
Politecnico di Milano
School of Industrial and Information Engineering

Master of Science Degree in Computer Science and Engineering

Optimal Real-Time Control of a Water
Distribution System undergoing cyber-attacks:

a Reinforcement Learning approach

Advisor:
Prof. Marcello Restelli

Co-Advisors:
Prof. Stefano Galelli
Dr. Andres Felipe Murillo Piedrahita

Thesis By:
Davide Salaorni

Student ID: 928212

Academic Year 2021/2022



In memory of my beloved grandma.
She would be proud.



Acknowledgments

This work is the result of nine months of research in collaboration with Singapore
University of Technology and Design. Despite the pandemic situation which has
forbidden my relocation in Singapore, I am really grateful for this experience,
especially because I had the opportunity to come in contact with very expert
people and with current research fields, that made me feel a real contributor for the
improvement of actual real-world problems. I would like to thank all the people
who made this work possible, either involved directly or indirectly.

I would like to express my sincere and deep gratitude to Prof. Stefano Galelli
for the guidance, the constant presence and all the insights. I would also thank a
lot Dr. Andres Felipe Murillo Piedrahita for all the support, the simulations run at
dead of night and to make me feel an au pair collaborator. I have appreciated so
much that they didn’t left me to my own devices, in spite of the distance and the
pandemic, giving me continuous feedback and total trust.

I would also like to offer my special thanks to Prof. Marcello Restelli for the
great insights and the extreme availability, even though the fate—and the spam
detector—has been a bit hostile.

ii



Abstract

In this work, we demonstrate how the introduction of a reinforcement learning
agent can be used to control a water distribution systems undergoing cyber-physical
attacks. The need for limiting the impact of such digital threats stems from the
more and more pronounced integration between physical and digital systems, grown
in the last decade, and the birth of, so called, cyber-physical systems. In the field
of hydraulic networks, where the handled asset is of critical importance for city
dwellers, there is still lot of work to do to accomplish a sufficient level of reliability
in the safeguard of digital infrastructures.

The approach we adopt builds on the integration of a deep reinforcement
learning model, namely Deep Q-Network, into the Digital HydrAuLic SIMulator
(DHALSIM), appointed to simulate the entire cyber-physical system—and thus
combining the water network process with the emulation of industrial control
systems and corresponding communication protocols. The integration is made
feasible thanks to a new feature implemented in DHALSIM, the stepwise simulation,
allowed by the addition of a new simulator wrapper, namely Epynet. Indeed, this
extension permits to run the experiment in a step-by-step manner, giving the
possibility, between each frame, to control the actuator variables of the water
network. Finally, the reinforcement learning agent is smoothly integrated, since
at each step it can analyze the state of the network and output a suitable control
action.

The evaluation phase is run considering the system in normal operating condi-
tions and undergoing cyber-attacks. In this work, we report results collected by
some restricted experiments, which suggest a good behaviour in terms of Demand-
Satisfaction Ratio with small imperfections with respect to the overflow risk. Indeed,
it would be interesting to reproduce analyzed experiments for a longer time with
more computational power and a different tuning of the hyperparameters. Our
intention is to take the first steps in this almost unexplored aspect of hydraulic
network and to sketch the guidelines for future extensive studies.
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Sommario Esteso

Nell’ultimo decennio, con l’avvento della Quarta Rivoluzione Industriale e del nuovo
paradigma lavorativo denominato Industria 4.0, l’interconnessione dei processi
produttivi tramite l’utilizzo di sistemi di controllo digitali si è consolidata a tal
punto da diventare una realtà per la maggior parte delle medie-grandi imprese.
Questa ventata di rinnovamento ha portato numerevoli benefici per quanto riguarda
il miglioramento della produttività e l’abbattimento dei costi di magazzino, ma
contemporaneamente ha favorito l’insorgenza di vulnerabilità legate all’utilizzo di
sistemi digitali e alla gestione di risorse tramite connessioni alla rete internet.

In questo scenario diventa dunque fondamentale preoccuparsi dei rischi che
queste interconnessioni possono causare e, allo stesso tempo, cercare di ideare nuove
strategie e soluzioni per mettere in sicurezza i canali digitali adibiti alla gestione
di risorse industriali. Infatti, non è raro apprendere notizie relative ad attacchi
informatici ai danni di specifiche aziende che agiscono in un particolare settore, o
addirittura direttamente indirizzati contro la macchina statale. Le falle, in molti
casi, derivano proprio da quei dispositivi introdotti con la rivoluzione industriale,
che rientrano nel gruppo dei cosiddetti sistemi di controllo industriale. La ragione
risiede nel fatto che molto spesso i protocolli industriali utilizzati dai macchinari
di produzione non implementano sufficienti meccanismi di sicurezza, in quanto
non ideati per essere inseriti in un’infrastruttura interconnessa. Inoltre, i tardivi
aggiornamenti applicati ai dispositivi di controllo, dovuti alla mancanza di una
finestra temporale adeguata, incrementano le debolezze del sistema, concedendo
ulteriori vulnerabilità ad agenti malintenzionati.

Poiché l’interconnessione e la creazione di sistemi cyber-fisici si stanno dif-
fondendo in svariati ambiti, dalla produzione energetica al settore manifatturiero, è
necessario limitare i possibili rischi con misure di sicurezza adeguate, soprattutto in
contesti in cui la risorsa fisica gestita dall’impianto risulta essere un bene primario
per l’umanità e il pianeta. Un caso lampante è quello degli impianti idrici, in cui i
sistemi di controllo possono migliorare sensibilmente l’efficienza della rete, andando
anche a raccogliere informazioni sullo stato dell’infrastruttura e qualità dell’acqua,
ma che possono diventare bersagli di attacchi informatici, con ingenti conseguenze
su larga scala.
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Per ovviare a questo problema, negli ultimi anni ricercatori e industrie stanno
studiando meccanismi di sicurezza per rispondere a queste minacce digitali, anche
attraverso l’utilizzo di approcci basati sul Machine Learning e il Deep Learning.
Le soluzioni trovate finora si basano prevalentemente sul monitoraggio del sistema
in tempo reale alla ricerca di anomalie, mediante l’analisi delle letture dei sensori
e modelli che descrivono il processo fisico. In questi casi l’intelligenza artificiale
entra in campo nel momento in cui il sistema di monitoraggio va allenato con dati
verosimili al fine di ricreare un’esperienza il più possibile conforme a quella reale.
Parallelamente, gli studiosi hanno cercato di ricreare fedelmente in versione digitale
sistemi cyber-fisici, che possano modellizzare oltre al processo fisico di competenza,
anche l’infrastruttura di controllo e le conseguenti minacce informatiche a cui
potrebbe essere sottoposta.

In questo elaborato di tesi si utilizza un approccio basato sul Reinforcement
Learning per allenare un sistema idrico a resistere ad attacchi informatici, incre-
mentando la resilienza della rete a perturbazioni esterne. Il tutto viene simulato
attraverso un modello digitale del sistema cyber-fisico, in grado di emulare sia
il processo fisico che l’infrastruttura di controllo. Essendo un approccio total-
mente innovativo, in quanto cerca di applicare il problema di controllo ottimo
in tempo reale—traducibile in un problema di schedulazione degli attuatori—ad
uno scenario in cui si verificano attacchi informatici che perturbano lo stato del
sistema, l’obiettivo dell’elaborato non è quello di fornire una soluzione algoritmica
più accurata possibile, quanto quello di muovere i primi passi verso un nuovo tipo
di analisi che potrebbe portare ad interessanti sviluppi e soluzioni future.
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Chapter 1

Introduction

In the last decade, the management of physical infrastructures has rapidly evolved.
Nowadays, when we talk about physical processes, we do not consider only the
physical infrastructure, but, more or less unconsciously, we take also into account
all the communication networks, sensors, actuators and computers that monitor
and control them. For this reason, to describe this kind of systems, the term
cyber-physical system (CPS) has been introduced. Thus, a cyber-physical system is
a complex system, composed by the traditional physical infrastructure connected
to a digital layer, capable of analyzing system information. Along with the physical
asset handled by the bare process, another kind of asset has also been emphasized:
the digital datum. Indeed, data are able to shape structures, behaviours and
conditions of a physical process and allow to analyze it from a mathematical point
of view. In a cyber-physical system, data can be retrieved by sensors installed
in the system, which can read the state of the physical infrastructure and send
information to computers, capable of performing data analysis. Then, after the
computations, a decision is taken: data are sent back to actuators in order to write
the current state of the system, if necessary, or keep it as is. Actuators act on the
physical system as raw inputs, that is physical actions, like the click of a button or
the rotation of a knob.

Sensors, actuators and computational devices populate the group of industrial
control systems (ICS). The introduction of these components aims to increase
performance and efficiency of physical systems and should guarantee security, safety
and reliability of processes. All these aspects are part of a modern paradigm that
builds on the integration of ICS equipment into production plans and that is gener-
ally called Industry 4.0—after the presentation of W.Wahlster at Hannover Fair in
2011 [1]. The paradigm envisions some key themes, such as the interconnection
between machines, devices, sensors and people, allowed by the Internet of Things ;
the availability of a huge amount of data, which can be analyzed and correlated to
ease the decision-making process; the automation of cyber-physical systems, able
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CHAPTER 1. INTRODUCTION 2

to make decision on their own and perform tasks autonomously.
Defined as the Fourth Industrial Revolution, Industry 4.0 leads to large benefits

for the industrial sector. The collection of data and the broad interconnection favor
the optimization of the production, providing the synchronization of processes, the
reduction of wasted materials and a better scheduling of activities. Moreover, it
decreases production costs, since the automation accelerates processes and reduces
costs of inventory [2]. In the last few years, in Italy, Industry 4.0 has been bringing
huge changes in industrial processes, and companies now want to push into this
direction, investing on Cloud Manufacturing, Advanced Automation and Human-
Machine Interfaces (HMI). In addition, is promoted also the Industrial Smart
Working, which allows workers to work from home, with a huge increment of
employees’ efficiency and satisfaction. In 2021, the Italian marketplace of Industry
4.0 is worth over 4.5 billions of euros, with an increment of investments between
+12-15% with respect to the previous year. With the opportunities offered by the
Italian National Plan, in 2020, Industry 4.0 services have reached the value of 275
billions of euros, with an enhance of +8% with respect to 2019. Considering also
the particular scenario of COVID-19 pandemic, these data seem incredible and
certainly they would not be real without the opening to digital channels and new
production approaches [3].

Besides the many advantages, Industry 4.0 suffers from a big problem caused
just by its own nature. Indeed, the push of the integration with digital components
and the increment of interconnections among devices open up to new vulnerabilities
related to the digital infrastructure, that indirectly endanger the physical layer.
The boost over modernization of factories should be followed by an appropriate
deployment of secure-by-design solutions. However, this is not always the case, as
proved by the over 60,000 exposed SCADA devices across the Internet found by A.
Mirian et al. in 2015 [4] with simple ZMAP queries. More recently, in 2020, the
research conducted by Positive Technologies Security [5] highlighted several threats:
91% of the analyzed organizations can be penetrated by external attackers, which,
in 100% of cases, once inside the internal network, can get user credentials and full
control over the infrastructure and in 65% of cases can steal sensitive information
about partners and company employees. A huge number of vulnerabilities are
caused by the ICS equipment. Indeed, according to Claroty Biannual ICS Risk
& Vulnerability Report [6], a 25% increment in ICS vulnerabilities disclosures
with respect to 2019 has been observed, mainly affecting critical infrastructures
such as energy sectors, manufacturing, water and wastewater treatment plants.
The principal cause of those vulnerabilities are the out-of-date ICS components,
since, in order to update the industrial control equipment, it is required a specific
maintenance window, which is available only few hours per week—and sometimes
even per month. Positive Technologies, during penetration tests, have been able to
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get ICS equipment connection schema of analyzed companies and connect directly
with an internal device communicating with the industrial network.

However, the bright side of the aforementioned statistics is that the increase
of disclosed vulnerabilities itself is leading to research focused on detecting and
remedying to security flaws. Academia and industry are spending more and more
effort to study security measures for ICS. Since working on real world plans is
particularly difficult, due to restrictions dictated by industrial secrets and the risk of
damaging the infrastructure, researches rely on the development of CPS testbeds to
conduct analysis and perform experiment on a plausible network. An example is the
WADI testbed, developed to lead researches on secure water distribution systems
and test the impact on an attack on the cyber-physical system [7]. Along with
testbed solutions, has been developed also digital framework, called Digital Twins,
able to trustfully reproduce the CPS environment leveraging the implementation
of virtual versions of the CPS. Getting back to the field of hydraulic networks,
a recent example is the Digital HydrAuLic SIMulator (DHALSIM) [8], which
allows to simulate the physical process of a water distribution system and, at the
same time, the communication network and protocols between ICS components of
the cyber-physical system. Moreover, the design implementation is conceived to
replicate several attacks against the digital layer to analyze how the reaction of the
system and the consequences on the physical plant.

In this work, we take into account the field of water distribution systems and
hydraulic security measures. To do so, we exploit the functionalities of DHALSIM to
study the behaviour of a water distribution system undergoing specific cyber-attacks.
The research is not meant to be a mere analysis of data collected with reasoned
experiments, but it is more focused on the implementation of new mechanisms
aimed to enhance the resilience of the system. To reach this goal, we develop
a solution based on machine learning techniques, specifically on a reinforcement
learning algorithm, which, by means of a trial-and-error approach, is capable to
train the behaviour of the cyber-physical system in order to autonomously react in
situations of external threats. In other words, we plan to solve an optimal, and
real-time, control problem, conceived to find the optimal control action in each step
of the simulation. To do so, we provide DHALSIM with a new feature which allows
to experiment in a white box environment, where water network information can
be collected at each simulation step and control variables can be modified within
the same intervals. This feature also fosters the implementation of a real-time
control agent, chosen among reinforcement learning approaches, able to act during
the development of the experiment and capable to increase its knowledge about
the environment with the collection of state samples. The purpose is to make the
agent able to distinguish between normal operating conditions of the systems and
scenarios in which the water network is affected by cyber-attacks. The study aims



CHAPTER 1. INTRODUCTION 4

to take the first steps towards the integration of control agent with environments
undergoing digital threats, since there are many examples of researches assessing
pump scheduling problems in normal operating conditions, but very few considering
situations of security risks. In addition, we hope that this work could be inspiring
for future in-depth studies, bringing to light new relevant approaches, enhancing
the security level of ICS equipment in critical environment as water distribution
systems.

1.1 Orginal Contributions
We sum up the principal contributions of this work as follow:

1. We integrate the Digital HydrAuLic SIMulator (DHALSIM) with a new
Python wrapper, namely Epynet, which allows us to create a new feature for
DHALSIM, the stepwise simulation, to analyze each experiment frame-by-
frame. Moreover, this development also provides the possibility to perform
control operations of the actuators during the experiment—something that
would not otherwise be possible. The addition also enhanced the performances
of the framework in term of time complexity with respect to the wrapper
already present, called WNTR.

2. We implement and integrate a reinforcement learning algorithm with DHAL-
SIM, making the framework able to assess the optimal real-time control
problem. The algorithm that has been implemented is the famous Deep
Q-Network (DQN), structured to fit the cyber-physical system of a water
distribution network and organized in a portable way, in order to adapt to
future changes in the framework.

3. We tested the aforementioned reinforcement learning algorithm with the
hydraulic network both in normal operating conditions and under attack
conditions. We studied the obtained results and evaluated the benefits that
an AI agent can bring into a cyber-physical system.

1.2 Thesis Organization
In the seven chapters of this thesis, the contents are organized as follows. In Chapter
2, we explain the motivation behind this work, presenting the state-of-the-art to set
the starting point of our discussion and summarizing goals and challenges related to
the research. In Chapter 3, we provide the basic knowledge to understand this work:
first, we explain the behaviour of water distribution networks and industrial control
systems; then, we present the framework and DHALSIM ; finally, we give some
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notions about Reinforcement Learning and Deep Q-Network. Chapter 4 is devoted
to explaining how we merge together the concepts presented in the previous chapter.
We show the system model on which we work, how we extend DHALSIM with a
new important feature, how we conceive the attacks, and present the formalization
of the control problem in the analyzed environment. In Chapter 5, we provide
details regarding the experimental setup, specifically explaining how we integrate
Epynet and DQN algorithm into DHALSIM. Chapter 6 is earmarked to the analysis
of results and to the comparison of the different studied scenarios. Finally, in
Chapter 7 we sum up the results in the conclusions, describing limitations of the
work and providing additional ideas for future works in the field.



Chapter 2

Motivation

Over the past few years, it has become clearer and clearer that industrial control
systems can enhance monitoring, automation and management of tasks related to
different fields, even increasing their performance and efficiency. At the same time,
in parallel with the many advantages, have started to be known also drawbacks
and risks, which can get significant with the handling of critical assets, regarding
the production of goods or the safety of human beings. The main threat comes
from the weakness of industrial control systems against cyber-attacks [9] [10] [11],
which can truly compromise the behavior and reliability of an entire cyber-physical
system. In the case of this thesis, the at-risk subject is a water distribution system,
and, indirectly, also the group of users relying on that network to be supplied with
water.

Also in hydraulic system literature, we can find articles assessing risks [12] [13]
and evaluating countermeasures [14] and have been even created challenges to
compare performances of different attack detecting frameworks, as the BATADAL
competition [15]. Design a detecting algorithm is definitely not a trivial task:
defenders have to foresee proactively all the actions that an attacker would attempt
to compromise the system, making assumptions that must hold in real-world
scenarios.

In this work, we focus on a different aspect of the defensive side: rather than
build another detection framework, we try to investigate whether it is possible
to make the cyber-physical system resilient to cyber-attacks, training the water
distribution network to distinguish between its normal operating conditions against
compromised ones. This is not meant to replace detection algorithms; instead, the
idea is to complement the information provided by detection algorithms, so as to
provide the system with more information about its current state and helping to
choose robust reactions.

However, so far, not much as been done concerning this aspect, thus we have to
set the fundamentals of this research topic relying on a framework, a so called Digital

6
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Twin, able enough to reproduce the environment of a water distribution network
(WDS) and the interactions within, on top of which exploiting reinforcement
learning concepts to control the system undergoing cyber-attacks.

2.1 State of the art
Here, we discuss important work in the the area of cyber-attacks, introducing
also machine learning techniques applied to cyber-physical systems (CPS). Often
these concepts will met each other, for example in anomaly detection frameworks,
where machine learning is exploited in the classification task of known signatures.
However, there are no studies on how to tackle the control problem of a water
distribution system undergoing cyber attacks.

2.1.1 Digital Twins of WDS

Replicating a small network of a real process in lab could be a arguably easy task
and it could generate a physical model interesting to study, however quite limited by
physical restrictions, like dimensions or feasible use cases. That’s why, sometimes,
we need a Digital Twin: a way more complex model, simulated by a computer,
which can explore drastic scenarios, without consequences on the real-world, and
even in a faster way. Also in the hydraulic field, researchers have thought to
create Digital Twins to simulate bigger water distribution network and emulate
cyber-physical systems. The true challenge in simulating a CPS is the merging of
its three fundamental components: the physical system, the ICS equipment and
the industrial communication network.

Related to WDS, we saw a first implementation of a Digital Twin with
EpanetCPA [16], a framework with the objective to characterize effects of cyber-
physical attacks (CPAs) on the hydraulic behavior of a water distribution network.
Taormina et al. [16] exploited the EPANET simulator to represent the physical
system, improved in the second release with pressure-driven feature [17], and
Matlab to simulate cyber-physical components. However, the absence of the layer
emulating the communication network prevents the tool from being a completely
accurate Digital Twin. A year later, a new attempt has been made by Nikolopoulos
et al. with RISKNOUGHT [18], which improved the cyber layer description of
EpanetCPA, but with protocol and network data simulation only restricted to ACK
signals. Both EpanetCPA and RISKNOUGHT, becuase of their design, are not
able to produce coherent network traffic data and emulate realistic attacks on the
communication layer, rather only their impact on the physical system.

The first Digital Twin deserving this definition is the Digital HydrAuLic SIMu-
lator (DHALSIM) [8]. In this framework, Murillo et al. have been able to integrate
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the WNTR hydraulic simulator [19], used to reproduce the physical system, with
MiniCPS [20], an industrial network emulator. WNTR and MiniCPS are integrated
in a co-simulation environment. DHALSIM can reproduce the hydraulic processes
of a WDS as well as the full stack emulation of common industrial control protocols,
allowing the possibility to replicate cyber-attacks both from communication layer
and physical layer perspective.

In this work, we start from this version of DHALSIM to implement an external
agent able to tackle the control problem in presence of cyber-attacks, after integrat-
ing the framework with another more appropriate Python wrapper of EPANET
simulator, called Epynet [21].

2.1.2 Anomaly Detection in WDS

A good starting point to understand the state-of-the-art concerning detection
algorithms is surely the BATtle of the Attack Detection ALgorithms (BATADAL)
[15]. During this competition, seven different frameworks have been presented
and evaluated in terms of time-to-detection and classification accuracy. Here, it
is already evident the advantage that machine learning and neural networks can
bring: e.g., Abokifa et al. [22] exploited a multilayer perceptron to detect unusual
patterns that differ from normal operating conditions, obtaining one of the first
positions; Brentan et al. [23] adopted recurrent neural network to predict tank
water levels from pump flow, upstream pressure and hour of the day; Chandy et
al. [24] made use of a convolutional variational autoencoder that computes the
probability to be in presence of anomalies.

More recently, Addeen et al. [25] summarize in an accurate survey common
cyber-physical attacks and their relative detection mechanisms for water distribu-
tion systems. From presented works, we can draw the improved methodology of
aforementioned Abokifa et al. [26] consisting in four modules, with the task of check-
ing control rules of actuators, monitoring variables bounds through a statistical
method, training an Artificial Neural Network model (ANN) to predict anomalies
and detecting those last among the whole dataset with the Principal Analysis
Component (PCA). A further contribution comes from Taormina and Galelli [27]
with an algorithm designed for detecting and even localizing cyber-attacks against
water distribution systems, which exploits a deep learning neural network archi-
tecture trained on data pertaining to normal operating conditions. Newer studies,
like the one conducted by Kadosh et al. [28], bring back the attention on the
physical understanding of the WDS topology, demonstrating that also a trivial
one-class classification algorithm like a Support Vector Data Descriptor (SVDD)
can compete with more complex architectures if provided with tailored features.

Despite these many advances, there is still work to do: the number of studied
cyber-attacks is limited and novel ones are necessary to enrich the possible scenarios,
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existing detection methods are not optimal and most of them cannot intercept
all the attacks, and the security of network and communication layer has to be
improved to assure reliable components of WDS.

2.1.3 Control problem in WDS

In WDS field, the control problem is often seen as a pump scheduling problem, where
the main goal consists in meeting the water demand while minimizing the amount of
energy consumed by the pumps—and, thus, the utilization costs. Common methods
exploited in literature include deterministic optimization algorithm, as Linear,
Dynamic and Nonlinear Programming, and metaheuristics, like differential evolution
(DE), particle swarm optimization (PSO) and other genetic algorithms [29].

Hajgato et al. [30], driven by too high computational burden implied by afore-
mentioned methods, tried to tackle the real-time optimization problem through
Reinforcement Learning techniques, in particular by a Dueling Deep-Q Network,
which works online. Rather than the status, as happens in pump scheduling prob-
lems, the authors focused on predicting the pump speeds, sampling the state of
the WDS in discrete intervals of time during a simulation and evaluating the best
action which maximizes the modeled objective function.

In this work, we take a further step: we start conceptualizing the control problem
as authors in [30], but, instead of working with normal operating conditions, we
introduce the cyber-physical layer with relatives protocols and attacks, thanks
to DHALSIM frameowork. Thus, we conceive the problem as a real-time pump
scheduling of a WDS undergoing cyber-attacks.

2.2 Goals and Challenges
The main goal of this work is to bridge the gap present in hydraulic network
literature regarding the absence of a method that allows to a water distribution
system to autonomously react to cyber-attacks, avoiding the disrupting of the
normal operations and improving the resilience of the cyber-physical system.

Indeed, if on one hand there are already some algorithms employed to detect
several kind of attacks, as shown in Section 2.1.2, and, on the other, we can enlist
articles assessing the pump scheduling problem with an offline approach and only
in one case with a RL algorithm, as explained in Section2.1.3, there is still the
need to bridge the gap in between, tackling the optimal control problem of network
actuators also in a situation of cyber-risk. In this work, we want to set the basis of
this new approach, but to reach this goal we need to make some intermediate steps.

A first objective, achieved in this thesis, is the integration with DHALSIM
of a new Python wrapper of EPANET [31], to simulate the physical system of
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the water distribution network. The wrapper, a Python library conceived by
employees of Vitens, the largest water drinking company in The Netherlands, is
called EPYNET [21]. This integration is not only a preliminary step towards the
realization of the aforementioned goal, but also an important addition to DHALSIM,
which gains a new relevant feature: the stepwise simulation. This feature, beyond
the possibility to perform a frame-by-frame analysis, permits also the changing of
some actuator parameters in the middle of the experiment, identically to a real-
time controlled system. Thus, DHALSIM acquires a new peculiarity, which make
it suitable for more deepened experiments, that, for example, could require the
injection of control inputs in the network, stressing a precise frame of the simulation.
Besides the acquisition of a new functionality, Epynet allows DHALSIM to get
better performances in term of time complexity with respect to WNTR, thanks to
its lightweight structure.

As previously said, implementing the stepwise simulation opens up to a real-time
approach. Here is our second objective: the integration with an online control
agent. Indeed, the capability to actively interact with the network offers several
sparks related to machine learning field, especially regarding reinforcement learning.
The principal challenge here, is to find a suitable algorithm which can smoothly
fit with the environment of a water distribution network and its communication
layer. Also, it seems even more interesting to study how the system react in case
of cyber-security threats. Thus, we can sum up the second goal of this work in
the modeling a reinforcement learning agent able to tackle the optimal control
real-time problem of a cyber-physical system undergoing cyber-attacks.

Finally, the last objective of the thesis is to evaluate the effectiveness of the
obtained control agent on a threatened water distribution system. The idea is
to compare the response of the network undergoing cyber-attacks with normal
operating conditions, to see if the learning process can make the CPS more robust
and resilient. This can be done by studying the trend of tank levels and pump
status nearby attacks, defined a suitable objective function depending on the
network expected behaviour. This goal has been achieved only in part, since we
don’t have the resources to perform a complete and exhaustive analysis, both
from computational and timing point of view. Moreover, beyond the agent’s
performances, which can be considered of questionable relevance, we aim to sketch
the path to a new approach for the WDS optimal real-time control problem,
enriched by the presence of external concealed cyber-attacks.



Chapter 3

Background

In this chapter, we give background information about the different domains of
knowledge on which this work builds. We start by defining a water distribution
system, both as a physical process and as part of a cyber-physical system. Then,
we analyze the components of a CPS and their interactions, up to the detailed
explanation of the Digital HydrAuLic SIMulator (DHALSIM). In the end, we
present the Reinforcement Learning approach and the algorithm we exploited to
tackle the control problem.

3.1 Water Distribution System
To describe the key processes occurring within a water distribution system we
refer to Heasted Methods’ et al. textbook [32]. A water distribution system is
a physical structure with the basic purpose of delivering water from the source
to the customers—which can be simply homeowners, restaurants, factories and
so on. Customers determine the amount of water utilization, that can vary over
time, both seasonally and daily, and over space. Thus, is important to have a good
knowledge of the network topology to identify how water is distributed across the
system for an accurate modeling.

Typically, a modern water network is made up of two classes of components:
nodes and links. In the first group we can find:

• reservoirs, providing water to the system;

• tanks, employed to store excess water within the system and release it at
times of high usage;

• junctions, used to remove or add water from/to the system.

Instead, between the links we can list:

11
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• pipes, conveying water from one node to another;

• pumps, appointed to increase the hydraulic level to overcome elevation differ-
ences and friction losses;

• valves, exploited to control flow and pressure of the system depending on
predetermined rules.

All the previously enlisted components are essential to fulfill the task of water
networks, which is really important, since the handled asset is of vital relevance
for the humankind. Concretely, a water network has to assure the maintenance
of a certain level of pressure inside the system, to allow the water to flow without
stagnation or flooding from the source to the customer. The criticality of water
distribution networks has enlightened the need of preventing and controlling in
advance risky scenarios and pushed researchers to emulate such situations with
credible simulations.

With the term simulation, we refer to the process of exploiting a mathematical
representation to reproduce the real system: that’s the so called model. The model,
together with the digital representation of aforementioned components, allows us
to shape the simulator. The importance of a simulator is rather evident: with a
simulator we can prevent system responses under particular conditions without
disrupting the real network; we can face problems in advance and evaluates risks,
costs and times without investing in real-world projects. Today we can achieve
this task thanks to digital simulators, a clear example of which is EPANET [31].
EPANET is a modern simulator, provided also with a graphical user interface
(GUI), capable of emulating the behavior of a water distribution system, regardless
of its dimension and topology, both from a quantitative and qualitative point of
view. Indeed, Epanet can calculate, for example, the water level in a tank after a
period of one month, evaluating at the same time its water quality.

Besides these several advantages, there are some limitations, especially related
to the way in which, nowadays, a water network is integrated with technologies, be-
coming an out-and-out cyber-physical system (CPS). Indeed, this new configuration
brings researchers to consider not only the physical system, but also the surrounding
cyber-infrastructure, creating the need to enrich simulators like EPANET with
functionalities that can emulate the digital layer, in particular ICS equipment and
industrial communication network.

3.2 Industrial Control Systems
ICS are network infrastructure designed to guarantee that a physical process
operates at all times based on a set of defined operational parameters, as explained
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by Humayed et al. [33]. Within the context of WDS, ICS monitor the hydraulic
conditions (e.g., tank water levels) and apply a predefined control logic to hydraulic
actuators, like pumps and valves, to maintain across the whole system the desired
levels of pressure. Depending on the specific design and deployed technology, the
ICS may also monitor water quality parameters (e.g. pH or chlorine concentration)
and control additional components, such as booster pumps. Galloway et al. coin
for these communication networks used in ICS the name of Industrial Control
Networks [34].

In Figures 3.1 and 3.2, we illustrate a simple WDS and its corresponding ICS.
In this system, the physical network is made up of a tank (T1) and a pump (P1),
which controls tank water level. Moreover, we have a structure composed by two
PLCs (PLC1 and PLC2), one SCADA server and the network, that is the ICS.
Let’s now see how the two entities work together. To start, PLC1 uses a sensor
to measure the water level of T1; then, it sends this reading to PLC2, which uses
the acquired knowledge to apply the corresponding control rule (e.g. to decide
whether P1 needs to be turned on or off). This cycle is known as a scan cycle and
it is executed periodically in order to maintain the tank level within the desired
operational parameters. In addition, the PLCs report to the SCADA server the
values of different variables, such as T1 level, P1 status, P1 flow or pressure at the
junctions. The information exchanged through these scan cycles travels through the
network using industrial control protocols, which will be described next. In addition,
note that each PLC is located in a different substation. This means that each PLC
is located within a Local Area Network (LAN) and both networks are connected
using a Wide Area Network (WAN), represented in Figure 3.2 by r0. Considering
that WDS are typically distributed across vast spatial domains, locating the PLCs
in different substations is therefore a compelled network configuration.
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(a) (b)Figure 3.1: Simple water distribution system. Focus on physical layer, where two PLCs
control the water level of Tank T1.

Network communications are logically divided into layers. Each layer has
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Figure 3.2: Cyber physical layer of the previous water distribution network. In the
cyber layer, due to the geographical distance between the elements, the two PLCs are
located in its own substation. A set of routers and switches connects the PLCs.

certain functionalities that can be offered by a specific protocol [35]. In this way,
protocols are designed to operate at a specific layer; for example, IEEE 802.11b/g/n
(commonly known as "WiFi) is a network link layer protocol. This also means that
stack of protocols needs to be defined to provide network applications. The term
stack is used because protocols at lower layers offer services to the upper layer and
the uppermost one is directly offering the final application. In the internet case of
web applications, the HTTP protocol is the protocol used by browsers to offer the
final content to the users. But at the same time, the HTTP protocol is supported
by the combination of TCP/IP protocols. Finally, in a wireless local area network
(WLAN), these TCP/IP protocols can be supported by IEEE 802.11.

Figure 3.3 shows an example of the stack of protocols. In the uppermost slot we
have CIP, an industrial protocol used for communications between PLCs, which can
exchange messages containing sensor readings or actuator status. CIP is supported
by another protocol called "Ethernet over IP" (ENIP) and together are placed
on top of TCP/IP. Notice that although the upper layer protocols are industrial
protocols, the bottom protocols are the same TCP/IP used in traditional internet
applications.

The stack of protocols represented in Figure 3.3 is used to monitor and control
a system like the one shown in Figure 3.2. This monitoring-controlling process is
performed in something called scan cycles. In the example, PLC2 requests PLC1
the level of T1. After receiving it, PLC2 looks up the control rules configured for P1
and then applies the appropriate decision (on whether to turn off or on the pump).
Nevertheless, the process happening at network level is more complex. Indeed, at
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Figure 3.3: Protocols stack.

network level, to exchange a CIP message have to be performed the following steps:
1) local address resolution (ARP), 2) TCP connection establishment, 3) ENIP
session registration, 4) CIP request and response.

1. the first stage (local address resolution) has to be executed only at the first
cycle. At the beginning of a scan cycle, PLC2 does not have a route to
send messages to PLC1, but PLC2 has configured router r2 as its gateway.
This means that PLC2 knows the IP address of r2. To access its gateway,
PLC2 sends a broadcast message to s2 asking for the local (MAC) address
of r2. Broadcast messages are sent through all the interfaces of the switch.
This causes s2 to flood the substation 2 network with messages asking for
the MAC address of r2. This is done using a protocol known as Address
Resolution Protocol (ARP). After the PLC2 obtains the MAC address of r2,
the following stages can take place. Note that this MAC address is stored in
the PLC2 cache and used to establish future connections.

2. The second stage (TCP connection establishment) starts when PLC2 sends a
TCP SYN (TCP-SYN) message to the IP address of PLC1. This message is
sent through r2, using the MAC address resolved in the previous stage. The
router looks up in its routing table for a route to access the PLC1 IP address.
r2 knows that PLC1 is reachable through r1 and forwards this message to him,
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through r0. Upon reception of this message, r1 sends the message to s1. The
message finally arrives to PLC1. Upon reception of the TCP-SYN message,
PLC1 replies with an TCP SYN Acknowledgement (TCP-SYN-ACK) to
PLC2. This last message uses the same routes and path used before. Finally,
PLC2 replies with an Acknowledgement (ACK) message and, when PLC1
receives it, the TCP connection is established. This mechanism is known as
‘Three Way Handshake’ [35].

3. The third stage (ENIP session registration) starts once a TCP connection
has been established. This connection is used by PLC2 and PLC1 to register
an ENIP session, which allows to signal both PLCs that an exchange of CIP
messages is about to take place. In addition, an ENIP session can be used to
exchange a set of sensor readings or actuators status (commonly called tags)
between the PLCs. To register an ENIP session, the PLCs exchange a ENIP
Register Session Request and ENIP Register Session Response message.

4. Finally, with the ENIP session registered, the last stage can take place. In
this stage, PLC2 sends a CIP message requesting the value of the tag T1
(tank 1), and PLC1 replies to this message with a CIP response message and
the T1 value. Upon reception, PLC2 closes the TCP connection. Importantly,
the second to fourth stages are repeated at each scan cycle.

As shown above, it is necessary to follow multiple procedures, sequences of
messages and group of nodes to exchange information between PLC2 and PLC1.
Many factors could impact these components and therefore affect the entire commu-
nication protocol, ultimately compromising hydraulic processes. Reproducing these
interactions in simulation models is nowadays very important in any cyber-security
analysis, such those required for modern WDS.

This has been the main reason behind the development of the Digital Hydraulic
SIMulator. In fact, DHALSIM leverages MiniCPS to accurately represent the
aforementioned network information. This information enables DHALSIM to be
used as a platform to run cyber security experiments with high fidelity. In these
experiments, DHALSIM can launch two types of anomalies: attacks and events.
Attacks are actions initiated by an attacker with the intention of impacting in a
harmful way the network and physical system. Attacks in DHALSIM are divided
in two main types: device attacks, launched by the PLCs, and network attacks,
launched by additional network nodes. Network events are situations that might
impact the network and physical system in a negative way, but are not launched by
attackers. They could be seen as circumstances that arise from faulty or unexpected
conditions in the system. An example of a network event is a loss of connectivity
in a network link, that could lead to all the packets being dropped in that link.
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3.3 Digital Hydraulic SIMulator
This section provides an overview of DHALSIM, its architecture and design, im-
plementation details, key functionalities and limitations. Moreover, we show some
details about how to configure DHALSIM experiments with device attacks, network
attacks or network events.

3.3.1 Software architecture

In Figure 3.4 we can examine the complex architecture of DHALSIM. The principal
components are the physical simulation, provided by EPANET simulator [31], and
the network emulation tools, i.e. MiniCPS [20] and Mininet [36].
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Figure 3.4: DHALSIM Architecture. The architecture is composed of a parser, physical
emulation, network emulation, an SQLite Database, and a File generator. The parser
converts EPANET .inp files into DHALSIM topologies.

Mininet is a platform to easily create virtual networks and nodes, which run
inside a single machine host. Each Mininet node has its own virtual network
interfaces and can run any software installed in the host machine.

MiniCPS provides an implementation of two popular ICS communication proto-
cols, ENIP/CIP and Modbus (here, we use ENIP/CIP, since it’s the most common
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protocol for PLC-PLC communication). By means of MiniCPS, Mininet nodes can
communicate using these industrial protocols. In this sense, DHALSIM creates a
virtual network, where nodes representing PLCs and SCADA communicate using
ICS protocols. Additionally, a different process runs the EPANET simulation and
many others can be launched to create network attacks or other types of events
(e.g., dropping a percentage of packets at a network link during a defined number
of iterations, a Denial of Service attack at a network link).

A DHALSIM experiment runs in the following way: first, the configuration files
are created—more related details will be presented below. Second, the Parser reads
these configuration files, initializes a Mininet network and launches a process to run
the physical simulation. The Mininet nodes, which represent PLCs and SCADA,
reproduce the behavior of ICS equipment, while the physical simulation runs in a
step-by-step basis and uses a master clock to synchronize the concurrent processes
running in the experiment. During the simulation, different events or attacks can
be launched. Finally, after being run for the configured duration, all the processes
receive a signal that starts their shutdown routines, at the end of which the output
files are stored into a folder.

3.3.2 Design

Five main components mark DHALSIM out: a Parser, a Physical Simulation
engine, a Network Emulation engine, a SQLite Database, and a File generator.
This subsection explains their technical details and how they interact in a DHALSIM
experiment.

The Parser

The DHALSIM Parser is a module that reads configuration files to launch a
DHALSIM experiment. All the configuration files use YAML (YAML Ain’t Markup
Language)1. The following configuration files are processed by the parser:

• Experiment Config File: the experiment configuration file defines the global
configuration options for a DHALSIM experiment. This file specifies the
EPANET .inp file, the number of hydraulic time step iterations the experiment
will run for, the path to additional configuration files and the type of hydraulic
simulator being used—initially only WNTR, but then also Epynet, introduced
by thist thesis work. In addition, custom demand patterns and initial tank
levels can be configured . Finally, this file also defines the type of network
topology used, i.e., Simple or Complex. Details of these topologies are
explained below.

1YAML is a is a human-readable data-serialization language. https://yaml.org/
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• EPANET Config File: this is an EPANET .inp ‘standard’ file. DHALSIM
automatically parses .inp files in order to build an appropriate Mininet
topology and uses the control rules defined in the [CONTROLS] section to
create the PLC control logic.

• PLCs Config File: this is a configuration file that indicates how many PLCs
the WDS has and which PLC handles which sensor or actuator. Sensors in
DHALSIM are tank levels, junction pressures, and pumps/valves flows. A
sensor is a value read from a PLC and used to apply a control rule and all
sensor information are polled by the SCADA server. Actuators in DHALSIM
are pumps and valves. The PLCs implement the control logic defined in the
.inp [CONTROLS] section to change the status of the actuators. Also the
status of actuators is polled by the SCADA server.

These three configuration files are sufficient to run a DHALSIM experiment
without attacks or events. If attacks or network events are going to be launched
during a simulation, the following optional files must be provided:

• Attacks Config file: attacks are configured in this optional file. Two types
of attacks are configured in DHALSIM: device attacks and network attacks,
both providing triggers that can be used to easily set conditions that launch
the attack. Triggers can be the simulation iteration or values of tags in
the physical system. For example, a time trigger could activate a man in
the middle attack when the simulation reaches the configured number of
iterations. Device attacks are attacks running in PLC processes that can
change the way a PLC applies a control logic. Network attacks launch an
additional Mininet node running a script that exploits a network vulnerability
and affects the network and its physical behavior. These network attacks
are activated by triggers. Attack scripts that implement Denial of Service
attacks and Man in the Middle attacks are provided in DHALSIM.

• Events Config file: events are configured in this optional file. Currently, only
network events are supported. Network events are events that affect the way
a network link behaves. An example of an event would be one that causes a
percentage of packets in a network link to be dropped.

By means of these files, the Parser decides which Mininet network topology
should be created, counts how many PLCs are present in the network, configures
the network parameters of those PLCs, adds the SCADA server and launches a
physical simulation.
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The Physical Simulation

The physical simulation module runs an EPANET simulation. Before the completion
of our work, only one EPANET wrapper was offered with DHALSIM: WNTR [19],
a Python package wrapper for EPANET [31]. DHALSIM runs a WNTR simulation
in way that requires a slight modification of the way control rules are applied
in a simulation. This is required to let MiniCPS PLCs to control the actuator
status of the simulation. In WNTR, a water network is represented through a
network model object. Also, network model objects create control instances for
each control rule configured in an .inp file. At each simulation step, DHALSIM
constantly eliminates and creates new control instances in order to dynamically
update the actuator status in the simulation. This is done because, at the moment,
WNTR does not offer a dynamic way of updating the actuators status. Besides
this, WNTR does not provide a way of running step-by-step simulations. Such
simulations are a necessary condition for MiniCPS to affect the system state and
to enable experiments where attacks affect the physical state of the system. As a
workaround, DHALSIM configures the WNTR simulation duration to be equal to an
hydraulic time step and runs a number of WNTR simulations equal to the number
of iterations configured in the Experiment Config File. Naturally, these limitations
have an impact on the computational requirements of DHALSIM experiments.

A simulation step into DHALSIM runs in the following way: First, the physical
simulation (called the plant) reads the actuator status stored into the SQLite
Database. Second, the plant updates the water network object to reflect the new
actuator status. Third, the plant runs the next simulation iteration. Fourth,
the plant stores into the SQLite Database the new values of the system state.
The system state are the values of tank levels, pump/valves flows, and junctions
pressures. In addition, these values are stored into a data structure that is stored
into the ground truth file at the end of the simulation. Fifth, these values are read
by the PLCs in the Mininet network and the values are exchanged to implement the
control logic. The latter is implemented by the PLCs by taking control decisions
and storing the new actuator status back into the SQLite database. Then, the whole
cycle repeats. Once the simulation has run the configured number of iterations, the
simulation process finishes. This triggers all other processes to finish, concluding
the experiment.

The SQLite Database

The SQLite Database is the communication point between the Physical Simulation
and the Network Emulation. This approach has been chosen to synchronize the
concurrent processes because it does not generate additional communication traffic
that could introduce artifacts into a DHALSIM experiment. In addition, using
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a centralised approach there is the advantage of having special registries in the
database to synchronize events in an experiment. Such registries are the simulation
master clock, used to trigger some attacks or events, and sync flags, used by PLCs
and the physical simulation to synchronize their state and control actions. The
SQLite Database is a stateless database, meaning that only the current values of
the simulation are stored. Previous values are recorded separately by the SCADA
server and physical simulation, respectively.

The Network Emulation

The network emulation uses MiniCPS to launch a Mininet network in which Mininet
nodes run Python scripts representing the PLC and SCADA behaviour. A PLC
behaviour is composed of a pre-loop and main loop. The pre loop is used by the
PLC to initialize its variables and configure attacks that are going to be run in
the PLC. Additionally, the pre loop launches a tcpdump capture process (TCP
dump is a Linux networking tool used to capture a copy of the packets in a network
interface 2). Each PLC process runs a tcpdump subprocess at the beginning of the
simulation. This provides network information during a DHALSIM experiment.
Generating these tcpdump capture files is possible due to the complete network
stack being implemented by Mininet and MiniCPS and is one of the key features
of DHALSIM.

The main loop performs the following operations:

• Update local cache: Each PLC has a local cache where it stores the variables
necessary for its behaviour. These variables are configured in the PLCs Config
file and in the [CONTROLS] section of the .inp file described in Section
3.3.2. There are two ways to obtain these variables: independent variables
and dependent variables. If a PLC is directly connected to a variable, such
variable is called an independent variable. An independent variable is a
variable that is defined inside a PLC section of the configuration file. For
these variables, the PLC performs a get operation into the SQLite Database.
This reflects a PLC that is physically connected to a sensor. Dependant
variables are variables not under the control of a specific PLC (defined into
another PLC section in the Config file), but still necessary to apply a control
rule. For these variables, the PLC will perform a receive operation. The
receive operation triggers the CIP/ENIP network process to receive a tag
through the network described in Section ??.

• Apply a control rule. If a PLC controls an actuator (as defined in the PLC
Config File) and that actuator has a control rule associated to it, the PLC

2TCP dump is a command-line packet analyzer: https://www.tcpdump.org/
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uses the sensor values to apply the control rule. DHALSIM automatically
parses the control rules defined in the [CONTROLS] section of an .inp file.
Nevertheless, the new actuator status is stored in the local cache, instead of
the SQLite Database.

• Apply device attack actions. Device attacks run on PLCs and could affect
the way a PLC operates a particular actuator. For example, a device attack
could order a PLC to maintain a pump open during a certain number of
simulation iterations. If this is the case, the PLC overwrites the actuator
status stored in the local cache.

• Store actuator values into the SQLite Database. The PLC stores into the
SQLite Database all the actuator status under its control.

• Send the variables under its control to other PLCs and the SCADA server.
The values stored in the PLC cache are made available in the network for
other PLCs or the SCADA server to request. This process runs in a separate
sub thread of each PLC process.

The other type of Mininet node is the SCADA server. A SCADA server is a
special node in Mininet that does not implement any control logic, but periodically
polls the PLCs in the network for the system state. Then, it stores those values
into a data structure that is written into the scada values file at the end of a
DHALSIM experiment. The inclusion of a SCADA server is useful in cyber security
experiments, because some attacks could include concealing techniques to mask
the impact of a cyber-physical attack [16]. Finally, if network attacks or events are
configured, additional Mininet nodes are launched. In such case, each node would
run a script for the configured network attacks or events.

All nodes are connected using a Mininet network. Recall that this network can
be configured in two ways, Simple or Complex topology. In a simple topology, all
nodes are in the same Local Area Network, meaning that no routing is necessary. In
a complex topology, each PLC and SCADA server is in its own local area network
and network routing is used to interconnect them. Such topology should be adopted
when working on WDS spanning across large spatial domains.

3.3.3 Implementation

DHALSIM is a Python Open Source Software with MIT License and available as a
Github repository at https://github.com/afmurillo/WadiTwin. DHALSIM has
been developed and tested using Ubuntu 20.04 and requires Mininet, MiniCPS and
WNTR. An automatic installation script is provided in the repository. DHALSIM
uses Python 2.7 and Python 3.6 to run some of its code. The need for Python 2.7

https://github.com/afmurillo/WadiTwin
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stems from Mininet and MiniCPS, which do not yet offer full support for Python 3.6.
With the thesis work, DHALSIM acquires a new simulator wrapper, Epynet [21],
in addition to WNTR, to perform a stepwise simulation, and a RL control agent
which exploits MushroomRL library [37].

Launching an experiment with DHALSIM ends up to get results split in two
types of files, equiped with timestamps to allow cross-validation: physical results
files and network files. The physical results files are two .csv tables containing the
results of the physical simulation (EPANET): ground truth and SCADA values.
The ground truth collects the real values generated by the physical simulation,
whereas the SCADA values contains the values that the SCADA server polled
form the PLCs in the network. Notice that if an attacker launches a concealment
attack like those shown in [16], the values from SCADA and ground truth may
differ. The network files are the tcpdump capture files, which have the extension
.pcap. The capture files have all the network messages seen by a Mininet node
during the experiment. This provides researchers with all the network packets that
a DHALSIM experiment generates during its execution.

3.4 Reinforcement Learning
in the context of Artificial Intelligence, Reinforcement Learning (RL) is a branch
of Machine Learning, which is the field of study that gives computers the ability
to learn without being explicitly programmed—reporting the definition given in
1959 by A. Samuel [38]. Indeed, a machine learning model imitates the way that
humans learn, leveraging the experience retrieved from collected data.In particular,
Reinforcement Learning is a computational approach that, through a process of
trial and error of interactions with the environment, teaches to a specific agent a
behavioral policy to face a given problem. Following the definition of Richard S.
Sutton and Andrew G. Barto [39], Reinforcement Learning is

a computational approach to learning whereby an agent tries to maximize
the total amount of reward it receives while interacting with a complex,
uncertain environment.

Indeed, we have to see the agent as an infant that takes the first steps in the
surrounding world, being himself a part of that same world. As shown in Figure
3.5, the trial and error approach appears very clear: each action taken in the
unexplored environment can produce good or bad results, which are represented by
the returned reward. The agent’s goal is to maximize the total reward on the long
term, thus being farsighted in the chosen behavior.

In fact, the great strength of RL is the ability to learn as a human and beyond
a human. The method of trial and error, driving the learning process of the agent,
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Figure 3.5: RL interaction schema. Here we can see the interactions between the agent
and the environment. In the endless loop, the agent moves himself inside the environment
and, after each action, he comes out to be in a new state, with more knowledge about
the previous one, reinforced by the reward.

can open to a huge range of possibilities, including some still unexplored by human
beings. That’s because RL aims to start the training from a condition of zero
prior knowledge, with the tabula rasa approach, getting rid of that bias which
always influences human choices. Silver et al. have shown how RL can impressively
overcome human intellect and experience, first with AlphaGo [40] and then with
AlphaZero [41], two programs become main experts in the games of Go, Chess and
Shogi.

After these incredible results, seems reasonable to wonder if a RL agent would
bring the same outcomes in a CPS environment, which can be affected by several
different stimuli and, in the worst case scenario, heavily compromised by them. In
our case, as previously explained, the environment is a water distribution system
and the RL agent has to face a problem of resilience, keeping the network robust
against cyber-attacks. An interesting topic could be understanding if the algorithm



CHAPTER 3. BACKGROUND 25

can bring some novelty in the way we deal with this problem, or if it simply would
confirm the approach we have adopted until today. However, the main benefit
should come from the automation of the optimal real-time control problem, which
could potentially replace the action of a human inspector and react immediately
after the detection of a cyber-attack, reducing the negative impact on the CPS.

Among the several algorithms present in reinforcement learning literature, we
choose to adopt the Deep Q-Network agent, which smoothly fits with the WDS
environment, as we explain in Section ??. Hereinafter, we will exhibit a general
presentation of the algorithm.

3.4.1 Theoretical Concepts

In this subsection we spend few words about generic notions of RL. We will take
back them in subsection 3.4.2, together with more theoretical concepts about Deep
Reinforcement Learning, to better understand the nature of the DQN algorithm.

Markov Decision Process

Markov Decision Processes (MDPs) are mathematically idealized frameworks that
have been adopted by reinforcement learning to reduce problems to mathematical
structures for which precise theoretical assertions can be made. Finite MDPs allow
to represent the problem as a framing structure, which is useful to straightforwardly
describe the interaction between the agent and the environment.

Formally, a MDP is defined as a tuple < S,A, P,R, γ, µ >, such that:

• S is the set of observable states of the environment. If the problem allows to
completely explore the environment, the MDP is said fully observable and S
contains all the possible states. Otherwise we have to deal with a partially
observable MDP.

• A is the set of actions that the agent performs to interact with the environ-
ment.

• P : S × A× S ′ → [0, 1] is a state transition probability matrix, which, given
two states s, s′ ∈ S and action a ∈ A, represents the probability to reach s′

from state s by performing action a.

• R : S × A → R is a reward function which indicates the returned reward
achieved by the agent by performing an action a ∈ A from a state s ∈ S.

• γ ∈ [0, 1] is the discount factor used to weight the reward across the time:
more it is closer to 0, more the agent focuses on the immediate reward with
a myopic attitude; more it grows to 1, more the agent will be farsighted.
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• γ : S → [0, 1] is a probability distribution over S that specifies the probability
of start an episode in a state s ∈ S.

The combination of these tuples gives rise to sequences or trajectories that are
structured like:

S0, A0, R0, S1, A1, R1, S2, A2, R2, S3, ...

The values of subscripts in the sequence represent the different interval of time
along which the episode, namely the whole progression of a sequence, from its start
to its end, takes place. From Figure 3.6 we can clearly extract a generic trajectory
following the interaction between agent and environment.

Finally, in MDPs the environment must respect the Markov Property, which
means that rewards and transaction functions everywhere across the environment
depend only on current state and action—one-step dynamic—and are completely
unrelated with past trajectories taken of the agent.

Figure 3.6: Markov Decision Process. The figure represent the interaction between
agent and environment in a MDP.

Policy

A policy is a probability distribution π over actions in a given state s ∈ S, such
that π : S × A → [0, 1]. In other words, the policy represents the agent’s behavior,
depending only on his current state—since MDP policies are stationary (not time-
dependent)—so the likelihood of choosing certain actions against others.

A problem related to the choice of a policy is the exploration-exploitation
dilemma. An agent following a policy may end up to sweep always the same
trajectories, jeopardising to be stuck in a local optimum. Indeed, (s)he will exploit
always the same policy, being myopic against other solutions of the problem. For
this reason, it’s necessary the exploration phase, in which the agent can adopt a
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more random behavior, realising the possibilities he has and searching optimal
choices among them.

This problem is known as exploration-exploitation trade-off and presents different
solutions, like ϵ-greedy policies, which select the best action with probability 1− ϵ
or a random one the rest of time, or softmax action selection, that improves the
previous technique by ranking and weighting the suboptimal actions, so that they
don’t have anymore the same outcome probability when a random action is selected.

Value Functions

Given a policy π, it is possible to define the utility of a state, so a value that allows
the agent to understand which policy to choose against the others. This evaluation
is expressed in term of expected return, namely the expected discounted sum of
future rewards that the agent can collect starting from a given state s ∈ S and
following policy π. The expected discounted return is defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1, (3.1)

where γ ∈ [0, 1] is a parameter called discount rate.
The function V π : S → R, mainly used in policy evaluation problems, that

computes the utility of a state is called state-value function and is defined as:

V π(s) = Eπ[Gt|st = s] (3.2)
= Eπ[Rt+1 + γGt+1|st = s] (3.3)
=

∑
a∈A

π(a|s)
∑
s′,r

P (s′, r|s, a)[r + γV π(s′)] (3.4)

Instead, for policy control problems, it’s easier to consider the value of the action
in each state and this is possible with an action-value function Qπ : S × A → R,
defined as:

Qπ(s, a) = Eπ[Gt|st = s, at = a] (3.5)
= Eπ[Rt+1 + γGt+1|st = s, at = a] (3.6)
=

∑
s′,r

P (s′, r|s, a)(r + γ
∑
a′∈A

π(a′|s′)Qπ(s′, a′)) (3.7)

Equations 3.4 and 3.7 are known as Bellman Expectation Equations, which de-
compose state-value function and action-value function into the immediate reward
plus the discounted value of the successor state or state-action couple respectively.
With these equations it is possible to evaluate and estimate the utility retrieved by
following a given policy, as a measure of policy goodness.
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In finite MDPs, we can precisely find a policy which is the best among the
others, namely the optimal policy π∗. Thus, since the evaluation metric of policies
is the utility given by value functions, this policy will be selected by the Bellman
equations that maximize that utility. Moreover, we will call the functions to find
π∗ optimal value functions, which are defined respectively as:

V ∗(s) = max
a∈A(s)

Qπ∗(s, a) (3.8)

= max
a

∑
s′,r

P (s′, r|s, a)[r + γV ∗(s′)] (3.9)

Q∗(s, a) = max
a∈A(s)

Qπ(s, a) (3.10)

=
∑
s′,r

P (s′, r|s, a)[r + γmax
a′

Q∗(s′, a′)] (3.11)

Equations 3.9 and 3.11 are called Bellaman optimality equations. The first one is
derived from the optimal state-value function and expresses the fact that, under an
optimal policy, the value of a state corresponds to the expected return achieved
through the best action chosen from that state. The second one represents the
optimal action-value function and supports the idea that if the optimal value
Q∗(s′, a′) of state s′ at the next step is known for all possible actions a′, then we can
achieve the optimal policy by selecting the action a′ which maximises the expected
discounted reward—specified inside square brackets.

3.4.2 Deep Q-Learning

Before starting to introduce the adopted algorithm, we need to make an elucidation
about the name: in this work we will use the terms Deep Q-Learning and Deep
Q-Network interchangeably, following the convention adopted by the Python library
MushroomRL [37], which prefers the second one. However, with a more formal
approach, we should say that the correct algorithm name is Deep Q-Learning and
that Deep Q-Network denotes only the deep neural network model exploited by it.

Origin and Overview

The born of DQL is due to DeepMind researches in 2013, when they implement
the algorithm to let an agent learn how to play Atari games through reinforcement
learning [42]. The work was a success, because they found out that the new
algorithm outperformed all previous approaches and also, in some cases, a human
expert in Atari games.
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The DQL is conceived from a variant of Q-Learning, a tabular RL algorithm,
which trains a deep learning model, using stochastic gradient descent to update the
network weights. In addition, an experience replay buffer has also been inserted,
which collects previous transactions and randomly samples among those, to smooth
the training distribution with respect to past behaviors. In the shortlist of RL
algorithms, DQN take place inside Model-free, Value Based and Off-Policy cluster,
as can be seen in Figure 3.7. The table shows RL taxonomy, splitting the wide
range of algorithms in two major sets, MDPs and bandits—basically, MDPs with
a single state. The second dichotomy is between model-based and model-free. In
this last group belong the most famous RL algorithm, like SARSA, explained also
in [39], or Q-Learning [43]—inside the value-based branch—and TRPO [44] or
A2C [45]—among policy-based. Moreover, frameworks as DDPG [46] has an hybrid
apporach.

DQN is considered model-free because it doesn’t need, during the learning or
acting phase, a machine learning model to predict the response of the environment
and evaluate possible future situations before they are actually experienced – the
so called planning. Instead, it acts in a trail-and-error manner, without caring in
advance of the environment reply.

Secondly, the attribute value-based, in contrast with policy-based, indicates that,
in the learning process, DQN stores only value functions, not an explicit policy,
which can be directly derived from the value function that selects more promising
actions. Moreover, value-based algorithms are usually more sample efficient, even
if they suffer of poor convergence with respect to policy-based ones which tend to
directly learn the policy and are more stable.

Indeed, many value-based algorithms similar to Q-learning are part of off-policy
algorithms. This means that they update Q-values using those of the next state s′

and the greedy action a′, assuming a greedy policy was followed even if the current
policy is not the greedy one. In other words, the current policy is always improved
referring to Q-values of the greedy policy. Conversely, on-policy algorithms update
their Q-values using the Q-values of the next state s′ and the action of the current
policy a′′, so the policy used for updating and the one used for acting are the same,
unlike in off-policy methods.

Value-based off-policy algorithms result to be more sample efficient, since they
can get the most out of every sample, but at the same time more unstable, because
they learn from value functions – and not directly from the policy – and don’t
update Q-values on the current policy, but exploit another one that could be very
dissimilar from the previous.

As DQN, many RL algorithms leverage the estimation of the action-value
function, iterating the update of the relative Bellman equation through consecutive
steps, such as Qi+1(s, a) = E[r + γmaxa′ Qi(s

′, a′)|s, a], since it has been proved
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Figure 3.7: Taxonomy of Reinforcement Learning, source [47]. This is a schematic view
of concepts and algorithms present in RL field. Depending on problem structures, from
here we can infer how to lead our modeling.

that such value iteration method converge to Q∗, as i → ∞.
However, this method is unusable in practice, because many environments

present a huge state space. In fact, value iteration allows to estimate the action-
value function separately for each different trajectory, but, since the number of
sequences in large state space problems is enormous, the time and data required
to gain a discrete knowledge of the environment become critical. Moreover, this
method doesn’t allow any sort of generalization between different sequences, which is
a big limitation. For this reason, it is more common to use a function approximator
to estimate the action-value function, Q(s, a; θ) ≈ Q∗(s, a), which can be a linear
or non-linear function, such as neural network.

Thinking about our DQL, with a neural network function approximator with
weights θ, called Q-network or deep Q-network (DQN) if it has multiple hid-
den layers, we are provided with a model that can be trained by minimising
a sequence of loss functions Li(θi) changing at each iteration. Having yi =
Es′∼E [r + γmaxa′ Q(s, a′; θi−1)|s, a] as the target of the loss function for each itera-
tion i, where E represent the environment and the weights from previous step θi−1

remain fixed during the optimisation of Li(θi), and ρ(s, a) as probability distribu-
tion, called behaviour distribution, over states and actions, we can formalize the
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loss function as:

Li(θi) = Es,a∼ρ(·)[(yi −Q(s, a; θi))
2]. (3.12)

Even if the approach could seem similar to supervised learning, here targets depend
on the network weights, instead of being fixed from the beginning of the learning.

Computing the derivative of the loss function with respect to the weights we
get the subsequent gradient:

∇θiLi(θi) = Es,a∼ρ(·);s′∼E [(r + γmax
a′

Q(s′, a′; θi−1)+

−Q(s, a; θi))∇θiQ(s, a; θi)]. (3.13)

The computation of the full expectations in the previous gradient could be com-
putationally expensive, thus it is often optimized using the stochastic gradient
descent [48]. The approach can be traced back to the Q-learning algorithm if
we update the weights after each step and replacing the expectations with single
samples taken from the behaviour distribution ρ.

The algorithm

Here we want to analyze the DQL more in depth, delving into code-level details.
As we can see from the pseudocode (see Algorithm 1), DQN uses a structure
called replay memory, where are stored samples of the past agent’s experience, in
tuples like et = (st, at, rt, st+1). This technique, namely experience replay, works by
randomly drawing samples from the replay memory buffer to perform a Q-learning
update to neural network weights. After this phase, the agent selects and executes
an action chosen in accordance with the ϵ-greedy policy. Then it will retrieve a
new state space from the environment and will generate another sample for the
replay memory.

The update of neural network weights is computed thanks to equation 3.12,
representing the loss function as a squared error between the target Q and the
predicted Q. Indeed, in DQN we use two identical neural networks with the same
architecture, one for the target Q and the other for the predicted Q. This method
allows to improve the stability of the algorithm, considering the target approximator
as a ground truth and updating at each iteration the other model. Also the target
approximator has to be updated at a certain point and its update frequency is
considered as a hyperparameter by the algorithm.
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Algorithm 1: Deep Q-Learning with Experience Replay, pseudocode
from [42]

Initialize replay memory D to capacity N ;
Initialize action-value function Q with random weights;
for episode=1, M do

Initialize sequence s1 = {x1} and preprocessed sequenced ϕ1 = ϕ(s1);
for t=1, T do

With probability ϵ select a random action at, otherwise select
at = maxa Q

∗(ϕ(st), a; θ);
Execute action at in emulator and observe reward rt and image xt+1;
Set st+1 = st, at, xt+1 and preprocess ϕt+1 = ϕ(st+1);
Store transition (ϕt, at, rt, ϕt+1) in D;
Sample random minibatch of transitions (ϕj, aj, rj, ϕj+1) from D;

Set yj =

{
rj for terminal ϕj+1

rj + γmaxa′ Q(ϕj+1, a
′; θ) for non-terminal ϕj+1

Perform a gradient descent step on (yj −Q(ϕj, aj; θ))
2 according to

equation 3.13
end for

end for

DQN has many advantages with respect to standard Q-learning. First, it has
a greater data efficiency, since it can potentially maximize the exploitation of
experience samples reusing them in different updates. Second, using experience
replay, it overcomes the problem of learning from consecutive samples that are
strongly correlated, causing inefficiency. Third, the behaviour distribution is
averaged over previous states, reducing divergence and oscillations in parameters
and smoothing the learning. However, a limitation could be the structure itself of
the replay buffer, since it is limited to N samples that are overwritten by newer
once. There exist more sophisticated approaches that adopt a prioritized memory,
giving more emphasis to some transitions against the others, since they are believed
more relevant [49].
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Approach

Here, we present the concrete structure of the problem. We start from the hydraulic
network we took into account, talking about system interactions, formalizing the
optimal control problem and describing how we make it fit with the observed
environment. Finally, we analyze the cyber-attacks adopted to performed the
experiments reported in Chapter 5.

4.1 System Model
The system taken into account is, first of all, composed by a physical water network,
called Anytown. Anytown mirrors the features of a small-medium size city and it is
very well-known in literature. We chose Anytown for its humble dimensions, since
a bigger topology, like C-Town or KY3 would increase the time complexity of our
problem. However, Anytown is large enough to test different type of cyber-attacks,
proving to be as interesting as a bigger water distribution system.

As shown in Figure 4.1, Anytown is made up of a reservoir (R0), providing water
to the system, and two tanks, T41 and T42, which have the task of maintaining a
certain level of pressure across the network. The tanks release stored water in high
usage periods, while the two pumps, P78 and P79, control hydraulic level across
the system. There are also twenty-two junctions connecting a discrete number of
pipes. Each component has two kind of properties: static and dynamic. Static
properties are enlisted in the .inp file, provided as input to the simulator and
formatted following the EPANET-toolkit instructions [50], and represent structural
characteristics that do not change over time, like minimum and maximum level of
tanks, base-demand of junctions or initial settings. Conversely, dynamic properties
are variables computed at runtime by the simulator and can be read-only, like
pressures of tanks and junctions, or changeable from external inputs, as status of
pumps.

33
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PLC PLC1
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Figure 4.1: Anytown water distribution system. In the snapshot is depicted the physical
layer and the ICS equipment composed by PLC1, an actuator appointed to control pump
status, and PLC2 and PLC3, sensors designated to retrieve tanks and junctions values. In
the physical layer we can clearly distinguish the reservoir, pumps and tanks, highlighted
by respective symbols and labels. However, even if not labeled, we can observe also
junctions and pipes, which are respectively black dots and segments in between.

On top of the physical layer, takes place the cyber-layer, comprising ICS
equipment and the industrial control network. As shown in Figure 4.1 the ICS
equipment is composed by three PLCs, namely PLC1, PLC2 and PLC3, interacting
with the physical layer through sensors or actuators. Moreover, a centralized
SCADA server, not represented in Figure 4.1, receives and stores information
coming from sensors and sends control data to the actuators. However, PLCs, if
adequately configured, can also exchange information among themselves, without
passing throw the SCADA server.

In our configuration, PLC2 and PLC3 act as sensors, reading node values from
the physical layer and sending them to the SCADA. Each of them belongs to a
different substation, as explained in Section 4.4, and collects readings from targets



CHAPTER 4. APPROACH 35

defined in the PLCs Config File, described in subsection 3.3.2. On the other hand,
PLC1 acts as an actuator, receiving information from the SCADA server and
performing the control action on both pumps.

Concretely, the readings and actuators variables are assigned as indicated in
Table 4.1. All the enlisted variables are dynamic properties of the system: the ones
read by sensors are read-only variables, instead the others managed by the actuator
clearly not. Moreover, the tanks belong one to each sensor and also variables are
assigned not at random, but considering PLC2 responsible for the right side of the
network and PLC3 of the left side, following the principle of local proximity.

PLC Type Main Secondary

PLC1 Actuator P78(status)
P79(status)

PLC2 Sensor T41(level)
J20(level)

demand and supply of following junctions:
J21, J14, J2, J13, J1, J3, J6, J15, J5, J19

PLC3 Sensor T42(level)
demand and supply of following junctions:

J4, J18, J12, J7, J8, J16, J17,
J11, J10, J9, J22

Table 4.1: PLCs variables. In the table are enlisted the PLCs deployed for Anytown,
specifying their type and variables whose PLCs manage the value. The distinction
between main and secondary is the following: main variables are necessarily collected
to populate state and action spaces of the control agent; secondary variables are
useful for the computation of the custom objective function, but not for the MDP
definition. We explain this in details in Section ??

Along with network the components, the system presents also some important
parameters, essential to outline the trend of the simulation. Indeed, to reproduce
an experiment it is necessary to set reasonable demand patterns, which in EPANET
are conceived as lists of multipliers that define the water request across the system
for the entire duration of the analysis. Demand patterns can be considered the
main input of the environment, since they drive the scenario in which we want to
test the network.

In addition, EPANET requires also to specify the demand model option between
two choices: Demand-Driven analysis (DDA), which assumes that nodal flows are
always satisfied at all demand nodes regardless of the available pressures at those
nodes, or Pressure-Driven analysis (PDA), which takes into account the pressure
at demand nodes. The difference between the two modalities, as shown by authors
of [51], is met in presence of pressure deficit, where the the DDA risks to register
negative pressure values, unrealistic in a real-world scenario. For this reason, in
our experiment we always prefer to use PDA.
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Finally, other important parameters are the time options. By means of these,
we can, for example, decide the duration of the experiment, the time interval for
sampling the state of the network, the frequency of demand pattern updates and
many others, less relevant for this work.

4.2 Epynet
As explained in Section 2.2, the first objective of this work is the enrichment of
the Digital HydrAulic SIMulator (DHALSIM) with a new Python library, created
to wrap the EPANET simulator [31]. This object-oriented wrapper, called Epynet
and developed by Vitens, the largest water drinking company in The Netherlands,
is an open-source library, available on GitHub [21].

Epynet is presented as a simple and clean Python library, easy to investigate
and well-organized. It looks like a mere implementation of the API functions made
available by EPANET’s developers and it is conceived by Vitens to improve and
optimize the water treatment and distribution process. Actually, the project seems
to be quite inactive and not constantly updated as the WNTR library, but it has
been a good starting point for our work, proving to be a suitable wrapper after
some modifications.

The attraction of Epynet with respect to WNTR, the already integrated
EPANET wrapper, is the possibility to run experiment in a step-by-step manner,
feature not available in WNTR, which works like a black-box tool. This stepwise
simulation, enriched by us with the possibility to apply controls action at runtime,
is important both from a cyber-security and a reinforcement learning point of view.
From a cyber-security point of view because, it allows to study frame-by-frame the
internal state of the WDS undergoing cyber-attacks, analyzing the correlation of
disrupting events with the consequences on the physical layer. The study could
be lead also with WNTR, checking the results at the end of the experiment, but
without the possibility to infer the network properties at runtime. From an RL
perspective, we have the opportunity to know the real-time system state opens up
to the use of an online algorithm assessing the control problem. Indeed, the stepwise
feature allows the control of overwritable dynamic properties, like the pump status,
giving a great incentive to the conception of new interactive experiments, in which
the researcher can stress the system with specific crafted stimuli given at runtime.

Although the introduction of a feature like the stepwise simulation is essential
to achieve the next goals presented in Section 2.2, thus being a mandatory stage for
the completion of this work, the integration of Epynet gives also other advantages,
in term of performances. Indeed, being a lightweight wrapper with respect to
WNTR, which provides more advanced features—not significant for this work, like
the computation of pipe leaks caused by disrupting events—it allows to considerably
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reduce time complexity, especially in experiments analyzing huge WDS topologies,
with no relevant differences regarding the accuracy of results.

4.3 Control Problem
In this section we explain how we conceptualize the heart of this work, which
inspires the title of the thesis and constitutes the core of second and third goals
explained in Section 2.2: the control problem.

The control problem is the task of determining control and state trajectories
for a dynamic system which can change over time, with several applications in
different fields, like aerospace, robotics, economics, finance and so on. Actually, the
interesting part of this topic regards, more than the generic version, the optimal
control problem, namely the process to find a law to control a system such that an
objective function is somehow optimized. The objective function can be a reward
function that has to be maximized or, conversely, a cost function that needs to
be minimized. For example, a possible task of optimal control could be finding
the best route that minimizes the driving time between two cities, considering
constraints, such as limited amount of fuel, and laws between variables, like the
fuel consumption proportional to the speed of the car.

The first consideration to do, studying a control problem, is understanding the
configuration of the system that has to be controlled. Indeed, as shown in Figure
4.2, there exist two different formalization: we can have an open loop system or a
closed loop one. An open loop control system is a system in which the output does
not affect the control action of the system, so there is no feedback loop between
output and input. On the other hand, a closed loop control system presents one or
more feedback loops between its output and input, allowing to reach the required
output by evaluating the provided input by means of an error signal that highlights
the diversity between output and input. The advantages brought by an open-loop
control system are the simplicity, stability and speed of response. Nevertheless,
closed loop control systems result more reliable, accurate and not affected by system
disturbance.

4.3.1 WDS Optimal Real-Time Control Problem

In this work, we aim to study the application of the optimal control problem to
a water distribution system, initially evaluated in normal operating conditions
and then with the addition of cyber-attacks. As explained in Section 2.1.3, in
literature the WDS optimal control problem is often conceived as a pump scheduling
problem and it is assessed by means of deterministic optimization algorithm or
metaheuristics. These solutions typically consider the WDS as a open loop control
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Figure 4.2: Control problem schema. In the upper side is represented the schema of
an open loop system, deprived of any feedback loops. Below, is illustrated a closed loop
control system, which differs from the previous one for the presence of the feedback loop.

system [52], providing different inputs to the network in terms of pumps schedules
and evaluating which one produces an output as similar as possible to the desired
one.

However, the adoption of a reinforcement learning algorithm to perform the
optimal control problem entails a closed loop structure. In our case, we tackle
the problem with a continuous interaction between the agent and the environment
where the input of the closed loop is directly dependent on the output of the
previous cycle. We think that, in WDS environment, a closed loop approach could
be better than an open loop one especially in presence of cyber-attacks, where the
input of the controller can drastically change—we explain details in Section 4.4.

Speaking more concretely, in a WDS, following the closed loop system depicted
in Figure 4.2, the input signal is the system state, namely, using MDP notation, a
state s ∈ S, where S in the set containing all the possible states of the environment.
The controller is the RL agent, in this case a DQN, which, given the current
state, chooses the best control signal, so the best action a ∈ A, to apply to the
physical process. The component of DHALSIM appointed to provide outputs is
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the EPANET simulator, enveloped by Epynet wrapper, and the yielded output is
nothing else than a new state s′ ∈ S. Translating the theoretical concepts in more
practical ones, as shown in Figure 4.3, at the beginning the agent is fed with the
following variables, belonging to the state space:

• a time variable, which gives a temporal information;

• node level variables, providing the pressure registered inside specific nodes;

• trend variables, regarding the tendency of demanded water across the network;

• attack related variables, which can give information about ongoing attacks,
as a detection algorithm.

The agent, after elaborating the received variables, outputs a control action aimed
to select the status of pumps. These actions can vary in number depending on
the amount of controlled pumps, but in the simpler version, considering only one
pump, the feasible actions are just two:

• turn on the pump;

• turn off the pump.

In presence of multiple pumps the actions are 2n where n is the number of pumps,
one for each possible combination of pumps status.

Figure 4.3: Closed loop control of WDS. The picture describes the general concept
behind the closed loop control problem of considered water distribution system.

The selected action is given in input to the simulator which perform a step of the
simulation, collects the results, consisting in a new state of the environment, and
sends it back to the controller, which has to choose a new action for the next step,
and so on until a terminal state is reached. In addition to the new environmental
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state, the comparison between the computed output and the expected one is
represented by a loss function calculated by the agent and useful to understand
if the prediction process has been accurate enough. To do so, we use a reward
function, computed on the new configuration of the environment, that helps to
update the weights of the neural network. The choice of the control action depends,
for the majority of times, on those weights which calibrate themselves on values of
the observed state. The reward function used in this work is described in Section
5.1.3.

The optimal criterion that leads to the actuation of the control actions is
generally oriented to keep the pressure across WDS within specific bounds, to avoid
tanks overflowing, generated by an high level of water in presence of a poor request,
and network dehydration, caused by a small level of water during periods of high
demand. A measure that can guarantee the satisfaction of the optimal criterion
is the Demand-Satisfaction Ratio (DSR), which computes the ratio between the
amount of supplied water and the quantity of requested one, outputting a value
included between 0 and 1. The DSR represents the ability of the WDS of answering
to the needs of consumers. Another optimal criterion usually considered is the
minimization of pumps energy consumption. Indeed, the pump scheduling problem
could be a way to optimize the use of pumps in the network, avoiding high costs and
energy wastefulness. However, in this work we do not consider the minimization of
energy consumption as a goal to achieve, since in presence of cyber-attacks we are
more interested in preserving the reliability of the system, rather than restricting
the utilization of pumps.

The benefit brought by the exploitation of a reinforcement learning technique
is the possibility to teach the system how to adapt to environmental variations,
in real-time. The optimal criterion is craved at each step of the simulation and
the agent tries to reach it in the choice of every single control action. Instead,
with an open loop configuration control actions are decided at the beginning of the
simulation and the optimal condition is measurable only at the end of the entire
process. In addition, this configuration could lead to many problems in presence of
drastic changes within the system, since it does not have a feedback loop bringing
useful information on past experience.

4.4 Attacker Model
Here, we focus on the part of the thesis related to cyber-security threats, showing
where the attacks can be deployed and which vulnerabilities we consider in the
experiments. As mentioned in Section 3.3, cyber-attacks are provided by DHALSIM
itself, which creates a specific process handling the attacks declared in the Attack
Config file—presented in subsection 3.3.2.
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4.4.1 Cyber-layer of Anytown

As shown in Section 4.1, the cyber-layer of Anytown is made up of three PLCs and
one SCADA server interacting by means of a stack of communication protocols,
illustrated in Figure 3.3. Since the WDS is a spatially distributed system, it’s
reasonable that the cyber-layer is not located within a single Local Area Network
(LAN), unable to cover too large areas. Thus, as depicted in Figure 4.4, there are
four different LANs, called substations, one for each PLCs and the fourth for the
SCADA server, connected together with a single Wide Area Network (WAN).

From a cyber-security perspective, the implications of this structure are that
an attacker can compromise only one ICS component for each substation, so (s)he
has to spend more resources to tear down two PLCs at the same time. Indeed,
if all the PLCs were located in the same substation, it would be sufficient only
one attack to compromise all of them. Moreover, the expedient of the substations
allows the researchers to study single parts of the network struck by attacks or to
implement double attacks hitting two substations at the same time, analyzing the
different impacts on the WDS.

DHALSIM, as explained is subsection 3.3.2, provides two kind of attacks, namely
device attacks and network attacks. The first ones are oriented to strike PLCs
behaviour, changing the way they apply the control logic, like a Denial of Service
attack. Thinking to Figure 4.4, a DOS attack can strike for example substation
2, preventing PLC1 to apply the control action on the pumps. In the same way
can also be disrupted PLC2 or PLC3, impeding the correct collection of readings
of the network state. In both cases, the scan cycle is compromised because a
necessary control action cannot be applied or relevant network information remain
concealed. On the other hand, network attacks work in another way and aim to
tamper the connection between two or more ICS components. A common threat is
the Man-In-The-Middle (MITM) attack, which can jeopardize the data integrity
without directly disrupting the PLCs. Moreover, this kind of attack could be more
difficult to detect with respect to device attacks, since the cyber-layer does nt stop
working and the ICS equipement is not struck down.

4.4.2 Attacks

Among the cyber-attacks provided by DHALSIM, only some of them results
reasonable to be experimented in the order to assess the optimal control problem.
Indeed, in this work, we tested only specific configuration of network attacks that
can fit with the configuration of the experiment. In fact, striking down a PLC with
a DOS attack would compromise the unfolding of the simulation itself since the
synchronization messages with the control agent are totally lost. At the same time,
certain network attacks that tamper the communication towards actuators result
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Figure 4.4: Antown cyber-layer. In the figure is depicted the structure of the digital
layer of Anytown, with the four substation containing a PLC or the SCADA server. Every
substation represents a single LAN and all the four LANs are connected together by
the WAN router. The attacker drawn in substation 2 is trying to compromising the
connection towards PLC1, used to apply the control action.

useless in this environment, because they prevent the researcher to analyze the
impact of the control agent.

Actually, a MITM attack is a quite complex attack that needs some preliminary
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steps. Indeed, the attacker has to fake himself to be a component of the network to
be trusted by other devices. In Figure 4.5, we can see that the attacker first of all
sniffs packets routed to PLC1 from other addresses. Then, with an ARP spoofing
attack, he puts himself in the middle of the communication between PLC1 and the
relative switch and he start to control the traffic in both directions. In this case,
he clearly wants to fool PLC1 by sending outdated or modified data, changing the
ending of the control action to his liking. Moreover, this kind of attack is not so
easy to detect. Indeed, realizing that an attacker is performing a MITM on some
channels of the network, it does not always suffice to control the output control
actions, since he could have thought to make them plausible. The proper way
to discover the attack implies the utilization of a packet sniffer that can discover
some suspicious ARP request from a unknown IP address. Another way to prevent
MITM attacks consider to establish a safer communication with protocols that can
impede this kind of threats, like SSL protocol.

PLC

P79P78

PLC1
192.168.1.1

Attacker

192.168.1.254

Substation 2

192.168.1.2

s3  
r2

T42

T41
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Figure 4.5: MITM attack. Here we can see in details the Man-In-The-Middle attack. In
step (1) the attacker sniffs the packets coming from the sensors and provided to PLC1,
the actuator, stealing session information. Then, he performs an ARP Spoofing attack
to put himself in the middle of the communication between PLCs (2). Thus, he crafts
packets containing sensors readings as his liking, with the purpose to fool the actuator,
and he sends the packets to PLC1 (3). The unaware actuator applies the control logic
suggested by received packets, compromising unintentionally the system.

In this work we focus on two specific case of MITM attack, which aim to threat
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the integrity of sensors reading sent to the control agent. This means that the
attacker can try to place himself between PLC2 and the SCADA server, corrupting
information regarding the right side of the network, or between PLC3, supervising
the left side, and the SCADA server, or even both together. Our intention is trying
to fool the control agent, located on the SCADA server, with tampered data that
should be used to train the neural network. In this way, we try to test the resilience
of the network in front of fake information with two different settings: one in which
the attack is concealed to the agent and one where the agent knows that an attack
is ongoing, as if (s)he got a perfect anomaly detector.



Chapter 5

Experimental setup

In this chapter we describe the concrete application and the implementation of the
theoretical concepts explained so far. First, we talk again about the control problem,
by delving into the explanation of interactions between agent and environment.
Here, we can grasp the shape of the environment seen by the agent, how the
agent controls the physical system and what are the reasoning behind each control
decision. Secondly, we present the integration of Epynet and of the control agent
with DHALSIM. Then, we describe the input data provided to the framework and
the corresponding obtained output. In the end, we show the configuration of the
experiments and the parameters used for the simulations.

5.1 Agent and Environment
Here, we explain in details the interactions between the agent and the environment
of the cyber-physical system. Actually, the environment seen by the agent is not
really the whole cyber-physical system, but only its physical processes, the water
distribution network, because it is not aware of the ICS equipment and the traffic
across the communication network. Indeed, since the agent is deployed on the
SCADA server, we can see the it as a part of the cyber-physical system itself,
because it implements the reasoning of the controller.

As explained in the background chapter 3.4.2, the agent is the Deep Q-Network
(DQN), a RL algorithm appointed to solve the optimal real-time control problem
tackled by this thesis, described in Section 4.3. In other words, DQN is the mind
behind each control action, thus the brain and the knowledge keeper of the whole
infrastructure. On the other hand, the environment is the Water Distribution
System (WDS) presented in Section 4.1, called Anytown, which is unaware of the
agent presence and evolves in relation to the stimuli given by actuators, namely
the two pumps.

45
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As shown in Figure 5.1, the interactions between agent and environment have
a looped structure and are driven by the ICS components. Specifically, PLC2
and PLC3 represent the sensors of the system and are in charge of reading the
environment state and send it to the SCADA server. Concretely, readings contain
values relative to node properties enlisted in Table 4.1. The agent runs in the
SCADA server and plays the role of controller of the system. Processing the
readings, it elaborates suitable actions for the actuators to optimize an objective
function. For example, in normal operating conditions, the objective function could
aim to maintain the pressure across the WDS within specific bounds, to avoid
situations of dehydration or overflowing. After getting the control action from
the SCADA, PLC1 updates the status of pumps, which govern the evolution of
the hydraulic network. The loop is closed by the simulation of the WDS until
the next hydraulic step, when the experiment is frozen in a frame and readings
are collected. Of course, in a real-world scenario the WDS does not stop to wait
the read of sensors and the execution of the remaining control loop, but this is a
reasonable approximation of the true process and a reliable test-bed to analyze our
experiments.

5.1.1 Observation Space

The observation space is the set of variables needed by the agent to grasp the state
of the environment. Indeed, observation space—the capital S of a Markov Decision
Process (MDP)—encloses the current configuration of the WDS and it is the only
information required to calculate the next control action. For the optimal real-time
control problem that we are facing, among the collectable variables of the system,
the ones that seem more reasonable to observe are:

• the timestamp of the current reading, split in time, intended as time of the
day, and day, the day of the week, useful to know which part of the day is
observed, since in a WDS the water demand changes across the different
hours of the day;

• the level of the tanks, namely T41_level and T42_level, since the evolution
of the system state depends on the water stored in the tanks;

• the pressure at the downstream junction of the pumps, i.e. J20_level, the
first junction registering inputs provided by pumps;

• the moving average of the current demand pattern, demand_SMA, computed
within a fixed rolling window to grasp the trend of water demand across the
network;



CHAPTER 5. EXPERIMENTAL SETUP 47

PLC1PLC2 PLC3

SCADA

WDS 
SIMULATOR

Figure 5.1: Control cycle. The figure represents the loop that drives interactions between
agent and environment. PLC2 and PLC3 send readings of the current state to the agent,
placed on the SCADA server. The agent processes network observations and outputs a
control action, that is sent to PLC1, to apply the control logic on actuators. Then, the
system evolves depending on the input given by pumps and the loop restarts from the
beginning.

• the attack flag, the under_attack variable, which simulates the output of a
perfect detector and specifies if in the current step there is an ongoing attack.

5.1.2 Action Space

The action space is the set of the control actions a ∈ A computed by the agent after
the investigation of the observation space. Those actions indicate the measure to
apply to actuators in order to satisfy the objective function and entail the change
of pumps status. In our case, since Anytown get only two actuators, namely pumps
P78 and P79, the possible actions that the agent can choose are 4 and are indicated
as follows:

• action [0]: both pumps closed;

• action [1]: P78 open, P79 closed;
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• action [2]: P78 closed, P79 open;

• action [3]: both pumps open.

Changing the status of the pumps is important because there is not always the
need to have both pumps active. Indeed, if the water level in the tanks is close
to its maximum threshold there could be the risk of overflow. Moreover, in some
cases it could be required to consider the energy consumption caused by active
pumps. At the same time, keeping the pumps always closed is not a good solution
since it could lead to a pressure drop.

5.1.3 Reward Function

To learn from experience the agent needs a sort of incentive, to confirm that it is
going in the right or wrong direction. This incentive in the RL field is called reward.
Thus, the reward function is the equation that outputs the reward achieved by
the agent in every single step. To learn, the agent has to maximize the obtained
reward, performing those actions that allow him to increase the output of the
reward function. For a researcher, is important to model a suitable reward function
in order to train a robust agent. This means that a reward encouraging the agent
to act as expected is not always a good idea, since it could lack of experience
derived from exploration. Indeed, exploring several observation spaces and building
a slower, but wiser, knowledge is better than rushing the planned solution and
could lead to unexpected and revolutionary ways to solve the problem. In our
case, the reward function is designed considering three principal concepts enlisted
hereafter:

1. The first is the satisfaction of the water demand across the network, which
represents the ability of the system to supply enough water to, for example,
city dwellers. To evaluate this measure we use the Demand-Satisfaction Ratio
(DSR), defined as:

DSR(t) :=
delivered_water(t)

requested_water(t)
=

∑
i∈J

JD
i (t)∑

i∈J
JB
i (t)

,

where J is the set of junctions in the system, JD
i the delivered water by

junction i and JB
i the requested water—B stands for basedemand—by the

same junction i. Notice that this measure is computed in a precise moment of
the simulation and represent the DSR only in a single instant. Indeed, from
now on we refer to it with the name step-DSR to distinguish it from a metric
presented in Section 5.3, used to estimate the goodness of the results at the
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end of the experiment, and called just DSR. The step-DSR, and actually even
the DSR, appear always as a value contained in the interval [0,1], because in
case the delivered water overcomes the requested one the result is cropped to
1.

2. The second is the number of status updates done by each pump. Actually,
this component of the reward function is conceived as a penalty variable
since we want to discourage the continuous change of pump status. The
reason is related to the fact that in a real-world scenario pumps are huge
machines that cannot be switched on or off in a second, but requires some
time to change their status. Moreover, without this penalty can happen the
alternation of actions 1 and 2, which are equivalent in term of effects on the
environment—since pumps are located in the same place—but that bring a
useless waste of energy. Finally, this term trains the model to choose more
accurately the control action, since if the selected action is wrong, it is not
totally free to roll back to previous settings for the next step. The number of
updates with respect to the previous state is computed as follows:

pump_updates := dH(bin(at), bin(at−1))),

thus as the Hamming distance between the binary representation of two
consecutive actions. For example, if at−1 = action[1] = bin(1) = 01 and
at = action[2] = bin(2) = s10, then DH(01, 10) = 2, so the number of updates
is 2. That also explain what said before about the energy wastefulness got by
alternating action 1 and 2, since the required updates are two, one to turn
off pump P78 and the other to switch on P79.

3. the third concept is related to the prevention of overflow problems. The
intrinsic nature of step-DSR, that tends to maximize the satisfaction of water
demand, allows to easily avoid pressure-drop issues, but at the same time,
increases the risk of tanks overflow. This comes from the fact that, without
putting an overflow penalty, the agent is trained to maximize the step-DSR
with as few updates as possible, so it basically learns to keep both pumps
active all the time. This surely brings wastes of energy and risks of tank
overflow. For this reason, we believe that it is reasonable to insert the overflow
penalty to discourage the aforementioned behaviour. The overflow term is
defined as follows:

overflow_penalty :=

{
tank_level−threshold

max_level−threshold
if tank_level > threshold

0 otherwise

where threshold = max_level ·risk_percentage, max_level is the maximum
level of water in the considered tank and risk_percentage is a parameter that



CHAPTER 5. EXPERIMENTAL SETUP 50

indicates when the agent starts to receive penalties—for example from the
95% of the maximum level. The idea is that the agent begins to get penalties
when one of the tanks overcome the threshold level and it continue to receive
bigger and bigger penalties as the pressure reaches the relative maximum
level.

The complete reward function, with the three terms presented above, looks like
this:

reward := step-DSR− pump_updates

2
− overflow_penalty

Notice that the pump_updates value is divided by 2. This is done to align the
maximum value reachable by all the terms and also to not give less priority to
overflow_penalty with respect to pump_updates. Indeed, without that division
the agent could learn to not update pumps—for example with a transaction from
action 3 to action 0—in case of overflow, since it would receive a lower reward.
However, in our opinion is more important to avoid an overflow event rather than
consume a bit of more energy by changing pumps status.

5.2 Implementation
Here, we describe the key features implemented during the development of the thesis.
We start presenting the implementation of Epynet [21], the Python wrapper of
EPANET, initially as a standalone environment and then integrated with DHALSIM.
Secondly, we speak about the implementation of the control agent in Epynet until
the total integration with DHALSIM. Indeed, before switching to DHALSIM, we
have setup a simple environment built on top of Epynet, which allows to run some
experiment considering only the physical process. This lightweight framework is
essential to test the results of simulations with Epynet wrapper, which has to
be consistent with those obtained with WNTR and EPANET. Moreover, it is an
important workbench for the implementation of the DQN, run in normal operating
conditions, since attacks are not implemented in this version.

5.2.1 Integration of Epynet

As a standalone wrapper, Epynet does not present a large number of features,
as it is designed to run simple experiment through the basic API provided by
Epanet’s developers within the EPANET-toolkit [50]. The strength of Epynet is
the possibility to perform the hydraulic analysis in a step-by-step manner, with a
combination of methods simple to understand and easily adjustable. Thus, from
a code-wise point of view, it is way less twisted than WNTR, which is a more
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structured library that appears as a black box framework, thus more complex to
modify at our liking.

The main and more significant change brought with our work is the introduction
of the interactive stepwise simulation, a cornerstone of this entire work. This feature
allows to run experiments stepping into the simulation a bit at a time, sampling
the state of the network with a frequency specified by the hydraulic step—a time
parameter written in the .inp file. After the generation of each sample, with this
functionality we can infer the measures of all links and nodes and we are able to
edit some current dynamic properties in the actuators, for example the status of
pumps. That is the reason why we define interactive the stepwise simulation.

Some minor modification are the additions of methods to set time options and
demand patterns, without the need to manually modify the .inp file, a method to
export simulation analysis in a well-organized .csv file, and the implementation
of Epanet API not exploited by the wrapper. Moreover, an important step is
the update of the Epanet library imported by Epynet, which is still remained at
version 2.1. Indeed, this release does not allow to perform Pressure-Driven Analysis
(PDA), but only the less realistic Demand-Driven Analysis (DDA). This feature is
implemented in Epanet from version 2.2, so with our intervention Epynet has been
updated to the most recent release and can assess PDA, as required by DHALSIM.

After these changes, the integration with DHALSIM is really straightforward.
Indeed, since it already presents methods to handle WNTR simulator which are
very similar, in term of functionalities, to Epynet’s ones, it is required only to split
the cases when the calling function needs to invoke a specific wrapper rather than
the other. To choose the desired one, we have only to set the simulator type in the
Config File, as explained in subsection 3.3.2, in correspondence of simulator key.
The main difference, regarding the portion of code related to Epynet, can be seen
in the method that runs the simulation. Here, with WNTR is called a single black
box function that basically complete the simulation by itself, without giving the
possibility to interact with the environment. Differently, in code lines related to
Epynet the different steps of the analysis are pretty clear and transparent, and this
structure let to the programmer the opportunity to change the behaviour of the
experiment.

5.2.2 Integration of DQN

The code-level implementation of DQN relies on a Python library called Mush-
roomRL [37], which provides a structured interface to import into projects the
most famous RL algorithms. In this work, the choice of DQN depends on a
couple of considerations. The first is that we need to have an agent capable to
deal with a discrete action space, since we basically have only 4 boolean actions,
and a continuous observation space. The second is related to the online nature
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of DQN, which perfectly fits with planned experiments, and its intrinsic sample
efficiency. Moreover, starting with a very well-known algorithm permits to have lot
of background literature behind, which can provide better strategies to build and
run the agent. However, this doesn’t mean that DQN is the best way to tackle this
kind of problem and, surely, as we explain in Chapter 7.1, it would be interesting
to study if also other agents can be adopted for this task.

DQN is integrated both with the standalone version of Epynet and with DHAL-
SIM. The first integration is less relevant to the purpose of this work, since it is
a mere workbench to test the behaviour of the agent and the effects on the envi-
ronment, like a proof of concept to check the feasibility of the second experiment.
However, even if with the standalone Epynet the process is quite straightforward,
the integration with DHALSIM requires way more work due to the distributed
nature of the framework.

Indeed, the complexity is due to synchronization and inter-process communica-
tion, which is handled by underlying libraries, like Mininet [36] and MiniCPS [20],
not yet fully supported in Python 3. As shown in Figure 5.2, the algorithm is
placed on the root process that starts the experiment. The tricky part is that DQN
is not the one which leads the simulation, deciding when to start the computation,
the amount of episodes to run and the exit condition, but he is more passive and is
provided with data by autonomous running processes. This also require to schedule
training and test in advance, so that the agent knows what kind of data will be
received. The exact flow of DHALSIM experiments is the following:

1. When an experiment starts, the framework creates immediately the control
agent instance;

2. The parser checks the schedule of the simulation, contained within the Config
File and declared as specified in subsection 5.4.2, and creates an intermediate
YAML file to store episode key parameters that will be read during its
simulation. Notice that an entire experiment is composed by several episodes,
usually representing the WDS analysis corresponding to simulations of a
week;

3. The root process creates for each episode all the CPS environment, which is
entirely deleted at the end of the single episode;

4. The CPS environment sends the first information to the agent instance and
the computation of the episode starts.

When we talk about CPS environment, we are approximating a very complex
structure composed by several autonomous processes which reproduce nodes of
the CPS network. The principal components of this structure are the four kinds
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of processes used to simulate respectively the physical system, the different PLCs,
the SCADA server and the attackers. Following the schema in Figure 5.2, we
can see that even if the agent is conceived to run on the SCADA server, in the
implementation is not placed inside the SCADA process, for two reasons: the first is
that the SCADA process is destroyed and generated at each episode, while the agent
has to run for all the experiments and it would be hard to configure following the
process behaviour; the second is due to the Python version of SCADA process, which
is the 2.7, when the agent requires Pyhton 3. Thus, the communication between
the two processes relies on an SQLite3 database, both to solve synchronization
issues and to exchange data. The database solution is copied by the method used
to handle the communication also within the CPS environment, since PLCs, WDS
and SCADA processes—all inheriting from MiniCPS and implemented in Pyhton
2.7—exchange part of the information through a SQLite database. The remaining
part of the communication is managed by MiniCPS interfaces, which emulate a
physical LAN and assigns to each process an IP address.

Root
process

Agent

SCADA
process

PLC1
process

PLC2
process

PLC3
process

Physical
process

Control
Database

Simulation
Database

Figure 5.2: DHALSIM Processes. Here is depicted a superficial structure of processes
running within DHALSIM to simulate the CPS. As can be noticed, the agent runs on the
root process and exchanges data with the SCADA server by means of a SQLite database.
The SCADA communicates with PLCs, by collecting information from sensors PLCs and
providing actions to the actuator. The PLCs store and read data into another SQLite
database that is connected to the WDS process, which retrieve and write data on it.

The agent process, to retrieve information about the system, behaves in different
ways. Implementation-wise, most of the variables inside the observation space
are collected through the communication with the SCADA server, by means of
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the so called control database. Some of these are the ones provided by PLCs and
specified within main column in Table 4.1. Others, like time variables are read
from an apposite table updated by the SCADA process, as well as the done signal
and the sync flag. Conversely, information related to demand trend and ongoing
attacks are taken from the intermediate YAML file. Moreover, data used for reward
computation are collected still from the control database and are the ones indicated
within column secondary in Table 4.1. Finally, after the computation of the training
step, the control action chosen by the agent is stored inside a different table of the
same control database and read by the SCADA process.

5.3 Input and Output Data
As it always happens with Machine Learning algorithms, also with this frame-
work some initial data are required to modify the behaviour of the environment,
reproducing different scenarios. This is essential to allow the agent to achieve a
robust knowledge and to increase its generalization ability, preventing the risk of
overfitting specific situations. At the same time, algorithms are usually designed
to provide well-organized output files to foster an accurate analysis.

In this environment, we consider as input data the different weekly demand
patterns, which control the trend of requested water across the WDS. In this way,
we can simulate against several scenarios, both with low or high water demand. The
patterns are created with a Jupyter Notebook that relies to a generic utilization
table, varying in relation to the time of the day. For example, during nights we
expect to have a lower request of water, since city dwellers are typically asleep,
instead during the day we expect to see higher demands. The patterns are adjusted
with a noise, in order to get different trends which respect a common generic
behaviour.

The training set contains a wide range of patterns to let the agent see several
scenarios, almost 315, which are randomly selected at the start of each episode.
The set is equally populated by lower and higher demand patterns and is configured
in order to span all feasible situations. Instead, the test set is made up of only 4
demand patterns, which have been accurately generated to uniformly test across
the whole range of possibilities. The test demand patterns are shown in Figure 5.3
and are divided in high, middle and low demand.

As the input information, also the output ones have to be accurately selected
to get suitable data to perform the experiment analysis. In addition to the .csv
files related to scada values and ground truth, described in subsection 3.3.3, the
control agent running on DHALSIM outputs also other two important files, both
serialized with pickle: the saved model and the results file. The first file allows
to store already trained model, saving its parameters, the policy, neural network
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Figure 5.3: Test Demand Patterns.

weights and replay buffer. This is very important to not lose the experience got
in a particular training session and it allows to load an already trained agent for
further experiments. The second output file contains the results achieved with test
simulations. Indeed, for each episode, it stores an evaluation metric, two datasets,
one containing DQN samples and one including obtained Q-values, and the amount
of total pump updates of that specific episode. As anticipated before, the evaluation
metric is the total Demand-Satisfaction Ratio (DSR) of the WDS, which highlights
if the system has been able to satisfy the request of water along the entire episode.
The mathematical formulation of DSR is defined as:

DSR :=

∑
i∈J

∑
t∈T

JD
i (t)∑

t∈T
JB
i (t)

|T |
,

where T is the set containing the frames of the episode, J is the set of junctions
and JD and JB represent the delivered and requested water respectively. The DSR
is bounded between 0 and 1 and it highlights a better result proceeding towards
the unit.
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5.4 Experiment Configuration
In this work, we investigate the optimal real-time control problem with two different
configurations. The first aims to understand if the agent can learn how to behave
in presence of external modifications, namely the cyber-attacks, without having
information about the forgery. In this setting, the agent is trained in normal
operating conditions. Then, the evaluation is done both in normal operating
conditions and also undergoing specific attacks. The purpose is to understand
whether the policy found by the agent in a not compromised scenario can be
resilient also in case of alterations of observation variables. In fact, the attacks, as
explained in subsection 5.4.3, concern the modification of the tank water levels,
which can be increased, simulating an overflow, or decreased, as in presence of
pressure drops. In this first setting, we focus both on retrieving good results in
normal operating conditions and on studying the agent’s responses under concealed
data corruption. However, we do not expect to see a particularly resilient policy in
this second scenario, since the agent is provided with fake data and it is totally
unaware of the attacks.

The second configuration, instead, aims exactly to understand what the agent
can learn if perfectly informed about data corruption. Hence, we add to the
observation space a boolean value, stored in the under_attack variable, which
simulates the suggestion of an ideal anomaly detector running in parallel with the
agent. If the attack is present in the current state of the system, the variable is
set to 1, otherwise it remains 0. Moreover, in this setting, the agent is trained
with episodes that include the cyber-attacks and with others in normal operating
conditions, to reproduce a scenario as real as possible and let the agent to acquire
a more generalized knowledge. The attack events injected in the training episodes
can differ in term of number of attacks in a week (between 1 to 4), corrupted data
(T41 or T42), entity of the corruption (overflow or pressure drops) and time of
the event. Instead, they do not change in term of duration of the attack (always
18 hours). Finally, the test simulations are performed with the same exact attack
events used in the first configuration, but, differently from that, are not analyzed
in normal operating conditions.

5.4.1 Simulator Parameters

The simulator parameters are mainly related to time options for the analysis of the
water distribution system. Those parameters are the common variables that can be
set in EPANET GUI and that are already provided in the .inp file. Hereafter, we
enlist those parameters in Table 5.1. Notice that the parameters are the same for
both the configurations, since the simulator settings are independent from external
data corruption.
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Parameter Value

Episode duration 1008 iterations (one week)
Hydraulic Timestep 600 sec (10 min)

Demand Model PDD
Tank Level Bounds (0, 10.668)

Table 5.1: Epynet Parameters.

5.4.2 Agent parameters

Here we report the agent settings used across both configurations. In this case, only
the MDP information changes, since, in the second scenario, with the informed
agent, the observation space is slightly different from the previous one. Indeed, as
we can see in Table 5.2, the Informed Agent has also the information provided by
the perfect anomaly detector. Besides MDP information, DQN needs also other

Configuration Observation Space Action Space

Uninformed Agent
Time, Day, T41_level,
T42_level, J20_level,

demand_SMA
[0], [1], [2], [3]

Informed Agent
Time, Day, T41_level,
T42_level, J20_level,

demand_SMA, under_attack
[0], [1], [2], [3]

Table 5.2: MDP Parameters.

parameters that are presented in Table 5.3 and that do not change between the
two configurations. These parameters, usually called hyperparameters, need to be
carefully tuned to achieve the agent’s optimal configuration. In this work, we do
not focus excessively on hyperparameters tuning, since our objective is not to get
the most accurate agent, but still we tried to set different values and we ended up
choosing the ones reported in Table 5.3.

5.4.3 Attack Schedule

Here we present the schedule of attacks used in the evaluation phase. As said in
the introduction of this section, the attacks are the same for the Uninformed and
Informed Agent. As shown in Table 5.4, in each test episode there are four Man-In-
The-Middle attacks, lasting 18 hours each. Thinking to a week structure, first two
attacks happen on Tuesday at 10 am and on Thursday at 6 pm, instead the third
and the fourth are performed simultaneously at 2 pm on Saturday. The schedule
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Parameter Value

Training length 50 episodes
Approximator ANN with 2 hidden layers of 8 neurons each

Policy ϵ-greedy with decay
Replay Buffer Min Size 500 samples
Replay Buffer Max Size 40,000 samples

Batch size 32 samples
Fit frequency 4 step

Target update frequency 50 steps
Optimizer class Adam

Optimizer learning rate 0.00025
Loss Function Smooth L1-Loss

Table 5.3: DQN parameters.

is conceived to make the attacks sufficiently disrupting, having a large window of
action, and separating consecutive attacks by several hours, letting the system to
restore its normal operating conditions. With Informed Agent configuration, the

Parameter Attack 1 Attack 2 Attack 3 Attack 4

Attack type MITM MITM MITM MITM
Start iteration 204 540 732 732
End iteration 312 648 840 840
Target sensor PLC2 PLC3 PLC2 PLC3
Corrupted tag T41 T42 T41 T42
Injected value 0.1 10 0.1 0.1

Table 5.4: Test-Attacks Schedule.

attacks injected in the train dataset have the same structure of those conceived for
test episodes, but are created randomly at runtime. Notice that in test attacks, but
also in train attacks, injected values tend to be always at the extreme bounds of
the variables so as to reproduce the limit conditions of overflow and pressure drop.



Chapter 6

Evaluation and results

In this chapter, we analyze results obtained running the experiments with both the
aforementioned configuration, namely with Uninformed and Informed Agent. To
exhaustively explore the simulations, we include relevant plots, providing accurate
explanations of the observed data. Then, we report some statistics to highlight
also DHALSIM improvements obtained by means of the integration of Epynet. In
the end, we describe software and hardware components that have allowed this
research.

6.1 Uninformed Agent
As explained in Section 5.4, the Uninformed Agent is the first of the two configura-
tions explored in this work. As the denomination suggests, this setting considers an
agent with no clues regarding alterations of data perpetrated by external attacker.
Moreover, the training is performed only in normal operating conditions, so the
agent is totally unaware of this kind of experience.

In this section we explore the results obtained in normal operating conditions
and undergoing cyber-attacks. We want to verify if the control agent is able to solve
the pump scheduling problem in an uncorrupted environment and to understand
whether it can adapt also to a situation of injected modifications of data. To do so,
we draw some tables containing relevant information to grasp the goodness of the
agent’s behaviour and we plot interesting charts to analyze the evolution of the
experiment through time.

6.1.1 Normal Operating Conditions

A system in normal operating conditions is a system that can evolve and transform
following its regular behaviour, without any external perturbation. Thus, we can

59
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say that this setting represents almost an ideal situation, and it is important to
be studied to achieve a better understanding of the principles that govern the
evolution of the environment.

In Table 6.1 we can notice the first results related to the Demand-Satisfaction
Ratio (DSR), which has a good outcome in all the four test demand patterns.
In the table, are also reported the number of updates made by both pumps and
considered in the objective function, as explained in subsection 5.1.3, and the risk
of overflow, graded with a label among high, moderate or low. The evaluation of
the overflow risk can be done easily by observing tanks behaviour in Figures 6.1,
6.2, 6.3 and 6.4.

Demand Pattern DSR Pump updates Overflow Risk

Very Low 0.864 33 High
Low 0.864 29 High

Middle 0.859 33 Moderate
High 0.854 25 Low

Table 6.1: Uninformed Agent: results in normal operating conditions.

Analyzing the plots in Figures 6.1 and 6.2, related to the first two test patterns
with respectively very low and low demand, we can notice that the agent struggles
to avoid overflow, since the water request is too small and the tanks are never
emptied. From the charts, we can also infer that the pumps should be turned off
for longer periods, to let the emptying of the tanks. However, a wiser look to the
third plot suggests that the agent continues with this behaviour even if he’s having
some problems, since the cumulative reward is constantly decreasing because of
the overflow penalty. The reason is that the agent is afraid to take a riskier action,
updating pumps status and getting a worse immediate reward, and it proceeds with
this myopic behaviour. This way of acting is probably due to a lack of training,
that has not allowed enough exploration to see also this kind of situations. Actually,
we can expect this kind of happening in our experiments, since, as we point out
in Section 7.1, all the simulations have been performed with too few samples and
episodes, due to the lack of computational resources.

Instead, very different are the situations in Figures 6.3 and 6.4, where the agent
gains a constantly growing reward and is able to maximize the DSR without having
too much problems with tanks overflow. This behaviour could have been deducted
also from the fact that we are in presence of higher water demands, which foster
the emptying of tanks, with a consequent lower risk of overflow. The pumps still
tend to stay open quite across the entire week, but this time it is a positive fact
since they are necessary to avoid pressure-drop issues.
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Figure 6.1: Uninformed Agent in normal operating conditions: very low demand.
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Figure 6.2: Uninformed Agent in normal operating conditions: low demand.
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Figure 6.3: Uninformed Agent in normal operating conditions: middle demand.
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Figure 6.4: Uninformed Agent in normal operating conditions: high demand.
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6.1.2 Undergoing Attacks

After the evaluation of normal operating conditions, we want to analyze what
happens injecting corrupted data during test simulations. The performed attacks
are the ones described in subsection 5.4.3, which are held also in the configuration
with the Informed Agent. With the following results we want to understand if the
trained Uninformed Agent can be reliable even in presence of unseen attacks, that
cause an alteration of observed environment information.

In Table 6.2, we can see DSRs in line with those registered in normal operating
conditions. However, we cannot consider the DSR a reliable measure in this case
since the agent is fooled by an attacker and the computation of the metric is
affected by corrupted data, even if for only a part of the entire episode. Finally,
also pump updates and overflow risk across the different test demand patterns are
similar to the values of previous experiment.

Demand Pattern DSR Pump updates Overflow Risk

Very Low 0.864 29 High
Low 0.863 25 High

Middle 0.86 25 Moderate
High 0.854 25 Low

Table 6.2: Uninformed Agent: results undergoing attacks.

Delving into the analysis of Figures 6.5, 6.6, 6.7 and 6.8, we can study how the
agent reacts during periods with alterations of tank level—corresponding to gray
regions—, analyzing the received reward that is modified in accordance with data
concealment events.

In the first two pictures 6.5 and 6.6, representing very low and low demand
respectively, we can see that the agent is totally fooled by the combination of attacks
3 and 4—check attack schedule subsection 5.4.3—in correspondence with the third
gray area, where the cumulative reward grows quickly since is not registered any
risk of overflow. Moreover, charts highlighting pumps updates are very similar to
those reported in normal operating conditions, which means that the agent doesn’t
recognize the different scenario in which has been placed.

Regarding the other two tests depicted in Figures 6.7 and 6.8, the results
improve in term of fewer overflow events and higher cumulative reward, but still
this doesn’t depend on the agent’s ability to recognize attacks and adequately react,
rather on the increment of requested water that fosters the emptying of the tanks
and the enhance of the DSR. Conversely from experiment in normal operating
condition, even if the problem of weak training is still present, we don’t expect that
with more samples the situation could change, since the agent is not a meta-learner
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and cannot react to data corruption without insights on attack events.
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Figure 6.5: Uninformed Agent undergoing attacks: very low demand.
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Figure 6.6: Uninformed Agent undergoing attacks: low demand.
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Figure 6.7: Uninformed Agent undergoing attacks: middle demand.
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Figure 6.8: Uninformed Agent undergoing attacks: high demand.



CHAPTER 6. EVALUATION AND RESULTS 70

6.2 Informed Agent
The Informed Agent, as explained in Section 5.4, consists in an agent which is
aware of ongoing attacks that are perturbing the system. Indeed, in this setting we
imagine to run a perfect anomaly detector in parallel with the RL algorithm that
provides information about the presence of an attacker, without saying where it is
striking. During the training phase, the agent sees different type of episodes, some
poisoned with attacks and other in normal operating condition. The reason is that
the agent has not to get used to attack events, but need to acquire a solid capacity
of generalization.

The results, reported in Table 6.3, are pretty good in terms of DSR and overflow
risk. The agent seems to have understood how to respond to water demands
without risking too much to overcome the maximum tank level.

Demand Pattern DSR Pump updates Overflow Risk

Very Low 0.953 5 Low
Low 0.947 20 Low

Middle 0.931 22 Low
High 0.902 18 Very Low

Table 6.3: Informed Agent: results undergoing attacks.

Analyzing the Figures 6.9, 6.10, 6.11 and 6.12 can be notice that, conversely
with previous configuration, the agent is slightly more reliable with very low and
low demands, and especially with the lowest test pattern gains a lot of cumulative
reward avoiding to perform too many pump updates. Also in all the scenarios, the
agent seems to have learnt how to not risk overflow of tanks and tends to use only
one pump at the time. With this expedient can handle the data corruption caused
by attackers and keeps a robust behaviour. Actually, it looks like that the agent
doesn’t see or doesn’t care about the attacks at all and it could be interesting to
investigate this aspect with a longer training session and more disrupting attacks,
also to understand if the boolean variable considered in the observation space is
really effective. However, in general the results got after injecting attacks in the
training data are really better that ones achieved by the Uninformed Agent.
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Figure 6.9: Informed Agent undergoing attacks: very low demand.
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Figure 6.10: Informed Agent undergoing attacks: low demand.
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Figure 6.11: Informed Agent undergoing attacks: middle demand.
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Figure 6.12: Informed Agent undergoing attacks: high demand.
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6.3 Epynet Performances
We report in this section the comparison in term of performances between using
DHALSIM with WNTR or Epynet as simulator. As can be noticed in Table 6.4,
we have collected results coming from different experiment in which the control
agent was disabled. The outcomes are pretty clear and justify the integration of
Epynet in DHALSIM, not only to hold up the control agent, but also to run faster
simulations. The shown data have been collected by the Singapore VM, whose
hardware components are specified in Section 6.4, and the experiments have been
launched with the same network parameters and time options both for WNTR and
Epynet. Also the outcomes, in term of computed network properties, are the same.

Simulator Start time End Time Topology Required Time

WNTR 09/11 08:50 09/11 09:02 Anytown(1 day) 12 mins
Epynet 10/11 15:23 10/11 15:32 Anytown(1 day) 9 mins
WNTR 06/07 14:01 06/07 20:12 Ctown (10 days) 6 hours, 11 mins
Epynet 08/07 04:20 08/07 09:40 Ctown(10 days) 5 hours, 20 mins

Table 6.4: WNTR-Epynet Performance Comparison.

6.4 Software and Hardware Components
The software employed in this work includes:

• PyCharm IDE 2021.1.3 Professional, used for the implementation phase;

• Git bash, as version control system;

• Jupyter Notebook, to analyze results and draw relevant plots;

• VirtualBox, to emulate the Ubuntu 20.04 environment, required to run
DHALSIM experiments;

• putty, to connect via SSH with the device where the framwork is deployed;

• WinSCP, to transfer results and input files via SFTP between local computer
and remote server.

Presented experiments, and all DHALSIM simulations launched to achieve the
results presented in this thesis, have been run either in a virtual machine locate
in a desktop PC in Singapore, thanks to the collaboration of dr.Murillo, or in a
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laptop, containing a partition of Ubuntu 20.04, employed as a server and located
at home.

The hardware components of the configurations are:

• Singapore VM:

– CPU: Intel(R) Core(TM) i7-9700 @ 3.00GHz, 8 Core(s)

– RAM: 8GB

• Home laptop:

– CPU: Intel(R) Core(TM) i7-4710HQ @ 2.50GHz, 4 Core(s)

– RAM: 8 GB

The experiments launched from the Home Laptop required an average of 1h and
40min per episode, since the Singapore VM is more faster and it took 40min per
episode. However, an heavy limitation of Singapore VM is the impossibility of
receiving connections from Italy, since cannot be released a suitable VPN. To
overcome this problem is required to have a person living there that physically
runs experiments. Moreover, the desktop used to run the mentioned VM is not
always available, since it is used also for other studies.

The implementation of this work can be found at this link: https://github.
com/afmurillo/DHALSIM/tree/dev-dqn.

The standalone version of Epynet used as workbench is here: https://github.
com/Daveonwave/msc_thesis.

https://github.com/afmurillo/DHALSIM/tree/dev-dqn
https://github.com/afmurillo/DHALSIM/tree/dev-dqn
https://github.com/Daveonwave/msc_thesis
https://github.com/Daveonwave/msc_thesis


Chapter 7

Conclusions

In this work, we investigated the effectiveness of an approach based on Reinforcement
Learning concepts to enhance the resilience of a water distribution system both
in normal operating conditions and undergoing cyber-attacks. The problem has
been conceived as an optimal real-time control problem, which requires an accurate
scheduling of the pumps status within each scan cycle. The environment has been
reproduced using DHALSIM, a digital twin able to simulate the Cyber-Physical
System of the hydraulic network, integrated with Epynet, a Python wrapper of
EPANET simulator, capable of performing an interactive stepwise experiment,
essential to actuate real-time control actions. Moreover, DHALSIM has been
also extended with the implementation of a control agent, the Deep Q-Network,
broadening the range of features provided by the framework with an autonomous
controller, able to supply reliable control actions, learnt by experiencing how the
environment behaves.

The evaluation of our implementation has been performed with two different
agent’s configurations: one in which he is uninformed and not trained about
incoming attacks and one where he already saw those kind of events and is aware
about their presence. In both the scenarios, we have explained agent’s strengths and
limitations, highlighting that he has the potentiality to reach the optimal solution,
but the lack of computational resources hinders deepened explorations, impeding
to provide more satisfying results in terms of DSR, avoidance of overflow risk and
resilience achieved by the system. However, considering the small training that has
been performed, the agent’s behaviour seem quite promising and it would be very
interesting to test further configurations with suitable computational infrastructure.
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7.1 Limitations and Future Works
Finally, we want to describe the limitations of our work and point to interesting
research avenues that could be planned for the near future.

A major hurdle was the limited availability of computational resources—that
generates problems of time complexity. Indeed, to get results, we often had to wait
at least a couple of days for a simulation, which would be prohibitive without the
double hardware setup. Related to the previous limitation, another lack of this
thesis concerns the results, which, perhaps, could have been also better—in term
of satisfaction of the demand and avoidance of overflow events—with a bit more
of tuning, impeded by the available computational resources. Another important
limitation is derived by the intrinsic structure of DHALSIM—and thus by the
complexity of the distributed system—that presents different versions of Python
and a pretty rough inter-process communication, which leads to longer waiting
times and synchronization obstacles. This depends mainly from the underlying
libraries (Mininet and MiniCPS), which would require a suitable update, and also
from the difficulty at code level to grasp the entire structure of the system.

Interesting experiments that could be assessed in future works are certainly
related to the employment of different RL algorithms to implement the control
agent. Moreover, it would be very fascinating to see how the system behaves in the
presence of distributed agents working on top of each PLC, in a partially observable
scenario. Indeed, in this work, the agent, being directly connected to the SCADA
server, is located in a centralized position and can know everything about the
environment. Another intriguing topic, related to the Informed Agent configuration
is to run in parallel a detection algorithm, which can provide the under_attack
variable of the observation space. Finally, it would be really interesting to test
the system with different attacks and to implement a meta-learning agent, which
should be able to generalize to new tasks or new environments never encountered
during the training process, such as other disrupting events, like a pipe burst.
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