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Abstract

Remote Sensing has known a consistent spread in use for agricultural purposes in recent years,
although the relationship with in-situ correspondents and hydro-energetical modelling results is
still being debated. Among the main variables in agricultural applications, Evapotranspiration
(ET) plays a major role and its measuring complexity has prompted the development of numerous
modelling formulations. This thesis work has focused on the improvement of hydrological mod-
elling in agricultural applications, covering a wide variety of inter-connected themes, all linked
to spatial heterogeneity and data source multiplicity.

Satellite Surface Soil Moisture (SSM) datasets have been analysed to determine their reliability
in agricultural applications. A hydrological consistency algorithm has been developed, providing
quite underwhelming results: on average, consistency was attained barely 60% of the time. The
reason for these low values was explored, identifying generally-better performances during the
irrigation season and with newer retrieval technologies. Extending the analysis to other satellite
data, a high-density sensor network in a greatly heterogeneous agricultural area has been used as
a reference to determine the reliability of satellite observations, with surface temperature (LST)
and Leaf Area Index showing good correspondences. SSM data, on the other hand, has shown
weak feasibility for use in irrigation schemes. Thus, the optimal solution for improving irrigation
management and agricultural monitoring would be a merging of on-ground information and satellite
data.

Hydrological modelling is a robust way to improve, characterise and exploit the full potential of
input data (whether from satellite and on-ground measurements) and thus the second part of the
thesis has focused on the FEST-EWB distributed energy-water balance model. Firstly, the model
scale dependence has been investigated, with a multi-scale cross-analysis over a vineyard. Model
accuracy with coarser data showed positive results, with a lower-than-one-third estimation error on
ET, compared to ≈10% errors from the (benchmark) aggregated model outputs. Another source of
model uncertainty is the energetical heterogeneity in mixed soil-vegetation systems. A two-source
version of FEST-EWB (FEST-2-EWB) has been developed to the purpose, separating the energy
balances for the two components of any given pixel. The new model was tested over a dedicated
innovative laboratory setting where it was possible to extract the Transpiration component from
the total ET. Global performances were similar across both models, whereas Transpiration was
portrayed quite closely by FEST-2-EWB, while FEST-EWB saw a consistent overestimation. A
similar comparison was also performed in two open field cases, obtaining comparable results. Fi-
nally, the role of Aerodynamic Temperature (TO) in Sensible Heat formulation has been explored.
A considerable dataset of EC measurements in a water-abundant and a quasi-arid location have
been used to derive and compare TO and LST. Notwithstanding temperature differences as high as
15-20°C, the integration of Aerodynamic Temperature into the model infrastructure yielded only
small gains in terms of Sensible and Latent Heat estimation.
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Chapter 1

Introduction

The use of Remote Sensing for agricultural purposes has seen a spike in recent years (Cracknell,
2018; Shanmugapriya et al., 2019) along with the new wave of available products. As a lot

of satellite data sources are freely accessible and require little effort from the final user, they can
be valid substitutes for in-situ data, which on the other hand may require extensive and time-
consuming measuring campaigns to be gathered (Mishra and Coulibaly, 2009; Ochoa-Tocachi et
al., 2018). Another perk of satellite data with respect to in-situ data relates to the spatial value of
the information: for extensive fields, point-wise measurements can be of limited use, in particular in
spatially heterogeneous crops, as they require the adoption of spatial interpolation techniques which
add to the global uncertainty (Grayson and Blöschl, 2000). Furthermore, in-situ data gathered by
different study groups may not follow one unique data gathering protocol (Dorigo et al., 2021) and
be hard to harmonize (Jolivot et al., 2021). On the other hand, satellite information is already
spatialized and can provide useful information without disregarding the natural crop variability in
space (Ochsner et al., 2013). Of course, the use of satellite data has some drawbacks (Dubovik
et al., 2021), with data availability sometimes limited by cloud cover or vegetation influence on
the signal of interest (Ulaby et al., 1982). Furthermore, both spatial resolution and temporal
frequency of the data can be unsuitable for some applications, e.g. low-resolution data for analysing
highly-heterogeneous crops (Molero et al., 2018; Piles et al., 2014) or long revisit times (Bauer-
Marschallinger et al., 2019). Finally, the accuracy of the variable-retrieving algorithms can be itself
in question (Skokovic et al., 2017). As a result of these strengths and weaknesses on both parts,
many studies have tried to use both types of products jointly (Joshi et al., 2016), for instance in
irrigation management, to assess landscape heterogeneity (Foster et al., 2019) and in theoretical
analyses about the relevance of the representation scale for agronomically-relevant hydrological
variables (Anderson et al., 2004; Liang, 2000). One main application field for satellite-in-situ
synergies is the calibration and/or validation of satellite data using in-situ counterparts (Czapla-
Myers et al., 2015; Jackson et al., 2010). In Surface Soil Moisture (SSM) applications, this has
produced somewhat mixed results (Brocca et al., 2011), also with multi-layer validation approaches
such as triple allocation (Chen et al., 2018; Gruber et al., 2016). One main outlet for the data
wealth that has invested the agricultural research world has been hydro-energetical field modelling
(Gonzalez-Dugo et al., 2009; Hank et al., 2015; Hoefsloot et al., 2012; Huang et al., 2019). More
than employing data as it is, the use of more or less complex modelling structures allows to identify
data inconsistencies and errors, as is the case of the reanalyses (Bastola and Misra, 2014; Berg et al.,
2018), and provides a general framework for the computation of non-measurable quantities that can
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be of interest (Quintana-Segúı et al., 2020). Physically-based models can add theoretically-founded
concepts to the table, enforcing a better understanding of the available data. These kinds of models
usually require at least an energetical part, dealing with the energy fluxes between vegetation, soil-
subsoil and lower atmosphere, as energy input from the sun is the main driver of plant development
(Allen et al., 1998; Priestley and Taylor, 1972). Usually, a hydrological component is also present
in the model, accounting for the amount of soil moisture available to the plant and its variation in
time (Corbari et al., 2011).

The key variable to estimate in crop monitoring is Evapo-Transpiration (ET) (Monteith, 1965).
It identifies the amount of water that is released into the atmosphere as a result of direct Evap-
oration, from soil and leaf surface, and plant-mediated Transpiration, a process driven by plant
metabolism, making it a critical component of the organism development (Allen et al., 1998). The
accuracy in its estimation has long been object of debate in the scientific community, as it is
extremely complex to measure directly (requiring costly and a necessarily limited measuring appa-
ratus) and thus it requires indirect estimation from oscillations of water vapour concentration in
the air (Campbell and Norman, 1998). A huge variety of formulae exist to estimate ET, ranging
from the simplest ones – employing only the air temperature, simply available from a meteorological
station on site (Thornthwaite and Holzman, 1939) – up to complex structures that also account
for micro-meteorological conditions and plant status – requiring not only meteorological data but
also variables like temperature, soil moisture and vegetation indices (Penman, 1948). The numer-
ous uncertainties (Ershadi et al., 2013; W. Kustas et al., 2004) in the computation of ET suggest
that a good estimation approach could come from integrated modelling of the plant-environment
interaction (Campbell and Norman, 1998), which can be all the more precise and continuous in
time if it draws on all the available data – both gathered on-site and remotely-sensed (McCabe
et al., 2016). In the plurality of existing models, different categories can be traced, according to
the different possible distinction criteria. One is the application scale, with generally low-resolution
models (e.g., Global Circulation Models) and higher-definition models, whose difference stands in
the relative importance of the modelled phenomena, variable with the representation scale (Blöschl
and Sivapalan, 1995). Another criterion is the structure of the intra-pixel energetical partition, with
two main categories: single-source (Bastiaanssen et al., 1998; Su, 2002) and two-source models (P.
Colaizzi et al., 2014; W. P. Kustas and Norman, 1999). Further differences emerge according to
the way the energy balance closure is attained, with residual models computing one of the energy
fluxes by enforcing the global balance (W. Kustas and Anderson, 2009) and others retaining physi-
cally based formulations for all fluxes and using other parameters to obtain energy balance closure
(Corbari et al., 2011). Among these models, a special mention goes to the FEST-EWB (Corbari
et al., 2011; Mancini, 1990) model, a distributed hydro-energetical model able to work with both
satellite and on-ground data to reproduce all the components of the hydrological cycle at different
scales. Its main perk is that the Land Surface Temperature (LST), which is required as an input in
most models, is instead computed internally by coupling the energetical and water-mass balances
and enforcing their closure. This main concept disengages the model from the LST availability,
which for field applications is a great constraint (Sishodia et al., 2020): while point-wise LST
data can be obtained continuously by inverting upwelling long-wave radiation measurements from
a radiometer in a meteorological station, distributed data is necessarily subject to either private
flights or publicly-available satellite overpasses (Heinemann et al., 2020). Although these latter
range considerably in terms of temporal frequency and accuracy, they are available at most at daily
frequency – and, in such a case, at relatively-low resolutions (Piles et al., 2014). This means that
most models are able to work only sporadically, which can be incongruous with crop-monitoring
necessities that require day-by-day – and even sub-daily – knowledge of the plant status (e.g., in
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order to decide whether to enforce an irrigation event). FEST-EWB, on the other hand, can run
seamlessly in time, using LST data only for calibration purposes and, thus, only when available.
FEST-EWB has already performed in a wide variety of contexts, providing fairly positive results:
snow cover estimation (Corbari et al., 2009); joint temperature-discharge model calibration (Cor-
bari and Mancini, 2014a); high-resolution ET modelling (Corbari et al., 2020); smart irrigation
forecast (Corbari et al., 2019).

The main focus of this PhD thesis work has been the improvement of hydrological modelling
in agricultural applications. The first part covers a quality analysis on some kinds of satellite
data that are usually employed in agricultural monitoring. This has been conceived as a premise,
in order to provide more information about the quality and applicability of the data that are
injected into hydro-energetical models and their possible detrimental effects. The second part
focuses on the FEST-EWB model, analysing its relation with satellite information: first, a study
on heterogeneity is performed, testing how the model reacts to data quality loss brought on by
decreasing spatial resolution; then, a model development is discussed, in order to obtain a better
representation of heterogeneous areas, operating a kind of disaggregation on satellite information;
finally, a way to fully respect physically-based principles while using satellite data is explored, with
the re-introduction of aerodynamic temperature – a variable long-overlooked because of its difficult
measurability – within energetical modelling.
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Materials and Methods
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Chapter 2

Methodology

This chapter details all the approaches employed in this Thesis work. The first two Sections will
deal mostly with satellite data analysis, while the others will focus more on model performance.

In Section 2.1, an algorithm to verify the hydrological consistency of satellite Surface Soil Mois-
ture (SSM), by contrast with precipitation and irrigation data, is detailed. As satellite SSM data
is widely-known to hold weak correlations with precipitation information (Dai et al., 1999; Sehler
et al., 2019), a targeted analysis algorithm is presented in this Section, able to investigate these
matters.

In Section 2.2, the overall comparison approach between a network of sensors for high-resolution
crop monitoring and corresponding satellite measurements is traced. This is framed within a low-
cost sensor citizen science project (Woods et al., 2019) aimed at improving the data quality and
quantity from long-term hydrological monitoring networks. Data from different satellites will be
contrasted with the on-ground measurements and their suitability to agricultural applications will
be discussed.

Next, the main focus will shift towards the FEST-EWB distributed hydrological model, pre-
sented in detail in the following Section 2.3. It enjoys a long list of successful applications in the
agricultural world and across all sorts of scales: from field to agricultural district (Corbari et al.,
2013; Corbari et al., 2020; Ravazzani et al., 2017) and river basin scale (Corbari and Mancini,
2014a). FEST-EWB stands amongst other hydrological models for its scale flexibility and the joint
enforcing of both the energy and water-mass balances for each pixel. Its main feature is probably
the independence from Land Surface Temperature (LST) data availability, as the variable is com-
puted internally to enforce the balances closure. This allows the model to perform continuous runs
even during data scarce periods, preserving the evolution of basin system in terms of Soil Moisture
dynamics.

In Section 2.4, the details of a scale analysis performed on the model are presented. This has
been devised in order to understand the impact of input data spatial resolution on the model
outputs, testing these responses in a heterogeneous, thus challenging from a resolution perspective,
agricultural area. For this scale analysis, a combination of model runs and data aggregations has
been employed, similarly to what performed by Ershadi et al. (2013) and Sharma et al. (2016)
with the single-source SEBS model (Su, 2002). They both found much higher relative errors over
latent heat estimation (>40%) when modelling with resolution-wise degraded data as opposed to
the resolution degradation of model outputs (<30%) obtained using the original, high-resolution
input data. A similar approach is taken on the FEST-EWB, to test its elasticity with changing
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input data quality.
In Section 2.5, an extension for the FEST-EWB model is discussed, aimed at an improved

modelling of heterogeneous areas. Most hydro-energetical models can be classified as either single-
source (Bastiaanssen et al., 1998) or two-source (W. P. Kustas and Norman, 1999), depending on
the formulation used for intra-pixel energy flux distinction. The former category treats the given
pixel as homogeneous, while the latter differentiates the energy balance between the vegetated
and non-vegetated internal fractions of the pixel. In this framework, FEST-EWB is something
of an outsider, employing one single energy balance equation (as single-source models do) but
partitioning the turbulent fluxes into a vegetated and a non-vegetated component (similarly to
two-source formulations). This “hybrid” outlook provides an undoubtedly higher accuracy when
dealing with relatively homogeneous areas, but can be less precise over heterogeneous ones. The
structure of a two-source version of the model (called FEST-2-EWB) is discussed.

In Section 2.6, another possible extension to the FEST-EWB is discussed. A common as-
sumption (P. D. Colaizzi et al., 2004) in Sensible Heat modelling is using the radiometric surface
temperature as a surrogate of aerodynamic temperature, which should be the correct driving force
of the process. This stems from a general belief that differences between the two are small, although
many a study has shown this to be untrue, with absolute differences as high as 15°C (Choudhury
et al., 1986; W. Kustas et al., 2007; Mahrt and Vickers, 2004). In this section, the methodology
for the indirect estimation of aerodynamic temperature from sensible heat measurements is pro-
vided, together with possible ways to integrate it both “instantaneously” and continuously with
the general FEST-EWB framework.

2.1 Hydrological Consistency Index

In this Section, an approach to contrast satellite with ground-retrieved data will be outlined. An
algorithm has been developed to verify the hydrological consistency of satellite Surface Soil Moisture
(SSM), by contrast with precipitation measurements. This originates from the fact that satellite
SSM data is widely-known to provide weak correlations with precipitation information, with values
as low as 0.11-0.26 in rural Kansas, U.S.A. (Dai et al., 1999) and 0.4 in Mediterranean Europe
(Sehler et al., 2019). In order to identify possible underlying causes, some studies have adopted
deeper analysis techniques. McCabe et al. (2008) worked on AMSR-E data in semi-arid Arizona,
computing correlations between SSM anomalies and precipitation in the preceding hours, obtaining
widely-ranging values (0.03-0.77). In the work by Meng et al. (2018), using ESA-CCI SSM data, it
was shown that only 57% of the study area with non-null 24-h cumulative precipitation registered
a positive SSM anomaly greater than 4%. For some reason, satellite SSM data seems to respond
weakly to (on-ground measured) precipitation inputs, and little work has been done on similar
situations involving irrigation.

The improved correlation index focuses on the physical consistency between the two mechanisms
that regulate the water cycle in the superficial soil layer: water accretion (snow- and ice-melt,
rainfall, or irrigation) and water depletion (evapotranspiration, surface runoff, or deep percolation).

The general algorithm of this Hydrological Consistency Index (HCI) is shown in Figure 2.1a. The
algorithm evaluates the sign of the soil moisture variation “positively” or “negatively” according to
the presence or absence of precipitation. In detail, for each soil moisture record in the dataset, the
precedent soil moisture retrieval and the cumulated rainfall in the elapsed period are compared.
A “positive agreement” (A+) is assigned for any day in which either (case a1) an increase in soil
moisture corresponds to a non-null rainfall or (a2) a decrease in soil moisture is registered in the
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absence of rainfall. On the other hand, a disagreement, or “negative agreement” (A–) is assigned if
the opposite situations unfold, that is: either (b1) an increase in soil moisture is observed in absence
of precipitation or (b2) a decrease in soil moisture is found even though a consistent amount of
precipitation has been registered. As a further step, the case (b1) is classified differently if it
verifies during an irrigation event, as the SSM increase can be explained by this artificial water
input. In this case, the agreement is considered as “positive” and labelled as “irrigation-driven
positive agreement” (IA+) as opposed to the cases (a1) and (a2), which can be seen as “rainfall-
driven positive agreements”.

An example application of the HCI over fictitious data is detailed in the right-hand panel of
Figure 2.1. Each dot represents an SSM measurement, which is expressed in its SSM variation
from the previous retrieval and the cumulated precipitation in between the two. The black lines
represent the conceptual divides between the different scenarios. The vertical one (∆SSM = 0 m3

m-3) is corrected to the dashed grey lines (∆SSM = ±ξ) to comply with the declared measurement
error of the datasets. In this first application, a standard value (0.04 m3 m-3 in volumetric ratio,
4.5% in corresponding saturation ratio) has been chosen for ξ, following the declared accuracy
target for SMAP and SMOS data (Y. H. Kerr et al., 2010), also found to be quite correct in
real-world applications (Wanders et al., 2012). When comparing datasets with a widely varying
spatio-temporal resolution, this parameter can be tailored to each dataset characteristics. The
horizonal black line in Figure 2.1b (PCUM = ζ) is set slightly higher than zero to prevent equating
small precipitation amounts, generated by the spatial interpolation process, to full precipitation
events. This threshold has been set to 0.5 mm for this first analysis, but different climates may
require a different parameterization.

Figure 2.1: Flux diagram of the Hydrological Consistency Index (HCI) (a) and example application
with fictitious data (b).

An ideal soil moisture dataset would display only positive agreements (either rainfall- or irrigation-
driven). The amount of negative agreements recorded for a given soil moisture dataset can be seen
as an indirect, application-oriented estimate of its error. The results of the developed methodology
are also compared with Pearson and Spearman correlations, common simple statistical correlation
indexes, to verify the improvements in discerning the relationship between SSM and precipitation
and irrigation.

9



CHAPTER 2. METHODOLOGY

2.2 Ground sensor network for crop monitoring

This Section is devoted to the sensor network data analysis which will be detailed in the later
Chapter 5. The employed sensors are able to collect solar illuminance, air temperature and soil
moisture information. Two different Irrigation Water Needs (IWN) are formulated in Section 2.2.2,
which will be used to exploit the data from the sensors to obtain some practically-oriented indicators
to help in agricultural management. In the Sections 2.2.3 and 2.2.4, ancillary information about
the pre-processing of illuminance data from the sensors and the steps required to derive Leaf Area
Index are detailed.

2.2.1 Actual and potential evapotranspiration

Actual and Potential ET are useful parameters to determine the plant activity and will be used in
the computation of the irrigation-oriented indexes.

The Potential Evapotranspiration (PET) is computed according to the general micro-meteorological
conditions of the area, adopting Priestley-Taylor (Priestley and Taylor, 1972) equation (useful be-
cause of its lower data requirements with respect to the Penman-Monteith formulation) and using,
as a preliminary approximation, a unitary crop coefficient (Kc):

PET = Kc · 1.26
∆

∆+ γ
SIN (2.1)

∆ =
deSAT

dT
(2.2)

eSAT (T ) = e∗(T ) = 0.6108 · exp
(

17.27 · T
T + 237.3

)
(2.3)

Where ∆ is the local slope of the curve (Equation 2.2) relating Saturated Water Vapor Pressure
(eSAT , Pa) to Air Temperature (T , °C), γ (Pa K-1) is the psychrometric constant, SIN is the
incoming short-wave radiation (W m-2).

The Actual Evapotranspiration (ET) is then obtained by constraining the PET (Equation 2.1)
with the soil moisture availability of each single field. ET is computed by multiplying the PET by
a reduction coefficient: the α (Parlange et al., 1999) and β (Kut́ılek and Nielsen, 1994) functions,
respectively for bare soil and vegetated fields.

α = 0.082 · SM + 9.173 · SM2 − 9.815 · SM3 (2.4)

β =


0 SM ≤WP
SM−WP
FC−WP WP ≤ SM ≤ FC

1 SM ≥ FC

(2.5)

In particular, the β function is based on the concept that when the soil moisture value is lower
than the field capacity (FC, the soil moisture amount right after superficial water is drained away),
the vegetation stomata begin to close and transpiration decreases significantly, following the soil
moisture dynamic and until it stops completely for soil moisture values less than or equal to the
wilting point (WP , minimum soil moisture at which plant roots can still extract water from the
soil).
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2.2.2 Irrigation water needs

The sensors data have been used to power two distinct indicators, called Irrigation Water Needs
(IWN), which have been designed for the purpose with the aim of assessing instantaneous crop
irrigation needs. The first one, Evapotranspiration-based (IWNET) is defined as the amount of
water required by the plants to transpire at full potential (i.e., without being limited by water
availability), and is indirectly obtained by evaluating the difference between Potential (i.e., water-
abundant, Equation 2.1) and Actual Evapotranspiration:

IWNET = PET − ET (2.6)

Alternatively, the Soil-Moisture-based IWN (IWNSM) has been defined as the amount of water
the near-plant soil needs in order to achieve field capacity. This indicator follows the principle of
triggering irrigation if the plant is in “stressful” conditions, where this state is defined by the Soil
Moisture Crop Stress Threshold (CST), as detailed in Allen et al. (1998). The threshold is defined
by:

CST = FC − p · (FC −WP ) (2.7)

p = pstand + 0.04 · (5− ETc) (2.8)

where p is the fraction of the Total Available Soil Water (TAW) that can be depleted from the
root zone before moisture stress occurs, and depends on the specific crop and climatic parameters
(represented by the Evapotranspiration under standard conditions, ETc, computed following Allen
et al. (1998). A reference value for p (pstand) is proposed by Allen et al. (1998) for several crops.
The p factor normally varies from 0.30 (70% of the FC–WP range provides stressful conditions for
the plants) for shallow-rooted plants at high PET rates (> 8 mm d-1) to 0.70 for deep-rooted plants
at low ET rates (< 3 mm d-1). The final SM-based IWN is thus computed as:

IWNSM =

{
0 if SM > FC

(FC − SM) · z if SM < FC
(2.9)

Where z identifies the crop-specific root zone depth. By formulation, the IWNSM assumes that
every irrigation event is aimed at restoring the SM status to field capacity conditions, avoiding
water losses by superficial runoff.

2.2.3 Radiation-Illuminance conversion

In order to elaborate the computations detailed above, some pre-processing steps need to be per-
formed on the data gathered by the sensors. Each sensor provides the amount of solar radiation it
receives in the form of illuminance, which is the total luminous flux incident on the sensor surface
per unit area. Thus, it is an areal average of the luminous energy emitted in space by a luminous
source. The measurement unit is the lux (lx), related to other luminosity units by Equation 2.2.3:

Illuminance [lx] =
Luminous Energy

Area

[
lm

m2

]
=
Luminous Intensity

Area

[
cd · sr
m2

]
(2.10)

The transition from luminosity variables to radiative ones is mediated by the luminosity func-
tion y(λ) (Michael et al., 2020). This stems from the fact that the intrinsic meaning of luminosity
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variables is to “translate” energetical inputs to effects on the human eye. The luminosity func-
tion is a wavelength-weighted relation between Watts and Lumens that accounts for the human
eye sensibility to different energy wavelengths. In particular, the human eye is most sensitive to
monochromatic radiation at 555 nm, and is unable to perceive energy outside the visible bounds of
the electromagnetic spectrum (380–400 nm up to 700–780 nm). This means that the Lumen–to–
Watt (Lux–to–Watt/m2 in this case) conversion is not “stable” across all the wavelengths of the
visible spectrum, but shows a peak at 555 nm (where 1 Watt = 683 Lumens) and has proportionally-
lower values for other wavelengths. The data used in this thesis is the one provided in 2006 (last
update) by the Commission Internationale de l’Eclariage (CIE) (Sliney, 2007). This means that
the Lumen–to–Watt conversion factor (χ) is obtained as follows:

χ = ϕ ·
∫ ∞

0

y(λ) Γ(λ) dλ (2.11)

Figure 2.2: Luminosity function y(λ).

Where ϕ is the peak-sensitivity conversion coef-
ficient (683 lm/W) and Γ(λ) is the relative solar ra-
diative spectrum, normalized over the whole short-
wave energy. The standard solar spectrum set by the
American Society for Testing of Materials (ASTM)
in its Air Mass (AM1.5) G173 Global Tilt data can
be used to solve the integral. The integral computa-
tion yields a value of 0.1688, meaning that the final
conversion factor is equal to 116 lx to 1 W m-2. This
procedure follows the guidelines set by Michael, et
al. (2020).

2.2.4 Leaf Area Index

One major interest with radiation data is their con-
version to Leaf Area Index (LAI). This parameter
represents the total green leaf area normalized over
the pixel area, it is globally associated with vegeta-
tion density and growth and is a major driver in pho-
tosynthesis and plant respiration processes (Watson, 1947). Apart from direct (and leaf-destructive)
measurement (Breda, 2003), LAI can be obtained as a canopy gap fraction from Beer-Lambert law
(Nilson, 1971). As the vegetation shadow reduces the incoming radiation, the resulting radiation
dampening ratio is strictly correlated to the dampening medium (the canopy density), which is in
turn related to LAI (Campbell and Norman, 1998) (Equation 2.2.4).

LAI = − ln

(
Ssens

Ssun

)
K(ψ)

(2.12)

K(ψ) =

√
x2 + tanψ2

x+ 1.774 · (x+ 1.182)−0.733
(2.13)

Where Ssens (W m-2) identifies the radiation reading of a sensor placed in a vegetated field,
while Ssun (W m-2) is the unperturbed solar radiation reaching the ground (it can be obtained both
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from an independent radiometer or from sensors placed in bare soil areas). The (nondimensional)
beam extinction coefficient K depends on the solar zenith angle (ψ) and the leaf spatial distribution
index (x). This latter is a parameter accounting for the presence of any preferential direction for
the leaves spatial distribution, with a unitary value identifying a spherical (isotropic) distribution.

2.3 FEST-EWB

Figure 2.3: FEST-EWB diagram.

The FEST-EWB (Flash–flood Event–based Spatially–distributed
rainfall–runoff Transformation Energy-Water Balance) model
is a distributed hydrological energy-water balance model (Cor-
bari et al., 2011; Mancini, 1990). It structure prescribes a
pixel-by-pixel joint solution of the energy and water mass bal-
ance equations (Eq. 2.14) at each calculation step. The two
equations are linked by the Latent Heat / Evapotranspiration
correspondence (Eq. 2.15), and the solution to this system
is found iteratively by searching for the surface temperature
that ensures the closure of both balances. Thus, this sur-
face temperature is, mathematically speaking, the result of an
equilibrium (hence its name, Representative Equilibrium Tem-
perature, or RET), quite akin to its real-world correspondent,
the Land Surface Temperature (LST), itself the final result of
a thermodynamic equilibrium in the superficial soil layer. The
list of variables used by the model is detailed in Table 2.1,
while the general model structure is provided in Figure 2.3.{

Rn−G− (HS +HC)− (LES + LEC) = ∆W/∆t

∆SM/∆t = (P −R− PE − ET )/z
(2.14)

LE = LES + LEC = λwρwET (2.15)

where the first equation refers to the water mass balance and the second to the energy balance,
with the “s” and “c” subscripts identifying the “soil” and “canopy” components of the fluxes,
respectively. The mathematical stability of this system of equations is generally guaranteed by the
assumption of negligible storage terms (∆W/∆t), usually safe at low spatial resolutions (Meyers
and Hollinger, 2004). In the following subsections, the single energetical fluxes will be shown in
detail.
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Table 2.1: List of symbols and variables employed by FEST-EWB.

Parameter Meaning Unit

cP Specific heat of humid air J kg-1 K-1

d Zero-plane displacement height m

e* = eSAT Saturation vapour pressure kPa
eA Air vapour pressure kPa
ET Evapotranspiration mm
FC Field Capacity m3 m-3

fV Vegetation Fraction –
G Soil Heat Flux W m-2

gth Soil Thermal Conductivity W m-1 K-1

H Sensible Heat Flux W m-2

L Monin-Obukhov length m
LE Latent Heat Flux W m-2

LAI Leaf Area Index m2 m-2

P Precipitation rate mm
PE Drainage flux mm
R Runoff flux mm
RA, RABS Vegetation and Bare-Soil Aerodynamic resistance s m-1

RC Canopy / Crop resistance s m-1

RET Representative Equilibrium Temperature K
RH Air humidity -
RLD Longwave downwelling radiation W m-2

Rn Net Radiation W m-2

RS Soil resistance s m-1

RS,min Minimum stomatal resistance s m-1

Rsoil Wet-soil resistance s m-1

SIN Shortwave downwelling radiation W m-2

SM Soil Moisture m3 m-3

SMSAT Saturation Soil Moisture m3 m-3

TAIR Air Temperature °C
Tzero Temperature below the first soil layer °C
w Horizontal wind velocity s m-1

WP Wilting Point m3 m-3

z Depth of the first soil layer m
Zoh Roughness length governing heat and vapour transfer m
Zh Height of humidity measurements m
Zom Roughness length governing momentum transfer m
Zm Height of wind measurements m
αALB Albedo -
γ Psychrometric constant kPa °C-1

∆W/∆t Energy storage terms W m-2

εatm, εsoil Atmosphere and Soil emissivity -
κ Von Karman constant -
λw Latent Heat of Vaporization for water J kg-1

ρa Air density kg m-3

ρw Water density kg m-3

σ Stefan-Boltzmann constant W m-2 K-4

ΨH Atmospheric stability function for heat and vapour transfer -
ΨM Atmospheric stability function for momentum transfer -
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2.3. FEST-EWB

2.3.1 Net Radiation

Net Radiation is the global resultant of four distinct radiative fluxes, each of which can be char-
acterized as incoming or outgoing and as short- or long-wave. These components are displayed in
Equation 2.16:

Rn = SIN (1− αALB) + εatmσT
4
AIR − εsoilσRET

4 (2.16)

The first element identifies the net shortwave radiation (Rn), featuring the incoming amount (a
meteorological input to the model) and the surface albedo (αALB , a vegetation-related input either
chosen according to literature or obtained from satellite observations). The last two elements of the
equation represent the longwave radiation fluxes, respectively incoming from the lower atmosphere
and outgoing as thermal emission of the surface. The atmosphere emissivity (εatm) is usually
obtained from models that account for cloud cover fraction (Sedlar and Hock, 2009).

2.3.2 Soil Heat Flux

The Soil Heat Flux (G) identifies the energy transferred from the superficial soil layer down to the
lower soil strata via conduction, and has a linear relation with RET (Eq. 2.17):

G =
gth
z

(RET − Tzero) (2.17)

Where the soil thermal conductivity is parametrized on soil water tension, i.e., a combination
of soil texture and soil moisture conditions, through the McCumber-Pielke equation (1981).

2.3.3 Sensible Heat Flux

Sensible Heat encompasses the energy transfers between surface and lower atmosphere, driven by a
temperature gradient between the two. In the model, it is formulated as two separate components,
accounting for soil and canopy contributions (Eq. 2.18):

H = HS +HC = (1− fV )ρAcP
RET − TAIR

RABS
+ fV ρAcP

RET − TAIR

RA
(2.18)

The aerodynamic resistance for the canopy is obtained as follows (Thom, 1975):

RA =
1

κ2w

[
ln
Zm − d

Zom
–ΨM

(
Zm − d

L

)] [
ln
Zh − d

Zoh
–ΨH

(
Zh − d

L

)]
(2.19)

RABS =
1

κ2w

[
ln
Zm − d(Zlow)

Zom(Zlow)
–ΨM

(
Zm − d(Zlow)

L

)] [
ln
Zm − d(Zlow)

Zoh(Zlow)
–ΨH

(
Zm − d(Zlow)

L

)]
(2.20)

It depends on a series of roughness lengths, related to the vegetation height, and on the wind
intensity: low wind speeds and jagged surfaces create slow-moving air pockets which decrease the
water evaporation rate, while the opposite situation enhances the turbulent air mixing and energy
exchanges. The equivalent resistance for bare soil conditions (RABS) shares the same formulation
but with a close-to-null (Zlow = 0.1 m) vegetation height (Eq. 2.20).

According to strict theoretical formulations, the temperature gradient driving the sensible heat
flux is established by the aerodynamic temperature. However, for most of the FEST-EWB appli-
cations, and in line with common practices in literature, the aerodynamic temperature has been
assumed equal to the surface temperature (P. D. Colaizzi et al., 2004).

15



CHAPTER 2. METHODOLOGY

2.3.4 Latent Heat Flux

This component describes the amount of heat released in the atmosphere as a result of the Evap-
otranspiration process (Eq. 2.15). Its computation is performed through the Penman-Monteith
formulation (Monteith, 1965; Penman, 1948), with the addition of a differentiated formulation (Eq.
2.21) for the bare soil and canopy contributions:

LE = LES + LEc = (1− fV )
ρAcP
γ

e* − eA
RABS +RS

+ fV
ρAcP
γ

e* − eA
RA +RC

(2.21)

Both components feature the saturation vapour pressure, function of the surface temperature
and the actual vapour pressure, determined by the air temperature and relative humidity (Campbell
and Norman, 1998). The canopy and soil resistances are detailed in Equations 2.22 and 2.23,
and feature a dependence on soil moisture conditions, together with components accounting for
vegetation characteristics (RSmin) and density (LAI) (Jarvis, 1976).

RC =
RSmin

LAI

FC −WP

SM–WP
(2.22)

RS = 3.5

(
SMSAT

SM

)2.3

+RSoil (2.23)

2.3.5 Parameters

More or less explicitly, all the terms in Equations 2.14–2.23 are functions of the input soil and
vegetation parameters. These can be either stationary or time-varying. Soil and terrain parame-
ters belong to the former category and include descriptors of the soil water motion (e.g., hydraulic
conductivity, pore-size index, bubbling pressure, residual and saturation water contents, active soil
depth) and geo-morphological characteristic of the basin (e.g., aspect, elevation, slope). Vegeta-
tion (e.g., plant height, vegetation fraction and leaf area index) and meteorological (e.g., rainfall,
incoming shortwave radiation, air temperature and relative humidity) parameters, on the other
hand, mostly belong to the “time-varying” category. Minimum stomatal resistance (depending on
the specific plant) and wet-soil resistance to evaporation (depending on the soil type) are generally
assumed to be fixed with time. Finally, all input data can be provided either as single-valued or
with their own spatial distribution, depending on data availability.

2.3.6 Calibration and Validation procedure

The traditional calibration procedure for hydrological models features point-wise measurements of
the calibration variable, like river discharge (e.g. for flood management purposes) or soil moisture
(e.g. for agricultural applications) collected at specific points, which are limited in number and
only represent a part of the basin hydrological cycle. The FEST-EWB hydrological model, on the
other hand, allows a pixel-by-pixel calibration, particularizing the calibration parameters with a
spatial heterogeneity derived from the calibration variable patterns (Corbari and Mancini, 2014a;
Corbari and Mancini, 2014b; Paciolla, Corbari, Hu, et al., 2021).

The calibration of the FEST-EWB distributed hydrological model is performed by means of a
pixel-by-pixel comparison between the modelled Representative Equilibrium Temperature (RET)
and the remotely-sensed Land Surface Temperature (LST). The calibration process is regulated by
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the pixel-by-pixel minimization of the average model error, defined as the objective function O (Eq.
2.24).

O =
1

n

n∑
i=1

(RETi–LSTi) (2.24)

Where n stands for the total number of calibration data available. The pixel-by-pixel approach
of the calibration process allows to refine the spatial heterogeneity of the calibration parameters
involved.

In previous applications of the model (Corbari and Mancini, 2014b), five main parameters have
been found to be critical for the calibration process: the Brooks-Corey (or pore-size distribution) in-
dex, the saturated hydraulic conductivity, the soil depth, the minimum stomatal resistance and the
wet-soil resistance to evaporation. Of these, the first three are mainly related to water geodynamics,
while the last two are more closely connected to the ET process.

As the model can use LST information for the calibration phase and does not need flux tower
data as an input, energy fluxes can be used for the validation. Moreover, since model inputs and
energy fluxes measurements originate from independent sources, a given the integrated nature of
the model, which simulates the entire water cycle, calibration and validation can be performed over
the same time window, without the need of identifying a calibration-only and a validation-only
period.

2.4 Scale analysis

For the Rapitalà case study (which will be described in Section 3.3), proximal-sensing data of land
surface temperature and vegetation indices was available from airplane flight at the spatial reso-
lution of 1.7 m (vegetation indices were resampled to this resolution from their native 0.7 m for
uniformity reasons), relatively high in the field of agricultural applications (Mikhail et al., 2001).
This has allowed to test the importance of data resolution on the FEST-EWB, by means of a
scale analysis (Figure 2.4). Firstly, the model outputs (Latent and Sensible Heats, Soil Moisture
and Representative Equilibrium Temperature) have been upscaled to some specific spatial reso-
lutions. Then, the input data have been aggregated to the same scales and fed to the model,
which is calibrated anew for each spatial resolution employing the same calibration function of
the highest-resolution calibration. The model results, either originated from the upscaling of the
native-resolution results or after the model calibration employing upscaled input data, have then
been compared.

The scales chosen for the analysis have been selected by similarity with those of some common
satellite products: 10 m for Sentinel 2; 30 m for Landsat (multispectral); 250 m for MODIS Visible
and 1000 m for MODIS Thermal. To avoid reprojections that could alter the original data, the
target scales are picked among the multiples of the native scale (1.7 m): 10.2 m for similarity with
Sentinel, 30.6 m with Landsat, 244.8 m for MODIS Visible and 734.4 m (the total extension of the
area) for MODIS Thermal.

The upscaling has been performed through simple averaging of the original data to the target
resolutions. The process is detailed in the following, as an example, for the production of the
10.2 m upscaled product. The ratio (6:1) between the target (10.2 m) and native (1.7 m) spatial
resolutions indicates that any target pixel covers 36 (6x6) native pixels. The value to be assigned
to the target pixel is obtained as the average of the 36-pixel sample. For each sample, also the
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Figure 2.4: Flowchart of the two approaches compared in the scale analysis. The calibration/vali-
dation process for the FEST-EWB model is also detailed in the lowermost box.

standard deviation is retained as an indirect measure of the pixel heterogeneity. Thus, for each
final product, both an average and a standard deviation map are stored. The process is repeated,
always starting from the native 1.7 m spatial resolution, for all the scales involved in the analysis.

2.5 FEST-2-EWB

In this section, the FEST-2-EWB (Flash–flood Event–based Spatially–distributed rainfall–runoff
Transformation 2-source Energy-Water Balance) model is presented, as an extension to the original,
hybrid-structured, FEST-EWB model described in Section 2.3. The main assumption is that each
pixel can be split into a vegetated and a non-vegetated fraction, according to its vegetation fraction
parameter (fV ). As a step forward from the original model, each pixel sub-area is assumed in
independent thermal equilibrium with its own subsoil and atmosphere surface layer. This means
that the superficial temperatures at which these equilibria are reached are separate for the two
sub-areas, and are identified as the Soil Temperature (TSOIL) and the Crop Temperature (TCROP ).
The original system of equation (Eq. 2.14) is thus split into Equations 2.25–2.34.

RnSOIL −GSOIL = LESOIL +HSOIL (2.25)

RnSOIL = SIN (1− αALB,S) +RLD − εSσT
4
K,soil (2.26)

GSOIL =
gth
z

(Tsoil − Tzero) (2.27)

LESOIL =
ρAcP
γ

e*(Tsoil)− eA
RABS +RS

(2.28)

HSOIL = ρAcP
Tsoil − Tair
RABS

(2.29)

RnCROP −GCROP = LECROP +HCROP (2.30)
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RnCROP = SIN (1− αALB,C) +RLD − εCσT
4
K,crop (2.31)

GCROP =
gth
z

(Tcrop − Tzero) (2.32)

LECROP =
ρAcP
γ

e*(Tcrop)− eA
RA +RC

(2.33)

HCROP = ρAcP
Tcrop − Tair

RA
(2.34)

With respect to the original equations, the only addition concerns a slightly differentiated emis-
sivity for soil (εS) and canopy (εC) for longwave emitted radiation, with two distinct values instead
of the global one employed in Equation 2.16.

The energy balances structure is organized such that their closure is performed both at sub-
pixel and global pixel level, by computing these latter as shown with a generic quantity X in the
following Equation 2.35.

Xpixel = (1− fV ) ·XSOIL + fV ·XCROP (2.35)

Finally, as is usual practice for two-source energetical models (W. Kustas and Anderson, 2009;
Norman et al., 1995), a pixel-level “global” representative temperature is obtained from the two
subpixel temperatures. This equivalent pixel-level temperature, which is necessary for model output
interaction with outsourced satellite data, is obtained from the longwave upwelling radiation balance
(Eqs. 2.36–2.37):

RL,UP
(pix.) = (1− fV ) ·RL,UP

(S) + fV ·RL,UP
(C) (2.36)

RET 4 ≈ (1− fV ) · T 4
SOIL + fV · T 4

CROP (2.37)

The overall pixel temperature is identified with the acronym RET, which stands (again) for
Representative Equilibrium Temperature, by usage similarity with the RET from FEST-EWB.
However, the two critically differ from a conceptual point of view: the FEST-EWB RET is the
temperature that closes the energy balance for the overall pixel, whereas the FEST-2-EWB RET
is the representative radiative temperature for the pixel, which joins the two fraction-level temper-
atures that actually close the single energy balances for their respective pixel sub-areas.

The calibration/validation procedure is the same as for FEST-EWB. The calibration involves
the comparison between the modelled surface temperature (RET) and the estimated one (LST),
with five main calibration parameters: active soil depth, hydraulic conductivity at saturation,
Brooks-Corey (pore size) index, minimum stomatal resistance and wet-soil evaporation resistance.

With respect to the original FEST-EWB structure, this expansion allows to compute two addi-
tional outputs (TSOIL and TCROP), provided the same input data required by FEST-EWB. More
than gaining two extra outputs, the main rationale for working on this extension has come from the
necessity of differentiating the contributions to the energy balance in heterogeneous areas. Crop
temperatures have been found to be generally lower than soil temperatures in heterogeneous scena-
rios (Bian et al., 2017; Nieto et al., 2019), and this holds even for more homogeneous crops, although
with a heavier dependency on the amount of incoming radiation (P. D. Colaizzi et al., 2012). This
means that, when assuming one single temperature for a heterogeneous pixel (e.g., for single-source
models), this temperature is actually somewhere in between a cooler canopy temperature (which
powers plant transpiration) and a warmer soil temperature (which determines water evaporation
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from the soil). By estimating total Evapotranspiration with just one global temperature (Eq. 2.14),
FEST-EWB is expected to overestimate the canopy contribution and underestimate the soil one.
For agricultural applications, since ET is a major indicator of plant water consumption, this poten-
tial overestimation could lead to erroneous amplification of crop yield or irrigation requirements,
with consequent produce prevision error or water resource waste. By setting two distinct temper-
atures in regulating the energetical balances of soil and vegetation, a more accurate modelling is
expected to be obtained in all vegetation conditions, with the more remarkable difference expected
in the most heterogeneous scenarios (vegetation fraction around half of the pixel). The activities
detailed in the following Chapter 7 are aimed at proving these expected results.

2.6 FEST-AeroT

Figure 2.5: Models schematic fluxes

The aerodynamic temperature (TAERO) identifies
an extrapolated value associated with an “effective
depth” within the canopy, which is the origin of the
Sensible Heat Flux (Boulet et al., 2012; W. Kustas
et al., 2007). This makes this temperature the pri-
mary driver of Sensible Heat transmission, instead of
the more commonly used radiometric temperature.
However, numerous studies have shown how the two
may differ considerably, leading to potentially large
errors in evapotranspiration estimates (Choudhury
et al., 1986; Verhoef et al., 1997). Focusing only
on the sign of the temperature divergence (LST–
TAERO), Mahrt and Vickers (2004) obtained mixed
results in an arboreal environment, as did Colaizzi
et al. (2004), while both Chebbouni et al. (1996)
and Kustas et al. (2007) found more univocal rela-
tions, with the radiometric temperature consistently
the highest, in some cases with big margins (by up
to 20-25°C). While no clear direction was found for
the divergence, some of these studies tried to link it
to its boundary conditions, both meteorological and
vegetation-related. Mahrt and Vickers (2004) found
a non-negligible positive dependency of the temper-
ature divergence on incoming solar radiation (SIN ),
also testing dependencies on Leaf Area Index (LAI)
and Soil Moisture (SM) with less conclusive results.
They also proposed a linear relation based on SIN ,
which was also employed by Kustas et al. (2007), who however found much higher differences
between the two temperatures and a non-negligible range of variation of the relation results on
SM . A more recent use of TAERO can be seen in the work of Mallick et al. (2015) and following,
where TAERO reprises its role as main driver of the Sensible Heat exchange, although it is seldom
employed as an explicit variable. In the following subsections, the analysis main points will be
detailed:

1. the aerodynamic resistance parametrization necessary for the estimation of TAERO from Sen-
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sible Heat measurements;

2. the preliminary models employed to assess the effect of TAERO on Latent Heat;

3. the parametrization of TAERO for continuous usage within the model

4. the final model form encapsulating TAERO

This analysis paradigm is detailed in Figure 2.6.

Figure 2.6: Aerodynamic Temperature analysis flowchart

2.6.1 Resistance parametrization

The accurate definition of Sensible Heat Flux, as opposed to commonly-known formulations such
as the one employed in FEST-EWB (Eq. 2.18) is the following:

H = ρAcP
TAERO − TAIR

RA
(2.38)

Thus, it is possible to obtain TAERO estimations indirectly, starting from Sensible Heat measure-
ments (together with air temperature ones), and through a modelling of the aerodynamic resistance.
Indeed, a wide variety of formulae exist for this parameter, changing wildly in characteristics and
range of application. In order to identify the formulation of RA best suited to the integration
in FEST-EWB, nine different formulae have been compared, similarly to the work by Liu et al.
(2007), listed in Table 2.2.

In the table, “MOST” identifies the verification of the Monin-Obukhov Similarity Theory (Fo-
ken, 2006; Monin and Obukhov, 1954), that is the theoretical structure of logarithmic integral
gradient of the wind and temperature profiles over the surface layer. This features the stability
parameters, which correspond to the normalization over the Monin-Obukhov length (L) of the
wind and temperature measurement height (ζ), and the momentum (ζm) and temperature (ζh)
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Table 2.2: Aerodynamic resistance parametrizations.

Source Formulation Assumption

Thom, 1975 RA = 1
κ2w

[
ln

(
Zm−d
Zom

)
−ΨM (ζ)

] [
ln

(
Zh−d
Zoh

)
−ΨH(ζ)

] MOST
Zom ̸= Zoh

Thom (simpl.) RA = 1
κ2w

ln
(

Zm−d
Zom

)
ln

(
Zh−d
Zoh

) MOST
Zom ̸= Zoh

Yang et al., 2001

RA = 1
κ2w

[
ln

(
Z

Zom

)
−ΨM

(Y )(ζ, ζm)
] [

ln
(

Z
Zoh

)
−ΨH

(Y )(ζ, ζh)
]

ζ =

[
RI

[ln( Z
Zom

)]2

ln( Z
Zoh

)

Z
Zom

]
÷

[
1− 2RI

1−Zom/Z
1−Zoh/Z

· PY

]
PY ≈

∑
cijk[ln(−RI)]

i
[
ln

(
ln Z

Zom

)]j [
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sink heights, respectively. The Monin-Obukhov length, together with the Richardson number (RI ,
J. Hunt, 1998), are abstract quantities that are widely employed in the assessment of atmospheric
stability. Their equations are:

L =
−ρAcPw3

shTAIR

κgH
(2.39)

RI =
g

TAIR

(TAIR − TSURF )(Z − d)

w2
(2.40)

While the Monin-Obukhov length is a characteristic scale of surface layer turbulence, the
Richardson number accounts for the influence of atmospheric stability on the flux-gradient re-
lationship in the surface layer.

Among these formulae, the Thom formulation is widely employed in literature, mainly because
of its low parameter requirements and its computational simplicity. It is employed also in the classic
FEST-EWB model, most of the times in its simplified, neutral-conditions version, neglecting the
instability components (ΨM , ΨH).
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2.6.2 Test models

In order to assess possible effects of employing TAERO over Latent Heat estimation, two test versions
of FEST-EWB have been developed. Both start from the assumption that the Sensible Heat
measurement from EC stations is acquired as a model input, so that H is not simulated by the
model and is considered a constant in the energy water balance. This shifts all the focus on the
Latent Heat, trying to shed light on what happens to the energy balance when one flux (the Sensible
Heat) is “captured” perfectly by the model. The first model (”Test Model 1”) uses the classical
FEST-EWB formulation (Eq. 2.21) for Latent Heat, with the following energy balance equation:

Rn−G−H(const.) − LE = 0 (2.41)

The second model (”Test Model 2”) highlights the role of the aerodynamic temperature in the
latent heat transmission. This is done by acknowledging (Mallick et al., 2015) that the transpiration
water flux can be split into two successive phases: (a) a motion from the inner leaf stoma to the
leaf surface and (b) the transition from the leaf surface to the external atmosphere. The starting
conditions can be assumed as an environment with 100% relative humidity (saturation conditions)
and temperature equal to the radiant temperature of the leaf (TRAD or, in the model framework,
RET). The leaf surface can be assumed at an almost-saturated relative humidity, and the exchange
with the outer atmosphere at source-sink height temperature (that is, TAERO). Finally, the external
atmosphere is characterized by ever-changing relative humidity and air temperature, constantly
obtained in input from the model. This transition can be summed up in the following equation:

LE(int.) =
ρAcP
γ

eO
∗ − eO
RC

=
ρAcP
γ

eO − eA
RA

= LE(ext.) (2.42)

LE =
ρAcP
γ

eO
∗ − eA

RA +RC
= LE(int.) = LE(ext.) (2.43)

Injecting this concept into the model formulation of Latent Heat yields the revised energy
balance:

Rn−G−H(const.) − LE(int.) = 0 (2.44)

2.6.3 TAERO Parametrization

The previous steps were aimed at assessing the effect of indirectly-measured TAERO over other
components of the energy balance, meaning that the comparison were possible only when sensible
heat measurement were available. In order to achieve a continuous and full presence of To within the
model, and following in the footsteps of Mahrt and Vickers (2004) and Kustas et al. (2007), in this
section the parametrization of TAERO against surface temperature is explored. The parametrization
formula they propose defines the temperature difference as function of incoming shortwave radiation
and Leaf Area Index:

TRAD − TAERO = C[SIN − CS(LAI − LAIREF )] · ν (2.45)

Where C, CS and LAIREF are empirical parameters and ν is a correction factor accounting for
border-line radiation conditions (S < 100 W m-2). From previous applications (W. Kustas et al.,
2007), values of 0.0087, 850 and 1 can be used in a first instance, provided that – in particular
on CS – different crops and climates can determine a non-negligible variability. Following some
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considerations on the formula structure, another alternative formulation is proposed (Eq. 2.46),
differing from Equation 2.45 in two main aspects: (a) the negative value of the C coefficient and (b)
the addition of Vapour Pressure Deficit (VPD) as a further parameter. The first edit is due to the
consideration that, in the original formula, the proportionality between aerodynamic temperature
and leaf area index was direct. This may result in contrast with the turbulent fluxes partition:
when LAI increases, the turbulent energy flux tends to shift towards its Latent Heat component,
and the decrease in Sensible Heat should be mirrored by a decrease of its main driver, aerodynamic
temperature. The second consideration is due to the fact that aerodynamic temperature, being
a result of the turbulent fluxes equilibrium, is influenced also by the main drivers of Latent Heat
exchange: energy inputs in the system (already accounted for in the original formula through
the presence of radiation) and air saturation conditions, which can be summarized in the VPD
parameter, described in Equation 2.47.

TRAD − TAERO = −{C[SIN − CS(LAI − LAIREF )] + ηV PD} · ν (2.46)

V PD = (1−RH) e∗(TAIR) (2.47)

VPD identifies the pressure difference between the saturation conditions for the particular air
temperature and the actual conditions. The lower the VPD, the closer the air is to its saturation
conditions, the more difficult (i.e., “more energy-consuming”) the evapotranspiration process. Such
an influence over turbulent energy partition is worth the effort of including VPD within the proposed
parameters, provided that its effective bearing on the parametrization is regulated by the calibration
of its weight coefficient (η).

2.6.4 FEST-AeroT continuous model

Once the parametrization is tested and verified, the final version of the model (FEST-AeroT) is
obtained by its integration within the Sensible Heat formulation, as detailed in the new energy
balance equation (Eq. 2.48).

Rn−G =

[
ρAcP

(
fV
RA

+
1− fV
RABS

)
[RET + [C(SIN − CS(LAI − LAIREF )) + ηV PD] · ν − TAIR]

]
+LE

(2.48)
In Equations 2.41, 2.44 and 2.48 the fluxes symbols, when not detailed, retain the same meaning

as already shown in Table 2.1 and Equations 2.14–2.23.

2.7 General statistical indices and errors

In this section, some useful statistical indexes and error estimators will be recalled, provided their
frequent use in the following pages.

2.7.1 Correlation coefficients

The Pearson Correlation coefficient (ρ) is a measure of linear correlation between two datasets
(Pearson, 1896). It is defined as the ratio between the covariance of the two datasets and the
product of their standard deviations. It ranges between the values of –1 (perfect inverse correlation)
and +1 (perfect direct correlation), with a null value identifying uncorrelated data.
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ρ =
Cov(A,B)

σA · σB
(2.49)

The Spearman Correlation coefficient (ρS) is a measure of rank correlation (Kendall, 1938). It
is defined as the Pearson correlation between the ranks of two datasets. Its main perk with respect
to Pearson’s correlation is that it is able to go beyond linear relations between variables, describing
in general all monotonic relationships. In this case, the extreme ±1 values identify two variables
which are perfect monotone functions of each other.

ρS =
Cov(rA, rB)

σrA · σrB
(2.50)

Where rX identifies the rank function, assigning to each element x in a dataset its position in
the ordered dataset.

2.7.2 Error estimators

The Coefficient of Determination (R2) identifies the proportion of the variation in the dependent
variable that can be explained by the independent variable. Generally, when dealing with model
interpretation of measured data, it provides an evaluation of how well the model manages to
replicate the data. In linear interpolation scenarios, it also provides a measure of how clustered the
interpolated observations are with respect to the main interpolation line. It is computed as:

R2 = 1−
∑

i (mi − oi)
2∑

i (oi − µobs)2
(2.51)

Where mi identifies a model estimation, oi its corresponding data observation and µobs the
observation average.

The average bias – also Average Error (AE) – is computed as the average of all the errors between
model and observation. Closely related to AE are also the absolute bias – or Mean Absolute Error
(MAE) – which accounts only for absolute deviations from the observed data, and the relative bias
– or Mean Absolute Percentage Error (MAPE) – which normalizes model-to-data deviation over
the actual data value. Their formulations are summed up below, with n being the data sample
numerosity.

AE =
1

n

n∑
i=1

(mi − oi) (2.52)

MAE =
1

n

n∑
i=1

|mi − oi| (2.53)

MAPE =
100%

n

n∑
i=1

|mi − oi|
oi

(2.54)

Root-Mean Square Error (RMSE) or Deviation (RMSD) is the square root of the second sample
moment of the differences between modelled and observed values. One key characteristic of RMSE
is that it is scale-dependent, being a dimensional quantity. Its computation is shown in Equation
2.55.

RMSD =

√√√√[
n∑

i=1

(mi − oi)2

]
/n (2.55)
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2.7.3 Taylor diagrams

Figure 2.7: Elements composing a Taylor diagram

Taylor diagrams (also plots) have been designed to provide at the same time multiple indicators
about model representation of measured data (Taylor, 2001). These are the Pearson correlation
coefficient, the RMSE and the standard deviation. The empty Taylor field is shown in Figure 2.7.
In it, each model performance can be displayed with a single dot, whose position is linked to its
performance indexes: the cosine of its angle with the axes origin and the horizontal identifies the
Pearson correlation coefficient; the radial polar coordinate represents its standard deviation; the
distance from the low red point (representing the observed data, or a “perfect” model) is equal to
its RMSE.

In particular when comparing different modelled variables, the model standard deviation (σm)
and RMSD parameters in the diagram can be normalized with the observed data standard deviation
in order to obtain non-dimensional quantities. Finally, Taylor (2001) also provided a scoring system
that condensed the three model representativity indicators into one single number, ranging in a
scale from 0 to 100:

TS =
4(1 + ρ)

(σm/σo + σo/σm)2(1 + ρmax)
(2.56)

Where ρmax identifies the maximum correlation attainable, lower than 1 if external constraints
limit the model representation of observed data.
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Chapter 3

Case Studies

In this part, the details about the wide-ranging case studies involved in this thesis work will be
presented. Figure 3.1 collects them all, with further information provided in Table 3.1. In terms

of areal extension, they range and, thus, reference scale, they range from the hundreds of square
kilometres down to the small lysimeter environment. This far-reaching abundance helps to provide
a wide outlook to the whole analysis, showing how, at different scales, different processes acquire
relevance in the scientific analysis.

Figure 3.1: Case studies

27



CHAPTER 3. CASE STUDIES

Table 3.1: List of analysed case studies.

Case study Location Climate1 Crop(s) Year(s) Area

Capitanata Ir-
rigation Con-
sortium

Foggia,
Italy

Humid sub-
tropical

Vegetables,
Fruit trees

2015-2019 986 km2

Chiese Irriga-
tion Consor-
tium

Mantova,
Italy

Humid sub-
tropical

Maize 2015-2018 200 km2

Barrax area
Albacete,
Spain

Cold Semi-
Arid

Vegetables,
Fruit
trees,
Flowers

2012 1200 ha

Rapitalà farm
Palermo,
Italy

Hot-
Summer
Mediter-
ranean

Vine 2012 54 ha

Landriano Pavia, Italy
Humid sub-
tropical

Maize 2006, 2010, 2011 10 ha

Livraga Lodi, Italy
Humid sub-
tropical

Maize 2010-2013 12 ha

Lysimeter Milan, Italy
Artificially
controlled

Grass 2021 2.25 m2

3.1 Capitanata Irrigation Consortium

The Capitanata Irrigation Consortium2 is located in Southern Italy, in the Puglia region, in a plain
area delimited by the Apennines on the west and the Gargano Promontory on the east. It covers
an area of about 98 600 ha, 45% of which is irrigated through the Consortium water distribution
network, while the remaining areas are irrigated with private wells. The role of irrigation is crucial:
the mean irrigation volume in the irrigation season (from April to October) is about 600 mm,
while the seasonal rainfall amount is about 150 mm. Daily irrigation volumes measured in the
main aqueduct are available from 2013 to 2018. During the different years, the irrigation amounts
range between 21 and 60 hm3. The Sud Fortore district within the Consortium is an intensively
cultivated area mainly devoted to durum wheat (T. durum) and tomatoes (S. lycopersicum) during
the spring–summer season and fresh vegetables in the autumn-winter period (sown in late summer
and harvested October–February). Two major soil classes can be found: silty clay and gravel sandy
soil.

3.1.1 Meteorological data

Weather data are obtained via spatial interpolation of information from 21 stations managed by
the regional government (ARPA Puglia). Furthermore, three more stations managed directly by
Politecnico di Milano were installed on site during the monitoring period. All meteorological data

2www.consorzio.fg.it
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3.1. CAPITANATA IRRIGATION CONSORTIUM

was gathered continuously at 5 minutes temporal resolution. The meteorological stations are Davis
Vantage Pro2 Plus3, equipped to measure the following variables: air temperature (SAT, °C), with
0.1°C accuracy; relative air humidity (RH, %); rainfall (P, mm), with 0.2 mm accuracy; incoming
shortwave solar radiation (SIN, W m-2), with 1 W m-2 accuracy.

For the purposes of the activities detailed in Section 3.6, coarse-pixel precipitation information
is obtained with a high-resolution precipitation field, computed through quadratic inverse distance
interpolation of the data from the rain gauges, followed by low-resolution averaging of the data up
to the position and resolution of the SSM pixels. Temporally, data were grouped to compute one
single value for each 24-h period preceding a satellite overpass.

3.1.2 Eddy Covariance data

Two Eddy Covariance (EC) stations have been installed in the area and moved in time with the
different crop development periods (Corbari et al., 2020). Both are placed in the territory of the city
of Foggia: one in the ”Incoronata” area, within the territory of the ”Agricola Guzzetti s.r.l.” farm,
and the other in the ”Onoranza” area, in the fields of the “Futuragri Società Cooperativa Agricola”
farm. Henceforth, these stations will be named ”Foggia-Incoronata” (FIN) and ”Foggia-Onoranza”
(FON), respectively.

These stations provide all the components of the energy balance, measuring Net Radiation
through a multi-component radiometer and Soil Heat Flux through a heat flux plate. For the
turbulent fluxes (Latent and Sensible Heats), measured data is retrieved at high frequency (20 Hz)
in order to capture the slightest oscillations in temperature and water vapour concentration in the
air, following the formulae (Campbell and Norman, 1998):

H = ρacPw′T ′ (3.1)

LE = λwρaw′[H2O]′ (3.2)

Where w′ is the oscillation around the average value of the vertical component of the wind and
T ′ and [H2O]′ are the contemporary oscillations registered in air temperature and water vapour
concentration, respectively. The raw data requires a series of well-established (Foken et al., 2006)
pre-processing steps that average its final temporal frequency to 30 minutes. For the Polimi stations,
the correction is performed using the PEC software (Polimi Eddy Covariance) (Corbari et al., 2012).
Other steps in the pre-processing comprise a series of physical and instrumental corrections, in
particular for the turbulent fluxes. Generally, the EC station method registers an underestimation
of the available energy, determining an energy balance error ω:

ω = Rn−G− (H + LE) (3.3)

The correction procedure (Twine et al., 2000) is regulated by the preservation of the Bowen
ratio (βB):

βB =
H

LE
(3.4)

H(corr.) = H +
βB

βB + 1
ω (3.5)

3https://www.davisinstruments.com/
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LE(corr.) = LE +
1

βB + 1
ω (3.6)

Finally, due to the physics itself at the core of the EC measurement technique, the resulting
turbulent data are never referred to the single point in space in which the instrument is placed (as,
for example, radiometer measurements are), but are influenced by the aerodynamic conditions of
the atmosphere bottom layer in the neighbouring area. An approximate analytical model has been
developed (Hsieh et al., 2000), to simulate the relative importance of a certain pixel over the EC
measurement in given atmospheric conditions (Eq. 3.7). This model has then been expanded in a
bidimensional formulation (F. Li et al., 2008) to compute the areal footprint of the eddy-covariance
measurement (Eq. 3.8).

f(x, zm) =
1

κ2x2
Dzu

P |L|1−P exp−
(
Dzu

P |L|1−P

κ2x

)
(3.7)

g(x, y, zm) =
1

σy
√
2π

exp

[
−1

2

(
y

σy

)2
]
f(x, zm) (3.8)

where x identifies the fetch in the upwind direction, D and P are similarity constants (depending
on the atmospheric stability) and zu a length scale dependent on the measurement height. In
Equation 3.8, the transversal coordinate y is added, together the the cross-directional standard
deviation (σy) of the footprint area.

The stations, together with energy fluxes, measure also soil moisture, employing TDR (Time
Domain Reflectometer) sensors (CS616, Campbell Sci., UT, USA), mainly working at the depth of
15 cm, which for most crops is close to the main root water uptake depth.

3.1.3 Chiese Irrigation Consortium

The Chiese river basin closed at the confluence with the Oglio river has a total area of 1 270 km2,
including Lake Idro. Partially included in the river basin is the Chiese Irrigation Consortium4,
covering an area of 20 000 ha, powered by the Chiese river downstream Lake Idro, just downstream
of the Gavardo station. In the Lombardy region, one of the most urbanized and industrialized
regions of Italy, water management is critical during summer, when multiple and conflicting usages
(i.e., civil, industrial, agriculture, and hydroelectric) can reduce water availability for irrigation. The
area is intensively cultivated with summer crops (i.e., corn, forage), which are highly irrigated, and
winter wheat, which cover about 68% and 8% of the agricultural land, respectively. The irrigation
practice is based on fixed irrigation turns of 7-8 days, defined a priori before the beginning of the
irrigation season for each sub district. The irrigation is provided to each field with a channel network
of 1 400 km covering an area of 18 000 ha, with additional wells (more than 10 000) providing for the
remaining 2 000 ha. Irrigation water is mainly provided by surface flood irrigation. Mean rainfall
in the crop season is 250 mm, while the irrigation contribution is around 1 200 mm.

As for the Capitanata Irrigation Consortium, weather data are gathered from a series of stations
managed by the regional government (ARPA Lombardia). The regional data is also integrated with
the measurements obtained from the Meteonetwork5 association, joining the private meteorological
stations of single citizens. Coarse-pixel precipitation information is obtained with a joint quadratic

4www.consorziodibonificachiese.it
5www.meteonetwork.it
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inverse distance interpolation of the rain gauges data and a successive upscaling to the position and
resolution of the SSM pixels, as already detailed in Section 3.1.1.

In the Chiese Consortium, one EC station has been installed (Corbari et al., 2020) in the same
maize field for three consecutive years (2016 through 2018). The maize field is located in the
”Campagnoli sera” area, within the town of Montichiari (Brescia), and will thus be identified as
”Montichiari” (MON). The measurement principle and raw data corrections are the same already
shown in Section 3.1.2, with meteorological information collected in continuous and soil moisture
information retrieved by TDR sensors placed at a depth of 35 cm. The higher depth with respect
to the Capitanata EC stations is due to the different structure of maize (Lundstrom and Stegman,
1988) root systems as opposed to those of the tomatoes.

3.2 Parrot sensors

Figure 3.2: Parrot sensor

Across the Capitanata case study, a large number (456)
of low-cost sensors have been deployed, in order to build a
comparison between this high-density sensor network and
corresponding satellite measurements. This data analysis
is framed within a low-cost sensor citizen science project
(Woods et al., 2019) aimed at improving the data quality
and quantity from long-term hydrological monitoring net-
works, notoriously expensive both in terms of actual in-
strumentations and maintenance (Mishra and Coulibaly,
2009). The employed Parrot sensors, characterized by low
costs and a lay-user-friendly interface and data transmis-
sion protocol, are extremely valuable for satellite data
analysis, given their high distribution density (456 sen-
sors spread over an area 584 ha wide) in a heterogeneous,
multi-scope (thus, ideal) agricultural area.

The sensors, named “Flower Power”, are produced
by the French company Parrot SA6, and are able to mea-
sure time series data collected at 15-minute intervals: soil
moisture (SM), at a maximum depth of 5 cm, air temper-
ature (AT), few centimetres above ground surface and so-
lar illuminance (ILL), measured in proximity of the air temperature sensor (Fig. 3.2). The sensors
characteristics are reported in details in Table 3.2. In particular, soil moisture is measured with a
capacitance probe made of two rods of 10 cm, which allows measuring the dielectric permittivity
that is influenced by SM. Soil moisture accuracy has been tested through laboratory experiments
by Xaver, et al. (2020) showing a good sensor accuracy, except for dry conditions of silty clay
soils. Illuminance is measured by a sensor in the wavelength spectrum between 400 and 700 nm.
The data are stored on the Flower Power sensors and then downloaded by smartphones App via
Bluetooth.

6https://support.parrot.com/us/support/products/parrot-flower-power
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Table 3.2: Flower Power measured variables and specifics.

Variable Units Range Accuracy

Air Temperature (AT) °C -5to +50 °C 1.5 °C
Solar Illuminance (ILL) Lux 0.1 to 200 lux 15 %
Soil Moisture (SM) Vol.% 0 to 50% 3 %

3.2.1 Sensor placement

The sensors have been deployed mainly in the two areas already presented in Section 3.1, the
“Incoronata” and the “Onoranza” areas. Different fields have been chosen, either with Bare Soil
(BS) or vegetation-covered: mainly Tomatoes (TOM) and Asparagus (ASP), but also Cabbage
(CAB), Celery (CEL), Fennel (FEN), Pak-Choi (PCH), Salad (SAL) and Spinach (SPI). In Figure
3.3 the locations of the sensors are shown in the different fields and farms, along with the October
2019 land cover status. The monitoring covered the period between 22nd July and 20th October
2019 (91 days). In occasion of these two dates, two surveys have been conducted to classify the
fields in which the sensors had been placed. The distribution of the sensors across the different
land cover categories is detailed in the alluvial plot of Figure 3.4. The predominance of bare-soil
fields is testified by the high amount of Bare Soil sensors in the July classification. Most of these,
however, were part of a vegetated field by October. Tomato sensors, on the other hand, were the
only group to shift from a vegetated field to a bare-soil one during Summer, because of the tomato
harvest in August.

Figure 3.3: Parrot sensor displacement, with field land use relative to Oct 2019
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Figure 3.4: Alluvial plot of land use in the area: on the left, land uses for July 2019; on the right,
land uses for October 2019

3.3 Rapitalà

The “Tenute Rapitalà” farm in the territory of Camporeale (Sicily, Italy) is a vineyard farm encom-
passing different vine cultivars, which has been object of different studies over time (Maltese et al.,
2011). All its related data has been collected during the June-September 2008 “Digitalizzazione
della Filiera Agro-Alimentare” (DIFA) field campaign (Ciraolo et al., 2012).

The Rapitalà area is shown in Figure 3.5, with the cyan square identifying the global modelling
zone and the central yellow-bordered area highlighting the main experimental field, composed by
four sectors separated by two cross-positioned paths. This main area hosts in its midst the eddy-
covariance station and is thus the main focus for the turbulent fluxes comparisons. The vineyards
are organized in rows 2.4 m apart; in each row, the single plants are positioned every 0.95 m,
resulting in a global plant density of 4386 plants per hectare. The terrain has mild slope (<10%),
oriented towards S-SW. The soil texture is classified as loam (20% clay, 29% silt and 51% sand),
with 1.7% organic content. Residual Soil Moisture is estimated at 0.04 m3 m-3, whereas Saturation
Soil Moisture at 0.45 m3 m-3 (Ciraolo et al., 2012). Drip irrigation is the main irrigation practice
for the area.

During the DIFA campaign (summer 2008), five proximal sensing acquisitions have been carried
out, using the airborne platform SKY ARROW 650 TC/TCNS with sampling height around 1000 m
above ground level. A multispectral Duncantech MS4100 camera operating in the 767–832, 650–690
and 530–570 nm bands has been used to retrieve the visible (VIS) and near-infrared (NIR) images;
a Flir SC500/A40M camera, working in the 7 500–13 000 nm band, provided the thermal infrared
(TIR) images. This distinction resulted in a different nominal pixel resolution for the VIS/NIR
data (0.7 m) and the TIR data (1.7 m). The original data have been aggregated at 1.7 m using a
pixel aggregate method. Thus, the 1.7 m spatial resolution is assumed as reference resolution for
scale effects analyses.

The flights days are 11th June (DOY 163), 3rd (185) and 22nd (204) July, 22nd August (235)
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Figure 3.5: Rapitalà area

and 3rd September (247). These days were all characterized by optimal meteorological conditions
to improve the quality of the data collection process.

The images acquired by the Duncantech camera were affected by radiometric inhomogeneity
including vignetting (DiStasio Jr. and Resmini, 2010; Karpouzli and Malthus, 2003) and additional
distortions due to the combined effects of the optical prism and the coating treatment on the
faces, besides the sensitivity and response of the sensor. Radiometric correction factors for the
three spectral bands were determined by carrying out laboratory measurements with an integrating
sphere, an Extended Range Lamp (EKE-ER) and an ASD Hi-Res Fieldspec spectroradiometer.

A flux tower was located at the centre of the experimental field for the entire duration of the
monitoring period. The station is equipped to measure also air temperature and humidity with a
sensor placed at 2.75 m above ground and a pluviometer, with 0.2 mm accuracy, installed at 2 m
above ground. The eddy-covariance setup included a CSAT3 sonic anemometer and an open-path
LICOR-7500 IR Gas analyser operating at 3.40 m above ground and with 20 Hz measurement
frequency. Final data is provided with 30-mins time step.

Figure 3.6 shows the available energy underestimation (Foken et al., 2006) for four of the flight
dates. Data from 22nd August refers only to the 09:30–21:30 (local time) period, as data for the
rest of the day was unavailable due to a malfunctioning of the instrument. As already described
in Section 3.1.2, the data have been corrected by distributing the error among the turbulent fluxes
according to the Bowen ratio to force the closure of the energy balance (Twine et al., 2000).

Flux tower footprint location is accounted for by following the guidelines set by Hsieh et al.
(2000) and Li et al. (2008). In this particular case, average day-time conditions determine that
90% of the eddy footprint area falls within 10 ha of the EC tower. According to the analysis spatial
resolution, these numbers can mean that a footprint computation may or may not be required to
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Figure 3.6: Energy balance closure check for the eddy-covariance data on the four available dates.
Turbulent energy (L + H) against Available energy (Rn – G).

aptly simulate the measurement performed by the instrument. Lower resolutions, covering with
only one pixel most of the footprint, do not require any specific footprint computation, and the
simple pixel value is enough for the comparison with the EC station measurements. The global
available data are summed up in Table 3.3.

Table 3.3: Overview of available data.

Test days 11th Jun 3rd Jul 22nd Jul 22nd Aug 3rd Sep

DOYs (year 2008) 163 185 204 235 247
Meteorological data Yes Yes Yes Partial Yes

Energy Fluxes Yes Yes No Partial Yes
Flight time (local, UTC+2) 10:45 08:15 08:45 09:15 08:45
Land Surface Temperature Yes Yes Yes Yes Yes

Calibration date Yes No Yes No Yes
Validation date Yes Yes No Yes Yes

Energy fluxes information was unavailable for 22nd July, making it unfeasible for the validation
step. Meteorological and energy fluxes data for 22nd August were available only for the 10:00–21:30
time range, implying that the conditions at the time of the flight overpass (09:15) could not be
simulated using FEST-EWB. This means that this date could not be included in the calibration.
Finally, also data from 3rd July have been excluded from the calibration step, because of incongru-
encies in the reported flight time with usual registered LSTs. Turbulent fluxes data, on the other
hand, are employed in the validation process. Being meteorological data available only for the
single flight dates, no continuous model run could be performed. Instead, single daily simulations
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were executed.

3.4 Barrax

The Barrax agricultural area (Fig. 3.7a) is located in the centre of Spain (39°03’ N, 02°06’ W) and
is characterized by an extensive variety of land uses. Some pivot-irrigation areas are devoted to
mainly homogeneous crops such as corn, alfalfa, sunflower and barley. Other areas are mostly bare
(either pasture or fallow land), while three high-stem vegetation zones can be identified: an orchard,
a forest nursery area (also identified as “Reforestation”) and a vineyard. Overall, the area offers
a wide variety of crop patterns, offering a heterogeneous scenario for model application. The data
from this case study have been collected during the Regional Experiments For Land-atmosphere
Exchanges (REFLEX) field campaign (Timmermans et al., 2015), in the period 16th–28th July
2012. Airborne multi- and hyper-spectral data have been collected, with three separate flux towers
recording meteorological and flux data in three different areas of the site: (a) a vineyard, (b) a
reforestation and (c) a camelina zone (a mostly-bare area). These have been highlighted in the land
cover classification map for 25th July 2012 (Fig. 3.7b), where it is also possible to identify some
crops that had already been harvested, while others were in the process during the field campaign.

Figure 3.7: Barrax agricultural area: satellite image (11/5/12) and land use for the analysis period

3.5 Landriano and Livraga

In this Section, the information about two EC stations, managed by Politecnico di Milano and
placed in maize fields, is provided. The stations are named after the towns in which they are
placed: Landriano (Pavia) and Livraga (Lodi), which are roughly 25 km apart in the medium Po
Valley. They are presented together, provided their similarity in characteristics.

The Landriano EC station (”LAN”) has been monitored in 2006, 2010 and 2011 (Masseroni
et al., 2014). The soil is mainly sandy loam and the irrigation is performed with the border method
(100–200 mm per irrigation event), with 1–2 seasonal irrigations. This extremely low irrigation
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frequency is motivated by the extremely shallow water table, which guarantees natural feeding to
the roots (Facchi et al., 2013). The station is located in a 10 ha field, and is equipped with a four-
component radiometer (CNR–1, Kipp & Zonen, Netherlands), and infrared gas analyser (LI–7500,
LICOR, NE, USA) and a 3D sonic anemometer (RM–81000V, Young, MI, USA), positioned at
4.80 m above ground level. The radiometer was installed at a slightly lower height (4.30 m) but
at the end of a 3-m long pole, in order to minimize disturbances from the main tower pole, and
southward-oriented, in order to optimize solar input reception. The station footprint for turbulent
flux measurement has been computed to extend between 30 and 120 m from the main tower pole,
according to wind and vegetation conditions. Soil Moisture measurements are gathered with TDR
probes.

The Livraga EC station (”LIV”) has provided data in the 2010–2013 period (Corbari et al.,
2020). It is in a clay loam soil maize fields, located within the “Muzza Bassa Lodigiana” Irrigation
Consortium, covering an area of 740 km2. Numerous irrigation canals feed the area, with an average
irrigation volume of 100 mm per irrigation event, through flooding (Ceppi et al., 2013). Irrigations
are scheduled every 2 weeks, provided the higher water table depth than for the Landriano test case
and the annual rainfall rates, totalling 1 000 mm in the northern consortium area and degrading
down to 800 mm in the southernmost reaches. The instrumentational set-up is in all aspects similar
to that already described for the Landriano EC station.

3.6 Laboratory Lysimeter

A lysimeter is a device employed to perform high-accuracy measurements of the soil water fluxes.
It consists of a volume of soil isolated from its surroundings through a (usually metallic) container
and placed over a weighing scale, able to assess the global weight variations continuously in time.
The main concept is that all water fluxes are measurable: precipitation or irrigation are known
quantities, deep percolation can be obtained by measuring the flux through a dedicated outlet at
the bottom of the lysimeter and evapotranspiration can be gathered through the weight change in
time. With the necessary precautions, a lysimeter can also be installed directly in field, in order
to work in a scenario as close as possible to real-life applications. Otherwise, laboratory set-ups
can be organized, which leads to highly-controlled (albeit less realistic) boundary conditions. For
this thesis work, a similar set-up has been employed to gather useful data for the validation of the
FEST-2-EWB model presented in Section 2.5.

3.6.1 Instrumentation

The activity detailed in this thesis has been developed using the laboratory lysimeter located in
the “Gaudenzio Fantoli” laboratory at Politecnico di Milano. The lysimeter (Fig. 3.8) has a 1.5 m
× 1.5 m basal area and is 1 m high; the boundary conditions are enforced by the following tools:

• A set of four halogen lights, each with 400 W nominal power

• One infrared and ultraviolet lamp, with 300 W nominal power and able to convey that part
of the solar radiation not provided by the halogen lights

• A drip irrigation set-up

All the measurements are provided by the following instruments, with the letter corresponding to
the labels in Figure 3.8:
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(a) A pluviometer, used to measure deep percolation and connected to the lower outlet, where
percolation water is conveyed by the basal shape of the external casing

(b) The main weighing scale, providing continuous measurements of the total weight

(c) Eight soil moisture sensors, distributed over all the lysimeter at a depth around 10 cm

(d) A Soil Heat Plate, which uses a thermopile to measure the soil temperature gradient over its
surface

(e) A four-component radiometer, capable of measuring both the short- and long-wave compo-
nents of the radiance, both downwelling from the lamps and upwelling from the lysimeter

(f) A thermo-hygrometer, providing both air relative humidity and temperature

(g) A smaller weighing scale, employed for the smaller box weight variations

(h) A thermal camera, bound to a wooden pole positioned at 1.2 m height above the lysimeter,
which is used to mimic flight or satellite overpasses and retrieves both visible (RGB) and
thermal (TIR) data

Figure 3.8: Laboratory Lysimeter and instrumentation

The instruments characteristics have been summed up in Table 3.4.
All instruments, except the weighing scales and the thermal camera are connected with a dat-

alogger (Fig. 3.8i, Campbell Scientific CR3000), which continuously receives the incoming data at
their varying sampling frequency (ranging from milliseconds to minutes) and provides 10-minutes
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Table 3.4: Measuring instruments and their accuracy.

Instrument Model Measured variable Units Accuracy

Pluviometer Young 52202 Deep percolation mm 2%
Weighing
Scale

DiniArgeo Weight kg
0.5 kg (0.22
mmH2O)

Soil Moisture
probes

Decagon 5Tm
Soil moisture and
temperature

m3 m-3 ±0.03 m3 m-3

Plate Hukseflux HFP01 Soil Heat Flux W m-2 ±3%

Radiometer Kipp&Zonen CNR4
Net Radiation bud-
get

W m-2 ±5%

Hygrometer
Campbell Scien–

Air Relative Hu-
midity

% ±0.8%
ific HMP155A-L Air Temperature °C

Small Weigh-
ing scale

n/a Box Weight g 2 g (0.02 mmH2O)

Thermal FLIR
Surface tempera-
ture

°C 0.1°C (1.20 mm
spatial res.)

camera T450sc RGB images none
n/a (0.39 mm spa-
tial res.)

averages as an output. This overall sampling time step has been suggested by past experience (Man-
tovani, 2016; Rozzoni, 2017) with the lysimeter, as a good compromise between good representation
of rapid variations in the measured variables and practical data management.

The data sampling is theoretically continuous in time, even at night and during the weekends.
However, some issues (e.g., power outages, datalogger or single sensor failures) have caused the
loss of some of the data (in particular with soil moisture sensors). Only when the data gap was
sufficiently small (a few time steps) and within relatively stable boundary conditions (with lights
off, far from any irrigation instance), it was filled in by way of simple linear interpolation.

3.6.2 Soil data

The soil used in the lysimeter belongs to the silty-clay category, after removal of most of the coarser
grains (> 5 mm in diameter). In preceding studies (Mantovani, 2016), the hydraulic properties of
the soil detailed in Table 3.5 were determined.

Table 3.5: Lysimeter soil data.

Property Symbol Value

Saturation soil moisture SMSAT 0.440 m3 m-3

Field capacity FC 0.260 m3 m-3

Wilting Point WP 0.167 m3 m-3

Residual soil moisture SMRES 0.040 m3 m-3

Permeability at saturation KSAT 2.0 10−6 m s-1

Brooks-Corey Index BCI 0.206
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3.6.3 Experimental outline

An overhead view of the experimental set-up is shown in Figure 3.9, with the lysimeter surface split
into two distinct sectors. Firstly, Sector 1 is organized into seven rows (each 15 cm wide), three
vegetated and four non-vegetated: the former (Zone 1) are sown with grass and a drip irrigation line
is arranged in order to provide water just to this specific area; the latter (Zone 2) are left unsown
and unirrigated, weeding out possible crop growth brought on by stray seeds. The main weighing
scale provides the weight variations of the lysimeter as a whole, without distinguishing between
the two sub areas. To this aim, in Sector 2 two plastic boxes have been positioned, measuring 400
× 300 × 120 mm3 (364 × 264 × 115 mm3 internally). These two correspond to the categories
in Sector 1 – one being fully vegetated (Box 1), the other bare (Box 2) – and can be temporarily
moved from the lysimeter to be weighted separately using a smaller weighing scale. This allows
to measure the distinct ET from crop and bare soil. If a sound proportionality can be established
between each box and the corresponding Zone in Sector 2, the ET measured for the whole lysimeter
can be disaggregated into its crop- and soil-related components.

Figure 3.9: Lysimeter after sowing (a) and with full growth (b). On the right, the scheme with the
different areas and SM probes.

3.6.4 Experimental routine

The instruments already detailed in Section 3.6.1 record continuously the micro-meteorological data
required for the model runs. Further data, both for the model runs and their validation, are obtained
in “instantaneous” data-gathering routines, with expected temporal frequency of two times a week.
These routines allow to gather the following: (a) weights of the plastic boxes, (b) lysimeter total

40



3.6. LABORATORY LYSIMETER

weight, (c) surface temperature data and (d) irrigation, when performed. This last step is generally
variable with the crop growth stage: at the beginning, a few heavy irrigations are required to prepare
the soil for the seed development; once the first plants have started development, a more regular
regime can be enforced, generally maintaining the soil moisture above the FAO-provided CST (Eq.
2.7); finally, when the plants reach a full growth and their water demand increases, irrigations can
be performed more frequently and/or with higher amounts, to avoid stressful situations for the
plants.

3.6.5 Box-Lysimeter correspondence

In order to validate the use of the boxes to obtain the differentiated crop and soil ETs, two ap-
proaches will be explored, with the more accurate one to be employed in the box-lysimeter conver-
sion. The conceptual diagrams for the approaches are outlined in Figure 3.10.

Figure 3.10: Lysimeter ET disaggregation approaches

For the first one (“Grass to Bare”, G2B), the starting point will be the vegetated box (Box
1) weightings. For any given time interval (∆t) between two successive weightings (obtained at
times tA and tB), the SM evolution is used in determining the total percolated volume, by use of
Brooks-Corey formula (1964):

Kunsat = Ksat

(
SM − SMres

SMsat–SMres

) 2
BCI +3

(3.9)

PE =

∫ tB

tA

KunsatdT (3.10)

Where Kunsat is the unsaturated soil hydraulic conductivity, dependent on SM. Its integration
over the whole observation period provides the total specific percolated volume. Following the mass
conservation principle, subtracting this volume to the weightings difference provides the vegetated
box ET. The main assumption here is that the evapotranspiration rate is the same in both Box 1
and Zone 1, and also for Box 2 and Zone 2. Using the same ET rate for Zone 1 provides, residually
from the lysimeter weightings difference, the ET for Zone 2, which in turn can be associated to Box
2. This value can also be independently computed by subtracting its percolation volume (obtained
again with Eqs. 3.9 and 3.10) from the weightings difference. The comparison between these two
Box 2 ETs, ideally equal, can be used as an estimate of the scaling process error.

The second approach (“Bare to Grass”, B2G) is composed of the same exact equations, but
arranged in reverse order, starting from Box 2 ET, upscaling to Zone 2 ET, then residually com-
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puting Zone 1 ET and finally downgrading back to Box 1 ET, to be compared with the same value
obtained by box weightings difference.

3.7 Satellite data

In this section, an overview is provided about some EO data which will be employed throughout
the whole thesis work. These are mainly organised into three categories: SSM datasets (Section
3.7.1), Vegetation Indices (VIs, Section 3.7.2) and thermal information (Section 3.7.3).

3.7.1 Satellite SSM datasets

The Soil Moisture Ocean Salinity (SMOS) Earth Explorer is the European Space Agency (ESA) mis-
sion aimed at providing global SSM over land and ocean salinity (Y. H. Kerr et al., 2010). Launched
in November 2009, it is the first mission to provide global multi-angular and full-polarization L-
band (1.4 GHz) microwave observations using 2D interferometry. The main advantage of the use
of L-Band frequency is that the SSM-related surface emittance is higher in this frequency than in
higher frequencies, and also both cloud and canopy cover affect less the measurement. In addition,
passive microwave sensing technology is generally less impacted by clouds and vegetation (Ulaby
et al., 1982) than active technology. The volumetric soil moisture is retrieved at coarse resolution
(roughly 15 or 25 km), with an accuracy mission goal higher than 0.04 m3 m-3. Two overpasses
are available, one in the ascending orbit (06:00 local time) (SMOS Asc.) and the other in the
descending one (18:00 local time) (SMOS Desc.)7. The MIR CLF31 Level3 product v4 used for
this study (Al Bitar et al., 2017) was downloaded from the Centre Aval de Traitement des Données
SMOS (CATDS) processing centre.

The Soil Moisture Active Passive (SMAP) mission is the National Aeronautics and Space Admin-
istration (NASA) project aimed at studying the surface soil water. Launched in 2014, it featured
both a radar (an active instrument) and a radiometer (a passive one), operating in the L-band
(1.41 GHz) of the microwave spectrum with a mesh antenna. SMAP featured also an onboard
RFI processor. The SMAP acquisitions are at a fixed angle (40°) in dual polarization with a 40
km resolution. While the radiometer provides “passive” estimates with its coarse spatial resolu-
tion, the radar analyses the “active” backscatter obtained from a Synthetic Aperture Radar (SAR)
technology at 3 km spatial resolution. Unfortunately, the SAR stopped operations 3 months after
launch due to failure. The combination of the two datasets creates the final product, joining the
penetrating capacity of the “passive” technology with the high spatial resolution of the “active”
one (Entekhabi et al., 2010). SMAP level3 (release 16) soil moisture from passive sensor at 36km
(SMAP L3 SM P) was downloaded from the NASA Earthdata portal.

The dataset from the ESA Climate Change Initiative (CCI) (Gruber et al., 2019) is not the
result of a direct observation but is the result of the merging of multiple datasets. The main goal was
standardizing different SSM observations throughout the years to obtain a unique database. First,
data from active SSM sensors (AMI-WS, ASCAT-A and ASCAT-B) and passive ones (SMMR,
SSM/I, TMI, AMSR-E, Windsat, SMOS, AMSR2) are joined in two separate datasets, ESA-CCI
Active and ESA-CCI Passive, respectively. Thus, the homogeneity of the retrieval technology is
preserved. Employing this wide range of instruments allows reducing the no-data days, as opposed
to the single products, effectively decreasing the virtual revisit time of the dataset. Active products
are obtained through the Water Retrieval Package (WARP) algorithm (Naeimi et al., 2009), which

7https://earth.esa.int/documents/10174/1854519/SMOS L2 SM ATBD
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is a change-detection approach that retrieves soil moisture in the form of saturation degree, referring
to the historically lowest and highest observed values. On the other hand, passive products are
obtained through the Land Parameter Retrieval Model (LPRM) algorithm and are provided in
volumetric ratio units (m3 m-3). In order to join data from different missions in one unique dataset,
all the products are harmonized to a common reference, chosen because of expected higher accuracy
and most recent operative period: ASCAT for the active group and AMSR-E for the passive one
(Y. Liu et al., 2012). In order to join the two global datasets, both active and passive product are
re-scaled against Global Land Data Assimilation System (GLDAS) Noah soil moisture simulations.
Finally, the combined hybrid dataset is obtained through an algorithm that merges the two datasets
according to the estimated reliability of each. The resulting dataset (ESA-CCI Combined) is thus
an aggregate dataset, containing information from a wide variety of active and passive sensors
(Dorigo et al., 2017; Gruber et al., 2017).

The Copernicus Surface Soil Moisture 1km Version 1 product (SSM1km) is obtained from
Sentinel-1 C-band SAR backscatter after geo-correction and radiometric calibration. The out-
put product is an index in percent of saturation, with 1°/112 nominal resolution (around 1 km at
European latitudes). Overpasses from the Sentinel-1 are programmed every day, but the revisit
time over a single spot on the Earth surface is longer: in the Capitanata case study, for example,
the actual revisit time is slightly higher than 4 days (Bauer-Marschallinger et al., 2018). In order
to achieve a valuable comparison with the other (coarse-resolution) datasets, this data have been
upscaled (Copernicus Upscaled dataset) by employing a simple average of all the pixels contained
within each dataset footprint. The resulting fictitious pixel covers a large area (ca. 1 100 km2 for
the Capitanata irrigation consortium, ca. 1 000 km2 for the Chiese one) that can be assimilated to
a 30 km pixel, which is in line with the other coarse-resolution datasets. On the other hand, this
data can also be employed at its original high resolution, as is the case for the comparison with the
data from the Parrot sensors (detailed in Section 5.5). For that specific activity, a total number of
26 images have been selected within the study period (20th July to 20th October 2019).

The Advanced Microwave Scanning Radiometer 2 (AMSR2) is the successor of AMSR-E, op-
erating since 2012. It is part of the Global Change Observation Mission (GCOM) by the Japan
Aerospace Exploration Agency (JAXA). In its orbit around the Earth, it guarantees two overpasses,
one in the Ascending path (13:30 local time) (AMSR2 Asc.) and the other in the Descending one
(01:30 local time) (AMSR2 Desc.) (de Jeu and Owe, 2008). Data from AMSR2 are featured within
the ESA-CCI Passive product, in some cases making up most of the source data for the product.
In the Chiese case study, ESA-CCI Passive data is obtained only from this dataset, so in this case
using either dataset amounts to the same result. On the other hand, for the Capitanata case study,
ESA-CCI Passive data is not available on the area of interest because of geographical reprojection
issues. In its stead, the AMSR2 at its source has been analysed. Among the many sources of the
AMSR2 dataset, the one chosen for this study is the LPRM AMSR2 DS D SOILM3 surface soil
moisture (de Jeu and Owe, 2008), which is also the one employed for the ESA-CCI product.

An overview of all employed datasets is available in Table 3.6.
Figure 3.11 provides a map of the satellite SSM pixel footprints over the Capitanata and Chiese

Irrigation Consortia, where the analysis will take place. The rain gauges used for precipitation
interpolation are also shown.

3.7.2 Vegetation indices

Vegetation indices (VIs) were obtained in Corbari et al. (2020) from the Visible (VIS), Near-Infrared
(NIR) and Shortwave Infrared (sIR) bands of Landsat-8 and Sentinel-2 satellites. In particular, the
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Table 3.6: Specifics of the different Surface Soil Moisture (SSM) dataset employed in the study.

Dataset Product
Ref.
Time

Retrieval
Technol-
ogy

E.M.
Spec-
trum

Revisit
Time

Sensor
Grid

Product
Grid

SMOS
Ascending 06:00

Passive L band 1-2 days 40 km 25 km
Descending 18:00

SMAP Descending 18:00 Passive L band 2.2 days 40 km 36 km

ESA-CCI
Active

00:00
Active

Various
bands

1.2 days Variable 0.25°Passive Passive
Combined Hybrid

Copernicus Original
00:00 Active C band 4.1 days 10 m

1°/112
(Sentinel1) Upscaled 30 km

AMSR-2
Ascending 13:00

Passive C band 1.5 days 50 × 70 m 10 km
Descending 01:00

Figure 3.11: Chiese (a) and Capitanata (b) Irrigation Consortia with SSM datasets footprints

bands around 660 nm and 850 nm were used for vegetation index estimation and those around 1 600
nm and 850 nm were used for vegetation water content. All bands were atmospherically corrected
by the use of 6S software (Vermote et al., 1997) in order to account for the surface reflectance.

A quite common index is the Normalized Difference Vegetation Index (NDVI), which is directly
linked to the amount of vegetation present on ground. It is computed from the remotely-sensed
reflectances in the Near InfraRed (NIR) and Red bands, as live green plants appear relatively dark
in the Photosynthetically Active Radiation (PAR, covering the Red bands) and relatively bright in
the NIR (Gutman and Ignatov, 1998).

NDV I =
NIR−Red

NIR+Red
(3.11)

The Vegetation Fraction (fV ) identifies the fraction of the total pixel area which is covered by
vegetation and it can be estimated through from the NDVI, by selecting an area wide enough to
cover both fully-vegetated (NDVIv) and completely bare (NDVIs) pixels:

fV =
NDV I −NDV IS
NDV IV −NDV IS

(3.12)

The values for NDVIv and NDVIs can also be chosen from literature, as is the case for the
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applications in this thesis (0.90 and 0.15, respectively). Once obtained the fV , Leaf Area Index
(LAI) can be calculated in a way similar to that already employed for LAI data from Parrot,
adopting the formulation:

LAI = − ln (1− fV )

K(ψ)
(3.13)

where K(ψ) is the beam extinction coefficient for a given solar zenith angle (ψ). In this case,
the beam extinction coefficient is set to a general value of 0.5.

The Soil Adjusted Vegetation Index (SAVI) is an alternative to NDVI, which can be computed
in order to reduce the soil background effect (Huete, 1988).

SAV I =
(1 + Lcan)(NIR−Red)

NIR+Red+ Lcan
(3.14)

where Lcan accounts for first-order soil background variations, and in this case is computed as
the average vegetation cover of the image, varying from 1 (image fully covered by vegetation pixels)
to 0 (image completely bare). Moisture Stress Index (MSI) and Normalized Difference Water Index
(NDWI) are two basic indices for the estimation of vegetation water content. Equations for both
are:

MSI =
ρ1600
ρ850

(3.15)

NDWI =
ρ850 − ρ1600
ρ850 + ρ1600

(3.16)

The 1 600 nm wavelength (sIR) corresponds to a peak in radiation absorption from vegetation,
which increases with high leaf water contents. On the other hand, at 850 nm (NIR) the absorption
is practically undisturbed by water content changes, and thus this reflectance can be used as a ref-
erence. By its structure, the MSI has an opposed trend with respect to other indexes: as absorption
at 1 600 nm increases with water content, low ρ1600 values – and, thus, low MSI values – are asso-
ciated with water stress conditions (E. R. Hunt and Rock, 1989). The same band reflectances are
employed by NDWI, which also accounts for the light scattering from vegetation canopies, which
influences reflectance around 1 600 nm (Gao, 1996).

3.7.3 Land surface temperature

LST can be calculated through different techniques, which require the use of one, two or more
thermal bands of one sensor. This section provides the data elaboration performed in Corbari
et al. (2020) Two techniques were employed: Single Channel (SC) algorithm and Split Window
(SW) algorithm, which were applied to Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and
Landsat-8 Thermal InfraRed Sensor (TIRS). For ETM+ and TIRS, LST was retrieved following the
procedure explained in Skokovic et al. (2017) for SC algorithm and Jimenez-Muñoz et al. (2014)
for SW algorithm, respectively. The SC equation is:

LST =
Tsen

2

bγLsen

[
Ψ1Lsen +Ψ2

ε
+Ψ3

]
+ Tsen − T 2

sen

bγ
(3.17)

where Tsen is the at-sensor brightness temperature, ε is the emissivity, bγ is a constant (1 277
K), and Ψ1, Ψ2 and Ψ3 are functions of the atmospheric parameters of transmissivity and upwelling
and downwelling radiances. The SW equation used for TIRS bands is presented as:
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LST (i, j) = Ti + a0 − a1(Ti − Tj) + a2(Ti − Tj)
2 + (a3 + a4awc)(1− ϵ) + (a5 + a6awc)∆ε (3.18)

where Ti and Tj are the at-sensor brightness temperatures at the SW bands i and j, ε is
the average emissivity across both bands, ∆ε is the corresponding difference, awc is the total
atmospheric water vapor content (g cm-2) and a0, a1, a2, a3, a4, a5 and a6 are the SW coefficients
with values of 16.40, -0.268, 1.378, 0.183, 54.30, -2.238 and -129.20, respectively.

For both equations, the atmospheric parameters and water vapor content inputs were computed
using the MODTRAN 5.0 radiative transfer code, employing a forecasted atmospheric profile from
the European Centre for Medium-Range Weather Forecasts (ECMWF), included in the Sentinel-3
data. For the emissivity inputs, the NDVI Thresholds Method (NDVI-ThM) was applied, following
the original equations presented in Sobrino et al. (2008). Finally, in order to disaggregate the
ETM+ and TIRS pixels from their original spatial resolution of 60 m and 100 m, respectively, to
a resolution of 30 m, the Nearest Neighbour Temperature Sharpening (NNTS) methodology was
used as described in Skokovic (2017). More complete information about the whole procedure of
LST retrieval at 30-m spatial resolution is available at Corbari et al. (2020).

46



Part II

Satellite data analysis
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Chapter 4

Hydrological Consistency Index

In this section, the different SSM satellite datasets have been analysed through the newly-developed
Hydrological Consistency Index (HCI, Paciolla et al., 2020) described in Section 2.1. Firstly, a

more classical analysis based on common correlation indexes is detailed. Then, the potentialities of
the HCI are explored, analysing the differences between the datasets and the case studies, verifying
also some potential weak points of the algorithm.

4.1 Correlation Between SSM and Precipitation

Before adopting the newly-formulated algorithm, a simpler way to investigate the relationship
between SSM and the precipitation occurred in the preceding 24 hours is adopted. Two commonly-
used correlation indices have been employed: Pearson and Spearman. Although the former requires
an assumption of normality for the distribution of the involved variables, which is rarely the case for
precipitation, it has nonetheless been used in numerous studies on SSM precipitation comparison
(Dai et al., 1999; Sehler et al., 2019). On the other hand, Spearman correlation does not require an
assumption of normality and helps to provide some information about their possible relationship.
As shown in Table 4.1, low-to-negligible Pearson and Spearman correlations were found for all
datasets. The lowest correlation values around 0.03 and 0.05 are obtained for SMOS Desc. data
for Capitanata and Chiese, respectively; while higher values are found for SMOS Asc. (0.24). The
highest overall values were obtained for the Copernicus dataset (0.45 in Capitanata area), as would
be expected from the comparison between a precipitation field obtained by the spatial interpolation
of rain gauge measurements and (relatively) high resolution SSM data. This suggests a strong link
between spatial resolution of the SSM product and physical correspondence of the rainfall-SSM
duality. Data from ESA-CCI Passive are not featured for the Capitanata area because of a lack of
data over the main Consortium area. Data from AMSR2 are not featured for Chiese, as they are
already contained within the ESA-CCI passive dataset.

In similar scenarios, a number of other studies found wide-ranging results. Middle-to-high
correlations (0.64—0.81) for ASCAT and middle-to-low (0.21—0.64) for AMSR-E were registered by
Brocca et al. (2011), while in a multi-product analysis, Cui et al. (2017) found the best correlations
with on-site data when employing L-band products (SMOS and SMAP). This is consistent with the
deeper depth gauged by these frequencies and their low susceptibility to vegetation and atmosphere
influences. Kerr et al. (2016) found middle-to-high correlation values for SMOS on Australian,
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Table 4.1: Pearson and Spearman correlations among different SSM dataset estimates and the
rainfall occurred in the preceding 24 h.

Dataset
Capitanata Chiese

Pearson Spearman Pearson Spearman

ESA-CCI Active 0.1644 0.278 0.212 0.304
ESA-CCI Passive n/a n/a 0.085 0.108

ESA-CCI Combined 0.131 0.308 0.106 0.205
Copernicus 0.381 0.417 0.298 0.304

Copernicus Upscaled 0.417 0.450 0.341 0.363
SMOS Asc. 0.240 0.293 0.119 0.145
SMOS Desc. 0.038 0.067 0.055 0.092

SMAP 0.393 0.427 0.177 0.249
AMSR-2 Asc. 0.119 0.120 n/a n/a
AMSR-2 Desc. 0.102 0.122 n/a n/a

African, and, mainly, U.S. test sites, while El Hadjj et al. (2018) identified correlation values in the
range 0.4–0.6 for SMAP, ASCAT, and SMOS in Southern France. Moreover, results from a triple
(and even quadruple, using both active and passive sensors independently) collocation analysis
on a global scale indicate that SMAP is the best-performing dataset globally (achieving a cross-
correlation of 0.76, against 0.66 for SMOS and 0.63 for ASCAT) (Chen et al., 2018). Finally, low
correlation values have been found by other studies, 0.11–0.26 measured in Kansas, USA (Dai et al.,
1999) and 0.4 in Mediterranean Europe (Sehler et al., 2019). These numbers pointed out the scarce
feasibility of this mathematical tool to analyse the SSM–precipitation relationship.

4.2 Consistency for Capitanata Irrigation Consortium

The newly-defined consistency procedure is applied to all the datasets over the Capitanata irrigation
consortium. Figure 4.1 shows an example application on the SMOS descending dataset, with further
examples shown in Appendix A. First, an algorithm run is performed without taking irrigation
into account. Then, the same data are analysed considering irrigation, in order to highlight its
contribution to the analysis process. In the first panel (Fig. 4.1a), the SSM time-series along
year 2015 has been displayed. The yellow background identifies irrigation days, while the blue
one is associated with the non-irrigation ones. Each SSM estimation is labelled green if a positive
agreement (A+) is recorded for that instance, red if a negative one (A–) is found, white if the
variation from the previous SSM estimation is below the measurement error threshold (in this case,
the algorithm is not applied at all and that SSM instance is discarded from the final computation).
In the middle panel (Fig. 4.1b), the algorithm is applied, taking into account the presence of
irrigation: some SSM retrievals, which were red (A–) in the first panel, have now been coloured
blue to represent the irrigation-driven positive agreements (IA+). In the third and lower panel
(Fig. 4.1c), the aggregated precipitation field over the SSM pixel is shown.

The first take-away from the no-irrigation algorithm run (Fig. 4.1a) is that the dataset does not
show a clear positive trend: of over 145 records in year 2015, 62 (43%) show some incongruence when
compared with the registered rainfall. However, when looking at these results split by irrigation
regime, a higher proportion of positive agreements is recorded in the irrigation period (61%-29%
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Figure 4.1: Distribution of positive (A+), negative (A–) and irrigation-driven positive (IA+) agree-
ments for a SMOS descending pixel in the Capitanata test case. Results before (a) and after (b)
taking irrigation volumes into consideration. The corresponding precipitation time series is shown
in the lower panel (c).

against 51%-49% for the non-irrigation period).

The results from the complete algorithm are detailed in Figure 4.1b and the right-hand half
of Table 4.2. Of the 37 negative agreements (A–) recorded during the irrigation season, 24 are
found to be explainable with the knowledge about the irrigation regime (IA+). This leaves out
13 “unexplainable” negative agreements between the SSM dataset and precipitation. Thus, the
performance of the SMOS dataset, for the year 2015 and over the Capitanata Irrigation Consortium,
can be considered “mild” in the non-irrigation period (49% of negative agreements) but quite
positive in the irrigation one (only 14%).

Table 4.2: Number of SSM retrievals classified for each consistency category (relative weight in
parentheses), as displayed in Figure 4.1

Irrigation Regime Simple HCI (No Irrigation) Complete HCI (With Irrigation)

Non-Irrigation period
A+ 26 (51%) A+ 26 (51%)
A– 25 (49%) A– 25 (49%)

Irrigation period
A+ 57 (61%) A+ 57 (61%)

A– 37 (29%)
A– 13 (14%)
IA+ 24 (26%)

This same analysis has been carried out for all datasets and all years. An example image
corresponding to year 2016 is shown in Figure 4.2. SMAP data (Fig. 4.2c) show smoother variability
than SMOS data (a lower standard deviation throughout the year) and in general show a higher
positive agreement irrespective of the irrigation information. Data from the ESA-CCI are quite
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heterogeneous, starting from the units: the active dataset (Fig. 4.2d) is a saturation ratio dataset,
while the passive one is a volumetric ratio. The combined dataset (Fig. 4.2e), although showing a
much higher data density (approximately 1 SSM estimate every day against the 2 days of the single
active and passive datasets), displays little variation from one estimate to the next. Most (73% in
2016) of the combined SSM values vary from their respective previous ones by less than 0.04 m3

m-3, which results in a much smaller number of recorded SSM–precipitation couples used in the
evaluation of the agreement. Upscaled Copernicus data are visible in Figure 4.2f, showing the lower
data density of this dataset with respect to the others, with one SSM estimate on average every
4 days. AMSR-2 data (Figs. 4.2g,h) show an important oscillation around the average and a low
degree of seasonality, almost retaining the same average value all year long, which can be explained
by the impact of the vegetation cover on the retrievals when using C and X-Band microwave (Njoku
and Chan, 2006).

The original, 1km-resolution Copernicus data allow the algorithm to be applied on each and
every one of the 1 353 pixels covering the Consortium, every year. Therefore, the global result is
presented in terms of maps, adding a further level (possible spatial heterogeneities) in the description
of the SSM dataset (Fig. 4.3).

The summarized results over the different datasets for the four test years (2015-2018) are detailed
in Table 4.3 for the non-irrigation period and Table 4.4 for the irrigation season. For each year
and product, the number of the SSM-precipitation couples, or “occurrences” (n), the proportions
of positive (A+), negative (A–), and irrigation-driven positive (IA+) agreements are provided. For
every SSM dataset except Copernicus SSM1km, the table data refer to the single pixel chosen
for the evaluation; for the Copernicus SSM1km, the average values from all the pixels covering
the irrigation consortium are provided. Overall, negative agreements occur on average 40% of the
times in the non-irrigation period. The ESA-CCI datasets tend to score lower results than the
passive datasets (SMOS and AMSR2, for example). When shifting to the irrigation period, the
negative agreements fall, on average, to 14%. Some datasets feature very sharp decreases (e.g.,
SMOS descending from 57% down to 17% in 2017), while some register a moderate increase (e.g.,
SMOS descending from 25% up to 31% in 2018). The decrease in registered negative agreements
is only partly justified by a connected increase in positive agreements. Irrigation-driven positive
agreements are usually recorded between 15% and 30%, with an average value of 23%.

Globally, not much difference can be found between the datasets. For any given year, the
agreements tend to cluster around a common value, with relatively low variation coefficients (10%-
20%), notwithstanding the depicted differences between the datasets.

The averaged Copernicus data are presented in Table 4.3 and 4.4, with results in line with
those of the other datasets. However, the dataset shows a much more heterogeneous behaviour,
as can be seen in Figure 4.3: very low positive agreements (less than 30%) can be registered in
the north-western area of the consortium. The irrigation-driven positive agreement shows a highly
heterogeneous pattern, probably reflecting the distribution of the most irrigated fields within the
consortium. This may be explained by the combined impact of surface roughness and vegetation
biomass on the retrieved soil moisture (Qiu et al., 2019).

4.3 Consistency for Chiese Irrigation Consortium

The same analysis has been carried out over the Chiese test case. Results are displayed, dataset by
dataset, in Figure 4.4 (example run for 2016 with all datasets except Copernicus) and 4.5 (2016 run
for Copernicus). Numerical results are detailed in Table 4.5 and 4.6. In many aspects, the results

52



4.4. CAPITANATA–CHIESE COMPARISON

Table 4.3: HCI results for the non-irrigation period over Capitanata: number of SSM–precipitation
couples (n), proportion of positive (A+) and negative (A–) agreements.

Dataset
2015 2016 2017 2018

n A+ A– n A+ A– n A+ A– n A+ A–

Active 49 71% 29% 45 64% 36% 65 75% 25% 36 83% 17%
Combined 26 69% 31% 19 58% 42% 32 72% 28% 21 90% 10%
Copernicus 18.5 59% 41% 18.1 50% 50% 37.3 62% 38% 36.0 58% 42%

Up. Copernicus 17 59% 41% 16 44% 56% 34 65% 35% 35 60% 40%
SMOS Asc. 46 50% 50% 36 50% 50% 19 63% 37% 22 68% 32%
SMOS Desc. 50 50% 50% 34 56% 44% 41 44% 56% 16 75% 25%

SMAP - - - 24 79% 21% - - - - - -
AMSR2 Asc. 48 60% 40% 57 53% 47% 92 50% 50% 97 48% 52%
AMSR2 Desc. 71 48% 52% 60 53% 47% 103 52% 48% 105 59% 41%

Table 4.4: HCI results for the irrigation period over Capitanata: number of SSM–precipitation
couples (n), proportion of positive (A+), negative (A–), and irrigation-driven positive (IA+) agree-
ments

Dataset
2015 2016 2017 2018

n A+ A– IA+ n A+ A– IA+ n A+ A– IA+ n A+ A– IA+

Active 61 75% 7% 18% 94 70% 14% 16% 43 70% 9% 21% 33 67% 12% 21%
Combined 40 65% 8% 28% 63 71% 10% 19% 29 76% -% 24% 30 63% 13% 23%
Copernicus 31.4 65% 23% 12% 25 51% 31% 18% 26 62% 17% 21% 22 63% 23% 14%

Up. Copernicus 32 69% 22% 9% 29 59% 24% 17% 25 60% 16% 24% 23 74% 17% 9%
SMOS Asc. 102 56% 16% 28% 76 61% 22% 17% 58 71% 10% 19% 26 62% 15% 23%
SMOS Desc. 95 59% 16% 25% 72 49% 25% 26% 53 53% 19% 28% 35 31% 31% 37%

SMAP - - - - 44 64% 30% 7% - - - - - - - -
AMSR2 Asc. 105 55% 13% 31% 112 46% 22% 31% 94 54% 13% 33% 90 49% 17% 34%
AMSR2 Desc. 116 55% 16% 29% 107 56% 19% 25% 95 59% 12% 29% 108 57% 12% 31%

about the Chiese irrigation consortium resemble the ones about the more southern case study. For
any given year, the performances of the different datasets do not differ much, in particular in the
non-irrigation period. However, overall, positive agreements (A+) are higher than the Capitanata
test case: values as high as 84% are attained, with frequent instances of overpassing the 70% mark.
On the other hand, the irrigation-driven positive agreements (IA+) register low values; they are
higher than 20% only a few times.

4.4 Capitanata–Chiese Comparison

When comparing the results of the methodology over the two cases studies, it is important to keep
in mind the differences between them. The Capitanata consortium is located in a considerably dry
area (540 mm/year on average), with a vital need for artificial irrigation. On the other hand, the
area around Lake Garda, where the Chiese irrigation consortium is located, is much wetter (760
mm/year). This means that for this second test case, the increases in soil moisture should be mainly
linked to the presence of precipitation, and so the “irrigation-driven positive agreements” should
be less important. In fact, the higher amount of rainy days (206 days/year in the 2015-2018 period,
against 158 days/year for the Capitanata in the same period) reduces the possibility of recording
SSM variations without the presence of precipitation. Thus, from a purely methodological point
of view, the possibility of registering IA+ cases decreases with the amount of rainy days in a year.
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Table 4.5: HCI results for the non-irrigation period over Chiese: number of SSM–precipitation
couples (n), proportion of positive (A+) and negative (A–) agreements.

Dataset
2015 2016 2017 2018

n A+ A– n A+ A– n A+ A– n A+ A–

Active 49 71% 29% 45 64% 36% 65 75% 25% 36 83% 17%
Combined 26 69% 31% 19 58% 42% 32 72% 28% 21 90% 10%
Copernicus 18.5 59% 41% 18.1 50% 50% 37.3 62% 38% 36.0 58% 42%

Up. Copernicus 17 59% 41% 16 44% 56% 34 65% 35% 35 60% 40%
SMOS Asc. 46 50% 50% 36 50% 50% 19 63% 37% 22 68% 32%
SMOS Desc. 50 50% 50% 34 56% 44% 41 44% 56% 16 75% 25%

SMAP - - - 24 79% 21% - - - - - -
AMSR2 Asc. 48 60% 40% 57 53% 47% 92 50% 50% 97 48% 52%
AMSR2 Desc. 71 48% 52% 60 53% 47% 103 52% 48% 105 59% 41%

Table 4.6: HCI results for the irrigation period over Chiese: number of SSM–precipitation couples
(n), proportion of positive (A+), negative (A–), and irrigation-driven positive (IA+) agreements

Dataset
2015 2016 2017 2018

n A+ A– IA+ n A+ A– IA+ n A+ A– IA+ n A+ A– IA+

Active 36 67% 22% 11% 70 60% 30% 10% 65 59% 26% 15% 47 51% 43% 6%
Passive 91 74% 12% 14% 94 70% 18% 12% 77 75% 10% 14% 39 72% 15% 13%

Combined 42 84% 2% 14% 61 84% 5% 11% 58 79% 12% 9% 34 77% 18% 5%
Copernicus 33.9 57% 38% 5% 26.0 64% 29% 7% 60.3 70% 23% 7% 53.9 57% 39% 4%

Up. Copernicus 33 58% 42% -% 30 67% 33% -% 63 78% 17% 5% 53 55% 43% 2%
SMOS Asc. 100 65% 14% 21% 104 66% 18% 16% 82 56% 23% 21% 60 50% 37% 13%
SMOS Desc. 100 62% 22% 16% 101 55% 24% 21% 69 61% 23% 16% 62 58% 36% 6%

SMAP - - - - 34 77% 23% -% - - - - - - - -

The results comparison is detailed in Table 4.7.

Table 4.7: Averaged HCI results (SMAP results refer only to 2016).

Case Study Capitanata Chiese
Period Non-Irrigation Irrigation Non-Irrigation Irrigation
Dataset A+ A– A+ A– IA+ A+ A– A+ A– IA+

Active 73% 27% 71% 11% 18% 68% 32% 59% 30% 11%
Passive - - - - - 64% 36% 73% 14% 13%

Combined 75% 25% 75% 4% 21% 64% 36% 81% 9% 10%
Copernicus 58% 42% 60% 24% 16% 55% 45% 63% 32% 5%

Up. Copernicus 59% 41% 65% 20% 15% 56% 44% 65% 32% 2%
SMOS Asc. 55% 45% 62% 15% 23% 54% 46% 61% 21% 18%
SMOS Desc. 52% 48% 54% 19% 28% 47% 53% 59% 25% 16%

SMAP* 79% 21% 70% 23% 7% 69% 31% 77% 24% -%
AMSR2 Asc. 54% 46% 61% 11% 29% - - - - -
AMSR2 Desc. 52% 48% 55% 12% 33% - - - - -

Neither of the test cases features a very high incidence of positive agreements in the non-
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irrigation period. The highest recorded values are both from the ESA-CCI datasets: the combined
(75%) for Capitanata and the active (64%) for Chiese, apart from SMAP, whose data refer to one
year alone. All the other datasets cluster not much further than the 50% threshold, with SMOS
Desc. (over Chiese) not even attaining that value.

When shifting to the irrigation period, all datasets present a reduction of the negative agree-
ments: for the Capitanata case study, the irrigation negative agreements are at least halved, being
on average reduced by a factor higher than 3; for the Chiese case study, this reduction is less im-
portant, around a factor of 2. This improvement in the dataset performance is found also in the
increase of the A+ cases, which grow by a much smaller factor of 1.05 for Capitanata and 1.13 for
Chiese, with little variation among datasets. Thus, the main factor determining the better perfor-
mances of the SSM products in the irrigation period is the identification of irrigation-driven positive
agreements. These are mainly restricted at less than 20% of the total records in the irrigation period
but contribute to reduce the unexplainable negative agreements.

The IA+ cases are quite homogeneous for the Capitanata case study, averaging at about 23%
for all datasets and with a low variation coefficient (28%). On the other hand, in the Chiese area,
the average value falls to 11% with a much wider dispersion between the different datasets (the
coefficient of variation is 51%).

4.5 Retrieval Technology and Algorithm Comparison

Averaging the data according to the retrieval technology, as detailed in Table 4.8, eventual dif-
ferences due to the active/passive dualism can be detected. A slightly better non-irrigation per-
formance from active instruments is registered with respect to passive ones, scoring better results
in the Capitanata test case (+10%) as opposed to the Chiese one (+5%). When shifting to the
irrigation period, the increase in registered A+ orbits around 5%-10%. On the other hand, hybrid
products (mainly the ESA-CCI combined) outperform the others scoring on average much more A+
cases (+15%) with respect to the other instruments both in irrigation and non-irrigation periods.

Table 4.8: HCI results averaged by retrieval technology class.

Dataset Capitanata Chiese
Period Non-Irrigation Irrigation Non-Irrigation Irrigation
Class A+ A– A+ A– IA+ A+ A– A+ A– IA+

Active 63% 37% 65% 18% 16% 60% 40% 62% 31% 6%
Passive 53% 47% 58% 14% 28% 55% 45% 64% 20% 16%
Hybrid 75% 25% 74% 4% 21% 64% 37% 81% 9% 10%

It is worth noting also the comparison between SMOS, SMAP, and AMSR2 results, non-hybrid
products of passive retrieval technology, and similar spatial resolutions. The different choice of
auxiliary data and parameters involved in the pre-processing of the estimation contributes to the
heavily different HCI results.

4.6 Spatial Resolution Differences with Copernicus

The Copernicus product, being the only high-resolution dataset in this analysis, can be evaluated
both in its original and its upscaled version. This allows assimilating the product to the macro-
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scale of the other datasets, allowing a more coherent comparison. Furthermore, by contrasting two
datasets that share every characteristic apart from their spatial resolution, some conclusions could
be drawn about the influence of spatial scales in the dataset performance.

Comparing the year-by-year results over both Capitanata and Chiese, no clear difference emerges
between the two datasets performances. This means that in a global, averaged analysis, the consis-
tency of the Copernicus SSM with precipitation does not improve the results obtained by coarser-
resolution datasets. However, as the maps in Figures 4.3 and 4.5 point out, higher (and lower)
consistencies can be attained locally. This may be due to the high heterogeneity characteristic of
an Irrigation Consortium made up of a wide variety of farms with different crops and irrigation
practices.

This means that the high-resolution Copernicus SSM product possesses, on average, a mild
consistency with precipitation, with results that can vary greatly on a local basis. It is important
to add that these results do not account for the percentage of irrigated areas in the coarse scale
pixel.

4.7 Incidence of Yearly Rainfall and Data Density

As part of the analysis, two “heterogeneity factors” have been investigated: data density and basin
wetness. As each dataset has a different sampling frequency, when comparing the relative number
of agreements expressed as percentages, the data pool from which these percentages are computed
could affect the final results. Smaller data pools could favour more erratic results. On the other
hand, the wetness of any given year could have an impact on the results, as wetter years may reduce
the chances of recording negative agreements.

When looking at the positive agreements sorted by the number of SSM–precipitation couplings
or “occurrences” (Fig. 4.6), a slightly higher data dispersion emerges for datasets with a low
number of occurrences. Around 100 yearly occurrences, data tend to cluster around a common
value, independently of the year or the dataset. This behaviour is more evident in the Capitanata
example (Figs. 4.6a,b) than the Chiese one (Figs. 4.6c,d), and it seems to be amplified when
shifting from the non-irrigation period (Figs. 4.6a,c) to the irrigation one (Figs. 4.6b,d).

The same positive agreements can be classified by the year wetness (Fig. 4.7). However, no clear
decreasing or increasing trend with the cumulated rainfall emerges. The Capitanata results (Figs.
4.7a,b), which referred to dry conditions (annual rainfall between 350 and 500 mm/year), are more
densely grouped than the Chiese results (Figs. 4.7c,d), which are recorded in wetter meteorological
conditions (annual rainfall between 700 and 1 100 mm/year). This may descend from the relative
importance that artificial irrigation invests in the Capitanata Irrigation Consortium. Relying on
rainfall and irrigation, which is a steadier water resource than simple precipitation, it is reasonable
that the performances, across all years and datasets, do not differ much.

4.8 Hit Rate and False Positives Check

The procedure detailed in this work could be inaccurate in situations in which irrigation data are
unknown or imprecise, as the introduction of irrigation may increase the probability of registering
consistency. Hydrologically speaking, increases in SSM in the absence of precipitation should occur
only when another water input, such as irrigation, is present. If there is an absence of information
about irrigation, any SSM increase without precipitation is classified as irrigation-driven (IA+),
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and the final consistency result can be polluted by a number of “false positives”, i.e., SSM increases
without precipitation and happening outside of the irrigation period.

In order to ascertain the incidence of these false positives in the total IA+ count, a reference
run of the algorithm has been performed. In this scenario, any increase in SSM with no recorded
rainfall has been assumed to happen in an irrigation regime, irrespectively of whether any actual
irrigation took place. Thus, these results show what would happen if the procedure was performed
without any a priori knowledge of the actual irrigation.

The resulting fraction of IA+ cases recorded during actual irrigation periods can be seen as a
Hit Rate (HR) of the HCI. For example, a HR of 60% would mean that out of 100 SSM increases
recorded by the given dataset in an absence of precipitation, only 60 happen during the irrigation
period and contribute to a good hydrological consistency of the dataset. An ideal result would be
HR = 100%, meaning that the only cases in which SSM increases without precipitation are the ones
in which artificial irrigation is involved. On the other hand, a lower HR could be an application-
oriented estimate of the quality of the dataset with respect to water accretion phenomena in the
water cycle.

The results of this analysis are provided in Figure 4.8 for the Capitanata (Fig. 4.8a) and
Chiese (Fig. 4.8b) test cases. For each SSM dataset, the total number of IA+ cases is shown.
The yellow bar represents the fraction of these cases that are recorded when irrigation is being
performed. The complementary blue bar identifies the similar cases (increase in SSM without any
recorded rainfall) that are recorded when the area is not being irrigated. Thus, if we had applied
this algorithm without having any information about irrigation, the blue bars would represent the
amount of “false positives” among all the IA+ recorded cases, and the yellow bars would represent
the algorithm Hit Rate.

Apart from SMAP (having just one year of data, it is less representative than the other datasets),
all the datasets cluster around the average hit rate of 65% for Capitanata and 38% for Chiese. In
the Capitanata case, the high-resolution Copernicus records a value below the 60% mark, while
in the Chiese, the ESA-CCI combined is the only dataset attaining a HR higher than 60%, with
ESA-CCI passive barely reaching the 50% threshold.

One possible explanation for these different results between the two test cases can lie in the
different climate between the two datasets. On average, rainy days in the Apr–Sep period for the
Chiese dataset are similar to those in the Oct–Mar period (41 and 40, respectively). On the other
hand, in the Capitanata test case, the irrigation period is much drier (26 rainy days against 40 in the
non-irrigation period). This climatic distinction provides an important difference in the relevance
of irrigation for the agricultural practice. Finally, the amount of private, unregistered wells in the
Chiese test case is quite important, affecting the correct use of irrigation data in the HCI.

4.9 Final take-aways

Overall, the main finding is that no soil moisture product among the tested ones shows a systematic
and definitive hydrological coherence with the rainfall data. This is particularly evident in the non-
irrigation season, with some datasets that show consistency with precipitation only about half of
the time. On the other hand, during irrigation seasons, this consistency increases, partly because of
an increase in rainfall-driven positive agreements (A+, increasing around 5%) and partly because
of artificial irrigation and irrigation-driven positive agreements (IA+, averaging 15%–20%). Not
many studies approached this paper’s object from the same approach, but some indications can be
gathered from McCabe et al. (2008) and Meng et al. (2018). These focused on SSM anomalies
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and comparison with the presence of precipitation in the 24 hours preceding the satellite overpass.
In some cases, 47% of the studied area showed an SSM anomaly being registered in the absence
of precipitation; in others, only 57% of the area with precipitation registered in the preceding 24
hours subsequently shows a positive anomaly in SSM. The results of this study agree with these
previous findings in testifying the moderate consistence of the SSM and rainfall datasets.

The results breakdown across dataset characteristics show that: (i) active and passive measure-
ments do not show major performance differences, while hybrid estimates perform better, relying
less on irrigation to achieve hydrological consistency (IA+ averaging 10% for hybrid, against 17%
and 22% for active and passive, respectively); (ii) no noticeable difference is found between the two
high- and coarse-resolution version of the same dataset (Copernicus SSM), although high-resolution
data would be needed to better interpret the results; (iii) no clear trends were found in separating
the results by yearly rainfall; (iv) low data densities (less frequent satellite overpasses) were found
to be associated to a higher result dispersion , although no clear trend (e.g., better/worse results
with less available data) was detected.

These results could have a number of explanations other than the natural error within the SSM
product itself, which could point to possible improvements to the HCI algorithm:

1. Information about irrigation may not be complete: unregistered irrigation volumes (e.g.,
those related to unrecorded private wells) can provide explanation for increasing SSM values
in absence of precipitation even outside of the “official” irrigation season. The integration of
this kind of data would have immediate effect in improving the HR seen in Section 4.8;

2. The algorithm does not take into account daily evapotranspiration: especially in the warmer
months of the year, sometimes, the actual evapotranspiration can be high enough that even
though some rainfall has been registered, the overall water balance in the soil results negative,
implying an SSM decrease;

3. The presence of vegetation can alter the SSM retrieval process for non-L-band satellites:
although no clear difference has emerged between L-band (i.e., SMOS and SMAP) and C-
band (i.e., Copernicus and AMSR2) datasets, it is reasonable to assume that vegetation
contributes to the hydrological inconsistencies found in our analysis. For example, the fact
that the Chiese case is more vegetated than the Capitanata one may be part of the reason
for a higher average inconsistency in Chiese (22%) than in Capitanata (15%).
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Figure 4.2: HCI data for 8 datasets for the Capitanata test case in 2016: SMOS Asc. (a) and Desc.
(b), SMAP (c), ESA-CCI Active (d) and Combined (e) products, Up. Copernicus (h), AMSR2
Asc. (g) and Desc. (h). Rainfall data also provided (i).
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Figure 4.3: HCI results for the Capitanata case study, year 2016, with the Copernicus dataset.
The first row details the HCI for the irrigation period: positive (A+), negative (A–) and irrigation-
driven positive (IA+) agreements. The second row refers the HCI for the non-irrigation period:
positive (A+) and negative (A–) agreements.
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Figure 4.4: HCI data of 7 datasets for the Chiese test case in 2016: SMOS Asc. (a) and Desc.
(b), SMAP (c), ESA-CCI Active (d), Passive (e) and Combined (f) products, Up. Copernicus (g).
Rainfall data also provided (h).
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Figure 4.5: HCI data for the Chiese case study, year 2016, for the Copernicus dataset. The first
row details the HCI for the irrigation period: positive (A+), negative (A–), and irrigation-driven
positive (IA+) agreements. The second row refers the HCI for the non-irrigation period: positive
(A+) and negative (A–) agreements.
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Figure 4.6: Positive agreements, either “A+” cases for the non-irrigation period (a, c), or “A+”
and “IA+” cases for the irrigation period (b, d), sorted by the number of occurrences (SSM–rainfall
couplings) for the Capitanata (a, b) and Chiese (c, d) case studies.
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Figure 4.7: Positive agreements, either “A+” cases for the non-irrigation period (a, c) or “A+” plus
“IA+” cases for the irrigation period (b, d), sorted by cumulated yearly rainfall for the Capitanata
(a, b) and Chiese (c, d) case studies.
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Figure 4.8: Distribution of potential irrigation-driven (IA+) cases among irrigation (yellow bars)
and non-irrigation (blue bars) periods for the Capitanata (a) and Chiese (b) test cases. The red
dotted line identifies the average hit rate (65% for Capitanata and 38% for Chiese).
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Chapter 5

High-resolution crop monitoring

In this chapter, the data gathered from a high-density sensor network has been contrasted with
corresponding retrievals from satellite, in order to determine their reciprocal validity. First (Sec-

tion 5.1), the reliability of the sensors presented in Section 3.2 is discussed. Then, the monitoring
of four main geophysical variables are detailed: Air Temperature (Section 5.2), Radiation (Section
5.3), LAI (Section 5.4) and SSM (Section 5.5). After these raw-data comparisons with the corre-
sponding EO data, two irrigation management indexes, formulated in Section 2.2.2, have been put
to the test, and their results are used to evaluate in an operative fashion the presented data.

5.1 Sensor performance

Among the 387 active sensors during the 91-days monitoring period, the data collection was in-
termittent. Two major periods without any data can be identified, in early August and in the
first half of September, as detailed in Fig. 5.1a. For the other days, the average number of sensors
collecting data was 102. Evaluating the data wealth for each sensor (Fig. 5.1b), the average number
of days with data for a given sensor was 18. A non-negligible number of sensors (76, or 20% of
the monitored ones) provided data for only one day, and a considerable group (158, 41%) provided
at most 20 days with data. The most prolific sensor was D363, placed in a Celery field, with 61
days-worth of data.

5.2 Air temperature

The air temperature measurements collected by the sensors have been compared with those of the
nearest Davis station. An example is shown in Figure 5.2. Sensor G222 (Fig.5.2a) is placed in
a permanently-bare soil field. The Parrot air temperature (PAT), although similar to the Davis
station air temperature (DAT) in the nocturnal hours, attains much higher values during the day,
reaching temperatures 10-15°C warmer. The main reason for this may be the measurement height:
while PAT is collected a few centimetres above ground, DAT is measured 2 metres above ground.
This means that, although conceptually different, PAT has much in common with satellite Land
Surface Temperature – also displayed in Figure 5.2 – even though displaying higher values especially
in the summer. Another issue could be the overheating of the plastic cover of the sensor, as pointed
out by Xaver et al. (2020). Other three sensors are displayed, with different behaviours. Sensor
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Figure 5.1: Number of active sensors for each day of the monitoring period (a). Sensors classified
by number of days with data (b).

GO190 (Fig. 5.2b) is in a Tomato (TOM) field: the shadow from the plants causes the PAT to
be much closer to the DAT during August; after the harvest, the PAT measured in the now-bare
field grows again higher than DAT. Sensor D363 (Fig. 5.2c) displays an opposite trend. Placed in
a Celery (CEL) field, the PAT values display the bare-soil trend during summer, when the crop is
still virtually non-existent; as it grows, PAT converges to DAT under the influence of vegetation.
Finally, Sensor G150 (Fig. 5.2d), placed in an Asparagus (ASP) field, shows a more regular trend,
similar to that of the Bare-Soil (BS) sensor (Fig. 5.2a). This can be motivated by the scarce
vegetation density of the Asparagus crop, which poorly affects the downwelling radiation.

To understand the general behaviour, all the sensors data are compared with both the Davis
station air temperature (Fig. 5.3a) and the high-resolution (30 m) LST data retrieved from Landsat
7 and 8 (Fig. 5.3b). The comparison is done considering data every 15 minutes, with the Davis
stations data are averaged at this temporal frequency from their original sampling time of 5 minutes.
This provides a high number of PAT-DAT couples (402 487) and, for a better representation, a
density plot is provided. The PAT overestimation already discussed for Figure 5.2 is clearly visible
in the right-hand side of the density plot.

Figure 5.3b identifies the comparison between PATs and satellite LST. In this case, the satellite
overpass time (around 11:25 a.m.) is a major constraint, reducing the number of PAT-LST couples
to 1 017. There appears to be a certain correlation between the two datasets, as shown by the close-
to-one slope coefficient of the interpolation (m=1.02). However, the data seems poorly clustered
around the interpolation line, as testified by the moderate R2 value (0.44). One possible reason
for such a behaviour is the heterogeneity that can be associated to each pixel, notwithstanding its
(relatively) high spatial resolution. In a given pixel – roughly 900 m2 wide – warmer and cooler
sensors may be found, belonging to fields with different destination. The data dispersion can be
considered as an indirect estimate of the pixels own heterogeneity.

To try and discern the specifics of this comparison, sensors are clustered by land cover type, with
each sensor-to-satellite group statistics detailed in Table 5.1. As a reference, the sample dimension
(number of sensor-to-satellite couplings) is also shown. Focusing on the most populated land cover
types, Bare Soil, Celery and Tomatoes provide, on average, a negative sensor-to-satellite bias, while
Asparagus, Fennel and Trees show a positive bias. However, as the determination coefficients show,
sensor data never manages to explain more than 50% of the satellite data variance.
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Figure 5.2: Time series of air temperature from Parrot sensors (orange dots) and Davis station
(black line), together with land surface temperature from Landsat 7 and 8 satellites (green circles).

Table 5.1: Correlation information for the sensor-to-satellite couplings sorted by land cover type

Crop Couples R2 Avg. Bias Crop Couples R2 Avg. Bias

All sensors 1 017 0.44 -0.7°C Celery 60 0.46 -1.4°C
Bare Soil 551 0.45 -0.4°C Fennel 24 0.48 +0.1°C
Asparagus 165 0.44 +1.1°C Tomato 179 0.39 -3.4°C
Cabbage 7 0.20 -0.9°C Trees 15 0.32 +1.4°C
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Figure 5.3: Comparison between Parrot air temperature (PAT) and station air temperature (SAT)
(a) or Landsat 7/8 land surface temperature (LST) (b)

5.3 Radiation

In the comparison of Parrot illuminance to the shortwave radiation from the Davis Station, two
“problematic” data categories have been weeded out: cloudy days data and nocturnal data. Notwith-
standing this, the Lumen-to-Watt (or Lux-to-Watt-per-square-metre) theoretically-based conver-
sion (116 lux to 1 W m-2) detailed in Section 2.2.3 has not been found in the actually measured
data. As an example, data for Sensor G67, placed in a bare-soil field, are shown in Figure 5.4.
The empirical conversion coefficient (m=5.69), obtained with a strong accuracy (R2=0.96) is quite
far from what expected from theoretical conversion. Repeating the comparison with other sensors,
similar values are found, although each specific to its own sensor.

The wide variety of illuminance-to-radiation couplings is mapped in Figure 5.4b. First, a con-
sistent group can be noticed on the left-hand side of the plot, with very low illuminance values
corresponding to high radiation values collected by the station. These couplings are mainly re-
ferred to sensors in vegetated fields, where the dampening effect invalidates the illuminance reading
for this kind of comparison. Excluding these sensors, the remaining ones providing suitable data
(numbering 110) show an average radiation-illuminance ratio of 5.41:1 (0.185 “lux” to 1 W m-2),
with a low variation coefficient (6.4%). In order to motivate this empirically-found number, and
going back to Equation 2.2.3, the following steps can be taken:

ILL [lx] = χ [lm/W] · 0.1688 · SIN [W/m2] (5.1)

ILL∗ = ILL/χ [W/m2] = 0.1688 · SIN [W/m2] (5.2)

SIN [W/m2] = 5.92 · ILL∗ [W/m2] (5.3)

In this new form, the conversion coefficient is strikingly close to the one found empirically. This
suggests that the “illuminance” provided by the sensors is rather a “sensitivity-peak converted”
illuminance (ILL∗), obtained converting the radiation with the sensitivity-peak conversion factor
(χ) and disregarding the luminosity function correction, as detailed in Section 2.2.3 and Micheal
et al. (2020). For the rest of the analysis, the simpler – and safer – empirical conversion will be
employed.
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Figure 5.4: Sensor-to-Station comparison between illuminance and radiation. Example on a bare
soil sensor (a) and global density plot for all the sensors (b).

5.4 Leaf Area Index estimates

Provided the findings in the previous section, the procedure detailed in Section 2.2.4 to obtain
Leaf Area Index has been slightly modified. As sensor-specific conversion factors where not always
obtainable for sensors in vegetated fields – as not necessarily there were collected data obtained
in vegetation-free conditions – the radiation dampening ratio was replaced with the illuminance
dampening ratio. For any vegetation-dampened illuminance, an average was taken of contemporary
illuminance measurements from other, vegetation-free sensors.

The results have been compared against estimates (Section 3.7.2) from Sentinel 2 satellite data,
with mixed results. Figure 5.5a shows a good correlation with a positive trend, as the field is shifting
from an empty bare soil to a vegetated pattern (cabbage). This evolution is evident both in the
sensor and satellite retrievals, and just as clearly in general trend and in actual LAI values. An
opposite trend is shown in Figure 5.5b, where sensor GO186 placed in an asparagus field, records a
reduction of the vegetation density in the monitoring period. The general decreasing satellite LAI
trend and its actual values result again well-interpreted by the sensor.

Figure 5.5: Two examples of successful comparison between sensor-computed LAI and data gath-
ered from satellite.
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On the other hand, Figure 5.6 displays two examples of the satellite-sensor comparison with a
low correlation. Figure 5.6a involves another sensor (G71) placed in an asparagus field: while the
sensor registers LAI values around 1 m2 m-2, its corresponding satellite pixel features practically
null values (0.02 m2 m-2 at most). Looking more in details the LAI satellite image (Fig. 5.6b),
it clearly appears how the Parrot sensor placement, in the angle of the asparagus field, creates a
conflict with its covering pixel. In fact, the sensor shares the pixel space with the neighbouring,
mainly bare soil area, affecting the overall LAI value. As a reference, the neighbouring pixel (just
9 m west of the sensor) has been added in green to Figure 5.6a, showing a LAI series much more
in tune with that obtained from the sensor. The same concept applies for sensor G122 (Fig. 5.6c),
placed in an originally bare soil field, later cultivated with celery. Also in this case, the sensor-to-
satellite divergence is due to the fact that the sensor has been placed to the corner of the crop field
and, once again, the neighbouring satellite pixel shows a LAI time series more in line with what
the sensor perceives.

Figure 5.6: Two examples of problematic comparison between sensor-computed LAI and data
gathered from satellite.

5.5 Soil moisture measurements

5.5.1 Comparison with SM satellite data

Each sensor in the Parrot SM dataset is compared against satellite data from the corresponding
Copernicus SSM1km product pixel, nominally 1 km2 large. The complete data are provided in
Appendix B. Copernicus data, provided in the form of saturation percentage, are converted to
volumetric ratio (same unit as the Parrot SM) employing the known saturation and residual water
contents for the area (Section 3.1). In the first panel of Figure 5.7, the overall scatterplot, involving
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all sensors, is shown. Although the interpolation slope is not far from unity (m=0.75), it is clear how
the heterogeneity of each Copernicus cells clashes with the degree of detail provided by the Parrot
sensors. In the other panels of Figure 5.7, the same data is provided filtered out by land cover,
starting from the bare soil category and covering all crops found in the area. The correspondence
varies a lot from category to category with m values ranging between 0.84 for the bare soil field
to 0.50 for chard, confirming the difficulties of microwave radar data in retrieving soil moisture in
highly vegetated fields (Giacomelli et al., 1995). Low values of R2, never higher than 0.31, are also
obtained for the fields.

Figure 5.7: Parrot to Copernicus soil moisture comparison for different crops categories. Number of
couples (n), determination coefficient (R2) and interpolation slope (m) are provided for each plot.

To better understand also the spatial resolution issue of the satellite images, in Figure 5.8 one of
the Copernicus SSM1km pixels has been selected for a focus, as it covers 56 different Parrot sensors
over the total period of observation. The time series of Copernicus SM, completed by the dataset
uncertainty in the shaded area, is shown in Figure 5.8a together with the SM distribution of all the
active Parrot sensors in the same pixel. A similar behaviour in the overall trend is observable among
the two datasets detecting the SM increases around DOY 240, while high differences in the extreme
values are detected, with sensor data generally compact. In terms of error statistics, satellite data
shows a RMSE of 0.116 m3 m-3, an interpolation slope of 0.76 and a determination coefficient of
0.12. These discouraging values may be explained by the different land cover conditions of the
considered satellite pixel (July, Figure 5.8b and October, Figure 5.8c) of the observation period,
which describe a particularly bare pixel. Such a pixel would be expected to show generally low SM
values, with peaks only for precipitation events, involving the whole area without differentiation.
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Figure 5.8: SM time series example for a Copernicus SSM1km pixel, with its uncertainty (shaded
area) and the SM distribution of the Parrot sensors located within the pixel. July (b) and October
(c) field type distribution is also detailed.

5.5.2 Comparison with satellite water stress indices

Parrot soil moisture data were compared to some satellite-derived vegetation indices (described
in Section 3.7.2) to detect their sensibility to soil moisture variations. The employed indexes are
FV, MSAVI, MSI, NDVI and NDWI, obtained from Sentinel 2 and Landsat 8 satellite images.
These indices evolve with the crop, as shown for a small area in Figure 5.9. This area is mainly
composed of asparagus fields in Summer; during August, other crops are planted (mainly cabbage),
progressively increasing the vegetation presence. The comparison between sensors and vegetation
indices is detailed for three different sensors in Figure 5.9. Sensor 8360 (Fig. 5.9a), located in
a celery field, registers high SM values during Summer, corresponding to soil preparation before
planting. All the VIs show equally increasing trends but remain quite clustered around similar
values. The same happens with an asparagus sensor (F070, Fig. 5.9b) and a tomato one (849E, Fig.
5.9c). The VIs do not show particularly sharp changes in low-SSM phases, corresponding to stress
conditions for the crop. Generally, low temporal frequency in the VIs data is poorly compatible
with the temporal scales of water stress and irrigation for most crops, as appears clearly for the
celery and tomato sensors.

A global overview of the SM-VIs link is performed through a cross-correlation between the
different datasets, as shown in Table 5.2, across all the Parrot sensors. The close relation between
the VIs is witnesses by the high (absolute) correlation values, whereas their weak link with on-
ground SM is quantified in the extremely low corresponding correlations.
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Figure 5.9: Fcover, MSAVI, MSI, NDVI and NDWI evolution for selected dates within the obser-
vation period. Parrot soil moisture (upper half) and vegetation indices (VIs, lower half) for some
selected sensors in the plots on the right.

Table 5.2: Correlation coefficients between SM and the vegetation indices

SM
Fcover -0.03 Fcover
MSAVI -0.07 0.96 MSAVI
MSI -0.08 -0.84 -0.79 MSI
NDVI -0.09 0.91 0.88 -0.80 NDVI
NDWI -0.07 0.83 0.83 0.97 0.84

5.5.3 Effective and potential evapotranspiration

Employing Equation 2.1, a Potential Evapotranspiration (PET) can be computed for each sensor,
using its own illuminance (converted into radiation) and air temperature data. Across all sensors,
relatively similar PET values are found, with a small standard deviation of 1.1 mm/day. This
consistency in PET estimate is also detailed in Figure 5.10, where a boxplot relates the daily ETP
variability across all available sensors. Some of the outliers could be explained by the sensor-
specific radiance-illuminance conversion adopted method, whose uncertainties were detailed in full
in Section 5.3. A general impression of a decreasing trend in PET, as summer transitions into
autumn, is quite visible, with values as high as 10 mm/day in August shrinking to 6 mm/day by
the first half of October.

In order to compute effective evapotranspiration (ET), soil moisture data from the sensors is
factored in (Eqs. 2.4 and 2.5), increasing dataset variability as a direct consequence of the spatial
heterogeneity in precipitation and irrigation instances. ET and PET temporal dynamics are detailed
in Figure 5.11 for some sensors, together with the respective soil moisture information. The upper
panel (Fig. 5.11a) identifies a sensor placed in a bare soil field during the whole analysed period
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Figure 5.10: Box plot of the potential evapotranspiration for all the available sensors for each date.

from July to October. Soil moisture is constantly very low, and as a consequence ET is almost equal
to zero. A similar behaviour is observable in (Fig. 5.11b), with a sensor located in field initially
bare (July) before being sowed with celery and developing a full crop by October. Contemporary
SM dynamics reflect an initially-empty field (SM values below wilting point at mid-August) being
prepared for cultivation with insistent irrigation, and finally transpiring at high potential (SM well
above the Field Capacity) by October. The third panel (Fig. 5.11c) identifies a celery field which
undergoes harvesting during the monitoring period. ET is constantly up to PET during cultivation,
with SM well above field capacity. After harvesting, the field is left unattended, and a monotonical
decrease in SM ensues. Finally, (Fig. 5.11d) refers to a sensor placed in an Asparagus field. The
oscillating pattern of the SM is reflected in the time behaviour of ET, which fluctuates in a similar
fashion in the vicinity of PET.

5.6 Irrigation water needs

In this last part, two operational products have been developed for irrigation management purposes,
called Irrigation Water Needs (IWNs) and feeding on data collected by the Parrot sensors.

5.6.1 Evapotranspiration-based IWN

The first IWN is based on evapotranspiration computation (thus, IWNET), and is simply identified
with being the difference between PET and ET. This indicator is computed sensor-by-sensor, and
can be described as a phytologically-oriented product helping to define the distance of plant tran-
spiration from full-potential conditions. The daily IWNET values are shown for the entire dataset
in Figure 5.12 in boxplot fashion. During August, since many fields are quite dry, a higher deficit is
observable, while during October the IWNET values are generally smaller, mainly due to lower-PET
conditions and near-field-capacity SM values as a consequence of autumnal precipitations and more
intense irrigation. Irrigation events determine also a wider same-daily variability.
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Figure 5.11: Four example computations of the ET and PET linked to the soil moisture dynamic:
a fully bare-soil field (a), a bare-soil plot being planted (b), a vegetated plot being harvested (c), a
continuously-cultivated field (d).
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Figure 5.12: Boxplots of IWNET for all available dates.

5.6.2 Soil-moisture-based IWN

The second operative product for irrigation management is directly derived from the Parrot soil
moisture data (thus, IWNSM), comparing them against the crop-dependent stress threshold and
the field capacity (Fig. 5.13). In the upper panel (Fig. 5.13a), a bare soil field with almost no soil
water is then planted with cabbages in the beginning of September. A typical soil moisture dynamic
of an irrigated field becomes observable, with values seesawing between the stress threshold and
well above field capacity, with an average irrigation frequency of about 5 days. This SM excess
over field capacity indicates that a certain amount of water is lost to surface runoff, meaning that a
non-optimal irrigation volume was used. Similarly, but with an opposite timing, the second panel
(Fig. 5.13b) shows sensor 8C2C data, referring to a celery field during August. On the other hand,
a more accurate irrigation amount is observable in an asparagus field (sensor EBA6, Fig. 5.13c)
with SM never overpassing field capacity during its 4-day period fluctuations. Finally, the lower
panel (Fig. 5.13d) portrays a bare-soil field where soil moisture remains well below wilting point.

For the focus date of 20th August 2019, the SM data from the Parrot sensors have been com-
pared with the corresponding Copernicus SSM1km data, together with the corresponding IWNSM,
computed both using sensor data and satellite retrievals. Generally, the satellite pixel footprint
is much bigger than the average field in the area, meaning that for a single satellite SSM value,
numerous sensor SSM data are available. To this end, two distinct satellite pixels have been se-
lected, one covering the main Incoronata (”Guzzetti” farm) area (featuring 54 active sensors in that
date, Figure 5.14a,b) and the other in the Onoranza area (with 11 active sensors, Figure 5.14c,d).
The analysed sensors have been classified in two categories: those pertaining to irrigated areas
(consisting of about 15% of the total pixel area for that date) and those to non-irrigated areas.
The former includes all sensors associated with crops that are detected as “irrigated” from the sen-
sors themselves. This means that the Parrot sensors located in the asparagus fields belong to the
“non-irrigated” category, since the sub-superficial (at a depth of 20 cm) irrigation in place for that
crop is practically undetectable to both the Parrot sensors (which have a sensing depth of roughly
7 cm) and the Copernicus SSM (around 5 cm). For each sensor category, the average SM value is
indicated with the bold red horizontal line, and an additional dashed line identified the single Crop
Stress Threshold (Eq. 2.7) for the irrigated-areas sensors. The behavioural difference among the
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Figure 5.13: Four examples of soil moisture dynamic: a bare-soil plot being planted (a), a vegetated
plot being harvested (b), a continuously-cultivated field (c) a fully bare-soil field (d).

sensors is quite clear. For both the Incoronata and the Onoranza pixels, the low amount of irrigated
areas (15% and 26%, respectively) mean that the Copernicus SSM is generally closer to the data
from “non-irrigated” areas, with values close to the wilting point. In terms of IWNSM values, as for
both cases the average “irrigated”-areas sensor SM is above field capacity, no irrigation is required;
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on the other hand, using Copernicus SSM would prompt important irrigation volumes (around 10
mm) (Figs. 5.14b,d).

Figure 5.14: Soil moisture values from Parrot sensors and Copernicus SSM for the Incoronata (a)
and the Onoranza (c) selected pixels, for the 20th August 2019. Corresponding IWNSM are also
shown: respectively, (b) and (d).

5.7 Final take-aways

As a general result, the Flower Parrot sensors have proved to be a valid alternative to traditional
instruments, providing accurate measurements which can be highly dense in space. Parrot air tem-
perature has been found to be in agreement with professional air temperature data especially during
the night, while during the daytime hours and especially over bare soil fields higher discrepancies
are obtained mainly due to the PAT measurement height of 5 cm. Actually, daytime PAT has been
proved to be better correlated with satellite LST.

A strong correlation has been obtained among the Flower Parrot sensors illuminance data
and the incoming shortwave radiation data for all sensors, although not respecting the expected
conversion factor.

Similar good results have been obtained between the LAI estimated from the ground sensors
and the remote sensing data, excluding the situations in which the sensor is located in a satellite
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pixel straddling several fields with different coverages.
A higher variability is instead obtained when the sensors’ SM is compared with the Copernicus

SSM1km data, probably because of low spatial resolution not being able to capture the variability
detected by the ground measurements. This is consistent with the findings of Zappa et al. (2019),
proving that low-cost sensors are valuable for satellite SM data validation over homogenous areas.
As opposed with satellite SM information, the high spatial density of Parrot SM retrievals can be
quite useful in improving the knowledge of soil moisture spatial heterogeneity, quite undetectable
with traditional sensors (Bogena et al., 2010).

Through the computation of operative irrigation monitoring indicators, the accuracy of such
data has been shown to overcome that of satellite-derived information, weakly responsive to SM
spatial heterogeneity. On the other hand, the single use of Parrot SM data might be more useful for
satellite SM validation than for actual agricultural uses (Zappa et al., 2019), as their measurement
depth is limited to few centimetres, which is similar to most microwave SM data but potentially
irrelevant to farmers, as the water root uptake zone is usually much deeper.

Another issue with extensive use of low-cost sensor networks is their reliability. In this case,
out of 456 sensors, only 107 (23%) provided meaningful data (covering more than a couple of days)
and even for these 107 sensors, many data gaps were recorded. Notably, no data was stored for
the 31st July – 10th August and 8th September – 20th September periods due to sensor acquisition
issues. Some sensors have also been lost during the end of August harvest operations.

A proper merging of the information from a dense ground low-cost network with satellite infor-
mation could be a good solution for improving irrigation management and agricultural monitoring
activities.
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Chapter 6

Scale analysis

The scale analysis detailed in this Chapter is organized around the FEST-EWB model perfor-
mance over the Rapitalà vineyard (Paciolla, Corbari, Maltese, et al., 2021). The case study

considerable underlying heterogeneity is a major factor in creating adverse conditions for the mod-
elling, as single-energy-balance models (all single-source models and the hybrid FEST-EWB) work
on the main presumption that the given pixel either is or can be assumed to be homogeneous.
A preliminary calibration and validation of the model is presented in Section 6.1, while the two
main analyses directions are detailed in Sections 6.2 and 6.3. Finally, global results are analysed in
Section 6.4.

6.1 FEST-EWB calibration and validation

6.1.1 Calibration

As the data available for the Rapitalà test case spans five separate days in summer 2008, the FEST-
EWB simulations will consist of five distinct runs, each modelling a single day. Such short daily
simulations, without any precipitation nor irrigation, do not allow the possibility for the model to
capture the water dynamics influenced by the soil calibration parameters. Hence, the calibration
has been restricted to the two parameters linked to the evapotranspiration process: the minimum
stomatal resistance (RS,min) and the wet-soil surface resistance (RSoil). These parameters have
been corrected across numerous simulations with the aim of minimizing the temperature error, as
detailed in Section 2.3.6. The results of this calibration are detailed in Table 6.1. Originally, wet-
soil surface resistance was set to 500 s/m for all the pixels; minimum stomatal resistance, on the
other hand, was set to 200 s/m for highly-vegetated pixels and to 50 s/m for the remaining pixels,
based on well-established literature values for vineyards and grass patches, respectively (Allen et
al., 1998).

The comparison between modelled RET and estimated LST is shown in Figure 6.1 for the
three calibration dates. Results show a good correspondence, especially in the distinction between
warmer bare-soil areas and cooler vegetated patches. Some areas have been blanked out, as not
pertinent to the analysis (artificial basins, tarmac, and buildings).

Model biases (difference between modelled RET and estimated LST) are plotted in detail in
Figure 6.2, both in map and histogram formats. Model errors are generally distributed around their
average value, with most of the pixels (61%, 59% and 78% for each date, respectively) displaying
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Table 6.1: Parameter statistics before and after the calibration process.

Parameter
Before Calibration After Calibration

Average Min–Max Average Min–Max

RS,min 128 s/m 50–200 s/m 606 s/m 50–1920 s/m
RS 500 s/m – 603 s/m 0–1920 s/m

Figure 6.1: Comparison between FEST-EWB generated RET (upper row) and proximally-sensed
LST (lower row) for the three calibration dates.

an error within ±3°C of the target LST. For what concerns the spatial distribution of the error,
different trends are visible for each date. While 11th June seems to have a uniform error distribution,
22nd July shows important underestimation-errors in the non-vegetated areas, and 3rd September
displays a diffused overestimation in the vegetated part. In all three dates, however, some “spot”-
like errors are present, mostly found in the western part of the image. For these “spot”-like areas,
the model error seems to be distinguished from that of the nearby area: on 11th June the model
is much cooler than the LST in that area with respect to the central part of the test site, and on
22nd July a sudden change in model trend (from a sharp overestimation to a mild underestimation)
is clearly visible. These problems may be due to the nature of the LST images employed, which
are the result of a composition of different passages of the same airborne instrument over the area.
Thus, some areas, although geographically close, can be sensed by the instrument in similar, but
different, time intervals; a cloud temporarily obscuring the sun can then be enough to produce
a sharp temperature difference between relatively close areas. The extent of these areas can be
assessed in the original LST images from Figure 6.1. On the other hand, some discontinuities in
the RET distribution can also be detected for 11th Jun and 3rd Sep. These may be linked to similar
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image composition problems in the input vegetation data.

Figure 6.2: Temperature differences (RET–LST) for the three calibration dates: spatial distribu-
tions (upper row) and histograms (lower row).

The adaptation statistics for the calibration process are detailed in Table 6.2. On the left-hand
side of the Table, classic adaptation statistics are displayed: model-to-data bias (AE), slope of
the linear regression (m) and determination coefficient (R2). On the right-hand side, the surface
temperature error (expressed in terms of Root Mean Square Error, RMSE) is sorted by vegetation
degree (in terms of Leaf Area Index, LAI) of the relative pixel. Generally, lower errors are found
for medium-to-high vegetation levels, although the 11th June test date shows a less definite trend.

Table 6.2: Calibration statistics: Bias (AE), linear interpolation slope (m) and determination
coefficient (R2) on a global level. Root-Mean-Square-Error (RMSE) global and sorted by Leaf Area
Index (LAI).

Date AE m R2 RMSE [°C] by LAI [m2 m-2] (Pixel Num.) Global
<0.5 0.5–1 1–1.5 1.5–2 >2 RMSE

11th Jun –2.2°C 0.87 0.710
3.5 2.8 3.0 3.8 4.5

3.5°C
(18%) (27%) (22%) (15%) (17%)

22nd Jul –1.0°C 0.50 0.613
5.6 4.4 3.7 3.4 3.3

3.9°C
(13%) (13%) (16%) (15%) (42%)

3rd Sep +0.0°C 0.81 0.793
3.8 2.7 2.3 2.0 2.2

2.8°C
(25%) (18%) (20%) (16%) (22%)
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6.1.2 Validation results

Among the FEST-EWB results, components of the energy balance for each pixel are available.
These outputs can be compared with the quantities measured by the eddy-covariance instruments,
as detailed in Figure 6.3. For the modelled turbulent fluxes (LE and H), both information extracted
for the eddy footprint area and data from the station pixel itself are provided. For the purpose
of validation, both original (black line) and Bowen-corrected (red line) eddy covariance data are
shown for both Latent and Sensible Heat. The corrected ones in some instances appear out-of-phase
with the others, as a result of some issues with longwave radiation components. In compliance with
energy-budget-closure principles (Twine et al., 2000), the corrected data have been employed for
the validation statistics detailed below, but original ones have been preserved in Figure 6.3 all the
same.

In the lower panels of Figure 6.3, Net Radiation (Rn) and Soil Heat Flux (G) are compared,
with positive results, although a slight out-of-phase relation between modelled and measured fluxes
is noticeable, in particular for the Soil Heat Flux. This, however, is consistent with the slight shift
observed in the eddy station data, as mentioned earlier in Section 3.3, and can be blamed to some
reference data inconsistencies. In the upper panels, Latent and Sensible Heats are displayed. The
green line details the flux modelled in the station pixel; the yellow line depicts the average flux in
the station footprint area. As detailed in Section 3.1.2, the physics of the turbulent flux measure-
ment requires the knowledge of a certain footprint area, highly dependent on the meteorological
conditions, such as wind intensity and direction and atmospheric temperature. The presence of a
consistent bare-soil area around the station is evident in the higher values of the Sensible Heat as
opposed to the Latent Heat registered by the station. These dynamics are all well-captured by the
model interpretation.

The visual adaptation shown in Figure 6.3 is detailed in Table 6.3 with some common statistics.
Linear interpolation slope (m), determination coefficient (R2) and Nash-Sutcliffe Efficiency (NSE)
are provided for all the curves displayed in Figure 6.3. A comprehensive average column has
been added to the right of the Table. The turbulent fluxes are overall well-interpreted by the
model (NSE ¿ 0.5) when referred to the station pixel. As footprint filtration is introduced, model
performances generally decrease (only the Latent Heat for 11th June presents a performance increase
when employing the footprint). This may be attributed to the extremely heterogeneous conditions
of the vineyard crop structure, that constrain the flux tower measurements to its immediate vicinity
by hindering water vapor (for latent heat) and heat (sensible heat) horizontal motion across the
field.

6.1.3 Evapotranspiration output

Modelled evapotranspiration for the global experimental vineyard area is also evaluated. The
modelled ET is presented for the main experimental area, in form of histograms and spatial distri-
butions, in Figure 6.4. Bare-soil paths are clearly visible in every date, together with an alternance
between high- and low-ET pixels in the vine rows area.

The averaged values have been compared with others, as reported in Figure 6.5. First, the
Flux Tower estimated ET, which is relative only to the flux footprint area. Then, the global area
ET (as shown in Figure 6.4) estimated by two energy-balance models already employed in the
comparison in Ciraolo et al. (2012): the single-source SEBAL and the two-source TSEB. The
modelled results seem quite in-line with those of the other energy-balance models. This may be
explained by the presence of vegetation (low grass) in the vines interrow, which participates to the

88



6.1. FEST-EWB CALIBRATION AND VALIDATION

Figure 6.3: Daily evolution of the energy fluxes, expressed in W m-2 against the hours in each day.
Fluxes are grouped in each row (“L” = Latent Heat, “H” = Sensible Heat, “Rn” = Net Radiation,
“G” = Soil Heat Flux), while different validation dates are organized in each column.

Figure 6.4: Daily evapotranspiration (in mm d-1) maps and histograms for the main experimental
area.

overall evapotranspiration. The overall area, although not homogeneous, results less heterogeneous
and can thus be portrayed with comparable accuracy by models with approaches both “extreme” to
one another (SEBAL and TSEB) and “hybrid” between the two (FEST-EWB). Flux Tower results
are quite low, with respect to the modelled ones, for the 3rd Jul and 3rd Sep dates. This is because,
in those days, the dominant wind direction is WNW, partially aligned with the main bare path,
reducing the overall measured daily ET.
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Table 6.3: Validation statistics by energy flux: linear interpolation slope (m), determination coef-
ficient (R2) and Nash-Sutcliffe Efficiency (NSE) for the four validation dates together with their
average (Avg.).

Energy Flux Stat. 11th Jun 3rd Jul 22nd Aug 3rd Sep Avg.

Latent Heat
m 0.41 0.74 0.49 1.06 0.68
R2 0.85 0.80 0.85 0.86 0.84
NSE 0.446 0.790 0.776 0.573 0.646

Latent Heat
(flux tower footprint)

m 0.74 1.3 1.1 1.4 1.14
R2 0.93 0.80 0.85 0.81 0.85
NSE 0.880 -0.371 0.544 -1.09 -0.009

Sensible Heat
m 0.86 0.79 0.81 0.63 0.77
R2 0.87 0.89 0.73 0.86 0.84
NSE 0.846 0.849 0.811 0.693 0.800

Sensible Heat
(flux tower footprint)

m 0.87 0.72 0.73 0.65 0.74
R2 0.80 0.78 0.69 0.79 0.77
NSE 0.761 0.695 0.743 0.653 0.713

Net Radiation
m 0.75 0.92 0.94 0.82 0.86
R2 0.97 0.94 0.97 0.96 0.96
NSE 0.897 0.940 0.967 0.929 0.933

Soil Heat Flux
m 5.5 6.4 6.9 5.7 6.13
R2 0.84 0.81 0.78 0.82 0.81
NSE 0.699 0.647 0.888 0.650 0.721

Figure 6.5: Average daily evapotranspiration for the main experimental area computed from the
eddy-covariance measurements (Flux Tower), the SEBAL, TSEB and FEST-EWB models.
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6.2 Upscaled Outputs (UO)

The aggregated maps employed in the scale analysis are shown in Figure 6.6. In the example 11th

June date (11:00 local time): airborne-sensed Land Surface Temperature (LST), Latent Heat (LE),
Sensible Heat (H), Soil Moisture (SM) and Representative Equilibrium Temperature (RET) are
shown. Results of the Upscaled Outputs approach are displayed in the left-hand side of the image.
It appears clearly that some surface heterogeneity features (e.g., bare-soil paths) are preserved in
the first step (10.2 m) and still distinguishable in the second (30.6 m), where the scale ratio is
18:1. From the third step (244.8 m) all heterogeneity is lost. The information degradation process
that follows the aggregation is also visible when comparing the LST and RET evolution. Although
the colours suggest slightly different values, the obliteration of the fields characterizing features is
definitely similar.

Figure 6.6: Overview of Land Surface Temperature (LST) and four FEST-EWB outputs across
the selected scales and the two aggregation approaches: Latent Heat (L), Sensible Heat (H), Soil
Moisture (SM) and Representative Equilibrium Temperature (RET).

6.2.1 Data variance across scales

In Figure 6.7 the evolution of the frequency distribution for the same data displayed in Figure 6.6
for 11th June (11:00) across the different scales is detailed. The first row displays the Upscaled
Outputs results. FEST-EWB RET and flight-gathered LST (Figure 11a), modelled Latent and
Sensible Heats (Figure 6.7b) and modelled soil moisture (Figure 6.7c) are shown. For each plot,
the darkened area identifies the one-standard-deviation-range (±σ) around the average value. As
scales progress, the overall data average is unaffected, whereas fewer pixels covering the same area
determine a decreasing heterogeneity of the data. Being the 734.4 m step made up of just one pixel,
all standard deviations are null at that stage.
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Figure 6.7: Average (solid line) and Standard Deviation (shaded area) of the remotely-sensed Land
Surface Temperature (LST) some FEST-EWB outputs: Representative Equilibrium Temperature
(RET), Latent Heat (L), Sensible heat (H) and Soil Moisture (SM). Data from the Upscaled Outputs
approach (upper row) and the Upscaled Inputs approach (lower row).

In Figure 6.7a, the positive model interpretation of the LST transpires from the similar shape
of the two plots. The bias that separates them at the native resolution, detailed in Table 6.2,
is preserved along the aggregation process. In Figure 6.7b, it can be observed how Latent Heat
tends to be more widely distributed than Sensible Heat. This distinction holds until the 30.6 m
threshold, with the two fluxes gaining similar heterogeneity by the 244.8 m step. This is consistent
with what observed in Figure 6.6, where the heterogeneity features are shown to hold until the 30.6
m upscaling step. The entity of these heterogeneity shifts is detailed in Table 6.4. For each product
and each scale, the variation coefficient (standard deviation normalized with the average value) is
shown, progressively decreasing with the increase of the spatial resolution.

Table 6.4: Variation coefficient for the variables shown in Figure 6.7 across all the tested scales.
Data for the 734.4 m scale not included, since the value is, by definition, 0%. Model results described
both from the Upscaled Outputs (UO) and Upscaled Inputs (UI) approaches.

Dataset LST
RET LE H SM

UO UI UO UI UO UI UO UI

1.7 m 14% 15% 63% 34% 26%
10.2 m 12% 12% 13% 57% 34% 30% 22% 20% 19%
30.6 m 10% 10% 11% 49% 31% 26% 27% 16% 16%
244.8 m 4% 4% 4% 18% 17% 10% 9% 7% 7%
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6.3 Upscaled Inputs (UI)

In the second part of the scale analysis, data inputs have been upscaled to the different target
scales before being employed in the model. Thus, after calibration, the model results are produced
directly at the target scale, simulating the functioning of the model at coarser resolutions for the
same data set. In order to identify the heterogeneity loss with spatial resolution of the model
inputs, some of them are described in Table 6.5. Heterogeneity information is presented in terms of
Variation Coefficient for all scales except the coarser (744.8 m), for which only one pixel is available.
Since the aggregation is performed with the simple averaging approach, the average value of each
parameter is preserved, just like the UO results. Variation coefficients decrease to about one fourth
of their highest-resolution value by the last scale step, indicating a quite uniform data levelling for
the model input.

Table 6.5: Variation coefficient for selected FEST-EWB model inputs across the selected scales.

Parameter 1.7 m 10.2 m 30.6 m 244.8 m

Albedo 27% 24% 21% 8%
Vegetation Fraction 51% 38% 31% 13%
Leaf Area Index 65% 45% 37% 15%
Vegetation Height 43% 32% 27% 12%

A similar effect is visible on the calibration parameters, and is detailed in Table 6.6 for all the
calibration steps. The Variation Coefficient stays high (above 50%) until the 30.6 m step, before
plummeting to the 25% value of the 244.8 m scale. The calibration functions employed for the
two parameters are practically the same, except for overestimated values. This distinction brings
about different calibrated datasets until the 10.2 m step. By the 30.6 scale, the most extreme
overestimations have been smoothed out, and the two parameters converge to similar distributions.

Table 6.6: Average and variation coefficient for the calibration parameters of the different steps in
the scale analysis

Parameter
RS,min RS

Average Var. Coeff. Average Var. Coeff.

Original 127 s/m 59% 500 s/m -
Calibrated, 1.7 m 579 s/m 63% 603 s/m 63%
Calibrated, 10.2 m 410 s/m 51% 407 s/m 52%
Calibrated, 30.6 m 355 s/m 58% 355 s/m 58%
Calibrated, 244.8 m 399 s/m 25% 399 s/m 25%
Calibrated, 734.4 m 310 s/m - 310 s/m -

The scale evolutions for LST, RET, Latent Heat, Sensible Heat and Soil Moisture are portrayed
in Figure 6.6 (lower row) for 11th June, 11:00 local time, with the relative variation coefficients
detailed in Table 6.4. Turbulent fluxes (Fig. 6.6e) show similar behaviours to those of the upscaled
outputs (Fig. 6.6b), with smaller variation coefficients, in particular in the Latent Heat and the
higher-resolution steps. This may be attributed to the loss in spatial heterogeneity caused by the
upscaling process: working on less heterogeneous input data, the model provides less heterogeneous
outputs. Analysing the values in Table 6.5 and those in Table 6.4, it can be observed that, for the
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10.2 m and 30.6 m scales, UI Latent Heat presents six-tenths of the diversity shown by its UO
counterpart. However, the former is originated from input data with six-to-seven-tenths of the
heterogeneity of the UO one.

These concepts are less visible for the Soil Moisture, as evident by the similarity be-tween Figure
11c and Figure 6.6f. The difference is minimal, being slightly perceptible only in the numbers in
Table 6.4, because of the reduced soil moisture dynamics due to the brevity of the simulated
period. Most pixels retain values very close to those of the starting condition, which is obviously
uninfluenced by the upscaling approach.

6.4 Approaches comparison

6.4.1 Temperature biases

Figure 6.8 displays the summed-up surface temperature results for the two upscaling approaches.
Green dots identify the average temperature biases (model RET against flight LST) obtained by
upscaling the model outputs. The green area highlights the one-standard-deviation-range around
the mean value (±σ). As already discussed, the averaging process preserves the global mean. On the
other hand, the orange dots provide the average temperature biases for the upscaled-input model
results, with the orange areas identifying the standard deviation range as above. The independent
calibrations that produce the upscaled-input results, although completely unrelated to the upscaled-
output data, provide quite similar temperature biases. For high resolutions (10.2 m and 30.6 m),
the average biases are particularly similar to the upscaled-output results. Coarser resolutions lose
some of that similarity (in particular on 3rd September), but the overall comparison of the two
datasets remains remarkable. Generally, low (absolute) biases can be attained with either of the
upscaling approaches, as in both the error-minimization calibration rationale is employed.

Figure 6.8: Evolution of the model temperature bias (RET–LST) across different scales: average
value (solid line) and standard deviation range (shaded area).

6.4.2 Global evapotranspiration

The comparison between the two approaches is investigated also in terms of daily evapotranspi-
ration, focusing on the main vineyard area. Figure 6.9 provides the absolute-value results of this
comparison in the left-hand column. The golden bar identifies the calibrated-model ET result
for the native resolution; the green bar identifies the up-scaled-outputs approach result, whereas
the orange one the upscaled-inputs result. The UO and UI results are never equal, but they are
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fundamentally never far from each other. Varying on the days, the differences can be more or
less marked, but the overall value is similar, with no clear over-estimation of one over the other.
Furthermore, both values are generally in the vicinity of the daily ET computed at the highest
resolution (the golden bar). This aspect is further investigated in the right-hand column of Figure
6.9, which dis-plays the Relative Error (RE), for both approaches, between the ET valued at the
coarser scale and the highest-resolution ET, assumed to be the most accurate. The green line
identifies again the UO approach, and shows an error increasing monotonously, coherently with the
simple averaging method at its origin. The line for the 3rd July, although seemingly constant at
the null value, presents non-null errors, poorly distinguishable as always below 1%. The orange
line represents the UI results, with a more erratic scale evolution, as already seen in Figure 6.8
for the independent calibrations. The RE data is useful because of the limited variability of the
ET values, which hinders clear understanding of the possible error. The results shown confirm this
assumption, as non-negligible errors – as high as ±30% – can be detected. Generally, UI errors are
higher than those of UO but, being subject to calibration, can be even lower (as is the case for
the 734.4 m scale in the 11th Jun and 3rd Sep dates). While UO, by construction of the simple
averaging methods, is monotonically increasing, UI has no pre-defined behaviour.

Figure 6.9: Average daily ET of the main experimental area for some of the test days. In the
left-hand column, absolute-value comparisons between the upscaling approaches and the native-
resolution value. In the right-hand column, Relative Errors (RE) with respect to the highest-
resolution ET.

Given the nature of the scale analysis, a further insight into the effects of spatial resolution over
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model application can be obtained by analysing the spatial distribution, in-stead of the average
value, of ET. Figure 6.10 shows the different ET spatial distributions across the four scales of our
analysis, for the example date of 11th June and comparing both scaling approaches. For the 10.2 m
scale step, little differences can be detected, in line with the average value featured in Figure 6.9.
The pattern of slightly higher ET in the eastern half of the vineyard is visible in both approaches,
while the western half shows some discrepancies between the two. In the shift towards the 30.6 m
step, the different calibration of the UI approach is quite evident (as foretold by the higher average
value in Figure 6.9), although spatial patterns start to fade out. The low-ET roads surrounding the
vineyard are clearly distinguishable in both approaches, as the empty fields are directly north and
south of the main vineyard area. Finally, in the 244.8 m step, both approaches seem to converge
to similar values for the pixels involving the main vineyard area, as the lumped nature of pixels at
this coarse spatial resolution flattens out most singularities in the target area.

Figure 6.10: Spatial distribution of ET across the different scales (columns) and both scaling
approaches (UO for the upper row and UI for the lower). Data about the example date of 11th

June.

6.5 Final take-aways

Numerous doubts regarding the scale issues with energy fluxes involve the common assumption of
pixel homogeneity in most surface energy balance models (Ershadi et al., 2013). These concerns
revolve around the modelling non-linearities, which do not cope well with the (often) linear aggre-
gation processes, non-linearities all the more evident for heterogeneous pixels. Again, Ershadi et
al. (2013) focused on the dependency of modelling roughness lengths (used to compute aerody-
namic resistances) on spatial resolution, postulating that all models following the Monin-Obukhov
Similarity Theory (MOST) face this challenge.

The scale analysis shown in this study aims at testing the FEST-EWB sensitivity to modelling
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non-linearities across common spatial resolutions for remote sensing product. Two approaches are
contrasted: aggregating model results obtained at high resolution (Upscaled Outputs approach, or
“UO”); aggregating model inputs before calibrating the model anew (Upscaled Inputs approach,
or “UI”). Faced with this double approach, the FEST-EWB model has shown consistent results.

In the calibration phase (Figure 6.8), the temperatures are comparable between the two ap-
proaches. The calibration process, employing the same calibration functions for both approaches,
demonstrated to be only slightly hampered by the spatial resolution. This is all the more impressive
provided the loss in spatial information brought on by the upscaling process, both in the actual
results for UO and in the input data for UI, as testified by Table 6.5. Although data inputs become
up to three-fourths less diverse, the model still manages, with the appropriate calibration, to pro-
vide low temperature biases. The aggregated fluxes (Figure 6.7) reflect this decreased data diversity
with less heterogeneous UI Latent and Sensible Heats with respect to their UO counterparts.

To provide an operative estimate for the model performance in coarser-resolution scenarios,
ET global estimates for the vineyard area are computed with both approaches and compared
to their high-resolution counterparts. This adaptation is detailed in Figure 6.9, with the two
different scale evolutions for the UO and UI results. While the simple averaging approach provides
a monotonous relative error increase in the UO scenario, the independent calibrations set a more
erratic error distribution for the UI approach. Clearly, the UI errors appear overall higher than the
UO ones, in agreement with Sharma et al. (2016). They found that ET was better preserved with
output upscaling than with input upscaling, as in the former case the coarser-scale ET relative
error reached, at most, 28%, whereas in the latter it stretched just above 40%. The results of
input upscaling for their work was obtained for a model (SEBS) which did not require calibration;
probably for this reason, the up-scaled-input ET showed a monotonously increasing error which is
not the case for this study, as shown in Figure 6.9. The overall error values are however in tune
with what was found in this study.

Some further considerations are due for the UI results shown in Figure 6.9. Being the model
subject to a new calibration for each scale, low errors are theoretically possible even for coarse
resolution, which is not the case of the UO results. However, as scales progress, fewer and fewer
pixels cover the same area; in this case, only 1 pixel for the 734.4 m scale and 9 for the 244.8 m one.
Fewer available pixels dramatically hinder the perks of employing a distributed hydrological model,
as less parameter values can be tuned during the calibration process. Thus, while low relative errors
are theoretically possible for coarse scales in the UI approach – as for the 11th Jun and 3rd Sep
dates in this case, for the 734.4 m scale – the calibration process can provide worse results, as is
the case for the 244.8 m scale.

Finally, some positive insights of high resolutions data can be gathered by the ET spatial
patterns shown in Figure 6.10. The differences between the two scaling approaches seem quite in
line with those of the averaged values discussed above. This is particularly true for the highest
resolution of the scale analysis (10.2 m), the closest to the native resolution. As scales progress,
some discrepancies emerge between the approaches, in particular for the medium-range spatial
resolution (30.6 m), while coarser resolutions seem less affected. This is in line with the fact that
30.6 m is a critical resolution value, not high enough to encompass large field portions (like 244.8
m), not low enough to clearly distinguish the main features of the field (such as the bare-soil paths
within the vineyard area, clearly visible at 10.2 m). In such mid-range resolutions, the model does
seem to struggle in capturing the heterogeneity of the different contributions to the global ET.
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Chapter 7

FEST-2-EWB

In this chapter, the robustness of the two-source version of the FEST-EWB model (FEST-2-EWB)
will be explored, first in a controlled laboratory environment (Section 7.1), then over two field

test cases (Section 7.2).

7.1 Lysimeter

The laboratory experiment with the lysimeter will be detailed in this section, first covering the
data pre-processing steps (Section 7.1.1–7.1.6), that have been necessary for then evaluating the
FEST-2-EWB model calibration and validation (Section 7.1.7–7.1.9).

7.1.1 Thermal infrared camera pre-processing

A total of 13 proximal sensing “flights” have been completed during the monitoring period with
a thermal camera. Each acquisition provided both RGB and thermal infrared data, at different
resolutions. At the camera height above lysimeter level (1.20 m), these amount to 0.39 mm and 1.2
mm, respectively. With the experimental configuration, the area covered by one image is roughly
1 200 cm2 (around 5% of the whole lysimeter surface). This means that a minimum of 19 images are
required to fully cover the whole lysimeter. However, for georeferentiation and mutual correction
purposes, some overlapping areas had to be maintained among all images. The final acquisition
scheme has involved four distinct stripes, each made up of 5-6 acquisitions, for a total of 20-24
acquisitions for each global lysimeter image. These images have then been geolocated and mosaiced
to form two global data matrices for each sampling instance, one for land surface temperature (LST)
(Figure 7.1a) and the other with RGB values (Figure 7.1b). In order to obtain thermal infrared
data, the camera inverts Stefan-Boltmann law from its longwave radiation measurements, after an
assumption a priori for the surface emissivity. From the final user perspective, these data need only
to be patched together to be used in the calibration phase, while the RGB data needs a further
post-processing step. As the final aim is determining the fractional vegetation cover, the following
algorithm has been used over each pixel RGB triplet:

1. If the Green reflectance is higher than both the Red and the Blue ones, the pixel is classified
as vegetated

99



CHAPTER 7. FEST-2-EWB

2. If the highest reflectance is in the Red band, the pixel is classified as vegetated only if the
Green reflectance is not much smaller than the Red one (a threshold Green/Red ratio of 0.75
has been chosen after some analyses)

3. In all other cases, the pixel is classified as non-vegetated

This follows in the steps of other works which were able to retrieve vegetation data from RGB
images (Marcial-Pablo et al., 2019). This work is performed at the high resolution of RGB images
(0.39 mm), so that the assumption of obtaining only fully-vegetated and completely-bare pixels
can be considered safe, as this spatial resolution is comparable with the reference scale of the final
object. An example of vegetation distribution is visible in Figure 7.1c.

Figure 7.1: Data gathered from camera on 7th July: surface temperature composite (a), RGB data
composite (b) and fine-scale vegetation fraction (c).

7.1.2 Spatial resolution resampling

All distributed data have been resampled through simple spatial averages to a 10 cm resolution
from their native scale, before being fed to the model. This allows to achieve various levels of
vegetation-soil mixing within each pixel, thus creating optimal heterogeneity conditions. In Figure
7.2 an example of final, pre-processed vegetation map is provided, for the example date of July
10th. The darker pixels are those that result better-aligned with the main vegetated row (Section
3.6.3), while the lighter ones cover mostly bare soil. The histogram in Figure 7.2b shows how no
pixel has a definite 0 or 1 vegetation fraction, with a good portion (exactly one fifth) falling close
(±10%) of the 50% mark that represents ideal heterogeneity conditions for the models comparison.

7.1.3 Meteorological data

While some meteorological data (air relative humidity and temperature) have been assumed as
constant over the whole lysimeter area, radiation distribution has required some clarifications. The
distance between lysimeter surface and lamp set-up is quite small (1.20 m), in order to optimize the
energy distribution by having the lysimeter occupy most of the set-up field of view. However, this
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Figure 7.2: Spatial distribution (a) and histogram (b) for the vegetation fraction data of 7th July.

proximity implies that energy transmission cannot be assumed as cylindrical (as is the generally-
assumed case with considerably distant sources, e.g., the Sun in open field), and effects of its conical
distribution cannot be neglected. This means that an uneven short-wave energy distribution is in
place, although the radiometer only provides one single value per time step. This energy distribution
heterogeneity is further heightened by the effect of the nearby widows, which allow in natural light
unevenly over the lysimeter surface. In order to identify the energy distribution, the data from
one of the earliest thermal infrared camera overpasses (May 31st) have been employed, since no
vegetation had yet developed and, at that moment, the soil was overall dry after being exposed
to the set of lights for some days without any spatially-differentiated irrigation. This means that
the surface soil could be assumed as quite homogeneous, both in moisture and temperature. In
this scenario, the temperature of each soil parcel would be a direct result of the thermodynamic
equilibrium enforced by the amount of radiation it received, since no compositional or water-related
gradients were present over the lysimeter surface at that time. For this reason, a proportionality
has been imposed, based on equal Net Radiation across all pixels. This means that, for any given
pixel x, the following will hold:

RS(x) : TK
4(x) = RS(rad) : TK

4(rad) (7.1)

ς =
RS(x)

RS(rad)
=

[
TK(x)

TK(rad)

]4
(7.2)

Where RS(x) identifies the shortwave radiation received by the given pixel, RS(rad) is the
radiometer measurement, TK(x) the absolute pixel temperature and TK(rad) the absolute temper-
ature obtained by the radiometer from the longwave upwelling radiation measurement. The ς ratio
allows to refer any pixel back to the radiometer. In this way, any value of incoming shortwave
radiation can easily be distributed in space by applying the matrix ς, shown in Figure 7.3b. In
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the image, a coarsely-concentric pattern emerges, with a decreasing radiation amount as distance
from the radiometer nadir point increases. A darker area is also visible right in the middle of the
lysimeter, which can be associated to the shadow provided by the radiometer itself.

Figure 7.3: Irrigation (a) and radiation (b) modelled distributions.

7.1.4 Irrigation distribution

Irrigation distribution should have been quite straightforward to model, starting from the geomet-
rical outline of the seeded (Zone 1) and unseeded (Zone 2) areas (as described in the experimental
outline in Section 3.6.3). However, a combination of factors complicated the final pattern. Firstly,
the structural pattern of the drip irrigation line was so that not all outlets were positioned within
Zone 1 areas; blocking with tape the outlets located in Zone 2 was only partially effective, as some
water reached Zone 2 nonetheless (clearly visible in the focus in Figure 7.3a). Another cause for
Zone 2 pixels receiving some irrigation water was the partial unevenness of the lysimeter surface:
small roughness patches caused some of the water accumulated during irrigation to flow towards
Zone 2 pixels (also visible in Figure 7.3b). Finally, even for drip outlets located within Zone 1,
horizontal soil water transmission caused the actual irrigated footprint to reach, in particular for
the heavier irrigations, areas within Zone 2. In order to account for all these issues, the irrigation
map has been extracted a posteriori from the last vegetation data, attributing more water to the
highly-vegetated areas (Figure 7.3a).

7.1.5 Soil moisture probes calibration

A calibration step is always needed for the soil moisture probes due to the different soil types with
respect to the manufactured one. Firstly, with the soil in very dry conditions, one soil undisturbed
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Figure 7.4: Lysimeter view from above after full grass growth (a) and focus on the tape used to
avoid irrigation of bare-soil areas (b).

sample was collected in the vicinity of each soil moisture probe, using metallic cylinders. The
Sensor Output (SO) values from the SM probes during the sampling were also recorded, and the
cylinders were weighted both at that moment and after 24 hours in an oven at 100°C. This assured
that all the moisture was removed and the weight difference allowed to determine both the soil dry
mass and the Actual Water Content (AWC) at sampling, following Equations 7.3–7.4:

AWA =Wwet −Wdry (7.3)

AWC =
ρw AWA

ρs Wdry
(7.4)

Where AWA is the Actual Water Amount (g) in the soil sample, Wwet (g) and Wdry (g) are
the sample weights before and after oven desiccation (respectively) and ρw and ρs represent the
water and soil densities, respectively equal to 1 g cm-3 and 1.3 g cm-3 – this value being obtained in
precedent tests (Mantovani, 2016). A second sampling was taken after heavy irrigation, obtaining
for each probe another SO–AWC couple. The result of this data collection is detailed in Figure
7.5a. SM as perceived from the probes results weakly perceptive of extreme (either very dry or very
wet) water contents. Thus, a linear correction (quite similar in parameters across all soil moisture
probes, with the exception of SM probe 5) was enforced for the successive steps. In Figure 7.5b,
the final soil moisture profiles are displayed. The peaks corresponding to the irrigation events (also
detailed in the figure) are quite visible, together with different decreasing curves, with the steeper
ones associated to lights-on periods, and the milder ones mainly to the weekends.

7.1.6 Evaporation and Transpiration extraction and comparison

A total of 16 weightings were performed during the observation period (3rd June – 15th July 2021,
42 days), marking start and endings of 15 Monitoring Intervals (MIs). In the first part of the
experiment, the weightings were performed twice a week, with MIs lasting 3-4 days. In the last
part, a denser data collection schedule was enforced, and the average MI duration decreased to 1-2
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Figure 7.5: Data points obtained for SM probes correction (a) and SM data time series for the
probes in the lysimeter (b).

days. Overall, the global average interval is 2.78 days. All the information about the performed
weightings is detailed in Table 7.1.

Table 7.1: Boxes SM data availability for each MI

MI Start End SM(P) SM(N) MI Start End SM(P) SM(N)

1 3/6 7/6 9 30/6 5/7 xxx xxx
2 7/6 10/6 10 5/7 6/7 xxx
3 10/6 14/6 11 6/7 7/7 xxx
4 14/6 17/6 12 7/7 8/7
5 17/6 21/6 13 8/7 12/7
6 21/6 24/6 14 12/7 14/7 xxx
7 24/6 28/6 xxx 15 14/7 15/7 xxx xxx
8 28/6 30/6 xxx xxx

Some MIs for each Box had to be discarded from the analysis as they lacked contemporary SM
data (needed to compute percolation) because of SM probes malfunction. For all valid MIs, the
weight difference was contrasted to the contemporary percolation (computed using Equation 3.10)
and irrigation (when present) to determine the box ET inverting the box mass balance equation:

Wend −Wstart = ∆W = Irr − PE − ET (7.5)

At this point, two controls have been performed: (i) a check on the consistence between the
independent water loss measurements – from successive weightings and from SM probes outputs –
and (ii) the relative partition of the water loss between Percolation and ET.

For the first control, Figure 7.6 provides the differences between weighting-obtained water loss
and probes-obtained water loss, for both boxes. These differences are averaged over 24-hours periods
to homogenize the different time intervals occurred during the experiment. The reciprocal errors
shown by the measurements are relatively contained, falling most of the time within ± 0.5 mm/d.
In general, Box 1 seems to provide better harmony between the two independent data sources, with
an average absolute error of 0.57 mm/d against the 0.91 mm/d of Box 2. In panel (c), Figure 7.6
provides also the SM evolution for the two boxes, highlighting the temporal location of the valid
weightings and the box irrigations performed.
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Figure 7.6: Soil Moisture time series for the Box 1 (a) and Box 2 (c) probes, together with the
corresponding water loss errors: (b) for Box 1 and (d) for Box 2. Monitoring Intervals (MIs) are
also highlighted in plot (c).

The second control concerns the partition of the water loss between percolation and ET. In
Figure 7.7, for each box and each valid MI, the irrigation registered amounts, the (modelled)
Percolation and (estimated) ET fluxes are provided. It can be observed how the low SM values
in Box 2 (Figure 7.7a) mean that close to no percolation is possible, while for Box 1 consistent
irrigation events imply that a non-negligible percolation phenomenon is active for the following
period.

Figure 7.7: Water fluxes balances for Box 1 (a) and Box 2 (b).
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The results of the disaggregation approaches detailed in Section 3.6.5 are shown in Figure 7.8.
Dashed black lines highlight the global measurement error propagated in the final error estimate as
a result of the disaggregation algorithm (±0.12 mm/d). Both disaggregation approaches seem to
provide non-negligible uncertainties. Although the mean absolute errors are contained, with 0.56
mm/d for the “Grass-to-Bare” (G2B) approach (–0.20 mm/d average error) and 1.16 mm/d for
the “Bare-to-Grass” (B2G) approach (–0.42 mm/d), their variability is quite large, with instances
in which both approaches surpass the ±1 mm/d threshold and peak errors worse than –3 mm/d
(B2G). In most cases, these uncertainties exceed the measurement error propagation within the
algorithms, meaning that some external uncertainties play a role. One possible explanation would
be the SM dynamics in both Boxes and general lysimeter, which were not always similar, damaging
to the assumption of equal E and T rate at the bases of both disaggregation approaches (Section
3.6.5).

An error propagation procedure has also been applied, adopting the measurement uncertainties
shown in Table 3.4.

Figure 7.8: Water loss errors for both tested approaches.

Looking at underlying uncertainties in water loss computation (already shown in Figure 7.6),
they seem to bare little weight on the errors in Figure 7.8, as shown by the cross-correlation contin-
gency table (Table 7.2). In particular, roughly 36% of the mass balance error of both approaches
can be explained with the underlying water loss error in Box 1, while the coarser errors shown
by Box 2 are practically uncorrelated to the uncertainties in both approaches. As a result of this
check, G2B is chosen for the disaggregation process.

7.1.7 Model calibration

Both FEST-EWB and FEST-2-EWB models are run for the lysimeter. By following the same
approach detailed in Section 2.3.6, the optimization of the model error function was used for the
calibration of both models. The results are detailed in Figure 7.9, both in form of day-by-day
lumped bias and of average error distribution. The overall model errors are quite similar across
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Table 7.2: Water and Mass balance errors correlations

Mass balance error
G2B Approach B2G Approach

Water loss error
Box 1 0.359 0.358
Box 2 0.028 0.026

both models, both in terms of Average Error (1.80±1.9°C for FEST-EWB and 1.76±1.9°C for
FEST-2-EWB) and pixel-wise RMSE (2.87°C for both FEST-EWB and FEST-2-EWB). In terms
of spatial distribution, some inconsistencies seem to emerge with the radiation distribution, as a
quasi-radial symmetry can be detected, with a temperature underestimation in the central part of
the image. However, this estimation errors again seem similar for both models.

Figure 7.9: Average surface temperatures and biases (a-c) and temperature error distributions (in
°C, b-d) for FEST-EWB (a-b) and FEST-2-EWB (c-d).
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7.1.8 SM profiles

One of the main distinctive features of the FEST-EWB model structure is that Soil Moisture is
continuously modelled starting from an initial condition, by maintaining the energy and water
mass balances closure. This allows to preserve, in the long term, the SM dynamics, providing
physical consistence to the different ET estimations. In Figure 7.3, the SM comparison between
the corrected probes data in the lysimeter and the two models outputs in the corresponding cells
is shown. Overall, FEST-EWB seems to identify better the measured SM dynamics, in particular
for SM probes 7 (bare soil) and 8 (vegetation). Bias and RMSE values for each model are provided
in Table 7.3, confirming how FEST-2-EWB provides worse SM results across all probes. However,
the model performances are not too far apart from each other, in particular for SM probes 3,
4 and 6, as confirmed from the mild RMSE increased values, all below +0.04 m3 m-3 (a value
frequently associated with satellite SSM accuracy). One main concept to retain when looking
at these data is that, although each SM probe is specifically assigned to one land cover (either
completely bare or fully vegetated), the model pixels, with their 10 cm spatial resolution, are much
more mixed, meaning that their values will inevitably be influenced by different land cover types
from the one associated to the given SM probe. This is consistent with the fact that the amount of
SM overestimation is not directly linked to the SM probe land cover, with different performances
both from the two bare-soil probes (SM probe 3 registering an average RMSE of 0.104 m3 m-3

against the much lower value from SM probe 7, 0.058 m3 m-3) and the three fully-vegetated probes
(RMSE(avg)

SM4 = 0.121 m3 m-3, roughly doubling the values for SM probe 6 – 0.067 m3 m-3 – and
SM probe 8 – 0.082 m3 m-3). Another useful information can be gathered analysing the temporal
evolution of the model errors, by computing the variation of RMSE over time. On average, the
RMSE daily variation values are shown in the last columns of Table 7.3. Across both models, a
negative majority can be identified, meaning that, as time goes by, the model comes closer and
closer to the observed data. This is particularly evident with FEST-2-EWB (four SM probes out of
five show a negative trend, with values as high as 0.0011 m3 m-3 improvement in RMSE per day),
but also with FEST-EWB. Indeed, the ability to maintain a continuous SM simulation provides
both models with the possibility of improving their estimates with the simulation time.

Table 7.3: Bias, RMSE and RMSE time variation for each SM probe. FEST-EWB identified with
”1S”, FEST-2-EWB with ”2S”

Bias [m3 m-3] RMSE [m3 m-3] RMSE time var. [m3 m-3 d-1]
1S 2S 1S 2S 1S 2S

SM3 0.085 0.121 0.086 0.122 -0.0001 -0.0011
SM4 0.106 0.134 0.106 0.135 +0.0003 -0.0006
SM6 0.046 0.082 0.049 0.085 +0.0005 -0.0002
SM7 0.024 0.088 0.026 0.089 -0.0001 +0.0012
SM8 0.046 0.111 0.052 0.112 -0.0020 -0.0006

7.1.9 Lysimeter ET partition

The final result of the experiment is detailed in Figure 7.11. In the first plot, the total ET rate
is shown for the nine weighting instances in which box SM data were available. This condition is
necessary as, following the procedure detailed in Section 3.6.5, percolation modelling is required to
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Figure 7.10: Lysimeter SM probes profiles together with model estimations from FEST-EWB
(yellow) and FEST-2-EWB (blue).

extract actual ET from total weighting difference. Together with measured values, corresponding
models simulations are shown, with both models performing equally good. This is consistent with
the similar temperature biases shown above. In the second panel of Figure 7.11, the lysimeter
transpiration rates are detailed. The lysimeter values are obtained following G2B Approach in
Section 3.6.5, and can be higher than the contemporary ET values as they refer to “rates”, i.e.
water evaporation “intensities” per unit area. By looking at the model outputs, a distinguishable
difference now emerges between the two, with FEST-EWB always exceeding FEST-2-EWB. This
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is an expected result, as the former’s transpiration is regulated by RET and the latter’s by TCROP,
which is by construction lower than RET, as explained in Section 2.5. The important result is that
– especially in the second part of the experiment (MIs E through I), when vegetation was denser
and pixel heterogeneity at its maximum – lysimeter data seem to agree more with FEST-2-EWB,
confirming how a two-source approach is more suitable in this kind of heterogeneous scenario.
Focusing on the last five MIs, the average absolute error with FEST-2-EWB is 0.16 mm/d, while
the single-source model performs a slightly worse 0.54 mm/d. In terms of water volumes difference,
the average FEST-2-EWB error amounts to 0.5 Lt, less than one third of the single-source model’s
(1.8 Lt). To provide an idea of how much this impacts in the overall water volume economics of our
system, FEST-EWB errs daily by roughly 20% of the ordinary irrigation volume (FEST-2-EWB
own error skims 5%).

Figure 7.11: Measured and modelled total lysimeter ET (a) and partitioned Transpiration (b).

7.2 Field environment (Rapitalà and Barrax)

In order to extend the FEST-2-EWB results obtained in laboratory to real-world field conditions, an
approach similar to that described in the previous section has been taken over two agricultural test
cases, the Rapitalà vineyard (already modelled in single-source in Chapter 6) and the heterogeneous
agricultural area of Barrax.

7.2.1 Models calibrations

In Figure 7.12, the calibration maps for the Rapitalà case study are shown, for both FEST-EWB
(upper row) and FEST-2-EWB (lower row). Modelled RET versus sensed LST data are shown
also in histogram format, with representation limits set at ±5°C. On a global analysis, there are
not areas with a clear one-way behaviour (either over- or under-estimation of the temperatures).
Generally, a quite mixed error distribution is found, irrespective of the calibration date. No link
seems to be present with the regular vine-interrow patterns of the actual vineyard. Furthermore,
some spot-like areas are visible (e.g., in 11th June, first column) in which the errors are markedly
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different from the neighbouring area. Both characteristics may arise from a common origin: the
calibration data presents some segmentation issue from the pre-processing phase. In Table 7.4, some
calibration statistics are summed up, in terms of error bias and global RMSE. Small differences
emerge between the two models.

Figure 7.12: FEST-EWB (upper row) and FEST-2-EWB (lower row) temperature biases for the
Rapitalà test case, both in map and histogram formats.

For the Barrax case study, Figure 7.13 shows the global superficial temperature bias maps from
FEST-EWB (upper row) and FEST-2-EWB (lower row) for three selected flights. The FEST-
EWB model was calibrated by Corbari et al. (2015). The flight tracks are clearly visible in the
latter two columns, with some missing data. Both models reproduce positively the actual surface
temperature. Some areas mismodelled by both approaches can be identified in the central upper
pivot (a poppy field with harvesting operations in process during the observation period), where
the harvested area is actually warmer than the modelling, and in some sparsely-cultivated areas
(both an alfalfa field next to the poppy pivot and another pivot in the south-eastern corner of the
area) where the vegetation is probably denser than the input data assume. Specific adaptations
statistics are shown in the second part of Table 7.4 for all calibration flights. The quite similar
RMSE values for the two models speak clearly about the models similar performances.

7.2.2 Barrax focus: vegetation degree and density

In this section, a specific close-up will be done on the Barrax case study, provided its wide range
of different crop systems (Section 3.4). Two main distinctions can be made, in terms of vegeta-
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Table 7.4: Calibration statistics

FEST-EWB FEST-2-EWB
Bias [°C] RMSE [°C] Bias [°C] RMSE [°C]

Rapitalà

11/6 –2.57 3.69 –3.04 4.24
3/7 +0.16 3.03 +0.27 3.45
3/9 +0.46 2.14 –0.89 2.43

Average –0.65 2.95 –1.22 3.37

Barrax

25/7 8:43 –0.83 2.62 –2.53 3.58
25/7 8:51 –0.53 3.30 –2.06 3.70
25/7 9:02 1.78 3.27 0.34 2.52
25/7 9:10 2.12 3.28 0.69 2.46
25/7 9:19 1.37 3.11 –0.06 2.69
25/7 9:28 0.81 2.83 –0.58 2.81
25/7 9:38 0.21 3.22 –1.15 3.26
25/7 9:46 1.00 3.14 –0.30 3.12
26/7 8:43 –3.15 4.07 –4.40 5.21
26/7 9:09 2.00 3.23 0.81 2.51
26/7 9:19 0.69 2.52 –0.50 2.63
26/7 9:27 0.74 2.75 –0.42 2.61
26/7 9:40 –4.51 5.78 –5.68 6.71
Average 0.13 3.32 –1.22 3.37

tion degree (drawing up two classifications: vegetated and non-vegetated) and density (other two
classifications: homogeneous and heterogeneous). The assignment of each land cover category to
its classification is performed based on personal knowledge of the site. This explains why fields
with similar vegetation fractions (as Camelina and Reforestation, both with an average vegeta-
tion fraction of 9%) have been assigned to different classifications (Homogeneously non-vegetated
and Heterogeneously vegetated areas, respectively) according to different intra-pixel vegetation
patterns, not distinguishable by the simple vegetation fraction number alone.

Both models calibration results from Figure 7.13 have been broken down across these land cover
categories, in order to identify possible trends within each classification (Fig. 7.14). This distinction
is brought on by the precise research interest of trying to obtain similar findings for Homogeneous
classifications and detect the improvements brought on by FEST-2-EWB over Heterogeneously
Vegetated areas. In terms of surface temperature, however, although both models show equally good
temperature interpretations for Homogeneous classifications (both Vegetated and Non-vegetated),
no clear trend separates them in the Heterogeneously Vegetated classification.

7.2.3 Calibration parameters

In Table 7.5, the pre- and post-calibration statistics of the calibration parameters are shown. The
selected calibration parameters, as already detailed in Section 2.3.6, involve mainly the Evaporation
and Transpiration mechanisms, as the small time frames do not allow major groundwater dynamics
to develop. The wider parameter range in the Barrax case study is easily explainable with the much
larger crop heterogeneity of that agricultural area. Both from the Table and the Figure, a close
similarity of the two models performances emerges clearly. For the Rapitalà test case, a narrower
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Figure 7.13: FEST-EWB (upper row) and FEST-2-EWB (lower row) temperature biases for the
Barrax case study.

parameter range seems to be associated with the FEST-2-EWB model, with RS,min values after
calibration much closer to the value suggested by the literature for vineyards (200 s/m), as opposed
to the higher dispersion found with FEST-EWB.

Table 7.5: Calibration statistics for both models and both case studies.

Case study Model RS range (avg.) [s/m] RS,min range (avg.) [s/m]

Rapitalà
FEST-EWB 0 – 1920 (528) 50 -1920 (529)
FEST-2-EWB 250 – 750 (580) 35 – 275 (184)

Barrax
FEST-EWB 500 – 2000 (1931) 54 – 2800 (220)
FEST-2-EWB 500 – 2000 (1925) 54 – 2600 (210)

7.2.4 Models validations

The validation results for both models over the Rapitalà case study are shown in Figure 7.15. The
comparison is limited to the turbulent fluxes for a more operational-oriented analysis (adaptation
statistical indexes are nonetheless provided for all fluxes in Table 7.6). The behaviour of the two
models seems specular: while FEST-EWB captures more closely the Sensible Heat and tends to
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Figure 7.14: Temperature biases from FEST-EWB and FEST-2-EWB, sorted by vegetation density
classes, for the Barrax test case

underestimate the Latent Heat, FEST-2-EWB does the opposite, well interpreting and sometimes
overestimating the Latent Heat and falling short of describing adequately the Sensible Heat.

This difference in fluxes representation is all the more relevant when compared to the closeness in
terms of land surface temperature bias shown by both models in Figure 7.12. Although maintaining
a similar global temperature, and thus not affecting the overall thermodynamic equilibrium of
the pixel, FEST-2-EWB manages to provide more accurate representations of Latent Heat by
transferring the computation to its two internally-obtained surface temperatures, closer to the
actual real-world values. Table 7.6 collects some adaptation statistics for the case study. The
better interpretation of Latent Heat from the FEST-2-EWB is evident in the decrease of the related
RMSE. Model interpretation statistics for the other fluxes are quite similar across both models,
except for Sensible Heat, where the FEST-2-EWB underperformance with respect to FEST-EWB,
already visible in Figure 7.12, is confirmed by a consistent increase in RMSE.

For what concerns the Barrax test case (Figure 7.16), the limited time window of data availability
is compensated by the presence of three distinct flux towers, located in critically different areas.
Looking at the Latent Heat data (left-hand side of the figure), different results depend on the land
cover of the flux tower footprint. The first two rows show fluxes from heterogeneously vegetated
areas (Reforestation and Vineyard), with three visible peaks. For the Reforestation site, two peaks
out of three are clearly better interpreted by the FEST-2-EWB, while in the Vineyard site the
distinction is less marked. The last row shows the Camelina results, with moderate Latent Heat
peaks, easily interpreted by both models. This is consistent with the (relative) homogeneity of the
Camelina area, over which both models are expected to converge.

On the other hand, the Sensible Heat comparisons show much more similar values across the
two models, with a consistent overestimation in the vegetated categories. Generally, the FEST-2-
EWB seems to perform slightly better, as shown in Table 7.6. A clear distinction emerges between
the models interpretation of Latent and Sensible Heats. While the modelled Sensible Heats are
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Figure 7.15: FEST-EWB and FEST-2-EWB Validation results for the Rapitalà test case

fundamentally similar, the Latent Heats show a definite difference between the models. Overall,
the FEST-EWB model tends to overestimate the Latent Heat (with positive biases), while the
FEST-2-EWB is more inclined to provide underestimations. Among both interpretations, the
RMSE suggests that the FEST-2-EWB provides better flux modelling, with much lower values
than those of FEST-EWB.

Table 7.6: Validation statistics for both models and both case studies. FEST-EWB identified with
”1S”, FEST-2-EWB with ”2S”, ”Bias” and ”RMSE” expressed in W m-2

Case study Rapitalà Barrax
Crop Vineyard Vineyard Reforestation Camelina
Model 1s 2S 1S 2S 1S 2S 1S 2S

Latent Heat
Bias -4.0 +14.5 -6.7 -5.6 +12.1 -0.2 -0.3 -0.7

RMSE 51.6 47.2 30.3 29.9 23.2 16.9 13.4 13.5

Sensible Heat
Bias -40.0 -87.9 +57.7 +35.0 +7.5 -6.9 +9.4 -7.7

RMSE 69.6 130.7 119.4 90.1 69.7 59.2 53.6 44.3

Net Radiation
Bias +5.3 -19.4 -1.3 -34.0 -49.7 -86.1 +6.5 -25.8

RMSE 67.0 96.6 62.5 68.3 78.2 111.8 81.5 94.7

Soil Heat Flux
Bias +3.6 -0.05 -52.3 -63.4 -69.3 -79.0 -7.8 -22.6

RMSE 23.5 22.7 79.3 87.8 95.3 102.4 61.2 70.9

Latent Heat is a key variable in the energy balance, quite important in agriculture because of its
direct link to the water vapour output of the crop. In Figure 7.17, model performances in both case
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Figure 7.16: Validation results for the Barrax test case for the FEST-EWB and FEST-2-EWB
models

studies are shown in a Taylor plot, focusing on the vineyard crops in order to have a uniform analysis.
In both cases, a better performance (even if slightly so, as is the case of Rapitalà) is provided by the
FEST-2-EWB. Correlations are relatively high for both models (the lowest values being just short
of 0.7), but only the FEST-2-EWB Latent Heat for the Rapitalà case manages to almost fall below
the 0.5 threshold value for the normalized Root-Mean Squared Difference (RMSD), considered as
indicative of a good model interpretation (Taylor, 2001). Provided that both models manage to
accurately capture the surface temperature (as seen in Section 7.2.1), the better performance of
FEST-2-EWB in terms of Latent Heat can be seen as a step forward in evapotranspiration modelling
without detectable losses to the thermodynamic equilibrium simulation.

7.2.5 Global vineyard ET

Similarly to what shown for the lysimeter in Section 7.1.9, the global ET amount and its partitioned
Transpiration component are shown (Figure 7.18) for the vineyard from the Barrax case study.
Similarly to what was found for the lysimeter, ET amounts (Figure 7.18a) are close among the two
models, whereas the modelled Transpirations (Figure 7.18b) are quite distinct, with FEST-2-EWB
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Figure 7.17: Taylor plot for the Latent Heat results over the vineyard areas.

providing lower values. This difference in Transpired volume is roughly correspondent to half of
the Transpiration from FEST-EWB, cumulated over a period of almost two and a half days.

Figure 7.18: Cumulated total Evapotranspiration (a) and partitioned Transpiration (b) from both
models over the Barrax vineyard.

In order to better understand these results, two main caveats need to be addressed. Firstly, in
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this open-field application, as in most similar cases, accurate Transpiration data are not available. In
order to create a comparison with the model results, field lysimeters would have been required, which
are seldom available in real-world applications. Other approaches, which are in early testing phase,
try to extract the ET sub-components directly from EC measurements by employing oscillations in
CO2 concentration (Zahn et al., 2022). Secondly, the short simulation time means that cumulated
ET and T volumes are quite low, as compared to normal seasonal irrigation amounts. However, an
extrapolation over a whole irrigation season could be imagined, to infer the potential impact of the
use of FEST-2-EWB in agricultural management.

7.3 Final take-aways

In this chapter the potentialities of a two-source extension of the FEST-EWB distributed hydro-
logical model have been explored. In heterogeneous areas (e.g., fruit tree crops), the assumption
at the core of single-equation energy balances – pixel temperature can be assumed homogeneous
over the whole pixel area – is unsound. By employing a single temperature for the whole pixel, and
provided an unbiased model temperature, an underestimation of the ET from the non-vegetated
area and an overestimation of the ET from the vegetated area can be expected. The main scientific
reason for creating the novel FEST-2-EWB model was that, in agricultural applications, such ET
overestimations could mean both plant growth overestimation (with consequent erroneous yield
predictions) and irrigation excess (with consequent waste of the water resource).

The first part of the chapter has detailed an experiment conducted at the “Fantoli” laboratory
at Politecnico di Milano, where a lysimeter was used to obtain disaggregated ET estimates from
a grass crop planted in rows, imitating heterogeneous scenarios that can be frequently found in
field (practically all fruit trees crops). The experiment results have been obtained with a contained
error margin, and have been compared to the ET and T estimates from both FEST-EWB and
FEST-2-EWB, which had been run over the lysimeter. With similar surface temperature outputs,
both models show a good interpretation of the global lysimeter ET but differ when extracting
the Transpiration component. FEST-EWB, in line with the theoretical expectations, produces
Transpiration estimates higher than those from FEST-2-EWB, which are much more in line with
the disaggregated estimates from the lysimeter. Provided the complexity of retrieving such dis-
aggregated data in most model performance studies, this experiment is especially valuable, as it
demonstrates the need for distinguishing intra-pixel heterogeneity when dealing with mixed land
covers.

The second part of the chapter extends these consideration to two real-world cases, with open-
field data available for the modelling over a vineyard (Rapitalà) and a complex agricultural area,
featuring both non-vegetated and vegetated (with different densities) fields (Barrax). Such complex
scenarios have provided some higher differences between the models in surface temperature estima-
tions, although with both providing acceptable errors. The validation process has seen a generally
better estimation of Latent Heat from FEST-2-EWB in both cases. A close up on the Barrax
vineyard has shown how, while model-retrieved ET are similar, the corresponding Transpirations
differ, with FEST-2-EWB providing estimates lower by approximately a half. This last finding is
strikingly similar to that obtained over the lysimeter, although in this scenario field data to validate
such a result were not available, as is the case for most E-T disaggregated fluxes in open field cases.

Numerous studies have successfully employed two-source modelling structures in more or less
heterogeneous scenarios, starting from the TSEB model (W. Kustas and Anderson, 2009) and its
numerous applications (Cammalleri et al., 2010, 2012; P. Colaizzi et al., 2014; P. D. Colaizzi et al.,
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2012; Y. Li et al., 2019; Nieto et al., 2019).
Khan et al., 2021 devised a LAI-based methodology to develop a two-source version of the single-

source SEBS model (Su, 2002), obtaining similar overall Evapotranspiration estimations over forests
(both full and mixed), cropland and grassland. Aguirre-Garćıa et al., 2021 (and mentioned studies)
successfully applied two-source structures to olive groves in arid environments by exploiting satellite
information for vegetation and thermal data input into the model. Many studies have focused on
the integration of satellite observations in order to obtain more accurate ET estimations, such as
D’Urso et al. (2021), who explored the possible improvements in ET estimation in a complex area
such as a vineyard by employing a thermal-based data fusion approach.

However, only recently the inter-ET partitioning between plant and soil contributions is being
explored. X. Li et al., 2019 have proposed an improved parametrizations of the aerodynamic
resistances (alternatively, the conductances) of soil and canopy, linking their relative weight to
the transpiration fraction (T/ET). Improved aerodynamic conductances are also at the base of the
STIC model Mallick et al., 2015, which has provided internally-partitioned Latent Heat components
and reliable evapotranspiration estimates in different ecosystems such as the conterminous US
(Bhattarai et al., 2018) and Australia (Mallick et al., 2018). Both Aouade et al. (2020) and Aron
et al. (2020) have made use of either isotope tracing or sap flow observations (or both), which
require a considerably heavy data-collecting effort. On the other hand, a common measurement of
an EC station is CO2 concentration, which has been used in ET partition by Zahn et al. (2022)
with positive results. An extensive use of these methodologies could replicate at EC measurement
level what we showed with the lysimeter in this Chapter.

The overall ET errors from FEST-2-EWB, shown in this Chapter, are fairly aligned with those
of the prevailing literature. However, its underlying structure preserving SM dynamics and allow-
ing a full time simulation independent of LST data (either measured directly or from satellite)
availability makes it a powerful option for vast and long-term agricultural monitoring via hydro-
logical simulation. Furthermore, information about partitioned ET is still being discussed across
the literature. In this sense, the positive results from the lysimeter activity are encouraging to-
wards a fruitful employment of two-source modelling schemes in optimizing irrigation water use, in
particular for heterogeneous crops.
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Chapter 8

FEST-AeroT

In this chapter, the possible integration of aerodynamic temperature within the FEST-EWB hy-
drological model is discussed, following the scheme outlined in Section 2.6. Section outlines an

analysis of possible formulations for the aerodynamic resistance from eddy covariance data, obtain-
ing different possible values for TAERO (Section 8.2), whose variability is filtered through different
environmental (meteorological and vegetation) parameters (Section 8.3). Once a specific aerody-
namic resistance is selected, the consequent aerodynamic temperatures have been integrated in the
hydrological model as additional direct input, in order to analyse the effect of perfect temperature
modelling over Latent Heat estimation (Section 8.4). Finally, a way to parametrize TAERO against
surface temperature is validated (Section 8.5) to obtain a continuous temperature simulation within
the model framework, whose results are shown in Section 8.6.

8.1 Aerodynamic Resistance sensitivity analysis

The first step is a sensitivity analysis on the aerodynamic resistance, a very delicate term of the
Sensible Heat equation, and in turn of the aerodynamic resistance. Its parametrization follows the
main assumption of logarithmic behaviour of the wind profile and its more or less turbulent inter-
action with the surface roughness elements (mainly, vegetation). Data from five distinct EC station
datasets - Montichiari (MON), Landriano (LAN) and Livraga (LIV) in maize fields in the North
of Italy and Foggia-Incoronata (FIN) and Foggia-Onoranza (FON) in tomato fields in the South
of Italy - have been used for this analysis: following Equation 2.38, Air Temperature and Sensible
Heat measurements were employed with the different Resistance parametrizations detailed in Table
2.2 to obtain the correspondent aerodynamic temperature. The results from all the parametriza-
tions have been compared to those from the Simplified Thom (ST) parametrization, which is the
one used in the FEST-EWB model. In Figure 8.1, for the example of the Montichiari case study,
two plots are shown for each parametrization, coupling its results with those from ST, both in
terms of aerodynamic resistance (blue scatter plots) and temperature (red scatter plots). In terms
of resistances, some extremely different behaviours can be traced: some show quasi-linear distri-
butions, quite close to the 1:1 line (and thus to ST values), such as Yang and Xie formulations.
Another group is made up of the Full Thom (FT), Verma, Mahrt-Ek and Viney formulations,
which show marked resistance underestimations with respect to ST. The scatter plot is almost
flat, suggesting a considerable relevance of the instability components which differentiate ST from
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these other parametrizations. Finally, a more chaotic group is composed of Choudhury and Hat-
field parametrizations, which offer poorly-aligned results and a less clear possible relation to ST
estimates. The transition to the aerodynamic temperature (red) scatter plots, performed by plug-
ging the newly obtained aerodynamic resistances into Eq. 2.38, is mediated by the contemporary
Sensible Heat and Air Temperature measurements, meaning that the apparent relationships visible
for the resistances do not necessarily hold for the temperatures. Indeed, this is the case for the
Full Thom, Verma, Mahrt-Ek and Viney group, whose aerodynamic temperatures seem to be fairly
aligned to those estimated through ST for the lower values (generally, less than 50°C), before show-
ing a progressively clearer underestimation as temperatures increase. This suggestion that highest
temperatures are associated with the most unstable conditions is consistent with the concept of
convective atmosphere mixing which enhances turbulent heat exchanges between surface and lower
atmosphere. The parametrizations most similar to ST (Yang and Xie) retain their linear distribu-
tion also for the aerodynamic temperature, as do the more chaotic formulations (Choudhury and
Hatfield).

Figure 8.1: Comparison by scatterplots between other parametrizations and ST, in terms of aero-
dynamic resistance (blue) and temperature (red). Data from the Montichiari EC station.

In Table 8.1, all the parametrizations tested over the Montichiari case are detailed in terms of
necessary parameters and statistical indexes of their comparison with the Simplified Thom. In the
first part of the table, for each formula are detailed, in order: if the knowledge of the wind shear
velocity (u*) is required, if the formula has empirically-calibrated parameters and if the formula
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employs the Richardson number. This last information is relevant because, in all these formulae, the
RI parameter (when present) is present in negative form and under square root (Table 2.2). This
means that real values from these parametrizations can be obtained only when surface temperature
is higher than air temperature, which somehow limits the range of application of that particular
formula. Indeed, the last parameter in the first part of the Table is its employing rate (ω), which
identifies the relative amount of the raw data that were employable from the given formula. This
number can be seen as an operation-oriented indicator, providing an empirical estimation of how
likely that specific parametrization can be employable over a generic EC dataset. High employing
rates are registered for ST and Full Thom, while among the others smaller values are found, mainly
related to the use of the Richardson number (which precludes the use for surface temperatures
lower than the corresponding air temperatures) and empirically-calibrated parameters (with a less
marked effect). In the second part of Table 8.1, some statistical adaptation indexes of each formula
(as compared to ST estimations) are provided, with the average absolute relative error (RE), the
Root-Mean Square Difference (RMSD), the Pearson correlation (ρ) and the Taylor score (Taylor,
2001). While Pearson correlations are generally high (mostly above 0.75), non-negligible differences
are found, although mostly within±10% in terms of RE (generally around 5-6°C in terms of RMSD).
Overall, the ST parametrization seems to be the most reliable, provided its width of application
(with the highest employing rate) and low data requirements.

Table 8.1: Information and comparison statistics for the investigated RAH parametrizations

Parametrizations ST Thom Yang Choudhury Verma Hatfield Mahrt-Ek Xie Viney

P
a
ra
m
s. u* X X

Emp. X X X X X
RI No No Yes Yes Yes Yes Yes Yes Yes
ω 98% 96% 16% 72% 69% 24% 66% 67% 66%

ST Comparison

RE -11% 2% -7% -8% 17% -9% -4% -7%
RMSD 6.9°C 1.1°C 6.2°C 5.2°C 11.1°C 5.9°C 2.2°C 4.8°C
ρ .88 .99 .76 .90 .59 .85 .99 .92
TS 60 99 72 71 40 62 95 76

8.2 TAERO-LST across the case studies

The aerodynamic temperatures obtained from the 9 parametrizations are shown in Figure 8.2 for
the maize field of Montichiari, contrasted with the corresponding radiometric temperatures. For
each density plot, LST is displayed on the horizontal axis, whereas TAERO on the vertical axis
and different patterns can be detected. Most formulae provide a data cluster around the 1:1 line,
meaning that in most situations the temperatures are hardly distinguishable, as also testified by
the interpolation line, almost always juxtaposed TAERO the 1:1 line. However, a general trend can
be identified, in which low LST values correspond to even lower TAERO, while high LST values are
associated to even higher TAERO.

These findings are similar to those obtained for the other maize fields (shown in Appendix C),
but slightly differ from those for the FIN data, relative to a tomato field (Fig. 8.3), in which a
distinguishable underestimation of LST with respect to TAERO is visible, with interpolations slopes
more in the region of 0.5–0.8. This could suggest that, for arid climates and with low SM regimes,
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Figure 8.2: TAERO v. LST distributions for the Montichiari data, according to different aerody-
namic resistance parametrizations.

Latent Heat could actually be lower than that usually computed employing LST, as differences
between the two temperatures reach even values around 10°C. Such high difference suggests that
assuming the two temperatures to be equal is not always true and can lead to misinterpretations
of energetical fluxes, mainly Sensible Heat (given its direct connection with TAERO) but also, as a
result, Latent Heat and, thus, ET.

In the next steps of the analysis, the integration of TAERO within FEST-EWB will be explored.
In order to achieve this, the analysis will focus on the Simplified Thom formulation, given its long-
standing employment in FEST-EWB applications and in order to perform coherent comparisons
with versions of the same model neglecting the role of aerodynamic temperature. This choice is
justified also by the quite similar TAERO distributions across all parametrizations (Figs. 8.2 and
8.3) and the ST usage simplicity and low input data requirements.

8.3 TAERO-LST dependency on environment

In order to identify any possible major determinant in the TAERO-LST relations shown in Figures
8.2 and 8.3, a comparison has been performed between any given temperature difference and its
relative boundary conditions, both meteorological and vegetation-related. In particular, an analysis
in terms of wind speed, air temperature, incoming shortwave solar radiation (SIN ), Vapour Pressure
Deficit (V PD), vegetation fraction (fV ) and height (HV ), soil moisture (SM) and Latent Heat (L)
was performed. In Figure 8.4, the results for the Montichiari data are shown (the other maize
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Figure 8.3: TAERO v. LST distributions for the Foggia-Incoronata data, according to different
aerodynamic resistance parametrizations.

case studies are detailed in Appendix C). The general trend is that non-meteorological variables
(vegetation height and fraction and soil moisture) seem to have low impact on the TAERO-LST
difference, with slopes close to 0 and less than 1% variance explained (R2<0.01). Meteorological
variables, on the other hand, show non-negligible links with the temperature difference, reaching R2

values as high as 0.47 (for SIN ), quite in line with what found by Kustas et al. (2007) and Mahrt and
Vickers (2004). VPD and Air temperature also show good impacts on the temperature differences,
while wind intensity seems to have a “funnel”-shaped influence, with low wind speeds associated
with widely-dispersed (TAERO-LST) data and higher values providing less divergent temperatures.
This “converging” behaviour could be explained by the fact that higher winds increase air mixing
and shift the main driver of heat exchange towards turbulence, rather than convection. Wind speeds
lower than 1 m/s are excluded from the analysis as, in such conditions, the conditions are generally
too stable for EC measurements to be meaningful. The Foggia-Incoronata data (shown in Figure
8.5) displays some points of contact with the maize data: meteorological variables (except wind)
again play a more important role than soil/vegetation parameters, and wind dependency again
shows the “funnel” effect already seen in Figure 8.4. However, for all meteorological parameters, the
dependency sign results inverted, with lower and lower aerodynamic temperatures with increasing
variables. This is consistent with the high-temperature underestimation described in Figure 8.3
and may be linked to the higher surface temperatures found in Southern Italy (36.1°C on average
for the FIN test case, against 28.1°C for the MON case).

In the following Table 8.2, the determination coefficients for all case studies are provided. The
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Figure 8.4: Temperature divergence v. environmental parameters, data from the Montichiari
(MON) EC tower.

Figure 8.5: Temperature divergence v. environmental parameters, data from the Foggia-Incoronata
(FIN) EC tower.

low incidence of non-meteorological variables is confirmed across all case studies, with the highest
R2 reached by Livraga at a mere 0.04. SIN is confirmed as an important variable by another high
R2 value (0.46 in Foggia-Incoronata), although it seems less relevant in for Livraga and Foggia-
Onoranza (0.11 and 0.13, respectively) and practically immaterial in Landriano (<0.01). Latent
Heat also demonstrates a certain relevance, with a peak R2 value of 0.61 for Foggia-Onoranza and
high values in both Montichiari and Foggia-Incoronata. Generally, a trend can be identified for
the southern, more arid, tomato-related case study: wind effect seems negligible (although wind
intensities here are much higher than in the north of Italy), while air temperature, SIN and VPD
all seem to play an important role. The three northern case studies, on the other hand, show a
sketchier scenario, with a uniformity of behaviour shown only in the dependency on wind intensity.
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Table 8.2: Correlation statistics between temperature divergences and environmental parameters

MON LAN LIV FIN FON

Wind Intensity 0.04 0.05 0.05 <0.01 0.01
Air Temperature 0.12 0.02 <0.01 0.07 0.07

SIN 0.47 <0.01 0.11 0.46 0.13
VPD 0.18 0.05 <0.01 0.08 0.09

Vegetation Height <0.01 <0.01 0.03 <0.01 0.01
Vegetation Fraction <0.01 <0.01 0.04 <0.01 <0.01

Soil Moisture <0.01 <0.01 <0.01 0.02 0.02
Latent Heat 0.25 0.06 <0.01 0.22 0.61

As a final comparison, the seasonal average temperature divergences for all case studies have
been contrasted with each season Aridity Index (AI). This parameter is defined as the ratio of
rainfall (P ) to (potential) Evapotranspiration (PET ), and is commonly used to evaluate natural
water budget. The comparison is shown in the left-hand plot of Figure 8.6. A certain alignment is
visible across the different AIs spanned by the case studies, which results further enhanced if only
daytime (close to midday) temperature divergences are factored in the comparison (right-hand
plot). It is also interesting to identify the area around which the temperature divergence shifts
sign: the 0.4–0.45 range is strikingly close to 0.5, he threshold AI value conventionally assumed to
distinguish semi-arid from dry subhumid areas.

Figure 8.6: Seasonal temperature divergence v. Aridity Index

8.4 Integrating TAERO into hydrological modelling

In a first instance, the integration of TAERO within FEST-EWB requires a deliberately excessive
assumption. In the two tentative models that have been developed (Section 2.6.2), TAERO (com-
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puted in Section 8.2) was used by the model as an input variable, when available. Obviously, these
models represent some kind of “theoretically optimal frontier”, representing a perfect Sensible Heat
modelling result, and have been developed to identify the consequences of a flawless TAERO in-
tegration into the model over Latent Heat. This helps to set a boundary within which the final
version of the model enclosing TAERO is expected to perform. The two models have been tested
over the Montichiari case study together with the classical FEST-EWB model, for the three-year
period of available data (2016 through 2018).

The modelling findings are shown in Figure 8.7, where the scatterplots for the three major
energetical fluxes are shown for the three modelling approaches. All compared data are related
to the instances in which TAERO measurements are available and thus can be injected in the two
new models. In the first column, the Sensible Heat data is shown. By construction, the two
TAERO-acquiring models show a perfect interpretation of the flux, so that these first plots only
serve to show the general interpretation of the flux in LST-dependent formulations. Latent Heat
data (middle row) show a quite dispersed distribution from the Test Model 2, while both the Test
Model 1 and the classical FEST-EWB seem to provide good representations of the measured flux.
Finally, Net Radiation data (right-hand column) show a minor dispersion of the Test Model 2 data
and, generally, a similar clustering of all three models.

The results are recapped in the simplified form of Taylor plots in Figure 8.8, for Latent Heat
and Net Radiation alone. The more erratic distributions from Test Model 2 are quite evident here,
and non-negligible although minor improvements can be seen between the classical FEST-EWB
model and the Test Model 1. The first finding can be related to theoretical reasons: excluding
the atmospheric boundary conditions from the Latent Heat formulation – as is done with the
Test Model 2 formulation – can deprive it of a crucial component to the overall flux. From the
second result, it can be gathered that a model continuously simulating TAERO and employing it
in Sensible Heat computation would provide performances somewhere in between those from the
classical, LST-driven formulation and those from the theoretical Sensible Heat perfection.

The same analysis has been performed over year 2016 over the Foggia datasets, with the results
from the Incoronata (FIN) and Onoranza (FON) data provided in Figure 8.9. Again, in both
scenarios the Test Model 1 provides better estimates of Latent Heat than the Test Model 2, while
both are equally efficient in simulating the Net Radiation. The aggregated Taylor plot results
(Fig. 8.10) are on the same line as those from the Montichiari case study (Fig. 8.8), although the
improvement in Latent Heat estimation can here be appreciated in a much clearer way.

8.5 Parametrizing TAERO

Creating a stable link with LST would enable the aerodynamic temperature to be simulated con-
tinuously within FEST-EWB framework. Following in the footsteps of Kustas et al. (2007) and
Mahrt and Vickers (2004), in this section the possibility to parametrize TAERO is explored. The
empirical relations to be tested have been detailed in Section 2.6.3. Two distinct analyses were
performed for the northern Italy and southern Italy case studies, provided their differences both in
crop and climate.

8.5.1 Maize case studies

The results for the maize case studies are detailed in Figure 8.11. In the first panel (Fig. 8.11a), the
parameter optimization for the Standard Parametrization Formula (SPF) is performed, with the
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Figure 8.7: Model performances from classic FEST-EWB, Test Model 1 and 2 in terms of Sensible
(left-hand column) and Latent (middle column) Heats and Net Radiation (right-hand column).
Years 2016–2018 arranged along the rows.

resulting scatterplots for the three different datasets, with further statistical information provided
in the following Table 8.3. The data dispersion is small for both Landriano and Livraga (R2>0.65),
but not so much for Montichiari (R2=0.26) which also has the lowest slope (0.3).

An important observation relates to the C coefficient, which was estimated by both Kustas (arid
shrubland) and Mahrt (boreal forest) as quite constant at the value of 0.0087 K m2 W-1. In these
cases, it varies slightly among the datasets but generally is much lower. Similarly, the CS parameter
results quite high with respect to the average proposed by Kustas (850 W m-2), but generally does
not make much of a difference at the low C values for which the error is minimized. An insight into
the error optimization varying both the C and CS parameters is provided by Figure 8.12, where
the RMSD error between SPF-TAERO and indirectly-measured-TAERO is mapped for all the maize
case studies. A positive result is that the global shape of the RMSD dominion is similar across all
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Figure 8.8: Taylor plots for Latent Heat (a) and Net Radiation (b) modelling for the MON data.

Figure 8.9: Model performances from classic FEST-EWB, Test Model 1 and 2 in terms of Sensible
(left-hand column) and Latent (middle column) Heats and Net Radiation (right-hand column).
FIN and FON data arranged along the rows.
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Figure 8.10: Taylor plots for Latent Heat (a) and Net Radiation (b) modelling for the FIN and
FON data.

Figure 8.11: Aerodynamic Temperature parametrization with SPF (a) and VPD (b) for the MON,
LAN and LIV case studies.

case studies, even though these are not very close to each other (Livraga and Landriano are 30 km
apart, while Montichiari is around 80 km far from Livraga). This suggests that crop and climate
factors are the main factors defining TAERO.

Figure 8.11b, together with the statistical recap in the right-hand part of Table 8.3, detail
the parametrization optimization for the VPD formulation. In this case, the C value increases,
getting closer to Kustas’ own constant, while the CS is critically lower (as low as 0 for Landriano),
suggesting a minor role of LAI in this new configuration. The VPD weight (α) provides mixed
results, being both positive and negative among the three test cases. However, it generally seems
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Table 8.3: Parametrization coefficients and statistics for the maize case studies

SPF VPD
MON LAN LIV MON LAN LIV

P
a
ra
m
s. C [°C m2 W-1] 0.0023 0.0005 0.0005 0.0122 0.0046 0.0054

CS [W m-2] 1000 1000 1000 200 0 80
α n/a n/a n/a -0.25 1 0.75

S
ta
ts
.

Sample 3932 6482 9060 3932 6482 9060
ρ 0.51 0.80 0.89 0.85 0.82 0.91
R2 0.26 0.65 0.78 0.71 0.66 0.84

Slope 0.3 0.8 0.7 0.8 0.8 0.9
Intercept [°C] 19.5 6.5 6.8 6.8 5.4 3.8
RMSD [°C] 5.24 3.96 3.38 3.08 3.91 2.90

Figure 8.12: SPF parametrization RMSD isolines for varying C and CS values for the MON (a),
LAN (b) and LIV (c) data.

to have an important role in TAERO parametrization. In Figure 8.13, the same plots as in Figure
8.12 are provided, except that the three degrees of freedom in this analysis and the bidimensional
possibilities of paper printing require that only two out of three parameters can be shown in
full. Two representative CS values have been chosen (200 W m-2 and 850 W m-2) to show the
parametrization RMSD variability with C and α. For any given value of CS , low errors seem to be
associated with close-to-zero values of α, which yields the optimization triplets shown in Table 8.3.

Finally, the last rows of Table 8.4 provide an useful information in terms of validation of the
present parameter sets. In these rows, for any given formula, the RMSD over each dataset is
provided when employing that formula with the parameters calibrated over another dataset. The
parameter similarities between Landriano and Livraga mean that the error increase when adopting
the other datasets parameters is small, while the differences between Montichiari and the other two
(in particular with the VPD formulation) mean that a bigger error would be registered over that
dataset. Generally, it seems that the SPF formula is able to identify quite stable parameters across
all the case studies, but the VPD formula, although more site-specific, achieves much lower errors.
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Figure 8.13: VPD parametrization RMSD isolines for varying C and α values for the MON (left-
hand column), LAN (middle column) and LIV (right-hand column) data. Ancillary CS values
associated to each row.

Table 8.4: Dataset parametrizations validation (maize)

Standard formula VPD formula
Using parameters from...

MON LAN LIV CHI LAN LIV

Error MON 3.08 4.93 4.93 5.24 5.54 5.54
on LAN 5.88 3.91 4.06 5.27 3.96 3.96

dataset... LIV 4.84 2.97 2.90 4.94 3.38 3.38

8.5.2 Tomato case studies

The same analysis as above is replicated over the Foggia-Incoronata and Foggia-Onoranza data
from the corresponding tomato fields in the Capitanata Irrigation Consortium. Figure Ta displays
the scatterplots relative to the calibration of the SPF, with the relative information summed up in
the first part of Table 8.5. For these case studies, the parameter calibration has provided null CS

values for the SPF, suggesting a negligible if not totally ineffective impact of LAI over the temper-
ature difference, and (almost) null C values for the VPD, meaning that aerodynamic temperature,
parametrized with the VPD formulation constraints, is less influenced by both incoming radiation
and LAI with respect to VPD. In this case, the main take-away is that the VPD formulation
does not improve on SPF results, as witnessed by the higher RMSD values (+0.77°C for FIN and
+0.09°C for FON), whereas, for the maize case studies (Table 8.3), the novel formulation improved
the RMSD across all sites.

Further information on the SPF calibration is provided by the following Figure 8.15, where the

133



CHAPTER 8. FEST-AEROT

Figure 8.14: Aerodynamic temperature parametrization with SPF (a) and VPD (b) for FIN and
FON data.

Table 8.5: Parametrization coefficients and statistics for the tomato case studies

SPF VPD VPD*

FIN FON FIN FON FIN FON

P
a
ra
m
s. C [°C m2 W-1] 0.0102 0.0043 0.0002 0.0000 -0.0095 0.0035

CS [W m-2] 0 0 5000 703 0 0
α [°C kPa-1] n/a n/a +1.58 +1.19 +0.25 +0.25

S
ta
ti
st
ic
s

Sample 726 1623 726 1623 726 1623
ρ 0.87 0.91 0.79 0.91 0.87 0.91
R2 0.77 0.84 0.63 0.82 0.76 0.84

Slope 0.9 0.9 0.7 0.9 0.8 0.9
Intercept [°C] 4.0 1.8 7.9 3.1 4.6 2.1
RMSD [°C] 2.99 2.51 3.76 2.60 2.99 2.49

RMSD mapping is provided for a wide range of C–CS couples. Low points in error evaluation can
be found generally around the CS=0 vertical line, with optimal values potentially in the negative
CS region, bet generally with low values of the parameter, confirming the lesser importance of LAI
in this case study.

In the Figure 8.14b and in the second part of Table 8.5 the parameters and statistics for the VPD
formula calibration are shown. In both, the particularly low values for the optimal C coefficient, as
opposed to the non-negligible α, suggest that the influence of both incoming radiation and LAI is
quite lower than that of VPD. However, one main result is that the inversion of the sign for the C
coefficient and the introduction of VPD do not improve the error estimates from the SPF. Instead,
moderate increases in RMSD are registered both for Incoronata (+0.77°C) and Onoranza (+0.09°C)
data, while for the maize case studies (Table 8.3) the novel formulation had improved the RMSD
across all sites. A modified VPD formulation is tested (named ”VPD*”), allowing negative values of
the C coefficient (alike to the SPF) but adding the VPD parameter. The results, shown in the third
part of Table 8.5, identify performances equal to SPF for Foggia-Incoronata and only slightly better
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Figure 8.15: SFP parametrization RMSD isolines for varying C and CS values for the FIN (a) and
FON (b) data.

for Foggia-Onoranza (-0.02°C). Overall, this suggests that, for these cases studies, solar radiation
is the main parameter that determines aerodynamic temperature divergence from the radiometric.
In a form akin to that of Figure 8.13, the RMSD distribution for the VPD formulation, across
different values of α and C, is mapped for two reference values of the CS coefficient (200 and 850
W m-2) in Figure 8.16. The original VPD formulation is generally referred to the C¿0 semi-space,
while the modified version (VPD*) encompasses also the negative C values.

8.6 Aerodynamic Temperature continuous modelling

In this final section, a continuous FEST-EWB modelling of aerodynamic temperature has been
enforced, employing the VPD parametrization validated in the previous section. The results have
been compared with both the classical FEST-EWB model and the Test Model 1, the “theoretical
optimum” model from Section 2.6.2, for both maize (Montichiari) and tomato (Foggia-Incoronata
and Foggia-Onoranza) case studies. The Test Model 2 has been discarded from the comparison,
given its lower-quality results.

8.6.1 Maize case study

Embedding the VPD parametrization (Eq. 2.46) full-time within the FEST-EWB model, the aero-
dynamic temperature is simulated based on the model’s own RET, as opposed to the “optimal” case
seen before with the actual radiometric temperature (Fig. 8.11). To provide a complete insight, the
modelled aerodynamic temperature is contrasted with its indirectly-measured counterpart in Figure
8.17. Comparing this result with the original FEST-EWB model, TRAD-based parametrizations in
Figure 8.11, the main take-away is that, after modelling, a good parametrization is retained, with
a close-to-unity interpolation slope and a modest increase in RMSD.
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Figure 8.16: VPD parametrization RMSD isolines for varying C and α values for the FIN (left-hand
column) and FON (right-hand column) data. Ancillary CS values associated to each row.

The modelled turbulent fluxes are shown in Figure 8.18. In Sensible Heat modelling, the TAERO-
integrated FEST-EWB improves the estimates from the parent model, with higher interpolation
slopes (on average over the three years, 0.48 for classic FEST-EWB and 0.75 for FEST-AeroT) and
R2 values (0.37 and 0.40, respectively). Latent Heat modelling shows quite close results across all
three models, both in terms of slope (on average, 0.68 for FEST-EWB, 0.74 for Test Model 1 And
0.57 for FEST-AeroT) and RMSE (respectively 85.7 W m-2, 72.5 W m-2 and 71.4 W m-2). Finally,
little to no difference is detectable at Net Radiation level, as testified by the global Taylor plots
provided in Figure 8.19.

8.6.2 Tomato case studies

The same procedure as in the previous section is replicated over the Foggia-Incoronata and Foggia-
Onoranza case studies. In this case, provided the analyses shown in Section 8.5.2, the SPF is
chosen for the continuous simulation instead of the VPD parametrization, as it guarantees lower
errors on measured Land Surface Temperature. The temperature comparison with the modelled
Representative Equilibrium Temperature is provided in Figure 8.20. For the Montichiari case study,
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Figure 8.17: Aerodynamic temperature parametrization with RET (MON)

a worsening of +2.4°C in terms of RMSD was recorded after model application (Fig. 8.17), whereas
in this scenario worse adaptations are registered (+3.5°C for the Foggia-Incoronata case and +4.3°C
for the Foggia-Onoranza one, as opposed to the TRAD-computed RMSD).

In Figure 8.21, the comparison of the modelled fluxes is provided for both tomato cases. Gen-
erally, FON result (lower row) seem better than their FIN counterpart (higher row), with close
similarities both to the original FEST-EWB simulations and the Test Model 1 including the mea-
sured TAERO. In particular, the TAERO underestimation seen in Figure 8.20a could be strictly
linked with these worse results, especially for the Sensible Heat ones (Fig. 8.21a) as TAERO values
lower than Air Temperature can cause the many negative Sensible Heat values. It is particularly
worth noticing how these uncertainties would have been quite unexpected if one were to look only
at the a priori parametrization calibration, where the FIN data had performed quite positively
(Fig. 8.20a), with no underestimation to be detected and a contained global RMSD (2.99°C). FON
data, on the other hand, offer a globally positive parametrization and model performance, with
good estimations. The Taylor plots (Fig. 8.22) sum up the models performance, highlighting the
mixed results over the FIN case study and the better ones on the FON data.

8.7 Final take-aways

This chapter has detailed the findings obtained in the exploration of the aerodynamic temperature
and its possible role in hydrological modelling. The main objective has been a full-time integration
of this parameter in the FEST-EWB model, where its bearing on the improvement of Latent Heat
estimation could be tested in a setting preserving SM dynamics and able to work even in absence of
satellite information of LST. In order to achieve this, successive steps have been taken, analysing the
reliability of TAERO estimates, its dependency on boundary parameters, its raw impact on Latent
Heat estimates in modelling and a possible parametrization on LST for continuous estimation.
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Figure 8.18: Model performances from classic FEST-EWB, Test Model 1 and FEST-AeroT in terms
of Sensible (left-hand column) and Latent (middle column) Heats and Net Radiation (right-hand
column). Years 2016–2018 arranged along the rows.

In a first part, the retrieval complexity of this parameter is explored by showing how many dif-
ferent possible values can be obtained in the same boundary conditions from different parametriza-
tions of the aerodynamic resistance. The obtained results are quite compatible with those from
similar studies (S. Liu et al., 2007): although some coarse groups can be traced across the various
parametrizations, a considerable variety is detected among the resistances. This allows to detail how
ephemeral and leaden with uncertainty the TAERO physical variable is. Across the analysed case
studies, similar general trends of the TAERO-LST comparison could be detected when preserving
the general boundary conditions (climate and crop), although the specific temperature distribu-
tions result not too similar. When analysing the Capitanata data, relative to an arid climate and
a tomato crop, the general trend seemed to shift towards an underlying TAERO underestimation of
LST, suggesting that coarse climatic drivers may be one major factor in impacting the TAERO-LST
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Figure 8.19: Taylor plots for Latent Heat (a) and Net Radiation (b) modelling for the MON data.

Figure 8.20: Aerodynamic temperature parametrization with RET (FIN and FON)

temperature divergence. This is consistent with the findings from Kustas et al. (2007), which ana-
lysed data from an arid shrubland and found radiometric temperatures progressively higher than
their aerodynamic counterparts with increasing solar radiation and soil aridity. The temperature
divergence range they computed sometimes exceeds 10-15°C, which is consistent with our results in
comparable environmental conditions. These results are also consistent with the high divergences
found by Chehbouni et al. (1996) and by Sun et al. (1999). The maize datasets, on the other hand,
placed in a cooler climate and with abundance of water, showed results much more similar to those
of Mahrt and Vickers (2004), who obtained more uncertain temperature divergences (oscillating
some degrees around 0°C) in a boreal forest setting.

The theme of the environmental factors affecting the temperature divergence has been explored
further in a sensitivity analysis, conducted by factoring in different bio-meteorological indicators.
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Figure 8.21: Model performances from classic FEST-EWB, Test Model 1 and FEST-AeroT in terms
of Sensible (left-hand column) and Latent (middle column) Heats and Net Radiation (right-hand
column). Data from the FIN and FON test cases arranged with the rows

Figure 8.22: Taylor plots for Sensible (a) and Latent (b) Heats and Net Radiation (c), modelled
for the FIN and FON data

Some of them (incoming shortwave solar radiation and, in general, meteorological parameters)
were found to possess some kind of influence over the divergence, while others (mostly vegetation
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parameters) had practically no influence at all. The results are again quite consistent with those
of Kustas (2007), who conducted a similar analysis. On the other hand, Mahrt and Vickers (2004)
found a potentially non-influent role of soil moisture over temperature divergence. The results
obtained for the Capitanata case studies, showing some connection with the soil moisture state,
as opposed to those obtained in the Northern Italy maize case studies (which share their non-arid
environment with Mahrt and Vickers’ dataset), suggest that Soil Moisture may play a role only for
water-limited scenarios.

In the second part, the aerodynamic temperature is integrated into FEST-EWB hydrological
modelling. Firstly, TAERO data were acquired, when available, into the model realizing a perfect
“simulation” of the Sensible Heat. This had the target of setting a sort of “theoretical frontier”,
representing the possible gains associated with a perfect model result. While Net Radiation es-
timation was substantially stable, Latent Heat estimation showed some improvements from the
simple FEST-EWB model, in particular in the arid Capitanata scenario. Among a model employ-
ing TAERO only in Sensible Heat and another explicating also its role in Latent Heat, the latter
showed far worse results than the former, probably due to the exclusion of atmospheric boundary
conditions in the Latent Heat formulation, necessary to highlight the role of TAERO. At this point,
two possible parametrizations have been analysed, in order to firmly link TAERO with the surface
temperature and use it continuously during model runs. The use of these parametrizations into
the model provided an autonomous new model, FEST-AeroT, able to simulate TAERO at all times.
Results were generally mixed, on both the maize and tomato data. Minor improvements were
detected in terms of Sensible Heat, with respect to the classic FEST-EWB simulations, whereas
more detectable improvements were found in the Montichiari case study for Latent Heat, with op-
posing performances over the two Capitanata sites. No major differences were overall detected for
Net Radiation. These findings are only partially similar to those of Chávez and Neale, 2003, who
found that the use of radiometric instead of aerodynamic temperature in Sensible Heat modelling
generated a direct estimation error of -17%±50%. They also found that this error could propagate
into Latent Heat modelling to an estimation error of +6.4%±30%, which could influence heavily
the computed ET. However, in a successive study (Chávez et al., 2010), they found much more
lenient estimation errors (+2.8%±6.5% for Sensible Heat and +1%3% for Latent Heat) much more
in line with the results here detailed. This adds to the incredible performance variability of models
incorporating TAERO, already shown across all this Chapter. Another interesting work by Colaizzi
et al. (2004) shows results coming from lysimeter-weighed alfalfa, cotton and sorghum, retrieving
similar adaptation statistics to those obtained in this Chapter.

Overall, although the TAERO-LST divergence is measurably non-negligible, the dynamics and
determinants at the heart of it remain unclear, without any one definite behaviour across differ-
ent case studies. This level of uncertainty is probably one reason why plugging TAERO in well-
established hydrological modelling structures such as FEST-EWB produces mixed results, with no
clear and major improvement in energy fluxes estimation.
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Chapter 9

Conclusions

The object of this thesis work has been the improvement of satellite-based hydrological modelling
in agricultural applications. This has been done through a series of activities, covering a wide

variety of inter-connected themes all linked to spatial heterogeneity and data source multiplicity: (i)
physical consistency of satellite observations of Surface Soil Moisture (SSM) with observed rainfall
and irrigation inputs; (ii) suitability of high-density sensor networks against operative satellite data;
(iii) the impact of spatial resolution over a model’s performance in a heterogeneous context; (iv) the
possibility to sharpen hydrological modelling by enriching the modelling of heterogeneous scenarios;
(v) questioning the validity of a common modelling assumption for evapotranspiration modelling.
The following conclusions are a summary of those presented at the end of Chapters 4 through 8.

9.1 Hydrological consistency of coarse-resolution satellite SSM

In Chapter 4, the consistency analysis of satellite SSM datasets was performed, starting
from the necessity of employing them in agricultural applications, such as irrigation scheduling.
Are they truly reliable? In order to answer this question, on-ground precipitation and irrigation
observations have been contrasted with 9 different satellite datasets, ranging in terms of spatial
resolution, source and baseline assumptions, developing a hydrological consistency algorithm. The
algorithm is able to count how many times satellite SSM retrievals are consistent with the knowledge
of water inputs in the area, be them natural precipitation or artificial irrigation. The results are
quite underwhelming, with most datasets providing physically consistent SSM information barely
60% of the time. This finding is not altogether new in the scientific literature, although in this
thesis it has been complemented with other information. Performances are generally better during
the irrigation season, when factoring in the artificial inputs allows to explain more of the satellite
SSM variability. This may suggest that untraced irrigation volumes in the (officially) non-irrigation
period play a major role in SSM distribution. Retrieval technology seems to play a role in dataset
performance, with new-generation L-band products (barely influenced by vegetation and able to
penetrate deeper into the soil than older C-band products) providing the best results. Surprisingly,
spatial resolution does not seem to be a factor, at least at the coarse resolutions available at the
moment (ranging from 1 km up to 40 km), and the same holds for the year-round rainfall depth.
Finally, datasets with higher data density are associated with a more stable outcome, although
not necessarily a better one. Overall, the main finding is that no soil moisture product among the

145



CHAPTER 9. CONCLUSIONS

tested ones shows a systematic and definitive hydrological coherence with the rainfall and irrigation
data.

9.2 Dense ground sensor network accuracy against high-
resolution satellite data

In Chapter 5, the focus shifted towards other (not only SSM) satellite data, trying to determine
whether they are more reliable for providing water-related information and how they fare when
contrasted with a high-density sensor network in a greatly heterogeneous agricultural area.
Comparison in terms of radiation (between the sensors and a professional station) has provided good
results. In terms of temperature, air temperature both from the sensors and the professional station
has been compared with thermal infrared satellite information of surface temperature. The sensor
closeness to the ground has been highlighted by a higher similarity with the surface temperature
satellite data. Leaf Area Index (LAI) estimations can be retrieved by the radiation dampening
recorded from shadowed and illuminated sensors and are a direct function of the fields destination
use. As opposed to the available SSM products (without further elaboration, at best at 1 km
scale), LAI data can be obtained from satellite at much higher resolutions (30 m), more compatible
with the reference scale of the crop fields. Finally, the sensor network has confirmed the low
feasibility of employing satellite SSM data in irrigation schemes, as the on-ground variability is lost
at their scales. However, using on-ground sensors alone would require heavy maintenance costs
(even for low-cost sensors as those used in this thesis work) and data quality uncertainty. A proper
merging of on-ground information and satellite data seems a good solution for improving irrigation
management and agricultural monitoring activities.

9.3 Modelled ET fluxes accuracy for heterogeneous condi-
tions and Aerodynamic Temperature impact

At this point in the analysis, it is clear that no measured data is exempt of uncertainties, which
grow with the complexity of the natural processes involved and the heterogeneity of the surrounding
environment. The physical soundness of modelling structures can provide useful information for
agricultural management by filling in the gaps of measured data (when absent) and complement-
ing their meaning with the robustness inherited from physical principles and years of diversified
applications. For these reasons, the second part of the analysis has focused on the FEST-EWB dis-
tributed energy-water balance model. Its ability to compute continuously in time the SM dynamics
and perform simulations even in absence of Land Surface Temperature (LST) data (required only
for calibration purposes) makes it extremely suited to agricultural applications, where the time
scales of required irrigations and the spatial scales of complex, heterogeneous crops are not easily
matched by the satellite retrievals of the required information.

In Chapter 6, the attention has been on the model dependency on scale when working
on a complex and heterogeneous agricultural setting, such as a vineyard. The main case study
was a Sicilian vineyard, where very-high resolution (1.7 m) data was available from dedicated
flights. Multiple spatial resolutions have been explored, both by directly running the model at that
resolution and by directly aggregating the highest resolution model results obtained at 1.7 m. The
target was to discuss the model accuracy when fed with coarser resolution data (much more easy to
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obtain, and with a much higher frequency) against the highest-resolution benchmark. The answer
was positive, since a lower-than-one-third estimation error on Evapotranspiration (ET, chosen as
a “talking variable” for its great importance in agricultural applications) was found, compared to
≈10% errors from the (benchmark) aggregated model outputs.

Chapter 7 was devoted to intra-pixel dynamics in heterogeneous scenarios. As testified by many
works in the literature, the energetical balances of the soil and vegetation fractions of a pixel are
quite different, as can be gauged also in their temperature difference (higher for the soil). The struc-
ture itself of the model is thus called into question, as assuming one single surface temperature for
an heterogeneous pixel (as is common practice for single-source models) is clearly a source of error.
To this end, a two-source version of FEST-EWB (FEST-2-EWB) has been developed,
separating the energy balances for the two components of any given pixel, all the while retaining the
SM-preserving structure, which allows the FEST-EWB model to simulate independently of satellite
data availability. The ultimate end was to demonstrate that, by constraining ET to a global pixel
temperature, caused the model to overestimate the Transpiration (T) component directly linked
to plant activity. On the other hand, a two-source model was expected to provide more reliable
Transpiration estimates. The new model was tested over a dedicated innovative laboratory setting
where the controlled conditions allowed us to extract the Transpiration component from the total
ET, thus obtaining a reliable estimate. The FEST-2-EWB model, provided global performances
similar to FEST-EWB in terms of surface temperature, soil moisture and global ET, managed to
portray quite closely the extracted Transpiration, where the classic FEST-EWB model produced
a consistent overestimation. A similar comparison was also performed in two open field cases, ob-
taining comparable results, except this time no partitioned T estimates were available to confirm
the finding.

Finally, Chapter 8 was focused on a theoretical dilemma regarding the physical accuracy of
the modelled evapotranspiration. It is (widely) common practice to use Radiometric Temper-
ature in the Sensible Heat formulation, instead of its (theoretically correct) counterpart, the
Aerodynamic Temperature. This Chapter investigates the soundness of this assumption and
its effects over ET estimates and modelling errors. A considerable dataset of EC measurements
in two main locations (water-abundant, Northern Italy maize fields and quasi-arid, water-deficient
Southern Italy tomato fields) was used to derive aerodynamic temperature and compare it with its
radiometric counterpart. The result was striking, confirming some findings in the literature, with
temperature differences as high as 15-20°C between the two. However, these high differences are not
necessarily associated to major model estimation errors. Integrating the aerodynamic temperature
into the model infrastructure showed that, given the complex processes behind it, the necessity
of parametrizing it with a few (non-sufficient) bio-meteorological parameters provided only small
gains in terms of Sensible and Latent Heat estimation. These findings, similar to others in the
literature, suggest that the gains in reinstating the aerodynamic temperature to its rightful place
may be balanced by the losses in our incomplete knowledge of the processes behind it.

Technological progress needs to be employed to address the increasing Water and Food Security
necessities. The work done in this Doctoral Thesis has been aimed precisely at that end, trying to
tackle some common simplifying assumptions in the use of satellite data and hydrological modelling,
in order to improve current results in agricultural monitoring.
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Appendix A

HCI complete results

In the following, some results of the HCI algorithm for the Capitanata and Chiese case studies will
be detailed in full.

A.1 Capitanata

Figure A.1: AMSR2 Asc. (2015)
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Figure A.2: AMSR2 Asc. (2016)

Figure A.3: AMSR2 Asc. (2017)
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A.1. CAPITANATA

Figure A.4: AMSR2 Asc. (2018)

Figure A.5: Copernicus Upscaled (2015)
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Figure A.6: Copernicus Upscaled (2016)

Figure A.7: Copernicus Upscaled (2017)
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Figure A.8: Copernicus Upscaled (2018)

Figure A.9: Copernicus (2015)
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Figure A.10: Copernicus (2016)

Figure A.11: Copernicus (2017)
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A.1. CAPITANATA

Figure A.12: Copernicus (2018)

Figure A.13: ESA-CCI Active (2015)
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Figure A.14: ESA-CCI Active (2016)

Figure A.15: ESA-CCI Active (2017)
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Figure A.16: ESA-CCI Active (2018)

Figure A.17: ESA-CCI Combined (2015)
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Figure A.18: ESA-CCI Combined (2016)

Figure A.19: ESA-CCI Combined (2017)
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Figure A.20: ESA-CCI Combined (2018)

Figure A.21: SMOS Asc. (2015)
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Figure A.22: SMOS Asc. (2016)

Figure A.23: SMOS Asc. (2017)
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Figure A.24: SMOS Asc. (2018)

Figure A.25: SMOS Desc. (2015)
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Figure A.26: SMOS Desc. (2016)

Figure A.27: SMOS Desc. (2017)
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A.2. CHIESE

Figure A.28: SMOS Desc. (2018)

A.2 Chiese

Figure A.29: Upscaled Copernicus (2015)
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Figure A.30: Upscaled Copernicus (2016)

Figure A.31: Upscaled Copernicus (2017)
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A.2. CHIESE

Figure A.32: Upscaled Copernicus (2018)

Figure A.33: Copernicus (2015)
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Figure A.34: Copernicus (2016)

Figure A.35: Copernicus (2017)
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A.2. CHIESE

Figure A.36: Copernicus (2018)

Figure A.37: ESA-CCI Active (2015)
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Figure A.38: ESA-CCI Active (2016)

Figure A.39: ESA-CCI Active (2017)
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Figure A.40: ESA-CCI Active (2018)

Figure A.41: ESA-CCI Combined (2015)
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Figure A.42: ESA-CCI Combined (2016)

Figure A.43: ESA-CCI Combined (2017)

172



A.2. CHIESE

Figure A.44: ESA-CCI Combined (2018)

Figure A.45: ESA-CCI Passive (2015)
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Figure A.46: ESA-CCI Passive (2016)

Figure A.47: ESA-CCI Passive (2017)
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Figure A.48: ESA-CCI Passive (2018)

Figure A.49: SMOS Ascending (2015)
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Figure A.50: SMOS Ascending (2016)

Figure A.51: SMOS Ascending (2017)
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Figure A.52: SMOS Ascending (2018)

Figure A.53: SMOS Descending (2015)
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Figure A.54: SMOS Descending (2016)

Figure A.55: SMOS Descending (2017)
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Figure A.56: SMOS Descending (2018)
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SSM between Parrot sensors and
Satellite

B.1 Foggia Incoronata area

Figure B.1: Sensor G1 Surface Soil Moisture
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Figure B.2: Sensor G18 Surface Soil Moisture

Figure B.3: Sensor G39 Surface Soil Moisture
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B.1. FOGGIA INCORONATA AREA

Figure B.4: Sensor G40 Surface Soil Moisture

Figure B.5: Sensor G54 Surface Soil Moisture
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Figure B.6: Sensor G67 Surface Soil Moisture

Figure B.7: Sensor G74 Surface Soil Moisture
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Figure B.8: Sensor G75 Surface Soil Moisture

Figure B.9: Sensor G80 Surface Soil Moisture
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Figure B.10: Sensor G84 Surface Soil Moisture

Figure B.11: Sensor G166 Surface Soil Moisture
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Figure B.12: Sensor G167 Surface Soil Moisture

Figure B.13: Sensor G219 Surface Soil Moisture
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Figure B.14: Sensor G220 Surface Soil Moisture

B.2 Foggia Onoranza area

Figure B.15: Sensor GO172 Surface Soil Moisture
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B.2. FOGGIA ONORANZA AREA

Figure B.16: Sensor GO173 Surface Soil Moisture

Figure B.17: Sensor GO218 Surface Soil Moisture
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Aerodynamic Temperature
ancillary results

C.1 RAH and TAERO comparison with ST results

In the following images, the scatter-plot comparisons between ST-retrieved RAH and TAERO and
the corresponding values from other parametrizations are shown for the other case studies.
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Figure C.1: Comparison by scatterplots between other parametrizations and ST, in terms of aero-
dynamic resistance (blue) and temperature (red). Data from the Landriano EC station
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C.1. RAH AND TAERO COMPARISON WITH ST RESULTS

Figure C.2: Comparison by scatterplots between other parametrizations and ST, in terms of aero-
dynamic resistance (blue) and temperature (red). Data from the Livraga EC station
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Figure C.3: Comparison by scatterplots between other parametrizations and ST, in terms of aero-
dynamic resistance (blue) and temperature (red). Data from the Foggia-Incoronata EC station
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C.2. TAERO V. SURFACE TEMPERATURE (LAN AND LIV)

Figure C.4: Comparison by scatterplots between other parametrizations and ST, in terms of aero-
dynamic resistance (blue) and temperature (red). Data from the Foggia-Onoranza EC station

C.2 TAERO v. Surface Temperature (LAN and LIV)

The TAERO results for the Landriano and Livraga datasets are shown in the images below, opposed
to the contemporary surface temperature measurements.
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Figure C.5: Aerodynamic temperature comparisons for the Landriano test case
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C.3. TAERO–LST V. ENVIRONMENTAL PARAMETERS

Figure C.6: Aerodynamic temperature comparisons for the Livraga test case

C.3 TAERO–LST v. environmental parameters

The impact of environmental parameters over the temperature divergence in LAN, LIV and FON
data is shown in the images below.

Figure C.7: TAERO–LST v. environmental parametrs for the Landriano test case
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Figure C.8: TAERO–LST v. environmental parametrs for the Livraga test case

Figure C.9: TAERO–LST v. environmental parametrs for the Foggia-Onoranza test case
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Present and future köppen-geiger climate classification maps at 1-km resolution. Scientific
Data, 5, 180214. https://doi.org/10.1038/sdata.2018.214

Berg, P., Donnelly, C., & Gustafsson, D. (2018). Near-real-time adjusted reanalysis forcing data for
hydrology. Hydrology and Earth System Sciences, 22, 989–1000. https://doi.org/10.5194/
hess-22-989-2018

Bhattarai, N., Mallick, K., Brunsell, N. A., Sun, G., & Jain, M. (2018). Regional evapotranspiration
from an image-based implementation of the surface temperature initiated closure (stic1.2)
model and its validation across an aridity gradient in the conterminous us. Hydrology and
Earth System Sciences, 22, 2311–2341. https://doi.org/10.5194/hess-22-2311-2018

Bian, Z., Cao, B., Li, H., Du, Y., Song, L., Fan, W., Xiao, Q., & Liu, Q. (2017). A robust inver-
sion algorithm for surface leaf and soil temperatures using the vegetation clumping index.
Remote Sensing, 9, 780. https://doi.org/10.3390/rs9080780
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Chávez, J. L., & Neale, C. M. U. (2003). Validating airborne multispectral remotely sensed heat
fluxes with ground energy balance tower and heat flux source area (footprint) functions.
2003, Las Vegas, NV July 27-30, 2003. https://doi.org/10.13031/2013.15014

Chehbouni, A. (1996). Examination of the difference between radiative and aerodynamic surface
temperatures over sparsely vegetated surfaces. Remote Sensing of Environment, 58, 177–
186. https://doi.org/10.1016/S0034-4257(96)00037-5

Chen, F., Crow, W. T., Bindlish, R., Colliander, A., Burgin, M. S., Asanuma, J., & Aida, K.
(2018). Global-scale evaluation of smap, smos and ascat soil moisture products using triple
collocation. Remote Sensing of Environment, 214, 1–13. https://doi.org/10.1016/j.rse.
2018.05.008

Choudhury, B., Reginato, R., & Idso, S. (1986). An analysis of infrared temperature observations
over wheat and calculation of latent heat flux. Agricultural and Forest Meteorology, 37,
75–88. https://doi.org/10.1016/0168-1923(86)90029-8

Ciraolo, G., Cammalleri, C., Capodici, F., D’Urso, G., & Maltese, A. (2012). Mapping evapo-
transpiration on vineyards: A comparison between penman-monteith and energy balance
approaches for operational purposes. In C. M. U. Neale & A. Maltese (Eds.). https://doi.
org/10.1117/12.974967

Colaizzi, P., Agam, N., Tolk, J., Evett, S., Howell, T., Gowda, P., O’Shaughnessy, S., Kustas,
W., & Anderson, M. (2014). Two-source energy balance model to calculate e, t, and et:
Comparison of priestley-taylor and penman-monteith formulations and two time scaling
methods. Transactions of the ASABE, 479–498. https://doi.org/10.13031/trans.57.10423

Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. (2004). Comparison of aerodynamic and
radiometric surface temperature using precision weighing lysimeters. In W. Gao & D. R.
Shaw (Eds.). https://doi.org/10.1117/12.559503

Colaizzi, P. D., Kustas, W. P., Anderson, M. C., Agam, N., Tolk, J. A., Evett, S. R., Howell, T. A.,
Gowda, P. H., & O’Shaughnessy, S. A. (2012). Two-source energy balance model estimates
of evapotranspiration using component and composite surface temperatures. Advances in
Water Resources, 50, 134–151. https://doi.org/10.1016/j.advwatres.2012.06.004

Corbari, C., & Mancini, M. (2014a). Intercomparison across scales between remotely-sensed land
surface temperature and representative equilibrium temperature from a distributed energy
water balance model. Hydrological Sciences Journal, 59, 1830–1843. https://doi.org/10.
1080/02626667.2014.946418

Corbari, C., Ravazzani, G., Ceppi, A., & Mancini, M. (2013). Multi-pixel calibration of a distributed
energy water balance model using satellite data of land surface temperature and eddy
covariance data. Procedia Environmental Sciences, 19, 285–292. https://doi.org/10.1016/
j.proenv.2013.06.033

Corbari, C., Ravazzani, G., Martinelli, J., & Mancini, M. (2009). Elevation based correction of snow
coverage retrieved from satellite images to improve model calibration. Hydrology and Earth
System Sciences, 13, 639–649. https://doi.org/10.5194/hess-13-639-2009

Corbari, C., Jovanovic, D. S., Nardella, L., Sobrino, J., & Mancini, M. (2020). Evapotranspiration
estimates at high spatial and temporal resolutions from an energy–water balance model

201

https://doi.org/10.5194/nhess-13-1051-2013
https://doi.org/10.5194/nhess-13-1051-2013
https://doi.org/10.13031/2013.30081
https://doi.org/10.13031/2013.15014
https://doi.org/10.1016/S0034-4257(96)00037-5
https://doi.org/10.1016/j.rse.2018.05.008
https://doi.org/10.1016/j.rse.2018.05.008
https://doi.org/10.1016/0168-1923(86)90029-8
https://doi.org/10.1117/12.974967
https://doi.org/10.1117/12.974967
https://doi.org/10.13031/trans.57.10423
https://doi.org/10.1117/12.559503
https://doi.org/10.1016/j.advwatres.2012.06.004
https://doi.org/10.1080/02626667.2014.946418
https://doi.org/10.1080/02626667.2014.946418
https://doi.org/10.1016/j.proenv.2013.06.033
https://doi.org/10.1016/j.proenv.2013.06.033
https://doi.org/10.5194/hess-13-639-2009


BIBLIOGRAPHY

and satellite data in the capitanata irrigation consortium. Remote Sensing, 12, 4083. https:
//doi.org/10.3390/rs12244083

Corbari, C., & Mancini, M. (2014b). Calibration and validation of a distributed energy–water
balance model using satellite data of land surface temperature and ground discharge mea-
surements. Journal of Hydrometeorology, 15, 376–392. https://doi.org/10.1175/JHM-D-
12-0173.1

Corbari, C., Masseroni, D., & Mancini, M. (2012). Effetto delle correzioni dei dati misurati da
stazioni eddy covariance sulla stima dei flussi evapotraspirativi. Italian Journal of Agrom-
eteorology.

Corbari, C., Ravazzani, G., & Mancini, M. (2011). A distributed thermodynamic model for energy
and mass balance computation: Fest-ewb. Hydrological Processes, 25, 1443–1452. https :
//doi.org/10.1002/hyp.7910

Corbari, C., Salerno, R., Ceppi, A., Telesca, V., & Mancini, M. (2019). Smart irrigation forecast
using satellite landsat data and meteo-hydrological modeling. Agricultural Water Manage-
ment, 212, 283–294. https://doi.org/10.1016/j.agwat.2018.09.005

Corbari, C., Timmermans, W., & Andreu, A. (2015). Intercomparison of surface energy fluxes
estimates from the fest-ewb and tseb models over the heterogeneous reflex 2012 site (barrax,
spain). Acta Geophysica, 63, 1609–1638. https://doi.org/10.2478/s11600-014-0258-x

Cracknell, A. P. (2018). The development of remote sensing in the last 40 years. International
Journal of Remote Sensing, 39, 8387–8427. https : //doi . org/10 . 1080/01431161 . 2018 .
1550919

Cui, C., Xu, J., Zeng, J., Chen, K.-S., Bai, X., Lu, H., Chen, Q., & Zhao, T. (2017). Soil moisture
mapping from satellites: An intercomparison of smap, smos, fy3b, amsr2, and esa cci over
two dense network regions at different spatial scales. Remote Sensing, 10, 33. https://doi.
org/10.3390/rs10010033

Czapla-Myers, J., McCorkel, J., Anderson, N., Thome, K., Biggar, S., Helder, D., Aaron, D., Leigh,
L., & Mishra, N. (2015). The ground-based absolute radiometric calibration of landsat 8
oli. Remote Sensing, 7, 600–626. https://doi.org/10.3390/rs70100600

Dai, A., Trenberth, K. E., & Karl, T. R. (1999). Effects of clouds, soil moisture, precipitation,
and water vapor on diurnal temperature range. Journal of Climate, 12, 2451–2473. https:
//doi.org/10.1175/1520-0442(1999)012⟨2451:EOCSMP⟩2.0.CO;2

de Jeu, R., & Owe, M. (2008). Amsr2/gcom-w1 surface soil moisture (lprm) l3 1 day 10 km x 10
km descending v001 (lprmamsr2dsdsoilm3).

DiStasio Jr., R. J., & Resmini, R. G. (2010). Atmospheric compensation of thermal infrared hy-
perspectral imagery with the emissive empirical line method and the in-scene atmospheric
compensation algorithms: A comparison. In S. S. Shen & P. E. Lewis (Eds.). https://doi.
org/10.1117/12.849898

Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger,
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skies at storglaciären, sweden. The Cryosphere, 3, 75–84. https://doi.org/10.5194/tc-3-75-
2009

Sehler, R., Li, J., Reager, J., & Ye, H. (2019). Investigating relationship between soil moisture and
precipitation globally using remote sensing observations. Journal of Contemporary Water
Research Education, 168, 106–118. https://doi.org/10.1111/j.1936-704X.2019.03324.x

Shanmugapriya, P., Rathika, S., Ramesh, T., & Janaki, P. (2019). Applications of remote sensing in
agriculture - a review. International Journal of Current Microbiology and Applied Sciences,
8, 2270–2283. https://doi.org/10.20546/ijcmas.2019.801.238

Sharma, V., Kilic, A., & Irmak, S. (2016). Impact of scale/resolution on evapotranspiration from
landsat and modis images. Water Resources Research, 52, 1800–1819. https://doi.org/10.
1002/2015WR017772

Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision
agriculture: A review. Remote Sensing, 12, 3136. https://doi.org/10.3390/rs12193136

Skokovic, D. (2017). Calibration and validation of thermal infrared remote sensing sensors and
land/sea surface temperature algorithms over the iberian peninsula. Universidad de Valen-
cia.

Skokovic, D., Sobrino, J. A., & Jimenez-Munoz, J. C. (2017). Vicarious calibration of the landsat
7 thermal infrared band and lst algorithm validation of the etm+ instrument using three
global atmospheric profiles. IEEE Transactions on Geoscience and Remote Sensing, 55,
1804–1811. https://doi.org/10.1109/TGRS.2016.2633810

Sliney, D. H. (2007). Radiometric quantities and units used in photobiology and photochemistry:
Recommendations of the commission internationale de l’eclairage (international commission
on illumination). Photochemistry and Photobiology, 83, 425–432. https://doi.org/10.1562/
2006-11-14-RA-1081

Sobrino, J. A., Jimenez-Munoz, J. C., Soria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A.,
& Martinez, P. (2008). Land surface emissivity retrieval from different vnir and tir sensors.
IEEE Transactions on Geoscience and Remote Sensing, 46, 316–327. https://doi.org/10.
1109/TGRS.2007.904834

Su, Z. (2002). The surface energy balance system (sebs) for estimation of turbulent heat fluxes.
Hydrology and Earth System Sciences, 6, 85–100. https://doi.org/10.5194/hess-6-85-2002

209

https://doi.org/10.1016/j.jag.2019.03.015
https://doi.org/10.1007/s11269-018-2160-9
https://doi.org/10.2166/nh.2016.112
https://doi.org/10.5194/tc-3-75-2009
https://doi.org/10.5194/tc-3-75-2009
https://doi.org/10.1111/j.1936-704X.2019.03324.x
https://doi.org/10.20546/ijcmas.2019.801.238
https://doi.org/10.1002/2015WR017772
https://doi.org/10.1002/2015WR017772
https://doi.org/10.3390/rs12193136
https://doi.org/10.1109/TGRS.2016.2633810
https://doi.org/10.1562/2006-11-14-RA-1081
https://doi.org/10.1562/2006-11-14-RA-1081
https://doi.org/10.1109/TGRS.2007.904834
https://doi.org/10.1109/TGRS.2007.904834
https://doi.org/10.5194/hess-6-85-2002


BIBLIOGRAPHY

Sun, J., Massman, W., & Grantz, D. A. (1999). Aerodynamic variables in the bulk formulation of
turbulent fluxes. Boundary-Layer Meteorology, 91, 109–125. https://doi.org/10.1023/A:
1001838832436

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram.
Journal of Geophysical Research: Atmospheres, 106, 7183–7192. https://doi.org/10.1029/
2000JD900719

Thom, A. S. (1975). Vegetation and the atmosphere (J. Monteith, Ed.).
Thornthwaite, C. W., & Holzman, B. (1939). The determination of evaporation from land and water

surfaces. Monthly Weather Review, 67, 4–11. https://doi.org/10.1175/1520-0493(1939)
67⟨4:TDOEFL⟩2.0.CO;2

Timmermans, W. J., van der Tol, C., Timmermans, J., Ucer, M., Chen, X., Alonso, L., Moreno, J.,
Carrara, A., Lopez, R., de la Cruz Tercero, F., Corcoles, H. L., de Miguel, E., Sanchez,
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