS
linear code the set of equations 4.3-4.6. The resulting dispersion relation is reported in
figure 4.1. It is possible to observe a monotonically increasing function that well matches
with previous literature results [25].

Figure 4.1: Growth rate for a circular configuration simulated within RBM set of equa-
tions, as a function of the evaluated y-wave-vector ky. The used parameters are R0 = 700,
η = 1, β = 10−8, R/Ln = 20

In agreement with equation 4.9 the evaluated growth rate is always smaller than γRBM
id .

This holds since the evaluation carried through in subsection 4.2.1 is local and achieved for
the point where the instability’s drive plays the most intense role, i.e. the LFS mid-plane.
In section 4.1 it has been stated that the driver is the equilibrium pressure gradient in the
bad curvature region. However, the exponential growth of the mode implies that the per-
turbation self-sustains and locally grows proportionally to particular linear combination
of the various fields’ perturbations, dictated by the model used. Therefore, the pertur-
bation distribution along the poloidal cross section plays a major role in determining the
mode’s growth rate. Since each point suffers a different local drive along the y coordi-
nate, the mode growth rate varies according to the perturbation distribution. A localised
perturbation in a thin interval around the LFS mid-plane results in higher growth rate
than one with not negligible components scattered all around the poloidal cross section,
Since the perturbations, in general, are not localised in the LFS mid-plane but have a
not negligible component on a wider y interval, the growth rate is always smaller than
γRBM
id . The dependence of γ growth rate on the mode, therefore, cannot be pictured by

the model retrieved in 4.2.1 but it can be attributed to the different length of the interval
where the perturbation is not null. In 4.4 two different eigenvalues are displayed and the
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difference in localisation is clear in n, ϕ and Te eigenvalue. For small ky the growth rate
tends to zero. This is mainly due to the delocalisation of the mode, as is pictured in figure
4.4a displaying a mode characterised by small variation between the LFS and the HFS.

For what concerns the relation between nz and m wave-numbers, the results are pictured
in 4.2. Here the prediction made in 4.12 is made explicit. Since the analysis is for the
most unstable mode it is reasonable to expect to retrieve the condition that maximise
4.12. This is the case for this simulation.

Figure 4.2: In picture the distribution of the evaluated poloidal wave-number is plotted
with respect to the toroidal wave-number in the circular geometry in RBM simulation.
The above solid line displays the locus m = qn. The agreement between that and the
simulated points is very good, the distance being less than 0.1%, as predicted by 4.12.
The colorbar displays the eigenvalue’s real part magnitude.

As it is possible to see from figure 4.2 the nz and m well align along the straight line
m ≃ qnz. The ∼ symbol is due to the fact that nz, m and ky can assume only a discrete
set of values. The respect of this rule can be observed in the eigenvalues, the number of
oscillations being roughly equal to qnz. However, neither 4.12 is able to predict the value
of γ since this last comes from the interplay of points with different instability drive.

4.3.2. Full Model

To compare RBM results, obtained with the set of equations 4.3-4.6, a similar analysis
through linear GBS code has been performed to the full model, equations 3.14-3.18.
In full model similar results are retrieved. The growth rate dependency on ky, reported
in 4.3a, shows a similar behaviour to the one evaluated in 4.1 and displays a similar value
of γ. This could suggest that the principal unstable mode in this simulation is the RBM.
Also the mode distribution in the (nZ , m) plane follow the same scheme. It must be said,
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however that, as extensively studied by [25], the principal mode depends on the set of
parameters describing the plasma. Following the criteria derived in [25] it is possible to
state that, in circular frame, in the simulation examined, the attended main behaviour is
the RBM one, as the GBS linear code results suggest.

(a) Growth rate dispersion relation. (b) Poloidal wave-number m with respect to the
toroidal wave-number nZ

Figure 4.3: Results of the linear GBS evaluation in a circular geometry with a full model.
The used parameters are R0 = 700, η = 1, β = 10−8, R/Ln = 20

However, some discrepancies can be found, especially for what concerns the eigenvalues.
As it is possible to see comparing 4.4b and 4.5b. Despite these two present a similar
behaviour and shape the decrease at low field side is more accentuated in the RBM case,
suggesting the coupling with other minor modes in the full picture, that suffers less dump-
ing in the HFS.

Here below the eigenvalues for the two circular configurations simulations are reported.

4.4. Shaped Configurations Simulations Results

Six linear simulations have been performed, using the linear GBS solver. The three
magnetic configuration used are the one presented in section 3.3: GS, GP and GN. For
each of them two run have been carried, respectively with the RBM model (equations
4.3-4.6) and the full model (equations 3.14-3.18)
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(a) nz = 2 mode, Circular

(b) nz = 15 mode, Circular

Figure 4.4: Eigenvalues evaluated through GBS linear, for the RBM model in circular
geometry. They represent the y dependence of the perturbation. y coordinates zero
correspond to the LFS midplane.
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(a) nz = 2 mode, Global Symmetric

(b) nz = 15 mode, Global Symmetric

Figure 4.5: Eigenvalues evaluated through GBS linear, for the full model in circular
geometry. They represent the y dependence of the perturbation. y coordinates zero
correspond to the LFS midplane.
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4.4.1. RBM Branch

The three shaped configurations have been investigated: Global Symmetric, Global Pos-
itive and Global Negative, characterised, respectively, by a null, positive and negative
triangularity. Firstly, an analysis trough on the RBM branch through the GBS linear
code has been carried. The results have been resumed in figure 4.6.

(a) Growth rate dispersion relation. (b) Poloidal wave-vector ky with respect to the
toroidal wave-number nZ

Figure 4.6: Results of the linear GBS evaluation in the shaped geometries with a RBM
model. The used parameters are R0 = 700, η = 1, β = 10−8, R/Ln = 20.

Also, in this case the growth rate is a monotonically increasing function with ky. The
graph displays a maximum value in the order of γRBM

id , but always smaller than it. This
is coherent with the above discussion, since, as it has been evaluated it, such parameter
is the local grow rate of the most unstable point. Looking to the eigenvalues in figure
4.8, it can be noted an important, general localisation of the eigenvalue in the LFS, also
at the lowest wave-numbers, as in 4.8a, justifying the steeper slope for small ky, pictured
in figure 4.6a. In this case the increase in the localisation is less evident, in n and Te

eigenvalues. However it is still present in ϕ. In Te and n eigenvalues, instead, it can be
noted a displacement of the maximum of the eigenvalue, and therefore of the perturbation,
toward higher values of y. Since the maximum is always in the LFS, such shift causes an
increase of the destabilising drive suffered by perturbation. Both this two mechanisms,
the shift in Te and n and the localisation in ϕ can be linked to the monotonically increas-
ing behaviour of γ with nZ . In figure 4.8a and 4.8b is perceivable in the eigensolutions
of all the four variables a displacement of the mode maximum toward values with higher
positive, curvature. However, for n, ϕ and Te the modes present in both cases their max-
imum values in the region nearest the X-point (the closest point on the surface lays in y



4| Linear GBS Results 65

= 405). This behaviour can be attributed to the high q that characterise that region. As
discussed previously, in subsection 3.3, the fieldlines slow its twirling along the magnetic
surface poloidal direction. Since so high local values of q Λ20 are reached the perturbation
stays for a long time in the lower part of the magnetic configuration during its toroidal
turn. Also because of that it is possible to remark, especially in 4.8a, an increase in the
spatial frequency of the perturbation in the region nearest the X-point and a loosening in
the further regions. This can still be attributed to q variation. The perturbation in the
toroidal direction has the same spatial angular frequency everywhere but the fieldlines
wrap on the torus with a different poloidal to toroidal ratio dϕ

dθ
= 1

q
, resulting in a variable

poloidal frequency.
From such, two results emerge. The simulations suggest that this negative shape is dele-
terious for the RBM stability. For each wave-number the growth rate is bigger than the
triangularity-less configuration. Global positive, on the contrary, shows a slightly bet-
ter behaviour, with dumped instabilities. Moreover, the predicted effect of the shaping
process, independently on the sign of the triangularity is to enlarge the wave-vector, of
a comparable amount. The evaluated mean increase in the positive triangularity config-
uration is of 50% for the y-wave-vector with the same wave-number, and of 39% for the
negative one.

4.4.2. Full Model

The full model has been implemented through GBS linear code with 4.3-4.6 model. This
allows to study the complexity of the plasma loosing on one hand analytical manageability
but supplying a complete picture of the phenomena.

For what concerns the growth rate, remembering the note on its real part, discussed in
the subsection 3.1.2, the main features are kept unchanged. Simulations suggest that
triangularity leads to a more unstable configuration, enhanced in the negative case. Dif-
ferently, in full mode the positive and negative triangularity cross themselves, showing
that high wave-number perturbations lead to an higher instability for the positive trian-
gularity. Differently on the RBM case, here, the picture exhibits a non-null behaviour
on small wave-numbers, behaving, therefore differently from a sound branch, as RBM is,
suggesting to look somewhere else the reason for such conduct. The high wave-vector
modes show a decrease in growth rate.
For what concerns eigenvectors they display a similar behaviour to the one in RBM case.
As a matter of fact an increase of the wave-number reflects in an increase in the num-
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(a) (b)

Figure 4.7: The two figures display the dispersion relation for full simulation in the three
shaped magnetic configurations. The used parameters are R0 = 700, η = 1, β = 10−8,
R/Ln = 20.

ber of oscillations found in that, as clearly pictured by figures 4.9a and 4.9b. The main
non-vanishing part of the eigensolutions is the LFS part, and near the bottom of the
configuration in all cases. This suggests that in this configuration the main perturbation
is the RBM.
Finally, an important difference in the behaviour depending on the triangularity is high-
light by figures 4.8c and 4.8d. In the positive case the absolute value of the eigensolutions
has quite milder slopes, with respect to the steeper ones in the negative case. Moreover
Global Negative configuration is localised in higher values of y, leading to a more unstable
mode.

Here below some eigenvectors are reported, evaluated for the two models and the three
geometries in this section.

4.5. Numerical Evaluation of the Equilibrium Pres-

sure Gradient

Following the path traced by Riva in [34], this chapter will try to evaluate the pressure
gradient length Lp. In this section the assessment will be achieved through the linear
GBS solver. To figure out the pressure gradient length trough the linear solver it is
assumed a gradient removal turbulence saturation, i.e. the disappearance of the gradient
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(a) nz = 2 mode, Global Symmetric

(b) nz = 15 mode, Global Symmetric

Figure 4.8: Eigenvalues evaluated through GBS linear, for the RBM model in GS geome-
try. They represent the y dependence of the perturbation. y coordinates zero correspond
to the LFS midplane.
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(a) nz = 2 mode, Global Symmetric

(b) nz = 15 mode, Global Symmetric
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(c) nz = 2 mode, Global Positive

(d) nz = 2 mode, Global Negative

Figure 4.8: Eigenvalues evaluated through GBS linear, for the full model in GS, GP and
GN geometry. They represent the y dependence of the perturbation. y coordinates zero
correspond to the LFS midplane.
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and therefore the fading of the instability drive. This nonlinear phenomenon is thought
to be at the basis of the turbulence in the edge region [8]. The estimate of Lp is therefore
based on the gradient removal theory in a circular magnetic surface geometry. As derived
in [34] the pressure gradient length can be evaluated throughout the inequality:

Lp =
q

cs

(
γ

ky

)
max

(4.13)

Since 4.13 is an implicit equation, it must be approached numerically. The procedure is
to solve for 3.22 for γ for different Lp values, letting varying Ln and looking for the ky for
which the value γ(ky)

ky
is maximum. It is important to remember that we assume cs = 1.

Also, the work develops in a shaped geometry and therefore q depends on y through the
equation q = a(y)

Rby(y)
. Equation 4.13, on the other hand, do not shows an explicit depen-

dence on y. For that, it has been used the value of q at the LFS mid-plane, the point
where the drive is the most important. The considered parameters are η = 1, R0 = 700,
β = 10−8.

Global Symmetric Global Positive Global Negative
Linear Lp [ρs0] 42.4 34.9 59

q LFS midplane 3.48 3.24 2.75

Table 4.1: Summary of the pressure length evaluated in the different geometries, for both
linear and nonlinear simulations.

Table 4.1 resumes the self-consistent settling of Lp gradient length, pictured in figures
4.9a, 4.9b and 4.9c.
Through the linear solver it is evaluated that positive triangulation has a beneficial effect,
causing a steeper gradient and therefore a better confinement. Negative triangularity,
instead, cause the profile to flatten out, providing a looser one. However, the evaluated
length are too long if compared to the average minor radius of the surface we are working
on. For the Global Symmetric the average minor radius is a = 219ρs0 and for Global
Negative and Global Positive Of a = 214ρs0. Lp consists respectively in the 19.4%, 16.2%
and 27.6% of the total minor radius. Such values are comparable to the thickness of the
edge region, suggesting a very low decrease in the pressure profile, in contrast with what
attended.
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(a) Global Symmetric Geometry (b) Global Positive Geometry

(c) Global Negative Geometry
N

Figure 4.9: Graphs used for the estimation of the pressure length Lp. The various points
on the solid line correspond to the different simulation letting R/Ln vary. The dashed line
corresponds to the identity. Their crossing point, therefore, is the one satisfying equation
4.13. For Global Negative a linear interpolation has been carried through.
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4.6. Previous Literature Comparison

In previous sections 4.4 and 4.5, the effect of triangularity has been globally evaluated as
negative for both stability and pressure gradient length.
A similar work, with a different methodology, has been carried out by Riva [34]. This
section refers to his analysis on RBM stability and pressure gradient length evaluation for
different values of elongation and triangularity1 in a self-consistent Solov’ëv equilibrium.
The two works have been carried in a similar plasma’s parameters set as reported in table
4.2. The main differences consist in the me

mi
parameter but it plays a minor role since, as

discussed previously, also in the full model the main instability is Resistive Ballooning
Mode, in which the electron mass is neglected. The main branch retrieved in this work
is in agreement with the work made by Mosetto [25]. The comparison, however, can’t be
made explicit since configurations used in this work are not characterised by a well-defined
value of triangularity.

This work Riva [34]
R0 700 500
ε 0 0
η 1 0.66
ν 0.1 0.1
β 10−8 0
me

mi
0.005 0.0005

Table 4.2: Summary of the various quantity used in Riva’s work and in this thesis.

In this work, similar numerical results to the ones retrieved by Riva have been found.
Riva identifies in his analysis that for mild elongation, neglecting aspect ratio aspects and
Shafranov shift, as is the case currently analysed, the maximum growth rate is charac-
terised by a value of the ratio γ/γRBM

id in the interval [0.4-0.7]. The values obtained the
present work fall in the upper part of such interval. In our case, being γRBM

id = 8.94 the
evaluated growth rate are reported in table 4.3

C GS GN GP
γmax 5.91 6.15 6.34 6.76
γmax/γ

RBM
id 0.66 0.68 0.71 0.76

Table 4.3: Summary of the values obtained in RBM simulations (§ 4.3.1, 4.4.1)

1For a brief treatise of this parameters, it is possible to refer to A
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The circular configuration leads to results well collimated with Riva’s ones. However, in
his work Riva evaluates negative triangularity as beneficial. The growth rate for negative
triangularity is always smaller than the positive counterpart. On those aspects our results
diverge.

For what concerns the pressure gradient length, instead, this thesis’s results are in agree-
ment with the elongation-less configuration, treated by Riva. The GS and GP Lp are in
a some % interval around the value estimated by Riva, GN in a 20% one. In this case
also the trend is respected. However, this discussion is a bit tricky, since the evaluated
pressure gradient length drops as soon the elongation increases slightly and the trend re-
verses, making the GN configuration the one with better confinements properties. Since
the configuration treated in this work has not a well-defined elongation and the results
presented in Riva are harshly depending on this parameter, some deeper investigation
would be needed.
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In this chapter a preliminary analysis of GBS code’s non-linear results is discussed. In a
first section (§ 5.1) the results are shifted through and a brief discussion is provided.
Then, after a discussion on the impact of the Boussinesq approximation on the code (§
5.2), the confinement properties emerging from the simulations are discussed (§ 5.3)

5.1. Shaped Configuration Simulations Results

Two sets of nonlinear simulations have been carried for each of the shaped configuration
treated in section 3.3. Calculations have been accomplished through GBS code. The
two sets distinguish for the different value in resistivity. The fist one is characterised
by ν = 0.1, the second one ν = 0.3. Other relevant physical parameters are R0 = 500,
ε = 0.3, τ = 1. With such values, from linear discussion in chapter 4 and previous liter-
ature [25], we expect to retrieve a situation principally characterised by RBM, therefore
a dynamic in which LFS perturbation are the most important. A complete treatment in
numeric can be found in [23]. For the reference temperature and density, typical values
at LCFS of TCV L-mode discharge are considered, n0 ≃ 1019m−3, Te0 ≃ 20eV .

From a preliminary analysis of figures 5.1 it is possible to remark an increase in particle
and heat outflow from the LCFS in positive triangularity (5.1c-5.1d). In negative one
(5.1f-5.1e) the outflow is still present but it is reduced with respect to positive one. Par-
ticularly, the outflows concentrate in the lower part of the configuration, in the area near
the X-point. This phenomenon is even less evident in the symmetric configuration. Such
behaviour recalls the eigenvalues evaluated in section 4.4 and pictured in figure 4.8, where
the maximum of perturbations was found to be in the area close to the magnetic null
point, especially in GN configuration.

For what concerns the edge region, roughly the annular area corresponding to values pic-
tured in bright red in figures 5.1, it is possible to observe higher fluctuations in the LFS



76 5| Non-Linear GBS Results

(a) GS, ν = 0, 1, density distribution (b) GS, ν = 0, 1, temperature distribution

(c) GP, ν = 0, 1, density distribution (d) GP, ν = 0, 1, temperature distribution

(e) GN, ν = 0, 1, density distribution (f) GN, ν = 0, 1, temperature distribution

Figure 5.1: Density and Temperature field in various magnetic configurations, evaluated
through GBS code in ν = 0, 1 case.
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(a) GS, ν = 0, 3, density distribution (b) GS, ν = 0, 3, temperature distribution

(c) GP, ν = 0, 3, density distribution (d) GP, ν = 0, 3, temperature distribution

(e) GN, ν = 0, 3, density distribution (f) GN, ν = 0, 3, temperature distribution

Figure 5.2: Density and Temperature field in various magnetic configurations, evaluated
through GBS code in ν = 0, 3 case.
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region in each configuration. In this region, also, more extended volumes characterised by
low values of temperature and density, are present, with respect of the HFS. This suggests
the presence of Resistive Ballooning Mode as the most important unstable perturbation
for the chosen parameters set. Fluctuations are more important, however, in positive
triangularity, suggesting worse confinement properties.
In ν = 0.3 simulations, pictured in figure5.2, similar trends emerge. However, ELMs
become more intense and extended with respect to ν = 0.1. The instabilities seem to be
increased, especially in the positive triangularity configuration, figures 5.2c, 5.2d. More-
over the confinement capabilities emerge to be worsen, since wider edge layers are pictured.

5.2. The Boussinesq approximation

An additional simulation was run for each resistivity value, with the fading of the Boussi-
nesq approximation. The objective, here, was to infer the dependency of the simulations
on the underlying hypotheses.
The Boussinesq approximation consists in ∇⊥

nc
Bωi

d
dt
(E⃗ − ∇⊥pi

en
) ≃ nc

Bωi

d
dt
(−∇2

⊥ϕ − ∇2
⊥pi
en

)

[13] , i.e. in the possibility to switch between the ∇⊥ and d
dt

operators.

(a) ν = 0, 1 (b) ν = 0.3

Figure 5.3: x-dependence of n field in the LFS outer mid-plane, in a time averaged,
toroidal averaged picture.

In figure 5.3, the radial dependence at LFS outer mid-plane is retrieved, i.e. on the line
that from the center of the configuration travel toward the outside of the plasma in the
LFS, in the horizontal direction. The displayed values have been averaged in time and
on the toroidal angle in order to cut off oscillation and to get as close as possible to the
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actual equilibrium value. On such line, the edge layer is found roughly in the interval
[0.9, 1] of the variable x/a. From calculations it is retrieved a good agreement for ν = 0.1

and a mildly good one for ν = 0.3. This do not hold in the core where the results are
noticeably different. Since d

dt
= ∂

∂t
+ V⃗ · ∇, from figure 5.3 it seems that the operators

V⃗ · ∇ and ∇⊥ roughly commutes in the edge layer and the approximation holds.

5.3. Numerical Evaluation of the Equilibrium Pres-

sure Gradient

With the results retrieved with GBS code, following the steps of [34], it is possible to
evaluate the pressure gradient length and therefore the capability of the configuration to
confine the plasma.
The results displayed in figures 5.1 and 5.2 are averaged on time and on the toroidal angle
and illustrate the average behaviour on the poloidal plane. The radial dependencies are
extrapolated for the LFS outer mid-plane as reported in figure 5.4. An exponential fit is
performed for density field in order to capture a first approximation of its gradient length:

fn(x) ∝ e−
x−a
Ln (5.1)

The same procedure is realised for temperature field. Once retried the density and tem-
perature gradient lengths, it is possible to evaluate the pressure gradient lenght through
equation 4.2

Lp =

(
1

LTe

+
1

Ln

)−1

(5.2)

The results obtained with this method are listed in table 5.1

Global Symmetric Global Positive Global Negative
ν = 0, 1, Nonlinear 17.5 24.8 15.2
ν = 0, 3, Nonlinear 19.7 36.9 18.4
ν = 0, 1, Linear 42.4 34.9 59

Table 5.1: Summary of the evaluated pressure gradient length for various magnetic shap-
ing. For comparison, the values evaluated in 4.5 are reported.

The emerging picture is coherent with what has been observed in section 5.1. Positive
triangularity presents the worse confinement properties, exhibiting higher pressure gradi-
ent lengths. It seems, also, that negative one enhances plasma containment.
An higher resistivity, moreover, reflects to higher Lp, but the increase is important only
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in Global Positive configuration.
Finally, the results of the numerical evaluation in linear case is reported, through equation
4.13. The evaluated values are completely in disagree in both value and trend. This can
be partially be attributed to the simplifications that it has been actuated in the lineari-
sation process and the subsequent losses of self-saturation effects. Moreover in nonlinear
results finite aspect ratio has been kept, providing an increase in stabilisation properties.

Nonlinear results, however, well match the ones found by Riva in [34]. In both works,
it emerges that the most suitable configuration to confine the plasma is the one with
negative triangularity, with an Lp of roughly 15, when ν = 0.1. However, in his study, Riva
takes surfaces characterised by a not negligible value of elongation. The confrontation,
therefore, should be deepened with more subtle tools, since the two simulations are not
directly comparable, except for a preliminar study.
On the whole, the general emerging picture for nonlinear simulation is one of improved
confinement capacity for negative triangularity, consistent with previous studies.These
results, in conflict with those presented in chapter 4, are more reliable than those obtained
with a linear solver because they are able to capture more phenomena and take into
account the stabilising effect of the finite aspect ratio.
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(a) GS, density radial distribution (b) GS, temperature radial distribution

(c) GP, density radial distribution (d) GP, temperature radial distribution

(e) GN, density radial distribution (f) GN, temperature radial distribution

Figure 5.4: Density and Temperature distribution at outer mid-plane in various magnetic
configurations, evaluated through GBS code in ν = 0, 1 and ν = 0.3 case.
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Understanding plasma turbulence in the tokamak edge is of fundamental importance since
it regulates the overall performance of a tokamak, it controls the heat exhaust to the wall,
the core confinements features and the transport properties of the plasma.
The tokamak boundary is usually characterised by a complex magnetic configuration, cre-
ated through the interplay of plasma current and external magnetic coils. The magnetic
configuration imposes to particles to stream along the closed loop field lines and contem-
porary to suffer a complex perpendicular dynamic, that eventually lead to the crossing of
the Last Closed Flux Surface and the losing in the Scrape Off Layer. The shaping of the
magnetic configuration and of the plasma is therefore a crucial topic. It allows to predict
and control the confinement properties of the core and the instabilities in the magnetic
configuration. The knowledge in the evolution of unstable modes in edge helps to predict
and eventually control eventual bad behaviours in the tokamak. The analysis on the ef-
fects of plasma shaping allows to determine which are the most suitable configuration in
terms of plasma control and core fusion conditions.
Chapter 2 describes the physical model considered in the present thesis, which is based
on the drift-reduced Braginiskii equation.
Chapter 3 portrays the linear solver used to analyse plasma instabilities in the toka-
mak boundary. A linearisation of the GBS code is completed. The emerging eigenvalue
problem has been discussed together to its numerical approach. The need for a poloidal
discretisation of the magnetic surface has been considered and a method to meet this
requirement has been inspected.
Chapter 4 reports on the main results obtained from linear simulations. In particular
it has been firstly analysed the circular configuration, leading to known results, setting
a benchmark for our discretisation method. Then the investigation is extended in the
shaping domain. The resulting data suggest a destabilising role of the negative triangu-
larity both for Resistive Ballooning Mode, and in the full model. Positive triangularity,
instead, seems to have only mild effects on the instabilities growth-rate. It has been found
that perturbations to magnetic equilibria localise preferentially in the Low Field Side of
the tokamak and in the lower part, where the value of the safety factor is the highest.



84 6| Conclusions and Outlook

This last behaviour it has been observed more remarkably in the negative triangularity
configuration. Finally, the capability to compress the plasma has been judged through a
nonlinear gradient removal theory. All the evaluated pressure gradient length are quite
high with respect the edge thickness, suggesting an underneath laying numerical problem.
Of the three configurations considered, however, the one with negative triangularity has
been weighted as least capable to confine the plasma.
Chapter 5 details the results obtained from GBS simulations and provide a preliminary
discussion and the effects of the Boussinesq approximation are quickly evaluated as not
deeply influencing the discussion. Finally the pressure gradient has been retrieved basing
on the nonlinear simulations. The results shows a bad confinement ability of the positive
triangularity, which is worsened with the increase of plasma resistivity. Negative one,
instead, emerges as the most suitable for plasma confinement. The results found in the
linear discussion do not agree with the ones in this last.

Nonlinear, most reliable, data, in summary, portray negative triangularity as advanta-
geous for the stability of the magnetic configuration. Plasma confinement capabilities
were found to be better when negative triangularity shaping is imposed. In any case, this
is not unequivocally found in both discussions and therefore a deeper analysis is necessary.
The discordance between the linear analysis, the non linear one and that reported in [34]
leads to questioning the validity of the results, in particular the linear ones. The succeed-
ing of linear simulations in the circular benchmark suggests problems in the linear solver
dealing with shaped configurations. Since only the geometric operators change between
the two simulations, this gives clear clues as to where the problem may be.
Nevertheless, only three particular configurations and a single set of parameters were
analysed. The analysis is therefore limited and different shaping or plasma conditions
might lead to different results.
Future extensions of the present work can be found mainly in an extended analysis of
different magnetic configurations and plasma parameters. Furthermore, it has been re-
ported in previous literature that the aspect ratio and the Shafranov shift are stabilising
parameters [34]. The inclusion of these variables, excluded in this work, may lead to
results more in agreement with current literature.
In addition, a more thorough analysis of the geometric operators is desirable, especially
with regard to their well-posedness. Such work has been initiated in the course of this
thesis and there is evidence pointing to problems in the parallel gradient. Finally, exten-
sion to other branches of instability could lead to a more complete understanding of the
phenomena involved, particularly when integrated with the Scrape Off Layer study. In
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that case, the linear solver should be modified to deal also with open surfaces, and the
edge conditions should be discussed.
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A| Grad-Shafranov Equation and

Solov’ëv equilibrium

In this section it will be derived the Grad-Shafranov equation describing magnetohydro-
dinamic equilibria. Along the discussion also the need of an external magnetic source for
plasma confinement will be discussed. Finally the Solov’ëv equilibrium is stated.
The derivation has been carried on on the basis of [19] and [29]

To do so we must start from this set of equations describing a flow-less perfect conducting
fluid:

∇P =
1

c
J⃗ × B⃗

∇× B⃗ =
4π

c
J⃗

∇ · B⃗ = 0

(A.1)

(A.2)

(A.3)

Equation A.1 corresponds to linear momentum conservation equation in MHD frame
ρ(∂tu⃗+ u⃗ ·∇u⃗) = −∇P − 1

4π
(∇× B⃗)× B⃗ with vanishing velocity. Equations A.2 and A.3

are Maxwell equations for a magnetostatic field.
It is straightforward to see that J⃗ and b⃗ are perpendicular to ∇P , since J⃗ · ∇P = 0 and
B⃗ · ∇P = 0. Supposing that J⃗ and B⃗ has a not vanishing modulus (otherwise we would
have the trivial solution P = 0, J⃗ = 0 and B⃗ = 0) the magnetic field and the current
density have perpendicular directions. Since they are both perpendicular to ∇P they
describe a two-dimensional variety called magnetic surface.

It is possible to modify the equation A.1 in

Π = P1− 1

4π
(B⃗B⃗ − 1

2
B21)

∇ · Π = 0

(A.4)

(A.5)

where 1 describes the identity matrix and a⃗⃗b is the matrix such that [⃗a⃗b]i,j = aibj, being
a⃗ and b⃗ any two vector with the same dimension. Π is said stress tensor.
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Since A.5, by developing ∇ · (Πr⃗), integrating over a region of the space ℘, and applying
Gauss theorem, it holds that

∫
℘

(
3p+

B2

8π

)
dV =

∮
∂℘

[(
P +

B2

8π

)
r⃗ − (B⃗ · r⃗)B⃗

4π

]
df⃗ (A.6)

This equation has been retrieved by S. Chandrasekhar and E. Fermi first in 1953.
If there is not some external magnetic sources and the fluid is confined in a finite re-
gion facing the external space were P = 0 we can expect the magnetic field going zero
asymptotically as r−3 in a far region. If we let ℘ being the whole space, the right-hand
side tends to zero. This is would lead to an impossible equation since the left-hand side
is positive-defined. This implies the existence of an external magnetic field if a limited
configuration is wanted to be maintained.

Following the work made by V.D.Shafranov and H.Grad in 1957, it is possible to reduce
the set of equations A.2-A.3 to a single one.
In an axial-symmetric reference system, characterised by a right-handed poloidal reference
system (R, ϕ, Z), since equation A.3 and ∇ · J⃗ = 0 it is possible to state that two fields
Ψ and I exist such that

B⃗p =
1

R
∇Ψ× êϕ

J⃗p =
1

2πR
∇I × êϕ

(A.7)

(A.8)

where êϕ is the versor pointing in ϕ direction and a⃗p = êϕ × (⃗a × êϕ) = a⃗ − aϕêϕ is the
reduction of vector a⃗ in the RZ plane1.
It is worth to notice that Ψ is proportional to the magnetic flux through an horizontal
surface or ray R and centred in the symmetry axis

Ψ(R,Z) =

∫ R

0

Bzr dr =
1

2π

∫
D2

R(0,0)

B⃗ · df⃗ (A.9)

For the same reason I describes the total current flowing in the same surface.
Since it holds that ∇Ψ and ∇I are orthogonal to the magnetic field line and to the current
line, they must be constant on the magnetic surfaces. If follows that any couple of the
triplet Ψ, I and P can be expressed as the function of the third.
In particular it is possible to state that

P = P (Ψ) I = I(Ψ) (A.10)

1This plane is named poloidal plane
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From the equation A.2 and definitions A.7, A.8 it is possible to derive also the magnetic
field’s and current density’s poloidal components:

Bϕ =
2I

cR

Jϕ = − c

4πR

[
R
∂

∂R

(
1

R

∂Ψ

∂R

)
+
∂2Ψ

∂R2

]
= − c

4πR
∆∗Ψ

(A.11)

(A.12)

The symbol ∆∗, a pseudo-Laplace elliptic operator, is said Stokes operator.
Finally, from equation A.1 it is possible to retrieve the Grad-Shafranov equation using
equations A.7, A.8, A.11, A.12 and not letting ∇Ψ be identically null:

∆∗Ψ = −4πR2P ′ − 4

c2
(I2)′ (A.13)

where the symbol (·)′ label the derivation with respect to Ψ.
To solve this equation an actual dependence must be assigned, arbitrarily, to P and I2,
depending on the configuration we are looking for. The boundary conditions are set on
the boundary of the fluid volume to enforce continuity of Ψ and of its normal derivative.
At the exterior of the fluid volume P = 0 and the magnetic field is determined by the
homogeneous Grad-Shafranov equation A.13.
In that way a mapping for all the magnetic surfaces is defined:

Ψ(R,Z) = Ψ0 (A.14)

and all the fields are determined:

B⃗ =
1

R
∇Ψ× êϕ +

2I(Ψ)

cR
êϕ

J⃗ =
1

2πR
∇I × êϕ −

c

4πR
∆∗Ψêϕ

P = P (Ψ)

(A.15)

(A.16)

(A.17)

It is interesting to deepen some of the feature of the solution of Grad-Shafranov equa-
tion. Firstly, the innermost surface usually degenerates in a curve where it holds that
Ψ(Rm, Zm) = 0. This locus is said magnetic axis. Some surface instead, can cross itself.
It happens if the magnetic surface presents some point where ∇Ψ(RX , ZX) = 0 and the
(RX , ZX) point is said X-point. A surface with an X-point is usually said separatrix. If
an X-point is present, it can happen that more than a magnetic axis is present. Usually,
in practical application, only one of them is kept at the interior of the tokamak region,
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the divertor preventing the plasma from reaching the others.
A well-known solution of equation A.13 is the so called Solov’ëv equilibrium. In this case
the simplest non null solution are set for P and I2, the linear one, in such a way that the
derivatives in the equation are indipendant on Ψ. Ψ0, Rm,α,λ are some constants. The
equation we get and the relative solution is

dP

dΨ
= − α

4π
Ψ0

dI2

dΨ
= −c

2

4
λR2

mΨ0

∆∗Ψ = (αR2 + λR2
m)Ψ0

Ψ = Ψ0

[
1

2
(λR2

m +R2)Z2 +
α− 1

8
(R−Rm)

2

]

(A.18)

(A.19)

(A.20)

(A.21)

By a change of variables ( ξ = (R− R0)/a, ζ = Z/a, Ψ̄ = Ψ/Ψ0) it is possible to find its
form:

Ψ̄ =

[
ξ − 1

2
ε(1− ξ2)

]2
+

(
1− ε2

4

)
[1 + εδξ(2 + εξ)]

(
ζ

κ

)2

(A.22)

In equation A.22 it is possible to notice some important parameters. First of all the aspect
ratio, ε, describes how much the torus is thin, being the ratio between its major and minor
radius, respectively R0 and a. The ellipticity κ, instead, appears only as a multiplying
factor for y. It is this parameter that controls how much the surfaces are squeezed into
ellipsis. Finally, the triangularity δ is the only parameter that allows the symmetry with
respect (0, 0) point to be broken. It causes the deformation of the magnetic surfaces cross
section toward a triangular shape.
It is finally worth to notice that near the magnetic axis, i.e. ξ ∼ ζ ≪ 1, equation A.22
can be simplified in

Ψ̄ ≃
(
ξ − 1

2
ε

)2

+

(
1− ε2

4

)(
ζ

κ

)2

(A.23)

In the magnetic axis prossimity, therefore, magnetic surfaces are ellipsis with the same
ellipticity, slightly displaced on the ξ axis, with respect to R0. The triangularity has effect
only on higher order corrections in this region.
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Acronyms

Acronym Meaning

D Deuterium

EOF End of Life

GN Global Negative

GP Global Positive

GS Global Symmetric

HFMP High Field Mid-Plane

HFS High Field Side

IdBM Ideal Balooning Mode

InBM Inertial Balooning Mode

LCFS Last Closed FLux Surface

LFMP Low Field Mid-Plane

LFS Low Field Side

MHD Magnetohydrodynamisc

PDE Partial Differential Equation

RBM Resistive Ballooning Mode

SOL Scrape Off Layer

T Tritium
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