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Abstract

The Computed tomography (CT) is used in a broad variety of applications nowa-

days. It is applied to inspect the content of an object without destruction, like

searching of dangerous items in airport’s public areas, or recognize cancer in the

human body.

Computed tomography plays a special role in medicine. Besides the detection of

cancer, it is used for the analysis of the organs inside the human body and in the

identification of the disease’s cause. The CT helps to determine the correct diagnosis

and save many human lives.

One of the main problem of CT is the insufficient quality of reconstructed images.

Typically, many systems use limitations during the scanning phase in order to speed

up the process. Therefore, some errors and artifacts may reduce the quality of

reconstructed images.

The aims of this research is to develop methods in order to reduce the noise

in tomographic images, which are obtained through limited range angle, exploiting

Deep learning technology. Considering tomographic acquisitions obtained in a lim-

ited range angle setup, it was possible to enhance the reconstruction by obtaining

results very close to the ones that could be obtained without angles measurement

restrictions. The effectiveness and endless customization of deep learning networks

leads to broadening the horizons of use.

In particular, in the literature, reconstruction denoising is obtained indepen-

dently considering each slice, besides in this work a multi slice approach is introduced

and compared to the single slice one. We have simulated the CT usage analyzing

the modern algorithms of reconstruction and apply them in our methods.
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Sommario

La Tomografia Computerizzata (TC) oggigiorno viene utilizzata in una vasta varietà

di applicazioni. Viene sfruttata per ispezionare il contenuto di un oggetto senza dis-

truggerlo, come la ricerca di materiale pericoloso nelle zone comuni degli aeroporti,

oppure nell’individuazione di tumori nel corpo umano.

La Tomografia Computerizzata gioca un ruolo speciale nella medicina. Oltre alla

individuazione dei tumori, viene utilizzata per l’analisi degli organi all’interno nel

corpo umano e nell’identificazione della causa del malessere. La TC ci aiuta nella

corretta determinazione della diagnosi e nel salvataggio di vite umane.

Uno dei maggiori problemi della Tomografia Computerizzata è l’insufficiente

qualità delle immagini ricostruite. Tipicamente, molti sistemi utilizzano delle lim-

itazioni durante la fase di scansione in modo da velocizzare il processo. Di con-

seguenza, alcuni errori ed artefatti compaiono nella ricostruzione riducendo le carat-

teristiche ricostruite.

Lo scopo di questa ricerca è quello di sviluppare metodi in modo da ridurre il ru-

more nelle immagini tomografiche, le quali sono ottenute attraverso angoli limitati,

sfruttando la tecnologia del Deep Learning. Considerando acquisizioni tomografiche

ottenute con una postazione ad angoli limitati è stato possibile migliorare le ri-

costruzioni ottenendo risultati molto simili alle immagini che possono essere ottenute

senza limitazioni negli angoli di misura. L’efficacia e l’infinita personalizzazione delle

reti di Deep Learning porta ad un appliamento degli orizzonti di utilizzo.

In particolare, nella letteratura, il denoising della ricostruzione è ottenuto in-

dipendentmente considerando ogni slice, in questo lavoro viene introdotta la trat-

tazione multislice e confrontata con il caso singola slice. Abbiamo simulato l’uso

della Tomografia Computerizzata per analizzare i moderni algortmi di ricostruzione

ed applicarli ai nostri metodi.
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Chapter 1

Introduction

The problem of inspecting the inaccessible inner content of variety of objects

without damaging them is one of the most interesting task that mankind had, and

still have to face. Although more than a hundred years have passed since the dis-

covery of X-rays, this scientific breakthrough is still considered one of the most

important events in medicine, which made it possible to transfer the process of

diagnosing a variety of diseases to a fundamentally new level. An X-ray is a pene-

trating form of high-energy electromagnetic radiation. It has a wavelength ranging

from 10 pm to 10 nm, corresponding to frequencies in the range of 30 PHz to 30

EHz and energies in the range of 124 eV to 124 keV. X-ray wavelengths are shorter

than UV rays and typically longer than gamma rays. For example in the fig. (1.1)

shown the electromagnetic spectrum.

Figure 1.1: Electromagnetic spectrum: different applications use different parts of the

X-ray spectrum.

The discovery of X-rays was a powerful impetus for the development of medicine

and industry. Based on X-ray research, the science of radiography was born, which



is engaged in diagnosing and curing human diseases. Modern applications of radio-

graphy include diagnostic and therapeutical medicine. In order to create an image

with conventional radiography, a beam of X-rays is produced by an X-ray generator

and is projected toward the object. A certain amount of X-rays is absorbed by

the object based on its density and structural composition. The X-rays that pass

through the object are captured behind the object by a detector. The generation

of two-dimensional images by this technique is called projectional radiography. In

the computed tomography scanning process, an X-ray source and its associated de-

tectors rotate around the subject, which move through the conical trajectory. Any

given point within the subject is crossed from many directions by many different

beams at different times. Information regarding the attenuation of these beams is

collated and subjected to computation to generate two-dimensional images in three

planes (axial, coronal, and sagittal), which can be further processed to produce a

three-dimensional image [62]. The discovery of X-rays is so significant and essential

nowadays, these rays are used in many areas of life. They are actively used in the

jewelry field to determine the authenticity of precious stones; in the art field, to

analyze artwork to determine its quality and originality. X-rays play an important

role in security issues because, with their help, it has become much easier to analyze

the contents of a large amount of luggage for weapons or explosives at client zones

and airports. Also, rays are used in different industries and science areas, so that

the discovery of Wilhelm Roentgen can deservedly be considered one of the most

significant achievements of all time in the field of physics.

1.1 Introduction of research work

The research work is based on improving the performance of computed tomog-

raphy by developing methods in order to enhance the quality of reconstruction.

Usually, an improvement of one of the performances leads to a decrease in other

characteristics or an increase in the cost of computed tomography. It is crucial to

observe the golden mean between improvement and the cost of the reconstruction

process.

Unlike a conventional X-ray which uses a fixed X-ray tube, a CT scanner uses a

motorized X-ray source that rotates around the circular opening of a toroid structure

called the gantry. CT scanners use particular digital X-ray detectors, which are

located directly opposite the X-ray source. As the X-rays leave the object, they are

picked up by the detectors and transmitted to a computer. Each time the X-ray

source completes one full rotation, the CT computer uses sophisticated mathematical

techniques to construct a 2D image slice of the object/patient. The thickness of the

tissue represented in each image slice can vary depending on the CT machine but

usually ranges from 1-10 mm. When a whole slice is completed, the image is stored,

and the motorized bed is moved forward incrementally into the gantry. The X-ray

scanning process is then repeated to produce another image slice. This process

continues until the desired number of slices is collected.
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The technology evolution leads to a new architecture called Translational com-

puted tomography (TCT) as a new low-end CT system, which can obtain the interior

image without destroying the scanned object by using the projection data which is

obtained from the detector. It utilizes translation to realize linear scanning, where

the X-ray source and the flat panel detector are placed face to face with an object

between them and are moved in opposite directions during the scanning process.

When the acquisition of data from the TCT is complete, the filtered back projec-

tion (FBP)-type algorithm can accurately reconstruct some high-quality images.

However, in some practical TCT applications, the obtained projection data of the

scanned object are usually incomplete, in order to reduce the scan time, to decrease

the X-ray radiation, or to avoid the inconsistency of the detector for the large angle

scanning in the translational scanning scheme. In this circumstance, some artifacts

are presented in the reconstruction by algebraic reconstruction algorithms, such as

the simultaneous algebraic reconstruction technique (SART) and the algebraic re-

construction technique (ART), which have a better denoising effect than the FBP

method when the projection data are complete. However, if the available projection

data are incomplete, these methods cannot obtain a satisfactory reconstructed im-

age. The ideal method of obtaining tomography data consists of a complete rotation

of the beam source and detectors. For the motivation seen before, the use of limited

range angle rotation as a trade-off for the measurement is deployed. The nature

of the proposed method degrades the final image quality due to a limitation of the

angle. So, there were developed different solutions for resolving these restrictions,

like a more optimal reconstruction algorithm, making different assumptions over

the methods considered before. In order to improve the image quality at the data

processing phase from computed tomography and maintain the same kind of algo-

rithms, deep learning technology was applied, which is a class of machine learning

algorithms that uses multiple layers to extract high-level functions from raw input

data progressively. In our assumptions was applied a U-Net architecture in deep

learning phase, which is a convolutional neural network (CNN) designed to segment

biomedical images. In work, there are two methods of denoising: based on single

image improvement and multislice array of images which represents the 3d case. For

the multislice method, there are used iterative computed tomography reconstruc-

tion applied to a bunch of consecutive images. Combining the approaches of limited

angle computed tomography and deep learning improvement of reconstruction, we

concluded some results of research work. This thesis is divided into:

Chapter 2 - State of the art

In this chapter introduced the brief history of CT, generations of tomographic

scanner and reconstruction algorithms of CT from a mathematical point of view.

Since a huge number of industries are using deep learning to leverage its benefits,

also here explained the deep learning and neural network. Deep learning is used in

various industries such as electronics, automated driving and medical research. For

example, medical researchers are using it to detect cancer cells.
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Basically, deep learning process consists of two key phases — training and in-

ferring. The training phase can be considered a process of labeling vast amounts

of data and identifying their matching characteristics. Here, the system compares

those characteristics and memorizes them to correct conclusions when it encounters

similar data next time. During the inferring phase, the model makes conclusions and

labels unexposed data with the help of the knowledge it gained previously. There are

three most popular ways to perform object classification: transfer learning, training

from scratch and feature extraction.

Chapter 3 - Data generation by computed tomography simulation

This chapter describes the data simulation. Basically in work the data gen-

eration procedure is described and discussed highlighting how limited angle range

acquisitions are simulated starting from complete reconstructions assumed as ground

truth. Here is the goal to regenerate data as reconstruction in simulation. Apply the

various modern algorithms of reconstructions and prepare data set for further data

processing. The ASTRA toolbox was chosen as a tool for computed tomography

simulation.

Chapter 4 - Limited range angle CT reconstruction

This chapter describes the method proposed to enhance and denoise acquisitions

which obtained using a limited angle range setting. In particular three different

limited angle ranges are considered [0-90], [0-120], [0-150] by proposing a CNN model

for each one of them and reporting the training procedure. A multislice denoising

approach is also introduced describing its difference with a single slice denoising

method.

Chapter 5 - Results

This chapter represents the assessment of reconstruction data showing the result

of two different methods based on the usage. The first one based on single image

denoising by applying CNN and the second one- multiple slice array, considering in

this way a 3d case.

Chapter 6 - Conclusions

In the final part of this work, there is a discussion of the results obtained in the

overall process, highlight the performance and the improvement achieved from the

reconstruction phase. There is also a discussion of the future directions of research

work.

This work has been developed from remote deploy external datasets, from which

derived the measurement, and used an Amazon AWS Instance with these charac-

teristics: AMD EPYC 7000, 16 vCpus, and 64 Gb RAM.
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Chapter 2

State of the Art

The word tomography derived from Ancient Greek composed by tomos, ”slice”

and grapho, ”to describe”, is used to represent the technic developed in the 30s by

the Italian radiologist, Alessandro Vallebona [49]. Applying the projective geometry

to a circular movement of an X-ray tube and a susceptible film around a patient, an

image of a single body part could be obtained.

The evolution of the technologies and the development of the first calculators

allowed Sir Godfrey Hounsfield, an English engineer, and Allan Cormack, a Sud

African physicist, in 1967 to build the first Computed Axial Tomography. Conse-

quently, four years later, in 1971, the first commercial CT scan was settled in the

Atkinson Morley Hospital of Wimbledon. Initially, the system was designed only to

analyze the human skull with a precision of one degree and a maximum rotation,

around the target, of 180◦. They obtaining 160 images in a single scan for every

angle position in a range of time-variable between 5 or 10 minutes. Once the all

scanning operation was completed they obtained 28800 pictures. These snapshots

were then elaborated by a calculator using algebraic reconstruction algorithms, and

after two hours and thirty minutes later, provides the brain’s final image [4]. After

all these operations were obtained the first CT scan on a patient with a suspected

brain tumor, the surgeon, after doing the operation, declared: ”It looks exactly like

the picture.” [16].

The researches developed by Godfrey Hounsfield at the Central Research Labora-

tories of Electric and Musical Industries were awarded the Nobel Prize in Physiology

or Medicine in 1979 [35, 39].

After the initial excitement and the firsts discoveries made by the CT scans, an

American radiologist, Ralph Alfidi, had the intuition to apply the concept of tomog-

raphy not only on the human skull but expand it in other body parts. With the

approval of the pioneer Sir Godfrey Hounsfield, he started the researches that led to

the first abdomen CT scan [55].

The consequent interest of various corporates, like Pfizer and Siemens [21], and

the continuous calculator’s development brought an exponential growth of CT scans

in terms of revelations more precise and detailed, decreasing the time of operations
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and technique less intrusive for the human being. With all these upgrades was

possible to start scanning in various body zones to analyze multiple concerns like

cardiovascular issues, fractures and bone injuries, potential internal damages, tumor

detection, and pneumatological analysis.

The modern scanners are based on Hounsfield’s fundamentals, but they use different

technology. The union of the CT and the contemporary innovation in the fields of

rendering and post-production allows us to reach an incredible level of details and

quality of the final image, moving on to 3D reconstructions [43]. The future of

CT appears to have a strong connection with the field of Artificial Intelligence.

Recent studies have shown how well-designed equipment allows finding neurological

problems in less than 1.2 seconds, utilizes a neural network trained with 37000

different scans [47].

Moreover, there are studies of 2020 based on classification and diagnosis of pneu-

matological problems due to the presence of Sars-CoV-2 [41, 22]. This improvement

in the recognition process guarantees the quickest response in such a way to antici-

pate the urgent’s cases and having better prevention.

In the last few years the CT is used in different areas like astronomy [15], geophys-

ical imaging [17], industrial imaging [9] and also in gaming area based on discrete

tomography [12, 56]. Our interest is to see the CT industrial scan application where

is present an exponential growth because it can verify the quality of a product and

seek incongruency points between the project and the final product. In the next

chapters, the industrial application and the analysis process used in the recognition

processes will be described.

2.1 Tomographic scanner’s generations

First generation. The first generation of CT scan was composed of a single

X-ray tube with a pencil beam and a single small detector, one in front of each other.

In this way, it possible to acquire only a single slice of the part. The acquisition

was achieved with a translation of the two elements and then a rotation movement

for the acquisition at different angles. In this generation, there was the physical

movement of the source and the detector, the main problem of this generation is the

acquisition time for every slice.

Second generation. The source produces a narrow fan beam with an angle

of 10◦, the detector is composed of a linear array with 30 elements. This leads to

a better acquisition time but, due to the small angle’s aperture of the beam, that

forces to have the same movement of the first generation, there is anyway a long

acquisition’s time. Moreover, the narrow beam introduces the scatter’s problem that

decreases the image’s quality.

Third generation. This generation was created with the goal to keep an ac-

quisition’s time under 20 seconds in order to reduce the artifacts created by the
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(a) First generation (b) Second generation

Fig. 2.1: Roto-translation scanner

(a) Third generation (b) Fourth generation

Fig. 2.2: Rotation scanner

breath or the movement of the patient. In this generation, there is a wide fan beam

angle, with a value between 40◦ and 60◦. For this reason, there were deployed wider

detectors and the source rotates jointly with the detector removing the translation

movement, in this way it can produce a faster acquisition. The main drawback of

this generation is the creation of ring artifacts due to the large number of detectors

and the lack of calibration that was often present between the detectors.

Fourth generation. Developed to mitigate the ring artifacts, they are com-

posed of a detector that rotates around the patient and the detector is in a stationary

position behind the detector in order to maintain the calibration of the detectors.

There are a great number of detectors 5000 and the source can be placed inside or

outside the detector’s circle, in the second case, the detector’s circle must be tilted

in order to have a good measurement from only the detector in front of it.
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The newest generation of scanner use different technologies like helical move-

ment and multiple detector array. Providing a great improvement in terms of ac-

quired information, in acquisition’s time, and in terms of image’s quality. In the

previous generations, there were different types of images because they are not on a

planar section and the final output needs to be computed by a much more sophisti-

cated reconstruction process [13].

2.2 Introducing Formula

A CT scan is composed of an X-ray source and an X-ray detector, these two

elements rotate around the object making a series of measurements from different

angles. The source creates a photon’s beam that impacts the object; the detector

placed behind the target detects the number of photons that pass throughout. In

this way, are obtained information about the item by exploiting the various mea-

surements’ overlapping and achieving the object in 2D.

When all the data are acquired, they are processed using one of the many to-

mographic reconstruction algorithms available; providing a series of cross-sectional

images and then create a 3D reconstruction. Every pixel of the output images shows

the radio-density of a specific point, exploiting the attenuation law.

For a better understanding, considering the intensity instead of the number of

photons; from quantum mechanics, can be derived the relationship between photons

and intensity since the Electromagnetic wave’s intensity is equal to the photon’s flux

flows through a surface S in a time, ∆t.

E = hf → I =
E

S∆t
(2.1)

where:

• E : energy of photon;

• I : EM wave’s intensity;

• h: Plack’s constant;

• f : EM wave’s frequency;

• S : surface of interest

The intensity of an X-ray beam over the time, I(t), can be described as follows:

I(t) = I0 e
−µt (2.2)

Where:

• I0: Initial intensity;

• µ: Attenuation coefficient which depends from the density ρ and the energy

E;

17



• t: Time;

Note that the intensity has a negative exponential decrease and depends on the

material nature. In addition, can be observed a higher attenuation if there is a

material with a high atomic number or, if the X-ray beam has a low energy E or if

it travels in material with a greater thickness.

For this reason, the pixels in the final output images describe different bright-

ness values, dark pixels represent minimum attenuation; otherwise, brighter pixels

describe greater attenuation values. The projection of an object is made up of a

set of line integrals; these represent the total attenuation of the beam that moves

throughout the object. The collection of different measurements taken at different

angles θ is called sinogram and collects all the attenuation coefficients.

For the reconstruction must be considered the Projection slice theorem defined in

2.2.1.

Definition 2.2.1 (Projection slice theorem) The Projection-slice theorem, central

slice theorem, or Fourier slice theorem in two dimensions states that the results of

the following two calculations are equal:

• Take a two-dimensional function f(r), project (e.g., using the Radon transform)

it onto a (one-dimensional) line, and do a Fourier transform of that projection.

• Take that same function, but do a two-dimensional Fourier transform first,

and then slice it through its origin, which is parallel to the projection line.

In operator terms, if

• F1 and F2 are the 1- and 2-dimensional Fourier transform operators mentioned

above,

• P1 is the projection operator (which projects a 2-D function onto a 1-D line),

• S1 is a slice operator (which extracts a 1-D central slice from a function),

then: F1P1 = S1F2

Considering (2.2), the variable µ(x, y) can be seen as a distribution of the atten-

uation coefficient and making our assumption on a series of parallel rays at position

r with angle θ, so:

I(t) = I0 exp

(
−
∫
µ(x, y) dS

)
(2.3)

The total attenuation p of a ray in position r with an angle of projection θ is

pθ(r) = ln

(
I

I0

)
= −

∫
µ(x, y) dS (2.4)

Considering the coordinate system in 2.3 the value of r can be derived in every

point (x,y) given the projection angle θ exploiting the trigonometric function:

r = x cos θ + y sin θ (2.5)
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Rearranging the equation (2.4) as follow:

pθ(r) =

∫∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − r)dxdy (2.6)

The (2.6) is called Radon Transform or sinogram of the 2D object, where:

• f(x,y): represent the object µ(x, y), specifically the distribution of the item in

the 2D space;

• δ(): Dirac’s delta;

Fig. 2.3: Parallel beam geometry utilized in tomography and tomographic reconstruction

Starting from the sinogram, the target image’s reconstruction can de done ap-

plying 2.2.1 that correlate the Radon transform (2.6) with the Fourier transform

obtaining:

Pθ =

∫∫ ∞
−∞

f(x, y)exp[−jω(x cos θ + y sin θ)]dxdy = F (Ω1,Ω2) (2.7)

Where: Ω1 = (ω cos θ); Ω2 = (ω sin θ).

The result Pθ in (2.7) is a slice of the 2D Fourier transform of f(x,y) at angle θ.

Exploiting the Inverse Fourier Transform the Inverse Radon Trasform can easily

derived:

f(x, y) =
1

2π

∫ π

0
gθ(x cos θ + y sin θ)dθ (2.8)

Where: gθ(x cos θ + y sin θ) is the derivative of the Hilbert transform of pθ(r)

Definition 2.2.2 (Hilbert Transform) The Hilbert transform is a linear operator

which allows the application of function space on another function space, defined on

a general signal x(t) as:

x̂(t) ≡ H{x(t)} = x(t) ∗ hH(t) =

∫ ∞
−∞

x(τ)hH(t− τ)dτ =
1

π

∫ ∞
−∞

x(τ)

(t− τ)
dτ (2.9)
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Theoretically, the Inverse Radon transform can produce the original image. The

Projection-slice theorem declares that if there are an infinite number of projections

taken at an infinite number of angles, the original object’s reconstruction can be

perfectly done.

However, practically, cannot be done infinite measurements, there is a physical

limit. Assuming f(x,y) had a diameter d and considering a desired resolution Rs,

the number of projection N is limited by the general indication:

N >
πd

Rs
(2.10)

2.3 Reconstruction Algorithms

As a result of the lower bound present in (2.10), there are some practical algo-

rithms based on Radon Transform, statistical knowledge of data acquisition, and

geometry of the system, useful for the reconstruction of a 3D object starting on its

projections.

2.3.1 Fourier-Domain Reconstruction Algorithm

Starting from (2.2.1) there is a simple way to obtain the reconstruction. Con-

sidering the projection of the object at different angles θ1,. . . ,θn. Performing the

Fourier Transform for each angle are obtained the 2D Fourier Transform of the ob-

ject function, F(u,v), on n radial lines over the polar grid. Ideally, there are infinite

projections, and every information in frequency could be known using the Inverse

Fourier Transform, obtaining the original object function f(x,y). Practically, as has

been said, there are a finite number of projections, so the F(u,v) is composed of a

limited number of samples and, consequently, a restricted number of radial lines in

the polar grid. The lacking information needs to be filled using the interpolation,

from the radial points to the points on a cartesian grid. After use of Inverse Fourier

Transform for obtaining the reconstruction. This limit causes artifacts in the recon-

structed object and is subject to aliasing because the function object, f(x,y), is not

band-limited. Reconstruction performance can improve by modifying the scatter-

ing of the information in the polar grid, improving the interpolation’s effectiveness;

however, this kind of algorithm produces noisy outputs by nature.

2.3.2 Back Projection Algorithm

The interpolation reconstructions were derived from the Project Slice Theorem,

(2.2.1). The Back Projection Algorithm can be similarly derived by the discretized

form of the Radon’s inversion formula, (2.6), these algorithms are widely used, the

main feature is the possibility to work completely in the spatial domain. Assuming

different angles of projections θ1,. . . ,θN the (2.6) can be sampled as follow:

f(x, y) =
1

2π

N−1∑
i=0

∆θigθi(x cos θi + y sin θi) (2.11)
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where

gθi(t) = pθi(t) ∗ k(t) (2.12)

With:

• ∆θi, is the angular spacing between the projections;

• k(t), is the radon kernel with F{k(t)} =| ω |;

Passing all the projection through a l-D filter with an impulsive response k(t) and

frequency reponse | ω |, the output’s filter is (2.12). The signal in (2.11) is interpreted

as a 2D signal that is filtered in x̂ variable and uniform in ŷ variable starting from

a 1D function to obtain a 2D one, this operation is called back-projection.

The function gθi(x cos θi+y sin θi) is obtained from gθi(t) by back-projecting that

function in the ŷ direction. Since the orientation of the (x̂, ŷ) coordinate system is

different for each projection angle, each of the back-projected, filtered projections

will have a different orientation [7]. Implementing this algorithm creates two main

problems:

1. The filter k(t) does not have DC gain, so the mean gray level in the recon-

struction is zero. Adding a DC bias can resolve this issue.

2. The choice of the projection filter k(t) is crucial since the filter gain increases

with the frequency, the high-frequency noise is amplified. There needs to select

a filter with a linear response and, out of a cut-off frequency, having a response

equal to zero.

The FBP method is widely used for computational simplicity, the data from each

view is convoluted and backprojected independently from the other views and this

characteristic permits the FBP to be the standard reconstruction method for the

CT scan.

2.3.3 Iterative Reconstruction Algorithm

In the first implementations of CT in the late 1960s, an Iterative Reconstruction

(IR) algorithm was adopted. Since, using IR, the limited computing power of the

time required up to 45 minutes to compute the reconstruction of a single slice,

the FBP method, see (2.3.2), was introduced and adopted instead of reducing the

single slice reconstruction time to just 30 seconds. With the exponential technology

evolution in the lasts few decades, the IR method came back in the spotlight. This

comeback is due to two fundamental problem that afflicts the FBP reconstruction:

1. The high dose of X-ray, required for the process that creates side effects for

lengthy exposition.

2. The high noise present in the final image. This depends on the general scenario,

for example, data acquisition with reduced tube output or CT imaging of obese

patients is often compromised by high image noise; high-density structures,
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Fig. 2.4: IR algorithm steps, in input there is the comparison between artificial data and the

measured data, in output the final image

such as calcifications or stents, result in blooming artifacts; metallic implants

or bone structures might lead to severe streak artifacts

FBP can produce a high spatial resolution or a high contrast resolution. The IR

technique can achieve the two requirements with a lower dose of X-ray, and for this

reason, this method was adopted again [14].

All the IR algorithms are based on three fundamental steps which are iteratively

repeated. In the first step, there is the initialization process given by a priori in-

formation provided, for example, by a standard FBP reconstruction or an empty

image, in this way the artificial raw data are obtained. In the second step, the arti-

ficial raw data, are compared with the real measured data; their difference is useful

for understanding the error level. In the last step, the decision occurs. If the error

level or, iteration’s number is satisfied, the final output is provided. Otherwise, if

the requirements are not satisfied, after the comparison, a back projection and then

another forward projection is performed, in this way is obtained the updated sino-

gram, and the loop restart. [5] In figure, 2.4 there is the graphical representation of

the algorithm’s loop.

The next pages illustrate the various iterative reconstruction methods.

Algebraic reconstruction

The Algebraic Reconstruction Technique (ART), is the simplest iterative method,

based on Kaczmarz’s method [44], where the cross-section can be calculated by

resolving the system of linear equation A~x = ~b in a iterative way where:

• A is the system m x n matrix used to generate the raw data, it contains the
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weight of every pixel in the projection. The weight indicates the pixel’s value

in a particular ray;

• x represents a column vector which contains the values of all the pixels in the

output image

• b is a column vector where the results of all projections for every ray per angle

are stored. The projection at a given angle is the sum of non-overlapping,

equally wide rays covering the figure

Given the matrix A and the vector b ∈ R or C, the ART and consequentelly

the Kaczmarz’s method produce an approximation for the solution of the linear

equation’s system for k = 0,1,. . . as follows:

xk+1 = xk + λk
bi − 〈ai, xk〉
‖ai‖2

āi (2.13)

The equation (2.13) is characterized by:

• i = k mod m+1;

• ai is the i-th row of matrix A;

• bi is the i-th component of vector b;

• λk is a relaxation parameter with range 0 < λk ≤ 1, used to slow the system’s

convergence. This slow down the computation time but improves the Signal-

to-Noise Ratio. This value can be reduced each iterative step.

• āi denotes complex conjugation of ai

Every single entry of matrix A corresponds to a single ray, starting from the

source, passing through the object volume, and arriving at the detector,which is the

same idea of the integral’s line of the attenuation coefficient.

The ART method is simple: Every density is spread over the reconstructed

space, each of them is modified after each iteration, changing the grayness of the

pixel on the intersections of the rays in order to make the ray sum correspond to

the measured projection [45].

The quality of the ART algorithm is limited due to the correspondence between

one pixel and one ray. It creates a high noise level due to the multiple ray’s crossing

on one pixel that produces a discrepancy every time the pixel grid’s upgrade occurs

after one ray.

To solve this problem the update of the pixel grid is done after going through all

the equations, after all the iteration the pixel value’s calculating are changed with

the average of every value computed for that specific pixel.

This solution is called Simultaneous Iterative Reconstruction Technique (SIRT),

developed for the medical’s field it not have a large application due to the long time

taken for create the reconstructed image.
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For this reason, the Simultaneous Algebraic Reconstruction Technique (SART),

was developed in 1984 by Anders Andersen and Avinash Kak [3], it generates a

good reconstruction in one iteration with better quality withrespect to the ART

and SIRT methods, due to this improvement, a lot of different configuration was

developed with implementation on parallel processing structures.

The pixel update in the SART method is performed after the computation of

the whole projection at a specific angle θ. In this way, the projection’s error is

compensated over all the rays in a certain projection. In such a way, there is a huge

improvement because only one iteration is needed for obtaining a good reconstruc-

tion in comparison to the ART, which needs more iteration, and of the SIRT that

it is much slower [46].

Implementation of SIRT The implementation, as discussed before, is de-

rived from the ART, the difference is in the pixel’s update made after a whole

iteration in the SIRT, referring to (2.13) ca be derived the equation for the SIRT:

xk+1
j = xkj + λ

∑
bi∈B

bi −
∑N

n=1 ain · xkn∑N
n=1 ain

· aij∑
bi∈B

aij
(2.14)

In the (2.14) can be seen clearly the difference between SIRT and ART, it require

the computing of nested loops in the numerator and in the denominator over all the

B space before updating the pixel, this is not acceptable because the computational

time is very large

Implementation of SART As in the ART,the scope is to guess the pixel’s

initial value and modify it until the correct one is reached. The difference respect

the ART and the SIRT is the calculation’s space. In the SART, the pixel’s update

is doing taken all the equation over one angle, the order of the angle has great

importance choose random angles, can create an unstable reconstruction.

xk+1
j = xkj + λ

∑
bi∈Bϕ

bi −
∑N

n=1 ain · xkn∑N
n=1 ain

· aij∑
bi∈Bϕ

aij
(2.15)

2.3.4 Fan-Beam Reconstruction

To this point, the projections are considered as a set of line’s integral making

the calculations using integrals over straight lines, this means there is a collimated

beam from the source. In a practice view, obtain collimated beams means increasing

the time exposure for acquiring a long collection of data, this procedure creates a

motion artifacts.

The solution used in fig. (2.5) is a non collimated Fan Beam, it is an useful

approximation. In this way, the projection can still be modeled over straight lines

but the parallelism is lost.
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Using a fan-beam instead of a parallel beam, creates some reconstruction issues.

The fan-beam needs a range of 360◦ angles for a complete reconstruction and the

project slice theorem (2.2.1) can not be directly applied. Some arrangements in the

(2.11) are needed, changing the variables with the Jacobian operator introducing

differential coefficients, to modify the reference system.

Fig. 2.5: General setup of a CT scanner

Considering the setting in fig. (2.6) there is a density function provided by

Randon’s integral [38]:

f(r, φ) =
1

4π2

∫ 2π

0

∫ ∞
−∞

(−1

t
)
∂

∂l
p(l, θ)dldθ (2.16)

where, f(r, φ) is the density with polar coordinates (r, φ), t is the perpendicoular

distance between the point and the reference ray, p(l, θ) is the density integral w.r.t

vertical axis l with angle θ Applying the Jacobian operator to the (2.16) and making

some arrangement:

f(r, φ) =
1

4π2

∫
g(ε′, η)

∂θ

∂η
dη (2.17)

g(ε′, η) = −
∫

1

l(ε)− l(ε′)
∂

∂ε
p(ε, η)dε (2.18)

The (2.18) is the integral form of the reconstruction considering the distance

difference, l(ε)− l(ε′), between the reference ray from the origin in the two reference

systems.

In these assumptions is considered a continuous model, in the real case can not

be produced an infinite number of X-rays, also the detector’s number is finite. A

discrete model is useful for the computation. Considering from (2.17)-(2.18) the

approximation:

f(r, φ) w
1

4π2

∑
j

gj(ε
′)δθj (2.19)
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Fig. 2.6: Geometric approach of an incident ray

gi′j = −
∑
j

(pij − p(i−1)j)
(li − l′i′)

(2.20)

In the (2.19),(2.20), are introduced:

• δθj =
(θj+1 − θj−1)

2
, is angular interval associated with the jth projection;

• l′i′ =
(li + li+1)

2
, is the centre of the i-th beam;

• pij , is the density integral obtained form the i-th detector in the j-th projection.

In fig.(2.7(a)) are shown the discreate representation of the detector and the incident

beams.

For the generation of the density function f(r, φ), must be found the value of

gj(ε
′) making an interpolation operation over the discrete set {gi′,j}.

The discrete set {gi′,j} is achieved from the sequence {pi,j} by a linear operator,

this can be assumed as a convolution problem, considering a space-variant filter with

coefficients that depends on the width of the detector. In this way we can relate the

FBP obtaining the filter function Fk.
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(a) Discrete fan beam (b) Treatise of a single ray

Fig. 2.7: Details of the detector and incident beams

Using the Jacobian operator implies a change also in the distances and angles

variables used to characterize the position between the point of interest and the

reference ray.

The calculations for the change of variables are not trivial. By making some

arrangements is possible to create a situation where the desired density function

depends only on geometric variables with relate the distances and the angles between

the origin and the reference ray, see fig.(2.7(a)). The discrete approximation is:

f(r, φ) w
1

4π2

∑
j

gj(λ
′)

D2

D + r sin(βj − φ)
(2.21)

gi′j =
∑
j

Fi−i′
D√

D2 + λ2
Pijδλ (2.22)

With:

• λ′ = D tanα′, is the sampled value of the distance between the reference ray

and the origin;

• pij , is the projection of the i-th ray in the j-th fan;

• δλ, is the fixed interval between the intersection of the ray with the line λ

• δβj =
βj+1 − βj−1

2
, is the angolar interval associated with a specific fan.

• Fi−i′ , is the sampled version of the filter that contains geometrical coefficients

which depends only from the difference between two ray.

The last step is the interpolation to obtain gj(λ
′) from the set gi′j . Sampling N

rays uniformly along a segment of length L, the intersection’s interval is:

δλ =
L

N − 1
(2.23)
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The ith ray corresponds to:

λi = −L
2

+ iδλ (2.24)

Consequently, gj(λ
′) is obtained by interpolation from gi′j and g(i′+1)j where:

i′ =
⌊(λ′ + L

2 )

δλ

⌋
(2.25)

In practice, a fixed array of detectors is deployed, placed behind the object in

the same circumference of the source. All the previous assumptions are now made

concerning the angle because the center’s angle is two times the angle at the source

so there is an equal angular space between source and detectors [33]. The previous

set of equation, (2.21) and (2.22) are modified:

f(r, φ) w
1

4π2

∑
j

gj(α
′)

1

r2 +D2 + 2rD sin(βj − φ)
δβj (2.26)

gi′j =
∑
j

Fi−i′D cosαipijδα (2.27)

Recalling the previous steps, the interpolation’s computation is required based

now on the angle α angle, considering a sampling of N rays over an arc of angle A:

δα =
A

N − 1
(2.28)

So, the i-th ray corresponds to:

αi = −A
2

+ iδα (2.29)

Consequently, gj(α
′) is obtained by interpolation from gi′j and g(i′+1)j where:

i′ =
⌊(α′ + A

2 )

δα

⌋
(2.30)

The equations above can be seen as a pre-multiplication of the ray by D cosαi
followed by a convolution and another multiplication by:

1

K2
=

1

r2 +D2 + 2rD sin(βj − φ)
(2.31)

In the calculations made in this last section, a linear operator is used and not

all the geometry lead to this result. However, what was seen, can be adapted and

used for an arbitrary Fan-beam geometry [19].

28



2.4 Deep learning

Deep Learning(DL) is a subfield of Artificial Intelligence that is nowadays used

as a synonym of Neural Networks. This particular technique was conceive inspired

by neurobiology, in 1944, by Warren McCullough and Walter Pitts, in University of

Chicago. Using a combination of algorithms and mathematics, they proposed the

McCulloch-Pitts Neuron Model [30], also known as the linear threshold gate model

that can mimic human thought processes and it is still the standard for all the ap-

plications.

Fig. 2.8: McCulloch-Pitts model

Based on the neuron’s function, this particular model takes some binary inputs

and produces a single binary output related to the threshold’s value. In 1957, thanks

to the computational improvement and the new medicine’s research of the brain’s

neurons, the psychologist Frank Rosenblatt designed the Perceptron model, a major

improvement over the MCP neuron model [40].

Rosenblatt demonstrates that artificial neurons can learn from data; he came

up with a supervised learning algorithm for this modified MCP neuron model that

enabled the artificial neuron to figure out the correct weights directly from training

data by itself.

Rosenblatt perceptron is a binary single neuron model. The inputs integration

is implemented by adding the weighted inputs with fixed weights obtained during

the training stage if the result of this addition is larger than a given threshold θ, the

neuron fires.

When the neuron fires, its output is set to 1. Otherwise, it is set to 0.

In the 60s, Alexey Ivakhnenko, a soviet mathematician, created the first working

deep learning network based on a set of algorithms that are settled the foundation of

this particular branch of computer science. He developed the Group Method of Data

Handling [23]. GMDH is used in data mining, knowledge discovery, prediction, com-

plex systems modeling, optimization, and pattern recognition. GMDH algorithms

are characterized by an inductive procedure that performs sorting-out of gradually

complicated polynomial models and selects the best solution through the external

29



Fig. 2.9: Perceptron model

criterion.

In 1971 Ivakhnenko and his team, using the GMDH, were able to create an 8-

layer deep network, and they successfully demonstrated the learning process in a

computer identification system called Alpha [2].

In the same year, Henry J. Kelley, a Professor of Aerospace and Ocean Engineer-

ing at the Virginia Polytechnic Institute, derives the basis for the Back Propagation

Model where the error is used to train the network efficiently and allow the neurons

to learn and update their decision based on it [25].

Another forerunner in the deep learning history is Kunihiko Fukushima, a Japanese

computer scientist. In late 1979, he creates an ANN called neocognitron used for

handwritten character recognition and other pattern recognition tasks and served

as the inspiration for convolutional neural networks [10].

He creates this cascade structure using two different layers, called S-Cell and C-

Cell, alternately arranged in the hierarchical network. These cells resemble human

brain-behavior; the S-Cells work like cells in the primary visual cortex useful for

feature extraction. The features extracted by S-cells are determined during the

learning process. Otherwise, C-cells resemble the visual cortex’s complex cells and

allow positional errors in the features. C-cells’ input connections, which come from

the preceding layer’s S-cells, are fixed and invariable. Each C-cell receives excitatory

input connections from a group of S-cells that extract the same feature but from

slightly different positions.

The recognition is obtained by combining all the local and global features ex-

tracted from the cells; in the lower stages, the local features are extracted, i.e., edges

or lines in particular orientations; in the higher stages, the global features are con-

sidered. The specific network’s design allowed the computer the way to recognize

visual patterns [11]. Starting from this fundamental architecture, an acceleration in

this field is possible thanks to the backpropagation and better CPUs and GPUs that

allow the DL to resolve the difficult problem and attract the attention of everyone

for its versatility in every kind of field.
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2.4.1 Neural Network

The main goal of DL is to resolve problems finding automatically a solution.

During a training phase, the so-called training data set is preprocessed and mean-

ingful features are extracted. Based on the feature vector x ∈ Rn the classifier has

to predict the class y, estimated by:

ŷ = f̂(x) (2.32)

The classifier uses a specific parameters vector θ estimated during the training

phase and then evaluated on a test data-set.

The fundamental and simplest unit of DL, like in the human brain, is the neuron

and consider two types of parameters:

• Bias value, b0;

• Weight vector, ω = (ω1, . . . , ωn);

Every neuron can be seen as a single classifier that takes the vector θ = (b0, ω1, . . . , ωn)

to model a decision:

f̂(x) = h(w>x + b0) (2.33)

The function h(x) is a non-linear activation function that need to be chosen based

on the desired result. Typical function, considering them as monotonic, bounded

and continuous, are:

• Sign function: sgn(x) =


−1 if x > 0,

0 if x = 0,

1 if x > 0.

• Sigmond’s function: σ(x) =
1

1− e−x

• Hyperbolic tangent function: tanh(x) =
ex − e−x

ex + e−x

Increasing the number of neuron causing a better modelling capabilities, the

(2.33) can be seen as a linear combination [20]:

f̂(x) =
N−1∑
i=0

vih(w>i x + b0,i) (2.34)

The term vi represent the combinations of weight of a single neuron. The dif-

ference between the true function f(x) and the decision function f̂(x) is one of the

main parameters of the decision process and it is bounded by:

|f(x)− f̂(x)| < ε (2.35)

Note that the error ε decrease if the neuron’s number N increases. Hence, with

a large number of neurons can be approximated every kind of function with a single

layer network.
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Gradient Descent The main problem now is to determine the parameter

vector θ, the solution is obtained using the Gradient Descent Algorithm that is

an optimization algorithm for finding a local minimum of a differentiable function.

Gradient descent is simply used to find the values of a function’s parameters, the

coefficients θ, that minimize iteratively an Objective function finding the lowest

possible point.

There is the necessity to define the group of functions called Loss Functions L(θ)

used to evaluate the quality of our model with respect to the dataset, in this way, the

error of every single training example can be computed. Considering all the training

datasets, the error is defined by Cost Function. Generally cost and loss functions

are synonymous but cost function can contain regularization terms in addition to

the loss function.

The loss function is a useful tool for a better understanding of the model and

for the evaluation in case of modifying applied to the network. It helps also to

understand how much the predicted value differs from the actual value. The loss

functions are divide into three sections, every section contains many functions, the

most widely used [18, 32] will be described:

• Regression Loss Functions: It models a linear relationship between a depen-

dent variable, Y, and several independent variables, X’s

1. Mean Squared Error : One of the most commonly used and takes the

average squared difference between the predictions x̂ and expected results

y over the entire dataset N. It takes the distances, and consequently the

error, from the point of the regression line.

MSE =
1

N

N∑
i=1

(yi − x̂i)2 (2.36)

2. Mean Absolute Error : measures the average magnitude of errors in a

group of predictions, without considering their directions. In other words,

it’s a mean of absolute differences among predictions and expected results

where all individual deviations have even importance.

MAE =
1

N

N∑
i=1

|yi − x̂i| (2.37)

• Binary Classification Loss Functions: is a prediction algorithm where the out-

put can be either one of two items, indicated by 0 or 1. The classification

happens based on a threshold’s value.

1. Binary Cross-Entropy : it measures how far away from the true value,

which is either 0 or 1, the prediction is for each of the classes and then

averages these class-wise errors to obtain the final loss.
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The cross entropy is defined as follows, considering yi as a label with

value 0 or 1 and p(x̂i) is the probability of the predicted point:

BCS = − 1

N

N∑
i=1

yi · log(p(x̂i)) + (1− yi) · log(1− p(x̂i)) (2.38)

• Multi-Class Classification Loss Functions: is an extension of binary classifica-

tion, an object can be classified over more classes respect the previous one.

1. Multi-Class Cross-Entropy : extending the (2.38) to a non binary label k,

obtaining:

MCS = − 1

N

N∑
i=1

y
(k)
i · log(p(x̂i

(k))) + (1− y(k)i ) · log(1− p(x̂i(k))) (2.39)

Considering one of the loss functions seen before, the gradient descent is com-

puted by setting randomly weights values of vector parameters θ and calculating the

gradient on that particular point to provide the slope of the tangent line. To iden-

tify how much the slope is changing the gradient must be computed, consequently

estimate the partial derivatives of the loss function with respect to θ. The chang-

ing value’s is multiplied by a coefficient η called Learning Rate and then update

the new weight’s value, θ(i+1), making the difference between the previous weight’s

value θ(i) and η

θ(i+1) = θ(i) − η · ∇θL(θ) (2.40)

If there is a positive changing value the direction is towards the minimum and the

iteration will go on until the global minimum L min(θ) is reached.

The value of η must be chosen wisely, it establishes how big is the step size of

the movement towards the function. If the learning rate is too large the model can’t

converge to a minimum, if it is too small, the model needs more time to learn and

to converge [65, 57].

(a) Impact of the LR on the gradient (b) Evolution of LR over the epoch

Fig. 2.10: Learning rate
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There are three different types of gradient and based on the dimension of the

dataset can be used one of these establish a trade-off between the accuracy of the

parameter’s update and the time it takes to compute the update [58, 59, 36]:

1. Batch gradient descent: basic and simplest form of gradient seen in (2.40).

The calculation are made over the whole dataset in one update and, if it is

large, the computational time can be huge and potentially additional memory

is necessary to complete the entire process due to redundant calculations

2. Stochastic gradient descent: the SGD performs a parameter update for each

training example x(i) and label y(i), based on (2.40) obtaining:

θ(i+1) = θ(i) − η · ∇θL(θ, x(i), y(i)) (2.41)

The training dataset must be partitioned into m examples and shuffle to avoid

every preexisting order. It is much faster but the continuous update with

high variance can create convergence’s problem towards the minimum due to

the noise, if the learning rate reduces slowly, it leads back to the basic batch

gradient converging to a local or global minimum.

3. Mini-batch gradient descent: is an approach that combines the two version

seen before, it performs an update every mini-batch of n training examples

having better computational efficiency and memory fitting:

θ(i+1) = θ(i) − η · ∇θL(θ, x(i:i+n), y(i:i+n)) (2.42)

This method reduces the variance of parameter updates lead to a more stable

convergence. Common mini-batch sizes range between 50 and 256, but can

vary for different applications. Mini-batch gradient descent is typically the

algorithm of choice when training a neural network.

Momentum One optimization used to improve the gradient’s performance is

the Momentum, it is useful because when the minimum is near, the field lines are

close to each other, so we can have steeply surface in one direction than in another,

with this method the oscillations can be damped by adding fraction γ of the update

vector of the past time step to the current update vector:

θ(i+1) = γθ(i) − η · ∇θL(θ) (2.43)

The momentum term increases for dimensions whose gradients point in the same

directions and reduces updates for dimensions whose gradients change directions.

As a result, faster convergence and reduced oscillation are achieved [42, 37].

Back propagation The concept of back propagation can be exposed, it is

commonly used to efficiently compute gradients for neural network training. Back-

propagation evaluates the expression for the derivative of the loss function as a

34



product of derivatives also called Chain rule. These derivatives describe the sensi-

bility of the loss function to variation of the weight’s values and the activation layer’s

values, in such a way there is the backwards propagated error. Considering a single

layer fully-connected network with linear activation as x̂ = f̂(x) = Wx. Using a

MSE loss is obtained the following loss function:

L(θ) =
1

2
||y − x̂||22 =

1

2
||y −Wx||22 (2.44)

In order to update the weight’s parameter the resolution of partial derivative is

required:
∂L

∂W
=
∂L

∂ f̂

∂ f̂

∂W
= (y −Wx)(x>) (2.45)

Referring to (2.40) can be achieved the vector gradient form:

Wj+1 = Wj + η(Wjx− y)x> (2.46)

If these assumptions are extended on a more complex network structure with 3-layers

x̂ = f̂3(f̂2(f̂1(x))) = W3W2W1x, based on (2.45) obtaining:

∂L

∂W3
=
∂L

∂ f̂3

∂ f̂3
∂W3

= (y −W3W2W1x)(W2W1x)> (2.47)

∂L

∂W2
=
∂L

∂ f̂3

∂ f̂3
∂W2

=
∂L

∂ f̂3

∂ f̂3

∂ f̂2

∂ f̂2
∂W2

= W>
3 (y −W3W2W1x)(W1x)> (2.48)

∂L

∂W1
=
∂L

∂ f̂3

∂ f̂3
∂W1

=
∂L

∂ f̂3

∂ f̂3

∂ f̂2

∂ f̂2

∂ f̂1

∂ f̂1
∂W1

= W>
3 W>

2 (y −W3W2W1x)(x)> (2.49)

Note that many intermediate results can be reused during the computation of the

gradient,which is one of the reasons why back-propagation is efficient in computing

updates.

The activation function has a huge impact on the computation of the loss and

cost functions, taking the output of the previous neuron and convert it to a useful

form for the next neuron, also confining the value preventing computational issue

due to high magnitude values that can be obtained in a massive neural network with

a lot of parameters.

A precise selection of activation function can resolve the vanishing gradient prob-

lem in fact, with a classical non-linear function, like the hyperbolic tangent function,

a gradient value in the range (0,1) is achieved. Since the gradient descent works with

the chain rule, an exponentially decreasing gradient is present due to the product of

n number in range (0,1) for a network with n layers. Using a non-bounded activation

functions the solution is the deployment of Rectified Linear Unit :

• Rectified Linear Unit: ReLU(x) =

{
x if x ≥ 0,

0 elsewhere,
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• Leaky Rectified Linear Unit: LReLU(x) =

{
x if x ≥ 0,

elsewhere,

There is various activation function that is convex and with non zero derivative

regions, with these characteristic, the vanishing gradient and non-learning neurons

are avoided. Focusing on ReLU there are some computational problems due to the

presence of a zero in the function that causes a kink in the derivative, causing non

linearity in this point.

The main goal of the gradient is to reach the minimum in the function, and

having non-linearity in 0, the slope of the line could be 0, for negative values, or

either 1 for positive value. So must be considered a limited problem of non linearity

that can be solved using the constant bias value present in every neuron, the sign

of the bias can determine the direction of the slope. In real cases, there are a great

number of neurons and every neuron has a different bias’ value, so each node can

change the slope at different value. When training on a reasonable-sized batch,

there will usually be some data points giving positive values to any given node. So

the average derivative is rarely close to 0, which allows gradient descent to keep

progressing [28].

Convolutional Neural Networks Deep learning had a huge improvement

exploiting specialized layers called convolutional and pooling layers. The continuous

improvement in the quality, and consequently, the increasing definition and dimen-

sions of the images, can create some problems of computation [8]. The main role of

convolutional layers is to reduce the images providing the easiest process of extrac-

tion of features e.g., edges, circle, line, without loss, in this way some prediction’s

critical issue can be limited [60]. This particular layer generates an activation map

as a result of a convolutional operation between the image matrix and a filter called

kernel, it’s useful because the nearby pixel is more correlated respect The activation

map, also the output of the convolution has a dimension of:

Wout =
W − F + 2P

S
+ 1 (2.50)

with:

• W = input matrix dimension

• F = filter dimension

• P = padding size, number of pixel around the element

• S = stride, sliding size of the filter

if the image input is composed of multiple channels, the values of the activation

function are the sum of the convolutional result in the position (x,y) of every chan-

nel adding also the bias term. Increasing the number of convolutional layer can

analyze more deeply the images and extract high level features giving a wholesome
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understanding of the dataset. The application of convolutional layers in computer

vision is based on three fundamentals pillar [31]:

1. Sparse interaction: achieved by using a smaller dimension of kernel with re-

spect the input dimension, in this way can be extracted the important features

from few number of pixel instead of considering the entire image and have an

improvement in storage and computational management.

2. Shared parameters: in a convolutional network, the same value of the weights

are used in input of different layers that can produce different results based on

what feature they extract from the images.

3. Equivariance to translation: due to parameter sharing, the layers have a this

particular characteristic if the input is changed is a way the output will change

in the same way

Typically, in a deep learning network, after some convolutional layer, there is

another important layer called pooling layer. The function of a pooling layer is to

reduce the spatial dimension of the output matrix to reduce the number of param-

eters and the computational power, this operation is done, independently, on each

feature map. There are several pooling functions such as: average of the rectangu-

lar neighborhood, L2 norm of the rectangular neighborhood, and a weighted average

based on the distance from the central pixel. However, the most popular process

is max pooling, which reports the maximum output from the neighborhood. It is

present similarity to (2.50) where the dimension of the pooling’s output is [31]:

Wout =
W − F
S

+ 1 (2.51)

With all these information, we can now build up our example of Convolutional

Neural Network. As said before, a deep learning network takes some inputs and

produce one output, for reaching this goal all these methods must be put together.

The architecture can be divided in two main part:

1. Feature extraction, composed by convolutional and pooling layers. They are

piled up is this way can be created different feature map,if the network’s deep

increases an high level features can be extracted. Moreover, non linear layers

with function, i.e ReLU, Sigmoind, are added after the convolutional one to

introduce a non linearty in the feature map ;

2. Classification, composed by a fully connected network that takes the output

of the previous layers and flatten creating a single vector. Then, it makes the

classification applying the weights and making decision based on the activation

function of the neurons

In the fully connected part of the network, the input layer’s value and also the

output layer one are known, in between, there are the so called hidden layers where

there is the computing of the decision based on the weights and the activation
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functions, in fig. (2.11) can be seen the complete architecture of a Convolutional

Neural Network [60].

Fig. 2.11: CNN architecture

After the architecture’s design, we need to setup all the networks allowing the

model to fit and improve its results. The model and, consequently, the weights

are constantly updated every Epoch which is completed when the entire dataset is

passed forward and backward through the neural network. Sometimes, the sizes

of the datasets are very large and that requires a great usage of computational

resources and time for completing an epoch. One solution is to apply the batch

data processing, an iterative approach on a portion of the dataset. Usually, it is

implemented when the memory’s machine doesn’t fit the entire dataset, the batch

size define the portion of data that the CNN takes to train the model, in such a way

the weights’ update is complete after a number of data corresponding to the batch

size. Every time a batch size cross, forward and backward, an iteration is completed

[29, 61]:

Epoch = Batchsize ∗ Iteration (2.52)

The dataset selected for training the model is split into three main categories

and everyone treats differently the data:

1. Training data: data used to train and adjust the network’s parameters to

minimize the gradient of the objective function allows the CNN to learn and

extract new features.

2. Validation data: data used to evaluate the integrity of the training procedure,

the loss’s results obtained on this particular set provide how accurate is the

training phase. Subsequently, the model will tune its parameters based on the

frequent evaluation results on the validation set

3. Testing data: data that are never seen by the CNN and are useful for the

testing phase, after the entire training phase with the train and validation

sets, in order to verify the accuracy of the overall procedure.

Respecting all the features that compose a CNN, it can still have poor perfor-

mance due to overfitting and underfitting, before defining those fundamentals there
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is the necessity to introduce different concepts. A particular design can produce an

higher accuracy over a defined train set, but applying the test set over the model,

it can not achieved the same one. It means that the model does not have a good

generalization, it does not have the ability to complete accurately new tasks never

seen after the learning phase. Generalization, in that sense, refers to the abstract

feature of intelligence which allows us to be effective across thousands of disciplines

at once. In addition to generalization, to understand the problem of overfitting and

underfitting, the bias is introduced, that is the systematic error provided by the

difference between the average prediction and the correct value that lead us to a

great error’s value in the training phase, and the variance, that provide the previ-

sion’s fluctuations if the model is trained with different dataset, so it determines the

sensibility of the network due to the data’s randomness.

The underfitting condition occurs when the network is too simple and it can not

accurately capture relationships between a dataset’s features and a target variable.

It happens when a high bias and a low value of variance are present. The solution

is to extract more parameters expanding the hypothesis space. Usually, it is easy to

detect the underfitting condition through the evaluation of the metrics’ performance.

The entire dataset must be divided and the overfitting condition can not be

detected until the test set is used. If the performance is better in the train set,

maybe, the network is afflicted by overfitting.

This condition occurs when the model has a low bias and a high variance, so it

trains over a noisy dataset. There are some solutions to mitigate the overfitting and

the most popular are [24]:

• Train with more data: it can help the algorithm for a better detection but it

can not work any time because the newly added data can be very noisy, it

need also to provide clean data.

• Early stopping : is a method that provides an arbitrary number of epoch and

stops the training when the model test’s metrics, including the validation set,

stops improving. See fig.2.12(a).

(a) Early stop (b) Cross validation

Fig. 2.12: Example of overfitting restrictions
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• Cross-validation: it considers k iteration and divides the data in the subset for

the test, validation and the training, for each iteration the subset is changed

so other data are considered for the analysis. See fig. 2.12(b).
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Chapter 3

Data generation by computed

tomography simulation

In this chapter, described the simulation process of computed tomography by

considering the powerful ASTRA toolbox. It provides 2d, 3d case and supports

MATLAB or Python. It handles various reconstruction algorithms and different

beam geometries [1]. All functionalities of the Toolbox are available from MAT-

LAB. ASTRA gives quick and adaptable building squares for 2D/3D tomographic

remaking, pointed at calculation designers and researchers. It was started at the

Vision Lab of the College of Antwerp in Belgium by PhD understudies and post-

docs [48]. In toolbox also used CUDA for computed tomography simulation. CUDA

(Compute Unified Device Architecture) is a parallel computing platform. The main

advantage of GPU is the ability to compute parallel tasks which makes the ASTRA

toolbox so powerful. The main advantages of ASTRA toolbox are:

• Flexibility : is possible to custom the algorithms and geometries,

• Powerful, because based on C++ and CUDA,

• Intuitive to use, can execute on MATLAB or Python interface,

• Free, open source and cross platform.

On fig. (3.1) shown the main features of ASTRA Toolbox.

The toolbox is represented as a software package that provides tools, samples,

functions, building blocks for tomographic reconstruction and algorithm design.

Moreover, provides almost all popular reconstruction algorithms.

Since ASTRA is based on Object-oriented programming languages the creation

of geometric feature is simple and do not require a high level of resources for the com-

putation.For example, the astra create example cone.m file creates a standard

cone beam geometry with parameters such as:

• normal : creates a non-vector geometry,



Fig. 3.1: Main features of packages. geometry, reconstruction, customization

and other functions for data processing.

• vec: creates a vector geometry,

• helix : creates an helical trajectory vector geometry,

• deform vec: creates a deformed trajectory vector geometry,

• deform vec: creates deformed vector geometry courtesy Van Nguyen [53].

This function returns the projection geometry as ans variable. For example,

if execute the astra create example cone function, will be returned the data as

shown in fig. (3.2) below.

Fig. 3.2: On the right side shown the output of function.

3.1 Main concepts of toolbox

During the process, the simulation’s geometry must be specified defining a vol-

ume and projection geometries. The geometry represents in abstract space the

object or phantom is located. According to the dimensions, it can be a 2D or 3D

shape and centered around the origin. The most important thing is defining the

space of objects. It should fit inside the defined volume geometry. There are some

limitations for volume geometry:

• All the lengths and sizes are defined relative to voxel size,
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• The default voxel size is equal to 1 unit (cube voxels).

The projection geometry represents the location and transformation of the ray

source and detector. In the toolbox, there are parallel beam, fan beam and

cone beam. In fig. (3.3) shown the various projection geometry. In the first row,

there is blue rectangle which is the object’s space, the yellow line shows the beam

directions and the green line represents the detectors. In the second row - the red

box represents the volume geometry. The asterisk in the left side image represents

the location of the source at each step.

Fig. 3.3: The first row- parallel beam 2d, fanflat 2d, the second row- helix 3d, parallel

beam 3d.

In fig. (3.4) is shown detailed version of 3d volume geometry.

Fig. 3.4: 3D volume geometry with detailed projection geometry.

Once the volume and projection geometry is defined, the next process is the

implementation of the algorithm of reconstruction. Throughout the simulations,

is possible to tuning the parameters and get results at a certain point before the
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final reconstruction in order to evaluate the produced sinogram and choose the right

method of generation.

For example in fig. (3.5) shown the image and its sinogram which was generated

using the parallel 2D method.

Fig. 3.5: The phantom image is on the right side and on the left side its sinogram.

The reconstruction’s algorithms depend on the dimension of simulation. The

general approach of algorithms for 3D and 2D cases is the same from a mathematical

point of view. The difference is only the dimensions of matrices for correctly handling

the data in simulation. The main reconstruction algorithms implemented in ASTRA

toolbox are: FBP, SIRT, SART, EM. Moreover, each one could be implemented

exploiting the GPU computational power and defined for 3D or 2D case.

Once the sinogram is generated, the toolbox re-generates its reconstruction.

Since the ASTRA is flexible, the reconstruction stage could be set up with some

parameters. For example in GPU reconstruction there are options: SIRT CUDA,

SART CUDA, EM CUDA, FBP CUDA. In fig. (3.6) shown images such as

ground truth, sinogram and reconstructed image.

Fig. 3.6: Ground truth, reconstructed image and sinogram.

44



3.2 Generating of single case data by simulated com-

puted tomography using ASTRA toolbox

Starting from the 2D case will be show how to generate the data. According to

the main concepts of computed tomography using ASTRA toolbox, the first stage is

setting up the volume geometry for object and setting up the projection geometry,

see cod. (3.1) and cod.(3.2)

1 vol geom = as t r a c r e a t e vo l g eom (256 , 256) ;

Cod. 3.1: Geometry creation code with size 256x256.

1 proj geom = as t r a c r e a t e p r o j g e om ( ’ type ’ , det width , det count , ang l e s ) ;

Cod. 3.2: Projection generator code

In fig. (3.7) is shown the volume geometry output obtained.

Fig. 3.7: 2-dimension volume geometry.

In order to create the projection geometry,see cod. (3.3) in ASTRA is possible

to consider different options and generating the right geometry based on the usage

considering parameters like:

• type: type of geometry considered;

• det width: distance between two adjacent pixels;

• det count : number of detectors in a single projection;

• angles: projections angles defined in radiant with a range [0, 180◦]

1 pro j \ geom = as t ra \ c r e a t e \ p r o j \ geom ( ’ p a r a l l e l ’ , 1 . 0 , 384 , l i n spa c e2 (0 , pi , 180 ) )

Cod. 3.3: Example of projection geometry creation.

In fig. (3.8) is shown the geometry with parameters mentioned in cod.(3.3).

In fig. (3.9), there is the geometry with fanflat option. Therefore, the 2D fanflat

beam geometry and the number of inputs is increased. Moreover, the distance from

source to origin, and from origin to detectors should be set up. For example as code

below:
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Fig. 3.8: Geometry with parallel beam with rotation from 0 up to 180 degree, width = 1 and

number of detectors = 384 The blue square is volume geometry, the yellow line is the direction

of rays, and green one - detectors.

1 a s t r a c r e a t e p r o j g e om ( ’ f a n f l a t ’ , 1 . 3 8 , 8 00 , l i n spa c e2 (0 , (120∗ pi ) /180 ,207∗4) ,900 ,400)

2

Cod. 3.4: Creating projection geometry.

In code represented: angles from 0 to 120-degree, distance between source and origin

as 900, distance between origin and detectors as 400.

Fig. 3.9: Geometry: parallel, with rotation from 0 up to 120 degree, The blue square is volume

geometry, yellow line is the direction of rays, and green one – detectors.

Considering the fanflat projection geometry it is flexible for customization, the

code is shown in cod.(3.5). The main difference with respect the previous type is

the different kind of variables considered.

1 proj geom = as t r a c r e a t e p r o j g e om ( ’ f a n f l a t v e c ’ , det count , v e c to r s ) .

2

Cod. 3.5: Code for fanflat generation type.

Where, the variable det count is number of detectors in a single projection, and the

variable vectors is a matrix which contains the entire geometry considered, each row

corresponds to a single projection and it contains, for every spatial coordinate, the

following parameters:

• src: coordinate of the ray source,
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• d : coordinate of the detector centre,

• u : the vector between the centers of detector pixels 0 and 1.

In this research, as a testing sample, the Shepp-Logan phantom image with

different sizes regarding the volume geometry for each approaches were used, see fig

(3.10)..

Fig. 3.10: Phantom image.

In this section, the recostruction of the Shepp-Logan phantom is performed by

setting up the parameters for reconstruction algorithm using the CPU. The imple-

mentation of the code used in shown in cod. (3.6).

1 a l g i d = astra mex a lgor i thm ( ’ create ’ , c f g ) ,

2 ast ra mex a lgor i thm ( ’ i t e r a t e ’ , a l g i d , 20) ,

Cod. 3.6: Part of the code which produce the reconstructed image.

This code runs 20 iterations of algorithm, have a runtime in the order of 10 seconds.

The complete representation of the code of CPU based 2D reconstruction is in cod.

(3.7).

1 vol geom = as t r a c r e a t e vo l g eom (256 , 256) ;

2 proj geom = as t r a c r e a t e p r o j g e om ( ’ p a r a l l e l ’ , 1 . 0 , 384 , l i n spa c e2 (0 , pi , 180 ) ) ;

3 p r o j i d = a s t r a c r e a t e p r o j e c t o r ( ’ s t r i p ’ , proj geom , vol geom ) ;

4 P = phantom (256) ;

5 [ s inogram id , sinogram ] = a s t r a c r e a t e s i n o (P, p r o j i d ) ;

6 astra mex data2d ( ’ d e l e t e ’ , s inogram id ) ;

7 s inogram id = astra mex data2d ( ’ c r e a t e ’ , ’−s ino ’ , proj geom , sinogram ) ;

8 r e c i d = astra mex data2d ( ’ c r e a t e ’ , ’−vo l ’ , vol geom ) ;

9 c f g = a s t r a s t r u c t ( ’SIRT ’ ) ;

10 c f g . Reconstruct ionDataId = r e c i d ;

11 c f g . Pro ject ionDataId = s inogram id ;

12 c f g . Pro j e c to r Id = p r o j i d ;

13 a l g i d = astra mex a lgor i thm ( ’ c r ea t e ’ , c f g ) ;

14 ast ra mex a lgor i thm ( ’ i t e r a t e ’ , a l g i d , 20) ;

15 rec = astra mex data2d ( ’ get ’ , r e c i d ) ;

16 a s t r a mex pro j e c t o r ( ’ d e l e t e ’ , p r o j i d ) ;

17 ast ra mex a lgor i thm ( ’ d e l e t e ’ , a l g i d ) ;

18 astra mex data2d ( ’ d e l e t e ’ , r e c i d ) ;

19 astra mex data2d ( ’ d e l e t e ’ , s inogram id ) ;

Cod. 3.7: CPU based reconstruction for 2D case.
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Finally, in fig. (3.11) is shown the result of the reconstruction with only the

CPU.

Fig. 3.11: From left to right, the original image, the sinogram and reconstructed image.

In fig. (3.12) there are reconstructions which were based on various algorithms.

Fig. 3.12: Phantom image.

The method of reconstruction by using GPU is similar to CPU method. The

choice between them does not impact the quality of the results but, since the GPU

method uses a higher number of computational resources, it is important to find

out a threshold between a faster reconstruction and a limitation on the resources

consumption. In this method there are available the following algorithms:

• SIRT CUDA,

• SART CUDA,
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• EM CUDA,

• FBP CUDA.

In ASTRA toolbox there is also possibility to create a reconstruction in a circular

region, instead of the usual rectangle. This is done by placing a circular mask on

the square reconstruction volume:

• c = -127.5:127.5,

• [x y] = meshgrid (-127.5:127.5, -127.5:127.5),

• mask = (x2 + y2 < 127.52).

Further steps remain the same as before. In fig. (3.13) shown reconstruction

with various algorithm using GPU as an example.

Fig. 3.13: Phantom image with SART, SIRT, FBP algorithm.

Since the creation of the sinogram is caused by the application of the Radon

transform, see eq. (2.6), it can be considered as a filter. ASTRA toolbox provides

options to use specific kinds of filters:

• Ram-Lak filter : which is sensitive to noise signal and multiplied by a suitable

window to increase the performance;

• Shepp-logan: commonly used in FBP algorithm;

• Cosine filter : which is raised cosine filter. It shapes the pulsing for transmis-

sions;

• Hamming filter :which uses hamming window;

• Hann filter : which uses a raised cosine window;

• Tukey filter : is tampered cosine which uses rectangular window;

• Lanczos: could be used as low-pass filter.
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Fig. 3.14: Phantom image reconstruction with various filters.

Also other filters that can be mentioned as: triangular, gaussian, barlett-hann,

blackman, nuttall, blackman-harris, blackman-nuttall, flat-top, kaiser, parzen, see

fig. (3.14).

In ASTRA, the reconstruction can be done performing the FBP, the implemen-

tation is exposed in (3.2) where there are three steps for applying the filters, these

methods works with the FBP for both the technologies, CPU or GPU:

1. Use a standard Ram-Lak filter;

2. Defining the filter in Fourier space. This is assumed to be symmetric, and

ASTRA therefore expects only half band. The full filter size should be the

smallest power of two that is at least twice the number of detector pixels;

3. Define a spatial convolution kernel directly. For a kernel of odd size 2*k+1,

the central component is at kernel(k+1). For a kernel of even size 2*k, the

central component is at kernel(k+1);

In fig. (3.17) shown the results based on 3 ways of applying the filter. In ASTRA

toolbox there is also another option of simulation. The projection geometry with

shifted center of rotation requires additional option as cor shift. So, additional script

is defined as cor shift=30.6. Volume geometry and projection geometry remains the

same. The projection geometry with shifted center of rotation recreated:

1 Lproj geom cor=astra geom posta l ignment ( proj geom , c o r s h i f t ) .

Cod. 3.8: Creating projection geometry with shifted center of rotation.

The steps of creation are the same, firstly created a sinogram from a phantom,

using the shifted center of rotation. Now recreated the sinogram data object as load-

ing an external sinogram, using standard geometry and try to do a reconstruction,
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Fig. 3.15: Phantom image 1500 iterations.

Fig. 3.16: Phantom image 150 iterations.

to show the misalignment artifacts caused by the shifted center of rotation. In fig.

(3.18) shown the reconstruction with shifted center of rotation.
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Fig. 3.17: Reconstruction based on Ram-lack, Filter in Fourier space, Spatial convolu-

tion kernel.

Fig. 3.18: Phantom image with shifted center.
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3.3 Generating multislice data by simulated computed

tomography using ASTRA toolbox

In 3D case the volume geometry is 3-dimensional region in space defined by

function:

1 vol geom = as t r a c r e a t e vo l g eom (x , y , z )

Cod. 3.9: Volume geometry creation

Where the variables x, y and z represent the spatial coordinates sizes. There are

considered two 3D projection geometry types which are:

• Cone beam;

• Parallel beam.

In fig. (3.19) and fig. (3.20) are shown the details of the beams geometries.

Fig. 3.19: Two volume slabs Parallel-beam projection of the cubic volume in the detector plane

centre on the right. The slabs are outlined in black, and indicated by North-West (NW) and

North-East (NE) diagonal patterns. The projections of these two slabs are correspondingly

patterned with NW respectively NE diagonals, and do not overlap.

Fig. 3.20: two volume slabs Cone-beam projection of the cubic volume in the detector plane

center on the right. Two slabs are outlined in black and indicated by North-West (NW) and

North-East (NE) diagonal patterns. The projections of these two slabs are correspondingly pat-

terned with NW, respectively, NE diagonals. The solidly filled area shows where the projections

of the two slabs overlap.
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Each function has a regular variant, that allows circular trajectories of the source

and of the detectors around the z-axis, and a vec variant that allows a completely

freedom of choice in the placement of source or detector [51]. These geometric

functions can be divided into two different methods:

• Circular : the projection geometry is defined by width of detector column,

height of detector row, number of rows, number of columns.

• Free: the projection geometry is defined by the rays directions, detector centre,

height detector vector with pixels from (0,0) to (0,1), length detector vector

with pixel from (0,0) to (1,0).

In fig. (3.21) are shown the results of the generator function that produces the

3D volumes and the cone beam projection geometry.

Fig. 3.21: Parallel3d, cone, cone with vector parameters.

Considering the projection geometry in 3D case,see cod.(3.10)

1 proj geom = as t r a c r e a t e p r o j g e om ()

Cod. 3.10: Project geometry creation.

It create the project geometry and it has different types and parameters of cus-

tomizations.
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Parallel3D

The first type is ’parallel3d’ this function create a 3D parallel beam with the

following parameters that can be modified:

• det spacing x: distance between two horizontally adjacent detectors,

• det spacing y: distance between two vertically adjacent detectors,

• det row count: number of detector rows in a single projection,

• det col count: number of detector columns in a single projection,

• angles: projection angles in radians, should be between -pi/4 and 7pi/4.

Cone

The second type is ’cone’ that create a 3D cone beam rays with the following

parameters:

• det spacing x: distance between two horizontally adjacent detectors,

• det spacing y: distance between two vertically adjacent detectors,

• det row count: number of detector rows in a single projection,

• det col count: number of detector columns in a single projection,

• angles: projection angles in radians, should be between -π/4 and 7π/4,

• source origin: distance between the source and the center of rotation,

• origin det: distance between the center of rotation and the detector array.

Cone Vec

Third type is ’cone vec’ that create the same 3D cone beam the same as before

with options to custom the geometry and handles the following parameters:

• det row count:: number of detector rows in a single projection,

• det col count: number of detector columns in a single projection,

• vectors: a matrix containing the actual geometry. Each row corresponds to

a single projection, and store all the coordinate of every spatial coordinate for:

1. src: coordinate of ray source,

2. d : coordinate detector center,

3. u : vector between the centers of detector pixels (0,0) and (0,1),

4. v : vector between the centers of detector pixels (0,0) to (1,0).
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Parallel 3D

The last type is ’parallel 3D’ which is the same as ’parallel’ with options to

custom the geometry with the following parameters:

• det row count: number of detector rows in a single projection,

• det col count: number of detector columns in a single projection,

• vectors: a matrix containing the actual geometry. Each row corresponds to

a single projection, and store all the coordinate of every spatial coordinate for:

1. src: coordinate of ray source,

2. d : coordinate detector center,

3. u : vector between the centers of detector pixels (0,0) and (0,1),

4. v : vector between the centers of detector pixels (0,0) to (1,0).

In fig. (3.22) are shown some of the 3D geometries described.

Fig. 3.22: Example of 3D beam geometries, on the left the parallel geometry, on the

right the cone beam geometry.

After modelling the geometry, based on the requested specifics, and defining the

sinogram the reconstruction image is generated, see fig. (3.23).

1 cube = ze ro s (128 ,128 ,128) ,

2 cube (17 : 112 , 17 : 112 , 17 : 112 ) = 1 ,

3 cube ( 33 : 9 6 , 3 3 : 9 6 , 3 3 : 9 6 ) = 0 .

Cod. 3.11: Generating a cube.

For 3d case, there are some algorithms of reconstructions using GPU:

• FP3D CUDA, forward projection;

• BP3D CUDA, backprojection;

• FDK CUDA, supports only cone,except cone vec.Takes projection data as

input and generates reconstruction;
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• SIRT3D CUDA, the standard reconstruction, defined as 2D case with ad-

ditional options related to 3D case;

• CGLS3D CUDA. the state is reset at each step astra mex algorithm(’iterate’)

called. So runs CGLS for n-iterations and runs for next m-iterations leads to

different outcomes from running (n+m)iterations at once. Supports all 3D

geometry.

Forward and back projection are the most computationally intense operations in

iterative image reconstruction due to the large size of system matrix. It is redundant

to store matrix, thus the back projection and forward projection are computed on

the fly. The forward projection is mathematically based on the radon transform.

Back projection is the operation that smears the projection in detector space back

into the object space to reconstruct the 3D volumes.

Fig. 3.23: Parallel3d projection,from left to right: slice of cube,sinogram of cube’s slice,

and reconstructed slice. Using a geometry 128x128x128, with parameters: parallel3d

type, from 0 up to π radiant, detector size 128x192. As an object, chosen the hollow

cube

Considering CUDA accelerated SIRT implementation for 3D data problems al-

gorithm internally configures the projection building blocks that it will use. For this

specific case, a non-negativity constraint is also applied. This is a simple form of

prior knowledge that can lead to improved reconstruction quality. The result of this

configuration is an identifier referencing the algorithm object.

The result is the reconstruction of images obtained from MATLAB memory and

ready for subsequent analysis:

1 Recon=astra mex data3d ( ’ get ’ , v o l i d ) .

Cod. 3.12: Getting the reconstruction of image.

The creation data object for the reconstruction is the next step after setting up the

geometries:

1 r e c i d = astra mex data3d ( ’ c reate ’ , ’−vol ’ , vol geom ) ;

Once the data object is done the reconstruction algorithm is set up with variuos

algorithms:
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1 c f g = a s t r a s t r u c t ( ’CGLS3D CUDA’ ) ;

2 c f g . Reconstruct ionDataId = r e c i d ;

3 c f g . Pro ject ionDataId = p r o j i d ;

Cod. 3.13: Reconstruction using CGLS3DCUDA.

For profitable reconstruction the algorithm is executed with iterations. For ex-

ample 150 iterations running consume approximately 750MB of GPU and has a

run-time in the order of 10 seconds:

1 ast ra mex a lgor i thm ( ’ i t e r a t e ’ , a l g i d , 240) ;

Cod. 3.14: Setting up the iteration of algorithm.

Finally, the result is obtained by using the following script:

1

2 rec = astra mex data3d ( ’ get ’ , r e c i d ) ;

Cod. 3.15: Reconstruction the image.

Below described an example code of 3d reconstruction with parallel 3D projection

geometry, angles from 0 up to π radians. Used CGLS3D CUDA algorithm by

GPU and 240 iterations see code(3.16)

1 vol geom = as t r a c r e a t e vo l g eom (128 , 128 , 128) ;

2 ang l e s = l i n spa c e2 (0 , pi , 380) ;

3 proj geom = as t r a c r e a t e p r o j g e om ( ’ p a r a l l e l 3 d ’ , 1 . 0 , 1 . 0 , 128 , 192 , ang l e s ) ;

4 cube = ze ro s (128 ,128 ,128) .

5 cube (17 : 112 , 17 : 112 , 17 : 112 ) = 1 ;

6 cube ( 33 : 9 6 , 3 3 : 9 6 , 3 3 : 9 6 ) = 0 ;

7 [ p ro j i d , p ro j da ta ] = a s t r a c r e a t e s i n o3d cuda ( cube , proj geom , vol geom ) ;

8 r e c i d = astra mex data3d ( ’ c r e a t e ’ , ’−vo l ’ , vol geom ) ;

9 c f g = a s t r a s t r u c t ( ’CGLS3D CUDA ’ ) ;

10 c f g . Reconstruct ionDataId = r e c i d ;

11 c f g . Pro ject ionDataId = p r o j i d ;

12 a l g i d = astra mex a lgor i thm ( ’ c r ea t e ’ , c f g ) ;

13 ast ra mex a lgor i thm ( ’ i t e r a t e ’ , a l g i d , 240) ;

14 rec = astra mex data3d ( ’ get ’ , r e c i d ) ;

15 ast ra mex a lgor i thm ( ’ d e l e t e ’ , a l g i d ) ;

16 astra mex data3d ( ’ d e l e t e ’ , r e c i d ) ;

17 astra mex data3d ( ’ d e l e t e ’ , p r o j i d ) .

Cod. 3.16: Reconstruction script using CGLS3D CUDA

In fig. (3.24) shown the results of reconstruction.

Let us consider parallel3d projection geometry with parameters:

• proj geom = astra create proj geom(’parallel3d’, 1.0, 1.0, 128, 192, angles),

• angles() angles = linspace2(0, pi, 180).

In this case, the phantom3d model is used as an object in ASTRA toolbox see

fig. 3.25.

Finally, following the same steps the reconstruction is obtained for 3d object see

fig. 3.26.

For STL models the toolbox provides several functions for customization. The

’stlTools’ is a collection of functions, samples, and demos to illustrate how to deal

with STL files. Some of them are contributions published in MATLAB. This toolbox

contains the following files:
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Fig. 3.24: CGLS3D CUDA algorithm applied.

• stlGetFormat : identifies the format of the STL file and returns ’binary’ or

’ascii’,

• stlReadAscii : reads an STL file written in ASCII format,

• stlReadBinary:reads an STL file written in binary format,

• stlRead : uses ’stlGetFormat’, ’stlReadAscii’ and ’stlReadBinary’ to make STL

reading independent of the format of the file,

• stlWrite: writes an STL file in ’ascii’ or ’binary’ formats,

• stlSlimVerts: finds and removes duplicated vertices,

• stlGetVerts: returns a list of vertices that are ’opened’ or ’closed’ depending

on the ’mode’ input parameter. An ’open’ vertices is the one that defines an

open side. An open side is the one that only takes part of one triangle,

• stlDelVerts: removes a list of vertices from STL files,

• stlAddVerts: adds the new vertices from a list (and consequently, new faces)

to a STL object,
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Fig. 3.25: Here is volume sphere, on figure is shown his projections.

Fig. 3.26: Here is volume sphere, where applied the CGLS algorithm with parallel3D

projections.

• stlPlot : is an easy way to plot an STL object,

• stlDemo: is a collection of examples about how to use stlTools,

• femur binary : is an ASCII STL sample used in ’stlDemo’,

• sphere ascii : is a binary STL sample.

In this article, the ASTRA toolbox has been introduced and several use-cases

were presented showing off its main features. These include its free, open-source

nature [52], its ability to describe virtually any 2D and 3D projection setup using

vector geometries and its flexibility regarding the easiness with which it can be

included in other frameworks. Combined, they make the ASTRA Toolbox very

suitable for fast prototyping of new applications, new geometry setups and new

reconstruction methods. Furthermore, due to its efficiently implemented building
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blocks, these prototypes can straightforwardly be up scaled to realistic data sizes

and usages. However, it should be noted that the ASTRA Toolbox is by no means

the first and only tool to consider when dealing with tomographic reconstruction.

Many users might prefer commercial software packages as they provide an easy-to-

use graphical user interface, which the ASTRA Toolbox does not. Also, because

of its flexibility regarding application fields, scanning devices, and protocols, the

ASTRA Toolbox cannot provide out-of-the-box support for various file formats. In

order to use the toolbox, the user thus requires knowledge of these file formats, and

the skill to parse and process them in the MATLAB or Python layer. Moreover, the

algorithms bundled in the ASTRA Toolbox are limited to reconstruction methods,

and do not include typical preprocessing (e.g., flat field correction, phase retrieval)

and post-processing (e.g., segmentation, morphological operations, mesh generation)

algorithms. For practical use, the toolbox must thus be linked with other tools such

as TomoPy [34]. These disadvantages limit the target audience of the ASTRA

Toolbox mainly to researchers and users with expertise in computer science. In

summary, the ASTRA toolbox is an excellent platform to bridge the large gap

between application scientists and researchers in the field of numerical mathematics

and linear solvers [50]. That way, new and advanced numerical solvers can be tested

on realistic data, benefiting both communities.
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Chapter 4

Limited range angle CT

reconstruction

In this chapter the generation of reconstructed images exploiting the ASTRA

simulation toolbox is explained. Subsequently the denoising deep learning based

method is introduced, describing both the network architecture and training proce-

dure. The main goal is to train the CNN and perform a denoising operation over the

reconstructed images. The dataset is composed of CT scan DICOM files containing

images of a human’s chest and abdomen from The Cancer Imaging Archive (TCIA)

[6]. These images can be considered as a ground-truth dataset. They are obtained

by measurements without angle limitations, so the sinograms contain every projec-

tion for every angle. These images were then processed using the ASTRA toolbox,

simulating a reconstruction with limited angles, using the geometric parameters in

tab.(4.1).

Parameter Value

Distance between the center source and detector(mm) 1300

Distance between the center and the rotation axis (mm) 900

Sampling interval between two adjacent projection views (deg) 0.145

The angle between the first source and the last source (deg) 30

Number of source 207

Number of detector 800

Diameter of the field of view (mm) 352.90

Size of each detector element (mm) 1

Pixel size (mm2) 1.38 x 1.38

Table 4.1: Geometric parameters

Those geometrical features can recreate a virtual representation of a CT scanner

and produce virtual reconstructions using the groundtruth dataset providing limited

sinograms which contain projection’s portions. Exploiting the SART algorithm, eq.

(2.15), was possible to obtain reconstruction images that includes noise and measure-



ment’s artifacts for three different ranges using the specific simultaneous movement

of the sources and detectors:

• (0 - 90◦), which consider three scanning phases;

• (0 - 120◦), which consider four scanning phases;

• (0 - 150◦), which consider five scanning phases.

This setup allows to deal with different qualities reconstructions, and consequently,

have different levels of noise and artifacts. In fig.(4.1) is exposed the movement of

the components that rotate around the object in order to make the measurement, in

red are highlighted the sources, and in front of these, there is a flat green detector

panel that rotates every acquisition time T.

Fig. 4.1: Simple view of CT scanner setup. In this case, can be seen a 4T acquisition obtain the

scanning range of ( 0 - 120◦).

In our assumptions were considered two different approach for the image’s denoising

with the aims of finding a methods which can enhance the CNN’s performances.

There will be exposed a method which consider a single slice in input of the CNN

and another one considering a multi slices input. The difference is in the number

of images taken into account for the extraction features process of the network.

Both of them will be exposed in the following sections showing the results and the

improvement obtained.
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4.1 Single Slice Denoising Case

In order to improve the performance of the CT scanning, different methods could

be considered and done by:

• Increasing the power of source emission,

• Increasing the number of simultaneous sources,

• Multiply the reconstruction’s time.

The main drawback of these applications is the appearance of errors and noise in

the measurement. To attenuate the imposed noise, a trade-off during the design

of these options should be considered. One of the many solutions provided was

founded in research based on measurements with limited angle ranges, considering

three different intervals: (0,90◦), (0,120◦) and (0,150◦) with respectively three, four

and five phases measurement are conducted. In this work is performed a simulation

of measurement with ASTRA toolbox, and considering the steps for the creation of

a virtual measurement, the definition of the volume geometry is the first quantity

to define.

4.1.1 Simulated CT data generation for single slice denoising case

The considered TCIA dataset is composed by DICOM files. Digital Imaging

and Communications in Medicine (DICOM) is the standard for the communica-

tion and management of medical imaging information and related data [62]. It is

most used format for storing and transmitting medical images enabling the inte-

gration of medical imaging devices such as scanners, servers, workstations, printers,

network hardware, picture archiving and communication systems (PACS) from mul-

tiple manufacturers. It has been widely adopted by hospitals and is making inroads

into smaller applications like dentist’s and doctor’s offices.

The data generation part was implemented using MATLAB through function

dicominfo the information about file is returned and with dicomread the file is

imported into MATLAB:

1 f i l ename = dicominfo ( ’ dicomfi lename ’ ) ;

2 img = dicomread ( f i l ename ) ;

In fig. (4.2) is shown one sample of real TCIA image, For the data generation the

image should be doubled by applying function double(). The Double function

is the default numeric data type (class) in MATLAB, providing sufficient precision

for most computational tasks. Numeric variables are automatically stored as 64-bit

(8-byte) double-precision floating-point values.

The following step is to define the size of volume geometry. Since the acquired

data size is 512x512, therefore the volume geometry will have the same size. Below

is shown the code.
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Fig. 4.2: Image of real data.

1 vol geom = as t r a c r e a t e vo l g eom (512 , 512)

Cod. 4.1: Volume geometry creation

The initial parameters of computed tomography simulation meet the requirement

of the aforementioned table.

• Ranges: (0,90◦); (0,120◦) ; (0,150◦),

• Sub-angles: 30 deg,

• Distance source to detector : 1300 mm,

• Distance source to rotation axis: 900 mm,

• Sampling interval : 0.145 deg,

• Number of source: 207,

• Number of detectors: 800.

The next step is setting up the projection geometry:

1 proj geom=as t r a c r e a t e p r o j g e om ( ’ f a n f l a t ’ , 1 . 3 8 , 8 00 , l i n spa c e2 (0 , (90∗ pi ) /180 ,207∗3)

,900 ,400) }

Cod. 4.2: Projection geometry code in ASTRA toolbox

Here used fan-flat type for range angle from 0 to 90◦ and the function

astra create sino gpu is implemented in order to generate the sinogram of real data:
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1 [ s inogram id , sinogram ] = a s t r a c r e a t e s i n o gpu ( img , proj geom , vol geom ) ;

2 s inogram id = astra mex data2d ( ’ c r e a t e ’ , ’−s ino ’ , proj geom , sinogram ) ;

3 r e c i d = astra mex data2d ( ’ c r e a t e ’ , ’−vo l ’ , vol geom ) ;

Cod. 4.3: Code implemented for the sinogram’s generation derived from the real data

Since ASTRA working also with CUDA, here is shown the set up of the pa-

rameters for a reconstruction algorithm using the GPU in order to obtain a faster

reconstruction:

1 c f g = a s t r a s t r u c t ( ’FBP CUDA’ ) ;

2 c f g . Reconstruct ionDataId = r e c i d ;

3 c f g . Pro ject ionDataId = s inogram id ;

Cod. 4.4: CUDA code for the reconstraction phase

The algorithm object is created from the configuration structure here:

1 a l g i d = astra mex a lgor i thm ( ’ create ’ , c f g ) ;

In order to get high quality reconstruction, here is implemented 300 iterations

of the algorithm:

1 ast ra mex a lgor i thm ( ’ i t e r a t e ’ , a l g i d , 300) ;

Finally the code returns the result:

1 rec = astra mex data2d ( ’ get ’ , r e c i d ) ;

Cod. 4.5: Reconstruction the data.

At the end of the simulation the memory is cleared by using the commands:

1 ast ra mex a lgor i thm ( ’ de l e t e ’ , a l g i d ) ;

2 astra mex data2d ( ’ de l e t e ’ , r e c i d ) ;

3 astra mex data2d ( ’ de l e t e ’ , s inogram id ) ;

Cod. 4.6: Cleaning up the memory.

In cod. (4.7) is shown the full implemetation code:

1 f i l ename = dicominfo ( ’ 1−005.dcm ’ ) ;

2 img = dicomread ( f i l ename ) ;

3 img=double ( img ) ;

4 vol geom = as t r a c r e a t e vo l g eom (512 , 512) ;

5 proj geom=as t r a c r e a t e p r o j g e om ( ’ f a n f l a t ’ , 1 . 38 , 800 , l i n spa c e2 (0 , (90∗ pi ) /180 ,207∗3)

,900 ,400) } ;

6 [ s inogram id , sinogram ] = a s t r a c r e a t e s i n o gpu ( img , proj geom , vol geom ) ;

7 s inogram id = astra mex data2d ( ’ c r e a t e ’ , ’−s ino ’ , proj geom , sinogram ) ;

8 r e c i d = astra mex data2d ( ’ c r e a t e ’ , ’−vo l ’ , vol geom ) ;

9 c f g = a s t r a s t r u c t ( ’FBP CUDA’ ) ;

10 c f g . Reconstruct ionDataId = r e c i d ;

11 c f g . Pro ject ionDataId = s inogram id ;

12 a l g i d = astra mex a lgor i thm ( ’ c r ea t e ’ , c f g ) ;

13 ast ra mex a lgor i thm ( ’ i t e r a t e ’ , a l g i d , 300) ;

14 rec = astra mex data2d ( ’ get ’ , r e c i d ) ;

15 ast ra mex a lgor i thm ( ’ d e l e t e ’ , a l g i d ) ;

16 astra mex data2d ( ’ d e l e t e ’ , r e c i d ) ;

17 astra mex data2d ( ’ d e l e t e ’ , s inogram id ) ;

Cod. 4.7: Reconstruction with FBP CUDA

In fig. (4.3) are shown the results of the SIRT and SART reconstructions starting

from same geometry and considering the same image for both of them. In order

to perform the correct simulation process is possible to provide a drawing of the

designed geometry using the function: astra geom visualize(proj geom,vol geom).
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Fig. 4.3: On the left- SIRT CUDA algorithm, on the right-SART CUDA.

Fig. 4.4: In the first row - from left to right: The original and reconstructed images, in the

second row- from left to right: The image’s sinogram and the reconstructed image in grey scale.

Fig. 4.5: Three steps of rotation projection visualization,considering the range (0,90◦). The

green line represent the detectors, the yellow line is range sub-angle, and the blue rectangle is

the object’s volume geometry.
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In fig.(4.4) is shown the reconstruction by applying the FBP CUDA algorithm

for angle range (0,90◦). In fig.(4.5) is shown the result of this function with the

evolution of the projection’s process.

One of the checkpoint of our research work is to compared each the results

obtained in order to evaluate the enhancement of the process, for tis reason are con-

sidered two evaluation metrics useful for a deep investigation. The first considered

is the PSNR that computes the peak signal-to-noise ratio between two images. This

ratio is used as a quality measurement between the original and compressed image.

The higher PSNR leads to a better quality of the reconstructed image.

PSNR

Peak Signal-to-Noise Ratio, it is used to estimate the difference between two

images.

PSNR(x, y) = 10 · log10

[
(max(max(y)))2

MSE
]

]
MSE(x, y) =

∑
i,j(xi,j − yi,j)2

N

(4.1)

Where:

• y = original image;

• x = reconstructed image;

• i,j = denote the pixel position of the images

• N = image’s pixels

In tab. (4.2) are proposed the results of the PSNR computation, there are shown

the performances of various algorithms over different rang of measurements.

PSNR (dB)

Range (degree) SART SIRT

0-90 -50,4918 -59,8961

0-120 -46,7528 -57,2586

0-150 -42,2501 -54,2711

Table 4.2: Comparison between SART and SIRT algorithms over different ranges.

In this research work, another evaluation metric is considered, the Structural

Similarity Index Measure (SSIM) is also used to check the improvement of the re-

construction image. SSIM is a method for predicting the perceived quality of digital

television and cinematic pictures, as well as other kinds of digital images and videos.

SSIM is used for measuring the similarity between two images [63]. The higher SSIM

leads to a better quality of the reconstructed image.
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SSIM

Structural Similarity Index Measurement, which is used to measure the compo-

nent similarity between the reconstructed image and the original one.

SSIM(x, y) =
(2x̄ȳ + C1)(2σxy + C2)

(x̄2 + ȳ2 + C1)(σ2x + σ2y + C2)
(4.2)

Where:

• ȳ, x̄ = respectively, are the mean values of the original and reconstruced im-

ages;

• σx,σy = respectively, are the standard deviations of the original and recon-

structed images;

• σxy = covariance of the images

• Ci = constant value used as a normalization factor.

In tab. (4.3) are proposed the results of the SSIM computation, there are shown the

performances of various algorithms over different rang of measurements.

SSIM

Range (degree) SART SIRT

0-90 0,296 0,2628

0-120 0,3651 0,3337

0-150 0,4143 0,4362

Table 4.3: Comparison between SART and SIRT algorithms over different ranges.

The computing of the equations was done on MATLAB considering the calcu-

lations over the correspondence between the reconstructed image and his respective

original image, see cod. (4.8).

1 SSIM = zero s (1 ,10) ; %Var iab l e s u s e f u l f o r the s to rage

2 PSNR = zero s (1 ,10) ;

3 N = 512 ∗ 512

4 f o r d = 1:10

5 x = squeeze ( pr (d , : , : ) ) ;

6 y = squeeze ( og (d , : , : ) ) ;

7 tmp = 0 ;

8 % Drawing up f o r the computation

9 f o r i = 1:512

10 f o r k = 1:512

11 d i f f = (x ( i , k ) − y ( i , k ) ) ˆ2 ; % P ixe l s d i f f e r e n c e

12 tmp = tmp + d i f f ; % Var iab le f o r the s to rage

13 end

14 end

15 MSE = (tmp/N) ;

16 % PSNR computation

17 PSNR(1 , d) = 10∗ l og10 ( ( (max(max(y ) ) ) ˆ2) /MSE) ;

18 x mean = sum(x ( : ) ) /N;

19 y mean = sum(y ( : ) ) /N;

20 covxy = cov ( [ x ( : ) , y ( : ) ] )

21 %SSIM computation

22 SSIM(1 , d) =

23 [ ( 2∗ x mean∗y mean ) ∗(2∗ covxy (1 ,2 ) ) ] / [ ( x meanˆ2 + y mean ˆ2) ∗( covxy (1 ,1 ) + covxy (2 ,2 ) ) ] ;

24 end

Cod. 4.8: MATLAB code for the evaluation parameters’ computing.
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The reported results show that the SART method could achieve a better recon-

struction in limited range angle setup so this reconstruction method should be used

in order to generate the input to be donoised by the CNN. This is also in accordance

to results that could be found in literature, for example in [54].

4.1.2 Convolutional Neural Network implementation - Single Slice

Case

In this section will be explored the convolutional neural network used in our

research, analysing the implementation of the network and the management of the

data for the single slice case and the multi slice case. In our assumptions were

used a neural network, composed of a U-net,originally used for image segmentation

applied to human’s membrane. Within the network was added a skip connection that

links the input and the output of the CNN. The latest layer provides the outcome

based on the decision made during the entire process. The overall network, called

SARTConvNet can be divided into two different parts, the downhill path and the

uphill path one mirrored to the other, see fig.(4.6). The network is composed by:

• Zero Padded Convolutional Layers: with 3x3 dimension, it computes the fea-

ture’s extraction, see eq. (2.50). In this steps are carried out operations of

batch normalization and rectified linear unit, in this case is considered a ReLu

Unit, see eq. (2.4.1).

• Pooling Layers: with 2x2 dimension, it computes the image’s down-sampling

in the downhill path while, in the uphill path, it computes the image’s up-

sampling. After this operation, the number of feature channels is increased, see

eq. (2.51). For that reason, the capability of features extraction is enhanced,

providing a better CNN [27].

• Skip connections: implementing these operations is helpful because they can

avoid information loss due to the operations done in every layer [26].

The CNN is implemented considering the Python environment taking into ac-

count two deep learning framework which are Tensorflow and Keras. The model in

[64] was considered; it was modified, changing the input size considering a dimension

of 512x512 pixels. For the creation of the skip connection, a merge layer was added.

Also, the loss parameter was modified, considering a loss metric provided by MSE,

eq.(2.36). Lastly, the Stochastic Gradient Descent was considered as an optimizer

parameter, eq.(2.41), with a learning rate in the range of [ 0.01 - 0.0001 ] and a

momentum with value 0.99.

1 de f unet ( p r e t r a in ed we i gh t s = None , i n pu t s i z e = (512 ,512 ,1) ) :

2 inputs = Input ( i n pu t s i z e )

3 conv1 = Conv2D(64 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( inputs )

4 conv1 = Conv2D(64 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv1 )

5 pool1 = MaxPooling2D ( p o o l s i z e =(2 , 2) ) ( conv1 )

6 conv2 = Conv2D(128 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( pool1 )
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Fig. 4.6: Network architecture, here can be seen the distinction between the downhill and uphill

paths with each layer and proper dimension.

7 conv2 = Conv2D(128 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv2 )

8 pool2 = MaxPooling2D ( p o o l s i z e =(2 , 2) ) ( conv2 )

9 conv3 = Conv2D(256 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( pool2 )

10 conv3 = Conv2D(256 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv3 )

11 pool3 = MaxPooling2D ( p o o l s i z e =(2 , 2) ) ( conv3 )

12 conv4 = Conv2D(512 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( pool3 )

13 conv4 = Conv2D(512 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv4 )

14 drop4 = Dropout ( 0 . 5 ) ( conv4 )

15 pool4 = MaxPooling2D ( p o o l s i z e =(2 , 2) ) ( drop4 )

16 conv5 = Conv2D(1024 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( pool4 )

17 conv5 = Conv2D(1024 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv5 )

18 drop5 = Dropout ( 0 . 5 ) ( conv5 )

19 up6 = Conv2D(512 , 2 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (UpSampling2D( s i z e = (2 ,2 ) ) ( drop5 ) )

20 merge6 = concatenate ( [ drop4 , up6 ] , ax i s = 3)

21 conv6 = Conv2D(512 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (merge6 )

22 conv6 = Conv2D(512 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv6 )

23 up7 = Conv2D(256 , 2 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (UpSampling2D( s i z e = (2 ,2 ) ) ( conv6 ) )

24 merge7 = concatenate ( [ conv3 , up7 ] , ax i s = 3)

25 conv7 = Conv2D(256 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (merge7 )

26 conv7 = Conv2D(256 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv7 )

27 up8 = Conv2D(128 , 2 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (UpSampling2D( s i z e = (2 ,2 ) ) ( conv7 ) )

28 merge8 = concatenate ( [ conv2 , up8 ] , ax i s = 3)

29 conv8 = Conv2D(128 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (merge8 )

30 conv8 = Conv2D(128 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv8 )

71



31 up9 = Conv2D(64 , 2 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (UpSampling2D( s i z e = (2 ,2 ) ) ( conv8 ) )

32 merge9 = concatenate ( [ conv1 , up9 ] , ax i s = 3)

33 conv9 = Conv2D(64 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (merge9 )

34 conv9 = Conv2D(64 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv9 )

35 conv9 = Conv2D(2 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv9 )

36 conv10 = Conv2D(1 , 1 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv9 )

37 merge10 = concatenate ( [ conv10 , inputs ] , ax i s = 3)

38 conv11 = Conv2D(1 , 3 , a c t i v a t i on = ’ sigmoid ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (merge10 )

39 model = Model ( inputs = inputs , outputs = conv11 )

40 model . compile ( opt imize r = SGD( l e a r n i n g r a t e= 0.0001 , momentum=0.99) , l o s s = ’

mean squared error ’ , metr i c s =[ ’ accuracy ’ ] ) ;

41 return model

Cod. 4.9: Implementation of the CNN model in Python

Using the ASTRA toolbox, starting from the sinograms created by measurements

without limitations, it was possible to obtain three different ranges of scanning

considering a limited angle measurement. For a better interpretation of the results,

have been created 350 reconstruction images from the limited sinograms subdivided

into three different categories:

• Train set : 300 images used for train the CNN;

• Test set : 25 images used for testing the solidity of the CNN;

• Validation set : 25 images used for the validation, useful for the loss’ compute.

The division process was done using a simple script, see lis. (4.10). Initially, a source

CSV file was created to collect the entire dataset. Then, exploiting the scikit-learn

module, a random split was performed using the function train test split. In this

way was possible to divide the images into train, test and validation sets based on

the considerations made before. After all, different CSV documents which contain

the files of every set, were created. They will be used in the file’s recalling during

the training phase of the network.

1 import pandas as pd

2 from sk l ea rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

3 import os

4

5 datase t = ’ /home/ubuntu/TESI GERACE/unet−master / datase t / namef i l e . csv ’

6 data = pd . r ead csv ( datase t )

7

8 x t ra in , x t e s t = t r a i n t e s t s p l i t ( data , t e s t s i z e= 50 , t r a i n s i z e =300)

9

10 #creaz i one f i l e v a l i d a t i on

11 x te s t , x va l = t r a i n t e s t s p l i t ( x t e s t , t e s t s i z e = 0 . 5 )

12 x t r a i n . t o c sv ( ’ /home/ubuntu/TESI GERACE/unet−master / datase t / x t r a i n 9 0 . csv ’ , index =

False )

13 x va l . t o c sv ( ’ /home/ubuntu/TESI GERACE/unet−master / datase t / x va l 90 . csv ’ , index = False )

14 x t e s t . t o c sv ( ’ /home/ubuntu/TESI GERACE/unet−master / datase t / x t e s t 9 0 . csv ’ , index = False )

Cod. 4.10: Dataset division script.

Successively, the main script was compiled considering the file subdivision and the

correspondence with the a priori information provided by the groundtruth files ob-

tained from the unlimited sinograms. In this way, the training phase of the network

can begin. Starting with the creation of empty python’s arrays, reading the CSV

72



files created in lst.(4.10) and fill up the right one considering the same source file

for the management of the reconstruction files and the originals maintaining the

correspondence between them.

1 #Creat ion o f ar rays f o r a be t t e r management o f the f i l e s

2 f i l enames da ta = [ ] ; #array f o r the r e c on s t ru c t i on data

3 f i l enames og = [ ] ; #array f o r the o r i g i n a l data

4 f i l e n ame s va l = [ ] ; #array f o r the va l i d a t i on data

5 f i l enames pr ed = [ ] ; #array f o r the t e s t data

6

7 from csv import reader

8 #For cyc l e u s e f u l to append f i l e names in the exact order

9

10 i n p u t f i l e = open ( ’ /home/ubuntu/TESI GERACE/unet−master / datase t / x t r a i n 9 0 . csv ’ , ’ r ’ )

11 c sv r eade r = reader ( i n p u t f i l e )

12 header = next ( c sv r eade r )

13 f o r row in i n p u t f i l e :

14 p lace = row

15 p lace = place . s t r i p ( )

16 f i l enames da ta . append ( p lace )

17 f i l enames og . append ( p lace )

Cod. 4.11: Array’s loading example. Here we have the fill up of the original and reconstruction

arrays. For the others arrays we just need to change the inputfile and the name of the final

variable.

Proceeding with the design and in accordance with the division of the dataset, see in

(2.4.1), the entire test set was stored into a specific variable. So, during the training

phase, the quality of our network can be verified viewing the intermediate results

and monitoring the situation in case of error or unsatisfactory results. Considering

the filename pred array containing the file’s name of the test set’s component, the

loading of the image into a multidimensional array, exploiting the scipy.io package

with loadmat module, can be done.

1 d=512 #image dimension

2 z=len ( f i l enames pr ed ) #number o f f i l e in t e s t s e t

3 f i l e names p r = np . z e ro s ( ( z , d , d , 1 ) ) #array o f z e ro s

4

5 f o r i in range ( z ) :

6 mat = loadmat ( ’ /home/ubuntu/TESI GERACE/unet−master / datase t /SART90 NO/ t e s t / ’ +

f i l enames pr ed [ i ] )

7 img = mat [ ’ r e c ’ ]

8 f i l e names p r [ i , : , : , 0 ] = img

Cod. 4.12: Image loading script.

The processing of train and validation sets is different with respect to the first one.

Due to a limited amount of resources, the physical machine can not handle the

volume of data provided to the CNN input. To resolve this issue a particular script

that helps us to divide the datasets into portions with the dimension of batch size

variable and provide these in the input of the CNN avoiding the out of memory

problem was considered. To perform this operation a Custom Keras Generator was

implemented, see cod. (4.13), which is composed of 3 steps:

• Element initialization,

• Batch’s length computing,

• Test and ground-truth images’ loading.

The fundamental step is to provide the exact correspondence between the input

images and the ground-truth images avoiding computational problems.
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1 c l a s s My Custom Generator ( u t i l s . Sequence ) :

2

3 de f i n i t ( s e l f , image data , image og , batch ) :

4 s e l f . image f i l enames data = image data

5 s e l f . image f i l enames og = image og

6 s e l f . b a t ch s i z e = batch ;

7

8 de f l e n ( s e l f ) : #compute the number o f samples in each batch

9 return (np . c e i l ( l en ( s e l f . image f i l enames data ) / f l o a t ( s e l f . b a t ch s i z e ) ) ) . astype (

np . i n t )

10

11 de f g e t i t em ( s e l f , idx ) : #operat ion f o r every batch

12

13 batch x = s e l f . image f i l enames data [ idx ∗ s e l f . b a t ch s i z e : ( idx + 1) ∗ s e l f .

b a t ch s i z e ] #f i l enames no i sy and gt data

14 batch y = s e l f . image f i l enames og [ idx ∗ s e l f . b a t ch s i z e : ( idx + 1) ∗ s e l f .

b a t ch s i z e ]

15

16 x = np . z e ro s ( ( s e l f . ba t ch s i z e , image s i ze , image s i ze , 1) , np . f l o a t )

17 y = np . z e ro s ( ( s e l f . ba t ch s i z e , image s i ze , image s i ze , 1) , np . f l o a t )

18 f o r i in ( range (0 , s e l f . b a t ch s i z e ) ) :

19 mat = loadmat ( ’ /home/ubuntu/TESI GERACE/unet−master / datase t /SART90 NO/ ’+

batch x [ i ] )

20 i f (mat i s not None ) :

21 img = mat [ ’ r ec ’ ]

22 x [ i , : , : , 0 ] = img

23 mat 2 = loadmat ( ’ /home/ubuntu/TESI GERACE/unet−master / datase t / og data /

’+ batch y [ i ] )

24 img 2 = mat 2 [ ’ img ’ ]

25 y [ i , : , : , 0 ] = img 2

Cod. 4.13: Keras generator for the input management.

After this preparatory work, all the data were provided to the CNN recalling

the Keras generator function and imported the CNN model. Inside a for cycle were

implemented the model.fit generator function providing in input:

• Generator : recalling the Keras generator containing the file names’ array of

training data and the original one.

• Validation data: recalling the Keras generator containing the file name’s array

of validation data.

• Number of epochs: in this case is equal to 1 due to the for cycle, in this way it

possible to works with one epoch at time limiting crash problem or applying

the early stop avoiding overfitting.

• Verbose: graphical information useful for a better live interpretation of the

progress.

The parameters’ results of the model generator function were stored and used for

better visualization of the data. Moreover, for every epoch, the model and the

predictions are saved providing all the parameters, weights and bias which compose

the CNN, and the expected outcome of the network in a particular epoch, see the

cod. (4.14).
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1 image s i z e = 512 #input s i z e d e f i n i t i o n

2 ba t ch s i z e = 1 #input batch s i z e

3

4 #r e c a l l o f keras generator

5 my t ra in ing batch gene ra to r = My Custom Generator ( f i l enames data , f i l enames og , b a t ch s i z e )

6 my va l ida t i on batch gene ra to r = My Custom Generator ( f i l enames va l , f i l e names va l og ,

b a t ch s i z e )

7

8 #import ing o f model and fundamentals packages

9 import math

10 from model import ∗
11 from tenso r f l ow . keras . models import save model , load model

12 from sc ipy . i o import loadmat

13 import t en so r f l ow as t f

14 from sc ipy . i o import savemat

15

16 model=unet ( )

17 epoch = 150 #number o f epoch f o r the t r a i n i n g phase

18

19 #re l oad ing o f an eventua l presaved model

20 model = load model ( ’ /home/ubuntu/TESI GERACE/unet−master /model save . h5 ’ )

21

22 #fo r cy c l e f o r the t r a i n i n g phase

23 f o r k in range (1 , epoch+1) :

24 pr in t ( ’Epoch {0} o f {1} ’ . format (k , epoch ) )

25 h i s t = model . f i t g e n e r a t o r ( generator=my tra in ing batch generato r ,

26 va l i d a t i on da t a =my va l idat i on batch generato r ,

27 epochs=1 , verbose = 1)

28 p r ed i c t i o n s = model . p r ed i c t ( f i l e names p r )

29 model . save ( ’ model save3d . h5 ’ )

30 savemat ( ’ p r ed i c t i on .mat ’ , { ’ pr ’ : p r e d i c t i o n s })

Cod. 4.14: Training code.
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4.2 Multi Slice Denoising Case

4.2.1 Simulated CT data generation for multi slice denoising case

In order to implement a multislice denoising, spatial information of each slice

must be known. Unfortunately this information is not present in the TCIA dataset,

so a new dataset had to be considered. This dataset was provided by hospital A.O.

San Carlo Borromeo in Milano to simulate the limited-angle TCT projection data

to demonstrate the performance of our research work. In fig. (4.7) are shown the

images of the considered dataset.

Fig. 4.7: Example of images extracted from the dataset.

The considered data set have a dimension of 512x512 pixels. The measurement

were done applying the same volume and projection geometries considered in the

Single Slice case. The noisy result, that can be seen in fig. (4.8), was obtained

by apply the SART reconstruction algorithm, taken into account an angle range of

(0,120◦) for the projection process.

Following the same approach as before is also possible to analyse the performance

of the entire process by computing the PSNR and SSIM for the various algorithms

for each range of measurement. In the tab. (4.4) and tab. (4.5) are shown the PSNR

and SSIM values for each range highlight, in agreement with [54], a higher value for

the SART algorithms with respect the SIRT and also a higher value for the range

with a higher range value .
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Fig. 4.8: In the first row-original image and grey scaled sinogram, in the second row- recon-

structed image and sinogram.

PSNR (dB)

Range (degree) SART SIRT

0-90◦ -42,6137 -53,2635

0-120◦ -37,914 -49,8115

0-150◦ -34,5684 -45,1639

Table 4.4: Comparison between SART and SIRT algorithms over different ranges.

SSIM

Range (degree) SART SIRT

0-90◦ 0,1777 0,0933

0-120◦ 0,2153 0,1433

0-150◦ 0,2295 0,2099

Table 4.5: Comparison between SART and SIRT algorithms over different ranges.
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4.2.2 Convolutional Neural Network implementation - Multi slice

Case.

In this section is provided the implementation of the Convolutional Neural Net-

work in the multislice case. A complete analysis of the modifications made over the

U-net model are reported, providing all the information useful for the management

and the creation of the datasets which are composed by slices of different dimensions.

In this way it is possibile to realize the denoising operation of an image exploiting a

higher amount of data by considering the neighbor images. Starting from the model

in [64], it was modified considering a variations on the first layer where it considers

a different input dimension based on the number of slices taken into account, the

output provided is always in one dimension, see cod. (4.15). In fig. (4.9) there

is the graphical representation of the CNN, notice the change in the dimension’s

input. This change is applied in order to perform the denoising process over the

central image of the multislice array, increasing the information considered in the

computation with the aims of enhancing the denoising process.

Fig. 4.9: Modified U-net, in this example, the input of the network uses 5 slices. The denoising

is performed on the central image of the array, for the comparison is used the corresponding

ground-truth image.

1 de f unet ( p r e t r a in ed we i gh t s = None , i n pu t s i z e = (512 ,512 , k ) ) :

2 inputs = Input ( i n pu t s i z e )

3 conv1 = Conv2D(64 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( inputs )

4 conv1 = Conv2D(64 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv1 )

5 pool1 = MaxPooling2D ( p o o l s i z e =(2 , 2) ) ( conv1 )

6 conv2 = Conv2D(128 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( pool1 )

7 conv2 = Conv2D(128 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv2 )

8 pool2 = MaxPooling2D ( p o o l s i z e =(2 , 2) ) ( conv2 )
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9 conv3 = Conv2D(256 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( pool2 )

10 conv3 = Conv2D(256 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv3 )

11 pool3 = MaxPooling2D ( p o o l s i z e =(2 , 2) ) ( conv3 )

12 conv4 = Conv2D(512 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( pool3 )

13 conv4 = Conv2D(512 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv4 )

14 drop4 = Dropout ( 0 . 5 ) ( conv4 )

15 pool4 = MaxPooling2D ( p o o l s i z e =(2 , 2) ) ( drop4 )

16 conv5 = Conv2D(1024 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( pool4 )

17 conv5 = Conv2D(1024 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv5 )

18 drop5 = Dropout ( 0 . 5 ) ( conv5 )

19 up6 = Conv2D(512 , 2 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (UpSampling2D( s i z e = (2 ,2 ) ) ( drop5 ) )

20 merge6 = concatenate ( [ drop4 , up6 ] , ax i s = 3)

21 conv6 = Conv2D(512 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (merge6 )

22 conv6 = Conv2D(512 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv6 )

23 up7 = Conv2D(256 , 2 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (UpSampling2D( s i z e = (2 ,2 ) ) ( conv6 ) )

24 merge7 = concatenate ( [ conv3 , up7 ] , ax i s = 3)

25 conv7 = Conv2D(256 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (merge7 )

26 conv7 = Conv2D(256 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv7 )

27 up8 = Conv2D(128 , 2 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (UpSampling2D( s i z e = (2 ,2 ) ) ( conv7 ) )

28 merge8 = concatenate ( [ conv2 , up8 ] , ax i s = 3)

29 conv8 = Conv2D(128 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (merge8 )

30 conv8 = Conv2D(128 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv8 )

31 up9 = Conv2D(64 , 2 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (UpSampling2D( s i z e = (2 ,2 ) ) ( conv8 ) )

32 merge9 = concatenate ( [ conv1 , up9 ] , ax i s = 3)

33 conv9 = Conv2D(64 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (merge9 )

34 conv9 = Conv2D(64 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv9 )

35 conv9 = Conv2D(2 , 3 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv9 )

36 conv10 = Conv2D(1 , 1 , a c t i v a t i on = ’ r e l u ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) ( conv9 )

37 merge10 = concatenate ( [ conv10 , inputs ] , ax i s = 3)

38 conv11 = Conv2D(1 , 3 , a c t i v a t i on = ’ sigmoid ’ , padding = ’ same ’ , k e r n e l i n i t i a l i z e r = ’

he normal ’ ) (merge10 )

39 model = Model ( inputs = inputs , outputs = conv11 )

40 model . compile ( opt imize r = SGD( l e a r n i n g r a t e= 0.0001 , momentum=0.99) , l o s s = ’

mean squared error ’ , metr i c s =[ ’ accuracy ’ ] ) ;

41 return model

Cod. 4.15: Implementation of the CNN model in Python for the multislice case.; can be seen

the difference in the input size

For this method, a different kind of management and a different kind of data

must be considered. The dataset employed is composed by a series of images that

have a spatial reference in order to know the exact location of every image and select

the right neighbor. The creation of the slices is performed take into consideration

an array of images, with a defined dimensions that depends on the number of slices

considered where the image in the centre position is the reference data where is

performed the denoising. For a better handling of the data, the input considered by

the CNN is an array of arrays that contains the noisy and the ground-truth images,

in this way are avoided errors in the recalling phase. Starting form the creation

of array of zeros with the dimension of the slice, the data loading are performed

sequentially, obtaining two variable called noisy and gt which contains the images.

Then a if loop control happens in order to save all the data in the final variable
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called dato x.mat which is used as a input in the CNN. The cod. (4.16) shown how

the generation of these data are performed.

1 %c r ea t i on o f ar rays

2 no i sy = ze ro s (512 ,512 , k ) ;

3 gt = ze ro s (512 ,512 , k ) ;

4 a = 1 ;

5 c = 1 ;

6 f o r i = 700:900

7 load ( s t r c a t ( ”/Users /ange/Desktop/TESI/og700/” , i n t 2 s t r ( i ) , ” . mat” ) ) %load ing o f ASTRA

recons t ruc t ed images

8 load ( s t r c a t ( ”/Users /ange/Desktop/TESI 2/ sa r t 700 900 /” , i n t 2 s t r ( i ) , ” . mat” ) ) %load ing o f

the o r i g i n a l images

9 no i sy ( : , : , a ) = rec ;

10 gt ( : , : , a ) = img ;

11 x = [ i n t 2 s t r ( i ) ] ;

12 %supe rv i s i on loop u s e f u l f o r sav ing the va r i ab l e

13 i f ( a==k)

14 save ( s t r c a t ( ”/Users /ange/Desktop/TESI/3D CASE/5 s l i c e / dato ” , i n t 2 s t r ( k ) , ” . mat” ) , ’

no i sy ’ , ’ gt ’ , ’ l a b e l ’ )

15 c = c+1;

16 a = 0 ;

17 end

18 a=a+1;

19 end

Cod. 4.16: Slices genertion code

In these assuptions, where firstly replicated the task made in the section 4.1, in

other to have a starting point and highlight the improvement derived from the

consideration of a multislice. A congruence in the confrontation of the datasets

results must be performed for this reason, the same data used as a test set, must be

considered in every dataset. Also the creation of these slices reduce drastically the

dimension of the dataset and consequently reduce the dimension of the train set, in

order to limit this problem an operation of Data augmentation is realized flipping

vertically all the images and store them into new variable, see cod. (4.17).

1 f o r i = 1 :40

2 load ( s t r c a t ( ’ /Users /ange/Desktop/TESI/3D CASE/5 s l i c e / dato ’ , i n t 2 s t r ( i ) , ’ . mat ’ ) ) ;

3 f o r k = 1 :5

4 x = f l i p l r ( gt ( : , : , k ) ) ;

5 y = f l i p l r ( no i sy ( : , : , k ) ) ;

6 gt ( : , : , k ) = x ;

7 no i sy ( : , : , k ) = y ;

8 end

9 c = 40+ i ;

10 save ( s t r c a t ( ’ /Users /ange/Desktop/TESI/3D CASE/5 s l i c e / dato ’ , i n t 2 s t r ( c ) , ’ . mat ’ ) , ’ no i sy ’

, ’ gt ’ ) ;

11 end

Cod. 4.17: Data augmentation code

For a better interpretation of the results, have been created 200 reconstruction

images from the limited sinograms subdivided into three different categories, for the

single slice sub-case were considered:

• Train set : 180 images used for train the CNN;

• Test set : 10 images used for testing the solidity of the CNN;

• Validation set : 10 images used for the validation, useful for the loss’ compute.

For the multislice case, despite the implementation of the data augmentation, have

been considered a smaller number of data respect to the single slice sub-case but the

congruence between the test sets was preserved. In thee assumptions were considered

two differt type of dimensions:
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Three slices

In this case was considered this data division:

• Train set : 110 images used for train the CNN;

• Test set : 10 images used for testing the solidity of the CNN;

• Validation set : 10 images used for the validation, useful for the loss’ compute.

Five slices

In this case was considered this data division:

• Train set : 60 images used for train the CNN;

• Test set : 10 images used for testing the solidity of the CNN;

• Validation set : 10 images used for the validation, useful for the loss’ compute.

The successive steps are the same proposed in the single case approach, the only

difference is the implementation of a for cycle useful for a better allocations of the

data in the right position, see cod. (4.18).

1 d=512

2 z=len ( f i l enames pr ed )

3 f i l e names p r = np . z e ro s ( ( z , d , d , k ) )

4 f i l e names me t r i c = np . z e ro s ( ( z , d , d , 1 ) )

5 f o r i in range ( z ) :

6 f o r k in range (0 , k−1) :

7 mat = loadmat ( ’ /home/ubuntu/TESI GERACE/unet−master / datase t /SART90 NO/ ’+

f i l enames pr ed [ i ] )

8 img = mat [ ’ no i sy ’ ]

9 f i l e names p r [ i , : , : , k ] = img [ : , : , k ]

Cod. 4.18: Image loading script for multislice case

The processing of train and validation sets is different with respect to the first one.

Due to a limited amount of resources, the physical machine can not handle the

volume of data provided to the CNN input. To resolve this issue a particular script

that helps us to divide the datasets into portions with the dimension of batch size

variable and provide these in the input of the CNN avoiding the out of memory

problem was considered. To perform this operation a Custom Keras Generator was

implemented, see cod. (4.19), which is composed of three steps:

• Element initialization,

• Batch’s length computing,

• Test and ground-truth images’ loading.

The fundamental step is to provide the exact correspondence between the input

images and the ground-truth images avoiding computational problems.
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1 c l a s s My Custom Generator ( u t i l s . Sequence ) :

2

3 de f i n i t ( s e l f , image data , image og , batch ) :

4 s e l f . image f i l enames data = image data

5 s e l f . image f i l enames og = image og

6 s e l f . b a t ch s i z e = batch ;

7

8 de f l e n ( s e l f ) : #obta in number o f samples in each batch

9 return (np . c e i l ( l en ( s e l f . image f i l enames data ) / f l o a t ( s e l f . b a t ch s i z e ) ) ) . astype (

np . i n t )

10

11 de f g e t i t em ( s e l f , idx ) : #operat ion f o r every batch

12

13 batch x = s e l f . image f i l enames data [ idx ∗ s e l f . b a t ch s i z e : ( idx + 1) ∗ s e l f .

b a t ch s i z e ] #f i l enames no i sy and gt data

14 batch y = s e l f . image f i l enames og [ idx ∗ s e l f . b a t ch s i z e : ( idx + 1) ∗ s e l f .

b a t ch s i z e ]

15

16 x = np . z e ro s ( ( s e l f . ba t ch s i z e , image s i ze , image s i ze , k ) ,np . f l o a t )

17 y = np . z e ro s ( ( s e l f . ba t ch s i z e , image s i ze , image s i ze , 1) , np . f l o a t )

18 f o r i in ( range (0 , s e l f . b a t ch s i z e ) ) :

19 mat = loadmat ( ’ /home/ubuntu/TESI GERACE/unet−master / datase t /SART90 NO/ ’+

batch x [ i ] )

20 img = mat [ ’ no i sy ’ ]

21 f o r a in range (0 , k−1) :

22 x [ i , : , : , a ] = img [ : , : , a ]

23 img 2 = mat [ ’ gt ’ ]

24 y [ i , : , : , 0 ] = img 2 [ : , : , k /2 ]

25

26 return x , y

Cod. 4.19: Keras generator for the input slices management

In the cod. (4.19) can be seen the differences applied in the dimensions of the images.

The variable x, with a dimension k contains the slices of noisy images, the variable

y with a 1-dimension, contains the original image correspondent to the noisy images

in the centre of the array. In this way er have the right sequence of images provided

in the CNN input. The parameters’ results of the model generator function were

stored and used for better visualization of the data. Moreover, for every epoch, the

model and the predictions are saved providing all the parameters, weights and bias

which compose the CNN, and the expected outcome of the network in a particular

epoch, see the cod. (4.20).

1 image s i z e = 512 #input s i z e d e f i n i t i o n

2 ba t ch s i z e = 1 #input batch s i z e

3 #r e c a l l o f keras generator

4 my t ra in ing batch gene ra to r = My Custom Generator ( f i l enames data , f i l enames og , b a t ch s i z e )

5 my va l ida t i on batch gene ra to r = My Custom Generator ( f i l enames va l , f i l e names va l og ,

b a t ch s i z e )

6 #import ing o f model and fundamentals packages

7 import math

8 from model import ∗
9 from tenso r f l ow . keras . models import save model , load model

10 from sc ipy . i o import loadmat

11 import t en so r f l ow as t f

12 from sc ipy . i o import savemat

13

14 model=unet ( )

15 epoch = 150 #number o f epoch f o r the t r a i n i n g phase

16 #re l oad ing o f an eventua l presaved model

17 model = load model ( ’ /home/ubuntu/TESI GERACE/unet−master /model save . h5 ’ )

18 #f o r cy c l e f o r the t r a i n i n g phase

19 f o r k in range (1 , epoch+1) :

20 pr in t ( ’Epoch {0} o f {1} ’ . format (k , epoch ) )

21 h i s t = model . f i t g e n e r a t o r ( generator=my tra in ing batch generato r ,

22 va l i d a t i on da t a =my va l idat i on batch generato r ,

23 epochs=1 , verbose = 1)

24 p r ed i c t i o n s = model . p r ed i c t ( f i l e names p r )

25 model . save ( ’ model save3d . h5 ’ )

26 savemat ( ’ p r ed i c t i on .mat ’ , { ’ pr ’ : p r e d i c t i o n s })

Cod. 4.20: Training code.
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Chapter 5

Results

This thesis work proposes and evaluates two different methods for enhancing

the tomographic reconstructions of acquisitions obtained in a limited angle range

setup. In the first section, the result of single slice case reconstruction process

are reported proving the quality enhancement that could be obtained using this

denoising technique. In the second section, the results obtained from a different

method, using a different dataset, are provided. In particular, the new method takes

into consideration more than one slice as the input with the aim of improving the

enhancing performance by taking into consideration a larger amount of information.

5.1 Single slice case

This subsection contains the results of CNN’s training exploiting a dataset pro-

vided by the TCIA. Starting from the original image, obtained by a sinogram con-

taining all the possible projections, it was possible to reconstruct, with limited an-

gles, noisy images used as the input of the CNN. The denoising capability of the

CNN are evaluated in comparing its results with the original images in the database

assumed as groundtruth. All the different developed model, each one related to lim-

ited angle ranges, were tested on the same dataset in order to compare the results

obtained. Denoising results present in [54] will also be reported for comparison.

SART 150

This section exposes the most straightforward and the best possible scenario in

our dissertation. The high range of measurement produces a sinogram with a high

number of projections and, consequently, an image with a low level of noise and

artifacts, providing an excellent output from the CNN in terms of image quality,

loss value, and PSNR/SSIM values.

Despite the high value of learning rate, the network provides a good train and vali-

dation loss pattern, see fig.(5.1), with lines following each other without significant

fluctuations. In terms of denoising output, the CNN output shows little difference

between the original and reconstructed images. In fig.(5.2) there is an example of
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Fig. 5.1: Losses patterns for SART in range 0-150◦. In blue, is represented the training loss and

in red, the validation loss.

the CNN outcome. On the left is present the original image. On the center, there is

the reconstructed image obtained with ASTRA and can be seen some artifacts and

blurred zone due to the reconstruction phase, on the right, there is the CNN output

without noise and artifacts having a good correspondence of values.
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Fig. 5.2: Example of CNN result, from left to right: Original image, reconstruction SART with

range 0-150◦, CNN output.

For a better view, the graphics in fig. (5.3) help us quickly analyze and better

compare the outcome obtained by the proposed method.
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Fig. 5.3: PSNR and SSIM patterns for range 0-150◦.The blue line represents the PSNR/SSIM

value for the i-th test image; the yellow line represents the average value reported in [54], the

red line represents the parameters’ average value

SART 120

This section reports results obtained on data acquire with 0-120 angle range. Due

to the reduced angle of measurement, the sinograms have fewer views in respect to

the previous case, which produces an ASTRA reconstruction image with much more

artifacts and noise outside and inside of the subject. Although this new setting, the

CNN outcome is robust and stable, providing a sound reconstruction and a high-

grade train loss pattern, while, for the validation loss, there are some fluctuations,

see fig.(5.4).
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Fig. 5.4: Losses patterns for SART in range 0-120◦. In blue, is represented the training loss and

in red, the validation loss.
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Fig. 5.5: Example of CNN result, from left to right: Original image, reconstruction SART with

range 0-120◦, CNN output

Visually comparing with the original images, the CNN output reconstruction

provides, in a few ares of the reconstructed image, points of ’misconception’ value

and the validation loss fluctuations can be related to this particular result. See

fig.(5.5). In terms of PSNR and SSIM, there is some difference concerning the

previous case. In terms of SSIM, there is the best possible result with value, for

every image, more significant than the reference values considered in [54].
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Fig. 5.6: PSNR and SSIM patterns for range 0-120◦.The blue line represents the PSNR/SSIM

value for the i-th test image; the yellow line represents the average value reported in [54], the

red line represents the parameters’ average value

indicating an excellent reconstruction and a substantial similarity between the

images despite the reconstruction’s errors, see fig.(5.6)

86



SART 90

This section reports results obtained considering the most challenging case in

our dissertation. The limited range produces a sinogram with a low number of

views, and it causes blurring and undefined zone on the relative image. It is tough

to understand the details and the entire structure of interest. Nevertheless, CNN’s

response was optimal, providing an optimal trend of the train and validation losses,

see fig. (5.7). Evaluating the results in the matter of PSNR and SSIM parameters

is excellent; this is an excellent enhancement because an image obtained with a very

limited range of angles can be reconstructed without significant issues. Nonetheless,

the average value obtained is far better than the reference, see fig. (5.9).
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Fig. 5.7: Losses patterns for SART in range 0-90◦. In blue, is represented the training loss and

in red, the validation loss.
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Fig. 5.8: Example of CNN result, from left to right: Original image, reconstruction SART with

range 0-90◦, CNN output
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Fig. 5.9: PSNR and SSIM patterns for range 0-120◦.The blue line represents the PSNR/SSIM

value for the i-th test image; the yellow line represents the average value reported in [54], the

red line represents the parameters’ average value.

Range 150 Range 120 Range 90

Index PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

1 31,90 0,9956 29,30 0,9917 29,87 0,9929

2 31,01 0,9948 29,06 0,9916 29,49 0,9929

3 31,25 0,9948 29,12 0,9916 29,45 0,9921

4 30,55 0,9948 28,28 0,9902 28,50 0,9918

5 31,89 0,9956 29,17 0,9916 30,74 0,9938

6 28,95 0,9939 28,29 0,9911 28,33 0,9921

7 30,56 0,9946 27,56 0,9892 28,15 0,9903

8 31,49 0,9957 28,83 0,9910 29,11 0,9929

9 30,75 0,9951 28,75 0,9907 29,42 0,9927

10 30,97 0,9949 28,04 0,9902 28,87 0,9916

Average 30,94 0,9950 28,64 0,9917 29,17 0,9923

Reference 30,55 0.9825 25,71 0,9607 23,80 0,9419

∆ 0,39 0,0125 2,93 0,0310 5,37 0,0504

Table 5.1: Evaluation parameters for SART reconstruction. The terms with a higher value are

highlighted.
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Table 5.1, contains all the results obtained on a small test set (10 images) ex-

tracted from TCIA dataset providing PSNR and SSIM values for each range, the

average value for each evaluation metric, the metric results reported in [54], and Pos-

itive values of delta corresponds to improvement in respect to the method reported

in [54].

Looking at the column ”Range 150” in tab. 5.1, the CNN produces a high value

of PSNR and SSIM, proving an optimal result in terms of structures and similarities.

On average, it makes higher PSNR and SSIM values concerning the reference. Those

few values under the average value are due to the image’s zones where there is a

higher presence of details whose the network can not identify in the limited number of

epochs considered. Despite this particular circumstance, the overall reconstruction

is done perfectly. Highlight the column ’Range 120’ in tab 5.1, in this specific dataset

the presence of the ’misconception’ zone, caused by the blurring effect derived by the

limited angle reconstruction, creates some discrepancies in the PSNR computation.

This can be seen in fig. (5.5) where the reconstruction images shows som difference

respect to the original one. PSNR’s value was far better for the other images, thus

providing an average value of PSNR greater than the value propose in [54].
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Fig. 5.10: Range 150◦ - Best case, first table’s row.
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Fig. 5.11: Range 150◦ - Worst case, sixth table’s row.
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The section ’Range 90’, in tab. 5.1, show significant results with better than

the value obtained in [54] for the entire image’s set. The few terms under average

are due to blurring imposed by the limited angle scanning it leads to a non-optimal

reconstruction providing a drop of the parameters.

For a better view and a deep understanding of the results, the images are provided

for the best and the worst case for every range. Starting from the range 0-150◦, can

be seen the difference between the images, see fig.(5.10) and fig. (5.11). The first

row presents the best case; in the second row, there is the worst case. The image

on the left is the original one; on the center, there is the ASTRA reconstruction

and, on the right, the CNN reconstruction. The main difference between these cases

is in the details computation; there is a better result for the image with a better

definition and a much higher number of details in the original image, leading to a

better reconstruction of them.
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Fig. 5.12: Range 120◦ - Best case, first table’s row.
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Fig. 5.13: Range 120◦ - Worst case, tenth table’s row.

In the range 0-120◦, the difference is amplified due to the limited angle measurement

and this lead to some curious results, see fig.(5.12). In the ASTRA reconstruction

there are zones of blurring which modify the amplitude value of the pixels mainly in

the upper part of the image, this leads to an error in the evaluation as can be seen

in the image on the right that present zone of error, mostly on the border. Despite

this, the overall image provides a good result and a good definition of details. The

worst case provides a good value of PSNR and SSIM, but respect the previous case,
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the reconstruction presents some holes in the border of the subject due to the noise

present in the image that modifies the expected value. This justifies the difference

of 1dB in the PNSR and the SSIM term.

Lastly, considering the range 0-90◦, the CNN provides impressive results. The

noise caused by the very limited range of angles causes a different number of blurred

areas with respect to the case 0-120◦. Despite this, CNN’s response is excellent. In

fig. (5.14), the CNN output produces some errors in the central part of the image

where the blurring effect causes a non-defined reconstruction of the alveoli. The

worst case, see fig.(5.15), shows the main effect of the noise over the reconstruction.

The significant difference between the PSNR’s values is due to the high blur obtained

in the reconstruction. The overall CNN output shows remarkable similarities with

the original one, but in the details can be seen a non-defined reconstruction in the

central part and a mismatch of reconstruction values can be seen in the upper zone

of the CNN output, a yellow stripe is visible, and that evidences a non-optimal

reconstruction in this area. Despite this, the higher value available are well-defined,

highlights the quality of the entire reconstruction process.
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Fig. 5.14: Range 90◦ - Best case, fifth table’s row
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Fig. 5.15: Range 90◦ - Worst case, seventh table’s row
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5.2 Multi slice case

This section provide the results obtained with the use of a different dataset. It

was considered for the necessity of a spatial reference that can denote the position

of every slice to prove that, assuming a multislice in input, it could enhance the

CNN’s denoising performance. The results for the single slice case, five slices case

and three slices case will be shown. This process was implemented using the 0-120◦

measurement range for each case. Moreover, for a congruent comparision of the

data, the same test set containing the same images was considered and the results

for each case are reported.

Single slice case

Standard case of reconstruction seen before. This case are considered in order

to provide the denoising evaluation as a benchmark of the CNN and consider it as

a basis of comparison with the other cases’ results. This particular dataset presents

some difficulties in the reconstruction. Visually some noise and artifacts do not allow

us to understand the details clearly, with a great emphasis on high-value points. In
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Fig. 5.16: Example of CNN result, from left to right: Original image, reconstruction SART range

0-120◦ with a single image, CNN output.
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Fig. 5.17: Loss patterns. In blue, is represented the training loss and in red, the validation loss.

the overall consideration, it produces a good outcome, see fig. (5.16). Also, the loss’s
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parameters follow an excellent pattern congruent with the reconstruction’s quality,

see fig.(5.17).
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Fig. 5.18: PSNR and SSIM graphics. In blue, PSNR value of i-th test image, in red, the average

value.

Three slices case

In this case, in input of the CNN, an array of three ASTRA reconstructed images

is considered. This method aims to enhance the amount of data for the denoising of

an image including the previous and the following images that, later, are compared

with the original one. As a reference for the CNN input, the central image is the

one to be compared. Visually, the denoising output obtained can not be clearly

evaluated, the results at first sight is very similar to the ’Single Slice Case’, see fig.

(5.19). Also, in terms of losses, the train and the validation losses have a good trend,

demonstrating the quality and the effective operation of the network, see fig.(5.20).
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Fig. 5.19: Example of CNN result, from left to right: Original image, reconstruction SART range

0-120◦ with 3 slices, CNN output.
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Fig. 5.20: Loss patterns. In blue, is represented the training loss and in red, the validation loss.
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Fig. 5.21: PSNR and SSIM graphics. In blue, PSNR value of i-th test image, in red, the average

value.

Five slices case

In this case, in the input of the CNN, an array of five ASTRA reconstructed

images is considered. This method aims to enhance the number of data, including

the two previous and the two following images, and then compared with the original

one. As a reference for the CNN input, the central image is the one to be compared.

The denoising output obtained is very similir with respect to the other two cases; in

the overall there is a good reconstruction without a clear vision of details. (5.22).

Also, graphically, at first sight, some similarity can be seen in the graphics, see

(5.24). Despite the non-optimal reconstruction quality, the loss’s lines follow a good

pattern underlining the proper functioning of the network, see fig. (5.23)

The table 5.2, contains all the results for this particular dataset providing PSNR

and SSIM values for every case, the average value for every parameters, the reference

value, the difference between the single case parameters and the multislice parame-

ters contained inside ’∆ Single case’ section. Looking at column ’Single Case’ in tab.
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Fig. 5.22: Example of CNN result, from left to right: Original image, reconstruction SART range

0-120◦ with 5 slice image, CNN output
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Fig. 5.23: Losses patterns. In blue, is represented the training loss and in red, the validation

loss.

(5.2) the physical output’s quality is corroborated by good PSNR and SSIM values.

These considerations produce good average terms of PSNR and SSIM. The param-

eters under average are due to the presence of pixels and zones with a high value

which, during the ASTRA reconstruction, produces tough uncertainty zones that

creates difficulties in the CNN reconstruction, see fig. (5.18). Considering the col-

umn ’3 Slice Case’ comparing one by one terms of each case;can be noticed, in some

example, that there is an improvement in the reconstruction evaluation’s terms. On

average, there is a minimum enhancement of the PSNR and SSIM values. Finally,

in the ’5 Slice Case’ in tab. (5.2) can be seen the results. Considering PSNR and

SSIM parameters, on average, is obtained a slightly difference in the average value

of PSNR and SSIM respect the ’Single Case’ values,and also for the values in the

’3 Slice Case’. The results in tab. (5.2) could be associated to a CNN dimension’s

limitation, so to obtain a good result, an enhancement of the convolutional layers

or a different treatment of the data needs to be done, in order to obtain a higher

improvement.
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Fig. 5.24: PSNR and SSIM graphics. In blue, PSNR value of i-th test image, in red, the average

value.

Single Case 3 Slice Case 5 Slice Case

Index PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

1 24,91 0,9056 24,89 0,9050 24,89 0,9079

2 27,71 0,9141 27,71 0,9158 27,50 0,9105

3 24,77 0,8922 24,96 0,8972 24,63 0,8935

4 27,12 0,8878 27,03 0,8930 27,38 0,8990

5 27,33 0,8990 27,32 0,9008 27,39 0,9041

6 25,56 0,8540 27,35 0,8992 25,89 0,8695

7 24,39 0,9055 24,38 0,9067 24,22 0,9024

8 24,75 0,9153 24,69 0,9166 24,71 0,9183

9 24,04 0,8269 24,10 0,8300 24,00 0,8308

10 25,66 0,8499 25,42 0,8387 25,50 0,8428

Average 25,62 0,8850 25,79 0,8903 25,61 0,8879

∆ Single case - - 0,16 0,0053 -0,01 0,0029

Table 5.2: Results of PSNR and SSIM in the multislice case. The terms with a higher value are

highlighted
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For a better view and a deep understanding of the results, the images for the

best and the worst scenario are provided for every case. Starting from the single

slice scenario, it produces a difference in the outcomes shown in fig.(5.25) and fig.

(5.26). The first row presents the best case. In the second row, there is the worst

case. The image on the left is the original one. On the center, there is the ASTRA

reconstruction and, on the right, the CNN reconstruction. The overall results of this

case are good, and at first sight, there is a substantial similarity between the original

and the reconstructed one. In fig. (5.25), the evaluation parameters are affected by

the significant presence of noise due to the limited measurement, which can be seen

in the ASTRA reconstruction image and by the two minor points in yellow, which

highlight the points of maximum in the image. Also, the pixels related to higher

values that evidence the arm’s bones’ presence are clearly reconstructed. For these

reasons, there is a high value of PSNR and SSIM. Considering the worst case, see

fig. (5.26), the overall subject can be identified, the pixels with the higher value are

detected and reconstructed. Also, a non-optimal reconstruction on the left side of

the image can be seen due to the blur effect imposed by the measurement process.

These produce errors in the main subject and the external object; this motivation

causes a low value of PSNR and SSIM.
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Fig. 5.25: Single slice - Best case, second table’s row.
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Fig. 5.26: Single slice - Worst case, ninth table’s row.

97



Considering the results for the five slice case, see fig. (5.27) and fig. (5.28), they

are very similar to the single slice case. Analyze the tab. (5.2), the only difference

can be seen in the SSIM. In the best-case scenario, there is a decrease of parameters,

which can be caused by the type of image considered. The slice taken into account

has a low amount of pixels with high value, so the use of multiple slices for a better

definition does not enhance this particular case. In the worst-case scenario, there is a

small increase; the image considered is different from the previous case with a larger

presence of higher pixel values, the deployment of multiple slices can enhance the

reconstruction quality in this particular type of image. There is a little improvement

on the background and the blurred area on the left; these motivations lead to an

increment in the SSIM and take into consideration the application of multislice

input.
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Fig. 5.27: 5 slices - Best case, second table’s row.
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Fig. 5.28: 5 slices - Worst case, ninth table’s row.
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For the three slices case, the visual result is like the previous cases; the difference

can be exploited make a comparison with the value in the tab.(5.2). For all the

evaluation parameters, there is a slight increase which confirms the analysis made

before. The images obtained in the best case have not been that different. This is

due to the low number of pixels with a high value that the network can identify and

reconstruct without problems. By contrast, the worst-case shows little change in the

PSNR and SSIM values, the deployment of a lower number of neighbor slices can

increase the quality of the reconstruction thanks to the congruence of the values with

the nearest images. In these dissertation, the five slices case does not provide some

enhancement because the neighbors considered are too far from the reference, so the

values considered can be too different, and they cause a drop in the reconstruction

quality. The use of a higher number of slices in the computation can not provide

an optimal reconstruction with this particular dataset; as can be seen, the images

with homogeneous values have the same PSNR and SSIM of the single slice case, see

fig. (5.29). Instead, the non-homogeneous images, see fig. (5.30) produce a small

enhancement in the parameters, so the CNN has a better approach with this kind

of image that has a larger number of areas with a higher pixel value.
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Fig. 5.29: 3 slices - Best case, second table’s row
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Fig. 5.30: 3 slices - Worst case, ninth table’s row.
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Chapter 6

Conclusions

This thesis work aimed to highlight the benefits of deep learning applied to a

limited angle CT scanning for application in the medical and industrial field. The

usage of a limited range angle computed tomography could be useful in a plethora

of applications since it is a solution to reduce the quantity of X-ray’s radiation,

decrease the overall cost, and complete the entire measurement process in less time.

The application of this solution provides some contraindications; it produces

noise and creates some artifacts which are counterproductive results.

Therefore, these results can be improved by applying the concepts of deep learn-

ing. In this work were developed two different methods for exploiting the problem

of reconstruction with limited angles. Each method aims to produce an enhanced

outcome starting from a noisy measurement.

The first method considers denoising reconstructed slices independently, and

was tested using three datasets obtained from sinograms with a limited number of

projections using angle range of [0-90◦], [0-120◦], [0-150◦]. So, different level of noise

and artifacts were obtained.

The response of the considered U-net was significant. We got results by evalu-

ating the PSNR and the SSIM parameters over the reconstructed images from the

sinograms with a higher degree value, and also containing a higher number of pro-

jections. In this way the CNN produce an outcome with an average PSNR = 30,94

dB and an average SSIM = 0,9950 for the SART 0-150◦. These values are on the

same level or slightly superior to the ones reported on state of the art works, e.g

[54], tested on the same data.

In the other two datasets, the amount of noise was higher; despite this, the

results were excellent. For both, there was a significant improvement in PNSR and

SSIM. There was a difference, in respect to the evaluation metric reported in [54],

of +2,93 dB for PSNR and + 0,0310 for SSIM in the SART 0-120◦.

The best result was obtained with the noisier dataset considered for the SART

0-90◦; there was an improvement of +5,37db for PSNR and +0.0504 for SSIM.

A second method was proposed in order to evaluate the possibility of jointly

performing denoising on neighbor slices. In this case, it was considered a particular



dataset which allowa us to have a spatial reference for each slice in order to elaborate

a higher amount of information, maintaining the image’s congruence for a proper

CNN’s mode of operation. The images considered were obtained by sinograms that

contain projections within the range 0-120◦.

This approach allows us to deal with an intermediate case with a discrete level of

noise and with spatial references, which offer the possibility to handle voxels working

with slices of images enhanced the quantity of information used for the comparison.

For this method, the considered datasets are composed of the reference image and

some neighbors. In total, there are three or five images. The aim of this operation is

to improve the denoising factor of the network making the convolutional operation

on the reference image, which is the image in the centre position of the input array.

The central image is the selected one to be restored, by considering a higher density

of data that are provide by the neighbor images that were the in previous or in the

following positions with respect to the reference one.

The results obtained present a slight improvement, especially for the three slices

case, with an increment of +0,16 for the PSNR and +0.0053 for the SSIM. The mo-

tivations behind these modest improvements could be many. The usage of neighbor

slice, in respect of denoising each slice separately, could enhance the performance

within certain limits. Using a higher distance, such as in the five slices case, could

be counterproductive because the introduced additional information could be not

related to the central slice. Also, the network could be underpowered, and there

will be the necessity to increase the deep and computational power to allow the

extraction of a more significant number of features.

Lastly, the dataset employed could be the primary motivation. It was noticed

that the images that show a significant number of regions with high pixel values

improved the reconstruction. A better generalization of the dataset could be one

solution for the problem. Despite all, this work points out the benefit and proving

the quality of the deep learning for the reconstruction in a limited angle measure-

ment case considering a single image comparison and laying the basis for the use of

multislice in the standard applications.

Future directions

• Increase the simulation time by migrate the toolbox in C++ programming

language and speed up the execution processes.

• Management over the CNN must be done to increase the layers’ number and

the computational power. Improving the network capabilities enhances the

number of extracted features and, consequently, increases the details observed

by carrying out a deeper analysis of the images. In this way, an output with

a better quality could be produced.

• A detailed research of a proper dataset must be considered to have the correct

number of images with homogeneous features that can easily be identified.

101



Also, the resolution, in term of the distance between two projections, is essen-

tial to have the same degree of similarity, allowing a much richer amount of

data that can be processed in the multislice case.

• Operate with a different range of reconstruction algorithms to understand

which one is the more suitable for this specific application.

• Conduct a different form of reconstruction measurement to evaluate the im-

provement obtained by generating the reconstructed image with a displace-

ment in order to imitate a helical movement performed in a 3D computed

tomography.
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