POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

Autonomous Robot Exploration using Deep Learning;:

An Experimental Analysis

LAUREA MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA

Author: MArRco PrREMI
Advisor: PrRor. FRANCESCO AMIGONI
Co-advisor: DrR. MATTEO LUPERTO

Academic year: 2021-2022

1. Introduction

Among the different research fields in robotics,
autonomous mobile robotics has been actively
addressed in the last years. Autonomous ezplo-
ration is one of the most important tasks that
an autonomous robot, deployed in an unknown
environment, must accomplish. The robot, with
no previous information about the environment,
has to choose where to move and consequently
which is the best strategy to explore the envi-
ronment in order to build its map incrementally.
Over the years, different strategies have been
proposed and developed. Even if these classi-
cal techniques proved to be mostly successful, a
recent research thrust aims to develop Machine
Learning, and in particular Deep Learning, tech-
niques to address the exploration problem, be-
cause of the performance achieved by these ap-
proaches in other fields. Deep Learning meth-
ods require a lot of data and, in most cases,
when compared to classical methods they lack
explainability. In addition, most of the Deep
Learning exploration algorithms (known to ex-
ploit imperfections of the simulators) are studied
only in simulation environments and only some-
times have also been tested in real-world envi-
ronments (contrary to classical algorithms). The

purpose of this thesis is to experimentally com-
pare classical and Deep Learning algorithms for
exploration in order to understand which are the
positive and negative sides of the different tech-
niques. This comparison can provide interesting
results because of the fact that the community
of researchers that is dedicated to study classi-
cal exploration algorithms and the one that is
dedicated to study Deep Learning exploration
paradigm are in most of the cases separate com-
munities. Many researchers in the field of clas-
sical exploration rely on classical techniques as
they have proven to be robust and with reliable
performance also when used by actual robots in
the real world; however, this focus on classical
techniques may prevent them to benefit from in-
novations and better performance that may be
offered by Machine Learning and in particular
Deep Learning. Deep Learning researchers, on
the other hand, in most of the cases compare
their algorithms only with other learning-based
approaches, without taking into account classi-
cal exploration algorithms and the challenge of
deploying the agents in the real world.

2. State of the art

In order to understand how exploration tasks
can be solved and where classical and Deep
Learning techniques can be used, we have iden-
tified from the literature three macro modules,
as shown in Figure 1.

EXPLORATION __ NAVIGATION
rMAPP'NG > poLicy POLICY —|

Figure 1: Schematization of the exploration
problem. On the top, the case where exploration
and navigation policies are considered separate
modules. On the bottom, the case where explo-
ration and navigation policies are considered a
single module, learned end-to-end.

END-TO-END
EXPLORATION = NAVIGATION
R = > POLICY POLICY

Mapping is the module in charge of generating
or updating the map. The map can be simply
updated with the information coming from the
current observations or enhanced with predic-
tions. Fzxploration policy module is responsible
for the selection of the next point that must be
reached during the exploration, while navigation
policy is the module responsible for reaching
that point. Exploration and navigation can
also be solved end-to-end with Deep Learning
algorithms.

Mapping with classical algorithm is usually ob-
tained with SLAM (Simultaneous Localization
and Mapping) [16]. With SLAM, we indicate
the task of building the map of the environment
while trying to localize the agent in it: the
algorithm takes as input odometry and sensors
data and outputs the updated map and robot
location. One example of mapping with Deep
Learning is provided in [11] where authors use a
U-net network that takes as input an rgb image
and produces as output an egocentric top-down
2D spatial map.

Most of the classical methods proposed to select
the next exploration location and therefore
implement the exploration policy module are
based on the concept of frontiers, defined as
the regions between free and unexplored space.

The most famous algorithm is called frontier
exploration [18|. With this approach, the robot
moves to the closest frontier, until no more
frontiers are reachable. The next frontier to
be visited can be selected in multiple ways,
i.e., randomly or by selecting the frontier point
that maximizes the amount of unknown area
that can be seen from it. In the literature,
different Deep Learning algorithms have been
proposed to implement the exploration policy.
One example is provided in [11], where authors
use a Convolutional Neural Network (CNN)
which takes as input the updated map and
the pose estimate and outputs a long-term
goal. The CNN is trained with Reinforcement
Learning and the reward is proportional to the
increase in area coverage. Subsequently, they
compute the shortest path between the current
position and the long-term goal in order to
select a short-term goal along the path. In the
literature, other works follow this structure,
proposing algorithms that reward other aspects
of the exploration. A positive reward can be
given, for example, if actions are smooth or if
the goal is reached fast. On the other hand, for
example, a negative reward can be given if a
collision occurs.

In the literature, many exploration algorithms
use classical techniques like A* or Dijkstra
to plan the path from the current position to
the point selected by the exploration policy
and therefore implement the navigation policy
module, because these algorithms already offer
the optimal solution. Several works use Deep
Learning to learn a navigation policy in order
to reach a point goal selected by the exploration
policy previously defined. In almost all the
literature cases we have examined, Deep Learn-
ing policies are trained with Reinforcement
Learning. One example is the one reported in
[12], where authors use an actor-critic network
trained with Reinforcement Learning which
takes as input the description of the local envi-
ronment (bagged laser readings in 180 degrees
range in front of the robot) and the waypoint
goal that the agent must reach and outputs
the next action that must be executed by the
robot. The policy gives a positive reward if the
distance to the goal is less than a threshold, a
negative reward in case of collision and if none
of the previous conditions are satisfied it gives a

reward based on the current linear velocity and
angular velocity.

The last case we have to consider is the one
where exploration and navigation are jointly
learned using an end-to-end paradigm and can’t
be clearly separated into two modules as in
the previous cases. Omne example is provided
by authors of [13]. The authors compare
different Reinforcement Learning algorithms
that output the direction that must be followed
by the agent. The input is represented by the
sensory information acquired by the robot in
the environment. All the algorithms are trained
with the same reward function that gives a
positive reward if new cells are discovered,
a negative reward per timestep (in order to
avoid unnecessary movements), a negative
reward if the action done leads to invalid
states, and a positive reward when more than
a threshold value of the cells have been explored.

3. Algorithms selected for com-
parison

In this section, we describe the classical and
Deep Learning algorithms we have selected from
the literature in order to perform the compari-
son and understand what are the downsides and
upsides aspects of the different implementations,
taking into consideration the different modules
identified in Section 2.

3.1. Classical exploration algorithm

We have selected as an example of a classical
method the greedy frontier exploration of [4]. In
greedy frontier exploration, the robot chooses as
the next exploration goal the point, from the
frontier list, closest to the actual position. The
classical algorithm used for comparison in this
thesis is simple, but other more complex and
efficient algorithms exist in the literature.

e Input: laser readings and odometry read-
ings.

e Mapping module: SLAM (implemented
with Gmapping [6]), the module outputs a
grid-based map.

e Exploration policy module: greedy
frontier exploration (implemented with ex-
plore lite package of ROS [4]), the module
outputs the frontier point to be reached.

e Navigation policy module: Dijkstra

for path selection (implemented with
move base package of ROS [7]), the module
outputs the stream of velocity commands
the robot has to execute to reach the se-
lected point.

3.2. Deep Learning algorithms

In this section, we describe the Deep Learning
algorithms selected to perform the comparison:
ANS from [11], OccAnt [14], and DRL [12].

3.2.1 Learning to explore using active
neural SLAM - ANS

e Input: sensor pose readings and observa-
tions (rgb images).

e Mapping module: Neural SLAM mod-
ule. This module takes as input the current
rgb observation, the current and last sen-
sor reading of the agent pose, the last map
estimate, and the last agent pose. It out-
puts the updated grid-based map and the
current agent pose estimate.

e Exploration policy module: a CNN
trained with Reinforcement Learning takes
as input the map, the pose estimated by the
Neural SLAM module, and the visited loca-
tions and outputs the long-term goal. The
policy rewards large area coverage. Then, a
planner takes as input the long-term goal,
the obstacle map, and the agent pose to
output the short-term goal using the Fast
Marching method [15].

e Navigation policy module: a Recur-
rent Neural Network (RNN). It takes as
input the observations (rgb images) and
the short-term goal produced by the explo-
ration policy module. The policy is trained
using Imitation Learning to output a navi-
gational action.

3.2.2 Occupancy anticipation for effi-
cient exploration and navigation -

OccAnt

e Input: rgb images, depth images, and sen-
sor pose reading.

e Mapping module: a U-net network that
takes as input rgb and depth images and
outputs the anticipated occupancy (occu-
pancy of areas that can’t be directly seen)
for the region in front of the agent.

e Exploration policy module: the same
network as that of Section 3.2.1 with a small
difference; while ANS rewards increase in
area coverage, OccAnt rewards actions that
allow to predict correctly the map, irrespec-
tive of the fact that the robot has actually
observed that predicted location or not.

e Navigation policy module: the same as
Section 3.2.1.

3.2.3 Goal-driven autonomous explo-
ration through Deep Reinforce-
ment Learning - DRL

e Input: laser readings and odometry read-
ings.

e Mapping module: classical SLAM, the
module outputs a grid-based map.

e Exploration policy module: the al-
gorithm at each step selects a list of
POIs (Points of Interest) with a numeri-
cal method. The optimal POI, provided as
module’s output, is selected with an evalu-
ation method developed by the authors of
the algorithm, Information-Based Distance
Exploration (IDLE).

e Navigation policy module: an actor-
critic network trained with Reinforcement
Learning which takes as input the descrip-
tion of the local environment and the way-
point goal that the agent must reach and
outputs the next action that must be exe-
cuted by the robot. The policy gives a pos-
itive reward if distance to the goal is less
than a threshold, a negative reward in case
of collision and, if none of the previous con-
ditions are satisfied, it gives a reward based
on the current linear velocity and angular
velocity.

4. Experimental comparison

In this section, we describe the experimental
setting of the comparison between classical and
Deep Learning algorithms and its results.

4.1. Experimental setting

ANS and OccAnt are tested with the origi-
nal code provided by authors in [8], with au-
thors’ pretrained models. OccAnt and ANS code
implementation are strongly dependent on the
tools provided by the Habitat simulator [1] and

because of this they can’t be tested on other
simulation environments. As a consequence, we
rely on the Habitat simulator as the main sim-
ulator used in the comparison. On the other
hand, DRL (tested with the code provided by
authors in [3]) and frontier exploration algo-
rithm (with our own implementation) are origi-
nally implemented using ROS [9]. We test them
in the Habitat simulator using ROS-X-Habitat
[10], a software interface able to bridge the
Habitat simulator with other robotics resources
which use ROS. Habitat allows algorithms to be
tested with different photorealistic datasets. All
the photorealistic environments used during the
comparison are assumed to be static, meaning
that in the environments no any other agent
is moving and the environment itself doesn’t
change during the exploration. The environ-
ments used are taken from the Gibson dataset,
a reproduction of real indoor spaces made with
3D scanning and reconstructions. Frontier ex-
ploration, for a reason that emerged during the
execution of the comparison, is also tested in
the Stage simulator [17] in 2D versions of the
same environments (better explained in Section
4.2.2). Algorithms are compared on two dif-
ferent exploration tasks: exploration for map
building and point-goal driven exploration. In
exploration for map building the agent is re-
quired to explore the environment and build a
map as accurate as possible, while in point-goal
driven exploration the agent is required to ex-
plore the environment and build a map used
to reach the point provided as input. In ex-
ploration for map building task comparison, we
change the starting location in the environment
at every episode. In point-goal driven explo-
ration task, we change starting and goal loca-
tions in the environment at every episode, and a
goal is considered reached if the agent’s distance
to it is lower than 0.3 m. OccAnt and ANS
present a very similar structure and because of
this, we run comparison episodes between them
in order to understand if the introduction of
the occupancy anticipation in the mapping mod-
ule allows OccAnt to have better performance
compared to ANS in both the tasks. OccAnt,
ANS, and the classical algorithm are compared
on both tasks, while the DRL algorithm only on
point-goal driven exploration task. DRL is orig-
inally trained and tested in very simple Gazebo

[5] environments (only a small room with a small
number of furniture elements) and because of
this, we run some test episodes in more com-
plex Habitat environments in order to under-
stand if the algorithm is able to generalize well in
unknown environments. ANS and OccAnt can
be tested with different inputs: rgb, depth, or
rgbd. In the following tables, we only report
the implementation of ANS and OccAnt with
the best results and not all the implementations
with all the different inputs. The two tasks are
compared with task-specific metrics. Some of
them are self-explanatory, others must be speci-
ficied. In exploration for map building task with
map_accuracy we refer to the area of the global
map built during exploration that matches the
ground-truth provided, with AC/AS we refer to
the ratio between map _accuracy and area_ seen
(the more the value is close to one, the more the
area is mapped accurately). In point-goal driven
exploration task with dist to goal, we refer to
the distance to the goal (in m) at the end of the
episode (the lower the value, the closest every
episode ends to the goal), with num step we re-
fer to the total number of steps taken during the
episode in Deep Learning algorithms.

4.2. Experimental results

In this section, we describe all the tests done to
compare classical and Deep Learning algorithms
in the two exploration tasks.
4.2.1 OccAnt vs. ANS - Exploration for
map building task

| ANS (depth) | OccAnt (rgh)

|

area_seen_over_time (m?2/s)

47.451 (17.449)
55.609 (19.849)
29.801 (11.002)
25.808 (9.437)
0.865 (0.002)
64.288 (22.242)
0.853 (0.045)

48.725 (18.142)
56.913 (21.031)
30.991 (12.010)
25.922 (9.415)
0.984 (0.004)
57.838 (20.072)
0.856 (0.042)

map__accuracy (m?)
area_seen (m?)
free_space_seen (m?)
occupied _space_seen (m?)

time_per_episode (s)

AC/AS

Table 1: Results of comparison on exploration
for map building done with OccAnt and ANS
on 994 episodes in 14 environments of different
sizes (in parentheses, we report the standard de-
viation).

Looking at the values in Table 1 we can see that
neither algorithm is significantly better than the
other. OccAnt (rgb) proved to be the best choice
for different metrics (map _accuracy, area_ seen,
free space seen, and occupied space seen)

but looking at area seen over time, ANS
(depth) is able to explore more area in the same
time. In any case, with higher average values
come also higher standard deviation values. The
presence of occupancy anticipation module in
OccAnt (rgb) doesn’t give to OccAnt (rgh) a
clear advantage in exploration for map building
task, but in point-goal driven exploration task
(as later seen in Section 4.2.3) it allows better
performance.

4.2.2 OccAnt vs. ANS vs. frontier
exploration - Exploration for map

building task

In this section, we show the results of the com-
parison done between frontier exploration (in
2D, Stage simulator, and 3D, Habitat simula-
tor), OccAnt, and ANS (both in Habitat simu-
lator). For performance reasons, we have tested
the three algorithms only on some maps, but
with significant differences in size. Frontier ex-
ploration algorithm uses laser readings as input
(while OccAnt and ANS use rgb or depth im-
ages) and sometimes these readings in the Habi-
tat simulator with Gibson dataset don’t fully
represent a real world situation. The textures
present holes and so laser readings go beyond
walls or objects creating frontiers that don’t ex-
ist in the real world. With ROS-X-Habitat im-
plementation, in all the episodes analyzed, the
frontier exploration agent gets stuck after some
time, due to some inaccurate textures and it
can’t move anymore. In order to propose a more
qualitative analysis of the frontier exploration
algorithm and discover what happens when the
agent doesn’t get stuck, we have also tested the
frontier exploration algorithm in 2D maps in the
Stage simulator.

First of all, we have compared the maps ob-
tained during exploration by OccAnt, ANS, and
frontier exploration (3D and 2D) with a fixed
path length (the one when frontier exploration
3D gets stuck). One example is reported in Fig-
ure 2.

ANS (depth)

Frontier Exploratlon

OccAnt (rgb)

: U«:r“'u?

Frontier Exploration 2D

Figure 2: Map produced by ANS (depth), Oc-
cAnt (rgb), and frontier exploration (2D and
3D).

From the figure, which describes a situation sim-
ilar to what happens also in the other explo-
ration episodes, we can see that all the algo-
rithms explore a comparable amount of the envi-
ronment. For this reason, we can use frontier ex-
ploration 2D instead of frontier exploration 3D
in order to have a more qualitative analysis, tak-
ing into consideration free space seen metric.
It would not be fair to consider free space seen
metric with frontier exploration 3D because the
holes in the textures already mentioned allow to
see areas that can’t be seen in a real-world situ-
ation.

‘ l free space_seen (m?) l

ANS(depth) 28.17 (9.091)
OccAnt(rgb) 30.50 (11.326)
Frontier exploration 2D 31.39 (12.311)

Table 2: Average of the free space seen with
the same path length in OccAnt, ANS, and
frontier exploration 2D over environments of dif-
ferent dimensions (in parentheses, we report the
standard deviation).

From Table 2 we can see that in these environ-
ments there is no substantial advantage in us-
ing Deep Learning techniques over classical well-
established techniques. In order to fully com-
pare OccAnt, ANS, and frontier exploration we
have also compared the decision-making time re-
quired by each algorithm to select the next ac-
tion to be executed at each exploration step.
What comes out is that the decision-making
time in OccAnt and ANS is lower than the one
of frontier exploration: for ANS is 0.001722 s,
for OccAnt is 0.001958 s, and for frontier explo-

ration is 0.095430 s. However, frontier explo-
ration decision-making time is still low and fully
compatible with use in the real world.

4.2.3 OccAnt vs. ANS - Point-goal
driven exploration task
\ | ANS (depth) | OccAnt (depth) |

succes_rate 0.722 0.867
dist_to_ goal (m?) 1.911 (3.448) 1.030 (2.028)
num_ steps 208.792 145.561

Table 3: Results of comparison on point-goal
driven exploration done with OccAnt and ANS
on 994 episodes in 14 environments of different
sizes (in parentheses, we report the standard de-
viation).

Table 3 provides us with the information that
OccAnt (depth) obtains sensibly better results
than the best ANS configuration i.e., ANS
(depth). It is interesting to note that while in
exploration for map building task OccAnt (rgb)
and ANS (depth) obtain very similar results
in all the metrics (Section 4.2.1), in point-goal
driven exploration task, OccAnt (depth) obtains
noticeable better results thanks to the presence
of the occupancy anticipation module. In point-
goal driven exploration task, contrary to what
happens in exploration for map building task,
with higher average values comes lower standard
deviation values.

4.2.4 DRL tests - Point-goal driven ex-
ploration task

In order to understand how the DRL algorithm
works and how it can be compared with ANS or
OccAnt algorithms, we have run different tests.
First of all we have run a training for the DRL
algorithm in the original Gazebo simple environ-
ments. This training lasted about 12 hours and
is enough to obtain 100% success rate during
evaluation in Gazebo environments. Then, we
have tested the algorithm in the Habitat com-
plex environments used for ANS and OccAnt
comparison and results are sensibly worse (suc-
cess_rate is reduced to 0.26%). Analyzing the
start and goal positions in case of success it ap-
pears that the agent is able to reach the goal
only when start and goal positions are very close
(probably in the same room), being the set-up
similar to the one in the DRL simple environ-
ments.

In another test, we have trained the DRL algo-
rithm for 317 episodes in the Habitat simulator.
The robot is now able to cover more space than
the robot trained in the more simple Gazebo en-
vironments, but always with low values in suc-
cess_rate (0.25%). A strange behavior appears
when we test these weights learned in the Habi-
tat simulator back in Gazebo DRL environment:
the robot moves in circle and doesn’t try to reach
the goal. One possible explanation is the fact
that in Habitat environments there are a lot of
obstacles and consequently a lot of collisions.
Because of the negative reward obtained with
collisions, the robot has learned a policy that
prefers not colliding over reaching the goal. We
have come to this conclusion also by looking at
the training videos. In the first episodes, the
robot collides a lot trying to reach the goal, but
then in the subsequent episodes, it collides much
less.

4.2.5 OccAnt vs. ANS vs. classical al-
gorithm - Point-goal driven explo-
ration

In this section, we show the results of the
point-goal driven exploration task comparison
between OccAnt, ANS, and the classical algo-
rithm (implemented with ROS Gmapping |[6]
and move_base [7]) on 90 episodes on 3 envi-
ronments of different sizes (sorted in ascending
order by area). ANS and OccAnt are tested in
the Habitat simulator, while the classical algo-
rithm, for the reasons described in Section 4.2.2
is tested in the Stage simulator.

classical OccAnt (depth) ANS (depth)
Env. #1 21 3 6
Env. #2 19 7 4
Env. #3 19 10 1
Total 59 20 11

Table 4: Number of best path length episodes
in classical algorithm, OccAnt (depth), and ANS
(depth).

classical OccAnt (depth) ANS (depth)
Env. #1 0.967 0.900 0.800
Env. #2 0.967 0.900 0.767
Env. #3 0.967 0.833 0.600
Total 0.967 0.878 0.722

Table 5: success__rate comparison between clas-
sical algorithm, OccAnt (depth), and ANS
(depth).

Results of Table 4 show that the classical algo-

rithm, no matter the size of the environment,
performs better: it has the best path length
in most of the episodes. In every environment,
the classical algorithm also has more success
episodes (as shown in Table 5). Even if Oc-
cAnt (depth) with occupancy anticipation mod-
ule proved to perform better with respect to
ANS (depth) (Section 4.2.3), there is no clear
advantage over the classical algorithm neither
in success rate nor in path length metric.

5. Conclusion

In this thesis, we have compared classical and
Deep Learning algorithms in common environ-
ments on two different tasks: exploration for
map building and point-goal driven exploration,
in order to understand what are the downsides
and upsides of the algorithms proposed.

The comparison done between OccAnt and ANS
shows that the introduction of the occupancy
anticipation module helps OccAnt to get bet-
ter results only in point-goal driven exploration
task.

The comparison done between OccAnt, ANS,
and frontier exploration in exploration for map
building shows that the three algorithms obtain
comparable results. OccAnt and ANS, however,
require a very long training time with big com-
putational power and energy resources involved
[2]. On the other side, frontier exploration can
be simply implemented on an agent and doesn’t
have to deal with all the issues regarding training
or ability to generalize to an unknown environ-
ment, because its performance doesn’t depend
on the number and the quality of training envi-
ronments. In addition, frontier exploration algo-
rithm already proved to work well when tested
in real world environments. Frontier exploration
decision-making time, even if higher than the
one of OccAnt and ANS is fully compatible with
real world situations.

The tests done on DRL algorithm highlights the
difficulty of writing a strong reward function,
which is also able to generalize well in unknown
environments. This element of difficulty is not
present using classical algorithms and should be
carefully considered.

From the comparison between OccAnt, ANS,
and the classical algorithm on point-goal driven
exploration task we can see that also in this
task the classical algorithm obtains comparable

or better results with respect to Deep Learning
algorithms.

Deep Learning algorithms are known to exploit
imperfections in order to obtain better perfor-
mance and because of this fact, in the future, it
would be useful to know if these results can also
be achieved in the real world in complex environ-
ments and not only in simple environments like
the one we have described for DRL algorithm.

References

1

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

Al Habitat. https://aihabitat.org/.
Last accessed: 06/01/2022.

Ans training time. https://github.com/
devendrachaplot/Neural-SLAM/issues/
30. Last accessed: 18/04/2022.

Drl robot navigation.
//github.com/reiniscimurs/
Last accessed:

https:

DRL-robot-navigation.
06/01/2022.

Explore lite - frontier exploration. http:
//wiki.ros.org/explore_lite. Last ac-
cessed: 01/02/2022.

Gazebo simulator. http://gazebosim.
org/. Last accessed: 16/01/2022.

Gmapping - SLAM. http://wiki.ros.
org/gmapping. Last accessed: 01/02/2022.

movebase. http://wiki.ros.org/move_
base. Last accessed: 14/03/2022.

Occupancy anticipation.
//github.com/facebookresearch/
OccupancyAnticipation. Last accessed:
16/01/2022.

https:

ROS. https://ros.org. Last accessed:
07/01/2022.

ROS-X-Habitat. https://github.com/
ericchen321/ros_x_habitat. Last ac-
cessed: 16/01/2022.

Devendra Singh Chaplot, Dhiraj Gandhi,
Saurabh Gupta, Abhinav Gupta, and Rus-
lan Salakhutdinov. Learning to explore
using active neural slam. arXiv preprint

arXi:2004.05155, 2020.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Reinis Cimurs, I1 Hong Suh, and Jin Han
Lee. Goal-driven autonomous exploration
through deep reinforcement learning. /IEEE
Robotics and Automation Letters, 7(2):730—
737, 2022.

Dimitrios I Koutras, Athanasios Ch
Kapoutsis, Angelos A Amanatiadis, and
Elias B Kosmatopoulos. = Marsexplorer:
Exploration of unknown terrains via deep
reinforcement learning and procedurally
generated environments. arXiv preprint
arXiw:2107.09996, 2021.

Santhosh K Ramakrishnan, Ziad Al-Halah,
and Kristen Grauman. Occupancy anticipa-
tion for efficient exploration and navigation.
In Proceedings of the European Conference
on Computer Vision, pages 400-418, 2020.

James A Sethian. Fast marching methods.
SIAM review, 41(2):199-235, 1999.

Cyrill Stachniss, John J Leonard, and Se-
bastian Thrun. Simultaneous localization

and mapping. In Springer Handbook of
Robotics, pages 1153-1176. Springer, 2016.

Richard Vaughan.
simulation in stage.
2(2):189-208, 2008.

Massively multi-robot
Swarm intelligence,

Brian Yamauchi. A frontier-based approach
for autonomous exploration. In Proceedings
of the 1997 IEEE International Symposium
on Computational Intelligence in Robotics
and Automation CIRA’97., pages 146-151,
1997.

https://aihabitat.org/
https://github.com/devendrachaplot/Neural-SLAM/issues/30
https://github.com/devendrachaplot/Neural-SLAM/issues/30
https://github.com/devendrachaplot/Neural-SLAM/issues/30
https://github.com/reiniscimurs/DRL-robot-navigation
https://github.com/reiniscimurs/DRL-robot-navigation
https://github.com/reiniscimurs/DRL-robot-navigation
http://wiki.ros.org/explore_lite
http://wiki.ros.org/explore_lite
http://gazebosim.org/
http://gazebosim.org/
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/move_base
http://wiki.ros.org/move_base
https://github.com/facebookresearch/OccupancyAnticipation
https://github.com/facebookresearch/OccupancyAnticipation
https://github.com/facebookresearch/OccupancyAnticipation
https://ros.org
https://github.com/ericchen321/ros_x_habitat
https://github.com/ericchen321/ros_x_habitat

	Introduction
	State of the art
	Algorithms selected for comparison
	Classical exploration algorithm
	Deep Learning algorithms
	Learning to explore using active neural SLAM - ANS
	Occupancy anticipation for efficient exploration and navigation - OccAnt
	Goal-driven autonomous exploration through Deep Reinforcement Learning - DRL

	Experimental comparison
	Experimental setting
	Experimental results
	OccAnt vs. ANS - Exploration for map building task
	OccAnt vs. ANS vs. frontier exploration - Exploration for map building task
	OccAnt vs. ANS - Point-goal driven exploration task
	DRL tests - Point-goal driven exploration task
	OccAnt vs. ANS vs. classical algorithm - Point-goal driven exploration

	Conclusion

