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Abstract

This work focuses on the numerical modelling of polymer mixing processes. These pro-
cesses are performed with the aid of devices (single- and twin- screw extruders, planetary
extruders, Banbury mixers, etc.) characterized by complex geometries in which body-fitted
simulations can hardly be performed. Non-conforming approaches, like diffuse interface,
fictitious domain, immersed boundary or volume penalty methods, represent the best alter-
native to simulate this type of processes, that may also involve complex kinematics. In this
work, we present an implementation of an Immersed Boundary method (IBM) to deal with
this type of simulations and with realistic industrial screw geometries.
The flow of a polymer inside a mixing device is described by the incompressible Navier-

Stokes equations. Moreover, the polymer is modelled as a non-Newtonian fluid with tem-
perature dependent viscosity. Particular attention is paid to the description of rheological
models of polymer viscosity, that depends on shear rate, temperature and filler fraction.
To solve numerically this problem we consider the Finite Volume method (FVM), widely

adopted in industry because of its built-in conservation properties, its ability to deal with
arbitrary mesh and its computational efficiency. In this context, a variational analysis of the
FVM as a Box method (BM) applied to the Stokes problem is carried out. The BM is a piece-
wise linear Petrov-Galerkin formulation on the Voronoi dual mesh of a Delaunay triangula-
tion. To recover the inf-sup stability of the Stokes problem discretized by the Box method, we
resort to the Rhie-Chow stabilization, for which a convergence analysis is presented. Then,
we consider the linear Stokes problem discretized using the Box method combined with a
Diffuse Interface method (DIM). The application of DIM to approximate non-conforming
boundaries leads to error convergence rates that are suboptimal with respect to the ones of
the conforming solution.
To overcome the limited convergence properties of the Diffuse Interface Box method, we

introduce an improved non-conforming approach based on the Immersed Boundary method.
It consists in a discrete-forcing direct-imposition method where a mesh subset is selected
and then the solution on this subset is computed with respect to the original boundary
condition. The solution imposed is then corrected using a quadratic weighted least squares
interpolation, that allows to significantly improve accuracy and recover optimal convergence
rates. Moreover, due to the fact that the pressure-velocity coupling is solved with a projection
algorithm (SIMPLE), a Neumann boundary condition for pressure that is consistent with the
velocity profile has been developed.
Finally, several applications to real industrial devices complete this work, in particular

we considered single- and twin-screw extruders and planetary roller extruders. In general,



extruders are made by an external shell, called barrel, and internal parts, called screws or
rotors. While the barrel has often simple shape, screws present different geometric features
and sharp edges. Moreover, the gaps between the barrel and the internal screws are narrow,
four orders of magnitude smaller than the machine dimensions, which make the problem
multi-scale. Here, the strategies that have been developed to deal with these complex objects
are exposed, in particular for anisotropic grids or graded grids, multiple interacting and
adjacent immersed geometries, moving objects, small gaps and the high non-linearity of the
problem.



Sommario

Il seguente lavoro si concentra sulla modellazione numerica di processi di mescolamento
di polimero fuso. Questi processi vengono effettuati grazie a macchinari come estrusori
monovite e bivite, estrusori planetari, Banbury mixers, in genere caratterizzati da geome-
trie complesse. Per questo motivo, la loro simulazione non è praticabile tramite approcci
body-fitted, dato l’alto costo computazionale. Gli approcci detti non-conformi, come diffuse
interface, fictitious domain, immersed boundary oppure volume penalty methods, rappre-
sentano la miglior alternativa per simulare questo tipo di processi, che spesso presentano
anche cinematiche complesse. Quindi, al fine di simulare geometrie realistiche di estrusori
industriali, presentiamo l’implementazione di un Immersed Boundary method (IBM).
Il flusso di un polimero all’interno di unmixer è descritto dalle equazioni di Navier-Stokes

per fluidi incomprimibili. Inoltre, i polimeri si possono considerare fluidi non-Newtoniani
con viscosità dipendente dalla temperatura. Vengono quindi descritti i modelli reologici per
la viscosità dei polimeri, la quale dipende, oltre che dalla temperatura, dallo sforzo di taglio
e dalla presenza di additivi, chiamati filler, misurati in frazione di volume.
Per la risoluzione numerica di questi problemi, abbiamo considerato il metodo ai volumi

finiti (FVM), ampiamente utilizzato in campo industriale per la sua proprietà intrinseca di
conservazione, per la sua capacità nel gestire mesh arbitrarie e per la sua efficienza com-
putazionale. In questo contesto, è stata svolta un’analisi variazionale del FVM come Box
method (BM) applicato al problema di Stokes lineare. Il BM è una formulazione Petrov-
Galerkin lineare a tratti su una griglia Voronoi, duale di una triangolazione di Delaunay. Per
recuperare l’inf-sup stabilità del problema di Stokes discretizzato con il BM ricorriamo alla
stabilizzazione di Rhie-Chow, di cui presentiamo un’analisi di convergenza. Consideriamo
poi il problema di Stokes lineare discretizzato con il Box method in combinazione con un
metodo Diffuse Interface (DIM). L’utilizzo del DIM per approssimare contorni in maniera
non-conforme porta a ordini di convergenza subottimali rispetto a quelli della soluzione
conforme.
Per superare i limiti di accuratezza del Diffuse Interface Box method, introduciamo un

approccio non-conforme migliorato, basato sull’Immersed Boundary method. Esso consiste
in un metodo discreto a imposizione diretta in cui viene selezionato un sottoinsieme della
mesh e, su questo sottoinsieme, la soluzione viene calcolata tenendo conto della condizione
al contorno originale. La soluzione imposta viene poi corretta utilizzando un’interpolazione
quadratica ai minimi quadrati pesati, che permette di migliorare significativamente lác-
curatezza e di ripristinare gli ordini di convergenza ottimali. Inoltre, dal momento che
l’accoppiamento velocità-pressione viene risolto da un algoritmo di proiezione (SIMPLE),



per la pressione è stata sviluppata una condizione di Neumann consistente con il profilo di
velocità.
A completamento di questo lavoro, presentiamo alcune applicazioni a macchinari indus-

triali reali, in particolare abbiamo considerato estrusori monovite e bivite e un estrusore
planetario. Gli estrusori sono di norma composti da un guscio esterno, chiamato cilindro, e
internamente da viti o rotori. Il cilindro ha spesso una forma semplice, mentre le viti pre-
sentano spigoli e possono avere caratteristiche geometriche differenti. I traferri compresi
tra le viti ed il cilindro sono molto stretti, quattro ordini di grandezza in meno rispetto alle
dimensioni del macchinario: questo rende il problema multi-scala. A questo punto, descriv-
iamo le strategie adottate per risolvere la forte non-linearità dei problemi di mescolamento
dei polimeri fusi e per gestire la presenza delle viti e le complessità computazionali che in-
troducono. Particolare attenzione è posta all’utilizzo di griglie con elementi anisotropi, alla
gestione di più geometrie immerse o di geometrie in movimento e alla presenza di traferri
stretti.



Ringraziamenti

Alla fine di lavori come una tesi di Dottorato, sono sempre numerose le persone da ringraziare.
Queste parole vogliono sintetizzare una lunga e intensa esperienza in poche righe, senza fare
un bilancio esaustivo di questi tre anni, ma piuttosto cercando di fissare nella mente e nel
cuore quei momenti e quei rapporti che hanno reso ricco e vero questo percorso.
Parto da chi ha reso possibile questo lavoro, cioè i miei relatori Proff. Nicola Parolini e

Marco Verani. Grazie perchèmi avete sempre guidato lasciandomi comunque libertà durante
il lavoro. Grazie per l’immenso sostegno di questi anni e per il prezioso e costante confronto.
Ringrazio Fondazione Politecnico per aver finanziato la borsa di Dottorato e il Joint Lab

PoliMi-Pirelli, in cui è inserito il progetto. Ringrazio inoltre Paolo Quinzani, Fabrizio Ricci,
Daniele Cerroni e tutto il gruppo Pirelli. Avete sempre valorizzato questo progetto e il lavoro
svolto. Un grazie particolare va a Umberto Visconti per la compagnia nel lavoro durante i
primi mesi di Dottorato e, soprattutto, di pandemia.
Ora usciamo un attimo dall’università. Un grande grazie a mia moglie Benedetta. Mi

hai sempre incoraggiato e voluto bene senza mai risparmiarti. Il nostro rapporto è stato
fondamentale per affrontare tutte le gioie, le difficoltà e i traguardi raggiunti di questi anni.
Grazie a Caterina e Stefano, i miei genitori, vi siete sempre spesi per me durante questo

percorso, dandomi fiducia e volendomi bene, accompagnandomi in ogni passo fatto in questi
anni. Grazie anche a Lorenzo e Antonella, mi avete calorosamente accolto nella loro famiglia
offrendomi sempre disponibilità e olive ascolane. Un grazie speciale va a Don Cesare e Don
Alberto, siete stati una compagnia eccezionale nella vita e nel cammino al matrimonio.
Ringrazio gli amici della Fraternità, con cui condivido il percorso di fede, l’esperienza

da “giovani lavoratori” e a breve, con alcuni, anche l’esperienza del matrimonio. Siete un
grande aiuto e un punto di riferimento. Grazie al gruppo di Challand, una presenza costante
in ogni situazione, dal liceo al Dottorato, di cui sono molto grato. Grazie Mate, Balordi e
Automatici.
Grazie ai colleghi del Dottorato, Vero, Ste, Laro, Buch, Bea e Ale, per condividere con me

un’amicizia oltre al lavoro. Grazie ai colleghi del Tender. Mi avete supportato e sopportato
durante il lavoro di questi anni. Sono molto grato dei rapporti nati in questo luogo e penso
siano la cosa più preziosa che mi porto dietro da questa esperienza. Grazie Enrico, Giulia e
Giuseppe, avete iniziato con me questa avventura e con cui ho condiviso le gioie e i dolori
del Dottorato. Grazie Alberto, per le chiacchierate nei caldi pomeriggi di Bovisa, per le
discussioni su OpenFOAM e perchè sei stato un grande sostegno in questi anni.



Contents

1 Introduction 1
1.1 Motivation and purpose of the research . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research structure and state of the art . . . . . . . . . . . . . . . . . . . . . 3

2 Mathematical modelling of polymer mixing processes 11
2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Mass conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Momentum balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Energy conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Motion of a generalized Newtonian fluid . . . . . . . . . . . . . . . . 16

2.2 Rheological characterization of polymer melts . . . . . . . . . . . . . . . . . 21
2.3 Rheometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Capillary Rheometer . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Isothermal Poiseuille flow in a cylindrical duct . . . . . . . . . . . . . 27
2.3.3 Rabinowitz analysis for the capillary rheometer . . . . . . . . . . . . 31
2.3.4 Mooney analysis for cylindrical duct . . . . . . . . . . . . . . . . . . 33
2.3.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Numerical discretization by the Diffuse Interface Box method 35
3.1 Box method: a variational finite volume method . . . . . . . . . . . . . . . . 35

3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Poisson problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.3 Stokes problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 The Diffuse Interface Box method . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 Poisson problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.2 Stokes problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.3 Numerical assessment of the DIBM applied to the Stokes problem . . 68
3.2.4 A roadmap to prove a priori error estimate for DIBM . . . . . . . . . 72

4 Extension to the Immersed Boundary method 75
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 The weighted least-squares IBM (WLS-IBM) . . . . . . . . . . . . . . . . . . 76
4.3 Time dependent IBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Extension to multiple IB surfaces . . . . . . . . . . . . . . . . . . . . . . . . 83



II CONTENTS

4.5 Issues on anisotropic mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Parallelization of IBM for large scale problems . . . . . . . . . . . . . . . . . 86
4.7 Numerical estimation of IBM accuracy . . . . . . . . . . . . . . . . . . . . . 87

4.7.1 Poisson problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7.2 Advection-diffusion problem . . . . . . . . . . . . . . . . . . . . . . . 90
4.7.3 Stokes problem for a Newtonian fluid . . . . . . . . . . . . . . . . . . 94
4.7.4 Non-Newtonian Navier-Stokes problem . . . . . . . . . . . . . . . . . 94
4.7.5 A case of interest: incompressible non-Newtonian Navier-Stokes

with temperature-dependent viscosity . . . . . . . . . . . . . . . . . 96

5 Solution algorithms for simulation of polymer mixing 101
5.1 Projection methods for isothermal incompressible flows . . . . . . . . . . . . 102

5.1.1 SIMPLE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.2 PIMPLE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 The SIMPLE-IBM algorithm for isothermal incompressible flows . . . . . . . 104
5.3 Solution algorithms for energy coupled systems . . . . . . . . . . . . . . . . 106

5.3.1 Robustness assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 POLIMIX code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Application to industrial problems 121
6.1 The Single Screw Extruder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.1.1 Dynamic local mesh refinement . . . . . . . . . . . . . . . . . . . . . 124
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 The Twin Screw Extruder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 The planetary roller extruder . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.1 PRE kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.2 Building a conforming grid . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Conclusions and perspectives 163
7.1 Main outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.2 Perspectives and future developments . . . . . . . . . . . . . . . . . . . . . 164

A Review of the finite volume method on general polyhedral grids 167
A.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.2 The finite volume method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.3 Finite volume formulation for advection-diffusion problems . . . . . . . . . . 173
A.4 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174



List of Figures

1.1 Schematics of a single-screw extruder [118]. . . . . . . . . . . . . . . . . . . 8
1.2 Schematics of a twin-screw extruder [48]. . . . . . . . . . . . . . . . . . . . 8
1.3 Schematics of a planetary roller extruder [13]. . . . . . . . . . . . . . . . . . 9

2.1 Examples of rheological laws for shear thinning fluids. . . . . . . . . . . . . 24
2.2 Cylindrical control volume inside capillary die. . . . . . . . . . . . . . . . . . 31

3.1 Example of a Delaunay triangulation and its Voronoi dual mesh. . . . . . . . 37
3.2 Convergence rates of errors obtained solving a Poisson problem employing

the Box method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Scheme of dual mesh geometrical quantities. . . . . . . . . . . . . . . . . . . 42
3.4 Convergence rates of the numerical error of BM solutions. On the left the

2D case errors and on the right the 3D case ones. Numbers are the rates
computed using a Least Square approximation on the log-log plot values. . . 63

3.5 Diffuse interface representation: D is a surrogate domain of Ω̃; Γ is the Dirich-
let boundary and Sϵ is its tubular neighbour. . . . . . . . . . . . . . . . . . . 63

3.6 Left: continuous diffuse interface. Centre: Discrete diffuse interface. Right:
mesh sizes subdivision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Discrete diffuse interface representation on triangulation (left) and on box
mesh (right). Constrained cells are marked with red dots while the contin-
uous and discrete diffuse interfaces are coloured by darker an lighter red
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8 Poisson problem error behaviour with respect to h (fixed ϵ = 2−20): (left) L2-
norm error, (right) H1-norm error. Dashed lines are theoretical convergence
orders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Poisson problem error behaviour with respect to ϵ (fixed h = 0.00694): (left)
L2-norm error, (right) H1-norm error. Dotted lines are theoretical conver-
gence orders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.10 On the left: example of a dual mesh with local mesh refinement around sur-
rogate boundary. On the right: error behaviour with respect to h with local
mesh refinement around the interface (fixed ϵ = 2−20): (left) L2-norm error,
(right) H1-norm error. Dashed lines are theoretical convergence orders. . . . 68

3.11 Plot of L2-norm (left) and H1-norm (right) error against the number of de-
grees of freedom for uniformly and locally refined meshes. . . . . . . . . . . 68



IV LIST OF FIGURES

3.12 Embedded cylinder, primal and dual meshes in both uniform and refined cases. 69
3.13 Error behaviour with respect to h (as ϵ → 0): (left) H1-norm velocity error,

(right) L2-norm pressure error. Dash and dotted lines are theoretical conver-
gence orders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.14 Embedded sphere and dual meshes in both uniform and refined cases. . . . 71
3.15 Error behaviour with respect to h (as ϵ → 0): (left) H1-norm velocity error,

(right) L2-norm pressure error. Dash and dotted lines are theoretical conver-
gence orders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Representation of cell-to-cell (c2c) and point-to-cell (p2c) stencils of level 2. 77
4.2 Schematics of IBM mesh elements. . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Example of filtering criteria to select the extended stencil of an IB cell. Orange

cells represent the final stencil for the least squares interpolation. Stencil is
chosen within the intersection of the red circle and the two blue lines and at
a maximum connectivity distance of two cells. . . . . . . . . . . . . . . . . . 79

4.4 Demonstrative example of a grid presenting shared IB cells between the screws
of a TSE. Shared IB cells are highlighted. . . . . . . . . . . . . . . . . . . . . 84

4.5 Example of a SSE coarse computational mesh. Here the external barrel and
the shaft are approximated with a conforming boundary, while the screw
teeth are approximated using immersed boundaries. The figure represents
the metering section of the grid of a SSE with a zoom lens on the grid cells
between the gap. In this example the grading has been computed to have
three elements within the gap. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Up: scheme of where the Neumann boundary condition is imposed using
the original implementation of IBM. Down: scheme of how the inconsistency
grows when dealing with anisotropic grids . . . . . . . . . . . . . . . . . . . 86

4.7 Example of the three mesh types employed to perform the numerical assess-
ment of non-conformingmethods convergence. Left: uniform non-conforming
mesh. Center: conforming mesh. Right: locally refined non-conforming mesh. 89

4.8 Convergence rates for non-conforming methods on Poisson test case in (left)
∗-norm, (right) L2-norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.9 Solution representation varying the value of diffusivity k and so increasing
the Péclet number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.10 Convergence rates for non-conforming methods on the advection diffusion
problem, varying the Péclet number. For each chart, we represent the ∗ norm
on left and the L2-norm on right. . . . . . . . . . . . . . . . . . . . . . . . . 93

4.11 Convergence rates for non-conforming methods applied on the Stokes flow
past a sphere test case. Left: ∗-norm of velocity error. Centre: L2-norm of the
velocity error. Right: L2-norm of pressure error. . . . . . . . . . . . . . . . . 95

4.12 Convergence rates for non-conformingmethods applied to the non-Newtonian
Taylor-Couette flow test case. Left: ∗-norm of velocity error. Centre: L2-norm
of the velocity error. Right: L2-norm of pressure error. . . . . . . . . . . . . 96



LIST OF FIGURES V

4.13 Representation of the meshes employed to perform simulations. Left: uni-
form non-conforming mesh. Center: refined non-conforming mesh. Right:
conforming mesh. We represented also how the single-screw geometry inter-
sects the non-conforming meshes. . . . . . . . . . . . . . . . . . . . . . . . . 96

4.14 Convergence of quantities integrated on the screw surface quantities on the
3D single-screw extruder test case. . . . . . . . . . . . . . . . . . . . . . . . 99

4.15 Evaluation of various quantities on the screw surface for each method in the
Dirichlet temperature condition case. . . . . . . . . . . . . . . . . . . . . . . 99

4.16 Convergence of quantities integrated on the screw surface quantities on the
3D single-screw extruder test case. . . . . . . . . . . . . . . . . . . . . . . . 100

4.17 Evaluation of various quantities on the screw surface for each method in the
Neumann temperature condition case. . . . . . . . . . . . . . . . . . . . . . 100

5.1 SIMPLEX diagram for the solution of iteration n+ 1. . . . . . . . . . . . . . 108
5.2 PIMPLEX diagram for the solution of time step tn+1. . . . . . . . . . . . . . . 109
5.3 Maximum temperature values for each combination of parameters after 20

SIMPLEX iterations. Boxes correspondent to divergent simulations are blanked
out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 mixingTransportModel class inclusion. . . . . . . . . . . . . . . . . . . . . . 114
5.5 simplexControl and pimplexControl classes inclusion. . . . . . . . . . . . 115
5.6 Geometrical IB patch class inclusion and what depends on ibFvPatch class. 116
5.7 IB interpolator framework class inclusion andwhat depends on ibInterpolator

class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.8 IB patch fields what depends on ibFvPatchField class. . . . . . . . . . . . . 118
5.9 IB patch fields class inclusion and what depends on ibFvPatchField class. . 119

6.1 SSE rendering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 Block scheme used by blockMesh for the azimuthal section of the SSE (pro-

portions shrinked along z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3 Mesh grading along a mesh edge. . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4 Sequence of images representing the evolution of the grid while the screw

profile (the white line) advances. The figure represents an azimuthal section
with normal directed along x axis. . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Representation of velocity magnitude (top) and temperature (bottom) fields
distribution on an azimuthal section of the transitional sector of the SSE. Both
DIM and IBM solutions have been represented on top and bottom parts of the
extruder channel, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.6 Representation of pressure (top) and temperature (bottom) fields distribution
on an azimuthal section of the SSE. . . . . . . . . . . . . . . . . . . . . . . . 128

6.7 Pressure, viscous heating and temperature sectional averages for DIM and
IBM solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.8 Pressure, viscous heating and temperature sectional averages for three levels
of filler volume fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



VI LIST OF FIGURES

6.9 Log–log representation of the code parallel performance employing the SIM-
PLEX solver and both IB and DI methods. Left: simulation speed-up with
respect to the number of processors (reference is 2 cores and linear solver is
PBiCG with GAMG preconditioner). Right: the behaviour of the simulation
time increasing the number of processors. . . . . . . . . . . . . . . . . . . . 132

6.10 Log–log representation of the code parallel performance employing the SIM-
PLE solver and IB, in its new and original implementations, and DI methods.
Left: simulation speed-up with respect to the number of processors (reference
is 2 cores and linear solver is PCG with DILU/DIC preconditioner). Right: the
behaviour of the simulation time increasing the number of processors. . . . . 133

6.11 Grid visualization of the SSE sector of increasing local mesh refinement around
the teeth IB surface. From no refinement (top left) to three nested levels of
refinement (bottom right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.12 Sampling of pressure, shear rate and velocity magnitude along the line rep-
resented in lower left figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.13 Geometrical description of an axial section cut [118]. . . . . . . . . . . . . 136
6.14 Examples of TSE modules, view from above. Different colours are the differ-

ent modules: the first and the second are two transport modules of different
pitches; the last five are kneading modules with different rotation angle. . . 137

6.15 Left: Block scheme used by blockMesh for the axial section of the TSE. Right:
sectional cut of the TSE sectional grid. . . . . . . . . . . . . . . . . . . . . . 137

6.16 Evolution in time of some quantities evaluated on several axial sections. On
the x axis of each figure, the screw rendering has been represented in order to
enlighten the flow features with respect to the geometrical feature. Top left:
temperature average. Top right: flow rate. Bottom left: pressure average.
Bottom right: viscous heating average. . . . . . . . . . . . . . . . . . . . . . 140

6.17 Evolution in time of error computed by equation 6.2. . . . . . . . . . . . . . 141
6.18 Temperature distribution in the twin-screw extruder at different times. . . . 142
6.19 Example of a planetary roller extruder [96]. . . . . . . . . . . . . . . . . . . 143
6.20 Profiles of a PRE section with 12 and 24 teeth on sun and ring, respectively.

It is designed with three planets that have three teeth each. The kinematics
is also represented with the angular velocity of each gear. . . . . . . . . . . 143

6.21 Schematics of spur gear teeth [28]. . . . . . . . . . . . . . . . . . . . . . . . 145
6.22 Profiles of sun, ring and planet teeth, from left to right, respectively. . . . . . 145
6.23 PRE conforming mesh construction procedure. Sun and ring building blocks

are merged together. The same is done for a planet (in the centre of the PRE
section). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.24 Sun and ring teeth grids example. Boundary layer and mesh interfaces are
represented by the circular lines. . . . . . . . . . . . . . . . . . . . . . . . . 147

6.25 Twist transformation of sun and ring in opposite directions. . . . . . . . . . 148
6.26 Top: grid visualization of a PRE sector (left) and grid after one time step, to

enlighten the non conformity of cell edges when moving the mesh (right).
Bottom: geometry with subdivision of sun and ring parts by sliding interface
(left) and side view of the geometry (right). . . . . . . . . . . . . . . . . . . 149



LIST OF FIGURES VII

6.27 Top: global measures of some quantities of interests sampled at different axial
positions. ri, i = 0, . . . , 4 represent the different grid levels, from the coarser
to the finer. Bottom: relative distance between finest and coarser solutions,
computed with equation 6.7. . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.28 Simulation time for each test case increasing mesh size and and keeping the
same number of d.o.f.s on each core. . . . . . . . . . . . . . . . . . . . . . . 153

6.29 Comparison between OpenFOAM and Polyflow computational times. . . . . 154
6.30 Evolution in time of some quantities evaluated on several axial sections. On

the x axis of each figure, the screw rendering has been represented in order to
enlighten the flow features with respect to the geometrical feature. Top left:
temperature average. Top right: flow rate. Bottom left: pressure average.
Bottom right: viscous heating average. . . . . . . . . . . . . . . . . . . . . . 156

6.31 Evolution of the increment in time for each averaged quantity. . . . . . . . . 157
6.32 Representation of sampling slices on the PRE geometry. . . . . . . . . . . . . 158
6.33 Pressure, velocity and temperature sampled on an axial slice after 20 seconds.

For the temperature we reported also time instants 5 and 10 seconds in order
to show the evolution of the field. . . . . . . . . . . . . . . . . . . . . . . . . 159

6.34 Pressure, velocity and temperature sampled on a longitudinal slice far from
the planets after 20 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.35 Pressure, velocity and temperature sampled on a longitudinal slice crossing
a planet after 20 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.36 Temperature distribution evaluated for different time instants on relative ve-
locity magnitude contours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



VIII LIST OF FIGURES



List of Tables

3.1 Minimum generalized eigenvalue of Rhie-Chowmatrix with respect to ∗-norm
computed on a uniform polygonal mesh. It is also reported the diminishing
rate of minimum eigenvalues, computed as log2(R∗|h/R∗|h

2
), representing the

coercivity lower bound of sB. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Minimum generalized eigenvalue of Rhie-Chowmatrix with respect to ∗-norm

computed on a uniform polyhedral mesh. It is also reported the diminishing
rate of minimum eigenvalues, computed as log2(R∗|h/R∗|h

2
), representing the

coercivity lower bound of sB. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Minimum generalized eigenvalue of Schur complement with respect to L2-

norm of box-wise constant functions computed on a uniform polygonal mesh. 58
3.4 Minimum generalized eigenvalue of Schur complement with respect to L2-

norm of box-wise constant functions computed on a uniform polyhedral mesh. 59

4.1 Thermal and rheological parameters. . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Model material rheology parameters. . . . . . . . . . . . . . . . . . . . . . . 110

6.1 Sum up of the run simulations. . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2 Performance data for each simulation . . . . . . . . . . . . . . . . . . . . . . 135
6.3 Fraction of IB and solid cell with respect to total number of degrees of freedom

per case study. All the simulations were run on 56 processors. . . . . . . . . 139



Chapter 1

Introduction

1.1 Motivation and purpose of the research

Polymers are essential and ubiquitous in everyday life applications. They can be natural,
for example silk, rubber, wool, keratin, or synthetic, for example PVC, polystyrene, silicone,
nylon. In particular, synthetic polymers are used to make plastics, adhesives, and many
common objects. Synthetic polymers can be divided into three main groups: thermoplas-
tics, thermosets, and elastomers. Thermoplastic materials soften when they are heated and
solidify when they are cooled; their chemical structure does not change significantly during
the processing, thus they can generally be reground and recycled. Thermosets undergo a
crosslinking reaction when the temperature is raised above a certain temperature, thus cre-
ating a three-dimensional network of chemical bonds. The main characteristic of elastomers
and rubbers is that they can undergo very large deformations behaving in a largely elastic
manner.
Polymers undergo a complex multistep processing, called compounding, before turning

into common objects. Often, the compounding of a polymer consists in the following steps.
At the beginning, a certain quantity of ingredients, under the form of chips or pellets, is
melted. The melting can be performed in different ways, for instance by heating or by
friction or using a solvent, and by different devices. Then, the solution passes under the
mixing process in order to obtain a uniform polymeric molten phase, possibly adding other
ingredients and additives to enhance the final product properties. Finally, the polymer melt
is extruded and pushed into a die, an outlet designed to give a certain form to the extrudate,
e.g. annular for wire coating or a thin slit for filming. Once the melt exits from a die, the
process is concluded and it can be laid or transported elsewhere or it can be injected into a
molder to be given a particular shape [70].
The main process used in polymer industry is the extrusion process. This process is per-

formed by devices called extruders, that are the most important piece of machinery in the
polymer processing industry. To extrude means to push or to force out, so when the material
is extruded means that it is pushed through an opening. The part of the machine through
which the material is forced is referred to as the die. Dies are used to give a shape to the
extrudate, the extruded material. This is the case of wire coating or food applications, where
the material has to assume a precise shape. There are two basic types of extruders: contin-
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uous or batch type extruders. Continuous extruders can develop a steady and constant flow
of material, whereas batch mixers have to be cyclically emptied and reloaded. Continuous
extruders utilize rotating members for transport of the material. Batch extruders generally
have a reciprocating member to cause transport of the material [118].
Beside the transport of material, extruders are useful devices also for mixing. Mixing

may be used for blending of ingredients and incorporation of other additives, often partic-
ulates [40]. The embedding of solid particulates into polymer matrices is widely diffused
in industrial contexts in order to reduce costs and to improve some desirable thermal, me-
chanical, electrical and magnetic properties. In this respect, besides transport and shaping,
extruders have the task to perform the embedding of the particulate and the elimination of
inhomogeneities. This can be achieved by maximizing the dispersive and distributive mix-
ing. Dispersive mixing is defined as the ability to break a certain particulate, present in
a mixture, into smaller and smaller pieces. Distributive mixing is defined as the ability to
disperse a certain particulate, present in a mixture, uniformly throughout the mixture.
To analyse the ability of an extruder of mixing a polymer melt is fundamental to know

what happens inside the device and, in particular, how the velocity, pressure and temper-
ature fields develop. For this purpose, numerical simulation have become nowadays a fun-
damental tool to make prediction and estimates on how the polymer behaves during the
extrusion process. However, this is not an easy task to achieve, often due to the several com-
plexities present in this type of applications. All these procedures are complex and imply
knowledge of chemistry, mechanics, fluid dynamics and thermodynamics. Hence, to opti-
mize the processes maximizing the production rate of polymeric material, one has to know
how the polymer behaves during all the processes it is subjected.
The focus of this research is on the part of polymer processing regarding the mixing of

polymer melt, where the fluid is mixed in order to produce a uniform compound. Thus,
among all the physical phenomena that occurs in the polymer processing workflow, we con-
centrate our analysis on the fluid dynamics of polymer melt inside mixing devices and, in
particular continuous extruders, not taking into account multiphase flows or solid-liquid
phase transitions. The analysis is carried out using numerical tools to simulate the flow of
polymers, especially thermoplastics and elastomers at the molten state, that can be modelled
as non-Newtonian fluids with temperature dependent viscosity.
Many mathematical models have been developed in order to understand the fluid dy-

namics and heat transfer of the flow inside mixers and molders, starting from known fluid
flow models and trying to approximate the evolution of pressure, viscosity and temperature
inside a polymer processing device. For instance, to model the flow inside capillary or slit
dies, a Poiseuille flow can be employed or a cavity flow can be used to describe what hap-
pens inside a single-screw extruder. Moreover, processes like calendering and coating have
been described by simple mathematical models [102]. Some modelling can also be applied
to simple shapes of twin-screw extruders [118]. However, as technology develops, mixing
devices become more and more complex and so our capacity of modelling what happens
inside them has to increase.
First the difficulty in solving the problem itself: a nonlinear fluid dynamics problemwhere

the viscosity depends on temperature. In a second place, the fact that the problem is a mul-
tiscale problem because the gaps between the various moving components of the extruders
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can be extremely small and the physical scales that the computational grid should be able
to capture vary from metres to tens of millimetres. The last, and maybe the most significant
complexity present in polymer mixing, is the geometrical complexity.
The aim of the research is to develop a numerical tool able to simulate the fluid dynamics

involved in this type of industrial processes, dealing with all the physical, geometrical and
numerical complexities involved in the problem. We first describe the problem from the
physical point of view, understanding which variables are responsible of what happens into
extruders. Then we choose the Finite Volume method, as a numerical method, in order to
deal with physical complexities and because it allows to efficiently solve large scale problems,
of which industrial polymer processes are a part. Then, we consider, alongside to the Finite
Volume method, an Immersed Boundary method to approximate the complex geometries
that characterise extruders and mixers in general. The combination of the two methods has
been analysed from the theoretical point of view and then it has been applied to several test
cases to assess its numerical efficiency.
This work has been carried out in collaboration with the industrial partner Pirelli Tyre

S.p.a., in the framework of the Pirelli-PoliMi Joint Lab and with the financial support of
Fondazione Politecnico.

1.2 Research structure and state of the art

In continuum mechanics, polymers can be considered incompressible fluids with viscosity
that may depend on shear rate and temperature. For this reason, in most of the cases, poly-
mers are modelled as incompressible non-Newtonian fluids, with temperature dependent
viscosity. Depending on the polymer type, thermoplastics or elastomers, viscosity can vary
from thousands of Pa·s up to millions of Pa·s. Larger viscosity values cause the viscous fric-
tion of the fluid to dissipate a relevant amount of energy, that heats the fluid.
The equations that govern the motion of a polymer melt are the incompressible Navier-

Stokes equations with a suitable nonlinear rheology. These equations are nonlinearly cou-
pled by the presence of viscosity, that depends on the shear rate, i.e. velocity gradients, and
temperature. Moreover, the viscous friction, or viscous heating, is a source term of energy
equation that models how velocity gradients heat the fluid. The presence of this nonlinearity
has implications on the difficulty in solving the problem numerically.
The scientific community has devoted a lot of effort in the theoretical and numerical

investigation of non-Newtonian flows with temperature dependent viscosity. For power-
law fluids with temperature dependent viscosity, a well-posedness result have been proved
in [51]. Many numerical methods have been analysed and applied in this field. Spectral and
finite elements methods [4, 5] have been developed for the solution of the Navier-Stokes
equations coupled with the heat equation. A p-least-squares finite element method has been
applied to non-isothermal flows of non-Newtonian fluids, investigating also the process of
heat production by the viscous friction [16]. Then, in a more industrial context, the Finite
Volumemethod has been applied to model the non-isothermal flow of a non-Newtonian fluid
through an extruder die [50]. Moreover, for the decoupling of the Navier-Stokes equations
[72] with variable viscosity, a shear rate based projection method has been proposed in
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[46, 47] in order to compute a pressure field consistent with the flow of a non-Newtonian
fluid. Finally, also a posteriori estimates have been proposed to perform grid adaptivity in
problems involving non-Newtonian fluids [19].
In this work, to approximate this system of equations, we consider the Finite Volume

method (FVM). The FVM is a popular numerical strategy for the spatial discretization of
partial differential equations widely used for the solution of industrial flow problems. One
crucial property of FVM is that, by construction, physical conservation laws governing in a
given application are naturally discretized preserving global and local conservation proper-
ties [59]. This makes the method very attractive when dealing with problems where con-
servation plays an important role, such as fluid mechanics and heat and mass transfer.
This property is a consequence of the formulation of FVM. In fact, the core procedure

of FVM is the imposition of the conservation law on each cell, or control volume, of the
mesh [94, 106]. This is usually performed using Gauss theorem and then numerically re-
constructing fluxes through each face of the control volume. The conservation properties of
the Finite Volume method give raise to robust numerical schemes that work on arbitrarily
complex geometries [59]. Moreover, the simplicity of FVMmakes it easy to be implemented,
giving raise to efficient codes also highly scalable on parallel infrastructures, due to the cheap
matrix assembly and numerical integration costs.
The choice of employing the Finite Volume method to simulate mixing processes has

been combined to the choice of using the C++ library OpenFOAM [71,85], that is the one
of the leading open-source +software for computational fluid dynamics and it is already
widely employed in the industrial context. In the field of FVM, many different methods
and numerical schemes have been developed in which vector variables are reconstructed
using their face normal components [23]. From staggered schemes [109] to TPFA and
MPFA [1,2,8], i.e. two- and multi- point flux approximation, respectively, and mixed finite
volume schemes [53].
In the present work we consider a particular formulation of the FVM called Box method

(BM), or Finite Volume Element method (FVEM) [33] or piecewise linear FVM. This method
has been the object of an intense study in the literature. It was first introduced for scalar
elliptic problems in [11,73] and, more recently, in [57,58,61,135]. Then the Box method
was applied to Stokes system in [115]. Another version of the FVEM is reported in [35,36],
which extends the analysis to non-conforming piecewise linear finite elements. Moreover,
as for the FVM, the FVEM shows to be suitable for several different applications, such as
moving domain problems with Arbitrary Lagrangian-Eulerian formulations [68].
We consider the Box method to describe the classical FV method because of its simplicity

and for its relationship with the Finite Element method (FEM) [56,69], indeed a relationship
between BM and FEM solutions with respect to mesh discretization can be found [11]. This
relationship derives from the fact that the Box method is the “dual method” of finite element,
i.e. it consists in a piecewise linear Petrov-Galerkin formulation on the Voronoi dual mesh
of a Delaunay triangulation.
We use the Boxmethod to formulate the Stokes problem, discretized by OpenFOAM FVM,

in a variational framework. This translates in discretizing Stokes problem using piecewise
linear elements for both velocity and pressure also employing numerical discretization of
fluxes, thus requiring a stabilization [7, 27, 55]. In this setting, we expose a convergence
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analysis defining a stabilization equivalent to the Rhie-Chow interpolation [65,137], a com-
mon stabilization technique in Finite Volume applications.
As mentioned before, the Finite Volume method can be used to efficiently deal with do-

mains with arbitrarily complex geometries. The capacity of describing complex geometries
plays a fundamental role because of the core topic of this work: polymer mixing processes.
In general, the screws and the rotors that are employed to perform transport and mixing
of the polymer melt inside the extruders are characterised by complicated shapes. For this
reason the generation of the computational grid is crucial.
There are two possible approaches to manage grid generation. The first is the body-fitted

approach, where the mesh is constructed on a sufficiently accurate approximation of the ex-
act physical domain. Improved approximation properties on complex domain discretized
using body-fitted grids can be obtained resorting to isoparametric finite elements [38], iso-
geometric analysis [42] or spline-based parametrization [78]. Moreover, when dealing with
moving domains, Arbitrary Lagrangian-Eulerian (ALE) formulations [42,52, 79, 81] can be
adopted. In particular, in the framework of ALE methods, it is worth mentioning the slid-
ing mesh technique, first introduced in [104,105]. It consists in building different grids for
different parts of the domain and in mapping the solution across the so called sliding inter-
faces [14, 15, 76], simplifying the mesh construction avoiding the need of handling mesh
deformations and remeshing.
The second is the non-conforming approach, where the physical domain is embedded

into a simpler background mesh whose elements can intersect the boundary of the physical
domain. The mesh generation process for the background mesh si extremely simplified with
respect to the body-fitted approach, while a specific strategy for imposing of embedding the
boundary conditions in a non-conforming way is required.
Non-conforming domain methods were first introduced by Peskin with its original version

of the Immersed Boundarymethod [112], in which the immersed surface is representedwith
a set of Lagrangian points, while the flow field is computed on an Eulerian grid which is not
required to conform the immersed body geometry. The immersed velocity boundary condi-
tion is then enforced by a source term in the momentum equation. The Immersed Boundary
method has been the subject of intense studies fro many years [60,82,103]. In later works,
this approach of enforcing boundary conditions into the equations governing the problem
was interpreted as a penalty method in a variational context [10,74]. A similar approach has
also been developed in the context of finite element methods, with Fictitious domain and
Embedding domain methods [22, 24] as well as with Diffuse Interface methods [29, 95].
These methods are often implemented with the aid of a characteristic function, or mask,
that describes the region of the immersed surface. This mask can be approximated either
by a discontinuous function or by a smoothed function using opportune signed distance
functions. One advantage of these latter Diffuse Interface methods is that they are easy to
be implemented, however, they are often subjected to suboptimal error convergence due to
the fact that they “diffuse” the immersed interface over neighbouring mesh elements. The
optimal convergence order can be recovered using, for example, mesh adaptivity [18,124].
Another critical aspect of Diffuse Interface methods is mass conservation [123]. In particular
in incompressible flows, mass and volume conservations coincide. This implies that the vol-
ume computed using the characteristic function of the immersed region has to be conserved
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to avoid spurious pressure profiles near the interface.
To avoid the spreading of the embedded boundary across the computational domain,

sharp interface methods can be employed. These methods manage to approximate non-
conforming boundary as sharp interfaces. This can be done, for example, with cut element
method, proposed in [31] together with its Hybrid High-Order version [30, 49]. This type
of methods employ a Nitsche penalty method [108] to weakly enforce boundary conditions
and by adopting consistent additional terms in the weak formulation. These methods typi-
cally guarantee good accuracy, however, a major drawback for cut methods comes from the
“small cuts” that generate near the interface, when a small fraction of an element remains
in the physical domain. When this happens, it reflects in a deterioration of the problem con-
ditioning. To overcome this issue, many stabilization techniques have been developed, like
the ghost penalty method introduced in [32]. Moreover, a significant computational effort
has to be employed in order to find element cut points.
In the context of the Finite Volume method, many methods have been introduced in or-

der to embed boundaries into a background mesh. A very popular method is the Ghost Cell
method [129], which is an Immersed Boundary method that imposes the embedded bound-
ary constraint on themesh cells just inside the immersed surface, based on the surface values
and the fluid cells values. Another widely adopted method is the Overset method [37,125],
in which two different meshes are generated for the fluid and the solid regions. Then the
problem is solved on the fluid mesh using the geometrical information given by the position
of the solid mesh. Finally, a sharp interface Cut-Cell method [91] has been implemented
to approximate surfaces in a fluid domain that directly modifies the background mesh cells
topology.
Another approach is the Shifted Boundary method [89, 99], in which the physical do-

main is substituted by a discrete approximation. In this approach a background mesh is
built around the physical one and the mesh elements that cross the immersed boundary or
that are outside it are discarded. Then, what remains is a discretized boundary on which
boundary conditions have to be imposed accurately. For instance, “shifting” their value using
a Taylor expansion. This approach does not imply cutting elements and shows the optimal
convergence rates of conforming methods.
In industrial polymer processing, there exists a large variety of mixing devices, charac-

terised by complex and diverse shapes, which mechanics can also involve complex kinemat-
ics. Therefore, we decided to adopt a non-conforming approach to describe these geometries
in our simulations.
We first consider a simplified scenario in which the linear Stokes problem is discretized

using the Box method combined with a Diffuse Interface method (DIM) [107]. The DIM
consists in dividing the computational mesh into two subsets corresponding to the fluid and
solid regions. The solid regions is the set of elements that are inside the immersed surface.
The non-conforming imposition of the immersed boundary conditions is performed by con-
straining the solution values of the solid region to the boundary value. For this simplified
problem, we performed a convergence analysis, employing the strategy described in [124].
As a result, we obtained a suboptimal convergence estimate for the DIM with respect to
the conforming solution, due to the fact that we are imposing boundary conditions with
a non-conforming strategy. We also showed that the original order of convergence can be
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recovered by employing a deep local mesh refinement, with the measure of the mesh near
the immersed object scaling as the square of the characteristic mesh length of the rest of the
domain.
Thus, the former analysis suggests that, to be accurate, we have to adopt a local mesh

refinement strategy. However, in real life applications, such refinement is most often unaf-
fordable because the number of degrees of freedom raises rapidly. So, to overcome the con-
vergence rate lost and to avoid local mesh refinement, we extend the concept of the Diffuse
Interface method to the more general concept of the Immersed Boundary method (IBM).
Our IBM implementation consists in a discrete-forcing direct-imposition method, where the
mesh is divided into subsets with respect to the non-conforming surface and the constrained
value of the solid region is corrected by the use of a least-squares interpolation strategy, that
is eventually able to recover the conforming method accuracy. This approach is a middle
way between classical immersed boundary methods and the Shifted Boundary method: we
employ a direct forcing of the boundary conditions, but we correct the constrained value in
such a way that the sharpness of the real boundary is preserved.
We describe the implementation that we made in the OpenFOAM library of the IBM,

starting form the work described in [86], and we present a numerical assessment of the
approximation properties of our implementation.
Another aspect in which non-conformingmethods have an impact on the solution strategy

is the usage of projection methods to solve fluid flow problems. A typical procedure in the
context of Finite Volume method is the decoupling between velocity and pressure through
splitting, or projection, methods. They commonly consists in iterating the following solving
procedure: first solve the momentum equation, then a Poisson equation for the pressure
and then project the velocity on the space of divergence-free functions. Projections methods
are computationally efficient both in terms of CPU time and memory usage since the linear
systems that generate are typically smaller and easier to solve than the monolithic one.
Moreover, the iterative nature of these algorithms allows to robustly face the nonlinearities
of the problem. In OpenFOAM, the common procedure is to apply the SIMPLE [110], PISO
and PIMPLE [131] algorithms.
Combining these algorithms with IBM is not straightforward because we have to split,

not only the equations, but also boundary conditions. If we have a rigidly moving body
immersed in our computational domain we have to impose Dirichlet conditions on veloc-
ity and, consequently, Neumann conditions on pressure. Many strategies to impose non-
conforming Neumann conditions have been proposed in the literature [6, 88, 121], but it
has been proven that imposing homogeneous Neumann on pressure is not the best strategy
when working with splitting methods. Indeed, consistent non-conforming conditions for
pressure have been developed in [17, 83] for finite differences, in which the projection of
velocity on divergence-free functional space is computed such that it respects its immersed
boundary condition. In this work, we extend this concept to the Finite Volume method,
experiencing improvements in simulation results, especially in the presence of anisotropic
grids.
Ultimately, we present the results obtained employing the Immersed Boundarymethod to

simulate themixing of polymermelt inside representative geometries of industrial extruders.
In particular, we consider a single-screw extruder, a twin-screw extruder and a planetary
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roller extruder. We now present these three examples of mixing devices, which present
increasing complexity.
In general, extruders are devices made by an external shell, called barrel, and one ormore

screws within it. Extruders can be divided into three regions: the feeding section, where the
material enters the device, the metering section, where the mixing is actually performed,
and the die, where the material is extruded and where it is given a shape (Figure 1.1).
The geometrical complexity is obviously given by the presence of screws. The impact that

Figure 1.1: Schematics of a single-screw extruder [118].

screws presence has in numerical simulations resides in the grid generation. Despite screws
are described by analytical shapes and can be often parametrized, the fact that they are in
general characterized by sharp edges makes them hard to be meshed using body-fitted grids.
Moreover, like in the case of the twin-screw extruder (Figure 1.2), the shafts are composed
by more than one shape, implying the design of special strategies to generate the grid. It is
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Figure 1.2: Schematics of a twin-screw extruder [48].

known that generating good computational meshes on complex shapes can be a very hard
task, that can also result in unusable meshes. This task becomes even more difficult when
dealing with moving objects, and so time dependent problems, that is the natural setting
of mixing processes. This is mainly due to two reasons: the difficulty in describing the
geometries in play and the computational effort in generating such grids.
There are many techniques to deal with single- and twin- screw extruders using body-

fitted approaches. For instance the single-screw extruder can be considered a steady-state
problem ,if simulated in a rotating non-inertial reference frame. Once the mesh for one
SSE configuration is built, one can solve the Navier-Stokes equations adding Coriolis and
centrifugal forces [39]. In this way, the observer sees the screw stationary and the barrel
that rotates. Then, with a simple transformation, one can recover the absolute fields.
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On the other hand, for twin-screw extruders some strategies have been developed, such
as remeshing using spline-based interpolation [78] to build the grid that approximates the
intermeshing region between the screw. An approach that is hard to be applied when consid-
ering different modules of the TSE (transport modules and kneading modules), requiring the
addition of sliding interfaces between different modules [76]. However, these approaches
are often customized for a precise application or a precise extruder and cannot be employed
for arbitrary geometries and multiple types of devices. For instance, the approach based on
a non-inertial frame of reference is applicable only when we have a single rotating object,
like in single-screw extruder, while ad-hoc remeshing techniques that proved to be effective
for twin-screw extruders (see [75,77]) cannot be extended to more recent mixing technolo-
gies that involve not only a significant increase of complexity in geometry and kinematics,
namely the planetary roller extruder (PRE) (Figure 1.3).
The PRE is a multi-screw extruder composed by a central spindle and the barrel with

variable number of smaller spindles, or planets, between them. The rotation of the central
spindle drives the one of the planets thanks to their gear-like shapes.

Figure 1.3: Schematics of a planetary roller extruder [13].

The results obtained on these geometries, were performed using an in-house developed
C++ library, based on the official OpenFOAM release (openfoam.org). In this work we
introduce the library and the major novelties that have been implemented with respect to
the official release. A deeper look has been devoted to the implementation of the Immersed
Boundary method, that is the major contribution of the project.
Then, we present numerical results for a complete single-screw extruder. For this bench-

mark we have also performed a scalability analysis of the code in order to measure its parallel
performance and its ability to deal with large scale problems. As a second case, we present
the simulation of a twin-screw extruder sector made by several transport and kneading
modules. This allows us to exploit the modularity of our IBM and its ability in dealing with

https://openfoam.org
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multiple immersed boundaries. Finally we introduce the planetary roller extruder geometry
and the meshing strategy that we employed to build a “semi-conforming” grid, in which the
planets are the only geometries that are approximated with the IBM.
In conclusion the structure of the thesis is as follows. In Chapter 2 we introduce the

governing equations and the rheological laws of non-Newtonian fluids with temperature de-
pendent viscosity. In Chapter 3 we introduce the Box method formulation and we expose its
convergence analysis for Poisson and Stokes problems. Then we add the Diffuse Interface
method to the BM formulation, in order to include immersed surfaces in the formulation,
and we extended the previous convergence analysis to this non-conforming case. In Chapter
4, we describe the implementation of the Immersed Boundary method, exploiting its charac-
teristics when dealing with complex problems and geometries. We also numerically assess its
accuracy properties, testing it on cases with analytical solutions and also on a case of inter-
est, a simplified geometry of a single-screw extruder. In Chapter 5, we describe the family
of SIMPLE algorithms for fluid flow problems. We also introduce the IBM in the SIMPLE
formulation deriving a consistent immersed boundary condition for pressure. Finally, we
introduce a new family of algorithms, inheriting the properties of the SIMPLE family, devel-
oped to deal with problems involving high-viscosity non-Newtonian flows with temperature
dependent viscosity. We also introduce the implementation of the code developed and cus-
tomized for the simulation of polymer mixing processes. Finally, in Chapter 6, we present
the numerical results obtained with this code on realistic industrial extruders geometries: a
single- and twin-screw extruders and a planetary roller extruder.



Chapter 2

Mathematical modelling of polymer
mixing processes

In this chapter we presents an overview of the equations that govern polymer mixing pro-
cesses, that involve motion of polymer melt. The equations involved are the incompressible
Navier-Stokes equations and the temperature conservation equation. The equations are de-
rived from mass, momentum and energy conservation laws through the use of Reynolds
Transport Theorem (RTT). Then a discussion on the rheology of polymer melts is developed
with a special focus on how the viscosity of the material is influenced by temperature and
by the presence of additives in the compound.
In section 2.1 we derive [66] themomentum balance, mass and temperature conservation

equations, with particular focus on the roles played by viscosity and viscous dissipation.
In section 2.2 we introduce some viscosity law for generalized Newtonian fluids and we
describe how temperature and volume filler fraction modify these laws.

2.1 Governing equations

Let Ω0 be the reference configuration of a continuum at time 0 and let Ωt be its configuration
at time t ∈ [0; +∞). Its trajectory can be defined as the positions x and time instants t such
that x belongs to the configuration of the body at time t Ωt:

X = {(x, t) ∈ R3 × [0; +∞) : x ∈ Ωt} =
⋃

t∈[0;+∞)

(Ωt × {t}) . (2.1)

Now we state the Reynolds Transport theorem (RTT), that is used to model the conser-
vation of a certain intensive quantity of a material.
Theorem 2.1.1 (Reynolds Transport Theorem). Let ϕ be a sufficiently regular scalar field
defined on X. Denote with Vt ⊂ Ωt an arbitrary portion of the continuum at time t and let u
be the Eulerian velocity field defined on X.

Then, there holds
d
dt

∫
Vt

ϕ dV =

∫
Vt

∂ϕ

∂t
dV +

∫
∂Vt

ϕu · n dS.
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Remark 2.1. Theorem 2.1.1 holds also if the scalar field ϕ is replaced by a vectorial or
tensorial field.
We now employ RTT to derive the conservation laws that we need to model mixing pro-

cesses of polymer melts.

2.1.1 Mass conservation

The mass conservation principle states that the mass must remain constant over time. Let
Vt be some portion of a continuum in its configuration Ωt, at time t.
Let ρ(x, t) [kg/m3] be the density of the fluid, then the mass conservation principle reads

as follows
d
dt

∫
Vt

ρdV = 0. (2.2)

Making use of the RTT and the divergence theorem, equation (2.2) can be rewritten as∫
Vt

∂ρ

∂t
dV +

∫
∂Vt

ρu · ndS =

∫
Vt

∂ρ

∂t
dV +

∫
Vt

∇ · (ρu)dV = 0.

Since last equation must be satisfied independently of Vt, there holds
∂ρ

∂t
+∇ · (ρu) = 0. (2.3)

Moreover, we can further simplify the mass conservation equation by the incompressibil-
ity constraint. A flow is incompressible when the volume of any portion of the continuum
does not change during its motion. This constraint is formulated as

d
dt

∫
Vt

dV = 0. (2.4)

Then, by RTT:
d
dt

∫
Vt

dV =

∫
Vt

∂1

∂t
dV +

∫
∂Vt

u · ndS =

∫
Vt

∇ · udV = 0.

Since the latter must be true for each portion of the body, the incompressibility constraint
is satisfied if the following equation holds locally:

∇ · u = 0. (2.5)

Under incompressibility constraint the mass conservation equation becomes
∂ρ

∂t
+∇ · (ρu) = ∂ρ

∂t
+ ρ∇ · u+∇ρ · u =

∂ρ

∂t
+∇ρ · u =

dρ
dt = 0, (2.6)

that means density remain constant in time along the flow trajectory. Furthermore, if density
is uniform in the reference configuration Ω0, then each point of Ωt has uniform density
ρ ∈ R+, for any instant t.
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2.1.2 Momentum balance

The linear momentum balance equation states that the rate of change of the linear momen-
tum of a body equals the sum of surface forces and body forces applied to it:

d
dt

∫
Vt

ρudV =

∫
∂Vt

sdS +

∫
Vt

ρfdV, (2.7)

where s and ρf represent surface and volume forces, respectively.
By Cauchy theorem, we can rewrite s as s = σn, where T is the Cauchy stress tensor field

and n the unit normal vector of Vt, directed outwards:

d
dt

∫
Vt

ρudV =

∫
∂Vt

σndS +

∫
Vt

ρfdV.

We again use RTT with the divergence theorem:∫
Vt

∂ρu
∂t
dV +

∫
∂Vt

(ρu)(u · n)dS =

∫
Vt

∇ · σ dV +

∫
Vt

ρfdV,

that by the following vectorial identity

ρu(u · n) = ρ(u⊗ u)n,

becomes ∫
Vt

∂ρu
∂t
dV +

∫
∂Vt

ρ(u⊗ u)ndS =

∫
Vt

∇ · σ dV +

∫
Vt

ρfdV. (2.8)

Using divergence theorem:∫
Vt

∂ρu
∂t
dV +

∫
Vt

∇ · (ρu⊗ u)dV =

∫
Vt

∇ · σ dV +

∫
Vt

ρfdV. (2.9)

The latter equation must hold for any portion Vt of the continuum, hence the momentum
balance finally reads:

∂ρu
∂t

+∇ · (ρu⊗ u) = ∇ · σ + ρf. (2.10)

Moreover, under the incompressibility assumption and with ρ uniform in the domain Ωt, the
momentum conservation reads:

ρ
∂u
∂t

+ ρ(u · ∇)u = ∇ · σ + ρf. (2.11)

2.1.3 Energy conservation

The energy conservation is given by the first law of thermodynamics. It states that rate of
change of energy in a system equals the sum of the rate of change of added heat to the
system and the rate of work done on the system. Let Q,U,K be the incoming heat per unit
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time, the internal energy and kinetic energy of the continuum, respectively. The first law of
thermodynamics reads as follows:

Q =
dU
dt +

dK
dt . (2.12)

In order to obtain the energy balance equation, we give a definition to these quantities
on a control volume Vt at time t. The kinetic energy K is defined as

K =
1

2

∫
Vt

ρu · udV, (2.13)

and the internal energy as
U =

∫
Vt

ρedV (2.14)

where e represents the density of internal energy per unit mass. On the other hand, the rate
of change of heat added to the system can be written as

Q =

∫
Vt

ρr dV −
∫
∂Vt

hdS

where h is the rate of outgoing heat per unit surface through the boundary of Vt and r is a
source term. Taking advantage of Cauchy theorem, h may be written as h = q · n where q
is the heat flux. So Q becomes such that

Q =

∫
Vt

ρr dV −
∫
∂Vt

q · ndS. (2.15)

We consider now the following result [66]:
Theorem 2.1.2 (Kinetic Energy Theorem). The rate of change of kinetic energy of Vt equals
the sum of the power of external forces Πext and the power of internal forces Πint.

dK

dt
= Πext +Πint,

with
Πext =

∫
∂Vt

(σn) · u dS +

∫
Vt

u · ρf dV,

Πint =−
∫
Vt

σ : D dV,

where D is the symmetric component of velocity gradient:

D =
1

2
(∇u+∇⊺u). (2.16)

Remark 2.2. The termΠint represents the energy generated by the fluid itself, so the viscous
heating, or viscous dissipation. In the context of polymer processing, the viscous heating
plays a fundamental role in temperature variation of polymer melts due to the high viscosity
values that they can assume.
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Employing equations (2.13), (2.14), (2.15) into equation (2.12) and exploiting the ex-
pression of K by Theorem 2.1.2, there holds∫

Vt

ρr dV −
∫
∂Vt

q · ndS =
d

dt

∫
Vt

ρedV +
d

dt

1

2

∫
Vt

ρu · udV

=
d

dt

∫
Vt

ρedV −
∫
Vt

σ : DdV +

∫
∂Vt

(σn) · udS +

∫
Vt

u · ρfdV.
(2.17)

Let V0 be the portion of continuum in the reference configuration corresponding to Vt at
time t. By incompressibility, we perform the change of variable from Ω0 to Ωt:

d
dt

∫
Vt

ρedV =
d
dt

∫
V0

ρmemJ dVm

=

∫
V0

dρm
dt emJ dVm +

∫
V0

ρm
dem
dt J dVm +

∫
V0

ρmem
dJ
dt dVm

where the subscriptm stays for thematerial description of a spatial field and J is the Jacobian
of the transformation, i.e. the determinant of the deformation gradient tensor. J represents
the variation of volume of the body, hence, by incompressibility

dJ
dt = J(∇ · u)m,

that implies
d
dt

∫
Vt

ρedVm =

∫
V0

dρm
dt emJ dVm +

∫
V0

ρm
dem
dt J dVm +

∫
V0

ρmemJ∇ · um dVm.

Performing again a change of variable, this time from Ωt to Ω0, and employing mass
conservation equation (2.3), the following relationship is obtained:

d
dt

∫
Vt

ρedV =

∫
Vt

dρ
dt edV +

∫
Vt

ρ
de
dt dV +

∫
Vt

ρe∇ · udV

=

∫
Vt

(dρ
dt + ρ∇ · u

)
edV +

∫
Vt

ρ
de

dt
dV

=

∫
Vt

ρ
de

dt
dV.

Using the latter relationship into equation (2.17) and exploiting the material derivative of
e, we obtain that∫

Vt

ρr dV −
∫
∂Vt

q · ndS =

∫
Vt

ρ
∂e

∂t
+

∫
Vt

ρu · ∇edV

−
∫
Vt

σ : DdV +

∫
∂Vt

(σn) · udS +

∫
Vt

u · ρfdV.
(2.18)

We now consider the Fourier law for the heat flux q,
q = −k∇T, (2.19)
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and the expression of the internal energy for incompressible fluids e,

e = cPT, (2.20)

where T is the temperature, k is the heat conductivity and cP is the heat capacity of the
fluid. Employing equations (2.19) and (2.20) into equation (2.18), the integral balance for
temperature is obtained:∫

Vt

ρ
∂cpT

∂t
dV +

∫
Vt

ρu · ∇(cpT )dV =

∫
Vt

ρr dV +

∫
∂Vt

(k∇T ) · ndS

+

∫
Vt

σ : DdV −
∫
∂Vt

(σn) · udS −
∫
Vt

u · ρfdV.

Observing that, by divergence theorem and incompressibility constraint,

−
∫
∂Vt

(σn) · udS =

∫
Vt

σ∇ · udV = 0

and then applying again divergence theorem, we obtain the energy equation for the tem-
perature in integral form:∫

Vt

ρ
∂cpT

∂t
dV +

∫
Vt

ρu · ∇(cpT )dV =

∫
Vt

ρr dV +

∫
Vt

∇ · (k∇T )dV +

∫
Vt

σ : DdV

−
∫
Vt

u · ρfdV.
(2.21)

Ultimately, since equation (2.21) must hold for any Vt, there holds

ρ
∂cpT

∂t
+ ρu · ∇(cpT )−∇ · (k∇T ) = σ : D+ ρr − ρu · f (2.22)

where the term σ : D is a heat source modelling the viscous friction as the product between
viscous stress and gradient tensor of deformation.

2.1.4 Motion of a generalized Newtonian fluid

We have now all the ingredients to set the mathematics modelling the motion of a polymeric
material during its processing. Asmentioned before, the viscosity of a polymer is not uniform
but varies in space and time. The behaviour of generalized Newtonian fluids is characterised
by the dependence of the viscosity on the shear rate and possibly temperature. Hence we
need amore general definition to define the constitutive relation for the Cauchy stress tensor.
There is a multitude of constitutive equations proposed for polymer melts. However,

only a few have been used to solve actual polymer processing problems. The generalized
Newtonian fluid models are widely used in polymer processing flow analysis, since they are
capable of describing well the strong dependence on shear rate of melts [70]. In particular,
we consider the case in which the viscosity depends on the instantaneous value of the shear
rate and not on the history experienced by the material, as for viscoelastic fluids.



2.1 GOVERNING EQUATIONS 17

In general, the Cauchy stress tensor of a Stokesian fluid can be written as:

σ = −pI+ τ , (2.23)

where p is the pressure and τ is the viscous stress tensor. Morover, we also assume that τ
is a continuous function of ∇u and that it is frame invariant, i.e. it does not change with
respect to different reference frame, even non-inertial.
If we consider Newtonian fluids, we have that

τ = λ∇ · uI+ 2µD, (2.24)

where µ is the dynamic viscosity of the fluid and λ is the second viscosity coefficient. Gen-
eralized Newtonian fluids present a viscosity µ = µ(γ̇, T ) that depends from the shear rate
γ̇, defined as

γ̇ =
√
2D : D, (2.25)

and possibly by temperature. We will discuss in next sections the explicit dependence of
viscosity from shear rate and temperature.
Thus, in general we have that

σ = (−p+ λ∇ · u) I+ 2µ(γ̇, T )D,

that by incompressibility constraint becomes

σ = −pI+ 2µ(γ̇, T )D. (2.26)

Before writing the final system of partial differential equations that describes the motion
of a generalized Newtonian fluid, we have to compute the divergence of Cauchy stress tensor
and the viscous heating source term:

∇ · σ =−∇ · (pI) +∇ · (2µ(γ̇, T )D)
=−∇p+∇ · (µ(γ̇, T )(∇u+∇⊺u)) ,

σ : D =σ : ∇u
=− p∇ · u+ µ(γ̇, T )(∇u+∇⊺u) : ∇u
=µ(γ̇, T )(∇u+∇⊺u) : ∇u.

Taking now equations (2.11) divided by ρ, (2.6) and (2.22), the resulting governing
system, that describes the motion of an incompressible generalized Newtonian fluid, reads:
let ν be the kinematic viscosity,

∂u
∂t

+ (u · ∇)u−∇ · (ν(γ̇, T )(∇u+∇⊺u)) =−∇p

ρ
+ f, (2.27a)

∇ · u =0, (2.27b)

ρ
∂cpT

∂t
+ ρu · ∇(cpT )−∇ · (k∇T ) =µ(γ̇, T )(∇u+∇⊺u) : ∇u+ ρr − ρu · f.

(2.27c)



18 MATHEMATICAL MODELLING OF POLYMER MIXING PROCESSES

2.1.4.1 Non-inertial reference frames

The formulation of Navier-Stokes equations is in most cases formulated with respect to a ref-
erence frame that is still or moving with constant velocity. However, there exist applications
in which it is convenient to set the reference frame, for instance, on points that are rotating.
Indeed, if considering for example the single-screw extruder (c.f. Chapters1 and 6), if

one a flow driven by the central shaft, a time dependent simulation has to be implemented
because of the presence of the teeth that moves in time. On the other hand, if the reference
frame is placed on the screw, thus rotates with the screw. In this case, the problem can be
considered steady-state because the screwwill be still and the barrel will move with opposite
velocity with respect to the original screw velocity. With this approach a lot of computational
time can be saved.
When dealing with non-inertial reference frames, the Navier-Stokes equations have to be

modified because we want to solve equations for the relative velocity of the new frame and
not for the absolute velocity.
In the following, we rewrite the Navier-Stokes equations for the relative velocity com-

puted on the absolute reference frame. For the derivation we considered some results
from [66].
Let then r = x−Q be the position vector of a point x with respect to the axis passing by

point Q directed as its rotational velocity ω. Let u be the absolute velocity and ur be the
velocity relative to the non-inertial reference frame. Then, the following law holds.

Theorem 2.1.3 (Galileo). The velocity of a point, computed with respect to an absolute frame
of reference, is related with the velocity computed from a moving reference frame by

u = ur + uτ , (2.28)

where uτ = uQ + ω ∧ r is the drift velocity and uq is the velocity of point Q.

A similar result holds for the acceleration.

Theorem 2.1.4 (Coriolis). The acceleration of a point, computed with respect to an absolute
frame of reference, is related with the acceleration computed from a moving reference frame by

du
dt

=
dur

dt
+

duQ

dt
+

duC

dt
, (2.29)

where
duQ

dt
=

dQ
dt

+ ω̇ ∧ r+ ω ∧ (ω ∧ r)

is the drift acceleration and
duC

dt
= 2ω ∧ ur

is the Coriolis acceleration.

In the light of Theorems 2.1.3 and 2.1.4, we can rewrite Navier-Stokes equations in terms
of the relative velocity ur.
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First consider some operator of Navier-Stokes equations with respect to the relative ve-
locity.

Du
Dt =

Dur

Dt +
dQ
dt + ω̇ ∧ r+ ω ∧ (ω ∧ r) + 2ω ∧ ur,

∇ · u =∇ · ur +∇ · (ω ∧ r) = ∇ · ur,

∇u =∇ur +∇(ω ∧ r) = ∇ur + [ω]∧,

(2.30)

where

[ω]∧ =


0 −ωk ωj

ωk 0 −ωi

−ωj ωi 0

 ,
from which follows

∇ · ∇u =∇ · ∇ur +∇ · ∇(ω ∧ r) = ∇ · ∇ur. (2.31)
Then, setting

fr =
dQ
dt + ω̇ ∧ r+ ω ∧ (ω ∧ r) + 2ω ∧ ur,

the Navier-Stokes equations, written with respect to relative velocity, read
∂ur

∂t
+ (ur · ∇)ur −∇ · (ν(γ̇, T )(∇ur +∇⊺ur)) =−∇p

ρ
+ f− fr,

∇ · ur =0,

ρ
∂cpT

∂t
+ ρ(ur + ω ∧ r) · ∇(cpT )−∇ · (k∇T ) =µ(γ̇, T )(∇ur +∇⊺ur) : (∇ur + [ω∧])

+ ρr − ρ(ur + ω ∧ r) · f.
(2.32)

Another way of writing the Navier-Stokes equations with respect to a relative reference
frame is the following. We set the system in the relative frame but we solve the equations
with respect to the absolute velocity. In order to obtain this formulation, equations (2.32)
have to be rewritten in order to have the absolute velocity as the convected velocity. First,
rewrite the convective term in the following way:

(ur · ∇)ur =(ur · ∇)(u− uQ − ω ∧ r)
=(ur · ∇)u− (ur · ∇)uQ − (ur · ∇)ω ∧ r
=(ur · ∇)u− [ω∧]ur = (ur · ∇)u− ω ∧ ur.

(2.33)

Then, comparing the latter against the source term fr, it holds

(ur · ∇)ur + fr =(ur · ∇)ur +
dQ
dt + ω̇ ∧ r+ ω ∧ (ω ∧ r) + 2ω ∧ ur

=(ur · ∇)u− ω ∧ ur +
dQ
dt + ω̇ ∧ r+ ω ∧ (ω ∧ r) + 2ω ∧ ur

=(ur · ∇)u+
dQ
dt + ω̇ ∧ r+ ω ∧ ((ω ∧ r) + ur)

=(ur · ∇)u+
dQ
dt + ω̇ ∧ r+ ω ∧ u.

(2.34)
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Finally, setting
f̃r =

dQ
dt + ω̇ ∧ r,

the Navier-Stokes equations formulated in the relative reference frame with respect to the
absolute velocity read

∂ur

∂t
+ (ur · ∇)u+ ω ∧ u−∇ · (ν(γ̇, T )(∇u+∇⊺u)) =−∇p

ρ
+ f− f̃r,

∇ · u =0,

ρ
∂cpT

∂t
+ ρu · ∇(cpT )−∇ · (k∇T ) =µ(γ̇, T )(∇u+∇⊺u) : ∇u

+ ρr − ρu · f.

(2.35)

Remark 2.3. The computation of the shear rate does not change in a non-inertial reference
frame:

γ̇ =
√
2D : D =

√
1

2
|∇u+∇⊺u|2

=

√
1

2
|∇ur + [ω]∧ +∇⊺u|2 + [ω]⊺∧

=

√
1

2
|∇ur +∇⊺u|2,

(2.36)

because of [ω]∧ is skew-symmetric.

This formulation is convenient because it avoids to write new set of boundary conditions
for ur. This allows also to apply relative reference frames just in some domain subsets. The
latter approach is called multi-reference frame (MRF) [65].

2.1.4.2 Arbitrary Lagrangian-Eulerian formulation

Another popular formulation of the Navier-Stokes equations is the Arbitrary Lagrangian-
Eulerian (ALE) formulation. This formulation is particularly useful when dealing with mov-
ing domains. For instance, in Finite Volume applications, when the computational grid
moves or deforms, ad-hoc strategies have to be implemented.
To write the ALE formulation of the momentum balance equation, let V (t) be a control

volume changing in time, integrate equation (2.11) on V (t) and integrate by parts the other
terms: ∫

V
(t)
∂u
∂t

dx+

∫
∂V (t)

uu · nds =
∫
∂V (t)

σ

ρ
nds+

∫
V (t)

fdx.

Apply now the RTT to the temporal term:∫
V (t)

∂u
∂t

dx =
d
dt

∫
V (t)

udx−
∫
∂V (t)

uvs · nds
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where vs is the velocity of the surface. Then the integral ALE formulation of the momentum
balance equation becomes

d
dt

∫
V (t)

udx+

∫
∂V (t)

u(u− vs) · nds =
∫
∂V (t)

σ

ρ
nds+

∫
V (t)

fdx. (2.37)

For what concerns the mass conservation and energy equations one can employ the same
procedure, however, by incompressibility, mass conservation will remain the same. For the
energy equation, by integrating on V (t) and applying RTT, we obtain the following ALE
formulation:

d
dt

∫
V (t)

ρcpTdx+

∫
∂V (t)

ρcpT (u− vs) · nds−
∫
∂V (t)

k∇T · nds =∫
V (t)

[µ(γ̇, T )(∇u+∇⊺u) : ∇u+ ρr − ρu · f] dx.
(2.38)

In conclusion, what changes from the original formulation of the Navier-Stokes equation
is the fact that the convection velocity is replaces by the velocity relative to the domain
motion, u − vs, and the temporal derivative is now applied to the whole integral of the
control volume. In temporal discretization schemes, this turns in the fact that both current
and older volumes are involved in the discretization.

2.2 Rheological characterization of polymer melts

In previous section, we recalled the equations that govern themotion of a generalized Newto-
nian fluid. However, equations (2.27) are not closed until we define the constitutive relation
for viscosity ν(γ̇, T ).
Viscosity is defined as the proportionality factor between stress and shear rate. Viscosity

is the lack of slipperiness of a fluid, from which a resistance proportional to the velocity
gradients arises. This is equivalent to take relation (2.24) between stress and shear rate,
considering an incompressible fluid

τ = 2µD. (2.39)
Thus, modelling µ is equivalent to model how a material deforms under a certain force. The
science that studies this is called rheology.
Not all the materials show a linear behaviour between stress and shear like Newtonian

fluids, modelling viscosity as a constant. Especially polymers have been found to obey non-
linear laws where also the viscosity itself depends on the shear rate. The law describing this
dependence is called rheological law. We have reported, for different values of rheological
parameters, some examples of rheological laws in Figure 2.1 that we now present in the
following.
The most widely used form of the general viscous constitutive relation is the power law

model
µ(γ̇) = µ0 (λγ̇)

n−1 . (2.40)
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The parameters µ0 [Pa·s], n and λ [s] represent the consistency factor, i.e. the zero-shear
viscosity, the power law exponent and the relaxation time of the fluid, respectively. This is
the simplest law that can be employed. To have an idea of its behaviour, consider µ0 = 1
and λ = 1, γ̇ ∈ (0, 100) and n ∈ (0, 2). As it can be seen in Figure 2.1a, if n is less than one,
viscosity decreases with shear rate, so it shows a shear-thinning behaviour. On the contrary,
if n is more than one, the fluid shows a shear-thickening behaviour. If n = 1, the fluid behaves
as it is Newtonian.
When, for instance, n < 1, power law is suitable for the approximation of viscosity in

regimes of high shear rate values. On the other hand, when shear rate goes to zero, the fluid
assumes infinitely large viscosity values. However, what is usually observed experimentally
is that at low shear rate viscosity goes to a constant and not to infinity, as power law describes
[98].
Thus, Bird-Carreau-Yasuda law has been introduced:

µ(γ̇) = µ0 [1 + (λγ̇)a]
n−1
a , (2.41)

which behaviour is reported in Figure 2.1b. Bird-Carreau-Yasuda law shows a power law
behaviour in presence of high shear rates, indeed

µ(γ̇) ≃ µ0(λγ̇)
n−1,

as γ̇ → ∞. On the other hand, when the shear rate goes to zero, the viscosity assumes a
Newtonian behaviour

µ(γ̇) ≃ µ0,

as γ̇ → 0.
The last law that we want to mention is the Cross law. Some types of dilute polymers

and suspensions have been observed to present a Newtonian behaviour, as the shear rate
goes to zero. Thus, Cross law is a power law link between two Newtonian behaviours, one
at high shear rates and the other at low shear rates (Figure 2.1c). The law reads

µ(γ̇) = µ∞ +
(µ0 − µ∞)

1 + (λγ̇)1−n. (2.42)

Cross law shows a power law behaviour in presence of high shear rates, up to µ0, indeed

µ(γ̇)− µ∞ ≃ (µ0 − µ∞)(λγ̇)n−1,

as γ̇ → ∞. On the other hand, when the shear rate goes to zero, we have

µ(γ̇) ≃ µ∞.

Temperature dependence Polymer mixing applications can often involve temperature as
a process parameter and temperature plays a fundamental role in changing the viscosity
value. for non-isothermal processing problems, the temperature dependence of viscosity
can be as important as shear rate dependence. In general, a temperature raise implies a
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viscosity decrease for any liquid. To model this behaviour, let us consider the power law as
an example and let H(T ) be the the temperature shift factor. Then the modified power law
reads

µ(γ̇, T ) = H(T )µ0 (λγ̇)
n−1 . (2.43)

H(T ) acts on the value of the consistency factor µ0. Clearly,H(T ) has tomodel the behaviour
described above, hence it will decrease as temperature increases and vice-versa.
One simple model to define H(T ) is the Arrhenius model. Let α [K] be the activation

energy, Tα [K] be the activation temperature and T0 be the reference temperature.

H(T ) = exp

[
α

(
1

T − T0
− 1

Tα − T0

)]
. (2.44)

Another popular model to described the change of viscosity with respect to temperature
is the Williams-Landel-Ferry (WLF) model [64]. The WLF model reads

log(H(T )) = c1

[
Tr − Ta

c2 + Tr − Ta
− T − Ta

c2 + T − Ta

]
, (2.45)

where Tr [K] is the reference temperature, Ta is the glass transition temperature and c1, c2
are two constant.
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(a) Power law viscosity for various values of n in both shear thinning
and shear thickening regimes.
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(b) Bird-Carreau-Yasuda law viscosity for various values of n for a shear
thinning fluid, where µ0 = 100 [Pa·s] and a = 2.
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(c) Cross law viscosity for various values of n for a shear thinning fluid,
where µ0 = 100 [Pa·s] and µ∞ = 1 [Pa·s].

Figure 2.1: Examples of rheological laws for shear thinning fluids.
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Filler dependence The last quantity that can influence the viscosity of a polymer is the
filler volume fraction. Usually, polymer melts are mixed with opportune particulates in order
to enhance the mechanical properties of the final product. The addition of a solid compound
in a polymeric matrix produces a solid-liquid suspensionwith different rheological properties
with respect to those of the unfilled polymeric matrix.
Let us define the filler volume fraction of a polymer matrix. Let V be the volume of a

pure polymer matrix. Let Vdispersed be the volume of filler dispersed into polymeric matrix.
The volume fraction ϕf of the filler is defined as

ϕf =
Vdispersed

V + Vdispersed
. (2.46)

The viscosity of the filled polymer in presence of a concentration of the suspended par-
ticulates, represented by the filler volume fraction ϕf , can be modelled similarly to what is
done for temperature shift factor [114].
The modelling of the filler volume fraction dependence of viscosity is subordinated by

the modelling of relative viscosity. The relative viscosity µr of a filled compound is defined
as the ratio between the viscosity of the filled compound and the viscosity of the unfilled
polymer matrix, at the same shear stress τ and temperature T [90].

µr =
µfilled(γ̇1, T )|τ
µpure(γ̇2, T )|τ

, (2.47)

where γ̇1 and γ̇2 are such that τ = µfilled(γ̇1, T )γ̇1 = µpure(γ̇2, T )γ̇2.
Two considerations can be made on the presence of a filler in a polymer matrix. Since

the dispersion of solid particulates increases internal friction and, consequently, energy dis-
sipation, the viscosity of a filled compound must higher than the viscosity of the unfilled
polymer matrix. The higher is the volume fraction of the filler, the higher is its concentra-
tion and so the higher is the relative viscosity of the filled compound. Thus, the following
relation holds for the relative viscosity:

∂µr(ϕ)

∂ϕ
≥ 0. (2.48)

On the other hand, the filled polymer viscosity must be consistent with the unfilled one, so
the following must hold,

µr(0) = 1, (2.49)

since, if the filler volume fraction is null, the viscosity of the compound is the viscosity of
the pure polymer.
Another aspect that has to be take into account is the maximum packing volume fraction.

The maximum packing filler volume fraction ϕM is defined as the filler volume fraction
corresponding to the maximum packing arrangement of filler particles, while still retaining
a continuous material. This quantity depends on the shape and size distribution of filler
particles.
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Many models have been proposed in the literature to describe the behaviour of µr with
respect to ϕf . For instance the Maron-Pierce model [100,114] reads:

µr(ϕf ) =

(
1− ϕf

ϕM

)−2

. (2.50)

The expression of µr can be employed in the various rheological laws presented above.
Consider first a Bird-Carreau viscosity law, that, for a filled polymer, reads:

µ(γ̇, T ) = H(T )µr(ϕf )µ0
[
1 + (µr(ϕf )λγ̇)

2
]n−1

2 . (2.51)
Considering equation (2.51) for high shear rates, we can obtain the power law for filled
compounds:

µ(γ̇, T ) = H(T )µr(ϕf )
nµ0(λγ̇)

n−1. (2.52)
Finally, also Cross law can be modified in order to take into account the effect of the filler
on the viscosity [114]:

µ(γ̇) =
H(T )µ0µr(ϕf )

1 + (µr(ϕf )λγ̇)
1−n. (2.53)

2.3 Rheometry

The dependence of the rheology on the filler volume fraction has been modelled with the
approach introduced in the previous section and it has been implemented within the soft-
ware library that will be presented in details in Chapter 5. The analysis of filler dependence
in polymer rheologies has been carried out in the context of this research, together with a
comparison between numerical models and experimental data coming from experiments on
a capillary rheometer. The results have been presented in [41]. This aspect has not been
extensively analysed in the present work. However, for the sake of completeness, we recall
here the analysis behind the experimental data fitting to find rheological parameters of a
polymeric compound. Further details can be found in [41].
Rheometry is an experimental technique employed to quantitatively determine the pa-

rameters of rheological laws, i.e. the materials rheological properties. Rheometry implies
the usage of apparati called rheometers. Rheometers are devices where a fluid is poured and
undergoes extensional flows (extensional rheometers) rather than steady or oscillatory shear
flows (shear rheometers). There exist many types of rheometers, such as Couette rheometer,
plate-plate rheometer, cone-plate rheometer and capillary rheometer, depending on which
range of shear rate one wnats to investigate.
In particular, shear rheometers operate by imposing a kinematic quantity, such as veloc-

ity or displacement, and then measuring a dynamic quantity, like pressure drop or shear
stresses. Since rheometers reproduce flows which profile is known, we are able to estimate
the viscosity, that is the proportionality factor between shear rate, generated by the kine-
matic quantity, and the stress estimated from the dynamic quantity. Moreover, rheometers
are thermostatated in order to reproduce flows that can be approximated as isothermal
flows.
In this section, we focus on the capillary rheometer.
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2.3.1 Capillary Rheometer

Capillary rheometers are devices composed by a tank, or reservoir, where the fluid is col-
lected, and then a piston pushes the fluid into a duct, called capillary. The reservoir and
the capillary have very different cross sectional areas. The capillary can have both circular
(capillary die) or rectangular (slit die) section. This setup is especially useful to study high
viscous flows over a broad range of shear rate values.
The velocity at which the piston moves determines the shear rate, while the pressure

drop between the tank and the capillary outflow is measured in order to estimate the shear
stress. We can determine both shear rate and shear stress because, being the capillary a
cylindrical duct, a Poiseuille flow, and so an analytical flow, develops in the duct.
Usually, the fluid is brought to a constant temperature before being pushed into the duct

to obtain an isothermal flow. However, this is not obvious, especially for high viscous fluids,
where viscous friction dissipates a lot of energy during the motion.
In the following section we introduce the so called Rabinowitz and Mooney analyses.

These analyses are performed in order to fit experimental data with a rheological viscosity
law in order to determine the law parameters. The first is employed in the case of no slip
boundary conditions while the second for slip boundary conditions.
The aim of the analyses is to find a simplified representation of the relationship between

viscous stress and shear rate, in which viscosity is the proportionality factor. In particular, the
analyses focus on the evaluation of a representative value for the shear rate, computed from
the flow rate imposed to the capillary inflow, and a value for the viscous stress, computed
from the pressure drop measured between the inflow and the outflow of the capillary die.
The resultant relation will be

µ ≃ τw
γ̇w
,

where the subscript w stays for wall, because τw and γ̇w are the viscous stress and the shear
rate, respectively, computed at the wall of the duct.

2.3.2 Isothermal Poiseuille flow in a cylindrical duct

Consider an incompressible power law fluid flowing inside a cylindrical channel of radius R.
Assuming that the flow is isothermal, we discard the energy equation and the dependence
of viscosity on temperature. Then, the equations governing the motion of the fluid read

∂u
∂t

+ (u · ∇)u =−∇p

ρ
+∇ · (ν(γ̇)(∇u+∇⊺u)) + f, (2.54a)

∇ · u =0 (2.54b)
(2.54c)

where u = [ux, uy, uz]
⊺.

Then, we consider a power law fluid, which constitutive equation reads

ν(γ̇) =
µ0
ρ
(λγ̇)n−1 = ν0γ̇

n−1. (2.55)
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Consider now the cylindrical coordinates r, θ, z, in such a way that the z axis is aligned
with the axis of the capillary duct. With a slight abuse of notation, let u = [ur, uθ, uz]

⊺ be the
velocity in cylindrical coordinates and p̃ = p

ρ . Let us now write system (2.54) in cylindrical
coordinates:
∂ur
∂t

+ ur
∂ur
∂r

+
uθ

r

∂ur
∂θ

− u2θ
r
+ uz

∂ur
∂z

=− ∂p̃

∂r
+

(
1

r

∂(rτrr)

∂r
+

1

r

∂τrθ
∂θ

− τθθ

r
+
∂τrz
∂z

)
+ fr,

(2.56a)
∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ

r

∂uθ
∂θ

− uruθ

r
+ uz

∂uθ
∂z

=− ∂p̃

∂θ
+

(
1

r2
∂(r2τrθ)

∂r
+

1

r

∂τθθ
∂θ

+
∂τθz
∂z

)
+ fθ,

(2.56b)
∂uz
∂t

+ ur
∂uz
∂r

+
uθ

r

∂uz
∂θ

+ uz
∂uz
∂z

=− ∂p̃

∂z
+

(
1

r

∂(rτrz)

∂r
+

1

r

∂τθz
∂θ

+
∂τzz
∂z

)
+ fz,

(2.56c)
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

=0 (2.56d)

where τ is the viscous stress tensor defined as τij = ν(γ̇)Dij where Dij are the components
of two times the symmetric part of the velocity gradient tensor,

Drr =2
∂ur
∂r

, Drθ = Dθr = r
∂

∂r

(
uθ

r

)
+

1

r

∂ur
∂θ

,

Dθθ =2

(
1

r

∂uθ
∂θ

+
ur

r

)
, Dθz = Dzθ =

∂uθ
∂z

+
1

r

∂uz
∂θ

,

Dzz =2
∂uz
∂z

, Drz = Dzr =
∂ur
∂z

+
∂uz
∂r

.

(2.57)

It is known that the solution of a Poiseuille flow in cylindrical coordinates reads u = uz(r)ez.
Neglecting body forces and assuming a steady-state flow, system (2.54) can be rewritten as

0 =− ∂p̃

∂r
,

0 =− 1

r

∂p̃

∂θ
,

0 =− ∂p̃

∂z
+

1

r

∂

∂r

(
ν(γ̇)r

∂uz
∂r

) (2.58)

from which, by γ̇ = ∂uz
∂r , we derive the following relationships

p =p(z)

∂p

∂z
=
1

r

∂

∂r
(ν(γ̇)r

∂uz
∂r

)

ν(γ̇) =ν0γ̇
n−1 = ν0

∣∣∣∂uz
∂r

∣∣∣n−1
.

(2.59)
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Let us consider system (2.59). From the first equation, we deduce that the pressure field is
constant along cross flow sections, i.e. r, z. The second equation, since the right-hand-side
depends only on r and the left-hand-side depends only on coordinate z, must be equal to a
constant,

∂p

∂z
=

1

r

∂

∂r
(ν(γ̇)r

∂uz
∂r

) = A. (2.60)

Then, employing the third equation in the right-hand-side of latter equation and integrating
separately the differential problems, we obtain

p̃ =Az +B,

uz =−
( |A|
2ν0

) 1
n n

n+ 1
r

n+1
n + C.

(2.61)

Now employing boundary conditions into equation (2.61),

uz(R) = 0, p̃(0) = −∆p̃, p̃(L) = 0

where ∆p̃ = p̃(L)− p̃(0), we obtain the expressions of constants A,B and C:

A =
∆p̃

L
, B = −∆p̃, C =

( |∆p̃|
2ν0L

) 1
n n

n+ 1
R

n+1
n . (2.62)

Thus, the final expressions for velocity and pressure read

p̃ =∆p̃

(
z

L
− 1

)
,

uz =
n

n+ 1

( |∆p̃|
2ν0L

) 1
n

(R
n+1
n − r

n+1
n ).

(2.63)

Equation (2.63) can be rewritten with respect to average velocity Uavg. Write

Uavg =
1

πR2

∫ R

0

∫ 2π

0
uzr dθ dr

=

(
|∆p̃|
2ν0L

) 1
n n

3n+ 1
R

n+1
n ,

(2.64)

then
uz(r) = Uavg

3n+ 1

n+ 1

(
1−

( r
R

)n+1
n

)
. (2.65)

Slip boundary conditions If slip boundary conditions are imposed on velocity at wall the
solution changes. Slip conditions are defined as

uz(R) = f(τt)
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where τt is the tangential component of viscous stress tensor at the wall,

τt = σn− (σn · n)n, (2.66)

and f is some function. Since on the walls it holds

σ = −pI+ µ(γ̇)
∂uz
∂r

∣∣∣
R
(er ⊗ ez + ez ⊗ er), (2.67)

if we set n = er, then
τt = µ(γ̇)

∂uz

∂r

∣∣∣
R
ez. (2.68)

Now consider equation (2.61). Employing slip boundary conditions we have to recompute
the value of C: let

uz(R) = f(τt) = f

(
µ(γ̇)

∂uz
∂r

∣∣∣
R
ez
)
,

then

uz =

( |∆p̃|
2ν0L

) 1
n n

n+ 1
(R

n+1
n − r

n+1
n ) + f

(
−µ(γ̇)

( |∆p̃|
2Lν0

) 1
n

R
1
nez

)
. (2.69)

There exist many function that model the behaviour of a fluid flowing with slip condi-
tions at wall. A model that is often employed is the one describe din [62]: the Navier slip
condition,

f(τt) = KL ∥τt∥ , (2.70)
or its nonlinear version,

f(τt) = KNL ∥τt∥m , (2.71)
where the parameters KL and KNL are the linear and nonlinear slip coefficients, respec-
tively, and m is the nonlinear exponent.
Other popular slip boundary conditions are the Hatzikiriakos and the asymptotic bound-

ary conditions [63]:

f(τt) = KH1 sinh(KH2 ∥τt∥), f(τt) = KA1 log(1 +KA2 ∥τt∥). (2.72)

Let us computer the velocity average using the Navier slip conditions (2.70).

Uavg =
2

R2

∫ R

0
uzr dr

=
2

R2

∫ R

0

( |∆p̃|
2ν0L

) 1
n n

n+ 1
(R

n+1
n − r

n+1
n )r dr + 1

2
KL

|∆P |R
L

=

( |∆p̃|
2ν0L

) 1
n n

3n+ 1
R

n+1
n +

1

2
KL

|∆P |R
L

.

(2.73)

.
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2.3.3 Rabinowitz analysis for the capillary rheometer

The idea behind Rabinowitz analysis is to compare the dynamic and kinematic quantities
measured by the rheometer in order to reduce their relationship to something similar to
equation (2.39), where we consider the viscosity as proportionality factor between shear
rate and stress.
A capillary rheometer, in particular, measures a pressure drop and the corresponding

to an imposed flow rate, the kinematic quantity. To determine rheological parameters we
employ the Rabinowitz analysis [102] the wall shear rates, relative to the magnitude of
pressure drop, that corresponds to the flow rate that is imposed.
Let er, eθ, ez be the unit vectors representing a cylindrical reference frame where ez is

aligned with the axis of the capillary die. Let CV be a control volume of cylindrical shape,
aligned with the axis of the capillary die, with radius r < R and length L, with CS = ∂CV

(see Figure 2.2).

z
Sb0 Sb1

Slat

Capillary die

u = uz(r)ez

Figure 2.2: Cylindrical control volume inside capillary die.

Integrate then the momentum equation on CV :∫
CV

ρfdV +

∫
CV

∇ · (−pI+ 2µ(γ̇)D) dV =

∫
CV

ρ
∂u
∂t
dV +

∫
CV

ρ(u · ∇)udV, (2.74)

By Section 2.3.2, we know that
γ̇ =

∣∣∣∣∂uz∂r

∣∣∣∣ ,
then, by neglecting body forces and by assuming to be steady-state, equation (2.74) becomes∫

CV

∇ ·
(
−pI+ 2ρν0

∣∣∣∣∂uz∂r

∣∣∣∣D) dV = 0. (2.75)

Considering equation (2.65) and applying divergence theorem, the momentum equation
reduces to ∫

CS

pndS =

∫
CS

µ(γ̇)∇ · u ndS. (2.76)

Projection the previous equation on ez leads to∫
Sb1

pdS −
∫
Sb0

pdS =

∫
Slat

µ(γ̇)
∂uz
∂r

dS, (2.77)
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where Sb0 and Sb1 are the inflow and the outflow of CV , respectively, and Slat is the cylin-
drical surface of CV (c.f. Figure 2.2).
Notice now that ∂uz

∂r is constant on Slat, and so γ̇ and µ(γ̇). Assuming that p is constant
on faces Sb0 and Sb1, equation (2.77) can be simplified as

p1πr
2 − p0πr

2 = 2πrLτ |Slat
(2.78)

where p1 and p0 are pressures on faces Sb1 and Sb0, respectively. Then, τ reads

τ =
p1 − p0
2L

r = −|∆p|
2L

r. (2.79)

Evaluating τ in r = R we obtain the wall shear stress

τw = τ |r=R =
p1 − p0
2L

R =
∆p

2L
R. (2.80)

At the moment, what we have found is a relationship between the pressure drop and the
stress tensor. Now we look for a relationship between flow rate and shear rate. Let Q be the
flux across the section of the capillary die:

Q =

∫ R

0

∫ 2π

0
uzr dθ dr = 2π

∫ R

0
uzr dr = 2π

[
1

2
r2uz

]R
0

− 2π

∫ R

0

1

2
r2
∂uz
∂r
dr

=− π

∫ R

0
r2
∂uz
∂r
dr = π

∫ R

0
r2γ̇ dr.

(2.81)

We now employ equation (2.80) and the change of variables

r = −2
Lτ

|∆P | , dr = −2
L

|∆P | dτ,

r = R⇔ τ = τw, r = 0 ⇔ τ = 0,

(2.82)

in equation (2.81):

Q = π

∫ τw

0

(
−2

L

|∆P |

)3

τ2γ̇ dτ =
πR3

τ3w

∫ τw

0
τ2γ̇ dτ. (2.83)

Let the apparent shear rate be defined as

γ̇app =
4Q

πR3
,

then we have that
γ̇app =

4Q

πR3
= 4

1

τ3w

∫ τw

0
τ2γ̇ dτ

and consequently
τ3wγ̇app = 4

∫ τw

0
τ2γ̇ dτ. (2.84)
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Deriving now with respect to τw and dividing then by τw, the following equation is obtained:
1

4

∂γ̇app
∂τw

τw +
3

4
γ̇app = γ̇w (2.85)

where γ̇w is the shear rate at the wall.
Writing

τw =
∂τw

∂ log(τw)
γ̇app =

∂γ̇app

∂ log(γ̇app)
,

we reformulate equation (2.85) as
1

4

∂ log(γ̇app)

∂ log(τw)
γ̇app +

3

4
γ̇app = γ̇w. (2.86)

Finally, defining
1

n
=
∂ log(γ̇app)

∂ log(τw)
,

equation (2.86) becomes
1

4n
γ̇app +

3

4
γ̇app = γ̇w ⇒ γ̇w =

3n+ 1

4n
γ̇app. (2.87)

Computing γ̇w through the latter equation and comparing it to the wall shear stress values
computed from pressure drop of experimental acquisitions, the viscosity law of the fluid can
be estimated interpolating the values thanks to relationship

µ ≃ τw
γ̇w
. (2.88)

2.3.4 Mooney analysis for cylindrical duct

The Mooney analysis is employed combined with the Rabinowitz one in order to take into
account slip boundary conditions on the walls of the capillary duct.
Let uz(R) = vslip be the slip velocity, unknown by now. By the symmetry of the cylindrical

domain vslip can be assumed to be independent of θ and z. We now recall equation (2.81),
that under slip conditions becomes

Q = 2π

[
1

2
r2uz

]R
0

− 2π

∫ R

0

1

2
r2
∂uz
∂r
dr = πR2vslip + π

∫ R

0
r2γ̇ dr. (2.89)

Now, employing the change of variables (2.82), as for the Rabinowitz analysis, equation
(2.89) becomes

Q = πR2vslip +
πR3

τ3w

∫ τw

0
τ2γ̇ dτ (2.90)

and then, rearranging terms,
4Q

πR3
=

4vslip
R

+
4

R3

∫ R

0
r2γ̇dr. (2.91)
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In order to determine the value of vslip, at least two rheometers with different duct lengths
have to be employed. Let L1, L2, R1, R2 and Q1, Q2 be the lengths, the radii and the flow
rates of the two rheometers, respectively. Then, it holds

τw1 = τw2 =⇒ ∆P1

2L1
R1 =

∆P2

2L2
R2 = τw (2.92)

and consequently, considering equation (2.91),
4Q1

πR3
1

=
4vslip
R1

+
4

R3
1

∫ R1

0
r21

∣∣∣∣∂uz1∂r1

∣∣∣∣ dr1,
4Q2

πR3
2

=
4vslip
R2

+
4

R3
2

∫ R2

0
r22

∣∣∣∣∂uz2∂r2

∣∣∣∣ dr2, (2.93)

assuming vslip depending only on τw = τw1 = τw2.
Since

∆P1

2L1
R1 =

∆P2

2L2
R2 (2.94)

it follows that
4

R3
1

∫ R1

0
r21

∣∣∣∣∂uz1∂r1

∣∣∣∣ dr1 = 4

R3
2

∫ R2

0
r22

∣∣∣∣∂uz2∂r2

∣∣∣∣ dr2. (2.95)

Considering equation (2.93), defining

γ̇app1 =
4Q1

πR3
1

, γ̇app2 =
4Q2

πR3
2

,

the slippage velocity vslip can be computed as the slope of the line connecting points
(

4
R1
, γ̇app1

)
and

(
4
R2
, γ̇app2

)
.

Finally, the corrected apparent shear rate reads

γ̇app,corr =
4Qcorr

πR3
=

4(Q− πR2vslip)

πR3
. (2.96)

Once the corrected apparent shear rate (2.96)), we can perform Rabinowitz analysis by
substituting γ̇app with γ̇app,corr in equation (2.85).

2.3.5 Final remarks

The modelling of viscosity dependence on the volume fraction of fillers in polymer matrices
has been inserted in this work through the implementation of these models in the numerical
toolbox developed to simulate polymer mixing processes. As pointed out in [41], the pres-
ence of fillers into polymer matrices has been proven to significantly modify its rheological
properties. The former work emphasised how the modelling of the rheology of a polymer
compound is impactful, both in laboratory and numerical experiments.
The viscosity models presented in this chapter have been used in [41] to compare the

results of numerical simulations of simple experimental flows with experimental data for
different filler fraction levels, finding very good agreement in cases with low filler fraction.
These models will also be tested in Chapter 6 in more complex industrial applications.



Chapter 3

Numerical discretization by the
Diffuse Interface Box method

In this chapter we introduce the Box method formulation and its relation with the classical
Finite Volume method and then we introduce the Diffuse Interface methods to deal with
non-conforming boundaries.
In Section 3.1 we prove the well-posedness of Box method formulation for Poisson and

Stokes problems (c.f. Sections 3.1.2 and 3.1.3) and we performed, for both problems, a
convergence analysis finding a priori estimates of the numerical error in H1 and L2 norms.
Theoretical results are then verified by a numerical assessments on cases with analytic solu-
tions.
In Section 3.2, we combine the to the Box method formulation with a non-conforming

method to approximate immersed boundaries. Among the many non-conforming methods
mentioned in Chapter 1, we focus on the Diffuse Interface method, developed in [124] for
elliptic problems. We extend the former analysis to the Box method applied to a Poisson
problem, obtaining a prioriH1 and L2 error estimates (c.f. Section 3.2.1). Then, in Sections
3.2.2 and 3.2.3, with the help of the theoretical results of Section 3.1.3, we verify numerically
the convergence rates for the Diffuse Interface Box method applied to the Stokes problem.
Finally, in Section 3.2.4, we propose a roadmap to prove theoretically the convergence rates
obtained in numerical experiments.

3.1 Box method: a variational finite volume method

In this section we introduce the Box method applied to elliptic problems. More precisely, we
first analyse the Box method for the Poisson problem and for the Stokes problem, obtaining
a priori error estimates depending on the discretization parameter h, dictating the accu-
racy of the approximation of the PDE. We first study the Box method applied to a Poisson
equation finding a prioriH1 and L2 estimates for the numerical solution. Then, we consider
the Newtonian Stokes problem exploiting the Rhie-Chow stabilization, a well known prac-
tice to stabilize finite volume approximations (see, e.g., [119,137]), and finding numerical
estimates for velocity and pressure.
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We will provide some numerical tests to validate the theoretical results. The numerical
results have been obtained using the open-source library OpenFOAM.

3.1.1 Preliminaries

We now introduce the geometrical setting. Let Ω ⊂ Rd, d = 2, 3 be a polyhedral bounded
domain and let Γ = ∂Ω be its boundary. Let Th = {T} be a conforming and shape regular
triangulation of Ω. We denote by hT the diameter of T ∈ Th and we set h = maxT hT .
Let V = H1(Ω), Vg = H1

Γ = {v ∈ V : v = g on Γ} andQ = L2(Ω)where g is a sufficiently
regular function. With a slight abuse of notation, we will denote by a bold symbol, e.g. V ,
the d-dimensional counterparts of those spaces. Moreover, from now on, the standard norms
for H1 and L2 spaces have to be intended on the whole domain Ω where the domain of
integration is not specified.
On Th we define the space of linear finite elements:

Vh =
{
vh ∈ C0(Ω) : vh|T ∈ P1(t) ∀T ∈ Th

}
⊂ V,

Vh,gh = {vh ∈ Vh : vh = gh on ∂Ω}

where gh is a suitable piecewise linear approximation of g on ∂Ω.
Then, we define the “box mesh” Bh (or dual mesh) associated to Th. We introduce the set

Ph = {pi} of vertices of Th with Ph = P∂
h ∪ Po

h, the set Po
h containing the interior vertices

of Th. We denote by Ppi the set of triangles sharing vertex pi. Let then Bh = {Bi}pi∈Po
h

be the set of boxes Bi. Each box is a polyhedron with a boundary consisting of straight
lines connecting the circumcentres of each triangle T ∈ Ppi (see Figure 3.1) and outer unit
normal vector ni.
The results that are presented here will hold under the following assumption. The primal

mesh Th is assumed to be a Delaunay triangulation, i.e. no vertex of the triangulation is
inside the circumcircle of any triangle of Th. Under this assumption, the dual mesh, defined
as above, will be a Voronoi-type dual mesh and so it will be “orthogonal”, i.e. segments
connecting two barycentres of adjacent boxes are aligned with the unit normal vector of the
face between them. In this way, the Box method and the classical finite volume method will
present similar features.
On Bh we introduce the space of piecewise constant functions.

Wh =
{
wh ∈ L2(Ω) : wh|Bi ∈ P0(Bi) ∀Bi ∈ Bh

}
,

where the relation between the trial and test spaces is defined using a lumping map: let
vh ∈ Vh,

Πh : Vh → Wh : vh =
∑

Bi∈Bh

vh(pi)φi 7→ Πhvh =
∑

Bi∈Bh

vh(pi)χi, (3.1)

where φi and χi are the piecewise linear shape functions and the characteristic functions of
the boxes, respectively.
These maps have also the following properties [115, Equations (2.11) and (2.12)]:
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Figure 3.1: Example of a Delaunay triangulation and its Voronoi dual mesh.

Lemma 3.1.1. Let T ∈ Th, ∀vh ∈ Vh,∫
T
vh −Πhvhdx =0,

∥vh −Πhvh∥L2(T ) ≤ChT |vh|H1(T ) ,

In the next two sections we construct a convergence analysis of the BM Poisson and Stokes
problems based on the above geometrical setting.

3.1.2 Poisson problem

We consider the following problem:{
−∆u = f in Ω,
u = g on Γ = ∂Ω

(3.2)

where f ∈ L2(Ω) and g ∈ H1/2(Γ).
The Boxmethod for the approximation of (3.2) is obtained bymultiplying the equation by

box-wise constant test functions and integrating by parts. The formulation reads as follows:
find uB ∈ Vh,gh such that

aB(uB, wh) = (f, wh)Ω ∀wh ∈ Wh, (3.3)

where
aB(uB, wh) = −

∑
Bi∈Bh

∫
∂Bi

∂uB
∂ni

whds, (3.4)

being ni the outer normal to Bi and (·, ·)D is the usual L2 scalar product on Ω.
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Note that there holds (see [11, 73] for the two dimensional case and [115,135] for the
extension to any dimension)∑

Bi∈Bh

∫
∂Bi

∂uB
∂ni

Πhvhds =

∫
Ω
∇uB · ∇vhdx. (3.5)

The relation (3.5) is crucial to show the following perturbation results (see [73,135]):
∥∇(uB − uh)∥L2(Ω) ≤ Ch ∥f∥L2(Ω) ,

∥uB − uh∥L2(Ω) ≤ Ch2 ∥f∥L2(Ω) ,
(3.6)

where uh ∈ Vh,gh is the linear finite element approximation, obtained with the continuous
Galerkin method, to the solution of problem (3.2). Equation (3.6) together with standard
estimates for linear FEM and the triangular inequality yields a priori error estimates for the
Box method.

Numerical assessment Consider Poisson problem (3.3) on Ω = [−1, 1]2 with g = 0, u =
sin (πx) sin (πy) and f = −∆u is computed accordingly. Then, we solve the problem with
Box method for various mesh sizes:

h = 0.1, 0.05, 0.025, 0.0125.

The convergence rates for the H1 and L2 errors are reported in Figure 3.2. As expected,
the H1 error converges with rate 1 and the L2 error converges with rate 2.

3.1.3 Stokes problem

We consider the incompressible Newtonian Stokes problem:
−ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω,
u = g on Γ = ∂Ω

(3.7)

where f ∈ [L2(Ω)]d and g ∈ [H1/2(∂Ω)]d.
Then, we define the following bilinear forms:

a : V × V → R : a(u, v) =
∫
Ω
ν∇u : ∇vdx, ∀u, v ∈ V ,

b : V ×Q → R : b(v, p) = −
∫
Ω
∇ · v pdx, ∀v ∈ V ,∀p ∈ Q.

(3.8)

The weak formulation of the problem reads: find (u, p) ∈ V ×Q, u = g on Γ, such that
a(u, v) + b(v, p) = (f, v)Ω, ∀v ∈ V0,

b(u, q) = 0, ∀q ∈ Q, (3.9)

where (·, ·)Ω is the usual L2 scalar product on Ω.
We also state the usual well-posedness result [9] for problem (3.9):
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Figure 3.2: Convergence rates of errors obtained solving a Poisson problem employing the
Box method.

Theorem 3.1.1 (Well-posedness). The saddle-point problem (3.9) is well-posed if

1. the bilinear form a is continuous and coercive;

2. the bilinear form b is continuous;

3. the inf-sup condition holds: ∃β > 0 s.t.

inf
q∈Q

sup
v∈V

b(v, q)
∥∇v∥L2 ∥q∥L2

≥ β > 0. (3.10)

Moreover, the solution (u, p) ∈ V×Q is unique and satisfies the following stability estimate:

∥∇u∥L2(Ω) + ∥p∥L2(Ω) ≤ C
(
∥f∥L2(Ω) + ∥g∥H1/2(∂Ω)

)
. (3.11)

In order to compare the continuous solution to the discrete one obtained using the Box
method, c.f. Section 3.1.3.1, we need to introduce the stabilized P1 − P1 finite element
discretization of problem (3.9), which read as follows: find (uh, ph) ∈ Vh,gh × Vh such that

a(uh, vh) + b(vh, ph) = (f, vh)Ω, ∀vh ∈ Vh,0,

−b(uh, qh) + s(ph, qh) = 0, ∀qh ∈ Vh,
(3.12)
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where s is the stabilization term and

a : Vh × Vh → R : a(uh, vh) =
∫
Ω
ν∇uh : ∇vhdx,

b : Vh × Vh → R : b(vh, qh) = −
∫
Ω
qh∇ · vhdx.

For what regards the operator s, we consider the Brezzi-Pitkaranta stabilization [27]
term:

s(ph, qh) = −δ
∑
T∈Th

h2T

∫
T
∇ph · ∇qhdx.

The following convergence results hold [27]:

Theorem 3.1.2. Let (u, p) ∈ V×Q be the solution of problem (3.7) and let (uh, ph) ∈ Vh×Vh

be the solution of problem (3.12). Then it holds

∥u− uh∥H1(Ω) + ∥p− ph∥L2(Ω)

≤ inf
(vh,qh)∈Vh×Vh

∥vh − u∥H1 + ∥qh − p∥L2 + sup
rh∈Vh

∥rh∥L2=1

∑
T∈Th

h2T

∫
T
∇qh · ∇rhdx

 .
(3.13)

Corollary 3.1.2.1. Under hypothesis of Theorem 3.1.2 and suitable regularity properties of
the solution (u, p) to problem (3.7), it holds

∥u− uh∥H1(Ω) + ∥p− ph∥L2(Ω) ≤ Ch
(
∥u∥H2(Ω) + ∥p∥H1(Ω)

)
.

3.1.3.1 Box method Stokes problem formulation

Employing piecewise constant functions on Bh, the Box method formulation for problem
(3.7) reads: find (uB, pB) ∈ Vh,gh × Vh, such that

aB(uB,Πhvh) + bB(Πhvh, pB) = (f,Πhvh)Ω, ∀vh ∈ Vh,

cB(uB,Πhqh) + sB(pB,Πhqh) = 0, ∀qh ∈ Vh

(3.14)

where
aB : Vh ×Wh → R : aB(vh,wh) = −

∑
Bi∈Bh

∫
∂Bi

ν
∂vh
∂ni

·whds,

bB : Wh × Vh → R : bB(wh, qh) =
∑

Bi∈Bh

∫
∂Bi

qhni ·whds,

cB : Vh ×Wh → R : cB(vh, wh) =
∑

Bi∈Bh

∫
∂Bi

ni · vhwhds,

sB : Vh ×Wh → R,
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where sB will be defined further in the text. In contrast to FEM formulation (3.12), here the
bilinear forms bB and cB are different since the first operates on piecewise constant velocity
and the second on piecewise linear velocity.
Notice that, by relationship (3.1), bilinear forms (3.1.3.1) satisfy the following lemma:

Lemma 3.1.2. ∀uh, vh ∈ Vh, ph, qh ∈ Vh, the following hold

aB(uh,Πhvh) =a(uh, vh),
bB(Πhvh, ph) =b(vh, ph),
cB(uh,Πhqh) =− b(uh, qh).

(3.15)

Proof. By [115, Lemma 3.2], we just need to prove the last equality. We apply Lemma 3.1.1:

cB(uh,Πhqh) =
∑
B∈Bh

Πhqh

∫
∂B

uh · nbds

=
∑
B∈Bh

∫
B
uh · ∇Πhqhdx+

∑
B∈Bh

∫
B
∇ · uhΠhqhdx

=
∑
T∈Th

3∑
i=1

∫
Ti

∇ · uhΠhqhdx

=
∑
T∈Th

3∑
i=1

∫
Ti

∇ · uh (Πhqh − qh) dx+
∑
T∈Th

3∑
i=1

∫
Ti

∇ · uhqhdx

=
∑
T∈Th

∫
T
∇ · uhqhdx = −b(uh, qh)

(3.16)

where Ti, i = 1, 2, 3, are the partitions of the triangle T formed by the faces of intersecting
boxes (see Figure 3.1).

Proceeding we introduce some mesh quantities (Figure 3.3) that will be instrumental to
introduce few discrete bilinear forms, (c.f. (3.17) below), that will be helpful for practical
implementation on mesh quantities (Figure 3.3).
Each boxBi will be such that it hasNBi faces. Considering a boxBi, we denote byBj the

box that shares face Fij with Bi and Fh = {Fij} be the set of faces. Let dij be the distance
between the barycentres of boxes Bi and Bj , nij the unit normal vector directed outwards
of Bi and wij be the interpolation weight (distance of Bj barycentre from face Fij over
dij , equal to 1

2 when considering the Delaunay-Voronoi duality). Let Dij be a “diamond”,
the polyhedron formed by the two box barycentres and by the face boundary; notice that
|Dij | = |Fij | dij/d. Moreover, let Gi = {Bj : ∃Bi ∩ Bj = Fij , for some Fij ∈ Fh} be the set
of boxes that have a face in common with Bi. We also denote by ϕi = ϕ|Bi the restriction of
a function ϕh ∈ Vh evaluated on box Bi.
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Figure 3.3: Scheme of dual mesh geometrical quantities.

Moreover, we introduce the following discrete bilinear forms:

aB(vh,wh) =−
∑

Bi∈Bh

∑
Bj∈Gi

ν
|Fij |
dij

[Πhvj −Πhvi] ·wh, (3.17a)

b̃B(wh, qh) =
∑

Bi∈Bh

∑
Bj∈Gi

|Fij | [wijΠhqi + (1− wij)Πhqj ]nij ·wh, (3.17b)

c̃B(vh, wh) =
∑

Bi∈Bh

∑
Bj∈Gi

|Fij | [wijΠhvi + (1− wij)Πhvj ] · nijwh. (3.17c)

Here, the Laplacian operator is discretized using a finite difference between barycentres
of two adjacent boxes, while the gradient and the divergence are discretized using a lin-
ear weighted interpolation between the same two values using as weights the distances of
the barycentres with respect to the face centre. By the fact that the discrete functions are
piecewise linear on the primal mesh and given the orthogonality of the dual mesh, aB is
discretized exactly. On the other hand, the bilinear forms b̃B and c̃B are not exactly equal
to bB and cB, respectively, and this will be taken into account in the analysis.
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3.1.3.2 Stabilized problem

To find the expression of the stabilization functional sB we have to consider the algebraic
linear system. By the duality between FEM and BM, the problem matrices will share the
same spectral properties, then the discrete inf-sup condition is not respected because we are
not using inf-sup compatible elements.
First, let us define basis for the discrete spaces. Let Np be the number of vertices p,

Nu = dNp the number of d.o.f of velocity and Np = Np the number of d.o.f. of pressure,

Vh :
{
ϕj

}Nu

j=1
=



ϕ1

0

0

 , . . . ,

ϕNp

0

0

 ,


0

ϕNp+1

0

 , . . . ,


0

ϕ2Np

0

 ,


0

0

ϕ2Np+1

 , . . . ,


0

0

ϕ3Np


 ,

Vh : {ϕj}Np

j=1

(3.18)
For spaceWh,Wh the basis are the projections on boxes of the ones of Vh,Vh.
Then, we write uB and pB as linear combinations of basis functions:

uB(x) =
Nu∑
j=1

ujϕj(x), pB(x) =
Np∑
j=1

pjϕj(x). (3.19)

To find the expressions of the matrices of the problem, A, B and B⊺, we plug the expres-
sions for uB and pB into the bilinear forms setting, without loss of generality, wh = Πhϕi =
[Πhϕi, 0, 0]

⊺, wh = Πhϕi:

(Au)i=
∑
j

Aijuj = aB(uB,wh) =

Nu∑
j=1

ujaB(ϕj ,Πhϕi)

=−
Nu∑
j=1

uj
∑
k∈Gj

ν
|Fjk|
djk

[
Πhϕk −Πhϕj

]
·Πhϕi

=ui
∑
j∈Gi

ν
|Fij |
dij

−
∑
j∈Gi

ujν
|Fij |
dij

,

(3.20a)

(B⊺p)i=
∑
j

B⊺ijpj = bB(wh, pB) =

Np∑
j=1

pjbB(Πhϕi, ϕj)

=

Np∑
j=1

pj
∑
k∈Gj

|Fjk| [wjkΠhϕj + (1− wjk)Πhϕk]njk · ϕi

=pi
∑
j∈Gi

|Fij |wijnij · ei +
∑
j∈Gi

pj |Fij | (1− wij)nij · ei,

(3.20b)



44 NUMERICAL DISCRETIZATION BY THE DIFFUSE INTERFACE BOX METHOD

(Bu)i=
∑
j

Bijuj = cB(uB, wh) =

3Np∑
j=1

ujcB(ϕj ,Πhϕi)

=

3Np∑
j=1

uj
∑
k∈Gj

|Fjk|
[
wjkΠhϕj + (1− wjk)Πhϕk

]
· njkΠhϕi

=

lNp∑
i=1+(l−1)Np,

l=1,...,d

ui
∑
j∈Gi

|Fij |wijel · nij +
∑
j∈Gi

uj |Fij | (1− wij)el · nij .

(3.20c)

Now, using equations (3.20), let us write the algebraic linear system of equations (3.14),
considering sB = 0: A B⊺

B 0

u
p

 =

F
0

 (3.21)

where F is the discretization of the right-hand-side.
Let us now write A = D-H, where D is the diagonal of A and -H is the off-diagonal part.

Inverting the system with respect to its diagonal we obtain the following expression for u:
u = D−1 [Hu− B⊺p+ F] = ũ− D−1B⊺p,

where ũ = D−1 [Hu+ F], and we substitute it in the second equation:
Bũ− BD−1B⊺p = 0.

Roughly speaking, the term BD−1B⊺p is the algebraic counterpart of a Laplacian prob-
lem for the pressure where the diffusivity coefficient is D−1, piecewise constant on boxes.
This discretization procedure is know to generate spurious pressure modes [65] because the
computational stencil of pressure Laplacian becomes too large. To stabilize the problem we
employ the so called Rhie-Chow interpolation [65, 106, 137], that basically substitutes the
term BD−1B⊺p with the discretization of a pressure Laplacian, as it is done for matrix A, in
the scalar context, using D−1 as a viscosity. Following these considerations, we can define
the Rhie-Chow stabilization operator.
Definition 3.1.1 (Rhie-Chow stabilization). The stabilization operator that represents the
Rhie-Chow interpolation has the form:

sB : H1(Ω)×Wh → R : sB(q, zh) = s1(q, zh)− s2(q, zh),

where s1 and s2 can be written explicitly as

s1(q, zh) =
∑

Fij∈Fh

∫
Fij

(
wijD−1

i

∫
Bi

∇qdx+ (1− wij)D−1
j

∫
Bj

∇qdx
)

· nij [[zh]]ij ds,

s2(q, zh) =
∑

Fij∈Fh

∫
Fij

(
wij |Bi|D−1

i + (1− wij) |Bj |D−1
j

) ∂q

∂nij

[[zh]]ij ds,

(3.22)

∀q ∈ H1(Ω), zh ∈ Zh, where |Bi| is the measure of box Bi.
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Remark 3.1. s1 and s2 have a precise meaning, in particular, s1 compensates BD−1B⊺p and
s2 is the scalar counterpart of bilinear form aB.
The discrete form of Rhie-Chow stabilization reads.

s1(pB, zh) =
∑

Bi∈Bh

∑
Bj∈Gi

|Fij |
[
wijD−1

i

∑
k∈Gi

|Fik| (wikΠhpi + (1− wik)Πhpk)nik

+ (1− wij)D−1
j

∑
k∈Gj

|Fjk| (wjkΠhpj + (1− wjk)Πhpk)njk

]
· nijzh,

s2(pB, zh) =
∑

Bi∈Bh

∑
Bj∈Gi

[
|Bi|wijD−1

i + |Bj | (1− wij)D−1
j

]
|Fij |

Πhpj −Πhpi

dij
zh.

(3.23)

Finally, we can rewrite problem (3.14) in compact form: (uB, pB) ∈ Vh × Vh is the
solution of the following discrete problem:

C̃B((uB, pB), (Πhvh,Πhqh)) =aB(uB,Πhvh) + b̃B(Πhvh, pB) + c̃B(uB,Πhqh) + sB(pB,Πhqh)

=(f,Πhvh)
(3.24)

∀(vh, qh) ∈ Vh × Vh.
We also write the continuous counterpart of problem (3.24) CB. It is basically operator C̃B

using continuous fluxes instead of their numerical approximations (c.f. equations (3.20)):

CB((uB, pB), (Πhvh,Πhqh)) =aB(uB,Πhvh) + bB(Πhvh, pB) + cB(uB,Πhqh) + sB(pB,Πhqh)

=(f,Πhvh)
(3.25)

∀(vh, qh) ∈ Vh × Vh.

3.1.3.3 Well-posedness

Before proving the well-posedness of the discrete problem, we recall the following results,
from [3,20,25,26,34,126].
Lemma 3.1.3 (Poincarè inequality). Let S ⊂ Rd be a bounded convex domain and let ϕ ∈
H1(S), then ∥∥∥∥∥ϕ− 1

|S|

∫
S
ϕdx

∥∥∥∥∥
L2(S)

≤ Cddiam(S) ∥∇ϕ∥L2(G) .

Lemma 3.1.4 (Inverse trace inequality). Let T be a polyhedron and F be one of its faces and
let ϕh ∈ Pp(T ), ϕ ∈ H1(T ), then

∥ϕh∥L2(F ) ≤Cinv

√
|F |
|T | ∥ϕh∥L2(T ) ,

∥ϕ∥L2(F ) ≤Cinv

(
h−1
T ∥ϕ∥L2(T ) + hT |ϕ|H1(T )

)
.
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Consider also the following property:

Proposition 3.1.1. Let ϕ ∈ H1(Ω) and qh ∈ Vh, then there holds:

∑
Bi∈Bh

∑
j∈Gi

∫
Fij

ϕnijΠhqids =
∑

Fij∈Fh

∫
Fij

ϕnij [[Πhqh]]ij ds, (3.26)

where [[Πhqh]]ij = Πhqi −Πhqj .

Proof. For any face we have two contributions from two different values of the basis func-
tions. Passing from box summation to face summation we obtain the proof:

∑
Bi∈Bh

∑
j∈Gi

∫
Fij

ϕnijΠhqids =
∑

Fij∈Fh

∫
Fij

ϕnijΠhqi + ϕnjiΠhqjds

=
∑

Fij∈Fh

∫
Fij

ϕnijΠhqi − ϕnijΠhqjds

=
∑

Fij∈Fh

∫
Fij

ϕnij (Πhqi −Πhqj) ds.

(3.27)

We also define a discrete H1-norm that uses the normal gradient to each face of the box
mesh:

Proposition 3.1.2 (∗-norm and its properties). The ∗-norm is defined in general as

|q|∗ =

 ∑
Fij∈Fh

dij

∫
Fij

∣∣∣∣∣ ∂q∂nij

∣∣∣∣∣
2

ds

 1
2

,

where q ∈ H1(Ω).
Moreover, the following properties hold: ∀qh ∈ Vh,

∥Πhqh∥L2 ≤C |qh|∗ ,
|qh|∗ ≤C |qh|H1 ,

|qh|H1 ≤C |qh|∗ ,
∥qh∥L2 ≤ |qh|∗ ,
|qh|∗ ≤2h−1

m ∥Πhqh∥L2 .

Proof. 1. By Lemma 3.1.1, and by [43, Lemma 5.1], that states that ∀qh ∈ Vh, ∃C > 0 :

∥Πhqh∥L2 ≤ C |qh|∗ . (3.28)
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2. ∀qh ∈ Vh, ∃C > 0 :

|qh|∗ =

 ∑
Fij∈Fh

dij

∫
Fij

∣∣∣∣∣Πhqi −Πhqj

dij

∣∣∣∣∣
2

ds

 1
2

=

 ∑
Fij∈Fh

d

∫
Dij

∣∣∣∣∣ ∂qh∂nij

∣∣∣∣∣
2

ds

 1
2

≤
√
d |qh|H1

where d is the dimension of the space Rd and where we used the fact that

|Dij | =
∣∣∣∣∣Fijdij

d

∣∣∣∣∣ .
This holds because, for piecewise linear functions, the face-centred finite difference
between box centres values coincides with the face normal gradient of the function
itself.

3. ∀qh ∈ Vh, by equivalence (3.5) and by Proposition 3.1.1, it holds:

|qh|2H1 =

∫
Ω
∇qh · ∇qhdx

=
∑

Bi∈Bh

∑
j∈Gi

∫
Fij

∇qh · nijΠhqids

=
∑

Fij∈Fh

∫
Fij

∇qh · nij [[Πhqh]]ij ds.

(3.29)

Now, by the Cauchy-Schwarz inequality

|qh|2H1 =
∑

Fij∈Fh

∫
Fij

∇qh · nij [[Πhqh]]ij ds

≤
∑

Fij∈Fh

(∫
Fij

|∇qh · nij |2 ds
) 1

2
(∫

Fij

[[Πhqh]]
2
ij ds

) 1
2

=
∑

Fij∈Fh

dij

(∫
Fij

|∇qh · nij |2 ds
) 1

2

∫
Fij

dij

∣∣∣∣∣ [[Πhqh]]ij
dij

∣∣∣∣∣
2

ds

 1
2

≤
∑

Fij∈Fh

(∫
Dij

|∇qh|2 ds
) 1

2

dij ∫
Fij

∣∣∣∣∣ [[Πhqh]]ij
dij

∣∣∣∣∣
2

ds

 1
2

≤

 ∑
Fij∈Fh

∫
Dij

|∇qh|2 ds

 1
2
 ∑

Fij∈Fh

dij

∫
Fij

∣∣∣∣∣ [[Πhqh]]ij
dij

∣∣∣∣∣
2

ds

 1
2

= |qh|H1 |qh|∗

(3.30)
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where we used the fact that ∇qh · nij is constant on diamond Dij and, in the last
passage, we employed the Hölder inequality. To conclude the proof divide by |qh|H1

on both sides of equation (3.30).
4. By Lemma 3.1.3,

∥qh∥2L2 =
∑
T∈Th

∥qh∥2L2(T )

≲
∑
T∈Th

∥∥∥∥∥qh − 1

|T |

∫
T
qhdx

∥∥∥∥∥
2

L2(T )

+

∥∥∥∥∥ 1

|T |

∫
T
qhdx

∥∥∥∥∥
2

L2(T )

≲
∑
T∈Th

h2T |qh|2H1(T ) + ∥Πhqh∥2L2(T )

≤h2 |qh|2H1 + ∥Πhqh∥2L2

≤(1 + h2) |qh|2∗ .

(3.31)

5. By triangular inequality,

|qh|∗ =

 ∑
Fij∈Fh

dij

∫
Fij

∣∣∣∣∣Πhqi −Πhqj

dij

∣∣∣∣∣
2

ds

 1
2

≤

 ∑
Fij∈Fh

dij

∫
Fij

∣∣∣∣∣Πhqi

dij

∣∣∣∣∣
2

+

∣∣∣∣∣Πhqj

dij

∣∣∣∣∣
2

ds

 1
2

≤ 1

dij

 ∑
Fij∈Fh

dij

∫
Fij

|Πhqi|2 + |Πhqj |2 ds

 1
2

≤ 1

min
T∈Th

hT

 ∑
Fij∈Fh

dij

∫
Fij

|Πhqi|2 + |Πhqj |2 ds

 1
2

≤2h−1
m ∥Πhqh∥L2

where hm = minT hT .

Remark 3.2. |·|∗ is a norm if, in general, q ∈ H1
0 . In Vh it is equivalent to the H1-seminorm.

We also assume the following regularity hypothesis on the geometrical quantities defined
in previous section:
Assumption 3.1.1 (Mesh regularity). Let Bh be the Voronoi-type dual mesh of a Delaunay
triangulation. Moreover, Bh satisfies the following assumptions. Let hm = minT∈Th hT , then it
is such that

∃δ > 0 : hm = δh.
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Moreover, we assume that mesh size does not change too much between neighbouring boxes.
Hence ∀Bi ∈ Bh and ∀Fij ∈ Fh, for some T : T ∩Bi ̸= ∅,

dij ≃ hT , |Fij | ≃ hd−1
T , |Bi| ≃ hdT , wij =

1

2
.

Moreover, ∃C1, C2 > 0 : C1h ≤ hT ≤ C2h,∀T ∈ Th.

Now, before going on with the convergence analysis, we define the following mesh de-
pendent norm:

|||vh, qh|||box =
(
|vh|2H1 + ∥Πhqh∥2L2 + |qh|2T,∗

) 1
2
, (3.32)

∀(vh, qh) ∈ Vh × Vh, where, for q ∈ H1(Ω),

|q|T,∗ =

 ∑
Fij∈Fh

h3Tdij

∫
Fij

∣∣∣∣∣ ∂q∂nij

∣∣∣∣∣
2

ds

 1
2

, (3.33)

is the mesh dependent version of norm defined in Proposition 3.1.2.

Remark 3.3. The T, ∗-norm has been defined in order to conform the coercivity estimate of
Lemma 3.1.8 and the convergence theorem 3.1.4.

Before proving the well-posedness of the problem, we need C̃B and CB to satisfy some
properties.
As a first step, we have to prove the problem consistency. We state the following results

on the consistency of linear interpolation fluxes and of the compact form C̃B.

Lemma 3.1.5 (C̃B consistency). Let (u, p) ∈ V × (Q ∩ H2
loc(Ω)) be the solution to problem

(3.9) and (uB, pB) ∈ Vh × Vh be the solution to problem (3.14). Then there holds:

CB((u, p), (Πhvh,Πhqh))−C̃B((uB, pB), (Πhvh,Πhqh))

≲
(
h2 ∥f∥L2 + h |pB|H1 + h |∇p|h,1

)
|||vh, qh|||box

∀vh ∈ Vh, qh ∈ Vh and |·|h,1 is the H1 broken seminorm.
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Proof. By Cauchy-Schwarz inequality and Lemmas 3.1.2, 3.1.1, 3.1.3, we can write:

CB((u, p),(Πhvh,Πhqh))− C̃B((uB, pB), (Πhvh,Πhqh))

=aB(u− uB,Πhvh) + sB(p− pB,Πhqh)

+ bB(Πhvh, p)± bB(Πhvh, pB)− b̃B(Πhvh, pB)
+ cB(u,Πhqh)± cB(Πhvh, pB)− c̃B(pB,Πhqh)

=
∑
T∈Th

[(f, vh)T − (f,Πhvh)T ]

+ (bB − b̃B)(Πhvh, pB) + (cB − c̃B)(uB,Πhqh) + sB(p,Πhqh)

=
∑
T∈Th

(f, v−Πhvh)T

+ (bB − b̃B)(Πhvh, pB) + (cB − c̃B)(uB,Πhqh) + sB(p,Πhqh)

=
∑
T∈Th

(
f− 1

|T |

∫
T
fdx, v−Πhvh

)
T

+ (bB − b̃B)(Πhvh, pB) + (cB − c̃B)(uB,Πhqh) + sB(p,Πhqh)

≤Cdh
2 ∥f∥L2 |vh|H1 + (bB − b̃B)(Πhvh, pB) + (cB − c̃B)(uB,Πhqh) + sB(p,Πhqh).

(3.34)
We have now to estimate the consistency of the bilinear forms b̃B and c̃B and of the stabi-

lization term. We first use Proposition 3.1.1 to sum the integrals over mesh faces. Consider
the face barycentres fij and notice that, being pB and uB piecewise linear, the following
hold:

Πhpi +Πhpj

2
= pB(fij), and Πhui +Πhuj

2
= uB(fij). (3.35)

Let now x ∈ Fij be a point in space. Then, being pB and uB piecewise linear, we can rewrite
them using a Taylor expansion in fij:

pB =pB(fij) +
∑

T∈Th:T∩Dij ̸=∅

(x− fij) · ∇pB1T∩Dij ,

uB =uB(fij) +
∑

T∈Th:T∩Dij ̸=∅

(x− fij)⊺∇uB1T∩Dij ,
(3.36)

where 1 is the indicator function and ∇pB is piecewise constant on each intersection be-
tween triangle T and diamond Dij .
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Employing now equations (3.35) and (3.36), we obtain that

(bB − b̃B)(Πhvh, pB) =
∑

Bi∈Bh

∑
j∈Gi

∫
Fij

[
Πhpi +Πhpj

2
− pB

]
Πhvh · nijds

=
∑

Fij∈Fh

dij

dij

∫
Fij

((x− fij) · ∇pB)
(
[[Πhvh]]ij · nij

)
ds

=
∑

Fij∈Fh

dij

∫
Fij

((x− fij) · ∇pB)
(
∂vh
∂nij

· nij

)
ds

≤
∑

Fij∈Fh

(
dij

∫
Fij

|x− fij |2 |∇pB|2 ds
) 1

2

dij ∫
Fij

∣∣∣∣∣ ∂vh∂nij

∣∣∣∣∣
2

|nij |2 ds

 1
2

≤
∑

Fij∈Fh

(
d2ijdij

∫
Fij

|∇pB|2 ds
) 1

2

dij ∫
Fij

∣∣∣∣∣ ∂vh∂nij

∣∣∣∣∣
2

ds

 1
2

≤

 ∑
Fij∈Fh

d2ijdij

∫
Fij

|∇pB|2 ds

 1
2
 ∑

Fij∈Fh

dij

∫
Fij

∣∣∣∣∣ ∂vh∂nij

∣∣∣∣∣
2

ds

 1
2

=h |pB|H1 |vh|∗ .

(cB − c̃B)(uB,Πhqh) =
∑

Bi∈Bh

∑
j∈Gi

∫
Fij

[
Πhui +Πhuj

2
− uB

]
· nijΠhqhds

=
∑

Fij∈Fh

∫
Fij

(x− fij)⊺∇uBnij [[Πhqh]]ij ds

=
∑

Fij∈Fh

∫
Fij

(x− fij) ·
∂uB

∂nij

[[Πhqh]]ij ds

=
∑

Fij∈Fh

[[Πhqh]]ij
∂uB

∂nij

·
∫
Fij

(x− fij)ds = 0,

(3.37)
Then, for the stabilization term, using the assumption that p ∈ H2

loc(Ω) and using Defi-
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nition 3.1.1:

sB(p,Πhqh) =
∑

Fij∈Fh

∫
Fij

1

2

(
D−1
i

∫
Bi

∇pdx+ D−1
j

∫
Bj

∇pdx
)

· nij [[Πhqh]]ij ds

−
∑

Fij∈Fh

∫
Fij

1

2

(
|Bi|D−1

i + |Bj |D−1
j

) ∂p

∂nij

[[Πhqh]]ij ds

=
∑

Fij∈Fh

∫
Fij

1

2
D−1
i

(∫
Bi

∇pdx− |Bi| ∇p
)
· nij [[Πhqh]]ij ds

+
∑

Fij∈Fh

∫
Fij

1

2
D−1
j

(∫
Bj

∇pdx− |Bj | ∇p
)

· nij [[Πhqh]]ij ds.

Without loss of generalization, we treat only the case of the first addendum, the other
terms being similar. Using the Cauchy-Schwarz inequality, Assumption 3.1.1, Lemmas 3.1.4,
3.1.3 and Hölder inequality:

∑
Fij∈Fh

∫
Fij

1

2
D−1
i

(∫
Bi

∇pdx− |Bi| ∇p
)
· nij [[Πhqh]]ij ds

≤
∑

Fij∈Fh

(∫
Fij

1

4
D−2
i

(∫
Bi

∇pdx− |Bi| ∇p
)2

ds

) 1
2
(∫

Fij

d2ij
[[Πhqh]]

2
ij

d2ij
ds

) 1
2

≤
∑

Fij∈Fh

D−1
i |Bi|

∥∥∥∥∥ 1

|Bi|

∫
Bi

∇pdx−∇p
∥∥∥∥∥
L2(Fij)

√
dij

(
dij

∫
Fij

[[Πhqh]]
2
ij

d2ij
ds

) 1
2
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≤
∑

Fij∈Fh

h
1
2
TD−1

i |Bi|h−1
t

∥∥∥∥∥ 1

|Bi|

∫
Bi

∇pdx−∇p
∥∥∥∥∥
L2(Bi)

+ ht

∣∣∣∣∣ 1

|Bi|

∫
Bi

∇pdx−∇p
∣∣∣∣∣
H1(Bi)


(
dij

∫
Fij

[[Πhqh]]
2
ij

d2ij
ds

) 1
2

≤
∑

Fij∈Fh

h
1
2
TD−1

i |Bi|
[
Cdh

−1
T hT |∇p|H1(Bi)

+ hT |∇p|H1(Bi)

](
dij

∫
Fij

[[Πhqh]]
2
ij

d2ij
ds

) 1
2

≤
∑

Fij∈Fh

C1(Cd + hT )h
1
2
Th

2−d
T hdT |∇p|H1(Bi)

(
dij

∫
Fij

[[Πhqh]]
2
ij

d2ij
ds

) 1
2

≤C1Cdh
3
2
T

 ∑
Fij∈Fh

|∇p|2H1(Bi)

 1
2
 ∑

Fij∈Fh

h2Tdij

∫
Fij

[[Πhqh]]
2
ij

d2ij
ds

 1
2

≤C1Cdh |∇p|h,1 |qh|T,∗ .
(3.38)

where D−1
i scales as h2−d:

Di =
∑
j∈Gi

|Fij |
dij

≃
∑
j∈Gi

hd−2
T ,

C2
h2−d
T

NBi

≤ D−1
i ≤ C1

h2−d
T

NBi

.

(3.39)

Thus, employing Proposition 3.1.2, the final estimate for the consistency reads:

CB((u, p),(Πhvh,Πhqh))− C̃B((uB, pB), (Πhvh,Πhqh))

≤Cdh
2 ∥f∥L2 |vh|H1 + h |pB|H1 |vh|∗ + 2C1Cdh

3
2 |∇p|h,1 |qh|T,∗

≲
(
h2 ∥f∥L2 + h |pB|H1

)
|vh|H1 + h |∇p|h,1 |qh|T,∗ .

Lemma 3.1.6 (Continuity of CB). Let (v, q) ∈ V× (Q∩H1(Ω)) and (vh, qh) ∈ Vh×Vh, then
there holds:

CB((v, q), (Πhvh,Πhqh)) ≲
(
|v|H1 + ∥q∥L2 + h |∇q|1,h

)
|||vh, qh|||box.

Proof. Write the compact form CB:

CB((v, q), (Πhvh,Πhqh)) = aB(v,Πhvh) + bB(Πhvh, q) + cB(v,Πhqh) + sB(q,Πhqh). (3.40)

Consider now each term separately, employing Lemma 3.1.2 and Proposition 3.1.2:
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1.
aB(v,Πhvh) = a(v, vh) ≤ ν |v|H1 |vh|H1 ≤ ν |v|H1 |vh|∗ .

2. knowing that ∥∇ · v∥L2 ≤
√
d ∥∇v∥L2 ∀v ∈ V , by the Cauchy-Schwarz inequality,

bB(Πhvh, q) =b(vh, q) ≤
√
d |vh|H1 ∥q∥L2 ≤

√
d |vh|∗ ∥q∥L2 ,

cB(v,Πhqh) =
∑

Bi∈Bh

∫
Bi

∇ · vΠhqhdx

≤
√
d
∑

Bi∈Bh

|v|H1(Bi)
∥Πhqh∥L2(Bi)

≤
√
d |v|H1 ∥Πhqh∥L2 ,

where we used Hölder inequality in the last passage.
3. For the Rhie-Chow stabilization we recall inequality (3.38):

sB(q,Πhqh) ≲ h |∇q|h,1 |qh|T,∗ . (3.41)

To conclude the proof we gather all above estimates:
CB((v, q), (Πhvh,Πhqh)) ≲ |v|H1 |vh|∗ + |vh|∗ ∥q∥L2 + |v|∗ ∥Πhqh∥L2 + h |q|H1 |qh|T,∗

≤
(
|v|H1 + ∥q∥L2 + h |∇q|1,h

)
|||vh, qh|||box.

Lemma 3.1.7 (Continuity of C̃B). Let vh,wh ∈ Vh and qh, zh ∈ Vh, then there holds:

C̃B((vh, qh), (Πhwh,Πhzh)) ≲
(
|v|H1 + ∥qh∥L2 + h

1
2 |qh|H1

)
|||wh, zh|||box.

Proof. Consider the compact form
C̃B((vh, qh), (Πhwh,Πhzh)) =aB(vh,Πhwh) + b̃B(Πhwh, qh) + c̃B(vh,Πhzh) + sB(qh,Πhzh).

We can rely on proof of Lemma 3.1.6 for both aB ans sB. On the other hand, for b̃B and c̃B
we employ equation (3.37), from the proof of Lemma 3.1.5, and equation (3.37):

aB(vh,Πhwh) ≤ν |vh|H1 |wh|∗ ,
b̃B(Πhwh, qh)± bB(Πhwh, qh) =bB(Πhwh, qh) + (b̃B − bB)(Πhwh, qh)

≲
√
d |wh|∗ ∥qh∥L2 + h |qh|H1 |wh|T,∗ ,

c̃B(vh,Πhzh)± cB(vh,Πhzh) =cB(vh,Πhzh) + (c̃B − cB)(vh,Πhzh)

≲
√
d |vh|∗ ∥Πhzh∥L2 .

(3.42)

For the Rhie-Chow stabilization,

sB(qh,Πhqh) =
∑

Fij∈Fh

∫
Fij

1

2
D−1
i

(∫
Bi

∇qhdx− |Bi| ∇qh
)
· nij [[Πhzh]]ij ds

+
∑

Fij∈Fh

∫
Fij

1

2
D−1
j

(∫
Bj

∇qhdx− |Bj | ∇qh
)

· nij [[Πhzh]]ij ds

(3.43)
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Without loss of generalization, we treat only the case of the first addendum, the other terms
being similar. Using the fact that qh is piecewise linear and that its normal gradient across
face Fij is constant over Dij , by the Cauchy-Schwarz inequality we obtain

∑
Fij∈Fh

∫
Fij

1

2
D−1
i

(∫
Bi

∇qhdx− |Bi| ∇qh
)
· nij [[Πhzh]]ij ds

=
∑

Fij∈Fh

∫
Fij

1

2
D−1
i

(∫
Bi\Dij

∇qh · nijdx

)
[[Πhzh]]ij ds

≲
∑

Fij∈Fh

h2−d
T

∫
Fij

∣∣∣∣∣
∫
Bi\Dij

∇qh · nijdx

∣∣∣∣∣
2

ds

 1
2
d2ij ∫

Fij

∣∣∣∣∣ ∂zh∂nij

∣∣∣∣∣
2

ds

 1
2

≤
∑

Fij∈Fh

h2−d
T

(∫
Fij

∫
Bi\Dij

|∇qh|2 dx
∫
Bi\Dij

|nij |2 dxds
) 1

2

d2ij ∫
Fij

∣∣∣∣∣ ∂zh∂nij

∣∣∣∣∣
2

ds

 1
2

≤
∑

Fij∈Fh

h2−d
T

(
hdTh

d−3
T |qh|2H1

) 1
2

h3Tdij ∫
Fij

∣∣∣∣∣ ∂zh∂nij

∣∣∣∣∣
2

ds

 1
2

≤h2−dhd−
3
2

 ∑
Fij∈Fh

|qh|2H1

 1
2
 ∑

Fij∈Fh

h3Tdij

∫
Fij

∣∣∣∣∣ ∂zh∂nij

∣∣∣∣∣
2

ds

 1
2

=h
1
2 |qh|H1 |zh|T,∗

(3.44)
where we used Hölder inequality.
Gathering all the above estimates concludes the proof.

Lemma 3.1.8 (C̃B coercivity). Let (vh, qh) ∈ Vh × Vh, then there holds:

C̃B((vh, qh), (Πhvh,Πhqh)) ≥ ν |vh|2H1 + |qh|2T,∗ .

Proof. Let us first notice that, using Proposition 3.1.1,

b̃B(Πhvh, qh) + c̃B(vh,Πhqh) =

=
∑

Fij∈Fh

∫
Fij

1

2
(Πhqi +Πhqj)nij · [[Πhvh]]ij ds+

∫
Fij

1

2
(Πhvi +Πhvj) · nij [[Πhqh]]ij ds

=
∑

Fij∈Fh

∑
j∈Gi

∫
Fij

[[ΠhqhΠhvh]]ij · nijds =
∑

Bi∈Bh

ΠhqiΠhvi
∑
j∈Gi

∫
Fij

1 · nijds

=
∑

Bi∈Bh

ΠhqiΠhvi
∫
Bi

∇ · 1dx = 0.

(3.45)
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Using Lemma 3.1.2, let us first notice that
C̃B((vh, qh), (Πhvh,Πhqh)) =aB(vh,Πhvh) + b̃B(Πhvh, qh) + c̃B(vh,Πhqh) + sB(qh,Πhqh)

=a(vh, vh) + sB(qh,Πhqh)

=ν |vh|2H1 + sB(qh,Πhqh),

We have now to prove that the Rhie-Chow stabilization is coercive. Consider the following
relation which is valid under the hypothesis that the mesh uniform:

sB(qh,Πhqh) ≃
∑

Fij∈Fh

1

2
D−1 |B|

∫
Fij

(
1

|Bi|

∫
Bi

∇qh − 2∇qh +
1

|Bj |

∫
Bj

∇qh
)

· nij [[Πhqh]]ij ds.

In view of
|qh|2T,∗ ≃ h3 |qh|2∗ , (3.46)

to conclude the proof we need to prove
sB(qh,Πhqh) ≃ h3 |qh|2∗ . (3.47)

We numerically assess the validity of (3.47) by computing the minimum generalized
eigenvalue of Rhie-Chow stabilization with respect to ∗-norm and showing that it is constant
as h goes to zero. We consider the algebraic counterpart of sB and |·|T,∗ and we compute

R∗(sB) = min
q∈RNp

q⊺Sq
q⊺Qq, (3.48)

where Q is the matrix that represents the ∗-norm of q.
Remark 3.4. [Rhie-Chow stabilization coercivity] To assess the result stated in Lemma
3.1.8, we have to verify numerically that the stabilization bilinear form is coercive. We have
generated Voronoi dual grids on a squared domain Ω = [−1, 1]d where d = 2, 3, we then
have written the algebraic systems and then we compute the minimum Rayleigh coefficient
(3.48) of sB and |·|∗. The result is reported in Tables 3.1 and 3.2.
As expected, the minimum generalized eigenvalue diminishes with rate 2. This result

confirms coercivity of sB.
Assumption 3.1.2 (Rhie-Chow satisfies generalized inf-sup). Let (vh, qh) ∈ Vh × Vh, then
∃βh > 0, independent of h s.t.

sup
vh∈Vh

c̃B(vh,Πhqh)

|vh|∗
+ sB(qh,Πhqh)

1
2 ≥ βh ∥Πhqh∥L2 . (3.49)

Numerical assessment of Assumption 3.1.2. To prove inequality (3.49), we employ a numeri-
cal assessment. Recall system 3.21. Let us consider now the Rhie-Chow stabilized monolithic
algebraic system corresponding to the Box method formulation of Stokes system 3.14:A B⊺

B −C

u
p

 =

F
0

 (3.50)
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Coercivity constant of Rhie-Chow stabilization, 2D case

h 0.025 0.013 0.0063 0.0031 0.0016 0.00078
R∗(sB) 9.6e-07 1.3e-07 1.7e-08 2.2e-09 2.8e-10 3.3e-11

Diminishing rate – 2.9 2.9 3 3 3

Table 3.1: Minimum generalized eigenvalue of Rhie-Chow matrix with respect to ∗-norm
computed on a uniform polygonal mesh. It is also reported the diminishing rate of minimum
eigenvalues, computed as log2(R∗|h/R∗|h

2
), representing the coercivity lower bound of sB.

Coercivity constant of Rhie-Chow stabilization, 3D case

h 0.1 0.05 0.025 0.013 0.0063
R∗(sB) 9.3e-05 1.3e-05 1.9e-06 2.6e-07 3.6e-08

Diminishing rate – 2.8 2.8 2.8 2.9

Table 3.2: Minimum generalized eigenvalue of Rhie-Chow matrix with respect to ∗-norm
computed on a uniform polyhedral mesh. It is also reported the diminishing rate of minimum
eigenvalues, computed as log2(R∗|h/R∗|h

2
), representing the coercivity lower bound of sB.

where -C is the matrix associated to Rhie-Chow stabilization. Equation (3.49) corresponds
to the following algebraic inequality: ∀q ∈ RNp ,

sup
w∈RNu

q⊺B⊺w√
w⊺Hw√

q⊺Vq+

√−q⊺Cq√
q⊺Vq ≥ βh (3.51)

where V ∈ RNp×Np is the mass matrix, i.e. a diagonal matrix with box volumes on diagonal
(Vii = |Bi|), representing the L2-norm of box-wise constant functions, and H ∈ RNu×Nu is
the matrix representing the ∗-norm in d dimensions. Notice also that by construction of A,
it holds A = νH.
Choose now w = −A−1B⊺q, then the supremum in equation (3.51) becomes

sup
w∈RNu

q⊺B⊺w√
w⊺Hw√

q⊺Vq ≥ − q⊺BA−1B⊺q√
q⊺BA−1HA−1B⊺q√q⊺Vq

=ν
− q⊺BA−1B⊺q√

q⊺BA−1AA−1B⊺q√q⊺Vq

=ν

√
−q⊺BA−1Bq√

q⊺Vq .

(3.52)
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Then, we have

sup
w∈RNu

− q⊺B⊺w√
w⊺Hw√

q⊺Vq+

√−q⊺Cq√
q⊺Vq ≥ν

√
−q⊺BA−1Bq√

q⊺Vq +

√−q⊺Cq√
q⊺Vq

≥ν

√
q⊺
(
−BA−1B− C)q
√
q⊺Vq .

(3.53)

Hence, βh must be equal to the square root of the generalized eigenvalue of the Schur
complement Sbox = −νBA−1B⊺ with respect to matrix V:

β2h = RΠh
(Sbox) = min

q∈RNp

q⊺(Sbox − C)q
q⊺Vq (3.54)

where the explicit expression of C is
C = −BD−1B⊺ + R(D−1) (3.55)

where R(D−1) is a stiffness matrix computed with D−1 as diffusivity coefficient (c.f. Section
5.2, equation (5.8)).
To conclude the assessment of Assumption 3.1.2, we have to verify numerically that the

algebraic inf-sup is satisfied by verifying that βh does not decrease with h. We consider the
same cases of Remark 3.4. For some values of h, we have generated Voronoi dual grids on a
squared domain Ω = [−1, 1]d where d = 2, 3, we then have estimated βh by computing the
minimum generalized eigenvalue of Schur complement with respect to mass matrix using
the Rayleigh coefficient of equation 3.52.
As expected, the former eigenvalue does not diminishes with h, as it can be seen also in

the diminishing rate that tends to zero. This result confirms that the inf-sup is satisfied.

inf-sup constant, 2D case

h 0.025 0.013 0.0063 0.0031 0.0016 0.00078
R∗(Sbox − C) 0.13 0.13 0.14 0.14 0.15 0.15

Table 3.3: Minimum generalized eigenvalue of Schur complement with respect to L2-norm
of box-wise constant functions computed on a uniform polygonal mesh.

Theorem 3.1.3. Problem (3.24) has a unique solution (uB, pB) ∈ Vh × Vh. Moreover, the
solution is stable with respect to problem data.
Proof. The Stokes problem is a saddle-point problem, that is well-posed if (see [9,116]):
1. aB is continuous and coercive (c.f. Lemmas 3.1.6 and 3.1.8);
2. b̃B is continuous (c.f. Lemma 3.1.7);
3. c̃B and sB satisfy the generalized inf-sup condition (c.f. Assumption 3.1.2).
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inf-sup constant, 3D case

h 0.1 0.05 0.025 0.013 0.0063
R∗(Sbox − C) 0.06 0.055 0.058 0.062 0.066

Table 3.4: Minimum generalized eigenvalue of Schur complement with respect to L2-norm
of box-wise constant functions computed on a uniform polyhedral mesh.

3.1.3.4 Convergence analysis

Theorem 3.1.4 (Convergence). Let Ω be of class C2 and let f ∈ [H1(Ω)]d. Let (u, p) ∈
(V ∩ [H2(Ω)]d)× (Q∩H1(Ω) ∩H2

loc(Ω)) being the solution to problem (3.9). Then
∥uB − u∥H1 + ∥pB − p∥L2 ≲ h

where C is a positive constant only dependent on problem data.

Proof. Let us define Iu, Ip ∈ Vh ×Vh be the Lagrangian linear interpolations of exact solu-
tions u, p. Define also ε = u− Iu, εB = Iu− uB and η = p− Ip, ηB = Ip− pB. Employing
Lemma 3.1.8 we have
|ηB|2T,∗ + ν |εB|2H1 ≤C̃B((εB, ηB), (ΠhεB,ΠhηB))± bB(ΠhεB, p)± cB(u,ΠhηB)

=CB((ε, η), (ΠhεB,ΠhηB)) + (b̃B − bB)(ΠhεB, Ip) + (c̃B − cB)(Iu,ΠhηB)

+ CB((u, p), (ΠhεB,ΠhηB))− C̃B((uB, pB), (ΠhεB,ΠhηB)).
(3.56)

Now, using continuity of CB (Lemma 3.1.6) on the first term, consistency of face inter-
polation (equation (3.37), from the proof of Lemma 3.1.5,) on second and third terms and
consistency (lemma 3.1.5) on the fourth and fifth terms, we get the following:

|ηB|2T,∗ + ν |εB|2H1 ≤C̃B((εB, ηB), (ΠhεB,ΠhηB))

≲
(
|ε|H1 + ∥η∥L2 + h |∇η|1,h

)
|||εB, ηB|||box

+ h |Ip|H1 |εB|H1

+
(
h2 ∥f∥L2 + h |pB|H1 + h |∇p|h,1

)
|||εB, ηB|||box

≲ (|ε|H1 + ∥η∥L2 + hC(f,u, p)) |||εB, ηB|||box
=:S|||εB, ηB|||box.

(3.57)

where we observed that

|∇η|21,h =
∑

Bi∈Bh

∫
Bi

D2(p− Ip)dx =
∑

Bi∈Bh

∫
Bi

D2pdx = |∇p|21,h

and where, in the last passage, C comes from the stability of Lagrangian interpolator and
from the continuity with respect to f of the continuous and box solutions (c.f. Theorems
3.1.1 and 3.1.3).
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Now we consider the generalized inf-sup. By relationship (3.45),

βh ∥ΠhηB∥L2 ≤ sup
vh∈Vh

c̃B(vh,ΠhηB)

|vh|∗
+ sB(ηB,ΠhηB)

1
2

= sup
vh∈Vh

− b̃B(Πhvh, ηB)
|vh|∗

+ sB(ηB,ΠhηB)
1
2

= sup
vh∈Vh

aB(vh,ΠhεB)− C̃B((vh, ηB), (Πhvh, 0))
|vh|∗

+ sB(ηB,ΠhηB)
1
2

= sup
vh∈Vh

aB(vh,ΠhεB)

|vh|∗
+ sB(ηB,ΠhηB)

1
2 − sup

vh∈Vh

C̃B((vh, ηB), (Πhvh, 0))
|||vh, 0|||box

(3.58)
Now consider separately each term:

1. By continuity of aB (c.f. proof of Lemma 3.1.6),

sup
vh∈Vh

aB(vh,ΠhεB)

|vh|∗
≤ ν |vh|H1 |εB|∗

|vh|∗
≤ ν |εB|∗

2. By continuity of sB (c.f. proof of Lemma 3.1.6, in particular equation (3.41)) and by
Proposition 3.1.2,

sB(ηB,ΠhηB) ≲ h |ηB|H1 |ηB|T,∗ ≤ h2 ∥ηB∥2∗ ≤ h2h−2
m ∥ΠhηB∥2L2 ≤ δ ∥ΠhηB∥2L2 .

where we recall that δ = h/hm (c.f. Assumption 3.1.1).

3. Using equation (3.57),

sup
vh∈Vh

C̃B((vh, ηB), (Πhvh, 0))
|||vh, 0|||box

≤ S
|||vh, 0|||box
|||vh, 0|||box

= S.

Putting together points (1-3) above, we obtain

βh ∥ΠhηB∥L2 ≲ ν |εB|∗ + δ ∥ηB∥L2 + S. (3.59)

Following [49, Lemma 6.13], consider

∥ηB∥2L2 ≲ |εB|2∗ + ∥ηB∥2L2 + S2 (3.60)

and
|ηB|2T,∗ + ν |εB|2H1 ≲ S|||εB, ηB|||box. (3.61)

By Young inequality

|ηB|2T,∗ + ∥ηB∥2L2 + ν |εB|2H1 ≲S|||εB, ηB|||box + S2 ≤ 1

2
S2 +

1

2
|||εB, ηB|||2box + S2, (3.62)
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from which follows
1

2
|||εB, ηB|||2box ≲S2 = (|ε|H1 + ∥η∥L2 + hC(f,u, p))2

=(|ε|H1 + ∥η∥L2 + hC(f,u, p))2 .
(3.63)

To conclude the proof, use the triangular inequality and Proposition 3.1.2 and write

|uB − u|H1 + ∥pB − p∥L2 ≤ |uB − Iu|H1 + ∥pB − Ip∥L2 + |Iu− u|H1 + ∥Ip− p∥L2

≤ |εB|H1 + ∥ΠhηB∥L2 + |Iu− u|H1 + ∥Ip− p∥L2

≤ |Iu− u|H1 + ∥Ip− p∥L2 + |||εB, ηB|||box
(3.64)

where we used Lemma 3.1.1 in the following way:

∥pB − Ip∥L2 ≤∥pB −ΠhpB∥L2 + ∥ΠhpB −ΠhIp∥L2 + ∥Ip−ΠhIp∥L2

≲h |pB|H1 + h |Ip|H1 + ∥ΠhηB∥L2 .
(3.65)

Employing inequality (3.63) in the latter we obtain the following estimate depending on
the interpolation errors of Iu, Ip:

|uB − u|H1 + ∥pB − p∥L2 ≲ ∥Iu− u∥H1 + ∥Ip− p∥L2 + hC(f,u, p), (3.66)

that, using the interpolation estimates for η and ε and neglecting higher order terms in h
reads:

|uB − u|H1 + ∥pB − p∥L2 ≤hC(f,u, p). (3.67)

Remark 3.5. In Theorem 3.1.4 we used quite strong regularity assumptions: domain Ω
of class C2 and the source term f ∈ [H1(Ω)]d. This is because we need pressure field to
belong to H1(Ω) and also to H2

loc(Ω) [67, Theorems IV.4.1, IV.6.1] to satisfy assumptions of
Lemma 3.1.5. In particular, these assumptions are needed when dealing with the Rhie-Chow
stabilization, that directly involves pressure gradient, indeed the regularity assumptions are
employed when proving consistency, continuity and coercivity of the stabilization term (c.f.
Lemmas 3.1.5, 3.1.7 and 3.1.8).

Now, using triangular inequality and Theorems 3.1.2.1 and 3.1.4, we can find a relation-
ship between FEM and BM solutions:

∥uB − uh∥H1 + ∥pB − ph∥L2 ≤ Ch. (3.68)

3.1.3.5 Numerical experiments

Here we present some numerical experiments to assess the theoretical analysis of Section
3.1.3.4. The objective is to validate estimate (3.68) proven in previous section. The method
used to solve the Stokes equations is the SIMPLE splitting method, described in Section
5.1.1.
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As mentioned in Section 3.1.1, all the computations have been performed employing a
Voronoi dual mesh of a Delaunay triangulation (i.e. connecting circumcentres of triangles
with straight lines). To generate the dual mesh we relied on a tool implemented in Open-
FOAM called polyDualMesh modified in order to use circumcentres of triangles and nodes
of dual mesh instead of barycentres.
The first is a 2D case. We consider the domain Ω = [−1/4, 1/4]2. We set the analytic

solution to

u =

− sin (2πy) cos (2πx)

sin (2πx) cos (2πy)

 ,
p =− 1

4
(cos (4πx) + cos (4πy))

(3.69)

and we consider the following values of h:

h = 0.025, 0.0125, 0.00625, 0.003125.

The second is a 3D case. We consider the domain Ω = [−1/4, 1/4]3. We set the analytic
solution to

u =


sin (2πy) sin (2πz) cos (2πx)

sin (2πx) sin (2πz) cos (2πy)

−2 sin (2πx) sin (2πy) cos (2πz)

 ,
p =− 1

8
(cos (4πx) + cos (4πy) + cos (4πz))

(3.70)

and we consider the following values of h:

h = 0.05, 0.025, 0.0125, 0.00625.

For both cases we set the boundary conditions accordingly to analytic solutions and f =
−∆u+∇p.
Solving the problems, we obtain the convergence rates of the H1 error for the velocity

and L2 error for the pressure, represented in Figure 3.4. Recalling inequality (3.68), we
should have a global convergence rate of 1. Indeed, for both velocity H1 error and pressure
L2 error we observe a rate of convergence of order 1 in 2D and a rate of order slightly lower
than 1 in 3D.
We impute the slightly lower convergence order in the pressure error of the 3D case to the

fact that, in particular in 3D, is not easy to build a a triangulation that is perfectly Delaunay,
and this reflects on the quality of Voronoi dual grid and consequently on the accuracy of the
method.

3.2 The Diffuse Interface Box method

Let Ω ⊂ Rd, d = 2, 3 be a (non-polygonal) domain and let Ω̃ be a hold-all domain such that
Ω ⊂ Ω̃. In the sequel (c.f. Section 3.2.1), we will work under the hypothesis Γ = ∂Ω ∈ C1,1.
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Figure 3.4: Convergence rates of the numerical error of BM solutions. On the left the 2D
case errors and on the right the 3D case ones. Numbers are the rates computed using a Least
Square approximation on the log-log plot values.

With a slight abuse of notation we denote by Th a shape regular triangulation of Ω. It is
worth noting that Th is not conforming with Ω. Following [124] we first select a tubular
neighbourhood Sϵ of Γ, where ϵ denotes the width of Sϵ (see Figures 3.5 and 3.6). Then
we introduce the set Sϵ

h which contains all the triangles of Th having non-empty intersection
with Sϵ. Note that the width of the discrete tubular neighbourhood Sϵ

h is δ + ϵ where δ is
the maximum diameter of triangles crossed by ∂Sϵ (see Figures 3.5 and 3.7).

Figure 3.5: Diffuse interface representation: D is a surrogate domain of Ω̃; Γ is the Dirichlet
boundary and Sϵ is its tubular neighbour.

3.2.1 Poisson problem

To proceed, we assume that there exists an extension g̃ ∈ H2(Ω̃) of the boundary data g.
We set Ωϵ

h = Ω\Sϵ
h and introduce the function uϵ,h ∈ H1(Ωϵ

h) such that uϵ,h = g on ∂Ωϵ
h,
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Figure 3.6: Left: continuous diffuse interface. Centre: Discrete diffuse interface. Right:
mesh sizes subdivision.

which solves the following continuos problem:∫
Ωϵ

h

∇uϵ,h · ∇v =

∫
Ωϵ

h

fv ∀v ∈ H1
0 (Ω

ϵ
h). (3.71)

The solution uϵ,h is then extended to Sϵ
h by setting uϵ,h = g̃ in Sϵ

h.
The following results have been proved in [124, Thm 1.2]:
1

ϵ+ δ

∥∥∥u− uϵ,h
∥∥∥
L2(Ω)

+
1√
ϵ+ δ

∥∥∥∇u−∇uϵ,h
∥∥∥
L2(Ω)

≤ C
(
∥f∥L2(Ω) + ∥g∥H2(Ω)

)
. (3.72)

Let Vϵ
h,g̃h

=
{
vh|Ωϵ

h
: vh ∈ P1(t)∀t ∈ Th and vh = g̃h on ∂Ωϵ

h

}, with g̃h the Lagrangian
piecewise linear interpolant of g̃.
It has been proved (cf. [124, Thms 5.1 and 5.3]) that the linear finite element approxi-

mation uϵG,h ∈ Vϵ
h,g̃h
of uϵ,h satisfies the following estimates:∥∥∥∇(uϵ,h − uϵh)

∥∥∥
L2(Ω)

≤ C(
√
δ + κ

2
3 + h)

(
∥f∥L2(Ω) + ∥g̃∥H2(Ω)

)
,∥∥∥uϵ,h − uϵh

∥∥∥
L2(Ω)

≤ C(δ + κ
4
3 + h2)

(
∥f∥L2(Ω) + ∥g̃∥H2(Ω)

)
,

(3.73)

where κ is the maximum diameter of the triangles intersecting ∂Sϵ+h and uϵG,h has been
extended to Ωϵ

h by setting uϵG,h = g̃h on Sϵ
h.

Let us now introduce the Box method with diffuse interface (DIBM). We denote by uϵB,h ∈
Vϵ
h,g̃h
, the approximation obtained from applying the Box method to (3.71) (cf. (3.3)). The

solution uϵB,h is then extended to Ω by setting uϵB,h = g̃h in Sϵ
h. Then employing the triangle

inequality in combination with (3.72), (3.73) and (3.6) we get the following estimates for
DIBM: ∥∥∇(u− uϵB,h)

∥∥
L2(Ω)

≲
√
ϵ+ δ +

√
δ + k

2
3 + h,∥∥u− uϵB,h

∥∥
L2(Ω)

≲ ϵ+ δ + k
4
3 + h2.

(3.74)
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Figure 3.7: Discrete diffuse interface representation on triangulation (left) and on box mesh
(right). Constrained cells are marked with red dots while the continuous and discrete diffuse
interfaces are coloured by darker an lighter red respectively.

Remark 3.6. The existence of the H2-extension g̃ of the boundary datum g is required in
[124] to prove (3.73), where an equivalent problemwith homogeneous boundary conditions
and modified right hand side f̃ = f − ∆g̃ is considered. We note that in practice, the
extension of g is only needed on Sϵ and, depending on the regularity of ∂Ω, a constant
extension along the normal to the boundary may be sufficient.

3.2.1.1 Numerical experiments

In this section we numerically assess the theoretical estimates obtained in previous section.
To this aim, we consider the test case originally introduced in [124, Section 6] that is briefly
recalled in the sequel. Let Ω̃ = (−1, 1)2 and let Γ be the boundary of the circle B1(0)
with centre (0, 0) and unitary radius. Thus, Γ splits the domain Ω̃ into two subregions:
Ω1 = B1(0) and D2 = Ω \ Ω1. Let u be the solution of the following problem

−∆u = f in Ω, u = g on Γ, u = 0 on ∂Ω̃, (3.75)

where g(x, y) = (4−x2)(4−y2) on Γ and extended to Ω̃ as g̃(x, y) = (4−x2)(4−y2) cos(1−
x2 − y2).
Setting the solution equal to:

u(x, y) = (4− x2)(4− y2)
(
χD2 + exp(1− x2 − y2)χD̄1

)
, (3.76)

where χDi , i = 1, 2 are the characteristic functions of the two parts of Ω, the source term f
is chosen as:

f =

{
−∆u in Ω̃\Γ,
0 on Γ.
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All the computations have been performed employing a Voronoi dual mesh of a Delaunay
triangulation (i.e., the dual mesh is obtained by connecting the barycentres of the triangles
with straight lines).
To validate the estimates (3.74) we consider in a separate way the influence of h and ϵ

on the error. More precisely, we first explore the convergence with respect to h and then we
study the convergence with respect to ϵ. In both cases we consider a uniform discretization
of the domain Ω̃ so to have κ = δ = h.

Convergence w.r.t. h We set ϵ = 2−20 ≪ h while we let h vary as

h = 0.056, 0.028, 0.0139, 0.00694.

From Figure 3.8 we observe that theL2-norm of the error decreases with order 1while the
error decreases with order 1/2 in theH1-norm. These rates of convergence are in agreement
with (3.74).

Remark 3.7. If a local refinement of the diffuse interface region is performed in such a way
that δ ≃ κ ≃ h2 (Figure 3.10), then first and second order of convergence are recovered for
H1 and L2 norms, respectively (cf. [124, Section 6]). Moreover, comparing the behaviour of
the errors in terms of the number of degrees of freedom (cf. Figure 3.11) clearly shows the
advantage of employing the adaptive strategy over the use of uniformly refined grids.

Convergence w.r.t. ϵ We employ a fine mesh (h = 0.00694) and let the value of ϵ vary as:

ϵ = 2i, i = −1, ...,−20.

The results are collected in Figure 3.9. The theoretical rates of convergence with respect to
ϵ (cf. (3.74)) are obtained both in the L2-norm (order 1) and in the H1- norm (order 1/2 ).
It is worth noticing that when the value of ϵ becomes smaller than the chosen value of h, a
plateau is observed as the (fixed) contribution from the discretization of the PDE (related to
h) dominates over the contribution from the introduction of the diffuse interface (related to
ϵ).

3.2.2 Stokes problem

In this section we deduce the Diffuse Interface method for the Stokes problem. Let Ωϵ =
Ω\Sϵ (Figure 3.6) and Vϵ = [H1(Ωϵ)]d, Qϵ = L2(Ωϵ). Let g̃ be an extension of the Dirichlet
boundary datum s.t. g̃ ∈ [H2(Ω̃)]d.
Consider then the problem written on Ωϵ: find (uϵ, pϵ) ∈ Vϵ × Qϵ such that uϵ = g̃ on

∂Ωϵ, which solves
−ν∆uϵ +∇pϵ = f, in Ωϵ,

∇ · uϵ = 0, in Ωϵ,
(3.77)

where it is worth noticing that u− uϵ = 0, on ∂Ω.
Moreover, we can state the following stability result:
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Figure 3.8: Poisson problem error behaviour with respect to h (fixed ϵ = 2−20): (left) L2-
norm error, (right) H1-norm error. Dashed lines are theoretical convergence orders.
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Figure 3.9: Poisson problem error behaviour with respect to ϵ (fixed h = 0.00694): (left)
L2-norm error, (right) H1-norm error. Dotted lines are theoretical convergence orders.

Theorem 3.2.1. Solution of problem (uϵ, pϵ) ∈ Vϵ ∩ [H2(Ωϵ)]d × Qϵ ∩ H1(Ωϵ) of problem
(3.77) satisfy the following relationship:

∥uϵ∥H1(Ω) + ∥pϵ∥L2(Ω) ≤ C
(
∥f∥L2(Ω) + ∥g̃∥H2(Ω)

)
.

C > 0 is independent of ϵ.

We first recall notation defined at the beginning of Section 3.2 and in Figure 3.6. As
before, define the following functional spaces on the discrete diffuse set Ωϵ

h = Ω\Sϵ
h: Vϵ,h =

{v ∈ [H1(Ωϵ
h)]

d}, Qϵ,h = {q ∈ L2(Ωϵ
h)}.

The problem on Ωϵ
h will read: find (uϵ,h, pϵ,h) ∈ Vϵ,h × Qϵ,h such that uϵ,h = g̃ on ∂Ωϵ

h,
which solves

−ν∆uϵ,h +∇pϵ,h = f, in Ωϵ
h,

∇ · uϵ,h = 0, in Ωϵ
h.

(3.78)

Now we introduce the discrete formulation of the diffuse interface problem. Let

Vϵ
h =

{
vh|Ωϵ

h
: vh ∈ P1(T ) ∀T ∈ Th

}
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Figure 3.10: On the left: example of a dual mesh with local mesh refinement around surro-
gate boundary. On the right: error behaviour with respect to h with local mesh refinement
around the interface (fixed ϵ = 2−20): (left) L2-norm error, (right) H1-norm error. Dashed
lines are theoretical convergence orders.
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Figure 3.11: Plot of L2-norm (left) andH1-norm (right) error against the number of degrees
of freedom for uniformly and locally refined meshes.

be the space of piecewise-linear functions and let

Vϵ
h,g̃h

=
{
vh|Ωϵ

h
: vh ∈ [P1(T )]d ∀T ∈ Th and vh = g̃h on ∂Ωϵ

h

}
be the space of vectorial piecewise-linear functions on Th that have value g̃h on the discrete
diffuse interface boundary, with g̃h the Lagrangian piecewise linear interpolant of g̃. We
can then write the Galerkin formulation for the problem (3.78): find (uϵ

h, p
ϵ
h) ∈ Vh,gh × Vϵ

h,
such that

a(uϵ
h, vh) + b(vh, pϵh) = F (vh), ∀vh ∈ Vϵ

h,0,

−b(uϵ
h, qh) + s(pϵh, qh) = 0, ∀qh ∈ Vϵ

h.
(3.79)

3.2.3 Numerical assessment of the DIBM applied to the Stokes problem

In this section we want to numerically expose the validity of the following inequality

∥u− uϵ
B∥H1(Ωϵ

h)
+ ∥p− pϵB∥L2(Ωϵ

h)
≲ϵ

1
2 + δ

1
2 + κ

2
3 + h. (3.80)
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To do this we act along two different directions. First, we consider two cases with analytic
solution, one in 2D and one in 3D. The method used to solve the Stokes equations is the
SIMPLE splitting method, described in Section 5.1.1. The usage of the SIMPLE method used
along with non-conforming methods is exposed in Section 5.2.
In both experiments we considered the case of a uniform mesh, where δ ≃ κ ≃ h,

and the case where a local refinement of the diffuse interface region is performed, such
that δ ≃ κ ≃ h2 (Figure 3.6, 3.12 and 3.14). In the second case, the standard order of
convergence in H1 and L2 norms are recovered. The continuous interface width ϵ is set to
be such that ϵ ≃ δ in order to be neglected with respect to other terms.
As mentioned in Section 3.1, all the computations have been performed employing a

Voronoi dual mesh of a Delaunay triangulation (i.e. connecting circumcentres of triangles
with straight lines). To generate the dual mesh we relied on a tool implemented in Open-
FOAM called polyDualMesh modified in order to use circumcentres of triangles and nodes
of dual mesh instead of barycentres.

3.2.3.1 A 2D case-study: Taylor-Couette flow

For the first case we considered a Taylor-Couette flow. Let Ω̃ = B0(1), where B0(1) is the
circle of radius 1 centred in (0,0), and Γ = ∂B0(

1
2).

Let (u, p) be the solution to problem

−∆u+∇p =f, in Ω̃\Γ,
∇ · u =0, in Ω̃\Γ,

u =g, on Γ,
u =[−y, x]⊺, on ∂B0(1),

where g = 0 on Γ and extended to Ω̃ as g̃ = 0.

Figure 3.12: Embedded cylinder, primal and dual meshes in both uniform and refined cases.
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Setting the solution equal to:

u =

−
y
(
4x2 + 4y2 − 1

)
3(x2 + y2)

x
(
4x2 + 4y2 − 1

)
3(x2 + y2)

 ,
p =e−4x2−4y2 ,

(3.81)

the source term is chosen accordingly:

f = −∆u+∇p, in Ω̃\Γ.

We first let ϵ→ 0 and we let vary h as

h = 0.075, 0.05, 0.025, 0.0075.

From Figure 3.13 we observe that both the L2-norm of the pressure error and H1-norm of
velocity error decrease with order 1/2, while we recover order 1 for both quantities when
performing the local mesh refinement. These rates of convergence are in agreement with
(3.80).
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Figure 3.13: Error behaviour with respect to h (as ϵ → 0): (left) H1-norm velocity error,
(right) L2-norm pressure error. Dash and dotted lines are theoretical convergence orders.

3.2.3.2 A 3D case-study: Stokes flow around a sphere

For the second case we considered a Stokes flow around a sphere. Let L = 3
2 and Rs = 1

2 ,
Ω̃ = (−L,L)3, Γ = ∂B0(Rs) and Γout = (−L,L)2 × {z = L}. We let also U0 = [0, 0, U0]

⊺,
where U0 = 1 m/s, be a uniform velocity coming towards the sphere.
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Consider the following problem:
−∆u+∇p =0, in Ω̃\Γ,

∇ · u =0, in Ω̃\Γ,
u =g, on Γ,
u =uex, on ∂Ω̃\Γout,

−pn+∇u · n =0, on Γout,
where g = 0 on Γ and extended to Ω̃ as g̃ = 0.

Figure 3.14: Embedded sphere and dual meshes in both uniform and refined cases.

Then, its solution (u, p) reads:

u = uex =



U0xz

(
Rs

3

2(x2+y2+z2)3/2
− 3Rs

2
√

x2+y2+z2
+1

)
x2+y2+z2

+
U0xz

(
Rs

3

4(x2+y2+z2)3/2
+ 3Rs

4
√

x2+y2+z2
−1

)
x2+y2+z2

U0yz

(
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3

2(x2+y2+z2)3/2
− 3Rs

2
√

x2+y2+z2
+1

)
x2+y2+z2

+
U0yz

(
Rs

3
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+ 3Rs

4
√

x2+y2+z2
−1

)
x2+y2+z2

U0z2
(

Rs
3

2(x2+y2+z2)3/2
− 3Rs

2
√

x2+y2+z2
+1

)
x2+y2+z2

−
U0(x2+y2)

(
Rs

3

4(x2+y2+z2)3/2
+ 3Rs

4
√

x2+y2+z2
−1

)
x2+y2+z2


,

p =− 3R3
sz

(x2 + y2 + z2)
3
2

.

We first let ϵ→ 0 and we let vary h as
h = 0.09, 0.075, 0.05, 0.025.

From Figure 3.15 we observe that the H1-norm of velocity error converges with order 1/2
when using a uniform mesh and with order 1 when employing the local refinement. On the
other hand, we observe convergence rates slightly higher than 1/2 and 1 for the L2-norm of
the pressure in uniform and locally refined cases, respectively. These rates of convergence
are in agreement with (3.80).
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Figure 3.15: Error behaviour with respect to h (as ϵ → 0): (left) H1-norm velocity error,
(right) L2-norm pressure error. Dash and dotted lines are theoretical convergence orders.

3.2.4 A roadmap to prove a priori error estimate for DIBM

In this section we propose a roadmap to prove theoretically the convergence rates obtained
in numerical experiments of Section 3.2.3. As in Section 3.2.1, the idea of the proof is
based on proving perturbation results between the solutions on different perturbation of the
domain (Ω,Ωϵ and Ωϵ

h), in terms of mesh discretization and diffuse interface parameters.

Ansatz The solution (u, p) ∈ V×Q of problem (3.9) and the solution (uϵ
h, p

ϵ
h) ∈ Vϵ

h,gh×Qh

of problem (3.79) satisfy the following relationship:

∥u− uϵ
B∥H1(Ωϵ

h)
+ ∥p− pϵB∥L2(Ωϵ

h)
≲ϵ

1
2 + δ

1
2 + κ

2
3 + h.

where h = maxT {hT }, κ = max{hT , T ∈ Th ∩ ∂Sϵ+δ}, δ = max{hT , T ∈ Th ∩ ∂Sϵ
h}.

Step 1 (FEM approximation). First prove the following convergence result for FEM solu-
tion on the discrete interface domain Ωϵ

h. The solution (uϵ,h, pϵ,h) ∈ V×Q of problem (3.78)
and the solution (uϵ

h, p
ϵ
h) ∈ Vϵ

h,gh ×Qh of problem (3.79) satisfy the following relationship:∥∥∥uϵ,h − uϵ
h

∥∥∥
H1(Ωϵ

h)
+
∥∥∥pϵ,h − pϵh

∥∥∥
L2(Ωϵ

h)
≲

√
δ + κ

2
3 + h.

Step 2 (Perturbation result). Prove then the following perturbation result between the
continuous solution on the discrete interface domain Ωϵ

h and the continuous solution of the
original problem (3.9).∥∥∥u− uϵ,h

∥∥∥
H1(Ωϵ

h)
+
∥∥∥p− pϵ,h

∥∥∥
L2(Ωϵ

h)
≲

√
δ +

√
ϵ (3.82)

where δ = max{hT , T ∈ Th ∩ ∂Sϵ
h}.
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This can be done by proving separately

∥u− uϵ∥H1(Ω) + ∥p− pϵ∥L2(Ω) ≤
√
ϵ (3.83)

and ∥∥∥uϵ − uϵ,h
∥∥∥
H1(Ω)

+
∥∥∥pϵ − pϵ,h

∥∥∥
L2(Ω)

≤
√
δ (3.84)

where (uϵ, pϵ) is the solution of problem (3.77), and finally employing triangular inequality
in the following way:∥∥∥u− uϵ,h

∥∥∥
H1(Ωϵ

h)
+
∥∥∥p− pϵ,h

∥∥∥
L2(Ωϵ

h)
≤
∥∥∥u− uϵ,h

∥∥∥
H1(Ω)

+
∥∥∥p− pϵ,h

∥∥∥
L2(Ω)

≤∥u− uϵ∥H1(Ω) +
∥∥∥uϵ − uϵ,h

∥∥∥
H1(Ω)

+ ∥p− pϵ∥L2(Ω) +
∥∥∥pϵ − pϵ,h

∥∥∥
L2(Ω)

.

(3.85)

Step 3 (BM approximation). Introduce the Box method with diffuse interface (DIBM)
denoting by (uϵ

B, p
ϵ
B) ∈ Vϵ

h,g̃h
, the approximation obtained from applying the Box method

to (3.78) (cf. (3.14)).
Recall then inequality (3.67) applied to the DIM case:

∥uϵ
B − uϵ

h∥H1(Ωϵ
h)

+ ∥pϵB − pϵh∥L2(Ωϵ
h)

≲ h
1
2 (3.86)

and apply triangular inequality

∥uϵ
B − u∥H1(Ωϵ

h)
+ ∥pϵB − p∥L2(Ωϵ

h)
≲ ϵ

1
2 + δ

1
2 + κ

2
3 + h

1
2 . (3.87)

As for the Poisson case and as it is evident from numerical experiments (see Section 3.2.3), if
a local refinement of the diffuse interface region is performed in such a way that δ ≃ κ ≃ h2,
then the first order of convergence is recovered for pressure and velocity error.

Remark 3.8. By what was mentioned in Section 3.1.3.5, we have shown numerically that
the error estimate 3.67 is suboptimal. By this fact, also the estimate of Step 3 is suboptimal.
However, the numerical experiments of Sections 3.2.3.1 and 3.2.3.2 suggest that we have
order 1 convergence.
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Chapter 4

Extension to the Immersed Boundary
method

The aim of this chapter is to introduce an Immersed Boundary method (IBM) in the context
of the Finite Volume method. The IBM is here intended as an improved non-conforming
approach with respect to the Diffuse Interface method, introduces in Chapter 3. Due to DIM
limitations in terms of accuracy, we revisited the IBM proposed in [86] in order to develop
a more accurate non-conforming method able to deal with complex geometries.
In section 4.1, we first introduce some concept and notation on generic polyhedral meshes.

Then, in section 4.2, we generalize the concept of Diffuse Interface method to the one of
the Immersed Boundary method, describing in details its way of imposing non-conforming
boundary conditions. Finally, in 4.7 we report several test cases in which we compare ac-
curacy of conforming, DIM and IBM approaches, showing the numerical advantages of IBM
against DIM.

4.1 Preliminaries

We first define Finite Volume mesh as a generic polyhedral tessellation of the physical do-
main.

Definition 4.1.1 (Finite volume mesh). Let Ω ⊂ Rd, where d = 3, be a Lipschitz bounded
domain. Let Th be a polyhedral tessellation of Ω.

1. Each polyhedric cell of Th is denoted by Ki and is such that Ω =
⋃
Ki and Ki ∩Kj = ∅,

∀Ki,Kj ∈ Th. Let hi = diam(Ki) be the diameter of Ki and h = max
Ki∈Th

{hi}. Let ki and
|Ki| be the barycentre and the volume of cell Ki, respectively.

2. Let Fh be the set of faces Fi of Th. Let Fh = Fo
h ∪ F∂

h , where Fo
h is the set of internal

faces and F∂
h is the set of boundary faces. Let fi be the barycentre of face Fi and |Fi| be

its area.

3. Let Eh be the set of edges Ei of Th. Let ei be the midpoint of edge Ei and |E|i be its length.
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4. Let Ph be the set of vertices pi of Th.

Then, we describe the notation for the mesh elements connectivity.

Definition 4.1.2 (Mesh connectivity). Consider a cell Ki. Let Fi = {F ∈ Fh : Ki ∩ F ̸= ∅}
be the set of faces of cell Ki. Moreover, denote by Fij the face shared by cell Ki and Kj and
denote by F ∂

i each face ofKi living on ∂Ω. Let also Ki be the set of cells adjacent to cellKi and
let, analogously, Ei and Pi as the sets of edges and vertices of Ki, respectively.

Then, for each face Fij we associate a unit normal vector nij , directed from cell i to cell
j, a distance hij between centres ki and kj , and a diamond Dij as the polyhedron formed
by the face vertices and the correspondent cell barycentres ki and kj . Moreover, let Di

ij , D
j
ij

be the parts of the diamond Dij belonging to cells Ki,Kj , respectively.

4.2 The weighted least-squares IBM (WLS-IBM)

Although local refinement allows us to recover the original convergence rate of a conform-
ing method using the DIM, performing such a deep local mesh adaptation can be a very
expensive procedure, especially in complex applications.
Hence, we consider another non-conforming approach, based on the Immersed Bound-

ary method (IBM), that can recover the conforming convergence rate avoiding the local
refinement strategy.
In particular, we considered the IBM described in [86] as a starting point. The IBM has

been implemented and tested as an alternative to the Diffuse Interface method (DIM), since
it should be able to guarantee a higher order of accuracy with respect to the DIM.
Let Ω̃ be a hold-all domain such that Ω ⊂ Ω̃. Let Σ be the surface triangulation of a

closed manifold, such that Σ∩ Ω̃ ̸= ∅, representing the immersed boundary . Denote with Ti
a triangle of Σ and with |Ti|, ti the area and the barycentre of the i-th triangle, respectively.
We denote with Σ the volume enclosed by the surface Σ.
For each cell Ki, we define the cell-to-cell stencil set, namely the set of cells that share at

least a face with Ki. With a recursive expression, the extended stencil of level c, i.e. the set
of cells connected to Ki through c connectivity steps, can be defined as:

K0
i = {Ki},

K1
i = {Kj ∈ Th : Ki ∩ K0

i = Fij , for someFij ∈ Fi} ∪ K0
i ,

...

Kc
i = {Kj ∈ Th : Ki ∩ Kc−1

i = Fij , for someFij ∈ Fi} ∪
c−1⋃
n=0

Kn
i .

(4.1)

Notice that K1
i corresponds to the set defined in Definition 4.1.2. On the other hand, the

point-to-cell stencil of level c can be defined with a similar recursive relation. Here the con-
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nectivity is given by having a common point between two cells:

K0
i = {Ki},

K1
i = {Kj ∈ Th : Ki ∩ K0

i ̸= ∅} ∪ K0
i ,

...

Kc
i = {Kj ∈ Th : Ki ∩ Kc−1

i ̸= ∅} ∪
c−1⋃
n=0

Kn
i .

(4.2)

In general, one can choose at will either the cell-to-cell or the point-to-cell stencil. Unless
specified, for now on we will consider point-to-cell stencil. An example for both choices is
represented in Figure 4.1.

Figure 4.1: Representation of cell-to-cell (c2c) and point-to-cell (p2c) stencils of level 2.

Without loss of generality, suppose the flow to be external to the immersed surface. The
procedure of a generic Immersed Boundary method (IBM) is resumed by the following steps:

1. generate the triangulated surface Σ (typically a STL file) representing the immersed
object;

2. use the surface to divide the mesh in three regions:

• solid set: cells with barycentre inside the surface, representing the immersed
object;

• IB set: immersed boundary (IB) cells just outside of solid set, that is non-solid
cells which have at least one solid cell as a neighbour;

• fluid set: the remaining cells, representing the fluid domain;

3. generate the IB cell stencil S, for each IB cell, that is a set of mesh cells which are
selected within certain criteria;

4. generate the IB approximator on each stencil (i.e. interpolation matrices);
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5. at each time step and for each field, using the values of the actual solution evaluated
on the stencil of an IB cell, evaluate the approximator function in the IB cell barycentre
and impose the value on the solution.

Mesh subdivision First, the mesh is subdivided in three regions based on the position of
the mesh elements with respect to the triangulated surface Σ. We denote the three regions
ΓS , ΓIB and ΓF as the solid, immersed boundary and fluid (cells), respectively. They are
defined as follows:

ΓS = {Ki ∈ Th : ki ∈ Σ},
ΓIB = {Ki ∈ Th\ΓS : Ki ∈ K1

j , for some Kj ∈ ΓS},
ΓF = {Ki ∈ Th\(ΓS ∪ ΓIB)}.

(4.3)

We also define the projections on Σ of the cell centres of ΓIB and we denote them as IB
points PIB = {pIB,i}, where i is the index of the associated IB cells. Moreover, we denote
with nIB the normal unit vectors in the IB points directed inwards the solid set, as shown in
Figure 4.2.

Figure 4.2: Schematics of IBM mesh elements.

Finally, we define the solid, IB and fluid face sets and we denote them with the symbols
γS , γIB and γF :

γS = {Fij ∈ F : Ki ∈ ΓS ∧Kj ∈ ΓS},
γIB = {Fij ∈ F : Ki ∈ ΓIB ↮ Kj ∈ ΓIB},
γF = {Fij ∈ F : Ki ∈ ΓF ∧Kj ∈ ΓF }

(4.4)

where↮ is the logical operator representing the exclusive or.

Extended stencil Consider an IB cell Ki ∈ ΓIB. We construct its extended stencil Si op-
portunely collecting some neighbouring cells centres among IB and fluid sets. In particular,
we choose cells whose barycentres simultaneously satisfy the following three criteria:
• spatial distance: if centre-to-centre distance with respect to the IB cell is within a
certain bound (Figure 4.3a);
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• connectivity distance c: if the cell belongs to the stencil of level c Kc
i (definitions (4.1)

and (4.2), Figure 4.3b);

• field of view: if cell centre is within a certain angle with respect the the IB normal unit
vector (Figure 4.3c).

Examples of level 2 stencils can be seen in Figure 4.1 and an example of the application of
the three criteria can be seen in Figure 4.3d.

(a) Spatial distance criterion,
around two times the IB cell di-
ameter.

(b) Connectivity distance crite-
rion: an example of a level 2
point-to-cell stencil.

(c) Field of view criterion with
an angle of 80°.

(d) Intersection of all the criteria to select the final stencil.

Figure 4.3: Example of filtering criteria to select the extended stencil of an IB cell. Orange
cells represent the final stencil for the least squares interpolation. Stencil is chosen within
the intersection of the red circle and the two blue lines and at a maximum connectivity
distance of two cells.

We define the extended stencil Si of an IB cell Ki ∈ ΓIB as the set of cells satisfying the
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three criteria:

Si =

{
Kj ̸∈ ΓS : kj ∈ R3 : j ̸= i,Kj ∈ Kc̄

i ∩ (ΓIB ∪ ΓF ), (connectivity),

∥ki − kj∥2 ≤ r̄, (spatial distance),

−ni ·
(ki − kj)
∥ki − pi∥2

≤ cos(θ̄), (field of view)
}
,

(4.5)

where c̄ is the maximum connectivity level, r̄ is the limit distance and θ̄ is the field of view
angle. These constraints are defined a priori.

IB value approximator First define the IB value gIB = [gi] as the vector of values of the
immersed boundary condition evaluated at IB points associated to IB cell Ki ∈ ΓIB.
We define the WLS approximant as a polynomial of degree p. Given the polynomial basis

of degree p
Px = [1, x, y, z, . . . , xp, yp, zp]⊺ (4.6)

and a vector of Ncoeffs unknown coefficients

β = [β0, . . . , βNcoeffs
]⊺, (4.7)

we define the approximation function fIB as

fIB(x) = P⊺
xβ,

where x = [x, y, z]⊺.
The WLS approximation is performed determining a set of observations of the solution

and associating the correspondent weights. In particular, the observations are the solution
values in the cells of the extended stencil plus the value of the immersed boundary condition
evaluated on the correspondent IB point.
Now, consider the stencil Si of cardinality n. Let uj denote the FVM solution on the j-

th cell of stencil Si. For each observation define also the weights wj ∈ [0, 1], j = 0, . . . , n
associated to the observations points, where 0 is the IB point as a convention. We want to
determine β∗ such that:

β∗ = argmin
β

w0

∣∣∣gIB,i − P⊺
pIB,iβ

∣∣∣2 +∑
j∈Si

wj

∣∣∣uj − P⊺
kjβ
∣∣∣2
 = argmin

β

∥∥∥W 1
2 (UIB − Aβ)

∥∥∥2
(4.8)

where W is a square diagonal matrix with Wjj = wj . UIB is the vector collecting all the of
observations, and A is the matrix that has on the j-th row equation (4.6) evaluated in the
j-th observation point.
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When Dirichlet condition on the immersed boundary are considered, the matrix A will
be of the following form

A =


1 x0 y0 z0 . . . xp0 yp0 zp0

1 x1 y1 z1 . . . xp1 yp1 zp1
... ...
1 xn yn zn . . . xpn ypn zpn

 . (4.9)

In the case of a Neumann condition on the immersed boundary (∇u · n = gN) we could
just consider the approximation function

fIB = β0 + β1x+ · · ·+ βNcoeffs
zp

and, recalling that the 0-th point is associated to the IB condition, compute the normal
component of its gradient in pIB,i as:

∇fIB(x) · n = β1nx + · · ·+ pβNcoeffs
zp−1nz.

Then, the first row of the matrix A becomes

A =

0 nx ny nz . . . pxp−1
0 nx pyp−1

0 ny pzp−1
0 nz

... ...

 , (4.10)

while in the UIB vector we set the first element value to the condition gN . In this way we
can impose easily different types of boundary conditions, for instance the incompressibility
of the field in the IB cell (∇ · fIB(x)|Ki = 0), see [101].
Finally, let SIB be the interpolation operator that corrects the solution field on the IB and

solid sets. We define SIB as a linear combination:

Ucorr = SIB(g,U) =


sIBgIB,i +

∑
Kj∈Si

sjUj , if Ki ∈ ΓIB,

Ui, if Ki ∈ ΓF ,

gi, if Ki ∈ ΓS ,

(4.11)

where Ucorr is the corrected solution vector, U is the current solution vector, si = [si,k], k =
1, . . . , card(Si) are the linear combination coefficients computed by si = P⊺

kiβ
∗ and g is such

that

g =


gIB,i if Ki ∈ ΓIB,
0, if Ki ∈ ΓF ,

gS,i, if Ki ∈ ΓS ,

where gS is the vector of velocity values on ΓS .
It is worth noticing that, being SIB al linear combination, it can be represented by two

matrices Sg and S, such that:
Ucorr = Sgg+ SU. (4.12)
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Remark 4.1. For all the derived fields, such as gradients, shear rate, viscosity, etc., we
impose the following condition on the IB point:

n · ∇∇fIB · n = 0.

This conditions comes form the fact that any derived quantity is assumed to vary linearly
inside a mesh cell, thus their Hessian must be zero.

Least-squares weights Different weighting functions are used for Dirichlet and Neumann
conditions even if they both depend on the distance from IB point [86].

Dirichlet : wi =
1

2

[
1 + cos

(
π

c

ri
rmax

)]
,

Neumann : wi = 1− ri
crmax

,

(4.13)

where ri is the distance of the i-th stencil point form the IB cell centre and c > 1 is a factor
to avoid null weights.

4.3 Time dependent IBM

As mentioned before in this work, mixing processes are naturally time dependent because
of the kinematics involved. Hence, we need to adopt a strategy to move the IB surface and
consequently compute solution based on the motion dynamics. The idea is not different
from the one exposed in previous section. The only difference resides in the velocity value
that we impose on the IB surface Σ.
In the steady-state case the value of gIB is prescribed a priori. Equivalently, if the body

kinematics is known and the velocity can be described analytically, at each time t we impose
exactly on the surfaces the boundary value gIB(t).
On the other hand, when we do not know a priori the motion of a body, we are able to

estimate its velocity by empoying a BDF2 differencing scheme. Set time at instant tn. Let
Pn
IB be the set of points of triangulation SIB. Let Un

IB be the set of velocity values evaluated
on each point p ∈ PIB. Then, we compute Un+1

IB element-wise as:

Un+1
IB =

Pn
IB − 4Pn+ 1

2
IB + 3Pn+1

IB
∆t

. (4.14)

This formula ensures enough accuracy, given a reasonable time step. If the motion is pre-
scribed, the accuracy of Un+1

IB computation can be increased at will substituting formula
(4.14) with a more accurate one.
In both cases, according to the experience developed on numerical experiments, an ac-

ceptable constraint on time step when moving the IB surface is that, between two time
instants, ΓS does not change of more that one cell, so∥∥Pn+1

IB − Pn
IB
∥∥
∞ ≲ h.
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4.4 Extension to multiple IB surfaces

There exist problems that need the application of the Immersed Boundary method to more
than one geometry because multiple elements of the device move passing one close to the
others, or because the geometries in object are modular and composed parts that present
different shapes. This is the case of the the twin-screw extruder (c.f. Section 6.2 and Figures
1.2 and 6.14) where there are two co-rotating elements, both composed bymultiple modules
of different shapes (see transport and kneading elements).
Therefore, to handle these type of problems we have to be able to consider the interaction

between multiple immersed boundaries. Here, we describe the strategy that we developed
to consider every IB surface as an independent geometrical element. This feature allows to
simulate potentially any combination of screw elements, that makes our tool powerful in
dealing with complex geometries typically present in industrial mixing processes.
Let {Σi}, i = 1, . . . , NIB be a set of IB surfaces. If NIB > 1, then some quantities defined

in Section 4.2 have to be redefined in order to describe the multiple IB framework. First,
the global mesh subsets, that now depend on the ensemble of surfaces:

ΓS =

NIB⋃
i=0

ΓS,i,

ΓIB = {Ki ∈ Th\ΓS : Ki ∈ ΓIB,j ∧ (Ki ̸∈ ΓIB,k, ∀k ̸= j), j = 1, . . . , NIB},
ΓSIB = {Ki ∈ Th\ΓS : Ki ∈ ΓIB,j ∧ (Ki ∈ ΓIB,k, for at least one k ̸= j), j = 1, . . . , NIB},
ΓF = {Ki ∈ Th\(ΓS ∪ ΓIB ∪ ΓSIB)},

(4.15)
where ΓSIB is the set of “shared” IB cells, i.e. cells that are IB cells for more than one
immersed surface.
Moreover, the IB cells stencils and the WLS interpolation are the most delicate parts of

the IB condition imposition when dealing with multiple geometries. We have to specialize
treatments for stencils of cells that are shared between or near two or more IB surfaces.
When an IB cell is between many IB surfaces, it can happen that a stencil has solid cells

relative to other IB surfaces. If this is the case the WLS interpolation would not be reliable
because it would depend on prescribed values of solid cells, that are not part of the physical
domain. Hence, we eliminate the solid cells from the stencil

S̃i = Si\{Ki ∈ ΓS,j , j ̸= i},

ensuring that enough points remain to perform the WLS interpolation. Otherwise, we add
to the stencil the IB points of the other IB surfaces, looking for these IB points among the
IB cells of other surfaces. This mostly happens when dealing with adjacent IB surfaces, i.e.
at the interface between two screw modules, or near IB surfaces. An example is sketched in
Figure 4.4.
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Figure 4.4: Demonstrative example of a grid presenting shared IB cells between the screws
of a TSE. Shared IB cells are highlighted.

4.5 Issues on anisotropic mesh

The first testing on realistic geometries with the original IBM implementation [86], was
performed on the single-screw extruder problem (see Section 6.1 and Figures 1.1 and 6.1).
In order to simulate the flow in the SSE we had to adopt anisotropic computational grids
(Figure 4.5), to avoid an excessive number of degrees of freedom to explode and to capture
the flow inside the gap between the screw and the external barrel.
However, the original implementation of the IBM suffered the presence of such stretched

elements and, in general, with anisotropic grids. In our experience, numerical instabilities
arouse because of the combination between the usage of IBM, anisotropic grids and strong
pressure gradients, where there are sharp edges or the flow is perpendicular to the wall.
These instabilities were due to the imposition of the Neumann pressure condition in the
SIMPLE algorithm (c.f. 5).

The original Neumann condition for pressure The idea behind the original implementa-
tion of a Neumann boundary conditionwas to impose a “conforming” condition on a staircase
boundary. The IB cells are initially removed from the computational domain and the Lapla-
cian pressure equation with Neumann boundary conditions is solved on the domain subset
ΓF (blue region in Figure 4.6). Finally, the IB cells pressure values are corrected using the
WLS approximation imposing ∇p · n = 0 on the immersed surface (equation (4.10)).
The deletion of IB cells from the computational domain is performed in the following

way. Consider the i-th row of the pressure Laplacian algebraic problem: let Ki ∈ Th, aj ∈
R, j ∈ Ki ∪ {Ki},

−aipi +
∑
j∈Ki

ajpj = fi,

where fi is the source term. Now, for all the faces that are between an IB cell and a fluid or
solid cell Fij ∈ Fi ∩ γIB, we impose the constraint that pi = pj . In this way, we are imposing
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Figure 4.5: Example of a SSE coarse computational mesh. Here the external barrel and the
shaft are approximatedwith a conforming boundary, while the screw teeth are approximated
using immersed boundaries. The figure represents the metering section of the grid of a SSE
with a zoom lens on the grid cells between the gap. In this example the grading has been
computed to have three elements within the gap.

a homogeneous Neumann condition of face Fij because

pj = pi + hij∇⊥
h,ijph,

where ∇⊥
h,ij is defined in equation (A.5), meaning

pi = pj =⇒ ∇⊥
h,ijph = 0.

Making this on both sides of an IB cell, decouples the IB region from fluid and solid regions.
Then, let Ki ∈ ΓIB, Fij ∈ Fi ∩ γIB,

(ai − aj)pj +
∑

k∈Ki,k ̸=j

akpk =fi,

pi =p̄i,

(4.16)

where p̄i is some value decided a priori. Following the above procedure coincided in solving
a Neumann homogeneous problem on a staircase domain: looking at Figure 4.6, it is easy
to notice that, in this way, we are committing a consistency error because we are computing
a pressure field that satisfies a zero normal gradient in two different points: the set of mesh
faces γIB ∩ γS and the IB points. Moreover, applying this procedure we are also performing
a poor approximation of pressure gradient near immersed walls because we are smoothing
normal gradients. Of course, situation gets worse when dealing with very anisotropic meshes
and with sharp edges, where pressure singularities are expected (Figure 4.6).
As mentioned, when trying to apply this approach to the SSE case-study we could not

reach the end of the simulation, because we were forced to use anisotropic meshes to limit
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Figure 4.6: Up: scheme of where the Neumann boundary condition is imposed using the
original implementation of IBM. Down: scheme of how the inconsistency grows when deal-
ing with anisotropic grids

the number of cells. Unfortunately, it is unaffordable to use a uniform grid for this kind of
test cases.
To overcome this issue, we have to compute a pressure field that is consistent with the

fact that we are imposing velocity in a non-conforming way. For this reason we employ the
strategy that will be described in details in Section 5.2, to include the IBM in a splitting
algorithm like the SIMPLE. In this way, we do overcome the stability issue that arise when
dealing with anisotropic meshes.

4.6 Parallelization of IBM for large scale problems

The IBM procedure explained in the above sections can be applied also to problems that
require a great number of degrees of freedom without significantly loosing computational
performance.
In general, when dealing with large scale problems in FVM, we employ a domain de-

composition and then each core, or processor, solves the problem and has direct access to
data only on a specific part of the decomposed domain. The difficulty of this approach is to
impose opportune boundary conditions between each domain and to perform in an efficient
way the intra-core communication of geometrical and solution data.
In the framework of IBM, we have to deal with cases where the embedded surface crosses

a processor boundary. This is a critical aspect, as there exist an infinite number of configu-
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rations of IB cells, stencils and processor boundaries, depending on problem complexity. In
general, what is critical, is that, when an IB cell has a processor-local stencil with a num-
ber of points less than the number of coefficients, the WLS interpolation is impossible to be
performed.
This imply the usage of specific strategies to deal with this situation. What is done is

to establish whether an IB cell is near to a processor boundary: either one of its face or
some face of cells in its stencil is on the boundary. Then, we communicate these IB cells and
their cell centres between processors and look for the stencil on neighbouring processors.
Once the stencil is built on other processors, addressing and connectivity information are
communicated and stored. Then, during the computations, when the stencil values are
required, they are retrieved and communicated between the various processors.
In this work, the above procedure has been optimized in order tominimize intra-processor

communication of data, relative to IB information, by limiting the parallel communications.
The idea is to build a communication map: each processor knows at which processors it has
to send data and from which processor it has to receive data.
We set in processor n0. For each processor n ̸= n0, we check for each IB cell in n0 what

processors have to be interrogated in order to retrieve data relative to the IB cell stencil. We
gather in a map all the ranks of these processors. This map will indicate to which processor
n0 have to send data. The is then communicated to other processors to tell them from which
rank they have to receive data.
This procedure prevents far processors domains to exchange data, avoiding the commu-

nication of useless information. However, despite the implementation of the above proce-
dure, from this application, we could not expect to have the same parallel performance of a
conforming method. This will be verified by numerical examples in the results presented in
Chapter 6.

4.7 Numerical estimation of IBM accuracy

In this section we report the simulation campaign that has been carried out to estimate the
convergence rate of non-conforming methods, DIM and IBM, on several test cases using
FVM. All the results are then compared with the ones of conforming FVM.
The convergence assessment of the former methods is performed on several test cases: a

Poisson problem, an advection-diffusion problem, a Stokes problem with a Newtonian fluid,
a Navier-Stokes problem with a non-Newtonian fluid and finally a case of interest, i.e. a
Navier-Stokes problem with a non-Newtonian fluid with temperature dependent viscosity.
While for the first cases we consider simple geometries, for the latter we consider a more
complex geometry of a single-screw extruder [92].
Fluid problems in this section will be solved with PIMPLE and SIMPLE family of algo-

rithms. The description and the analysis of these algorithms will be postponed to Chapter
5.
For each problem we will report the error computed for different mesh sizes and the

convergence rate obtained by employing four different methods: the conforming method,
the IBM and the DIM. For the DIMwe generated twomeshes: one uniform and the other with
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a local mesh refinement, in order to verify the validity of the results presented in Section
3.2.
For the error computation, we refer to Appendix A, in which we have reported a brief

review of the classical Finite Volumemethod for advection-diffusion problems. In this review,
we also reported the correspondent convergence analysis, where we exploit the influence
on the global error of consistency errors of FVM numerical schemes that are employed to
approximate face fluxes. We recall the error estimate for scalar problems discretized by the
FVM (c.f. Theorem A.4.1).
For the sake of clarity, let u be the continuous solution, Π0u be its L2 piecewise constant

projection on mesh cells and uh be the piecewise constant FVM solution. The error estimate
for the FVM discretization of a generic scalar problem reads

∥u− uh∥L2 +
∣∣Π0u− uh

∣∣
∗ ≲h,∣∣Π0u− uh
∣∣
∗ ≲h

p,
(4.17)

where p is the global consistency order of the FVM (c.f. A.4.2) and

|vh|∗ =

 ∑
Fij∈Fh

hij

∫
Fij

∣∣∣∣∣vi − vj

hij

∣∣∣∣∣
2

ds

 1
2

.

Estimate (4.17) splits the error between the FVM solution and the continuous one in two
contributions. The first one is relative to the interpolation error, in which we compare the
continuous solution to the piecewise constant FV solution. The second one is a discrete H1-
norm in which the L2-projection of the continuous solution and the FV solution face fluxes
are compared.
The value of p in the above estimate is typically, i.e. using standard linear FV schemes,

equal to one [43–45,59,87], hence leading to a global error estimate of order 1 with respect
to h.
In general, if a continuous reconstruction is not performed on uh, using the classical L2-

norm to measure the numerical error, the maximum convergence rate that we reach is of
order one. This is because we are comparing a piecewise constant function against a con-
tinuous one. Moreover, a deterioration of the L2-norm convergence rate is observable only
when dealing with particularly irregular meshes, characterized by strong non-orthogonality
and skewness (c.f. Appendix A).
Thus, in the L2-norm, the error is dominated by the fact that the FVM solution is piece-

wise constant. This does not always allow to appropriately compare methods accuracy be-
cause, if the mesh is regular enough, the convergence rate is up to order one. For this
reason, in the next analysis we use the |·|∗ to compute the numerical error of the FVM so-
lution, computed with the various methods mentioned above, in order to enlighten their
numerical accuracy properties.
Nowwe present some test cases with analytical solution. We consider two scalar problems

and two fluid flow problems. For the solution uh of scalar problems we compute |u− uh|∗
and ∥u− uh∥L2 , for which we expect to have a global convergence of order one. For the
solution (uh, ph) of fluid flow problems we compute |u− uh|∗ and ∥u− uh∥L2 for velocity
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and only ∥p− ph∥L2 for pressure, that, based on the results of Chapter 3, we expect to
converge with order 1.

Remark 4.2. Our experience with this type of error computation suggests that the optimal
order of convergence with respect to ∗-norm is 3

2 . This result is observable when the compu-
tational grid is regular enough, in terms of orthogonality and skewness and the adopted dis-
cretization schemes are accurate enough. In other cases, applying special numerical schemes
that are able to compensate mesh regularity lacking, the observed order of convergence is
1 and it can reach a maximum rate of 3

2 , depending on the mesh regularity and on the cor-
rection schemes employed. In worse cases, for particularly distorted meshes, the order of
convergence can deteriorate to 1

2 or even to zero.

Introducing the first test case, we want to mention the meshing strategy, that will be
analogous for all the next cases. For each case, we consider threemesh types: the conforming
mesh, a non-conforming uniformmesh and a non-conformingmeshwith local refinement. In
the spirit of what we observed for the Diffuse Interface Box method (c.f. 3.2), we performed
the refinement in such a way that the mesh size is h2, where h is its measure far from the IB
surface. The local mesh refinement is performed using the refinement library of OpenFOAM.
In particular, it is performed splitting a hexahedron along the three main directions creating
hanging nodes with adjacent hexahedra, hence from one hexahedra eight are generated.
The three mesh type are represented in Figure 4.7.

Figure 4.7: Example of the three mesh types employed to perform the numerical assessment
of non-conforming methods convergence. Left: uniform non-conforming mesh. Center:
conforming mesh. Right: locally refined non-conforming mesh.

4.7.1 Poisson problem

The first case is the simplest one: a Poisson problem on a squared domain with a circular
hole: Ω̃ = [−1, 1]2 and Ω = Ω̃\B 1

2
(0) (Figure 4.7).

The differential problem reads {
−∆u = f, in Ω̃,
u = 0, on ∂Ω̃ (4.18)
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where we set the analytical solution to

u = (x2 − 1)(y2 − 1)

(
x2 + y2 − 1

4

)
.

and compute f = −∆u, accordingly. We set h = 0.1, 0.05, 0.025, 0.0125.
We computed the ∗-norm and the L2-error of the FVM solution and reported the conver-

gence rates in Figure 4.8. While the L2 errors show a first order of convergence for each
method, the ∗ errors show some difference. In particular, while conforming, IB and refined
DIM show the same rates of convergence (32), we can see for the DIM a lost of half an order,
from 3

2 to 1.

0.10.050.0250.0125

10 2
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Conforming
DIM

IBM
Ref-DIM

h1/2

h1
h3/2

0.10.050.0250.0125
10 3

10 2

P0-L2

Figure 4.8: Convergence rates for non-conforming methods on Poisson test case in (left)
∗-norm, (right) L2-norm.

4.7.2 Advection-diffusion problem

The second test case is an advection-diffusion problem. The physical domain is a one by one
square Ω = [0, 1]2.
The differential problem [80] reads{

−k∆u+ b · ∇u = f, in Ω̃,
u = g, on ∂Ω̃ (4.19)

where k is the diffusivity, b = [1, 1]⊺ is the transport velocity. We set the analytical solution
to

u = x− y (x− 1)− e−
(x−1)(y−1)

k − e−
1
k

1− e−
1
k

.

and compute g and f = −k∆u+b·∇u, accordingly. Asmesh sizes we set h = 0.05, 0.025, 0.0125, 0.00625.
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By the fact that the problem does not have an immersed object in its formulation, for the
non-conforming methods we set as a hold-all domain Ω̃ = [32 ,

3
2 ]

2 ∩ B0(
3
2), where B0(

3
2) is

the ball of radius 3
2 centred in 0.

Figure 4.9: Solution representation varying the value of diffusivity k and so increasing the
Péclet number.

We select three values of k = 0.1, 0.01, 0.001 increasing the importance of the advection
and consequently the Péclet number Pe = |bL|

k ≃ 10, 100, 1000. To solve each problem
accurately we adopt the so called linear upwind discretization scheme to approximate the
advection term. The scheme is as follows:∫

Ki

b · ∇udx =
∑

Fij∈Fi

∫
Fij

b · nijuds

≃
∫
Fij

b · nij

(
wijui + (1− wij)uj + (fij − kup) · (∇huh)up

)
ds,

where wij =

{
1 if b · nij ≥ 0,

0 if b · nij < 0

and up =
{
i if b · nij ≥ 0,

j if b · nij < 0

where (∇huh)up is an approximation of the cell gradient in the upwind cell and it is consid-
ered explicit in the formulation. It is basically an upwind scheme with an explicit correction:
in the upwind scheme (∇huh)up would be zero.
Given this setup, for each simulation, we computed the ∗-norm and the L2-error of the

FVM solution and reported the convergence rates in Figure 4.10. It is visible how the nu-
merical error deteriorates for all methods with the decrease of parameter k. Moreover, for
the non-conforming methods, the deterioration is both in error magnitude and convergence
rate, while the conforming approach keeps the convergence rate constant, at 32 in the ∗-norm
and 1 in the L2 norm.
For k = 0.1 we observe the same convergence rates of the Poisson problems for both

conforming and IB methods, while for the DIM we observe a loss of half an order between
the refined and the uniform meshes cases.
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What is interesting to notice is the behaviour of the IBM. Despite a slight deterioration
of the convergence rate with the decrease of diffusivity, the IBM always keeps the error
magnitude under the one of the conforming method. This is probably due to the fact that it
can happen to let some cell outside of the error count.
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Figure 4.10: Convergence rates for non-conforming methods on the advection diffusion
problem, varying the Péclet number. For each chart, we represent the ∗ norm on left and
the L2-norm on right.
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4.7.3 Stokes problem for a Newtonian fluid

The third test case is made by a Stokes system describing the flow around a sphere. The
domain is rectangular with a spheric obstacle of radius Rs in its centre: Ω̃ = [−2Rs, 2Rs]×
[−2Rs, 2Rs]× [−2Rs, 2Rs] and Ω = Ω̃\BRs(0). The problem is the following:

−∆u = −∇p in Ω̃,
∇ · u = 0 in Ω̃
u = 0, in BRs(0),

u = ū on ∂Ω̃,

(4.20)

with the following analytical solution:

u =



U0xz

(
Rs

3

2(x2+y2+z2)
3
2
− 3Rs

2
√

x2+y2+z2
+ 1

)
x2 + y2 + z2

+

U0xz

(
Rs

3

4(x2+y2+z2)
3
2
+ 3Rs

4
√

x2+y2+z2
− 1

)
x2 + y2 + z2

U0yz

(
Rs

3

2(x2+y2+z2)
3
2
− 3Rs

2
√

x2+y2+z2
+ 1

)
x2 + y2 + z2

+

U0yz

(
Rs

3

4(x2+y2+z2)
3
2
+ 3Rs

4
√

x2+y2+z2
− 1

)
x2 + y2 + z2

U0z
2

(
Rs

3

2(x2+y2+z2)
3
2
− 3Rs

2
√

x2+y2+z2
+ 1

)
x2 + y2 + z2

−
U0

(
x2 + y2

)(
Rs

3

4(x2+y2+z2)
3
2
+ 3Rs

4
√

x2+y2+z2
− 1

)
x2 + y2 + z2


where U0 is the characteristic velocity of the flow, that in this precise case is 1 m/s.
The convergence rates for each method are reported in Figure 4.11. While conforming

method, as expected, shows the most accurate results, we can observe the same difference
resulting from the analysis of the Box method described in Section 3.2.3. It is clearly visible
the difference in accuracy and convergence rate of the DIM on a uniform mesh with respect
to the same method on a locally refined mesh. This difference is visible for the ∗-norm
velocity error and for the L2-norm pressure error.
Furthermore, the IB method is comparable in accuracy with the conforming one. The

only difference between the two is for the velocity ∗-norm error, where the convergence
rate is of order 1, aligned with the FVM theory but loosing half an order with respect to the
conforming result.

4.7.4 Non-Newtonian Navier-Stokes problem

The fourth test case is made by a Navier-Stokes system describing the non-Newtonian flow
past between two cylinders: a Taylor-Couette flow. The domain is made by two concentric
cylinders: Ω̃ = BR1(0) and Ω = Ω̃\BR0(0). The problem is the following:

−∇ · (ν(γ̇)(∇u+∇⊺u)) + (u∇) · u = −∇p
∇ · u = 0 in Ω̃,
u = 0 on ∂BR1(0),

u = R0ω0 on ∂BR0(0)

(4.21)
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Figure 4.11: Convergence rates for non-conforming methods applied on the Stokes flow
past a sphere test case. Left: ∗-norm of velocity error. Centre: L2-norm of the velocity error.
Right: L2-norm of pressure error.

where
γ̇ =

√
2 ∥∇u+∇⊺u∥2 , ν(γ̇) = γ̇n−1,

ω0 is the angular velocity of the inner cylinder and n is the exponent of the power law. The
analytical solution reads:

u =



−

ω0y

( R1√
x2 + y2

)2/n

− 1


(
R0

R1

)−2/n

− 1

ω0x

( R1√
x2 + y2

)2/n

− 1


(
R0

R1

)−2/n

− 1



.

The convergence rates for each method are reported in Figure 4.11. The results are simi-
lar to the ones of the Stokes problem. The conforming method is the most accurate, the DIM
the less accurate and the IBM shows the same convergence features of conforming method
apart from the error computed with the ∗-norm, where the convergence rate deteriorates.
A similar deterioration is also observed on the L2 error of pressure. Whilst, the L2 error of
velocity is the same for IB and conforming methods.
For this specific case, we do not have any Dirichlet condition on pressure, hence the

associated Poisson problem has only homogeneous Neumann boundary conditions. This is
dealt in OpenFOAM by weakly penalizing (adding an artificial value in the algebraic system
to the diagonal term of a row) the pressure value of a degree of freedom to be zero. This can
imply some slight translation of the pressure field, that can reflect on the error computation.
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Figure 4.12: Convergence rates for non-conforming methods applied to the non-Newtonian
Taylor-Couette flow test case. Left: ∗-norm of velocity error. Centre: L2-norm of the velocity
error. Right: L2-norm of pressure error.

4.7.5 A case of interest: incompressible non-Newtonian Navier-Stokes
with temperature-dependent viscosity

In this section we consider a single screw extruder geometry of the test case introduced
in [92], represented in Figure 4.13. The geometry is built by twisting, i.e. extruding and
rotating, the xy section along z direction. The fluid domain is between the screw and a
barrel, that is represented by a cylinder.

Figure 4.13: Representation of the meshes employed to perform simulations. Left: uniform
non-conforming mesh. Center: refined non-conforming mesh. Right: conforming mesh. We
represented also how the single-screw geometry intersects the non-conforming meshes.
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We now recall steady-state problem (2.27), that we are going to solve on this geometry:

(u · ∇)u =−∇p+∇ · (ν(γ̇, T )(∇u+∇⊺u)) ,
∇ · u =0,

ρu · ∇(cpT ) =∇ · (k∇T ) + µ(γ̇, T )(∇u+∇⊺u) : ∇u.

For the rheological characterization of the material we take values from [92] (Table 4.1).
We consider Arrhenius law for the shift factor and Carreau Yasuda law for the shear depen-
dence:

H(T ) = exp

(
α

(
1

T
− 1

Tα

))
,

ν(γ̇, T ) = max
{
νmin, min

{
νmax, H(T )K (1 +H(T )γ̇)n−1

}}
.

(4.22)

K n νmin νmax λ α Tα ρ Cp k

21.18 0.334 0.0001 15.28 0.6247 5530 420 700 500 1.5

Table 4.1: Thermal and rheological parameters.

Dirichlet conditions are imposed for velocity on the walls: a rotational velocity of 90
RPM is imposed on the screw and no-slip condition on the barrel. For temperature we
imposed 473K on the barrel while the inflow temperature is set to a uniform distribution at
463K. Neumann boundary conditions on pressure are imposed on walls and a zero mean
distribution at inflow and outflow. For the screw temperature we considered two different
conditions: an homogeneous Neumann condition and a Dirichlet conditions, set to 463K.
In the following numerical experiments we considered three methods to approximate

the geometry. First the geometry-conforming method, second the DIM and finally the IBM.
Clearly, for this test case we do not have the expression of the analytical solution, hence, to
assess the convergence of the above methods we measure some global quantities of interest,
in particular surface integrals. To build the conforming grid we have first generated an
hollow cylinder and then we have deformed the internal cylinder face points to the screw
surface, moving the internal points accordingly.
For five decreasing mesh sizes,

h = 10−3, 8 · 10−4, 6 · 10−4, 4 · 10−4, 2 · 10−4,

we measured the following quantities: the average temperature, the viscous heating, the
viscosity, the pressure and the flow rate. For each of these quantities we computed a global
integral, or average, on the screw surface. In particular, to evaluate quantities on the screw
in non-conforming methods, we used an extrapolation derived from the way in which that
method imposes boundary conditions: a constant extrapolation for the DIM and a quadratic
extrapolation for the IBM. The results of the analysis for this 3D cases are reported in Figures
4.14 and 4.16. We also reported the surface distribution of these quantities on the screw
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surface for each method in Figures 4.15 and 4.17, for the Dirichlet and Neumann conditions
cases, respectively.
Here, the reference solution is set to the conforming solution, that is considered the most

accurate method, in the light of considerations made in previous sections.
In both cases, viscosity is far better approximated by the IBM than by the DIM. This

is because, in the IBM, computed gradients are corrected as well as the velocity by the
quadratic least-square approximation. The same observation can be done for the viscous
heating, even if here we are farther from the conforming solution.
For what concerns the flow rate estimation, it is well known that using non-conforming

like IBM or DIM can produce mass leakage due to the presence of non-standard strategies
to impose boundary conditions. In these results we can observe how this quantity is well
preserved in all methods, due to the consistent pressure condition that we implemented for
our methods (c.f. Chapter 5).
Finally, from Figures 4.15 and 4.17, it can be seen how the extrapolation of screw bound-

ary values behaves for the different methods. In all the cases, the IBM profile is smoother
than DIM profiles, also in the refined mesh case, and it is much similar to the one of con-
forming method.
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Figure 4.14: Convergence of quantities integrated on the screw surface quantities on the 3D
single-screw extruder test case.

Figure 4.15: Evaluation of various quantities on the screw surface for each method in the
Dirichlet temperature condition case.
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Figure 4.16: Convergence of quantities integrated on the screw surface quantities on the 3D
single-screw extruder test case.

Figure 4.17: Evaluation of various quantities on the screw surface for each method in the
Neumann temperature condition case.



Chapter 5

Solution algorithms for simulation of
polymer mixing

In this chapter, we report the description of the tolls that remain for us to describe, after the
Immersed Boundary method (see 4), to solve numerical problems related to the mixing of
non-Newtonian fluids with temperature-dependent viscosity.
The chapter is divided into two parts. in the first part the procedure to solve the Navier-

Stokes equations decoupling velocity and pressure using a projectionmethod is first recalled.
In particular, the SIMPLE algorithm is described in depth. Then, the same decoupling algo-
rithm is extended to problem involving immersed boundaries (Chapter 4), discussing how
the usage of a generic non-conforming method can be integrated in the SIMPLE algorithm.
Finally, the strategy developed to solve the strong nonlinearity associated to the non-

Newtonian rheology of polymer melts is described. The coupling between velocity and tem-
perature through the viscosity can be tough to solve and it might require a special treatment.
A sensitivity analysis is carried out to study how the problem parameters can influence the
robustness of this family of algorithms.
In the second part we report the description of the C++ tools that were implemented in

order to solve the problems in object. First we introduce the implementations regarding rhe-
ological models of non-Newtonian fluids with temperature dependent viscosity. Therefore,
we briefly describe the implementation of the SIMPLEX and PIMPLEX algorithms. Ultimately,
we report a more detailed description of the library part that implements the Immersed
Boundary method.
Hence, in section 5.1, we introduce the SIMPLE and PIMPLE projection methods for the

decoupling of Navier-Stokes equations in the FVM framework. Then, in section 5.2, we
exploit how IBM is integrated into SIMPLE and PIMPLE projection algorithms. In section
5.3 we describe the new methodology implemented to solve robustly the polymer mixing
processes and the nonlinearity they involve. Finally, in section 5.4 we introduce the POLIMIX
toolbox, that we used to produce all the numerical results in this work, and all the novelties
that we have implemented with respect to the official OpenFOAM distribution.
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5.1 Projection methods for isothermal incompressible flows

The SIMPLE (Semi-Implicit method for Pressure Linked Equations) algorithm is an itera-
tive method first developed by Patankar [110] for solving steady-state flow problems. This
algorithm is intensively used in the framework of the open source code OpenFOAM. The
advantage in using this type of solving strategy lays in the fact that it is very efficient when
dealing with Navier-Stokes system, both in terms of memory usage and of ability in solving
nonlinearities, thanks to its iterative nature. Moreover, at the algebraic level, the SIMPLE
algorithm can be seen as an inexact factorization algorithm [54].
On the other hand, to deal with time dependent problems, we consider the PIMPLE

algorithm, that is a combination of the PISO (Pressure Implicit with Splitting of Operator)
algorithm [131] and the SIMPLE algorithm. PISO algorithm decoupling is the same of the
SIMPLE, where the advancing in time is solved with just one SIMPLE iteration between
time steps. Then, one can see the PIMPLE algorithm as a PISO where each time step is
solved by a SIMPLE iteration, thus for each time step some sub-iterations are performed
until convergence is reached. The choice of using PIMPLE instead of PISO has been made
for robustness reasons because of the nonlinearity present in mixing processes.

5.1.1 SIMPLE algorithm

To introduce the SIMPLE algorithm, we consider the steady-state incompressible Navier-
Stokes equations for a Newtonian fluid:

(u · ∇)u−∇ · (ν(∇u+∇⊺u)) =−∇p, in Ω,
∇ · u =0, in Ω, (5.1)

complemented with suitable boundary conditions.
The main idea behind SIMPLE algorithm is a splitting of the Navier-Stokes equations

(5.1) leading to a sequence of simpler problems involving either the velocity or the pressure,
namely at each iteration:

Velocity prediction: un · ∇u∗ −∇ · (ν(∇u∗ +∇⊺un)) = −∇pn,
Pressure equation: ∇ ·

(D−1∇pn+1
)
= ∇ · u∗,

Velocity correction: un+1 = u∗ − D−1∇pn+1,

(5.2)

where u∗ is the velocity prediction, p is the pressure and D is the diagonal of momentum
discretization matrix.
The idea is to solve first the momentum equation using the pressure field at step n, then

to solve a pressure Laplacian equation derived from the incompressibility constraint and
finally to project velocity on divergence free functions space applying a pressure-dependent
correction.

Relaxation Iterative methods, like Jacobi of Preconditioned Conjugate Gradient methods,
are often employed to solve large linear systems. The convergence of these methods may be
not guaranteed when the matrix is not diagonal dominant. However, working with general
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grids requires the usage of non-orthogonality and skewness corrections (c.f. Appendix A)
that include the dependence of other mesh cells apart from the adjacent cells [85]. This dis-
rupts the diagonal dominance and often prevents the solver to converge. In time dependent
problems, this issue is overcome by the presence of the diagonal mass matrix associated to
the time derivative. In steady-state under-relaxation is usually adopted to guarantee the
convergence.
The relaxation of velocity and pressure problems is performed in order to keep the solu-

tion stable. Let Axn+1 = b be the algebraic system of momentum equation at step n+1 and
let D be the diagonal of matrix A. The relaxation with factors αu, αp ∈ (0, 1] is performed in
the following way:

(A+
1− αu

αu
D)xn+1 = b+

1− αu

αu
Dxn. (5.3)

On the other hand, pressure is relaxed after having solved the linear system associated to
the pressure Poisson problem:

pn+1 = (1− αp)p
n + αpp

n+1. (5.4)
Pressure relaxation is needed to take into account the error, that resides in pressure equation
source term, performed when solving momentum prediction. The recommended values of
under-relaxation factors are such that αp = 1− αu [65]. A typical choice is αu = 0.7 ∼ 0.8
and αp = 0.2 ∼ 0.3.

5.1.2 PIMPLE algorithm

Before introducing the PIMPLE algorithm, we introduce the PISO one. We now consider the
time dependent incompressible Navier-Stokes equations for a Newtonian fluid:

∂u
∂t

+ (u · ∇)u−∇ · (ν(∇u+∇⊺u)) =−∇p, in Ω,
∇ · u =0, in Ω,

complemented with suitable initial and boundary conditions.
Consider a backward Euler discretization for the time derivative, with time step∆t. Anal-

ogously to what is done in the SIMPLE, the PISO algorithm splits the Navier-Stokes equations
as follows: at each time step tn+1,

Velocity prediction: 1

∆t
u∗ + un · ∇u∗ −∇ · (ν(∇u∗ +∇⊺un)) = −∇pn +

1

∆t
un,

Pressure equation: ∇ ·
(D−1∇pn+1

)
= ∇ · u∗,

Velocity correction: un+1 = u∗ − D−1∇pn+1,

(5.5)

where u∗ is the velocity prediction, p is the pressure and D is the diagonal of momentum
discretization matrix.
Again, as for SIMPLE, we solve first the momentum equation using the pressure field at

step n, then we solve a pressure Poisson equation derived from the incompressibility con-
straint and finally to project velocity on divergence free functions space applying a pressure-
dependent correction.
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The PIMPLE algorithm is a combination of PISO and SIMPLE in which, for each PISO
iteration, we perform SIMPLE sub-iterations in order to reach convergence at each time step
up to a described tolerance. Employing PIMPLE is useful when using large time steps or
when the nonlinearity is particularly relevant, like in our applications.

5.2 The SIMPLE-IBM algorithm for isothermal incompressible
flows

In this section we discuss how the IBM is integrated into the SIMPLE algorithm, in particular
with respect to the imposition of a motion and its effect on the pressure equation. The idea
is to impose a consistent condition on pressure as it is done in [83] for finite differences.
Here we extend this procedure to the FVM framework.
Let N be the number of degrees of freedom of the tessellation Th of Ω. Let U ∈ R3N

and P ∈ RN be the vectors of velocity and pressure values, respectively. Let f ∈ R3N be
the source term. Let A ∈ R3N×3N be the matrix representing the transport and diffusion
operators and B ∈ R3N×N be the matrix representing the divergence operator. Notice that
B⊺ represents the gradient operator. Let also C ∈ RN×N be the matrix that represents Rhie-
Chow stabilization term (c.f. Section 3.1.3). Then the algebraic counterpart of system (5.1)
reads: A B⊺

B −C

U
P

 =

 f
0

 , (5.6)

that can be rewritten as
AU+ B⊺P = f,
BU− CP = 0

Let χ be the indicator function of the discrete fluid region ΓF (see equation (4.3)). As we
showed in Section 4.2, when dealing with non-conforming methods the velocity imposed in
the IB region can be also dependent on neighbouring values of the solution. Consider the
IBM interpolation operator (4.11): U∗ = SIB(g,U∗), where ∗ represents the algorithm step
and g ∈ RN is the immersed boundary and solid region datum.
Assume we are at time tn and we want to compute solution at time tn+1. The algebraic

stabilized monolithic system of problem (5.1) reads:

AUn+1 + B⊺Pn+1 = f+ b,
BUn+1 − CPn+1 = 0

(5.7)

where b is used to impose the non-conforming condition and it is defined as

b = (1− χ) (−AU+ B⊺P+ U− SIB(g,U)) .

The vector b is built such that it equals the matricial terms and sets the IB and solid values
where χ = 0.
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We now split the matrix A in its diagonal part D and its off-diagonal part -H, such that
A=D-H. We also define matrix C as follows

C = −BD−1B⊺ + R(D−1) (5.8)

where R(D−1) is the stiffness matrix associated to the second term of Rhie-Chow stabilization
(see Proposition 3.1.1), representing a Laplacian of pressure where the diffusivity coefficient
is D−1.
We divide the algorithm in five steps.

1. Momentum predictor: we make a prediction of the velocity field solving the first
equation of the system imposing the rigid body motion and using pressure at step n,
obtaining Un+ 1

3 :

AUn+ 1
3 + B⊺Pn = f+ b =⇒ Un+ 1

3 = A−1[−B⊺Pn + f+ b] (5.9)

2. Velocity correction: we compute a new velocity field as

Un+ 2
3 = D−1(HUn+ 1

3 + f).

At this point, the solution vector should satisfy:

Un+ 2
3 = SIB(g,Un+ 2

3 )

where χ = 0. Then velocity field at step n+ 1 would read:

Un+1 = Un+ 2
3 − D−1B⊺Pn+1. (5.10)

However Pn+1 is unknown at this step.

3. Pressure equation: by multiplying equation (5.10) by divergence matrix B, by defi-
nition we obtain BUn+ 2

3 − CPn+ 2
3 = 0, hence the pressure equation reads:

BUn+ 2
3 = BD−1B⊺Pn+ 2

3 + CPn+ 2
3 = R(D−1)Pn+ 2

3 , (5.11)

that is the algebraic counterpart of a Laplacian problem:

∇ · un+ 2
3 = ∇ ·

(
D−1∇pn+ 2

3

)
.

IB interpolation: in general, when applying the IB interpolator SIB we are performing
a matrix-vector multiplication (see equation (4.12)). If it is the case in which the
IBM performs a constant extrapolation of the immersed boundary datum in the IB
cell centre (c.f. DIM), the matrix that represents SIB is an identity and the SIMPLE
algorithm is not modified. In any other case, i.e. when the IB cells values are corrected,
the pressure equation requires a modification.
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Requiring thatUn+1, as defined in equation (5.10), is consistent with the non-conforming
condition, we can derive a correction for the pressure field Pn+ 2

3 . The constraint reads:
let Sg,S be the matrices that represent the IB interpolator SIB,

Un+1 =SIB(g,Un+1)

=Sgg+ SUn+ 2
3 − SD−1B⊺Pn+ 2

3

=Un+ 2
3 − SD−1B⊺Pn+ 2

3

By applying the latter correction, by linearity of the operators and by choosing oppor-
tunely the Rhie-Chow stabilization matrix (in order to vanish the Schur complement
see Remark 3.1), the pressure equation will read:

BUn+ 2
3 =BSD−1B⊺Pn+ 2

3 + CPn+ 2
3

=BSD−1B⊺Pn+ 2
3 + (−BSD−1B⊺ + R(SD−1))Pn+ 2

3

=R(SD−1)Pn+ 2
3 .

(5.12)

As above, it is the algebraic counterpart of a Laplacian problem, with a modified dif-
fusivity coefficient:

∇ · un+ 2
3 = ∇ ·

(
SD−1∇pn+ 2

3

)
.

4. Pressure relaxation:
Pn+1 is then relaxed by a factor α:

Pn+1 = Pn + αp

(
Pn+ 2

3 − Pn
)
.

5. Final correction:
Compute Un+1 using equation (5.10).

Remark 5.1. The algorithm can be extended to the PIMPLE-IBM case adding the temporal
discretization to the algebraic system 5.6. We add 1

∆tM to matrix A and 1
∆tMUn to source

term f. The rest of the algorithm remains the same.

5.3 Solution algorithms for energy coupled systems

When dealing with polymer mixing applications, we have to take into account the role that
temperature and shear have in the development of the flow field. We recall the governing
equations (2.27):

∂u
∂t

+ (u · ∇)u =−∇p+∇ · (ν(γ̇, T )(∇u+∇⊺u)) + f,

∇ · u =0,

ρ
∂cpT

∂t
+ ρu · ∇(cpT ) =ρr +∇ · (k∇T ) + µ(γ̇, T )(∇u+∇⊺u) : ∇u.
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Momentum and temperature equations are strongly coupled by both the non-Newtonian
rheology and by the viscous heating source term. This makes the problem highly nonlin-
ear, which requires suitable strategies in the solution procedure to achieve convergence, in
particular way where a segregated approach is employed.
The behaviour of the solver when dealing with this system of equations depends espe-

cially on the viscosity, that represents the strongest link between momentum and energy.
In particular, the problem is tougher to solve as viscosity magnitude and shear thinning (or
thickening) increase. To have an idea of this behaviour, consider a power law fluid (2.40)
in which K = 1, γ̇ ∈ (0, 100) and n ∈ (0, 1). As it can be seen in Figure 2.1a, if n decreases,
viscosity reaches higher values faster when shear rate decreases and vice-versa.
If we just solve first the velocity, then pressure and then temperature and we loop this

process until convergence, we run into numerical instabilities, especially when there is a sig-
nificant shear thinning effect (n values lower than one). This because in the first iterations,
velocity has not a fully developed profile, due to relaxation, and high gradient values can
occur especially near boundaries. This implies high viscous heating and high temperature
and high temperature implies low viscosity and so high velocity gradients and so on and so
for.
Here we proposed a modified SIMPLE algorithm that we called SIMPLEX (i.e. SIMPLE-

ECS, SIMPLE for Energy Coupled Systems), that has proved to be stable and robust when
considering viscosities presenting real industrial rheologies. The flow chart is represented
in Figure 5.1.
The concept is to start solving a Newtonian problem with ν = K, so as if n = 1. We

solve, up to a certain tolerance, momentum and pressure equations, just like in the original
SIMPLE. Then we update viscosity value, we solve temperature and we again update the
viscosity value. We call this inner step X-loop.
The tolerances set to stop X-loops are higher than the one of the global problem. In this

way, the solver spends more iterations in solving the initial Newtonian problem, that is lin-
ear and easier to solve, and in the end it spends fewer iteration to solve the non-Newtonian
problem with non-uniform viscosity problem, giving more importance to the viscosity up-
date.
This procedure has given good results in terms of robustness and also in terms of com-

putational time. At the beginning, more iterations are performed in the inner loop, but the
effort is posed on a simple and linear problem. At the end, less iterations are spent on more
difficult and nonlinear problem, but with guaranteed stability.
For time dependent simulations we developed the PIMPLEX algorithm, which flow chart

is represented in Figure 5.2. The concept of the PIMPLEX algorithm is the same of the
PIMPLE one. At each time step we solve iteratively the problems employing the SIMPLEX
algorithm to reach the solution at time tn+1. This algorithm is particularly useful to robustly
deal with IBM because when the immersed surface moves, it can happen that solid cells
become fluid cells and so the solution is undetermined at the beginning of the time step.
Using the PIMPLEX algorithm avoid the raise of possible numerical instabilities.
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SIMPLEX

un, pn, Tn

Iteration n

X-LOOP

Velocity
predictor

u * , pn Pressure
equation

u * , pn + 1
2

Pressure
relaxation

u * , pn + 1Momentum
correction

un + 1, pn + 1

YES

NOIs tolerance
reached?

Update X-LOOP Temperature
equation

Is tolerance
reached?

NO

Update YES

un + 1, pn + 1, Tn + 1

Iteration n + = 1

Figure 5.1: SIMPLEX diagram for the solution of iteration n+ 1.
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PIMPLEX

un, pn, Tn

t = tn + 1

SIMPLE Loop X-LOOP

Velocity
predictor

u * , pn Pressure
equation

u * , pn + 1
2

Pressure
relaxation

u * , pn + 1Momentum
correction

un + 1, pn + 1

YES

NOIs tolerance
reached?

Update X-LOOP Temperature
equation

Is tolerance
reached?

NO

Update YES

NO

YES

Is tolerance
reached?

t + = t

Figure 5.2: PIMPLEX diagram for the solution of time step tn+1.
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Material Power law Arrhenius law
ρ cp k K n λ α Tα

1200 2000 0.2 100-400 0.2-0.5 1 3000 350

Table 5.1: Model material rheology parameters.

5.3.1 Robustness assessment

To assess the robustness of this algorithmwe performed a sensitivity analysis. We considered
a benchmark test case, in particular the Simplified SSE described in Section 4.7. We selected
some parameters of this test case and we varied them in order to test the robustness of the
SIMPLEX algorithm during the first iterations.
We set the pitch of the screw at 30mm and considered a single geometrical period. We

set a flow rate at the inflow and no slip velocity on screw and barrel. Then we set zero mean
pressure at the outflow. For the temperature we imposed a uniform value at the inflow of
300K, the same value for the barrel and 293K on the screw.
We take also a model material representing a high viscosity power law polymer with

Arrhenius law for temperature dependence. The values are reported in Table 5.1.
Then we choose some parameters to vary. The clearance between the screw crest and

the barrel, the consistency factor and the exponent of the power law, the rotation velocity
of the screw and the number of sub-iterations of the X-loop.
Maximum temperature for each parameter combination is reported in Figure 5.3 while

the boxes that are blanked out correspond to divergent simulations. At a first glance, prob-
lems solved with one X-loop sub-iteration (the first three rows starting from the top) are
more sensible with respect to the nonlinearity. Then, with 10 sub-iterations we recover the
stability in the cases where the rotational velocity is set to -50 RPM, meaning lower shear
rate. Finally, employing 100 sub-iterations we are solving robustly all the problems in the
range of parameters that has been considered.
In conclusion, employing the SIMPLEX algorithm for such problems makes the results

stable.

Remark 5.2. The last column cases with clearance set to 0.0001 m are the most delicate
because the mesh significantly deforms and there is a complex interplay between mesh
quality (c.f. Section A.1), shear rate and non-Newtonian degree.
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rpm -50 -50 -50 -50 -50 -50 -100 -100 -100 -100 -100 -100

n 0.2 0.2 0.2 0.5 0.5 0.5 0.2 0.2 0.2 0.5 0.5 0.5

k 10 100 400 10 100 400 10 100 400 10 100 400

X-sub-it clearance

1 0.0001

1 0.00025

1 0.0005

1 0.001

10 0.0001

10 0.00025

10 0.0005

10 0.001

100 0.0001

100 0.00025

100 0.0005

100 0.001

Sensitivity analysis of the X-loops

300

325

350

375

400

425

450

475

500

525

550

M
ax

 te
m

pe
ra

tu
re

 [K
]

Figure 5.3: Maximum temperature values for each combination of parameters after 20 SIM-
PLEX iterations. Boxes correspondent to divergent simulations are blanked out.
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5.4 POLIMIX code structure

Here we give an overview of the code structure and of all the novel features with respect to
the base OpenFOAM code. The toolbox is built along with the OpenFOAM-7 version and can
be compiled without modifying any line of the base source code. We adhered as closely as
possible to coding style rules and base code structure. Here we review the main structure of
the base code and then we enlighten the most important features of our implementation.
The new features that we implemented regard the resolution of polymer processes, CFD

problems with incompressible non-Newtonian fluid with temperature dependent viscosity,
and in particular the Immersed Boundary method.
We started from considering built-in non-Newtonian laws. They are implemented as

transportModels, a library that models to change the viscosity value according to a rheo-
logical law such as power law, Bird-Carreau or Cross laws. Considering this framework, we
added the possibility to include temperature dependence and also filler dependence to the
viscosity law. Additionally, we implemented also temperature dependence for other phys-
ical parameters like density, thermal conductivity and heat capacity. This framework has
been implemented under the name of mixingTransportModels, whose relation with other
classes is represented in Figure 5.4. Here, transportModel and viscosityModel classes are
native of OpenFOAM, while thermoDependentViscosityModel, representing the viscosity
laws with filler, temperature and shear rate dependences, and thermalModel, the material
properties (density, diffusivity, heat capacity), are new implementations. Moreover, thermo
DependentViscosityModel is linked to two other classes: thermoDependenceModel, that
computes the temperature shift factor, and fillerFractionModel, that includes the depen-
dence from filler volume fraction of the compound.
Our implementation relies on the OpenFOAM code structure and also to the user-interface

structure, the so called runTimeSelectionTable, to allow the user to arbitrarily choose ev-
ery possible combination of shear, temperature and filler dependence. Moreover, the viscous
heating source term was included through the fvOptions framework, that is the framework
that allows the user to choose source terms to be applied to problem equations.
The second important implementation is the one regarding the X-loops framework (c.f.

Figure 5.2). We considered the library that controls the convergence tolerance and time
discretization, i.e. solutionControl, and we integrate the sub-iterations in the simple
Control and pimpleControl, in order to let the user choose convergence parameters using
the same interface of the built-in version. Class dependences are represented in Figure 5.5.
Finally, to describe the implementation of the IBM library, a brief discussion on how

boundary conditions are dealt in OpenFOAM is needed. Boundary conditions in OpenFOAM
are defined by two objects: a geometrical object, the patch, and a physical object, the bound-
ary field. The patch, defined by polyPatch and fvPatch classes, contains all the geometri-
cal information about face areas, normal and interpolation weights and it is unique for each
field. The class of the boundary field, fvPatchField, is instantiated for each field (velocity,
pressure, temperature, gradients, viscosity, etc.) and contains information about the type
of boundary condition (Dirichlet or Neumann or Robin) for the specific field. The boundary
field has the task to modify the FVM matrix including the specific constraints, associated to
the field boundary condition.
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To implement our IBM, we attained to this exact structure to make the code flexible
and readable and editable by any OpenFOAM developer. This implementation is also very
intuitive because it works as any other conforming boundary condition also from the point
of view of the user-interface. Moreover, all the tuning parameters can be chosen by the user
in a dedicated dictionary file in the case folder.
To describe an immersed boundary condition, as the official OpenFOAM release, we have

a geometrical patch, defined by ibPolyPatch and ibFvPatch classes. They read the exter-
nal STL files, divide the computational mesh in solid, fluid and IB regions and set all the
necessary to perform the WLS interpolation. In particular, it finds the IB cells, computes the
IB points and IB normals, generates the cell stencils, initializes the WLS interpolators (c.f.
Section 4.2). Stencil search is the most important function because stencils have to be built
in the neighbouring of the IB cells but also in other processors, when running in parallel.
Another feature resides in the IB interpolator framework, that consists in the abstract class
ibInterpolator. this framework is very flexible: the structure of the code allows to imple-
ment custom interpolators besides the WLS and the type of interpolation can be selected by
the user in the already mentioned IB dictionary (Figures 5.6 and 5.7).
On the other hand, the IB boundary fields, implemented in the template class ibFvPatch

Field, make all the work of the imposition of the embedded boundary condition to the
solution. They register the original boundary condition, defined on the STL surface, and
then they use the interpolators on the patch to make the IB correction on the field at hand
(Figure 5.8).
The last feature of the IBM library is the handling of time dependent problems. The

library, called immersedBoundaryDynamicFvMesh, is able to move STL surfaces just as the
built-in library, called dynamicFvMesh. Moreover, it is able to perform dynamic local mesh
refinement based on the position of the immersed surface. It is fully integratedwith the built-
in library and can handle both IB surface motion and built-in mesh motion together with
the same user-interface framework. In particular, we considered the native class dynamic
MotionSolverFvMesh that handles rigid body motions and we integrated the IBM through
the class movingIb, that manages to move the surface triangulation and to compute the
surface velocity, as described in Section 4.3 (Figure 5.9).
All these features have been included in new solvers, deriving from the original simple

Foam and pimpleFoam solvers: simplexIbFoam and pimplexIbFoam, where the x indicates
the inclusion of X-loops and temperature equation.
In conclusion, the tool that has been implemented inherits the flexibility in usage and

code development of the original OpenFOAM distribution. This makes the POLIMIX library
a tool that can keep pace with the development of the main platform.
In the following sections, we present some applications of our toolbox to real industrial

problems, demonstrating its efficiency and the wide variety of problems to which it has been
successfully applied.
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simplexControl

simpleControl
singleRegionCorrectorConvergence

Control

pimplexControl

pimpleControl

src/finiteVolume/cfdTools
/general/solutionControl
/simplexControl/simplexControl.H

singleRegionCorrectorConvergence
Control.H

simpleControl.H

src/finiteVolume/cfdTools
/general/solutionControl
/pimplexControl/pimplexControl.H

singleRegionCorrectorConvergence
Control.H

pimpleControl.H

Figure 5.5: simplexControl and pimplexControl classes inclusion.



116 SOLUTION ALGORITHMS FOR SIMULATION OF POLYMER MIXING

ib
P
o
ly
P
a
tc
h

p
o
ly
P
a
tc
h

ib
F
v
P
a
tc
h

fv
P
a
tc
h

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/p
o
ly
P
a
tc
h
e
s

/i
b
P
o
ly
P
a
tc
h
/i
b
P
o
ly
P
a
tc
h
.H

p
o
ly
P
a
tc
h
.H

tr
iS
u
rf
a
c
e
M
e
s
h
.H

tr
iS
u
rf
a
c
e
T
o
o
ls
.H

tr
iS
u
rf
a
c
e
S
e
a
rc
h
.H

IO
d
ic
ti
o
n
a
ry
.H

S
w
it
c
h
.H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
e
s

/i
b
F
v
P
a
tc
h
/i
b
F
v
P
a
tc
h
.H

fv
P
a
tc
h
.H

ib
P
o
ly
P
a
tc
h
.H

w
o
rd
R
e
L
is
tM
a
tc
h
e
r.
H

fv
M
e
s
h
.H

v
o
lF
ie
ld
s
.H

s
u
rf
a
c
e
F
ie
ld
s
.H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
e
s

/i
b
F
v
P
a
tc
h
/i
b
F
v
P
a
tc
h
.H

s
rc
/f
u
n
c
ti
o
n
O
b
je
c
ts

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/s
a
m
p
le
Ib

F
ie
ld
s
/s
a
m
p
le
Ib
F
ie
ld
s
.H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/c
fd
T
o
o
ls

/g
e
n
e
ra
l/
a
d
ju
s
tP
h
i/
ib
A
d
ju
s
tP
h
i.
C

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/c
fd
T
o
o
ls

/i
b
In
te
rp
o
la
to
r/
ib
In
te
rp
o
la
to
r.
H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
e
s

/i
b
F
v
P
a
tc
h
/i
b
F
v
P
a
tc
h
.C

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
F
ie
ld
s

/d
e
ri
v
e
d
/a
x
ia
lR
o
ta
ti
n
g
W
a
llV
e
lo
c
it
y
Ib

/a
x
ia
lR
o
ta
ti
n
g
W
a
llV
e
lo
c
it
y
Ib
F
v
P
a
tc
h
V
e
c
to
rF
ie
ld
.H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
F
ie
ld
s

/d
e
ri
v
e
d
/m
u
lt
ip
le
A
x
ia
lR
o
ta
ti
o
n
Ib

/m
u
lt
ip
le
A
x
ia
lR
o
ta
ti
o
n
Ib
F
v
P
a
tc
h
V
e
c
to
rF
ie
ld
.H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
F
ie
ld
s

/d
e
ri
v
e
d
/s
o
lid
H
e
a
tE
x
c
h
a
n
g
e
Ib

/s
o
lid
H
e
a
tE
x
c
h
a
n
g
e
Ib
F
v
P
a
tc
h
S
c
a
la
rF
ie
ld
.H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
F
ie
ld
s

/i
b
F
v
P
a
tc
h
F
ie
ld
/i
b
F
v
P
a
tc
h
F
ie
ld
.H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
e
s

/i
b
F
v
P
a
tc
h
/i
b
F
v
P
a
tc
h
S
a
m
p
lin
g
.C

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
e
s

/i
b
F
v
P
a
tc
h
/i
b
F
v
P
a
tc
h
S
te
n
c
il.
C

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
e
s

/i
b
F
v
P
a
tc
h
/i
b
F
v
P
a
tc
h
T
e
m
p
la
te
s
.C

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
s
P
a
tc
h
F
ie
ld
s

/i
b
F
v
s
P
a
tc
h
F
ie
ld
/i
b
F
v
s
P
a
tc
h
F
ie
ld
.H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/p
o
ly
T
o
p
o
C
h
a
n
g
e

/r
e
fi
n
e
Ib
M
e
s
h
/r
e
fi
n
e
Ib
M
e
s
h
.C

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
D
y
n
a
m
ic
F
v
M
e
s
h

/i
b
D
y
n
a
m
ic
R
e
fi
n
e
S
o
lid
B
o
d
y
M
o
ti
o
n
F
v
M
e
s
h

/i
b
D
y
n
a
m
ic
R
e
fi
n
e
S
o
lid
B
o
d
y
M
o
ti
o
n
F
v
M
e
s
h
.C

Fig
ur
e5
.6
:G
eo
m
et
ric
al
IB
pa
tch
cla
ss
in
clu
sio
n
an
d
wh
at
de
pe
nd
so
n
ib

Fv
Pa

tc
h
cla
ss.



5.4 POLIMIX CODE STRUCTURE 117

ib
In
te
rp
o
la
to
r

ib
C
o
n
s
ta
n
tI
n
te
rp
o
la
to
r

ib
L
in
e
a
rI
n
te
rp
o
la
to
r

ib
Q
u
a
d
ra
ti
c
In
te
rp
o
la
to
r

ib
T
ri
lin
e
a
rI
n
te
rp
o
la
to
r

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/c
fd
T
o
o
ls

/i
b
In
te
rp
o
la
to
r/
ib
In
te
rp
o
la
to
r.
H

w
o
rd
L
is
t.
H

ty
p
e
In
fo
.H

fi
e
ld
T
y
p
e
s
.H

F
ie
ld
.H

D
im
e
n
s
io
n
e
d
F
ie
ld
.H

s
c
a
la
rL
is
t.
H

la
b
e
lL
is
t.
H

ib
F
v
P
a
tc
h
.H

ru
n
T
im
e
S
e
le
c
ti
o
n
T
a
b
le
s
.H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/c
fd
T
o
o
ls

/i
b
In
te
rp
o
la
to
r/
ib
In
te
rp
o
la
to
r.
H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/c
fd
T
o
o
ls

/i
b
In
te
rp
o
la
to
r/
ib
In
te
rp
o
la
to
r.
C

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/c
fd
T
o
o
ls

/i
b
In
te
rp
o
la
to
r/
ib
In
te
rp
o
la
to
rT
e
m
p
la
te
s
.C

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/c
fd
T
o
o
ls

/i
b
In
te
rp
o
la
to
r/
in
te
rp
o
la
to
rs

/c
o
n
s
ta
n
t/
ib
C
o
n
s
ta
n
tI
n
te
rp
o
la
to
r.
H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/c
fd
T
o
o
ls

/i
b
In
te
rp
o
la
to
r/
in
te
rp
o
la
to
rs

/l
in
e
a
r/
ib
L
in
e
a
rI
n
te
rp
o
la
to
r.
H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/c
fd
T
o
o
ls

/i
b
In
te
rp
o
la
to
r/
in
te
rp
o
la
to
rs

/q
u
a
d
ra
ti
c
/i
b
Q
u
a
d
ra
ti
c
In
te
rp
o
la
to
r.
H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/c
fd
T
o
o
ls

/i
b
In
te
rp
o
la
to
r/
in
te
rp
o
la
to
rs

/t
ri
lin
e
a
r/
ib
T
ri
lin
e
a
rI
n
te
rp
o
la
to
r.
H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
F
ie
ld
s

/i
b
F
v
P
a
tc
h
F
ie
ld
/i
b
F
v
P
a
tc
h
F
ie
ld
.C

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
e
s

/i
b
F
v
P
a
tc
h
/i
b
F
v
P
a
tc
h
.C

Fig
ur
e5
.7
:I
B
in
te
rp
ol
at
or
fra
m
ew
or
kc
las
si
nc
lu
sio
n
an
d
wh
at
de
pe
nd
so
n
ib

In
te

rp
ol

at
or
cla
ss.



118 SOLUTION ALGORITHMS FOR SIMULATION OF POLYMER MIXING

ib
F

v
P

a
tc

h
F

ie
ld

<
 T

y
p
e
 >

c
o
d
e
d
M

ix
e
d
Ib

F
v
P

a
tc

h
F

ie
ld

<
 T

y
p
e
 >

fv
P

a
tc

h
F

ie
ld

<
 T

y
p
e
 >

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
F
ie
ld
s

/i
b
F
v
P
a
tc
h
F
ie
ld
/i
b
F
v
P
a
tc
h
F
ie
ld
.H

fv
P
a
tc
h
F
ie
ld
.H

fv
M
a
tr
ix
.H

ib
F
v
P
a
tc
h
.H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
F
ie
ld
s

/i
b
F
v
P
a
tc
h
F
ie
ld
/i
b
F
v
P
a
tc
h
F
ie
ld
.H

s
rc
/f
u
n
c
ti
o
n
O
b
je
c
ts

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/s
a
m
p
le
Ib

F
ie
ld
s
/s
a
m
p
le
Ib
F
ie
ld
s
.H

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/c
fd
T
o
o
ls

/g
e
n
e
ra
l/
c
o
rr
e
c
tP
h
i/
ib
C
o
rr
e
c
tU
p
h
iB
C
s
.C

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/c
fd
T
o
o
ls

/i
b
In
te
rp
o
la
to
r/
ib
In
te
rp
o
la
to
rT
e
m
p
la
te
s
.C

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
F
ie
ld
s

/i
b
F
v
P
a
tc
h
F
ie
ld
/i
b
F
v
P
a
tc
h
F
ie
ld
.C

s
rc
/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry

/i
m
m
e
rs
e
d
B
o
u
n
d
a
ry
/f
v
P
a
tc
h
F
ie
ld
s

/i
b
F
v
P
a
tc
h
F
ie
ld
/i
b
F
v
P
a
tc
h
F
ie
ld
s
.H

Fig
ur
e5
.8
:I
B
pa
tch
fie
ld
sw
ha
td
ep
en
ds
on

ib
Fv

Pa
tc

hF
ie

ld
cla
ss.



5.4 POLIMIX CODE STRUCTURE 119

src/immersedBoundary
/immersedBoundaryDynamicFvMesh

/movingIb/movingIb.H

fvMesh.H solidBodyMotionFunction.H triSurfaceMesh.H fvPatchFields.H ibFvPatchFields.H ibMotionSolverFvMesh

dynamicMotionSolverFvMesh

src/immersedBoundary
/immersedBoundaryDynamicFvMesh
/ibMotionSolverFvMesh/ibMotionSolver

FvMesh.H

dynamicMotionSolverFvMesh.H dictionary.H movingIb.H

Figure 5.9: IB patch fields class inclusion and what depends on ibFvPatchField class.
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Chapter 6

Application to industrial problems

In this chapter, we apply the approach described in Chapter 4 and we show that it is able
to deal with a wide range of types of geometry and application in the field of polymer pro-
cessing. We adopted, as described in Chapter 4, a non-conforming approach, hence we con-
sidered simple background meshes and we account for the presence of the screws through
immersed boundaries described by embedded STL surfaces. Here we present the work that
has been done to develop a robust tool to face applications to real industrial geometries
of mixing devices. In particular, we consider three different technologies: single- and twin-
screw extruders and planetary roller extruder. For each of them we discuss the main critical-
ities of the application and how it has been faced in practice, employing effective strategies
in the development of the tool.
In every case-study we consider a high-viscosity power law polymer with WLF law for

temperature dependence (see equations (2.40) and (2.45)). Approximately, the consistency
factor of the power law is of the order of 102m2/s while the exponent is n ≃ 0.2. For the WLF
law, we considered the activation energy of the order of 103K and the reference temperature
Tα ≃ 370K. For the other material properties we have considered typical values for the
rubber: the density is around 103kg/m3, the diffusivity 10−1W/mK and the heat capacity
around 2 · 102J/KgK.
These parameters give the idea of the problem complexity. The power law exponent

makes the flow problem highly nonlinear and difficult to solve because of great variations of
the kinematic viscosity with respect to small variations of shear rate (Figure 2.1a). The other
difficulty is that, despite having a very low Reynolds number (commonly between 10−4 and
10−5), the problem in temperature is strongly dominated by advection, indeed, the Peclét
number of the problem is between 105 and 106.
A strong assumption has been made for the simulations described in next sections, that

is that the flow is single-phase, hence the device is completely full of fluid. This is a common
assumption among many literature works despite real processes involve multiphase flows of
polymer melt and air.

Claim: the geometries and rheological laws presented here are provided by an industrial
partner, for this reason, numerical values of geometrical dimensions and parameters are not
reported explicitly, but only in terms of orders of magnitude.
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Remark 6.1. All the simulations have been carried out using the open-source CFD library
OpenFOAM and an in-house developed toolbox, customized for polymer processes applica-
tions, called POLIMIX (PoliMi/polymerMixing) (see 5.4). In particular, mesh generationwas
performed using the OpenFOAM tool blockMesh, a multi-block hexahedral mesh generator
able to build high quality grids. Instead, the generation of IB STL surfaces was performed
using the python interface of GMSH or built-in OpenFOAM executable to extract surface
triangulations from volume meshes.
In sections 6.1, 6.2 and 6.3 we analyse the results obtained on complex industrial appli-

cations: the single-screw, twin-screw and planetary roller extruders, respectively. We report
both the numerical solutions obtained from the simulations and results in terms of parallel
scalability of the code and numerical performance.

6.1 The Single Screw Extruder

The single-screw extruder (SSE) is the simplest geometry one can consider among continu-
ous mixing devices. It is composed by the barrel and by one screw. The basic operation of
a single-screw extruder is rather straightforward. Material enters from the feeding section
hopper and flows down into the extruder barrel. The barrel is stationary and the screw is
rotating. As a result, frictional forces will act on the material, both on the barrel as well as
on the screw surface. These frictional forces are responsible for the forward transport of the
material. As the material moves forward, it will heat up as a result of frictional heat genera-
tion and because of heat conducted from the barrel heaters. The material then accumulates
in the metering section before being pushed through the die.
The geometry that has been considered in our simulation is presented in Figure 6.1.

The device is composed by two concentric axisymmetric surfaces. The external barrel is a
cylinder of diameter D (of the order of dozens of centimetres) and length 10-15D. The
internal surface is the shaft, that is divided in three regions (from left to right in Figure
6.1): the feed, the one with the largest fluid section, compression, the transitional one, and
metering, the one after the restriction between barrel ans shaft. On the shaft, the so called
screw teeth are attached. Here, we consider teeth with a rectangular shaped section that is
then extruded by a helical path along the axial direction of the device (). The two teeth are
symmetrical with respect to the axis and have a thickness of dozens of millimetres and form
a gap of tenths of millimetres with the barrel, four orders of magnitude less that the device
length. Working conditions are between 10~100RPM. We consider the Immersed Boundary

Figure 6.1: SSE rendering.

method to embed the presence of screw teeth, that are the objects that make the geometry
difficult to approximate with a conforming grid.
The barrel and the shaft will be conformingly described by the grid because of their

simple shape. The strategy to mesh these parts is the following: we generate an azimuthal
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Rmin
L0 Lfeed

Rbar

Lcomp

Rmax

Lmeter

Feed Compression Metering

×

y

x z

Figure 6.2: Block scheme used by blockMesh for the azimuthal section of the SSE (propor-
tions shrinked along z).

section of the grid and then we extrude this section for a complete round. The block scheme
of the azimuthal section is showed in Figure 6.2.
As mentioned above, the teeth are generated by extruding a rectangular shaped section

on zy-plane with the following parametrization:
x = r cos t,

y = r sin t,

z =
Lpitch

2π
t,

t ∈ (0, 2πNperiod)

where Lpitch is the length of the screw pitch. and Nperiod = Lmeter/Lpitch.
The mesh discretization is then automatically performed defining a characteristic length

h and multiplication factors. Moreover, to optimize the distribution of mesh elements, a
strategy to automatically set mesh grading has been implemented. Given the presence of
particularly narrow gaps, a rigorous procedure was implemented to place a prescribed num-
ber of elements within the gap. Grading level, or expansion ratio, g ∈ R+ is defined as the
quotient between the length of last and first elements (Figure 6.3).

Figure 6.3: Mesh grading along a mesh edge.

Every block edge is defined by a length Le, the element number Ne, the expansion factor
ag associated to grading level g. The expansion factor ag is defined as

ag = g
1

Ne−1 .

Then, the position of the mesh vertices along the block edge can be computed as

xk = x0 + Le

1− akg

1− aNe
g

, k = 0, . . . , Ne,
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where x0 is the position of the first node of block edge. We then define δk as the edge element
width:

δk = xk+1 − xk = Le

akg − ak+1
g

1− aNe
g

.

Finally, we set Ngap as the number of elements that we want inside the gap of width Lgap.
The grading level that we have to set to satisfy this condition (assuming the gap is at the
beginning of the block edge) is the solution of the following nonlinear equation:

Le
1− g

Ngap
Ne−1

1− g
Ne

Ne−1

− Lgap = 0, (6.1)

that is solved using the Newton method. The result is resumed in Figure 4.5.

6.1.1 Dynamic local mesh refinement

OpenFOAM is equipped with an Adaptive Mesh Refinement (AMR) library able to efficiently
refine hexahedral grids, both statically and dynamically. The refinement is always performed
using hanging nodes, so each hexahedron is split in eight parts by connecting face barycen-
tres. Because of the flexibility that finite volumes have on polyhedral grids, the handling of
such refinement procedure is performed efficiently.
In order to better capture the geometry of immersed boundaries, it could be useful to

have the possibility of refining in that region. What we did was integrating the library that
we developed with the OpenFOAM framework of dynamic mesh refinement.
The refinement criteria are straightforward to choose. We implemented basically two

criteria, both distance based. The first criteria selects all cells within a certain spatial distance
from the surface. The second selects all cells contained in level c stencil Kc

i , where Ki ∈
{K ∈ Th : K∩Σ ̸= ∅}, so at a certain connectivity distance from the cells cut by the surface.
An example of dynamic refinement on the SSE test case is presented in the series of

images of Figure 6.4. Here we applied two nested refinements until the third stencil level.

6.1.2 Results

We present a steady-state simulation of a SSE filled with a high-viscosity power law polymer.
The working conditions are the following. The flow is driven by the screw rotation, set at
30RPM, so we set zero pressure ant inflow and outflow. On barrel, shaft and screw teeth we
set no slip condition for velocity. The barrel and screw temperatures are set to 323K, as the
inflow temperature.
In particular, for this test case, we compared results from both Diffuse Interface and

Immersed Boundary methods, introduced in Chapters 3 and 4, to have an idea of how they
behave when applied to real industrial applications.
To run these simulations, we have employed a single rotating frame (SRF) to perform a

steady-state simulation. We set our frame of reference on the screw, hence from this point of
view, the screw remains fixed while the barrel rotates with -30RPM. So, we solved the non-
inertial Navier-Stokes equations (2.32) and then we converted the obtained relative velocity
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Figure 6.4: Sequence of images representing the evolution of the grid while the screw profile
(the white line) advances. The figure represents an azimuthal section with normal directed
along x axis.

to the absolute one. Moreover, we employed the SIMPLEX iterations in order to guarantee
the stability of the solution.
Remark 6.2.

We have reported some results regarding the two numerical solutions obtained with DIM
and IBM in Figures 6.5 and 6.6.
For what regards velocity, the effect of the constant extrapolation, used by the DIM to

impose the immersed boundary condition, is visible in the velocity profile near the gap be-
tween the barrel and the screw. The velocity value in this region is greater than the one of
IBM that, using a quadratic extrapolation, is sharper. For the DIM, this can be interpreted as
the effect of “diffusing the interface”. On the other hand, the fact that the IBM solution pro-
file is sharper is eventually the gain in accuracy of the IBM with respect to the DIM, showed
in Section 4.7.
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This difference in velocity profiles reflects also on differences in terms of pressure and
temperature. The pressure profile is coherent with the geometry in both cases (see top of
Figure 6.6): the pressure raises until the end of the compression region, where it has its
peak, then it decreases until the outlet. Pressure gradients are significantly milder in the
DIM case than in IBM case. This is due to the fact that the DIM velocity solution shows
higher velocity values, that justifies the lower pressure gradients needed to transport mass
along the screw axis.
The same considerations can be done on temperature profiles. Looking at Figure 6.5

(bottom) and Figure 6.6 (bottom), temperature is much more distributed in the SSE cavity,
being the velocity higher just outside the screw tooth surface. Moreover, in this way, the
shear near the tooth is higher. This generates a higher viscous heating and consequently
a higher value of temperature near the tooth with respect to what happens in the IBM
simulation.
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Figure 6.5: Representation of velocity magnitude (top) and temperature (bottom) fields
distribution on an azimuthal section of the transitional sector of the SSE. Both DIM and IBM
solutions have been represented on top and bottom parts of the extruder channel, respec-
tively.
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Figure 6.6: Representation of pressure (top) and temperature (bottom) fields distribution
on an azimuthal section of the SSE.
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solutions.
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6.1.2.1 Influence of filler fraction

In this section, we performed a numerical experiment in which we considered the fluid which
viscosity is characterised by the same power law of the other experiments in this chapter
and we vary the dependence of the viscosity from the filler. We remark that the power law
parameters, employed for the numerical experiments of this chapter, correspond to a filler
fraction ϕf=0.05.
In particular, we considered a Maron-Pierce dependence (equation 2.50) with a maxi-

mum volume fraction ϕM = 0.35 and the filler fraction of the fluid ϕf = 0.03, 0.05, 0.07).
For each value of ϕf we ran a simulation with the same setup of previous section.
To compare the results we computed the sectional averages of temperature, viscous heat-

ing and pressure to see how they change with respect to the amount of filler present in the
compound. The averages are reported in Figure 6.8. As expected, a higher filler concen-
tration makes the compound harder to be pushed towards the outflow because the value of
viscosity increases. Also the shear increases and consequently the viscous heating and the
temperature.
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Figure 6.8: Pressure, viscous heating and temperature sectional averages for three levels of
filler volume fraction.
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6.1.2.2 Parallel scalability analysis

In order to analyse the parallel performances of our code, we consider the single-screw
extruder test case introduced in the previous section as a representative large scale problem
of interest. Scalability is a crucial aspect of our implementation for two reasons. The first
is related to the type of processes that we want to simulate, that in general requires a large
number of degrees of freedom to have a good approximation of the physical phenomena and
to correctly approximate IB surfaces.
The second is associated to the fact that a method like the IBM presented in Section 4.2,

typically requires more parallel communications than a standard method. Indeed, it can
happen that an IB cell is near to a decomposed domain interface. If this is the case, we have
to look for stencil cells also in the other processor. Hence, every time that we have to perform
the WLS interpolation, we have to retrieve cell values from other processors. So, verifying
at which extent our method shows parallel scalability properties is crucial to guarantee the
possibility to use the method in solving real industrial problems.
We consider the same SSE test case of previous section in its steady-state version and

performed a scalability analysis on the CINECA HPC Galileo100, which consists of 554 com-
puting nodes each 2 x CPU Intel CascadeLake 8260, with 24 cores each, 2.4 GHz, 384GB
RAM.
We consider a mesh of ≃22 millions of cells and we run simulations for 50 steps of SIM-

PLEX algorithm parallelizing the case from 2 processor to 2048 processors. We define the
speedup sn of a simulation with n cores as

sn =
Tn0

Tn
,

where Tn is the wall time of simulation n and n0 is the simulation with the smallest num-
ber of cores. We also consider both IB and DI methods to characterize the impact of IBM
interpolation procedure on the parallel efficiency. Notice that DIM has the same parallel
performance of the standard OpenFOAM version, because the imposition of the embedded
boundary condition is performed with using surface information.
We report the results in Figure 6.9. The efficiency, represented by the dashed lines,

has been computed considering wall times from 16 to 512 cores simulations (between 1.5
millions and 50 thousands degrees of freedom per core), because simulation time begins to
raise when the number of cells per processor is below 50·103. These results tell us that, using
IBM, we loose the 20% of performance with respect to DIM. We did expect a similar result,
because the IBM procedure requires a significant number of WLS interpolations during a
SIMPLEX iteration. However, looking to the right graph, we can see that the simulation
times of IBM are of the same order of magnitude of the ones of DIM. Moreover, for the same
mesh size, the IBM results are significantly more accurate than DIM ones, so the reduced
performance is more than balanced by the gain in accuracy.
We also performed a test to measure the performance improvement from the original im-

plementation present in the OpenFOAM unofficial fork foam-extend-4.0. Due to limitations
that we experimented using the original IBM when dealing with anisotropic grid, we had to
employ a different setup for the SSE test case, relaxing the number of degrees of freedom
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Figure 6.9: Log–log representation of the code parallel performance employing the SIMPLEX
solver and both IB and DI methods. Left: simulation speed-up with respect to the number
of processors (reference is 2 cores and linear solver is PBiCG with GAMG preconditioner).
Right: the behaviour of the simulation time increasing the number of processors.

and the gap width in order to be able to have stable simulations. Scalability analysis has
been performed on the MOX HPC cluster, which consists of 5 computing nodes, each 20 x
CPU Intel Xeon E5-4610v2 @2.30GHz, with 32 cores each, 256GB RAM per node.
We report the results in Figure 6.10. While IBM and DIM present scalability features

similar to the previous case, we can now observe that the original IBM implementation is
not optimized for parallel applications. Indeed, its efficiency is much lower than the one
of the other methods. Moreover, the computational time to solve the problem begins to
increase when is below 250 thousands of cells per processor, five times more with respect to
what we previously observed in Figure 6.9.
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Figure 6.10: Log–log representation of the code parallel performance employing the SIMPLE
solver and IB, in its new and original implementations, and DI methods. Left: simulation
speed-up with respect to the number of processors (reference is 2 cores and linear solver is
PCG with DILU/DIC preconditioner). Right: the behaviour of the simulation time increasing
the number of processors.
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6.1.2.3 Quantitative comparison on a short SSE sector

A further validation step of our single-screw simulations is obtained comparing results from
OpenFOAM and from the commercial code ANSYS Polyflow, one of the current benchmark
software for polymer processes.
We consider a short SSE sector as a computational domain. We run five different simu-

lations as described in Table 6.1. We considered three meshes: the first is the coarsest one,
where the grading is applied; the second and the third are regular meshes with two and
three nested refinements, respectively.

Figure 6.11: Grid visualization of the SSE sector of increasing local mesh refinement around
the teeth IB surface. From no refinement (top left) to three nested levels of refinement
(bottom right).

Mesh cells Polyflow DIM IBM

0.1M Coarse Coarse Coarse
2.1M – 2 refinements 2 refinements
9.1M – 3 refinements –

Table 6.1: Sum up of the run simulations.

Polyflow has been used to simulate only on the coarse mesh because simulations on
heavier meshes were unaffordable due to their huge virtual memory requisites. IBM was
tested only on the last mesh refinement because it is comparable to the solution of DIM
using the finest mesh.
We first compared some quantities sampled along a line along axial direction between

the inner and outer radius (Figure 6.12). By the fact that we could not run the two finer
simulations on Polyflow, we cannot see the trend of Polyflow solution so we can only make
qualitative considerations.
The solution profiles computed along the sample line show that the five numerical solu-

tions are qualitatively similar. A deeper look into the graphs shows that the solutions of DIM
and Polyflow on the coarse mesh are comparable. Moreover, the sequence of DIM solutions
tend to the IBM solution, as expected.
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The last aspect we want to mention is related to performance point of view. We compared
the number of degrees of freedom used, the number of processors, the wall time and the CPU
time (wall time times number of processors). We measure the efficiency index as the CPU
time (in seconds) over the number of degrees of freedom, basically the seconds spent on each
DOF. From Table 6.2, the outcome is that we have overcome the performance of Polyflow,
taking into account that it cannot even handle the same meshes that can be handled by
OpenFOAM DIM and IBM. Moreover, despite DIM shows a lower computational time, we
have shown that in just 1.5 times the computational cost of DIM we are able to obtain a
significantly more accurate solution with IBM.
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Figure 6.12: Sampling of pressure, shear rate and velocity magnitude along the line repre-
sented in lower left figure.

Polyflow DIM Ref DIM Ref-Ref DIM IBM Ref IBM
DOFs 0.8M 0.1M 2.1M 9.1M 0.1M 2.1M
# Proc 10 1 10 56 1 10
CPU Time 30h 5m 3h 42h 10m 65h
Wall Time 3h 5m 22m 46m 10m 6.5h

efficiency (s/#DOF) 0.135 0.003 0.00514 0.017 0.006 0.17

Table 6.2: Performance data for each simulation
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6.2 The Twin Screw Extruder

A twin screw extruder (TSE) is a continuous mixing machine with two screws. TSE presents
an increased number of design variables with respect to SSE, such as direction of rotation
and degree of intermeshing.
Larger heat transfer area and better mixing ability allow good control of stock temper-

atures, residence times and positive conveying, that are key elements in the extrusion of
thermally sensitive materials. On the other hand, this geometry complexity makes the TSE
more difficult to be simulated when compared to the SSE. For these reasons, barrels and
screws have been designed with removable elements, in order to allow arbitrary sequences
of elements along the shaft. This modular design, therefore, is highly flexible and allows
process optimization, unfortunately increasing the costs. Hence, numerical modelling plays
a fundamental role in designing custom elements patterns for specific applications. From
now on, we consider a case-study of a self-wiping intermeshing co-rotating TSE [118].
The section of a TSE is sketched in Figure 6.13. The device is composed by three parts:

the barrel, represented by two adjacent cylinders of total width 2LC , of the order of dozens
of centimetres, and length 30LC and the two screws positioned in the two channels. The
gap between screws and barrel is of the order of tens of millimetres, as in the SSE case. As
mentioned before, the screws can be composed by different elements. In our case we con-
sider two types of elements: the transport modules and the kneading modules, represented
in the upper image of Figure 6.14. Both types are derived from the same profiles and the
difference resides in the flight angles. The transport modules are devoted to conveying the
fluid towards the die with different velocities depending on the flight angle, however, their
mixing action is limited. The mixing action is prevalently performed by kneading modules,
that are basically screw elements with a 90 degrees flight angle. They can be also of differ-
ent lengths: long modules are better for distributive mixing, while short ones for dispersive
mixing.

Figure 6.13: Geometrical description of an axial section cut [118].
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Figure 6.14: Examples of TSE modules, view from above. Different colours are the different
modules: the first and the second are two transport modules of different pitches; the last
five are kneading modules with different rotation angle.

For the simulation setup, we use a conforming grid for the barrel while we use IBM
for approximating the presence of the two screws. The strategy to mesh the barrel is the
following. We first generate the axial section of the left part using the block scheme of
Figure 6.15, then we mirror the grid with respect to the intermeshing region. The reason
to use such a block scheme is to have the highest flexibility possible in handling boundary
layers and refinement in intermeshing zone, where we have the narrowest gaps between
the screws. The same grading strategy of SSE case has been employed. The outcome of
such a block division is represented in Figure 6.15. Notice that, employing the top-right and
bottom-right blocks configuration, we can almost arbitrarily refine the intermeshing zone
without affecting mesh size and quality of external parts. As for the SSE, TSE geometries
present small gaps and so multiscale physical phenomena. However, by the presence of

y

z x

Figure 6.15: Left: Block scheme used by blockMesh for the axial section of the TSE. Right:
sectional cut of the TSE sectional grid.
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the intermeshing zone, there are more regions where small gaps can be found. Moreover,
the screws rotate faster, so we have stronger velocity gradients and therefore a tougher
nonlinearity to solve.
With respect to the IBM implementation, the big difference between the two devices is

given by the strong interaction and proximity of the two screws in TSEs. In the SSE case-
study, there where multiple geometries, i.e. the two teeth, that where treated by different IB
surfaces and they were far and the influence of one tooth on the other was negligible. For the
TSE, we have to handle the interaction between the two screws and the interaction between
the various modules of each screw, in general the interaction between multiple immersed
boundaries.
With opportune CAD tools, it is not difficult to construct a monolithic STL file of such

geometries (Figure 6.14), however, as already mentioned in Section 4.4, we decided to
develop a strategy to consider every single module as a single independent IB surface to
be more efficient in geometry description.

6.2.1 Results

We present a time dependent simulation of the revolution of some TSE sectors filled with
a high-viscosity power law polymer. In particular we considered two transport modules
with different pitches, five kneading modules and another transport module. The working
conditions are the following. The flow is driven by the screw rotation, set at 100RPM, so we
set zero pressure on both inflow and outflow. On barrel and screws we set no slip condition
for velocity. The barrel and screws temperatures are set to 323K as the inflow temperature.
The have simulated three complete revolutions in order to let the flow and the tempera-

ture field to stabilize. We have represented averages evolutions in time in Figure 6.16 and,
to assess whether or not the solution reached an asymptotic behaviour, we also looked to
the increment of the the sectional averages between subsequent time steps. We computed
the following estimator: let V (z, t) be the average of a quantity V computed on section at
axial coordinate z at time t, the increment reads:

incr(t) = max
z

∣∣V (z, tn+1)− V (z, tn)
∣∣ . (6.2)

However, for this type of flows, we do not expect this error estimator to vanish as time goes
to infinity, because the process is periodic and it does not necessarily reach a steady-state
solution. Namely, we accept a slight difference in average between one time step and the
other. The increments are reported in Figure 6.17. For flow rate, pressure and viscous
heating we have periodic patterns developing in time. On the other hand, for temperature
we can see a significant evolution in time heating, in average, the compound up to 4°and
increasing. From these observations, we deduce that three revolutions are not enough to
reach a periodic flow state.

Remark 6.3. IBM implementation is not yet optimized to work in time dependent simula-
tions because of the fact that, at each time step, the STL file changes position and all the
IB sets and stencils have to be recomputed. Despite being parallelized, this procedure has a
significantly higher cost with respect to the solution time of the current linear system. While
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in SSE and PRE geometries (see previous section 6.1 and next section 6.3), this aspect does
not have a remarkable impact on simulation time, because the solid and IB cells occupation
is largely smaller than other mesh subsets, in the TSE the whole screws are contained in
the computational domain (Table 6.3). This computational cost difference is particularly
evident if comparing SSE and TSE computational times.

SSE TSE PRE
No. of D.o.F.s 6.76 Mln 3.3 Mln 2.9 Mln

% of IB+Solid cells 9.7% 41.8% 11.6%
Simulation time 1.5 days 5 days 1.5 days

Table 6.3: Fraction of IB and solid cell with respect to total number of degrees of freedom
per case study. All the simulations were run on 56 processors.

The results for flow rate, average pressure and average viscous heating suggest that there
are no significant changes in time for velocity and pressure because viscous heating and flow
rate mainly depend by them and they are in practice constant during time. On the contrary,
we have an increasing temperature profile in time, that does not seem to have completely
reached a constant profile. The errors trends, represented in Figure 6.17, confirm the second
hypothesis, indeed we can observe a rise of the errors while reaching the final time step.
Hence, three revolutions are not enough to reach a fully periodic flow condition.
Moreover, after the first time steps, the flow rate settles around a uniform value on the

whole domain, with an average value of 0.047 [m3/s] and a standard deviation of 0.00084
[m3/s], which confirms the conservation of the mass with an error up to ≃0.1%.
We have reported the evolution of the temperature inside the TSE in Figure 6.18. The

small gap sizes in combination with high rotational velocities of the screws produce a lot
of viscous heating, that increases the melt temperature. A particular increase of tempera-
ture is detected in gaps the two screws, in particular between kneading modules. In the
latter region, the velocity gradients are greater, due to the width of the modules crests, that
generates a higher viscous dissipation.
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Figure 6.16: Evolution in time of some quantities evaluated on several axial sections. On
the x axis of each figure, the screw rendering has been represented in order to enlighten the
flow features with respect to the geometrical feature. Top left: temperature average. Top
right: flow rate. Bottom left: pressure average. Bottom right: viscous heating average.

6.3 The planetary roller extruder

Single-screw and twin-screw extruders are widely used in extrusion processes and they have
been studied extensively. Nevertheless, there exist other extruders with more complex ge-
ometries and kinematics, which are customized for specific tasks. Here, we present a nu-
merical study of the planetary roller extruder (PRE). The PRE is a multi-screw extruder
composed by a central spindle (sun) and the barrel (ring) with variable number of smaller
spindles (planets) between them. The rotation of the sun drives the one of the planets thanks
to their gear-like shapes.
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Figure 6.17: Evolution in time of error computed by equation 6.2.

Moreover, its design allows a large number of configurations, that makes the PRE a pow-
erful mixing tool configurable for many types of processes. First, the number of contiguous
modules can vary. Second, the number and the type of planets can vary between one module
and another.
The flow in a PRE is driven by both drag forces and pressure gradients because the spin-

dles are characterized by a helical gearing to allow the transport of the fluid along its axis.
Moreover, the gearing increases significantly the contact surface between the fluid and the
spindles with respect to single- and twin- screw extruders, which allows the drag to notice-
ably drive the flow.
A planetary roller extruder is able to masticate, mix, homogenize, disperse and de-gas

highly viscous substrates. In the end, a PRE is the optimal choice to perform continuous
mixing.
Very few numerical explorations have been done on this type of device. What will be

presented next seems to be novel in the literature. As far as we know, the only work about
numerical simulations is exposed in [134], where a sector of a PRE is considered and both the
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Figure 6.18: Temperature distribution in the twin-screw extruder at different times.

sun and the ring and the spindles are approximated using the mesh superposition technique
implemented in ANSYS Polyflow.
Here we first propose a new methodology to simulate this device approximating both

sun and ring with a conforming mesh, while spindles are embedded using the IBM. An
automatized procedure to build a conforming mesh of a PRE is implemented and explained.
Another novel feature of our approach is the inclusion of the temperature in the simulations.
On the sun and the ring temperature is prescribed, while the spindles are considered as solid
with a certain heat conductance. Finally we show also a time dependent approach in which
we employ a sliding mesh technique to move sun and ring.
In this framework, a mesh convergence study is exposed in terms of average and integral

quantities and a weak scaling analysis for parallel efficiency is presented.
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Figure 6.19: Example of a planetary roller extruder [96].

6.3.1 PRE kinematics

As stated in the introduction section, the motion is completely driven by the sun shaft rota-
tion. We let ωs be the angular velocity of the sun. Knowing that the teeth contact points are
all on the pitch circles, we can determine the kinematics of each device part. Let ωr be the
angular velocity of the ring, ωp the angular velocity of the planets around their barycentre
and ωc the angular velocity of the carrier, i.e. of the barycentres of the planets around the
origin. We represent these information in Figure 6.20.

s

c

p

p

p

Figure 6.20: Profiles of a PRE section with 12 and 24 teeth on sun and ring, respectively. It
is designed with three planets that have three teeth each. The kinematics is also represented
with the angular velocity of each gear.

If the origin as the reference frame, we fix ωs, let ωr = 0 and Rp be the planet radius,
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then the angular velocities are defined as

ωc =
1

2

Rs

Rs +Rp
ωs,

ωp =− Rs +Rp

Rp
ωc.

(6.3)

To simplify the implementation of this kinematics, we set the new reference framemoving
with carrier, hence with the planets barycentres, performing eventually simulation using the
MRF solvers of OpenFOAM (c.f. equation 2.35). In this way, we now are on a non-inertial
frame of reference and, setting ω̃c = 0, the velocities read:

ω̃s =ωs − ωc,

ω̃r =− ωc,

ω̃p =ωp − ωc.

(6.4)

Now, sun and ring rotate in opposite direction, while the planets only rotate around
their axes. Ad hoc strategies adopted to simulate the moving PRE will be explained in nest
sections.
Remark 6.4. Motion and kinematics in the PRE are produced by the contact between sun
and planets and ring and planets. Indeed, by the way in which the geometry is built, planets,
sun and ring would touch in order to rotate, while in real geometries there exists an inter-
meshing region in which the fluid passes. In our simulations contact mechanics between the
gears is not taken into account. Thus, to model the gaps in which the fluid passes between
planets and sun and ring, we have “shrank” planets by a factor of 5%.

6.3.2 Building a conforming grid

To generate a conforming mesh of a PRE, gear profiles have to be considered. In particular,
we considered spur-gear teeth and their parametrization (Figure 6.21). Spur gears have
teeth parallel to the axis of rotation and are used to transmit motion from one shaft to
another, parallel, shaft [28]. In the PRE design, they are also twisted along the shaft axis by
a certain angle to perform the transport of the fluid. Looking at Figure 6.21, we define the
generator radius of a tooth as Rgen, that is the radius of the circle between the addendum
and the dedendum. We define the generator radii of sun and ring as Rs,gen and Rr,gen.
Here we present a fully automatic strategy to build the conforming mesh of a PRE sun

and ring. The developed strategy is parametrized with respect to the number of teeth of
sun, ring and planets. The teeth profiles are parametrized with respect to generator radii,
addenda and dedenda.
The workflow for building a conforming mesh is to construct separate teeth and then

to merge them together to build the whole computational grid. In Figure 6.22, we have
represented the spur-gear profiles of the teeth of each piece of the PRE: sun, ring and planets.
For every piece, the tooth is characterised by two involutes, i.e. the curved segments, that
connect the internal and external circular segments.
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Figure 6.21: Schematics of spur gear teeth [28].

Figure 6.22: Profiles of sun, ring and planet teeth, from left to right, respectively.

Once we have created the mesh of each single piece, we are able to “sew” them together
(Figure 6.23). We first set sun and ring pieces at the right distances from the origin. Then,
for the sun piece we repeat the shape azimuthally for Ns times and we do the same with the
ring piece for Nr times. For the planet we repeat the piece 3 times, interspersed by a plain
circular piece. Merging then sun and ring together, positioning the planets in the correct
positions, we obtain the final configuration for our PRE case-study (Figure 6.20).
For the sun and ring teeth blocks, we manage to decouple the mesh refinement of the

teeth and core region, generating a boundary layer along teeth profile. As show in Figure
6.24, we set Rs,mid and Rr,mid the radii dividing core region from the sun and ring teeth
boundary layer regions, respectively. We define also Rmid = 1

2(Rs,mid+Rr,mid) as the radius
of the interface between ring and sun meshes, where we will do the merging.
In Figure 6.23, we have represented the merging procedure that brings to the final PRE

grid configuration. The algorithm is the following. Let Ns and Nr are the sun and ring
number of teeth, respectively, we create the ring and sun teeth meshes separately and then
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Figure 6.23: PRE conforming mesh construction procedure. Sun and ring building blocks
are merged together. The same is done for a planet (in the centre of the PRE section).

we add iteratively:
for n = 0, n < Ns, n++ do

newsun = rotate(sun, n · 2π/Ns)
sun = merge(sun, newsun)

end for
for n = 0, n < Nr, n++ do

newring = rotate(ring, n · 2π/Nr)
ring = merge(ring, newring)

end for
pre = merge(sun, ring)
Before performing the last merging, sun and ring parts are twisted by a pitch angle. Mesh

twisting is performed applying opposite rotation angles for sun and ring, in order to make
the planet fit. Thus, we have employed the following strategy: we twist sun by θs, ring by
θr.
Let p0 = [x0, y0, z0]

⊺ be a point in the original mesh and let lp be the pitch length. We
obtain the point p1 = [x1, y1, z1]

⊺ in the new configuration by p1 = R(θ)p0, where R(θ) is
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Figure 6.24: Sun and ring teeth grids example. Boundary layer and mesh interfaces are
represented by the circular lines.

the rotation matrix of angle θ. θ is defined by the following relationship:

θs(z0) =2π
z0 − zmin

Nslp
,

θr(z0) =2π
z0 − zmin

Nrlp
,

r =
√
x20 + y20,

θ(r) =

{
θr, r ≥ Rr,mid,

θs, r ≤ Rs,mid,

(6.5)

The twisting procedure is represented in Figure 6.25 while the result of the twisting of two
sun and ring blocks is represented in Figure 6.26.

Remark 6.5. The former procedure has been performed using the OpenFOAM built-in tools
mergeMeshes and stitchMesh. Moreover, the procedure has been automatized with respect
to the choice of sun, ring and planet number of teeth to have the highest flexibility possible
in the construction of such geometries.

6.3.3 Results

In this section we present some results regarding simulations of a PRE sector. We first present
a case in which the solution is a steady-state and then we present the time dependent case, in
which geometries rotate. Simulating the case in steady-state means that we discard the time
derivative in the equations and impose the effective rigid rotations on the boundary condi-
tions. We also performed a weak scaling analysis, i.e. varying number of cores maintaining
constant the number of d.o.f.s per core, along with a grid convergence analysis, comparing
various integral quantities of interest. Finally, we performed a time dependent simulation of
the PRE, combining the dynamic mesh library of OpenFOAM and our IBM implementation.
First, we introduce the geometrical setup. As described in the previous section, we con-

sidered a PRE with 12 teeth on the sun, 24 teeth on the ring and 3 teeth on each one of
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Figure 6.25: Twist transformation of sun and ring in opposite directions.

the three planets. However, running a simulation using the mesh built with the procedure
described in previous section is not straightforward because the interface between sun and
ring parts presents non-conforming mesh faces, due to opposite twist directions.
Hence, we adopted the following strategy. Due to the fact that sun and ring parts are

twisted in opposite directions, the interface between sun and ring present non-conforming
elements. To deal with this situation, we exploit the structure and the features of the fi-
nite volume method, that allows to connect two pieces of mesh without loosing a significant
amount of numerical accuracy. This because they are base only on flux balance, that is pre-
served also in case of nonconforming elements between different boundaries. The strategy
involves the so called periodic, or cyclic, boundary conditions, that map the solution on the
two sides of the non-conforming interface, using flux balance, to compute a continuous so-
lution. This feature of FVM clearly increases the flexibility in terms of mesh generation and
usage.
Refer now to Figure 6.26. Once the computational mesh is built, we need to implement

a strategy to move our PRE geometry (or to deal with non-conforming interfaces, in steady-
state case). We employed the so called sliding interfaces. While the ring is fixed, the sun
moves with a rotational velocity ωs. This means that we have to “split” the mesh into two
parts: the sun part, i.e. all the cells with centre within Rmid, and the ring part, i.e. the
remaining cells. Then, with the same strategy of mesh construction, using periodic boundary
conditions between sun and ring part, we are able to reconstruct fluxes across the sliding
interface (the mid line in Figure 6.24). Sun part is then rotated at each time step with
respect to its angular velocity and the fields are re-mapped using ALE strategies (c.f. Section
2.1.4.2). On the other hand, planets are handled using the IBM library. To this aim, the
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toolbox has been integrated with the dynamic mesh framework of OpenFOAM, in order to
be able to use the built-in tools without rewriting additional libraries.

Figure 6.26: Top: grid visualization of a PRE sector (left) and grid after one time step, to
enlighten the non conformity of cell edges when moving the mesh (right). Bottom: geom-
etry with subdivision of sun and ring parts by sliding interface (left) and side view of the
geometry (right).

Remark 6.6. In OpenFOAM, the periodic boundary conditions between two non-conforming
interfaces are called cyclicAMI, cyclic Arbitrary Mesh Interface, and the sliding interfaces
are called baffles.
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Case number 0 1 2 3 4
Number of D.o.F (·103) 400 900 1700 2400 4400

6.3.3.1 Quasi-static simulations

We first considered the simulation of the PRE in a steady-state framework. We fixed sun
rotation ωs and computed planet rotational velocity ω̃p accordingly. We then used the carrier
velocity ωc in the inertial frame to compute the rotation of planets with respect to the origin.
We then impose a flow rate at the inlet and zero mean pressure at the outlet.
For the temperature, we impose an average temperature at the inlet (in a mixed condition

flavour, Dirichlet at inflow cells and Neumann at outflow cells) and adiabatic condition at
the outlet. We fixed temperatures for ring and sun, that are thermally controlled, and we
considered planets free to conduce heat, hence implementing an interface condition for the
IBM. In particular, this passage consists in solving two problems on the same computational
domain.
On ΓF ∪ΓIB we solve the advection-diffusion equation with viscous heating source using

the high viscosity polymer physical properties. While, on ΓS we solve an advection-diffusion
equation with no sources using the physical properties of steel. So, recalling problem (2.22),
the energy equation reads:

1ΓF∪ΓIB

(
ρ
∂cpT

∂t
+ ρu · ∇(cpT )−∇ · (k∇T )− τ : D

)
=

= 1ΓS

(
−ρs

∂cspT

∂t
− ρsu · ∇(cspT ) +∇ · (ks∇T )

)
,

(6.6)

where parameters with s at the superscript are the physical parameters of steel and 1 is the
indicator functions. We approached the problem using the SIMPLEX algorithm (c.f. Section
5.3), to guarantee stability and robustness. More detailed results on quasi-static simulations,
together with a comparison against the time dependent solution, will be reported in Section
6.3.3.2.

Convergence We performed a mesh convergence analysis considering just a shorter PRE
sector to reduce the computational complexity. The boundary conditions are the same as
described above.
We considered five levels of refinement. The number of degrees of freedom per each case

is as follows:
Ndof

103
= 400, 900, 1700, 2400, 4400.

The meshes where built using the procedure described in Section 6.3.2 varying the num-
ber of azimuthal cells of a single tooth (c.f. Figure 6.24) and the number of cells in other
directions accordingly.
Then, to measure convergence, we sampled 20 surfaces in axial directions and we mea-

sure some global and integral quantities of interests: the mean temperature, the integral of
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viscous heating, the pressure gradient and the flow rate. Results are reported in Figure 6.27.
The analysis confirms a convergent behaviour. We computed the relative error between each
solution against the finest. Let V n

(z) be the average of a quantity V computed on section
at axial coordinate z for simulation n, the relative error for simulation n reads:

errn =
maxz

∣∣∣V 4
(z)− V

n
(z)
∣∣∣

maxz
∣∣V n

(z)
∣∣ , n = 0, 1, 2, 3. (6.7)

The error behaviour is reported in Figure 6.27.



152 APPLICATION TO INDUSTRIAL PROBLEMS

0.62

Relative distance of solutions for each time instant

0.003

0.002

0.001

0
Temperature

0.01

0.005
Flow rate

0
0.15

0.1Re
l. 

er
ro

r [
%

]

0.05

0
Pressure

0.03

0.02
Viscous heating

0.01 0.37 1.2 2.9
(Mln of #D.o.F.)^-1

Figure 6.27: Top: global measures of some quantities of interests sampled at different axial
positions. ri, i = 0, . . . , 4 represent the different grid levels, from the coarser to the finer.
Bottom: relative distance between finest and coarser solutions, computed with equation 6.7.
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Weak parallel scaling On the same group of simulations of the convergence analysis, we
performed a weak scaling analysis to assess the parallel efficiency of the code. We considered
the five simulations and we simulated them keeping constant the number of degrees of
freedom per processor, indicatively a hundred thousand.
We measured the simulation time for each simulation. It is represented in Figure 6.28.

What is worth to notice is that the curve is reaches a plateau. This means that the code is
able to solve increasingly larger problems using the same amount of work per node, that is
the idea behind weak scaling analysis.
The simulation time difference between each case diminishes as the problem size in-

creases. This is a consequence of the complexity of the problem, indeed, refining mesh
size, the problem is harder to solve, due to the fact that temperature and velocity gradients
increase and so convergence is tougher to be reached. On the other hand, when mesh is
enough fine, efficiency stabilizes because the problem difficulty does not increase any more.
The stabilization of the simulation time means that, with an enough fine mesh, the amount
of work remains the same, keeping the same number of d.o.f. per node.

Figure 6.28: Simulation time for each test case increasing mesh size and and keeping the
same number of d.o.f.s on each core.

Comparison with a commercial tool As in Section 6.1, we compared our results with the
ones of the commercial software ANSYS Polyflow. In particular, we want to enlighten the
performance gain that we experiment using our new OpenFOAM toolbox. In Figure 6.29,
the number of degrees of freedom and the simulation times are reported for both software.
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Polyflow uses a FEM discretization, hence, on the same grid, it has more degrees of
freedom than OpenFOAM. However, we were not able to run any simulation after the third,
because of computational weight and robustness issues relative to nonlinearity.
OpenFOAM is able to deal with the nonlinearity in every simulation, thanks to the use of

SIMPLEX and PIMPLEX algorithms (c.f. Section 5.3). Moreover, it outperforms Polyflow in
terms of computational time also if considering the same number of d.o.f..

Figure 6.29: Comparison between OpenFOAM and Polyflow computational times.

6.3.3.2 Time dependent simulations

Here we present the results of the time dependent simulations of the PRE. To simulate the
moving PRE, we employed the strategy mentioned above, in which we move sun and ring
with angular velocities of opposite signs and the planets are moved by the IBM, setting the
problem in a non-inertial frame of reference.
The simulations velocity and pressure fields have been initialized using the steady-state

isothermal solution of the problem, imposing the actual rigid rotations on the PRE compo-
nents. The fields have been initialized with the solution of a quasi-static simulation with the
same boundary conditions prescribed for the time dependent simulation. As for the TSE,
we have simulated 50 complete revolutions of the sun in order to let the flow to stabilize.
We have represented averages evolutions in time in Figure 6.30 and we have reported the
computed by equation 6.2.
From the evolution of global quantities in time, we can notice that the periodic flow

regime has been fully reached. Also time errors stabilizes at the end of the time frame. In
particular, while flow rate, pressure and viscous heating stabilize after 20 seconds, temper-
ature evolves until 50 seconds. This shows that the slight variations in the flow field can
significantly influence the temperature field, due to the high advection dominance of the
problem. We can also notice that temperature and viscous heating averages have similar
features because the more the fluid heats, the more viscosity decreases and so the viscous
heating.
The axial pressure variation decreases in time because the fluid heats and it becomes

easier to be pushed towards the outflow. Finally, The flow rate is uniform value on the
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whole domain, with an average value of 2.63e-05 [m3/s] and a standard deviation of 4.39e-
07 [m3/s], which confirms the conservation of the mass with an error up to ≃1%.
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flow features with respect to the geometrical feature. Top left: temperature average. Top
right: flow rate. Bottom left: pressure average. Bottom right: viscous heating average.
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Finally, we report some slices (see Figure 6.32) of the PRE fluid domain with the distri-
butions of the absolute velocity, pressure and temperature. The slicing has been performed
on the axial direction, and on the radial direction. Of the two slices on the radial direction,
one crosses a planet and the other is in a zone far from planets. We have reported also the
evolution of the temperature inside the PRE in Figure 6.36.
The small gaps sizes and the high portion of contact surface between planets, sun and

ring produce an increase of temperature in time but also along the extruder axis. However,
oppositely with respect to TSE, the temperature distribution is more uniform and free of
localized peaks. This confirms the increased ability of the PRE in mixing. For what concerns

Figure 6.32: Representation of sampling slices on the PRE geometry.

the axial slice, we reported the fields in Figure 6.33.
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Figure 6.33: Pressure, velocity and temperature sampled on an axial slice after 20 seconds.
For the temperature we reported also time instants 5 and 10 seconds in order to show the
evolution of the field.
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Figure 6.34: Pressure, velocity and temperature sampled on a longitudinal slice far from the
planets after 20 seconds.
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Figure 6.35: Pressure, velocity and temperature sampled on a longitudinal slice crossing a
planet after 20 seconds.
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Figure 6.36: Temperature distribution evaluated for different time instants on relative ve-
locity magnitude contours.



Chapter 7

Conclusions and perspectives

The recent advances in technology, in particular in the development of digital twins for in-
dustrial process design, simulation and monitoring, require a continuous development also
for the underlying numerical and physical modelling. Even being in possess of sufficient com-
putational power, the request of running high fidelity numerical simulations of real world
phenomena is increasing. Hence, besides the computational efficiency, also the approxima-
tion algorithms have to be enhanced in accuracy, robustness and in the ability of describing
the features of the problem in object.
In this work, we have investigated the Immersed Boundary method as an effective nu-

merical tool for the prediction of complex phenomena involved in industrial polymer mixing
processes. The complexity given by the geometries and the kinematics of industrial mixing
devices make, in most cases, necessary to implement a non-conforming approach, especially
when the problem has to be considered in a time dependent framework. Another reason is
that the former method has shown to be able to handle a wide variety of problems due to
its flexibility in embedding the geometries into the computational domain.
Moreover, the context of the Finite Volume method allows to robustly and efficiently

dealing with the strong nonlinearity involved. Indeed, with an enough powerful computing
system, real industrial problems are affordable with this tools in a relatively low computa-
tional time.

7.1 Main outcomes

In the present work, the research has been directed towards the development and analysis of
a simulation tool able to deal with industrial mixing processes of polymer melt. In particular,
we consider the Finite Volume method combined with the Immersed Boundary method to
deal with the computational, physical and geometrical complexities of the problem. The
work focused on the analysis of the combination of these methods.
We first developed a convergence analysis considering a simplified scenario, in which we

applied the Box method combined with the Diffuse Interface method to the Poisson and the
linear Stokes problems. The Box method formulation allowed us to work with the Finite
Volume method in a variational framework. In particular for the Stokes problem, we were
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able to prove, with the aid of numerical assessments, optimal error estimates for velocity
and pressure of the Rhie-Chow stabilized Box method. We also included in the analysis, the
contribution to the error of discrete approximations of fluxes through a consistency analysis.
Then, combining the Box method with the Diffuse Interface method, we analysed how

the presence of a non-conforming boundary influences the numerical error. We found that
introducing a non-conformal approximation of boundary conditions makes the convergence
rate suboptimal with respect to the conforming method. In this analysis we exploited the
dependence of the error on mesh and penalization parameters. In this way, we found that
the non-conforming imposition of the boundary conditions introduces an error that depends
only on neighbouring mesh elements size, which means that, employing an enough deep
local mesh refinement, we are able to recover the original convergence rate of conforming
methods.
Due to the high computational cost implied by this local mesh refinement, a more accu-

rate approach than the Diffuse Interface method has been considered. We did this by imple-
menting an Immersed Boundary method that able to recover the optimal convergence rate
without resorting to refinements, but rather using a correction strategy for the imposition
of non-conforming boundary conditions. A quadratic weighted least-square approximation
uses the solution values in the neighbours of the immerse surface in order to impose a cor-
rected, or shifted, solution to Immersed Boundary cells. This approach has proven to be
accurate, robust and able to deal with several configurations of the immersed surfaces.
Then, the Immersed Boundary method showed its capability of dealing with complex

problems in solving realistic industrial applications. Within this part, we showed the po-
tentiality of our simulation tool in mainly two aspects. The computational efficiency in
dealing with large scale problems, for which we assess the parallel scalability of the code,
and the comparison with the commercial software ANSYS Polyflow, a standard tool for the
simulation of polymer processing. In this comparison, we showed how our implementation
overcomes the computational limitations of Polyflow on representative industrial problems.
In particular, we employed the Immersed Boundary method on three industrial mixing

devices. The single-screw extruder geometry, a relatively simple multi-scale problem, in
comparison to other industrial devices, the twin-screw extruder, a geometry that shows nar-
row intermeshing regions between the screws and that is built by several modules of different
shapes and, finally, a more recent mixing technology, namely the planetary roller extruder.
Our approach in handling complicated geometries and kinematics is novel in the literature
and proves that the IBM implementation can be effectively adopted in the industrial practice.
A more systematic validation of these result will be carried out.

7.2 Perspectives and future developments

In this work, our analysis of the Box method sets a base workflow to deal with classical Fi-
nite Volumemethods in a variational framework in the context of non-conforming approach.
This work can potentially be extended to other differential problems in the context of com-
putational fluid dynamics, like the Navier-Stokes equations [133] and the non-Newtonian
Stokes and Navier-Stokes equations, where the main difficulty is represented by the nonlin-
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ear nature of the problem.
For what regards the Diffuse Interface, the adopted approach to prove error estimates

can be potentially extended to any direct-forcing non-conforming approach. This is because
the error devoted to the presence of an embedded geometry contributes to the global error
only when estimating the interpolation error on mesh elements belonging to the discrete
diffuse interface.
Major efforts in this research has been devoted towards the non-conforming imposition

of boundary conditions. However, accurate approximations of mixing processes of poly-
mer melt is subordinated to a good approximations of temperature and velocity boundary
layers generated by the nonlinearity of the problem. Our Immersed Boundary method im-
plementation showed some difficulties in well capturing these boundary layers. Moreover,
the computational cost of the IBM remains high in general, because of the large number of
least-squares interpolations that have to be performed on each IB cell during the computa-
tions.
These interpolation procedures also suffer when not enough points are employed in the

stencil, which implies the solution of relatively large linear systems that are computationally
onerous to invert at each time step. Indeed, IB subsets and stencils must be computed each
time the embedded surface is moved. Hence, more accurate and robust interpolations have
to be developed in order to better capture boundary layers and to make the method robust
on the various geometric configuration that can be encountered when simulating industrial
mixing processes, such as the narrow intermeshing region of the twin-screw extruder or
to the thin gaps of the PRE, two examples of devices that have to be simulated in time
dependent runs.
Some alternatives to our least-squares implementation are proposed in literature, such

as radial basis functions [128] or physics-based interpolations, like divergence-free interpo-
lations [12] and upwind inverse weighted distance interpolation [21].
Concerning the effective adoption of this kind of simulation tools in the industrial mix-

ing practice, special attention should be paid in the future to two aspects. The first is the
analysis of mixing ability of an industrial device. This aspect is of paramount importance
when analysing mixing processes and it is highly depending on accurate CFD simulations
of the mixing flow. A good mixing ability should combine both dispersive and distributive
mixing. Dispersive mixing means how well the mixer is able to break a particulate in smaller
pieces inside a polymer compound. Distributive mixing means how uniform the particulate
is dispersed in the fluid. Higher mixing ability will result in a better integration of the filler
in the compound.
This kind of studies are often performed using Lagrangian Particle Tracking, where a

cloud of particles is introduced in a flow and their path is traced while they move in the
fluid. Then, sampling certain quantities on each particle, like the stress under which a
particle undergoes, the mixing index or the residence time, an analysis of how the particle is
dispersed and eroded can be brought out. In the framework of Immersed Boundarymethods,
ad-hoc strategies have to be implemented in order to take into account the presence of a
non-conforming boundary when tracing particles in the fluid [130,132].
The second aspect that should deserve attention in the near future concerns the approxi-

mation we made to the degree of filling of the extruders. In our simulations we assumed that
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the machines were completely filled with the fluid. In reality, the mixers have empty parts,
especially at the inlet, where the flow is pumped in. Then, while the fluid is transported
along the mixer length, the filled sectional area gradually increases until it is completely
filled at the end of the device, where the polymer melt accumulates before being forced out
through the die. Hence, free-surface effects have to be taken into account in order to obtain
reliable results from simulations.
Among the many methods that are employed to deal with multiphase flows, the Volume

of Fluid (VOF) method is a valid choice in order to track the evolution of the free-surface
boundary within the mixing domain. Many challenges hide behind the simulation of multi-
phase non-Newtonian flows. For example, the interaction between the fluid, the air and the
walls [84], that form a triple point in which boundary conditions are difficult to be mod-
elled, or the fact that slip conditions can raise between the fluid and the walls. Moreover,
in the context of this work, it would be challenging to study the interplay between VOF and
IBM [111,127].



Appendix A

Review of the finite volume method
on general polyhedral grids

In sections A.1, A.2 and A.4 we introduce the basic notation for the OpenFOAM FVM, their
discretization and the correction schemes employed in order to recover optimal convergence
when dealing with general grids.

A.1 Preliminaries

To analyse the FVM, we consider as model problem the advection-diffusion equation. First
consider the following elliptic problem, in conservative form. Let Ω ∈ Rd be a Lipschitz
polygonal domain and let Γ = ∂Ω = ΓD ∪ ΓN be its boundary. The problem reads:

−∇ · (k∇u− bu) = f, in Ω,
u = gD, on ΓD,

k∇u · n = gN , on ΓN ,

(A.1)

where k ∈ L∞(Ω),b ∈ [L∞(Ω)]d, f ∈ L2(Ω) are the diffusivity, velocity field and source
term, respectively, and gD ∈ H

1
2 (Ω) and gN ∈ H− 1

2 (Ω) are the Dirichlet and Neumann
boundary data.
Let us now define the following functional space

V = H1(Ω),

VΓD = {v ∈ V : v|ΓD = 0},
VΓD,gD = {v ∈ V : v|ΓD = gD},

Q = L2(Ω).

Now we multiply problem (A.1) by a test function v ∈ Q and integrate by parts obtaining
the weak formulation of the problem: find u ∈ VΓD,gD such that

−
∫
Ω
∇ · (k∇u)v +

∫
Ω
∇ · (bu)v = (f, v)Ω

B(u, v) = a(u, v) + b(u, v) = (f, v)Ω, ∀v ∈ VΓD
,

(A.2)
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where (·, ·)Ω is the standard scalar product in Ω, B, a, b : V ×Q → R and f ∈ L2(Ω).
To prove the well-posedness of problem (A.2), we recall the following result:

Theorem A.1.1 (Banach-Nečas-Babuška). Let V be Banach space andQ be a reflexive Banach
space. Let B ∈ L(V ×Q,R) and f ∈ V∗. Then the problem: find u ∈ VΓD,gD s.t.

B(u, v) = (f, v)Ω, ∀v ∈ Q,

is well-posed if and only if

∃α > 0 : inf
v∈V

sup
q∈Q

B(v, w)

∥v∥V ∥q∥Q
≥ α.

Moreover, the following holds:
∥u∥V ≤ 1

α
∥f∥V∗ .

Well-posedness of problem A.2 comes from Theorem A.1.1. If the bilinear form B is
considered setting v = u, then it will be continuous and coercive by the standard estimates
for weak elliptic problems and the inf–sup condition is satisfied choosing q = v. Thus, the
solution satisfies the following stability estimate:

∥u∥H1 ≤ C(ν,b)
[
∥f∥L2 + ∥gN∥L2(ΓN ) + ∥g∥H1/2(ΓD)

]
. (A.3)

Moreover, if the coefficients of the elliptic operator are Lipschitz continuous and the do-
main Ω is bounded, the solution will be H2(Ω′), ∀Ω′ ⊂⊂ Ω.

A.2 The finite volume method

The finite volume method is traditionally introduced for the discretization of general conser-
vation laws. A conservation law expresses the conservation of some physical quantity such
as mass, momentum or energy. In general, it is convenient to adopt an Eulerian approach, so
considering a region of space and writing the balance of the integral variation in this region
of the quantity involved.
In the finite volume method, the domain is divided into control volumes and then a local

balance is written on each control volume. Using the Gauss–Green theorem the formula-
tion becomes a balance of fluxes over control volumes boundaries. Then, the fluxes on the
boundary are discretized using appropriate numerical discretization schemes involving the
discrete solution unknowns with a collocated approach.
The finite volume method is know also for its flexibility in handling general polyhedral

meshes. On the other hand, mesh plays a fundamental role in terms of accuracy of numer-
ical schemes. Thus we give a definition for the finite volume mesh and we require some
properties on its regularity.
We recall first mesh definitions given in Chapter 4.

Definition A.2.1 (Finite volume mesh). Let Ω ⊂ Rd, where d = 3, be a Lipschitz bounded
domain. Let Th be a polyhedral tessellation of Ω.
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1. Each polyhedron, cell, of Th is denoted byK and is such that Ω =
⋃
Ki andKi∩Kj = ∅,

∀Ki,Kj ∈ Th. Let hK = diam(K) be the diameter of K and h = max
K

{hK}. Let k and
|K| be the barycentre and the volume of cell K, respectively.

2. Let Fh be the set of faces F of Th. Let Fh = Fo
h ∪F∂

h , where Fo
h is the set of internal faces

and F∂
h is the set of boundary faces. Let f be the barycentre of face F and |F | be its area.

3. Let Eh be the set of edges E of Th, with midpoint e and length |E|.

4. Let Ph be the set of vertices p of Th.

Definition A.2.2 (Mesh connectivity). Consider a cell Ki. Let Fi = {F : Ki ∩ F ̸= ∅} be the
set of faces of cell Ki. Moreover, denote by Fij the face in common between cell Ki and Kj and
denote by F ∂

i each face ofKi living on ∂Ω. Let also Ki be the set of cells adjacent to cellKi and
let, analogously, Ei and Pi as the sets of edges and vertices of Ki, respectively.

Then, for each face Fij associate a unit normal vector nij , directed from cell i to cell j,
a distance hij between centres ki and kj , and a diamond Dij as the polyhedron formed by
the face vertices and the correspondent cell barycentres ki and kj . Moreover, let Di

ij , D
j
ij be

the parts of the diamond Dij belonging to cells Ki,Kj , respectively.
We now establish some regularity properties on the finite volume mesh.

Definition A.2.3 (Mesh assumptions and regularity). ∀Ki ∈ Th, Fij ∈ Fh,∃C1, C2, C3, C4 >
0, independent of h:

card(Fi) ≤C1,

C2h
d ≤ |Ki| ≤ hd,

|Fij | ≤C3h
d−1,

hij ≃hKj , for some Kj ∈ Ki.

Moreover, we define the following regularity indicators.

1. Non-orthogonality: the cosine of the angle between hij and nij ,

τij =
hij · nij

hij
.

It measures how much the two vectors are far from being parallel.

2. Skewness: let xij be the intersection point between face Fij and vector hij . Let mij =
fij − xij , then the skewness factor reads

ψij =
∥mij∥
hij

.

It measures how far the intersection is from the face barycentre.
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3. Uniformity: let h∗ij = ∥xij − k∗∥ , ∗ = i, j, the local uniformity measure of a face reads

ξij =
hiij

hiij + hjij
.

The more is near to 0.5, the more is uniform.

4. Chunkiness:

δ =
h

hm
,

where hm = minK hK .

Once defined the computational mesh we can define a functional framework on it. When
dealing with finite volume approximation, we consider a collocated approach, in which func-
tions are defined by values in the barycentres of mesh cells and their fluxes across mesh faces
are approximated using numerical schemes.
A function vh is a piecewise constant function on tessellation Th if it can be expressed as

follows:
vh =

∑
K∈Th

vK1K , vK ∈ R ∀K ∈ Th, (A.4)

where 1K is the indicator function of cell K.
For this type of functions, we can define the finite volume counterparts of continuous

spaces L2 and H1. The definition of discrete L2 is straightforward:

Zh =
{
vh ∈ L2(Ω) : vh|K ∈ P0(K), ∀K ∈ Th

}
,

where Pn is the space of polynomials of degree n.
For the definition of a discreteH1, first we define the following discrete space of piecewise

constant functions over face diamonds:

Z∗
h =

{
vh ∈ L2(Ω) : vh|Dij ∈ P0(Dij), ∀Fij ∈ Fh

}
.

Then, we consider the orthogonal face normal gradient operator:

∇⊥
h : Th → Fh, ∇⊥

h,ijvh =
vi − vj

τijhij
, Fij ∈ Fh. (A.5)

Using this operator, we are allowed to define the discrete H1 space as

Wh =
{
vh ∈ Zh : ∇⊥

h vh ∈ Z∗
h

}
.

Before writing the FVM formulation of a differential problem we need some more ingre-
dients: face interpolators and face and cell gradients.
For the face interpolator we consider a weighted average between the two adjacent cell

values. Let us define the following operator:

Ih : Th 7→ Fh, Ih,ijvh = wijvi + (1− wij)vj , Fij ∈ Fh, (A.6)
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where wij ∈ (0, 1) is the interpolation weight. Unless specified, for now on we consider the
standard linear interpolation where

wij =
hjij

hiij + hjij
. (A.7)

It is worth noticing that, this interpolation scheme evaluates the solution in point xij (c.f.
Definition A.2.3). For this reason, for general meshes, the consistency of the scheme is
influenced by the skewness of the face. If it is significantly greater than zero, then we are
evaluating the interpolation in a point that is far from the face barycentre. If this is the case,
a specific correction can be applied using the skewness vector mij of face Fij:

Ih,ijvh = wijvi + (1− wij)vj +mij · ∇Fijvh, (A.8)
where∇Fij is some evaluation of the gradient on face Fij , usually treated in an explicit way.
The operator ∇Fij will be defined later on, when we introduce FVM gradient operators.
For what regards gradients, there exist two types of gradient: cell gradient and face

normal gradient. The first derives from Gauss-Green gradient theorem: let Ki ∈ Th, v ∈
H1(Ω), ∫

Ki

∇vdx =

∫
Ki

∇ · (Iv)dx =

∫
∂Ki

Iv · nids,

where I is the identity matrix. If we plug vh ∈ Wh into the last expression we obtain the cell
gradient operator, defined as

∇h : Th 7→ Th, ∇h,ivh =
1

|Ki|
∑

Kj∈Ki

|Fij | Ih,ijvhnij , Ki ∈ Th. (A.9)

The second is the face normal gradient, usually discretized through a centred finite dif-
ference between two cell centres. We have already defined it in equation (A.5), in its or-
thogonal form. However, this formula does not computes accurately the normal gradient if
the non-orthogonality is lower than 1 because the segment between two cell centres would
not be aligned with the face normal vector. If this is the case, a correction is added to the
numerical scheme in the following way. Let us write the face unit normal vector as the sum
of two contributions: the first is parallel to hij = kj − ki and the second is computed ac-
cordingly. Thus, the scheme is applied along the first contribution and a correction is then
performed along the second one. This is called under-relaxation:

nij = n⊥ + (nij − n⊥),

where
n⊥ =

hij

hij · nij
=

hij

hijτij
. (A.10)

The (non-orthogonally) corrected face normal gradient scheme finally reads:
∇̃⊥

h : Th 7→ Fh, ∇̃⊥
hij
vh = ∇⊥

h,ijvh +∇Fijvh · (nij − n⊥), Fij ∈ Fh, (A.11)
where ∇Fijvh = Ih,ij∇hvh.
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Remark A.1. [Boundary approximation of face normal gradient] On boundary faces, the
form of the scheme changes. the non-orthogonality on boundary faces vanishes because the
neighbour cell centre is ideally at infinite distance, hence hij is aligned with the face normal.
When on Dirichlet faces, the scheme drops back to its simplest form (A.5) using the

Dirichlet value instead of vj and hiij instead of hij . On the other hand, when on Neumann
faces, the whole scheme is substituted with the Neumann boundary value.

Remark A.2. [Face interpolation on boundary] As for the face normal gradient, we need
to change the interpolation for boundary faces. The skewness of boundary faces is usually
neglected.
When on Dirichlet faces, the result of the interpolation is Dirichlet value itself. On the

other hand, when on Neumann faces, the weightwij becomes equal to one and the boundary
value is extrapolated using a first order Taylor expansion:

Ih,ijvh = vi + τijhijgN,ij ,

where gN,ij will be the Neumann boundary value.

Now, discrete norms for FVM spaces can be defined.

Definition A.2.4 (Discrete norms). Let vh ∈ Wh,

∥vh∥L2 =

√∑
K∈Th

|K| |vK |2,

|vh|∗ =
√∑

F∈Fh

|Dij |
∣∣∇⊥

h vh
∣∣2,

∥vh∥∗ =
√

∥vh∥2L2 + |vh|2∗.

Moreover, these norms satisfy some properties:

Proposition A.2.1 (Discrete norms properties). The following properties hold: ∀vh ∈ Wh,

∥vh∥L2 ≤Cp |vh|∗ ,

|vh|∗ ≤2
1

hij
Fij∈Fh

∥vh∥L2 .

Proof. 1. By [43, Lemma 5.1], that states that ∀vh ∈ Wh, ∃Cp > 0 :

∥vh∥L2 ≤ Cp |vh|∗ . (A.12)
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2.

|vh|∗ =

 ∑
Fij∈Fh

∫
Fij

hij

d

∣∣∣∣∣vi − vj

τijhij

∣∣∣∣∣
2

ds

 1
2

≤ 1

min
Fij∈Fh

τijhij

 ∑
Fij∈Fh

∫
Fij

hij

d

(
|vi|2 + |vj |2

) 1
2

≤2(τmhm)−1 ∥vh∥L2 =
2δ

τmh
∥vh∥L2 ,

where δ is the chunkiness factor.

A.3 Finite volume formulation for advection-diffusion problems

In order to derive the FVM formulation of the problem, let
Zh,ΓD = {vh ∈ Zh : Ih,ij(vh) = gD|fij , ∀Fij ∈ FD

h },
Wh,ΓD = {vh ∈ Wh : vh ∈ Zh,ΓD},

be a discrete functional space, where FD
h is the set of faces correspondent to the Dirichlet

boundary ΓD. Let vh ∈ Zh be a test function. Multiply problem (A.1) by vh and integrate
by parts:

−
∑

Ki∈Th

∫
Ki

∇ · (k∇u− bu)vids = −
∑

Ki∈Th

∑
Fij∈Fi

∫
Fij

(k∇u− bu)vi · nijds =
∑

Ki∈Th

(f, vh)Ki .

The problem can be rewritten by defining the jump operator [[vh]]ij = vi − vj as

−
∑

Fij∈Fh

∫
Fij

(k∇u− bu) · nij [[vk]]ij ds =
∑

Ki∈Th

(f, vh)Ki .

In the classical finite volume framework, the flux on the left-hand-side is approximated
by a discrete operator. In this case we consider two operators: the face normal gradient
(A.11) for the diffusion term and the face interpolator (A.8) for the convective term. The
FVM formulation finally reads: find uh ∈ Wh,ΓD , such that, ∀vh ∈ Zh,

−
∑

Fij∈Fh

∫
ij
kij∇⊥

h uh [[vh]]ij ds+
∑

Fij∈Fh

∫
ij
bij · nijdsIhuh [[vh]]ij ds =

∑
Ki∈Th

(f, vh)Ki ,

Bh(uh, vh) = ah(uh, vh) + bh(uh, vh) =
∑

Ki∈Th

(f, vh)Ki ,

(A.13)
where kij ,bij are evaluations of coefficients on face Fij .
Notice that Bh, ah, bh : Z0

h → R are the discrete counterparts of B, a, b, respectively (c.f.
equation A.2).
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A.4 Convergence analysis

The convergence analysis for finite volumes is performed comparing the numerical solution
against the continuous one and against the L2-projection of the latter one on each cell. In
order to obtain an estimate, we notice that the following holds:

Bh(uh, vh) = B(u, vh).

Now we set ΠL2u to be the L2-projection of u on each cell,

ΠL2u =
∑
K∈Th

1

|K|

∫
K
udx,

and vh = uh −ΠL2u, then we can write the following relationship:
Bh(uh −ΠL2u, uh −ΠL2u) = B(u, uh −ΠL2u)−Bh(ΠL2u, uh −ΠL2u). (A.14)

We now require some property on Bh in order to ensure eventually the convergence of
the method.
Definition A.4.1 (Continuity). Bh is continuous if

∃M > 0 : |Bh(uh, vh)| ≤M |uh|∗ |vh|∗ , ∀uh, vh ∈ Zh.

Definition A.4.2 (Coercivity). Bh is coercive if

∃α > 0 : |Bh(uh, uh)| ≥ α |uh|2∗ , ∀uh ∈ Zh.

Definition A.4.3 (Consistency). LetRij(u) be the flux residual on a face Fij , defined as follows:

Rij(u) =
1

|Fij |

∫
Fij

[
−kij∇⊥

hΠL2u+ (k∇u+ bijIhΠL2u− bu) · nij

]
[[vh]]ij ds.

The residual is consistent with order p if

∃C > 0 : ∥Rij(u)∥L2 =

√ ∑
Fij∈Fh

|Dij | |Rij(u)|2 ≤ Chp.

Proposition A.4.1. If Bh is consistent, in the sense of Definition A.4.3, then

∃C > 0 : |B(u, vh)−Bh(ΠL2u, vh)| ≤ Chp |vh|∗ , ∀u ∈ VΓD , vh ∈ Zh.

Proof. By Hölder’s inequality and by the fact that [[vh]]ij is a number, we have:

|B(u, vh)−Bh(ΠL2u, vh)| =

∣∣∣∣∣∣
∑

Fij∈Fh

∫
Fij

[
−kij∇⊥

hΠL2u+ (k∇u+ bijIhΠL2u− bu) · nij

]
[[vh]]ij

∣∣∣∣∣∣ ds
≤
∑

Fij∈Fh

|Fij | |Rij(u)| |vi − vj |

=
∑

Fij∈Fh

d |Dij | |Rij(u)|
∣∣∣∣∣vi − vj

τijhij

∣∣∣∣∣
≤d ∥Rij(u)∥L2 |vh|∗ ≤ Chp |vh|∗ ,
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where we exploited the volume of diamond Dij as
|τijhij | |Fij |

d
.

Before proving a convergence estimate for the FVM solution, we need to verify that B
satisfies Definitions A.4.1 and A.4.2, assuming that A.4.3 holds. For the sake of simplicity
we consider the orthogonal and non-skew case.
Lemma A.4.1. The bilinear form Bh of problem (A.13) is continuous.
Proof. Let us consider the expression of Bh in the general case:

Bh(uh, vh) =
∑

Fij∈Fh

|Fij |
[
−kij∇̃⊥

h uh + bij · nijIhuh
]
[[vh]]

=
∑

Fij∈Fh

−kij |Fij |
(
uj − ui

τijhij
+∇Fuh · (nij − n⊥)

)
[[vh]]ij

+ bij · nij |Fij | (wijui + (1− wij)uj +mij · ∇Fuh) [[vh]]ij .

(A.15)

Now, assuming nij s.t. bij ·nij ≥ 0, ∀Fij ∈ Fh, orthogonality and non-skewness the latter
equation reduces to

Bh(uh, vh) =
∑

Fij∈Fh

−kij |Fij |
(
uj − ui

τijhij

)
[[vh]]ij

+ bij · nij |Fij | (wijui + (1− wij)uj) [[vh]]ij

≤
∑

Fij∈Fh

|Fij |
hij

[(
kij

τij
+ bij · nijwij

)
ui −

(
kij

τij
− bij · nij(1− wij)

)
uj

]
[[vh]]ij

≤
∑

Fij∈Fh

|Fij |
hij

∣∣∣∣∣kijτij + bij · nijwij

∣∣∣∣∣ [[uh]]ij [[vh]]ij
≤
∑

Fij∈Fh

hij |Fij |C(k,b)
[[uh]]ij
hij

[[vh]]ij
hij

, [[vh]]ij

(A.16)
that, by Cauchy-Schwarz and Hölder inequalities, gives the result.
Lemma A.4.2. The bilinear form Bh of problem (A.13) is coercive.
Proof.

Bh(uh, uh) =
∑

Fij∈Fh

|Fij |
[
−kij∇Fijuh + bij · nijIhuh

]
[[uh]]

=
∑

Fij∈Fh

−kij |Fij |
(
uj − ui

τijhij
+∇Fuh · (nij − n⊥)

)
[[uh]]ij

+ bij · nij |Fij | (wijui + (1− wij)uj +mij · ∇Fuh) [[uh]]ij .

(A.17)
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Using now

(wb+ (1− w)a)(b− a) =

(
w − 1

2

)
(a− b)2 +

1

2

(
b2 − a2

)
,

we obtain:

Bh(uh, uh) =
∑

Fij∈Fh

|Fij | τijhij
[
kij + bij · nijτijhij

(
wij −

1

2

)](
uj − ui

τijhij

)2

+
∑

Fij∈Fh

|Fij |
bij · nij

2

(
u2i − u2j

)
+
∑

Fij∈Fh

|Fij | [−kij(nij − n⊥) + bij · nijmij ] · ∇Fuh(ui − uj)

=
∑

Fij∈Fh

d |Dij |
[
kij + bij · nijτijhij

(
wij −

1

2

)](
uj − ui

τijhij

)2

+
∑

Ki∈Th

u2i

∫
Ki

∇ · b

+
∑

Fij∈Fh

|Fij | [−kij(nij − n⊥) + bij · nijmij ] · ∇Fuh(ui − uj).

(A.18)

By the assumption of orthogonality and non-skewness the equation becomes

Bh(uh, uh) =
∑

Fij∈Fh

d |Dij |
[
kij + bij · nijτijhij

(
wij −

1

2

)](
uj − ui

τijhij

)2

+
∑

Ki∈Th

u2i

∫
Ki

∇ · b.
(A.19)

To obtain coercivity we need ∇ · b ≥ 0 for the second addendum and, for the first one,
that

kij + bij · nijτijhij

(
wij −

1

2

)
≥ 0 =⇒ kij

τijhijbij · nij
≥ 1− wij

2
,

that means
Peh ≤ 2

1− wij

or
wij ≥ 1− 2

Peh
.

Thus, the following convergence result holds.
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Theorem A.4.1. Let u ∈ VΓD be the solution of problem (A.2) and let uh ∈ Wh,ΓD be the
solution of problem (A.13). If ΠL2u ∈ Zh is the L2-projection of u on each cell of mesh Th, Bh

is continuos, coercive and consistent with order p, then

∥u− uh∥L2 + |ΠL2u− uh|∗ ≤ C(h+
1

α
hp).

Moreover, the solution exists, it is unique and stable,

|uh|∗ ≤
1

α
∥f∥L2 .

Proof. Assume Bh satisfies continuity, coercivity and consistency with order p, Definitions
A.4.1, A.4.2 and A.4.3. Using Proposition A.4.1:

α |ΠL2u− uh|2∗ ≤Bh(ΠL2u− uh,ΠL2u− uh)

≤ |Bh(ΠL2u,ΠL2u− uh)−B(u,ΠL2u− uh)|
≤Chp |ΠL2u− uh|∗ .

(A.20)

For what regards the L2-projection we use the following result from [25]: let G ⊂ Rd be
a bounded convex domain and let u ∈ V, then

∥u−ΠL2u∥L2(G) ≤ Cd

diam(G)d

|G|1− 1
d

∥∇u∥L2(G) .

Let G = K,

∫
Ω
(u−

∑
K∈Th

ΠL2uK1K)2 =

∫
Ω

∑
K∈Th

(u−ΠL2uK)1K

2

≤
∫
Ω

∑
K∈Th

|u−ΠL2uK |2 1K

=
∑
K∈Th

∫
K
|u−ΠL2uK |2 ≤

∑
K∈Th

C2
d

h2dK

h
2d(1− 1

d)
K

∥∇u∥2L2(K)

≤C2
dh

2 ∥∇u∥L2 ,
(A.21)

from which follows, by Lemma A.2.1,

∥u−ΠL2u∥L2 ≤∥u− uh∥L2 + ∥ΠL2u− uh∥L2

≤∥u− uh∥L2 + |ΠL2u− uh|∗
≤C(h+

1

α
hp) ∥u∥H1 .

(A.22)

Finally, stability follows from coercivity of B and by continuity of F :

α |uh|2∗ ≤ |Bh(uh, uh)| = |F (uh)| ≤ ∥f∥L2 |uh|∗ . (A.23)
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Remark A.3. Regarding Theorem A.4.1, we enlighten that the FVM error estimates is very
similar to estimates proven for classical finite element methods. We have two terms involve:
the interpolation and the consistency errors, respectively h and hp.

Remark A.4. For the convergence analysis we drop the hypothesis of non-orthogonality
and skewness of the mesh. This is in fact reasonable when proving continuity and coercivity
because all the corrections for grid irregularities go on the right hand side and are treated
explicitly.
This because OpenFOAM implements almost always iterative algorithms, so that iterating

on the same problem is like resolving it with a fixed point approach. In practice, the mesh
irregularities play a role similar to the nonlinearity that a problem can present. Hence,
being the corrections on the right-hand-side of the equation, they do not enter in matrix
construction and then neither they do influence continuity and coercivity of Bh.
However, those corrections influence the convergence of the FVM by playing a role in the

consistency estimate. Indeed, in Proposition A.4.1, what is to be estimated is the difference
between the continuous fluxes and the finite volume schemes applied to the L2 projection
of the continuous solution. This can be seen in the presence of operators ∇⊥

h and Ih, that
contain the non-orthogonality and skewness corrections.
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[57] A. Ern andM. Vohraliḱ. A Unified Framework for a posteriori Error Estimation in Elliptic
and Parabolic Problems with Application to Finite Volumes, volume 4, pages 821–837.
2011.

[58] R. Ewing and T. Lin. On the accuracy of the finite volume element method based on
piecewise linear polynomials. SIAM Journal on Numerical Analysis, 39, 2002.

[59] R. Eymard, T. Gallouët, and R. Herbin. Finite volumemethods. Handbook of numerical
analysis, 7(January):713–1018, 2000.

[60] E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-
boundary finite-difference methods for three-dimensional complex flow simulations.
Journal of Computational Physics, 161(1):35–60, 2000.

[61] M. Feistauer, J. Felcman, M. Lukácová-Medvid’ová, and G. Warnecke. Error esti-
mates for a combined finite volume–finite element method for nonlinear convection–
diffusion problems. SIAM Journal on Numerical Analysis, 36(5):1528–1548, 1999.

[62] C. Fernandes, L. L. Ferrás, F. Habla, O. S. Carneiro, and J. M. Nóbrega. Implementa-
tion of partial slip boundary conditions in an open-source finite-volume-based com-
putational library. Journal of Polymer Engineering, 39(4):377–387, 2019.

[63] L. L. Ferrás, J. M. Nóbrega, and F.T. Pinho. Implementation of slip boundary condi-
tions in the finite volume method: new techniques. International Journal for Numer-
ical Methods in Fluids, 72(7):724–747.

[64] J.D. Ferry. Viscoelastic Properties of Polymers. Springer, Dordrecht, 1980.
[65] J. H. Ferziger, M. Perić, and R. L. Street. Computational Methods for Fluid Dynamics.

Springer Nature Switzerland AG 2020, 2020.
[66] S. Forte, L. Preziosi, and Vianello M. Meccanica dei Continui. Springer, 2019.
[67] G. Galdi. An Introduction to the Mathematical Theory of the Navier–Stokes Equations,

volume I. Springer New York, 2011.
[68] Y. Gao, Y. Li, G. Yuan, and Z. Sheng. New finite volume element methods in the ale

framework for time-dependent convection–diffusion problems in moving domains.
Journal of Computational and Applied Mathematics, 393:113537, 2021.

[69] V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes equations –
Theory and Algorithms. In Springer Series in Computational Mathematics, 1986.

[70] C. G. Gogos and Z. Tadmor. Principles of Polymer Processing. Wiley, 2013.
[71] C. Greenshields and H. Weller. Notes on Computational Fluid Dynamics: General Prin-

ciples. CFD Direct Ltd, Reading, UK, 2022.



VI BIBLIOGRAPHY

[72] J.L. Guermond, P. Minev, and J. Shen. An overview of projection methods for
incompressible flows. Computer Methods in Applied Mechanics and Engineering,
195(44):6011–6045, 2006.

[73] W. Hackbusch. On first and second order box schemes. Computing. Archives for
Scientific Computing, 41(4):277–296, 1989.

[74] A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s
method, for elliptic interface problems. Computer Methods in Applied Mechanics and
Engineering, 191(47):5537–5552, 2002.

[75] J. Helmig, M. Behr, and S. Elgeti. Boundary-conforming finite element methods for
twin-screw extruders: Unsteady - temperature-dependent - non-newtonian simula-
tions. Computers & Fluids, 190:322–336, 2019.

[76] J. Helmig and S. Elgeti. A Sliding Interface Approach with Application to Twin-Screw
Extruders. Universitätsbibliothek der RWTH Aachen, 2019.

[77] J. Hinz, J. Helmig, M. Möller, and S. Elgeti. Boundary-conforming finite element
methods for twin-screw extruders using spline-based parameterization techniques.
Computer Methods in Applied Mechanics and Engineering, 361:112740, 2020.

[78] J. Hinz, M. Möller, and C. Vuik. Spline-based parameterization techniques for twin-
screw machine geometries. IOP Conference Series: Materials Science and Engineering,
425(1):012030, 2018.

[79] C.W. Hirt, A. A. Amsden, and J. L. Cook. An arbitrary Lagrangian-Eulerian computing
method for all flow speeds. volume 135, pages 198–216. 1997.

[80] P. Houston, C. Schwab, and E. Süli. Discontinuous hp-finite element methods
for advection-diffusion-reaction problems. SIAM Journal on Numerical Analysis,
39(6):2133–2163, 2002.

[81] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian-Eulerian finite element
formulation for incompressible viscous flows. Computer Methods in Applied Mechanics
and Engineering, 29(3):329–349, 1981.

[82] G. Iaccarino. Immersed boundary technique for turbulent flow simulations. Applied
Mechanics Reviews, 56, 05 2003.

[83] T. Ikeno and T. Kajishima. Finite-difference immersed boundary method consistent
with wall conditions for incompressible turbulent flow simulations. Journal of Com-
putational Physics, 226(2):1485–1508, Oct 2007.

[84] M. Jamshidzadeh, F. Ein-Mozaffari, and A. Lohi. Local and overall gas holdup in
an aerated coaxial mixing system containing a non-Newtonian fluid. AIChE Journal,
66(11):e17016, 2020.



BIBLIOGRAPHY VII

[85] H. Jasak. Error Analysis and Estimation for Finite Volume Method with Applications to
Fluid Flow. PhD thesis, Imperial College, University of London, 1996.

[86] H. Jasak, D. Rigler, and Z̆. Tuković. Design and implementation of immersed bound-
ary method with discrete forcing approach for boundary conditions. 11th. World
Congress on Computational Mechanics - WCCM XI, 5th. European Congress on Com-
putational Mechanics - ECCM V, 6th European Congress on Computational Fluid Dy-
namics - ECFD VI, 2014.

[87] F. Juretić and A. D. Gosman. Error analysis of the finite-volume method with respect
to mesh type. Numerical Heat Transfer, Part B: Fundamentals, 57(6):414–439, 2010.

[88] B. Kadoch, D. Kolomenskiy, P. Angot, and K. Schneider. A volume penalization
method for incompressible flows and scalar advection–diffusion with moving obsta-
cles. Journal of Computational Physics, 231(12):4365–4383, 2012.

[89] E. N. Karatzas, G. Stabile, L. Nouveau, G. Scovazzi, and G. Rozza. A reduced-order
shifted boundary method for parametrized incompressible Navier–Stokes equations.
Computer Methods in Applied Mechanics and Engineering, 370:113273, 2020.

[90] T. Kataoka, T. Kitano, M. Sasahara, and K. Nishijima. Viscosity of particle filled poly-
mer melts. Rheologica Acta, 17(2):149–155, 1978.

[91] J. Kettemann, I. Gatin, and C. Bonten. Verification and validation of a finite vol-
ume immersed boundary method for the simulation of static and moving geometries.
Journal of Non-Newtonian Fluid Mechanics, 290:104510, 2021.

[92] N. Kim, H. Kim, and J. Lee. Numerical analysis of internal flow and mixing perfor-
mance in polymer extruder i: Single screw element. Korea-Australia Rheology Journal,
18:143–151, 2006.

[93] I. M. Krieger and T. J. Dougherty. Mechanism for non-Newtonian flow in suspensions
of rigid particles. Transactions of the Society of Rheology, 3:137–152, 1959.

[94] R. J. LeVeque. Numerical methods for conservation laws (2. ed.). Lectures in mathe-
matics. Birkäuser, 1992.

[95] X. Li, J. Lowengrub, A. Rätz, and A. Voigt. Solving PDEs in complex geometries: a
diffuse domain approach. Communications in Mathematical Sciences, 7(1):81–107,
2009.

[96] A. Limper, S. Seibel, and G. Fattmann. Compounding unit planetary roller extruder.
Macromolecular Materials Engineering, 287:815–823, 2002.

[97] R. K.S. Liu, K.C. Ng, and T. W.H. Sheu. A volume of solid implicit forcing immersed
boundary method for solving incompressible Navier-Stokes equations in complex do-
main. Computers & Fluids, 218:104856, 2021.



VIII BIBLIOGRAPHY

[98] C. W. Macosko and R. G. Larson. Rheology: principles, aeasurements, and applications.
Advances in interfacial engineering series. Wiley-VCH, 1994.

[99] A. Main and G. Scovazzi. The shifted boundary method for embedded domain com-
putations. Part I: Poisson and Stokes problems. Journal of Computational Physics,
372:972–995, 2018.

[100] S. H. Maron and P. E. Pierce. Application of Ree-Eyring generalized flow theory to
suspensions of spherical particles. Journal of Colloid Science, 11:80–95, 1956.

[101] D. M. C. Martins, D. M. S. Albuquerque, and J. C. F. Pereira. Continuity constrained
least-squares interpolation for SFO suppression in immersed boundary methods.
Journal of Computational Physics, 336:608–626, 2017.

[102] S. Middleman. Fundamentals of Polymer Processing. McGraw-Hill, 1977.
[103] R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid

Mechanics, 37(1):239–261, 2005.
[104] M. Mohan Rai. A conservative treatment of zonal boundaries for euler equation cal-

culations. Journal of Computational Physics, 62(2):472–503, 1986.
[105] M. Mohan Rai. An implicit, conservative, zonal-boundary scheme for euler equation

calculations. Computers & Fluids, 14(3):295–319, 1986.
[106] F. Moukalled, L. Mangani, and M. Darwish. The Finite Volume Method in Com-

putational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab.
Springer Publishing Company, Incorporated, 1st edition, 2015.

[107] G Negrini, N. Parolini, and M. Verani. A diffuse interface box method for elliptic
problems. Applied Mathematics Letters, 120:107314, 2021.

[108] J. Nitsche. Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwen-
dung von teilräumen, die keinen randbedingungen unterworfen sind. In Abhandlun-
gen aus dem mathematischen Seminar der Universität Hamburg, volume 36, pages
9–15. Springer, 1971.

[109] G. Pascazio and M. Napolitano. A staggered-grid finite volume method for the
vorticity-velocity equations. Computers & Fluids, 25(4):433–446, 1996.

[110] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Electro Skills Series. Hemi-
sphere Publishing Corporation, 1980.

[111] H. V. Patel, S. Das, J. A. M. Kuipers, J. T. Padding, and E. A. J. F. Peters. A coupled
volume of fluid and immersed boundary method for simulating 3d multiphase flows
with contact line dynamics in complex geometries. Chemical Engineering Science,
166:28–41, 2017.

[112] C. S. Peskin. Flow patterns around heart valves: A numerical method. Journal of
Computational Physics, 10(2):252–271, 1972.



BIBLIOGRAPHY IX

[113] C. S. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002.

[114] A. J. Poslinski, M. E. Ryan, R. Gupta, S. G. Seshadri, and F. J. Frechette. Rheological
behavior of filled polymeric systems i. Yield stress and shear-thinning effects. Journal
of Rheology, 32:703–735, 1988.

[115] A. Quarteroni and R. Ruiz-Baier. Analysis of a finite volume element method for the
stokes problem. Numerische Mathematik, 118(4):737–764, 2011.

[116] A. M. Quarteroni. Numerical Models for Differential Problems. Springer International
Publishing, AG 2017, 2017.

[117] A. M. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equa-
tions. Springer Publishing Company, Incorporated, 1st ed. 1994. 2nd printing edition,
2008.

[118] C. Rauwendaal. Polymer Extrusion. Carl Hanser Verlag GmbH & Company KG, 2014.

[119] C. M. Rhie and W. L. Chow. Numerical study of the turbulent flow past an airfoil with
trailing edge separation. AIAA Journal, 21(11):1525–1532, 1983.

[120] J. Rudloff, M. Lang, M. Bastian, K. Kretschmer, P. Heidemeyer, and M. Koch. Analysis
of the process behavior of co-kneaders. AIP Conference Proceedings, 2055(1):020007,
2019.

[121] T. Sakurai, K. Yoshimatsu, N. Okamoto, and K. Schneider. Volume penalization for
inhomogeneous Neumann boundary conditions modeling scalar flux in complicated
geometry. Journal of Computational Physics, 390:452–469, 2019.

[122] S. Salsa. Partial Differential Equations in Action: From Modelling to Theory. Springer
Publishing Company, Incorporated, 2nd edition, 2015.

[123] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and inter-
facial flow. Annual Review of Fluid Mechanics, 31(1):567–603, 1999.

[124] M. Schlottbom. Error analysis of a diffuse interface method for elliptic problems with
Dirichlet boundary conditions. Applied Numerical Mathematics. An IMACS Journal,
109:109–122, 2016.

[125] J. L. Steger and J. A. Benek. On the use of composite grid schemes in computational
aerodynamics. Computer Methods in Applied Mechanics and Engineering, 64(1):301–
320, 1987.

[126] A. F. Stephansen. Discontinuous Galerkin methods and a posteriori error analysis for
heterogenous diffusion problems. Technical report, 2007.

[127] X. Sun and M. Sakai. Numerical simulation of two-phase flows in complex geome-
tries by using the volume-of-fluid/immersed-boundary method. Chemical Engineering
Science, 139:221–240, 2016.



X BIBLIOGRAPHY

[128] F. Toja-Silva, J. Favier, and A. Pinelli. Radial basis function (RBF)-based interpolation
and spreading for the immersed boundary method. Computers & Fluids, 105:66–75,
2014.

[129] Y.H. Tseng and J. H. Ferziger. A ghost-cell immersed boundary method for flow in
complex geometry. Journal of Computational Physics, 192(2):593–623, 2003.

[130] M. Uhlmann. An immersed boundary method with direct forcing for the simulation
of particulate flows. Journal of Computational Physics, 209(2):448–476, 2005.

[131] H. K. Versteeg and W. Malalasekera. An introduction to computational fluid dynamics:
the finite volume method. Harlow, 2007.

[132] Z. Wang, J. Fan, and K. Luo. Combined multi-direct forcing and immersed boundary
method for simulating flows with moving particles. International Journal of Multi-
phase Flow, 34(3):283–302, 2008.

[133] J. Wen, Y. He, and X. Zhao. Analysis of a new stabilized finite volume element method
based on multiscale enrichment for the Navier-Stokes problem. International Journal
of Numerical Methods for Heat & Fluid Flow, 26:2462–2485, 2016.

[134] J. Winck and S. Frerich. Numerical simulation of fluid flow and mixing dynamics
inside planetary roller extruders. International Polymer Processing, 36(5):508–518,
2021.

[135] J. Xu and Q. Zou. Analysis of linear and quadratic simplicial finite volume methods
for elliptic equations. Numerische Mathematik, 111(3):469–492, 2009.

[136] X. Ye. On the relation between finite volume and finite element methods applied to
the Stokes equations. Numerical Methods for Partial Differential Equations, 17:440 –
453, 2001.

[137] S. Zhang, X. Zhao, and S. Bayyuk. Generalized formulations for the Rhie–Chow in-
terpolation. Journal of Computational Physics, 258:880–914, 2014.


	Introduction
	Motivation and purpose of the research
	Research structure and state of the art

	Mathematical modelling of polymer mixing processes
	Governing equations
	Mass conservation
	Momentum balance
	Energy conservation
	Motion of a generalized Newtonian fluid

	Rheological characterization of polymer melts
	Rheometry
	Capillary Rheometer
	Isothermal Poiseuille flow in a cylindrical duct
	Rabinowitz analysis for the capillary rheometer
	Mooney analysis for cylindrical duct
	Final remarks


	Numerical discretization by the Diffuse Interface Box method
	Box method: a variational finite volume method
	Preliminaries
	Poisson problem
	Stokes problem

	The Diffuse Interface Box method
	Poisson problem
	Stokes problem
	Numerical assessment of the DIBM applied to the Stokes problem
	A roadmap to prove a priori error estimate for DIBM


	Extension to the Immersed Boundary method
	Preliminaries
	The weighted least-squares IBM (WLS-IBM)
	Time dependent IBM
	Extension to multiple IB surfaces
	Issues on anisotropic mesh
	Parallelization of IBM for large scale problems
	Numerical estimation of IBM accuracy
	Poisson problem
	Advection-diffusion problem
	Stokes problem for a Newtonian fluid
	Non-Newtonian Navier-Stokes problem
	A case of interest: incompressible non-Newtonian Navier-Stokeswith temperature-dependent viscosity


	Solution algorithms for simulation of polymer mixing
	Projection methods for isothermal incompressible flows
	SIMPLE algorithm
	PIMPLE algorithm

	The SIMPLE-IBM algorithm for isothermal incompressible flows
	Solution algorithms for energy coupled systems
	Robustness assessment

	POLIMIX code structure

	Application to industrial problems
	The Single Screw Extruder
	Dynamic local mesh refinement
	Results

	The Twin Screw Extruder
	Results

	The planetary roller extruder
	PRE kinematics
	Building a conforming grid
	Results


	Conclusions and perspectives
	Main outcomes
	Perspectives and future developments

	Review of the finite volume method on general polyhedral grids
	Preliminaries
	The finite volume method
	Finite volume formulation for advection-diffusion problems
	Convergence analysis


