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1. Introduction
Sound Field Control (SFS) has been an active re-
search field in acoustics for several decades, with
applications in immersive virtual/augmented re-
ality, telepresence, gaming, noise cancellation,
and personal sound zone generation. SFS
methods use multiple loudspeakers (secondary
sources) to synthesize a desired pressure field
in a target region of space. Classical SFS ap-
proaches, such as Wave Field Synthesis (WFS)
and Ambisonics, are based on analytic meth-
ods derived from the Helmholtz equation and
assume large continuous distributions of loud-
speakers. The other class of methods uses
optimisation-based techniques, such as Pressure
Matching (PM) [5] and Mode Matching (MM)
[4], to minimise the error between the repro-
duced and desired sound fields. The Multi-
zone Sound Field Synthesis (MZ-SFS) problem,
which involves synthesising different sound fields
inside multiple regions, has been addressed by
techniques such as Acoustic Contrast Control
(ACC) [2] and Amplitude Matching (AM) [1].
Recently, deep learning techniques have also
been applied to sound field synthesis [3]. In this
thesis’s summary, we propose a Deep Learning-
based Pressure Matching technique for the syn-
thesis of Multi-Zones (MZ-DLPM) using a Uni-

form Linear Array (ULA). Our method esti-
mates driving signals -i.e. the weights to be ap-
plied to each source to render the desired sound
field - directly through a Convolutional Neural
Network and optimizes the loss between the de-
sired and estimated sound field. Through sim-
ulations, we compare the performance of the
proposed technique with ACC, the original PM
approach, and its AM variant. This summary
is organised as follows. In Section 2 the prob-
lem statement on MZ-DLPM is described. Sec-
tion 3 shows the proposed algorithm implemen-
tation, describing the network architecture and
the procedure to obtain the optimal driving
function. Experimental results are presented
and discussed in Section 4. We provide sim-
ulation and evaluation results to validate our
method, analysing how it performs when com-
pared with the state-of-the-art methods. Fi-
nally, Section 5 concludes this thesis’s summary
and proposes future works.

2. Problem Formulation
Let us consider L loudspeakers deployed in po-
sitions r′l, l = 1, · · · , L and M control points
rm,m = 1, · · · ,M used to measure the pressure
in the area A. And let’s define as Ab and Ad

the two regions inside the considered free-field
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environment Q with high and low acoustic po-
tential energy, respectively. The two zones are
placed such as Ab∪Ad = A and Ab∩Ad = ∅, as
shown in Figs. 3, 4. In the following description,
rcp to refer to all the rm control points, while rm
represents a single control point. The sound field
generated by an array of secondary sources in a
set of control points at a given frequency can be
expressed as

p(rcp, ωk) =
L∑
l=1

G(rcp|r′l, ωk)d(r
′
l, ωk), (1)

with G(rcp|r′l) denoting the acoustic transfer
function from each loudspeaker to the control
points and d(r′l, ωk) the driving signal contain-
ing the weights to be applied to the loudspeak-
ers. We can now define the desired sound field
values at the control points in the bright and
dark zones Ab and Ad as

P des(rm, ωk) =

{∑L
l=1 G(rm|r′l, ωk)D(r′l, ωk),m ∈ Ab

0,m ∈ Ad.

(2)

The goal of MZ-SFS systems is to minimise
the squared error between the values of the de-
sired pressure field P des(rm, ω) and the esti-
mated pressure field P est(rm, ω) at the control
points, and can be written (by omitting the ar-
guments r′ and ωk) as

min
ddlpm∈CL

M∑
m=1

|G(rm)ddlpm − pdes(rm)|2, (3)

where ddlpm is the output of our optimisation
procedure, i.e. the DNN training. In classic DL
methods the output of the network is directly
compared with a predefined ground truth, by
means of a loss function that is minimised. Since
we don’t have a ground truth set of driving sig-
nals, we use the output of our system - the es-
timated driving function ddes(r′, ωk) - to com-
pute through (1) our estimated pressure field
pest(rcp, ωk) and we apply the loss function to
compare it with pdes(rcp, ωk). The input of the
neural network model consists of a vector con-
taining the concatenation of the real and imag-
inary parts of the desired bright zone, i.e.

p̃des
b (rcp, ωk) =

[
ℜ(pdes

b (rcp, ωk)
ℑ(pdes

b (rcp, ωk)

]
, (4)

where pdes
b (rcp, ωk) being the desired pressure

field in the bright zone at the control points,

Figure 1: Schematic representation of the Neural
Network. For simplicity we represent only the
layers with stride 2 × 2, the reshape layer and
their outputs.

and ℜ(·) and ℑ(·) representing the real and
imaginary parts of a complex number, respec-
tively. We omit the dark zone because it’s an
area where all values are equal, hence it would
not add any discriminative information from the
learning purpose. Terming U a series of nested
functions that represent our Neural Network, de-
fined as

U(·) = ⃝I
i=1fi = fI ◦ · · · ◦ f1, (5)

we can express the solution of our system as

ddlpm = U(p̃des
b ). (6)

3. Proposed Method
In this section we will present the model pro-
posed for multi-zone synthesis. A first part will
be dedicated to the depiction of the network ar-
chitecture. The second part of this section will
describe the proposed training procedure.

3.1. Neural Network Architecture
In the proposed method we adopt a Neural
Network that follows the basis of an encoder-
decoder structure. The structure is shown in
Fig. 1.
The Encoder is structured as follows:
• The first layer takes as input the vector
p̃des
b (r, ω) ∈ R2M×K ;

• 10 convolutional layers having (i) 32, (ii)
32, (iii) 64, (iv) 64, (v) 128, (vi) 128, (vii)
256, (viii) 256, (ix) 512, (x) 512 filters, re-
spectively;

• The output of the last layer is a flattened
monodimensional vector;

• odd layers’ kernels are regularised with the
L2 regularisation.

The bottle-neck layer, is a dense layer composed
by (2L/32)(K/32) neurons. Its output is reg-
ularised through the Elastic Net regularisation.
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To be fed to the decoder, the bottle-neck layer
is followed by a reshaping layer.
The structure of the Decoder is the following:

• The first layer takes as input a tensor of
shape (2L/32)× (K/32)× 1;

• 10 de-convolutional layers having (xi) 512,
(xii) 512, (xiii) 256, (xiv) 256, (xv) 128,
(xvi) 128, (xvii) 64, (xviii) 64, (xix) 32,
(xx) 32 filters, respectively;

• The output layer, composed by 1 filter, re-
turns a tensor of shape (2L)× (K)× 1;

Finally, common characteristics throughout the
neural network are:
• All layers have a kernel size of 3× 3;
• All layers, escluding the output layer of the

decoder, have Parametric ReLU (PReLU)
as activation function;

• Odd layers have a stride of 2×2, while even
layers and the output layer of the Decoder
have a stride of 1× 1;

• Every layers’ input is zero-padded evenly in
the left/right and up/down parts.

3.2. Procedure
In the following, we’ll term as S, the set of vir-
tual sources placed outside the listening environ-
ment Q. Since we are considering a free-field en-
vironment we can use transfer functions to com-
pute the pressure field pdes

b,cp(rcp) emitted by each
virtual source rs ∈ S, i.e.

pdes
b,cp(rcp, ωk) ≈ G(rcp|r′s, ω), s ∈ S. (7)

Since we are considering only control points, eq.
(6) can hence be reformulated as

ddlpm = U(p̃des
b,cp). (8)

We reorganise the output of the training proce-
dure ddlpm ∈ R2L×K×1 in a complex formulation
as

dC
dlpm,l = ddlpm,l + jddlpm,L+l, l = 1, . . . , L (9)

being dC
dlpm the complex reformulation of our

estimated driving signal, and j the imaginary
unit.
With this complex formulation we use (1) to
compute our estimated pressure field at the con-
trol points as

pest
b,cp(rcp) =

L∑
l=1

G(rb,cp|r′l)dC
dlpm(r′l), (10)

pest
d,cp(rcp) =

L∑
l=1

G(rd,cp|r′l)dC
dlpm(r′l). (11)

We apply the Mean Absolute Error (MAE) to
different components of the pressure fields to
build our loss function, defined as

LMAE(pdes
cp ,pest

cp ) = (λabs(||pdes
b,cp| − |pest

b,cp||)+

(|∠pdes
b,cp − ∠pest

b,cp|))+

+λd(λabs(||pdes
d,cp| − |pest

d,cp||)

, (12)

where the loss is calculated over the whole batch,
and λabs and λdark are two weights empirically
estimated. Note that since our goal is to cor-
rectly reproduce the bright zone and only to at-
tenuate the dark zone, we completely discarded
the phase of the dark zone. A schematic repre-
sentation of the training procedure is shown in
Fig. 2.

4. Results
In this section we show simulation results aiming
to demonstrate the effectiveness of the proposed
technique. We start by describing the metrics
used to evaluate our system, and the setup built
to run our simulations. We then present the
obtained results along with discussions and in-
terpretations.

4.1. Evaluation Metrics
In order to evaluate the accuracy of the re-
constructed soundfield, we computed the Mean
Squared Error (MSE) for the amplitude distri-
bution between the ground-truth and estimated
pressure fields as

MSEabs =

∑N
n=1(|pdes(rn, ω)| − |pest(rn, ω)|)2

N
, (13)

where | · | represent the absolute value operator
and N is the number of evaluation points.
Following [3] we also compute the Structural
Similarity Index Measure (SSIM), which is a
measure usually applied in image processing
problems, that quantifies how much two images
are similar, being 1 the value for identical im-
ages. In the considered scenario, it measures the
accuracy of the reproduced wavefronts. Finally,
we evaluate the difference between the acoustic
potential energy in the bright and dark zones
with the acoustic contrast (AC). Using the apex
∗ to denote complex conjugate, AC is defined as

AC =
eb(n)

ed(n)
=

∑N
n=1 p

∗
b(n)pb(n)∑N

n=1 p
∗
d(n)pd(n)

. (14)
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Figure 2: Schematic representation of the training procedure.

Figure 3: Experimental Setting in 3D environ-
ment

4.2. Simulation Setup
As shown in Fig 3 our environment is a free-
field cubic room of dimensions [−2m, 2m] ×
[−2m, 2m] × [0m, 4m] , with the position r0 =
[0m, 0m, 2m].T being its centre and origin. Two
square target regions Ab and Ad defined as in
eq. 2 are placed for the generation of the two
zones with high-and-low acoustic potential en-
ergy. The bright evaluation zone is centered
at [0.0m, 0.5m, 2m].T , while the dark evaluation
zone is centered at [0.0m,−0.5m, 2m].T . Both
zones have a side of 0.5m. We refer to evaluation
points to define the points used for the evalua-
tion of our system, i.e. the ones over which the
metrics are calculated, while we refer to con-
trol points to define the points used for train-
ing our system, precisely the ones over which
the loss is minimised. We’ll use the subscripts
eval and cp to refer to evaluation and control
points, respectively. Evaluation points compose

a dense distribution by means of a spacing of
δeval ≈ 0.02 m, while control points are more
sparse due to a spacing of δcp ≈ 0.05 m. Fur-
thermore the side of the control zones is of 0.6
m. To sum up, each evaluation zone is composed
by 512 evenly distributed points in an area of
0.25 m2, while each control zone is composed
by 128 evenly distributed points in an area of
0.36 m2. Finally, we use a ULA of L = 64
secondary sources, linearly distributed in the
range −1.5m×[−1.5m, 1.5m]×2m. Since closed-
cabinet loudspeakers behave similarly to point
sources we can model our secondary sources us-
ing the Green’s Function

G(r|r′, ω) = e−j(ω
c
)∥r−r′∥

4π∥r− r′∥
, (15)

where r will correspond to rcp in the training
phase and reval in the testing phase.
The Green’s Function is used also to model the
virtual sources in (7).

4.3. Dataset Generation
To train the network we consider a dataset of S
virtual sources, with a cardinality of #S = 1500.
We then randomly sample from S to generate
two datasets Strain and Sval for training and val-
idation, respectively. These two datasets have
a cardinality of #Strain = 1200 and #Sval =
300. The sources of S are placed in a rectangu-
lar area covering the range [−3.75m,−1.75m]×
[−1.5m, 1.5m] × 2m, with a spacing of 0.04 m
along the x axis and a spacing of 0.1 m along
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Figure 4: Virtual sources distribution for the
generation of train set and test set.

the y axis. A last test dataset Stest of cardinal-
ity #Stest = 1500 is created by shifting the S by
0.02m on the x axis and by 0.05 on the y axis,
as shown in Fig. 4. The signals emitted by the
virtual sources are sinusoids, with K = 64 fre-
quency values linearly spaced between 23.4375
Hz and 1500 Hz. We train our model for 5000
epochs and apply early stopping with a patience
of 100 epochs, tracking the value of the loss of
Sval. Finally, we set the parameters for the loss
(12) λabs = 25 and λdark ≈ 1 and we adopt the
Adaptive Moment (Adam) optimiser initialising
the learning rate lr = 0.001.

4.4. Discussion
In the following discussion, we’ll show the result-
ing pressure field for virtual source located out-
side the considered reproduction zone Q at posi-
tion rŝ = [−3.75m, 1.5m, 2m] emitting a spheri-
cal wave at frequency fk = 961 Hz. From Fig. 5
we can see how the proposed method is able to
accurately reproduce the desired pressure field
in Ab, while also achieving a high acoustic con-
trast. PM and AM tend to better focus on the
area under study, but at cost of a lower acoustic
contrast. ACC achieves a high acoustic contrast,
but synthesised sound field is completely differ-
ent from the desired one. In Figs 6, 7 and 8,
we show a more quantitative comparison by av-
eraging over all frequencies to show metric’s be-
haviour as a function of the distance to the line
that connects the centres of Ab and Ad, and by
averaging over all test positions to show metric’s
behaviour as a function of frequency fk. The
plots show how our approach has a reproduction
error lower w.r.t. the other approaches in both
cases, as a function of frequency and position.

Figure 5: Pressure fields emitted by a virtual
point source at position rŝ. In top-bottom or-
der, the desired sound field and acoustic fields of
MZ-DLPM, PM, ACC, AM. Each pressure field
has been normalised w.r.t. their amplitude at
position r0.

Figure 6: MSE of the absolute values as a func-
tion of frequency in A.
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Figure 7: SSIM as a function of the frequency
in Ab.

Figure 8: AC as a function of the frequency in
A.

When considering MSE as a function of position,
we can see how there is a tendency to degradate
as we approach the evaluation zones. This could
be due to fact that pressure waves from farther
virtual sources are more attenuated when they
arrive to the bright zone, hence a lower acustic
contrast is necessary, which leads to a better ac-
curacy. Also SSIM shows how our technique is
able to reproduce wavefronts that better resem-
ble those of the ground truth. We can see how
as the wavelength decreases, for all methods also
decreases the similarity to the statistical distri-
bution of the pressure values. Finally, for what
concerns AC, our approach is able to surpass in
some cases ACC, which in previous studies - as
confirmed by our analysis - was demonstrated to
be by far the one that achieves a higher contrast.
ACC starts outperforming the proposed method
as we approach higher frequencies or represent
virtual sources near the ULA. By comparing this
plot with the MSE we can deduct that our ap-
proach’s performance tends to degrade both in
terms of accuracy and acoustic contrast as vir-
tual sources approach approach the ULA.

5. Conclusions
In this thesis’s summary we have presented a
technique for multi-zone sound field synthesis by

means of deep neural network. Setting two zones
with high and low acoustic potential energy -
namely, bright and dark - we retrieve the de-
sired driving signals by feeding the ground truth
sound field at a series of control points in the
bright zone into a convolutional neural network
and computing the loss separately for the the
amplitude and phase of the bright zone, and am-
plitude of the dark zone. Results demonstrate
the validity of the proposed method and its abil-
ity to overcome the MSE-AC trade-off. Future
works could include reverberation and noise in
the environment, and evaluation of the proposed
system as we increase the number of target zones
or reduce the number of loudspeakers.
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