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Abstract 
 

In recent years, several models have been proposed to describe sediment 

transport at basin scale. Some use connectivity concepts to allow the assessment 

of the impacts associated with alternative water management scenarios. 

However, since connectivity cannot (to date) be directly measured in the field nor 

remotely sensed, the identification of a measurable property allowing the 

inference of some transport characteristics, e.g. source locations, travel distances, 

residence time, would represent a significant improvement for model calibration. 

Recent studies on sediment attrition claim the existence of a “universal” relation 

between particles relative mass-loss (µ) and their circularity (C) and suggest that 

this relation might be useful for inferring the distance travelled (L) by individual 

particle (Novák-Szabó et al., 2018). 

Since collecting data about the mass-loss of individual particles in the field is not 

feasible using techniques available to date, it would be advantageous to assess 

whether it would be possible to establish a theoretical relationship between µ and 

L. 

Sternberg in 1875 suggested the exponential decrease of mass with the distance 

(Krumbein, 1941). Nevertheless, the coefficient which describe the speed with 

which the mass varies is unknown. Since the initial mass of the particles at the 

source points are unknown, an alternative could be the study of the exponential 

increase of µ with L. In this research, samples of metabasalts have been collected 

within the Sarzana River basin, located in North-East Italy. The digital images 

collected were then processed for deriving a series of shape characteristics. In 

order to overcome the limitations with respect to accuracy of segmentation in 

presence of shadows of available methods, a new segmentation model has been 

developed. This allowed the removal of the main effect produced by the shadows, 

reaching an accuracy of the model higher than 90%. 

Finally, the abrasion coefficients (k) that describe the particles’ mass degradation 

were estimated through a sequence of functions that relates C, µ and L.  
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A sensitivity analysis has also been performed to infer the influence of the 

uncertainty on the estimation of C and k on the estimated values of L. 

This showed that, under the hypothesis of an accuracy of the estimations of 

circularity and abrasion coefficient of ~10-2, the accuracy of travelled distance 

cannot fall below 20%. Furthermore, the application of a sequence of two 

increasing function revealed a relevant dispersion of the distances, leading to 

errors of more than one order of magnitude. 
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Estratto 
 

Negli ultimi anni sono stati proposti diversi modelli per descrivere il trasporto dei 

sedimenti su scala di bacino. Alcuni utilizzano il concetto di connettività per 

valutare gli impatti associati a diversi scenari legati alla pianificazione e 

progettazione di interventi antropici. Tuttavia, poiché la connettività non può (ad 

oggi) essere misurata direttamente sul campo né percepita a distanza, 

l'identificazione di una proprietà misurabile che consenta l'inferenza di alcune 

caratteristiche di trasporto, ad es. luoghi di origine, distanze di viaggio, tempo di 

residenza, rappresenterebbe un miglioramento significativo per la taratura del 

modello. 

Studi recenti sull'attrito dei sedimenti affermano l'esistenza di una relazione 

"universale" tra la perdita di massa relativa delle particelle (µ) e la loro circolarità 

(C) e suggeriscono che questa relazione potrebbe essere utile per dedurre la 

distanza percorsa (L) dalle singole particelle (Novák-Szabó et al., 2018). 

Dal momento che la raccolta di dati sulla perdita di massa di singole particelle in 

campo non è fattibile utilizzando tecniche finora disponibili, sarebbe vantaggioso 

valutare se sia possibile stabilire una relazione teorica tra µ e L. 

Sternberg nel 1875 suggerì la diminuzione esponenziale della massa con la 

distanza (Krumbein, 1941). Tuttavia, il coefficiente che descrive la velocità con cui 

la massa varia è sconosciuto. Poiché la massa iniziale delle particelle nei punti di 

origine è sconosciuta, un'alternativa potrebbe essere lo studio dell'aumento 

esponenziale di µ con L. In questa ricerca sono stati raccolti campioni di 

metabasalti all'interno del bacino del fiume Sarzana, situato nel Nord-Est 

Italia. Le immagini digitali raccolte sono state poi elaborate per ricavare una serie 

di caratteristiche di forma.  

Al fine di superare i limiti legati alla precisione dei metodi di segmentazione ad 

oggi disponibili, è stato sviluppato un nuovo modello. Questo ha permesso la 

rimozione dell'effetto principale prodotto dalle ombre, raggiungendo 

un’accuratezza del modello superiore al 90%.  
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Infine, i coefficienti di abrasione (k) che descrivono l’erosione di massa delle 

particelle sono stati stimati attraverso una sequenza di funzioni che si riferiscono 

a C, µ e L. È stata inoltre effettuata un'analisi di sensibilità per dedurre l'influenza 

dell'incertezza sulla stima di C e k sui valori stimati di L. Ciò ha dimostrato che, 

nell'ipotesi di una precisione delle stime della circolarità e del coefficiente di 

abrasione di ~10-2, la precisione della distanza percorsa non può scendere al di 

sotto del 20%. Inoltre, l'applicazione di una sequenza di due funzioni crescenti ha 

dimostrato una rilevante dispersione delle distanze stimate, portando ad errori 

di più di un ordine di grandezza.  
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1. Introduction 
 

A river basin is a complex and dynamic system, whose morphology changes 

continuously as a result of differences of sediment transport rates in time and 

space.  

Each basin is defined as the surface of the land that is drained by a river and its 

tributaries: this means that theoretically every drops falling inside the basin, if 

moving along the direction of steepest descent, is expected to exit the basin 

through its closing section. 

It is important to consider that the response of the basin, in terms of peak 

discharge and sediment transport, is affected, to different degrees, by all 

environmental changes due to anthropic pressure, as the urbanization of rural 

areas or the construction of engineering works. All these variations, in addition 

to the climatic and land use change, can affect the hydraulic response and the 

sediment transport at different time scale, bringing to: 

 changes in the frequency and intensity of floods and debris flow along the 

hillslopes; 

 modification of the ecosystems, modifying habitats suitability for 

establishment and growth of different species; 

 changes in the river morphology. 

Under the hypothesis of existence of a long-term steady state condition for 

sediment transport rates at basin scale, the river basin can be considered as a 

network made by nodes and edges and the sediment transfer can be analyzed 

through the concept of connectivity, explained in the next paragraphs, which 

becomes a property of the system, expressed in terms of transfer and deposition 

rate. 

A robust estimation of the transport process, can be useful for underlying how a 

change in the conditions of a reach, can impact on the transfer of sediments 

within the basin.  
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To date, some simplified models have been proposed. These schematize the river 

basin as a network, and they aim to define the connectivity expressed in term of 

sediment fluxes that come from different sources and deposit in each 

downstream sink. One of the limits of these models is represented by the 

impossibility to calibrate and validate them because of the lack of measurements 

of transport connectivity.  

This research aims to find a sediment property, measurable in the field or 

remotely (e.g. size, shape, chemical composition, or other), that allows to infer 

transport characteristics (e.g. the distance travelled by sediments) which could 

then be used for the calibration and validation, against the surveyed data from 

the fieldwork, of the connectivity models. 

This, as previously said, can be useful for the management and planning of 

engineering works, important because of their impact on different aspects, e.g. 

morphology and environment, and even on the socio-economic asset of a specific 

region. 

In this context, the UN introduced the Sustainable Development Goals, aiming to 

ensure the socio economic development of nations while taking into account 

ongoing global changes and climate-related issues.(Nations, 2030) The SDG are 

17 and they cover a broad range of problems whose addressing, and solution are 

crucial in order to gain a more sustainable future. Even this research, can 

contribute in the achievement of some of the SDG: 

 SDG7: Ensure access to affordable, reliable, sustainable and modern 

energy; 

 SDG13: Take urgent action to combat climate change and its impacts; 

 SDG15: Protect, restore, promote a sustainable use of terrestrial 

ecosystems, sustainably manage forests, combat desertification, and halt 

and reverse land degradation and halt biodiversity loss. 

About the SDG7, it is important to underline that, as reported by the Global Status 

Report, in 2018 the global renewable power capacity was 2378 GW; out of which, 

the share of hydropower was 1132 GW (i.e. 48%).  
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These plants with the climate change and the sea level rise can have a great impact 

on rivers’ morphology(Anderson et al., 2018)(Manh et al., 2015)(Vauclin et al., 

2019)(Kummu et al., 2010), because dams, acting like barriers typically induce 

erosion of the riverbed located downstream of the structure and an aggradation 

in the upstream side.  

Therefore, this research, can potentially help planning infrastructures taking into 

account, on top of several other fundamental aspects like energy production and 

safety, but also the impact on the land and water ecosystems at basin scale. 

SDG13 and SDG15 stress the necessity of protecting the landscapes and the 

associated ecosystems and raise awareness about the importance of the climatic 

issues in the design and management of infrastructures. This research can help 

in the evaluation of the effects produced on river morphology which constitute 

the supporting framework for any ecosystem. 

Sediments are one of the most common pollutants in water bodies such as 

streams, rivers and lakes (Davis and Fox, 2009; Guzmán et al., 2013). Human 

activities that reduce or remove vegetation typically increase soil erosion rates. 

Sources of sediment include upland areas, as well as the water bodies themselves 

(Davis and Fox, 2009; Guzmán et al., 2013). Human activities that reduce or 

remove vegetation typically increase the amount of soil eroded (Davis and Fox, 

2009; Guzmán et al., 2013). Possible sediment sources include tilled crop fields, 

grazed pastures, construction sites, and timber harvesting areas. Along water 

bodies, the beds and banks erode due to the force of moving water, increasing the 

amount of solid mass that comes to the outlet of the basin (Davis and Fox, 2009; 

Guzmán et al., 2013). The sediment transport is an important process that has 

been investigated for decades since the last century.  

  



4 
 

2. State of the art 
 

2.1. Sediment transport within the river network 

 

Shield’s theory has been one of the most widely used criterion for evaluating the 

critical condition of incipient motion.  Considering a particle characterized by a 

specific diameter d50, it will remain in a static equilibrium condition only if the 

drag force exercised by the water flow, does not reach and overcome the resistant 

one. This state has been evaluated by Shield, defining a non-dimensional 

threshold coefficient θC deriving from the equilibrium of forces acting on the 

particle and function of the water flow regimes (laminar, transition, or turbulent) 

(Equation 2-1).  

  

 
θC =

ρuc
2

(γs − γ)d50
 2-1 

        

The criterion, valid only under restrictive hypotheses, describes the incipient 

motion condition in a simplified way, since it considers particles as spheres for 

determining the volume and the area impacted by the flow, neglecting the actual 

complex geometry of the particles. 

Considering a specific reach, the maximum sediment mass that can be 

transported by the water flow per unit time is a function of its hydraulic and 

geomorphologic conditions and of the sediment properties (density, volume and 

shape) and can be quantified through deterministic or stochastic approaches. The 

main difference regards the way in which these models analyze the process of 

motion. Indeed, while the first consider the transfer as a continuous process, the 

latter account for the possibility of the particles to rest for a certain time period. 

Among the stochastic sediment transport models, some of the most relevant ones 

are the ones by Einstein (1942), Kalinske (1947), Ancey et. al. (2008), Furbish et. 

al. (2012), Armanini et. al. (2018) while, among the empiric ones it is worth 

mentioning those developed by Meyer-Peter & Müller (1948), Schoklitsch (1962), 

Engelund & Hansen (1967),  Wong & Parker (2006) (Ancey, 2020a, 2020b). 



5 
 

Although the former might be more representative of the actual transport 

processes taking place within a natural system, they almost inevitably depend on 

parameters which are difficult to estimate. For this reason, in modelling the 

sediment transport, the deterministic approaches are used more frequently.  

In order to forecast the effects produced by the anthropic pressure on natural 

processes within a river basin, in recent years the concept of connectivity has been 

borrowed by other disciplines and applied to geomorphology (Czuba and 

Foufoula-Georgiou, 2015). 

Many have tried to formally define sediment connectivity. According to Bracken 

“it represents the connected transfer of sediment from a source to a sink in a 

system via sediment detachment and sediment transport, controlled by how the 

sediment moves between all geomorphic zones in a landscape” (Czuba and 

Foufoula-Georgiou, 2014). In general, the connectivity quantifies the degree with 

which the sediments are able to move within the river basin and can be 

considered as a property of the system useful for describing the transfer of 

sediment. 

 

2.2. Sediment connectivity models 

 

To date, several models describing sediment connectivity at river basin scale have 

been developed, but none of them has been calibrated yet. For this and other 

reasons their accuracy in representing the actual sediment transport rates within 

a river basin is still unclear. As explained later, in order to improve these models, 

it is necessary to find a property which can be easily estimated from the field data, 

so that the uncertainties regarding the process can be reduced and the 

connectivity map can be more significant.  

The first model that will be discussed is the one introduced by Czuba et. al.in 

2014, which has been reviewed and improved in 2015. The model describes the 

transport of parcels supplied to the river network as instantaneous and uniform 

inputs.  
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The output of the initial version of the model, developed in 2014, aims to define 

the sedimentological response at the outlet, i.e. probability distribution of 

arriving time of the sediment mass to the outlet (Czuba and Foufoula-Georgiou, 

2014).  

The main limitation of the model is the impossibility to assess the degree with 

which the sediments move within the basin, i.e. the connectivity of the system. 

This model evaluates the connectivity between the reaches only in terms of the 

parcels’ travel time for arriving to the closing section. Although some of the initial 

issues have been solved, the main limit that still characterizes the model is that it 

does not give back the explicit map of the connectivity of the network. 

Indeed, the output of this model does not explicitly represent the connection 

between sources and sinks, since the parcels are not subjected to the local 

transport capacity limitations and depositions (Schmitt, Bizzi and Castelletti, 

2016). The model only represents the time needed for travelling from a point to 

another one, the number of sources connected to each link and the number of 

links connected to the output at the same travel time distance. Furthermore, the 

model can evaluate the evolution of transport mechanism with time. 

The other model, considered for the research project, is the Cascade model, 

developed by Schmitt et. al. in 2016. The innovative idea is to consider the river 

network as a graph composed by nodes and reaches. The model describes the 

transfer of sediment from each input zone as a separate cascade process. This 

means that each source point is connected to its possible sinks through a single 

path, called cascade, so that it is possible to compute a unique connection 

between a source and a sink and represent a connectivity map in term of sediment 

deposition rate, and time needed for depositing (Schmitt, Bizzi and Castelletti, 

2016). The process of sediment transport along each cascade is a function of the 

transport capacity of each reach, which is related to the mean diameter of the 

pebbles inside the reach and its hydraulic and geometrical conditions. 

The model wants to reproduce a hypothetic long term steady state of the river 

network in terms of transport and does not consider morphological changes and 

their feedback to transport capacity. Moreover, the model considers continuous 

sediment supply and rectangular cross-section for each reach.  
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As already mentioned, each cascade is characterized by a single uniform particle 

size. One sediment source might see the input of more than one size of particles, 

but these will be treated independent, as separated cascades (Figure 2-1 D). In a 

confluence of two or more cascades, the interplay of sediments coming from 

different paths is accounted reducing, through a so-called competition factor, the 

total available transport capacity. 

Since the transport capacity of a reach varies with the grain size, when particles 

with different dimensions income in the same reach, the available energy is 

redistributed between all incoming cascades through the competition factor 

(Schmitt, Bizzi and Castelletti, 2016).  

More energy for transferring the sediments downstream will be given to those 

cascades characterized by pebbles of smaller sizes. The smaller are the particles 

and the greater is the sediment supply, the more energy will be available to the 

cascade for transporting sediments downstream. (Figure 2-1F). 

Once defined all characteristic of sediment flow in each reach and under the 

hypothesis of steady flow condition, the model computes the time spent by 

pebbles for depositing in a certain river reach as the sum it took them to travel 

through each reach that compose their path. The model produces as a result the 

connectivity maps expressed in terms of mass deposited within the river network 

for each cascade (Figure 2-1 G, H). When all or most of the initial sediment supply 

has all deposited upstream, e.g. a dam force the deposition upstream, or if the 

transport capacity is not sufficient to transport the sediment, e.g. the sediment 

particle is too big and heavy, the sink and the source are disconnected, and the 

cascade is interrupted in the upstream reach. 

One of the limitations related to these frameworks concerns the impossibility of 

calibration with respect to the connectivity property. This is itself due to the lack 

of a measurable sediment property that could be directly linked to the distance 

they travelled. 

Furthermore, these frameworks do not account for the evolution along the 

pathways of the particles size and shape characteristics due to collision with other 

particles, either in motion or standing on the river bed, or due to friction related 

to sliding motions. 
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Figure 2-1  Schematic representation of the Cascade framework. Figure a) shows the river network, in b) 
the network is schematized as a graph, while in c) sources points, characterized by specific diameters of the 

particles, are shown. In Figure d) individual cascades are tracked for each source. In e), the transport 
capacity is represented through the line width. In f), the competition in confluence points has been 

considered reducing the transport capacity. In g), sediment fluxes are represented, so the deposition is 
accounted for. In h), the connectivity information are summarized in terms of fluxes, provenance and time 

distance of the reach to the source. 
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2.3. Sediment fingerprinting 

 

Many sediment fingerprinting techniques have been developed in order to 

estimate the position of the sources (Davis and Fox, 2009; Guzmán et al., 2013). 

These techniques use physical, chemical and/or biological tracers to distinguish 

between the types of sediment sources in a watershed and estimate how much 

sediment each source provides to the stream (Davis and Fox, 2009; Guzmán et 

al., 2013). To date, since these methods are deeply affected by the uncertainties 

linked to the tracers’ evolution, the inference of the position of the sources cannot 

be robust (Davis and Fox, 2009; Guzmán et al., 2013).  

 

2.3.1. Sediment attrition models 

 

Geometrical characteristics of sediments have been studied since Aristotle 

(Krynine, 1960), since their changes provide indications about their history and 

help to characterize the depositional environment and to mark the sediment 

sources at basin scale (Cassel et al., 2018). 

Recent studies on abrasion present a model that relates sediment shape 

properties (e.g. circularity, roundness) and mass loss (Figure 2.3.1-1) (Novák-

Szabó et al., 2018). This study assesses the possibility of finding universal 

characteristics of the shape evolution of the particles with the mass loss when 

particles collide with similarly-sized particles or with the bed, and collision 

energy is small enough that chipping is the dominant mechanism (Novák-Szabó 

et al., 2018). 

In this sense, Bloore proposed a theory for describing the shape evolution of the 

particles when they are transported by bed-load saltation and when the 

conditions just mentioned are valid. According to his theory, abrasion rate (ν [/]) 

is a function of the particles’ local curvature (κ [1/m]) and the perimeter of the 

impactor particle c [m] (Novák-Szabó et al., 2018). 

 

 ν = 1 + κc 2-2 
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This geometric relation is a partial differential equation and it determines the rate 

at which the particle erodes. This model describes abrasion rate as dependent on 

two different components. When impacting particles are small, the dominant 

component is ν = 1, while if particles are of similar size the relation is said 

curvature-driven abrasion, since the main influent component is kc (Miller et al., 

2014).  In Figure 2-2, it is possible to see how the shape of a particle evolves 

according to this theory. Indeed, in those points characterized by low curvature, 

the particle is abraded slowly. Furthermore, the evolution of the particle is 

divided in two phases: first, sharp edges with high curvature rapidly round off 

without major changes in the global axis dimensions, then, the axis dimensions 

start to decrease slowly and the pebble becomes more spherical (Miller et al., 

2014) (Figure 2-5).   

 

 

Figure 2-2 Expected evolution of circularity (R) as a function of the mass loss µ. 
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Figure 2-3 Field, laboratory experiences and model data showing the evolution of circularity with relative 
mass-loss (B) and distance travelled (A).  

 

 

 

 

Figure 2-4 Szabo et. al., 2015. Theoretical evolution of the particle shape according to the Bloore's model 
restricted to the case of big particle. 

 

 

 

Figure 2-5  2-Phase evolution of the particles shape 
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From this theory, Novák-Szabó et al. have tried to predict the qualitative trend of 

circularity evolution with mass loss. Considering an initial polyhedral particle, 

characterized by a low circularity, and the restrictive hypothesis of same-sized 

particles collisions, the initial rate of rounding is infinite because the particle is 

sharp, and the curvature is infinite. Then, travelling downstream, it becomes 

more and more round, decreasing the local curvature and therefore, the rounding 

rate. Therefore, the expected curve is a continuous monotonic increasing 

function, defined in the range [0, 1] and varying between R0 and 1, while its 

derivative is a continuous decreasing function. The theoretical trend of the curve 

R(µ) is shown in Figure 2-2 (Novák-Szabó et al., 2018). 

It is necessary to underline that since the evolution of circularity with the relative 

mass-loss is strictly dependent on the boundary and initial conditions, only the 

geometrical characteristics of the evolution have been claimed universal.  To 

support these assumptions, Figure 2-3 B shows the evolution of particles’ with 

relative mass-loss analysed for three different systems: cobble-bedded river, sand 

dune, laboratory experiences with volcanic clasts, and pebble beach. All the 

curves R versus relative mass-loss present all the qualitative expected features, 

but their trends are numerically different.  

 

2.3.2. Sternberg Law 

 

Since measuring mass loss of individual particles in the field is not possible with 

available technologies, several studies have been conducted aiming at the 

definition of an empirical relationship to describe its evolution as a function of 

the distance travelled by particles (Kuenen, 1956; Rice, 1994; Pizzuto, 1995; 

Novák-Szabó et al., 2018). In the study of Novak-Szabo (Novák-Szabó et al., 

2018), this relation has been supposed being linear although the rate of mass loss 

is expected to be affected by a series of interconnected variables including: 

transport conditions, which depend on discharge, morphology and particles’ sizes 

and on particles’ properties (e.g. shape, lithology).  
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Nevertheless, past studies on abrasion found a weak influence of the flow velocity, 

considered for sake of simplicity as a surrogate of the grain velocity, on the 

abrasion rate (Lewin and Brewer, 2002). 

Sternberg, in 1875, suggested that particles’ mass decreases exponentially  with 

their distance travelled (Krumbein, 1941; Kuenen, 1956; Brewer and Lewin, 1993; 

Lewin and Brewer, 2002; Frings, 2008). This relation depends on the abrasion 

coefficient k [km-1] which represents the rate with which the mass is abraded 

(Equation 2-3).  

 

 M

M0
= exp(−kx) 

2-3 

 

This relation was determined empirically considering only the effect of collisions 

among particles. Nevertheless, in real systems the mass decrease is caused by 

both size-selective transport, for which lighter particles will travel more 

frequently, and abrasion, due to collisions and dependent on several 

characteristics, e.g. lithology, grain size, grain shape et cetera (P., 1879; 

Krumbein, 1941; Szabó et al., 2015) (Equation 2-4). 

Both these effects contribute to the value of the fining coefficient kW that can be 

estimated from field measurements (Equation 2-4). It remains nonetheless 

difficult to estimate the relative contribution of abrasion and selective transport 

to downstream fining, which is the evidence of decrease of average particle size 

as one moves from the mountain part of a basin to the lowland (Szabó et al., 

2015). To date, several authors have tried to estimate the speed at which the size 

of sediments varies going downstream accounting only the abrasion process kA,D, 

but different results have been obtained. The values reported generally vary 

between 10-5 and 10-1 [km-1] (Morris and Williams, 1999). Only Kodama reported 

a variability between 10-2 and 10-1 [km-1] (Kodama, 1994). Size reduction 

coefficient can then be used to calculate the mass reduction coefficient. Since the 

weight of the particle is considered proportional to D3 (Mikos, 1995), the mass 

abrasion coefficient is, generally, expressed by as kA= 3kA,D.  
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However, since the kA values were estimated during laboratory experiments using 

either an abrasion tank or a tumbling barrel, they underestimate the effective 

coefficient kW with which mass decreases since they do not account for other 

processes, e.g. the selective transport, that influence the abrasion process (Morris 

and Williams, 1999).  

 

 k = kA + kS 2-4 

 

Moreover, in a study of Sklar et al., 2016 they suggested a decreasing evolution of 

the abrasion rate with the distance from the source.  

 

2.4. Image processing applied to geosciences 

 

Roundness and shape properties of pebbles can be estimated using one of the 

many available tools that have been developed through the years for this purpose. 

Two relatively recent and well known in the geomorphological/sedimentological 

settings are the ones developed by Roussillon et al., 2009 and Zheng and Hryciw, 

2015. These models work on images representing samples of particles collected 

and positioned on a board (Roussillon et al., 2009; Zheng and Hryciw, 2015). 

Only the former model includes both a tool for pebbles’ segmentation and one for 

the computation of shape parameters (e.g. Circularity, Elongation, Roundness).  

The second model requires digital images to be in gray-scale with already 

segmented particles. 

A digital image is a matrix made of pixels (picture element), each of which 

contains a value called digital level, a whole number that represents the energy 

captured by the camera sensor, i.e. the light intensity, and that varies between 0 

and 255 ( in the case of a 8-bit per pixel representation).  
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Image visualization can be performed using:  

 Monochromatic system, where each pixel contains a single digital level and 

the image is said to be a gray-scale representation; 

 Colour system, where image is a 3-dimensional matrix and each pixel 

contains three light intensities, each one relative to each of the three 

components or channels. In the case of a true-colour image, the colour 

correspondent to each pixel, is the result of a combination of the digital 

levels relative to the red, green and blue channels. For this reason, the 

image is said represented in RGB space. If, for instance, in a pixel the light 

intensity relative to the second channel (Green) is zero, the pixel colour is 

purple.  

A linear combination of the three components converts the true-colour image into 

a monochromatic one. The function used in the MatlabTM tool rgb2gray is 

showed in Equation 2-5. 

 

 0.2989 ∗  R +  0.5870 ∗  G +  0.1140 ∗  B 2-5 

 

In order to have a robust estimation of the parameters characterizing each 

particle, before implementing these algorithms, it is necessary to improve the 

quality of the pictures and then, through the segmentation process, identify the 

outline of each particle within the sample. 

In general, the edge of an object represents a visible and sharply discontinuities 

in the color or in the light intensity. In the field of digital image processing, this 

is translated in terms of the light intensity gradient. Considering a 

monochromatic image, the gradient represents the variation of the light intensity 

values along a specific direction. Considering two adjacent pixels, if the 

discontinuity is sharp, the difference in the light intensity is relevant as the image 

gradient.    

Several methods for edge detection, based on image gradient, have been 

implemented (e.g. Canny algorithm, Sobel, Robert and Prewitt operators, 

Laplacian of Gaussian, Watershed algorithm (Salman, 2006; Maini and 

Aggarwal, 2009; Gupta and Ghosh Mazumdar, 2013) . 
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The segmentation method used in this research, is the one implemented by John 

F. Canny in 1986 (Canny, 1986).  

This method aims to enhance the already existent approaches (e.g. Sobel and 

Laplace). For this reason, Canny followed three criteria (Canny, 1986): 

 All the edges have to be detected; 

 All the edges have to be well located, which means that the distance 

between the pixel belonging to the edge detected and the one located 

along the actual edge, has to be the minimum; 

 The edge of an object has to be single.  

This approach can be schematized as a six-step chain process that starts 

transforming the true-color (RGB) image into a monochromatic one (gray-scale), 

obtained as a linear combination of the three plans of the RGB space. Considering 

a colored im carries in each pixel only the information about light intensity, i.e. 

the energy . The process continues with the application of a Gaussian filter that 

smoothens the image. This is achieved convoluting the greyscale image with a 

square matrix and is therefore a linear filter. Its objective is to blur the image and 

to reduce the noise caused by random fluctuations of light intensity. The 

convolution process works as follows: for each pixel of the grayscale image the 

code computes the weighted average of the values of the pixels surrounding it 

using as weights the values of a square matrix that is centred on the pixel of 

interest. In case of a Gaussian filter, the matrix of weight is made of valued 

distributed according to a Gaussian distribution, as a function of their distance 

from the centre of the square. The grater the standard deviation of the Gaussian 

distribution, the larger the size of the square matrix and the smoother the 

resulting image.  

Nevertheless, a too large Gaussian filter may produce a significant smoothing of 

the image, even reducing the contrast along the particles’ outline that instead, for 

our analysis, must be as enhanced as possible.  

On the contrary, a too small filter my not detect the Gaussian noise that can 

disturb the search of the particles’ outline. 
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The Canny algorithm continues with the application of the 2-D first derivative 

Sobel operator to the smoothed image to highlight regions of the image with high 

first spatial derivatives.  

This operator performs the spatial gradient evaluation in both x and y directions 

using two 3x3 convolution Equation 2-6. Since the edges give rise to high local 

image contrast, peaks in the image gradient along the edges are expected.  

 

 
Gy =

+1 +2 +1
0 0 0

−1 −2 −1
          Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 2-6 

  

The following step is the evaluation of the edge direction and then its adjustment 

in order to relate it to a direction that can be traced in the image. This means that 

4 principal directions are defined, i.e. horizontal and vertical directions (0 and 90 

degrees), and along the positive and negative diagonals (45 and 135 degrees), and 

the angles between 0 and 180 degrees are grouped around these principal 

directions as showed in Figure 2-6. 

 

 

Figure 2-6 Angles grouped around the principal edge direction 

 

Then, in order to give a thin line in the output, all pixels that are not actually on 

the ridge top, are set to zero value through a process known as non-maximal 

suppression. Finally, in order to avoid the breaking up of the detected contour, 

the tracking process makes use of two thresholds: T1 and T2, with T1 > T2.  

If a single threshold, e.g. T1, would be defined, all the pixels with an edge strength 

lower than T1 would be set to zero, although they actually could belong to the 

edge.  
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This would result in a discontinuous particle’s outline, similar to a dashed line. 

On the contrary, the definition of two thresholds ( T1< T2) allows all the pixel 

with edge strength greater than T2 to be detected as belonging to an edge, while 

weaker pixels characterized by edge strength lower than T1 would be disregard.  

Pixels having an edge strength comprised between T1 and T2 that are connected 

with the stronger ones are would be classified as edges while the ones that are not 

connected to pixels having edge strength above T2 would be discarded.  

This selection process improves the edge detection accuracy and, in many cases, 

allows the definition of a continuous outline. 

 

2.4.1. Review of two computational geometry models 

 

The shape of the particles can be a very important property for the inference of 

the distance of travel and the river conditions. The shape characterization can be 

conducted using parameters that can detect the shape variations at different 

scales: Form (e.g. Elongation and Circularity), Roundness (related to sharpness 

of the particle) and Texture (e.g. Roughness). The shape metrics here analyzed 

are: Roundness, evaluated through the Wadell’s formula, Circularity and 

Elongation (Equation 2-7).  

The first one defines how sharp the corners of the pebble are, while the last two 

parameters describe the shape of the pebble and give a measure of how similar to 

a circle the particle is. 

The Zheng’s model is implemented in Matlab and it evaluates the roundness 

through Wadell’s formula (Wadell, 1932).  

This roundness measure is defined as the ratio between the averages of the radii 

of curvature of the corners to the radius of the maximum inscribed circumference 

in the particle. The radii accounted for evaluating the mean value must be smaller 

than the radius of the largest inscribed circumference.  
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2-7 

 

Where N and ri [m] are respectively the number of corners composing the 

particle’s outline and their radius of curvature, while R [m] is the radius of the 

maximum inscribed circumferences, As and Ps are respectively the area and the 

perimeter of the particle.  

For defining corners, the algorithm developed by Zheng et. al. (2015) first 

removes the roughness associated to the particle’s texture defining a smoothed 

mean surface, then it approximates the silhouette with a set of connected 

segments, defining a distant threshold value δ0. The corners are then defined are 

those laying on the convex stretches of the silhouette. 

Finally, the algorithm tries to fit iteratively the circle to each set of closest corner 

points Figure 2-7. 

 

 

Figure 2-7 Roundness algorithm proposed by Zheng 
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It is important to underline that the output of the model is based on a threshold 

value on which depend the definition of the corners δ0, and consequently the 

evaluation of the roundness. It has been observed that the threshold value, and 

therefore the roundness and the sphericity inferences, are a function of the PCD, 

i.e. the resolution of the image expressed in terms of pixel per circumscribed 

circle diameter.  

The results of this analysis assess that, in order to accurately capturing the 

roundness value, at least 200 pixels for PCD are necessary and the δMAX, i.e, the 

maximum value of the parameter δ for the determination of the corners, has to 

be 0.03% of PCD (Zheng and Hryciw, 2015). 

The other algorithm proposed by Roussillon et al. (2009), aims to the evaluation 

of the shape parameters and roundness as well, approaching in a different way.  

The framework first applies the k-means segmentation algorithm and then it 

applies on the binarized image a second algorithm through which it evaluates 

shape parameters. Because the parameters depend on the area and perimeter, the 

algorithm first tracks the contour as a polygonal individuated by a sequence of 8-

connected pixels, and then it calculates the geometrical characteristics of the 

pebbles (Figure 2-8 left). 

 

 

Figure 2-8 Computation of the edge of the particle (left) Computation of the radius for each pixel belonging 
to the silhouette of the particle (right) 
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Through this framework, rw has inferred without defining the corners but 

drawing for each pixel, belonging to the silhouette, the circle obtained joining the 

pixel with two others located on the right and on the left of it through the longest 

sequence of 8-connected pixels lying between two straight parallel lines 

(Figure 2-8 right).  

The analysis performed by Roussillon et. al. (2009), showed that the resolution 

of the image influences the result: in order to avoid its effect, the perimeter of the 

pebble should be greater than 150 pixels. In this way, the error on the inference 

of the shape parameters should reduce to less than 10% (Roussillon et al., 2009). 

In order to have a robust estimation of the parameters characterizing each 

particle, before implementing the algorithms, it is necessary to improve the 

quality of the pictures and then, through the segmentation process, individuate 

the edges of each particle of the sample. 

Once the algorithms are applied, information about axes length, roundness and 

circularity are gained. 

 

2.5. Gaps of knowledge 

 

The sediment transport at basin scale is a complex process which is difficult to be 

analyzed because of the uncertainties in the hypothesis and the parameters on 

which each model is based. Their accuracy in representing the actual response of 

a system is therefore not clear. The objective of the research is to reach a robust 

estimation of the sediment transport connectivity, e.g. the distance travelled by 

sediment. To do this, the shape characteristics are suggested as possible key 

property for the sediment fingerprinting. Nevertheless, to date, a formal function 

that relates the shape metrics, in particular the Circularity, to the distance has not 

been given yet.  

Past studies suggest two relations that may be useful for the purpose of the 

research: 

1. The universal relation between Circularity and Relative mass loss; 

2. The exponential increasing in mass loss with distance. 
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Nevertheless, both the relations present some limits. The universal abrasion 

curve has not been defined analytically, while the empirically observed 

exponential degradation function is dependent on a coefficient, the abrasion rate 

which is not a priori known and which is expected to depend on the lithology, 

particles’ size and size-selective transport. 

Regarding the image processing for the acquisition of necessary data for 

improvement of the model, the main defect is related to the problem of pre-

processing of digital images. The disturbances on the image do not allow to reach 

an accurate segmentation of the pebbles.  

Indeed, the presence of shadows and of complicate texture of the pebbles, make 

impossible to apply a mask to the image and separate the pebbles from the 

background. 
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3. Research Questions  
 

To date, a series of gaps of knowledge are still present with respect to the 

possibility of finding a relationship between the shape morphometric 

characteristics and the distance travelled by the particles. The research aims to 

overcome some of the existent limits and, in particular to answer the following 

research questions:  

 How can the segmentation of images of pebbles collected in the field can 

be improved with respect to the effects produced by the shadows?   

 How can accurate can be the distance travelled by particles within the river 

basin, when inferred from the morphometric characteristics of the 

pebbles? 
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4. Methodology 
 

In this section the different phases of the research work will be explained: 

The methodology used in this research to answer the previously stated questions 

is shown in the following scheme and divided in two main phases (Figure 4-1).  

 

 

Figure 4-1 Work phases 
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4.1. Image Processing 

 

As mentioned in the previous sections, changes in size and shape can be useful 

for the description of the sediment transport which, to date, is still constrained. 

The shape characterization of the particles based on image is the cheaper 

solution. During the fieldworks, images of the sampled particles are taken 

positioning the pebbles on a flat surface to give a uniform colored background. 

Sediment images collected in the field are generally characterized by irregular 

shadowing and by intra-granular variations in texture and colour Figure 4-2. 

Since in many cases shadows reduce the local contrast near the edge of a particle, 

common automated methods for edge detection  do not provide accurate 

contours segmentation (e.g. Sobel operator(Gupta and Ghosh Mazumdar, 2013), 

Canny algorithm (Canny, 1986) and Watershed algorithm (Zheng and Hryciw, 

2015)). The model here proposed, comprises two phases. It first identifies the 

area of interest, meaning the board on which particles are lied during the field 

survey. The next phase involves the identification of each individual particle and 

its analysis using the probabilistic Canny method (Canny, 1986). This iterative 

approach allows the operator to visually control the quality of the segmentation 

obtained for each pebble and to decide whether to continue with shape 

parameters extraction or to erase the pebble from the sample. 

 

 

Figure 4-2 Example of an image of pebbles sample collected during a field survey. 
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4.1.1. Phase I: background board identification 

 

The first phase of the model aims at removing the outer material from the initial 

image Figure 4-2. For this purpose, the true-color image is first transformed into 

gray-scale. Given the sharp change in color and texture between the outer 

material and the background board, its edge represents a discontinuity in the 

light intensity, i.e. these points are characterized by a significant gradient in gray-

scale. The image contrast is therefore initially enhanced, increasing the highest 

light intensity (white board) and reducing the lowest ones (background and 

pebbles of the sample). The contrast of the image represents the ratio between 

the maximum value and the minimum one. Enhancing the contrast means, 

enhancing the ratio, reducing the window of light intensities between the 

maximum and the minimum value, and removing the intermediate intensity 

Figure 4-3 A. The light intensity adjustment is therefore used for scaling the 

image intensity values from the window [0 255] to a new range. The imcontrast 

MatlabTM tool works on the histogram of pixel values and allow to enhance the 

contrast and the brightness of an image by modifying manually the interval of the 

light intensity values of the image. Stretching the interval reduces the contrast. 

Shrinking the range enhances the contrast. The extremes selected as those that 

sufficiently enhance the contrast are [100, 120].  This means that in the output 

image all the pixel, with an intensity values below 100, are black, while the pixels, 

with values above 120, are white. The light intensities between 100 and 120 are 

transformed linearly to the values between 0 and 255 Figure 4-4. 

The contrast enhancement increases the probability of the localization of the 

maximum absolute value of the intensity gradient on the edges of the white board. 

This gradient is computed both horizontally and vertically by the convolution of 

the Sobel operator(Engel, 2006; Gupta and Ghosh Mazumdar, 2013) and the 

adjusted image.  

The intensity gradient can be positive or negative, depending on whether there is 

an increase, a decrease in the light intensity. The material outside the background 

board can be characterized by color and texture variations that might produce 

relatively high intensity gradients.  
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Moreover, the pebbles on the board also create gradient changes, especially 

located along the pebbles’ contour. The model partially reduces these effects by 

removing the edges, defined as connected components using the 8 direction 

connectivity, with fewer than 500 pixels. This is done under the hypothesis that 

the outline of the table is strong enough to be characterized by a number of 

connected pixels greater than 500. The binary filtered image is multiplied by the 

original representation of the intensity gradient so that each pixel, belonging to 

the filtered connected component, contains the positive values of intensity 

gradient Figure 4-3 B. 

This method for segmenting the background board searches for its edges in the 

vertical and horizontal directions separately and proceeds sequentially 

respectively by column and row. Here is reported the steps of the process adopted 

for the identification of the top horizontal edge, while the identification of the 

other edges will follow an analogue process. 

The search for the pixels composing the top horizontal edge starts from the first 

column. The code searches for the pixel along the first column having the highest 

positive gradient and then evaluates the following conditions: 

(1) If none of the pixel in the ith column has a positive gradient, then the code 

moves to the column i+1. 

(2) If the pixel with the maximum positive gradient in the vertical direction is 

located in the upper half of the image and if its distance from the edge 

identified in column i-1 is less than 10 pixels, then this will be the next edge 

pixel and the code will move to column 1+1. 

(3) If the pixel with the maximum positive gradient in the vertical direction is 

located either at a distance of more than 10 pixels from the edge on column 

i-1 or below the middle of the vertical size of the image, this means that the 

top edge along that column is not characterized by the maximum gradient 

due to the presence of inside pebbles. The upper edge along that column is 

therefore approximated by the same row value as in column i-1 and the 

analysis will move to column 1+1. 
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The result is a binary image where, to each column, is assigned a value of 1 to all 

pixels located below the detected edge and a value of 0 elsewhere. A similar 

process is repeated to identify the three remaining edges.  

The final four binary images are then overlapped resulting in a binary mask with 

a value of 1 representing the pixels corresponding to the whiteboard background.  

If two or more regions of pixels with value 1 are identified, they are ordered 

according to the number of pixels that belong to them. Under the hypothesis that 

the board is the biggest region identified, all the other regions are removed. 

Moreover, if part of the white board is not detected as such, the model changes 

the values of the pixels, marked as external to the white board, from 0 to 1.  

The resulting white board is showed in Figure 4-3 C. 

At the end of this process, the output image is a true-color representation of the 

white board and of the pebbles positioned on it. The outer material is replaced by 

a uniformly colored region. In order to reduce the contrast between the panel and 

the outer region, the color of the latter was selected to be as similar as possible to 

the color of the board Figure 4-3 D. 
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Figure 4-3 A) Result of image enhancement. This process increases the difference between height and low 
intensity pixels. B) Image of the filtered positive light intensity gradient representation. C) The binary 

mask representing the white board. D) Result after elimination of the outer material: a RGB image where 
outer material is replaced by a uniform region. 

 

 

Figure 4-4 Enhancement of the image contrast. Linear transformation of the input light intensity into the 
output light intensity window. 
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4.1.2. Phase II: Removal of the shadowing effect on particles’ segmentation 

 

Although through Phase 1 the outer material is removed, the shadowing around 

the pebbles placed on the white board is still present and might bring to 

inaccurate final segmentation.  

The second phase of the model aims to track the contour of each pebble that is 

cropped through a window built around it. The window is built around the 

centroid of the analysed particle. The position of the centroid of a body is a 

function of its volume and how it is distributed. Since the analysis of the image is 

bi-dimensional, the position of the centroid is dependent on the area of the 

particle, which is represented by the number of pixels that belong to it. Moreover 

the size of the cropping-window is related to the size of the bounding box, which 

represents the smallest rectangle that contains the particle. Nevertheless, the 

great variability of the light intensity values of the grey-scale image between 0 

and 255 makes challenging the possibility of identifying the correct area of the 

particles when the image is binarized. As showed in Figure 4-5 A, the binarization 

of the image in grey-scale, leads to identify the shadow like part of the section of 

the particle, carrying in some cases to the union of two adjacent pebbles and 

consequently to a wrong positioning of the centroid. For this reason, the image 

showed in Figure 4-3 D, is enhanced by changing the minimum and maximum 

values between which the light intensity of the image varies, as done in 

Section 4.1.1. The extreme values selected as representative of the new range of 

values are 40 and 200. This means that the light intensities greater than 200 

correspond in the new image to 255, while the light intensities lower than 40 are 

transformed into 0 in the new image. The enhanced image is binarized and the 

identified black regions represent the part of the particle that have been detected 

after the enhancement of the contrast Figure 4-5 B. The centroid and the 

bounding box are then evaluated for each white region representing the particle. 
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Figure 4-5  A) Image binarized without enhancing the contrast. Some of the pebbles are merged due to the 
presence of the shadow. B) Image binarized after the enhancement of the contrast 

 

As previously said, the vertical and horizontal sizes of the window are dependent 

on the size of the bounding box. The window sizes’ are enlarged by a factor of 1.6 

to the sizes of the bounding box, to consider the possibility for which not all the 

pixels belonging to the particle are detected and to account for the shadow that in 

the adjustment process becomes part of the particle area moving its centroid. 

Moreover, the coordinates of the top-left corner of the bounding box have been 

shifted horizontally and vertically for a quantity equal to 30% of the horizontal 

and vertical sizes of the bounding box. If the particle is too close to one of the 

boundaries of the image, the window is enlarged only on the opposite side of the 

closest image boundary by a factor of 1.3. Moreover, if the top-left pixel of the 

bounding box is close to the left boundary of the image, the pixel is simply shifted 

until reaching the column 1 of the image.  

The first step for particle contour tracking uses the Canny algorithm (Canny, 

1986), which is already implemented in MatlabTM, considering the default values 

for its controlling parameters. These are the standard deviation of the Gaussian 

filter applied (σC) (the default value is equal to the√2) and two threshold for the 

strength of the edges identified: all edges with strength below the lower threshold 

(Cl) are neglected, while all edges with strength above the upper threshold (Cu) 

are preserved. The edges with strength between Cl and Cu are identified only if 

connected with the strongest edges. 
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The resulting image is a binary one where the edges are in general not limited to 

the particle’s contour but might comprise internal discontinuities due to 

variations in color or texture. Moreover, the presence of significant shadows 

might worsen the quality of the segmentation, producing artificial edges not 

associated with the shape of the physical object. In order to assess the presence 

of these effects, the model analyzes the resulting edges as connected components 

using an 8 direction connectivity and identifies the longest connected component. 

If the shadow and the intra-granular variations in color and texture are negligible, 

the outer border is characterized by a strong contrast with the background and 

therefore the longest connected component properly approximates the pebble’s 

outline. On the contrary, when the shadowing is relevant, the longest component 

properly identifies only the part of the pebble’s contour exposed to the light where 

the image contrast is significant and where the shadow is negligible. The two 

different cases can be discriminated in terms of endpoints, i.e. the two extremes 

of the longest detected edge. If the longest edge tracks the exact pebble’s contour, 

it is closed and therefore the number of endpoints equals zero and the process 

ends. If, instead, the vector containing the endpoints’ coordinates is not empty, 

the process continues with the second step of the model, trying to identify the 

closed shape of the particle Figure 4-6 A. 

The second step of Phase 2 is based on the hypothesis that, applying the Canny 

algorithm using different values of the controlling parameters, more significant 

edges (therefore having higher strength) will be identified more frequently. The 

parameters that the model varies to assess the relative frequency with which 

edges are detected are: the standard deviation of the Gaussian filter and the lower 

and upper thresholds on edges strength. Each combination of these three 

parameters produces a binary image of edges. The relative frequency, defined as 

number of times with which each pixel is detected an edge, can therefore be 

computed. The output representation is a gray-scale image, where pixels detected 

more frequently as an edge appear of lighter color Figure 4-6 B. 

This edge frequency map is used to iteratively attach new edges to the longest 

connected component previously discussed to close the pebble’s outline.   
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The process is implemented as follows: the model starts from one endpoint and 

searches for the new endpoint in a square window of size 𝑙 pixels around this 

endpoint. The selection criteria for the new endpoint is based on the values of the 

edge frequency map and on the relative position of the pixels within the search 

window with respect to the current endpoints.  

A series of variables that represent the pixels’ relative position, expressed in polar 

coordinates evaluated with respect to the centroid of the longest connected 

component, have been introduced. dC-P and α are the polar coordinates (distance 

and angle respectively) of a pixel within the search window with respect to the 

centroid of the actual longest connected component Figure 4-6 C. δ is the angle 

formed between a pixel in the search window and the opposite endpoint. dE-P is 

the distance between a pixel in the search window and the endpoint at the center 

of the window. ∇f is the gradient of the frequency map computed between each 

pixel in the window and the current endpoint around which the search window 

has been built. Δ is the angular distance between the current endpoints. Pixels 

within the search window are initially filtered according to three intuitive 

conditions: 

(1) f > 0 

(2) δ < ∆ 

(3) dE−P ≠ 0 

The first condition states that the new pixel must be searched among those that 

have the possibility to be classified as edge (f>0); the second condition states that 

it must be searched among the pixels that contribute to decrease the angular 

distance between the endpoints of the longest connected component (δ>Δ), while 

the third condition states that the selected pixel cannot be the current endpoint, 

i.e. its distance from the center of the window must be positive (dE-P > 0). The first 

and third conditions must always be met while, if the second one is not respected, 

the model selects the pixel with the minimum value of δ (even if δ≥ Δ). 

If multiple pixels respect these conditions, a set of criteria are added to filter the 

pixels and choose the new endpoint of the particle’s outline.  

Each additional condition is set only if, within the search window, there are more 

pixels that meet the conditions just imposed.  
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The list of additional criteria is: 

(4) max (∇f); 

(5) min (dE−P); 

(6) min (δ); 

The intuitive meaning of these criteria is: the new edge is selected based on the 

maximum gradient of the probability for it of being an edge, its distance from the 

current endpoint should be the minimum in order to guarantee the continuity of 

the object’s outline, and its position should be such that the angle between the 

current endpoints will decrease. The pixel resulting from such selection criteria 

become the new endpoint and it will be connected to the current one with a linear 

interpolation. 

At this point the model moves to the other endpoint and the process is repeated. 

The angular distance between endpoints iteratively decrease bringing them closer 

together alternatively from both sides. The process stops when either it is not 

possible to identify more edges to connect to the two endpoints or these are close 

enough to fulfill one of the two following conditions: 

∆< 6°; 

dE−E <
(l − 1)

2
√2 

The first conditions states that if the angle between the two endpoint is less than 

6°, and the one of the endpoint is located within the search window of the opposite 

one, they are close enough. At this moment the model stops and the two 

endpoints are linearly interpolated and the particle’s outline is closed.  

At the end of the segmentation process, the identified contour is plotted on top of 

the true color image Figure 4-6 D.  

The operator can visually control the quality of the result and decide whether to 

keep the resulting 2D binary outline or to discard it. 
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Figure 4-6 A) The edge identified as the longest connected component (red curve) at the end of the first 
phase of the particles’ outline tracking. B) Geometrical coordinates of the two endpoints of the identified 

longest connected component. C) The frequency map represented as a grey-scale image. D) Final particle’s 
outline overlapped to the particle’s representation for the visual inspection. 

 

4.1.3. Calibration and Validation 

 

The model result dependent on a set of parameters: the size of the window built 

around each endpoint, the standard deviation of the Gaussian filter (σC) and the 

lower and upper thresholds on edges strength (Cl and Cu respectively). To 

calibrate the model, these parameters have been varied in this range:  

0 ≤ Cl, Cu ≤ 1 

0.2 ≤ σC ≤ 5 

9 ≤ σC ≤ 21 
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The segmented outlines resulting by the application of the model with each 

combination of the calibration parameters have been processed using the 

toolboxes developed by Roussillon et al., 2009 and Zheng and Hryciw, 2015 for 

the evaluation of shape parameters.  

Its results have been compared with those obtained by the application of the same 

toolboxes to pebbles segmented using the “Quick Selection tool” available in 

Adobe Photoshop CC, which have been considered as the reference values (AP). 

We used the relative error of elongation, circularity and roundness, three 

common shape descriptors, as accuracy metrics: 

 

 
ε =

βAP − βPC

βAP
∙ 100 

4-1 

 

Where βAP is the value of the shape descriptor obtained using the Adobe 

Photoshop CC segmented outline (AP) and βPC is the value of the shape descriptor 

obtained using the probabilistic Canny segmentation algorithm (PC). We also 

assessed model performances using an overall error metric defined as: 

 

 
E = √εe

2 + εC
2 + εRW

2  
4-2 

 

Where εe is the relative error with respect to particles’ elongation, εC is the relative 

error with respect to particles’ circularity and εRW
 is the relative error with respect 

to particles’ roundness. The definitions of these three shape descriptors are 

reported in Section 2.4. 

5 pebbles of the sample have been used for the model calibration, selected to be 

different in shape and color. The Root Mean Square Error of the overall error 

metrics E, each one evaluated for each particle, has been used to identify the 

combination of the calibration parameters that guarantee the highest accuracy.  
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The calibration parameters selected as those that minimize the Root Mean Square 

Error are: 

(1) The minimum and the maximum values, between which Cl varies, 

respectively equal to 0.1 and 0.2; 

(2) The value selected as Cu to 0.3; 

(3) The minimum and the maximum values between which σC varies, 

respectively equal to 0.2 and 5; 

(4) l equal to 17 pixel for each side. 

The calibrated model has been then applied to 32 pebbles for its validation and 

the accuracy of the model on the estimation of Circularity, Roundness and 

Elongation has been evaluated. The results are shown in Section 5.2 where the 

influence of both the segmentation methods and computational geometry 

toolboxes have been discussed. 

 

4.2. Sediment fingerprinting using particles morphometry 

 

The second phase of this work aims to assess to what degree particles shape data, 

estimated with the model implemented in the first phase of the research, could 

be useful for inferring the distance travelled by particles.  

According to one of the studies on sediment attrition a “universal” relation 

between particles relative mass-loss and their circularity exists. Moreover, it 

suggests that this relation might be useful for inferring the distance traveled by 

individual particles (Novák-Szabó et al., 2018). 

Since the formal equation has not been given to date, we assumed an elliptical 

function between the relative mass loss (µ) and circularity (C) that meets the 

conditions summarized in Section 2.3.1 and that interpolates the results obtained 

during the laboratory experiences conducted by Domokos et al. (Equation 4-3). 

The unknown parameters of the curve, i.e. Cmax, C0, µmax, and α (Table 4-1), have 

been estimated fitting the experimental curve by minimizing the root mean 

square error between the estimated and experimental values of circularity 

(Figure 4-7). 
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C = C0 + (Cmax − C0) [1 − (1 −

μ

μmax
)

α

]
1/α

 4-3 

 

Interpolating curve 

parameters 

CMAX [-]  0.88 

C0 [-] 0.7 

µMAX [-] 1 

α 1.75 

 

Table 4-1 Estimated parameters of the abrasion curve 

 

 

Figure 4-7 Abrasion curve 

 

The interpolating curve has been used for the inference of the mean relative mas-

loss from the measured circularity. Since the circularity value, corresponding to 

a zero relative mass loss, derived from the curve shown in Figure 4-7, differs from 

the mean value calculated from the field data collected at the points identified as 

the source, the curve has been shifted to the left (Equations 4-4 4-5). 
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This discrepancy between the laboratory data, obtained from the experiments 

with a tumbling barrel (Novák-Szabó et al., 2018), and field data can be justified 

assuming that the sediments taken from the outcrops, located along the creeks 

that flow into the Sarzana river, are subjected to a so called abrasion in place 

(Schumm and Stevens, 1973). The abrasion of the sediments at rest, produced by 

vibratory motions to which the particles are subjected, has been suggested as 

possible factor that can cause mass loss (Schumm and Stevens, 1973). 

 

 μ(C) = µmax −
µmax

(Cmax − C0)
∗ [(Cmax − C0)α − (C − C0)α]

1
α 4-4 

 

 

 Δμ =  μ(C) − μ(C = 0) 4-5 

 

Nevertheless, the curve does not allow to infer directly the distance travelled by 

particles. In order to achieve the final objective of estimating the distance 

travelled from the shape metric, it is required to assess whether it would be 

possible to establish a theoretical relationship between the inferred relative mass-

loss and travel distance. 

Sternberg, in 1875, suggested an exponential the mass of the particles with 

distance, dependent on the unknown abrasion coefficient k (Krumbein, 1941) 

(Section 2.3.2).  

Since the initial mass of the particles at the source points are unknown, an 

alternative could be the study of the exponential increase of the relative mass-loss 

of the particles, related to their initial mass, with their travel distance 4-6.  

 

 
μ = 1 −

M

M0

= 1 − exp(−kx) 4-6 

 

This abrasion coefficient has been evaluated from the increment of relative mass-

loss, inferred through the Equation 4-4 and 4-5 for each sampling station located 

at a certain distance L from the source point (Equation 4-7). 
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k = − (

1

L
) ∗ ln {1 − µ} 

4-7 

 

As will be demonstrated in Section 5.4 and as already mentioned in Section 2.3.2 

the speed with which the particles abrade is expected to depend on different 

feature of the basin and of the pebbles, e.g. grain size et cetera.  

The accuracy of the estimation of the distances travelled by particles, deduced as 

a function of circularity and abrasion coefficient, is related to the dispersions of 

the sampled particles’ circularity, linked to the internal variability of the sample, 

and to the accuracy of the measures of circularity. 

Should the uncertainties related to the transformation function from circularity 

to travel distance be too wide, this could lead to the paradox of estimating travel 

distances several times higher than the distance between the farthest sediment 

source for a given lithology. 

At the same time, since the distance is a function of circularity (C) and abrasion 

coefficient (k) (Equation 4-8), its accuracy is dependent on the accuracy in the 

measures or estimation of these parameters. Their effects can be assessed 

studying the derivative of L with respect to C and k (Equations 4-9 and 4-10). To 

make a general analysis about the sensitivity of L to variations f C and k, it has 

been considered the non-shifted abrasion curve for determining µ(C). 

 

 L = − (
1

k
) ∗ ln [1 − µ(𝐶)] 4-8 

 

 
∂L

∂C
=

1

k

μmax

(Cmax − C0)

(C − C0)α−1[(Cmax − C0)α − (C − C0)α]
1
α

−1

1 − μ(C)
 4-9 

 

∂L

∂k
= −

1

k2
ln [1 − µ(𝐶)] 4-10 

 

The results are shown later in Sections 5.5.1 and 5.5.2, where the influence of the 

accuracy of the estimation of both the abrasion coefficient and circularity on the 

distance travelled inference are discussed. 
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5. Results 
 

5.1. Sarzana River Basin  

 

The study area is the Sarzana River basin, a 25 km2 located in the North-East of 

Italy. The Sarzana River is a tributary of the Cordevole River and it has been 

chosen since, according the Veneto Region lithologic map (‘Veneto Region 

Geoportal https://idt2.regione.veneto.it/’) it is characterized by the presence of 

localized and well separated sources of metabasalts (Figure 5-1) and arenites. In 

this research, only the metabasalts will be analysed and considered as tracers. 

 

 

Figure 5-1 Sarzana River Basin 
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5.1.1. Field Data Collection 

 

The fieldwork experience showed that, unlike what suggested by the lithologic 

map, most of the contribution of this rock type is due to punctual outcrops of 

metabasalts placed within small creeks draining the hillslopes (Figure 5-2).  

In particular, we found two outcrops along the creeks that cross the region 

indicated by the lithological map, both responsible for the production of fresh 

fragments of metabasalts (Figure 5-3). 

Sediment particles have been collected along the river network from exposed 

bars. Their size ranges from cobbles to fine gravel. Before placing them on a 0.5x1 

m2 white board to enhance the contrast, the pebbles have been washed, to remove 

soil and vegetation deposits that might affect their shape assessment and dried 

using normal towels. Pebbles were therefore placed spaced from each other, 

avoiding potential shadow clustering and pebble their projections’ overlapping, 

which might bring to misclassifications. Pictures of the white board were taken 

using an Olympus® E-PL1 digital camera (with an average resolution of 

0.26mm/px). 

Unfortunately, due to the low relative presence of metabasalts deposited in some 

of the sampling stations, with respect to the rest of the lithology composing the 

bed of the Sarzana River, it has been challenging to achieve large sample sizes. 
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Figure 5-2 Two observed outcrops of metabasalts inside the region identified as a source by the lithologic 
map 
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Figure 5-3 Fresh fragments took from the detected outcrop 

 

5.2. Pebbles’ segmentation model results and discussion 

 

The images taken during the fieldwork were then processed with the 

implemented model for edge detection (Section 4.1). 

At the end of the segmentation model, all the images of the particles that passed 

the visual inspection were analyzed using the computational geometry toolboxes 

mentioned in Section 2.4.1. Table 5-1 summarizes the mean relative errors ε 

obtained comparing the shape metrics, estimated for the images segmented 

through the implemented model β(PC), with the reference values β(AP)  

(Equation 4-1). 
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  ZHENG ROUSSILLON 

εC 0.81% 0.77% 

εE 0.59% 0.88% 

εR 5.65% 6.22% 

 

Table 5-1 Relative errors evaluated for each shape parameter through each computational geometry 

models. 

 

Roundness is the parameter that, irrespectively of the shape estimation method 

used, showed the highest relative error in its estimation. Circularity and 

elongation results showed instead good agreement with reference values below 

1%. Table 5-2 shows the relative difference in the estimation of each shape 

descriptor depending on the toolbox used (Equation 5-1). The index evaluates the 

relative error between the values of a generic parameter β inferred using the 

toolbox implemented by Roussillon et al., 2009 (R) and those obtained using the 

toolbox of Zheng and Hryciw, 2015 (Z): 

 

 
εZ/R_β =

βRous. − βZheng

βRous
∙ 100 

5-1 

 

 AP PC 

ε Z/R_C 0.33% 0.33% 

ε Z/R_E 3.24% 3.43% 

ε Z/R_R 15.15% 14.35% 

 

Table 5-2 Relative errors between the two computational geometry models (Z and R) evaluated for each 
parameter both for manually segmented (PC) and automatically segmented (AP) pebbles. 
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These results show that, for all the shape descriptors considered, the differences 

between the estimation of the two models is not affected by the segmentation 

method used, whose accuracy in pebbles’ segmentation can be considered to be 

equivalent to the manual “Quick selection tool” available in Adobe Photoshop CC. 

Figure 5-4 show six scatter plots that allow the comparison of the effect of 

segmentation method and of the shape analysis toolbox used on the accuracy of 

the estimation of the shape metrics.  

The dispersion of data points when comparing the two toolboxes is similar, 

irrespectively of the segmentation method used (Figure 5-4 A-C-E).  

When data points are compared according to the segmentation method, they 

show similar dispersion independently on which computational geometry 

toolbox is applied (Figure 5-4 B-D-F). As observed, the most error prone shape 

parameter is the roundness. Nevertheless, the estimation of this parameter seems 

to be more dependent on which toolbox is used for the shape characterization 

than the segmentation method adopted. Indeed, in Figure 5-4 F, the roundness 

data are more distributed along the bisector than in Figure 5-4 E. Regarding 

circularity and elongation, data show comparable dispersion when grouped 

according to both criteria. The shape analysis toolbox adopted and the 

segmentation method used therefore had comparable effects in terms of their 

contribution to the accuracy of shape values estimation.  

This model represents a step forward in the shape characterization. Indeed, the 

existing computational geometry toolboxes cannot automatically detect the 

pebbles’ outline. In particular, the Roussillon et al. (2009) model is the only 

computational geometry toolbox, among those considered for this work, that 

involves both segmentation of the pebbles and the computation of the shape 

parameters. Nevertheless, it resulted to be less accurate in the segmentation 

process than the automatic segmentation model here implemented Figure 5-5. 

Comparing the results obtained for each shape metrics in terms of mean relative 

error calculated with respect of the references values (AP), the new automatic 

segmentation model (PC) represents a great improvement Figure 5-5. 
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Figure 5-4 A-C-E) Graphical representation of the discrepancy, between the two computational geometry 
toolboxes, on shape parameters estimation. The blue empty dots  represent the shape parameters 
evaluated for the pebbles manually segmented (AP), while the filled red ones represents the shape 
descriptors for particles automatically segmented and considered as reference values(AP). B-D-F) 

Graphical representation of the influence of the adopted segmentation technique on the evaluation of 
shape parameters using the toolbox of Roussillon et al., 2009 (grey empty dots) and the one of Zheng and 

Hryciw, 2015 (yellow filled dots). 
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Figure 5-5 Comparison of the accuracy (expressed as mean relative error ε) of the new probabilistic Canny 
segmentation model (PC) in the estimation of shape parameters, with that relative to Roussillon et al. 

segmentation method. 

 

5.3. Empirical evolution of circularity with distance 

 

During the fieldwork, the coordinates of the sampling locations were measured 

using a mobile phone app: Mobile Topographer (‘Mobile Topographer’) . The 

distances of the sampling locations with respect to the outlet of the basin have 

been estimated as follows. 

The input data was the DEM provided by the Veneto Region Geoportal (‘Veneto 

Region Geoportal https://idt2.regione.veneto.it/’). Through an application of the 

Software ArcGIS, it has been possible to define, for each point of the basin, the 

flow direction and the flow distance with respect to the outlet of the basin. The 

distance travelled for each source point was obtained by clipping the raster 

representing the flow distances for each basin pixel with the shape file of the 

region identified as the source area by the lithologic map Figure 5-1 (‘Veneto 

Region Geoportal https://idt2.regione.veneto.it/’, no date). 

The empirical evolution of mean circularity with the distance has been tracked 

for each of the two paths connected to the two outcrops identified as possible 

metabasalts sources (Points 6 and 8 in Figure 5-6).  
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Since the mean value of circularity has been evaluated from the collected data, its 

accuracy could be compromised by the size of the sample. 

 The smaller the sample, the less accurate the estimation of the mean circularity. 

As reported in the Table 5-3 and in Table 5-4 and shown in Figure 5-7 and 

Figure 5-8, where the trends of the mean circularity and the extremes of the 

confidence interval are drawn, some of the sampling stations do not reach 30 

pebbles, making the inference less accurate.  

Both trends seem similar to the expected evolution from visual inspection. Under 

the assumption that the dominant abrasion mechanism is chipping 

(Section 12.3.1), the main variation in particles’ circularity is attended when 

pebbles have travelled a few kilometres (Miller et al., 2014). This is justified by 

the fact that near the source particles are more angular and, therefore, abrasion 

rate is higher. On the contrary, after a certain amount of distance travelled, they 

have been already rounded and a decrease in the rate with which the circularity 

varies is expected. This shape parameter is therefore expected to reach a steady 

value and field observations qualitatively agree with the theoretical expectation. 

Despite what one could expect, around the first kilometre, near the point where 

the creeks coming from the hillslopes flow into the Sarzana River, circularity 

decreases (Figure 5-7 and Figure 5-8). Nevertheless, the uncertainty associated 

to the estimated mean value, i.e. the extension of the confidence interval 

evaluated at 95% confidence, is greater than the variation of the mean circularity 

measured between two consecutive stations. This result can be justified by the 

paucity of the available sample in some of the locations. 

Furthermore, at around the fifth kilometre from the upstream source points, the 

trend undergoes a rapid decrease due to the presence of a downstream 

metabasalts source, showed in Figure 5-6, that produce less abraded and sharper 

fragments. 

Besides, we wondered whether it would be possible to set a boundary condition 

in the process of fragmentation at the source.  
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We found that the distribution of the shape properties (circularity, roundness, 

and elongation), estimated for the two outcrops, were similar, suggesting that the 

breakage mechanisms of metabasalt rocks in such environments tends to produce 

fragments with similar shape distribution. A Kolmogorov-Smirnov test, 

performed on the two samples at 95% confidence, confirmed the null hypothesis 

of compatibility of the two distributions, of the metabasalts outcrops Figure 5-9.  

This result allowed us to simplify the analysis and to refer to a unique source 

obtained combining data referred to the two sampled outcrops (stations 6 and 8) 

and called in the next Sections as point 4 Table 5-5. 

 

 

Figure 5-6 Representation of the sampling locations. The two lines represent the two creeks that flow into 
the Sarzana River. 
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Smapling N Distance Distance mean 

Location Samples from the outlet from the source circularity 

  [m] [m] [-] 

6 41 5714.8 0 0.771 

11 35 5483.12 231.68 0.814 

14 57 5141.38 573.42 0.858 

15 32 4960.66 754.14 0.853 

17 50 4653.88 1060.92 0.848 

18 27 3837.53 1877.27 0.850 

21 84 2436.12 3278.68 0.860 

22 68 1474.06 4240.74 0.876 

23 41 624.778 5090.022 0.851 

24 54 0 5714.8 0.866 

 

Table 5-3 Mean circularity data relative to the stations located along the path 1 

 

 

Figure 5-7 Evolution of the mean circularity with the distance travelled by particles along the path 1 

 

 

 

 

 



52 
 

Smapling N Distance Distance mean 

Location Samples from the outlet from the source circularity 

  [m] [m] [-] 

8 55 5612.87 0 0.752 

9 25 5546.3 66.57 0.815 

14 57 5141.38 471.49 0.858 

15 32 4960.66 652.21 0.853 

17 50 4653.88 958.99 0.848 

18 27 3837.53 1775.34 0.850 

21 84 2436.12 3176.75 0.860 

22 68 1474.06 4138.81 0.876 

23 41 624.778 4988.092 0.851 

24 54 0 5612.87 0.866 

 

Table 5-4 Mean circularity data relative to the stations located along the path 1 

 

 

Figure 5-8 Evolution of the mean circularity with the distance travelled by particles along the path 2 
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Smapling N Distance Distance mean 

Location Samples  from the outlet   from the source circularity 

     [m]  [m]  [-] 

4 96 5663.84 0.00 0.760 

9 25 5546.30 117.54 0.815 

11 35 5483.12 180.72 0.814 

14 57 5141.38 522.46 0.858 

15 32 4960.66 703.18 0.853 

17 50 4653.88 1009.96 0.848 

18 27 3837.53 1826.31 0.850 

21 84 2436.12 3227.72 0.860 

22 68 1474.06 4189.78 0.876 

23 41 624.78 5039.06 0.851 

24 54 0.00 5663.84 0.866 

 

Table 5-5 Mean circularity relative to the downstream sections and to the source point 4 obtained by the 
combinations of the data relative to the sampled outcrops located at points 6 and 8. 

 

 

 

Figure 5-9 Distributions of circularity, elongation and roundness data collected in the two sampled 
outcrops 
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5.4. Estimation of the abrasion coefficient  

 

Sternberg suggested an exponential increase of particles’ relative mass loss 

during the travel. The coefficient that determines the speed with which the mass 

varies and therefore the particle is abraded, is a priori unknown. The inference 

of the abrasion coefficient from the field data can be obtained relating the relative 

mass loss and the travel distance. The relative mass loss is deduced the circularity 

data to which is related through the abrasion curve interpolated on the 

experimental data Section 4.2. As already mentioned in Section 4.2, the curve has 

been shifted since the circularity data obtained during the experiments carried 

out on a tumbling barrel proved to be underestimated compared to the circularity 

values obtained in the field at the points identified as a source (Sampling point 4 

in Table 5-5. This, indeed, leads to have analytically, from the Equation 4-4, a 

positive value of mass loss at the source. The deduced increment of relative mass-

losses Δµ, evaluated with respect to the mass loss at the source (Equation 4-5), 

are reported in Table 5-6. 

Only the sampling points located along the Sarzana River have been considered 

for this analysis. Furthermore, the location 18 has been neglected, since as 

mentioned in the previous Section 5.3, the paucity of the sample makes the 

analysis less accurate.  

 

Sampling  Distance mean Relative Δ Rel.  

Points  from the outlet circularity mass loss  mass loss  

   [m]  [-] [-] [-] 

4 - 0.7602 0.087   

14 522.5 0.858 0.593 0.506 

15 703.2 0.853 0.545 0.458 

17 1010.0 0.848 0.504 0.417 

21 3227.7 0.860 0.617 0.530 

22 4189.8 0.876 0.833 0.746 

23 5039.1 0.851 0.531 0.444 

24 5663.8 0.866 0.681 0.594 

 

Table 5-6 Table containing data about mean circularity, relative mass loss, found from the abrasion curve, 
and the increment of relative mass loss with respect to the mass loss estimated from the interpolating 

curve 
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Therefore, the inferred increment of relative mass-losses, Δµ in Equation 4-5, 

have been related to the measured distance through the Sternberg law to estimate 

the abrasion coefficient that represents the rate with which the sediment mass 

decreases with the distance Equation 4-7. This process has been repeated for all 

the sections located along the Sarzana River. The estimated mean abrasion 

coefficients represent the global rates with which the particles are abraded from 

the source to each point located downstream. Table 5-7 collects the abrasion 

coefficient (k), which is not constant along the river course but it decreases going 

farther downstream. 

 

Loc_Name 
Distance from 

 k [km-1] 
  the US source [m] 

Source - - 

14 522.455 1.351 

15 703.175 0.872 

17 1009.955 0.535 

21 3227.715 0.234 

22 4189.775 0.327 

23 5039.057 0.117 

24 5663.835 0.160 

 

Table 5-7 Mean abrasion coefficient k inferred for each location 

 

Figure 5-10 shows the curve of abrasion coefficient (k) descending steeply at first 

and then more gradually as the distance from the source increases. Kuenen, in 

1956, classified different types of abrasion, which affect the mass loss of the 

particles during the different phases of transport (Kuenen, 1956). The dominant 

abrasion process, in gravel-bed rivers, is chipping, which causes the loss of small 

flakes from the sharp edges, increasing the particles’ circularity and roundness 

(Krumbein, 1941; Kuenen, 1956). Its contribution in the evaluation of the 

abrasion coefficient is relevant especially near the source where the pebbles are 

more angular and they are more prone to be abraded by chipping. Past studies on 

abrasion suggest the size of the particles as another effect on the rate with which 

mass decreases (Krumbein, 1941; Kuenen, 1956; Bradley, 1970). Indeed, it is 

expected that the bigger particles abrade faster.  
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The weight of the particles affects their kinetics and, therefore, assumed that the 

main transport mechanism for bed-load is saltation, the jump lengths of the 

particles (Krumbein, 1941; Kuenen, 1956; Bradley, 1970). The larger the size, the 

smaller the jump length. Therefore, the bigger particles impact more frequently 

with the bed and are more prone to collide with the transported particles than the 

smaller ones (Krumbein, 1941; Frings, 2008). Moreover, since the smaller the 

particles are, the farther downstream they travel, the effect of size on the abrasion 

rate, added to the one produced by the irregular shape, is expected to enhance the 

values of the coefficient in the most upstream part of the river and reduces them 

downstream.  

It is, therefore, expected a decreasing abrasion rate with distance as a result of 

the just mentioned effects (Frings, 2008). Figure 5-11 shows both the evolutions 

of the mean size and abrasion coefficient with distance traveled. The abrasion 

coefficient seems to decrease with the mean size, suggesting a strong correlation 

between the two quantities. The trends are quite parallel until the 5th kilometer 

where the presence of the downstream source makes the mean size greater but, 

at the same time, the production of fragments reduces the circularity and, 

therefore, the abrasion coefficient. 

 

 

Figure 5-10 Downstream change in the abrasion coefficient 
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Figure 5-11 Evolution with distance of abrasion coefficient and mean size at each sampling location 

 

5.5. Sensitivity analysis 

 

The abrasion coefficient represents the speed with which metabasalts particles 

abrade as they are transported by the river flow. The values of this parameters 

relate the mean value of circularity and the measured distance from the source 

point. The next sections are focused on assessing how much the internal 

variability of the circularity values, due to the natural dispersion of the sample 

data, can affect the measure of the distance travelled. Moreover, the effects of the 

accuracy of the methods used for evaluating the particles’ circularity values and 

the accuracy of the abrasion coefficient estimation on the estimation of the 

distance travelled by particles are analyzed.   
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5.5.1. Effects of the internal variability of the circularity data on the estimation 

of the possible distances travelled by particles 

 

Within a sample, each particle has specific morphometric characteristics which 

can differ from the mean value of the sample.  

The internal variability of the sample can be represented by the standard 

deviation. Table 5-8 summarizes the statistics of the samples relative to each 

location.  

 

Location Std C mean C 

Station [-] [-] 

14 0.071 0.858 

15 0.086 0.853 

17 0.084 0.848 

21 0.071 0.860 

22 0.077 0.876 

23 0.074 0.851 

24 0.070 0.866 

 

Table 5-8 Mean and standard deviation and relative standard deviation of circularity measures for each 
sampling location 

 

In the samples some of the values do not belong to the range CMAX − C𝑆𝑂𝑈𝑅𝐶𝐸 

where CSOURCE is equal to 0.76 and CMAX is 0.88. For this reason, for these particles 

it is not possible to estimate the mass loss Δµ using the curve derived from 

Domokos dataset and adapted to the inferred mean circularity values 

(Equations 4-4 and 4-5). As a consequence also the associated distance travelled 

cannot be directly computed. It has been assumed that for the particles with a 

circularity lower than CSOURCE the relative mass loss is null as the travel distance, 

while, for values of circularity greater than CMAX, the relative mass loss is equal to 

one and the correspondent distance is infinite. To associate a finite distance value 

to the most circular particles, it has been defined a maximum value of distance 

LMAX, which corresponds to the maximum value of circularity belonging to the 

mentioned range. In this way, all the particles with circularity values higher than 

CMAX result to have travelled a distance equal to LMAX. 
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Under these assumptions and considering the abrasion coefficients estimated in 

Section 5.4, the application of the Equation 4-8 to all the sampled circularity 

values leads to a distribution of the travel distances characterized by a great 

dispersion as reported in Table 5-9. The standard deviation of the distance results 

to be of the same order of the mean value. 

 

Location Std L  mean L  

Station  [m]  [m] 

14 586.066 522.455 

15 686.883 703.175 

17 1363.487 1009.955 

21 3288.509 3227.715 

22 2202.166 4189.775 

23 5695.214 5039.057 

24 4110.315 5663.835 

 

Table 5-9 Mean and standard deviation of distance measures for each sampling location 

 

To compare and underline the effects of the sequence of increasing functions on 

the internal variability of the sample it has been evaluated, for both the distance 

and circularity, the relative standard deviation: 

 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝜎

𝑋
 5-2 

 

Where X is the mean of the quantity analyzed and σ its standard deviation. 

The normalized standard deviations estimated for the distance travelled result to 

be at least 6 times greater than the internal variability measured for circularity 

Table 5-10. 
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Location Relative std L Relative std C  ratio 

Name [-]  [-] [-] 

14 1.122 0.083 1.4E+01 

15 0.977 0.101 9.6E+00 

17 1.350 0.099 1.4E+01 

21 1.019 0.083 1.2E+01 

22 0.526 0.088 6.0E+00 

23 1.130 0.087 1.3E+01 

24 0.726 0.081 9.0E+00 

 
Table 5-10 A-dimensional standard deviation of circularity C and travel distance L 

 

According to the lithologic map, two diffuse sources of metabasalts are located 

within the Sarzana River Basin.  

This means that all the points, belonging to these areas produce metabasalts 

fragments that travel into the Sarzana River following different paths, each one 

characterized by a flow distance from the outlet of the basin evaluated, as 

explained in Section 5.3, along the direction of the steepest descendent 

Figure 5-12. The analysis of a diffusive source allows to consider a distribution of 

the possible paths that particles can travel. The sub-basins underlying the most 

upstream sections, located along the Sarzana River, intersect the upstream 

metabasalt source. This means that the region partially contributes to the 

production of the sediments. The contributing area has been obtained by 

clipping, through the ArcGIS tool, the metabasalt source area with the sub-basin 

underlying the considered sampling location. Going downstream, the area that 

drains in the river section and, consequently, the number of possible paths 

increase. At the outlet, both the upstream and downstream sources drain, 

reaching the maximum number of possible along which sediments can travel. The 

variability of the path lengths distribution is expected to decrease approaching 

the outlet of the basin. Nevertheless, the presence of the downstream source 

makes the distribution more spread Table 5-11. 

To evaluate the distance distribution, all points, belonging to the diffuse source, 

have been assumed to contribute with the same probability to the production of 

the fragments that flow into the Sarzana River.  
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The distribution of the path lengths, deduced from circularity and the distribution 

obtained considering a diffusive metabasalt source, have been comparerd under 

the hypotheses that all points belonging to the diffusive source contribute with 

the same probability to the sediment flow and applying the abrasion coefficient 

inferred in Section 5.4 from the mean data of circularity. Unlike what expected, 

the distributions do not overlap (Figure 5-13).  

Furthermore, some of the distances evaluated from the circularity values are 

greater than the value of distance evaluated for the most far point belonging to 

the diffusive source, or lower than the distance measured for the closest source-

point. This result is physically meaningless, since it suggests the presence of a 

source located more upstream, or vice-versa more downstream, than the one 

detected by the lithologic map of the basin Figure 5-13.  

 

 

Figure 5-12 Sarzana River watershed and map of the distances associated to the points belonging to the 
metabasalt source. 
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Location Mean L Std L Normalized std L 

Name  [m]  [m]  [-] 

14 481.49 80.11 0.166 

15 652.90 81.66 0.125 

17 959.68 81.66 0.085 

21 3177.44 81.66 0.026 

22 4139.50 81.66 0.026 

23 3932.91 2008.24 0.485 

24 3399.71 2488.29 0.633 

 

Table 5-11 Statistics of the distribution of the possible path lengths deduced considering the diffusive 
source 

 

 

Figure 5-13 Distribution of the path lengths deduced from circularity values (red bars) and Distribution of 
the possible path lengths obtained considering the diffusive source of metabasalt (blue bars). 
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5.5.2. Effects of the uncertainties in the measures of circularity and abrasion 

coefficient on the distance inference 

 

The accuracy of the inferred travel distances is a function of the accuracy of the 

measuring methods with which circularity and abrasion coefficient are estimated.  

As explained in Section 4.2, the accuracy of the travel distances can be evaluated 

by analyzing the first derivative of L with respect to C and k (Equations 4-9 

and 4-10). 

The accuracy of the models used here for the estimation of circularity was found 

to be approximately 1% (Section 5.2). This value was then used to assess its 

influence on the accuracy of the distance’s estimation.  

At the same time, since the ground-truth value of the abrasion coefficient is a 

priori unknown, it is not possible to evaluate the accuracy of the values inferred 

in Section 5.4.  

It was then assumed that the accuracy associated with the estimated values of k, 

could be an order of magnitude lower than the value assumed by the parameter 

itself, i.e. ~10-2.  It has been first studied the influence of circularity, maintaining 

the abrasion coefficient set at 0.1 km-1 and varying circularity between C0 and 

CMAX reported in Table 4-1. Figure 5-14 represents the travel distance and its first 

derivative, both expressed as a function of circularity, its accuracy and the relative 

mass loss µ(C) Equations 4-8 and 4-9. Both the quantities increase with 

increasing values of circularity. Furthermore, the tendency of  
𝑑𝐿

𝑑𝐶
 to infinite for 

higher values of circularity means that even small increment of Circularity leads 

to a great variation of distance ΔL (Equation 5-3).   

 

 
∆𝐿 =

𝑑𝐿

𝑑𝐶
∆𝐶 

5-3 

 

If we consider ΔC as the uncertainty of the measured C, the correspondent ΔL 

represents the accuracy in the distance inference and it depends on the values 

assumed by C as showed in Figure 5-15. 
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The absolute error of L is not significant since it depends on which value of 

distance is associated. For this reason, the relative error has been evaluated 

(Equation 5-4). 

 

 
𝑒 =

∆𝐿

𝐿
 

5-4 

 

Figure 5-16 shows the evolution of the relative error e with the travel distance. It 

can be concluded that the relative error varies non-linearly with the distance and 

it does not increase monotonically.  

Furthermore, the relative error rapidly decrease from infinite to the minimum 

value in less than three kilometres, underlying a great variability of this quantity 

for short distances. On the contrary, for longer distances, the curve increases 

again tending to an oblique asymptote. 

The accuracy cannot reach values lower than 20%, meaning that whatever is the 

value assumed by the travel distance, the accuracy is however relatively low. 

Therefore, even a quite accurate estimation of circularity leads to a less accurate 

inference of distance travelled by particles. 

 

 

Figure 5-14 Evolutions of travel distance and its first derivative with circularity for k=0.1 [km-1] 
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Figure 5-15 Evolutions of travel distance and its increment, given ΔC~10-2 and for k=0.1 [km-1] 

 

 

Figure 5-16 Change of the relative error as a function of L 
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The same analysis has been conducted considering different values of abrasion 

coefficient. In particular, k has been set equal to 0.1, 0.2, 0.9 and 1.  

These values were chosen to assess how much the abrasion coefficient affects the 

estimated distance and to check whether the same increment of k, applied to both 

small and large values of k (Δk=0.1 [km-1]), may affect the relative error 

differently. 

Figure 5-17 shows the curves that represent the evolution tracked for each 

abrasion coefficient. As expected from Equation 4-8, the smaller the value of k, 

the greater the travel distance for each value of circularity. Furthermore, the 

influence of the abrasion coefficient on the estimation of distance decreases with 

the increase of the value assumed by the parameter. Indeed, one can see that the 

curves relative to the pair of the highest values of k are almost overlapped, while 

the curves obtained from the couple of the lowest values of k are more separated, 

even if the increment of k is the same for both the pairs of values. 

The analysis of the relative error, expressed as a function of the accuracy of C, 

reveals that the greater the abrasion coefficient, the greater the variability of the 

relative error.  

Seeing the yellow curve in Figure 5-18, correspondent to the highest value of 

abrasion coefficient, the error seems to vary faster than the other curves.  

This means that a little increment of travel distance leads to a great variation of 

the accuracy of the inference.  

Furthermore, independently on the value assumed by the abrasion coefficient, 

the relative error cannot decrease below the 20%, underlying that whatever is the 

abrasion coefficient, the inference of the travel distance results quite inaccurate.  
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Figure 5-17 Evolution of travel distance with circularity for different values of abrasion coefficient. 

 

 

Figure 5-18 Evolution of the relative error with distance for ΔC=0.01 [-] 

 

What has been just said about the influence of k on the inference of distance and 

its relative error, can be confirmed analyzing the effects of k when the circularity 

is fixed at 0.75 [-]. The abrasion coefficient is considered variable between 0.01 

and 2 to include all the values of k estimated in Section 5.4. 
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The variability of L with respect of k is evaluated by studying the first derivative, 

a negative function, as shown in Equation 4-10, which decreases with increasing 

values of k. The orange curve in Figure 5-19 confirms what already underlined, 

i.e. the variability of the travel distance decreases with increasing values of the 

coefficient k (see yellow and gray curves in Figure 5-17), and it tends to be 

constant.  Furthermore, as expected and demonstrated in Figure 5-17, the travel 

distance decreases with the increase of k, underlying that for a constant value of 

circularity and, therefore, of relative mass, shorter distances leads to higher 

abrasion rate. 

The non-dimensional variability of the distance travelled, for a given uncertainty 

in abrasion coefficient estimation, varies linearly with the estimated distance 

travelled (Figure 5-21). 

 

 

Figure 5-19 Evolution of travel distance and the first derivative for C=0.75 [-] 
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Figure 5-20 Evolution of travel distance L and its increment ΔL  for C=0.75 [-] and Δk=0.01 

 

 

Figure 5-21 Evolution of the relative error with distance for a Δk=0.01 [km-1] and C=0.75 [-] 

 

Considering the mean values of circularity C and the abrasion coefficient k 

(Table 5-12), estimated for the sections along the Sarzana River, the uncertainty 

associated with the distances has been estimated as a function of the accuracy of 

each of the parameters on which the distance depends. 

To verify whether the mean circularity and the mean abrasion coefficient were 

correlated Table 5-12, the covariance has been estimated (Equation 5-5).  
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Since the covariance is reasonably equal to zero, the two parameters can be 

assumed as independent.  

 

 
𝑐𝑜𝑣(𝐶, 𝑘) =

(𝐶 − 𝐶𝑚𝑒𝑎𝑛)(𝑘 − 𝑘𝑚𝑒𝑎𝑛)

𝑛
 5-5 

 

Location mean C  mean k Covariance 

Name [-]  [km-1] [-] 

Source 0.760 - 

-0.0006 

14 0.858 1.352 

15 0.853 0.872 

17 0.848 0.535 

21 0.860 0.234 

22 0.876 0.327 

23 0.851 0.117 

24 0.866 0.159 

 

Table 5-12 Mean circularity and abrasion coefficient data and the covariance of the two variables 

 

 

The combined effect of the uncertainties of C and k on the accuracy of L has been 

evaluated studying the propagation of the errors. Being the two parameters 

independent, the combined effects of their accuracies on the distance inference 

can be assessed applying the formula in Equation 5-6. 

 

 

∆𝐿 = √(
𝑑𝐿

𝑑𝐶
∆𝐶)

2

+ (
𝑑𝐿

𝑑𝑘
∆𝑘)

2

 5-6 

 

The sensitivity analisis just shown have been executed considering, for the 

estimation of mu and therefore of L, the non-shifted interpolating curve µ(C) 

(Equation 4-4).  

The following analyses, since they refer to the values of C and k measured from 

the field data, refer to the interpolating curve Δµ(C) (Equation 4-5). Therefore, L, 

𝑑𝐿

𝑑𝐶
 and 

𝑑𝐿

𝑑𝑘
 have been estimated through the Equations 4-8, 4-9 and 4-10 

considering Δµ values instead of µ. 
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The circularity has been found to have a greater influence on the accuracy value 

in the estimation of L than the abrasion coefficient Table 5-13.  

It is not possible to conclude that the greater is the distance the lower is the 

uncertainty (ΔL/L), unlike what one could expect. 

Again, the relative error cannot decrease below the 20% independently on which 

combination of C and k is considered.  

 

loc_name 
C k L ΔL(C) ΔL(k) ΔL ΔL/L 

[ ] [1/km] [km] [km] [km] [km] [-] 

14 0.858 1.352 0.523 0.148 -0.004 0.148 28% 

15 0.853 0.872 0.703 0.188 -0.008 0.188 27% 

17 0.848 0.535 1.011 0.261 -0.019 0.261 26% 

21 0.860 0.234 3.230 0.953 -0.138 0.961 30% 

22 0.876 0.327 4.201 2.528 -0.129 2.531 60% 

23 0.851 0.117 5.045 1.341 -0.433 1.396 27% 

24 0.866 0.159 5.672 1.915 -0.356 1.942 34% 

 

Table 5-13 Absolute and relative error in the estimation of L. The relative contributions of both circularity 
and abrasion coefficient in the total error ΔL are reported in ΔL (C) and ΔL (k) columns. 

 

Figure 5-22 shows the evolution of the abrasion coefficient with the distance 

travelled. If one considers the distance of each sampling location, estimated from 

the source as a function of mean circularity and abrasion coefficient, it is possible 

to infer the accuracy, represented as the error bars in Figure 5-22. Under the 

assumption that the variability of L with C, ΔL (C), is the most relevant, one can 

state that the variability increases with the distance, as confirmed by the orange 

curve in Figure 5-15 that represents an increasing trend of ΔL with C. This occurs 

for two effects: the increase in circularity and the decrease in abrasion coefficient, 

which are respectively directly and inversely related to ΔL (C).  

After the fifth kilometer, the absolute error decreases due to the presence of the 

downstream source that reduces the mean circularity and, therefore, ΔL. 

Nevertheless, at point 23 of Table 5-13 occurs something different from what just 

explained. 
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Comparing ΔL at point 23 with ΔL at point 21 Table 5-13, the value estimated for 

the first point results higher than the second, even if the circularity, relative to the 

section 23, is lower.  Nevertheless, the reduction of k results to be more relevant 

than the decrease in C. 

 This causes an increase of the absolute error associated to the estimated travel 

distance ΔL, instead of a decrease in ΔL that would be attended when the decrease 

in circularity is more relevant (Figure 5-15). 

 

 

Figure 5-22 Representation of the evolution of the abrasion coefficient. The error bars represent the 
accuracy of the distance 
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6. Conclusion 
 

This research aimed to assess whether the morphometric characteristics could be 

considered as a possible key property for the inference of the distance travelled 

by particles that can be integrated in the existent connectivity models allowing 

the calibration.  

This work is divided in two phases. The first regards the implementation of a 

model for automatic edge detection and shape characterization of the particles. 

The existent computational geometry models cannot guarantee an accurate shape 

characterization of the particles if a first phase of manual segmentation, through 

the Adobe Photoshop software, is not applied. For this reason, the implemented 

model result to be a great improvement in the edge detection, since it allows an 

accuracy in the estimation of morphometric characteristics of the pebbles 

reasonably equal to 10-2 and it proved to be efficient for around 80% of the 

sample.   

The second phase of this research focuses on the possibility to describe the 

particles’ degradation finding a function that relates the particles’ morphometric 

characteristics and the distance travelled. In particular, recent studies suggest a 

universal relation between the circularity and the relative mass loss (Novák-

Szabó et al., 2018). Since collecting data about mass loss in the field is not 

feasible, it is necessary to assess whether it is possible to find a relation between 

the relative mass loss and the distance travelled by particles. Sternberg, in 1875, 

found that the particles’ mass decreases exponentially with the distance travelled.  

Under these assumptions, the abrasion coefficients that relate the mean 

circularity values, estimated from the field data, and the measured distances were 

evaluated. 

From the analysis of the data it has been seen that the coefficient of abrasion 

decreases going downstream. In addition, it has been shown that, as already 

pointed out in the literature, the abrasion rate of the particles is mainly a function 

of the size and morphometric characteristics of the stones. 
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Finally, through a sensitivity analysis, it has been found that the accuracy in the 

estimation of distance, expressed as a function of circularity and abrasion 

coefficient is strongly dependent on the accuracy of the measuring method of 

circularity. Furthermore, the relative error of the measured distance increases 

non-linearly with both the distance and the circularity when the abrasion 

coefficient is constant. The increase of the abrasion coefficient, reduces the 

variation of the distance travelled with respect to the variation of the circularity. 

Another effect is the increase of the internal variability of the sample produced by 

the sequence of two increasing functions applied for relating the morphometric 

characteristics to the distance travelled. A normalized standard deviation 

approximately ~ 10-2 for circularity sample results in a normalized standard 

deviation for inferred travel distance ~10-1/1.  

It is possible conclude that it is not possible to find a generalized function that 

relates morphometric characteristics to the travel distance and that can be used 

for the calibration of the connectivity models, since it depends on the internal 

conditions of the basin and on the lithology. Furthermore, the application of a 

sequence of two increasing function revealed an increase in the internal 

variability of the sample that leads even to physically incorrect estimations of 

travel distances. Finally, it has been found that the accuracy values of the distance 

inferred, cannot decrease under 20% considering the accuracy values of 

circularity and abrasion coefficient reasonably ~10-2. 

In the future, the influence of the particles’ size on the estimated abrasion 

coefficient values could be studied by dividing the particles’ sample into two size 

classes (small and large grains) and evaluating the coefficient for each class. 

Moreover, the study of the influence of the morphological characteristics of the 

riverbed, that affect mainly the size-selective transport, could be another possible 

step forward for the research. 

The fieldwork experience showed that, unlike what suggested by the lithologic 

map, most of the metabasalts sources are punctual outcrops of the rock placed 

within small creeks draining the hillslopes.  

 



75 
 

To obtain a more accurate distribution of path-lengths, a possible future step 

forward, in this analysis, could be to consider only the paths that connect the 

downstream sink points with the upstream punctual outcrops and to associate, to 

each distance, a connectivity index. This value would represent the probability 

that a pebble deposited downstream comes from one of the identified outcrops.  

Nevertheless, this is still a preliminary idea that must should be studied in the 

future. 
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