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Abstract

Technical difficulties are currently being caused by the growing integration of erratic re-
newable energy sources into the world’s electricity systems. To support the expanding
adoption of renewable energy sources, stationary energy storage devices offer a practical
and affordable solution. The lifetime, efficiency, and financial returns of energy storage de-
vices provide significant technological and financial problems. Accurate techno-economic
modeling becomes essential in order to optimise the economics of projects, both in terms
of initial investment and future cash flows. sMAPPER (system-MAPPER), a compre-
hensive modeling framework with a focus on analyzing the technical and financial aspects
of energy storage technologies, is one of these tools, providing a variety of topologies and
system elements embedded in an energy storage application using a modular way based
on internal technology and economy database. sMAPPER allows for the parametric as-
sessment of the competitiveness of candidate design solutions, where the fitness of the
alternative configurations is based on a simulation of the system operation, according to
a library of dispatch logics that covers the most common applications targeted by the com-
pany (e.g., PV smoothing, Primary Frequency Reserve, etc.). This thesis demonstrates
sMAPPER’s capabilities and advantages by offering in-depth understanding of the models
and implementations.
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Abstract in lingua italiana

Oggigiorno, la crescente integrazione di fonti di energia rinnovabili irregolari nei sistemi
elettrici mondiali cause difficoltà tecniche. Per sostenere la crescente adozione delle fonti
di energia rinnovabile, i sistemi di accumulo di energia stazionaria offrono una soluzione
pratica e conveniente. La durata, l’efficienza e i rendimenti finanziari di tali dispositivi
pongono problemi tecnologici e finanziari significativi. Una modellazione tecno-economica
accurata diventa essenziale per ottimizzare l’economia dei progetti, sia in termini di inves-
timento iniziale che di flussi di cassa futuri. sMAPPER (system-MAPPER), un ambiente
di modellazione completo incentrato sull’analisi degli aspetti tecnici e finanziari delle tec-
nologie di accumulo dell’energia, è uno di questi strumenti, che fornisce una varietà di
topologie ed elementi di sistema incorporati in un’applicazione di utilizzando un approccio
modulare basato su un database interno di tecnologia ed economia. sMAPPER consente
la valutazione parametrica della competitività delle soluzioni progettuali candidate, dove
l’idoneità delle configurazioni alternative si basa su una simulazione del funzionamento
del sistema, secondo una libreria di logiche di dispacciamento che copre le applicazioni più
comuni a cui si rivolge l’azienda (ad esempio, smoothing fotovoltaico, riserva di frequenza
primaria, ecc.) Questa tesi dimostra le capacità e i vantaggi di sMAPPER offrendo una
comprensione approfondita dei modelli e delle implementazioni.

Parole chiave: BESS, ioni di litio, ottimizzazione, modellazione, dimensionamento, PV
smoothing
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1| Introduction

In previous decades, the introduction of more Renewable Energy Sources (RES ) capacity
to existing power networks served as the primary driver of the global energy transition.
This process was strongly aided by both the globally declining cost of wind and solar power
generation as well as by local legislation support, including subsidy schemes [1–3]. Fol-
lowing these initial achievements, the energy transition has now begun to encounter new
limitations and technological difficulties that necessitate alternative and frequently more
site-specific solution methods. Undoubtedly, one of the most effective ways to improve
the penetration of RES on a global and national level within the power system itself is to
connect the power grid to both electric transportation and heating. In addition, as the
supply becomes increasingly intermittent and depends more on intermittent sources like
solar and wind generation, grid-tied energy storage is discussed as a technically advanced
and potentially cost-competitive approach to manage volatility issues [4].

We can categorize front-the-meter (FTM ) and behind-the-meter (BTM ) applications for
storage integration in power grids [5]. Applications of FTM include wholesale energy arbi-
trage [6, 7], storage-assisted renewable energy time shift [8], and Frequency Containment
Reserve (FCR) provision [9]. In the context of BTM applications, such as Peak Shaving
(PS ) for industrial sites or at electric vehicle charging stations [10] or bill-saving at resi-
dential sites through Self-Consumption Increase (SCI ) with local photovoltaic generation
(residential battery storage) [11], a more distributed and locally coordinated power supply
is discussed. However, it is essential to examine and optimize the technical characteristics,
storage dispatch control, as well as cost/revenue streams throughout the course of the full
project lifetime before making a sound investment decision. It is common practice to sup-
port these essential steps in the design and operational phase of grid-integrated storage
projects by using simulation and modeling tools in conjunction with sensitivity analyses
and optimization processes.

Furthermore, a variety of ancillary services are already necessary for electricity infrastruc-
ture to run efficiently and dependably as shown in Figure 1.1. To assure supply quality
(such as maintaining consistent voltage and frequency), prevent damage to electrical ap-
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pliances, and sustain supply to all users, supply and demand must be balanced in real
time. All energy systems need some level of flexibility services to enable grid operators
to respond to sudden changes in demand or the loss of substantial amounts of supply
(e.g. large stations tripping offline, loss of an interconnection). Operators are equipped
to quickly restore system equilibrium thanks to flexibility.

Figure 1.1: Range of services that can be provided by electricity storage [12].

The economics of behind-the-meter storage options, particularly when combined with new
photovoltaic (PV ) installations, could make this application the biggest driver of battery
storage growth in terms of the services battery electricity storage systems could offer. The
economic prospects to offer power time-shift services to boost self-consumption or avoid
peak demand costs in the residential and commercial sectors are projected to have an
impact on the main use case for battery storage through 2030. Additionally, depending
on the situation, supplying renewable capacity firming at the utility scale would effectively
contribute as well.

Given its rapid reaction capabilities, frequency regulation is another industry where Bat-
tery Energy Storage System (BESS ) is anticipated to become more competitive as costs
decline. It is important to note that these are the main services offered by BESS sys-
tems. Specific systems will be able to "stack" the value of several services to collect bigger
income streams and enhance the economics of BESS projects thanks to their ability to
supply multiple grid services in some circumstances. This will be especially crucial in the
near to medium term as BESS projects compete in a difficult economy and costs continue
to drop. These forecast can be better seen in Figure 1.2, which presents forecasts to 2030



1| Introduction 3

about battery capacity and main use.

Figure 1.2: Battery electricity storage energy capacity growth in stationary applications
by main-use case, 2017-2030 [12].

To help with the aforementioned planning and operating requirements of storage sys-
tems, the internal sizing tool sMAPPER (system-MAPPER) was created. While other
tools could be used to partially satisfy the requirements set forth by NHOA, developing
a proprietary internal tool is a more logical choice given the desire to utilize the inter-
nal database and to fine-tune the algorithm in order to properly simulate the EMS that
would later be put into operation as closely as possible. The goal was to create a thorough
modeling framework with an emphasis on examining the technical and financial aspects of
the energy storage technology and to provide a variety of topologies and system compo-
nents embedded in an energy storage application in a modular manner. This is obtained
through the integration of user-defined inputs with pre-parameterized component build-
ing blocks, calculation methods, result analysis tools, and, more importantly, NHOA’s
internal technology and economic database. This master’s thesis presents the sMAPPER
methodology.

The results show how even the simpler approach, the Energetic one, yield excellent results
in line with the case study proposed within reasonable simulation timeframes. The eco-
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nomic analysis, while not being robust enough since the economic part of the case study is
confidential, gives an insight of the optimal solutions. Nevertheless, other results have to
be checked to ensure the compliance of the solutions, such as the number of violations per
year. The capability of sMAPPER to produce high-level analysis as well as minute per
minute simulation plots allow the user to asses every aspect of the project in an accurate
manner. Furthermore, the Engineered simulation produced even more realistic results,
providing an optimal solution very similar to the one built in the study case back in 2019.

Before the framework of sMAPPER is further developed, analogous current tools are
studied and appraised in Chapter 2. Here, many commercial and open source tools are
analysed and compared to sMAPPER in order to explain the decision of developing an
internal proprietary tool. Then, in Chapter 3 the methodology of sMAPPER is pre-
sented. It starts from a general description of the structure, and then develops all the
models regarding the battery and its peripherals. Furthermore, the economic section, the
simulation environment and the PV smoothing application are also described in detail.
After that, Chapter 4 presents a case study to demonstrate the potential of sMAPPER
in a real BESS built in 2019 along a PV power plant in Mexico. Lastly, and Chapter
5 closes with a summary of the tool and the results, along with a forecast for additional
developments of the tool.
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2.1. Similar tools

In a dedicated application scenario, several researchers have examined the sizing and
(economically) optimal functioning of a chosen storage system, such as the use of Redox
Flow Batteries (RFB) for industrial PS applications or the use of lithium-ion batteries
(LIB) for self-consumption increase (SCI ) [13, 14]. Other studies compare the suitability
of various storage choices for a certain use cases [15, 16]. In the past decade, there was
general agreement that the storage technologies that were available at the time do not offer
a single perfect candidate that can satisfy all application-specific needs [17]. Nowadays
the steeply-falling prices of all energy storage solutions, in particular Li-Ion technologies,
have shaped the market in such a way that many companies and research centers started
developing tools to assess their usage.

The following gives a brief overview of a number of methods that are illustrated for
the techno-economic modeling of stationary storage in grid applications. It should be
emphasized that while Table 2.1 outlines some of these tools’ key features, this study
does not purport to give a comprehensive overview of all tools that might be pertinent in
the context matter.

GridLab-D, a universal tool for modeling and evaluating multi-component power system
networks is called, was created and made available by the Pacific Northwest National Lab-
oratory (PNNL). Its strength is in its capacity to model all of the sub-components in the
modeling region by putting up and solving a number of differential equations that describe
the physical properties of distinct components. While the tool is undoubtedly effective at
simulating a complete microgrid with its varied grid states, it lacks detailed performance
models for energy storage systems and application-specific parameterization, making it in-
applicable for detailed techno-economic analysis and storage project optimization, which
is where this work is concentrated.

The tool Per-ModAC created at HTW Berlin can be used to do more customized simula-
tions [18]. Performance and efficiency modeling of PV-coupled residential battery storage
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Tool name License type Developer Target

SimSES BSD-3-clause TUM
Physically motivated energy storage component,

system and application behaviour

Homer PRO Commercial Homerenergy
Residential/Microgrid modeling - multiple

energy systems, multiple application scenarios

GridLab-D BSD open license PNNL
Multi-domain state modeling for power

distribution system simulation

SAM - System Advisor Model BSD-3-clause NREL
Modeling and analysis software for renewable

energy projects

StorageVET Open source EPRI
Optimization of size and financial evaluation

of energy storage

BLAST-BTM-Lite
Commercial freeware

(lite version)
NREL Analysis and modeling of battery degradation

sMAPPER Internal tool NHOA

Comprehensive modeling framework with a focus on

the technical and financial aspects, making

use of the internal database and developing

simulations according to EMS later put in operation

Table 2.1: Overview of technical and economic modeling tools for energy storage in sta-
tionary applications.

systems can be done using this open-source software program. Although the model lacks
the ability to examine battery degradation, it is incredibly strong at simulating perfor-
mance and efficiency for specific battery storage products. More crucially, the current
version of this open-source tool cannot be directly applied for cross-application assess-
ments, which is sought for an investor’s decision support, and is exclusively limited to a
particular residential BTM use case.

When it comes to comparing and optimizing the techno-economic performance of storage
systems in (micro-)grids, Homer Pro and Homer Grid are more flexible modeling
tools. The tools have been used in numerous scientific publications [19, 20] and support
a variety of storage-specific libraries and application-specific modeling capabilities, such
as storage-supported renewable energy time shift in island grids as well as peak-shaving
and solar-plus-storage calculations in the current professional versions. The software was
created by the National Renewable Energy Laboratory (NREL), but the license for these
tools is only available through Homerenergy as a commercial product, and it cannot
be modified or extended to meet the needs of individual users, particular application
scenarios, or regional regulatory frameworks. Applications like the provision of frequency
containment reserves and situations for arbitrage marketing, for instance, are not included
in the software tools’ current iteration.
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It is worthwhile to have a closer look at two other tools created by NREL and Sandia Na-
tional Laboratories (SNL): A robust software package called BLAST5 (Battery Lifetime
Analysis and Simulation Tool) is available for both mobile and stationary BTM appli-
cations. It was developed using MATLAB. In stationary BTM applications, BLAST-
BTM-robust Lite’s modeling capabilities for battery performance and lifetime calcu-
lations encompass both optimization and fundamental economic calculations. While it
is strongly advised that customers interested in PV self-consumption and PS application
have a closer look at this tool, the applications (only BTM ) are obviously constrained and
limited. Furthermore, the end-user is unable to modify settings, such as sample time for
peak shaving control, because the original code structure is concealed behind a graphical
user interface and a proprietary executable file.

The System Advisor Model (SAM ) tool, which is now offered by NREL, is built upon
a PV modeling framework that was initially established by SNL. In its current form,
it supports the integration of financial models, such as those used in Power Purchase
Agreement (PPA) computations, and permits the coupling of battery storage with PV
systems. What’s more, the user interface has been reworked and is now made available as
an open-source Python software development kit, enabling others to contribute with their
own modifications and improvements. Nevertheless, it does not support other applications
such as Primary Frequency Regulation (PFR).

There is documentation, instructional videos, and a user feedback forum available for
the StorageVET tool, which was primarily developed by the Electric Power Research
Institute (EPRI ). Since version 2.0 was made public, the tool has been made available
as a Python package, and the majority of its useful components are distributed under a
3-clause BSD open source license. The tools allow the user to run cost-benefit analyses
and include different application services like voltage support, retail demand charge re-
duction, frequency management, and even value stacking by combining numerous services
to be delivered by one storage system. Nevertheless, a fairly small number of solutions
are now available (PV /Internal Combustion Engine (ICE ) and Battery/Compressed Air
Energy Storage (CAES )), despite the fact that the interface to the generation and storage
technologies provides for a variety of possibilities.

SimSES combines the model accuracy of tools like SAM and Per-ModAC with an in-
terface to a variety of applications and energy market scenarios. Furthermore, it can be
coupled to grid models to enable Energy Storage Systems (ESS ) to respond directly to
states in a distribution grid, making it possible to perform both a power flow analysis and
a thorough simulation of an ESS simultaneously. SimSES distinguishes itself from pre-
viously listed tools, such as Homer Pro or SAM, by offering a variety of detailed energy
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storage systems, including validated and literature-based deterioration models. Addi-
tionally, a variety of predefined storage-specific Energy Management System (EMS ) are
created and paired with appropriate economic characteristics, such as auxiliary services
and energy trading, to allow end-users to test a system of choice for a chosen applica-
tion use case. The current code framework is also open source and available for future
contributions from other developers throughout the world.

While some of these tools could be used to meet part of the requirements by NHOA, the
decision to develop a internal proprietary tool is a more sensible choice. Indeed, the desire
to use the internal database, as well as to fine tune the algorithm to simulate as closely as
possible each different scenario was the thriving force behind this decision. The possibility
of developing this in-house tool allows the operation of the BESS to be tested even in the
sizing phase with the EMS that will then be implemented in reality, thus constituting an
enormous advantage in terms of real system operation. Thus, even if sMAPPER may
not hold the same level of technical accuracy as this other methods, it allows an incredible
flexibility and modularity that will hold up to the years go by. The capability to merge
the internal knowledge that is stored in the database to a simulation tool autonomously
is valuable as no other tools would easily make this possible. Furthermore, the implemen-
tation of different applications that are a priority for NHOA makes sMAPPER perfectly
suitable for many different project that are alike, reducing the engineering time spent on
developing simulations.

s
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sMAPPER structure consists of mainly two sections: the database reading and importing
part, executed in the Initialize.m script, and the simulation part, executed in the Master.m
code. The Initialize part, regarding the whole technology and economy database, will
mainly be discussed along with its design choices. Afterwards, the simulation environment
enclosed in the Master part, as well as the different applications are discussed.

3.1. sMAPPER structure

Concerning the structure of sMAPPER, it can be divided, as already described, in two
parts. The first one, called Initialize, is reported in Figure 3.1. The cylinders represent
the outputs of the script, that mainly come from the database. Indeed, the latter is the
source of almost all the data that sMAPPER will later utilize, except for the Design and
Configuration part that is user defined.

The Design script, which is structured in different sections, handles all the different user-
input parameters needed for sMAPPER to work properly. For instance, the architecture
AC or DC, the space of solutions to explore or the different values of efficiencies. This
file is to be accessed frequently to fine tune the simulation according to the use case.

On the other hand, the Configuration script contains the path to all the files in the
database, as well as their revision number. This is because as the database gets updated,
sMAPPER has to be told manually to work with the newer version. The automatic
process to retrieve the latest version was not implemented as newer file structure may
break the code, thus the need for a manual update to check the compliance.

The scripts regarding the technologies, as well as the economic parameters, are all under
different functions but grouped together in the databaseread.m function. Their develop-
ment took an important slice of the overall time as the different files do not have the
same structure, and even within the same components differences exists between different
manufacturers. Indeed, this part contains the main part about the model developed in
sMAPPER regarding the batteries, the PCS s, the containers, the Power Islands, and the
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economic inputs.

The input data is simply already saved in a .mat file, thus do not require particular
adaptation and can be read directly.

Lastly, all these data is copied in another output, called Version Data, that stores all the
information regarding the database in order to engrave the all the possible simulation
information on a file that will be saved along with the output. This allows to easily and
reliably trace back a simulation in completeness.

nological

Figure 3.1: sMAPPER Initialize part, comprising of mainly the database data gathering.

Then, the Master part, represented in Figure 3.2, comes in. Its main objective is to build
the environment for the simulation to run according to the models discussed in the next
sections.

Firstly, it imports all the database previously developed and adapted for Matlab. Then,
according to the simulation mode, the Power Island combinations are computed in the
powerislandcombination. If required by the user, also the input data analysis can be
performed prior to the simulation, to have a glance at the data sMAPPER will work
with.

Lastly, the simulation can run according to the service/application specified in the Design
script. If available, the Parallel Computing toolbox will split the various simulations
among the different cores of the machine. At the end of the simulations, an economic
analysis is performed showing the best solutions and, if required by the user, various more
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detailed plot regarding selected simulations. All the results, both the technical and the
economical, are logged in the machine, both in the complete version with year-by-year
data and in the averaged version.

Figure 3.2: sMAPPER Master part, comprising of the simulation and results analysis.

3.2. Battery model

In today’s market, the structure of a BESS is quite standardized: the smallest part is
the battery cell, which is grouped in series into modules that are stacked one on top
of each other in racks. The racks are then parallelized in variable number according to
the project needs. The whole electric system is then centralized in a DC panel. All
the battery-related parts are managed by various Battery Management Systems (BMS s)
and the whole container is protected by security systems such as the fire suppression
system. To ensure correct temperatures inside the container, an Heating Ventilation and
Air Conditioning (HVAC ) is always equipped with the BESS and is part of what are
called auxiliaries. Furthermore, in some configurations, a Power Converter System (PCS )
is included at the expenses of some battery racks, rendering the system a self-contained
unit capable of absorbing or injecting AC power without any other external unit and
thus making the whole system exceptionally modular. Figure 3.3 shows an example of a
container with its main parts highlighted.
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Figure 3.3: Example of Battery Energy Storage System (BESS ) architecture [21].

3.2.1. Chemistry

As already discussed briefly in the introduction, the principal technology employed in
today’s energy storage panorama is the lithium ion battery. NHOA mainly works with
Lithium Iron Phosphate (LiFePO4 or LFP) and Lithium Nickel Manganese Cobalt Oxide
Cathode (NMC ) batteries.

NMC is frequently recognised for its high energy density, which affects the cost and design
of the enclosure. The cost of the enclosure (structure, cooling, safety, electrical Balance
Of System (BOS ) components, etc.), which varies depending on the battery, is roughly
1.2–1.5 times higher with LFP than NMC [22]. Because LFP is a more stable chemical,
its thermal runaway (or fire) temperature threshold is higher than NMC ’s. But LFP and
NMC also share a lot of similarities: the round-trip efficiencies are comparable, as well
as the usual battery performance detriments like temperature and C-rate.

In addition to the technical variations resulting from variations in cell chemistry, there are
additionally variations in operational circumstances, pricing, other commercial terms, ap-
proach to payment terms, and more. Some of them stem from the fact that the companies’
histories and developmental stages differ rather than the actual differences in technology.
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Commercially, the initial capex cost of LFP batteries is frequently less expensive than
that of NMC. LFP typically costs 20–30% less per kWh, but the total cost of Beginning Of
Life (BOL) system integration is typically only 5–15% less [22]. Comparing capex based
on End Of Life (EOL) is more difficult, as it needs to be evaluated on the basis of each
product’s cycling and calendar performance, warranty and guarantee, ease of expansion,
etc.

Operationally, it is preferable to use LFP because its operational requirements are more
flexible as they allow for a wider temperature range than NMC and don’t require reefer
containers for shipping. Additionally, while NMC requires the power battery, a different
battery from 2H or 4H use batteries, to support 1C rate (1 hour) application, LFP battery
products typically support up to 1C operation. In the initial six months, LFP batteries
deteriorate much more quickly. Due to the possibility that the first shipped batteries
could have degraded to, for example, 98% or 96% of SOH by the time the last batches are
commissioned, this can cause confusion and problems if the projects are large and need
to be delivered/commissioned over a few months.

Batteries and other important parts are chosen based on factors like the company, price,
other commercials, product fit, project management, supply consistency, and services.
Pricing obviously has a lot of significance, but because warranty and supply reliability
have recently become more crucial, it is crucial to take product integration fit and safety
very seriously

Given this, the two types of batteries will be treated in the same manner from a
technological point of view, as their minor differences will inherently arise from database
without the need to develop different models.

3.2.2. Overall model

The main information regarding each battery model is stored in the database which is
kept up-to-date as battery specifics may change, along with the addition of new models.
In Tables 3.1 and 3.2 it is shown an example of available information with figurative
numbers and names.

Table 3.1 shows the main characteristics, starting from the single cell, moving to the
module and up to the whole rack. The main information read by sMAPPER regards the
Rack design energy [kWh] (which is multiplied by the number of racks per container
according to the specific case), as well as the Max continuous CP-rate. Table 3.2
reports instead part of the data available about the detailed behaviour of the battery in
different operational conditions and degradation states. Among the various tables, the
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Battery Information
Manufacturer Manufacturer #1 Manufacturer #2
Tag Model1 Model4Info
Description Model #1 Model #4
Cell model ABC123 DEF456
Nominal capacity [Ah] 100.00 300.00
Nominal voltage [V] 3.60 3.20
Nominal energy [Wh] 400.00 900.00
Min voltage [V] 3.00 2.50

Cell

Max voltage [V] 4.10 3.65
Module model XYZ123 ZWT657
Cells in parallel 2 1
Cells in series 16 52
Module design energy [kWh] 10.00 50.00
Module nominal voltage [V] 60.00 170.00
Module min voltage [V] 50.00 150.00

Module

Module max voltage [V] 65.00 190.00
Rack model HWK874 BND534
Modules in series 22 8
Rack design energy [kWh] 300.00 400.00
Rack nominal voltage [V] 1280.00 1330.00
Rack min voltage [V] 1100.00 1170.00
Rack max voltage [V] 1450.00 1500.00
Max continuous power [kW] 130.00 190.00
Max continuous CP-rate 0.45 0.50
Max peak power [kW] 130.00 190.00

Rack

Max peak CP-rate 0.45 0.50
Bank Max number of racks in parallel 150 30

Table 3.1: Example of main characteristic
in battery database.

CP-rateDOD 0.00 0.25 0.50
Charging method CP 97.5% 97.5% 96.0%

C-rateDC RTE with CP/CP cycle 0.05 0.20 0.50
100% 97.9% 96.1% 94.4%
95% 97.8% 95.9% 94.1%
90% 97.6% 95.6% 93.7%
85% 97.5% 95.4% 93.4%
80% 97.4% 95.2% 93.1%
75% 97.3% 95.0% 92.8%
70% 97.1% 94.7% 92.4%
65% 97.0% 94.5% 92.1%

SOH

60% 96.9% 94.3% 91.8%

SOC_max (Charge)
SOH

CP-rate 100% 90% 80% 70%
0.00 100.00% 100.00% 100.00% 100.00%
0.05 100.00% 100.00% 100.00% 100.00%
0.10 99.00% 98.80% 98.50% 98.30%
0.20 97.60% 97.10% 96.70% 96.20%
0.30 96.20% 95.40% 94.60% 93.80%
0.40 95.40% 94.40% 93.40% 92.40%
0.45 95.10% 93.90% 92.80% 91.70%

Table 3.2: Example of battery datasheet
characteristics regarding DOD, RTE and
SOCmax.

main ones regard the SOCmax and SOCmin, in addition to the Round Trip Efficiency
(RTE ). These data is all function of the CP and SOH such that

SOCmin = f ∗(CP, SOH)

SOCmax = g∗(CP, SOH)

† : DOD = h∗(CP, SOH), SOCmax = 1 + DOD
2

, SOCmin = 1− DOD
2

RTE = l∗(CP, SOH)

where * indicates a function of a 2 variables lookup table. When the SOCmax and SOCmin

are not directly available (†), the DOD is used in its place and they are derived from the
latter assuming a symmetrical distribution.

The battery internal efficiency, where internal indicates before any power converter and
thus related mainly to the internal resistance, is represented as ηinternal =

√
RTE as the

RTE itself represents the energy efficiency of a full charge and discharge cycle.

Other information, such as rack heat dissipation, are taken into account but not imple-
mented yet, allowing to add in the future a comprehensive thermal analysis if the data
available in the future will allow so.
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Power and energy

Due to sMAPPER being a high-level simulation environment, the approach to modelling
the power and energy flows is based only on the active power method. This technique
allows to avoid computing all the voltages and current, as well as waveforms and power
factors. While such approach does not allow to evaluate in detail the battery usage and
voltage curves, it greatly simplifies the computational burden as well as reducing the
layers of complexity of the whole simulation framework.

In fact, taking into account the voltages and currents would require in-depth knowledge of
the working principles of each single inverter model, together with developing an electrical
schematic of the whole system. Furthermore, other problems would arise due to lack of
detailed physical properties of the system, such as the internal resistance of each single
battery cell which also varies due to ageing.

Active and reactive powers could be implemented in the model, but as the reactive power
by definition does not play a role in the energy depleted or absorbed by the battery, it
would only be of matter when sizing the electrical components. Nonetheless, this task is
already being done in the database during the design and sizing process of the different
containers types since both the PCS and the HVAC, along with the whole BESS, are
rated in MVA instead of MW.

Nevertheless, the voltage and current limits are ensured to be respected as the code
implements boundaries regarding the maximum allowable CP depending on the current
SOC and SOH. Furthermore, the battery is never allowed to exceed the prescribed SOC
limits given by both the use case (where the user can impose a certain DOD) and the
database.

Thermal model

All of the aforementioned storage processes’ performance, efficiency, and ageing are sen-
sitive to thermal conditions. Utility-scale LIB stationary ESS are free-standing, outdoor
installations that are exposed to the elements. The industry standard today for protect-
ing delicate electrical components from unfavourable environmental conditions is to install
entire energy storage systems inside standard shipping containers. Modularity, scalability,
ease of logistics, compliance with road-transport regulations, and the capacity to plan and
optimise land use are all advantages of such a configuration. These containers are also
specially equipped with insulation to prevent heat transfer to or from the environment
and to maintain a consistent operating temperature for the internal components. Due to
the internal resistance to current flow during operation, LIBs produce heat. Technology
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based on lithium-ion batteries is particularly susceptible to unfavourable changes in cell
temperature and deteriorates more quickly when used outside of their ideal temperature
ranges.

Nevertheless, despite the importance of a thermal model, a realistic implementation of it
would pose a considerable challenge. The aspects to take into considerations are many:

• Ambient temperature: this could either be available as a constant user-specified
temperature model, that would introduce a great simplification, or a location-specific
model. The latter would indeed require integrating external tools, such as Greenius
developed by the German Aerospace Center (DLR) [23], and thus more developing
time.

• Irradiance: despite the ambient temperature being the main parameters, in many
locations the irradiance plays a non-negligible part. Taking into account this aspect
would both require, as for the ambient temperature, integrating external tools, as
well as knowing the absorbivity, reflectivity and geometric features of the containers.

• Ambient wind, natural convection and rain conditions: the containers are
installed in the open environment and as such, they experience all kinds of differ-
ent weathers. The difference in natural convection in different ambient condition
influence greatly the thermal dissipation.

• Products transmittance: this parameter is key in understanding the natural
heat dissipation process. This value, non-standardized, requires a relative database
linked to NHOA’s products which is not currently available for sMAPPER.

• Thermal bridges, latent heat: this aspects, while being minor, add up in the
whole thermal model and increase the complexity.

While all of these problems could be assessed, a proper thermal model would indeed
require a lot of effort while not providing substantial difference to the high-level analysis
that sMAPPER provides. For this model to be robust and durable over time for NHOA’s
sake, all the relative data would need to be available as a database kept updated as the
technologies and manufactures change. Nevertheless, this possibility is open for future
improvements of this tool.

Therefore, the thermal dissipation is entirely dealt through the HVAC system.
Its maximum auxiliary consumption per container is documented in the database, and
it includes the thermal dissipation given by the batteries as well as the PCS and other
various electrical components. A more detailed description is provided in the relative
subsection further below.
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3.2.3. Self-discharge

Typically, lithium-ion battery cells have excellent charge retention, allowing them to cycle
with nearly 100% round-trip coulombic efficiency. This results in a very low self-discharge
rate (C/50,000 or less), making it challenging and time-consuming to measure precisely.
Furthermore, it is additionally influenced by temperature, past cycling history, duration,
and state of charge. In particular, the key variables are the starting SOC and the temper-
ature, the latter doubling the self-discharge rate every 10°C [24]. Moreover, the process of
self-discharging has not to be mistaken for the capacity fade (battery ageing) as the effect
on the battery is the similar over long resting periods. To add complexity, it is difficult to
generalise results because different chemistries and manufacturers exist. Figure 3.4 shows
some examples of how the self-discharge rate varies with different storage temperatures,
while also depending on the resting period length.

(a) HAL Open Science [25]. (b) SANYO [26].

Figure 3.4: Examples of self-discharge rate behaviour from different sources.

Due to this, various methods have been implemented to quantify the self-discharge rate
of lithium-ion battery cells [25, 27, 28]. Regardless of the procedure followed, there is
agreement on the influence of the above-cited key variables but not on the results ob-
tained. Different periods of publications show different state-of-art knowledge of lithium-
ion batteries, which is why results vary widely within different year other than within
different manufacturers/researchers. Some of the few sources that address directly the
self-discharge problem in lithium-ion batteries are reported in Table 3.3. The main thing
that can be taken out from the latter is how much the values differ, even from sources
from the same period. This is also because the typical self-discharge rate is not constant,
but rather a monotonically decreasing function that diminishes with lower voltages (lower
SOC ).
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Source
Self-discharge

[%/month]
Conditions Notes

Sanyo 3% 100%SOC , 20°C From 2006 [26]

Quest Battery 0.3% Not specified From 2010 [29]

Battery University 5% in 24h, then 1-2% Not specified From 2021 [24]

IEEE Conference 0.5 - 2.5% 65%SOC , 60°C From 2016 [25], extrapolated from chart

Storing Energy 3% Not specified From 2016 [30]

Keysight 0.5 - 1% Not specified From 2021 [31]

DNK 5 - 10% Not specified From 2018 [32]

Table 3.3: Overview of different self-discharge rates according to various sources.

This means that, in the most sensible form, the self discharge rate is a 2-variable function
such that %self−discharge = f(SOC, T ) for a single battery chemistry or, more precisely,
single battery model.

Moreover, an analysis was done on the impact of the different constant self-discharge rates
at different cycles per year. The left y-axis in Figure 3.5 shows the relative number of
cycles in the case with the self-discharge included to the simulation with respect to the
simplified case with no self-discharge. The study was performed in MATLAB developing
a one year sample loop with a 1-minute timestep, implementing a basic SOC restoring
method and charging/discharging the battery with pseudo-random values (negative offset
plus a seeded random value). The sensitive analysis on the different self-discharge rates
and cycles per year was done with the same random values, to ensure consistency in
the different runs. The results shows how, intuitively, the self-discharge influence (that
is, the cycles per year relative to the simplified case) increases as the self-discharge rate
increases. The band of results around the y-value of 1, present up to self-discharge rates
of ∼ 5%SOC/month at down to 60 cycles per year, represents simulations with outcomes
approximable to the simplified case. Typically, to properly make use of batteries, the
number of cycles per year is higher than 90, making even higher values of self-discharge
rates less impactful. Additionally, according to the previous Table 3.3, the most typical
self-discharge rates already all fall inside the aforementioned band, meaning that the
influence is negligible in most real-world cases.

Furthermore, the approach used on sMAPPER to rely as much as possible on NHOA’s
databases would fail here as not even manufacturers provide detailed information on this
matter.

Despite this, it was chosen to add the possibility to take into account the self-discharge
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Figure 3.5: Self-discharge influence at different battery cycles per year and different dis-
charge rates.

behaviour in sMAPPER through an user input value. This value is set to 0 by default due
to the aforementioned reasons, but can be adjusted accordingly if the case study requires
so.

3.2.4. Battery degradation

Literature review

Due to usage and exposure to the environment, lithium ion cells deteriorate [33–36]. The
cells’ capacity to store energy, meet energy needs, and ultimately survive is compromised
by this degradation. Any system using Li-ion cells as its power source needs to be aware
of how much energy the battery can store and how much power it can deliver at any given
time. In order to estimate and predict current and future energy storage capacity and
power capability, methods and models that make use of the measurements and parameters
that are currently available are needed. This is because it is difficult to infer the rates of
capacity and power fade from operational data in a practical system. Numerous physical
and chemical processes that have an impact on the electrodes, electrolyte, separator, and
current collectors of Li-ion batteries can lead to cell degradation [37–41]. Figures 3.6a
and 3.6b shows the main mechanisms at work during the cell degradation.

Theoretical models and empirical models can both be used to predict battery degradation.
Studies on theoretical degradation [43–48] typically concentrate only on the most preva-
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(a) Degradation mechanisms. (b) Cause and effect of degradation mechanisms
and associated degradation modes.

Figure 3.6: Degradation process in Li-ion cells [42].

lent mechanisms, such as the formation and growth of the Solid Electrolyte Interphase
(SEI ) [49, 50] or electronic contact loss through particle cracking [51, 52] due to the vari-
ety of causes, rates, and interdependencies of these degradation mechanisms. However, at
the planning stage, there is no information available regarding the specific cell conditions;
one can only predict the BESS ’s operating pattern. There are still not enough theoretical
studies connecting operation-level observations to the molecular-level degradation pro-
cesses [53, 54]. Therefore, it is challenging to establish a direct connection between the
charging and discharging patterns and the molecular-level activities taking place within
the battery cells.

Storage planning and operations studies can more easily be incorporated with empirical
models [55–59]. Each of these empirical degradation models is designed for a particular
BESS application where the BESS operating region is constrained and an accurate model
based on a few degradation experiments is possible. Experimental data that they are based
on have limitations for empirical models. Therefore, a model created for one application
scenario may not be applicable to another. For instance, empirical battery degradation
models for EV frequently presumptively use a consistent daily charging schedule. The
performance of a battery used for frequency regulation, where the BESS follows a stochas-
tic charging and discharging signal, is unlikely to be predicted by a model of this kind.
For each new application, battery ageing experiments must be carried out in order to
obtain an accurate empirical model of battery degradation. Such tests would need to be
conducted beforehand using pricey test facilities and would take months or even years.

Some paper [60] suggests a semi-empirical battery capacity degradation model designed for
off-line battery life assessments to circumvent these issues, combining theoretical analyses
with experimental observations to produce a model that is applicable to other operating
conditions. Nevertheless, all these approaches come short when it comes to differentiate



3| Simulation Framework 21

ageing between different battery models of the same chemistry and/or manufacturers.

sMAPPER database

As shown in Figure 3.7a obtained from NHOA’s database, the State of Health (SOH )
over the years varies widely within the same battery manufacturers even when the bat-
tery chemistry is the same. Needless to say, this is a result of many factors, mainly being
the various operational conditions. In Figure 3.7b and 3.7c it is shown, for two different
manufacturers, two different models of batteries and their relative ageing according to
different study cases. For each one of them, the manufacturers provide simulation data
according to the required specifics and operational condition. It has to be noted that
the information obtained from the manufacturers does not represent real-world ageing
data, but rather simulation results from proprietary internal tools. As such, it is not
always possible to extrapolate correlations between the input variables and the output
(SOH ). Furthermore, the available data does not cover any possible operational condi-
tions that sMAPPER may encounter as it relies on data from past projects with specific
requirements.
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(a) Comparison between different manufacturers and battery models (average across all different operating
conditions).

(b) Manufacturer #1, two battery models,
various operating conditions.

(c) Manufacturer #2, two battery models,
various operating conditions.

Figure 3.7: Different battery degradation data from various operating conditions, taken
from two different manufacturers.

Table 3.4 reports an example of NHOA’s battery ageing database for a particular battery
model. The data has been modified to protect NHOA’s internal database while keep-
ing a similar trend to preserve the input-output correlation. As input data, the main
parameters at play are Cycles [#/year] (or better yet, the Eq. Cycles [#/year]),
Charging C-rate, Discharging C-rate, and Depth Of Discharge (DOD). Yet,
other parameters come into play in the evaluation of a battery degradation, such as Cen-
ter SOC, restSOC, and restTime. Indeed, looking closely at Table 3.4, it is clear
how, even while maintaining constant the above mentioned main parameters, the SOH
varies widely. Taking as an example Simulation 1 and Simulation 2, the only differ-
ence between these two cases is the restSOC which varies from 20% to 80%. Yet, the
SOH difference just in the first year varies from −3.00% to −5.10%, and reaching a final
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value of respectively 60.80% and 50.40%. Clearly, the influence of the restSOC is not
negligible according to the simulations, but yet finds difficult real-world applications due
to the complexity in simulating and taking into account such aspect. The same reasoning
applies for the Center SOC and the restTime.

INPUT DATA
Battery data Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 Simulation 6 Simulation 7 Simulation 8 Simulation 9 Simulation 10
Project Project #1 Project #1 Project #1 Project #1 Project #1 Project #1 Project #1 Project #2 Project #2 Project #2
Year 2018-12 2018-12 2018-12 2018-12 2018-12 2018-12 2018-12 2021-05 2021-05 2021-05
Battery model Model #1 Model #1 Model #1 Model #1 Model #1 Model #1 Model #1 Model #1 Model #1 Model #1
Cycles [#/year] 1500 1500 1500 1500 1000 1000 300 1000 300 1000
Charging C-rate 0.300 0.300 0.300 0.300 0.300 0.300 0.350 0.350 0.800 0.800
Discharging C-rate 0.350 0.350 0.350 0.350 0.350 0.350 0.550 0.550 1.000 1.000
DoD 50.0% 50.0% 50.0% 50.0% 75.0% 80.0% 90.0% 25.0% 90.0% 25.0%
Eq. Cycles [#/year] 750.00 750.00 750.00 750.00 750.00 800.00 270.00 250.00 270.00 250.00
Center SOC 50.0% 50.0% 75.0% 75.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%
restSOC 20.0% 80.0% 20.0% 80.0% 20.0% 80.0% 60.0% 60.0% 60.0% 60.0%
restTime 11.00 11.00 11.00 11.00 11.00 11.00 22.00 22.00 22.00 22.00
Temperature [°C] 23 23 23 23 23 23 23 23 23 23
State of Health (SOH)

Year Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 Simulation 6 Simulation 7 Simulation 8 Simulation 9 Simulation 10
0 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
1 97.00% 94.90% 94.20% 92.00% 96.60% 94.30% 97.70% 98.10% 97.30% 98.10%
2 92.60% 88.50% 88.80% 84.50% 90.70% 86.50% 93.60% 95.40% 93.70% 95.40%
3 88.20% 82.90% 84.00% 78.70% 85.60% 80.20% 90.00% 93.20% 90.20% 93.30%
4 84.30% 77.80% 79.20% 72.60% 80.50% 74.00% 86.70% 90.50% 87.20% 91.60%
5 80.50% 72.80% 74.60% 66.90% 75.50% 67.70% 84.10% 88.00% 84.50% 90.00%
6 76.40% 67.80% 70.30% 61.70% 70.50% 62.00% 81.70% 85.80% 81.80% 88.00%
7 72.30% 63.30% 65.90% 56.90% 65.60% 56.40% 79.40% 83.80% 79.50% 86.10%
8 68.30% 58.70% 61.80% 52.20% 60.90% 51.30% 77.10% 82.00% 77.30% 84.40%
9 64.60% 54.50% 57.90% 47.80% 56.40% 46.50% 75.20% 80.20% 75.20% 82.80%
10 60.80% 50.40% 54.10% 43.70% 52.30% 41.80% 73.30% 78.50% 73.10% 81.40%

Table 3.4: NHOA battery ageing database.

Due to the above mentioned reasons and the general approach of sMAPPER, the param-
eters taken into account for the battery ageing mechanism in the multi-year simulations
are:

• DOD: computed as DOD = SOCmax − SOCmin, where SOCmax and SOCmin are
respectively the maximum and minimun values of SOC during the current year

• C-rate: computed as the aggregated average C-rate in charging and discharging,
only accounting for values of |PBESS| > 0, such that

Crate =
PBESS

Enominal0

, PBESS = avg(|PBESSnon−zero|)

where PBESSnon−zero represents the non-zero values of power as the C-rate is deter-
mined based only on the working time of the battery. The nominal capacity for the
C-rate is referred to the installed capacity as the power rating of the BESS does
not decay with ageing.

• Eq. Cycles: computed as the throughput divided by the nominal battery capacity,
such that

Cycles =

∫
|PBESS| dt
2Enominal
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where the factor 2 at the denominator accounts for the fact that a full cycle requires
a complete charge-discharge. The nominal capacity for the cycles is referred to the
actual capacity including the ageing.

SOH measurement process

There is no agreed-upon method in the industry for determining SOH because the battery
capacity does not correspond to a specific physical quality. Therefore, the latter is here
defined according to the Constant Power - Constant Power (CP-CP) method. This
technique requires the battery to undergo a complete charge-discharge cycle while always
complying with the CP constraint, meaning that the procedure would keep going only
as long as the BESS could hold up to the nominal power. The cycle starts with the
battery empty, and charges it till the battery voltage limits kick in and limit the current
(and thus the power). Then, after some delay, the discharge process begins, until the
lower voltage limits halt it. In Figure 3.8 the CP-CP method is compared with more
common the Constant Power - Constant Voltage - Constant Power (CP-CV-CP). The
latter, shown in dotted lines in the chart, lets the power in charge and discharge to fall
below the nominal one, enabling the battery to fully charge/discharge, effectively allowing
more throughput. This clearly results in an higher capacity as during the charge process
the SOC reaches almost 100% while in CP-CP it was stopped preemptively. Moreover,
during the discharge process the SOC also reaches lower values, close to 0. Finally, to
evaluate the effective capacity of the system, the integral of the measured power during
the discharge is computed as it represent the case with the lower capacity compared to
the charge process. The values next to the arrows inside Figure 3.8 show the values of
cumulative energy of the whole CP-CP procedure, and their difference represents the
effective capacity of the system.
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Figure 3.8: CP-CP method compared to the CP-CV-CP.

This technique is employed in the year-zero test, during the commissioning phase, along
with the yearly test to periodically check the compliance with the project requirements
and forecasted ageing. Figure 3.8 represents a real-world yearly test performed by NHOA
on a 14 months old BESS, with the values normalized to match a maximum power of
1MW .

Then, according to the proposed CP-CP method, the SOH is defined simply as

SOH =
Ccurrent

Cinstalled

where C denotes the capacity in energy measured via the CP-CP process.

Validating ageing estimation

To evaluate NHOA’s battery ageing database, a validating process has been performed by
analysing the data from fully-operational BESS s commissioned years prior to this thesis.
The information is gathered through the use of a Battery Management System (BMS ),
an electronic system that, among many other features, monitors the state and reports the
data of the battery pack(s). In particular, any of the aforementioned factors (individually
or in combination) may be used by the designer of the BMS to determine the SOH,
defining arbitrary weights for each of them:

• Internal impedance
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• Capacity

• Voltage

• Self-discharge

• Number of charge–discharge cycles

• Age of the battery

• Temperature of battery during its previous uses

Nevertheless, as the definition of how the SOH is evaluated is generally a trade secret, it is
not possible to extrapolate comprehensive formulas/correlations. Furthermore, manufac-
turers are still improving and detailing the best method for calculating the SOH during
plant operation, so the results obtained are not completely reliable.

In Figure 3.9 it is reported the SOH data continuously collected by the BMS of two dif-
ferent BESS s over their lifetime. Apart from some outliers in Project #1, comparing the
degradation of the two different systems it is clear how the SOH behaviour is quite ficti-
tious as it is highly unrealistic a stair behaviour like the one shown. Indeed, it is a result
of the above-mentioned estimation process performed by the BMS in the background.

Figure 3.9: SOH data gathered by the BMS from two different projects.

Therefore, validating the ageing database based on the BMS data is not feasible for the
above-mentioned reason. Even so, the lack of access to diversified projects and the short
operational life would have made the validation valid only for a couple of battery models
and for a couple of years, and could not be extended to the whole database.
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Luckily, the yearly test data from one project was recently available and allowed a reli-
able validation of a single battery model ageing database after more than one year from
the commissioning, proving how manufacturers degradation curves provided for different
operational conditions seem trustworthy. The exact results can not be reported, but the
relative lost usable energy at the end of the first year was very close to the guaranteed
value by the manufacturer.

The data, obtained with specialized tools and cross-validated between different mea-
surement equipment, allow for very thorough analysis of the BESS performances. The
downside is that the system has to cease operation for a full working day and request
charge/discharge profiles from the grid, as well as requiring specialized personnel to per-
form the test. Thus, these tests are performed only on a yearly basis to ensure that the
project minimum capacity warranties are fulfilled while minimizing the downtime.

sMAPPER approach

As a result of all of this, the available solutions were mainly two:

• Literature approach: using an electro-chemical based method and exploiting pub-
licly accessible correlations and parameters.

• Database approach: take advantage of the existing NHOA’s battery ageing database.

While the literature approach would ensure a deeper understanding (and maybe accuracy)
of the ageing mechanism, the act of choosing one of the many theoretical and/or empirical
methods would require further studies and analysis, as well as needing to keep it up-to-
date as NHOA’s battery chemistries and manufacturers may change in the years.

On the other hand, the database approach allows sMAPPER to work flawlessly in the
future as it is already used and maintained up-to-date by other sectors in the company.
Furthermore, as proved by the validation test, the database, which is made up of man-
ufacturers’ ageing curves, is reliable and represents the most empirical way to estimate
batteries’ degradation.

Thus, as the general approach of sMAPPER is to model everything to be as close to
reality as possible while making use of the internal knowledge and information, the
database approach is implemented. Nevertheless, this poses the challenge of how to
interpolate/extrapolate the degradation data from many curves, if the space of all the
operational conditions is rather sparse given the variables making up the ageing estima-
tion are DOD, C-rate and Eq. Cycles, as well as the current SOH (or alternatively the
current year). Figure 3.10a represents how different different battery models even from
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the same manufacturer may have different data sizes, while two examples are reported in
Figure 3.10b and Figure 3.10c that respectively show a sparse and dense database.

(a) Comparison between sparse and dense space. Each point represents an available simulation with ageing
data in the database.

(b) Sparse data example. The eq. cycles
variable has been left out for drawing reasons.

(c) Dense data example. The eq. cycles variable has
been left out for drawing reasons

Figure 3.10: Example of different data densities in the ageing database, showing how
non-homogeneous knowledge can lead to sparse and ineffective information.

The techniques available to estimate the ageing according to the operational condition in
sMAPPER are two:

• Complete: create by interpolation and extrapolation a complete 4-dimensional
map containing values of SOH degradation per year (SOHt − SOHt−1) as function
of the main parameters plus the current year. This approach, which was difficult
to implement, yielded terrible results as the data is not spread homogeneously, and
thus the wide gaps in the 4D lookup table were filled with linear interpolation data.
Furthermore, this method wrongfully assumes each of the parameters is weighted
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equally in importance.

• Simplified: the data from the database is kept in the original shape, being just
averaged with respect to the non-main parameters, namely center SOC, restSOC,
and restTime. Then, during the run, the degradation is accounted taking the curve
of the current year from the database with the closest values of the operational pa-
rameters. This method is based on the minimum square distance of the normalized
difference. This technique induces errors, but on the same level as the complete
method while avoiding all the complexity.

After testing both methods and noticing that the complete yielded poor results compared
to the overhead required, the simplified approach was implemented. The SOH, and
therefore the battery capacity, is updated at the end of each year according to the given
operational conditions.

3.3. System periphery

The whole BESS relies on many auxiliaries and periphery components to work properly
and reliably. All of them are modeled based on the database’s information. Hereafter, all
of them will be discussed in detail in their relative section.

3.3.1. PCS

The Power Conversion System (PCS ) is a multi-functional inverter/converter device that
offers bidirectional power conversions (AC↔DC ) for electrical energy storage. This com-
ponent is present in every system and can either be installed inside the container itself,
along with their batteries in another section, or be in a separate container/cabinet outside
to provide more modularity. In Figure 3.11 it is shown an example of architecture where
the PCS is enclosed by a separate unit.
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(a)

Figure 3.11: Example of BESS with external PCS [61].

NHOA makes use of different PCS models. For all of them, a dedicated database is
available with information about the main parameters rated on both AC and DC side,
along with its stand-by and auxiliary consumption. The latter is taken into account
indirectly through the auxiliary consumption of the product, which comprises also the
PCS. Furthermore, lookup tables are available for the charge and discharge efficiency
operation of the converter as a function of both the DC voltage and the load. Figure
3.12 shows how the main parameter influencing the efficiency is the load, while the DC
voltage has little to no impact on the output.

Figure 3.12: PCS efficiency as function of load and DC voltage.

Thus, the 2D lookup table is averaged over the different voltage levels such that the
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efficiency can be expressed as

ηPCS = f(α)

where α represents the PCS load in terms of kV A
kV Anominal

, which due to the previous as-
sumptions, becomes kW

kWnominal
.

3.3.2. Container

As already stated above, utility-scale LIB stationary ESS are free-standing, outdoor
installations that are exposed to the elements. The industry standard today for pro-
tecting delicate electrical components from unfavourable environmental conditions is to
install entire energy storage systems inside standard 20-foot or 40-foot shipping contain-
ers. Modularity, scalability, ease of logistics, compliance with road-transport regulations,
and the capacity to plan and optimise land use are all advantages of such a configuration.
Information from the database is available for the different container models, and Table
3.5 reports an example with figurative numbers and names.

Main parameters
Container type Energy Hybrid
Tag Model1 Model2Info
Application Energy-intensive Power-intensive
Compatible PCS - PCS #2Power room Max number of PCS 0 2
Compatible battery module Manufacturer #1 Manufacturer #1
Max number of banks 2 2
Modules per string 8 15
Max number of strings per bank 12 10
Number of strings 10 -

Battery room

Number of banks 2 -
Total maximum auxiliary consumption 65.00 60.00 kVA
Maximum consumption per bank 2.2 - kVAAuxiliaries
Maximum consumption per rack 3.2 - kVA

Table 3.5: Example of two container models in the database.

As stated before, the thermal dissipation is entirely dealt through the HVAC system.
Its maximum auxiliary consumption per container is documented in the database, and
it includes the thermal dissipation given by the batteries as well as the PCS and other
various electrical components. The maximum consumption is related to the maximum
load of the whole system and occurs when the batteries work at maximum CP. When
the batteries are idle though, the consumption is not supposed to be null. Thus, the
auxiliary load consumption follows a quadratic function, where the base load is dictated
by an user-input percentage of the maximum load. The quadratic relation is implemented



32 3| Simulation Framework

based on the quadratic correlation between the current (power, and thus load) and the
losses following Ohm’s law. The function can then be written as

Pauxiliaries(α) = Pauxiliaries,stand−by + (Pauxiliaries,maximum − Pauxiliaries,stand−by) ∗ α2

Pauxiliaries,stand−by = β ∗ Pauxiliaries,maximum

where α represents BESS ’s load in terms of PBESS

PBESS,installed
, while β indicates the base load

percentage with respect to the maximum one. The latter has a default value of 5% which
is the average value according to multiple real-case scenario, but it can be changed if the
study case requires so.

Indeed, the main parameters are the Total maximum auxiliary consumption and
the Max number of modules. The latter is obtained multiplying the max number of
banks by the modules per string and by the max number of string per bank. This allow
to compute the maximum possible energy content of the container knowning the module
nominal energy in kWh.

The "max" next to the number of modules in Table 3.5 indicates that fewer racks are
allowed to be installed inside the container, leading to a smaller capacity but freeing up
space. This is particurarly important with respect to future planning as due to battery
ageing the capacity of the BESS may fall below the prescribed level, thus needing a
capacity augmentation to abide to the project’s terms. This concept, called Top-Up
strategy, will later be discussed in the Future Improvements section, as its implementation
requires a great effort due to the many challenges it presents.

The different possible quantity of modules inside a container lead to different combinations
that are grouped into different Power Islands. The latters represent the main product
that contain all the components and containers and their different variation. They will
be discussed in detail in the next sections.

3.3.3. Skid

The output from the PCS unit, while being AC, has a voltage level too low to be injected
into the grid. Thus, before the Point of Common Coupling (PCC ), a transformer has to
be fitted to step-up the low voltage to the medium or high voltage required by the grid.
This task is usually performed by self-contained unit called Medium Voltage Skid (MV
skid).
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The MV skid is a compact turnkey platform made from high resistance galvanized steel
with all the medium voltage equipment integrated, including a pre-wired outdoor power
transformer, MV switchgear, oil spill tank with rainwater filter, and built-in fast power
connection to different containers and PCS enclosures. With between 480 V - 690 V
in the low voltage range and 12 kV to 36 kV in the high voltage range, this compact
platform usually achieves power outputs between 1000 kVA and 4000 kVA. Its simplicity
to be transported and delivered into remote sites makes it the optimal solution for EPC
(Engineering, Procurement and Construction). Moreover, the Twin Skid exists to meet
the requirements of large scale BESS, achieving power outputs between 3000 kVA and
8000 kVA.

Figure 3.13a shows an example of MV skid by Power Electronics, while Figure 3.13b
reports a typical schematic for a skid connected to an inverter and to the grid.

(a) MV skid appearance.

(b) MV skid electrical schematic.

Figure 3.13: Examples of an MV skid, by Power Electronics [62].

This component yields very high efficiency values, above 98% and typically around 99%
[63]. These values, while not being constant, do not follow a particular pattern or be-
haviour. Indeed, since transformer efficiency is very difficult to generalise (as it depends
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very much on supplier, power, and voltage levels, which are all characteristics that easily
change from design to design) and differs by only a few tenths of a percentage point, the
approach followed by NHOA is to consider a constant efficiency from a database point of
view. Furthermore, not taking this approach would significantly increase the computa-
tional time as the MV skid efficiency is taken into account at every timestep and a lookup
table requires a significant overhead. The benefit would be marginal due to the very high
and quasi-constant value of efficiency.

For the above mentioned reasons, it has been chosen to implement the MV skid with a
constant user-set efficiency. This allows to tune the efficiency according to the use
case. Furthermore, a customizable HV skid with is implemented by default but set to
unitary efficiency to account for those scenarios where the PCC requires high voltage.

3.3.4. Power Island

All the aforementioned components and sub-systems are grouped together under a sin-
gle product called Power Island. A Power Island is an engineered solution comprised
of different sub-systems that together form the BESS. Different models of Power Island
exist, and each of them is suitable for different applications. Although they all share
the standard shipping container format, the components inside as well as the capacity
and installed power vary widely. The number of different possible combinations allow
for a great deal of pre-engineered solution ready to be used for each different study case.
Indeed, for each different Power Island number (namely, the model) different sub-Power
Islands models exist with different combinations of battery, PCS, and MV skid mod-
els and quantities, as well as different topologies. In Table 3.6 is reported an example
with figurative numbers and names that shows how the same Power Island number has
widely different combinations in terms of installed power and capacity, leading to different
possible power-to-energy ratios [ 1

h
].

Power Island
PCS enclosure model PCS Model #1
Battery enclosure model Battery Model #1
Max. # of PCS 1 Design combinations
Max. # of Energy Islands 2 # PCS 1 1 1 1 1 1
Battery model Battery Model #1 - 0.5C # Energy Island 1 1 1 2 2 2
Battery tag (as per Tech Database) BatteryModel1 # battery racks per enclosure 16 22 28 16 22 28
Max. c-rate 0.5 Apparent power [MVA] 4.00 4.00 4.00 4.00 4.00 4.00
Battery module capacity [kWh] 50.00 Nominal AC, LV power [MW] 3.0 4.0 4.0 4.0 4.0 4.0
# battery modules per rack 10 Nominal DC storage capacity [MWh] 6.0 8.0 10.0 12.0 16.0 21.0
# of PCS per enclosure 2 Power-to-energy ratio [1/h] 0.50 0.50 0.40 0.33 0.25 0.19
PCS model PCSModel1 Min operating cos(phi) @ nominal power 0.75 1.00 1.00 1.00 1.00 1.00
Max. # of battery racks per Energy Island 28
Min. # of battery racks per Energy Island 16

Table 3.6: Example of Power Island data in the database.

Each component can either be a result of internal developments and engineering process,
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or be a third-party turnkey product that come in the format of external cabinets. This
concepts applies to batteries, that can either be stacked into racks or directly bought as
single cabinet/container, as well to PCS and MV skid.

This flexibility allows for very versatile and modular projects that scale up without diffi-
culties and require less engineering since a good deal is already done while developing the
different Power Islands. The Power Islands can then be parallelized to achieve any scale
desired by connecting them via the MV voltage lines, while linking their control systems
to obtain a centralized hub to operate the different BESS s as a whole single power plant.

Having already analyzed and described all the different sub-systems, the Power Island in
sMAPPER is modeled just as an enclosure (or, in MATLAB code format, a struct) that
contains all the needed information about its components. The only information related
directly to the Power Island regards the number of battery racks and PCS per enclosure,
as well as the total number of enclosures. In this way, the installed capacity and power are
obtained. Then, the simulation will provide results for a discrete or non-discrete number
of Power Islands, according to the type of simulation run. The latter will be discussed
later.

3.3.5. Economic inputs

To evaluate the different possible solutions, an accurate economic and financial analysis
has to be performed. All the main general information, along with the more detailed ones
about the different products, are stored and kept up to date in NHOA’s database. In fact,
the latter is divided into two sections: General and Power Island.

The general section contains the main information which comprises typical investments
parameters such as inflation rate or margin. In Table 3.7 an example is reported. These
values can be easily accessed and changed according to the different projects, time horizons
and interest rates. The exchange rate, automatically updated, is present to standardize
all the different currencies used with the different components into $ (USD).

Item Tag Unit Value Notes
Inflation rate IR - 1.0% To be evaluated based on the country
Discount rate DR - 6.0% Based on the client WACC
System integrator margin SIM - 10.0% % of battery+BoS+PCS+EMS+transformer+grid connection
Developer overhead DOH - 5.5% % of battery+BoS+PCS+EMS+transformer+grid connection+system integrator margin+EPC
Developer margin DM - 6.5% % of battery+BoS+PCS+EMS+transformer+grid connection+system integrator margin+EPC
Exchange rate ER [$/€] 1.002

Table 3.7: Example of general economic data in the database.

The other section regards everything else related to the Power Islands which follows
the same structure as Table 3.7. The database has data for all the different models
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of the components and sub-systems, ranging from the battery to the PCS to the MV
skid. Furthermore, the cost of the Energy Management System (EMS ), Engineering,
Procurement and Construction (EPC ) and EMSplus (which represents a further overhead
to include for some Power Islands) are all included and are adjusted according to the
different Power Islands. The various costs may be provided per unit ( $

u
) or per capacity

( $
kWh

).

At last, all these information is gathered by sMAPPER which aggregates all the different
costs to put a figure on each Power Island. The computation is done according to the exact
components model employed in the relative Power Island, multiplied by their quantity.
This process produces a struct in MATLAB that holds, for each Power Island, all its
economic information, as well as the main one which is the total overall investment cost.

All the different solutions are plotted prior to each run, and and example is reported in
Figure 3.14. The different markers represent combinations of battery racks, PCS s and
containers that end up on some trend-lines. For instance, it is clear how the Power Island
#1 follows the line at CP = 1 up to a certain point, where then the nominal capacity
grows more than the nominal power, leading to lower CPs. This happens especially with
Power Island #2, where after following the 2h line, it becomes flat as the nominal power of
the PCS is saturated and adding other battery racks only increases the installed capacity.
The color, which represents the cost per installed power [ $

kWh
], is the most important

metric when looking at the different solutions. It is apparent that higher CP BESS s
require an higher expenditure, and that increasing the installed capacity leads to lower
costs due to the presence of economies of scale and fixed costs such as EPC.
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Figure 3.14: Cost space of different Power Island solutions for a particular range of BESS
capacities.

Although Figure 3.14 greatly shows the different solutions that will later be explored by
sMAPPER in the simulation, an important piece is missing from the chart: the number
of free battery racks. Indeed, looking closely at the figure, some solutions have divergent
costs even though the nominal capacity and power are similar. The reason behind it is
that the containers are not fully utilized in those cases, leading to higher overall costs due
to the non fully-exploited space inside. This information is visible only by adding another
axis to the previous chart. In Figure 3.15 it is plotted the aforementioned chart. Indeed, it
is clear how Power Islands with fully utilized containers lead to the most efficient pricing.
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Figure 3.15: Cost space of different Power Island solutions for a particular range of BESS
capacities, including the number of free battery racks.

The latter is of particular importance when accounting for the Top-Up strategy, which re-
quires swapping batteries and revamping the BESS without installing new containers, but
rather by filling the empty battery racks left when first building the whole system. Even
if this strategy is not implemented yet for reasons discussed in the Further Developments
section, it is a good piece of information when assessing all the possible solutions.

As sMAPPER runs simulations on all the points in the previous charts, when exploring a
wide space of solutions the computational time may be too high. Because of this, a filter
has been implemented that picks the best solutions (that is to say, with the lowest cost) in
a 3D-space around all the points. The filter works by first trying a whole range of different
ϵ values, and picking up on the number of points removed according to the relative ϵ. The
function, which can be expressed as %filtered = f(ϵ), is then inverted such that the input
is the a required fraction of filtering (for instance, to keep only 30% of the total number
of solutions). The inverted function, which has the shape of ϵ = f−1 = g(%filtered), is
obtained by finding the closest epsilon that yields the required filtering which, in the end,
is used to set the distance for the filtering process itself. Then, the same figures with
nominal capacity and nominal power are plotted, but with considerably less solutions. In
Figures 3.16a and 3.16b an example is reported in both the 2D and 3D version with 50%
of filtering.

For what concerns the exterior costs, such as the ones relative to the specific application,
they are also included in the economic database. For instance, for a PV smoothing
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(a) Cost space 2D filtered. (b) Cost space 3D filtered.

Figure 3.16: Cost space of different Power Island solutions for a particular range of BESS
capacities filtering 50% of the solutions.

application it is possible to define both the violation cost per minute, as well as the
remuneration per MWh of injected energy into the grid.

The operative costs and revenues are then computed during the simulation on a year basis.
Then, the cash flow is computed taking into account all the different sources. Finally,
the main economic parameter, the Net Present Value (NPV ), is calculated (among many
other, such as payback time) as such

NPV = C0 +
T∑
t=0

CFt

(1 + r)t

where:

• C0 = net initial investment expenditures

• T = total time period count

• t = current year

• CFt = cash flows of each period

• r = discount rate or interested rate required of the investment

According to the use case, the key parameter for the economic assessment can be either
the NPV or the payback time, being the former the default one. In the PV smoothing
application, but it is applicable in other scenarios as well, the NPV is compared to the
no-BESS scenarios, which is taken as base case. Then, those results, along with many
other, are logged and eventually charted to compare them over the simulation years.
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3.4. Simulation part

Following the description of all the different components and sub-systems, it is needed
to address the simulation modes, as well as how the workspace interacts with the run
itself. After the Initialize part has been run, all the database data gets stored inside
MAT-files, which are binary MATLAB files that store workspace variables and come in
handy thanks to their ease of use and fast access. All the various databases revision
numbers, the current sMAPPER version, as well as the date of the last edit of the file are
saved as well, allowing the user to backtrack precisely what information where used for a
particular run, even later in time.

The first step of the Master script is to import all the data previously saved. This is
done by simply importing the various databases through the load function in Matlab for
the .mat files. The workspace, that contains all the variables in memory, is shaped such
that only a handful of structs exist. In this way, the code can be well-ordered and it is
possible to arrange the whole structure in different functions with clearly defined inputs
and outputs. Then once the environment is set, the simulation continues onto the input
data analysis, which is explored further down in the PV smoothing application.

3.4.1. Simulation mode

As sMAPPER has many capabilities, the simulation time requires an important amount
of time depending on the space of solutions to explore. To overcome this problem, two
simulation modes with different computational times have been developed: Energetic
and Engineered. The differences, mainly lying in simplifications of the overall BESS
model, will be discussed hereafter.

Energetic

This mode derives its name from the idea that an Energetic approach implies a more
high-level analysis, with less interest to the single components and more to the overall
system. Indeed, this method introduces many simplifications to achieve a computational
time significantly lower. First and foremost, this method does not develop all the dif-
ferent Power Islands with each component. Instead, given a range of nominal capacity
[MWh] and different CPs, it generates simulations according to all the different possible
combinations of them. This means that the main characteristics of the BESS do not
represent a real world system, but rather a continuum of solutions. For this reason, this
approach would also be referred as the "continuous" one, rather than "discrete". Indeed,
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the results, when interpolated to produce a finer space of solutions, provide smooth curves
and spaces allowing to easily gather important information from the simulation.

As the Power Island is not modelled, all the different components and sub-systems do not
rely on the database, but rather on fixed constants given by the user. For instance, the
auxiliaries do not depend on the load, but rather consume a fixed percentage of energy of
the overall installed capacity. Along the same line, also the battery degradation is defined
as a constant.

As the components and the sub-systems are not modelled, there would be no direct way
to assess the cost of the whole BESS. For this reasons, the user has to input three different
costs: the cost per capacity installed [ $

kWh
], the cost per installed power [ $

kW
] and the EPC

overhead as a percentage of the whole system cost. The values, tuned to match as closely
as possible the different shapes the different Power Islands cost curves have, needs to be
updated manually according to the use case and to the current market prices.

While this method is obviously not accurate enough to produce reliable simulations, it
is very handy when it is needed to first assess the optimum range of possibilities where
the optimum may land. As a matter of fact, this simulation takes few seconds per year
simulated, allowing in a handful of minutes to have results which roughly resemble what
an a more accurate simulation would provide in hours. This allows future more detailed
runs to search a smaller solution space and thus lower the overall time required.

Engineered

On the contrary, this approach models everything as it has been discussed before, taking
all the necessary information from the database and using all the different equations and
relations between them to produce a detailed analysis of the BESS, from the high-level
to the components and sub-systems. In this way, the simulation output is much more
reliable and accurate while being much slower to compute, in the order of 2 to 5 times
more with respect to the Energetic simulation. All the different variables and struct which
represents the components in code language gather the necessary information from the
database by using the component tag, which is unique.

Apart from this, the Engineered approach follows the various hypothesis described above
in the previous sections. The equations and formulas used will be discussed further down
as they are application-specific. It has to be noted that from a simulation point of view,
the two methods follow the exact same algorithm and code, while only differing in the
phase pre-simulation that defines all the variables and components. Here, the Engineered
approach will use functions and lookup tables rather than constants.
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Last but not least, a significant effort was put to optimize the code. Due to the huge
amount of data present in the workspace and they way it was structured in structs, tables
and lookup tables meant the overhead for each line of code became important. This is
because, as the simulation runs on the whole year minute per minute, each small Matlab
call to a inner-struct would require time only to locate that resource. That is why many
variables were copied into local variables and lookup tables functions transformed with
the griddedInterpolant function, which is significantly faster.

3.4.2. Simulation generation

Prior to run the simulation itself, a generation process has to be performed to create the
right environment for the simulation. This requires to gather and group all the different
simulation parameters and characteristics into a single table, and to assign to each unique
combination of simulation number that will last to the results, to ensure consistency across
input-output data. This happens whether the simulation mode is the Engineered or the
Energetic one. Nevertheless, the former produces a wider table as more information has
to be saved, such as Power Island number or Power Island combination. Furthermore, for
both modes, the table includes the specific cost of the solution to easily be spotted when
analysing the data.

To explore all the different required solutions the user input prior to the simulation, the
function allcomb is used. In Table 3.8 an example is reported where, starting with the
nominal energy, the nominal power and the photovoltaic installed power, those values gets
combined in such way that all the possible combinations are present. The f on top of the
arrow in the middle of the tables indicates the function allcomb. Then, a loop code loops
through every simulation number to simulate the required application or service.

Simulation number Nominal energy [MWh] Nominal power [MW] PV DC peak [MW]
1 10 2.5 50
2 10 2.5 100
3 10 5 50
4 10 5 100
5 10 10 50
6 10 10 100
7 30 7.5 50

Nominal energy [MWh] Nominal power [MW] PV DC peak [MW] 8 30 7.5 100
10 0.25 50 f−→ 9 30 15 50
30 0.5 100 10 30 15 100
50 1 11 30 30 50

12 30 30 100
13 50 12.5 50
14 50 12.5 100
15 50 25 50
16 50 25 100
17 50 50 50
18 50 50 100

Table 3.8: Example of input parameters combination to explore all the different possible
solutions.
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This method, which can be seen as a sensitivity analysis, will later be discussed in the
future developments sections as it allows, theoretically, to impose a sensitive analysis on
almost every aspect the user requires.

After all the environment is ready, the simulation can start. The code is structured in
such a way that it is possible to use the Parallel Computing Toolbox by Matlab. This
needful tool allows to run multiple simulations at once on the same computer, splitting
the loop among the available processors in the machine running the code, be it a laptop
or be it a Virtual Machine (VM ). Depending on the system capabilities, the code will
effectively run from a minimum of double the speed, up to 16x or 32x faster.

3.5. Application: PV smoothing

Along with the database, the core part of sMAPPER regards the applications. In fact,
sMAPPER is developed with the intent to build a solid modeling framework, and then
build on top of it different modules, which can be different services or applications related
to the specific need. The algorithm implemented (namely, the EMS ) is the same that
later will be installed in operation for the BESS, allowing for a great deal of realism of the
simulation. It has to be noted that once an application is developed, implementing new
ones is easier as most of the equations regarding the BESS can be applied regardless of the
service. What mostly changes is the underlying algorithm concerning the power dispatch,
as well as the SOC management strategy. Furthermore, also the various constrains may
change accordingly. Nevertheless, the economic analysis should remain quite similar, apart
from the specific fees and remuneration policies. Hereafter, the application concerning the
PV smoothing is discussed, and it is the one implemented in the case study.

Globally, photovoltaic (PV ) power has dramatically increased over the last ten years. In
actuality, between 2007 and 2018 the global PV power capacity increased by more than
5000% [64]. In terms of levelized cost of energy (LCOE ), utility scale PV production
is currently one of the most economical generation technologies [65–67]. This growth
pattern is therefore anticipated to continue in the future. In some areas, the ratio of
solar to conventional power generation has increased significantly as a result of the rise in
PV power. This may result in problems due to the solar resource’s inherent erraticness,
particularly in cloudy conditions [68, 69].

The PV covered area and cloud speed are the two main factors that affect the ratio of
change in the PV plant’s power output [68, 70–72]. For various locations and plant
sizes, output power variations of up to 90%/min have been documented [70, 73–75].
These types of power fluctuations can result in grid quality issues with frequency or
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even voltage stability [69, 75–77]. To limit the maximum permitted rate of change for
PV plants, various Transmission System Operators (TSOs) have established regulations
[78–82]. According to the Puerto Rican grid code [78], the ramp-rate (RR) limit tolerance
range can range from 1%/min for the most restrictive scenario in Mexico [79] to 10%/min.

Installing an energy storage system (ESS ), which can include flow batteries, super capac-
itors, fuel cells, Li-ion batteries, or a combination of them, is the conventional method
for reducing PV fluctuation [83]. Thanks to their technological advancement, perfor-
mance, and anticipated price decrease, lithium-ion batteries are the most appropriate
ESS technology [84, 85]. However, the addition of an ESS raises both the project’s initial
investment and the overall cost of the energy produced [66, 86, 87]. Therefore, in order
to prevent the PV LCOE from becoming less competitive, it is crucial to reduce the ad-
ditional costs associated with the use of batteries. The initial cost of the EES and the
battery life are the two main determinants of the increased LCOE.

Each ramp-rate strategy’s intrinsic qualities have a significant impact on both of these
variables. The moving average filter [86] and the traditional ramp-rate control [71] are
two of the smoothing techniques that are most frequently studied [71, 88]. The latter
continuously assesses the variation in PV power and charges or discharges the ESS when
the desired smoothing is surpassed. The battery needs to be able to absorb and discharge
the energy required by the worst possible positive or negative fluctuation because it is
impossible to predict what the next fluctuation will look like [71]. sMAPPER implements
the traditional one, but if the case requires so a low pass filter may be coded easily.

With regard to the simulation, a violation happens whenever the AC power injected in
the PCC is lower or higher than the allowed ramp-rate. As the timestep of the simulation
is of 1 minute, the violation fee is represented as a single cost per violation [ $

violation
], which

inherently becomes a cost per minute (of violation).

Regarding the remuneration, it is a simple constant price per energy injected into the grid
[ $
MWh

] which can be easily set according to the market or the signed contracts. In the
future, with the correct knowledge, it may be possible to implement an hourly pricing
tariff.

Moreover, a PV clipping ratio is included as often the inverter is not sized according to
the PV DC peak power, but rather to a lower value accepting the fact that few hours
per year the power may be curtailed due to the power saturation of the inverter. This is
done mainly to reduce the size and cost of the inverter. This value, user customizable, is
defaulted to 1 but can be increased if one wants to take into account this aspect.
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Indeed, a degradation factor in the PV power output is implemented to take into account
the ageing of the modules. Many manufacturers provide degradation warranties that
are mostly linear. For this reason, it was chose to implement a constant value that
updates each year the peak DC power output of the photovoltaic. Setting on the value
is more difficult instead, as degradation values differ depending on the technology used,
the manufacturer and the year of production [89, 90]. Furthermore, when designing a
PV plant, data about the modules are widely available along with the ageing warranties.
Thus, the value should be changed according to the use case. Nevertheless, a value of
0.70% per year with respect to the nominal value was chosen as default as it seemed to
be a number close to today’s industry standards.

3.5.1. Input data analysis

As already introduced, the input data analysis function serves the purpose of giving the
user a first impression of the data sMAPPER is going to work with. This is crucial as it
allows to spot any particular key information in the data and plan accordingly. Jumping
straight to the simulation part without being familiar with the data can lead to wrong
assumptions or to draw off-target conclusions.

The PV smoothing, as the name suggests, implies using data from the power output of
a photovoltaic power plant. The application concerns the smoothing of the power output
as, due to its spiky nature, lead to instability in the grids. In this case, which concerns a
100MW PV power plant, the data spans a whole year and has a timestep of 1 minute.
It is provided in a .mat file with the values normalized to values of [0, 1].

Figure 3.17 analyses three main aspects of a PV plant:

• Seasonal trend: the four colors, representing the different seasons, show how, on
average, the power is distributed throughout the day. The trend-lines have a band
around them that represent the standard error (SE ). This chart gives a first glance
at the overall data.

• Sorted distribution: this single curve shows in a pretty straightforwardly how the
PV power is distributed, in a sorted way and with the x-axis representing the hours
per year. In this manner, one can easily understand for how many hours the power
plant works above (or below) a certain power level.

• Sorted derivative: this chart, while being more complex, gives a very useful in-
sights directly related to the PV smoothing itself. To obtain such plot, the data
is first differentiated and then sorted. Subsequently, two black dotted bands are
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drawn that represent the maximum allowable rise or drop in power in one minute,
and outside there regions two colored patches appear. The green one represents
the moments where the power increase is too great to be injected, and thus can be
absorbed by a BESS or be curtailed. On the other hand, the red patch represents
the points in which the power drops suddenly, and a BESS is required to try to
smooth that out via injecting more power in the grid. Should not this be enough,
a violation will occur with its relative cost. Therefore, the chart allows to eyeball
what the base case would yield in terms of energy curtailed and violations, as well
as the required size of BESS to reduce at minimum the fees.

Figure 3.17: Analysis of the distribution of the input data, part 1.

In contrast, Figure 3.18 shows a simpler chart that compares the average distribution of
fraction of daily generation. This plot is supposed to give more insights on the hourly
distribution of the different season. This may be relevant when planning also to implement
a Peak Shaving (PS ) service along with the PV smoothing. Indeed, it is clearly visible
how, in this example data, during spring and summer the distribution has a wider base
and thus would require less energy shifting, opposed to the winter months that yield their
energy content mainly during the peak hours.
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Figure 3.18: Analysis of the distribution of the input data, part 2.

3.5.2. SOC management

As with any application or service involving the use of a battery, a SOC management
strategy needs to be implemented to ensure the readiness of the BESS to perform its
duty. Therefore, a SOC restoring technique that resembles a hysteresis cycle has been
implemented that works as following according to a flag variable called hysteresis flag :

• hysteresis flag = 0: in this mode, the SOC management is disabled. To enter this
mode, some conditions need to be met: the hysteresis flag was equal to 1 and the
BESS has reached an energy level lower than the target one or the hysteresis flag
was equal to -1 and the BESS has reached an energy level higher than the target
one, such that

hysteresisF lagt-1 == 1 ∧ SOCt < SOCtarget

∨

hysteresisF lagt-1 == −1 ∧ SOCt > SOCtarget

• hysteresis flag = 1: in this mode, the SOC management forces the battery to
discharge with a fixed percentage of the BESS installed power, set by default to
10% but customizable. This low value was chosen to allow the battery to achieve
a lower mean CP over the year. If the case study requires a more aggressive SOC
restoration to ensure higher reliability of the system, different values should be
chosen. To enter this mode, the battery has to exceed a superior threshold, typically
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set to 70% but modifiable. This does not mean that the battery will never reach
SOC levels higher than the superior threshold, but rather that this limit is the point
where the battery SOC would be too high to reliably perform its duty. Thus, the
condition is the following:

SOCt > SOCtarget,superior

• hysteresis flag = -1: this mode is the exact same as the previous one, but in reverse
as it forces the battery to charge. The condition is the following:

SOCt < SOCtarget,inferior

Whenever no one of the conditions are met, the hysteresis flag will just be the same as
the previous timestep.

In Figure 3.19 it is shown an example of SOC behaviour during a simulation. It is clear
that when the battery exceeds the dotted black lines, which represents the threshold, the
battery SOC changes according to a fixed slope that is defined by the aforementioned
value of 10%. Needless to say, during those phases the BESS is still able to work as
intended in the PV smoothing application.

Figure 3.19: Example of SOC management in a simulation with both the charge and
discharge phase.
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3.5.3. Architecture

For this application, the possible topologies are mainly two, and are named AC or DC
depending on the coupling method. Hereafter, the different topologies are represented
along with their various working operations.

Firstly it is shown the AC coupling. In Figure 3.20 it is shown a scheme with all the
different components and sub-systems and with the whole system working in normal
operation, with the BESS at idle. The inclusion of two MV/HV skid is to account for
all the possible different scenarios, as the coupling always happens at MV voltage but
the PCC may require HV instead. The battery is followed by the internal efficiency
box, which does not represent a physical component but rather is a way to model the
inefficiency related to the battery itself before any conversion process. Furthermore, the
auxiliaries are included after the as typically they work by spilling some of the power by
connecting to the MV voltage for ease of installation.

Figure 3.20: PV smoothing architecture with AC coupling with BESS in normal opera-
tion.

In Figures 3.21 are represented the 4 main operational modes of the whole system. In the
top two figures, Figures 3.21a and 3.21b, it is shown the battery intervention in case the
PV would exceed the ramp limit. In the bottom two figures, Figures 3.21c and 3.21d, the
SOC management is shown that kicks off whenever the battery energy level has drifted
outside the prescribed boundaries.
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(a) Sudden PV production decrease. (b) Sudden PV production increase.

(c) SOC management, charging BESS. (d) SOC management, discharging BESS.

Figure 3.21: PV smoothing architecture with AC coupling with BESS in various opera-
tion modes.

Then, it is shown the DC coupling. In Figure 3.22 it is shown a scheme with all the
different components and sub-systems. The inclusion of two MV/HV skid is to account
for all the possible different scenarios as for the AC coupling. In this case, though, the
battery and the PV are followed by a DC/DC conversion process. The latters are usually
mutually exclusive, and the architecture with the converter only the battery side is the
most used one. Concerning the operational modes shown in Figures 3.23a, 3.23b, 3.23c,
and 3.23d, they follow the exact same structure as the AC architecture.
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Figure 3.22: PV smoothing architecture with DC coupling with BESS in normal opera-
tion.

(a) Sudden PV production decrease. (b) Sudden PV production increase.

(c) SOC management, charging BESS. (d) SOC management, discharging BESS.

Figure 3.23: PV smoothing architecture with DC coupling with BESS in various opera-
tion modes.

Lastly, it is shown a side-by-side comparison between the two topologies in Figure 3.24.

Each of them has its own advantages and disadvantages, which can be listed as:

• AC:
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(a) AC coupling structure. (b) DC coupling structure.

Figure 3.24: PV smoothing architectures comparisons between AC and DC couplings.

– Advantages:

∗ Retrofitting: An existing PV system can be easily upgraded with addi-
tional AC -coupled batteries to increase capacity.

∗ Flexibility: The placement of the inverters and batteries is not constrained
for installers. Any kind of inverter can be used with AC coupling.

∗ Resiliency: If one inverter fails, the ability to install other inverters and
batteries in different places reduces the likelihood of a power loss. The
combined power from several inverters is greater, and battery problems
have no effect on power generation.

– Disadvantages:

∗ Cost: Due to the usage of several inverters, AC -coupled systems are more
expensive than DC -coupled systems.

∗ Lower efficiency: The stored energy is changed three times: from DC
current to AC current to power the building, from AC current to DC
current to charge the battery, and finally from DC current to AC current
once more. There is a little amount of energy lost during each conversion.

∗ Supply limitations: Since AC BESS s lack transformers, they are unable
to handle the surge loads caused by numerous appliances, and they are not
intended for usage off-grid.

• DC:

– Advantages:

∗ Affordability: Due to the use of a single inverter for the solar panels and
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batteries and the lack of additional components like voltage transformers
and switchgear, DC -coupled systems are often less expensive than AC-
coupled systems.

∗ Higher efficiency: DC BESS s only convert the current once, as opposed
to several conversions in AC systems, which results in lower energy losses
and higher efficiency.

∗ Oversizing: Solar panels can produce more electricity than the inverter’s
rated capacity using DC -coupled systems. In contrast to an AC-coupled
system, where the extra energy is lost, this method can use it to charge
the battery, an EV charger, or any DC load.

– Disadvantages:

∗ Limited flexibility: Compared to an AC system, installers have less degrees
of freedom because the inverter must be placed close to the battery.

∗ Less resiliency: In a DC -coupled system with a single inverter, both the
solar power and the battery capacity are lost in the event of an inverter
failure.

As already analyzed by others [91], the best performing PCS layout was found to be DC -
coupling with a DC-DC converter at the battery side, followed by AC -coupling, under
the same input-output conditions (irradiance, PFR, and dispatching settings). The DC -
coupling with DC -DC converter at the PV-side arrangement has the lowest performance.
Different conversion stages involved in the energy flow from PV to battery during PFR
service during the day and from battery to grid during energy shifting during the evening
were responsible for the various performances.

Regardless of the theoretical best configuration, all of them are available to perform
simulations on all the different case scenarios that may arise.

3.5.4. Algorithm

The algorithm, after having initialized all the different variables, starts firstly with check-
ing if the power produced by the PV at the next timestep is greater than the ramp rate
limit. If this is the case, then just injects the maximum power. Otherwise, the BESS
comes into play to absorb the excess or to provide the missing power. Then, according
to the hysteresisFlag (which represents the SOC management), if the battery is forced to
charge or discharge, it tries to absorb or inject some of the total power to restore the SOC
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to the target level. Lastly, according to the current SOC, it defines the hysteresisFlag for
the next timestep according to the aforementioned conditions.

If the simulation mode is Energetic, many steps of the algorithm are skipped as the
efficiencies, as well as some constraints are constant. This lines are omitted through the
use of flags and ifs. Indeed, this is what makes the Energetic mode way lighter, as all the
functions and lookup tables are what slows down the overall run.

On the other hand, if the simulation mode is Engineered, during each step of the algo-
rithm the efficiencies are computed. This is done via functions such as ηBESS,internal =

f(
PBESS,DC,real

Enominal
) = f(CP ), where the subscript real indicates the power before the internal

efficiency according to the structures seen in Figures 3.24, which in turn are lookup tables
with linear interpolation. The CP is computed as CP =

PBESS,DC,real

Enominal
, where P is the

instantaneous BESS power, while Enominal represents the capacity installed at Beginning
Of Life (BOL). This is because the power does not fade over the years, and as such the
CP should be computed according to the nominal capacity not to exceed the battery max
CP rating at BOL.

An issue arises when computing the internal efficiency of the batteries: as the ηBESS,internal

is a function of the power, but the power is computed after accounting for the efficiency
such that PBESS,DC,real = PBESS,DC ∗ηBESS,internal. Because of this, the efficiency function
is an implicit one, and an iterative process would be needed to find the right value, starting
from a guess and refining it until the value has an acceptable accuracy. While this would
be the correct way to solve it, it would immensely lengthen the simulation time while
yielding no results accuracy improvement. The implemented way is instead to guess
the closest value and then computing the PBESS,DC,real. The guesses usually can be the
PBESS,DC , which will be very close to the output value, or the PBESS,DC,nominal which
account for the worst case load.

As a consequence, exact equalities and inequalities could not be computed. Thus, a
threshold value was introduced to account for this, with the value being 0.1% of the
installed power. This resulted in any difference being smaller than that one, to be treated
as 0.

Regardless, there is another step in computing the PBESS,DC,real that ends up being the
correct ones: accounting for limits and boundaries. Indeed, to ensure that the batteries
always work within the correct region, min and max functions are implemented. For
instance, in the case of the BESS forced to discharge due to the SOC management:
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PBESS = min(PBESS,nominal, PBESS,max(E
t−1), PBESS,available, PBESS,max(SOC, SOH))

PBESS,nominal = from database

PBESS,max(E
t−1) =

Et−1

dt
, dt =

1

60

PBESS,available = PBESS + PPCC,available ∗ ηBESS−→PCC

PBESS,max(SOC, SOH) = CPmax(
Et−1

Ey
nominal

, SOHy) ∗ Enominal,BOL

where t indicates the current timestep and y the current year. The PPCC,available indicates
the amount of available power that can be injected into the grid (to force the battery
discharge) while still remaining inside the allowed ramp rate. This kind of equations are
repeated multiple times during the simulations for all the different needs and are extended
even to the PV. Furthermore, all the different efficiencies, which are put into functions
prior to the simulation, are computed like ηPV−→PCC = f( PPV

PPCS,nominal
). This allow ease of

coding and maintenance as it is clear the function of the efficiency, while not filling the
code the database functions and data.

Lastly, at the end of every timestep, the actual PBESS,DC,real is computed and the BESS
energy content is updated. The hysteresisFlag is also computed to decide the SOC man-
agement mode for the next timestep. After the simulation has run for 1 complete year,
the economic assessment and the various KPIs are computed, as well as re-calculating all
the initial parameters and variable for the next year. Here, the SOH along with other
parameters that change over the years are computed.
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The case study analysed in this thesis regards a PV smoothing project that will be dis-
cussed hereafter.

4.1. Baja California Sur, Mexico

The case study analysed in this thesis regards a project commissioned by NHOA in 2019 lo-
cated in Baja California Sur, Mexico. The BESS is integrated to the 23MWAC/31.2MWp

Sol de Insurgentes PV plant. Figures 4.1b and 4.1a show the location of the site and, in
particular, the location of the MV/HV substation, where the BESS is installed. The

(a) Mexico region. (b) Google Earth aerial view.

Figure 4.1: Site location.

Table 4.1 resumes the main geographical data of the site.

Sol de Insurgentes BESS is a lithium-ion based storage system, 5.4MVA / 3.168MWh

rated power and energy installed. The storage system is supported by dedicated Power
Conversion Systems (PCS ), that consists of NHOA’ proprietary 4-quadrant converters.
Table 4.2 resumes the main technical features of the BESS.
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Location Info
Project typology PV + BESS

Latitude 25° 12’ 2.25” N
Longitude 111° 45’ 9.53” O

Table 4.1: Site data.

Characteristic Value
Installed PCS power 5.4 MVA
Battery technology Lithium-ion NMC

Installed battery capacity @BOL 3.168 MWh
Battery max continuative C-rate 2C

Useful AC battery capacity @EOL 10 years >1.25 MWh

Table 4.2: Main technical features of BESS.

The BESS is composed of:

• n.3 identical 40ft High-Cube containers

• n.3 2 MVA LV/MV Oil Natural Air Natural (ONAN ) transformers, for connection
to the MV switchgear of the substation

• n.1 EMS cabinet, with the Energy Management System (EMS )

Each container is composed of n.2 separate rooms, the Battery Room and the PCS Room,
respectively containing the batteries and the Power Conversion Systems (PCS ). The BESS
will be parallel connected to the PV plant through a MV switchgear at 34.5kV, then, the
PV + Storage plant will be connected to the 115kV Grid with a single Point of Connection
(POC ). BESS limit of supply are the MV terminals of LV/MV ESS transformers.

Information about the economic part of the project are confidential and thus cannot be
reported.

4.1.1. Issues

The battery market is a rapidly changing one, and manufacturers, as well as models and
chemistries, change frequently according to the different trends. In this case, the battery
used, which are rated at 2C or 30 minutes, are not anymore present in the utility scale
market. Indeed, nowadays’s market is moving towards bigger capacity batteries both for
the lower price per kWh and for the ability to exploit power intensive applications, such as
the PV smoothing, along with other energy intensive application, such as Peak Shaving.
This allows the investors to make better use of the systems, while keeping the price
lower as usually batteries with rating between 0.5C and 1C are used. For these reason,
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NHOA’s database does not contain data regarding batteries more than 1C. This means
that the Engineered mode will not be able to propose a solution as the presented one.
Nevertheless, it is interesting to analyse how with the current battery models employed
by NHOA sMAPPER will cope, and the relative best solutions proposed. On the other
hand, in the Energetic mode, which allows to search any desired capacity and power, it
will be possible to explore 2C solutions.

Furthermore, the information about the PV power plant is not directly available as NHOA
involvment in the project regarded only the BESS system, not the photovoltaic part.
Indeed, some data about the power plant was available online, reporting the use of 300W
peak power panels [92]. Thus, the chosen PV degradation rate was chosen taken from
different datasheet of modern 300W photovoltaic panels and its value is set to 0.70 %

year

as it represents a mean value in the current industry [93].

On the same page, as the data about the PV power plant is not directly available, the
economic part has to be assessed through the use of open information. The data found
regarding the remuneration per energy injected in the grid is at 50.7 $

MWh
[94]. This

value, which represents the average contract price of all the different winners of the Clean
Energy Auction for energy in Mexico in 2016. On the other hand, regarding the violation
price for the ramp rate, no information was anywhere to be found, so the price has been
set 100 $

MWh
. This price, while not being backed up by any number, is one that was found

to produce results in line with the real projects pricing and design solutions.

In reality, the violation price does not always exists, but rather a limit on the amount of
violations per year is stipulated. All this information is usually is confidential and thus
only estimates can be achieved. According to the Deutsche Gesellschaft für Internationale
Zusammenarbeit (GIZ) GmbH who drafted a document titled Electrical Energy Storage
in Mexico, an option would be to express a requirement towards the performance and
fulfillment ratio of the grid service. An example of this could be that any PV plant
must guarantee a maximum ramp of 10% of nominal power per minute and that this
requirement must be met during 99.9% of the time. While the ramp is known for the
study case, the violation minutes is not. Thus, while this will not be hard-coded as a
proxy for discerning the acceptable runs from the others, it will still be taken into account
when selecting the optimal solution.

Lastly, most of the economic parts and details are not public and thus cannot be reported
here. For this reason, the economic analysis for this case study will be weaker, but
supported by other KPI s to seek the optimal solution. Nevertheless, the main economic
parameter will be reported for both the Energetic and Engineered modes. The costs, while
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tuned to be similar to NHOA’s ones, are not supposed to be taken as exactly realistic
values due to the aforementioned reasons.

4.1.2. Input data analysis

The data utilised in this project is the same used in the sizing process of this BESS
in 2019. It is a 1 minute timestep data, as required by sMAPPER. The input analysis
function, described in the previous chapter, allows to inspect how the data is shaped. In
Figure 4.2 are represented the three main aspects of a PV plant: Seasonal trend, sorted
distribution and sorted derivative. From the sorted derivative plot, it is possible to know
how many hours per year the no-BESS scenario violates the ramp rate limit, which in
this case amounts to 266 h

year
in curtailment, and 264 h

year
in violation. These are to take

as the worst-case scenarios for any simulation. Furthermore, looking at the bottom-right
plot, it is clear how an optimal BESS size in terms of installed power would be something
around the 3 to 5 MW, as higher values would only fall in the steeper region of the curve
which yields diminishing returns. Indeed, the installed power of Sol de Insurgentes is of
5.4 MVA, close to this eyeballed value.

Figure 4.2: Analysis of the distribution of the input data in the case study, part 1.

In contrast, Figure 4.3 shows a simpler chart that compares the average distribution of
fraction of daily generation, and for this study case it is not too relevant. Nevertheless,
this may be interesting when planning also to implement a Peak Shaving (PS ) service
along with the PV smoothing.
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Figure 4.3: Analysis of the distribution of the input data in the case study, part 2.

4.1.3. SOC management strategy

The SOC management strategy employed is the same as the one introduced in the previous
chapter. The values employed are reported in Table 4.3. The power offset introduced
during the SOC restoration mode is active as percentage of the nominal power, and its
value of 10% has been chosen after some sensitivity analysis on different runs. The SOC
target is simply 50% as is it the most reasonable value in this type of application. The
hysteresis band, which represents the amplitude of the hysteresis threshold for the SOC
restoration strategy and is symmetric with respect to the target level, has a value of 20%
which results in a band of 30-70 %. This amplitude seemed to be the best one when it
came to the trade off of reliability of the BESS while keeping the battery cycling at a
lower value.

Parameter Value
Power offset 10 %

Hysteresis band 20 %
SOC target 50 %

Table 4.3: Parameters of the SOC management strategy.
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4.1.4. Energetic

As stated previously, the first step to find the optimal solution is to run the Energetic
simulation. In this mode, it is possible to set the space of solutions to explore, as well
as the different efficiencies. In this case, the size of nominal capacities at BOL analysed
was between 1 and 5 MWh, while the possible CP are 0.5, 1 and 2. The photovoltaic was
put at 23MWAC,LV as the size was already given and no sensitive analysis was necessary.
This means that all the solutions spanning from 1 MWh and 0.5 MW to 5 MWh and 10
MW are analysed, with a discrete step of 0.1 MWh each.

Regarding the efficiencies, since the photovoltaic input data was already given in AC LV
side its conversion efficiency was put to 1. Regarding the BESS, its internal efficiency was
put to 98%, while the efficiency to the PCC (not including the internal one) was set to
96%. Their product leads to an overall efficiency of 94%, value in line with the one used
by NHOA while designing this BESS. For the same reason, the MV skid was set to 99%
efficiency, while the HV skid is not present and thus set to 1. Moreover, as the coupling
is on the AC side, the DC/DC converter efficiency is set to 1 as it does not exists. All
this values, along with the different economic parameters, are reported in Table 4.4. All
the different values are set to mimic as closely as possible the behaviour of the Engineered
mode as it is the more realistic and reliable one.

Efficiency Value
PV to PCC 1

Parameter Value PV to BESS 1 Economic Value
Degradation per year 2% BESS to PCC 96% Inflation rate 1%
Cost per kWh 210 $/kWh BESS internal 98% Discount rate 6%
Cost per kW 50 $/kW PV inverter 1 Margin 22%
EPC percentage 30% PV DC/DC converter 1 Fixed costs 30000 $/year
Container auxiliaries 0.0012 MW/MWh BESS DC/DC converter 1 O&M 2 $/kWh*year

MV skid 99%
HV skid 1

Table 4.4: Energetic parameters of the simulation.

Overall, the simulation explored 123 simulations (41 steps in nominal capacity from 1 to
5 MWh, and 3 different CPs per step) and took total of ∼ 7000s. Considering that each
simulation ran for 10 years, each year took 6 seconds on average to compute. Considering
that each year, apart from all the variables and parameters initialization, has to loop
through 525,600 minutes, the simulation is fast. At the end of the simulation, all the
results (the full ones, comprising of all the years information, and the compact ones,
which average each simulation per the 10 years) are logged into the result folder. Then,
a pop-up window appear to ask the user what simulations among all of them is required
to be plotted in detail, and for which years.
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It has to be noted that prior to this simulation, another one with the same parameters
was run, exploring a wider but emptier space of solutions (2 to 20 MWh with 2 MWh
step, with CPs of 0.5 and 2). This simulation, which only took about 20 minutes, allowed
to understand that the space that should be explored is up to 5 MWh as reported by
Figure 4.4. The latter shows the NPV difference (that is, the difference between the base
case and the one with the BESS implemented) for all the range of explored solutions. The
results are interpolated on the grid to produce smoother lines and to show the location
of the optimum more clearly. The red line on the top-right indicated the line where the
solutions with the BESS implemented are actually worse than the base case. Lastly, the
stars indicate the top 10 best solutions, and the CP lines of value 2C, 1C, 0.5C and 0.25C
are plotted as well. Indeed, it is clear that the best solutions for this power intensive
application lay on the 2C line.

Figure 4.4: Energetic mode, contour map of the simple case.

After this simpler simulation has been quickly analysed, the main energetic simulation
previously explained has been run. Its main results are reported hereafter. Firstly, the
same chart as before is proposed in Figure 4.5 but looking at a smaller and denser part of
the solution space with respect to the previous one. Indeed, here the lines are smoother
due to the higher numbers of point to interpolate on. The best solutions, which lie on
the 2C line as stated before, lie around the 2-2.5 MWh nominal capacity mark, leading
to 4 to 5 MW in nominal power. This result is already close to the one proposed and
commissioned by NHOA in the end. Nevertheless, as costs have widely changed over the
years, it would be difficult to recreate the exact same economic conditions as the ones in
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2019 and thus the same optimal results.

Figure 4.5: Energetic mode, contour map.

Reported in Table 4.5 are the main result, where most of the simulations were not reported
for space reasons. They are averaged over the 10 years for each simulation, and selected
among all the other result data column that is logged from sMAPPER. The first three
columns represent the simulation characteristics, while the other ones represent the results.
Indeed, the most important column is the violations per year because, as aforementioned,
the NPV approach to determine the best solution is not a strong one as it relies on current
economic estimates. Instead, the amount of violations per minute, which should not
exceed the 0.1% of the total time, is a great metric. Indeed, the green rows represent those
cases. It is clear how increasing in capacity leads to better results, but it is interesting to
see that the first simulation able to cope with the 0.1% constraint has a nominal power
exactly the same as the one requested by the project. This shows how even the Energetic
simulation proves to be useful to assess the problem in rapidity.
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Simulation number Nominal energy [MWh] Nominal power [MW] Violations [min/year] Eq. cycles [cycles/year] Mean CP [-] DOD [-] PV produced DC [MWh] PV curtailed DC [MWh]
1 1 0.5 8314 134.4 0.246 0.660 57484.2 335.7
3 1 2 2794 310.2 0.803 0.810 57674.4 145.5
31 2 1 5685 107.5 0.253 0.595 57578.6 241.3
32 2 2 2762 152.6 0.423 0.595 57674.5 145.4
33 2 4 684 191.8 0.564 0.673 57731.9 88.0
48 2.5 5 373 159.8 0.479 0.657 57740.3 79.6
62 3 3 1348 118.0 0.344 0.530 57714.4 105.5
63 3 6 194 136.7 0.416 0.598 57744.4 75.5
78 3.5 7 98 119.6 0.366 0.600 57746.4 73.5
91 4 2 2723 76.4 0.220 0.473 57673.6 146.3
92 4 4 663 95.6 0.281 0.485 57732.4 87.5
93 4 8 50 105.7 0.327 0.621 57747.2 72.7
107 4.5 4.5 480 87.4 0.257 0.465 57737.3 82.6
108 4.5 9 27 95.3 0.293 0.616 57747.9 72.1
122 5 5 362 80.8 0.236 0.471 57740.9 79.0
123 5 10 12 86.4 0.266 0.567 57748.1 71.8

Table 4.5: Results averaged over the 10 years of the Energetic simulation.

Regarding the economic part, even though it is clear that everything relies on the violation
fee, it is interesting to see that the best solutions may not coincide with the ones with the
fewer minutes of violations per year. Indeed, the higher investment costs would not be
payed back by such projects. To better visualize this, the economic results are reported
in 4.6. The best case in terms of NPV cumulative after 10 years, is highlighted in yellow
on the last columns, and in fact does not coincide with a case compliant with the 0.1%
constraint. The remuneration, which depends almost only on the installed PV power
plant and the irradiation data, is pretty much constant, as the only losses in remuneration
come from the few hours of curtailment per year which amount to very little energy. On
the other hand, the violation cost can skyrocket when the BESS is not suitable for the
application, as seen in the first rows.

Simulation number Nominal energy [MWh] Nominal power [MW] Violations [min/year] Cost [$/kWh] Remuneration [$/year] Remuneration loss [$/year] Violation cost [$/year] NPV cumulative [$]
1 1 0.5 8314 430.4 $ 2,873,198 $ 14,007 $ 831,370 $ 8,210,888
3 1 2 2794 567.8 $ 2,882,072 $ 5,133 $ 279,360 $ 10,480,647
31 2 1 5685 430.4 $ 2,877,102 $ 10,103 $ 568,460 $ 8,917,909
32 2 2 2762 476.2 $ 2,881,573 $ 5,633 $ 276,220 $ 10,099,855
33 2 4 684 567.8 $ 2,884,159 $ 3,046 $ 68,400 $ 10,831,452
48 2.5 5 373 567.8 $ 2,884,261 $ 2,945 $ 37,300 $ 10,679,802
62 3 3 1348 476.2 $ 2,882,866 $ 4,340 $ 134,840 $ 10,231,002
63 3 6 194 567.8 $ 2,884,161 $ 3,045 $ 19,440 $ 10,471,251
78 3.5 7 98 567.8 $ 2,883,971 $ 3,235 $ 9,800 $ 10,225,246
91 4 2 2723 430.4 $ 2,880,475 $ 6,730 $ 272,280 $ 9,327,051
92 4 4 663 476.2 $ 2,883,140 $ 4,066 $ 66,320 $ 10,049,804
93 4 8 50 567.8 $ 2,883,730 $ 3,476 $ 4,950 $ 9,957,757
107 4.5 4.5 480 476.2 $ 2,883,084 $ 4,122 $ 48,010 $ 9,888,726
108 4.5 9 27 567.8 $ 2,883,482 $ 3,724 $ 2,650 $ 9,680,668
122 5 5 362 476.2 $ 2,882,963 $ 4,243 $ 36,150 $ 9,697,158
123 5 10 12 567.8 $ 2,883,221 $ 3,984 $ 1,170 $ 9,397,083

Table 4.6: Economic results averaged over the 10 years (except for the NPV cumulative)
of the Energetic simulation.

To further understand the impact of the violation cost, another simulation with the same
parameters and conditions was run, only changing the violation cost from 100 $

min
to 30 $

min
.

The comparison with the case presented above are reported in Figures 4.6a, 4.6b, 4.6c,
and 4.6d. The top two contour plots show how, intuitively, reducing the violation cost
reduces the space of optimal solutions and pushes the optimum towards smaller systems.
Instead, from the bottom two charts it is possible to see how even if the best solutions
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are similar in characteristics, the payback time increases drastically. This is due to the
lower difference in cash flow, which makes the investment less profitable.

(a) Base case, 100 $
min . (b) Reduced case, 30 $

min .

(c) Base case, 100 $
min , best solutions. (d) Reduced case, 30 $

min , best solutions.

Figure 4.6: Energetic mode, analysis on the impact of the violation cost.

To better understand how the PV smoothing algorithm works in the case study, it is pos-
sible to take a closer look to how the BESS works in detail and comparing the simulation
run 1 and 45 that represent two opposite solutions, one with 8450 minutes of violations
per year, while the other has 461 minutes. In Figures 4.7a and 4.7b the top plot does
not show any detailed information, if not for the red bands which represent a violation
event. The bottom one instead shows how the BESS works properly inside the SOC
management region as required. The batteries, which cycle almost once every 2 days in
one case and 3 in the other, have as mean CP the value of 0.2370 and 0.5221, which is
quite low, thus slowing down the cycling ageing. The DOD is also limited as well thanks
to the aforementioned SOC management strategy.

The second row, composed of Figures 4.7c and 4.7d, shows instead a more detailed weekly
zoom. This is helpful to address how the SOC varies during multiple days, as well as
assessing the impact of the auxiliaries which drain the battery during the night.

Lastly, in the third row composed of Figures 4.7e and 4.7f is showing a few minutes of
a day. Indeed, it is immediately clear the how the difference in installed power leads to
violation on the case on the left, while the one on the right smoothly allows the PV to keep
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injecting the power in the grid while not violating the ramp rate constraint. Furthermore,
the purple areas on the bars on the left indicate that power has been curtailed, and thus
a remuneration loss.

(a) Simulation 1, yearly plot. (b) Simulation 45, yearly plot.

(c) Simulation 1, weekly plot. (d) Simulation 45, weekly plot.

(e) Simulation 1, minutely plot. (f) Simulation 45, minutely plot.

Figure 4.7: Energetic mode, detailed analysis of the yearly, daily and minutely plot.

4.1.5. Engineered

The engineered method is, counter-intuitively, easier to setup as all the work is already
done in the background during the Initialize function of sMAPPER. In fact, the only
parameters to set are related to the filter, which in this case was disabled, the coupling
method, which is AC in this case study, and the same application-dependent parameters
as the energetic simulations, such as the PV inverter or HV skid efficiencies.



68 4| Case Study

Prior to the simulation, the space of explorable solutions has to be checked. In Figure 4.8
such space is shown. The first thing that can be spotted is that the size of the solution
exceeds in some cases the one required by the case study. This is because some Power
Island combinations, even in the minimum quantity, are designed with a high number of
containers and battery racks. Indeed, those simulations will perform poorly. The ones
which are expected to work at best are the ones on the left-bottom corner, and represent
also the ones with higher cost due to the lack of economies of scale and higher CP. It
needs to be reminded that the best solutions that were found in the Energetic mode, that
laid on the 2C line, are not available in the Engineered mode as the market has shifted
since then more towards 2h+ batteries for BESS applications.

Figure 4.8: Engineered Power Island combinations.

Regarding the costs, in the Engineered mode they should represent realistically the dis-
tribution that is to be expected in a real project. Figure 4.9 shows how different Power
Islands have different costs shapes. For instance, solutions with turn-key batteries would
allocate more resources to them, while in-house engineered products would share more
similar figures. The right-most solutions have a higher battery share due to their higher
base capacity, that reduces the impacts of fixed costs and conversion units.
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Figure 4.9: Engineered Power Island share of costs.

Subsequently, the simulation can be run which, in the end, it took ∼ 7000s to explore 52
candidates for 10 years, more than doubling the time with respect to the energetic one.
The solutions, as already anticipated by Figure 4.8, has many simulations which will be
oversized, and thus will not be reported as they are clearly poor solutions. The main
results are reported below in Figures 4.10 and 4.11. As for the Energetic case, the best
solutions are to be found in the smaller BESS sizes and at high CP rates. The contour
plot in Figure 4.10 shows a more erratic line in accordance to the non-homogeneous space
in the Engineered solutions. As before, the best solutions here are heavily influenced
by the violation cost, and running a sensitive analysis yielded the same results as the
Energetic one.
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Figure 4.10: Engineered mode, contour map.

Figure 4.11 shows a more realistic estimate of costs and sizes of different BESS s. Indeed, if
in future developments the Top-Up strategy will be implemented, this chart will become
even more significant, showing how a second investment mid-life influences the overall
cash flow and NPV.

Figure 4.11: Engineered mode, best solutions.

Regarding the yearly plots, the shape is pretty similar as the EMS is the same. In Figure
4.12 it is reported an example of one of the optimal simulation that meets the constraint
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of violation time under the 0.1%. Indeed, as the battery capacity is oversized, the amount
of cycles per year is very low at about 35. This is a clear sign of under-utilization of
the BESS and thus making a good argument to implement another service along the PV
smoothing which makes use of its high capacity. In fact it is not rare to couple services
like this one other ones which are energy intensive, such as Peak Shaving. This approach
would be the most profitable one, but also the most complex to implement in a simulation
framework. For this reason, the multi-application is one of the first future improvements
of sMAPPER.

Figure 4.12: Engineered mode, simulation 17, year 1, yearly plot.

It is interesting to note that as the years go by, the performances of the BESS improve in
terms of violation per year. As shown in Figure 4.13, the installed power does not fade,
while the PV power plant does, leaving to smaller absolute ramps which are compensated
by the BESS more easily. The capacity, which decreases with ageing, is not impactful
here due to the oversizing.
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Figure 4.13: Engineered mode, simulation 17, year 10, yearly plot.

The best and more significant results are reported in Table 4.7. It is interesting to see
that what would be defined as the best solution is the simulation 17 which has an installed
power of 5.2 MW, exactly the same as the one installed in 2019 in Sol de Insurgentes.
This combination, while being bigger in capacity, still retains the same performances while
having a lower cost compared to the other compliant candidates.

Simulation number Power Island Nominal energy [MWh] Nominal power [MW] Cost [$/kWh] Violations [min/year] Eq. cycles [cycles/year] Mean CP [-] DOD [-] PV produced DC [MWh] PV curtailed DC [MWh]
2 1 3 2.9 500.998 1428.000 107.9 0.3 0.5 57787.4 32.5
6 1 15 14.4 411.635 0.200 30.2 0.1 0.3 57819.9 0.0
9 1 8 7.2 411.732 77.800 50.5 0.2 0.4 57818.7 1.2
13 2 4 1.7 391.496 3244.800 72.4 0.2 0.5 57733.6 86.4
17 2 12 5.2 334.444 306.600 36.4 0.1 0.3 57814.6 5.3
22 2 9 3.6 321.021 812.100 42.4 0.1 0.4 57801.4 18.5

Table 4.7: Results averaged over the 10 years of the Engineered simulation.

Following the same reasoning as in the Energetic case, it is not a given that the best
solution will also be compliant to the 0.1% limit. Indeed, looking at Table 4.8, it is
clear how the highest NPV solution (highlighted in yellow) is not compliant, but rather
follow the strategy of smaller size as possible to achieve lower investment costs. It is
noteworthy to see that the remuneration loss does not decrease with bigger BESS s, but
rather increases. This is not due to the more curtailed energy as it is clear from Table
4.7, but rather from an higher auxiliary consumption related to the bigger BESS, which
leads to more "wasted" energy from the PV power plant.
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Simulation number Nominal energy [MWh] Nominal power [MW] Violations [min/year] Cost [$/kWh] Remuneration [$/year] Auxiliary consumption [MWh/year] Remuneration loss [$/year] Violation cost [$/year] NPV cumulative [$]
2 2.9436 2.880960151 1428 501.0 $ 2,857,081 34.98 $ 5,005 $ 142,800 $ 9,627,845
6 14.718 14.4 0 411.6 $ 2,853,027 140.24 $ 9,059 $ 20 $ 4,276,610
9 8.028 7.2 78 411.7 $ 2,855,776 88.40 $ 6,310 $ 7,780 $ 7,837,821
13 3.902545455 1.718774655 3245 391.5 $ 2,853,404 65.83 $ 8,682 $ 324,480 $ 8,742,893
17 11.70763636 5.156323964 307 334.4 $ 2,854,392 119.64 $ 7,693 $ 30,660 $ 6,915,071
22 8.780727273 3.6 812 321.0 $ 2,856,162 73.45 $ 5,924 $ 81,210 $ 8,128,075

Table 4.8: Economic results averaged over the 10 years (except for the NPV cumulative)
of the Engineered simulation.

Lastly, some more advanced analysis is available for the user if required for both simulation
modes in the form of charts, reported in Figure 4.14 and Figure 4.15. They concern both
the SOC distribution, the rest SOC, and the power distribution. Their focus is to analyze
in which conditions the BESS works throughout the year, allowing more insights regarding
the battery working regions, as well as checking on compliance on particular parameters.

More in detail, Figure 4.14 shows on the top the SOC distribution over the year, with
the y-axis representing the hours per year. The bars allow the user to have, at a glance, if
the SOC management strategy works properly, along with understanding if the battery is
not undersized and thus often fully discharged. The bottom plot shows instead the power
distribution. While it may seems at first that the plot is empty, the reality is that the
battery most of the time is either idle or working at very low power values, thus the single
tall bar at the 0 x-axis. To overcome this, a log plot is drawn inside showing how the peaks
coincide with some notable points: battery at idle at the 0 power, battery charging power
during the SOC management at ∼ −0.5MW (10% of installed power), and the two peaks
at the extremes that represent the moments in which the BESS works at its maximum
(thus representing also the cases in which the BESS cannot comply with the ramp rate).

Figure 4.14: Engineered mode, simulation 17, year 1, SOC and power distribution.
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On the other hand, Figure 4.15 reports data about the rest SOC. The top chart reports
a similar shape as the previously described one, as this represents the SOC distribution
indirectly. Thus, while it may not be directly useful, it comes in handy when assessing the
battery ageing, which rely also on the rest SOC time and value. Indeed, this chart gives
insights about this matter. The bottom chart reports the rest time, and in particular
its distribution. The x-axis represents the rest time (namely the number of consecutive
minutes in which the battery is idle), while the y-axis represents for how many hours per
year this behavior happens.

Figure 4.15: Engineered mode, simulation 17, year 1, rest SOC distribution.
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5| Conclusions and future

developments

Within this work, this presented. sMAPPER provides a state-of-the-art energy storage
model and combines it with the modularity of multiple topologies as well as the periphery
of an ESS. This paper summarizes the structure as well as the capabilities of sMAPPER.
Storage technology models based on current research for lithium-ion batteries are pre-
sented in detail. In addition, HVAC systems and containers models are depicted. Power
electronics are represented with AC-DC and DC-DC converters mapping the main losses
of power electronics within a storage system. Additionally, auxiliary components like MV
skid are considered. A standard use case like PV smoothing is discussed in this work. The
analysis is provided by technical and economic evaluations illustrated by KPI s. sMAP-
PER’s capabilities are demonstrated through the discussion of a case study mapped to
the applications of PV smoothing. It is demonstrated how different energy storage sys-
tem topologies as well as various performance indicators can be investigated and analyzed
with sMAPPER. In the future, more detailed performance and aging models for all types
of storage systems will be implemented. Investigations into other operational strategies
that correspond to nationally and globally recognized derivatives of application scenarios
are also possible.

5.1. Results

The results are very promising, producing an output that closely matches the sizing pro-
posed and built by NHOA in 2019 in Mexico. This shows how even a simpler approach,
the Energetic one, yield excellent results in line with the case study proposed within rea-
sonable simulation timeframes. The economic analysis, while not being robust enough
to evaluate it directly due to the confidentiality, gives nevertheless an insight of the best
cases. Other results have to be checked as well to ensure the compliance of the solu-
tions, such as the number of violations per year. Indeed, The capability of sMAPPER
to produce high-level analysis as well as minute per minute simulation plots allow the
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user to asses every aspect of the project in an accurate manner. Furthermore, the En-
gineered simulation produced even more realistic results, providing an optimal solution
with components and subsystems very similar to the one built in the study case back in
2019 despite the difference in battery technologies.

5.2. Future developments

Some aspects, which are not essential, were left out but nonetheless taken into account
when designing the use of the tool for the future. Hereafter some of them are discussed.
Among the many features that are meant to be implemented, sMAPPER is furthermore
intended to be used in combination with other internal simulation tools, such as the inter-
nal platform Modular Multi-Service Model (MMSM ), which could be called parametri-
cally through sMAPPER to explore the impact of different system architectures or set of
operating parameters (e.g., alternative service plans) on the overall system performance.
Hereafter some of them are discussed:

• Sensitive analysis: as of today, the sensitive analysis is possible only on the main
parameters such as installed capacity, installed power and PV DC peak power.
While these cover the main sensitive analysis that one would study, other interesting
parameters could be assessed to further improve the simulation. For instance, being
able to assess different ramp rate limits or PV degradation rates would allow to
understand how they impact the solution. Indeed, once a general method could be
established, any variable or parameter could be part of a sensitive analysis.

• Application: for the moment, only the PV smoothing (and the PFR, but not
reported in this thesis due to it being incomplete) is implemented. In the future, it
will be possible to add more algorithms such as peak shaving, which copes very well
with the other present services. In fact, one big improvement would be to implement
the possibility to use multi-applications in a single simulation. Indeed, this would
allow to make use of a BESS even better.

• Top-Up strategy: this technique is very important when it comes to planning over
the next 5 to 10 years. The BESS capacity fades over the years, and for this reason it
is usually oversized to account for this. Since the warranties in the contract impose
minimum capacities according to the different year, it usually happens that the best
compromise in time between oversizing more and revamping the power plant too
early is about 3 to 5 years. The trade-off comes from the fact that while (intuitively)
a bigger initial investment increases the payback time and return rate, revamping
comes with its challenges too. Indeed, it requires re-doing all the EPC. Also the land
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footprint plays an important role. Nevertheless, the most important aspect when
performing the Top-Up strategy is to decide whether to exploit the empty free racks
left when designing the BESS, or to install new containers. This decision is based
on many issues that come up due to logistics, spacing and designing. In particular,
to install new batteries in the same containers it is required first that all the battery
racks inside are transferred and split among other container, grouping them by the
same degradation state as this is mandatory. Then, the empty container has to
be filled with new battery racks that increase the overall capacity of the BESS.
Furthermore, as manufacturers and battery chemistries change, problems about
compatibility may arise.

• Stochasticity: since sMAPPER can work with applications such as PV smoothing
or PFR, the input data is usually given as it is, and all the simulations rely always on
the same numbers. The idea of introducing a controlled stochasticity environment
where the randomness is controlled by seeds to allow repeatability of the runs is
a valuable one. Indeed, it would make the simulations more robust to different
scenarios conditions that may not have arisen from the gathered data. This approach
needs some effort in order to be able to induce random variations, while keeping the
same shape of the original data.

• Simulation optimization: there are many ways to optimize the computational
time of the simulations. The first one would be to improve the code of each ap-
plication, as well as structure the workspace such that it can be accessed easily
by Matlab and thus reducing the overhead. Another interesting follow-up would
be to implement some heuristics that would spot during a simulation if the lat-
ter is a sub-optimal case, without needing to run the whole time horizon. While
this would reduce the number of results in the output, the speed would drastically
increase as usually many candidates from the different Power Islands are not the
right ones from the beginning. This will be especially crucial when implementing
more complex and advanced EMS strategies inside sMAPPER that will increase
the computational time even more.
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