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Abstract

The physical mechanism which drives a laminar flow to the turbulent regime
is extremely complex and not yet completely understood. Considering the
aeronautical field, the transition of the boundary-layer has a remarkable
influence on the aerodynamic performance of airfoils and lifting surfaces in
general. The present work deals with the secondary stability analysis of
the Blasius boundary-layer flow, introducing, with respect to the original
secondary stability theory proposed by Herbert, the non-parallel and non-
linear effects. Mathematically, the problem consists in studying the stability
of the Blasius flow forced by a time-periodic Tollmien–Schlichting wave by
means of the Floquet theory. An incremental pressure-correction scheme based
on the direction-splitting technique is used to integrate the Navier-Stokes
equations whereas, for the computation of the three-dimensional secondary
modes and the correspondent Floquet multipliers, the implicitly restarted
Arnoldi method (IRAM), implemented in the software package ARPACK, is
employed. The eigenvalue spectrum is evaluated for three reduced frequencies
of the T-S wave, giving particular attention to the influence that the maximum
amplitude reached by the primary wave has on the instability behaviour. It
is found that the synchronous modes are associated to the largest growth
rates among the whole range of spanwise wavenumbers. The subharmonic
mode is the most unstable for low and medium amplitudes of the T-S wave
while, as the amplitude increases, the fundamental mode, with the same
period of the primary wave, becomes the most unstable. For high amplitudes
the instability affects a wide range of spanwise wavenumbers and the whole
frequency range from the subharmonic to the fundamental one. The results
show high qualitative agreement with those provided by Herbert’s formulation
and it is found that, due to the inclusion of the non-linear and non-parallel
effects in the base flow, the threshold amplitude for the instability is close to
that observed in the experiments. A series of DNS simulations is performed to
investigate if the computed three-dimensional perturbations lead the Blasius
flow to the turbulent regime. The transition simulations show that, after an
initial linear stage in which the disturbance evolution is close to what predicted
by the stability calculations, the nonlinearity leads to the formation of Λ
vortices that drive the boundary-layer flow to transition. The arrangement
of these Λ structures is either aligned in rows of staggered, depending on
which secondary mode is introduced in the boundary-layer flow. The two
observed arrangements of the flow structures correspond to the well known
H-type and K-type regimes dominated by the subharmonic or the fundamental
mode, respectively. Therefore, the eigenfunctions of the secondary stability
eigenvalue problem provide the near-wall vorticity perturbations responsible
for the commonly observed natural transition scenarios.



Sommario

Il meccanismo fisico che provoca il passaggio dal regime laminare a quello
turbolento è molto complesso e non ancora compreso appieno. In ambito aero-
nautico, la transizione dello strato limite ha un’influenza considerevole sulle
prestazioni aerodinamiche dei profili alari e delle superfici portanti in generale.
Il presente lavoro si occupa della stabilità secondaria del flusso di strato limite
di Blasius, introducendo, rispetto alla formulazione originaria della stabilità
secondaria introdotta da Herbert, gli effetti di non parallelismo e quelli non
lineari. Matematicamente, il problema consiste nello studio della stabilità
del flusso di Blasius forzato da un’onda di Tollmien–Schlichting periodica nel
tempo che può essere eseguito tramite la teoria di Floquet. Le equazioni di
Navier-Stokes sono integrate tramite uno schema di correzione della pressione
basato sulla tecnica del direction-splitting mentre per il calcolo dei modi
secondari tridimensionali e dei corrispondenti moltiplicatori di Floquet, viene
utilizzato il metodo IRAM implementato nel software ARPACK. Lo spettro
degli autovalori è valutato per tre valori di frequenza ridotta dell’onda T-S, con
particolare riguardo all’influenza che ha l’ampiezza dell’onda primaria sulle
caratteristiche dell’instabilità. Si trova che i modi sincroni sono associati ai
maggiori tassi di crescita considerando tutto l’intervallo di numeri d’onda nella
direzione trasversale. Il modo subarmonico è il più instabile per valori bassi o
medi dell’ampiezza dell’onda T-S. Invece, quando si considera un’ampiezza
elevata, è il modo fondamentale, con lo stesso periodo temporale dell’onda,
ad essere il più instabile. Per alti valori di ampiezza, l’instabilità coinvolge un
vasto intervallo di numeri d’onda trasversali e l’intervallo di frequenze che va
da quella subarmonica a quella fondamentale. I risultati mostrano un ottimo
accordo qualitativo con quelli ottenuti tramite la teoria originale di Herbert
anche se l’aggiunta degli effetti di non parallelismo e di non linearità nel flusso
base, porta la soglia di ampiezza al quale l’instabilità si sviluppa molto vicino
ai dati sperimentali. Viene eseguita una serie di simulazioni DNS per valutare
se le perturbazioni tridimensionali calcolate portano il flusso di Blasius al
regime turbolento. Le simulazioni numeriche mostrano che, dopo una iniziale
fase lineare in cui l’evoluzione dei disturbi è prossima a quanto previsto dai
calcoli di stabilità, la non linearità porta alla formazione di vortici Λ che
provocano il passaggio al regime turbolento del flusso di strato limite. La
disposizione di queste strutture Λ è allineata in file o sfalsata, a seconda di
quale modo secondario viene introdotto nel flusso dello strato limite di Blasius.
Le due disposizioni di queste strutture corrispondono ai ben noti regimi di
tipo H e di tipo K dominati rispettivamente dal modo subarmonico o dal
modo fondamentale. Pertanto, le autofunzioni del problema agli autovalori
della stabilità secondaria forniscono le perturbazioni



di vorticità vicino alla parete responsabili degli scenari di transizione naturale
comunemente osservati nelle applicazioni pratiche.
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Chapter 1

Introduction

The transition from a laminar to a turbulent regime has been a fundamental
topic of scientific investigation for the past two centuries. The capability to
predict the conditions under which a particular flow becomes turbulent or
even to control the transition process has always been strongly desired for
a wide variety of technological applications. The boundary layer laminar-
turbulent transition influences the aerodynamic performances of immersed
bodies and the transition behaviour also determines the wall shear stress and
the heat transfer. The laminar boundary-layer thickness grows slowly with
respect to the turbulent one and leads to a lower skin-friction coefficient but
on the other hand the mixing properties of the turbulent regime are required
to counter aerodynamic stall and separation phenomena. Maintaining the
laminar regime as much as possible can reduce drag but flow separation
should be avoided due to a lost of lift and an increase of pressure drag,
these considerations made the transition location a central topic in airfoil
analysis and more in general aerodynamic surfaces projects. The techniques
to control the boundary-layer regime require a deep knowledge of the physics
involved. For this reason, over the past two centuries, plenty of data have
been collected from experiments on flat plates and mathematical models
have been developed to understand and predict the transition process and its
different stages of development. Usually, the route to turbulence is divided in
three different stages: receptivity, linear stage and nonlinear breakdown (see
[34]). The term receptivity coined by Morkovin([48]) concerns the physical
mechanism through which external disturbances such as acoustic waves,
turbulent oscillations and surface roughness are ingested by the boundary
layer and projected into the correspondent eigenmodes. In recent years,
many discoveries concerned this field ([46]) and now the receptivity theory
is used in practice to compute disturbance spectrum and initial amplitudes



to use in linear or nonlinear evolution models. The linear stage concerns the
very first phase when disturbances have settled inside the boundary layer,
their evolution can be predicted using linear models until their intensity is
such that the linearity hypothesis falls and a more complex model which
accounts for nonlinear effects has to be used in order to describe the final stage
of breakdown. However, transition is an extremely complex phenomenon
and its behaviour depends on the flow considered and on the intensity of
external disturbances so this classification is not rigorous. When considering
turbomachinery applications, in which the disturbance intensity is typically
high the fist stages described by the linear theory are bypassed [48]. Transition
at high free-stream turbulent-intensity levels, called bypass transition, exhibits
features that are completely different from transition in a quiet environments,
called natural transition. Engineering applications involving moving vehicles
in air or water are characterized by low disturbance intensity, in these cases
all the stages mentioned are present and the transition process can be seen
as a series of reproducible events. This research focuses on the natural
transition that received particular attention from the scientific community
due to implications it can have in the aeronautical field and, in particular,
on the model problem of natural transition of an incompressible boundary
layer over a flat plate that provides the best experimental setup to investigate
transition mechanisms in detail.
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1.1 Historical review

The first notable experiment regarding laminar-turbulent transition belongs
to Osborne Reynolds who investigated the transition of a pipe flow using
colored filaments added to the flow and observed that the character of the
flow depends on a non-dimensional coefficient nowadays known as Reynolds
number. All subsequent studies started from Reynolds idea that the laminar
flow, which always represent a possible solution of the Navier-Stokes equations
can became unstable above a certain Reynolds number ([57]). This threshold,
the critical Reynolds number, represented a target for many mathematicians
including Reynolds itself and led to the birth of linear stability theory which is
used nowadays for transition prediction in engineering calculations. The basic
idea of the theory was to consider the evolution of infinitesimal disturbances
(in the linear framework) superimposed to the laminar flow, if for a certain
Reynolds number the intensity of the disturbances increases in time the flow
is unstable otherwise the flow is stable. With this idea in mind, Orr and
Sommerfeld derived a differential equation which describes an eigenvalue
problem whose solution can provide the critical Reynolds number, the shape
of the eigenmodes and the corresponding amplification factors (see [51] and
[70]). Orr-Sommerfeld equation is general and in principle can provide the
solution of the linear stability problem for any parallel base flow, however due
to its mathematical complexity the solution for the Blasius boundary layer
([8]) appeared years after by means of the work of Tollmien and Schlichting
([75], [64], [65]). Their main achievement was to compute the neutral stability
curve for the Blasius boundary layer using the parallel flow assumption, that
is the curve in the Reynolds-number and disturbance-wavelength plane which
divides the stable region from the unstable one. The neutral-stability curve
shows that beyond a certain value for the Reynolds number, the Blasius
boundary layer is unstable with respect to two-dimensional disturbances of
large wavelength if compared with the boundary layer thickness, namely the
Tollmien-Schlichting waves. For the particular case of the Blasius boundary
layer, the Reynolds number can be defined locally taking as reference length
the distance from the leading edge to the considered position along the
plate. According to this point of view the stability curve mark for each
frequency of the disturbances two positions along the plate (the first branch
and the second branch) that define a region in which T-S wave are amplified
while outside of this region T-S waves are damped and decay. The results
obtained by Tollmien and Schlichting were strongly criticized due to the lack
of experimental confirmations until the work of Schubauer and Skramstad
in 1947 ([67]) where hot wire data were obtained for a laminar boundary
layer forced in a controlled manner by small-amplitude periodic disturbances
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Figure 1.1 K-type (left) and H-type (right) transition, picture taken from
[31]. The reader should note the qualitatively different arrangement of the Λ
structures in the two cases.

created by a vibrating-ribbon. Reducing the turbulence intensity in the wind
tunnel to a very low threshold they noticed quasi-harmonic oscillations inside
the boundary layer right before the transition to the turbulent regime.
Schubauer and Skramstad also measured the T-S wave amplitude distribution
in the wall normal direction and evaluated the position of the two branches of
the neutral stability curve, all the experimental data showed substantial agree-
ment with the calculations proposed by Schlichting in 1935 ([65]). Nowadays,
the linear stage is the most understood phase in the route to transition and
is used in conjunction with the receptivity theory for practical engineering
calculations ([2]). The work of Klebanoff et al. in 1962 ([36]) represented a
turning point in the study of natural transition and inspired new ideas and
mathematical theories. The authors performed detailed hot-wire measures
of the late stage of transition process using a vibrating ribbon to excite the
boundary layer eigenmodes and found that for low amplitudes the T-S waves
grow and then decay downstream as predicted by linear stability theory
but for amplitude of about one per cent of the free-stream velocity, a three
dimensional structure evolves. The flow experiences a transverse modula-
tion characterized by a system of alternating peaks and valleys (regions of
amplified and reduced wave amplitude) and at the same time a system of lon-
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gitudinal vortices develops downstream. At the beginning of the breakdown,
high-frequency flashes of the disturbances called “spikes” appear at each
period of the T-S wave and multiply downstream until the flow is completely
randomized. At that time their main observation was that boundary layer
transition was essentially a three dimensional phenomenon and T-S waves
represent only the first stage of a more complex process. Knapp and Roache in
1968 studied boundary-layer transition using smoke visualization and hot-wire
measures [20], at the last stage of transition they observed Λ shape smoke
accumulations called Λ-vortices that can be either in a staggered pattern or
aligned in rows. It was recognized that the pattern of the Λ-vortices depends
essentially on the amplitude of the primary wave. For low amplitudes of the
primary wave the three dimensional structure that develops at late transition
stages leads to a staggered pattern while for high amplitudes the aligned
pattern prevails and even mixed cases are possible. Two main transition
scenarios were distinguished : K-type transition characterized by an aligned
pattern of the Λ structures and the appearance of spikes right before break-
down (K stands for Klebanoff who was the first author to observe this regime
in 1962 [36]) and N-type transition characterized by a staggered pattern of Λ
vortices and no presence of spikes. The challenge was to explain how the two
dimensional plane T-S waves lead to the formation of the Λ structures and the
onset of three dimensional stage, two main families of theories were developed
in order to achieve this result. The first one consists on weakly non-linear res-
onance models of which Craik’s triad ([15]) represent a milestone in literature.
Craik’s idea was that three dimensional Orr-Sommerfeld modes with spanwise
wavenumbers ±β and twice the wavelength of the T-S wave (subharmonic
modes) can be amplified through a resonance interaction with the T-S wave.
Craik’s model became popular after the experimental results of Kachanov et
al. in 1977 ([32]) that measured subharmonic peaks in disturbance’s spec-
trum during laminar boundary layer transition. The resonance mechanism
described by Craik was verified by Thomas & Saric in 1981 ([73]) who also
correlated the staggered arrangement of Λ structures observed by Knapp
and Roache ([20]) to the presence of subharmonic signals in the disturbance
spectrum during transition. The distinction between K-type and N-type
transition was clear : K-type is due to non-linear excitation of harmonics of
the primary wave witch leads to the aligned pattern of Λ-vortices while N-type
is due to parametric resonance of the primary wave that amplify a wide band
of disturbance’s spectrum centered around the subharmonic of the primary
wave. The second class of theories developed from the initial work of Maseev
([47]) and led with the subsequent work of Herbert ([31]) to what nowadays is
known as secondary stability theory ( or secondary Orr-Sommerfeld stability
theory ). The assumption of Herbert is that after T-S waves are established
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in the boundary layer their amplitude grows until non linear effects become
important, usually in this region T-S wave amplitude saturates and the flow
reaches a quasi-steady state. The laminar boundary-layer modulated by T-S
waves that now have reached a finite amplitude constitutes a new base flow
which can be unstable with respect to three-dimensional disturbances. Under
the assumption made by Herbert in his theory (see [78] and [31]), the stability
of this new base flow corresponds to the stability of a linear dynamical system
with periodic coefficients that can be analyzed using Floquet theory. The
numerical results obtained by Herbert ( see [30] , [78] , [31] ) showed very
good agreement with the hot-wire data of Klebanoff ([36]) both for the grow
rates and the amplitude distribution of the three dimensional modes and
confirmed the experimental result of the presence of subharmonic instability
for quite low amplitude of the primary wave. The secondary instability
mechanism described by Herbert usually precedes the final stage of transition
to the turbulent regime, for this reason secondary instability calculations are
sometimes used to predict transition. The “momentum theory” by Brevdo
([11]) showed that the T-S instability is of convective nature so that T-S
waves cannot lead directly to transition and a different process has to take
place. Although Herbert’s theory explains the onset of the three-dimensional
stage in natural transition it suffers from several approximations. As a mat-
ter of fact, the direct numerical simulation of the complete Navier-Stokes
equations represents the most complete tool in order to study the physics of
transition. Recent direct numerical simulations have revealed new features
about the late transition stage, Rist et al. ([59]) showed that, in K-regime of
breakdown, Λ-vortices form transitional structures (ring-like vortex) as they
move downstream. A comparison between result from secondary-stability
theory and from integration of the complete Navier-Stokes equation has been
reported by Spalart and Yang in 1987([71]). Grow rates of three dimensional
modes calculated by Herbert were compared to those obtained integrating the
equation of motion, the results showed high agreement for all the amplitudes
of the T-S wave. Considering the high cost that typically a direct numerical
simulation requires, the theory of Herbert can be an advantageous alternative
at least concerning transition prediction and deserves further investigations.
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Figure 1.2 DNS of laboratory experiments of Kachanov 1994 [34]. Picture
taken from [59].

1.2 Thesis outline

The purpose of this thesis is to perform a secondary stability analysis calcula-
tions removing the principal approximations on which the original theory by
Herbert is based. As will be better clarified in the following, the assumptions
by Herbert neglect some non-parallel and non-linear effects. Non-parallel ef-
fects have been studied intensely in the linear-stability-theory framework both
using different formulations which account for growing effects of boundary
layer (see [22]) and solving the full Navier-Stokes equations (see [21]). Better
accordance between numerical and experimental data was found, however
an investigation in the context of secondary stability still lacks. Concerning
non-linear effects, it is known that the hydrodynamic stability problem is
very sensitive to base flow structure, a more realistic evaluation of the base
flow needs to be analyzed.
Chapter 1 presented an introduction to the problem and presented the main
results obtained on the topic. Chapter 2 describes the mathematical formula-
tion of the problem presenting the different approach with respect to that
adopted by Herbert. Chapter 3 describes the numerical methods used and
the numerical set-up. Chapter 4 illustrates the main results obtained while
conclusions and future developments are presented in the final chapter.
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Chapter 2

Mathematical model

This chapter illustrates the mathematical formulation of the problem in exam.
In defining the problem of secondary instability, it is necessary to retrace the
stages of transition briefly described in Chapter 1. Concepts from classical
linear stability theory and from the original theory formulated by Herbert
(see [31],[49]) will also be recalled. The receptivity theory is not the subject of
this work but, before applying the theory that will be presented, calculations
have to be performed to assess if the transition process is dominated by the
grow of the T-S waves or by other phenomena ([55] underlines a wide range
of possible scenarios that can occur in practical applications).

2.1 Base flow

In secondary stability theory, the base flow is essentially the periodic state
that is reached after the primary instability mechanism leads to the growth of
the T-S waves and they are established inside the boundary-layer. With the
purpose of defining the base flow, a clarification regarding the basic concepts
of the theory of primary stability is needed. The following treatment is far
from exhaustive, only the concepts linked to the secondary stability problem
formulation are mentioned. For more information regarding the derivation of
the equations and the related formulas, the reader is referred to [66] or [77].

2.1.1 Linear stability theory for Blasius boundary-layer

An approximate solution of the Navier-Stokes equations for the incompressible
laminar boundary layer on a flat plate, when the external velocity field is



constant, can be obtained solving the Blasius problem

f
′′′(η) + 1

2
f(η)f ′′(η) = 0,

f(0) = 0, f ′(0) = 0, f ′(∞) = 1,
(2.1)

where, considering a reference system centered on the leading edge with the x
direction along the plate and the y direction normal to the plate, the similarity
variable η is defined as

η(x, y) = y

√
Ue
νx
, (2.2)

with Ue and ν the external velocity and the kinematic viscosity of the fluid,
respectively. Blasius equation (2.1) is a nonlinear ordinary differential equation
of third order whose solution f is linked to the dimensionless boundary-layer
velocity profile. In particular, it is possible to derive the velocity field
components from the function f in the whole xy plane as

uB(x, y) = Uef
′(η(x, y)), (2.3)

vB(x, y) =
1

2

√
Ueν

x
[η(x, y)f ′(η(x, y))− f(η(x, y))]. (2.4)

The mathematical procedure that derives the Prandtl equations for the
boundary-layer and the subsequent Blasius similar solution starting from the
Navier-Stokes equations is not addressed here, however, extensive documenta-
tion can be found in the literature (see [66]).
The linear stability of the Blasius boundary layer with respect to two-
dimensional disturbances, can be studied through the famous Orr-Sommerfeld
equation


1
Re

(φ̂′′′′ − 2α̂2φ̂′′ + α̂4φ̂) + iα̂[U(y)− ĉ](−φ̂′′ + α̂2φ̂) + iα̂U(y)′′φ̂ = 0,

φ̂(0) = 0, φ̂′(0) = 0, φ̂(∞) = 0, φ̂′(∞) = 0,

(2.5)

which has been made non-dimensional using the external velocity Ue as
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reference velocity and the function

G(x) =

√
νx

Ue
(2.6)

proportional to the local boundary-layer thickness as reference length.
A slight digression is here necessary in order to define the various terms
that appear in equation (2.5). Using the Orr-Sommerfeld equation, which
is formulated for a parallel base flow, to study the linear stability of the
boundary layer amounts to consider the stability of the local velocity profile
in a certain x position along the flat plate. In the position x̄ considered, a
reference length can be defined through the function G(x) that can be used
in conjunction with the velocity scale Ue to define a local Reynolds number

Re =
UeG(x̄)

ν
. (2.7)

The base flow of the primary instability problem, indicated as U in equation
(2.5), is the local boundary-layer velocity profile non-dimensionalized, namely

U(y) =
uB(x̄, y)

Ue
= f ′(η(x̄, y)). (2.8)

Instead, the quantities φ, α and c are related to the two-dimensional distur-
bance, since its stream function can be expressed as

ψ(x, y, t) = UeG(x̄)φ̂(y)eiα̂(ξ(x)−ĉτ(t)), (2.9)

where ξ and τ are the non-dimensional x coordinate and the adimensional
time defined as

ξ =
x

G(x̄)
, τ =

tUe
G(x̄)

. (2.10)

In order to simplify the notation, for the subsequent developments, the
dimensional quantities that characterize the disturbance are considered. For
completeness, their relations with the non-dimensional ones are shown below

φ = UeG(x̄)φ̂, α =
α̂

G(x̄)
, c = Ueĉ. (2.11)
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It is also worth mentioning that, in the literature, the displacement thickness
δ(x) is also used as a reference length instead of the function G(x), however,
the mathematical formulation of the problem does not change and, for the
Blasius boundary-layer, this results in a simple scaling of the relevant variables.
The Orr-Sommerfeld equation is an ordinary differential equation of fourth
order that together with its boundary conditions defines an eigenvalue problem.
Once a Reynolds number and a real disturbance wave-number α are selected,
the solution of the problem (2.5) provides the eigenfunction φ, which describes
the disturbance, and the complex eigenvalue c that is related to the grow rate
of the disturbance in time. The velocity components of the disturbance can
be written, due to the stream-function definition, as

ud = <(
∂ψ

∂y
) = eci [φ′r(y) cosα(x− crt)− φ′i(y) sinα(x− crt)], (2.12)

vd = −<(
∂ψ

∂x
) = αeci [φi(y) cosα(x− crt)− φr(y) sinα(x− crt)],

(2.13)

where c = cr + ici and φ = φr + iφi. From equations (2.12) and (2.13), it can
be observed that, in the temporal linear stability theory briefly presented here,
the flow is stable at a given Reynolds number if and only if all the eigenvalues
have a negative imaginary part for all possible values of the disturbance
wave-number α. The properties of the temporal eigenvalue spectrum for the
Blasius boundary layer have been widely analyzed in the past (see [45]) but,
concerning the secondary stability formulation, it is sufficient to remind that
the T-S waves can be defined mathematically as the unstable eigenmodes of
the Blasius boundary-layer. Moreover, it is convenient to define the quantities

uTS = 2[φ′r(y) cosα(x− crt)− φ′i(y) sinα(x− crt)], (2.14)

vTS = 2α[φi(y) cosα(x− crt)− φr(y) sinα(x− crt)], (2.15)

which represent the velocity components of a T-S wave at a certain Reynolds
number without considering the factor eci that governs the amplification
of the wave in time. In equations (2.14) and (2.15) the eigenfunction φ is
normalized such that

max
y∈[0,∞)

2‖φ′(y)‖2 = 1 (2.16)
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for reasons that will be better clarified in the following section.

2.1.2 Base-flow definition

Before giving the definition of the base flow, it is interesting to analyse the
base flow definition from classical secondary stability theory (see [30] or [31]).
According to Herbert’s formulation, the base flow is defined as

u2 = uB(y) + AuTS(x, y, t), v2 = AvTS(x, y, t) (2.17)

that corresponds to a superposition of the Blasius boundary layer flow,
neglecting the wall normal component vB, and the velocity field associated
with the T-S wave. It should be observed that, by means of normalization
(2.16), the value A has the physical meaning of measuring the maximum
stream-wise r.m.s. fluctuation of the two-dimensional Blasius flow when the
T-S wave has settled inside the boundary layer. Considering a reference
frame moving with the T-S wave, corresponding to the change of variables
x′ = x− crt, the flow is periodic in x′. As anticipated, the secondary stability
theory is formulated linearizing Navier-Stokes equations around this base flow,
which is assumed as an exact solution of the equations of motion, and studying
the stability of the resultant periodic system of differential equations.
Nevertheless, this definition of the base flow carries with it three main
approximations. Firstly, the Blasius boundary-layer flow is treated as locally
parallel. When writing the equations for the three-dimensional disturbances,
mathematically, this inevitably leads to the loss of some contributions and
also, since the growth of the boundary-layer thickness is not considered, the x
direction is considered as homogeneous while in the real flow it is not. Secondly,
it is assumed that the amplitude A of the T-S wave is locally constant.
Practically, this assumption is satisfied if three dimensional disturbances
grow significantly faster than the T-S waves. Finally, the so called “shape
assumption” neglects the nonlinear distortion of the T-S uTS = (uTS, vTS)
even when the wave has reached a finite amplitude A. Even though these
last two hypotheses have been partially confirmed from experimental [36] and
theoretical arguments [6], the non-linear effects become important beyond a
certain value of A and classical secondary stability theory loses its reliability.
The “shape-assumption” limits the applicability of this secondary stability
theory only to those cases where it is understood that the wave intensity
in low enough. In this work, all non-parallel and non-linear effects will be
included. Therefore, it is natural to define the base flow as a solution of
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Figure 2.1 Flow domain.

the incompressible Navier-Stokes equations that directly includes all the
contributions.
A schematization of the flow domain is shown in figure 2.1, it covers the
semi-infinite space above the plate between two specified locations x1 and
x2. In the laminar-turbulent transition, T-S waves grow, their amplitude
saturates and they eventually decay downstream, therefore, the values for
x1 and x2 have to be chosen accordingly to simulate this process. The left
boundary location x1 must correspond to a Reynolds number Re1 at which
the flow is unstable with respect to T-S waves, namely is must be beyond
the first branch of the neutral stability curve. The T-S waves will grow
inside the domain until they reach the position that matches the second
branch, then they decay until the right boundary x2. It is worth pointing
out that in real transition, usually a group of eigenmodes is amplified inside
the boundary-layer. However, as a starting point to study natural transition,
numerous theories in the literature contemplate only the presence of a single
wave and this is the path followed in this context. At the left boundary x1,
only the most unstable eigenmode is considered but, in principle, the effect
of wave packets could also be included.
The undisturbed boundary layer flow is defined as the steady solution of the
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following partial differential problem



∂u
∂t

+ (u · ∇)u− 1
Re
∇2u+∇p = 0,

∇ · u = 0,

u(x, y, 0) = uB(x,y)
Ue

,

u(x1, y, t) = uB(x1,y)
Ue

,

u(x, 0, t) = (0, 0),

u(x,∞, t) = 1, ∂v
∂y

∣∣
(x,∞,t) = 0,(

∂u
∂t

+ C̄ · ∇u
)∣∣

(x2,y,t)
= 0

(2.18)

where u(x, y, t) is the velocity vector with components u = (u, v) and p(x, y, t)
is the dimensionless pressure. The equations are made dimensionless by
choosing Ue as the velocity scale and G(x1) as reference length. Boundary
conditions must be specified on the faces of the domain to properly define the
differential problem. At the wall, a no-slip condition is used which prescribes
null velocity components, while the conditions infinitely far from the flat
plate represent the inviscid-flow approximation. The Blasius velocity profile
is prescribed at the inlet of the domain and, finally, an outflow boundary
condition is specified at the right face of the domain. More informations
regarding the outflow boundary conditions will be provided at the end of the
section since it represents a critical point in numerical transition simulations.
The initial condition for the problem (2.18) is the Blasius boundary-layer.
The vector uB = (uB, vB) contains the velocity components defined on the
whole flow domain by equations (2.3) and (2.4). Even if the Blasius solution
has been used by Herbert in his theory, the hypotheses on which the latter is
based (see [66]) are not acceptable in the present formulation. For this reason,
a more accurate solution for the undisturbed boundary-layer flow is obtained
from the solution of the problem (2.18) integrating the full incompressible
Navier-Stokes equations without any particular assumption. For the next
developments, it is convenient to define U1(x, y) as the solution of problem
(2.18) when a steady state is reached. Before proceeding with the definition
of the base flow, an important note on the choice of the reference quantities
has to be made. Differently from the Orr-Sommerfeld equation (2.5), where
only a local velocity profile is considered, the flow domain includes a finite
portion of the boundary layer. This fact means that no particular reference
length or reference velocity is prescribed. The choice of the quantities Ue
and G(x1) corresponds to taking the profile at the inlet of the domain as
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reference but, even if it is convenient, this choice is not the only one possible.
Even a different velocity profile can be considered but it is important that
the two-dimensional flow described by (2.18) represents the velocity profile
used in the Orr-Sommerfeld equation. In practice, the reference quantities U∗,
L∗ and ν∗ must define a Reynolds number Re such that Re = Re1 to match
with the primary stability problem from which T-S waves are computed. The
base flow for the secondary stability formulation, is defined on the basis of
the solution of the problem



∂u
∂t

+ (u · ∇)u− 1
Re
∇2u+∇p = 0,

∇ · u = 0,

u(x, y, 0) = U1(x, y),

u(x1, y, t) = U1(x1, y) + ĀuTS(x1, y, t),

u(x, 0, t) = (0, 0),

u(x,∞, t) = 1, ∂v
∂y

∣∣
(x,∞,t) = 0,(

∂u
∂t

+ C̄ · ∇u
)∣∣

(x2,y,t)
= 0,

(2.19)

where this time the steady undisturbed solution U1(x, y) is used as initial
condition and the T-S perturbation field is superimposed on the Blasius profile
at the inflow boundary. In other words, uTS = (uTS, vTS) is the velocity field
(given by equations (2.14) and (2.15)) of the most unstable eigenmode of the
Orr-Sommerfeld problem (2.5) solved for Re = Re1, that corresponds to the
inlet position x1. It should be noted that there is a strong similarity between
the Herbert base flow (2.17) and the velocity field imposed at the inlet of
the domain. Indeed, the constant Ā has the same meaning of measuring the
maximum stream-wise r.m.s fluctuation of the flow, however, this is only valid
at the inlet section not in the whole flow field. In general, inside the domain,
the amplitude of the T-S wave will grow and then decay, particular attention
must be given to compare results from original Herbert theory and that from
the formulation presented in this work.
In order to apply the Floquet theory to study the secondary instability, the
base flow is required to be periodic. In the original theory by Herbert, as
already pointed out, by means of the “shape assumption” a periodic base
flow is obtained by construction. In the present context, it should be noted
that the problem (2.19) consists in solving the Navier-Stokes equations forced
by the T-S perturbation field uTS, which is a periodic function of time.
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Therefore, after an initial transient occurs, the solution of the problem (2.19)
(unless it is unstable) is expected to be periodic with the same frequency of
the T-S wave. This periodic solution, named U2(x, y, t) from this point on,
represent the modulated boundary-layer as a result of T-S waves excitation
and is in fact the base flow around which secondary stability theory can be
developed. Mathematically, the properties of U2(x, y, t) can be written as

U2(x, y, t) = U2(x, y, t+ T ), with T =
2π

αcr
. (2.20)

Various models have been used in the past to simulate laminar-turbulent
transition. In the already mentioned work of Spalart [71], the incompressible
Navier-Stokes equations are solved numerically in a three-dimensional flow
domain above the flat plate. Imposing a two-dimensional T-S wave and a
random three-dimensional disturbance at the inlet boundary, the authors
were able to verify the results of Herbert theory and to compare them with
laboratory experiments. In the work of Fasel [21] a very similar procedure to
the one described in this work was pursued to estimate the importance of the
non-parallel effects in the grow rate of T-S waves. All the different models
used, including the one described here, have in common that they allow one to
represent the disturbance amplification in the downstream direction, instead
of in time, which is the correct way to match experimental results. In a certain
sense the problem (2.19) represents the mathematical counterpart of a wide
range of laboratory experiments where a vibrating ribbon is used to excite
the boundary-layer eigenmodes (see [60], [67] and many others). Moreover,
the proposed procedure can be easily generalized to include further effects.
For instance, the more general Falkner-Skan boundary-layer profile (see [66])
can be considered instead of the Blasius one to account for non-uniform
free-stream velocity and also multiple Orr-Sommerfeld modes can be imposed
at the inflow boundary to analyze wave-packet effects. A fundamental topic
is represented by the outflow boundary condition used in (2.18) and (2.19).
The mathematical domain is a truncation of the real physical domain, this
implies that an artificial condition has to be imposed to correctly define
the differential problem. For transition simulations in particular, the role of
the outflow boundary condition is to allow the propagation of disturbances
outside of the domain without unphysical reflections on the boundary. In
the mathematical problems defined in this section, the Orlanski boundary
condition has been used. Even if a wide range of possible choices is available
in the literature (see [10], [41], [42]) and specific conditions for transition
simulation have been developed [37], the Orlanski condition has demonstrated
comparatively good features (see [79]). As can be seen in the problems (2.18)
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and (2.19), the outflow condition states that the velocity field must satisfy the
advection equation ∂u

∂t
+ C̄ · ∇u. The quantity C̄ represents a mean outflow

convection speed, many choices are possible for its definition. In [50] it is
shown that with an accurate approximation of C̄, for problems involving a
single wave propagation, no unphysical reflection is observed at the boundary
of the domain. Although, in principle, any outflow condition can be imposed
to correctly define the partial differential problems, this convective condition
has been chosen looking at the numerical solution of the problem where the
absence of reflections is important to verify the correctness of the results.
Before proceeding in the formulation of the secondary stability problem, it
is necessary to clarify the choice of the parallel linear stability theory to
evaluate the shape of the T-S wave since, for the purposes of this work, it
seems a contradiction. Since the full Navier-Stokes equations are solved,
the base flow accounts for non-parallel and non-linear effects. However, it
can be questioned if the use of a more complex non-parallel stability theory
to evaluate the T-S forcing at the inlet would lead to a more realistic two-
dimensional base flow. In the work of Fasel [21], in which the same base
flow has been obtained, it is shown that even using non-parallel theories
the resultant two-dimensional flow experiences negligible variations. This
is due to the fact that non-parallel theories mainly affect the grow rates of
the eigenmodes (that are not considered for the present formulation) but
have little influence on the eigenfunction shape. Considering the additional
complexity from the implementation point of view and the little variation of
the results, classical linear stability theory has been chosen.
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2.2 Secondary stability problem

This section illustrates the secondary stability problem formulation, the
mathematical procedure is analogous to that pursued by Herbert [31], although
the different nature of the base flow leads to significant differences that will
be pointed out.
As common practice also in linear stability theory, unsteady three-dimensional
disturbances, u3(x, y, z, t) = (u3, v3, w3) and p3(x, y, z, t), are superimposed
on the two-dimensional base flow formulated in the previous section and
described by the quantities U2(x, y, t) = (U2, V2) and p2(x, y, t).

u(x, y, z, t) = U2(x, y, t) + u3(x, y, z, t), (2.21)

v(x, y, z, t) = V2(x, y, t) + v3(x, y, z, t), (2.22)

w(x, y, z, t) = w3(x, y, z, t), (2.23)

p(x, y, z, t) = p2(x, y, t) + p3(x, y, z, t). (2.24)

The equations governing the disturbances, neglecting the non-linear terms,
are the Navier-Stokes equations linearized around the base flow


∂u3

∂t
+ (U2 · ∇)u3 + (u3 · ∇)U2 − 1

Re
∇2u3 +∇p3 = 0,

∇ · u3 = 0
(2.25)

which requires boundary conditions for the perturbation quantities

u3(x1, y, z, t) = (0, 0, 0), (2.26)

u3(x, 0, z, t) = (0, 0, 0), (2.27)

u3(x,∞, z, t) = (0, 0, 0), (2.28)(∂u3

∂t
+ C̄ · ∇u3

)∣∣
(x2,y,z,t)

= 0. (2.29)

The equations (2.27) and (2.28) represent the decay of the disturbance near
the flat plate and infinitely far form it, while the equation (2.29) is the
already mentioned convective outflow boundary condition. The equation
(2.29) states that the base flow is undisturbed at the left boundary of the
domain. Several characteristics of the three-dimensional disturbances are
known from the laboratory experiments which simulate late transition stages
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[36]. Typically, the three-dimensional structure that originates from secondary
instability mechanism evolves after that the T-S waves have settled inside
the boundary-layer and their amplitude has grown to the one per cent of the
free-stream velocity. In addition, the three dimensional stage occupies about
one wavelenght of the primary wave until the flow is completely randomized.
Since the inlet boundary represents physically the location at which T-S
waves are excited, it is reasonable to assume that the amplitude of the thee-
dimensional disturbance is very low. On the other hand, further downstream
where the amplitude of the T-S waves is high enough, the amplitude of the
disturbances is expected to be considerable.
Equations (2.25) represents a system of partial differential equations whose
coefficients are periodic in time with the same period of the T-S wave. Since
the base flow is independent from the span-wise coordinate, the solution can
be expanded in Fourier series in this direction. The disturbance velocity field
can be written as

{ u3

v3

w3

}
=

{ û(x, y, t)
v̂(x, y, t)
iŵ(x, y, t)

}
eiβz (2.30)

and the same applies for the pressure field

p3 = p̂(x, y, t)eiβz, (2.31)

where β is a real number and represents the spanwise wavenumber of the
three-dimensional disturbance.
Expanding the equations (2.25) term by term



∂u3
∂t

+ U2
∂u3
∂x

+ v3
∂U2

∂y
+ ∂p3

∂x
− 1

Re
∇2u3 +

[
u3

∂U2

∂x
+ V2

∂u3
∂y

]
= 0,

∂v3
∂t

+ U2
∂v3
∂x

+ ∂p3
∂y
− 1

Re
∇2v3 +

[
u3

∂V2
∂x

+ V2
∂v3
∂y

+ v3
∂V2
∂y

]
= 0,

∂w3

∂t
+ U2

∂w3

∂x
+ ∂p3

∂z
− 1

Re
∇2w3 +

[
V2

∂w3

∂y

]
= 0,

∂u3
∂x

+ ∂v3
∂y

+ ∂w3

∂z
= 0,

(2.32)

it is possible to highlight the non-parallel terms, placed in square brackets,
that are neglected in the original secondary stability theory but are taken
into account in the present formulation. In addition, it can be seen that, by
means of the property (2.30), the equations have a two-dimensional nature.
In fact, the equations (2.32) can be formulated also for the variables û, v̂, ŵ
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and p̂ simplifying the factor eiβz which appears in all the terms. The resulting
equations are shown below



∂û
∂t

+ U2
∂û
∂x

+ v̂ ∂U2

∂y
+ ∂p̂

∂x
− 1

Re
(∇̂2û− β2û) +

[
û∂U2

∂x
+ V2

∂û
∂y

]
= 0,

∂v̂
∂t

+ U2
∂v̂
∂x

+ ∂p̂
∂y
− 1

Re
(∇̂2v̂ − β2v̂) +

[
û∂V2
∂x

+ V2
∂v̂
∂y

+ v̂ ∂V2
∂y

]
= 0,

∂ŵ
∂t

+ U2
∂ŵ
∂x

+ βp̂− 1
Re

(∇̂2ŵ − β2ŵ) +
[
V2

∂ŵ
∂y

]
= 0,

∂û
∂x

+ ∂v̂
∂y
− βŵ = 0

(2.33)

where ∇̂ = ∂2

∂x2
+ ∂2

∂y2
is the two-dimensional Laplacian operator. It can

be observed that in (2.33) only the derivatives with respect to the x and y
directions appear. This is due to the fact that the derivatives with respect
to the span-wise direction are replaced by algebraic operations by virtue of
the Fourier transform. Therefore, the solutions of the problem (2.33) are
functions of x, y and t only and are defined on the same two-dimensional
domain of the base flow. The boundary conditions for the disturbances can
also be easily extended for the quantities û, v̂ and ŵ removing the dependence
on the span-wise coordinate z. The system (2.33), in conjunction with the
relations (2.30) and (2.31) and with the boundary conditions (2.26), (2.27),
(2.28) and (2.29) defines the secondary stability eigenvalue problem. The
Floquet theory can then be applied to the system (2.33) due to the time
periodicity (2.20) and gives an insight into the shape of the eigenmodes. The
theory states that the eigenfunctions û, v̂, ŵ and p̂ consist on a function of t
that is periodic with period 2π

αcr
multiplied by a characteristic factor, namely


û(x, y, t)
v̂(x, y, t)
ŵ(x, y, t)
p̂(x, y, t)

 = eσt


ū(x, y, t)
v̄(x, y, t)
w̄(x, y, t)
p̄(x, y, t)

 = eσt
∞∑

m=−∞


um(x, y)
vm(x, y)
wm(x, y)
pm(x, y)

 eimαcrt

(2.34)

where σ = σr + iσi and is called characteristic exponent of the Floquet system.
The Fourier series has been used to make explicit the periodic dependence of
the bar quantities with respect to time. In expression (2.34) it is sufficient
to consider −αcr

2
< σi ≤ αcr

2
since the values σ and σ + ikαcr would give

identical modes for any positive integer k, provided that the Fourier series is
renumbered.
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Three classes of modes can be identified:

Fundamental modes, σi = 0:


u3f

v3f

w3f

p3f

 = eiβzeσrt
∑

m even


um(x, y)
vm(x, y)
iwm(x, y)
pm(x, y)

 eim
αcr
2
t. (2.35)

Subharmonic modes, σi = αcr
2

:


u3s

v3s

w3s

p3s

 = eiβzeσrt
∑
m odd


um(x, y)
vm(x, y)
iwm(x, y)
pm(x, y)

 eim
αcr
2
t. (2.36)

Detuned modes, 0 < | 2σi
αcr
| < 1:


u3d

v3d

w3d

p3d

 = eiβzeσrt
∑

m even


um(x, y)
vm(x, y)
iwm(x, y)
pm(x, y)

 ei(m+
2σi
αcr

)αcr
2
t. (2.37)

The fundamental and subharmonic modes satisfy

uf (x, y, z, t) = uf (x, y, z, t+T ), us(x, y, z, t) = us(x, y, z, t+2T ) (2.38)

and are associated with primary resonance and principal parametric resonance
in the Floquet system, respectively. The detuned modes are associated with
combination resonance and, in order to construct a real physical solution, two
complex-conjugate modes with opposite detuning ± 2σi

αcr
are required.

An important difference of the present formulation with respect to the original
one proposed by Herbert [30], consists in having two-dimensional modes. This
fact is a direct consequence of the inclusion of the non-parallel effects that do
not allow to consider the x direction as homogeneous. In the theory of Herbert,
the evolution of the disturbances can be analyzed either in the temporal or
the spatial framework (see [31]). Instead, in the proposed formulation the
temporal grow of the modes in considered while the spatial evolution is
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represented by the shape of the eigenfunctions. The stability properties of
the modes are related to the real part of the characteristic exponent σ, in
particular an eigenmode is stable if

σr < 0, (2.39)

which leads to an an asymptotically decaying amplitude in time. Similarly to
the primary stability theory, the solution of the secondary stability eigenvalue
problem provides, after fixing the span-wise wavenumber of the disturbance
β, the eigenfunctions, that describe the shape of the three-dimensional dis-
turbance, and the corresponding eigenvalue σ that indicates if the considered
mode is stable or not. The secondary stability analysis can provide impor-
tant information regarding the span-wise wavenumber of the most amplified
disturbance, the class of the more unstable modes, how the amplitude of the
primary wave influences the results and so on.
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2.2.1 Basic Floquet theory concepts

Despite the secondary stability problem has been defined, a slightly different
point of view is useful in view of the description of the numerical solution
method that will be provided in the following chapter. Very few ideas of the
Floquet theory and their relations with the problem in exam will be discussed
following an intuitive approach. However a complete and mathematically
rigorous descriptions of the theory can be found in [52] or [58]. Let us consider
the linear periodic continuous system

 x′ = A(t)x,

x(t0) = x0,
(2.40)

in which x represents the state of the system while A(t) is a linear operator
with periodic coefficients of period T . The state transition matrix is the
solution of the following differential matrix equation:

 Φ′(t, τ) = A(t)Φ(t, τ),

Φ(τ, τ) = I
(2.41)

The state transition matrix provides the relationship between the value of
the state at a certain time τ and the value reached at a subsequent generic
instant t, that is

x(t) = Φ(t, τ)x(τ). (2.42)

Of particular interest for the stability analysis of the periodic systems is the
state transition matrix over one period, that is called the monodromy matrix
and is defined as Ψ(τ) = Φ(τ + T, τ). As can be derived from (2.42), the
monodromy matrix allows one to evaluate the evolution of the state after a
time period T , namely

x(τ + T ) = Ψ(τ)x(τ), (2.43)

where τ can be a generic time instant. Considering the state x(k) = x(τ+kT ),
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with k positive integer, its value can be evaluated, knowing the monodromy
matrix, by the discrete-time equation:

x(k) = Ψ(τ)kx(0). (2.44)

The equation (2.44) shows the link between the stability of the periodic
system and the eigenvalues of the monodromy matrix. The latter are called
characteristic multipliers and it can be proved that are time-independent,
therefore they represents a property of the system itself. A continuous periodic
system is stable if and only if its characteristic multipliers have modulus lower
than one.
The relationship between the secondary stability problem and these basic
Floquet theory notions, can be clarified observing that formally, by means of
the linearity property, the problem (2.33) can be reformulated as

∂

∂t


û
v̂
ŵ
p̂

 =

[
SSO

]
û
v̂
ŵ
p̂

 , (2.45)

where ”SSO” symbolizes the Secondary Stability differential Operator whose
coefficients are periodic in time with period T . Considering equation (2.34),
it can be noted that

û(x, y, t+ T )
v̂(x, y, t+ T )
ŵ(x, y, t+ T )
p̂(x, y, t+ T )

 =


ū(x, y, t+ T )
v̄(x, y, t+ T )
w̄(x, y, t+ T )
p̄(x, y, t+ T )

 eσteσT =


û(x, y, t)
v̂(x, y, t)
ŵ(x, y, t)
p̂(x, y, t)

 eσT ,

(2.46)

but, in analogy to what has been shown in this section, it can be written that

[
MO

]
û(x, y, t)
v̂(x, y, t)
ŵ(x, y, t)
p̂(x, y, t)

 =


û(x, y, t)
v̂(x, y, t)
ŵ(x, y, t)
p̂(x, y, t)

 eσT , (2.47)

where ”MO” refers generically to the monodromy operator associated with
the system (2.45). The functions û, v̂, ŵ and p̂ describe particular shapes of
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the disturbances that are only scaled over a period. In other words, they are
eigenfunctions of the monodromy operator associated with the eigenvalue eσT

that is the characteristic multiplier. It should be noted that the condition
on the characteristic exponents (2.39) is equivalent to the condition for the
characteristic multipliers given in this section. The fist ones are related to
the asymptotic evolution of the disturbances in time, the latter are related to
the discrete evolution as shown in (2.44).
In practice, the solution of the secondary stability problem can be obtained
computing the spectrum of the monodromy operator and the corresponding
eigenmodes. However, due to the complexity of the problem, the monodromy
operator can be only formally defined. The mathematical problem of comput-
ing the spectrum of operators for which an explicit expression is not available
has already been addressed in literature. For instance, the Arnoldi method
proposed for the first time in [3], represents an efficient algorithm to compute
the spectrum of large sparse matrices. The iterative procedure of the method
will be described in the following chapter but, in this context, it is important
to highlight that it only requires to compute the action of the operator on a
vector. Looking specifically at the problem in exam this reduces to evaluate


u(x, y, t+ T )
v(x, y, t+ T )
w(x, y, t+ T )
p(x, y, t+ T )

 =

[
MO

]
u(x, y, t)
v(x, y, t)
w(x, y, t)
p(x, y, t)

 . (2.48)

In other words, Arnoldi method requires the action of the monodromy matrix
on a generic vector, as represented in the right-hand side of the previous
expression. By means of (2.43), this corresponds to the evolution of the
disturbance a period T forward in time. Even if the monodromy operator
is unknown, the term at the left-hand-side in (2.48) can be obtained simply
integrating the equations (2.33) for the three-dimensional disturbance over
one time period T of the T-S wave.
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Chapter 3

Numerical methods

This chapter deals with the numerical tools employed in the solution of the
secondary stability problem. In particular, the basic features of a Petrov-
Galerkin method used to solve the primary stability problem are presented in
the first section. Afterwards, the methods to discretize the incompressible
Navier-Stokes equations and to compute the eigenvalues of the monodromy
matrix are also illustrated. A description of the computational setup and all
the numerical parameters adopted, along with the definition of the different
cases for which results are obtained, is provided at the end of the chapter.

3.1 Galerkin-Laguerre method for primary

stability analysis

The primary instability analysis requires the numerical solution of both the
Blasius equation (2.1) and the Orr-Sommerfeld eigenvalue problem (2.5).
Both problems deal with the numerical difficulty of having a semi-infinite
domain on which the solution is defined. In order to face this difficulty,
several approaches have been adopted that mostly rely on a truncation
or a mapping of the mathematical domain followed by a discretization by
means of finite difference or finite elements. For the Blasius boundary-layer
in particular, spectral collocation solvers have also been used (see [54] or
[53]) that represents a valid and reliable alternative. Although the spectral
formulation leads to methods simple to implement and does not require any
truncation of the mathematical domain, the collocation approach can lead
to poorly conditioned discrete operators especially in the case where high
order derivatives are present. On the other hand, the Galerkin approach
can result in sparse and well conditioned discrete operators as it is shown



in [68]. It is worth mentioning that the Galerkin approach is supported
by convergence and error estimation theorems that also apply to spectral
methods in semi-infinite domains (see [68]). In the next section, the basic
theoretical concepts of a Galerkin method based on the Laguerre functions
are exposed mainly following [4], in which the latter has been proposed for
the solution of self-similar problems of the boundary-layer theory.

3.1.1 Weak variational formulation

Let us consider initially the Blasius problem (2.1) that, for reader’s conve-
nience, is again reported below

f ′′′(η) +
1

2
f(η)f ′′(η) = 0, (3.1)

f(0) = 0, f ′(0) = 0, f ′(∞) = 1. (3.2)

The Blasius problem is homogeneous with the exception of the condition at
infinity on the first derivative of f . The latter, namely f ′(∞) = 1, implies
that the solution f behaves asymptotically as f(η) = η + k when η → ∞,
where k is a constant that has to be found from the numerical solution of
the problem. The purpose of the method is to approximate the solution of
the problem through an expansion based on the Laguerre functions (see [69]).
However, the Laguerre functions cannot be employed directly to approximate
the variable f(η) due to its behaviour at infinity and the problem has to
be redefined for a new suitable variable. The new variable, named ψ(η), is
defined as

f(η) = ψ(η) + η(1− e−
η
2 ). (3.3)

At this point, the Blasius problem (2.1) can be reformulated for the function
ψ considering the relations between the derivatives of f and those of ψ, these
relations are shown below

f ′(η) = ψ′(η) + 1−
(

1− 1

2
η

)
e−

η
2 ,

f ′′(η) = ψ′′(η) +

(
1− 1

4
η

)
e−

η
2 ,

f ′′′(η) = ψ′′′(η)− 1

8
(6− η)e−

η
2 .

(3.4)
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The equation for the new unknown ψ(η) can be derived substituting the
expressions (3.4) in the Blasius equation (3.1). The new equation for the
variable ψ(η) reads

ψ′′′ +
1

2
ψψ′′ +

1

2
a(η)ψ′′ +

1

2
b(η)ψ = r(η), (3.5)

where a(η), b(η) and r(η) denote the functions

a(η) = η
(

1− e−
η
2

)
,

b(η) =

(
1− 1

4
η

)
e−

η
2 ,

r(η) =
1

8

[
η2 − 5η + 6

]
e−

η
2 +

1

8
(4− η)ηe−η.

(3.6)

The boundary conditions for the unknown ψ(η) can be derived directly from
those of the Blasius problem (3.2) exploiting the definition (3.3). In particular,
the function ψ(η) must satisfy the conditions

ψ(0) = 0, ψ′(0) = 0, ψ′(∞) = 0, (3.7)

that are now fully homogeneous. By means of the change of variable (3.3), the
solution ψ tends to a constant at infinity, namely ψ(η) = k as η →∞. As will
be better clarified in the following, the Laguerre functions are only suitable to
approximate functions decaying at infinity. However, the function ψ can be
seen as ψ(η) = k+w(η), that is a constant k plus a function w(η) decaying at
infinity. In practise, the Laguerre functions can be used to represent ψ if they
are slightly modified to take into account the constant part k. Before giving
a definition of the basis functions, the Galerkin method requires to write the
differential problem for ψ, composed by the equation (3.5) and the boundary
conditions (3.7), in a weak variational form. The weak formulation can be
derived multiplying equation (3.5) by a test function v(η) and integrating in
the whole domain, namely

∫ ∞
0

v(η)

[
ψ′′′ +

1

2
ψψ′′ +

1

2
a(η)ψ′′ +

1

2
b(η)ψ

]
dη =

∫ ∞
0

v(η)r(η)dη, (3.8)
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where the test function v(η) must be chosen asymptotically homogeneous
to be integrable in the whole mathematical domain. As common in the
derivation of the weak variational form, the high order derivatives of the
solution ψ can be moved to the test function v integrating by part the terms
in equation (3.8).

−
∫ ∞

0

v′(η)ψ′′dη +
[
v(η)ψ′′

]∞
0
− 1

2

∫ ∞
0

[v(η)ψ]′ψ′dη +
1

2

[
v(η)ψψ′

]∞
0

− 1

2

∫ ∞
0

[v(η)a(η)]′ψ′dη +
1

2

[
v(η)a(η)ψ′

]∞
0

+
1

2

∫ ∞
0

v(η)b(η)ψdη

=

∫ ∞
0

v(η)r(η)dη.

(3.9)

The test function v(η), for the moment left unspecified, can be chosen to
satisfy the conditions

v(0) = 0 and v(∞) = 0, (3.10)

that nullify the boundary terms present in equation (3.9). It should be noted
that, for the terms in (3.9) to be properly defined, a different level of regularity
is required for the test function v(η) and the solution ψ(η). In fact, the weak
form of the Blasius problem constitutes a Petrov-Galerkin formulation since
v(η) and ψ(η) belong to two different functional spaces. Finally, the weak
formulation can be written as:

find ψ ∈ K =
{
u(η) = k + w(η)|k ∈ R, w ∈ H2(0,∞), u(0) = u′(0) = 0

}
such that:

−
∫ ∞

0

v′(η)ψ′′dη − 1

2

∫ ∞
0

[
v′(η)ψψ′ + v(η) (ψ′)

2 ]
dη

+
1

2

∫ ∞
0

{
− [v(η)a(η)]′ ψ′ + v(η)b(η)ψ

}
dη =

∫ ∞
0

v(η)r(η)dη,

∀v ∈ H1
0 (0,∞)

(3.11)

where H1
0 (0,∞) = {v ∈ H1(0,∞), v(0) = 0}.
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3.1.2 Laguerre functions

The Galerkin method allows one to convert the continuous operator problem
(3.11) to a discrete problem by choosing a suitable set of basis functions
that represent a subspace of the functional spaces K(0,∞) and H1

0 (0,∞). In
order to define the basis functions, some general concepts regarding Laguerre
polynomials and Laguerre functions are recalled below. A complete discussion
regarding the theoretical results of the Laguerre spectral approximations is
beyond the scope of this work but, due to their importance, the main results
will be briefly mentioned. For a complete and rigorous treatment of this
subject, the reader is referred to [69] and [44].

The generalized Laguerre polynomials (GLPs), denoted by L(α)
n (x) with

α > −1, are the eigenfunctions of the Sturm-Liouville problem

x−αex∂x
(
xα+1e−x∂xL(α)

n (x)
)

+ λnL(α)
n (x) = 0, x ∈ (0,∞), (3.12)

associated with the eigenvalues λn = n and can be defined by the following
formula

L(α)
n (x) :=

x−αex

n!

dn

dxn
(
e−xxn+α

)
, for n = 0, 1, 2, . . . . (3.13)

In the literature they are also called associated Laguerre polynomials and
represent the general case of the classical Laguerre polynomials which are
obtained for the case α = 0. In other words

L(0)
n (x) = Ln(x), (3.14)

where Ln(x) are the simple Laguerre polynomials that are more frequently
used in practical application. An important property of the GLP is that they
are mutually orthogonal in the functional space L2

w(0,∞) = {v : ‖v‖L2
w
<∞}

equipped with the following inner product and norm:

(u, v)w =

∫ ∞
0

u(x)v(x)wα(x)dx, ‖u‖w = (u, u)
1
2
w, (3.15)

where the weight function wα(x) is defined as

wα(x) = xαe−x. (3.16)
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For the simpler case of the classical Laguerre polynomials this property can
be written as∫ ∞

0

Li(x)Lj(x)e−xdx = δij, ∀i, j ≥ 0, (3.17)

and means that they define an orthogonal basis in the Hilbert space L2
w(0,∞).

Due to the exponentially decaying weight in the norm (3.15), it can be
shown that the direct application of the Galerkin approach based on the
Laguerre polynomials leads, from a theoretical point of view, to meaningful
results only inside small intervals. Moreover, the GLPs are not suitable
for practical implementations due to their wild behaviour at infinity. A
rigorous demonstration of this briefly mentioned result can be found in [68]
or [69] together with more properties of the GLPs that are not reported here.
The GLPs have received limited interest for solving problems in unbounded
domains, nevertheless, the Galerkin-Laguerre approach has been applied
successfully to some properly transformed non-linear PDEs in [29]. It can
be shown that the proposed transformation of the equations corresponds
to use the Laguerre functions, described below, instead of the GLPs. The
generalized Laguerre functions (GLFs) are defined by

L̂(α)
n (x) = e−

x
2L(α)

n (x), x ∈ (0,∞) (3.18)

and, as can be deduced from (3.17), are orthogonal with respect to the weight
function ŵα(x) = xα. Considering the usual Laguerre functions obtained for
α = 0, which are used for the next developments, they form a sequence of
orthogonal basis functions in L2(0,∞) since∫ ∞

0

L̂i(x)L̂j(x)dx = δij, ∀i, j ≥ 0. (3.19)

In contrast to the GLPs, the Laguerre functions are well behaved at infinity
and, as already anticipated, they are suitable to represent decaying functions
in semi-infinite domains due to the decay property

‖L̂n(x)‖ → 0, as x→∞. (3.20)

Moreover, the Galerkin approach based on the Laguerre functions leads to
a stable discrete approximation of the weak problem (3.11) since the error
remains limited in the usual L2(0,∞) norm (see [68]).
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3.1.3 Discrete problem formulation

To clarify the notation, in the following the test functions are named as Ci(η)
while the trial functions with C∗i (η). For the application described here, the
Laguerre functions as defined in 3.1.2 will not be used directly as basis func-
tions. Instead, the basis for the Galerkin-Laguerre approximation proposed
in [68] will be considered that is more convenient from the implementation
viewpoint. The test functions can be defined by the relations

C1(η) = ηe−
η
2 ,

Ci(η) = L̂i−2(η)− 2L̂i−1(η) + L̂i(η), i ≥ 2.
(3.21)

The functions Ci(η) defined above satisfy the boundary conditions (3.10) on
the test function v(η) and they span the finite-dimensional functional space

P0,N =
{
v : v = e−

η
2 ηp(η), p(η) ∈ PN(0,∞)

}
, (3.22)

where PN (0,∞) is the space of polynomials of maximum degree N defined on
the interval [0,∞). The functions Ci(η) are the same proposed in [68] for the
Galerkin discretization of the biharmonic equation. It should be noted that,
similarly to what has been shown for the Laguerre functions in 3.1.2, they
have the property

Ci(η)→ 0, as η →∞. (3.23)

The trial functions must be chosen in order to represent the behaviour of the
solution ψ(η), their expression is shown below

C∗1(η) = 1−
(

1 +
η

2

)
e−

η
2 ,

C∗i (η) = L̂i−2(η)− 2L̂i−1(η) + L̂i(η), i ≥ 2.

(3.24)

They are equal to the test functions for i ≥ 2 and span the finite dimensional
space

KN =
{
v : v = αC∗1(η) + e−

η
2 η2p(η), α ∈ R, p(η) ∈ PN−1(0,∞)

}
. (3.25)
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Therefore, the solution ψ(η) can be written as a linear combination of the
trial functions (3.24), namely

ψ(η) =
N∑
i=1

ψiC∗i (η). (3.26)

The first trial function C∗1(η) represents a modification of the Laguerre function
basis. It should be noted that C∗1(η) has the property

C∗1(η)→ 1, as η →∞, (3.27)

which allows to properly represent the asymptotic behaviour of the solution
ψ(η). In fact, from the equation (3.26) can be written that

lim
η→∞

ψ(η) = lim
η→∞

N∑
i=1

ψiC∗i (η) = ψ1, (3.28)

where the value ψ1, associated with the modified function C∗1(η), will be
provided from the numerical solution of the problem. It should also be noted
that by means of the expansion for the solution ψ (3.26), all the boundary
conditions (3.7) are identically satisfied.
The discrete formulation of the problem can be obtained introducing the
expression (3.26) in the weak variational form (3.11), since the weak formu-
lation must be satisfied for all v(η) = Ci(η), i = 1, . . . N , the discrete form
of the problem corresponds to a non-linear system of equations that can be
compactly written as

−T ∗ψ − nl(ψ) +

(
−1

2
A∗ +

1

2
B∗
)
ψ = r. (3.29)

In the equation above, the vector ψ has as components the unknown coef-
ficients of the linear combination (3.26) ψi. The remaining terms are the
discrete counterparts of the operators that appear in the weak formulation
(3.11).

33



In particular, the elements of the matrices T ∗, A∗ and B∗ are defined by

t∗ij =

∫ ∞
0

C ′i(η)C∗′′j (η)dη, i, j ≥ 1, (3.30)

a∗ij =

∫ ∞
0

[Ci(η)a(η)]′ C∗′j (η)dη, i, j ≥ 1, (3.31)

b∗ij =

∫ ∞
0

Ci(η)b(η)C∗j (η)dη, i, j ≥ 1, (3.32)

while the vectors nl(ψ) and r, which correspond to the non-linear terms and
to the right-hand side of the weak form, respectively, are given by

nli(ψ) =
1

2

∫ ∞
0

[
C ′i(η)ψψ′ + Ci(η) (ψ′)

2
]
dη, (3.33)

ri =

∫ ∞
0

Ci(η)r(η)dη. (3.34)

The non-linear system (3.29) is solved by means of the Newton-Raphson
algorithm [35]. Defining the operator

N (ψ) =

(
−T ∗ − 1

2
A∗ +

1

2
B∗
)
ψ − nl(ψ)− r, (3.35)

the Newton algorithm requires the evaluation of the Jacobian matrix

J (ψ) =
∂N (ψ)

∂ψ
, (3.36)

whose elements are given by

Jij(ψ) = l∗ij−
∫ ∞

0

{1

2
C ′i(η)

[
ψ′(η)C∗j (η)+ψ(η)C∗′j (η)

]
+Ci(η)ψ′(η)C∗′j (η)

}
dη,

(3.37)

where l∗ij = −t∗ij − 1
2
a∗ij + 1

2
b∗ij.
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Starting from an initial guess, the solution of the problem ψ is updated at
each iteration of the algorithm as

ψk+1 = ψk − [J (ψk)]
−1N (ψk), (3.38)

until the norm of the iteration increment ‖ψk+1 − ψk‖ is below a certain
tolerance value.
The explicit expressions for the matrix involved in the solver have not been
reported here, the reader is referred to [4] where such matrices are computed
in closed form. Moreover, it is important to mention that the accuracy of
the solver can be improved by a scaling of the independent variable η. The
resolution of the solver is basically given by the number of basis function that
are considered for the linear combination (3.26). Nevertheless, as the number
N is increased, the approximation accuracy mainly increases for large values
of η which is useless since the solution ψ tends to a constant value. The main
idea is to solve the equations for the new unknown ψ̂(η̂) where η̂ = η

χ
, that is

the similarity variable scaled by a certain factor χ. Further details are not
provided in this context for conciseness, but the general procedure described
here is still valid (see [4]).

3.1.4 Orr-Sommerfeld equation numerical solution

The Galerkin-Laguerre approach can be used also for the numerical solution of
the Orr-Sommerfeld equation (2.5), the same basic steps for the discretization
of the Blasius problem are rapidly pursued also in this section. The Orr-
Sommerfeld eigenvalue problem (2.5) can be written after some manipulations
as

φ′′′′ − 2α2φ′′ + α4φ+ iαRe
{
− [U(η)φ′ − U ′(η)φ]

′
+ α2U(η)φ

}
= icαRe

(
−φ′′ + α2φ

)
.

(3.39)

The hat symbol is omitted from all the variables to simplify the notation but
they are non-dimensional as outlined in 2.1.1. In addition, η is used for the
base functions and for the Blasius problem, but for the latter it should be
interpreted as η = y

G(x1)
since the equation is solved for the local boundary-

layer profile at the inlet of the domain. The base flow U(η) is provided by
the numerical solution of the Blasius equation as

U(η) = f ′(η) = ψ′(η) + 1− e−
η
2 +

1

2
ηe−

η
2 . (3.40)
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The boundary conditions for the eigenfunction φ are fully homogeneous, they
are reported here for convenience,

φ(0) = 0, φ′(0) = 0, φ(∞) = 0, φ′(∞) = 0. (3.41)

Differently from the Blasius solution, the function φ decays at infinity, there-
fore the Laguerre spectral approximation can be applied directly without
any change of variables. The weak formulation of the problem is obtained
integrating by parts the inner product of the equation (3.39) with a test
function v(η) satisfying the boundary conditions

v(0) = 0, v′(0) = 0. (3.42)

Skipping the intermediate passages, the weak variational formulation of the
problem reads:

find φ ∈ H2
0 (0,∞) = {u ∈ H2(0,∞), u(0) = u′(0) = 0} such that:∫ ∞

0

v′′(η)φ′′dη + 2α2

∫ ∞
0

v′(η)φ′dη + α4

∫ ∞
0

v(η)φdη

+ iαRe

∫ ∞
0

{
v′(η) [U(η)φ′ − U ′(η)φ] + α2v(η)U(η)φ

}
dη

= icαRe

(∫ ∞
0

v′(η)φ′dη + α2

∫ ∞
0

v(η)φdη

)
, ∀v ∈ H2

0 (0,∞).

(3.43)

The Laguerre basis functions, already used as test functions for the Blasius
problem, are considered here to derive the discrete counterpart of the weak
form (3.43). In particular, the test trial functions are identical and defined as

Ci(η) = C∗i (η) = L̂i−2(η)− 2L̂i−1(η) + L̂i(η), i ≥ 2. (3.44)

With respect to the Blasius problem, the first test function C1(η) = ηe−
η
2 has

been discarded since it does not satisfy the homogeneous condition on the
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first derivative at η = 0.
Therefore, the eigenfunction φ is expanded as

φ(η) =
N∑
i=2

φiCi(η), (3.45)

and the weak form (3.43) must be satisfied for all v(η) = Ci(η), i = 2, . . . N .
The Galerkin-Laguerre method leads to the discrete eigenvalue problem

[
D4 + 2α2D2 + α4M + iαRe

(
N + α2U

)]
φ = icαRe

(
D2 + α2M

)
φ, (3.46)

where the eigenvectors φ have components φi. The matrices that appear in
(3.46) correspond to the continuous operators in the weak form (3.43), their
definition is reported below

mij =

∫ ∞
0

Ci(η)Cj(η)dη, i, j ≥ 2, (3.47)

d2
ij =

∫ ∞
0

C ′i(η)C ′j(η)dη, i, j ≥ 2, (3.48)

d4
ij =

∫ ∞
0

C ′′i (η)C ′′j (η)dη, i, j ≥ 2, (3.49)

uij =

∫ ∞
0

Ci(η)U(η)Cj(η)dη, i, j ≥ 2, (3.50)

nij =

∫ ∞
0

C ′i(η)
[
U(η)C ′j(η)− U ′(η)Cj(η)

]
dη, i, j ≥ 2. (3.51)

The solution of the eigenvalue problem (3.46) is obtained by means of the
routine ZGGEV implemented in the LAPACK. The routine computes the
generalized eigenvalues and eigenvectors for a pair of complex nonsymmetric
matrices (A,B), using the QZ algorithm. For the problem in exam the
matrices A and B are given by

A(α,Re) =
[
D4 + 2α2D2 + α4M + iαRe

(
N + α2U

)]
,

B(α,Re) = iαRe
(
D2 + α2M

)
.

(3.52)

Further details on LAPACK and on the QZ algorithm are not provided in
this work, but an exhaustive documentation can be found in [1].
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From the computational point of view, the primary stability analysis consti-
tutes a low percentage of the total required computational time. However, the
primary stability solution enters in the definition of the base flow as shown in
Chapter 2, therefore, a certain accuracy must be guaranteed. The sufficient
number of basis functions N can be chosen taking as reference the results
provided in [4], where the same problems described here have been solved.

3.2 Navier-Stokes integration scheme

Several different numerical tools have been developed in the past for the
solution of fluid mechanics problems. Concerning incompressible fluid flows, a
classification of the possible methods, together with the theoretical background
on which they are based, can be found in [17]. Among the alternatives, it is
worth mentioning spectral elements methods, that have been widely used for
large-scale 3D stability problems [14], but also finite elements methods and
finite volume methods [63] which have received considerable attention from
the scientific community. The choice of the numerical method is strongly
influenced by the requirements of the particular application. For instance,
spectral methods can retain high accuracy levels but they are limited to simple
domains and their computational complexity is rather high. On the other end,
finite volume methods are suitable for complex geometries but high-order
schemes are expensive. For what concerns the secondary stability problem, a
large amount of the total computational cost is due to the integration of the
incompressible Navier-Stokes equation that is needed for both the definition of
the base flow and the computation of the spectrum of the monodromy operator.
As exposed in 1, this work aims at providing a convenient alternative tool
for transition prediction with respect to the time-consuming direct numerical
simulation (DNS), therefore, the main requirement on the solver is a low
computational cost. The fastest solvers are those based on the finite difference
discretization which can provide high-order schemes while maintaining a low
computational complexity. This section illustrates the general ideas of a finite
difference solver which relies on the direction splitting technique proposed
by Douglas (see [18]). For more detailed informations on the solver and
application examples, the reader is referred to [12] or [25].

3.2.1 Theoretical backgroung

The theoretical principles on which the solver is based will be described in
this section. For convenience, a model Navier-Stokes problem is considered
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as reported below, however, the numerical scheme is general and can be used
for solving all the differential problems presented in Chapter 2, as will be
briefly outlined in the following. Let us consider the unsteady, dimensionless
incompressible Navier-Stokes equations solved in a domain Ω = (0, 1)3:



∂u
∂t

+ (u · ∇)u− 1
Re
∇2u+∇p = f ,

∇ · u = 0,

u|∂Ω = a,

u|t=0 = u0,

(3.53)

where f represents a body force, a denotes the boundary data and u0 is the
initial velocity field at t = 0.
The main difficulty that arises in numerically approximating the problem (3.53)
is due to the elliptic character of the equations induced by the incompressibility
constraint. In other words, after the problem (3.53) is discretized in time,
the coupling between the velocity field and the pressure field makes the
numerical computation highly expensive since, in practice, a full Navier-
Stokes problem must be solved at each time step. For this reason, most
time marching algorithms, the so called projection schemes, are based on
decoupling the velocity and pressure equations. This techniques started with
the seminal works of Chorin [13] and Teman [72], in which the velocity field is
decomposed in a divergence-free part and a gradient. This procedure, known
as the Helmholtz–Hodge decomposition, leads to a discretized version of the
problem (3.53) that requires, at each time step, the solution of a vector-valued
advection-diffusion equation for the velocity and the solution of a decoupled
scalar Poisson equation for the pressure. Nowadays, most of the commonly
used numerical methods represent an improvement of the original scheme
proposed by Chorin and Temam but still rely on the fundamental idea of
decomposing the velocity field. Among them, an important class of methods
is constituted by the so called pressure-correction schemes [26]. These last are
time-marching techniques where each time steps is divided in two sub-steps:
in the first sub-step the pressure is treated as explicit or ignored while in
the second sub-step a correction is applied to the pressure field based on the
Helmholtz–Hodge decomposition of a provisional velocity field.
The great majority of the incremental pressure-correction schemes (see [26])
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are discrete realizations of the following singular perturbation of (3.53):



∂uε
∂t

+ (uε · ∇)uε − 1
Re
∇2uε +∇pε = f ,

−∆t∇2φε +∇ · uε = 0,

∆t∂pε
∂t

= φε − χ
Re
∇ · uε,

uε|∂Ω = a,

uε|t=0 = u0,

∂φε
∂n

∣∣
∂Ω

= 0,

pε|t=0 = p0,

(3.54)

in which ε := ∆t is the perturbation parameter while the parameter χ ∈ [0, 1]
is user-dependent. The value χ = 0 corresponds to the standard form of the
incremental pressure-correction method while for χ = 1 the method is written
in the rotational form (see [74] for more details). More details regarding the
pressure-correction schemes are provided in [26] where the discrete algorithms
are also discussed. For what concerns this work, it is sufficient to remind an
important property of (3.54), namely

‖u− uε‖L2 ≤ c∆t2, ∀χ ∈ [0, 1]. (3.55)

In other words, the velocity field uε is a second order approximation in the
L2-norm of the Navier-Stokes solution u. The proof of this results is not
addressed here, however it can be found in [28].
The singular perturbation problem (3.54) can be generalized in a convenient
form that leads to the direction-splitting technique adopted in this work.
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Let me consider the alternative perturbation of the problem (3.53):



∂uε
∂t

+ (uε · ∇)uε − 1
Re
∇2uε +∇pε = f ,

∆tAφε +∇ · uε = 0,

∆t∂pε
∂t

= φε − χ
Re
∇ · uε,

uε|∂Ω = a,

uε|t=0 = u0,

∂φε
∂n

∣∣
∂Ω

= 0,

pε|t=0 = p0,

(3.56)

that is equal to previous formulation apart from the substitution of the
Laplacian operator with a different operator called A for approximating the
pressure correction φε. As shown in [27], the convergence properties of uε
and pε remain unaltered if the operator A : D(A) ⊂ L2∫

=0
(Ω) → L2∫

=0
(Ω),

with L2∫
=0

= {q ∈ L2(Ω),
∫

Ω
q = 0}, is such that:

the bilinear form a(p, q) :=

∫
Ω

pAq is symmetric,

‖∇q‖2
L2 ≤ a(q, q), ∀q ∈ D(A).

(3.57)

Obviously, the family of the projection methods is recovered if A = −∇2

but, in general, the method belongs to a new different class and the idea of
projecting the velocity onto the space of solenoidal vector fields is abandoned
in this new formulation. The choice of the operator A and the domain D(A)
follows that proposed in [27] and [25], their expression is reported below


A :=

(
1− ∂2

∂x2

)(
1− ∂2

∂y2

)
,

D(A) :=
{
p, (1− ∂yy)p,Ap ∈ L2(Ω), p|y=0,1 = 0,

∂x ((1− ∂yy)p)
∣∣
x=0,1

= 0
}
,

(3.58)
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for the two-dimensional case while


A :=

(
1− ∂2

∂x2

)(
1− ∂2

∂y2

)(
1− ∂2

∂z2

)
,

D(A) :=
{
p, (1− ∂zz)p, (1− ∂yy)(1− ∂zz)p,Ap ∈ L2(Ω), p|z=0,1 = 0,

∂y ((1− ∂zz)p)
∣∣
y=0,1

= 0, ∂x ((1− ∂yy)((1− ∂zz)p)
∣∣
x=0,1

= 0
}
,

(3.59)

for the three-dimensional case.
The definition of the operator A given by the equations (3.58) or (3.59)
satisfies the conditions (3.57) and ensures the stability and convergence of the
method (see [25] for more information). Moreover, the operator A has the
interesting property that finding the solution p of the problem Ap = f , with
f ∈ L2(Ω), reduces to the solution of a cascade of one-dimensional problems

ψ − ∂xxψ = f, ∂xψ|x=0,1 = 0,

φ− ∂yyφ = ψ, ∂yφ|y=0,1 = 0,

p− ∂zzp = φ, ∂zp|z=0,1 = 0.

(3.60)

As a matter of fact, considering the family of projection methods, the computa-
tional cost for the solution of the Poisson equation, that provides the pressure
correction φε, becomes dominant at large Reynolds number or when the size of
the problem is very large. The generalized pressure correction scheme (3.56)
with the operator A defined above has the advantage of maintaining the same
second order accuracy of the projection method (3.54), but significantly re-
ducing the computational cost. Indeed, the property (3.60) can be applied to
the second equation of (3.56) to calculate φε in a very efficient way, as will be
shown in the next section. Another important topic that has to be mentioned
is the numerical instability issue. The majority of the numerical methods for
the Navier-Stokes equations must satisfy the so called LBB condition (see
[9]). In simple words, only certain discretizations of the velocity field and of
the pressure field are compatible with each other and permit the method to
converge to the exact numerical solution. If an incompatible discretization is
adopted, the numerical solution will be disturbed by spurious pressure modes
or velocity modes. For finite difference solvers this difficulty is often bypassed
using staggered grids, so that the three velocity components and the pressure
field are computed on four different grids. Obviously, the use of staggered
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grids increases the algorithmic complexity of the method and typically it
influences negatively the computational cost. The use of co-located grids does
not satisfy the LBB condition, therefore it is quite inconvenient in practice
since requires additional tools to eliminate the spurious pressure modes from
the solution (see, e.g., [81]). Nevertheless, the numerical method described in
this section, which consists of a discretized version of (3.56), uses a single grid
for all the variables. This fact is due to the properties of the operator A, in
particular to the fact that his kernel is void, which ensures that no spurious
modes are generated during the penalty step (when the pressure correction is
computed). For a numerical confirmation of this result, together with further
informations, the reader is again referred to [12].

3.2.2 Numerical algorithm

As anticipated, the numerical algorithm is formulated from the discretization
of problem (3.56) in space and time. For the present application, the Crank-
Nicolson scheme is adopted and the leap frog strategy for the pressure in order
to evolve the solution in time, however, this choice is not strictly required.
Different alternative time schemes have been used for the present direction
splitting method (see [12], [25]) that can also allow a larger time step with
respect to the Courant-Friedrichs-Lewy stability condition.
Denoting two subsequent time steps for the velocity u with the apices n and
n+ 1, the time-discretized version of the problem (3.56) can be written as


un+1−un

∆t
− 1

2Re
∇2 (un+1 + un) = fn+1/2 −∇p∗,n+1/2 − nl(u∗,n+1/2),

Aφn+1/2 = − 1
∆t
∇ · un+1,

pn+1/2 = pn−1/2 + φn+1/2 − χ
2Re
∇ · (un+1 + un) ,

(3.61)

where the subscript n + 1/2 indicates the intermediate time step between
n and n+ 1 at which the right-hand side of the first equation is computed.
The term p∗,n+1/2 represents a pressure predictor evaluated from the previous
iterations of the algorithm. Therefore, the idea of decoupling the velocity field
and the pressure field is still present in this generalized pressure correction
scheme. In fact, in the first equation of (3.61), which allows one to compute
the evolution of the velocity field, the pressure enters only as a known term at
the right-hand side. The non-linear contribution, named nl in equation (3.61),
is dealt with in an explicit manner as it is commonly done for the numerical
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solution of unsteady flows. The known quantity u∗,n+1/2 = (3un−un−1)/2 is
a second order extrapolation of the velocity and can be computed from the
solution at the previous time steps. The complete expression for the non-linear
term along with some additional considerations will be provided at the end of
the section, for the moment it is left generically denoted nl for simplicity. As
a matter of fact, the nonlinearity does not interfere with the incompressibility
constraint, this basically means that all the theoretical concepts recalled
in 3.2.1 remain valid even if the linearized Navier-Stokes equations (2.25)
are considered. Therefore, if the term nl(u∗,n+1/2) is substituted with the
time-discrete expression (U2

n+1/2 · ∇)u∗,n+1/2 + (u∗,n+1/2 · ∇)U2
n+1/2, the

numerical algorithm that is presented in this section can also be used for the
equation of the secondary stability theory.
The algorithm is initialized by setting p∗,1/2 = p0 for the first time step. Then,
for all n > 0, the pressure predictor is defined as

p∗,n+1/2 = p∗,n−1/2 + φn−1/2. (3.62)

The velocity field is updated by solving the momentum equation, this is done
by exploiting the direction splitting technique proposed by Douglas [18]. The
velocity update step of the algorithm reduces to solving the following series
of one dimensional problems:



ξn+1−un
∆t

= 1
Re
∇2un + fn+1/2 −∇p∗,n+1/2 − nl(u∗,n+1/2),

ηn+1−ξn+1

∆t
− 1

2Re
∂2

∂x2

(
ηn+1 − un

)
= 0,

ζn+1−ηn+1

∆t
− 1

2Re
∂2

∂y2

(
ζn+1 − un

)
= 0,

un+1−ζn+1

∆t
− 1

2Re
∂2

∂z2

(
un+1 − un

)
= 0.

(3.63)

As already mentioned, the spatial discretization of the equations is based on
the finite difference. In particular, the second-order central finite-difference
scheme is used to approximate the derivatives of the unknowns and, for the
second derivatives specifically, it provides the discrete approximation

f ′′(xi) ≈
fi+1 − 2fi + fi−1

∆x2
. (3.64)

For the implementation of the algorithm, the problem (3.63) can be refor-
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mulated in a different form to improve the efficiency of the computation,
namely


(
ηn+1 − un

)
− ∆t

2Re
∂2

∂x2

(
ηn+1 − un

)
= ∆t

(
fn+1/2 −∇p∗,n+1/2 − nl(u∗,n+1/2)

)
,(

ξn+1 − un
)
− ∆t

2Re
∂2

∂y2

(
ξn+1 − un

)
=
(
ηn+1 − un

)
,(

un+1 − un
)
− ∆t

2Re
∂2

∂z2

(
un+1 − un

)
=
(
ξn+1 − un

)
.

(3.65)

It can be easily seen that the expressions (3.65), after being discretized in
space by means of the scheme (3.64), correspond to a set of tridiagonal linear
systems which can be solved sequentially.
The third step of the algorithm consist in solving the equation

Aφn+1/2 = − 1

∆t
∇ · un+1, (3.66)

which provides the pressure correction φn+1/2. The term at the right-hand
side is known from the previous step of the algorithm, therefore the property
(3.60) can be exploited to split the equation (3.66) as follows


ψ − ∂2ψ

∂x2
= − 1

∆t
∇ · un+1, ∂ψ

∂x

∣∣
x=0,1

= 0,

ϕ− ∂2ϕ
∂y2

= ψ, ∂ϕ
∂y

∣∣
y=0,1

= 0,

φn+1/2 − ∂2φn+1/2

∂z2
= ϕ, ∂φn+1

∂z

∣∣
z=0,1

= 0.

(3.67)

Identically to what stated for the velocity update, the calculation of φn+1/2

also requires the solution of tridiagonal linear systems only.
Finally, the pressure is updated through the last equation of (3.61) as

pn+1/2 = pn−1/2 + φn+1/2 − χ

Re
∇ ·

(
1

2

(
un+1 + un

))
. (3.68)

The core of the algorithm consists in solving tridiagonal linear systems, this
is achieved by means of the Thomas algorithm which basically represents a
simplified form of the Gauss elimination for tridiagonal linear systems (see
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[16]). In addition, the matrices of the system are constant in time and can
be factored only once at the beginning of the computation.
Before proceeding with the description of the implicitly restarted Arnoldi
method, some concepts need to be clarified. Firstly, it is necessary to provide
an expression for the non-linear term that, until this point, has been left
unspecified. In general, for the incompressible Navier-Stokes equations, the
non-linear term can be written in several forms (see [24]) which basically
differ by a term multiplied by the divergence of the velocity. The important
point is that all of these forms are equivalent in the continuum due to
the incompressibility constraint, but can have a different behaviour when
integrated in discrete approximation of the equations. With respect to the
method described here, it can be easily noted from the last two equations
of (3.61) that when an unsteady flow is considered (that is the case for the
problem in exam), the velocity is only approximately divergence-free. This fact
means that the different formulations of the non-linear term, once discretized,
are not equivalent. A comparison between the effects of different expressions
for the non-linear term can be found in [80], the choice of which one to adopt
can be led by the required accuracy on the solution, the resultant algorithmic
complexity and so on. However, the chosen formulation has to guarantee the
conservation of kinetic energy in order to obtain a stable behaviour of the
algorithm. The expression for the chosen discrete non-linear term is shown
below in the three-dimensional case:

(u · ∇)ul
∣∣
xi,yj ,zk

≈

1

4∆x

[
ul(xi+1, yj, zk)

(
u(xi+1, yj, zk) + u(xi, yj, zk)

)
−

ul(xi−1, yj, zk)
(
u(xi−1, yj, zk) + u(xi, yj, zk)

)]
+

1

4∆y

[
ul(xi, yj+1, zk)

(
v(xi, yj+1, zk) + v(xi, yj, zk)

)
−

ul(xi, yj−1, zk)
(
v(xi, yj−1, zk) + v(xi, yj, zk)

)]
+

1

4∆z

[
ul(xi, yj, zk+1)

(
w(xi, yj, zk+1) + w(xi, yj, zk)

)
−

ul(xi, yj, zk−1)
(
w(xi, yj, zk−1) + w(xi, yj, zk)

)]
.

(3.69)

The expression (3.69) derives directly from the conservative weak formulation
of the Navier-Stokes equations and, as shown numerically in [12] where the
present direction splitting algorithm has been proposed and tested on many
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Figure 3.1 Figure taken from [12]. Block decomposition of the computational
domain.

model problems, it leads to numerically stable solutions in time.
At last, it is important to outline that the problems (3.65) and (3.67), which
basically determine the whole cost of the algorithm, can be efficiently paral-
lelized. This is done trough the Schur complement method [82] which has
been shown to provide a significant increase in the computational performance
for the solution of large-scale systems [38]. It is based on a decomposition
of the computational domain in non-overlapping blocks (see figure 3.1) so
that each block is assigned to a different processor. The grid points can be
classified in internal points, that corresponds to the white circles in figure
3.1, and the interface points shared between different processors. In order
to explain the general ideas, let us consider a sample problem Ax = b that
could represents one tridiagonal system of (3.65) or (3.67) for a certain spatial
direction. Without loss of generality, it is assumed that the solution is divided
among two processors so that x1 and x2 are associated with the internal
points while xΓ is the solution at the interface. Due to the tridiagonality of
the original system and the property of the finite-difference discretization,
the model problem Ax = b assumes the form

 A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ

 x1

x2

xΓ

 =

 b1

b2

bΓ

 . (3.70)
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The basic idea of the Schur complement method is to eliminate the internal
unknowns manipulating the original linear system as

(AΓΓ−AΓ1A
−1
11 A1Γ−AΓ2A

−1
22 A2Γ)xΓ = bΓ−AΓ1A

−1
11 b1−AΓ2A

−1
22 b2, (3.71)

and to solve for the interface variable first. The matrix of the system (3.71),
called Schur-complement matrix, has dimensions typically much lower than
the original matrix of the system and, in addition, it is also tridiagonal when
the linear system to be solved is tridiagonal. After the interface unknowns
have been computed, the internal unknowns are recovered solving the systems

A11x1 = b1 − A1ΓxΓ, A22x2 = b2 − A2ΓxΓ. (3.72)

However, since the equations are decoupled, this can be done in parallel
such that each processor computes its own internal unknowns. Basically the
communication between different processors, implemented for the present case
through the message passing interface MPI, is needed only when assembling
the right-hand side of (3.71). Instead, the Schur complement matrix

Σ = AΓΓ −
Np∑
n=1

AΓnA
−1
nnAnΓ, (3.73)

where Np is the number of processors involved, can be factored and stored
in each processor at the preprocessing stage so that the interface system
(3.71), once assembled the right-hand side, can be solve without the need of
communication between different processors. When considering the case of
more than one spatial direction, the implementation of the Schur complements
requires same additional technicalities that are not exposed here for concise-
ness. However, the main features of limiting at a minimum the required
communication between different processors and solving independently on
each processor for the internal unknowns still remain valid. The reader is
referred to [12] for the detailed implementation.
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3.3 Implicitly Restarted Arnoldi Method

In this section the main features of the Implicitly Restarted Arnoldi Method
(IRAM) are illustrated, one of the most used, efficient algorithms to compute
eigenvalues of large-size matrices. The IRAM belongs to the family of iterative
methods which have been developed as an attempt to reduce the typical
computational cost of O(n3) operations, where n is the dimension of the
matrix, required by the so-called direct or non-iterative methods (e.g the QR
algorithm [76], [16]). As a matter of fact, for modern applications involving
huge matrices, direct methods are impractical. Considering specifically the
secondary stability analysis, where the monodromy operator (defined in
chapter 2.2.1) is not even known explicitly, the iterative methods are also
mandatory. In fact, as already anticipated, in the Arnoldi method and in
iterative algorithms, the matrix can be represented as a black box, such that:

x −→ BLACK BOX −→ Ax.

More detailed information on this idea will be provided later on since it is
fundamental for the solution of the problem in exam.
The Implicitly Restarted Arnoldi Method has been proposed by Sorensen
and Lehoucq in [39] and then implemented in the software package ARPACK
[40].
Before describing the actual IRAM algorithm, it is useful to outline the
general idea of the method that is strictly related to the concept of Krylov
subspace. Given a matrix A ∈ Cn×n and a vector v0 ∈ Cn, the subspace

Kk(A, v0) = Span
{
v0, Av0, A

2v0, . . . , A
k−1v0

}
⊆ Cn, (3.74)

is called the kth Krylov subspace corresponding by A and v0. It should be
noted that the vectors which form the base of Kk are those generated by
successive iterations of the power method (see [16]). Without going into the
details, the power method exploits the fact that the term Akv0 tends to the
eigenvector corresponding to the dominant eigenvalue for increasing values
of k, and under suitable hypothesis. However, the whole sequence of vectors
of the power method, that in the typical implementation of the algorithm
are not retained in memory, can provide informations on the spectrum of the
matrix A. The numerical methods for eigenvalue computation which take
advantage of the power method sequence are usually called Krylov-subspace
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or projection methods. These methods construct approximate eigenpairs in
the subspace Kk(A, v0), imposing the Galerkin condition:

vT (Ax− λx) = 0, ∀v ∈ Kk(A, v0). (3.75)

The vector x ∈ Kk(A, v0) and the corresponding value λ ∈ C which satisfy
the condition (3.75) are called Ritz vector and Ritz value, respectively, and
they basically fulfill the usual eigenvalue-eigenvector relation but projected
onto the smaller space Kk(A, v0).
At this point, it can be introduced the fundamental tool of the numerical
method, that is the Arnoldi factorization. It is defined as the k-step Arnoldi
factorization of A ∈ Cn×n a relation of the form

AVk = VkHk + fke
T
k , (3.76)

where the matrix Vk ∈ Cn×k has orthonormal columns, H ∈ Ck×k is an upper
Hessemberg matrix and the vector f ∈ Cn is such that V H

k fk = 0. The
corresponding algorithm that defines the terms in (3.76) is shown below, the
link between the Arnoldi factorization and the problem (3.75) will be clarified
in the subsequent developments.

Algorithm 1 k-step Arnoldi factorization

v1 = arbitrary vector,

v1 ← v1/‖v1‖, w = Av1, α1 = vH1 w;

f1 ← w − v1α1, V1 ← (v1), H1 ← (α1);

for j = 1, 2, 3, . . . k − 1 do

βj = ‖fj‖, vj+1 ← fj/βj;

Vj+1 ← (Vj, vj+1), Ĥj ←
(

Hj

βje
T
j

)
;

w ← Avj+1;

h← V H
j+1w, fj+1 ← w − Vj+1h;

Hj+1 ← (Ĥj, h);

end for
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The algorithm 1 presents a strong analogy with the Gram-Schmidt algorithm
(see [76]). The latter creates an orthonormal basis for the space generated
by the columns of a matrix A while the Arnoldi factorization creates an
orthonormal basis for the Krylov subspace Kk(A, v1). The vectors of this
basis, called Arnoldi vectors, are generated from the power method sequence
and constitute the columns of the matrix Vk. In mathematical form:

Kk(A, v1) = Span {Col1(Vk),Col2(Vk), . . . ,Colk(Vk)} . (3.77)

The matrix Hk can be viewed as the orthogonal projection of A onto Kk(A, v1)
with the Arnoldi vectors as an orthogonal basis. It should be noted that the
relation

Hk = V H
k AVk, (3.78)

can be easily obtained from equation (3.76), therefore, the Hessemberg matrix
Hk is expected to contain important informations also on the spectrum of
the matrix A.
Before going into further details, it should be clarified how the Arnoldi
factorization of the monodromy operator is practically computed in this work.
As already anticipated, the action of the monodromy operator corresponds
to the evolution of the three-dimensional disturbance, according with the
equations (2.33), a period of the TS wave forward in time. However, the
Navier-Stokes equations have been discretized in space by means of finite
differences so that the perturbation field is computed in a finite number
of points of the domain. If we call n/4 the total number of points, the
disturbance can be represented by a vector of dimension n which collects the
values assumed by the three velocity components and by the pressure field on
those points. Looking at the Arnoldi factorization procedure, the first Arnoldi
vector v1 is typically generated randomly when computing eigenvalues and
can be interpreted as

v1 =


u0

v0

w0

p0

 , (3.79)

namely, it corresponds to a three dimensional perturbation. When the Arnoldi
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method requires the computation of w = Av1, the vector v1 is passed to the
Navier-Stokes solver described in Section 3.2 that performs a number i of
steps, such that i∆t = T , starting from the initial condition (3.79). After
that, the evolution of the disturbance is computed, the latter is reordered in a
vector in the same way of (3.79) and sent back to the Arnoldi algorithm which
computes the second Arnoldi vector v2. This procedure is then repeated until
the k-step Arnoldi factorization is completed. It can be easily guessed that the
large size of the problem makes the direct eigenvalue algorithms too expensive.
Nevertheless, the spectrum of the matrix Hk ∈ Ck×k can be computed by the
standard QR algorithm instead, as long as the Krylov-subspace dimension is
such that k � n.
Let us consider an eigenvector y and the associated eigenvalue θ of the matrix
Hk. Then, directly from the equation (3.76), the vector x = Vky satisfies the
following relation

‖AVky − VkHky‖ = ‖Ax− xθ‖ = ‖fk‖|eTk y|. (3.80)

In addition, since the residual vector fk satisfies V H
k fk = 0, it can be shown

that the Ritz pairs which solve the projected eigenvalue problem (3.75) are
those of the form (x, θ). The term at the right-hand side ‖fk‖|eTk y| is called
Ritz estimate of the pair (x, θ) and describes the quality of the approximation
for the eigenpair of the matrix A. In particular, if ‖fk‖ = 0 the Krylov
subspace Kk(A, v1) is an invariant subspace of A and the eigenvalues of the
matrix Hk represent exactly a subset of those of A.
The algorithm described up to this point is the classical Arnoldi method [3]
that permits to estimate a subset of k eigenvalues of the matrix A. In practical
implementations of the method, typically the norm of the residual vector ‖fk‖
does not become small but still, increasing the Krylov subspace dimension
k, some of the eigenvalues of Hk tend to approximate the eigenvalues of A
well even for k � n (the reader is referred to [16] for more informations). In
the secondary stability analysis context, particular attention is given to the
eigenvalues of largest module since, as already explained in Chapter 2, they
basically determine if the flow is stable or not. However, the theory does
not provide an estimate for the required number of iterations k necessary to
approximate the eigenvalues of interest. Moreover, it should be considered that
as k increases also an increasing number of Arnoldi vectors must be retained in
memory and in addition to this, the cost for the calculation of the eigenvalues
of Hk can become considerable. For these reasons, the Implicitly Restarted
Arnoldi method was developed with the idea of progressively filtering the
unwanted informations from a fixed dimension Krylov subspace. The method
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exploits the following result:

fk = 0 ⇐⇒ v1 =
k∑
j=1

xjγj, where Axj = xjλj. (3.81)

In words, if the starting vector v1 can be written as a linear combination of k
independent eigenvectors of A, then, the kth residual vector of the Arnoldi
factorization will vanish and as a consequence σ(Hk) = {λ1, λ2, . . . , λk}.
It should be noted that the algorithm 1 produces a factorization totally
dependent on the choice of the starting vector v1, thought, the theorem
(3.81) states that the best possible v1 would be one that lies in the invariant
subspace associated to the wanted eigenvalues. Consequently, the implicitly
restarting strategy consists in updating the starting vector v1 and the related
terms for the factorization (3.76) but without recomputing the whole Arnoldi
factorization explicitly. In the IRAM this is achieved by means of p shifted
QR factorization steps performed on the Hessemberg matrix Hk.
The IRAM algorithm in shown below.

Algorithm 2 Implicitly Restarted Arnoldi Method

Input: m-step Arnoldi factorization AVm = VmHm + fme
T
m;

for l = 1, 2, . . . until ‖Axi − λixi‖ < τ ∀i = 1, . . . , k

Compute σ(Hm) and select p shifts µ1, µ2, . . . , µp;

Q = Im;

for j = 1, 2, . . . , p do

Factor Hm − µjI = QjRj;

Hm ← QH
j HmQj; Q← QQj;

end for

β̂k = Hm(k + 1, k); σk = Q(m, k) with k = m− p;
fk ← vk+1β̂k + fmσk;

Vk ← VmQ(:, 1 : k); Hk ← Hm(1 : k, 1 : k);

Extend the k-step factorization AVk = VkHk + fke
T
k to a new m-step

Arnoldi factorization AVm = VmHm + fme
T
m;

end for
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It can be shown that at each iteration of the algorithm 2 the starting
vector for the m-step Arnoldi factorization is implicitly updated as follows

v1 ←
p∏
j=1

(A− µj)v1. (3.82)

The shift values µj represent the unwanted information from the spectrum of
A. In other words, if one is interested in the eigenvalues of largest module, as
in this case, a simple way to select the shifts is to take the p eigenvalues of
Hm with lowest module. This method is known as the Exact Shifts Strategy
although other methods are possible (see [39]). It can be proven (see [40])
that the cyclic update of v1 given by the relation (3.82) has the effect of
filtering the starting vector so that the components of v1 in the directions of
the unwanted eigenvectors become less and less significant. Consequently, as
the iterations advance, the starting vector is forced to be a linear combination
of the wanted eigenvectors. The convergence of the algorithm is evaluated
considering the Ritz estimates of the eigenpairs of Hk, not by checking the
usual eigenvalue-eigenvector relation which is expensive from the computa-
tional point of view.
The Implicitly Restarted Arnoldi method allows one to approximate a spe-
cific subset of k eigenvalues of A very efficiently using 2kn+O(k2) storage.
The procedure explained in this section is valid when an exact arithmetic
is considered. However, the round-off error inevitably generated in finite
precision arithmetics leads to further complications. For instance, a typical
problem that has to be taken into account, is the loss of orthogonality between
subsequently generated Arnoldi vectors that can produce spurious copies of
the approximated eigenvalues. The implementation details of the method in
the software ARPACK are not addressed here for conciseness. The reader is
referred to [40] where an extensive documentation can be found.

54



3.4 Numerical setup

This section concerns the choice of the numerical parameters for the secondary
stability simulations and the rational process behind it. The computational
cases which have been investigated are exposed at the end of the section along
with the introduction of physical quantities needed to compare the present
study with the experimental data available in the literature.
As can be seen in (2.33), the equations for the three-dimensional disturbances
depend on the Reynolds number, the TS wave amplitude A and the spanwise
wavenumber β, i.e. the physical parameters of the problem in exam. However,
when the equations are discretized numerically, the monodromy operator can
be written as

MO = MO(Re, β,A, xj, yj, xMAX , yMAX ,∆t), (3.83)

which shows explicitly the dependency of the eigenvalue problem on the
computational grid, the domain dimension and the timestep. A convergence
analysis is performed on the numerical variables for a fixed set of Re, β and A
in order to verify the reliability of the numerical approximation. Considering
at first the computational domain for a certain grid size and time step,
the domain size is progressively enlarged until the results become almost
independent from the current domain dimension. The same procedure is then
repeated for the grid size and finally for the time step varying always one
variable at a time. The convergence criterium is chosen to be the variation of
the most unstable eigenvalue between the different simulations.
For the stability analysis of open flows, the domain size is critical to obtain
accurate results. Looking at the problem in exam, the TS waves are expected
to decay downstream, beyond the second branch of the neutral stability curve
as stated by the primary stability theory. Similarly, in the linear framework,
the secondary modes may grow but are also expected to decay downstream
where the vital vorticity concentration of the primary wave is absent (see [31]
for more informations).

Re1 β A

460 0.218 0.01

Table 3.1 Fixed physical parameters adopted for the choice of the numerical
setup.
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Figure 3.2 Behaviour of the most unstable eigenvalue with respect to the
position of the (artificial) outlet boundary.

As stated in [5], for this kind of problems the convergence with respect to
the longitudinal domain size is reached in practice when the disturbances
have negligible amplitude at the outer face of the domain. The results for
the influence of the domain size on the eigenvalues are shown in figure 3.2
while the fixed simulation parameters used are reported in table 3.1.
The variation of the eigenvalue became less than the one per cent when the
domain extends up to Re2 = 1000 allowing for a sufficient decay of the primary
wave. Following the guidelines in [83] and [21], the vertical dimension of the
domain has been chosen to be 25δ1 where δ1 is the displacement thickness
at the inlet section. This relatively large vertical dimension is needed for
the homogeneous conditions far from the wall to be accurate due to the slow
decay of the TS waves in the wall-normal direction.

yMAX/δ1 |λ1| |λ2|

15 1.612 1.531
20 1.562 1.502
25 1.542 1.490
30 1.532 1.484

Table 3.2 Sensitivity analysis with respect to the vertical domain size.
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Figure 3.3 Visualization of a part of the computational grid.

A sensitivity analysis has also been performed on the vertical size of the
domain and it shows, as can be seen in table 3.2, a rather weak dependency
of the results on the vertical size when the latter is at least 15δ1.
The computational grid is uniform in the x direction and a 1% linear stretching
is imposed in the y direction. The grid convergence analysis, for the same set of
physical parameters presented at the beginning of this section, is summarized
in figure 3.4 which reports the relation between the most unstable eigenvalue
and the total number of grid points used in the calculations.
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Figure 3.4 Grid convergence analysis.
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Since the unstable region for the primary instability becomes wider increasing
the Reynolds number, it is important to underline that the longitudinal
domain dimension is not fixed for all the different physical cases that will be
considered. Indeed, the sensitivity analysis with respect to the outlet position
(see figure 3.2) has been repeated for each Reynolds number at the inlet
following the exact procedure shown in this section only for the case Re = 460.
Nevertheless, the cell dimensions ∆x = 7 × 10−3 and ∆ywall = 6.6 × 10−4

that as obtained by means of the grid convergence analysis make the results
almost independent from the spatial discretization, are still maintained for
all the different calculations.
Finally, the influence of the time step on the results is studied. The size of the
time step contributes the most to determine the total computational time and
the memory requirements for a single calculation. Indeed, at each iteration
of the Arnoldi method, the Navier-Stokes solver performs N time steps such
that T = N∆t and the base flow is retained in memory for N different time
instants in order to evaluate the linearized terms in the equations (2.33). The
results of the analysis are shown in figure 3.5 in terms of the integer number
N into which the period T has been divided.
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Figure 3.5 Time step convergence analysis.

The choice for the final simulations is N = 2500, which corresponds to a
timestep ∆t ≈ 10−3. Even if this value is quite large if compared to those
typically used for Navier-Stokes simulations of boundary layer flows (see [83]),
the norm of the Floquet multipliers exhibits variations of less than the 1% for
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N > 2000. In addition, considering the computational constraints and also
the fact that the eigenvalue problem must be solved in the three-dimensional
parametric space of Re, β and A, the value N = 2500 appears reasonable
providing qualitative results while maintaining a limited computational cost.
Before listing the physical cases that have been investigated, it is worth
giving some information about how the numerical parameters related to
the Arnoldi method were chosen. Nowadays, the Krylov subspace iteration
scheme is quite a common tool to study the stability of periodic flows. In
the typical applications (see e.g. [19] or [56]), only a few eigenmodes that
belong to the external part of the spectrum are computed but, concerning the
secondary stability, this would lose important informations with respect to
that obtained by means of the Herbert formulation. In the theory of Herbert
the eigenvalue problem can be written specifically for the subharmonic, the
fundamental or the detuned modes (see section 2.2) so that their growth rates
can be compared at different amplitudes of the TS wave and also the range
of frequencies in which the secondary modes are unstable can be analyzed.
For these purposes, in this framework, it is chosen to compute a rather larger
part of the spectrum composed by at least 40 eigenvalues that allows us to
compare the growth rates of the modes in relation to their different detuning
factor. The latter is defined by

ε =
∣∣∣ 2σi
αcr

∣∣∣, ε ∈ [0, 1] (3.84)

and, as can be easily seen, assumes the values 0 and 1 for the special case of
the subharmonic and the fundamental modes, respectively.
As a consequence, also the dimension of the Krylov subspace is quite large
since in order to retain together complex conjugate eigenvalues it must be at
least 2nev + 1. Although this leads to an increase of the memory requirements,
a large dimension of the Krylov subspace requires the matrix-vector product
to be executed less times before the convergence on the eigenvalues is reached
and thus typically reduces the computational time (see [40] for detailed
information).

Re A β nev |λ1|

460 0.75% 0.186 10 1.163
460 0.75% 0.186 40 1.172

Table 3.3 Variation of |λ1| for two different numbers of total Floquet multi-
pliers requested.
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Figure 3.6 Comparison of computed eigenvalue spectrum for nev = 10 and
nev = 40. For the case nev = 40, only the unstable Floquet multipliers are
represented in the figure.

The variations of the results when an increasing number of Floquet multipliers
is requested, have also been analyzed. The table 3.3 reports the growth rate
of the most unstable mode for two values of nev, while maintaining the other
parameters fixed. The variation of the norm of the Floquet multiplier when
a quite large number of eigenvalues are requested, which is the case in this
work, is found to be below the one per cent.
Another important aspect is the convergence speed of the Arnoldi method,
which strongly depends on the spectrum. Looking at the problem in exam,
a rather fast convergence rate has been observed for values of Re, β and A
that lead to a strong instability of the boundary-layer flow. However, the
convergence becomes slower or it is not achieved when the flow is either stable
or slightly unstable providing an indication on the fact that the eigenvalues
are clustered [40]. For these critical cases, this difficulty has been addressed by
progressively increasing the dimension of the Krylov subspace and eventually
reducing the number of eigenvalues to be computed.
The physical cases which have been studied are presented in the graph above
directly on the Blasius neutral-stability curve.
The curve is represented on the Re-F plane where F is the adimensional
frequency parameter defined by

F = 106αrcr
Re

. (3.85)
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Figure 3.7 Physical cases studied and corresponding length of the computa-
tional domain.

This parameter, that identifies a disturbance with fixed dimensional frequency
as it travels downstream, has been used historically in the literature to classify
the experiments on the boundary layer transition and also by Herbert himself
in the original paper of 1988 [31].
The blue and the brown lines in figure 3.7 match the experimental conditions
of Kachanov & Levchenko 1984 [33] (F = 124) and of Saric & Thomas 1984
[61] (F = 83), respectively. For each of the Reynolds numbers that have been
considered, the secondary stability problem has been studied for different
amplitudes of the TS wave A and for a wide range of the three-dimensional
disturbance wavenumber β. As already pointed out, due to the convergence
behaviour of the Arnoldi method, the results that will be presented in the next
chapter mainly refer to those cases for which the flow in unstable or at least
near to criticality. Although also the sets of Re, A and β for which the flow
is stable have been analyzed, the results do not add significant informations
and the little part of the spectrum that can be computed successfully does
not justify the required high computational time.
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Chapter 4

Numerical results

This chapter presents the numerical results that have been obtained. It is
organized as follows: at first the features of the eigenmodes are presented for
the case F = 124 [33] together with the influence of the amplitude A on the
spectrum and the behaviour of the eigenvalues as a function of the wavenumber
β. The results will be also compared to those obtained by Herbert and to the
available experimental data. At last, the role of the Reynolds number in the
secondary stability mechanism will be clarified considering all the different
cases mentioned in chapter 3. Instead, the last section of the chapter deals
with some three-dimensional direct Navier-Stokes simulations that, starting
from the obtained results about the secondary instability, investigate the late
transitional stage and the importance of the non-linear effects.

4.1 Features of the Secondary eigenmodes

As it is well known from the literature, the subharmonic and the fundamental
modes are held responsible for the two main scenarios of the natural transition,
namely the H-type and the K-type transition [34]. As a matter of fact, a wide
range of experiments investigating the secondary instability mainly focus on
these classes of modes and especially on their interaction with the primary
wave. Before actually showing the computed three-dimensional structures that
develop through the secondary instability mechanism, the steady boundary
layer flow U1 and the periodic base flow U2 at the initial time are presented
for completeness. The pictures below refer to the case F = 124 and to an
amplitude of the TS wave at the inlet of 1% for which, as will be better
clarified in the following, the subharmonic and the fundamental modes both
appear in the most unstable part of the spectrum.



Figure 4.1 Steady boundary-layer flow U1.

Figure 4.2 Difference between the steady flow U1 and the base flow U2

for t = 0. This choice of representation is only for visual purposes since it
clearly shows the effect of the TS wave forcing on the flow field near the wall.
Moreover, the computational domain has been truncated in order to highlight
the flow structures, the reader is referred to figure 4.3 for a wider view.
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Figure 4.3 Grow and decay of the TS wave as predicted by the linear stability
theory. The v component is shown for a better visualization of the spatial
development of the TS wave.

The computed subharmonic and fundamental modes for the same base flow
presented in figure 4.2 are shown below. For conciseness, only the results for
the wavenumber β = 0.186 are shown that, however, are sufficient to highlight
the three-dimensional flow-structures near the wall. Certainly, different values
of β have influence on the grow rates of the modes but, for what concerns
their qualitative features which are the focus here, they remain the same.
Other aspects, such as the spatial development of the disturbances and their
velocity profiles, will be treated separately in the next developments.

u3 v3

w3 p3

Figure 4.4 Detail of the flow structures near the wall for the fundamental
mode.
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u3 v3

w3 p3

Figure 4.5 Detail of the flow structures near the wall for the subharmonic
mode.

The three-dimensional structures shown above evolve spatially very similarly
to what observed for the TS waves. In other words, they are found to be
amplified in a certain region of the flow and to decay further downstream
where the boundary-layer is basically undisturbed as it is shown in figure 4.6.
It should be observed that the disturbances have negligible amplitude near
the inlet face of the domain and also that the peak of the secondary modes is
reached after that the TS wave has started to decay. The position of the peak
shows a qualitative agreement with the results reported by Kachanov in [34].
However, it should be reminded that, in the experimental investigations on
the secondary instability available in the literature, typically the secondary
modes are excited at the inlet together with the TS wave and then their
evolution is measured downstream. This set-up is quite different from the
calculations performed here in which the disturbance is imposed to be null at
the left boundary and therefore a slight discrepancy on the spatial evolution
of the modes can be expected.
It is also interesting to observe the resultant velocity profiles of the modes and
to compare them with those obtained by Herbert [31]. Indeed the classical
theory of Herbert analyzes the stability of the flow from a local point of
view and provides the secondary modes in term of local velocity profiles
superimposed on those of the TS wave.
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Figure 4.6 Spatial development of both the fundamental and the subharmonic
mode. The points represent the peaks of the flow structures (u velocity compo-
nent) at fixed height y = 1.5G(x1). Concerning the eigenmodes, the amplitude
in figure 4.6 is provided directly by ARPACK normalizing the eigenvectors and
has the only purpose of showing their qualitative behaviour in the x direction.

The figures below summarize the results for the fundamental and the sub-
harmonic modes. The velocity profiles are taken at Re ≈ 700 where the
subharmonic mode has its maximum amplitude.
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Figure 4.7 Velocity profiles for the fundamental mode. The results are
normalized such that the maximum of the u component is one and represent
the centre region of the structures shown in figure 4.4.
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Figure 4.8 Velocity profiles for the subharmonic mode.

The velocity profile allows one to observe some features of the secondary
modes that differ the TS waves. In general, the secondary modes exhibit their
maximum activity slightly above the peak of the TS wave and show a rather
rapid decay moving away from the wall, therefore they are more localized.
Moreover, it should be noted that the u velocity profile of the fundamental
mode presents the same structure of that of the primary wave assuming a
null value at the wall, at an intermediate point and at infinity. In fact, it
is well known from experiment and from former calculations [34] that the
secondary modes are strictly connected to the three-dimensional modes of
the Orr-Sommerfeld equation and those two tend to become more and more
similar as the amplitude A of the TS wave decreases.
At last, it is important to remind that the numerical scheme based on the
Krylov subspace iteration allows us to compute the eigenmodes only for a
specific phase of the base flow which is considered at the initial time. The
characteristics of the modes presented above have been shown for the initial
time instant in which they have been computed but they, as the base flow
itself, are actually a function of time. Their evolution in time has been
computed separately from the eigenvalue calculation according to the govern-
ing equations (2.33). The reader should observe the periodicity properties
(2.38) from the pictures below which represent, for both the fundamental and
subharmonic mode, the three-dimensional flow structures at five different
time instants within the period T .
It is important to underline that mathematically the fundamental and sub-
harmonic modes correspond to a real Floquet multiplier.
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Figure 4.9 Fundamental mode evolution. Note that for t = 0 and t = T the
shape of the mode is unchanged, the flow-structures are only scaled by the norm
of the correspondent Floquet multiplier.
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Figure 4.10 Subharmonic mode evolution. The reader should note that after
each period T , the subharmonic mode experiences a 180◦ phase shift with respect
to the TS wave.
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In particular, the fundamental mode is associated with a positive eigenvalue
while the subharmonic mode is associated with a negative one. Physically,
they represent disturbances that move synchronous with the primary wave
and this fact, as also pointed out in [30], represent the optimal condition for
the energy transfer from the TS wave to the secondary modes.
The whole class of detuned modes, which have not been considered until
this point, are associated to complex eigenvalues and represent asynchronous
travelling disturbances. In other words, they can be seen as disturbances
with frequency ω + ∆ω where ω is the frequency of the primary wave while
the shift ∆ω depends on the detuning factor ε defined in 3.84. Even though
the detuned modes have received limited experimental investigations since
no evidence for their role in common transition’s scenario has been found,
they became important in all those situations when the boundary-layer flow
is subjected to a random three-dimensional disturbance background.
Kachanov & Levchenko [33] found that in the H-type transition, which is
dominated by the subharmonic modes, a peak of amplification appears in the
spectrum for detuning modes around the subharmonic frequency, ε ≈ 1. Even
in the K-type transition, dominated by the fundamental mode, the range of
unstable modes can extend up to the subharmonic frequency and both modes
can be present in real transitional flows. A complete understanding of the
secondary instability mechanism and the analysis of the range of amplified
frequency of the disturbances requires to considerer the detuned modes as
well. However, so as not to weight down the discussion, a detailed description
of the asynchronous modes as done for the special cases of ε = 0 and ε = 1 is
not reported here and only a representation of the flow structures for ε = 0.6
is proposed.

72



u3 v3

w3 p3

Figure 4.11 Detail of the flow structures near the wall for the detuned mode
with ε = 0.6. The pictures represent the real part of the eigenvector.

Nevertheless, the detuned modes will be mentioned in the next section in
which the eigenvalue spectrum and the instability mechanism will be shown
in detail.

4.2 Secondary Instability analysis

This section deals with the eigenvalue spectrum of the secondary instability.
Particular emphasis is given to the behaviour of the eigenvalues in relation to
the amplitude A, the wavenumber β and the Reynolds number. Other aspects,
such as the role of the detuning factor ε and the limit of the theory with
respect to the experimental investigations on secondary instability will be
also briefly discussed here. As a first step, the eigenvalue spectrum computed
for F = 124 and β = 0.156 is shown below for three different amplitudes A
at the inlet, namely A = 0.5%, A = 0.75% and A = 1%. Although these
amplitudes seem very close, what has been found to matter the most in terms
of the behaviour of the eigenvalues is the maximum amplitude of the TS wave
reached in the flow domain. For the values of A mentioned, the maximum
amplitudes Amax obtained are 1.1%, 1.7% and 2.8%, respectively, that are
separated enough to observe a qualitative difference in the spectrum.
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(a) A = 0.5%
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(b) A = 0.75%
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(c) A = 1%

Figure 4.12 Eigenvalue spectrum for varying amplitude A. The dashed circle
in the figures delimits the stability region.

As can be observed in figure 4.12 for A = 0.5%, which in this case roughly
corresponds to the stability limit of the boundary-layer flow, the subharmonic
mode is the first to become unstable. As a matter of fact, for low and
medium amplitudes of the TS wave, the subharmonic mode still remains the
most unstable one of the spectrum. Then, as the amplitude A increases, the
fundamental mode also becomes unstable and for rather high amplitudes its
grow rate becomes comparable or even larger than that of the subharmonic
mode. This qualitative behaviour is consistent with the features of the H-type
and K-type transition presented in 1.1 and also with the results of the classical
secondary stability theory of Herbert (see [31] or [43]).
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However, a significant discrepancy is found for what concerns the growth rates
of the modes and the threshold amplitude of the primary wave for which the
instability occurs. In general, the grow rates of the eigenmodes are quite lower
with respect to those obtained by Herbert and the same order of magnitude
is reached only at rather high values of the amplitude A. Moreover, this
fact has also been reported in the experimental investigations of Kachanov &
Levchenko 1984 [33] and of Saric & Thomas 1984 [61] as an indication that
the theory of Herbert, even if providing an explanation of the origin of the
three-dimensional structures, overestimates the instability phenomenon that
occurs in practical applications. Apparently, these discrepancies are connected
with the idealized conditions under which the secondary stability theory is
formulated. Indeed, due to the experimental facilities used to excite the TS
wave and to modulate the secondary modes in the span-wise direction, some
non-uniformities of the base flow in the z-direction are typically observed
in the experiments while an ideal case of two-dimensional base flow and
z-periodic secondary modes is considered in the theory. Even if these latter
are the hypothesis used also in this work, it seems that the inclusion of the
non-linear and non-parallel effects and especially the fact that the secondary
instability is analyzed from a global point of view, brings the results closer to
a more realistic situation and experiments.
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Figure 4.13 Nine most unstable eigenvalues for A = 0.3% and β = 0.156.
No instability is found but note that the subharmonic mode is still in the outher
part of the spectrum.
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For what concerns the threshold value of A, the flow becomes unstable for
the given set of parameters when Amax ≈ 1%, but it is anticipated here that
this value is slightly dependent on the Reynolds number or alternatively
on the value of the frequency parameter F . In order to give an idea of
what predicted by the theory of Herbert, it is worth pointing out that, for
the same conditions considered here, the subharmonic mode is found to be
unstable even for A = 0.2%. However, it is reminded that due the local
point of view adopted by Herbert, typical of the parallel stability theory, a
direct numerical comparison of the results can be misleading. On the other
hand, the qualitative accordance between the two theories and especially the
experimental confirmations can be taken as a good indicator of the accuracy
of the results.
The behaviour of the modes for different wavenumbers β is analyzed in the
next developments. The variation of the growth rates as function of β is
shown in the figures below for both the subharminic and the fundamental
modes, respectively.
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Figure 4.14 Variation of the subharmonic growth rate as function of the
wavenumber β. The reader should note the quite different behaviour of the
curve for A = 1% indicating the influence of the non-linear effects.
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As a fist consideration, it should be noted that the range of wavenumbers
for which an instability is found progressively enlarges for higher amplitudes
of the primary wave. Moreover, it can be clearly seen that the peak of the
curves moves toward larger values of β as the value of A increases. It is worth
mentioning that the peak value for A = 1% which is very close to the intensity
adopted in the experiment of Kachanov [33], corresponds to a propagation
angle θ ≈ 60◦ where the latter is defined by θ = arctan(β/α).
As a comparison, it is reported that the value observed by Kachanov is
θ ≈ 62◦ while the theory of Herbert states that the peak is at a fixed θ ≈ 64◦

(β/α = 2) for all A > 0.7% [34].
In addition, it is interesting to observe that for low and medium amplitudes
of the primary wave, the curves follow the same qualitative behaviour also
found by Herbert [43]. That is, the subharmonic mode becomes unstable
for a certain β > 0 and, after having reached the peak position, the growth
rates show a quasi-linear decay with the wavenumber β. However, it can be
noted how the curve for A = 1% is sensibly different probably due to the
non-linear distortion of the base flow which starts to become relevant when
the amplitude of the TS wave is high enough.
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Figure 4.15 Variation of the fundamental grow rate as function of the
wavenumber β. The curve for A = 0.5% is not reported since the fundamental
mode has not been found in the computed part of the spectrum for all the
different wavenumbers.
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The same curves are reported also for the fundamental mode in figure 4.15.
For A = 0.5%, the fundamental mode has not been found in the computed
part of the spectrum and for this reason the corresponding curve is not
reported in the figure. In fact, as already pointed out, the fundamental
mode remains stable for low amplitudes of the primary wave and thus the
computation of its grow rates would have required an increase of the number
of eigenvalues to be computed and consequently would have led to a huge
increase of the computational time.
The reader is referred to [43] for a comparison with the results of the theory
of Herbert. As can be expected, for the fundamental mode which requires
a rather high amplitude of the TS wave to be observed, the curves in figure
4.15 are slightly different from those obtained by Herbert, however, good
accordance is found for what concerns the position of the peak at β ≈ 0.2
that, in an uncontrolled-disturbances scenario, is going to be most likely
observed.
Before showing the effect of the Reynold number, the growth rates of the
modes are presented in term of corresponding detuning factor.

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.2 0.4 0.6 0.8 1

|λ
|

ε

A = 0.5%
A = 0.75%
A = 1%

Figure 4.16 Growth rate of the modes for different detuning factors. Figure
4.16 refers to the case F = 124 and β = 0.18. It is reminded that, due to
the numerical scheme used in this work, not all different detuned modes are
actually computed. A linear interpolation is used to join the discrete points
provided by the software ARPACK.
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Although the detuning factor can be correlated to the phase angle of the
complex Floquet multipliers, the figure 4.16 shows clearly the growth rates
for all the detuned modes and, therefore, it is proposed to clearly underline a
particular aspect of the secondary instability mechanism which is not evident
in figure 4.12. For low amplitudes A, the amplification of the modes broadens
in a range of near subharmonic frequencies with a tendency toward larger
spanwise wave numbers as the amplitude increases. Then, for a high inten-
sity of the primary wave, the secondary instability mechanism is capable of
amplifying whatever the background provides, from the subharmonic to the
fundamental frequency. The reader should note that in figure 4.16 the whole
range of detuned modes becomes unstable even for A = 0.75%. Moreover,
it is important to notice that, for the set of parameters considered in figure
4.16, the most amplified mode for A = 1% is asynchronous with ε ≈ 0.2.
This fact explains the observation of Kachanov [33] of a quite wide peak near
(but not exactly at) the subharmonic frequency measured in the disturbance
spectrum. Indeed, in the experiments the disturbance wavelength is typically
imposed and therefore a situation similar to figure 4.16 can result where the
asynchronous modes are the most amplified for that particular value of β.
However, considering the realistic case in which all the wavenumbers β can
be possible, the results obtained in this work, as well as those from Herbert
[43], predict that the real modes will be most likely observed since they are
associated with the higher growth rates.

(a) Re = 320

(b) Re = 460

(c) Re = 590

Figure 4.17 The figure shows the difference V2 − V1 for different Reynolds
numbers at t = 0. Note how the instability region progressively enlarges for
increasing Re.
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At last, the role of the Reynolds number remains to be analyzed. It should
be clear from the results reported in this section, that the primary wave has
a catalytic role in the secondary instability mechanism. As shown, a higher
amplitude of the primary wave leads to higher grow rates of the eigenmodes,
a larger range of amplified wave lengths and so on. Therefore, it can be
intuitively understood that since the low frequency TS waves are amplified in
a wider region of the flow and with higher grow rates (the reader is referred
to the neutral curve in figure 3.7 and to figure 4.17), these last are the most
dangerous also in the secondary instability context. The results shown until
this point, such as the fact that the secondary modes show their maximum
activity slightly beyond the second branch of the neutral stability curve and
at a slightly greater distance from the wall with respect to the TS wave,
remain qualitatively unaltered and, therefore, are not shown here for the sake
of brevity. Nevertheless, the computed spectrum for F = 83 and β = 0.14 it
is proposed at two different amplitudes of the primary wave.
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(a) A = 0.25%
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(b) A = 0.5%

Figure 4.18 Eigenvalue spectrum for F = 83 and β = 0.14. The subharmonic
mode is still the most unstable while, as also for the case F = 124, the
fundamental mode becomes unstable only for a high amplitude Amax.
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The shown amplitudes A = 0.25% and A = 0.5% lead to a maximum
amplification in the boundary-layer flow of Amax = 1.1% and Amax = 2.3%,
respectively. The reader should note the same qualitative behaviour of the
spectrum as for the case F = 124 and also the typical “circular” shape formed
by the eigenvalues indicating again that the instability affects almost uniformly
the whole frequency range from the subharmonic to the fundamental one. In
addition, it can be observed that, even if the amplitude of the primary wave
is lower with respect to the case F = 124, the modes exhibit larger grow rates.
In fact, considering a lower frequency TS wave leads only to higher grow rates
at equal maximum amplitude Amax but the instability features shown until
here remain still valid. The calculations for Re = 320 also confirm this result.
The spectrum for Amax ≈ 1.5% and β = 0.17 is reported below and shows
that even for this large amplitude of the primary wave the flow is still stable.
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Figure 4.19 Eigenvalue spectrum for Re = 320, β = 0.17 and Amax ≈ 1.5%.
The boundary-layer flow is stable for this set of parameters, note that at
Re = 460 for the same maximum amplitude Amax the flow was in a marked
instability regime.
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Re Amax maxβ |λ1|

320 1.2% 0.844
460 1.2% 1.012
590 1.2% 1.063

Table 4.1 Behaviour of the most unstable Floquet multiplier for different
Reynolds numbers. The reader should note how the variation of the growth rate
tends to become smaller at high Re.

In order to summarize the results, it can be stated that the increase of the
Reynolds number produces a destabilizing effect, driving the instability to
lower amplitudes of the TS wave but maintaining the same qualitative features.
The results also provide an indication that this effect progressively reduces as
the Reynolds number increases, as reported in table 4.1.

4.3 Non-linear 3D simulations

The role of the non-linear effects and the features of the late transitional
stage are briefly examined in this section. Although the secondary instability
mechanism has been shown in detail in section 4.2 and the results obtained are
consistent with the theoretical and empirical studies, a relationship between
the secondary eigenmodes ( see figures 4.4 and 4.5) and the late transitional
flow-structures (figure 1.1) still lacks. The approach followed in this work
appears capable of explaining the three-dimensional nature of the secondary
stage of the transition process but, for a complete understanding of the
natural transition process, the limits of the adoption of a linear framework
need to be overcome. For this reasons, taking the computed eigenmodes as a
starting point, a series of DNS simulations has been performed. The choice of
the computational setup, the procedure that was pursued and the obtained
results are presented in the following two sections.
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4.3.1 Computational setup and 3D secondary modes

The non-linear calculations are meant to simulate the situation where, in
addition to the TS waves, also one secondary mode, either the subharmonic
or the fundamental one, is excited inside the boundary-layer. Therefore,
the computational domain is constructed by extruding the two-dimensional
domain used for the stability calculations in the z direction. The grid is
uniform in the spanwise direction, with ∆z ≈ 3 × 10−3, and extends for
two wavelengths of the three-dimensional disturbance. Considering only two
wavelenghts allows one to clearly observe the different arrangements of the Λ
structures, as it is shown in the sequel, while limiting the total computational
cost.

2λz

25δ1

Figure 4.20 Schematic of the three-dimensional domain. The reader should
note the ratio between yMAX = 25δ1 and zMAX = 2λz. Indeed, the wavelenght
λz of the unstable secondary modes is typically much greater than the boundary
layer thickness.

The base flow (see figure 4.2) is also simply extruded in the z direction,
while for the secondary modes the definition (2.30) is applied in order to
construct the corresponding three-dimensional velocity fields. The initial
condition for the simulations corresponds to the three-dimensional secondary
mode superimposed on the extruded base flow. The secondary modes are
normalized such that the maximum amplitude of the u velocity component is
a little less than the 0.1% of that of the external flow. A too high amplitude
would have made it impossible to compare the disturbance evolution with the
results of the stability calculations since the non-linear effects are immediately
dominant. On the other hand, if the initial amplitude is too low, a longer
period of time needs to be simulated before transition occurs and this results
in a huge increase of the computational time.
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The boundary conditions on the faces of the domain normal to the x and
y directions are the same considered for the stability analysis calculations,
while, for the spanwise direction, periodic boundary conditions are enforced.
Before showing the results of the non-linear simulations, the three-dimensional
features of the secondary modes are briefly presented below. Figure 4.21
and 4.22 show, for both the fundamental and the subharmonic modes, the
u and w components of the velocity in a plane normal to the y direction at
y = 2G(x1).

u w

Figure 4.21 u and w velocity components for the fundamental mode in the
xz plane at y = 2G(x1). Note the alternating regions of enhanced and reduced
longitudinal velocity.

u w

Figure 4.22 u and w velocity components for the subharmonic mode in the
xz plane at y = 2G(x1). It should be observed the different arrangement of the
structures of the u component with respect to the fundamental mode.
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The three-dimensional structure of the modes is consistent with the “peak
and valley splitting” [36] which is typically observed in the very first stage of
the transition process, before the formation of the Λ vortices. As a matter
of fact, the reader should interpret the computed secondary modes as the
flow-structures observed in the natural transition at the onset of the three-
dimensionality, but when still in the linear regime.
For completeness, the u component of the modes, on a plane normal to the
x-direction and for different streamwise stations, is shown in figures 4.23 and
4.24. The view on the xy plane will not be shown here since it does not add
significant information with respect to the visualizations provided in section
4.1.

(a) Re = 580 (b) Re = 640 (c) Re = 720

Figure 4.23 Longitudinal velocity component u of the fundamental mode in
the yz plane at different streamwise positions. As the Reynolds number in-
creases, and consequently also the boundary-layer thickness, the flow structures
reach their peak further from the wall.

(a) Re = 580 (b) Re = 640 (c) Re = 720

Figure 4.24 u velocity component of the subharmonic mode in the yz plane.
Figure (c) corresponds approximately to the maximum activity of the eigenmode.
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4.3.2 K-type transition

This section illustrates the results of the K-type and H-type transition simu-
lations. The physical cases which have been considered in the calculations
are summarized in table 4.2. The parameter B indicates the initial amplitude
of the secondary modes with respect to the external flow, exactly as the value
A does for the TS wave.

Re A β ε B

460 1% 0.156 1 0.08%
460 1% 0.156 0 0.06%

Table 4.2 Physical parameters for the 3D simulations. The reader is referred
to figure 4.12 for the corresponding results from the secondary stability analysis.

The reader is reminded that the eigenvalues spectrum, for the same set of
parameters considered here, has already been shown in figure 4.12. The fun-
damental mode is found to be the most unstable with an associated Floquet
multiplier of λ = 1.503.
In the following discussion, the results will be shown first for the K-type
transition and subsequently for the H-type. The velocity field at the initial
time is reported in figure 4.25, the fundamental mode can only be barely seen
in the downstream region where the amplitude of the TS wave is low enough.
For a quite large time interval the flow evolves very closely to what predicted
by the linear stability calculations, that is, the shape of the secondary modes
remains unaltered after every period T and its magnitude continues to grow
following an exponential law.

550 Re 710

u v

Figure 4.25 u and v velocity components at t = 0 in the K-type transition
simulation. The picture represents the top view on the y = 2G(x1) plane.
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The amplification factor of the mode has been estimated looking at the
w velocity component which is only due to the introduction of the three-
dimensional disturbance on the two-dimensional boundary-layer flow.
Table 4.3 reports the growth rates for the first time periods of the simulation
during which a significant change in the mode shape has not been observed.

t |λ|

T 1.515
2T 1.522
3T 1.533
4T 1.548

Table 4.3 Growth rates of the fundamental mode from the 3D simulation.
Each row of the table reports the amplification factor of the mode (right)
calculated by comparing the amplitude at the time instant on the left and that
at the previous time period.

For the initial time periods, the computed growth rates agree well with the
non-linear calculation showing a variation in the order of one per cent. Then,
as the amplitude further increases, the amplification factor slightly departs
from that predicted by the linear theory. However, it should be considered
that, due to the high amplitude of the TS wave, the non-linear effects could
play an important role from the very beginning of the simulation. In addition,
differently from the assumptions on which the linear calculation was based,
the secondary mode is free to interact with the periodic base flow and therefore
the results should be compared only from a qualitative point of view.
It is important to point out that, according to the linear theory, the amplitude
of the fundamental mode grows of about an order of magnitude within six
cycles of the primary wave. Then, the disturbance evolution is dominated by
the non-linear effects. Figure 4.26 shown the evolution of the longitudinal
velocity component during the non-linear stage, while the evolution of the v
and w components is reported in figure 4.27 and 4.28, respectively.
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550 Re 710

(a) t = 4T (b) t = 5.2T

(c) t = 6.5T (d) t = 7.8T

Figure 4.26 Top view for the instantaneous longitudinal velocity component
u on the y = 2G(x1) plane. Note the λ-shaped accumulations and the alignment
of the flow structures.

550 Re 710

(a) t = 4T (b) t = 6.5T

(c) t = 7.8T

Figure 4.27 Top view for the instantaneous wall-normal velocity component
v on the y = 2G(x1) plane.
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550 Re 710

(a) t = 4T (b) t = 6.5T

(c) t = 7.8T

Figure 4.28 Top view for the instantaneous spanwise velocity component w
on the y = 2G(x1) plane.

The non-linear stage lasts approximately five cycles of the primary wave. In
the practical applications, the latter lasts much less than the linear phase
when realistic initial amplitudes of the disturbances are considered. When
the transition occurs, the flow presents λ-shaped accumulations which are
aligned in rows as observed in the experiments (see e.g. [7] or [34]). The top
view of the u component at the onset of turbulence is shown in figure 4.29
where the aligned arrangement in the longitudinal direction of the λ vortices
can be clearly seen.

Re670550 600

Figure 4.29 Top view for the instantaneous u velocity component on the
y = 2G(x1) plane at t = 9.2T . Note how the turbulent regions develop from the
extremity of the λ vortices and then remain separated. Further downstream, the
turbulent regions rejoin (not shown in the figure) and the turbulent boundary-
layer cannot be traced back to the pattern of the initial instability (see [62]).
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The transition position corresponds roughly to Re = 670 (Rex = 4.5 · 105)
which is well within the range provided in the literature (see [66]). Nowadays,
the mechanism which drives the boundary-layer toward turbulence is well
known and it has been widely analyzed in the literature (see [62]). The
longitudinal vortex structures that develop in the non-linear stage lift up
to form the λ vortices. Then, as their intensity grows, the λ structures
deform and they originate Ω or ring-like vortices that are the last structures
that can be observed before the final breakdown of the laminar flow. A
three-dimensional visualization of this process is provided in figure 4.31

Re670600550500

Figure 4.30 Instantaneous isosurfaces of the second invariant of the velocity
gradient tensor, Q, coloured by the streamwise velocity component u. The figure
shows the longitudinal vortex system at t = 7.8T before the transition occurs.
The reader should note the aligned arrangement of the λ structures.

Figure 4.31 Instantaneous isosurfaces of the second invariant of the velocity
gradient tensor, Q, coloured by the streamwise velocity component u. The
portion of the domain represented goes from Re = 590 to Re = 750. The
figure shows the lift up of the λ vortices and the formation of ring-like vortical
structures.
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A complete characterization of the late-transitional stage is far outside the
scope of the present work. However, the non-linear simulation shows that when
the boundary layer flow is excited with the three-dimensional fundamental
mode, computed by means of the secondary stability theory, the transition
process is in high qualitative agreement with the experiments available in
the literature. As a matter of fact, it is well known that the origin of the λ
structures is due to a three-dimensional vorticity perturbation near the wall.
The secondary stability theory explains the origin of these perturbations and
provides the corresponding three-dimensional velocity fields.
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4.3.3 H-type transition

Finally, the results of the H-type transition simulation are reported. The same
considerations made for the K-type transition, such as the initial quasi-linear
evolution of the disturbances and their subsequent non-linear deformation,
remain still valid and are not repeated here for conciseness. The results are
presented in order to highlight the difference between the K-type and the
H-type transition and to show the qualitative agreement with experiments.
Figure 4.32 shows the evolution of the u component of the velocity in the
non-linear stage. It should be noted that, even thought the initial amplitude
of the subharmonic mode is greater with respect to that of the fundamental
mode, the non-linear stage is observed after a larger time interval.

580 Re 740

(a) t = 8.2T (b) t = 10.6T

(c) t = 13T (d) t = 15.6T

Figure 4.32 Top view for the instantaneous longitudinal velocity component
u on the y = 2G(x1) plane. Note the staggered arrangement of the flow
structures.
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In fact, according to the stability calculations, the norm of the Floquet
multiplier is |λ| ≈ 1.3 and, therefore, the amplification of the disturbance is
weaker than in the K-type transition. The transition point, similarly to what
observed for the K-type transition, is located slightly further downstream
than the maximum of the secondary mode (the reader is referred to figure
4.6), indicatively at Rex = 5 ·105. At the late transitional stage, the λ vortices
appear but present a staggered arrangement as it is shown in figure 4.33.

Re710650570520

Figure 4.33 Instantaneous isosurfaces of the second invariant of the velocity
gradient tensor at t = 13T , coloured by the streamwise velocity component u.
Note the staggered pattern of the flow structures.

The spatial period of the flow structures in the streamwise direction is found
to be two times that observed in the K-type transition, as also reported by
Herbert [31]. Lastly, the breakdown of the laminar flow is driven by the
formation of ring-like vortices.

(a) t = 13T (b) t = 15.6T

Figure 4.34 Instantaneous isosurfaces of the second invariant of the velocity
gradient tensor coloured by the velocity component u in the H-type transition.
The region represented is across the turbulent transition, from Re = 660 to
Re = 760.
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Figure 4.35 Instantaneous isosurfaces of the second invariant of the velocity
gradient tensor coloured by the streamwise velocity component u. The figure
shows the spatial development of the ring vortex system.

For completeness, the vortex system just before and at the transition to
turbulence is reported in figure 4.34, while figure 4.35 highlights the formation
of the hairpin vortices at the late transitional stage.

94



Chapter 5

Conclusions and outlook

The present work aimed to investigate the early three-dimensional stage of
the natural transition. The secondary stability theory proposed by Herbert
[31] has been reformulated to include the non-linear and non-parallel effects
in the development of the Blasius boundary-layer forced by the T-S waves.
The base flow, which represents the experimental situation in which the T-S
waves are excited by a vibrating-ribbon [36], has been computed by means of
the incremental pressure-correction scheme proposed in [12] which is based
on the direction-splitting technique [27]. The Navier-Stokes equations are
then linearized around the periodic base flow and, exploiting the normal-
mode hypothesis, the secondary stability eigenvalue problem is derived. The
computation of the secondary modes is achieved by the IRAM algorithm,
implemented in the software package ARPACK [40]. The basis of the Krylov
subspace is constructed by integrating the governing equations for the three-
dimensional disturbances over a time period of the primary wave.
The stability problem is solved in the parameter space of F , A and β paying
attention to the set of physical parameters for which an instability is found.
The analysis shows that the synchronous modes are associated with the larger
growth rates, as also found by Herbert [31]. The amplitude of the primary
wave strongly influences the instability features, indeed, it is found that
subharmonic modes dominates for low amplitudes A while the fundamental
mode become unstable only for high amplitudes of the T-S wave. Moreover, as
A increases the three-dimensional modes become unstable in a wider range of
wavenumbers β. The results for F = 124 and A = 1% are compared with the
experiment of Kachanov [33] that corresponds to this set of parameters. The
propagation angle θ = arctan(β/α) = 62◦, associated with the subharmonic
mode observed by Kachanov, almost matches that found in this work at the
growth-rate peak in the wavenumbers interval. The dependency of the norm



of the Floquet multipliers on the detuning factor ε reveals that, also in the
frequency range, the secondary stability mechanism is capable of amplifying
all the detuned modes with 0 < ε < 1, when the amplitude A is high enough.
The instability features found in the present work, are in accordance with
the theory of Herbert except for the growth rates of the modes that, for
equal amplitude A, are quite lower. This discrepancy can be due to the
inclusion of the non-parallel effects which lead to analyze the stability of the
boundary-layer from a global point of view, in sharp contrast with the local
stability concept pursued by Herbert. Nevertheless, the growth rates of the
modes and the threshold value of A for the instability to occur are in good
qualitative agreement with the experimens of Kachanov & Levchenko [33] and
Saric & Thomas [61]. The effect of the Reynolds number is investigated, and
is found that low-frequency T-S waves produce a stronger instability, although
retaining the same qualitative features already observed. The evolution of
the secondary modes has been analyzed through a series of DNS simulations
which permit the interaction between the periodic base flow and the three-
dimensional disturbance. It is found that, when the latter has a sufficiently
low amplitude, the observed growth rates are in an close agreement with those
provided by the stability calculations. Then, for high amplitudes, a non-linear
distortion of the flow structures is observed which leads to the formation of
Λ-shaped vortices. The boundary layer flow is driven to transition through a
process of lifting of the vortex lines, and the subsequent formation of ring-like
vortices that travel downstream, as also observed by Sayadi et al. [62]. Two
different arrangements of the Λ structures have been observed. When the
fundamental mode is excited inside the boundary-layer, the Λ vortices are
aligned in rows whereas, if the subharmonic mode is excited, the Λ vortices
arrange themselves in a staggered pattern. These scenarios correspond to
the K-type and H-type natural transition which, as reported by Herbert
[31], are dominated by the fundamental mode and the subharmonic mode,
respectively. These results lead to conclude that the computed secondary
modes are capable of inducing the transition process and that the Λ vortices
are due to their non-linear deformation in the late transitional stage.
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5.1 Outlook on future work

The presented results provide an insight into the secondary instability of the
boundary-layers, however, there are still numerous aspects which deserve
further attention.
Firstly, the features of the secondary instability for higher Reynolds numbers
need to be investigated. The variation of the growth rate of the most unstable
mode as function of Re, reported in Table 4.1, provides an indication that the
secondary instability phenomenon has an asymptotic behaviour. This is an
aspect that should be better analyzed in future investigations and that can
provide a better understanding of the three-dimensional transitional stage in
general.
Regarding the instability mechanism, an important missing aspect is how
the Floquet multipliers are affected by a base flow modification. Mathe-
matically, this sensitivity analysis requires the adjoint eigenvalue problem
of the secondary instability to be solved as well (see [23]). The solution of
the perturbed eigenvalue problem can provide important information for the
development of boundary-layer control (BCL) techniques aimed at containing,
or even enhancing, the instability.
In section 2.1, it has been anticipated that the base flow can be defined
including further effects. For instance, the same procedure followed in this
work can be applied to the Falkner-Stan velocity profile in order to include
the effect of an adverse pressure gradient. In addition, the influence of a small
curvature of the solid wall can also be included provided that the differential
problem (2.19) is opportunely redefined. These effect have been extensively
analyzed in the primary-stability context [2], an investigation also in the
secondary stability framework awaits its turn. Finally, there still remains
some unanswered questions regarding the importance of non-linear effects in
practical applications. Firstly, the presence of multiple primary waves with
different frequencies should be investigated when defining the base flow. A
single frequency T-S wave forcing is unlikely to happen in real engineering
applications, typically characterized by an uncontrolled disturbance back-
ground. Secondly, the reason why the natural transition process is dominated
by the synchronous modes is still unclear. The results obtained in this work
confirmed that the fundamental and the subharmonic modes are associated
to the largest growth rates. However, as shown in figure (4.16), the instability
can affect a wide range of detuned modes that in the real cases are going
to be excited. The non-linear interaction mechanism between the different
secondary modes, and the subsequent predominance of the real ones that
leads to the H-type or K-type scenario, needs to be clarified and requires
mathematical tools far beyond the power of a linear stability theory.
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Appendix A

Estratto in italiano

La transizione dal regime laminare a quello turbolento è stata oggetto di molti
studi negli ultimi due secoli. Al giorno d’oggi, una più profonda conoscenza
dei meccanismi fisici che provocano la transizione è molto richiesta in ambito
industriale e in particolar modo in quello aeronautico poiché, quest’ultima,
influenza fortemente le caratteristiche aerodinamiche dei corpi immersi. In
particolare, le applicazioni tipiche in ambito aeronautico sono caratterizzate
da una bassa intensità dei disturbi di fondo che fanno s̀ı che la transizione
si presenti come una sequenza di eventi riproducibili prendendo il nome di
“transizione naturale” [34]. La nostra conoscenza del regime transizionale ci
arriva principalmente da una vasta gamma di esperimenti su lamine piane
o, con lo sviluppo dei moderni strumenti di calcolo, da simulazioni dirette
delle equazioni di Navier-Stokes (DNS) (vedi [71], [62]). A causa del costo
computazionale elevato che le simulazioni DNS possono avere, specialmente a
numeri di Reynolds elevati, il loro utilizzo resta però tecnicamente impossibile
nelle applicazioni pratiche ingegneristiche. La teoria della stabilità secondaria,
proposta da Herbert nel 1984 [31], rappresenta una conveniente alternativa
alla DNS e per questo viene talvolta utilizzata come strumento per predire
la transizione. Questo lavoro di tesi si pone l’obbiettivo di indagare, sempre
nell’ambito della stabilità secondaria, l’importanza degli effetti non lineari e
di non parallelismo nel flusso base che sono stati trascurati nella formulazione
originaria di Herbert. La transizione naturale può essere suddivisa in tre
fasi fondamentali: la ricettività [48], cioè il meccanismo mediante il quale i
disturbi esterni entrano nello strato limite, la fase lineare e, per ultima, la fase
dominata dagli effetti non lineari che provocano il passaggio finale del flusso
al regime turbolento. La fase lineare è stata storicamente oggetto di numerose
teorie matematiche a partire dai lavori fondamentali di Tollmien e Schlichting
([75], [65]) in cui, per la prima volta, si sono calcolate le autosoluzioni instabili
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dello strato limite di Blasius, ovvero le onde di Tollmien-Schlichting o onde
TS. La teoria della stabilità secondaria si occupa sempre della fase lineare
ma analizza la stabilità dei disturbi tridimensionali dopo che le onde TS si
sono già stabilite all’interno dello strato limite e hanno raggiunto un’ampiezza
finita. Matematicamente, questa condizione corrisponde alla soluzione del
seguente problema differenziale

∂u
∂t

+ (u · ∇)u− 1
Re
∇2u+∇p = 0,

∇ · u = 0,

u(x, y, 0) = U1(x, y),

u(x1, y, t) = U1(x1, y) + ĀuTS(x1, y, t),

u(x, 0, t) = (0, 0),

u(x,∞, t) = 1, ∂v
∂y

∣∣
(x,∞,t) = 0,(

∂u
∂t

+ C̄ · ∇u
)∣∣

(x2,y,t)
= 0,

(A.1)

in cui lo strato limite stazionario U1 viene forzato dall’onda TS (uTS)
all’ingresso del dominio. Il campo di velocità normalizzato uTS, calcolato
tramite la risoluzione delle equazioni di Orr-Sommerfeld [66], è una funzione
periodica del tempo. Di conseguenza, la soluzione U2 del problema A.1,
se è stabile, sarà anch’essa periodica con lo stesso periodo dell’onda di TS.
Il problema agli autovalori associato alla stabilità secondaria, riportato nel
seguito, si ricava a partire dalle equazioni di Navier-Stokes linearizzate attorno
a U2, espandendo in serie di Fourier la soluzione u nella direzione omogenea
z e nel tempo.

∂û
∂t

+ U2
∂û
∂x

+ v̂ ∂U2

∂y
+ ∂p̂

∂x
− 1

Re
(∇̂2û− β2û) +

[
û∂U2

∂x
+ V2

∂û
∂y

]
= 0,

∂v̂
∂t

+ U2
∂v̂
∂x

+ ∂p̂
∂y
− 1

Re
(∇̂2v̂ − β2v̂) +

[
û∂V2
∂x

+ V2
∂v̂
∂y

+ v̂ ∂V2
∂y

]
= 0,

∂ŵ
∂t

+ U2
∂ŵ
∂x

+ βp̂− 1
Re

(∇̂2ŵ − β2ŵ) +
[
V2

∂ŵ
∂y

]
= 0,

∂û
∂x

+ ∂v̂
∂y
− βŵ = 0,

û(x1, y, z, t) = (0, 0, 0),

û(x, 0, z, t) = (0, 0, 0),

û(x,∞, z, t) = (0, 0, 0),(
∂û
∂t

+ C̄ · ∇û
)∣∣

(x2,y,z,t)
= 0.

(A.2)
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Le equazioni A.2 rappresentano un sistema di equazioni differenziali alle
derivate parziali i cui coefficienti, le componenti o le derivate del flusso base
U2, sono periodici nel tempo. La teoria di Fluquet [58] può essere quindi
applicata al sistema A.2 e stabilisce che le sue autosoluzioni, in generale
complesse, saranno anch’esse periodiche e con lo stesso periodo dell’onda di
TS. Inoltre, queste ultime corrispondono alle autofunzioni dell’operatore di
monodromia associato al sistema A.2 e, i corrispondenti autovalori chiamati
moltiplicatori di Floquet, rappresentano il tasso di amplificazione dei disturbi
ad ogni periodo temporale. La soluzione numerica del problema della stabilità
secondaria può essere ottenuta tramite il metodo di Arnoldi [3]. Esso richiede
di calcolare ad ogni iterazione l’azione dell’operatore di monodromia su
un vettore generico, cioè di integrare le equazioni A.2 nel tempo per un
periodo temporale dell’onda primaria. Lo schema numerico scelto in questo
lavoro per integrare le equazioni di Navier-Stokes è lo stesso proposto in [12],
la corrispondente formulazione discreta delle equazioni di Navier-Stokes è
riportata nel sistema A.3.


un+1−un

∆t
− 1

2Re
∇2 (un+1 + un) = fn+1/2 −∇p∗,n+1/2 − nl(u∗,n+1/2),

Aφn+1/2 = − 1
∆t
∇ · un+1,

pn+1/2 = pn−1/2 + φn+1/2 − χ
2Re
∇ · (un+1 + un) .

(A.3)

Lo schema numerico A.3 permette di disaccoppiare, ad ogni passo temporale,
il calcolo del campo di velocità da quello di pressione (vedi [12]). Inoltre,
grazie alla scelta dell’operatore differenziale A, definito

A :=

(
1− ∂2

∂x2

)(
1− ∂2

∂y2

)(
1− ∂2

∂z2

)
, (A.4)

l’integrazione delle equazioni nel tempo richiede solamente la soluzione di
sistemi lineari tridiagonali (vedi [27] o [25] per maggiori informazioni).
L’analisi del meccanismo della stabilità secondaria, implica la risuluzione del
problema agli autovalori A.2 nello spazio parametrico tridimensionale Re, β
e Ā. Nel seguito, si riporta lo spettro degli autovalori per il set di parametri
Re = 460 e β = 0.156 al variare dell’ampiezza dell’onda primaria. Come si
può osservare dalla figura A.1, all’aumentale di A il flusso di strato limite
presenta un’instabilità sempre più marcata. Inoltre, è importante osservare
come i modi più instabili siano reali, sincroni rispetto all’onda di T-S.
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Figure A.1 Spettro degli autovalori per β = 0.156 e Re = 460 al variare
dell’ampiezza dell’onda primaria. La circonferenza tratteggiata delimità la
regione di stabilità

Il modo subarmonico, reale negativo, è il primo a diventare instabile e rimane
nella parte più esterna dello spettro per valori bassi e medi di A (vedi A.1a).
Per alte ampiezze, figura A.1b, è invece il modo fondamentale, reale positivo,
ad essere il più instabile. Il comportamento qualitativo dello spettro esposto
brevemente in questo contesto, è in perfetto accordo con la teoria di Herbert
[31] e rispecchia le evidenze dei dati sperimentali [36]. La forma, simil circolare,
tracciata dai moltiplicatori di Floquet è peculiare del fenomeno della stabilità
secondaria. Poichè la fase dei moltiplicatori di Floquet è legata alla fequenza
temporale dei disturbi, la forma dello spettro indica che l’instabilità coinvolge,
per alte intesità A, il completo intervallo di frequenze da quella subarmonica a
quella fondamentale con tassi di crescita dei modi tridimensionali comparabili
tra loro. Le componenti di velocità u e v associate al modo subarmonico sono
mostrate nella figura A.2.

u3 v3

Figure A.2 Componenti di velocità u e v associate al modo fondamentale.
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Per verificare se le strutture vicino alla parete, originate dal meccanismo
di instabilità secondaria, portino effettivamente alla transizione, sono state
eseguite delle simulazioni DNS tridimensionali. Il campo di velocità iniziale è
costituito da un modo secondario sincrono sovrapposto al flusso base periodico.
Il disturbo secondario è stato normalizzato opportunamente in modo che la
sua ampiezza sia all’incirca lo 0.1% del flusso esterno. Le simulazioni non
lineari mostrano che i disturbi introdotti nello strato limite sono in grado
di provocare la transizione. Le strutture vorticose che si osservano appena
prima della transizione, rispettivamente per il caso in cui è introdotto il modo
fondamentale e quello subarmonico, sono riportate nelle figure A.3 e A.4.

Re670600550500

Figure A.3 Isosuperfici per t = 7.8T del secondo invariante del tensore
gradiente di velocità, Q, colorate secondo la componente longitudinale della
velocità. Notare la disposizione allineata dei vortici Λ.

Re710650570520

Figure A.4 Isosuperfici per t = 13T del secondo invariante del tensore
gradiente di velocità, Q, colorate secondo la componente longitudinale della
velocità.

La tipica configurazione Λ dei vortici e la loro disposizione in file allineate
oppure sfalsate, corrispondono alla transizione di tipo K (figura A.3) e H
(figura A.4), due scenari ampiamente descritti nella letteratura [34]. Quindi, la
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teoria della stabilità secondaria riesce a spiegare matematicamente lo sviluppo
tridimensionale dello strato limite e fornisce la distribuzione di vorticità vicino
alla parete che attiva il processo di transizione.
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