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Abstract

Machine Learning and Deep Learning tools in Medical Imaging are promis-
ing approaches to aid physicians and radiologists in performing diagnoses.
Machine Learning models that work with imaging data require massive
amounts of data. Although many institutes are collaborating to produce
publicly available datasets of medical images, the process of data acqui-
sition is severely limited by different challenges. These challenges are
mainly related to privacy regulations and the effort of domain experts to
assess imaging data quality and produce high-quality ground truth. In turn,
the difficulty of managing large datasets of medical imaging translates in a
scarcity of data available for research. This Ph.D. thesis studies collabora-
tive machine learning as a methodological approach to overcome the prob-
lem of data availability. Collaborative Machine Learning is a vast area of
research that includes a set of techniques, such as Distributed Learning and
Esembling Methods, to enable multi-centric studies using multiple private
datasets. The main idea behind collaborative machine learning is to share
knowledge instead of data to overcome potential privacy issues in exchang-
ing sensitive data. However, this approach poses challenges that include
data heterogeneity due to the population included in the datasets, and data
incompleteness, due to different data acquisition standards and practices
among different institutions. This work provides a general taxonomy for
classifying the various approaches proposed in the literature. We analyze
well-established techniques such as ensemble learning and transfer learn-
ing in the context of collaborative machine learning. Moreover, we analyze
more recent contributions based on distributed learning, comparing their
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performances according to data heterogeneity and privacy constraints. Our
experiments study multiple approaches that exploit ensemble methods, dis-
tributed learning, and transfer learning to overcome different challenges,
such as data heterogeneity, model heterogeneity, and label heterogeneity
using public and private datasets. Finally, we propose our approach to
image segmentation based on adversarial networks and generative adver-
sarial networks to study possible approaches to the problem of incomplete
medical imaging datasets. The results are promising, showing that collab-
orative learning can successfully overcome the issues above. In particular,
ensemble learning methods can build a single model from multiple models
with different architectures when trained on different data subsets. More-
over, distributed learning approaches proved to be a good design choice
when privacy has to be attained, especially in a context of data heterogene-
ity. Transfer learning and embedding techniques can enable the training
of custom models on smaller private datasets by exploiting the powerful
feature extraction modules of Convolutional Neural Networks. Lastly, our
approach based on adversarial networks proved to be promising to enable
the use of multi-input segmentation models when some of them are miss-
ing, thanks to image translation.
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Summary

In recent years, Deep Learning achieved impressive results in different
medical diagnostic tasks, often reaching human-grade performances. How-
ever, Deep Learning requires large amounts of data. To develop machine
learning models that can be effectively used in practice, researchers must
face the significant problem of data availability. While collecting large im-
age datasets to develop deep learning solutions for generic imaging tasks is
relatively straightforward, in the medical field, the problem of privacy poses
significant limitations to this approach. While the most adopted solution is
to apply anonymization techniques to patient data, it is often costly in terms
of time and resources and not applicable in every context. In addition, due
to the complexity and amount of data, significant effort is required to gener-
ate and validate the ground truth. One possible solution to this problem is a
multi-centric approach that would allow sharing the effort among different
entities – e.g., hospitals – without the need to build centralized datasets.

We propose a collaborative machine learning approach to the problem,
which exploits distributed learning and other machine learning techniques
to exchange information instead of data, allowing different entities to ex-
ploit the knowledge acquired from the other collaborating parties. In such
a setting, new issues arise. These issues include the problem of different
distributions in medical data, related to differences in population, and prob-
lems related to data acquisition processes, such as the problem of missing
data in multi-modality imaging datasets.

Our study investigates these issues from a methodological point of view.
In particular, we first propose a general framework to classify the different
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distributed learning approaches used in the literature and investigate how
other popular techniques such as transfer learning can be framed in a col-
laborative machine learning setting. Our experiments show how to exploit
different machine learning techniques, such as ensembling methods, dis-
tributed learning algorithms, and transfer learning to enable collaborative
learning in settings where heterogeneity is present in data, in the architec-
ture of the models, or the target labels. Moreover, we provide an approach
based on adversarial networks to study the problem of segmentation and
datasets with missing modalities. We used two medical imaging tasks as
case-study: the Brain Tumor Segmentation and the Automated Chest X-
Ray Diagnosis.

Our results are promising, showing that collaborative learning could be
a feasible approach to overcome the issues above. In particular, ensembling
methods can be used to design a system in a setting in which multiple deep
learning models are available. Our proposed methods based on entropy
showed to be particularly effective for classification tasks when none of the
available models outperforms the others on every label. When a collabo-
rative system is to be designed and no deep learning models are already
available, an approach based on distributed learning can be optimal. To in-
vestigate this approach, we compare two recently introduced techniques –
Federated Learning and Split Learning –in the context of data heterogene-
ity. Our results show that distributed learning can reach performances close
to a centralized model while providing good results as data heterogeneity
and privacy requirements are introduced. Moreover, we investigate transfer
learning as a collaborative tool. First, we exploit an embedding technique to
show how to build different machine learning models based on trees by tak-
ing advantage of the feature extraction step of several Convolutional Neural
Networks. Then, we apply transfer learning to use the embeddings to train
models specific to a smaller private dataset of Chest X-Rays, containing
a different set of labels from the original dataset. Our results show that
this approach effectively enables the training of machine learning models
for imaging in a setting of data scarcity and low computational resources.
Lastly, we investigate Adversarial Networks first to perform transfer learn-
ing between segmentation models trained on different modalities and then
generate the modality that is eventually missing from a medical dataset.
Our results also show the effectiveness of transfer learning in the context
of adversarial networks, although the setting is more complex than with
standard neural networks. Moreover, we show that a generative approach
can allow the use of machine learning models that require multiple input
modalities, with only a slight loss in segmentation performances.
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CHAPTER1
Introduction

In recent years, Deep Learning reached physician-level grade performances
in different medical diagnostic tasks [1, 2]. On the other hand, Computer-
Aided Diagnosis (CAD) is one of the most researched subjects for medi-
cal imaging and diagnostic radiology [3], and represents a valuable tool to
help physicians in automating and accelerating time-consuming processes.
While most Deep Learning approaches strive to reach or surpass human
performances in object-detection tasks, they are generally considered as
black-box models. CAD systems aim instead to offer the physicians a "sec-
ond opinion" to perform their diagnosis in order to decrease the false nega-
tives of the user. Such vision could be a successful approach to bring Deep
Learning tools to medical practice, and it provides one of the primary mo-
tivations for the research of machine learning and deep learning that are
specific to medical imaging [4].

Another, often overlooked, reason for the research of AI in medicine
is related to the growth in the world population. From 1950 to 2015, the
global population increased from 2.5 to 7.3 billion, and up to 19.3 billion
people are expected in 2100. 1 This trend is strongly related to an expected

1https://www.eea.europa.eu/data-and-maps/indicators/
total-population-outlook-from-unstat-3/assessment-1 (access date 30/04/2021).

1
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Chapter 1. Introduction

increase in the request of medical doctors, in particular imaging experts.
The medical community already issued some warnings on the subject 2,
suggesting that AI might partially fill this gap [5].

However, the research of Deep Learning tools for Medical Imaging has
to face one major issue. While large amounts of data are collected daily
in hospitals, achieving adequate data quality for machine learning research
is still challenging and often unfeasible [6]. In our study, we investigate
collaborative machine learning as a possible approach to overcome this is-
sue. Collaborative Machine Learning is a field that studies the exchange of
knowledge between different parties – e.g., hospitals — that have to solve
a learning task and dispose of a limited amount of private data. Early ap-
proaches to develop personalized healthcare services with the use of big
data has posed severe privacy concerns in the past [7], highlighting the
need for particular attention in data management and privacy in the field of
healthcare. Other central issues in designing a distributed learning system
are related to data imbalance – i.e., datasets of different sizes – and data het-
erogeneity – i.e., shifts in distribution– across the datasets. To this extent,
we first propose an overview of the significant issues related to the design
of a collaborative machine learning system. Then, to aid the design, we
propose a framework to categorize various distributed learning approaches
in the literature. In the remainder of the study, we propose a set of ex-
periments in which we use different learning approaches to solve common
tasks and issues in machine learning applied to medical imaging.

2https://www.rcr.ac.uk/press-and-policy/policy-priorities/workforce/
radiology-workforce-census
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1.1. Challenges

1.1 Challenges

1.1.1 Data Availability and Standardization

A significant barrier to the successful application of AI in healthcare is re-
lated to data availability. Although healthcare institutions generate massive
amounts of data every day, only a fraction of them is actually available for
research. This disparity can be related to several reasons, such as the cost of
electronic data management [8], the standardization processes, and privacy
issues.

Public sharing of healthcare data is a constructive approach for research,
as it allows comparative analyses of both clinical and data science ap-
proaches. However, building shared datasets requires a standardized ap-
proach primarily. In healthcare, Electronic Health Records are the generally
adopted standard. However, the user experience related to EHR is affected
by a large number of factors that could make it difficult to administrate this
kind of data [9], adding complexity to the process of building collabora-
tive systems and datasets. For clinical imaging, the universal standard is
DICOM [10], born as a communication standard and nowadays used for
storing, exchanging, and transmitting medical images worldwide. The dig-
ital storage of medical imaging has enabled the success of AI in healthcare,
as a standardized format can provide easier data access from researchers.

1.1.2 Data Imbalance and Heterogeneity

The design of a multi-centric machine learning approach inevitably in-
cludes a data acquisition process. When dealing with data coming from
multiple different sites, there is a set of issues that can arise. The main
issue regarding data is related to the different compositions of the various
institutions’ datasets. In our work, we discriminate two different sources of
data imbalance: Data Heterogeneity accounts for the different distribution
of data -e.g., diseases, class imbalance-, while Data Imbalance is related to
the different datasets cardinality - e.g., an institution holding more patient
records than the others. In the following paragraph, we provide a more
detailed description of the two issues.

We refer to multiple datasets as heterogeneous when data in the differ-
ent institutions are not independent and identically distributed (IID). Data
heterogeneity is one of the major challenges for distributed learning, in par-
ticular when applied to healthcare [11, 12], as any bias in the data could af-
fect the performances of machine learning models. Heterogeneity can arise
from differences in population demographics (skewed data), epidemiolog-
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ical distribution (label imbalance), or different data acquisition processes
between the institutions (domain shift) that could impact data quality or the
feature distribution in the data.

As machine learning models performances are highly dependant on the
data availability, a distributed training system should account for scenarios
in which more institutions hold different amounts of data, as the unbalance
in how each institution is represented in the system can lead to models that
fail to generalize when presented samples for the under-represented popu-
lations. This represents a type of imbalance that is specific to distributed
settings, as in such a scenario, multiple different datasets are collected in
a collaborative system. A possible approach to alleviate this issue could
be the generation of synthetic data that is similar to the under-represented
datasets. For example, in medical imaging, a recently proposed approach
uses generative models to produce synthetic patient scans that follow the
same distribution that is used to train the model [13]. It is worth noting that
such an approach could only be used to balance the representative power of
the datasets, as generated data could not possibly introduce new knowledge
in the system.

1.1.3 Privacy Issues

A major challenge in healthcare data is related to privacy concerns. Privacy
is notoriously difficult to be defined formally. Price and Cohen [14] pro-
vide an analysis on privacy issues in medical Big Data. They define two
non-exclusive categories in which privacy concerns may arise. Consequen-
tialist concerns "result from negative consequences that affect the person
whose privacy has been violated and can have tangible consequences". De-
ontological concerns "are related to the ethical problem of data ownership
and potential loss of control, even in the presence of no direct harm". The
collection of medical data is regulated differently in the United States and
European Union. The US treats healthcare data differently depending on
how data is created and who is handling it. Conversely, EU GDPR sets a
general regulation for health data, independently of the format, the collec-
tion, or who the custodian is.

Several techniques have been proposed to deal with healthcare research
data. The most widely used are anonymization and pseudo-anonymization.
An anonymization technique is the simplest method and consists in remov-
ing all information that can be used to identify a patient. However, this
process is often not technically attainable, depending on the nature of the
data -e.g., for genomic data. Moreover, there’s is still debate on what an
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acceptable level of anonymization should be [15]. Pseudo-Anonymization
is a technique that substitutes sensitive information in the data with syn-
thetic data. The main difference is that the latter technique also allows
re-identification by storing a secret key that allows matching the data sam-
ple with the patient identity. This, however, poses further challenges with
the management of the keys and could represent an issue in case of data
breaches or theft.

1.1.4 Security

Distributed Machine learning relies on data exchange between different
agents or computational nodes. In an ideal scenario, a Distributed Learning
system can be accessed only by the parties collaborating in solving a par-
ticular task. However, due to the need for data exchange between different
actors, a set of potential security and privacy threats can arise. When con-
sidering the healthcare domain, the nature of treated data requires particular
care for preserving the confidentiality and integrity of data. While it is rea-
sonable to assume that each party can be cooperative, cybersecurity issues
in one or more computational nodes can pose a security threat for the sys-
tem. Thus, it is important to identify all the actors and the potential threats
in a distributed scenario. As deep learning techniques became increasingly
adopted worldwide, cybersecurity research developed to consider solutions
to possible threats. The possible security threats could target the dataset, for
example with re-identification [16] or dataset reconstruction, or attack the
machine learning algoritm - e.g. Adversarial Attacks [17], Model-inversion
attacks [18]-.

In our work, however, we focused on providing design solutions of a
learning system from a Machine Learning perspective. For this reason, we
assumed an application context for our framework in which no substantial
security threats are present, leaving the possible security improvements as
future work. Nonetheless, in section 2.4 we include an overview of the
most common techniques that can be applied for securing such a system.
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Chapter 1. Introduction

1.2 Objectives and Thesis Organization

The objective of this thesis is to address the typical challenges in Collab-
orative Machine Learning for Medical Imaging and provide practical and
methodological solutions for different use-cases.
In particular, we addressed the following research questions:

(i) What are the main practical challenges that limit the adoption of Col-
laborative Machine Learning in a Medical Imaging context?

(ii) How can we provide a coherent taxonomy to categorize the different
Collaborative Learning approaches present in the literature?

(iii) How different kinds of heterogeneity can be addressed in a collabora-
tive setting?

(iv) How do the two most popular Distributed Learning approaches per-
form in a data heterogeneity context? What are the design implica-
tions of choosing one method over the other?

(v) What challenges can be addressed using transfer learning in a collab-
orative setting?

(vi) How can we address the specific challenges of Multi-Modality Imag-
ing (e.g., MRI)?

The first two research questions are addressed in Chapters 1 and 2, re-
spectively. The remaining questions are addressed in the following chap-
ters, organized by learning paradigm (Ensemble Learning, Distributed Learn-
ing, and Transfer Learning). The summary of each chapter provides a more
detailed description of the context and its specific challenges. Thus, the
remainder of this work is organized as follows:
In Chapter 1, we propose a structured overview of the most significant chal-
lenges in the design of a collaborative machine learning approach to medi-
cal imaging.
In Chapter 2, we first propose an introduction to the machine learning meth-
ods for medical imaging. Then, we introduce the leading machine learning
tasks and their relation with some medical image tasks. Lastly, we intro-
duce our framework of distributed learning approach and use the introduced
taxonomy to inspect and compare the relevant contributions in the litera-
ture.
In Chapter 4, we use ensemble learning to study the settings of data het-
erogeneity, and model heterogeneity on a segmentation and a classifica-
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tion tasks, comparing different approaches based on ensembles of Convo-
lutional Neural Networks.
In Chapter 5, we propose a comparison of two recently introduced dis-
tributed learning techniques in a setting of data heterogeneity, using a Chest
X-Ray classification task as a case study.
In Chapter 6, we first study transfer learning approaches to exploit the
feature extraction pipeline of CNNs to build different kinds of classifiers,
then we investigate how to perform domain adaptation on a smaller private
dataset using our models. Then, focusing on multi-modality imaging, we
introduce a segmentation model based on Adversarial Networks and study
transfer learning approaches in a multi-modality setting. Lastly, we show
how to address the problem of missing modalities by performing image-
translation and testing our approaches using our segmentation models.
Finally, in Chapter 7, we present our conclusions and future works.

Contributions
This work includes some contributions from our previously published arti-
cles. In particular:

• Our distributed learning taxonomy and survey of the state-of-the-art,
has been published in 2021 in the European Journal of Nuclear Medicine
and Molecular Imaging (Kirienko et al. [19]). In this thesis we present
an extended and more technical version in Chapter 2.

• Our experiments on Brain Tumor Segmentation using Adversarial Net-
works have been published in 2020 International Joint Conference on
Neural Networks (IJCNN) (Giacomello et al. [20]). The results are
reported in Chapter 6 and applied also in other experiments described
in Chapters 4 and 6.

• Our experiments on Brain MRI Generation using GANs have been
published in the 2020 IEEE Symposium Series on Computational In-
telligence (SSCI) (Alogna et al. [21]) and further expanded in this
thesis with additional experiments and considerations in Chapter 6.

• Our experiments on Image Embeddings and Model Ensembling for
Chest X-Ray Interpretation have been published in the 2021 Inter-
national Joint Conference on Neural Networks (IJCNN) (Giacomello
et al. [22]), and described in Chapters 4 and 6 of this work. The pub-
lication of the additional experiments involving the private dataset de-
scribed in Chapter 6 is currently ongoing.
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• Our comparative analysis on Distributed Learning approaches for Au-
tomated Chest X-Ray Diagnosis are currently available as pre-print on
ArXiv (Giacomello et al. [23]) and is discussed in Chapter 5.
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CHAPTER2
State of the Art

In this chapter, we first propose an overview of the typical tasks and ap-
proaches that are addressed by Machine Learning, with a focus on the con-
text of medical imaging. Then, we introduce Neural Networks and pro-
vide a brief overview of the most notable contributions that defined and
improved such approach over the years. Then, moving to address the chal-
lenges addressed in the previous chapter, we introduce Distributed Learning
and provide a taxonomy for the techniques that are included in this field.
Lastly, we show and analyze the most relevant distributed learning contri-
butions in the field of medical imaging and healthcare in general.
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2.1 Machine Learning Tasks and Approaches

This section provides an overview of the most common applications of Ma-
chine Learning tasks relevant to a healthcare scenario. The proposed list
does not constitute an exhaustive list, but it is meant to provide a general
overview of the most important topics and the practices used to address
each task.

2.1.1 Regression

Regression is the problem of estimating the relationship between an out-
come variable and one or more covariates or features present in the data.
Most commonly, a linear regression approach is used to learn a function of
the features to produce scalar predictions from new inputs. More formally,
a regression model can be described by:

Yi = f(Xi, β) + ϵi (2.1)

where Yi is a set of variables described from the data that depends on the
dependent variables Xi, β is a set of unknown parameters that have to be
learned, and ϵi is a set of error terms which are assumed to be in the data –
but not directly observed –, either due to statistical noise or other variables
not taken in consideration. The objective of a regression task is to estimate
the function f(Xi, β) that better describes the available data and that could
be used to predict values of Y for unseen data.

Regression problems in medical imaging are useful to estimate scalar
parameters directly from images. Due to the large number of possible ap-
plications, presenting an exhaustive overview would be out of the scope of
this study. However, we cite two examples that help understand the dif-
ferences of regression compared with the other tasks explained later in this
section when using imaging data. A first example is the estimation of brain
age from T1-Weighted Brain MRI. To this extent, Cole et al. trained a deep
learning model to predict chronological age in healthy brains, proposing
the use of the predicted values as a biomarker related to neurodegeneration
and age-associated brain diseases [24]. Regression tasks are often related
to evaluating risk, as risk factor usually depends on measures that can be
quantitatively estimated. One example is the prediction of osteoporosis
and bone fractures, which involves the estimation of bone mineral density
(BMD). A possible approach is to build a model that estimates BMD nu-
merically [25, 26, 27, 28], then use the estimated value to calculate the
osteoporosis risk [29].
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2.1.2 Classification

Classification is a central topic in machine learning, as many tasks can be
posed as a classification problem. Given an input sample, a classification
problem requires assigning a label, or a class, to the newly received data.
In computer vision, classification problems are related to the pattern recog-
nition problem, which is the problem of recognizing whether a specific
pattern – e.g., a tumoral lesion — occurs in an input image. Indeed, the
problem of diagnosing a disease given a clinical record or an input image is
a classification problem, as it requires to label the input sample as Positive
– e.g., the disease is found – or Negative – no findings –.

An additional categorization of classification tasks is related to the num-
ber of classes: A multi-class classification task is a task in which each
sample has to be categorized into precisely one out of many classes. A
further generalization is the multi-label classification task, which does not
make assumptions on how many classes a sample can belong to.

The most frequently addressed medical imaging problem is the auto-
mated diagnosis, which can be accomplished using different kinds of med-
ical images as input, such as MRI, CT, or X-Rays, and aims at labeling
each image with a particular label indicating a disease. As we introduce in
the following chapters, we address the Chest X-Ray Diagnosis [30] task,
which is posed as a multi-label classification problem since more different
diseases can be present in the same X-Ray image.

Another example of a classification task is survival prediction from Brain
MRIs. Although overall survival can be expressed in years or months, it is
a common practice to define classes of survival – e.g., long-survivors, mid-
survivors, short-survivors — [31, 32, 33] and to train a model to predict the
survival class instead of the exact survival value, which could be misleading
and prone to overfitting.

In the context of osteoporosis risk prediction, an alternative approach
would be to build a classifier that, instead of predicting BMD, predicts
whether a fracture occurred or not after a given amount of time – e.g., ten
years — [29, 34].
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2.1.3 Image Segmentation

Semantic segmentation is a problem related to Computer Vision and has
been widely studied in recent years thanks to the adoption of Deep Learning
models. Segmentation can be posed as a combination of multiple classifi-
cation problems, in which every pixel of an image has to be assigned with
a class. A typical segmentation problem in healthcare is tumor segmenta-
tion: given a medical image such as a Brain MRI, a segmentation model is
capable of assigning a different class to the tumor, and the healthy tissues
[31]. Other segmentation tasks involving the brain are anatomical brain
segmentation [35, 36], White Matter / Gray Matter segmentation [37], and
lesion segmentation [38]. A popular application of deep learning in seg-
mentation task is also lung nodule segmentation [39], and in general cancer
segmentation involving the abdomen [40]. Sementation is also important
for detecting organs in patient images [41, 42, 43, 44], as it allows to de-
velop better and more specialized diagnostic models for each anatomical
district.

2.1.4 Image Localization

An alternative approach to segmentation is Image localization – also dubbed
detection in some works – which is the problem of localizing a specific ob-
ject or area inside an image. Conventionally, the output of an Image Local-
ization model is a bounding box around the area of the image that represents
an object having particular features -e.g., a lesion, a medical device, etc.-.
When accuracy at a pixel level is not required, image localization can be
used instead of segmentation as manual labeling of images can be made
much faster if the annotator has to mark the target object’s position instead
of defining the precise area. However, depending on the implementation,
image localization can often be used together with segmentation, as a com-
mon practice is to exploit segmentations to produce a bounding box around
the region of interest using computer vision algorithms. In Chapter 6 we
show another possible approach to image localization – although not the
scope of the study – to localize diseases by exploiting classification models
using a GradCAM [45] approach.

While Deep Learning eased the development of segmentation pipelines,
Image localization is still widely used in medical imaging [46]. Common
tasks include detection of brain sclerosis [47, 48], cerebral micro-bleed
[49, 50], breast tumor [51, 52, 53], lymph nodes [48, 54, 55], pulmonary
embolism [56], lung nodules [57], bone structures such as intervertebral
disc [58] spine fractures [59] and knee cartilage [60], and colon conditions
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such as colitis [61] and polyps [54]. Lastly, multi-organ detection is often
addressed using localization [62].

2.1.5 Image Translation

Image translation is a Computer Vision field that has been recently intro-
duced in healthcare research. The problem of image translation consists in
producing an image in a target domain, given the corresponding image in
the source domain. For example, it is possible to train a machine learn-
ing model to produce a given MRI modality given the same MRI in another
modality, as we address in chapter 6. This approach has received increasing
interest thanks to the popularity of GANs and the contributions of Phillip
Isola et al. [63] that developed a general-purpose architecture, known as
Pix2Pix.

As we address in Chapter 6, the image generation task is tightly related
to the problem of missing data and data heterogeneity. In medical imaging,
differently from other imaging fields, an image is often composed of several
different modalities, which captures different physics phenomena – e.g., in
MRI imaging. A relevant issue with MRI images is that often not all the
modalities are available for each patient. This generally happens for several
reasons, such as prohibitive scan times and costs, artifacts, data corruption,
acquiring machine settings, adverse reactions to contrast agents, etc. When
not every modality is available for all the patients in a dataset, this can
be an issue if the available model –e.g., classifier— requires a fixed set of
modalities as input. To this extent, Sharma and Hamarneh [64] designed
a multi-modal architecture where the missing modalities are considered as
zero-valued inputs. Another possibility is to exploit Image translation to
generate the missing modality from the available ones. Dar et al. used a
Cycle GAN [65] to generate missing modalities in a uni-modal setting [66],
Yu et al. [67] generated 3D FLAIR images generated from T1 and later
used to train a classifier together with T1 images, which led to a perfor-
mance improvement. Similarly, in [68] the authors addressed the problem
of missing FLAIR sequences in white matter hyper-intensity segmentation
task by generating the FLAIR images from T1 images while performing
the segmentation at the same time. Finally, Ge et al. [69], addressed the
problem of missing modalities using pairs of GANs; given two modalities
for which there are missing samples (e.g., T1 and T2), a pair of generators
are trained to produce one modality from the other (e.g., Ga: T1 → T2,
Gb: T2→ T1). The corresponding discriminators use the input of the other
generator as the ground truth (e.g., Da(T2, Gb(T1)) and Db(T1, Ga(T2))
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respectively).
Another common approach to deal with missing modalities consists of

training a model invariant to the input contrast modalities. To this extent,
Havaci et al. [70] computed a latent vector for each input modality and then
combined all the latent vectors into a single representation that accounts for
every modality in input. This method was later extended in [71] to allow
unlabeled inputs, i.e., to no longer specify which modalities are provided
as input. Finally, in [72] the authors exploited Variational AutoEncoders
(VAE) [73], to train an encoder for each modality and, at the same time, to
generate the missing modalities.

2.1.6 Neural Network Interpretation

One of the significant drawbacks of CNNs is that they are considered black-
box models, as they are hard to interpret by humans. This fact represents
an issue for their adoption in critical fields, such as medical imaging. The
trustworthiness of AI models for clinical diagnosis and prognosis has to be
accurately assessed before their applications in a real setting. To this extent,
the U.S. Food and Drugs Administration proposed in 2019 a framework to
regulate the Artificial Intelligence and Machine Learning Medical Devices,
defining a possible approach to enable administrations and manufacturers
to evaluate and monitor AI-based software products during development
and monitor postmarket performances [74].

In the latest years, several algorithms have been proposed to overcome
the problem of neural network interpretability. DeepLIFT [75] and SHAP
GradientExplainer [76] are based on feature importance and aim to mea-
sure the importance of each input feature in the predictions by using the
coefficients of linear models used as interpretability models. Another ap-
proach is DGN-AM [77]: it evaluates which neurons are maximally acti-
vated concerning a particular input observation aiming to find input patterns
that maximize the output activation.

Other similar and widely used algorithms are CAM [78], Grad-CAM [79],
and LRP [80], which create coarse localization maps of the critical regions
of the input defining the discriminative regions for a specific prediction.

In our work we focused on the CAM and Grad-CAM algorithms, which
will be briefly introduced. In particular, the CAM algorithm requires a
Global Average Pooling layer to be inserted between the last convolutional
layer and classification layer of the network. For every feature map f ∈
1, ..., n of size (Kf ∗ Kf ) produced by the convolutional layer, the GAP
layer computes the average of the feature map over the spatial dimen-
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sions, producing n different scalars. Lastly, for each output classes a set
W1, ...,Wn of weights is learned to map each Global Average to the final
class score. To compute the Class Activation Maps, the CAM algorithm
perform a linear combination between the weights W1, ...,Wn of a chosen
class c and the corresponding feature maps, resulting in an heatmap that
represent the areas of the input that contribute to the network prediction for
the class c.

The Grad-CAM algorithm instead uses the Gradient of the network out-
put to perform localization. In particular, for a chosen class c, the logit
of the class is derived with respect to the feature maps of a convolutional
layer, then they are averaged using a GAP layer, obtaining a set of n im-
portance weights. Lastly, similarly to CAM, the importance weights are
linearly combined with the original activation maps and a ReLU activation
function is applied to only consider positive influence.

The generated CAMs for both methods are thus heatmaps of the same
size of the considered feature maps. For this reason they usually need to be
rescaled up to the input size before visualization.

Interpretation and Explaination of Neural networks are still an active
field of research. Degrave et al. [81] recently demonstrated that Deep
Learning models for COVID-19 detection relied on spurious shortcuts such
as laterally markers, image annotations, and borders to distinguish between
positive and negative patients, instead of identifying real markers of COVID-
19 in the lung field. They claim that explainable AI (XAI) models should
be applied to every AI application in medicine and should be a pre-requisite
to its clinical translation to routine.
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2.2 Machine Learning and Neural Networks

2.2.1 Neural Networks

Machine Learning is a vast field of AI that includes several methods such as
Support Vector Machines (SVM), Decision Trees, Random Forests, Clus-
tering algorithms, and Neural Networks. Up to the first decade of the 2000s,
the typical process to classify an image required a feature extraction step
prior to training a machine learning model, as the majority of methods in
use were either unsuitable or not efficient in treating such kind of data.
This required the development of ad-hoc algorithms and methods to extract
features that were relevant for the problem manually, then train a machine
learning model –e.g., based on SVM or Neural Networks — that solved the
task.

In our study, we focus mainly on Neural Networks. In 1958, Rosenblatt
introduced the perceptron, a kind of linear binary classifiers that became
the elementary unit for feed-forward neural networks [82]. The perceptron
was intended as an image recognition machine rather than an algorithm.
In the first implementation, a set of photocells were connected to the per-
ceptrons, and the weights were set using potentiometers and electric motors
[83]. However, a single layer of perceptrons could not be trained to discrim-
inate even simple kinds of patterns such as the XOR function. This led to
stagnation in research, which delayed the introduction of neural networks
for many years. In the 1980s, the backpropagation algorithm [84] were
used to train multi-layer neural networks [85], which led to a new increase
in interest in Neural Networks; however, the computing power needed for
training such models was still prohibitive for a successful application on a
large scale.

A neural network is thus a mathematical model composed of a set of ar-
tificial neurons, organized in one or more layers. Each neuron is connected
to all the neurons of the previous layer, as shown in Figure 2.1. Each con-
nection is mathematically represented by a weight that is the variable to be
optimized during the learning process. Given a layer of neurons, the output
of a neuron k is given by:

yk = ϕ(
m∑
j=0

wkjxj) (2.2)

Where ϕ is a suitable activation function such as sigmoid, tanh or ReLU[86],
x0, ..., xm are the outputs of neurons of the previous layer and wkm are the
weights associated with the connections between the neuron m of the pre-

16



2.2. Machine Learning and Neural Networks

vious layer and the considered neuron k. Often x0 is set to +1 and the
corresponding weight wk0 is set to a bias bk.

Figure 2.1: A Feed-Forward Neural Network with 3 inputs x1, x2, x3 and 2 outputs y1, y2.
Each neuron, represented by a node, is connected to all the neurons of the previous
layer. All the layers that are not the input nor the output one are called hidden layers
– shown in red — and allow the network to model more complex functions.

2.2.2 Convolutional Neural Networks

In 1998, LeCun et al. proposed LeNet [87], which achieved the first suc-
cessful application of Convolutional Neural Networks (CNN) in handwrit-
ten document recognition, using a 7-layers network. Convolutional Net-
works differ from standard Neural Networks in the fact that they use a set of
convolutional layers to perform feature extraction directly during the train-
ing process using the convolution operator. In this kind of layer, the weights
are organized as a set of filters (or kernels) of size KxK that represent fea-
tures in the image. Generally, K is chosen to be small, typically 3, 5, or
7, while a large number of different filters is used. A high-level overview
of a convolutional layer is shown in figure 2.2. By cascading more con-
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volutional layers, it is possible to capture features at different scales and
levels of abstractions. Typically, the first layers capture simpler concepts as
edges and corners, while layers closer to the output capture more complex
concepts.

Figure 2.2: Overview of a Convolutional Layer. From left to right: (i) a RGB represen-
tation of an image, (ii) the convolution operation is performed using a set of N = 4
filters having dimensions KxKxN – 3x3x4 in the figure – by sliding the kernel across
the spatial dimensions of the image – indicated by green arrows —. (iii) The result of
the convolution at each spatial location is a vector with the same number of values as
the number of filters. Thus, a convolutional layer is able to capture local features in the
image space – i.e., the result of the convolution at each pixel considers a set of KxK
pixels in the input, which are assumed to share some kind of feature.

While CNNs existed for decades, it is only in the first years of the 2010s
that researchers regained interest in neural networks, mainly thanks to the
technological advances that allowed to use of GPUs to speed-up neural net-
work computations and the increased availability of image data. In 2012,
Krizhevsky et al. designed Alexnet [88], a CNN which was inspired by
LeNet but considerably bigger and with multiple layers. AlexNet won the
ImageNet 2012 competition, in which the proposed algorithms are asked
to classify every image in a dataset among 1000 classes. This result high-
lighted the effectiveness of Convolutional Neural Networks in solving Im-
age Analysis and Computer Vision tasks, determining the success of the
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Deep Learning field. Deep Learning focuses on methods that stem from the
field of Neural Networks. The adjective “Deep” indeed refers to the mas-
sive amount of artificial neuron layers that are used in these approaches,
in contrast with the “shallow” neural networks commonly used in Machine
Learning. CNNs have soon become a widely adopted model since their
versatility in many fields that involved imaging. An example of the ability
of CNNs to learn features that are useful for different tasks is given in [89],
where the authors follow a multi-task learning approach to demonstrate that
it is possible to develop a single model to detect brain, breast, and cardiac
jointly.

2.2.3 Feature Extraction

The major advantage of Deep Neural Networks concerning other Machine
Learning approaches is that the deep structure allows capturing more com-
plex and higher-level patterns directly from the data. As a notable example,
in 2012, Le [90] created a Deep Neural Network capable of learning various
concepts from images, such as human faces or cat faces, without the need of
knowing whether each image contained the concept or not. This capability
of learning high-level concepts from the data itself is one of the strengths
of Deep Learning: while other Machine Learning algorithms require a sep-
arated feature extraction phase to be successfully applied, Deep Learning
algorithms can learn an effective data representation automatically. Fur-
thermore, data representations learned from data are generally helpful also
for related tasks with limited effort [55], whereas feature extraction is usu-
ally a problem-dependent and time-consuming task.

While for general-use images, a completely automated feature-extraction
approach is both beneficial and desirable, machine learning models used in
medical imaging must be interpretable by humans to be trusted by physi-
cians and patients. The complex interactions between weights and func-
tions in a CNN make the interpretability of the results difficult for the
user. For this reason, in medical imaging, a field of research called ra-
diomics focuses on extracting features from imaging data. Radiomics is
a field that emerged from radiology and oncology, which is designed to
develop decision support tools. Instead of considering the images as data
that are intended to be viewed by a human, radiomics establishes a process
of analysis that extract a large number of quantitative features from medi-
cal images, and subsequently mining the data to find patterns and patients
characteristics that cannot be easily noticed by visual inspection. This fea-
ture extraction process is precious both for research and clinical practice, as
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it produces features that allow the development of better decision support
systems [91]. Radiomic features can be classified in semantic features, –
i.e., features that are commonly used by radiologists to describe lesions –
and agnostic features – i.e., features that pertain to quantitative descriptors
derived from statistical descriptors–.

The interaction between radiomics and Deep Learning is an open field of
research [92, 93]. While our studies focus mainly on the latter, we envision
that contamination between the two fields could be beneficial to develop
decisional supports systems that are both effective in extracting relevant
features from raw data and interpretable.

2.2.4 Generative Adversarial Networks

One last neural network model that is worth introducing is the Generative
Adversarial Network [94]. This technique – which should not be confused
with Adversarial Learning, which refers to another approach – involves
training a model that is composed of two different neural networks that are
trained in an alternating fashion. The first, dubbed generator, is trained
to generate samples whose distribution is similar to the one found in the
dataset. A second network, dubbed discriminator or critic, is trained in-
stead to discriminate between actual data coming from the dataset and fake
data produced by the generator. During the training process, the two net-
works are playing a zero-sum game in which the generator is trained to
trick the discriminator into misclassifying the fake samples, while the dis-
criminator is trained to improve its performances in classifying real and
fake examples. As the training process proceeds, the samples produced
by the generator become increasingly similar to real data, being indistin-
guishable from it when the optimum should be reached. Radford et al. [95]
improved GANs to work more effectively with larger dimensionality of
data; instead, Mirza and Osindero introduced Conditional Generative Ad-
versarial Networks (cGANs) [96], that extended GANs by conditioning the
input of the model with additional data, which could be used to direct the
data generation process. However, this kind of model is currently an ac-
tive field of research, and several other variants are available. In particu-
lar, cross-modality image synthesis – i.e., the conversion between different
modalities of the same image – is one of the main applications of this ar-
chitecture to medical imaging. A survey published in 2018 [97] collects the
major contributions in this field through the application of GANs. Outside
of medical applications, GANs gained overwhelming popularity thanks to
the successful applications in face generation [98], photo restoration [99],
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image semantic synthesis [100] and many other fields. To generate data,
GANs use a noise vector called latent space, which can be either explicit
as a network input or implicitly generated by randomly disabling some net-
work weights [101]. However, in a medical setting, generating synthetic
data that is similar to the available dataset in an uncontrolled fashion has
limited applications. For this reason, other use of GANs in medical imag-
ing are related to image segmentation and image translation. To this extend,
the generator has to be modified to receive as input a sample of real data
– either the image to segment or an imaging modality that has to be trans-
lated – and trained to produce the desired result. By exploiting the same
adversarial mechanism, the GAN can be used to solve new kinds of tasks
that go beyond the synthetic generation of images.

Lastly, it is worth mentioning the drawbacks of a GAN approach. Due
to the adversarial process, GANs are notoriously difficult to train [102] as
their convergence properties are not stable as those of a standard neural
network, and they may fail to converge. Moreover, for a vanilla GAN, the
value of the loss function is no more an indication of the training progress
and it is not monotonic. In addition, since two – or more – networks have
to be trained simultaneously, the computational resources needed for this
kind of approach are generally higher than those of a standard CNN.
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2.3 Distributed Learning

The problem of training models capable of aggregating knowledge from
different data sources - e.g., different hospitals or research centers- without
physically exchanging data among the participants can be solved according
to different perspectives and levels of abstraction. This poses the issue
of defining a new taxonomy for classifying the approaches that belong to
distributed learning.

In defining this taxonomy, we first defined three main categories that can
be used to describe all the proposed distributed approaches in the literature:
(i) Ensembling methods, (ii) Split Learning, (iii) Federated Learning. These
three categories are pertinent to distributed learning, as opposed to Central-
ized Learning and Local Training that represent the two extremes in which
data is completely shared -i.e., all local datasets are merged in a single
one- or no communication between the nodes occurs, respectively. Previous
works in the literature proposed to classify the different distributed learn-
ing methods based on computational principles such as data parallelism,
and communication topology [103]. Here, we focused on two more gen-
eral design principles: (i) how the model parameters are displaced over the
network of nodes, and (ii) how the nodes interact in the training and infer-
ence process. These two dimensions are the most relevant choices to make
to design a distributed learning system that best suits the requirements in
terms of data privacy, technical constraints, and operation workflow.

Figure 2.3: Overview of Distributed Learning Paradigms
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Figure 2.3 shows how the most popular distributed paradigms differ ac-
cording to our design principles. The displacement of model parameters
affects how many models we can obtain at the end of the training process:
(i) All the parameters can be shared among the nodes, resulting in a sin-
gle model for the node network, (ii) all the parameters can be local to each
node, resulting in a local model for each node, (iii) some parameters can
be local to each node and some others can be shared, resulting in hybrid
models such Split Learning. For each method, also information sharing
between the nodes can be different for each paradigm: Centralized Learn-
ing approaches have full information sharing since the data is merged in
a single dataset, while in distributed learning approaches, data sharing can
be avoided entirely or can be only partial - e.g., exchanging only model
parameters or their updates-.

Each distributed learning paradigm accounts for the displacement of
data and models across the nodes and their interaction during the training
and inference phases. Two of the main factors crucial to determining the
distributed architecture are the task to address and the operating context.
Throughout this chapter, we introduced an overview of the tasks – both
from a machine learning and applicative standpoint – that can be addressed
using a distributed learning paradigm. Each distributed learning paradigm
differs from the others by three fundamental aspects:

(i) Number of Output models: Depending on how the learning proce-
dure is designed, each approach’s outcome can be either a single or multiple
models. When the final artifact is a single model, each client can receive
an identical copy of the model to use locally. On the other hand, using an
approach that produces different models has the advantage of task special-
ization - e.g., multi-task learning - or client personalization according to
each participant’s needs.

(ii) Weights Ownership: Each distributed paradigm and learning pro-
cedure involves different displacements of the model parameters. This di-
mension’s two extremes are the scenarios in which the model parameters
are entirely distributed or completely centralized. If a learning system uses
only distributed parameters, each node acts upon a locally stored model,
and no centralized model exists. In centralized ownership settings, each
node receives a copy of the parameters and sends the updates back to a
server. Finally, the server stores the current global state of the model. A
combination of these settings is also possible, as in Split Learning: a sub-
set of the model parameters is stored on a master server. The clients own
another shard of parameters.

(iii) Nature of Exchanged Data: In every distributed learning setting,
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some information exchange degree is unavoidable. This aspect is essen-
tial to privacy concerns and the networking performances of the proposed
method. For example, some paradigms only share a pre-trained model,
while others require sharing the model outputs or the parameter updates.

2.3.1 Ensemble Learning

Ensemble Learning is a widely studied family of methods [104, 105] that
allow combining multiple machine learning models to produce a single
model, which generally shows better performances than the single ones
[106, 107]. Ensemble Learning has been investigated in the field of super-
vised learning since the late seventies, and since then, many different algo-
rithms and techniques have been studied [108]. In the context of distributed
learning, this kind of approach can be used to train a local model for each
node using its private dataset. Once the training is done, these models can
be combined in several ways, for example, by simply averaging their out-
put, defining custom aggregation methods as we present in chapter 4, up to
training a meta-model on the local models outputs to produce a final predic-
tion (Stacking [109]). Ensembling methods do not require sharing training
data during the training phase since the aggregation phase happens after the
training of local models is ended. The only exception is data needed to train
the meta-model if stacking is used or training statistics -e.g., training accu-
racy, models error, etc.- depending on the chosen aggregation method. On
the other hand, as the training does not produce a single model for all the
node networks, using ensembling implies either sharing the local models
among all the network nodes or sharing the new data for which prediction
is needed. This paradigm makes it possible to use any machine learning
model, as ensembling relies exclusively on locally trained models. It also
allows the use of different models on each node, which might be very con-
venient when data is heavily heterogeneous. Figure 2.4 shows an overview
of how ensemble methods work.

2.3.2 Split Learning

Split Learning is a class of methods that involve holding different shares
of the same model across the network nodes [110]. Due to their layered
nature, deep neural networks are particularly suitable for this kind of ap-
proach. The idea behind Split Learning is to distribute the layers of a single
neural network amongst different institutions. In the simplest configuration,
given a neural network composed of N layers, then each client institution
can host the first i < N layers, while a server hosts the remaining N − i.
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Figure 2.4: Overview of Ensembling Methods: A local mode is trained on each local
node and only some learning statistics are eventually shared. The local models and an
aggregation logic (or meta-model) are provided as the final output.

At each training step, the client computes the forward pass of its section of
the network and sends the output to the server, which in turn completes the
forward pass and then returns the gradients back to the client. This way, the
server never sees any training data, as it allows building a common model
by only exchanging extracted features and error gradients between client
nodes and server nodes. In 2018, Vepakomma et al. [111] proposed sev-
eral Split Learning configurations by organizing the network layers among
the nodes, providing different solutions concerning data privacy and task
constraints. In chapter 5 we investigate the performances of some of these
configurations on the task of Automated Chest X-Ray Diagnosis. Figure
2.5 shows an example of split learning used to train an artificial neural net-
work.

2.3.3 Federated Learning

Federated Learning is a class of approaches that involves collaboratively
training a single model [112]. The most general federated learning ap-
proach involves a shared model that is kept updated during the training
process. Thus, each node trains the shared model using its own private
dataset and only shares back the model updates. Different training algo-
rithms can be used to distribute the computation among the nodes, depend-
ing on both the machine learning model used and the constraints on node
communication (e.g., how often the nodes can communicate). Thanks to
the generality of the paradigm, many works refer to Federated Learning to
indicate slightly different approaches to the problem of distributed learn-
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Figure 2.5: An example of split learning applied artificial neural networks(NNs). The
first layers of NN are local and trained only with private datasets. The final layers are
instead shared among the nodes and trained with all the data. Each node shares the
intermediate output of the NN along with labels to allow the training. A local/global
model is provided as output for each node.

ing: until recent years, distributed learning techniques mainly focused on
data and model parallelism to increase computational efficiency. In 2012,
Google proposed DistBelief, a framework to train deep neural networks
on a large scale, by employing hundreds or thousands of machines. In
2015, Shokri and Shmatikov [114] proposed a distributed version for the
Stochastic Gradient Descent [114] that allowed multiple clients to train
neural networks parameters hosted in a parameter server. Thanks to the
diffusion of increasingly powerful mobile devices, the focus of distributed
learning approaches moved toward the possibility of training large mod-
els directly on smartphones [115]. This innovation posed the challenge of
preserving the users’ privacy, which is extremely relevant in a healthcare
setting. In 2017, Google further defined the concept of Federated Learn-
ing [116, 117] by formally describing the Federated Learning problem. As
stated in [117], the main difference between Federated Learning and the
previous distributed learning approaches arises from the need to address a
high number of clients that are highly unbalanced, have poor availability,
and hold non-i.i.d data. In a healthcare scenario, the number of clients is
usually limited, and their availability is higher than that of a smartphone;
however, the other constraints have high relevance for clinical data.

For the reasons above and for providing a coherent taxonomy, we dub
as Federated Learning all the distributed approaches in which the system
is composed by a server and several clients, characterized by the following
training round:
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(i) A subset of clients is selected to download a current state of the model
(ii) Each client updates the model based on their local data
(iii) The model updates are sent from the clients to the server, either in the
form of gradients or updated weights
(iv) The server aggregates the models (e.g., by averaging) to improve the
global model.

In the next section, we will introduce other distributed learning tech-
niques that can be inscribed under the family of Federated Learning algo-
rithms.

Figure 2.6: Overview of Federated Learning methods
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2.3.4 Other Paradigms

A popular technique for training privacy-preserving models for healthcare
is Incremental Learning (IIL). This technique can be seen as a collaborative
extension of Transfer Learning. In this section, we explore the relationship
between the two paradigms and how they relate to our framework.

Transfer learning is a general machine learning paradigm that consists in
adopting a pre-trained model during the training phase instead of training
a model entirely from scratch. If the model has been pre-trained on data
that is sufficiently similar to the target dataset, then the knowledge learned
from the source dataset can be exploited in the new setting. This technique
is generally adopted in training Deep Neural Networks on images, as they
require a large number of samples. Another advantage of this method is
that it can give good performances when a low amount of data is available,
compared to training the model from scratch.

While Transfer Learning is not strictly considered a Distributed Learn-
ing method, we included it in our work due to its massive adoption in the
literature. For the scope of this work, we consider Transfer Learning a sce-
nario in which each node receives a pre-trained model and autonomously
trains it on its own private dataset. This differs from the other learning
paradigms introduced in this chapter by the fact that each client does not
collaborate with other nodes in the network. The biggest advantage of
transfer learning is the personalization of the model, as each node can tailor
the final model to their autonomy. The control that the node has on the mod-
els allows it to perform re-training or fine-tuning whenever necessary, as it
doesn’t require defining a protocol between the participants. However, this
benefit comes at the cost of not receiving potentially valuable information
from the private data stored in other nodes.

Incremental Learning - also referred to as Cyclical Weight Transfer [118,
119] - is the most straightforward distributed learning strategy, as it can be
viewed as a collaborative extension of Transfer Learning. In IIL, a single
ML model is trained iteratively in each node on its local data before send-
ing the model to the next institution. Therefore, the main difference from
Transfer Learning is that only a single model exists in the system at a given
time, and each client can choose its own different training method to fine-
tune it. In our work, we don’t make a distinction between IIL and Cyclic
Incremental Learning (CIIL) [120]. CIIL is a more general setting in which
each client trains the model for a given number of epochs before sending
it to the next node, and the training rounds can be more than one. Thus,
we consider the number of epochs and the number of rounds to be hyper-
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Paradigm Output Model Weights Ownership Exchanged Data

Ensemble Learning Multiple Local Model Output
Split Learning Multiple Local + Centralized Layer Outputs, Updates
Federated Learning Single Centralized Updates/Weights
Transfer Learning Single Local Pre-Trained Model
Incremental Learning Single Local Weights
Peer-to-Peer Learning Multiple Local Updates

Table 2.1: A detailed description of Distributed Learning Techniques. The second column
shows whether the technique produces a single model for the whole network or multiple
models. The third column shows whether the weights are hosted by the client nodes or
a central server. The fourth column shows the minimum data that is needed to exchange
for performing training.

parameters of the learning paradigm, and we refer to the method simply
as Incremental Learning. Moreover, since IIL consists in training a single
model over the network of nodes, it can be seen as a special case of Fed-
erated Learning, in which model parameters are exchanged instead of their
updates.

In [118], the authors claim that a single iteration of incremental Learning
can give different results depending on the order in which the institutions
are selected. For this reason, incrementing the number of iterations could
be beneficial. Moreover, performances of (Cyclic) Incremental Learning
compared with Ensemble Learning varied depending on the dataset. One
major disadvantage of this method is the problem of catastrophic forgetting
[121, 122], in which the model "forgets" the progress made from earlier
institutions when trained iteratively on different data. A possible solution
for this issue could be to tune the number of training epochs at each node
[120].

Finally, Peer-to-Peer learning [123] is instead an alternative method sim-
ilar to Federated Learning that doesn’t require a central server for hosting
the most recent model, is based solely on the cooperation between the dif-
ferent clients. Table 2.1 shows a detailed view of the techniques cited in
this chapter.
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2.4 Security Techniques

In chapter 1.1 we introduced the challenge of securing the computation
during the distributed training process. Although in this work we focus
on machine learning techniques, we present in this section an overview
of the main security techniques that can be applied when implementing a
distributed learning system for healthcare.

2.4.1 Differential Privacy

Differential Privacy [124] is a technique formulated in 2006 to secure sta-
tistical databases. This strategy consists of preserving the statistical dis-
tribution of a dataset while minimizing the amount of recognizable data.
In 2016, Abadi et al. proposed to utilize this mechanism in Deep Learn-
ing models [125]. In particular, the authors outlined a differentially-private
SGD algorithm, which allows applying differential privacy during the train-
ing phase of a neural network. The algorithm bounds each example’s influ-
ence on the gradient loss by performing a clipping operation at each step.
Then, privacy is attained by adding stochastic noise to the gradient. Thus,
Abadi et al. proposed a method for applying DP to the training algorithm.
However, different DP implementations exist, and they can be categorized
in input perturbation, output perturbation, exponential mechanism, and ob-
jective perturbation, depending on the different approaches of adding noise
[126]. A disadvantage of this approach is that the perturbation that DP
adds imposes a trade-off between privacy level and predictive capabilities.
In their recent work, Choudhury et al. study the case of Differential Privacy
in a Federated Learning scenario [127], analyzing the trade-off between
privacy and predictive capabilities on two different medical datasets.

2.4.2 Homomorphic Encryption

Homomorphic Encryption (HE) is a kind of encryption that allows the users
to perform non-polynomial operations directly on the encrypted data. Thus,
a machine learning system that implements Homomorphic Encryption can
perform both training and inference without first decrypting the input data.
The operations applied to the encrypted data are formalized as arithmetic
or boolean circuits. Moreover, a C−evaluation scheme is defined on a
set of circuits C as a tuple, including the generation, encryption, evalua-
tion, and decryption algorithms. Depending on the properties of the cir-
cuit and evaluation scheme, HE algorithms can be classified in four levels
[128], ranging from somewhat homomorphic encryption scheme (SHE) to
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fully-homomorphic encryption scheme (FHE). The problem of developing
a homomorphic encryption traces back to 1978 [129] and FHE is consid-
ered one of the most promising classes for machine learning and cloud
systems for arbitrary computation on encrypted data [130]. However, the
main limitation of this approach is related to its significant computational
overhead. Many FHE schemes have large overhead - although still polyno-
mial - which makes homomorphic computation impractical. Nonetheless,
even if the theoretical view of FHE points toward the maximization of the
functions that can be applied to encrypted data, it is possible to reach a
reasonable trade-off in terms of computational time by choosing an im-
plementation that restricts the choice of the applicable operations. In re-
cent years, homomorphic encryption has been applied with many machine
learning techniques like Neural Networks [131, 132], showing promising
results in terms of computational efficiency and accuracy. This approach
is particularly promising in the field of healthcare: working on this, Wood
et al. propose an overview on how to apply fully homomorphic encryption
to different tasks in machine learning and bio-informatics [133].

2.4.3 Secure Multiparty Computation

Secure Multi-Party Computation (MPC) [134] is a computational model
designed in the early 1980s that focuses on ensuring privacy among the
participants of a computation involving different actors rather than external
threat agents. An MPC aims to define a protocol for allowing different par-
ticipants to jointly compute the value of a public function over their private
data while keeping their own private data secret from the other participants.
Only in the 2000s algorithmic improvements and computational costs reach
a level that allowed the implementation of this model in a general-purpose
computation system [135]. Other notable applications of MPC include se-
cure auctions, and Secure Electronic Voting [136]. In 2017, Liu et al.
proposed an approach for enabling neural networks to perform oblivious
model inference[137]. This technique allows a client to request a predic-
tion from a remote machine learning model hosted on a server, preventing
the server from accessing requests’ data and the client from accessing the
machine learning model. The proposed approach uses a combination of
MPC and Homomorphic encryption. While MPC could enable a set of
computational nodes to perform secure machine learning training, the typ-
ical dataset sizes used for this task pose a challenge to Secure Multi-Party
Computation. Nonetheless, MPC can be combined in hybrid approaches
with other techniques, like Homomorphic Encryption[138] or customized
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protocols [139].

2.5 Distributed Learning in Healthcare

This chapter presentst a survey on state of art related to distributed machine
learning systems in healthcare. We also included contributions that are not
focused only on medical imaging but also on other kinds of data such as
Electronic Health Records (EHR) since the techniques applied in one data
domain can provide useful insights for other domains such as images.

To present the various contributions, we considered several aspects dis-
cussed in this chapter. The first dimensions of analysis are shown in Table
2.2 and are related to the data type, the datasets used in the study, the do-
main of application, the typology machine learning task, and the kind of
machine learning technique used – either the kind of model or the specific
architecture in case of neural networks —.

Then, in Table 2.3 we classified the contributions according to the Dis-
tributed Learning paradigm used and whether the authors applied privacy
ensuring algorithms. We also indicate in this table the kind of metrics that
have been used to assess the results. Depending on the focus of the study,
either statistical metrics or other indicators such as the number of iterations
or the required bandwidth have been used to perform the assessment.

In a distributed learning setting, an important aspect of evaluating an ap-
proach is how it performs according to different data settings. In particular,
Table 2.4 shows whether data imbalance – i.e., differences in the number
of samples between the local datasets – or data heterogeneity – e.g., dif-
ferences in data distribution across the datasets – have been considered.
Moreover, we report if the contribution performed analysis using simulated
data. The use of simulated data may be beneficial for assessing how a dis-
tributed learning paradigm performs in the presence of data imbalance or
heterogeneity, as it allows to mitigate the problem of data availability.

Lastly, in Table 2.5, we report for each contribution the different dis-
tributed learning paradigms that have been compared if the analysis has
been performed. For categorizing the contributions, we applied the dis-
tributed learning framework we presented in this chapter. Moreover, we
also show what independent variables have been used to assess the per-
formances of the method and the comparison between multiple paradigms.
Lastly, we show the number of nodes that have been used in the experiment.

2.5.1 Comparison between Distributed Learning Paradigms

Remedios et al. performs an analysis of a collaborative model based on In-
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Ref. Data Type Dataset Domain ML Task ML Techniques

[127] EHR LCED, MIMIC-III Adverse Drug Reaction, Classification Perceptron, SVM
Mortality Prediction Logistic Regression

[140] EHR MIMIC-III Patient Similarity Representation Learning Hash Functions
[141] EHR Boston Medical Center Hospitalization Classification SVM
[142] EHR UPHS Drug and Fetal Loss relationship Regression Logistic Regression
[143] EHR eICU Mortality, ICU stay time Classification, Clustering CBFL, Autoencoders
[144] EHR Multiple Dyspnea Prediction Classification Bayesian Networks
[145] EHR Multiple Dyspnea Prediction Classification SVM, ADMM
[146] EHR Maastro, Michigan univ., 2-years survival Classification Bayesian Networks

The Christie
[147] EHR Multiple Private Datasets 2-years survival Classification Logistic Regression
[148] EHR Cerner Clinical Hospital Stay prediction Regression Linear Regression
[148] Numerical UCI Student Performances, Student Grades Regression Linear Regression
[148] Numerical Car Fuel Consumption Data Fuel Consumption Regression Linear Regression
[120] FLAIR MRI Images BraTS 2018 Brain Tumor Segmentation U-Net
[149] T1 MRI Multiple Brain structural relationship Dim. Reduction ADMM

across diseases
[119] CT VUMC, CNRM, UMD, VCU Hemorrage Segmentation Segmentation U-Net
[150] CT NIH, VUMC Hemorrage Segmentation Segmentation U-Net
[118] Mammographies DDSM Lesion diagnosis Classification ResNet34
[118] Retinal images Kaggle Competition Retinopathy diagnosis and grading Classification ResNet34
[118] Photos ImageNet Image Classification Classification ResNet34
[151] Retinal images DRC Retinopathy diagnosis (binary) Binary Classification ResNet34
[151] FLAIR MRI BraTS Brain Tumor Diagnosis Binary Segmentation U-Net
[151] FLAIR MRI CheXpert Lung Disease Diagnosis Multi-Label Classification DenseNet121
[151] Muscoloskeletal RX MURA Abnormality Detection Binary Classification ResNet152
[152] MRI BraTS, Private Datasets Brain Tumor Segmentation U-Net

Table 2.2: Overview of the task addressed by each contribution. It is worth noting that
not every contribution is related to medical imaging, using EHR records as input data.
Moreover, one of the contribution uses non-medical datasets in addition to medical
imaging to assess the performances of the proposed approach.

Ref. DL Paradigm Privacy Method Metrics

[127] FL, FL+DP DP F1
[140] FL HE AUC
[141] FL - AUC, Iterations, Time, Bandwidth
[142] FL - Relative Bias, Error Ratio, Odd Ratio, Iterations
[143] FL - MSE, ROC, AUC, Iterations, Cluster Distance
[144] FL - AUC, diff. from centralized model
[145] FL - AUC, Convergence to centralized sol.
[146] FL - AUC, Calibration, Brier Score
[147] FL - RMSE, AUC
[148] FL MPC MSE
[120] IIL, FL - DSC
[149] Federated PCA - MSE
[119] IIL - DSC, Volume Correlation
[150] IIL SSL DSC + Wilcoxon, Volume Correlation
[118] Ensembling, IIL, CCIL - Accuracy
[151] Split Learning (U-shape) - Accuracy, DSC, AUC, Computation req, Bandwidth
[152] FL, IIL, CCIL - DSC, Model Convergence

Table 2.3: Distributed learning paradigms used by each study, along with the used privacy
preserving techniques – when explicitly stated– and the metrics or measures used for
assessment.

33



Chapter 2. State of the Art

Ref. Data Amount Imbalance Data Heterogeneity Simulated Data

[127] n.a. n.a. No
[140] Balanced Balanced (Random Sampling) No
[141] n.a. Oversampled Positive Class No
[142] Both n.a. Yes
[143] Balanced eICU Distribution No
[144] Both Disease Distribution No
[145] Unbalanced Balanced No
[146] Unbalanced (559 vs 139 vs 196) Stage distribution, missing data No
[147] Unbalanced Label Unbalance, Incomplete data No
[148] Both (Simulated and Real) Real Data Distribution Yes
[120] Unbalanced (BraTS), Balanced (Random Sampling) BraTS distribution, Random Yes
[149] Unbalanced Label Differences No
[119] Balanced Different Acquisition procedure, Lesion Size No
[150] Unbalanced (18 vs 27) Lesion Size No
[118] Balanced (Simulated) Resolution No

Unbalanced (one institution holds fewer data)
[151] Balanced IID No

Non-IID DRG (Simulated) No
BraTS modalities (T2, FLAIR) No

[152] Unbalanced (BraTS) BraTS distribution No

Table 2.4: Overview of the dataset composition for every contribution. The column "Data
Amount Distribution" reports whether the data amount in each institution is balanced
or not – simulated indicates that the balance has been modified by the authors –, while
"Data Heterogeneity" refers to differences in data distribution.

Ref. Paradigm Comparison Independent Variables N. of Nodes

[127] CL vs FL vs FL+DP Privacy Level, Classifier 10
[140] CL vs FL vs SSL Uni-Hash vs Multi-Hash 3
[141] FL N. of Nodes, Network Topology, Learning Methods 5, 10
[142] FL vs IL Data amount per client, N. of Clients 9
[143] CL vs FL vs CBFL N. of Nodes, 5, 10, 15, 50
[144] CL vs FL % of missing data, Number of patients, Number of clients, Network Structure 5
[145] CL vs FL - 5
[146] CL vs FL - 3
[147] - - 8
[148] CL vs FL N. of Samples, N. of Features, N. of Clients 3 to 12
[120] CL vs IIL vs FL N. of clients 4, 8, 16, 32
[149] - - 10, 50, 60, 100
[119] Single Site vs IIL Epochs 2
[150] Single Site vs IIL - 2
[118] Single Site vs CL vs IIL vs CIIL n. of clients, epochs/institution 1 to 20
[151] Single Site (avg.) vs Split Learning n. of clients 1 to 50
[152] SSL vs FL vs CIL Iteration Order, Final Model selection 10

Table 2.5: Comparative studies between different distributed learning paradigms reported
in the contributions.
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cremental Learning, using four datasets belonging to different institutions.
Two datasets have been split in training and testing, while the other two
are left as a holdout. Their work shows that when the collaborative model
is compared with the single-site models on the two external datasets, the
collaborative model performs better than every single site model. However,
when the same comparison is made on the holdout datasets belonging to the
clients that trained the models, the collaborative model could not reach the
performance of the single-site learner that is specific for that dataset [119].

A similar result is obtained by Remedios et al., in which the multi-site
model - i.e., the model trained on both NIH and VUMC datasets - per-
formed better than both single-site models on the NIH testing dataset. On
VUMC testing data, it still performed better than the NIH single-site model,
while no statistically significant differences can be observed against the
VUMC single-site model.

The study performed by Chang et al. on multiple datasets confirms that
IIL is capable, on average, of performing within 2.5% of the performances
of the centralized model. Chang et al. The authors claim that learning par-
allelism is not required to achieve centrally-hosted model performances.
Moreover, they find that a higher frequency of weight transfer is bene-
ficial to the testing accuracy of the final model; a boost of up to 2% in
performances is also obtainable by tweaking the weight transfer frequency,
depending on the dataset. Another relevant aspect is that IIL has proven
robust when label imbalance or data heterogeneity -e.g., quality of data- is
introduced in an institution.

The study of Sheller et al. highlights the downsides of IIL compared to
Federated Learning: since IIL needs to perform validation steps frequently,
the method overhead could reach those of FL. In addition, the authors claim
that IIL does not scale as well as FL when the number of clients grows
[120].

Investigating Split Learning for healthcare, Poirot et al. compare the
performances of the U-Shaped architecture against a non-collaborative ap-
proach [151]. Their results show that Split Learning is relatively robust
with each client sample size decrease. In contrast, non-collaborative solu-
tions tend to lose performance drastically as the total data is split between
multiple nodes. The study further expands the analysis of split learning by
performing experiments on data heterogeneity through the application of
Local Adapters.

In their study, Sheller et al. show that Federated Learning can achieve
99% of the model performances, even when data is unbalanced, or the
dataset is spread among a high number of centers - e.g., 32 institutions,
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holding six subjects each- [120]. Sheller et al., compared FL to (C)IIL,
confirming that FL can achieve performances comparable to data sharing.
Moreover, their results suggest that Federated Learning is more stable dur-
ing training compared to IIL, and the latter tends to heavily bias the final
model toward the last shard of data upon it has been trained [152]. The au-
thors advocate FL as a more principled way to perform multi-institutional
collaborative learning by analyzing the performances of IIL during the
whole training process and highlighting the dependency of the performances
on both the ordering of institutions and the final model selection strategy.
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2.6 Summary

This chapter analyzed the most significant contributions in Distributed Ma-
chine Learning applied to the Healthcare setting. While the presented ma-
terial is by no means exhaustive, we think it can be a good starting point
for considering the current state of the research. In particular, the most
prominent recent solutions when addressing imaging data or deep learning
techniques are Incremental Learning and Federated Learning. This fact can
be proved by the high number of available publications, especially for the
Federated Learning case. Although less represented, we think that Split
Learning could be a valid approach in the healthcare scenario, especially
for developing personalized models that fit the needs of diverse institu-
tions. Moreover, a comprehensive comparison with other distributed learn-
ing paradigms, such as Federated Learning, can help better understand the
strengths and weaknesses of the two approaches. We investigate this issue
in chapter 5.
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CHAPTER3
Datasets and Models

In the last chapter, we proposed an overview of the most used Distributed
Learning paradigm. This chapter presents details on our applicative con-
text, such as a brief overview of medical imaging (Section 3.1), the datasets
used in our experiments, along with the most relevant works associated with
each task (Section 3.3), and an overview of the architectures and models we
used in our experiments. Lastly, we propose (Section 3.4) an overview of
each machine learning task’s most popular assessment metrics.

3.1 Medical Imaging Techniques

This section proposes an overview of the most commonly used medical
imaging techniques.

X-Ray imaging is perhaps the most well-known and well-established
kind of medical imaging. X-Rays are a form of high-energy electromag-
netic radiation that can penetrate human tissues and materials. The first X-
Rays have been used in clinical practice since 1896, just a few months after
the discovery of this kind of radiation by W. C. Röntgen [153]. Nonetheless,
X-Ray imaging is still one of the most commonly used imaging methods in
medicine, and it is the primary choice for detecting pathologies of the skele-
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tal system – since the calcium contained in bones absorbs X-ray radiation
–. They are also widely used to perform screening of conditions involving
the thoracic cavity, such as pneumonia, and can be backed up with other
imaging.

X-Rays are also used in Computed Tomography (CT), which consists
of a technique that involves acquiring multiple parallel scans of an anatom-
ical region – using X-Rays or other techniques – to reconstruct a three-
dimensional view of the area of interest using a reconstruction algorithm.

Since X-Rays are a source of risk for cancer development citeriskradi-
ology, precautions have to be taken to ensure the safety of both patient and
technologists. Moreover, they are not always adequate to diagnose certain
anatomical regions, such as the brain and soft tissues. Depending on the
anatomical region and the condition to investigate, a possible alternative is
Magnetic Resonance Imaging (MRI). Magnetic Resonance has been intro-
duced in the medical practice since the early seventies [154]. Instead of
using X-Rays or ionizing radiations – such as the Proton Emission Tomog-
raphy (PET) –, MRI uses strong magnetic fields and radio waves to generate
images of the anatomical region of interest, which is generally safe.

Although many different types of imaging exist in both radiology and
nuclear medicine fields, we only detail X-Ray and Magnetic Resonance
imaging in the next sections, as they are the ones we have focused on in our
study. The detailed physics behind X-Ray and MR Imaging is beyond our
work’s scope; however, in this chapter, we present the principal considera-
tions pertinent to understanding our study’s setting.

3.1.1 X-Ray Imaging

The imaging methods presented in this chapter use electromagnetic waves
consisting of photons. High energy electromagnetic waves, such X-Rays
are ionzing waves due to their ability to ionize - i.e., release an electron
from an atom –. Ionizing photons can interact with matter in different ways.
For example, when the interaction produces photons that deviate from the
direction of the X-Ray, we have scattering phenomena, and depending on
the setting, their effect cannot be ignored – e.g., in mammography–. A de-
tector then captures the X-Rays; in digital radiography, it is traditionally a
screen that contains phosphor, which absorbs the X-Rays that are later ex-
tracted pixel-wise using a laser beam and captured using an optical array.
Resolution of X-Ray images are affected by several factors, such as the pa-
tient – thicker bodies produce more scattering, which can be attenuated by
a collimator grid placed before the detecting surface –, the properties of the
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fluorescent screen, and the sampling step at the end of the imaging chain.
The image contrast depends on the detector, the attenuation coefficient, and
the tissues and their thickness. In digital radiography, it can be enhanced
by using a suitable mathematical transformation. The dominant kind of
noise in this kind of imaging is due to the quantum noise of X-Rays. As the
photon-detecting process can be modeled as a Poisson process, the noise
amplitude is proportional to the square root of the signal amplitude, limit-
ing the reduction of X-Rays doses without introducing noise. Other noises
are due to the imaging processing, such as the conversion from photons to
electrons. Lastly, the primary artifacts are due to scratches in the detector,
dead pixels, and dishomogeneous X-Rays beams. However, X-Rays are
generally less affected by artifacts than other kinds of imaging [155].

3.1.2 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging measures the magnetic properties of the tis-
sues instead of capturing an image using photons. An in-depth discussion
of the physics related to MRI is behind the scopes of this study. From a
high-level perspective, MRI in clinical practice focuses on visualization on
hydrogen-containing tissues; this is accomplished by measuring the mag-
netization of each voxel by perturbing the dynamic equilibrium of the spins
contained in such voxel employing a sequence of radiofrequency pulses.
Depending on the settings of the RF pulses and the gradient of the mag-
netic field used, different MRI sequences can be acquired. The possibility
to acquire different sequences – or modalities – for the same images opens
a set of possible applications and advantages. In our experiments, we use
four of such modalities that are typically acquired for brain images:

• T1 Weighted (T1): This sequence (Fig. 3.1a) shows voxels with
higher water content as a low-level signal, appearing darker in the re-
sulting image. Conversely, fat corresponds to a higher signal, resulting
in brighter voxels.

• T1 Contrast-Enhanced (T1-ce): The T1 sequence is sometimes en-
hanced using a gadolinium contrast agent, which allows visualizing
blood vessels and brain tumors as brighter than the surrounding tis-
sues. (Fig. 3.1b)

• T2 Weighted (T2): This sequence is commonly acquired together
with the T1 and shows a higher signal indicating more water content
and a lower signal for fat. [156] (Fig. 3.1c)

41



Chapter 3. Datasets and Models

(a) T1-Weighted (b) T1 Contrast-Enhanced

(c) T2-Weighted (d) Fluid-Attenuated Inversion Recovery

Figure 3.1: Four different MRI Modalities of the same brain affected from glioma. Source:
BraTS Dataset [31]

• Fluid-Attenuated Inversion Recovery (FLAIR): This kind of se-
quence nullifies liquid content such as the cerebrospinal fluid, which
appears dark. The rest of the image is similar to T2 weighted images.
[157] (Fig. 3.1d)

It is worth noting that these are not the only MRI sequences possible.
Most notably, for the brain district, Susceptibility-Weighted MRI can detect
small hemorrhages [158], perfusion weighted MRI can be used to measure
blood flow [159], and functional MRI (fMRI) can be used to localize brain
activity when performing a particular task [160].

The contrast in an MRI depends on the tissue, and the parameters used
when defining the sequence. Resolution is typically between 2mm and
1mm, depending on the magnetic field strength that the imaging system
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can develop. The primary source of noise is thermal, and it is affected by
the temperature of both the patient and the MRI system. Artifacts found in
MRI are mainly due to technical issues, such dephasing due to the RF field
not being homogeneous, numerical approximations, insufficient shielding
of the room, or interactions with other equipment. [155]

3.2 Datasets

3.2.1 Microsoft Common Object in Context (COCO) Dataset

The Common Object in Context (COCO) [161] is a Dataset for instance
segmentation made available by Microsoft in 2015. Instance segmentation
is a different task from Semantic Segmentation: while the latter focus only
on classifying each pixel of an image according to a label that identifies
the kind of object - e.g., identifying a Dog in an image-, the former takes a
step further and also allows to identify different objects of the same kind in
the same image -e.g., telling which pixels belongs to two different dogs de-
picted in the same image-. COCO contains a total of 2.5 million labeled ob-
ject instances in 328k images. The dataset contains 91 common object cat-
egories; however, we used only a smaller subset in our work. While COCO
is not a healthcare-related dataset, it can easily benchmark deep learning
models for image classification or segmentation. This can be beneficial
for training models with less effort, as most medical image datasets are
typically much smaller and with more skewed distributions than ordinary
object datasets. Another advantage is that visual inspection of healthcare
data requires expert knowledge. The author of COCO chose instead objects
that "would be easily recognizable by a 4-year-old", allowing a much more
straightforward interpretation of segmentation results.

3.2.2 Brain Tumor Segmentation (BraTS) Dataset

The MICCAI Brain Tumor Segmentation (BraTS) [162, 31] challenge fo-
cuses on evaluating methods for segmenting brain tumors, particularly gliomas,
the most common primary brain malignancies.
The BraTS dataset comprises un-normalized, isotropic MRI volumes of
resolution 240x240x155 and four contrast modalities: T1, T1ce (contrast-
enhanced), T2, and FLAIR.

Each MRI modality can capture different physical properties of the tis-
sues; for this reason, each of them generally includes a different kind of
information.
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Each voxel is annotated with one among five possible labels representing
the tumor sub-regions:

• Enhancing/Active Tumor (ET) Represents the area of the tumor that
is absorbing the Gadolinium-based contrast agent. For this reason,
this area is generally more intense on a T1c image concerning the T1
counterpart or the rest of the healthy white matter.

• Non-Enhancing Tumor (NET) represents the solid area of the tumor
that is not absorbing the contrast agent. It is typically more intense in
T1 than in T1c.

• Necrosis (NCR): Corresponds to the fluid-filled tissues of the tumor.
It is typically more intense in the T1 modality than in T1c.

• Edema (ED) Represent the peritumoral edema, and it typically corre-
sponds to a hyper-intense signal in the FLAIR modality.

• Everything Else represents the rest of the image, being both healthy
tissues or voxels outside the region of interest.

The volumes are collected across different institutions with a diverse
contribution in terms of the number of samples. Over the years, multiple
versions of the dataset have been released. In the next paragraph we de-
scribe only the versions that we used in our work, i.e. BraTS 2015 [162]
and BraTS 2019 [31].

The BraTS 2015 and 2019 are not disjoint, as the 2019 version improves
the older dataset. Here we report the most relevant differences between the
two datasets: In terms of dataset size, the BraTS 2015 dataset consists of
220 high-grade gliomas (HGG) and 54 low-grade gliomas (LGG) MRIs,
while BraTS 2019 consists of a total of 335 MRI volumes (259 HGG, 76
LGG);

1. Both datasets contain 30 human-annotated MRIs from a previous dataset,
BraTS 2013;

2. The remaining volumes in BraTS 2015 are a mixture of pre and post-
operative scans that have been labeled by an ensemble of algorithms
and later evaluated by a team of human experts. In BraTS 2019, all
the post-operative scans have been discarded, and all the volumes have
been manually re-labeled;

3. Additional data from different institutions have been included in BraTS
2019;
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4. In BraTS 2019, the Non-Enhancing Tumor (NET) label has been merged
with Necrosis (NCR) due to a bias that exists in the evaluation of that
area.

In our experiments, we will generally use "BraTS dataset" to refer to the
2019 version, unless explicitly stated.

The challenge also defines some sub-regions for evaluating the results
by composing the various labels:

1. The Enhancing Tumor, corresponding to the label with the same name

2. The Tumor Core (TC) entails the Enhancing Tumor, the necrotic (NCR),
and non-enhancing (NET) parts of the tumor. This region is the region
that is typically resected as it represents the bulk of the tumor.

3. The Whole Tumor (WT) includes the Tumor Core and the Edema.

In our work, unless otherwise specified, we report our results on the
Whole Tumor (WT) region.

3.2.3 Stanford Chest X-Ray (CheXpert) Dataset

Chest X-Ray Diagnosis is a task that can be addressed using CNN classi-
fiers. A large dataset labeled with good quality standards is necessary to
this extent. In our experiments, we focused on the CheXpert dataset [163],
which is composed of 223316 Chest X-Rays of 65240 patients, collected
from the Stanford Hospital from October 2002 to July 2017. The dataset is
provided in two different image formats: the high-quality format is 16-bit
PNG, and the low-quality format is 8-bit PNG.

Each image is annotated with a vector of 14 labels, corresponding to
significant findings in a Chest X-Ray. The labels have been extracted from
text radiology reports using an automatic rule-based labeler.

In particular, the labeling process consisted of three different phases:

1. the Impression section – that generally summarizes the key finding
of the exam – of each report is analyzed, and a list of mentions is
extracted, by matching a list of phrases designed by multiple expert
radiologists;

2. each mention is assigned to a label according to a level of confidence
between positive, negative and uncertain;

3. each image is encoded as a vector that includes one element for each
label: positive labels are encoded as 1, negative labels are encoded as
0, uncertain labels are encoded as u.
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Figure 3.2: Hierarchical structure of the findings. This is a slightly simplified version of
the hierarchy described in [164].

CheXpert dataset includes two kinds of images: frontal and lateral X-
Rays. Lateral images are available only for some patients, generally when
the diagnosis is uncertain. For this reason, the amount of frontal images is
much higher than those of the lateral ones. In addition to the training set,
the authors also provide a test set of 200 images – annotated by human ex-
perts – that can be used to assess the performances of the machine learning
approaches.

Table 3.1 shows the data distribution over the 14 labels included in the
dataset. The 14 findings expressed by the labels represent medical condi-
tions that are not independent, but rather they form a hierarchy as shown
in Figure 3.2. The hierarchy models correlations between the labels, e.g.,
Pneumonia is correlated with the observation of Lung Opacity, while Car-
diomegaly can be correlated with Enlarged Cardiomediastinum.

In order to be successful, a machine learning approach applied to the
CheXpert dataset would need to deal both with the uncertainty of the label-
ing process and the dependency among the labels, which could be exploited
to improve the performances.

Along with the publication of the CheXpert dataset, Irvin et al. [164]
also proposed their own solution based on a 121-layer DenseNet trained
with different approaches to deal with the uncertainty present in the CheX-
pert dataset labels. Their model was able to achieve performance similar or
better than expert radiologists on the classification of 5 thoracic diseases,
selected as the most representative of the dataset. Finally, in a very recent
work, Pham et al.[165] trained several state-of-the-art CNN on the CheX-
pert dataset, showing the benefits of exploiting the conditional dependen-
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Pathology Positive (%) Uncertain (%) Negative (%)
No Finding 16974 (8.89) 0 (0.0) 174053 (91.11)
Enlarged Card. 30990 (16.22) 10017 (5.24) 150020 (78.53)
Cardiomegaly 23385 (12.24) 549 (0.29) 167093 (87.47)
Lung Opacity 137558 (72.01) 2522 (1.32) 50947 (26.67)
Lung Lesion 7040 (3.69) 841 (0.44) 183146 (95.87)
Edema 49675 (26.0) 9450 (4.95) 131902 (69.05)
Consolidation 16870 (8.83) 19584 (10.25) 154573 (80.92)
Pneumonia 4675 (2.45) 2984 (1.56) 183368 (95.99)
Atelectasis 29720 (15.56) 25967 (13.59) 135340 (70.85)
Pneumothorax 17693 (9.26) 2708 (1.42) 170626 (89.32)
Pleural Effusion 76899 (40.26) 9578 (5.01) 104550 (54.73)
Pleural Other 2505 (1.31) 1812 (0.95) 186710 (97.74)
Fracture 7436 (3.89) 499 (0.26) 183092 (95.85)
Support Devices 107170 (56.1) 915 (0.48) 82942 (43.42)

Table 3.1: Number of Positive, Uncertain and Negative samples for each finding.

cies among the labels in training as well as of employing an ensemble of
classifiers with different architectures instead of a single one.

It is worth mentioning that the CheXpert dataset is not the only Chest
X-Ray dataset to perform automated diagnosis. For example, Rajpurkar
et al. [166] trained a DenseNet-121 [167] model on the ChestX-ray14
dataset [168]; their model – dubbed CheXNet–, achieved state-of-the-art
performances on the classification of the 14 major thoracic diseases and
outperformed expert radiologists on the detection of pneumonia. In a later
work [169], Rajpurkar et al. introduced CheXNeXt, improving the perfor-
mance of CheXNet and achieving a performance similar to expert radiolo-
gist on 10 thoracic conditions. Notable works that focus on the ChestX-
ray14 dataset are also the work of Kumar et al. [170], who introduced
cascaded CNNs that can diagnose all the 14 thoracic diseases better than
the baseline, and the work of Lu et al. [171], who applied an evolutionary
algorithm to search for the optimal CNN architecture to solve the classi-
fication task. A different approach was followed by Ye et al. [172] that
introduced Probabilistic-CAM (PCAM), an extension of CAM [45], to per-
form the localization of thoracic diseases on the ChestX-ray14 dataset in a
semi-supervised fashion. At the same time, the localization model trained
can be successfully applied also to solve the image classification problem
with a performance similar or better than some of the previous approaches
in the literature, such as CheXNet [168]. Lastly, working with frontal and
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lateral images, Rubin et al. [173] introduced DualNet, consisting of two
CNNs jointly trained on frontal and lateral chest radiographs, included in
the very large MIMIC-CXR dataset [174]. Their results show that DualNet
outperforms state-of-the-art classifiers trained separately on a single type
of image (i.e., either frontal or lateral).

3.3 Models

This section describes all the machine learning models and architectures
that we used in our work. Although a significant number of new models and
architectures are proposed each year in the machine learning field, we de-
cided to use the most popular ones for our experiments. This is because this
work aims to be a compendium of possible techniques to exploit when ad-
dressing issues specific to collaborative learning for healthcare or medical
imaging. By choosing popular architectures, we promote the reproducibil-
ity of results, while more complex models could be added afterward to im-
prove the results further. Nonetheless, we also explored novel techniques
such as Adversarial Networks for Segmentation, as we show in chapter 6,
as we envision that they represent an interesting approach to the problem
that could bring promising results as the research progresses further. The
following section organizes the models according to the learning task they
address. This section can thus be used as a reference for the remainder of
this manuscript.

3.3.1 CNN Architectures for Image Classification

In our studies, we often resorted to well-known CNN architectures to ex-
ploit the achievements already part of state-of-the-art. This section sum-
marizes the neural network for classification that is part of the Keras ap-
plications library[175]. These neural networks have been pre-trained for
the ImageNet dataset. However, we specify whether we used pre-trained or
random weights in each experiment that uses such architectures. Table 3.2
shows for each architecture the number of weights, the number of layers,
the size in MB of the weights, and the corresponding article.

3.3.2 CNN Architectures for Image Segmentation

In 2015, Ronneberger et al. proposed U-Net [179], a Convolutional Neu-
ral Network for biomedical image segmentation. The name is due to the
visual representation of the network, which is composed of two paths: the
first is a contracting path, which is composed of repeated blocks of two
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Name #Parameters Depth Size Year
DenseNet121 7M 121 33MB 2016 [167]
DenseNet169 12,5M 169 57MB 2016 [167]
DenseNet201 18M 201 80MB 2016 [167]
InceptionResNetV2 54M 572 215MB 2016 [176]
Xception 21M 126 88MB 2016 [177]
VGG16 15M 23 528MB 2014 [178]
VGG19 20M 26 549MB 2014 [178]

Table 3.2: List of pre-trained CNN used in our work

3x3 convolutions, a ReLU [86] activation function and a 2x2 Max Pooling
operation to reduce dimensionality. After each block, the number of fea-
ture channels is doubled. The contracting path performs feature extraction
from the images, and it is followed by a symmetrical expansive path. The
blocks in the expansive path use 2x2 transposed convolution, which halves
the number of feature channels. After each convolution, the features are
concatenated with the features coming from the corresponding contracting
block – this kind of layer is often informally referred to as skip layer. After
the concatenation, two 3x3 convolutions and a ReLU activation function
are applied. The final layer comprises a 1x1 convolution operation, which
maps each feature vector in the target number of classes. U-Net has in to-
tal 23 convolutional layers. The peculiarity of this network is that the skip
connections allows lower level features to "skip" the innermost layers of the
network and reach the expanding path at the right level. As confirmed by
our findings in Chapter 2, and the BraTS Challenge results [162, 180], U-
Net proved to be a successful approach for segmentation, often establishing
as a valuable building block for more complex architectures.

Adversarial Models for Segmentation

As discussed in Chapter 2, GANs can be modified to perform segmentation
by altering the configuration of their input and outputs. To this extent, Luc
et al.[181] proposed a method in which a segmentation network is trained
to perform pixel-wise classifications on images. In contrast, an adversarial
network (called discriminator or critic) is trained to discriminate segmen-
tations coming from the segmentation network and the ground truth. This
approach has been tested on the PASCAL VOC 2012 [182] and on the Stan-
ford Background [183] datasets, and the results show an improvement in
segmentation performances when an adversarial loss is used. In the medical
imaging domain, multiple works applied adversarial methods to segment
MRI, CT, PET, and other domain-specific image formats [97]. In particular,
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two previous works applied adversarial learning to Brain MRI. Moeskops
et al. [184] investigated the effectiveness of adversarial training and dilated
convolution. Xue et al. [185] proposed an Adversarial Network with a
Multi-Scale loss, called SegAN, achieving better performances compared
to the state-of-the-art methods for brain tumor segmentation [186, 187].
In Chapter 6, we will present an extension of the SegAN architecture in
the context of investigating the transfer learning capabilities of Adversarial
Networks.

3.3.3 CNN Architectures for Image Translation

As we discussed, image generation became popular thanks to the introduc-
tion of GANs. Following this approach, Isola et. al. introduced pix2pix
[63] in 2016. The idea behind pix2pix is to exploit conditional GANs [96]
to perform translation between multiple images. As with (c)GANs, the net-
work is composed of a generator and a discriminator network. The two
networks resemble the ones used in DCGAN [95], with added skip connec-
tions for the generator – similarly to U-Net– and a PatchGAN [188] as the
discriminator, to only penalize structures of a specific scale.

The loss function is composed of two contributions, a cGAN loss:

LcGAN(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))] (3.1)

where x are the observed images, y are the output images and z is a random
noise vector, and a L1 Loss:

LL1(G) = Ex,y,z[||G(x, z)||1] (3.2)

that forces the generator not only to fool the discriminator but also to gen-
erate samples that are similar to the ground truth. The author claims that,
although this approach has been already used with an L2 distance, a L1

norm is beneficial as it induces less blur in the resulting images.
Another popular architecture for image translation is CycleGAN [65], that
is characterized by having two generators and two discriminators, which
are related using a cycle consistency loss. This kind of approach allows to
generate samples of a source or target domain without disposing of matched
data pairs - e.g., having both modalities for every image.

3.3.4 Classifiers based on Trees

While CNN proved to be very successful in classifying image data, it may
be helpful to combine their results with other kinds of classifiers, as we
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show in chapter 6. For this reason, we also considered two well-known
classifiers that are based on trees.

The first approach is Random Forests [189] (RF), which is an ensem-
ble learning method that can be used for classification. It is based on the
technique of bagging [190] applied to decision trees, in order to reduce
the variance of the model by averaging multiple trees trained on different
subsets of data. Additionally to bagging, a random selection of features
is performed every time a tree is generated to decrease the correlation be-
tween different trees and promote a gain of accuracy.
The second approach is called eXtreme Gradient Boosting [191] (XGBoost).
Gradient Boosting is an algorithm that incrementally combines multiple
weak learners into a stronger one. In particular, every newly added clas-
sifier is trained, focusing on the misclassified samples of the previous. In
XGBoost, Gradient Boosting is applied using Decision Trees as classifiers.
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3.4 Assessment Metrics

3.4.1 Metrics for Classification and Segmentation

For classification tasks, assessment metrics are usually based on the Con-
fusion Matrix [192]. Given the output of a network model, the output is
converted into a label, usually using a threshold. The predicted class is
then compared with the actual label of the model and labeled as one of
True Positive (TP) indicating a correct classification, False Positive (FP)
indicating a false alarm, True Negative (TN) correct rejection or False Neg-
ative, indicating a miss.
Two commonly used metrics derive directly from these values are:

(i) the precision - or Positive Predictive Value –:

PPV =
TP

TP + FP
(3.3)

measures how many samples, classified as positive, are effectively positive
in the ground truth;

(ii) the sensitivity – also, dubbed recall or True Positive Rate –

TPR =
TP

TP + FN
(3.4)

measures how many samples, that are positive in the ground truth, are cor-
rectly identified as such;

(iii) the specificity – or False Positive Rate–

FPR =
FP

FP + TN
(3.5)

measures how many sampes, that are negative in the ground truth, are cor-
rectly identified as such;

Accuracy

The accuracy is defined as:

ACC =
(TP + TN)

(TP + FN + FP + TN)
(3.6)

It measures how many samples are correctly classified by the model. How-
ever, it is generally not considered a good metric to optimize for a Deep
Learning classifier: if the dataset is highly unbalanced, as often applies in
medical datasets or in segmentation, a model that only predicts the majority
class –e.g., the negative class– would produce misleadingly high values of
accuracy.
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F1 Score and Dice Score

The F1 score [193] is another popular metric for evaluating a classifier. It
is defined as the harmonic mean between precision and sensitivity:

F1 = 2 ∗ 1
1

PPV
+ 1

TPR

(3.7)

In computer vision, the F1-Score is often referred to as Dice Score, al-
though the latter was intended to be applied to discrete data [194, 195].
When applied to binary data, the Dice Score is computed using the formu-
lation:

DSC =
2 ∗ TP

2 ∗ TP + FP + FN
(3.8)

In a segmentation task, the Dice Score can be seen as a metric of overlap
between the ground truth segmentation and the one generated by the seg-
mentation model. A value of 1 indicates complete overlap, while 0 indicates
no overlap.

Area Under the Receiving Operating Characteristic

The Area Under the (Receiving Operating Characteristic) is one of the
most widely used metrics for evaluating classifiers. The ROC curve is ob-
tained by plotting the True Positive Rate (TPR) against the classifier’s False
Positive Rate (FPR) at various threshold values. As a reference, an AUROC
value of 0.5 means no discriminative power, while – in the medical field –
a value between 0.7 and 0.8 is considered acceptable, a value between 0.8
and 0.9 is considered excellent, and values larger than 0.9 are considered
outstanding [196].

Matthew’s Correlation Coefficient (MCC)

The Matthew’s Correlation Coefficient (MCC) [197] is a correlation coeffi-
cient equivalent to the Pearson’s Phi Coefficient [198]. It can be calculated
using the formula:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.9)

Since this metric is a correlation coefficient between the predictions and
the ground truth, it must be interpreted accordingly. A value of +1 in-
dicates a strong correlation with the ground truth, a value of 0 indicates
that the classifier is no better than a random guess, while -1 indicates anti-
correlation between the prediction and ground truth.
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3.4.2 Metrics for Regression and Image Generation

The regression and image generation models output one or more scalar val-
ues instead of categorical ones; a set of metrics defined on this kind of data
is thus required. In this section, we indicate as yi the predictions of the
considered model and as ŷi the values observed in the ground truth, with
i ∈ 1, ..., N representing the index of observations and predictions. Al-
though a large number of other metrics are available, we only report the
most used ones, according to our findings of chapter 2.

Mean Absolute Error (MAE)

The most straightforward metric is the Mean Absolute Error (MAE):

MAE =

∑N
i=1 |yi − ŷi|

N
(3.10)

The MAE is simple and efficient to compute, and values toward 0 in-
dicate better model performances. However, it has the drawback of being
heavily dependant on the error magnitude, rendering it challenging to use
when the error is significant.

Mean Squared Error (MSE)

Another popular approach is the Mean Squared Error (MSE):

MSE =

∑N
i=1(yi − ŷi)

2|
N

(3.11)

Like MAE, MSE tends to return large values when the error is high.
Compared to MAE, it penalizes larger errors; for this reason, it is often
used as part of loss functions.

When dealing with images, it is a common practice to use MSE to assess
the similarity between two images:

MSE(ŷ, y) =
1

W ·H

W∑
i=1

H∑
j=1

(ŷi,j − yi,j)
2, (3.12)

where W and H are the width and the height of the image in pixels.
This approach, however, has the drawbacks of not accurately reflecting the
perceptual similarity between the images – i.e., when the two images are
inspected by a human observer. For this reason, we also introduce two
measures to deal with this problem.
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Peak Signal-to-Noise Ratio (PSNR)

The PSNR [199] is commonly used to evaluate images corrupted by noise.
It is calculated as:

PSNR(y, ŷ) = 10 log10
(max(yi,j))

2

MSE(y, ŷ)
(3.13)

where MSE is the mean squared error between the two images. The
higher the value of PSNR, the better the quality of the generated image.

Structural Similarity (SSIM)

SSIM(y, ŷ) =
(2µ(ŷ)) + µ(y) + c1)(2σ(y, ŷ) + c2)

(µ2(ŷ) + µ2(y) + c1)(σ2(ŷ) + σ2(y) + c2)
, (3.14)

where µ is the average of pixel values, σ2 is the variance of pixel values,
and σ(y, ŷ) is the covariance of y and ŷ pixel values, and ci are regulariza-
tion constants for luminance, constants and structural terms. [200].
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CHAPTER4
Ensemble Learning

The first class of distributed learning paradigms we analyze is Ensem-
ble Learning. Ensemble Learning algorithms have the advantage of being
among the simplest to implement; moreover, they only rely on the out-
puts of previously trained models, making them a feasible solution to adopt
when a set of learners is already available at each node.

In this chapter, we investigate two different aspects related to Ensemble
Learning. In the first setting, we assume to have a set of different seg-
mantation models, trained on heterogeneous data. To this extent, we first
introduce a set of ensembling strategies. Some of the proposed strategies
are general enough to be applied to classification tasks, while others – i.e.,
those based on local features of the predictions – are specific for segmen-
tation. To validate our approach, we first run an experiment using a dataset
of simulated predictions; this allows us to study the performances of the
ensembling methods without the limitations of data availability. Then, we
proceed by training different sets of machine learning models. To over-
come the scarcity of data, we use a non-medical dataset – i.e., the COCO
dataset – to assess the performances of the proposed method when using
real machine learning models. Lastly, we investigate our approach to med-
ical data, precisely the Brain Tumor Segmentation task. In this context, our
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aim is not to build the best possible segmentation model but to evaluate
under what circumstances an ensembling method is preferable to another.
The second aspect we analyze is related to a setting where heterogeneity
is not on the data but in the model architectures. To this extent, we use
the problem of Chest X-Ray Diagnosis as a case study. In particular, we
train seven different CNN architectures on the CheXpert dataset, and we
apply different ensembling techniques to improve their performances while
at the same time obtaining a single model from all the seven architectures.
The results of this experiment will constitute the starting point of the anal-
ysis for the following Chapters when the same task is addressed to study
different aspects of collaborative learning.

4.1 Ensembling Methods for Image Segmentation

In this section, we propose our Ensembling Methods for Image Segmenta-
tion. While ensembling methods are a popular technique for aggregating
knowledge in a regression or classification context, we envision adapting
the same techniques to image segmentation. This kind of data opens more
possibilities in terms of designing new solutions that exploit the inductive
bias of medical images - i.e., the probability that pixels that are spatially
close to each other shares common features are higher than the pixels that
are far apart-. Working on this, we also designed some aggregation methods
that take into account the spatial relation of the pixels. In this section, we
first formally introduce the concept of Collaborative Segmentation, then we
propose different aggregation strategies. Lastly, we present our experiment
design and results on three different datasets.

4.1.1 Collaborative Segmentation

In this section, we address the problem of image segmentation in a collabo-
rative context. We define collaborative image segmentation as the problem
of, given a set of image segmentation models, providing a single prediction
that takes into account the outputs of the single contributions. In this con-
text, an image segmentation model can be any statistical predictive model
that, given an H×W × C input image x, produces for each pixel a proba-
bility distribution over a set of classes, or labels L.

More formally, we consider the setting in which there are N agents ai ∈
A; i ∈ 0, ..., N , each one equipped with a segmentation model that is trained
on a different subset of data. The same input image is proposed to every
agent, which provides its model prediction as a solution proposal for that
input image. Each proposal Pa ∈ P , a ∈ A is a matrix of pixels pa,x,y,l ∈
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[0, 1] where a ∈ A is an agent, x ∈ {0, ...,W} and y ∈ {0, ..., H} are the
coordinates of the corresponding input pixel and l ∈ L is an output label.

We considered the class of problems in which the predicted labels are
mutually exclusive. In other words:∑

l∈L

p(a, x, y, l) = 1∀a ∈ A, x ∈ {0, ...,W}, y ∈ {0, ..., H} (4.1)

To benchmark our proposed methods, we also assume that for every input
image x, a ground truth tx,y,l ∈ T is available. Every ground truth matrix
has the same format and properties of a single agent proposal Pa.

For simplicity, we only considered binary segmentation, so in our exper-
iments, the number of labels is always 2 -either the target label, or every-
thing else- even when we worked with a dataset containing multiple labels.
This has been accomplished by considering each label as a new binary seg-
mentation task.

4.1.2 Aggregation Methods

To aggregate the knowledge for the different predictions, we propose dif-
ferent strategies. Every strategy has the objective to combine the N agent
proposals Pa to obtain a final proposal Pf that represents the collective de-
cision on a given input image. We omit the pixel coordinate (x, y) when
the formula refers to the same spatial location to keep the notation simple.
Each strategy produces a matrix of floating numbers that satisfies eq.4.1.
We adopt the decision strategy to choose the label with the maximum prob-
ability after the aggregation. If there are ties in selecting the final labels
(i.e., two or more labels obtain the same maximum score), we perform ran-
dom sampling among them.

We designed two kinds of aggregation methods: (1) simple methods
combines the numerical output of each agent without extracting or model-
ing any additional quantities. (2) confidence-based methods, which model
a measure of uncertainty in the prediction of an agent prior to aggregating
the proposals.

4.1.3 Simple Methods

Maximum Proposal The maximum proposal strategy select, for each pixel,
the label that has been assigned the highest probability among all the pre-
dictions.

pmax(l) =
maxa p(a, l)∑
l∈L maxa p(a, l)

(4.2)
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Mean Proposal The mean proposal strategy selects, for each pixel, the
mean proposal from all the agents

pmean(l) =
1

|A|
∑
a∈A

p(a, l) (4.3)

Majority Voting The majority voting strategy selects, for each pixel,
the class that has been voted by the majority of agents. We first calculate
the votes:

v(l) = |{a ∈ A : argmaxi∈L p(a, i) = l}| (4.4)

that is a function that express, for each pixel, how many agents proposed
the label l with an higher probability than the others. Then, the majority
voting is calculated as:

pmv(l) =

{
1 if l = argmaxi∈L v(i)

0 otherwise
(4.5)

4.1.4 Confidence-Based Methods

Machine Learning algorithms could include a measure of uncertainty of the
prediction. However, the Convolutional Neural Networks commonly used
for segmentation do not provide such an output. However, to investigate
how the uncertainty of a prediction can affect the collaborative output of
a set of models, we developed a heuristic to model uncertainty based on
the model output directly. We define the proposal uncertainty based on the
Information Entropy [201] over the probabilities associated with each label:

H(a) = −
∑
l∈L

p(a, l) log p(a, l)

log |L|
(4.6)

The choice of this function to model uncertainty is based on the assump-
tion that we might model the prediction of each classifier as a random vari-
able that follows a Bernoulli distribution with a success probability equal
to the actual output of the classifier. We can thus use the Entropy value
of such a variable to measure the classifier confidence. In other words, the
distribution of the label probabilities of an uncertain prediction is more uni-
form than the distribution of a particular prediction, which would show a
value close to 1 for one label and values close to 0 for the others. Indeed,
this function would have the value of 1 when all the outputs for a pixel have
value 1

|L| (maximum uncertainty) and 0 if all but one output are set to zero
(minimum uncertainty).
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Since most segmentation models account for local features to compute
the prediction of a single pixel, we also investigated different methods to in-
clude the uncertainty of a sample. In particular, in order to correctly include
the uncertainty measure in our aggregation methods, we defined different
confidence functions based on the proposal uncertainty and developed three
different strategies:

Pixelwise Confidence represent the simplest case, in which the confi-
dence function for a pixel at coordinates (x, y) is:

cpw(a, x, y) = 1−Ha,x,y (4.7)

Convolutional Confidence: In this case, we apply the 2D Convolution
operator (∗) to perform a computationally-efficient local mean in a patch of
either 3x3 or 5x5 pixels.

cSxS(a, x, y) = cpw(a, x, y) ∗WS (4.8)

Where S is the patch size (either 3 or 5) and WS is a matrix of constant
weights 1

s2
of shape SxSx|L|.

Full-Image Confidence With this method we consider the overall confi-
dence for the full image. For each pixel we compute the confidence function
as

cfull(a, x, y) =
1

HW

W∑
i=0

H∑
j=0

cpw(a, i, j) (4.9)

where H and W are the image dimensions.

Each Confidence-Based method is the combination of two orthogonal
dimensions: (i) a suitable Aggregation Method that will be presented and
(ii) the confidence function (Pixelwise, Conv. 3x3, Conv. 5x5, Full). that
have been described in the previous section.

Weighted Mean With this method we perform a weighted mean of the
proposals, using as weights the values provided by each confidence func-
tion:

pwm(l) =

∑
a∈A p(a, l)c(a)∑

a∈A c(a)
(4.10)

with c(·) being one of the possible confidence functions.
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4.1.5 Experiments on Synthetic Data

When comparing the different aggregation methods, it is necessary to ana-
lyze multiple scenarios, as a method could perform differently according to
the considered agents and their performances on inference data. Moreover,
the healthcare domain also poses additional challenges since datasets sizes
are insufficient to analyze all the possible scenarios. Finally, most public
datasets do not track information about the source of each sample or dif-
ferent modes in the data distribution. To address the problems mentioned
above, we designed three different experiments. The first experiment we
made is a simulation made using synthetic data. This experiment explores
the impact of the different choices in some typical scenarios. In particular,
we consider the level of confidence of the agent and their predictive perfor-
mances. We will test our ensembling approaches on image datasets from
two domains in the following sections.

Modeling the Agents

To study the possible real-world scenarios more closely, we directly de-
signed a synthetic dataset of predictions p(a, x, y, l) to model each agent
behavior concerning a specific input. Each synthetic prediction is hand-
crafted for every pixel of an input pattern to study a particular condition in
which each agent could operate. This experiment considers the agent capa-
bilities as a prediction model and some typical spatial configuration of the
input samples. In particular, for each test case, we model:

1. The template for the ground truth, which is shown in fig. 4.1, that is
related to the shape of the continuous area that is segmented with the
same value: we considered either a single squared area, named "blob",
or a checkerboard-like pattern of alternating classes.

2. Each agent proposal: the proposed solutions are built according to a
probability matrix similar to a confusion matrix. This matrix models
the probability Pij of an agent to predict a label Lj when the true label
is Li.

In a binary segmentation task, each agent is required to classify each
pixel with one from two classes (e.g., C1 and C2). We model the probability
of choosing a class with a normal distribution for each pixel, given the true
class of the ground truth. The following scenarios control the mean µ of
the distribution given each class, while the variance σ is the same for each
possible choice.
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(a) Binary Blob (b) Binary Checkerboard

Figure 4.1: Ground Truth Templates used for the synthetic dataset. White areas and black
areas represent two different classes – e.g., C1 and C2 – in the ground truth.

Table 4.1: Agent parameters for a Balanced Agent.

Predicted
C1 C2

True C1 N (µ, σ) N (1− µ, σ)
C2 N (1− µ, σ) N (µ, σ)

• Balanced Agent: A balanced agent has the same mean probability
µ of choosing the correct label, as opposed to 1 − µ of choosing the
wrong one. In other words, it does not have any bias in proposing
either the correct class or the other.

• Unbalanced Agent (on class Ci): An unbalanced agent is an agent
that has two different probabilities µ1 and µ2 (with µ1 > µ2) of choos-
ing the correct class, when it is C1 and C2 respectively. In other words,
an unbalanced agent is an agent that has better performances on a class
with respect to the other.

Lastly, every agent proposal is affected by the variance σ. This parame-
ter represents the noise in the input data that adversely affect the prediction
of a machine learning model.

Generating the Synthetic Dataset

Once we defined the different types of agents, we generated a dataset of
synthetic proposals to be aggregated with the different ensembling strate-
gies. We ran, for each ground truth template, agent parameter and aggrega-
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Table 4.2: Parameters for a Binary Agent Unbalanced on C1.

Predicted
C1 C2

True C1 N (µ1, σ) N (1− µ1, σ)
C2 N (1− µ2, σ) N (µ2, σ)

tion method, the following tests:

• 1 Balanced agent vs. 2, 4, or 8 Unbalanced agents on C1

• 1 Balanced agent vs. 2, 4, or 8 Unbalanced agents on C2

• 1 Balanced agent vs. 2, 4, or 8 Unbalanced agents, half on C1 and half
on C2

The values of µb of the balanced agent belong to the set {0.6, 0.75, 0.9}.
The values of µ1 and µ2 belong respectively to {0.6, 0.75, 0.9} and {0.4, 0.5}
for the agents unbalanced on C1, while they are swapped for the agents un-
balanced toward C2. Finally, the standard deviation for every kind of agent
can take the values {0.01, 0.05, 0.1, 0.2}. For each possible set of parame-
ters, we ran 30 simulations by resampling the predictions.

In some cases, it is possible that all the agents agree on a particular class
for every pixel in the image or that the area in which they do not agree on
class is minimal compared to the image size. Thus, we define as conflict
area the union of pixels in the final aggregation for which at least one agent
voted for a different class from the others. For this reason, we analyze our
results only on those images for which the conflict area is greater than zero.
Considering the areas in which every agent agrees on the solution might
make it more difficult to compare the different methods if the size of the
agreement is much larger than the conflict area.

Results

The first results we present are on the synthetic dataset of proposals. To
ease the analysis of the results, we use the following independent variables:
the µb of the balanced agent, the number of unbalanced agents, the noise σ
introduced in the prediction, and the ground truth pattern. The results are
computed by averaging all possible combinations of the other parameters
for the unbalanced agents.

Since, in this case, we are not addressing a real-world segmentation task,
we do not make assumptions on the relative importance of the True Posi-
tives, True Negatives, False Positive, and False Negatives. In other words,
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our task does not define which is the positive class for the problem. For this
reason, we adopt the Matthew’s Correlation Coefficient [197], equivalent to
the Pearson’s Phi Coefficient, which, differently from the Dice Score, does
not rely on which of the two classes is considered the positive class.

We had one balanced agent versus 2, 4, or 8 unbalanced agents in the
first test. Figures 4.2 and 4.3 shows the results for the "blob" and "checker-
board" ground truth templates, respectively. For low noise levels, meth-
ods based on the entropy calculated on larger image patches perform best,
while the maximum proposal is preferable to the method based on pixel-
wise entropy. As the noise level grows, the methods based on local patches
are preferable over all the other methods since they also consider adjacent
pixels in determining the aggregated outcome for every pixel, increasing
robustness to noise. Conversely, pixel-wise entropy methods are limited,
performing similarly to the maximum proposal method. When changing
the ground truth pattern from blob to checkerboard, the performances gen-
erally decrease, except for the Full-Image Entropy-based method, which
seems the most robust to the shape of the ground truth.

When the agents are unbalanced on C2, the results are similar to the
previous case, as shown in figures 4.4 and 4.5. Compared with the previous
case, the results are almost identical for the checkerboard template. The
only exception is the case of a well-performing agent (µb = 0.9) versus
eight unbalanced agents in a low noise setting (std = 0.05), for which the
simple mean method has a noticeable loss in performances compared to
the case with less unbalanced agents; this could be because the unbalanced
agents on the wrong class are so many that averaging the prediction shifts
the performances toward lower values. This fact is confirmed by the low
performances of majority voting, meaning that the majority of the agents
are voting for the wrong class. In such a case, a method based on full-image
or pixel-wise entropy is preferable since it weights most the balanced agent,
which is the most confident in its predictions. When comparing the results
on the blob template with the previous set of results, we also notice that
generally, the method based on 3x3 and 5x5 patches are more affected by
the unbalanced agents, and their performances are no more as good as those
of the Full-Image entropy. Still, they show a slight advantage in settings
with a high number of unbalanced agents and high noise levels.

Figures 4.6 and 4.7 show the setting in which half of the agents are un-
balanced on C1 and the other half are unbalanced on C2. In this case, the
differences between the methods are smaller for lower noise levels, while
they are still noticeable for higher levels of σ. The best solution for a lower
noise level is to use a Majority Voting approach, which shows excellent
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Figure 4.2: MCC for one balanced agent versus 2, 4, 8 unbalanced agents on the class
C1 for the "blob" pattern. In each graph, the horizontal axis represent the µ for the
balanced agent, that is the probability to output the correct class. Each row of graphs
represent a different value of σ, which introduces noise in the agent output. Results for
σ = 0.01 have been omitted due to True Negatives and False Positives not being part
of the conflict area produced by the combination of such agents.

performances in every case. However, as the predictions become noisy,
the performances of Majority Voting drops rapidly. In such cases, methods
based on 3x3 and 5x5 patch-wise entropy provide a better solution against
prediction noise again, surpassing the Full-Image entropy method. Finally,
as expected, the Maximum Proposal approach works best when the agents
perform well on the right class while performing worse than the other meth-
ods when the agents are less expert.
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Figure 4.3: MCC for one balanced agent versus 2, 4, 8 unbalanced agents on the class
C1 for the "checkerboard" pattern. In each graph, the horizontal axis represent the µ
for the balanced agent, that is the probability to output the correct class. Each row
of graphs represent a different value of σ, which introduces noise in the agent output.
Results for σ = 0.01 have been omitted due to True Negatives and False Positives not
being part of the conflict area produced by the combination of such agents.
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Figure 4.4: MCC for one balanced agent versus 2, 4, 8 unbalanced agents on the class
C2 for the "blob" pattern. In each graph, the horizontal axis represent the µ for the
balanced agent, that is the probability to output the correct class. Each row of graphs
represent a different value of σ, which introduces noise in the agent output. Results for
σ = 0.01 have been omitted due to True Negatives and False Positives not being part
of the conflict area produced by the combination of such agents.
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Figure 4.5: MCC for one balanced agent versus 2, 4, 8 unbalanced agents on the class
C2 for the "checkerboard" pattern. In each graph, the horizontal axis represent the µ
for the balanced agent, that is the probability to output the correct class. Each row
of graphs represent a different value of σ, which introduces noise in the agent output.
Results for σ = 0.01 have been omitted due to True Negatives and False Positives not
being part of the conflict area produced by the combination of such agents.
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Figure 4.6: MCC for one balanced agent versus 1, 2, 4 agents unbalanced on the class C1

and 1, 2, 4 agents unbalanced on the class C2 for the "blob" pattern. In each graph,
the horizontal axis represent the µ for the balanced agent, that is the probability to
output the correct class. Each row of graphs represent a different value of σ, which
introduces noise in the agent output.

70



4.1. Ensembling Methods for Image Segmentation

Figure 4.7: MCC for one balanced agent versus 1, 2, 4 agents unbalanced on the class C1

and 1, 2, 4 agents unbalanced on the class C2 for the "checkerboard" pattern. In each
graph, the horizontal axis represent the µ for the balanced agent, that is the probability
to output the correct class. Each row of graphs represent a different value of σ, which
introduces noise in the agent output.
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4.1.6 Experiments on Image Datasets

This section analyzes the performances of ensembling approaches in real-
world scenarios. Due to the challenge of data availability in healthcare,
designing deep learning models that exhibit characteristics similar to those
we introduced in the previous section requires more effort. To cope with the
issue of small dataset sizes, we first designed an experiment using general-
purpose Images (e.g., photos of real-world objects or animals). We train
four Deep Learning segmentation networks to simulate a possible real-
world distributed scenario in which data is less scarce. As this experiment
aims to understand how each ensembling method performs in different sit-
uations, we also included models at different stages of the training. This
approach allowed us to have at disposal models with different performance
degrees that could reflect scenarios in which a difficult or very specific task
has to be addressed by a set of less specialized models. Finally, in the last
experiment, we apply our framework to four different Deep Learning mod-
els that have been previously trained in segmenting MRI modalities from
the BraTS dataset introduced in chapter 3.

Model Selection and Pre-Processing

The first experiments on real data we designed is made on the Common
Object in Context (COCO) Dataset [161]. It is a large dataset of more than
two thousand labeled images of objects belonging to about 90 categories.
The size of this dataset allowed us to train Deep Learning models that are
specialized in different segmentation tasks without the need for a dedicated
analysis and data collection in a healthcare context. Thus, we chose four
of the most represented classes of the COCO dataset, corresponding to pic-
tures containing different animals: "(D)og", "(C)at", "(B)ird", "(H)orse",
and trained four MobileNet v2 models. To introduce diversity in model
performances, we trained each of the four models using different datasets,
prepared as follow:

1. Starting from the original COCO Training dataset, we extracted all
the images that contained either one of the considered labels. (e.g.,
we discarded the images that contained both a dog and a cat.) We
obtained an intermediate dataset containing 12900 images (D: 3828,
C: 3809, B: 2659, H: 2604).

2. Starting from the intermediate dataset, we split the dataset in Train-
ing, Validation, Testing (70/15/15), maintaining the class proportions
constant in each dataset.
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Table 4.3: Our COCO "Unbalanced" training dataset composition

TD TC TB TH

Dog 1340 446 446 446
Cat 444 1333 444 444
Bird 310 310 931 310

Horse 303 303 303 911

3. The training and validation datasets have been further splitted in four
"expert class" datasets each (e.g. TB,TC ,TD,TH , VB, ...), in such a way
that the dataset corresponding to the class "X" contains approximately
3 times the samples of class "X" with respect to the other datasets. An
example for the training dataset is shown in Table 4.3

Unbalancing the datasets allowed us to train four different Deep Learn-
ing models that act as expert agents in the class they are trained on. We
trained the models for 275 Epochs using the Categorical Cross-Entropy
Loss function. To obtain a broader selection of different test cases, we
considered the models trained after 1, 10, and 275 epochs for this dataset,
resulting in 12 models in total with different degrees of performance across
the four labels.

For the experiments on the BraTS dataset, we used the single-input
SegAN-CAT architecture that will be introduced in chapter 6. For the scope
of this chapter, it is sufficient to consider the architecture as an image seg-
mentation model, which takes as input an MRI modality - i.e., T1, T1-ce,
T2, or FLAIR- and produces a segmentation of the image according to one
of the three labels of the dataset - ED, ET or NCR/NET-. Thus, we trained
twelve different binary models for each input modality and output label
combination. It is worth noting that, while sharing the same architecture
and training details, these models are trained on a slightly different task
from those that will be presented in chapter 6, as in this case, the models
are trained to produce the ED, ET and NCR/NET, while in chapter 6 we
will present models that are trained on directly classify the whole tumor
area, already discussed in the previous chapters.

Generating the Proposals

The first step is to train and analyse the models that are obtained. Table
4.4 shows the performances of each agents on the corresponding validation
sets. At this point, the ensembling step still has to be applied. Nonetheless,
it could be useful to analyse the agent performances - relative to each other
- to identify different learning contexts. In particular, we empirically cat-
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egorised the agent performances in Very Good (DSC > 0.8), Good (0.6 <
DSC < 0.8), Average (0.4 < DSC < 0.6), Bad (0.1 < DSC < 0.4) and Failed
(DSC < 0.1). Applying this categorization we identified three different sce-
narios:

• Expert Agent (E1-E5): In this kind of experiment, we have one agent
which performance stands out with respect to the others. In this cases
we can have either a very good expert against either good or average
models, or an average model against multiple bad or failing models.

• Uniform Agents (U1-U6): In this case, all the models have approx-
imately the same performances on the task. Our experiments spans
from very good performances -e.g., experiment U1- to average or bad
models -e.g, the experiment U6-.

• Struggling Agents (S1-S3): This case can be viewed as the dual of the
Expert Agent settings. In particular, in this setting, one agent performs
poorly compared to the others.

As introduced in chapter 3, due to the differences in acquisition modali-
ties, different labels can be easier to identify in some modalities compared
to others. For example, the Enhancing-Tumor (ET) is generally more vis-
ible on the T1-ce modality, and it is reflected by the performances of the
corresponding model - experiment E3 -.

4.1.7 Results

This section presents our results on the aggregation performances on the
considered datasets, according to each proposed method. As discussed in
the previous section, the results shown are calculated from the statistics
over all the pixels belonging only to the conflict area. The restriction is
made to avoid mixing results with the area for which an agreement already
exists - in that case, we are already applying the models at the best of our
knowledge, and no aggregation is needed. In other words, these results are
calculated only on the parts of the image that are particularly difficult to
segment for one or more models.

Table 4.5 shows the performances on the expert agent scenarios. In this
case, the Maximum Proposal showed better performances compared to the
others in three cases out of four. In experiment E1, a Majority Voting seems
instead beneficial, while for E2, the Mean Weighting with Full-Image En-
tropy provides a significant boost compared to Majority Voting. It is worth
noting that experiments E4 and E5 represent extreme cases in which only
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Dataset Output Label Unbalanced Modality Experiment
Bird Cat Dog Horse

COCO ep1 cat 0.645 0.815 0.659 0.564 E2
COCO ep1 dog 0.550 0.000 0.703 0.642 S3
COCO ep1 horse 0.000 0.000 0.000 0.539 E5
COCO ep10 bird 0.645 0.000 0.000 0.000 E4
COCO ep10 cat 0.806 0.864 0.745 0.771 U2
COCO ep10 dog 0.733 0.690 0.763 0.431 S1
COCO ep10 horse 0.755 0.654 0.590 0.798 U4
COCO ep275 bird 0.761 0.688 0.699 0.503 S2
COCO ep275 cat 0.857 0.875 0.820 0.797 U1
COCO ep275 dog 0.699 0.689 0.809 0.646 E1
COCO ep275 horse 0.777 0.761 0.742 0.769 U3

Dataset Output Label Input Modality Experiment
flair t1 t1ce t2

BRATS ET 0.242 0.056 0.558 0.079 E3
ED 0.618 0.396 0.437 0.538 U5
NCR/NET 0.330 0.417 0.443 0.473 U6

Table 4.4: Training of neural network models on COCO (top table) and BraTS (Bottom
Table) dataset. The column output label indicates what the target of the particular set
of models is. The columns under Unbalanced Modality show the Dice Score for each
agent, identified by the label that has been unbalanced in its training dataset. Similarly,
Input Modality shows the names of the BraTS models, named after the modality in
input for the particular model. Lastly, the Experiment column shows the experiment
identifier for the agent configuration. For COCO ep1, the row corresponding to the
"bird" label is omitted as no samples with the conflicting proposal were generated.
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experiment E1 E2 E3 E4 E5
method

Majority Voting 0.668 0.605 0.251 0.000 0.000
Maximum Proposal 0.545 0.662 0.533 0.281 0.693
Mean Proposal 0.652 0.649 0.282 0.000 0.000
Weighted Mean - Pixelwise Entropy 0.650 0.659 0.283 0.055 0.550
Weighted Mean - 3x3 Conv Entropy 0.648 0.659 0.258 0.052 0.551
Weighted Mean - 5x5 Conv Entropy 0.646 0.659 0.239 0.048 0.551
Weighted Mean - Full Image Entropy 0.649 0.670 0.281 0.000 0.001

Table 4.5: Experiments on the expert agent scenario.

an agent can solve the task with average performances, while the other three
models fail at the task. In a medical imaging scenario, this could represent
the case in which an image of a rare disease or a lesion with uncommon
features is submitted to a set of more general models. However, only the
Maximum Proposal can solve the task in one case, although providing only
a small improvement of performances over the whole image. In the other
cases, even the aggregation techniques based on Entropy Weighting - ex-
cept for the one computed on the whole prediction - provide acceptable
performances. This suggests that the performances of each method do not
depend solely on general model performances but also the confidence of
each classifier and deserve further investigation.

Table 4.6 shows the performances in the uniform agent scenarios. When
agents have similar performance, the Maximum Proposal is no more the
best approach. Instead, the Majority Voting seems to be a better approach
in half of the considered cases. In experiment U1, where all the agents have
very good performances, a Mean Proposal gives a slight boost in perfor-
mance upon the Majority Voting. As the mean performances of the agents
decrease, our proposed methods based on Entropy Weighted Mean pro-
vides to be more effective than simpler methods, in particular averaging the
entropy on smaller spatial patches constitutes a better strategy.

Lastly, we analyse the performances on the struggling agents scenario.
In this case, 4.7 shows that the Majority Voting provides a performance
boost over the other solutions is two experiments out of three. In S1, 3
agents performed in average above 0.6 Dice Score, while one performed
around 0,4. In this case the three best strategies are Majority Voting, Mean
Proposals and a Weighter Mean based on the entropy of the full predic-
tion. In S2, the spread between the good-performing agents and the strug-
gler is less severe. Being more similar to an uniform agent scenario, in
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experiment U1 U2 U3 U4 U5 U6
method

Majority Voting 0.745 0.680 0.673 0.655 0.498 0.445
Maximum Proposal 0.654 0.594 0.569 0.562 0.369 0.405
Mean Proposal 0.749 0.678 0.663 0.637 0.469 0.467
Weighted Mean - Pixelwise Entropy 0.747 0.657 0.658 0.595 0.510 0.475
Weighted Mean - 3x3 Conv Entropy 0.746 0.656 0.656 0.591 0.513 0.470
Weighted Mean - 5x5 Conv Entropy 0.745 0.654 0.656 0.587 0.510 0.465
Weighted Mean - Full Image Entropy 0.746 0.668 0.650 0.627 0.489 0.458

Table 4.6: Experiments on the uniform agent scenario.

experiment S1 S2 S3
method

Majority Voting 0.720 0.680 0.672
Maximum Proposal 0.587 0.443 0.752
Mean Proposal 0.694 0.664 0.740
Weighted Mean - Pixelwise Entropy 0.649 0.655 0.741
Weighted Mean - 3x3 Conv Entropy 0.647 0.653 0.740
Weighted Mean - 5x5 Conv Entropy 0.646 0.653 0.740
Weighted Mean - Full Image Entropy 0.688 0.668 0.712

Table 4.7: Experiments on the struggling agent scenario.

S2 the Maximum Proposal performance decrease, similarly to what previ-
ously seen. Instead, the performances on Entropy seems to be more con-
sistent. Finally, in S3 we have an agent that fails at the task. In this case
our proposed Weighted Mean using the entropy on the full image provides
a significant boost in performances.

As suggested during the discussion on the previous experiment, there
may be more factors that influence the aggregation performance other than
the score of the models on their validation set.

To conclude the analysis, we took a different perspective on the sets
of proposals that we have generated. Instead of classifying the experiments
according to the balance of agent performances in every set of aggregations,
we defined two new dimensions to explore.

The first is related to the confidence of the agent. By analyzing the
distribution of the confidence values for each model over their respective
datasets, we noticed that as the number of epochs rises, their confidence
becomes increasingly close to the unitary value; this means that the mod-
els become heavily polarized in their outputs. In other words, they tend
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to output values close to either 1.0 or 0.0, regardless of the correctness
of their prediction. This is unsurprising, as machine learning models are
commonly trained with loss functions that encourage the network to output
values close to the labels. However, it could be beneficial to understand
how the ensembling methods perform according to the level of agent con-
fidence. Again, we assume that an agent is confident in its prediction if its
output is close to the negative or positive label; conversely, it would predict
a value closer to the mean - i.e., the value 0.5. Based on the confidence
distribution for each dataset, we set a threshold that classify as Confident
all the agents whose prediction lies in the range [0; 0.05]∪ [0.95; 1.0], while
the others are classified as Non-Confident. In this case, confidence is not a
property of the agent but rather of an agent when making a specific predic-
tion. In other words, each agent proposal for a particular image and label is
classified with a confidence label. Lastly, we counted how many agents are
confident in their prediction and not for each image.

The second dimension is related to the correctness of the proposal. In
particular, for every image, each agent would either vote for the Right or
Wrong label, according to the ground truth. Thus, for each image, we iden-
tified the regions - intended as a set of pixels - where every agent has pro-
posed the right or wrong solution, regardless of the aggregation method
that will be applied. Lastly, for each pixel in the datasets of proposals, we
counted how many agents proposed the right solution versus how many
proposed the wrong one.

Figure 4.8 shows the Dice Scores for each aggregation method obtained
by considering the areas in which we have a different balance of agents that
voted for the correct label versus the number of agents that are confident
in their proposal. The most evident result is that the more agents are cor-
rect in their proposal, the higher the final score of the aggregation. This,
however, is quite obvious, as the more agents propose a wrong result, the
more difficult it is to select the correct answer for the aggregation method.
However, it can be seen how in the cases 3 agents are wrong, and one is
correct, the majority of methods are heavily dependant on the agent con-
fidence. In this case, a Maximum Proposal proved to be beneficial, as the
only viable solution is to consider the answer of the most confident agent.
When the balance of agent performance is even, the other methods provide
satisfactory results. When no agent is confident in the solution, a Weighted
Mean on Full Image entropy or a simple average is beneficial. However,
the performance of the former method decreases as the number of confi-
dent agent increase. When dealing with all confident agents, a Weighted
Mean using smaller patches as the 3x3 Convolution up to the single pix-
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Figure 4.8: Ground Truth Templates used for the synthetic dataset

els seems beneficial. Lastly, if the majority of agents propose the correct
solution, the Majority Voting provides the most consistent performances,
followed by the Simple Mean that has the advantage of being slightly sim-
pler to implement.
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4.2 Ensembles of Heterogeneous Models

In the previous section, we show several different methods that can be used
to aggregate the output of machine learning models for the segmentation
task. However, some of these methods are still viable options for clas-
sification tasks. Moreover, ensembling methods are beneficial when the
models are already available as they allow to use them directly without a
time-consuming retrain of multiple models. To complete the analysis of the
design of an ensemble learning approach, we also have to consider the first
step of building a set of machine learning models on each node’s private
dataset. Thus, this section presents a possible approach for training dif-
ferent models for Automated Chest X-Ray Diagnosis and uses the already
introduced ensembling techniques to solve this task.

4.2.1 Overview

Inspired by the work of Pham et al.[165], we trained seven different CNNs
on the Chexpert dataset that will be used in the following chapters to study
different kinds of approaches. Aside from the training of machine learn-
ing models, this particular dataset poses additional challenges that can be
interesting when dealing with healthcare datasets. In particular, we first
describe one possible approach to deal with label uncertainty and depen-
dency described in Chapter 3. Then, we proceed with the description of
training different Convolutional Deep Neural Networks on the CheXpert
data. Finally, we show how ensembling methods could produce a single
final model used in a collaborative machine learning setting.

4.2.2 Dealing with uncertain labels

As described in chapter 3, the CheXpert dataset includes a significant num-
ber of samples that have been labeled as uncertain. The uncertainty could
reflect both an unreliable diagnosis or an ambiguous report used when gen-
erating the dataset. In [164], Irvin et al. investigated the issue of uncertain
labels by comparing different policies, such as assuming uncertain labels as
either positive or negative. Pham et al. [165], however, showed that these
policies could result in wrong labels that could be misleading for the ma-
chine learning model during the training phase. For this reason, we used the
Label-Smoothing Regularization (LSR) approach introduced by Szegedy et
al. [202], which allows us to exploit a large number of uncertain labels in
the CheXpert dataset while also preventing the model from becoming over-
confident on uncertain samples. This is achieved by replacing the uncertain
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label, u, with a random value drawn from a uniform distribution U(a, b)
(with b > a > 0.5).

4.2.3 Exploiting dependencies between labels

As described in Chapter 3, the labels included in the CheXpert dataset have
a hierarchical dependency. This, it is possible to take advantage of such
dependencies during the training of a classification model to achieve better
performances. Inspired by the approach of Pham et al. [165], we employed
a conditional training approach that aims at learning from data the condi-
tional probabilities distribution of labels.

This approach relies upon the hierarchical dependency model depicted
in Figure 3.2 and involves a two-steps training process:

1. We train our classifiers only with samples that have positive values
(i.e., equal to 1) in labels that are not leaves in the label hierarchy (i.e.,
Lung Opacity and Enlarged Cardiomegaly as reported in Figure 3.2).

2. Second, we perform an additional training of the classifiers on the
whole dataset to tune their prediction of labels at a higher level in the
hierarchy.

The output of the resulting classifier can be viewed as the conditional
probability that a label is positive when the parent labels in the hierarchy is
assumed as positive if they exist. For this reason, when conditional training
is employed, to predict the unconditional probability of unseen data, it is
enough to apply the Bayes’ Rule: the probability for each label is computed
as the product of the classifier outputs for that specific label and all the
parent labels in the hierarchy.

4.2.4 Chest X-Ray Classification with CNNs

We trained and compared seven different convolutional neural networks
that differ in architectures, topology, and the number of parameters. The
need for using differents architectures arises from the fact that each ar-
chitecture, as also reported by previous works [165], has different perfor-
mances on the different labels. More specifically, the networks considered
have been described already in 3, and they are – along with the number of
parameters –: DenseNet121 (7M), DenseNet169 (12,5M), DenseNet201
(18M) [167], InceptionResNetV2 (54M) [176], Xception (21M) [177] ,
VGG16 (15M) [178] , VGG19 (20M) [178]. We performed fine-tuning
starting from networks already trained on the ImageNet dataset to speed-
up training. In order to use the networks as classifiers for our dataset, we
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removed the original dense layer. We replaced it with a Global-Average-
Pooling (GAP) [203] layer, followed by a Fully Connected Layer that matches
the number of labels in our dataset. As we discuss later, since there are no
prevailing architectures, an approach based on the aggregation of differ-
ent models can benefit the final model performance even when we are not
considering a distributed setting.

Preprocessing

For the sake of simplicity, we trained our classifiers only on the frontal
images included in the CheXpert dataset, as they were available for every
patient. Then, we further split the dataset into a training set (roughly 90%
of samples corresponding to N = 189116 samples) and a validation set
(roughly 90% of samples corresponding to N = 1911 samples) for tuning
the model hyper-parameters. Thus, we kept the additional set of 202 sam-
ples included in CheXpert as the test set to assess the final performances
of our classifiers. We pre-processed the data by dropping additional in-
formation for each patient, such as sex and age. The uncertain labels were
mapped into values sampled from a uniform distribution U(0.55, 0.85), fol-
lowing the LSR approach introduced in the previous section. Concerning
the CXR images included in the dataset, we processed them to reduce as
much as possible any noise, such as text or irregular borders, that could
affect learning performances. Accordingly, we first resized the images to
256 x 256 pixels and then applied a template matching algorithm to find a
region of 224x224 containing a chest template. To match the data with the
input shape of the networks, we converted the images from 1 to 3 channels
(RGB), and we scaled their values in the range [0,1]. Finally, since the
models have been pre-trained on ImageNet, we normalized all the images
with that dataset mean and standard deviation.

Training Details

The networks are initialized using the weights provided by the Tensorflow
2.0 Keras module, discarding the classification layer while retaining the
convolutional layers. To apply the conditional training approach described
in Section4.2.3, we first trained the networks by only using the 23526 sam-
ples labeled as positive for all the findings that are not at the bottom of the
label hierarchy (see Figure3.2). Then, we froze all the layers except the last
fully connected one, and finally, we fine-tuned the networks on the whole
training set of 189116 images. In both these training stages, we used the
binary cross-entropy as loss function, and the learning rate was initially set
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Model Atelectasis Cardiomegaly Consolidation Edema P. Effusion Mean

DenseNet121 0.854 0.800 0.891 0.920 0.917 0.876

DenseNet169 0.850 0.795 0.882 0.936 0.915 0.876

DenseNet201 0.834 0.791 0.881 0.917 0.925 0.870

InceptionResNetV2 0.816 0.784 0.897 0.925 0.919 0.869

Xception 0.841 0.770 0.880 0.909 0.924 0.865

VGG16 0.843 0.772 0.898 0.932 0.919 0.873

VGG19 0.843 0.769 0.900 0.927 0.933 0.874

Table 4.8: Performances of the CNNs trained. The name of different CNN architecture is
reported in the Model column. The performance is computed as the AUROC achieved
on test set. The Mean column shows the average performance on all the five findings.
We reported in bold the best performance for each finding and overall.

to 1e-4, to be then reduced by a factor of 10 after each epoch.

CNN Results

To assess the performances of our classifiers, we computed the Area Un-
der the Receiving Operating Characteristic (AUROC), introduced in Sec-
tion 3.4. Table 4.8 shows the results achieved by each CNN trained for
each one of the main five findings considered: Atelectasis, Cardiomegaly,
Consolidation, Edema, and Pleural Effusion. The results show that all the
CNNs achieve a similar average AUROC over the five findings, and they
also have very similar performances on every single finding: all the net-
works achieve outstanding performances on identifying Edema and Pleural
Effusion, while they struggle to detect Cardiomegaly. On the other hand,
the results show that, as expected, there is no single CNN that outperforms
the others consistently for all the five findings: as an example, VGG19
achieves the best performance on Consolidation and Pleural Effusion and
the worst performance on Cardiomegaly. For this reason, we applied three
different ensembling strategies described in the next section to combine all
the seven trained CNNs.

4.2.5 Ensembling Strategies for Classification

As confirmed by our results, in a multi-label classification task like the
CheXpert one, it might be challenging to find a single classifiers that out-
perform the others on each target, and it might also happen that for some
of the targets, no strong classifiers are available. In this setting, we might
rely on ensembling strategies that combine several weak classifiers into a
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stronger one. In particular, for this task we considered two of the ensem-
bling techniques already introduced in Section 4.1.2, and Stacking, already
introduced in Section 2.3.1.

Simple Averaging

The first approach we used simply consists in averaging the predictions
made by the classifiers. If we call yi(x) the prediction vector provided as
output by the classifier i for the input (x), then the ensemble prediction
ỹ(x) computed using N classifiers is:

ỹ(x) =
1

N

N∑
i=1

yi (4.11)

The major drawback of this approach is that it assigns the same weight
to all the classifiers, without acknowledging that some classifiers may out-
perform others for specific labels or might be just more confident of their
predictions for a specific input (x).

Entropy-Weighted Average

As we saw in the previous experiments, an alternative approach to simple
averaging is to weigh each classifier by considering their confidence level.
Accordingly, we can thus use the Entropy value of such variable as a mea-
sure of the classifier confidence:

Hk(pk,i) = −pk,i log2 pk,i − (1− pk,i) log2 (1− pk,i) (4.12)

where pk,i is the prediction of the classifier k for label i. As a result, Hk(pi)
measures the level of uncertainty of the classifier k, while (1 − H(pi))
might be seen as the confidence of classifier k about its prediction on label
i. In an ensemble of N classifiers that provide a prediction for L labels, for
each input we will get a prediction matrix P = (pk,i) ∈ RNxL. Applying
Equation 4.12 we can combine for each label ithe classifiers predictions as
follows:

yi =
N∑
k=1

(1−Hk(pk,i)) pk,i (4.13)
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Stacking

The last aggregation approach we investigated involves Stacking [109].
This approach combines multiple classification models using a meta-classifier.
Specifically, a train set is first used to train the base classifiers, then the pre-
dictions of the base models are used as features to train the meta-learner.
The pseudo-code for the stacking algorithm is shown in Algorithm 1.

Algorithm 1 Stacking

1: procedure STACKEDGENERALIZATION
2: D ← {(x1, y1), ..., (xm, ym)} ▷ Training Dataset
3: Φ← Φ1,Φ2, ...,ΦT ▷ Base Classifier
4: for t← 1, T do
5: hy = Φt(D)
6: end for
7: D′ ← ∅
8: for i = 1, 2, ...,m do
9: for t = 1, 2, ..., T do

10: zit = ht(xi)
11: end for
12: D′ ← D′ ∪ {((zi1, zi2, ..., ziT ), yi)}
13: end for
14: h′ ← Φ(D′) ▷ Learn meta-classifier
15: return h′

16: end procedure

In principle, the meta-classifier for implementing stacked generalization
can be trained using any machine learning method and should not be trained
using the same data used to train the classifiers that have to be combined
to avoid possible bias. In this work, we used a Random Forest classifier to
apply stacking and trained it using the samples in the validation set. The
Random Forest parameters have been empirically set as follows: Max Tree
Depth was set to 30, Number of estimators was set to 1400, Maximum Tree
Depth was set to 30, Minimum Sample Split was set to 5, and Minimum
Samples per Leaf was set to 1.

CNN Ensembling Results

Table 4.9 shows the results of such different ensembling strategies on each
of the five findings, along with the performance of the best CNNs for that
specific finding. The results show that, except for the stacking approach,
the ensembling strategies based on averaging allow achieving overall better
performances, exploiting the differences among the CNNs. In particular,
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Method Atelectasis Cardiomegaly Consolidation Edema P. Effusion Mean

Best CNN 0.854 0.800 0.900 0.936 0.933 0.885

Simple Average 0.854 0.811 0.908 0.936 0.933 0.888

Entropy Weighted Avg. 0.856 0.811 0.912 0.936 0.930 0.889

Stacking 0.842 0.797 0.871 0.921 0.937 0.873

Table 4.9: Comparison of the performances of the best CNN classifier for each finding
(reported as Best CNN) and the three ensembling strategies considered. The perfor-
mance is computed as the AUROC achieved on test set. We reported in bold the best
performance for each finding and overall.

the strategy based on entropy-weighted average resulted in being the best,
achieving a slightly better performance overall and for all findings except
for Pleural Effusion. Interestingly, Pleural Effusion is the only target that
benefits from a stacking approach, perhaps suggesting that it requires a
more sophisticated ensembling strategy.

4.3 Summary

This chapter proposed an overview of the ensembling methods for the Seg-
mentation and Classification problem, studying both synthetic and real datasets
and addressing different tasks. This technique is advantageous when ma-
chine learning models have already been trained and must be used in a
collaborative setting. The advantages also apply when the computation is
hosted by a single entity that holds multiple different models at disposal. In
a distributed setting, this technique has the advantages of being relatively
simple to implement, but they require an exchange of data, as seen in chap-
ter 5. To investigate the potentiality of ensemble learning in a collaborative
setting, we considered two different scenarios with different assumptions:
In the first scenario, the heterogeneity is in the data used to train the models.
In the second scenario, the heterogeneity is in the model’s architecture.

In the first scenario, we proposed a set of different ensembling strategies
that we considered and applied to a set of agents, each one corresponding
to a different segmentation model. First, we proposed three more straight-
forward methods based on Majority Voting, Maximum Proposal, and Mean
Proposal between the predictions on each image pixel. Then, we introduced
four methods based on the entropy of the agent predictions, used for esti-
mating the confidence on the agent. The four methods differ in how the
entropy is spatially computed, ranging from pixel-wise up to the average
confidence calculated on the whole image and applied as a weight when
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averaging the agents’ predictions on every pixel.
To better understand which variables in the combination of agents could

affect the choice of the method, we first modeled different scenarios using
a dataset of synthetic predictions, in which a single expert agent is opposed
to multiple configurations of agents unbalanced on the two classes. Our
analysis considered the number of opposing agents, the performances of
the expert agent, and the noise that affects the final outcome. Our results
show that our proposed methods based on entropy are effective in many
scenarios.

Then, we applied the same methods on datasets of segmentation pro-
duced by real machine learning models. An interesting application sce-
nario of the proposed ensembling strategies could be the segmentation of
particular data modes, such as rare diseases. In this setting, we can sup-
pose that only a small subset of the models are more expert than the others.
For simulating such a setting, we needed to train machine learning models
that followed such behavior. We first used the COCO dataset of general-
purpose images to take advantage of the abundance of data, as the task is
similar from a machine learning point of view. In particular, we trained
different machine learning on unbalanced – i.e., heterogeneous – subsets
of data. Finally, we applied our segmentation methods to the Brain Tumor
Segmentation task, using four different segmentation models that take as in-
put each one of the different modalities. In our experiments, we exploited
all the combinations of labels and datasets to obtain fourteen different case
studies that have been grouped in three cases: (i) Expert Agents, (ii) Uni-
form Agents, and (iii) Struggling agents, according to the relative model
performances.

Results show that the performances of different aggregation methods
may depend on a combination of variables, such as the number of agents,
the relative performances of such agents, the confidence in the predictions,
and the spatial shape of the segmentation. In the case of Expert Agents,
the Full Image Entropy method or the Majority Voting gave good results
on two different settings in which non-expert agents’ performance was still
acceptable. In the most extreme cases in which only an agent can solve
the task, a Maximum Proposal is a successful strategy. For the uniform
agent scenario, instead, Majority Voting is a good choice, surpassed by
Mean Proposal when all the agents have excellent performances. When the
models’ performances decrease, however, the methods based on entropy
averaged on smaller patches surpass the performances of simpler methods.
Lastly, Majority Voting can give good performances on two cases out of
three for the struggling agent scenario. As the models’ performances tend
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to get closer to each other, both our methods based on entropy and the
Maximum Proposal give a significant performance boost.

The differences in performances between the synthetic dataset and the
datasets based on real images indicate that modeling a real-world setup of
machine learning agents is difficult. On the other hand, even if our analy-
sis on images accounted for 14 different sets of machine learning models,
the produced scenarios may represent particular cases not covered in our
synthetic analysis. For this reason, we can consider the two analyses as
complementary when choosing an aggregation method for a new system.
In the last analysis, we proposed a method to investigate the impact of the
confidence of each agent in their predictions. When using our CNN mod-
els as agents, it can be seen how the results are affected by the number of
confident vs. non-confident agents, also concerning the correctness of their
prediction. For example, when only half of the agents are correct in their
prediction, our proposed method based on entropy works best when either
none or all agents are confident. In conclusion, no aggregation method is
a general solution to the problem, and the choice should be made based on
the several factors cited above. Our experiment on this setting, although
introductory, highlights the need for a more comprehensive study of this
setting.

In the second ensemble learning scenario, we considered the problem
of building a single model by accounting models with different CNN ar-
chitecture. To this extent, we trained seven different Convolutional Neural
Networks on the Automated Chest X-Ray Diagnosis task, using the CheX-
pert dataset. Since the dataset has both uncertain and hierarchical labels, we
used Label Smoothing Regularization and Conditional Training to address
these challenges. Our results on the trained CNNs show that no architecture
can overcome the others on every label. For this reason, we adopted three
ensembling techniques based on Average, Entropy Weighted Average, and
Stacked Generalization to combine the classifiers into a single model. The
results on the ensemble of CNNs show that our proposed Entropy Weighted
Average can outperform the best CNN for each label in 4 cases out of 5. In-
stead, the model based on Stacking can provide better performances in the
Pleural Effusion, where the other aggregation methods fail to improve the
performances. The results confirm that ensembling methods can effectively
combine different machine learning models into a single model, eventually
showing better performances than the single parts.

In our experiments, ensemble learning proved to be particularly useful
when a set of pre-trained models had to be combined and used in a collabo-
rative setting. In particular, our proposed methods using entropy-weighting
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proved beneficial in multiple scenarios. As ensemble learning is relatively
simple to implement, its advantages also extend to scenarios in which a
single entity has to build a solution starting from multiple models at its
disposal. In a collaborative learning scenario, this technique also has the
advantage of being among the simplest to implement. However, they may
require the exchange of raw data, which should be managed with appropri-
ate techniques.

However, in Chapter 6 we show how the results of this chapter can be
further improved and used in combination with transfer learning. Instead,
in the next chapter, we investigate the most commonly used distributed
learning approach that can be used when all the nodes in the system have
to start learning from scratch.
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CHAPTER5
Distributed Learning

As discussed in the first chapter, creating and maintaining large public
datasets of medical information is a costly process since data sharing be-
tween different institutions needs to be approved by ethical commissions
and requires the patients to be informed on how their data will be used.
Adding to the cost, labeling data for machine learning requires a consider-
able effort from domain experts. These issues can be mitigated by adopting
a collaborative -i.e., multicentric- approach. However, even when an agree-
ment between different medical institutions is reached, other challenges
must be considered. For example, health data can exhibit different modes
based on the population: incidence of diseases can differ significantly by
demographics and localization. Different medical institutions may be spe-
cialized in different diseases, anatomical districts, or own different imaging
equipment, resulting in a shift in the distributions of individual datasets.
The challenges to a collaborative machine learning approach can also be
traced within the single institution that collects data since acquisition meth-
ods can differ from one medical division to another - e.g., different machin-
ery models to acquire patient imaging.

In the previous chapters, we applied ensemble learning to different ma-
chine learning models. Ensemble learning is a valuable tool that can be
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applied to models that have been already trained, even separately, by single
institutions. In this chapter, however, we consider paradigms that include
the advantages of distributed learning from the beginning of the training
process of the models. This approach requires planning in advance and co-
operation between multiple parties, while ensembling methods can be more
immediate in terms of organization. As we already introduced in Chapter
2, the two main paradigms that can be applied for collaboratively train-
ing neural networks are Federated Learning and Split Learning. The two
approaches are quite different and have their relative strengths and weak-
nesses. For this reason, a direct comparison between the two approaches
could help design a potential distributed learning system. For this reason,
in this chapter, we again consider the task of Automated Chest X-Ray Di-
agnosis to compare Federated Learning and Split Learning in a setting of
data heterogeneity.

5.1 Comparison of Federated Learning and Split Learning for
Healthcare Imaging

Our experiment focuses on analyzing two solutions that address the prob-
lem of collaborative learning by simulating a consortium of healthcare in-
stitutions that needs to train machine learning models for identifying a par-
ticular set of diseases. As we discussed in chapter 2, Federated Learning
has already been studied in healthcare settings, and previous results show
that it can achieve performances that are very close to a centralized solution
[120]. Split Learning, on the other hand, has been designed for health from
the very beginning, and it can provide significant advantages in terms of
versatility and privacy [204, 151]. To the best of our knowledge, no other
works directly compare the two methods on the Automated Chest X-Ray
diagnosis task. We envision that this might be due to both the novelty of the
approaches and the state of currently most-used deep learning frameworks
that do not fully implement both methods natively, requiring extra effort to
create a customized solution for the case at hand. Moreover, these solu-
tions require high computational resources for the imaging field, limiting
the model selection and analysis possibilities.

5.1.1 Federated Learning

Federated Learning is a new distributed learning paradigm designed by
Google [112] in 2017. The key concept behind Federated Learning im-
plementation is the decentralization of client models: the model is shared
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among the various users participating in the federated system while the data
remains stored within each client, ensuring privacy and confidentiality.

Let us assume a scenario in which a federation of N users {C1, C2, · · · , Cn}
are coordinated by a central server to train a task-specific neural network.
The workflow consists of 4 basic steps replicated over multiple federated
rounds:

0. Initialization: The server trains a generic neural network to initialize
the configuration. This step is performed only in the first round

1. Clients selection: A subset of clients is selected to participate in the
current federated round.

2. Models updating: The clients download the model from the server and
train it based on their local data.

3. Reporting: All engaged clients send the updated model to the server
(i.e., weights and bias of the local model).

4. Aggregation: The server aggregates the received parameters and up-
dates the global model accordingly.

5. Repeat: The server now owns the updated model and is ready to start
again from step 1 for another round.

The global model is trained on client data without direct access to it by it-
erating the process for multiple federated rounds. It is useful to emphasize
that weights aggregation, from a server perspective, can be done in two
different ways. The first one, called Federated Stochastic Gradient De-
scent (FedSGD), is the distributed implementation of the standard Stochas-
tic Gradient Descent algorithm. It is possible to implement a FedSGD by
selecting the fraction C of clients participating in a training round and a
fixed learning rate η. In this way, each client k compute gk = ▽Fk(wt),
the average gradients on its local data based on global model weights w
at the time t. The server at this point can proceed to update the weights
by considering the proportion nk

n
of samples from clients participating in

the round compared to the total samples from all clients using the formula:
wt+1 ← wt − η

∑K
k=1

nk

n
gk

The second algorithm used for weights aggregation is Federated Aver-
aging (FedAVG), a generalization of the previous one. It simply consists of
updating the local model several times in each client k before sending the
weights to the server. This procedure can be helpful because, in FedSDG,
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if the local clients start from the same initialization, averaging the gradients
is strictly equivalent to averaging the weights themselves.

An example of Federated Learning is shown in [205]. The goal of this
Federated system was to improve Google’s Gboard predictive keyboard
based on data and user experience; hence, the privacy and confidentiality
of texts written by users via the keyboard are the focus of the project. The
system’s clients are the users who have the GBoard keyboard installed on
their mobile phones; instead, the server is an external entity on which the
global model is located. In the beginning, the server initializes a generic
model to start the first federated round. Afterward, a subset of available
clients for the training is selected. Then, each client device downloads the
global model from the server (Clients Selection) and trains the model on
their data as input - i.e., the text written by the user - and updates the lo-
cal model (Models Updating). At this point, all clients send their modified
model (Reporting) to the server, which aggregates them and creates a new
representation of the global model (Aggregation). The new model will be
sent to the clients during the next round.

5.1.2 Split Learning

The second approach we used is Split Learning, a paradigm developed in
2018 by MIT Media Lab’s Camera Culture Group [204] that allows par-
ticipating entities to train neural networks jointly, without sharing any raw
data. Like Federated Learning, Split Learning has been developed to ad-
dress model training when different institutions dealing with the same task
have their collected data available. However, these are insufficient to train
a neural network capable of performing well. Another interesting use case
of Split Learning is when different entities or institutions hold different pa-
tient data modalities, such as electronic health records (EHR), pathological
findings, and imaging data. These data taken individually are not suitable
to train machine learning models; however, combining them would involve
exchanging sensitive patient data, which is not always possible in health-
care due to privacy concerns. The Split Learning method for diagnosis
would enable each center in this setting to contribute to constructing an
aggregated model without sharing any raw data.

The key idea behind the Split Learning algorithm is that each entity
(client) participating in the distributed system holds only a portion of the
neural network model, from the top of the network until a specific Cut
Layer. During the forward pass, the output from the cut layer is sent to
a third entity (server) that holds the remaining network section, which is
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univocal among all the clients. During the backward pass, the server can
compute the gradients of its layers up to the cut layer. Then, the gradients
of the cut layer are sent back to the clients, from which they can compute
the remaining gradients up to the input layer. This architecture’s peculiarity
is that the server split of the network is trained upon all the inputs received
from clients. This way, the nodes can share information with no access to
raw data of the other clients.

This process can vary slightly depending on the chosen architecture - or
layout -. It is possible to design a great variety of different architectures.
Due to the nature of the addressed task, we focused on the vanilla and U-
Shaped architectures.

Vanilla architecture

Figure 5.1a shows the most straightforward architecture of Split Learning,
dubbed vanilla by its authors, that corresponds to the process described
previously. This architecture is applicable only if the server can access
the labels of the samples to calculate gradients based on the loss func-
tion. More formally, assuming to have a neural network F having N lay-
ers {L0, L1, · · · , LN}, it can be split in a way that there are local layers,
i.e. localized and accessed only by the client/institution, or shared layers,
hosted by a central server/institution. Assuming Lm is the cut layer, with
0 < m < N , the network will be split in {L0, · · · , Lm} ∈ Fclient local lay-
ers and {Lm+1, · · · , LN} ∈ Fserver and shared layers. During the training
phase, the output ŷm of Fclient is sent as an input to Fserver, which completes
the training obtaining the final predicted output ŷ. At this time, the server
calculates the gradients ρ, obtained by the loss function G(ŷ, y), which are
sent back through Fserver and Fclient for the back propagation.

U-Shaped architecture

The Vanilla configuration does not ensure full privacy when the labels con-
tain sensitive data that should not be shared with the server. The U-Shaped
configuration allows clients to preserve the labels, ensuring a higher level of
privacy. In this case, as shown in Figure 5.1b, there is a third part of the net-
work Fback, located in the client and composed of layers {Ln+1, · · · , LN},
restricting consequently Fserver only to layers {Lm+1, · · · , Ln}. The client
will take care of the computation of ŷ and gradients ρ after receiving the
intermediate output ŷn from the server. This way, gradients will be sent
back during backpropagation, first through the server layers and then into
the client layers for weights updating. An important advantage of this ar-
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chitecture is that it allows each client to define its label semantic or use a
different label set from the other clients.

Figure 5.1: Split Learning configurations.

5.1.3 Experimental Design

For this experiment, we used the CheXpert dataset, already adopted in Sec-
tion 4.2. We applied the same kind of pre-processing and the LSR strategy
to cope with uncertain labels by assigning a randomly distributed value
x ∼ U(a, b), with a = 0.55 and b = 0.85, to uncertain labels.

In the first experiment, we trained a centralized neural network to com-
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pare the two methods broadly. This experiment will be used as a benchmark
during the evaluation of the models. The training of this network was per-
formed with the same architectural settings as the distributed scenarios. We
exploited the entire CheXpert dataset using a ratio of 80% - 20% for the
training/validation dataset selection. The resulting training dataset com-
prises 152.781 samples, while the validation dataset comprises 38.246.

Focusing on the two distributed methods experiments, we designed a
distributed environment where five clients and one server participate. We
have considered all fourteen pathologies during the training phase. For the
evaluation, we instead focused on the five most relevant pathologies (At-
electasis, Cardiomegaly, Consolidation, Edema, Pleural Effusion) in terms
of clinical relevance and amount of samples. Unlike our previous experi-
ments on CheXpert, each client is trained on different data, while we used
the same dataset for validation and testing phases. The first dimension we
analyzed during the experimental campaign is the distribution of labels in
the client datasets. We have partitioned the training dataset following two
different ways for assigning the respective datasets to the five clients. The
first is a balanced approach, in which the distribution of pathologies across
them is uniform. The average number of samples for the five balanced
datasets is 35645 ± 51. The second partitioning of data was done specif-
ically to create a distribution of the five target pathologies. Each client
owns a high presence of samples with a specific pathology. We ensured,
whenever possible that each client holds at least 45% samples of a spe-
cific pathology. The resulting unbalanced datasets - and the corresponding
clients - have been dubbed according to their majority label, resulting in
the distribution: Consolidation (57.2%), Cardiomegaly (53.8%), Atelecta-
sis (51.3%), Edema (45.8%), Pleural Effusion (34.9%). In the fifth client
(Pleural Effusion), the threshold of 45% could not be reached because of
the high presence of this disease in samples that were also affected by other
diseases. However, the dataset of this client is still consistent with our
requirements since the closest client dataset in terms of Pleural Effusion
samples is the fourth, with 14.328 samples. The other clients hold circa
10.000 Pleural Effusion samples. All the clients except Edema hold an av-
erage of 35217.5± 292 samples, with the latter holding 37355 images. The
validation dataset used in both scenarios is composed of 12.802 samples.

The second dimension to take into account during our experiments is
the granularity of data sharing between clients: The fine grained training
of the neural network on each client occurs in small, sequential, and syn-
chronous steps: each client can only train a single batch of data before the
communication with the server occurs. Then, the next client is selected to
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continue the training. The first client processes the second batch of data on
the next iteration, and the process goes on until the dataset is exhausted.
Conversely, we define as coarse grained a distributed strategy in which ev-
ery client performs the training on its entire dataset before the training can
be performed on another client.

As the last step to define our experimental campaign, we considered the
case where clients operate locally without data sharing. This test case is to
assess the learning capabilities of the models when they cannot participate
in a distributed system. To this extent, we trained five client models using
the unbalanced datasets described above.

Implementation and Training

Due to memory limitations, we could not train a large neural network archi-
tecture such as DenseNet121 with five clients. Instead, we decided to use a
MobileNet architecture [206], which is still feasible for both Federated and
Split Learning, even though the final performances have been negatively
affected. On the other hand, the focus of this experiment is to study the
differences with different distributed learning settings rather than finding
the best possible model, so we leave the trials involving a more powerful
architecture as future work. Instead of training each Neural Network from
scratch, we fine-tuned the MobileNet previously trained on the ImageNet
dataset. At the end of the layer stack of each network, we added a Global
Average Pooling followed by a new Fully Connected layer, which produces
the 14-dimensional output needed for our task. Lastly, we have applied a
sigmoid activation function.

Since we wanted to benchmark the model performances using each paradigm,
we did not simulate a real case scenario where every client physically re-
sides on a different machine. Instead, we implemented the distributed sys-
tems on a single instance using TensorFlow 2.5 and Google Colab. We
implemented Federated Learning using the Tensorflow Federated module,
which is currently in development. For implementing the coarse-grained
strategy, we select all the clients during each training phase. To implement
fine-grained granularity in Federated Learning, we needed to create mul-
tiple virtual clients for each actual client, each holding a single batch of
data. Accordingly, we modified the client selection process and the num-
ber of rounds so that each client trained its model on one batch of data
at every federated round, ensuring no overlap in training batches. Due to
software limitations, we needed to simulate the server’s behavior to im-
plement Split Learning. In particular, each client owns the entire neural
network, and the weights corresponding to the server split are copied on
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the other clients’ model whenever a server update occurs. With the fine-
grained strategy, the server weights are broadcasted to the clients after each
client trains a single batch of data. After that, the next client processes its
batch of data. Conversely, in the coarse-grained strategy, the switch of each
client is performed after the previous one has completed the training on the
whole dataset.

The network has been split at the 60th layer for the Vanilla architecture,
leaving 66% of the weights on the server and 33% on each client. The
choice for the second cut in the U-Shaped architecture has been limited
by the weights amount distribution across the network layers. To promote
a fair comparison between Vanilla and U-Shaped architecture, we choose
to cut the network just before the last Fully Connected Layer, which is
sufficient to avoid disclosing patient labels while keeping the ratio between
client and server weights almost unaltered.

For training the networks on all the experiments, we used a Stochastic
Gradient Descent optimizer with a learning rate of 1e − 3. The number
of epochs has been set to a maximum of 10, using Early Stopping with
a patience factor of 4. The loss function is the binary cross-entropy loss
between the ground truth labels and the outputs. The Federated Learning
model training was performed using the FedSGD algorithm because it is
the dual implementation of the SGD optimizer used in the training of client
models in the Split Learning approach. The learning rate of clients is 1e−3,
while the server learning rate has the default value of 1. It is important to
note that the learning rate of the server is used during the averaging process
and therefore differs from the traditional role of a generic learning rate in a
centralized system.

5.1.4 Results

In this section, we show and discuss our experimental results. First, in Ta-
ble 5.1, we present our results on a Centralized model. We evaluate each
proposed learning paradigm on a uniform dataset distribution and an unbal-
anced one. For these analyses, we compared the average model obtained
with each method -i.e., each Split Learning score is the average prediction
over all the resulting client models -. Then, we proceed to evaluate the per-
formances of the client model we obtained -Table 5.2-, where applicable.
Lastly, in Table 5.3, we propose an overview of the performances of the
considered distributed paradigms.
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Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
Centralized 0.7675 0.7135 0.8285 0.7890 0.8329 0.7863
Federated Learning, Uniform, Fine 0.7604 0.6416 0.7406 0.8549 0.8560 0.7707
Federated Learning, Uniform, Coarse 0.7165 0.7237 0.7208 0.8460 0.8384 0.7691
Split Learning, Uniform, Vanilla, Fine 0.6867 0.7086 0.7366 0.8283 0.7528 0.7426
Split Learning, Uniform, Vanilla, Coarse 0.6898 0.6991 0.7426 0.8256 0.7511 0.7416
Split Learning, Uniform, U-Shaped, Fine 0.7366 0.6507 0.6301 0.8174 0.8074 0.7285
Split Learning, Uniform, U-Shaped, Coarse 0.7094 0.6451 0.6494 0.7954 0.8057 0.7210
Local, Uniform, Client 0 0.6207 0.6432 0.7184 0.7164 0.6363 0.6670
Local, Uniform, Client 1 0.6213 0.6393 0.7033 0.7156 0.5918 0.6543
Local, Uniform, Client 2 0.5929 0.6472 0.7017 0.6984 0.6483 0.6577
Local, Uniform, Client 3 0.6275 0.6329 0.6800 0.6958 0.6150 0.6502
Local, Uniform, Client 4 0.6531 0.6379 0.6998 0.7174 0.6555 0.6727
Federated Learning, Unbalanced, Fine 0.6413 0.7147 0.7057 0.8876 0.8651 0.7629
Federated Learning, Unbalanced, Coarse 0.7910 0.6829 0.7243 0.8134 0.8145 0.7652
Split Learning, Unbalanced, Vanilla, Fine 0.7160 0.6805 0.7197 0.7868 0.7372 0.7280
Split Learning, Unbalanced, Vanilla, Coarse 0.7179 0.6902 0.6960 0.8077 0.7362 0.7296
Split Learning, Unbalanced, U-Shaped, Fine 0.7512 0.5948 0.6783 0.7580 0.8124 0.7189
Split Learning, Unbalanced, U-Shaped, Coarse 0.7504 0.5922 0.6478 0.7542 0.8040 0.7097
Local, Unbalanced, atel 0.6655 0.6287 0.6706 0.7086 0.6303 0.6607
Local, Unbalanced, card 0.5710 0.5954 0.6493 0.6124 0.4899 0.5836
Local, Unbalanced, cons 0.6511 0.6185 0.6969 0.6561 0.6166 0.6479
Local, Unbalanced, edema 0.6154 0.6205 0.6105 0.7326 0.6098 0.6378
Local, Unbalanced, peff 0.6094 0.6140 0.6732 0.7058 0.6436 0.6492

Table 5.1: Individual label scores of the average model obtained in each experiment. The
experiment’s name reports the learning paradigm, the dataset distribution (uniform
or unbalanced), and the data granularity (Fine or Grain). For Split learning is also
indicated the architecture layout (Vanilla or U-Shaped).

Centralized Model

To benchmark our results, we first trained a centralized model using all
the available data. This centralized model achieves an average AUC of
0.7863, which is in line with our previous experiments using the same data
and architecture. Analyzing the scores for the specific labels, the model
has difficulty recognizing Cardiomegaly while performing well on Pleural
Effusion and Consolidation, reaching an AUC of 0.83.

Uniform Datasets

The first set of experiments on distributed learning paradigms has been car-
ried on using uniform datasets.

The first distributed paradigm we used is Federated Learning with a
coarse-grained data sharing policy. In the case of uniform datasets, this ap-
proach proved to work very well and achieved performances only slightly
lower than the centralized model. The average AUC is 0.7691, reaching
around 0.85 for labels such as Edema and Pleural Effusion.

The Federated Learning model, trained with fine-grained sharing data,
has the best classification score, reaching performances similar to a central-
ized model while providing the advantages that a distributed approach can
offer. More specifically, the model reaches an average AUC of 0.7707 and
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excellent results for the pathologies Edema and Pleural Effusion, exceed-
ing in these cases the performance of the centralized model. However, the
score on Cardiomegaly drops sharply to a value of 0.64, compared to the
other two experiments discussed so far.

The first of the Split Learning experiments involves the training of a
vanilla architecture with coarse granularity and uniform datasets. Despite a
decrease in the average AUROC to 0.7416, the model is still a good classi-
fier, showing AUCs for individual labels above 0.70 and an AUC of 0.83 for
Edema. Similarly, the corresponding model with fine granularity only led
to a slight difference in the average AUC (0.7426 vs. 0.7416). The AUC for
individual labels stands very close to those of the previous experiment. In
the following experiments, we used Split Learning with the U-Shaped ar-
chitecture. When using a fine-grained sharing policy, we obtained a mean
AUC of 0.7285, which is slightly lower than the vanilla architecture using
the same sharing policy but comes with the benefit of an increase in privacy
between the client and server. The individual scores show a decrease in
performance for Cardiomegaly (0.6507) and Consolidation (0.6301), while
performances of Atelectasis (0.7366) and Pleural Effusion (0.8074) are bet-
ter than the vanilla counterpart. Even for this architecture, the AUC scores
are similar to the fine-grained policy when using a coarse-grained sharing
policy (0.7210 vs. 0.7285). The comparison of individual scores between
the two data-sharing policies follows roughly the same pattern seen for the
vanilla architecture. In conclusion, our results on the Split Learning ap-
proach suggest that Split Learning is quite robust to changes in data sharing
granularity.

To highlight the importance of introducing information sharing between
clients, we performed an additional experiment where we disabled client
communication. In other words, every client hosts a model trained only
on its dataset. The best AUC is that of Client 4 that manages to reach a
maximum of 0.6727, while the scores of other clients oscillate around 0.65.
However, none of the 5 cases would represent a classifier good enough to
be used in the medical practice because the risk of incorrect prediction is
very high. The average of the AUCs of client models is equal to 0.6604.

Unbalanced Datasets

This section shows our results obtained by repeating the previous experi-
ments on our unbalanced datasets. We unbalanced each client’s dataset to
have a prevalence of samples of a particular disease.

Even in the case of unbalanced, the coarse-grained Federated Learning
model performs very well, achieving an average AUC of 0.7652 and similar
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results to the centralized baseline model. Changing the dataset distribution
among the clients showed a minimal effect on the performance of this dis-
tributed approach. Comparing the results with the corresponding results for
the uniform dataset, we note that the AUC values for the Edema and Pleular
Effusion labels are slightly decreased. However, an improvement in the At-
electasis score is also noteworthy, which increases from 0.72 to 0.79. The
model trained with Federated Learning and fine granularity achieves the
highest AUC, 0.887, for Edema pathology, outperforming even the central-
ized model. Pleural Effusion also ranks well, presenting an AUC of 0.86.
These two categories are confirmed to be among the easiest to recognize
within this study. The mean AUC of the model is 0.7629, which allows it
to rank among the best classifiers in our experiments. On the other hand,
we must report difficulties in classifying Atelectasis correctly, with an AUC
of 0.64.

The results of Vanilla Split Learning with coarse granularity present a
similar scenario to the balanced dataset case. We observe a slight loss of
performance compared to Federated Learning. However, the resulting clas-
sifier predicts well most of the diseases, such as Edema (0.81), Atelec-
tasis (0.72), and Pleural Effusion (0.74). Cardiomegaly and Consolida-
tion pathologies remain the most difficult to classify, probably due to their
lower representation in the dataset. Concerning the Split Learning model
with fine-grained data sharing, no relevant differences are found to coarse-
grained as this has an average AUC of 0.73. The best label is Edema, with
an AUC of 0.79, while Cardiomegaly reaches 0.69. Recalling the same
models trained with uniform datasets, we note that for both fine and coarse
grain, the overall performance is slightly lower with unbalanced datasets, a
sign that the change in the distribution of client datasets impacts, although
only slightly, the AUC score.

When using the U-Shaped architecture, we can observe the same behav-
ior seen in the balanced dataset scenario: the average score for both Fine
and Coarse granularity are slightly lower than those of the vanilla architec-
ture - 0.710 vs. 0.730 for Coarse Granularity and 0.719 vs. 0.728 for Fine
Granularity-. Again, it is interesting to note that Pleural Effusion obtains
a substantial boost in performances when choosing this architecture. At
the same time, the scores on other labels such as Cardiomegaly and Edema
suffer from the change of architecture. This result may indicate that some
labels may be more sensitive than others to changes in the last classification
layer and deserve more insights.

To complete the picture of the experiments on unbalanced datasets, we
again analyzed the behavior of client models without the possibility of
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Client Paradigm Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
Atelectasis Local 0.6655 0.6287 0.6706 0.7086 0.6303 0.6607
Atelectasis Split, U-Shaped, Coarse 0.6408 0.5624 0.5221 0.6333 0.7537 0.6225
Atelectasis Split, U-Shaped, Fine 0.6206 0.5418 0.5408 0.6732 0.7258 0.6204
Atelectasis Split, Vanilla, Coarse 0.6871 0.6911 0.6643 0.8073 0.7458 0.7191
Atelectasis Split, Vanilla, Fine 0.6940 0.6612 0.6991 0.7638 0.7272 0.7091
Cardiomegaly Local 0.5710 0.5954 0.6493 0.6124 0.4899 0.5836
Cardiomegaly Split, U-Shaped, Coarse 0.6390 0.4617 0.5379 0.7475 0.7631 0.6298
Cardiomegaly Split, U-Shaped, Fine 0.6341 0.4678 0.5425 0.7604 0.7685 0.6347
Cardiomegaly Split, Vanilla, Coarse 0.7447 0.6834 0.6805 0.7888 0.7370 0.7269
Cardiomegaly Split, Vanilla, Fine 0.7231 0.6562 0.7346 0.7874 0.7344 0.7271
Consolidation Local 0.6511 0.6185 0.6969 0.6561 0.6166 0.6479
Consolidation Split, U-Shaped, Coarse 0.6833 0.6535 0.6579 0.7275 0.6558 0.6756
Consolidation Split, U-Shaped, Fine 0.6693 0.6631 0.6882 0.7272 0.6598 0.6815
Consolidation Split, Vanilla, Coarse 0.6998 0.6857 0.7026 0.7865 0.7057 0.7161
Consolidation Split, Vanilla, Fine 0.7019 0.6786 0.7040 0.7807 0.7217 0.7174
Edema Local 0.6154 0.6205 0.6105 0.7326 0.6098 0.6378
Edema Split, U-Shaped, Coarse 0.6331 0.5430 0.6371 0.5228 0.7509 0.6174
Edema Split, U-Shaped, Fine 0.6417 0.5447 0.6577 0.5301 0.7574 0.6263
Edema Split, Vanilla, Coarse 0.6966 0.6722 0.6649 0.8062 0.7146 0.7109
Edema Split, Vanilla, Fine 0.7124 0.6950 0.6676 0.7802 0.7263 0.7163
Pleural Effusion Local 0.6094 0.6140 0.6732 0.7058 0.6436 0.6492
Pleural Effusion Split, U-Shaped, Coarse 0.5572 0.5264 0.5222 0.7049 0.6465 0.5914
Pleural Effusion Split, U-Shaped, Fine 0.6168 0.5175 0.5188 0.6856 0.6658 0.6009
Pleural Effusion Split, Vanilla, Coarse 0.6759 0.6492 0.6814 0.7653 0.7053 0.6954
Pleural Effusion Split, Vanilla, Fine 0.6951 0.6629 0.7112 0.7528 0.7101 0.7064

Table 5.2: Comparison of the client model for each label.

collaboration. Table 5.1 shows that the models has generally low perfor-
mances. For instance, the client trained on a prevalence of Cardiomegaly
samples achieves an average AUC of 0.58, slightly higher than that of a
random classifier. The average results are lower than the uniform dataset
scenario, which is not always available in reality. These scores represent the
results that could be achieved in a real case scenario in which each client is
specialized on a particular mode of data without applying distributed train-
ing. Having set our lower bound on performances, the benefit of distributed
training becomes now more evident.

As the last analysis, we compare the local models with the correspond-
ing model trained using the different Split Learning methodologies. Table
5.2 shows that, in every case, applying Split Learning resulted in being ben-
eficial in terms of average AUC compared to the local client performances.
This result proves that Split Learning can transfer valuable information to
the clients without disclosing input samples to the other participants. When
considering individual label scores, the best results are obtained by apply-
ing Vanilla Split Learning with coarse or fine granularity. Unsurprisingly,
U-Shaped architectures perform slightly worse than the vanilla counterpart
due to the last classification layer not being shared anymore. However, it
can still be proven beneficial on some target labels - such as Pleural Effu-
sion - or when the local clients perform poorly due to their local dataset
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distribution.

Paradigm Comparison

Table 5.3 summarizes the mean AUC scores for every experiment setup. As
expected, the performance of the distributed approaches ranked between the
upper benchmark, defined by the centralized model, and the lower bench-
mark, defined by the local models trained without data sharing. The Fed-
erated Learning models, achieving AUCs roughly similar to the baseline
model, performed better than the Split Learning models. However, the lat-
ter provides more versatility in the model’s design, and they have achieved
good overall performance.

The granularity of data sharing did not affect Federated Learning nor
the Split Learning paradigms to a relevant degree. Regarding the choice of
datasets, the Federated Learning models do not seem to have been affected
by the modification, confirming once again to be good classifiers. Instead,
using unbalanced datasets in Split Learning has slightly lowered the per-
formance of the models, which found more difficulty in the classification
of diseases but still obtaining acceptable results. We envision that, in prac-
tice, this loss of performance may be compensated by designing the client
shard of the network more carefully, according to the needs dictated by the
individual dataset distributions. On the other hand, this may not be easy
to implement in Federated Learning as the architecture is fixed for all the
clients. Finally, we can point out that the easiest pathologies to classify are
Edema and Pleural Effusion for almost all the models taken into account;
these pathologies are also the most present in the training dataset, and for
this reason, the models are more confident with their classification. Simi-
larly, the pathology Cardiomegaly and occasionally Consolidation are the
ones that in most models are more difficult to predict and may require a
better choice of the architecture.

Due to the computational and data limitations in our experiment, a di-
rect and realistic comparison of FL and SL under an efficiency perspective
hasn’t been possible. Since communication among nodes is an integral
part of the training process in distributed learning techniques, communica-
tion efficiency plays an important role in the choice of a suitable approach.
Previous works suggests that, in general, Split Learning is communication
efficient when increasing the number of clients and the number of param-
eters. Conversely, Fedearated Learning is more efficient when increasing
the dataset size, especially when the number of clients or the model size
is small [207]. The authors also consider an healthcare scenario, where
Split Learning performs slightly better than Federated Learning, except for
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Learning
Paradigm

Data Sharing
Granularity

Uniform
Datasets

Unbalanced
Datasets

Centralized Model - 0.7863

Federated Learning Coarse 0.7691 0.7652
Fine 0.7707 0.7629

Split Learning (Vanilla)
Coarse 0.7416 0.7296
Fine 0.7426 0.7280

Split Learning (U-Shaped)
Coarse 0.7210 0.7097
Fine 0.7285 0.7189

Local Models - 0.6604 0.6263

Table 5.3: Summary of Mean AUC for each experiment.

the case in which the dataset size is larger and the number of clients is
smaller. Moreover, SL has the advantage to converge much faster than FL
[110, 111].
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5.2 Summary

As we discussed at the beginning of this Chapter, when pre-trained models
are not available prior to design a collaborative system, a possible approach
is to exploit a distributed learning technique, such as Federated Learning or
Split Learning. Our results of Chapter 2 highlighted the need for a direct
comparison of these two methods for a medical imaging task. To investigate
this issue, we proposed a comparison between Federated and Split Learning
in the context of data heterogeneity and privacy requirements.

The goals of this experiment were to: (i) compare the performances of
the two methods, (ii) understand the impact of frequency of information-
sharing between the clients, and (iii) investigate the impact of the data dis-
tribution in a setting of heterogeneous datasets. For this purpose, we trained
several MobileNet CNNs on the CheXpert dataset. To test our approaches,
we considered the five most relevant diseases in the dataset: Atelectasis,
Cardiomegaly, Consolidation, Edema, and Pleural Effusion.

As a reference, we first trained a CNN on the entire dataset to assess
the performance of a centralized approach where privacy is not attained.
Then, to simulate a distributed scenario, we split the available data into five
subsets, representing different institutions holding approximately the same
amount of data. In the first set of 5 splits, data is split uniformly, meaning
that all clients hold the same relative amount of labels. In the second set,
we artificially unbalanced each client dataset such that in each client, there
is a prevalence of data corresponding to each of the target labels. To un-
derstand the impact of information sharing frequency, we considered two
different granularities. In the coarse granularity, the data is exchanged after
the client trained its model on the whole dataset. In the fine granularity,
the clients only train a batch of data before communicating with the server.
We trained a model for each client data split without using any distributed
learning approach to set our baseline. Then, we trained the same MobileNet
architecture with Federated Learning and Split Learning – both in Vanilla
and U-Shaped layouts – using each combination of dataset balance and data
granularity policy.

Our results show that both Federated Learning and Split Learning achieve
performances close to centralized training. In particular, Federated Learn-
ing achieves performances roughly similar to the centralized model. While
not performing as well as FL, Split Learning allowed for more versatility
in model design while still achieving good performances overall. More-
over, as discussed in the previous section, Split Learning generally con-
verge faster than Federated Learning and has slightly better efficiency in all
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the considered cases, except when the dataset is very large and the number
of clients is very small. This suggests that, depending on the particular set-
ting, Split Learning could be beneficial if communication or computational
resources are limited at the cost of a slight loss of performances.

As expected, both methods perform better with balanced data distri-
bution, although they achieve good performances even with unbalanced
datasets, which may prove useful in a real-world context. In all the ex-
perimental settings, distributed methods outperform models trained on the
local dataset, suggesting that these methods are worthy of further investi-
gation and might be employed in practice to deal with data privacy issues
in the medical imaging field. Our results also showed a minor impact on
the performances concerning how frequently clients share information with
the server, limiting the amount of networking resources required when us-
ing the studied methods in practice.

In conclusion, in this chapter we showed how Distributed Learning could
enable the training of Machine Learning models on multiple small datasets
while ensuring privacy between the participants. This aspect is particu-
larly relevant in healthcare, where patients’ privacy is regulated by law and
poses a series of practical difficulties. While this kind of approach is among
the most promising, it is still the research object in the healthcare setting.
Moreover, the technical complexity of its implementation may require par-
ticular technical expertise which may not be already available to smaller
institutions.
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CHAPTER6
Transfer Learning

As introduced in section 1.1, the problem of data availability is a central
issue in the application of machine learning models to healthcare. While
medical imaging is collected daily, its availability is not comparable to other
domains such as general images or text. Transfer Learning has been proved
a successful approach [208] for the settings in which the amount of data is
limited.

In Chapter 2 we already introduced transfer learning as a technique that
allows to exploit a source model trained on a source domain for a source
task on either a different target domain or a different target task. This usu-
ally involves either a complete or a partial retraining of the source model
to adapt it to the target domain/task. Differently from what happens for
language[209] and general-purpose images[210], medical field still lack
of large and organized collections of pre-trained models that that can be
usually applied to new tasks. Transfer learning has been successful in sev-
eral fields, including image classification [211, 212, 213], natural language
processing [214, 215, 216, 217], cancer subtype discovery [218], and gam-
ing [219].

To explore the advantages of transfer learning in a collaborative learn-
ing scenario, we designed a set of experiments based on different settings.

109



Chapter 6. Transfer Learning

One of the crucial aspects of Medical Imaging compared to other fields is
the large variety of different tasks and analyses performed on imaging data.
This variety, in turn, introduces heterogeneity in the kind of models needed
for different tasks. In Section 6.1 we investigate in this direction by ex-
ploiting our results of previous chapters to show how we can train different
kinds of models starting from a pre-trained Convolutional Neural Network.
In particular, we exploit embeddings, a low-level representation of the data
that can be extracted by CNNs, to expand our collection of CheXpert mod-
els with models based on trees. Moreover, we show that the resulting mod-
els can be combined with the ensembling methods introduced in Chapter 4
to improve our results further.

Then, we further validate our results by considering a real-world sce-
nario where transfer learning is beneficial. In Section 6.2, we investigate
how to exploit the knowledge acquired on CheXpert to classify samples of a
smaller private dataset to perform domain adaptation – i.e., perform trans-
fer learning on a dataset containing different labels than the source dataset.
A transfer learning approach can be used to avoid overfitting, and at the
same time, it enables generalization from one task to another [220]. How-
ever, the generalization capabilities decrease accordingly to the dissimilar-
ity between the source and target task. In the same section, we consider an-
other important topic of Deep Learning in medical imaging: despite having
proven successful as predictive models, CNNs work as black-box models
– i.e., the reasoning behind the algorithm is not interpretable by humans
–. This lack of transparency raises the problem of trust in AI systems in
such a critical setting [221]. While the experiment’s aim is not focused on
this problem, with the help of an explainable AI algorithm, we can give an
insight into what patterns the model is focusing on for prediction.

In Chapters 2 and 3 we discussed the recent breakthrough of Generative
Adversarial Model. As already discussed, adversarial models can be used
to solve different tasks, including segmentation. An interesting application
of this kind of model is to segment medical imaging. However, the different
adversarial setting makes it less straightforward to perform transfer learn-
ing. To this extent, in Section 6.3, we first propose an architecture dubbed
SegAN-CAT based on adversarial networks. Then, we train different mod-
els on the BraTS dataset, using either one of the four available modalities
as input or all four of them. We then investigate different strategies to apply
transfer learning from a source modality to a target modality.

Transfer Learning with different MRI modalities has been applied to
various settings, including accelerating MRI acquisition times by applying
MRI reconstruction [222] and segmentation tasks [223]. Transferring be-
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tween modalities could also help deal with data heterogeneity and missing
data. As we introduced in previous chapters, a relevant problem with MRI
is that, in practice, they are often not available for every patient. Thus, the
computer-assisted generation of the missing MRI modalities from the avail-
able ones is a problem of great interest. For example, it could enable mod-
els that require all the available modalities with limited performance loss.
To this extent, in Section 6.4 we compare two different generative models
based on GANs for the generation of missing modalities of brain MRIs. In
particular, based on the work of Sharma et al. [64], we wanted to investigate
the benefit of multi-input generative models, i.e., models that can generate a
missing MRI modality from more than one available modality in input. To
this purpose, we trained two models: MI-GAN, adapted from the approach
introduced by Sharma et al., and MI-pix2pix that extends the well-known
pix2pix approach introduced by Isola et al. [63]. Then, we compared the
performance of these two models on the BraTS 2015 dataset. Our results
show that multi-input generative models are a promising approach for the
generation of missing modalities in brain MRI.
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6.1 Model Training using Image Embeddings

Among the families of machine learning algorithms that are commonly
used for classification, Convolutional Neural Networks are usually the first
choice to process image data as the inductive bias induced by the convolu-
tion allows extracting features from images effectively. However, for many
kinds of classifiers - such as those based on trees, kernels, or Bayesian
statistics - it is almost impossible to learn the discriminative features di-
rectly from the image unless it is very small. It would be helpful, then, to
have a compact representation of the input image that is still able to capture
all the meaningful information needed to solve the task. Neural Networks
can provide us with such a representation by using a technique called Em-
bedding, which will be presented in the next section. It is worth noting that
as the embeddings are obtained as a by-product of a pre-trained model, their
information content depends on the task the model has been trained on. For
example, in Auto-Encoders, a neural network model is trained to replicate
the input sample as accurately as possible; hence, the embedding vectors
produced by an auto-encoder aim to capture the information needed to rep-
resent the input sample. In our case, we extracted the embedding vectors
from the networks we trained on CheXpert (Section 4), so the embeddings
we obtained are tuned to represent information relevant to classify the dis-
eases present on the CheXpert dataset.

6.1.1 Generating the embeddings

In this section, we investigate an alternative approach for classifying Chest
X-Rays, by first extracting the feature vectors of a CNN classifier before
the classification layer and generating a more compact representation of
the input data: the embedding vector. When the network processes the
input image, information flows through a sequence of layers to extract the
meaningful features. These features are subsequently used to feed the fully
connected classifier. During the feature extraction process, the image is
downsampled by a pooling layer; thus, its spatial size is reduced as it flows
through the layers. So, if the network is cut at a certain point, the output we
observe represents the original input embedded into a lower-dimensional
space. In our work, we have extracted the embeddings using all the seven
neural network models we trained in Chapter 4. All the Networks have
been cut at the same point, immediately after the Global Average Pooling
layer, producing a one-dimensional vector. Table 6.1 shows the embedding
vector shape for each model:
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Model Name Embedding Shape
DenseNet121 (1,1024)
DenseNet169 (1,1664)
DenseNet201 (1,1920)
InceptionResNetV2 (1,1536)
Xception (1,2048)
VGG16 (1,512)
VGG19 (1,512)

Table 6.1: Shapes of Embedding vectors generated by each CNN model.

6.1.2 Random Forest and XGBoost on CheXpert Embeddings

Once the CNN models have generated the embeddings, we used them to
train two sets of classifiers based on Random Forests and XGBoost. For
each model trained in Chapter 4, we generated a dataset of image embed-
dings and used each dataset to train an RF and an XGBoost classifier.

For training the RF classifiers, we performed a grid search using the
validation set to optimize the hyper-parameters. In particular, the hyper-
parameters that we optimized are:

• Max Depth: the largest tree depth allowed, regulating the balance be-
tween accuracy and overfitting;

• Min Sample Split: the smallest number of samples to allow the split
of an internal tree node;

• Min Sample Leaf : the smallest number of samples required for a node
to become a leaf of the tree.

Due to computational constraints, we set the Number of Estimators -
i.e., the number of trees in the forest- to 200. The Max Features - i.e., the
number of features considered to generate a split - are set to the square
root of the size of the embedding vector. The hyper-parameter optimization
process was carried out for each RF classifier. Table 6.2 shows the results
of the optimization and the final values of the parameters.

Concerning XGBoost, instead, we performed a hyper-parameters op-
timization focused on boosting the number of rounds and the maximum
depth of the trees. Our analysis showed that the best settings for all the
classifiers resulted in using maximum depth equal to 3 and 50 boosting
rounds.
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Model Name Max Depth Min Sample Split Min Sample Leaf
DenseNet121 15 2 10
DenseNet169 15 2 10
DenseNet201 30 10 10
InceptionResNetV2 30 10 1
Xception 30 10 1
VGG16 5 2 10
VGG19 15 50 1

Table 6.2: Hyper-Parameters for each Random Forest classifier.

Model Atelectasis Cardiomegaly Consolidation Edema P. Effusion Mean

RF+DenseNet121 0.851 0.818 0.885 0.915 0.945 0.883

RF+DenseNet169 0.855 0.814 0.893 0.922 0.933 0.884

RF+DenseNet201 0.863 0.814 0.878 0.922 0.936 0.882

RF+InceptionResNetV2 0.830 0.779 0.898 0.918 0.933 0.872

RF+Xception 0.831 0.810 0.907 0.913 0.932 0.879

RF+VGG16 0.858 0.822 0.913 0.886 0.917 0.879

RF+VGG19 0.873 0.798 0.895 0.892 0.917 0.875

Table 6.3: AUROC of the Random Forest classifiers on the test set. In the Model column,
we reported the name of the CNN used to generate the image embeddings the RF
classifier was trained from. We reported in bold the best performance for each label
and we underlined the performances that are better than those of the corresponding
CNN.
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Method Atelectasis Cardiomegaly Consolidation Edema P. Effusion Mean

Best RF 0.855 0.814 0.893 0.922 0.933 0.884

Simple Average 0.859 0.828 0.918 0.921 0.940 0.893

Entropy Weighted Avg. 0.872 0.826 0.918 0.916 0.936 0.897

Stacking 0.840 0.761 0.883 0.908 0.937 0.866

Table 6.4: Comparison of the performances of the best RF classifier for each finding
(reported as Best RF) and the three ensembling strategies considered. The perfor-
mance is computed as the AUROC achieved on test set. We reported in bold the best
performance for each finding and overall.

6.1.3 Results of Random Forests Classifiers

Table 6.3 shows the AUROC performances achieved by each RF classi-
fiers we trained, along with the name of the CNN used for extracting the
embeddings. Comparing the results to the performances of the CNN used
to extract the embeddings (Table 4.8), our results show that the RF classi-
fiers achieve in general a better performance - underlined in the table 6.3
- and this is always the case if we consider the mean performance. This
result confirms, as expected, that embeddings encode all the relevant infor-
mation to discriminate the findings and, more interestingly, that Random
Forests are a good candidate to replace the last fully connected layer used
in the network to perform classification for this task. Moreover, as for the
CNNs classifiers, also in this case, there is not a single classifier that consis-
tently outperforms all the others, suggesting that ensembling strategies can
be exploited again to improve the performances. Table 6.4 compares the
performances of the same ensembling strategies applied to CNN in chapter
4, this time applied to the RF classifiers. The best performance achieved
by a single RF is shown for each label. The results show that the ensem-
bling strategies consistently outperform the single best RF classifiers, and
the entropy-weighted average achieved the best mean performance over-
all. However, simple average performs better in most of the findings. De-
spite the minor differences, this can be easily explained by noticing that
the entropy-weighted average outperforms the simple average on identify-
ing Atelectasis, where a single RF classifier is considerably better than all
the others (see Table 6.3). in this case, the entropy-weighted average can
better exploit the most confident classifier by assigning more weight to its
prediction than the other classifiers. Instead, in this case, the stacking ap-
proach does not provide any improvement compared to simpler ensembling
strategies.
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Model Atelectasis Cardiomegaly Consolidation Edema P. Effusion Mean

XGB+DenseNet121 0.803 0.837 0.837 0.944 0.935 0.871

XGB+DenseNet169 0.812 0.829 0.866 0.916 0.923 0.869

XGB+DenseNet201 0.824 0.867 0.876 0.920 0.938 0.885

XGB+InceptionResNetV2 0.820 0.792 0.911 0.911 0.922 0.871

XGB+Xception 0.803 0.804 0.901 0.899 0.923 0.866

XGB+VGG16 0.800 0.840 0.849 0.922 0.927 0.868

XGB+VGG19 0.811 0.819 0.832 0.921 0.922 0.861

Table 6.5: AUROC of the XGBoost classifiers on the test set. In the Model column we
reported the name of the CNN used to generated the image embeddings the XGBoost
classifier was trained from. We reported in bold the best performance for each label
and we underlined the performances that are better than those of the corresponding
CNN.

Method Atelectasis Cardiomegaly Consolidation Edema P. Effusion Mean

Best XGBoost 0.824 0.867 0.911 0.944 0.938 0.885

Simple Average 0.829 0.863 0.902 0.933 0.939 0.893

Entropy Weighted Avg. 0.839 0.864 0.899 0.936 0.940 0.896

Table 6.6: Comparison of the performances of the best XGBoost classifier for each finding
(reported as Best XGB) and the two ensembling strategies considered. The perfor-
mance is computed as the AUROC achieved on test set. We reported in bold the best
performance for each finding and overall.

6.1.4 Results of XGBoost Classifiers

In the second set of experiments, we used the same approach with XGBoost
classifiers. The results are shown in Table 6.5. It can be noted that, except
for XGB+DenseNet201, the mean performances achieved with XGBoost
are slightly worse or very close to the ones achieved by the corresponding
CNNs. The only notable exception is the performances achieved on Car-
diomegaly, where the XGBoost classifiers outperform both CNNs and the
RF classifiers. This result suggests that the boosting mechanism has a more
significant impact on the performances for that specific findings. Similar
to what was previously done, we applied the ensembling strategies also to
XGBoost classifiers. Table 6.6 shows the performances achieved with the
different ensembling strategies along with those of the best XGBoost clas-
sifier – the performances of stacking strategy were worse than the one of
simple and entropy-weighted averages and have been omitted. The results
show that despite ensembling strategies are outperformed on some of the
findings by the best single XGBoost classifier, they overall achieve a better
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Method Atelectasis Cardiomegaly Consolidation Edema P. Effusion Mean

DenseNet121 0.854 0.800 0.891 0.920 0.917 0.876

RF+DenseNet169 0.855 0.814 0.893 0.922 0.933 0.884

XGB+DenseNet201 0.824 0.867 0.876 0.920 0.938 0.885

CNN Ensemble 0.856 0.811 0.912 0.936 0.930 0.889

RF Ensemble 0.872 0.826 0.918 0.916 0.936 0.897

XGB Ensemble 0.839 0.864 0.899 0.936 0.940 0.896

Final Ensemble 0.860 0.860 0.917 0.934 0.939 0.902

Table 6.7: Summary of the AUROC achieved by the best classifiers and ensembles devel-
oped in this work, along with the performances of the final ensemble, computed using
the entropy-weighted strategy. The performance is computed as the AUROC achieved
on test set. We reported in bold the best performance for each finding and overall.

mean performance than single XGBoost classifiers. Moreover, also in this
case the entropy-weighted average is slightly better than the simple average
to combine classifiers, consistently with what we previously found.

6.1.5 Final Results on CheXpert

In the previous sections, we obtained two sets of additional models for the
CheXpert dataset. To obtain our final prediction on the CheXpert dataset,
we combined the three ensembles of classifiers presented so far by applying
the entropy-weighted average approach, which resulted in the most reliable
one in this scenario.

Table 6.7 shows the performances of the final model, along with the per-
formances of the best classifiers trained for each method – CNN, Random
Forest, and XGBoost– and with the performances of the three ensembles
previously presented. As expected, the results show that the final ensem-
ble combines the benefit of the different approaches and achieves the best
overall performance (AUROC value of 0.902) compared to the previously
discussed approaches.

To provide one last insight into the performances of this model in prac-
tice, we present an analysis based on confusion matrices. We set a threshold
for each of the five labels to discriminate among the positives and negatives
when labeling unseen data. The threshold has been set as the average model
output on the validation set. Moreover, to avoid misclassification of sam-
ples that are too close to the threshold, we label as uncertain the predictions
that fall within ±15% of the threshold.

Table 6.8 shows the resulting confusion matrices for each finding com-
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Atelectasis Cardiomegaly
Predicted

Positive Negative

A
ct

ua
l Positive 57 10

Negative 23 87
Uncertain 25

Predicted
Positive Negative

A
ct

ua
l Positive 29 31

Negative 4 127
Uncertain 11

Consolidation Edema
Predicted

Positive Negative

A
ct

ua
l Positive 30 0

Negative 36 108
Uncertain 28

Predicted
Positive Negative

A
ct

ua
l Positive 34 3

Negative 22 124
Uncertain 19

Pleural Effusion
Predicted

Positive Negative

A
ct

ua
l Positive 47 13

Negative 10 123
Uncertain 9

Table 6.8: Confusion Matrices for the final model on each cheXpert label

puted on the test set. This representation provides a more immediate un-
derstanding of the final performances compared to the AUROC values pre-
viously discussed. In particular, we can notice that the number of uncertain
samples is approximately among the 5% and the 15% of the total, which
seems to be a reasonable amount of samples requiring manual revision in-
stead of being labeled automatically. The results also show that, in general,
more false positives than false negatives are generated by the model. Al-
though the model has not been designed with this constraint, it is desirable
for a diagnostic model. The only exception is the Cardiomegaly label, sug-
gesting a less conservative threshold might be chosen.

6.2 Transfer Learning using Embeddings on a Private Dataset

In the last section, we built a set of models for the Automatic Chest X-Ray
Diagnosis task. However, our main concern is studying methods to enable
learning on smaller, private datasets. In this section, we proceed further
in this direction by exploiting transfer learning to train a machine learning
model on a private dataset describing different labels from CheXpert, taking
advantage of our previous results.
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Label Positive (%) Negative (%)
Normal 273 (29.01) 668 (70.99)
Cardiac 93 (9.88) 848 (90.12)
Lung 427 (45.38) 514 (54.62)
Pneumothorax 38 (4.04) 903 (95.96)
Pleura 135 (14.35) 806 (85.65)
Bone 137 (14.6) 804 (85.4)
Device 147 (15.56) 794 (84.44)

Table 6.9: Absolute frequencies of Positive, Uncertain and Negative samples for each
finding (relative frequencies are reported in parentheses) in the HUM-CXR dataset.

6.2.1 Dataset and Pre-Processing

The experiments in this section use a private dataset called HUM-CXR,
collected in Humanitas Hospital in Milan, Italy. The dataset includes all
the Chest X-Ray Images acquired between May, 1st 2019, and June 20th,
2019, available in the Humanitas Institutional Database. The database con-
tained data that have been excluded in this study, specifically: 1) records
not focused on the chest; 2) records without images stored in the Insti-
tutional PACS; 3) records without an available medical report; 4) records
without an anteroposterior view. The Ethical Committee of Humanitas has
approved this study (approval number 3/18, amendment 37/19), and due to
the retrospective design a specific informed consent was granted. HUM-
CXR comprises 1002 CXRs, including frontal, lateral and portable (i.e., in
bed) CXRs. Each image is annotated as normal or abnormal; abnormal-
ities were further specified as Medias, Pleura, Diaphragm, Device, Other,
GI, PNX, Cardiac, Lung, Bone and Vascular, resulting in a vector of 12 la-
bels. The labels have been manually extracted from text radiology reports.
Uncertain reports were re-assessed by two independent reviewers, and dis-
cordant findings were solved by consensus. Usage of automatic labelers
was unfeasible due to the Italian language in the radiology reports. Medias,
Diaphgram, Other, GI, and Vascular labels were not included in this work to
a limited number of x-rays available (< 30) and significant inconsistencies
with CheXpert labels. Table 6.9 shows the data distribution of the labels
selected for this study.

As our CheXpert models have been trained only on frontal images, we
only used images from HUM-CXR tagged as anteroposterior, posteroan-
terior or portable in the DICOM descriptor, obtaining a final number of
images of 941 from 746 different patients. To adapt the images to the avail-
able models, we followed the same pre-processing steps seen in the pre-
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Figure 6.1: Preprocessing with clipping the values larger than the 0.9995 quantile. The
presence of a landmark, significantly more white than the other pixels, created a signif-
icant noise after normalization (a) original image (b) clipped image (c) original image
normalized (d) clipped image normalized.
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Figure 6.2: An overview of our experimental design.

vious study: First, we clipped pixel values with a maximum threshold of
0.9995 quantile to minimize the noise due to the landmark (see Figure 6.1).
Then to match the input dimension of the models, we resized the images
to 224x224 and converted the number of channels from 1 to 3 (RGB) by
duplicating the input across the tree channels. Lastly, we normalized the
images scaling their values in the range [0,1] and, we further standardized
using ImageNet mean and standard deviation.

6.2.2 Experimental Design

In this study, we propose four different transfer learning approaches, shown
in Figure 6.2. The first approach involves mapping the labels of CheX-
pert to the ones of HUM-CXR and just using the models pre-trained on
CheXpert. The second one consists of combining the outputs of pre-trained
CNNs using stacking [224]. The third one relies on exploiting the pre-

121



Chapter 6. Transfer Learning

CheXpert HUM-CXR
Pleural Effusion, Pleural Other Pleura
Support Devices Device
Pneumothorax PNX
Enlarged Cardiomediastinum, Cardiomegaly Cardiac
Lung Opacity, Lung Lesion, Consolidation, Lung
Pneumonia, Atelectasis, Edema
Fracture Bone
No findings Normal

Table 6.10: Correspondence between CheXpert and HUM-CXR labels.

trained CNNs to compute the image embeddings from HUM-CXR data and
using them to train tree-based classifiers. The final one consists of tuning
the CNNs pre-trained on CheXpert on HUM-CXR data. In the remainder
of this section, we describe in detail these four approaches.

Pre-Trained CNNs. This approach is the most straightforward of the four
and will be considered a baseline. It consists of providing the HUM-CXR
images as input to the CNNs already trained on CheXpert and using the
network’s output to classify them based on a mapping between the labels
of the two datasets. The mapping between the labels has been carefully
designed after analyzing the images and the labels in the two datasets. The
resulting mapping is shown in Table 6.10. When multiple CheXpert labels
are assigned to a single HUM-CXR label, we selected as the final outcome
for HUM-CXR the maximum model output among the CheXpert labels.
As discussed in the previous section, none among the trained CNNs out-
performs the others on each label. Thus, to improve the overall classifi-
cation performances, we combined the outputs of the trained CNSs using
the simple average and the entropy-weighted average ensembling methods.
Additionally, we adopted a stacking approach by training a Random Forest
Meta-Classifier to predict the label for HUM-CXR samples, based on the
predictions of the seven CNNs trained on CheXpert, mapped to labels of
HUM-CXR according to Table 6.10.

Tree-based classifiers. This approach exploits the CNNs trained on CheX-
pert to compute image embeddings of images included in the HUM-CXR
dataset. As discussed in 6.1, image embeddings allow using much simpler
models than CNNs to predict the labels of corresponding images. This ap-
proach reduces the computational resources and the data amount needed for
training the classifiers, making them a suitable choice for training smaller
datasets owned by single institutions. For this study, we focused on three
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Model Hyperparameters
DT max depth=10, min samples leaf=1, min samples split=2, criterion=gini
RF max depth=10, min samples leaf=4, min samples split=10, criterion=gini,

number of estimators=100
XRT max depth=10, min samples leaf=2, min samples split=2, criterion=entropy,

number of estimators=200

Table 6.11: Embedding models hyperparameters for the HUM-CXR dataset.

different tree-based methods: Decision Trees (DT), Random Forest (RF),
and Extremely Randomized Trees (XRT).

We first generated the image embeddings using the seven CNNs pre-
trained on CheXpert. Then, for each kind of classifier, we trained seven
classifiers, using 70% of the samples for training and 30% for testing. As
done for the previous experiments, we applied the simple average and the
entropy-weighted average to combine the seven classifiers. We tuned the
training hyper-parameters of the tree-based classifiers with a grid-search
optimization. The parameters are shown in Table 6.11.

Fine-tuning. Fine-tuning is the most common transfer learning approach
and consists in adapting the last layers of a pre-trained neural network on
a different dataset or task [220]. We removed the fully connected layer
from the seven CNNs trained on CheXpert and replaced them with a seven
output layer to adapt the network to the HUM-CXR labels. Then, we used
the HUM-CXR dataset to fine-tune the networks for 5 epochs, using 70%
of data for training, 10% for validation, and the remaining 20% as hold-out.
We used early-stopping on the validation AUC, with a patience parameter
set to 3 epochs. The loss function was a Binary cross-entropy, and the
learning rate was initially set to 1e-4 and reduced by a factor of 10 after each
epoch. The best performing model in the validation dataset was tested for
each CNN on the hold-out set of HUM-CXR. The performances were then
evaluated using simple average, entropy-weighted average, and stacking.

6.2.3 Interpretability

To address the problem of model interpretability, we applied Gradient-
weighted Class Activation Map (Grad-CAM) [79], a state-of-the-art class-
discriminative localization technique for CNN interpretation. This algo-
rithm outputs a visualization of the regions of the input (heatmap) that are
relevant for a specific prediction. Grad-CAMs use the gradient of an output
class into the final convolutional layer to produce a saliency map, highlight-
ing areas of the image relevant to the detection of the output class. After
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producing the saliency maps, we upsampled them to the original image’s
dimensions and superimposed the mask on the CXR. Grad-CAM is consid-
ered an outcome explanation method, providing local explanations for each
instance. Therefore, we applied Grad-CAM to randomly selected HUM-
CXR. Grad-CAM heatmaps were computed for each CNN model and av-
eraged. Besides superimposing them to the original image, we used Grad-
CAM heatmaps to automatically generate a bounding box surrounding the
area associated with the outcome. We created a mask with the salient part of
the heatmap (pixel importance greater than the 0.8 quantiles). We used its
contours to draw a bounding box highlighting the input region that mainly
contributed to the prediction. DeGrave et al. [81] claimed that single local
explanations are not enough to validate the correctness of the model against
shortcuts and spurious correlations. Therefore, we proposed a population-
level explanation averaging the saliency maps of randomly sampled 200
images where the prediction with the highest probability was selected.

6.2.4 Results

In this section, we present our experimental results. First, we show the
results obtained using the pre-trained classifiers without re-training, tree-
based classifiers on the extracted embeddings, and fine-tuning the classi-
fication layer. Then, we validate the performance of our models in terms
of interpretability and visualization of the predicted classes. To assess the
performances, we follow the same approach seen in Section 6.1 and use the
AUROC as a performance score.

Pre-trained CNN without re-training. We report in Table 6.12 the per-
formance achieved by transfer learning without re-training in terms of AU-
ROC for each HUM-CXR class and on average. The results are shown for
each CNN, ensembling with averaging, ensembling with entropy-weighted
averaging, and stacking. Failures occurred mostly for Bone. Ensembling
generally achieved better average results compared to single-model per-
formance. In particular, combining the predictions with a meta-classifier
(stacking) significantly improved bone classification and the mean classifi-
cation AUROC.

6.2.5 Embedding

The embeddings extracted from pre-trained CNNs are used to train tree-
based classifiers. Table 6.13 shows the performance achieved by DT, RF,
and XRT ensembling with simple average and entropy-weighted average.
The best model (RF+simple averaging) achieves a mean AUROC of 0.856
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Model Normal Cardiac Lung PNX Pleura Bone Device Mean
DenseNet121 0.81 0.84 0.70 0.89 0.87 0.39 0.87 0.766
DenseNet169 0.80 0.79 0.69 0.90 0.87 0.36 0.88 0.755
DenseNet201 0.81 0.78 0.70 0.90 0.87 0.35 0.86 0.754
InceptionResNetV2 0.81 0.83 0.69 0.89 0.87 0.39 0.86 0.762
Xception 0.80 0.77 0.69 0.91 0.87 0.44 0.86 0.764
VGG16 0.82 0.85 0.70 0.89 0.89 0.41 0.86 0.775
VGG19 0.81 0.83 0.71 0.88 0.89 0.42 0.85 0.772
Averaging 0.82 0.84 0.71 0.91 0.89 0.38 0.89 0.777
Entropy 0.82 0.83 0.71 0.91 0.89 0.37 0.89 0.772
Stacking 0.85 0.81 0.74 0.88 0.94 0.85 0.84 0.843

Table 6.12: CNNs results with pre-trained network without re-training in terms of AU-
ROC. Each column represents a HUM-CXR finding. We report the results for each
single network and for the three ensembling strategies. Best results for each class and
in average are highlighted in bold.

Model Normal Cardiac Lung PNX Pleura Bone Device Mean
DT+averaging 0.81 0.69 0.68 0.75 0.88 0.68 0.78 0.734
RF+averaging 0.86 0.85 0.72 0.92 0.94 0.85 0.86 0.856
XRT+averaging 0.85 0.84 0.73 0.92 0.94 0.85 0.85 0.853
DT+Entropy 0.81 0.69 0.68 0.75 0.88 0.69 0.78 0.753
RF+Entropy 0.85 0.85 0.72 0.92 0.94 0.85 0.85 0.853
XRT+Entropy 0.85 0.84 0.73 0.92 0.94 0.85 0.84 0.852

Table 6.13: Results of Tree-based models trained on embeddings extracted from pre-
trained CNNs in terms of AUROC. Each column represents a HUM-CXR finding. We
report the results for each tree model and for both ensembling strategies. Best results
for each class and in average are highlighted in bold.

with a maximum of 0.94 for Pleura. The results show that RF and XRT
achieve better classification performance than transfer learning without re-
training.

6.2.6 Fine Tuning

The last set of experiments of this study consisted in fine-tuning the classifi-
cation layers of the pre-trained CNNs. Single model performance improved
with respect to transfer learning without re-training except for VGG16 and
VGG19. Ensemble AUROC increases for all strategies. Fine-tuning com-
bined with stacking achieves the best AUROC for PNX (0.97), while on
average, it remains less performant than embeddings’ best model.
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Model Normal Cardiac Lung PNX Pleura Bone Device Mean
DenseNet121 0.81 0.73 0.76 0.94 0.90 0.73 0.78 0.807
DenseNet169 0.73 0.88 0.77 0.95 0.94 0.72 0.72 0.814
DenseNet201 0.83 0.81 0.71 0.94 0.94 0.74 0.82 0.828
InceptionResNetV2 0.81 0.86 0.79 0.90 0.93 0.69 0.76 0.818
Xception 0.81 0.82 0.73 0.94 0.95 0.68 0.80 0.819
VGG16 0.67 0.81 0.72 0.33 0.95 0.62 0.82 0.704
VGG19 0.64 0.79 0.44 0.83 0.93 0.52 0.87 0.717
Averaging 0.83 0.86 0.78 0.96 0.96 0.71 0.81 0.842
Entropy 0.81 0.86 0.78 0.95 0.96 0.73 0.83 0.845
Stacking 0.80 0.85 0.74 0.93 0.97 0.83 0.86 0.853

Table 6.14: CNNs results with fine-tuning the classification layer of pre-trained networks
in terms of AUROC. Each column represents a HUM-CXR finding. We report the re-
sults for each single network and for the three ensembling strategies. Best results for
each class and in average are highlighted in bold.

Figure 6.3: Average of Grad-CAM saliency maps for two batches of 200 randomly sam-
pling images.
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Figure 6.4: Visualizaion of Pleura prediction maps for two selected CXRs. The three
panels represent the saliency mask obtained with Grad-CAM, the relevant area (mask
values larger than 0.8 quantile) and the respective bounding box.

127



Chapter 6. Transfer Learning

Figure 6.5: Visualization of Device prediction maps for two selected CXRs. The three
panels represent the saliency mask obtained with Grad-CAM, the relevant area (mask
values larger than 0.8 quantile) and the respective bounding box.

Figure 6.6: Visualization of PNX prediction maps for a selected CXRs. The three panels
represent the saliency mask obtained with Grad-CAM, the relevant area (mask values
larger than 0.8 quantile) and the respective bounding box.
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Figure 6.7: Visualization of Lung prediction maps for a selected CXRs. The three panels
represent the saliency mask obtained with Grad-CAM, the relevant area (mask values
larger than 0.8 quantile) and the respective bounding box.

6.2.7 Grad-CAM

We average the saliency maps computed with Grad-CAM of two batches of
randomly sampled 200 images. Figure 6.3 proves that, at a population level,
the model is generally focusing on the lung field and does not take into ac-
count shortcuts or spurious correlations that could be present in the borders.
We also visualize the areas of the CXRs which the model predicts to be
most indicative of each prediction and create a bounding box surrounding
it. We show randomly selected examples in Figure 6.4, Figure 6.5, Fig-
ure 6.6, and Figure 6.7. In Figure 6.8 we superimpose the bounding boxes
for two classes to show how the model is looking at different areas of the
input depending on the specific class.

XAI algorithms for visualization are successful approaches to identify
potential spurious shortcuts that the network may have learned. Overall,
our CNNs focused on meaningful image areas for the respective predic-
tion. We found some inconsistencies only in some examples of device,
especially with the pacemaker. Figure 6.9 shows an example of a correct
classification but based on an area that does not match well the pacemaker
region. The saliency map highlights the leads entering the heart as the re-
gion responsible for device prediction.
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Figure 6.8: Superimposition of bounding boxes for Cardiac and Device outcomes for two
examples.

Figure 6.9: Shortcut for the identification of a pacemaker focusing on the catheter
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6.3 Transfer Learning via Adversarial Networks

In Chapter 2 we discussed some applications of Transfer Learning applied
in various settings, including medical imaging. This, as we showed in pre-
vious experiments, involves training or fine-tuning different kinds of ma-
chine learning models. However, transfer learning applied to Adversarial
Networks is still an ongoing field of research. Wang et al. [225], focused on
transfer learning using WGAN-GP [226] models and investigated how the
selection of the network weights to transfer, the size of the target dataset,
and the relation between source and target domain affect the final perfor-
mances. Finally, in a recent work [227], Fregier and Gouray propose a
new method to perform transfer learning with WGANs [228]. This section,
focusing on the MRI Brain Tumor Segmentation task, investigates a differ-
ent approach to perform transfer learning using an Adversarial Network. To
this extent, we first introduce SegAN-CAT, an end-to-end approach to brain
tumor segmentation based on Generative Adversarial Networks. Then, we
study one possible application of transfer learning in a practical context.
In real-world scenarios, the different Brain MRI modalities –i.e., T1, T1-
ce, T2, FLAIR- might not always be all available for each patient. For this
reason, we aim at training and comparing the performances of four SegAN-
CAT models that use only a single modality as input. Then, we investigate
whether a transfer learning approach can be used to exploit the knowledge
extracted from a model, previously trained on a source MRI modality, to
train a model that works with a different target MRI modality.

6.3.1 Image Segmantation with Adversarial Networks

Our approach is based on SegAN [185], an adversarial network architec-
ture that was extended in two respects: (i) a dice loss [229] term has been
added to the multi-scale loss function employed in [185]; (ii) we provide
the discriminator with the input image concatenated to its segmentation
map, while in SegAN the discriminator is provided with the input image
masked using its segmentation map.

In the remainder of this section, we discuss more in detail our proposed
architecture (dubbed from now on SegAN-CAT), the loss function used to
train it, and the differences with respect to the original SegAN implementa-
tion.
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Figure 6.10: The SegAN-CAT architecture.

6.3.2 Network Architecture

The SegAN-CAT, shown in Figure 6.10, involves a segmentation network
and a discriminator network. The segmentation network takes in input an
MRI slice and produces the output the segmentation of the slice as a prob-
ability label map; the slices have size 160x160xM , where M is the number
of MRI modalities used to train the model (in this experiment, M is ei-
ther 1 or 4); the probability label maps have size 160x160, representing
the probability for each pixel of the input slice of being part of the area
of interest. Instead, the discriminator network takes in input an MRI slice
and its probability label map, which can be either the one computed by the
segmentation network or the ground-truth one: the slice and probability la-
bel map are either combined or concatenated together as described later in
this Section; thus, the network computes a feature vector that represents a
multi-scale representation of the input, which is used to compute the loss
function during the training of the two networks.
Figure 6.10 shows the structure of the two networks, based on the following
types of computational blocks:
(i) Sin, k, that is a segmentation input block composed of a 2D Convolution
layer with k filters of size 4 and
stride=2 [230, 231], followed by a LeakyReLU [232] activation layer;
(ii) Senc, k, that is a segmentation encoder block has the same structure as the
segmentation input block but has a batch normalization layer [233], before
the activation layer;
(iii) Sdec, k, that is a segmentation decoder block composed of a 2D Bilinear
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Upsampling layer (factor=2) followed by a 2D Convolution layer with k
filters of size 3 and stride=1, followed by a batch normalization layer and
a ReLU [86] activation layer;
(iv) Sout, k, that is a segmentation output block composed of a 2D Bilinear
Upsampling layer (factor=2) followed by a 2D Convolution layer with k
filters of size 3 and stride=1, followed by a Sigmoid [234] activation layer;
(v) Din, k, that is a discriminator input block composed of a 2D Convolution
layer with k filters of size 4 and stride=2, followed by a LeakyReLU acti-
vation layer.
(vi) Denc, k, that is a discriminator encoder block has the same structure as
the discriminator input block but has a batch normalization layer, before
the activation layer.
The convolutions weights in all discriminator blocks are constrained be-
tween [-0.05;0.05] for stabilizing the training process [228]. The output of
the discriminator, indicated as Feature Vector in Figure 6.10, is computed
by concatenating the discriminator input and the flattened output of every
discriminator block. The slope for the LeakyReLU is 0.3; batch normaliza-
tion parameters are ϵ = 1 ∗ 10−5 and momentum=0.1 for both networks.

6.3.3 Discriminator Network Input

In the SegAN architecture, the discriminator network is given in input a
masked slice image, computed by pixel-wise multiplication of the label
probability map and each channel of the MRI slice. Instead, in SegAN-
CAT architecture, the label probability map and each channel of the MRI
slice is simply concatenated and provided to the discriminator network as
input. While the input definition used in the original SegAN architecture
is more compact, with the input definition we propose, it is possible for
the discriminator network to extract features that also describe the area of
the input MRI that is not included into the segmentation. As a result, we
expect SegAN-CAT to have slightly better generalization capabilities than
the architecture introduced in [185].

6.3.4 Loss Function

To train our networks, we use the Multiscale Adversarial Loss, as in SegAN [185].
This particular loss function, applied also in generative problems [235], al-
lows to perform feature matching between the ground truth and the output
of segmentation network, also optimizing the network weights on features
extracted at multiple resolutions rather than focusing just on the pixel level.
Thus, the Multiscale Adversarial Loss is defined as follows:
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ℓmae(fD(x), fD(x
′)) =

1

L

L∑
i=1

||f i
D(x)− f i

D(x
′)||1 (6.1)

where L is the number of layers in the discriminator network; f i
D(·) is

the output of the activation layer after the discriminator block at position
i + 1, e.g., f 1

D(·) is the discriminator input, f 2
D(·) is the output of the first

activation layer, etc; x denotes the input of the discriminator when the label
probability map is computed by the segmentation network, while x′ is the
input of the discriminator when the ground-truth is used.

In addition to the Multiscale Adversarial Loss, we introduced an addi-
tional term to the loss function defined as:

ℓdice(g, p) = 1− 2
∑N

i pigi∑N
i p2i +

∑N
i g2i

(6.2)

where g is a ground truth image, p denotes the predicted values and the
sums run over the pixels of the image; the definition of ℓdice is based on
a differentiable form of the Sørensen-Dice coefficient [229] – already in-
troduced in Chapter 3 –, it ranges between 0 and 1, and accounts for the
overlap between the segmented areas in the ground-truth and in the output
of the segmentation network. The use of this term, which allows to assess
the quality of the generated segmentation maps, should result in a more
stable training process and eventually in a model with better performances.

Overall, the complete objective function used to train the networks is
defined as:

min
θS

max
θD

1

N

N∑
n=1

ℓmae(fD(xn ◦ S(xn)), fD(xn ◦ yn))

+ ℓdice(yn, S(xn))

(6.3)

where xn is an input MRI, yn is the ground truth, and the ◦ operator is
either a concatenation on the channel axis in SegAN-CAT or a pixel-wise
multiplication in SegAN (as illustrated in Section 6.3.3).

6.3.5 Transfer learning with Adversarial Networks

To test our approach, we compared the SegAN-CAT and the SegAN archi-
tecture on the BraTS segmentation task, using both the BraTS 2015 [162]
and the BraTS 2019 [31] datasets. As the images in both datasets have
an isotropic resolution of 1mm3 per voxel, we do not perform any fur-
ther spatial resampling. Following the SegAN implementation [185], we
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center-crop each MRI to a 180 x 180 x 128 volume in order to remove
black regions while keeping all the relevant data. For each MRI volume,
we clip voxel values to the 2nd and 98nd percentile to remove outliers. Then
we apply Feature Scaling [236] to normalize the intensity range between
0 and 1. Finally, we split the data in Training/Validation sets (respectively
of size 80% and 20%) using stratified sampling to keep balanced HG and
LG subjects within each subset. For Brats 2019, we also apply stratified
sampling based on the institution that provided the data.

To evaluate our results, we use precision, sensitivity, and Dice Score. To
compute these metrics, we use a threshold of 0.5 on the output of the seg-
mentation network in order to obtain a binary classification for each pixel.
Although our models work on a single MRI slice at a time, we compute the
metrics by considering the TP, FP, TN, and FN on every slice of the same
MRI volume. Model selection is performed according to the dice score
value. It allows accounting for both False Positives and False Negatives,
leading to a better assessment of the segmentation quality compared to the
precision and sensitivity scores.

To transfer a SegAN-CAT model trained from MRIs that include a sin-
gle modality (source) to train a model from MRIs that include a single but
different modality (target) on our SegAN-CATmodel, we used the most
straightforward approach: we took the segmentation and discriminator net-
works trained on the source modality and fine-tuned them on the target
modality.

In particular, we studied two different fine-tuning processes to retrain
the networks on the target modality:
(i) we fine-tuned all the weights of both the segmentation and the discrimi-
nator networks;
(ii) we fine-tuned all the weights of the segmentation network and only the
weights of the input layer of the discriminator network.

Although keeping the several layers of discriminator fixed during the
fine-tuning might prevent it from adapting entirely to the target domain.
This solution could help retain more knowledge from the source domain
while adapting the segmentation network. This choice is motivated by the
fact that the discriminator is the most critical part of an adversarial network
to transfer to the target domain [225].

6.3.6 Results

We trained both multi-modal models – i.e., models designed to work with
MRIs that include different contrast modalities – and uni-modal models –
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Model
BraTS 2015 BraTS 2019

Dice Score Precision Sensitivity Dice Score Precision Sensitivity

SegAN 0.705 0.759 0.694 0.766 0.745 0.834

SegAN w/ Dice Loss 0.825 0.901 0.785 0.814 0.850 0.810

SegAN-CAT 0.859 0.882 0.852 0.825 0.842 0.835

Table 6.15: Performance of SegAN, SegAN with dice loss, and SegAN-CAT. The results
reported are the average of the dice score, the precision, and the sensitivity computed
on each one of the MRI volume included in test set of BraTS 2015 and BraTS 2019. We
reported in bold the best performance for each dataset.

i.e., designed to work with MRIs that include only one specific contrast
modality–.

First, we trained three multi-modal models that use all the four contrast
modalities, i.e., T1, T1c, T2, FLAIR, available in the datasets: (i) a model
that implements the original SegAN architecture, (ii) a model that imple-
ments the SegAN architecture with the additional dice loss term, and (iii) a
model that implements the SegAN-CAT architecture thoroughly, i.e., with
the additional dice loss term and the input discriminator concatenation.

Each model is trained and tested both on BraTS 2015 and BraTS 2019
datasets using a batch size of 64 slices. During the training phase, we per-
form data augmentation by applying random cropping [231] using a win-
dow of size 160 x 160, following the SegAN approach [185]. During the
validation phase, we apply center cropping [231] to match the input size
of the network, discarding most of the black border of the MRI. All the
models are trained using the same initialization seed, RMSprop [237] (lr:
2*10-5), and Early Stopping [238] (patience = 300 epochs) on Dice Score
evaluation metric. An epoch corresponds approximately to 28000 slices for
the Brats 2015 dataset and to 34000 for the Brats 2019 dataset.

Table 6.15 compares the performance of all the multi-modal models
trained on two datasets. The results show that both the dice loss term and
the discriminator input concatenation, introduced in the SegAN-CAT, led
to better performances on both datasets. Results also suggest that BraTS
2019 is slightly more challenging than BraTS 2015, leading to a lower per-
formance of all three models.

In the following experiment, we wanted to investigate how the infor-
mation content of each contrast modality affects the model performance.
To this purpose, we trained four uni-modal models, each one using only a
single contrast modality.

Table 6.16 compares the performance of these four SegAN-CAT models
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Modality BraTS 2015 BraTS 2019
Dice Score Precision Sensitivity Dice Score Precision Sensitivity

T1 0.538 0.570 0.557 0.542 0.586 0.609
T1c 0.578 0.613 0.581 0.587 0.678 0.577
T2 0.721 0.773 0.724 0.675 0.828 0.607

FLAIR 0.810 0.858 0.787 0.763 0.757 0.810
ALL 0.859 0.882 0.852 0.825 0.842 0.835

Table 6.16: Performance of SegAN-CAT models trained from MRIs with only one contrast
modality. The results are reported for each modality as the average of the dice score,
the precision, and the sensitivity computed on each one of the MRI volume included in
test set of BraTS 2015 and BraTS 2019. As a reference, the performance of SegAN-
CAT trained with all the contrast modalities is reported in the last row of the table.

trained using a single contrast modality. The results show that none of the
models trained with a single modality can achieve the same performance
achieved by SegAN-CAT which uses all the four contrast modalities to-
gether. This suggests that none of the four modalities alone contains all
the relevant information to identify the tumor. However, the model trained
using only the FLAIR modality can perform much better than all the other
models on both datasets. These results are not surprising as FLAIR modal-
ity allows to identify more clearly the edema and the lesions in specific
areas of the brain due to the suppression of the cerebrospinal fluid in the
images.

Lastly, we investigated whether it is possible to transfer a model trained
on a specific contrast modality to a different contrast modality. We aimed
to evaluate the similarities among the models and have an insight into how
easily the knowledge learned from a modality could be transferred to the
others. To this extent, we applied all the uni-modal models previously
trained on each of the contrast modalities to images taken with different
modalities.

Figure 6.11 shows the performance of all the uni-modal models when
applied to each modality alone. As expected, all the uni-modal models
reached the best performance on images acquired with the same contrast
modality they have been trained for. Therefore, to transfer a model suc-
cessfully across the contrast modalities, it is necessary to adapt the trained
networks with data from the target domain, i.e., the target contrast modality.
The results also show how models could be easily transferred across modal-
ities that are known to be similar: models trained on T1 and T1c perform
poorly on T2 and FLAIR, while they perform much better when applied to
the other modality similar to the one they are trained on (i.e., T1 or T1c).

137



Chapter 6. Transfer Learning

Figure 6.11: Performance of each uni-modal model when applied to images acquired
using other modalities. The performances on both BraTS 2015 and BraTS 2019 are
reported. In addition, we also report as a reference the performance of the uni-modal
models on images with the same modality the models are trained for.

138



6.3. Transfer Learning via Adversarial Networks

Target Fine Tuning BraTS 2015 BraTS 2019
Dice Score Precision Sensitivity Dice Score Precision Sensitivity

T1 S,D 0.496 0.503 0.553 0.502 0.571 0.582
T1 S,Din 0.561 0.614 0.576 0.528 0.558 0.538
T1c S,D 0.467 0.464 0.538 0.468 0.527 0.494
T1c S,Din 0.577 0.661 0.541 0.598 0.705 0.563
T2 S,D 0.692 0.776 0.668 0.674 0.643 0.775
T2 S,Din 0.781 0.818 0.771 0.741 0.878 0.681

Table 6.17: Performance of the models trained by transferring the model trained on
FLAIR images. The column Fine Tuning reports whether both the model networks
(S,D) or only the segmentator and the discriminator input layer (S,Din) have been
trained on the target modality. The results are reported for each target modality as the
average of the dice score, the precision, and the sensitivity computed on each one of
the MRI volume included in test set of BraTS 2015 and BraTS 2019. We reported in
bold the scores that are better than the corresponding ones in Table 6.16.

The same behavior, the other way around, is found in the performance of
the models trained on T2 and FLAIR.

Based on the results discussed above, we applied the transfer learning
to train three uni-modal models respectively on T1, T1c, and T2 images
by adapting a model trained on FLAIR images. Our results show that the
FLAIR images account for a large part of the model performance, and our
purpose is to understand whether the transfer learning process might im-
prove the final performances. In this experiment, the fine-tuning of the
model on the target modality was limited to 300 epochs.

Table 6.17 shows the performance of the models trained on T1, T1c,
and T2 by adapting a model trained on FLAIR. The results suggest that it
is more convenient to adapt, i.e., to train on images with the target contrast
modality, only the input layer of the discriminator network of the model,
keeping the other layers of the discriminator network trained on images
with the FLAIR contrast modality. We believe that this result is due to the
high instability of the adversarial learning mechanism that makes it very
difficult to adapt a previously trained model [225] incrementally. Accord-
ingly, to exploit the knowledge of the model trained on images with FLAIR
contrast, we adapted on the target modalities only the segmentation net-
work and the first layer of the discriminator network. Overall, this solution
often led to models that perform better or similar to the models trained from
scratch on the target modalities (see Table 6.16), despite being trained for
300 epochs only. As expected, the significant benefits of the transfer learn-
ing mechanism are achieved on the target modality more similar to FLAIR,
i.e., T2.
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6.4 Addressing Data Heterogeneity using Generative Adver-
sarial Networks

Many different approaches and datasets have been used in the literature to
overcome the problem of missing modalities. Since most datasets only con-
tain T1 or T1/T2/PD scans due to practical reasons, Orbes-Arteaga et al., in
[68], implemented a GAN that generates Brain FLAIR using the T1 modal-
ity. Camileri et al. [239] developed a variant of the original GAN, called
Laplacian pyramid framework (LAPGAN), that synthesizes images in a
coarse-to-fine process by introducing progressive refinements. As the name
suggests, this method is based on Laplacian pyramid and allows to initially
generate an image with low resolution and then incrementally refine it by
adding finer details. Another approach to generate missing modalities was
proposed in [66] where the authors presented two possible scenarios, based
on the given dataset: (i) when the multi-contrast images are spatially regis-
tered they use a model called pGAN, which incorporates a pixel-wise loss
into the objective function, while they adopt (ii) a cycleGAN [65] in the
more realistic scenario in which pixels are not aligned between modali-
ties. As we introduced in previous chapters, Anmol Sharma and Ghassan
Hamarneh [64] proposed a many to many generative model, capable of syn-
thesizing multiple missing sequences given a combination of various input
sequences. Furthermore, they also apply the concept of curriculum learn-
ing based on the variation of the difficulty of the examples used during the
network training.

Finally, GANs have been successfully applied also to different images,
such as PET, CT, and MRA images. Notable examples include the work of
Olut et al. [240], which proved that GANs work efficiently even when the
source imaging technique is different from the target one by synthesizing
MRA brain images from T1 and T2 MRI modalities. Then, Ben-Cohen
et al.[241] successfully generated PET images using CT scans through a
fully connected neural network, whose output is improved and refined by
cGANs.

6.4.1 Modality Generation with Adversarial Networks

Focusing on the issue of missing MRI modalities, we studied the prob-
lem of generating a target brain MRI modality among the four available
in the BraTS dataset: T1, T1ce, T2, FLAIR. In particular, we assumed
that a missing modality has to be generated by the other three, which are
supposed to be available. To this purpose, we focused on multi-input gen-
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erative models, i.e., models that receive multiple images as input – i.e.,
the available modalities– and generate as output a single image –i.e., the
missing modality–. In particular, we designed two generative models based
on GANs: a multi-input version of pix2pix[63], dubbed MI-pix2pix, and a
modified version of the MM-GAN introduced by Sharma et al.[64], dubbed
MI-GAN. In this section, we provide the details of these two generative
models.

6.4.2 MI-pix2pix

In this GAN, the generator is based on U-net [179] that takes as input a ten-
sor with size 32x256x256x3, where the first dimension indicates the batch
size and the last one is the number of modalities in input. For example,
when MI-pix2pix is used to generate the missing T2 modality, the other
three modalities, T1, T1c, Tflair, are provided as inputs respectively as the
first, second and third channel. The symmetrical downsampling and up-
sampling blocks, typical of U-Net architecture, employ skip connections to
concatenate the inputs of each downsampling block to the input of the cor-
responding upsampling block. The downsampling blocks are composed by
three layers: Cn,k=4,s=2, BatchNorm, LeakyReLU, where Cn,k,s is a con-
volutional layer with n filters, kernel size k and stride s. The sequence
of downsampling blocks, with n={64,128,256,512,512,512,512,512}, re-
duces the spatial information and increases the feature dimension until
the last downsampling block that has an output shape of 1x1x512. In-
stead, the upsampling blocks are composed by four layers: Dn,k=4,s=2,
BatchNorm, Dropout, ReLU, where Dn,k,s is a transposed convolution layer
with n filters, kernel size k and stride s. The sequence of upsampling
blocks, with n={512,512,512,512,512,256,128,64}, is followed by a last
transposed convolutional layer and a Tanh activation. The output of the
network is a batch of images with dimension 256x256x1. The discrimina-
tor is a 70x70 PatchGAN with two inputs: (i) the target image (fake or real)
of shape 32x256x256x1, (ii) the concatenation of the three modalities (of
shape 32x256x256x3) provided as input to the generator. This network has
only three downsampling blocks (with n = {64, 128, 256}), followed by
these layers: ZeroPadding, Cn=512,k=4,s=1, BatchNorm, LeakyReLU ,
ZeroPadding, Cn=1,k=4,s=1.

6.4.3 MI-GAN

The MI-GAN architecture is based on the MM-GAN [64]: the only vari-
ation we applied was the replacement of every layer of Instance Normal-
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Figure 6.12: Generator and Discriminator architectures of the two multi-input GANs
studied in this work.
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ization with a Batch Normalization, which is also used in MI-pix2pix, as
we observed that normalizing the activations of each channel across the
whole batch was more effective, in terms of quality in the generated sam-
ples, than computing the mean/standard deviation and normalizing across
each channel for each training image. The MI-GAN generator is a modified
U-Net with concatenated skip connections and the typical U-shape archi-
tecture (Figure 6.12b), The building blocks for the encoding path are de-
fined as: Cn,k=4,2, BatchNorm, LeakyReLU , DropOut0.5. The upsam-
ple block has the same layers seen in the pix2pix architecture: Dn,k=4,s=2,
BatchNorm, ReLU , Dropout0.5 The last layer of the generator is a trans-
posed convolution followed by a Tanh activation function. The output of
the network is a batch of images with dimensions 256x256x1. The dis-
criminator takes two inputs Xt and Xi and produces one output D(Xt, Xi),
each one of these with 4 channels - i.e. one per modality. Assuming the
discrimination of a T ′

1 synthesized scan, the inputs were Xt: {T1, T2, T1c,
FLAIR} and Xi: {T ′

1, T2, T1c, FLAIR}.

6.4.4 Loss Function

The generator loss and discriminator loss used with MI-GAN (6.4.3) are
the ones proposed in [63] and defined as follows:

LG ← λL1(G(x), y) + (1− λ)L2(D(x,G(x)), Lar)

LD ← L2(D(x, y), Lar) + L2(D(x,G(x)), Lr)
(6.4)

where the input x is a concatenation of three sequences, while G(x)
represents the prediction generated by the GAN. Lar is a tensor of unitary
values that is used to encourage the generator to produce samples that the
discriminator evaluates as real. L2 is the L2 norm - or Mean Squared Error
-, while L1 denotes the L1 norm - or Mean Absolute Error that is useful to
generate samples that are structurally similar to the target image. This term
was chosen as a reconstruction loss term because of its ability to prevent
blurring compared to using an L2 loss [64]. Lr is a tensor with entries
equal to zero, and it is used to encourage D to assign low values to the
generated samples. In the same way, Lar is used to induce the discriminator
in assigning values close to 1 to the true samples.

Following the same notation, the loss of MI-pix2pix is instead defined
as:

LG ← λL1(G(x), y) + BCE (Lar, D(x,G(x)))

LD ← BCE (D(x, y), Lar) + BCE (D(x,G(x)), Lr)
(6.5)
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where BCE(x, y) is the Binary Cross-Entropy as commonly imple-
mented in most deep learning frameworks. The LD of MI-pix2pix is com-
puted as the sum between the binary crossentropy of (D(x, y), Lar) and the
one of D((x, y′), Lr) where y′ is the generated image. LG, on the other
hand, contains the reconstruction term between y and y′, multiplied by an
hyper-parameter λ and summed to the binary cross-entropy of D((x, y′), Lr).

6.4.5 Experimental Design

To test our approach, we used data from the BraTS 2015 dataset. We split
the dataset into three different sets: training (80%), validation (10%), and
test (10%), resulting in 219 patients assigned to the first set, 27 to the vali-
dation one, and 28 to the test. Since we believe it is important to maintain
the balance between HG and LG subjects during training and evaluation
phases, we split the dataset by applying stratified sampling [185]. All the
images in the dataset were first center cropped: the outer parts of each vol-
ume were removed while the central region was retained along each dimen-
sion. We also discarded the external slices that contained almost no useful
information, reducing the number of slices from 155 to 128. As a result, the
final shape of each volume is 180x180x128. Then, we applied a min-max
normalization to each volume to provide data with the same dynamic range
to the models. Finally, as our GANs architecture only allows input images
with dimensions that are a power of 2, we padded our 180x180 images to
obtain 256x256 images.

Evaluation Metrics

To evaluate the output of our generative models, we considered different
metrics that could be used to assess three different objectives: (i) quality
of the whole image, (ii) quality of the tumor area, and (iii) discriminative
power of the generated image.

Image Metrics. The first metrics we considered aim at assessing the qual-
ity of the whole images generated. To compute these metrics, we first had
to crop and normalize the images as follows. We center-cropped the gen-
erated images to 155x194, which is the size of the largest bounding box to
contain each brain in the BraTS2015 dataset [185]. Then, we applied mean
normalization [242] to each image, either generated or real. Thus, we com-
puted the following three metrics: (i) the mean squared error (MSE), (ii)
the Peak Signal-to-Noise Ratio (PSNR) [199], and (iii) the Structural Sim-
ilarity (SSIM) [200], already described in Chapter 3.
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Tumor Metrics. Since the dataset we considered aims to perform tumor
segmentation, we also considered the performance in this area in our anal-
ysis. To this extent, we also computed the MSE and PSNR metrics by
restricting the computation only to the pixels inside the image’s tumor area.

Discriminative Metrics. In addition to the metrics described so far, we
compared the performance achieved by a tumor segmentation model when
generated images are used as input instead of real ones to assess the amount
of information contained in the generated images. More specifically, we
computed the Dice Similarity Coefficient of the segmentations obtained
from the SegAN-CAT model, introduced in Section 6.3.

6.4.6 Results

We compared MI-GAN and MI-pix2pix on the generation of each one of
the four MRIs modality available in the BraTS2015 dataset: T1, T1c, T2, and
T2flair. We also compared the performance of MI-GAN and MI-pix2pix
with some single-input pix2pix generative models. As a performance base-
line, we computed the metrics of the images provided as input to the gen-
erative models –i.e., we evaluated how similar the input images are to the
expected output of the generative models.

To train the pix2pix, MI-pix2pix and MI-GAN, we used the following
parameters settings. The learning rate α was set to 0.0002, the exponential
decay rate for the 1st moment estimates β1 was set to 0.5, and the one for
the 2nd moment estimates (β2) was set to 0.999. The value of λ was set
to 100 in the generator loss of pix2pix and MI-pix2pix, while it was set to
0.9 in the loss of the MI-GAN generator. The MI-GAN discriminator loss
was multiplied by 0.5 to slow down the rate at which D learns compared
to G. The convolutional layer weights have been initialized using a normal
distribution with 0 mean and standard deviation equal to 0.05. The training
was performed for 25 to 70 epochs until convergence of each model. In the
results reported in this section, we used the following notation. The pix2pix
models have been dubbed as P2P and MI-pix2pix as MI-P2P. In addition,
for pix2pix and the baseline performance, we reported the source modality
used between parenthesis.

Generation of T1 images. We trained four models to generate the missing
modality T1: two single-input pix2pix with different inputs (T2 and T1c,
MI-pix2pix, and MI-GAN. We choose to train different pix2pix models to
understand how the performances change when using an input, T1c, that is
similar to the target compared to using T2. The results are reported in Table
6.18.

145



Chapter 6. Transfer Learning

Model MSE PSNR SSIM MSEtumor PSNRtumor

Baseline(T2) 0.0396± 0.0275 15.3286± 4.2134 0.5054± 0.2116 0.0594± 0.0523 13.6678± 3.6085
P2P(T2) 0.0060± 0.0046 23.4967± 3.6754 0.8112± 0.1004 0.0199± 0.0187 18.5047± 3.7607
Baseline(T1c) 0.0058± 0.0050 23.8431± 4.0912 0.8096± 0.0984 0.0173± 0.0216 20.1544± 5.0543
P2P(T1c) 0.0044± 0.0041 25.0680± 3.8652 0.8403± 0.0856 0.0114± 0.0143 21.4485± 4.3380
MI−P2P 0.0044± 0.0040 24.9339± 3.6983 0.8413± 0.0838 0.0113± 0.0099 20.8938± 3.6111
MI−GAN 0.0041± 0.0038 25.2569± 3.6512 0.8472± 0.0830 0.0102± 0.0097 21.5359± 3.8620

Table 6.18: Generation of T1: performances on the test set. Best results are reported in
bold.

Model MSE PSNR SSIM MSEtumor PSNRtumor

Baseline(T1) 0.0396± 0.0275 15.3286± 4.2134 0.5054± 0.2116 0.0594± 0.0523 13.6678± 3.6085
P2P(T1) 0.0100± 0.0074 21.3182± 3.8023 0.7521± 0.1247 0.0476± 0.0397 14.3652± 3.3523
Baseline(T2flair) 0.0275± 0.0199 16.8268± 3.9727 0.6262± 0.1597 0.0464± 0.0500 15.1591± 4.0428
P2P(T2flair) 0.0087± 0.0076 21.9227± 3.7021 0.7567± 0.1287 0.0256± 0.0242 17.3035± 3.4584
MI−P2P 0.0073± 0.0063 22.7645± 3.8272 0.8005± 0.1112 0.0207± 0.0167 18.1305± 3.5930
MI−GAN 0.0077± 0.0061 22.3719± 3.5290 0.7835± 0.1141 0.0205± 0.0167 18.0725± 3.3763

Table 6.19: Generation of T2: performances on the test set. Best results are reported in
bold.

Generation of T2 images. For the generation of T2 we trained four models:
the first one is a pix2pix trained to receive T1 as input, the second one takes
as input the T2flair modality, that captures more similar characteristics (of
T2) than T1; the other models are MI-pix2pix and MI-GAN. The results are
reported in Table 6.19.

Generation of T1c images. Table 6.20 shows the performances obtained
by three models trained to generate T1c slices: one pix2pix model and two
multi-input models. We choose T1 as the input modality for the single-input
GAN because it is the most similar sequence, among the ones available, to
the target T1c.

Generation of T2flair images. Tables 6.21 and 6.22 summarize the perfor-
mances reached by the models trained to generate T2flair: in particular 6.22
shows the additional metric we implemented to evaluate the quality of the
generated tumor area using the SegAN-CAT model. The DSC is calculated
between the ground truth and the segmentation of our synthesized images.
Furthermore, a reference DSC score is computed between the ground truth

Model MSE PSNR SSIM MSEtumor PSNRtumor

Baseline(T1) 0.0058± 0.0050 23.8431± 4.0912 0.8096± 0.0984 0.0173± 0.0216 20.1544± 5.0543
P2P(T1) 0.0051± 0.0048 24.6165± 4.0755 0.8139± 0.0996 0.0155± 0.0199 20.6981± 4.9762
MI−P2P 0.0052± 0.0040 24.1597± 3.8631 0.8110± 0.0963 0.0168± 0.0172 19.8441± 4.6258
MI−GAN 0.0054± 0.0040 23.9242± 3.6958 0.8027± 0.1003 0.0157± 0.0162 19.9779± 4.3568

Table 6.20: Generation of T1c: performances on the test set. Best results are reported in
bold.
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Model MSE PSNR SSIM MSEtumor PSNRtumor

Baseline(T2) 0.0275± 0.0199 16.8268± 3.9727 0.6262± 0.1597 0.0464± 0.0500 15.1591± 4.0428
P2P (T2) 0.0090± 0.0065 21.5895± 3.4831 0.7518± 0.1211 0.0390± 0.0463 15.9946± 4.0459
MI−P2P 0.0069± 0.0049 22.8165± 3.7317 0.7772± 0.1094 0.0221± 0.0375 19.0374± 4.1582
MI−GAN 0.0072± 0.0050 22.5524± 3.5655 0.7610± 0.1175 0.0258± 0.0285 17.4694± 3.6137

Table 6.21: Generation of T2flair: performances on the test set. Best results are reported
in bold.

and the segmentation of the original slice from BraTS2015. We trained
only one pix2pix model, using as input T2 that is the most similar sequence,
among the ones available, to the target.

Table 6.22: DSC performances, on the test set, obtained by comparing the ground truth
and the segmentations, using SegAN-CAT, of T2flair predictions.

Segmentation image DSCtumor

Original T2flair 0.8053± 0.1156
P2P(T2) 0.6632± 0.1608
MI-P2P 0.7427± 0.1810
MI-GAN 0.6837± 0.2136

6.4.7 Modality Replacement on Multi-Input SegAN-CAT

In the last experiment, we wanted to complete our analysis by investigating
whether the generated modalities can be used for segmentation in place of
the missing modalities. For this experiment, we considered the multi-modal
SegAN-CAT, trained on BraTS 2015. For each of the four modalities, we
tested the performances of SegAN-CAT by replacing one of the modalities
with the ones generated by either MI-Pix2Pix or MI-GAN, using the other
three modalities as input for the generation. Results are reported in Table
6.23.

6.4.8 Discussion

In this section, we discuss the result reported in the previous section. In the
first part of the discussion, we discuss the quantitative results we obtained.
In the last part, we will provide a brief qualitative analysis of the generated
images.

6.4.9 Quantitative Analysis

Pix2pix vs Baselines. Our results (see Table 6.18, Table 6.19, Table 6.20,
and Table 6.21) show that, as expected, pix2pix is indeed able to gener-
ate images that are more similar to the images of the target modality with
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Model Generated Modality DSC Precision Sensitivity

SegAN-CAT (baseline) - 0.8588 0.8820 0.8519
MI-GAN T1 0.7385 0.7487 0.7748
MI-pix2pix T1 0.6366 0.5880 0.7805
MI-GAN T1c 0.8549 0.8879 0.8401
MI-pix2pix T1c 0.8548 0.8867 0.8406
MI-GAN T2 0.8278 0.8807 0.7971
MI-pix2pix T2 0.8321 0.8861 0.8000
MI-GAN Flair 0.7483 0.8499 0.7007
MI-pix2pix Flair 0.3545 0.7902 0.2529

Table 6.23: Performances of our Image translation models applied to a multi-modal
SegAN-CAT. For each modality in the BraTS 2015 test set, we replaced the corre-
sponding images with the samples generated by MI-GAN and MI-P2P using the other
three modalities and evaluated the segmentation model performances. The baseline
row indicates the original performances of SegAN-CAT without image replacement.

respect to the ones received as input. All the metrics computed on the
baselines are worse than the corresponding ones computed on the images
generated with pix2pix generative models. As an example, when pix2pix
is trained to generate T2flair images from T2 images (see P2P(T2) in Ta-
ble 6.21), it is able to achieve improvements over the baseline (i.e., T2 im-
ages) of 35%, of 38%, and of 560% respectively in PSNR, SSIM, and MSE.
These results suggest that the processing performed by the generative mod-
els can translate the input into images that are more similar to the target
ones.

Single-Input vs Multi-Input Models. Our results show that both multi-
input models generally outperform single-input ones. However, our results
show at least two cases where a single-input model can perform better than
a multi-input one. In particular, the results in Table 6.18 show that, when
trained to generate T1c images from T1, single-input pix2pix is able to out-
perform MI-pix2pix (but is outperformed by MI-GAN). Instead, Table 6.20
shows that the single-input pix2pix trained to generate T1c from T1 images
outperforms both MI-pix2pix and MI-GAN on this task. These results are
not very surprising as T1 and T1c are very similar modalities, and the infor-
mation content of T2 and T2flair modalities do not provide a clear advan-
tage to generate the target images. Therefore, in this kind of task, a simpler
single-input model can perform better than a more complex one. These re-
sults suggest that the choice of single-input models over multi-input ones
should be based on a careful analysis of the considered task.
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MI-pix2pix vs MI-GAN. Our results show that MI-pix2pix performs slightly
better than MI-GAN for the generation of all the modalities except for T1,
where MI-GAN achieves the best performance instead. The results also
suggest that the improved performances of MI-GAN compared to pix2pix
discussed in [64] may not be due to the novel architecture and loss function
of MI-GAN but instead to the benefit of using multiple modalities as input.
As our results show, when pix2pix is extended to use multiple modalities
as input (MI-pix2pix), it generally outperforms MI-GAN.

Whole image vs tumor area. Comparing the metrics computed on the
whole image to the ones computed on the tumor area shows that none of
the trained models seems to perform much better (or much worse) than the
others on the specific tumor area. On the other hand, a direct comparison
of the values computed on the tumor area with the values computed on the
whole image is not possible. While for the tumor area, the computation
involves only relevant pixels, for the whole image, it also involves pixels
with no information (black pixels). Therefore, further investigations will
be necessary to understand this issue better.

Discriminative Metrics. We also tried to assess the discriminative power
of the generated images when used to make some decisions, more specif-
ically, when used as input to a single-input segmentation model. We per-
formed this analysis on T2flair images, as they are the most effective ones in
segmentation tasks. The results in Table 6.22 show that the images gener-
ated with MI-pix2pix are the ones that allow achieving the best segmenta-
tions, reaching an average performance (the DSC score) that is rather good
compared to the ones reached using the real images.

Modality Replacement on Multi-Input SegAN-CAT Lastly, we tried to
assess how the performances of a Multi-Input segmentation model change
when an unavailable modality in input is replaced with images generated
starting from the other three. To this extent, we applied our image trans-
lation models to the BraTS 2015 dataset and tested the performances of
our multi-modal SegAN-CAT adversarial network. The results show that in
particular, for the T1c and T2, the performances are almost the same as those
obtained using real images. However, the MI-pix2pix approach fails, in
this case, to provide Flair samples useful for the multi-input SegAN-CAT,
while MI-GAN accomplishes the task with a modest loss in final perfor-
mances. We envision that this result might be due to the feature extraction
process used by SegAN-CAT, which might penalize some features present
in the images generated by MI-pix2pix. This claim is also supported by the
fact that our previous results already asserted the validity of the MI-pix2pix
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Figure 6.13: Comparison of P2P(T1→2) (i.e., pix2pix trained to generate T2 from T1) and
P2P(T2flair→2) (i.e., pix2pix trained to generate T2 from T1). T2masked is the tumor
area.

when used with a single-input SegAN-CAT model, although indicating that
further investigations may provide helpful insights on the problem.

6.4.10 Qualitative Analysis

The qualitative analysis of the generated images allows to confirm the find-
ings discussed above. Figure 6.13 shows two examples of T2 images gen-
erated by pix2pix using either T1 or T2flair as input. A qualitative analysis
shows how using as input a modality that is more similar to the target one,
i.e., T2flair instead of T1, allows to generate much better quality images,
especially in the tumor area.

On the other hand, a qualitative analysis of this kind does not always
allow to appreciate the differences among the models. As an example, Fig-
ure 6.14 shows some T2 images generated by different models.

Finally, Figure 6.15 shows some examples of segmentation obtained us-
ing either real or generated images. As expected, the segmentations ob-
tained from generated images are generally not as good as those obtained
from real images. However, sometimes the segmentation obtained from
generated images are very similar (e.g., fourth row in Figure 6.15) or even
better (e.g., second row in Figure 6.15) than the ones obtained from the
real images. This might also be due to the fact that generated images in-
clude information from other modalities that might be not present in the
real image.
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Figure 6.14: Some examples of real and generated T2 images. P2P(T2flair→2) is a single-
input pix2pix model that uses T2flair images as input, MI-P2PT2

and MI-GANT2
are

multi-input models trained to generate T2 images. Each row corresponds to a different
subject from the test set.
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Figure 6.15: From left to right: ground truth and the segmentations from T2flair, pix2pix,
MI-pix2pix and MI-GAN. Each row corresponds to a different subject from the test set.
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6.5 Summary

In this chapter, we used transfer learning to address different issues in col-
laborative learning applied to medical imaging. The first was related to the
need for an automated feature extraction pipeline that also allowed to train
more specialized models for disease classification, which could potentially
be more suitable for smaller private datasets.

For this reason, we proposed an approach for training different kinds
of machine learning models –i.e., not only neural networks–, starting from
a pre-trained CNN. In particular, our first goal was to assess whether the
embeddings of Chest X-Rays extracted from a CNN might be used to train
novel classifiers from scratch.

To this purpose, we extracted the image embeddings from our CNNs
trained on CheXpert and used them to train two sets of classifiers based
on Random Forest and eXtreme Gradient Boosting (XGBoost). Then, we
completed the experiments by applying our embedding procedures to ob-
tain the final scores on CheXpert, using the combination of all the models
at our disposal. Our results show that image embeddings retain enough rel-
evant information to train classifiers based on trees. Moreover, the perfor-
mances obtained are often even better than those achieved by the NN classi-
fiers, indicating that CNNs are optimal for model extraction. However, the
classifier layer may require large amounts of data to achieve the best per-
formances. Once more, ensembling has proven to be useful in combining
classifiers, in particular when no single classifier outperforms the others
on all the target labels. Regarding the ensembling strategy, the entropy-
weighted averaging allowed again to achieve better performance overall by
assigning more weight to the most confident classifier for each label.

Once we expanded our model collection on CheXpert, we explored the
role of transfer learning and embedding for domain and task adaptation
in medical imaging. In particular, we exploited our pre-trained models to
learn a set of models on a smaller private dataset with a different label than
CheXpert. The advantage of using embeddings is exploiting the feature
extraction capabilities of CNNs trained on a large dataset of images while
designing a specific classifier for new data and, eventually, for a slightly
different task.

To understand the best approach to the problem, we proposed two dif-
ferent transfer learning approaches to apply the feature extractor stage of
pre-trained CNNs to a new local independent dataset - HUM-CXRs. Our
first TL approach consisted in applying a conventional fine-tuning of the
last classification layer of each CNN. This approach allowed to adapt the
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vector of labels to the new dataset and update the classifier’s weights to
the new task. The second approach involved two steps: First, we extracted
the image embeddings from the CNN, then we trained a set of tree-based
models to classify the embeddings. The latter approach has the dual advan-
tage of providing the best classification performances and minimizing the
computational resources – and time – required for adapting the pre-trained
models to the new task. This approach is thus successful when computa-
tional power – such as GPU availability – is limited.

The model pre-trained on CheXpert performed poorly on the baseline
approach (best average AUROC 0.777), i.e., using the CNNs directly in in-
ference on the new external independent dataset. Therefore, even if they
were trained on an extensive dataset, they could not generalize to a new do-
main and additional data. On the other hand, using transfer learning, in par-
ticular with image embeddings, it was possible to adapt the original models
to a new domain, –i.e., new hospital, new geographic and demographic
characteristics– and new tasks –i.e., different labels–, with minimum effort
and competitive performance (best average AUROC 0.856). Our approach
is not limited to our dataset and application; it could be adopted and suc-
cessfully applied by any other research group or hospital that might need
to classify medical images but does not have either a sufficient volume of
data or the computational resources to train the model. The resulting mod-
els would have an excellent feature extraction capability learned from large
public datasets following this framework. However, they will be validated,
tailored, and improved to the specific application to achieve optimal re-
sults. Another relevant advantage is that neither raw data nor other related
information would need to leave the hospital that owns it.

We used a Grad-CAM approach to provide an explainable insight into
our final model and investigate the presence of spurious correlations and
dataset biases. Overall, the explanations provided by the algorithm showed
a good ability to identify specific features concerning the identified classes.
The produced saliency maps focus on the lung field, with particular atten-
tion to the correct side of the chest. Double class images correctly showed
the differences between chest findings. However, De Grave et al. [81]
claimed to be skeptical about presenting only a few examples of explana-
tions since they may not truthfully represent the real behavior of the model.
For this reason, we also presented population-level explanations by averag-
ing two batches of 200 CXRs. The averaged saliency maps report a correct
focus of the network on the center of the image without exploiting short-
cuts that could be present outside the lung field, such as annotations, bor-
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ders, and lateral markers. The only exception we have identified concerns
the device class, particularly when detecting a pacemaker. While in some
cases it correctly focuses on the hardware components, in some examples
(Figure 6.9) it correctly classifies "device", but it exploits the leads that
from the pacemaker goes inside the atrium of the heart. This finding is not
entirely wrong, but we would expect it to focus more on the hardware –
i.e., the main box–. We think this might be caused by the original dataset
on which the models were pre-trained. The device class is extensive and
includes lines, tube, valve, catheter, pacemaker, hardware, coil, etc. Unfor-
tunately, the percentage of each subclass is not public. However, it might
be possible that tubes, leads, electrodes, and catheters are more present than
pacemakers, inducing the model to focus on them. Furthermore, still con-
cerning device class, we investigated false positive predictions. In most
cases, we asserted that the model correctly classified the device while the
ground truth was wrong. The main reason behind these false positives is
that our labels were extracted from the medical report that is often unstruc-
tured and operator-dependent. While pathologies are written and discussed
in the report, pacemakers, electrodes, probes, and others are sometimes not
clearly described in the report because not considered as "abnormal" as
medical pathologies.

The second issue we investigated in this chapter is missing modalities in
medical imaging. As we already introduced in chapter 2, medical imaging
datasets acquired in clinical practice are often incomplete, and this could
limit the applicability of models that instead require multiple modalities as
input. To investigate this issue, we first introduced SegAN-CAT, an adver-
sarial network architecture based on SegAN [185]. Our approach differs
from SegAN mainly in two respects: (i) the loss function has been extended
with a dice loss term and (ii) the input of the discriminator network consists
of a concatenation of the MRI images and their segmentation.

We applied SegAN-CAT to the Brain Tumor Segmentation problem, the
same task the SegAN architecture was successfully applied to. We then
designed a set of experiments to (i) compare the performance of SegAN-
CAT and SegAN, (ii) assess the performance of uni-modal models for each
contrast modality (i.e., T1, T1c, T2, and FLAIR), (iii) to study the prob-
lem of transferring a previously trained model across different modalities.
To this purpose, we first trained SegAN, SegAN with a dice loss term, and
SegAN-CAT on MRIs acquired with all the four contrast modalities. Our
results on both BraTS 2015 and BraTS 2019 datasets showed that both the
dice loss term and the discriminator input concatenation proposed in this
experiment improve the model’s final performance. Then, we trained one
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uni-modal SegAN-CAT model for each one of the four contrast modali-
ties in order to assess the performance that can be achieved using only the
information available in each modality alone. As expected, none of these
four models reached the performance of the multi-modal one. However,
the model trained on the FLAIR contrast modality outperformed all the
others and reached a performance close to the one achieved by the multi-
modal model. Thus, we investigated the possibility of transferring a model
trained with FLAIR to train a better model from images acquired with dif-
ferent contrast modalities. Despite confirming that it is rather difficult to
use transfer learning with adversarial networks [225, 227], our results sug-
gest that it is possible to successfully transfer a model trained on FLAIR
contrast modality also to other modalities. Indeed, our results show that
transfer learning often allows training uni-modal models with better perfor-
mance than the same models trained entirely on images with their specific
contrast modality.

In our last set of experiments, we investigated the possibility of generat-
ing an MRI modality from the available ones, exploiting image translation.
To this extent, we developed and compared different generative models
based on GANs to produce synthesized MRI modalities. In particular, we
studied two different multi-input generative models. The first, MI-pix2pix,
is a multi-input extension of the well known pix2pix approach [63] for
image-to-image translation problems. The second, MI-GAN, was adapted
from the approach introduced by Sharma et al. in 2019 [64]. These two
models were also compared to a single-input pix2pix model to assess bet-
ter the benefits of using a multi-input approach. We trained these mod-
els to generate missing modalities for brain MRIs using the BraTS2015
dataset. We designed a set of quantitative metrics to assess the different
approaches’ performance and performed a qualitative analysis. Our results
show that generated images are relatively accurate and realistic compared
to real images available in the dataset. In some cases, it might be diffi-
cult to distinguish between real and generated images. We also tested our
approach using both a uni-modal – for the FLAIR modality – and a multi-
modal SegAN-CAT model. Our results show that the generated images
could be used to solve segmentation tasks by reaching a relatively good
performance compared to using authentic images. However, our analysis
on multi-input SegAN-CAT highlighted the importance of considering the
target model for which the images are generated. A multi-input model can
learn inherently more complex patterns than single-input models, including
features that are not easily recognizable by visual inspection and may mis-
lead the model. Due to the black-box nature of CNNs – and the complex
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6.5. Summary

nature of adversarial networks – a direct investigation could be difficult to
perform. Nonetheless, we envision that further research on this topic might
help better understand the problem. To conclude, our findings suggest that
(i) multi-input models generally perform better than single-input ones with
a few exceptions and (ii) the MI-pix2pix model allows us to achieve, based
on our quantitative metrics, better results than MI-GAN.
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CHAPTER7
Conclusions

In our study, we addressed the problem of collaborative machine learning
for healthcare imaging. Collaborative machine learning is a set of tech-
niques and paradigms that enable sharing of knowledge between different
parties – e.g., different hospitals or research institutes – that hold heteroge-
neous datasets or datasets too small to apply machine learning techniques
successfully. First, we discussed the major issues in applying machine
learning and AI to healthcare. The first issue is related to data availability
and standardization. While data collection in hospitals is performed daily,
building shared datasets is a complex and costly task, as it requires shared
data collection policies and procedures. Only a few public datasets are large
enough to successfully apply advanced machine learning techniques like
Deep Learning in medical imaging. Publishing such large datasets also re-
quires a great effort in terms of human resources and legal processes. Data
Imbalance and Heterogeneity represent another set of issues: data coming
from different institutions are inevitably processed in different ways due
to different equipment, acquiring processes standards, and other practical
and organizational constraints. Moreover, datasets collected from different
sources are inherently imbalanced in terms of samples due to population
distribution and the institution’s size. Another issue is privacy, as health
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records are classified as sensitive data and require special treatment. How-
ever, legislation varies from country to country, and hospitals may also have
internal, more stringent policies. This issue is also related to the security is-
sue, intended as the need for mechanisms for keeping data used for learning
undisclosed to unauthorized parties.

We introduced standard machine learning models, such as neural net-
works and decision trees. Later, we defined some of the most popular ma-
chine learning tasks and their application in healthcare imaging. In particu-
lar, the classification task of automating the diagnosis of medical images is
particularly relevant to the field. It helps physicists perform diagnoses with
less effort and with more confidence. Another prevalent machine learning
task in medical imaging is related to segmentation and localization, which
allows automating the process of identifying which pixels or voxels in an
image belong to a particular region of interest – e.g., a lesion. A relatively
new application of machine learning in medical imaging is image transla-
tion. This technique allows generating an image, starting from another one
used as an input. Thus, it is possible to generate either a different kind of
imaging – e.g., CT to PET images-, or a different contrast modality – e.g.,
T1 MRI to T2 MRI. To this extent, we considered an essential task of prac-
tical relevance: commonly acquired datasets of multi-modality images –
e.g., MRI – are often incomplete, meaning that not every modality is avail-
able for each patient, and this constitutes an issue if the available machine
learning model requires all the modalities in input. Image translation can
be used to this extent to solve the problem efficiently.

Envisioning a collaborative machine learning approach, we considered
a distributed learning approach to address the issues mentioned above. To
this extent, we analyzed the state of the art of distributed learning applied to
medical imaging and healthcare and proposed a framework that defines dif-
ferent dimensions of analysis. The three major paradigms we found in the
literature are Ensemble Learning, Split Learning, Federated Learning. In
particular, we classified the different paradigms according to the (i) num-
ber of models in output, (ii) the ownership of the weights – e.g., Local,
Centralized or both–, and (iii) the nature of data exchanged by the nodes.
Then, we analyzed each contribution more in-depth, considering the spe-
cific applicative domain, the machine learning model used, the distributed
approach, and the sources of data imbalance and heterogeneity. From our
survey, the most used approaches are Federated Learning and Incremental
Learning, which can be seen as a particular case of FL. The contributions
that compare different distributed approaches mainly compare these two
approaches, other than with the baselines given by either centralized – e.g.,
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centralized dataset –or local – i.e., learning without information sharing–
solutions. Being CNN a model particularly suitable for images, we envision
that a comparison including Split Learning could be beneficial.

Ensemble Learning. To study the problem of collaborative learning
from the perspective introduced above, we consider a scenario in which
different classification or segmentation models are available. For this rea-
son, we considered an ensemble learning paradigm to combine multiple
models in a single one. In particular, we considered two different settings:
in the first scenario, we address the problem of heterogeneous data. Differ-
ent models are trained on different data distributions or different imaging
modalities. In the second scenario, we consider an ensemble learning ap-
proach when the heterogeneity resides in the model architecture rather than
data.

We first introduced two sets of ensembling techniques for segmentation
and classification, one based on simple average, maximum proposal, ma-
jority voting and the other based on the entropy-weighted average of the
predictions, calculated on different portions of the output. Then, for the
first scenario we first tested our approach on a dataset of simulated propos-
als, to test different agent configurations in the case of one expert agent
vs. N agents that are biased on either one of the two classes. We per-
formed our analysis considering the number of agents in the system, the
performances of the expert agent, and the noise that could affect the pre-
dictions. Then, we introduced real segmentation models based on CNN,
testing the approach both on non-medical images – to overcome the lack of
segmented data – and on the BraTS dataset. Lastly, we performed an anal-
ysis considering two additional dimensions for each segmentation case: the
number of confident agents and the number of correct predictions. Our re-
sults show that, depending on the relative performances of the agents, our
methods based on entropy-weighted average are a successful approach in
many cases. However, we also show that the relative performances of each
method are highly dependent on several factors –e.g., the confidence of the
models or their behavior on irregular patterns.–, which may not always be
fully captured by a simulated analysis. Nonetheless, we provided a prelim-
inary overview of the possible application of each ensembling method on
a segmentation task according to different conditions, although limited by
the scarcity of relevant datasets and pre-trained models.

Considering the second scenario, we applied three different ensembling
techniques on Automated Chest X-Ray Diagnosis. We trained seven dif-
ferent CNN architectures on the CheXpert dataset to this extent. We used
a simple average, an entropy-weighted average, and a stacking approach
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to obtain a single classifier from the seven models. Our results show that
the entropy-weighted average can outperform the best CNN architecture
for each label in 4 cases out of 5. Moreover, since no CNN was able to
outperform the others on every label, ensembling learning methods proved
to be successful in combining the strengths of each model.

Distributed Learning. As highlighted by our survey on state-of-the-art,
a popular approach in distributed learning applied to healthcare is the Fed-
erated Learning paradigm. In addition, Split Learning is another distributed
paradigm that has been designed specifically for healthcare settings. One
of the differences between ensembling and distributed learning methods is
that for the latter, the exchange of information happens during the training
phase of the model. For this reason, when a task is designed to be solved
collaboratively from the beginning, FL and SL constitute a viable design
solution. However, to our knowledge, no direct comparisons of the two
methods have been performed on medical imaging classification with a fo-
cus on heterogeneity. To this extent, we proposed a comparison between
the two methods, taking into account: (i) the heterogeneity of the data, in
terms of label distribution, (ii) the frequency of data sharing for the up-
date of the models, (iii) the choice of the architecture, in the case of Split
Learning. Our results show that both methods can outperform the models
trained on local datasets, motivating the choice of a distributed learning so-
lution. As confirmed by previous findings, Federated Learning can reach
performances comparable to those of a centralized solution. Split Learn-
ing, instead, allows for more design versatility while providing good per-
formances overall. When introducing data heterogeneity in the form of un-
balanced datasets, performances of SL are slightly more affected than those
of FL. We envision, however, that this issue can be compensated by a more
careful design of the local models, as one of the advantages of Split Learn-
ing is that it allows the different client models to be customized according
to specific needs. Lastly, as expected, introducing a U-Shaped architecture
in Split Learning allows enabling privacy on the exchanged labels at the
cost of a minor loss in performances. Distributed Learning approaches are
an active field of research; for this reason, they may require more effort
to be implemented compared to other distributed learning solutions such
as ensemble learning and transfer learning. However, our results confirm
them as valuable tools in the design of collaborative learning systems.

Transfer Learning. The third paradigm we analyzed is Transfer Learn-
ing, a well-known approach that allows training new machine learning
models using other models trained on different data. However, it also con-
stitutes an important tool to be used in a collaborative setting, especially
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when privacy regulations allow only to exchange model parameters. In
addition, transfer learning is versatile enough to address the problem of
diverse nature, such as missing modalities.

The first use of Transfer Learning we investigated is related to exploiting
the feature extraction pipelines of our models trained on CheXpert, to build
a new set of classifiers based on trees. To do this, we used a technique de-
rived from text-based machine learning models, called image embedding.
Embeddings are a compact representation of input data extracted from a
CNN. Once we extracted the embeddings, we proceeded in training two
sets of classifiers based on Random Forests and XGBoost. Once more,
no single model can outperform the others on every label, so we resorted
again to ensembling to produce a global model that accounted for all our
CheXpert models. Our results show that embeddings can capture features
from the data that are relevant to the task. Moreover, our models based
on trees can outperform the previous classifiers based on neural networks.
This indicates that while CNNs are a promising approach to perform fea-
ture extraction, neural network classifiers may require more data than other
classifiers to provide good performances.

Our previous results addressed the problem of heterogeneity in data and
the model architecture. Lastly, we exploit transfer learning to address the
target labels’ heterogeneity by applying a domain adaptation approach. To
this extent, introduced a new local dataset of Chest X-Rays, called HUM-
CXR, that includes different labels from CheXpert. Then, we exploited our
models trained on CheXpert to investigate how transfer learning can train
a classifier on the HUM-CXR dataset. We investigate different strategies,
including the classical fine-tuning of the pre-trained CNNs and learning a
new set of tree classifiers on the embeddings generated by the CheXpert
CNNs. Our results show that the approach based on embeddings has the
advantage of being both the one with the highest performances and the less
resource-intensive. This result confirms the potential of our approach in
transferring relevant features to datasets with a different distribution –e.g.,
data sourced from a different hospital, with different population and label
definitions. In addition, we performed an analysis based on Explainable AI
(XAI), using a GradCAM approach. This technique allowed investigating
which areas in the input images the network focuses on to predict the var-
ious labels. Our analysis on 200 CXRs showed that the network correctly
focuses on the lung sector when producing the classification. However, for
the device class, we discovered that when the patient has a pacemaker, the
network often focuses on the leads that go inside the heart instead of focus-
ing on the device box. We envision that this may be due to biases present
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in the CheXpert dataset; however, we could not investigate the issue further
since the CheXpert dataset does not report the percentage of each device
type.

In the last set of experiments, we instead focused on the problem of
Missing Modality Generation in MRI segmentation datasets. While in pub-
lic datasets commonly used for research, the different MR modalities are
present for every patient, this does not always happen in clinical practice.
When considering segmentation models, it may be beneficial to take advan-
tage of models that take multiple modalities as input, as they can exploit the
relations between the different modalities and produce better results. How-
ever, this could not be done when a modality is missing from the data.

To address this issue, we first proposed an Adversarial Network model
for segmentation, called SegAN-CAT, based on a model proposed in the
literature. In particular, the goals of this experiment was to (i) compare our
SegAN-CAT model with the SegAN model proposed by Xue et al. [185],
(ii) assess the performances of the uni-modal vs. multi-modal versions of
SegAN-CAT, and (iii) study the optimal strategy to perform transfer learn-
ing across the different modalities. Our results show how our approach
allows improving SegAN performances on both BraTS 2015 and BraTS
2019 datasets. Moreover, none of the uni-modal networks could reach the
same performances of the model trained using all the four input modalities.
However, the model trained on the FLAIR modality was the one closest
to the performances of our multi-modality model. For this reason, we in-
vestigated how to exploit transfer learning to train a model that performs
better on other MRI modalities. To this extent, we tested different fine-
tuning approaches. Despite the difficulties in fine-tuning an Adversarial
Network [225, 227], our results show that it is possible to transfer a model
trained on FLAIR to improve the performances of a model trained on other
modalities compared to the same model trained from scratch.

One of the possible strategies for enabling multi-input models for seg-
mentation in an incomplete dataset is to exploit image translation to gen-
erate missing modalities from the available ones. To this extent, we inves-
tigated two different approaches based on GANs. In particular, our two
approaches use two different architectures to generate one target modality
from the three available ones. We designed a set of quantitative metrics to
assess the performances of our approaches and performed both a quantita-
tive and qualitative analysis. Our results show that our image-translation
approaches can generate images that are often visually indistinguishable
from their real counterpart. Moreover, results suggest that a translation
approach based on multiple input modalities is beneficial in many cases,
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depending on the considered modalities. As a proof-of-concept, we tested
our approach using our generated images as input to both a uni-modal and
a multi-modal SegAN-CAT to perform segmentation. The resulting per-
formances of the segmentation model when using generated images con-
firm that it is possible to perform segmentation using our generated images,
confirming that the image translation process retains features relevant for
segmentation.

7.1 Future Works

Our experiments investigated the advantages of collaborative learning for
Medical Imaging. However, complex dynamics can arise from the ap-
proaches presented in this work. In Chapter 2, we proposed an analysis
focused on providing a coherent taxonomy of the various distributed learn-
ing approaches. Our results show that only a few works tried to apply these
methods to medical imaging, while a more significant amount applied dis-
tributed learning to medical records, such as EHR. We envision that a gen-
eral framework for multi-centric studies on machine learning could help
better understand what solutions and approaches are still to explore.

While providing fewer privacy guarantees by default, ensemble learning
theory could provide valuable insights when combined with other methods,
such as aggregating intermediate outputs in Split Learning or gradients for
Federated Learning. Our experiments on ensembling methods applied to
segmentation – although preliminary – showed that the dynamics are af-
fected by different design variables. This variability suggests that ensem-
bling methods for segmentation are more complex than the approaches used
for classification. They deserve more thorough analysis and more careful
modeling of each case study. On the other hand, our experiments that ex-
ploit ensemble techniques to aggregate different machine learning models
for classification showed more consistent and coherent results, highlighting
the validity of including a measure of confidence in the aggregation meth-
ods. However, this approach could be applied more accurately if a measure
of confidence is available directly from the machine learning model itself.
For this reason, we envision that this kind of method could be applied using
a more comprehensive range of different machine learning models.

At the same time, we believe that future works are necessary to inves-
tigate better how distributed learning methods can perform with a smaller
amount of data – as commonly happens in healthcare applications –. One
major issue we faced in implementing our Split and Federated learning
comparison is the lack of related modules in popular machine learning
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frameworks, as Tensorflow [243]. While for Federated Learning, the Ten-
sorFlow Federated module is integrated into the code repository, in our ex-
periments, we experienced some issues related to code stability between the
different releases. Concerning Split Learning, to the best of our knowledge,
a similar package still does not exist; for this reason, we had to develop a
custom implementation that currently does not support training using dif-
ferent physical machines. Moreover, due to computational cost associated
with Federated and Split Learning when deployed to a single host, we had
to use a less resource-intensive architecture, affecting the global perfor-
mances of the model. We envision that further optimization and research on
the topic could allow a more straightforward deployment of such methods,
allowing the use of more complex and better-performing machine learning
architectures.

The use of AI and radiomics is an active field of research; however, their
maturity is not yet enough to be applied in standard practice [244]. Con-
cerning feature extraction, we also envision the possibility of combining
radiomics features with CNN-extracted features [93], by either providing
radiomics features as input to a neural network or using CNNs to produce
radiomic features [245]. Our experiments focused on a CNN approach by
applying embedding and ensembling. Our results showed that it is possible
to train different classifiers by exploiting the feature extraction step pro-
vided by Convolutional Neural Network. However, the features included
in the embeddings are only relevant for solving the task on which the CNN
has been previously trained. In other words, the embeddings extracted for
a network trained to solve a source task might not be adequate to train
models to solve a very different task. In one ongoing work, we are ap-
proaching this issue by investigating the possibility to exploit Variational
Autoencoders (VAE) [73] instead of CNN to perform the feature extrac-
tion task. Variational Autoencoders are a particular kind of neural network
trained to learn a compact representation of the features that describe input
data. In this case, the VAE could produce a general-purpose feature extrac-
tion method that can be used to perform transfer learning to different tasks
– e.g., prognosis prediction, target localization, etc.– in a similar fashion to
our experiments with the HUM-XRAY dataset.

Another issue worth more investigation is related to dataset bias. Due to
the difficulty of collecting datasets with different distributions – e.g., dif-
ferent demographic and geographic characteristics–, studies based on Deep
Learning often use training and testing splits of the same dataset. One ex-
ample is CheXpert [246], [247], in which data are collected from Stanford
Hospital. This practice could limit their transition to clinical application
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[248]. Weber et al. [249] discussed the importance of evaluating the perfor-
mance of a Deep Learning model on applications they were not explicitly
trained for to characterize their generalization capabilities. In the summary
of Chapter 6, we also discussed that a further effort in defining the ground
truth might help discriminate some classes useful in medical practice - such
as patient devices.

In our experiments on segmentation, we investigated a transfer learning
approach based on Adversarial Network. In particular, applying transfer
learning to train adversarial networks is a challenging and yet rather un-
explored research area that deserves additional investigation. Moreover,
our analysis had been limited by the availability of pre-trained Adversarial
Networks related to the task. We envision that the availability of pre-trained
network models that include both the generator and discriminator weights
might be a successful approach in enabling transfer learning approaches
for adversarial networks. Another important topic relevant to adversarial
networks is the issue of introducing a better qualitative assessment of the
generated samples. In our experiments on image translation, we proposed
an approach that exploits our segmentation model to assess modality gen-
eration performances. However, our results seem to depend on the network
used for evaluation. We envision that further research on the topic and the
design of more specific assessment metrics could further improve the field
of image generation for medical imaging.

In our study, we provided insights on how a collaborative learning ap-
proach could be exploited to overcome the issues of data availability and
heterogeneity. Our research has been limited primarily by the issue of data
availability. However, another important aspect is the availability of pre-
trained models. While it is an established practice to exploit pre-trained
models for general imaging, e.g., using the Keras-Application module [175]
or Tensorflow Hub [250], a similar approach is more difficult when consid-
ering medical imaging tasks. While interesting projects exist, they have
often discontinued support – e.g., NiftyNet [251] – or are currently in de-
velopment – e.g., MONAI [252]. Thus, we envision that more effort on this
topic could significantly benefit the related research.

7.1.1 Equipment

Experiments on segmentation – both in Chapter 4 and 6–, have been per-
formed using the Tensorflow Docker environment [243, 253, 254] 1 on a

1We used different Tensorflow versions across the experiments. In particular, the 2.0a version for the SegAN-
CAT trained on BraTS 2015 and 2.0b for BraTS 2019, while we used Tensorflow 2.1 for the other experiments on
Colab. Particular care has been put in ensuring that the framework development did not affect our results; in par-
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server equipped with a 12GB Nvidia Titan V, Intel Xeon E5-2609 CPU
and 64GB of RAM. All the other experiments have been performed using
Google Colaboratory on an Nvidia Tesla P100-PCI-E-16GB GPU with 26
GB of RAM and an Intel(R) Xeon(R) CPU @ 2.30GHz.

ticular, mixing models trained on 2.0a and 2.0b provided wrong results due to a software bug in a normalization
layer.
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