
Decentralized Spacecraft Forma-
tion Reconfiguration Exploiting a
Shape-Based Method for Trajec-
tory Optimization

Tesi di Laurea Magistrale in
Space Engineering - Ingegneria Spaziale

Author: Matteo Brioschi

Student ID: 969060
Advisor: Prof. Mauro Massari
Academic Year: 2021-22

i

Abstract

In recent years, the space segment has seen a fast increase in the number of satellites
orbiting Earth as well as a reduction in the satellites’ dimensions. With the availability
of smaller satellites, formation-flying missions have also seen an increase in popularity
due to their intrinsic higher flexibility and reliability. Additionally, it has been proven
that, in many remote sensing applications, satellites flying in formation can achieve better
performances than a monolithic platform. A requirement for satellites in formation flying
is the capability of performing formation reconfiguration, when needed.
In this work, a tool has been developed to obtain, in a limited time, a strategy for forma-
tion reconfiguration with a decentralized approach. This could impact the space segment
in two different ways: the first one is the increase in the autonomy of satellites from ground
stations, the second one is the provision of an initial guess for more refined solvers. To
achieve this goal, a genetic algorithm, that relies on shifting the initial maneuvering times
of the involved satellites, has been exploited to obtain a strategy for formation reconfigu-
ration; on the other hand, a fast trajectory optimization has been obtained by means of a
shape-based method and exploiting the Bézier series as shape function. Such algorithms
have been tested in two different scenarios of close-range formation flying and the results
have been compared with data available from literature. Additionally, a study on how the
order of the Bézier series affects the results of trajectory optimization has been performed
in order to assess whether it is possible to define an ideal order that allows to obtain a
low ∆V with a limited computational time.

Keywords: trajectory optimization, shape-based method, Bézier series, formation re-
configuration

Abstract in lingua italiana

Negli ultimi anni il settore spaziale è stato caratterizzato da un veloce aumento nel nu-
mero di satelliti in orbita intorno alla Terra e dalla riduzione della dimensione dei satelliti.
Grazie alla disponibilità di satelliti di dimensioni minori, si nota un aumento dell’interesse
verso le missioni caratterizzate dall’utilizzo di satelliti in formazione anche grazie alla mag-
giore adattabilità e affidabilità intrinseca. Inoltre, è appurato che in molte applicazioni di
telerilevamento l’utilizzo di satelliti in formazione permette di ottenere prestazioni migliori
rispetto a un singolo satellite monolitico. Un’esigenza richiesta dai satelliti in formazione
è la capacità di poter effettuare la riconfigurazione della formazione quando necessario.
In questa tesi, è stato sviluppato uno strumento che permette di ottenere in tempi con-
tenuti una strategia per la riconfigurazione di una formazione di satelliti tramite un ap-
proccio decentralizzato. Questo lavoro potrebbe apportare dei miglioramenti al settore
spaziale in due modi: il primo è l’aumento dell’autonomia dei satelliti rispetto alle stazioni
di terra, il secondo è poter utilizzare la soluzione ottenuta come valore iniziale per ottimiz-
zatori più sofisticati. Per poter ottenere questo risultato è stato utilizzato un algoritmo
genetico basato sulla variazione dei tempi iniziali di manovra dei satelliti coinvolti per
ottenere una strategia per la riconfigurazione della formazione. È stato poi sviluppato
in supporto all’algoritmo genetico un ottimizzatore di traiettoria che sfrutta un metodo
shape-based e utilizza la serie di Bézier come shape function. Questi algoritmi sono
stati testati in due scenari in cui sono presenti dei satelliti in formazione ravvicinata, e i
risultati sono stati confrontanti con dati disponibili in letteratura. Inoltre, è stato effet-
tuato uno studio per determinare come l’ordine della serie di Bézier influenzi i risultati
dell’ottimizzazione di traiettoria; in particolare, era di interesse determinare se ci fosse
un ordine ideale che permetta di ottenere un ∆V basso con un tempo computazionale
limitato.

Parole chiave: ottimizzazione di traiettoria, metodo shape-based, serie di Bézier, ri-
configurazione di formazione di satelliti

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Trajectory Optimization by Means of Shape-Based Methods 2
1.2 Trajectory Optimization for Formation Reconfiguration 4

2 Reference Frames and Dynamical Models 5
2.1 Reference Frames . 5
2.2 Dynamical Models . 6

2.2.1 Hill-Clohessy-Wiltshire Model . 7
2.2.2 Tschauner-Hempel Model . 8

3 Trajectory Optimization Problem 9
3.1 Optimization Problem Definition . 9

3.1.1 Objective Function . 10
3.1.2 Boundary Conditions . 10
3.1.3 Nonlinear Inequality Constraints 11

3.2 Shape Function . 11
3.2.1 Bézier Series and Its Derivatives . 12
3.2.2 Position, Velocity, and Acceleration Components by Means of the

Bézier Series . 13
3.2.3 Bézier Series and Boundary Conditions 14

vi | Contents

3.3 Dimensionless Quantities . 15
3.3.1 Dimensionless Time . 16
3.3.2 Dimensionless Space . 16

3.4 Optimization Problem by Means of a Shape-Based Method 19
3.4.1 Optimization Variables . 19
3.4.2 Initial Guess . 20

3.5 MATLAB Implementation . 21
3.5.1 Initial Data . 22
3.5.2 Relative Dynamics Model . 23
3.5.3 Definition of the Bernstein Polynomials and its Derivatives 24
3.5.4 Computation of the Geometric Coefficients Based on the Boundary

Conditions . 24
3.5.5 Process of Making the Quantities Dimensionless 25
3.5.6 Initial Guess Computation . 25
3.5.7 Computation of a Scaling Parameter for the Objective Function . . 26
3.5.8 Optimization Process . 28

4 Testing of the Optimizer and a Study on the Bézier Series 31
4.1 Testing of the Developed Models . 31
4.2 An Analysis on the Order of the Bézier Series 37

5 Formation Reconfiguration 43
5.1 Introduction . 43
5.2 Formation Reconfiguration, a Simple Approach to the Problem 43

5.2.1 Limits of This Approach . 45
5.3 Advanced Formation Reconfiguration . 47

5.3.1 Introduction . 47
5.3.2 Additional Nonlinear Inequality Constraints 48
5.3.3 Advanced Formation Reconfiguration Algorithm 50

5.4 Testing of the Developed Algorithm . 55
5.4.1 Planar Configuration to Planar Configuration 56
5.4.2 Tetrahedral to Tetrahedral Configuration 58

5.5 Final Comments About the Developed Algorithm 60

6 Conclusions and Future Developments 61

Bibliography 63

A Appendix A 66

B Appendix B 73

Acknowledgements 78

ix

List of Figures

2.1 Reference Frames. 6

3.1 MATLAB’s Workflow. 22
3.2 Workflow of the Process of Making the Quantities Dimensionless. 25
3.3 Workflow of the Computation of a Scaling Parameter for the Objective

Function. 27
3.4 Workflow of the Computation of the Objective Function. 29
3.5 Workflow of the Computation of the Nonlinear Inequality Constraints. . . 30

4.1 Total Thrust Acceleration and Thrust Acceleration Components as a Func-
tion of Time - Case 1. 33

4.2 Projection of the Trajectory - Case 1. 34
4.3 Distance Between Leader and Follower Satellites as a Function of Time

(Top Left), Trajectory on the LVLH Reference Frame (Top Right), Velocity
Components as a Function of Time (Bottom Left), Position Components
as a Function of Time (Bottom Right) - Case 1. 34

4.4 Total Thrust Acceleration and Thrust Acceleration Components as a Func-
tion of Time - Case 6. 35

4.5 Projection of the Trajectory - Case 6. 36
4.6 Distance Between Leader and Follower Satellites as a Function of Time

(Top Left), Trajectory on the LVLH Reference Frame (Top Right), Velocity
Components as a Function of Time (Bottom Left), Position Components
as a Function of Time (Bottom Right) - Case 6. 36

4.7 ∆V as a Function of the Order of the Bézier Series. 38
4.8 Computation Time as a Function of the Order of the Bézier Series. 39
4.9 Thrust Acceleration as a Function of Time for Different Orders of the Bézier

Series - Case 2. 40
4.10 Thrust Acceleration as a Function of Time for Different Orders of the Bézier

Series - Case 4. 40
4.11 |xcontrol(t)− xBézier(t)| for Different Orders of the Bézier Series - Case 2. . 41

x | List of Figures

4.12 |xcontrol(t)− xBézier(t)| for Different Orders of the Bézier Series - Case 5. . 42

5.1 Workflow of Formation Reconfiguration, a Simple Algorithm. 44
5.2 Distance Between Satellites as a Function of Time When Reconfiguration

Maneuvers are Performed at the Same Time (Top) and After Formation
Reconfiguration Algorithm (Bottom). 46

5.3 Trajectory of the Satellites in the LVLH Reference Frame. 46
5.4 Workflow of the Advanced Formation Reconfiguration Algorithm. 47
5.5 Extended Workflow of the Advanced Formation Reconfiguration Algorithm. 54
5.6 Distance Between Satellites as a Function of Time When Reconfiguration

Maneuvers are Performed at the Same Time (Top) and After Formation
Reconfiguration Algorithm (Bottom) for the Scenario 1. 57

5.7 Trajectory of the Satellites in the LVLH Reference Frame for the Scenario 1. 57
5.8 Distance Between Satellites as a Function of Time When Reconfiguration

Maneuvers are Performed at the Same Time (Top) and After Advanced
Formation Reconfiguration Algorithm (Bottom) for the Scenario 2. 59

5.9 Trajectory of the Satellites in the LVLH Reference Frame Before (Left)
and After (Right) Advanced Formation Reconfiguration Algorithm for the
Scenario 2. 59

A.1 Total Thrust Acceleration and Thrust Acceleration Components as a Func-
tion of Time - Case 2. 66

A.2 Projection of the Trajectory - Case 2. 67
A.3 Distance Between Leader and Follower Satellites as a Function of Time

(Top Left), Trajectory on the LVLH Reference Frame (Top Right), Velocity
Components as a Function of Time (Bottom Left), Position Components
as a Function of Time (Bottom Right) - Case 2. 67

A.4 Total Thrust Acceleration and Thrust Acceleration Components as a Func-
tion of Time - Case 3. 68

A.5 Projection of the Trajectory - Case 3. 68
A.6 Distance Between Leader and Follower Satellites as a Function of Time

(Top Left), Trajectory on the LVLH Reference Frame (Top Right), Velocity
Components as a Function of Time (Bottom Left), Position Components
as a Function of Time (Bottom Right) - Case 3. 69

A.7 Total Thrust Acceleration and Thrust Acceleration Components as a Func-
tion of Time - Case 4. 69

A.8 Projection of the Trajectory - Case 4. 70

| List of Figures xi

A.9 Distance Between Leader and Follower Satellites as a Function of Time
(Top Left), Trajectory on the LVLH Reference Frame (Top Right), Velocity
Components as a Function of Time (Bottom Left), Position Components
as a Function of Time (Bottom Right) - Case 4. 70

A.10 Total Thrust Acceleration and Thrust Acceleration Components as a Func-
tion of Time - Case 5. 71

A.11 Projection of the Trajectory - Case 5. 72
A.12 Distance Between Leader and Follower Satellites as a Function of Time

(Top Left), Trajectory on the LVLH Reference Frame (Top Right), Velocity
Components as a Function of Time (Bottom Left), Position Components
as a Function of Time (Bottom Right) - Case 5. 72

B.1 Thrust Acceleration as a Function of Time for Different Orders of the Bézier
Series - Case 1. 73

B.2 Thrust Acceleration as a Function of Time for Different Orders of the Bézier
Series - Case 3. 74

B.3 Thrust Acceleration as a Function of Time for Different Orders of the Bézier
Series - Case 5. 74

B.4 Thrust Acceleration as a Function of Time for Different Orders of the Bézier
Series - Case 6. 75

B.5 |xcontrol(t)− xBézier(t)| for Different Orders of the Bézier Series - Case 1. . 75
B.6 |xcontrol(t)− xBézier(t)| for Different Orders of the Bézier Series - Case 3. . 76
B.7 |xcontrol(t)− xBézier(t)| for Different Orders of the Bézier Series - Case 4. . 76
B.8 |xcontrol(t)− xBézier(t)| for Different Orders of the Bézier Series - Case 6. . 77

xiii

List of Tables

4.1 Boundary Conditions for the Test Cases. 32
4.2 ∆V for the Different Cases with the Different Methods. 32
4.3 Computation Time for the Different Cases with the Different Methods. . . 33

5.1 Example, Iteration 0. 52
5.2 Example, Iteration 1. 53
5.3 Boundary Conditions for the Satellites of Scenario 1. 55
5.4 Boundary Conditions for the Satellites of Scenario 2. 55
5.5 Results of Scenario 1. 56
5.6 Results of Scenario 2. 58

1

1| Introduction

In the last two decades, the space segment has been characterized by two major trends,
the first one is the increase in satellites’ launch rates while the second one is the decrease
in the satellites’ dimensions [1].
The increase in satellites’ launch rates can be explained by the increased interest in the
space segment for telecommunication and navigation systems; indeed, satellites allow to
obtain coverage that systems on Earth cannot obtain or can be obtained with higher costs.
Additionally, satellites devoted to Earth monitoring, weather, and disasters monitoring
also play an important role in the increasing number of satellites orbiting Earth.
The decrease in satellites’ dimensions has been possible due to the miniaturization in the
involved technologies. The biggest consequence of miniaturized satellites is the higher
accessibility to space also for smaller companies and institutions due to the reduced de-
velopment costs. Additionally, the availability of miniaturized satellites allows to increase
the number of satellites that can be deployed during a single launch.
The decrease of satellites’ dimensions has made more accessible the strategy of distributed
systems in the form of constellations and formation flying. The latter has multiple ben-
efits: in terms of performances of the overall mission’s objective, in the increase in the
reliability and flexibility, and, as a consequence, in the reduction of the costs [2]. In
terms of performances, formation flying allows to obtain better results than a monolithic
satellite, since the limitations imposed by the fairing of the launcher can be overcome;
as a result, for example, when dealing with remote sensing, better performances in terms
of resolution and coverage can be achieved [3, 4]. The increase in reliability with respect
to a monolithic satellite is obtained naturally from the exploitation of multiple satellites;
indeed, in case of a failure of a satellite it would be possible to replace the faulty unit
at a much lower cost compared to the case of a single monolithic satellite. Finally, a
higher flexibility in terms of mission’s objectives, can be achieved in two ways: the first
one is with the concept of modularity, therefore replacing or adding another satellite with
a different one having a specific instrument for the given mission’s objective [2]. The
second, and most common one, is by varying the geometry of the formation, a process
often called formation reconfiguration, to achieve a given objective [5]; to do so, the two

2 1| Introduction

most important aspects are to minimize the fuel consumption for each satellite during
the reconfiguration process and, a mandatory condition, to enforce collision avoidance
between all the involved satellites.
The main objective of this work is to develop a tool for formation reconfiguration for
satellites flying in close-range; in particular, focus will be on satellites flying within 15 m

from the leader satellite. Two cornerstones have been set, the first one is to perform the
trajectory optimization by means of a shape-based method, while the second one is to
perform the formation reconfiguration by means of a decentralized approach. The reason
behind these cornerstones is that, as the number of satellites orbiting Earth increases,
their autonomy with respect to ground stations should increase and being able to perform
the task of trajectory optimization in an autonomous manner is a step further to reach
such a goal. In particular, shape-based methods allow to obtain a feasible solution with a
low computational effort, which is mandatory with the currently available computational
power of satellites, when dealing with satellites capable to perform maneuvers with con-
tinuous thrust. A decentralized approach, instead, allows to spread the computational
burden among all the satellites of the formation and increases the reliability of the over-
all mission, since each satellite is capable of performing its own trajectory optimization.
Finally, it is worth noting that, even if in this work focus has been given to formation
reconfiguration, shape-based methods could also be applied to trajectory optimization for
standalone satellites and the obtained solutions of such methods could also be used as
first guess for more refined optimizers.

1.1. Trajectory Optimization by Means of Shape-Based

Methods

Trajectory optimization by means of a shape-based method is usually performed as fol-
lows: one or more functions, called shape functions, are used to define the trajectory of
the satellite; such shape functions are defined by means of coefficients which become the
optimization variables. By performing the time derivation of the trajectory, the velocity
and the acceleration components of the satellite can also be obtained; after that, the equa-
tions of motion of the satellite are solved for the control, the thrust acceleration, which is
integrated in time in order to obtain the objective function of the problem, the ∆V . The
strength of shape-based methods for the solution of the trajectory optimization problem
is that the differential problem, described by the equations of motion of the satellite, is
transformed into an algebraic one which can be handled more easily by means of numer-
ical methods.

1| Introduction 3

The number of shape functions depends on the selected reference frame: two shape func-
tions are needed when dealing with cylindrical or polar reference frames, while three are
needed when dealing with spherical or 3D Cartesian reference frames.
In literature a wide variety of shape functions have been used for the trajectory optimiza-
tion problem. In [6] the concept of trajectory optimization by means of a shape function
is first introduced for solving interplanetary transfers by means of a polynomial. Later,
in [7], the idea is further developed by employing the Chebyshev polynomials for the so-
lution of general nonlinear control problems. In [8] and [9] the trajectory optimization
with multiple gravity-assist is solved, respectively, by means of an exponential sinusoid
shape function and by a set of parameterized pseudo-equinoctial elements. In [10] the
optimization of an interplanetary trajectory is performed exploiting an inverse polyno-
mial for the in-plane motion while a polynomial is used for the out-of-plane one. In [11]
the fast Fourier series is used to solve constrained low-thrust trajectories. The strength
of such shape function is that, by considering enough terms of the series and by vary-
ing the Fourier coefficients, any continuous trajectory can be obtained; additionally, the
boundary conditions can be enforced by fixing some of the coefficients of the series. The
same authors exploit the same shape function in [12] to solve the restricted three-body
problem, while in [13] for three-dimensional low-thrust trajectory design. In [14] the idea
of using a series as a shape function is further developed by considering the Bézier series
for electric sail trajectory design; with the Bézier series the boundary conditions can be
enforced in the same way of the finite Fourier one, but it has the advantage of not requir-
ing trigonometric functions which can be complex to manage in the process of derivation
and integration. In [15] the Bézier series is used for trajectory optimization of satellites in
close-range formation; in particular, the trajectories of all the satellites of the formation
is optimized at the same time with a centralized approach and enforcing collision avoid-
ance. In this work, the Bézier series and the finite Fourier one are compared in terms of
computation time and ∆V of the maneuver showing that with the former better results
can be obtained in the considered application. In [16] both the finite Fourier series and
the Bézier one are used as shape functions for trajectory generation of multispacecraft for
multiasteroid exploration; also in this case the Bézier series is capable of obtaining better
results with respect to the finite Fourier series for both the computation time and the
overall ∆V .

4 1| Introduction

1.2. Trajectory Optimization for Formation Recon-

figuration

In this section the available techniques for trajectory optimization for formation reconfig-
uration are presented.
In [17] the reconfiguration problem has been tackled by means of a direct approach in
which the constraints, maximum thrust and equations of motion, have been discretized
and the controls parametrized, leading to a parametric optimization problem. Collision
avoidance, instead, has been enforced by adding a penalty term in the objective function.
A different approach has been used in [18], in which the characteristics of swarms observed
in nature are applied to formation reconfiguration by enforcing four rules. The first two
rules allow to keep the satellites close to each other, but above an imposed minimum
value, the third rule allows to keep the satellites on a given semi-major axis, and the
last rule allows to control the formation by imposing a goal, for example, in terms of
minimization of a distance with respect to an objective. Such method, often defined as
collective control, has the advantage of being quite robust, since, based on the selected
goal, any satellite could be defined as leader, and it can be more fuel efficient as the num-
ber of satellites increases. On the other hand, this approach might not be very suitable
when performing the assembly around a central satellite and when dealing with complex
maneuvers.
In [5] the formation reconfiguration problem is solved by means of disciplined convex
programming, a technique in which the optimization problem is made convex in order
to assure the existence of a solution. The downside of such method is that the process
of making the problem convex is quite challenging and requires the discretization of the
involved quantities.
Finally, as already mentioned in Sec. 1.1, in [15] the reconfiguration is performed with
a centralized approach by means of a shape-based method enforcing collision avoidance
between all the involved satellites.
Building upon these works, the objective of this thesis will be to develop a tool for forma-
tion reconfiguration for satellites flying in close-range by means of a shape-based method
and a decentralized approach. The thesis is structured as follows: Chapter 2 presents the
reference systems as well as the dynamical models, Chapter 3 deals with the trajectory
optimization problem, Chapter 4 shows the testing of the developed model as well as an
analysis on how the results of the optimization process are affected by the order of the
Bézier series. Finally, Chapter 5 deals with the formation reconfiguration problem solving
it by means of a decentralized approach.

5

2| Reference Frames and

Dynamical Models

In this chapter, two main aspects will be covered: the reference frames used for the leader
and follower satellites and the dynamical model that has been used to describe the motion
of the follower satellites.

2.1. Reference Frames

When dealing with relative motion between satellites, two reference frames are commonly
used: the Earth-Centered Inertial (ECI) reference frame and the Local-Vertical-Local-
Horizontal (LVHL) reference frame. Indeed, the ECI reference frame is suitable for the
description of the overall, large-scale, motion of the leader satellite. On the other hand,
the LVLH reference frame, since it is centered in the leader satellite and moves with it, is
suitable for the description of the close-range motion of the follower satellite with respect
to the leader one.
As illustrated in Figure 2.1, the following notation will be used to represent the two
reference frames:

• The unit vectors representing the axis of the ECI reference frame are defined as X̂,
Ŷ , and Ẑ.

• The unit vectors representing the axis of the LVLH reference frame are defined as
x̂, ŷ, and ẑ.

The unit vectors representing the LVLH reference frame are defined as follows:

x̂ =
RL

RL

ŷ = ẑ × x̂

ẑ =
HL

HL

(2.1)

6 2| Reference Frames and Dynamical Models

In which RL and HL are, respectively, the position vector and the angular momentum
vector of the leader satellite in the ECI reference frame.

Figure 2.1: Reference Frames.

2.2. Dynamical Models

Before showing the dynamical models for the leader and follower satellites, it is necessary
to introduce the notation that will be used:

• The quantities referred to the leader satellite, expressed in the ECI reference frame,
will be denoted with a capital letter and the letter L at the subscript; for example,
the position vector of the leader satellite will be defined as RL.

• The quantities referred to the follower satellite, expressed in the ECI reference frame,
will be denoted with a capital letter and the letter F at the subscript; for example,
the position vector of the follower satellite, in the ECI reference frame, will be
defined as RF .

2| Reference Frames and Dynamical Models 7

• The quantities referred to the follower satellite, expressed in the LVLH reference
frame, will be denoted with a lowercase letter; for example, the position vector of
the follower satellite, in the LVLH reference frame, will be defined as r.

The dynamical model that describes the motion of both leader and follower satellites, in
the ECI reference frame, is the following:

R̈L = − µ

R3
L

RL + FL(t)

R̈F = − µ

R3
F

RF + FF (t)

(2.2)

(2.3)

In which µ is the Earth’s gravitational constant while FL and FF are, respectively, the
control of the leader and follower satellites.
In this work, two different relative dynamics have been implemented, the Hill-Clohessy-
Wiltshire (HCW) equations and the Tschauner-Hempel (TH) ones. The reason behind
the selection of the HCW model is its simplicity, since it only requires one parameter
of the leader satellite to describe the relative dynamics. On the other hand, the reason
behind the selection of the TH model is that it is still a rather simple model but allows
to overcome some of the limitations of the HCW one; additional details will be provided
in the following sections.

2.2.1. Hill-Clohessy-Wiltshire Model

The Hill-Clohessy-Wiltshire model is obtained by means of a linearization of the relative
motion between two satellites; it is used when dealing with circular orbits and when two
or more satellites are flying in close proximity. In this model, the dynamics of the follower
satellite are described in the LVLH reference frame as follows:

ẍ− 2Nẏ − 3N2x = fx

ÿ + 2Nẋ = fy

z̈ +N2z = fz

(2.4)

In which:

• fx, fy, and fz are the thrust acceleration components of the control.

• N =
√

µ/a3L is the average orbital angular velocity of the leader satellite and aL is
its semi-major axis.

8 2| Reference Frames and Dynamical Models

It is important to note that this model is suitable when the leader satellite is flying on
a circular orbit, when the propagation time is at most one orbital period, and when the
satellites are in close formation. It is also worth noting that this model does not include
perturbative effects such as Earth’s oblateness, atmospheric drag, and solar radiation
pressure; the differential effect, between leader and follower satellites, of these perturba-
tions can be considered negligible when the distances between the considered satellites
are within tens of meters [19].

2.2.2. Tschauner-Hempel Model

The Tschauner-Hempel model can be considered as an extension of the HCW model. In
this model, the dynamics of the follower satellite are described in the LVLH reference
frame as follows:

ẍ− 2ωzẏ −
(
ω2
z + 2C1

)
x− ω̇zy = fx

ÿ + 2ωzẋ−
(
ω2
z − C1

)
y + ω̇zx = fy

z̈ + C1z = fz

(2.5)

In which:

• ωz = θ̇L = N(1+eL cos θL)
2

(1−e2L)
3/2 , eL is the eccentricity of the leader satellite and θL is its

true anomaly.

• ω̇z = θ̈L = −2µeL sin θL
R3

L
.

• C1 =
µ
R3

L
.

The advantage of this model is that it is capable of correctly describing the relative
dynamics of two satellites in close formation when the orbit of the leader satellite is not a
circular one. Finally, it is important to note that also in this model the differential effects
of the perturbations are neglected [19].

9

3| Trajectory Optimization

Problem

This chapter covers all the aspects related to the optimization problem by means of a
shape-based method. This chapter is structured as follows: the first part provides an
initial problem definition highlighting the objective function, the boundary conditions,
and the nonlinear inequality constraints. The second part introduces the shape function,
the Bézier series, from the mathematical standpoint as well as its exploitation in the
optimization process. In the third part, the problem will be made dimensionless; this is
done for two main reasons: first of all because, due to its mathematical definition, the
Bézier series requires a dimensionless time; secondly because, by also making the space
dimensionless, the optimization process will be eased, since the involved quantities can
have a comparable order of magnitude. The process of making the problem dimensionless
involves all the quantities of the optimization problem, therefore the boundary conditions,
the inequality constraints, and the objective function. In the fourth part, the optimization
process is, once again, presented and re-expressed by adding the information about the
dimensionless quantities. Finally, the last part presents the MATLAB implementation.

3.1. Optimization Problem Definition

The minimization problem that must be solved is the following: minimize the ∆V of
a satellite that has to change its configuration with respect to a leader satellite. Such
satellite is subjected to two constraints:

• The total thrust acceleration must be lower than the maximum available one.

• The distance between the leader and the follower satellites must be higher than a
given threshold value.

10 3| Trajectory Optimization Problem

The mathematical statement of the optimization problem is the following:

min
x,y,z

∆V

s.t.

{
f(t)− fmax ≤ 0

dmin − dLF (t) ≤ 0

(3.1)

In which dLF (t) is the distance between the leader and the follower satellites as a function
of time.
In the following sections, details about the objective function, the boundary conditions,
and the nonlinear inequality constraints will be provided.

3.1.1. Objective Function

As already stated in the previous section, the objective function is the following:

∆V =

∫ ToF

0

f(t) dt (3.2)

In which ToF is the time of flight of the maneuver, and f(t) is the total thrust acceleration,
the control, of the follower satellite; the latter is computed as follows:

f(t) =

√
(fx(t))

2 + (fy(t))
2 + (fz(t))

2 (3.3)

In which fx(t), fy(t), and fz(t) are the thrust acceleration components of the follower
satellite in the LVLH reference frame.

3.1.2. Boundary Conditions

The boundary conditions of the follower satellite are the initial and the final states which
are imposed. Fixing the initial and the final states gives rise to twelve boundary condi-
tions:

x(0) = x0 ẋ(0) = ẋ0

y(0) = y0 ẏ(0) = ẏ0

z(0) = z0 ż(0) = ż0

x (ToF) = xToF ẋ (ToF) = ẋToF

y (ToF) = yToF ẏ (ToF) = ẏToF

z (ToF) = zToF ż (ToF) = żToF

(3.4)

3| Trajectory Optimization Problem 11

In which the subscript 0 refers to the initial conditions while the subscript ToF refers to
the final ones.
To make the notation more compact the following will be used:

x(0) =
[
x0 y0 z0 ẋ0 ẏ0 ż0

]
x (ToF) =

[
xToF yToF zToF ẋToF ẏToF żToF

] (3.5)

3.1.3. Nonlinear Inequality Constraints

The nonlinear inequality constraints of the problem are the following:

• Maximum total thrust acceleration available, fmax.

• Minimum distance between leader and follower satellites, dmin.

These constraints can be expressed in mathematical form as follows:

f(t) =

√
(fx(t))

2 + (fy(t))
2 + (fz(t))

2 ≤ fmax

dLF (t) =

√
(x(t))2 + (y(t))2 + (z(t))2 ≥ dmin

(3.6)

Note that instead of the constraints expressed above, their squares will be used:

(fx(t))
2 + (fy(t))

2 + (fz(t))
2 ≤ f 2

max

(x(t))2 + (y(t))2 + (z(t))2 ≥ d2min

(3.7)

The reason behind this choice is to provide to the optimizer a region of feasible solutions
broader than the one provided by Eq. (3.6).

3.2. Shape Function

The shape function, the Bézier series, has been used to approximate the position, velocity,
and acceleration components of the follower satellite. In the following sections, the Bézier
series and its derivatives will be introduced.

12 3| Trajectory Optimization Problem

3.2.1. Bézier Series and Its Derivatives

The Bézier series is defined as follows [20]:

a(τ) =
n∑

j=0

Bj(τ)Pj (3.8)

In which n is an integer that represents the order of the Bézier series, Pj are the geometric
coefficients, and Bj(τ) are the Bernstein polynomials:

Bj(τ) =

(
n

j

)
τ j(1− τ)n−j =

n!τ j(1− τ)n−j

j!(n− j)!
(3.9)

It is worth highlighting that the Bernstein polynomials form a complete basis over the
interval [0, 1] for all polynomials of degree ≤ n [20].
The first τ derivative of the Bézier series is the following:

a′(τ) =
n∑

j=0

B′
j(τ)Pj (3.10)

Note that the geometric coefficients do not depend on τ and remain constant upon deriva-
tion.
The first τ derivative of the Bernstein polynomials can be expressed as follows:

B′
j(τ) =

(
n

j

)(
jτ j−1(1− τ)n−j + τ j(j − n)(1− τ)n−j−1

)
(3.11)

The second τ derivative of the Bézier series is the following:

a′′(τ) =
n∑

j=0

B′′
j (τ)Pj (3.12)

The second τ derivative of the Bernstein polynomials can be expressed as follows:

B′′
j (τ) =

(
n

j

)(
j(j − 1)τ j−2(1− τ)n−j + 2jτ j−1(j − n)(1− τ)n−j−1 + ...

...+ τ j(j − n)(j − n− 1)(1− τ)n−j−2
)

(3.13)

3| Trajectory Optimization Problem 13

One remark, the following notation will be used:

a(τ) =
n∑

j=0

Bj(τ)Pj =
[
B0(τ) ... Bn(τ)

]
∗
[
P0 ... Pn

]T
= B(τ)P

a′(τ) =
n∑

j=0

B′
j(τ)Pj =

[
B′

0(τ) ... B′
n(τ)

]
∗
[
P0 ... Pn

]T
= B′(τ)P

a′′(τ) =
n∑

j=0

B′′
j (τ)Pj =

[
B′′

0 (τ) ... B′′
n(τ)

]
∗
[
P0 ... Pn

]T
= B′′(τ)P

(3.14)

3.2.2. Position, Velocity, and Acceleration Components by Means

of the Bézier Series

Due to the fact that the Bézier series forms a complete set over the interval [0, 1], it is
necessary to define a scaled time that ranges in that interval as well; to do so, the following
scaling can be performed:

τ =
t

ToF
(3.15)

In which t is the time variable that ranges between 0 and ToF ; in this way a dimensionless
time that ranges in the interval [0, 1] has been defined.
With this scaling, the velocity and the acceleration components are now expressed as
follows:

ẋ(t) ∗ ToF = x′(τ) ẍ(t) ∗ ToF 2 = x′′(τ)

ẏ(t) ∗ ToF = y′(τ) ÿ(t) ∗ ToF 2 = y′′(τ)

ż(t) ∗ ToF = z′(τ) z̈(t) ∗ ToF 2 = z′′(τ)

(3.16)

In which the notation · represents the time derivative while the subscript ′ represents the
τ derivative.
It is now possible to express the position, velocity, and acceleration components by means
of the Bézier series; for the x component:

x(τ) =
nx∑
j=0

Bj(τ)Pj,x = Bx(τ)Px

x′(τ) =
nx∑
j=0

B′
j(τ)Pj,x = B′

x(τ)Px

x′′(τ) =
nx∑
j=0

B′′
j (τ)Pj,x = B′′

x(τ)Px

(3.17)

14 3| Trajectory Optimization Problem

For the y component:

y(τ) =

ny∑
j=0

Bj(τ)Pj,y = By(τ)Py

y′(τ) =

ny∑
j=0

B′
j(τ)Pj,y = B′

y(τ)Py

y′′(τ) =

ny∑
j=0

B′′
j (τ)Pj,y = B′′

y (τ)Py

(3.18)

For the z component:

z(τ) =
nz∑
j=0

Bj(τ)Pj,z = Bz(τ)Pz

z′(τ) =
nz∑
j=0

B′
j(τ)Pj,z = B′

z(τ)Pz

z′′(τ) =
nz∑
j=0

B′′
j (τ)Pj,z = B′′

z (τ)Pz

(3.19)

Note that the subscripts x, y, and z indicate that each component might have a different
order of the Bézier series and that the geometric coefficients are different for each com-
ponent.
Also note that the Bernstein polynomials are completely defined by the dimensionless time
τ ; therefore, in order to distinguish a trajectory, and the corresponding velocity and ac-
celeration histories from another, the only possibility is to vary the geometric coefficients,
which become the optimization variables of the problem.

3.2.3. Bézier Series and Boundary Conditions

The boundary conditions allow to compute four geometric coefficients for each component;
this is possible due to the fact that for the Bernstein polynomials the following is valid:

B(0) =

{
1 j = 0

0 j ∈ [1, n]
B′(0) =

− n j = 0

n j = 1

0 j ∈ [2, n]

B(1) =

{
0 j ∈ [0, n− 1]

1 j = n
B′(1) =

0 j ∈ [0, n− 2]

− n j = n− 1

n j = n

(3.20)

3| Trajectory Optimization Problem 15

Therefore:

x(0) = Bx(0)Px = P0,x x′(0) = B′
x(0)Px = −nxP0,x + nxP1,x

y(0) = By(0)Py = P0,y y′(0) = B′
y(0)Py = −nyP0,y + nyP1,y

z(0) = Bz(0)Pz = P0,z z′(0) = B′
z(0)Pz = −nzP0,z + nzP1,z

x(1) = Bx(1)Px = Pnx,x x′(1) = B′
x(1)Px = −nxPnx−1,x + nxPnx,x

y(1) = By(1)Py = Pny ,y y′(1) = B′
y(1)Py = −nyPny−1,y + nyPny ,y

z(1) = Bz(1)Pz = Pnz ,z z′(1) = B′
z(1)Pz = −nzPnz−1,z + nzPnz ,z

(3.21)

Rewriting in dimensionless time form the boundary conditions associated with the velocity
components expressed in Eq. (3.4), leads to the following:

x′(0) = ẋ0 ∗ ToF x′(1) = ẋToF ∗ ToF

y′(0) = ẏ0 ∗ ToF y′(1) = ẏToF ∗ ToF

z′(0) = ż0 ∗ ToF z′(1) = żToF ∗ ToF

(3.22)

Combining the boundary conditions of the position components, expressed in Eq. (3.4),
the boundary conditions of the velocity components, expressed in the equation above,
with Eq. (3.21), leads to the following:

x(0) = P0,x = x0 x′(0) = −nxP0,x + nxP1,x = ẋ0 ∗ ToF

y(0) = P0,y = y0 y′(0) = −nyP0,y + nyP1,y = ẏ0 ∗ ToF

z(0) = P0,z = z0 z′(0) = −nzP0,z + nzP1,z = ż0 ∗ ToF

x(1) = Pnx,x = xToF x′(1) = −nxPnx−1,x + nxPnx,x = ẋToF ∗ ToF

y(1) = Pny ,y = xToF y′(1) = −nyPny−1,y + nyPny ,y = ẏToF ∗ ToF

z(1) = Pnz ,z = xToF z′(1) = −nzPnz−1,z + nzPnz ,z = żToF ∗ ToF

(3.23)

The set of equations above clearly shows that, as already mentioned, for each component
four geometric coefficients can be determined by means of the boundary conditions. Also
note that, if nx = ny = nz = 3, there will be four unknown geometric coefficients for each
component that can all be determined by imposing the boundary conditions; in this case
there is not an optimization to be performed.

3.3. Dimensionless Quantities

In order to perform the optimization by means of the Bézier series as shape function, it is
necessary to make the remaining quantities dimensionless in time; additionally, also the

16 3| Trajectory Optimization Problem

space will be made dimensionless. This process of making the quantities dimensionless is
done to ease the optimization; indeed, if all the involved quantities range between 0 and
1, or at least have the same order of magnitude, the optimization process is eased.

3.3.1. Dimensionless Time

The quantities that require to be made dimensionless with respect to the time variable
are the following:

• Maximum total thrust acceleration available, fmax:

fmax,dim time = fmax ∗ ToF 2 (3.24)

• If the HCW model is used, the average orbital angular velocity of the leader satellite,
N , requires to be made dimensionless in time:

Ndim time = N ∗ ToF (3.25)

• If the TH model is used, the following quantities require to be made dimensionless
in time:

ωz,dim time = ωz ∗ ToF

ω̇z,dim time = ω̇z ∗ ToF 2

C1,dim time = C1 ∗ ToF 2

(3.26)

Note that the boundary conditions of the follower satellite do not require to be made
dimensionless in time, since this process is already present in the definition of the Bézier
series.

3.3.2. Dimensionless Space

In order to make the space dimensionless, it is necessary to define a scaling parameter
similar to the time of flight in the case of the dimensionless time; to do so, the following
process has been performed:

1. From the boundary conditions of the follower satellite, defined in Eq. (3.4), compute
the geometric coefficients as shown in Eq. (3.23).

2. Define the trajectory of the follower satellite by means of a third order Bézier series
for all the components.

3. Compute the trajectory of the follower satellite and obtain the maximum, in absolute
value, for each component.

3| Trajectory Optimization Problem 17

4. Use the maximum among the three components as a scaling parameter, namely
sscal, for the space variable.

The quantities that require to be made dimensionless with respect to the space variable
are the following:

• The boundary conditions of the follower satellite:

xdim space(0) =
x(0)

sscal

xdim space(ToF) =
x(ToF)

sscal

(3.27)

• Maximum total thrust acceleration available, fmax:

fmax,dim space =
fmax

sscal
(3.28)

• Minimum distance between leader and follower satellites, dmin:

dmin,dim space =
dmin

sscal
(3.29)

Therefore, by combining the quantities dimensionless in time with those dimensionless in
space, it is possible to define the following dimensionless quantities:

• The boundary conditions of the follower satellite:

xdim(0) =
x(0)

sscal

xdim(ToF) =
x(ToF)

sscal

(3.30)

• Maximum total thrust acceleration available, fmax:

fmax,dim =
fmax ∗ ToF 2

sscal
(3.31)

• Minimum distance between leader and follower satellites, dmin:

dmin,dim =
dmin

sscal
(3.32)

• If the HCW model is used:

Ndim = N ∗ ToF (3.33)

• If the TH model is used:

ωz,dim = ωz ∗ ToF

ω̇z,dim = ω̇z ∗ ToF 2

C1,dim = C1 ∗ ToF 2

(3.34)

18 3| Trajectory Optimization Problem

In order to make the whole problem dimensionless, also the representation of the position,
velocity, and acceleration components by means of the Bézier series must be changed;
this is done by computing again the geometric coefficients using as boundary conditions
xdim(0) and xdim(ToF):

xdim(0) = P0,xdim
=

x0

sscal
x′
dim(0) = −nxP0,xdim

+ nxP1,xdim
= ẋ0 ∗

ToF

sscal

ydim(0) = P0,ydim =
y0
sscal

y′dim(0) = −nyP0,ydim + nyP1,ydim = ẏ0 ∗
ToF

sscal

zdim(0) = P0,zdim =
z0
sscal

z′dim(0) = −nzP0,zdim + nzP1,zdim = ż0 ∗
ToF

sscal

xdim(1) = Pnx,xdim
=

xToF

sscal
x′
dim(1) = −nxPnx−1,xdim

+ nxPnx,xdim
= ẋToF ∗ ToF

sscal

ydim(1) = Pny ,ydim =
yToF

sscal
y′dim(1) = −nyPny−1,ydim + nyPny ,ydim = ẏToF ∗ ToF

sscal

zdim(1) = Pnz ,zdim =
zToF

sscal
z′dim(1) = −nzPnz−1,zdim + nzPnz ,zdim = żToF ∗ ToF

sscal

(3.35)

As a consequence, the position, velocity, and acceleration components by means of the
Bézier series become the following:

xdim(τ) = Bx(τ)Px,dim x′
dim = B′

x(τ)Px,dim x′′
dim(τ) = B′′

x(τ)Px,dim

ydim(τ) = By(τ)Py,dim y′dim = B′
y(τ)Py,dim y′′dim(τ) = B′′

y (τ)Py,dim

zdim(τ) = Bz(τ)Pz,dim z′dim = B′
z(τ)Pz,dim z′′dim(τ) = B′′

z (τ)Pz,dim

(3.36)

Finally, also the thrust acceleration components must be expressed in dimensionless form
by rewriting the relative dynamics presented in Sec. 2.2. If the HCW model is used the
dynamics can be rewritten as follows:

fx,dim(τ) = fx(t) ∗
ToF 2

sscal
= x′′

dim − 2Ndimy
′
dim − 3N2

dimxdim = ...

... = B′′
x(τ)Px,dim − 2NdimB

′
y(τ)Py,dim − 3N2

dimBx(τ)Px,dim

fy,dim(τ) = fy(t) ∗
ToF 2

sscal
= y′′dim + 2Ndimx

′
dim = ...

... = B′′
y (τ)Py,dim + 2NdimB

′
x(τ)Px,dim

fz,dim(τ) = fz(t) ∗
ToF 2

sscal
= z′′dim +N2

dimzdim = ...

... = B′′
z (τ)Pz,dim +N2

dimBz(τ)Pz,dim

(3.37)

3| Trajectory Optimization Problem 19

If, instead, the TH model is used:

fx,dim(τ) = x′′
dim − 2ωz,dimy

′
dim −

(
ω2
z,dim + 2C1,dim

)
xdim − ω̇z,dimydim = ...

... = B′′
x(τ)Px,dim − 2ωz,dimB

′
y(τ)Py,dim + ...

...−
(
ω2
z,dim + 2C1,dim

)
Bx(τ)Px,dim − ω̇z,dimBy(τ)Py,dim

fy,dim(τ) = y′′dim + 2ωz,dimx
′
dim −

(
ω2
z,dim − C1,dim

)
ydim + ω̇z,dimxdim = ...

... = B′′
y (τ)Py,dim + 2ωz,dimB

′
x(τ)Px,dim + ...

...−
(
ω2
z,dim − C1,dim

)
By(τ)Py,dim + ω̇z,dimBx(τ)Px,dim

fz,dim(τ) = z′′dim + C1,dimzdim = B′′
z (τ)Pz,dim + C1,dimBz(τ)Pz,dim

(3.38)

One final remark: in order to make the notation less complex, in the following sections
the term “dim” at the subscript will be dropped.

3.4. Optimization Problem by Means of a Shape-

Based Method

After having introduced the shape function as well as the dimensionless quantities, it is
now possible to define the optimization problem with additional details.
The statement of the optimization problem is the following:

min
Popt var,x,Popt var,y ,Popt var,z

∫ 1

0

f(τ) dτ =

∫ 1

0

√
(fx(τ))

2 + (fy(τ))
2 + (fz(τ))

2 dτ

s.t.

{
(fx(τ))

2 + (fy(τ))
2 + (fz(τ))

2 − f 2
max ≤ 0

d2min −
(
(x(τ))2 + (y(τ))2 + (z(τ))2

)
≤ 0

(3.39)

In which Popt var,x, Popt var,y, and Popt var,z are the optimization variables while the thrust
acceleration components are computed by means of either Eq. (3.37) or Eq. (3.38).
Note that in the objective function the term “∆V ” has been removed due to the fact that,
after the process of making the quantities dimensionless, the computed quantity loses the
dimensions of a velocity.

3.4.1. Optimization Variables

The optimization variables of the problem are the unknown geometric coefficients of the
Bézier series. The number of optimization variables can be computed as follows:

• Number of geometric coefficients: nx + 1 + ny + 1 + nz + 1 = nx + ny + nz + 3

20 3| Trajectory Optimization Problem

• Number of geometric coefficients computed by imposing the boundary conditions:
4 + 4 + 4 = 12

• Number of optimization variables: nx + ny + nz + 3− 12 = nx + ny + nz − 9

Due to the fact that the boundary conditions allow to compute the first two and the last
two geometric coefficients of each component, it is possible to define the following vectors:

Px =
[
P0,x P1,x Popt var,x Pnx−1,x Pnx,x

]
Py =

[
P0,y P1,y Popt var,y Pny−1,y Pny ,y

]
Pz =

[
P0,z P1,z Popt var,z Pnz−1,z Pnz ,z

] (3.40)

This means that the unknown vector of geometric coefficients for each component is the
following:

Popt var,x =
[
P2,x ... Pnx−2,x

]
= [Popt var,x]1×nx−3

Popt var,y =
[
P2,y ... Pny−2,y

]
= [Popt var,y]1×ny−3

Popt var,z =
[
P2,z ... Pnz−2,z

]
= [Popt var,z]1×nz−3

(3.41)

Note that the time of flight is not an optimization variable. There are two main reasons
for this choice. The first one is due to the fact that the maneuver that minimizes the ∆V

is obtained when the time of flight tends to infinity; since a maneuver is desirable to be
completed in a finite time, a constraint on the maximum time of flight available for the
maneuver would be required:

ToF ≤ ToFmax (3.42)

Also in this case the maneuver that minimizes the ∆V is obtained when the time of flight
is close to the maximum one.
The second reason is that having the time of flight as an optimization variable would
make the problem much more complex from the implementation point of view and would
lead to much higher computation times.

3.4.2. Initial Guess

The process for the computation of the initial guess is the following:

1. Compute the geometric coefficients exploiting the initial and final states of the
follower satellite, as shown in Eq. (3.23).

2. Define the trajectory of the follower satellite by means of a third order Bézier series.

3| Trajectory Optimization Problem 21

3. Compute the space scaling parameter, sscal, and the dimensionless boundary condi-
tions, as already explained in Sec. 3.3.2.

4. Compute the new geometric coefficients with the dimensionless boundary conditions
using Eq. (3.35).

5. Define the trajectory of the follower satellite by means of a third order Bézier series.

6. Compute the geometric coefficients for each component and for the desired order
of the Bézier series, that could be different for each coordinate, by means of data
fitting from the trajectory obtained at the previous step.

3.5. MATLAB Implementation

The overall MATLAB implementation of the proposed optimization, outlined in Fig-
ure 3.1, is the following:

1. Define the initial data for the leader and follower satellites, the time of flight, the
maximum thrust acceleration available, the minimum distance between the two
satellites, and the order of the Bézier series.

2. Based on the relative dynamics model, HCW or TH, compute the quantities that
define the motion of the leader satellite as presented in Sec. 2.2.

3. Make the involved quantities dimensionless.

4. Based on the order of the Bézier series, define the Bernstein polynomials and its
derivatives.

5. Compute the geometric coefficients based on the dimensionless boundary conditions.

6. Compute a scaling parameter for the objective function.

7. Compute the initial guess for the optimization process.

8. Perform the optimization.

Each block of the algorithm will be discussed in the following sections.

22 3| Trajectory Optimization Problem

Figure 3.1: MATLAB’s Workflow.

3.5.1. Initial Data

The initial data that are required for the optimization process are the following:

• The initial conditions of the leader satellite, in particular:

– If the HCW model is used, the semi-major axis, aL, of the leader satellite is
required.

– If the TH model is used, the following information are needed:

∗ Semi-major axis, aL

∗ Eccentricity, eL

∗ Inclination, iL

∗ Right ascension of the ascending node, ΩL

∗ Argument of the perigee, ωL

∗ The true anomaly at t = 0, θL,0

3| Trajectory Optimization Problem 23

• The time of flight, ToF

• The boundary conditions of the follower satellite, x(0) and x(ToF)

• The maximum total thrust acceleration available, fmax

• The minimum distance between leader and follower satellites, dmin

• The order of the Bézier series for each component, n = [nx ny nz]

• The number of discretization points, npoints, which allows to define:

– A discretized dimensionless time vector: τ = [0 ... 1]1×npoints

– A discretized time vector: t = τ
ToF

Note that the points of the dimensionless time vector, and therefore the ones of the time
vector as well, are not uniformly distributed, but rather they are the roots of the Legen-
dre polynomial of degree equal to npoints (Legendre-Gauss distribution of discretization
points), as in [15].
Also note that this discretization is kept for all the quantities that require a discretization.

3.5.2. Relative Dynamics Model

In this part of the algorithm some of the coefficients, needed for the computation of the
thrust acceleration components, are evaluated. As already presented in Sec. 2.2, two
different models have been implemented: the HCW model and the TH one.
If the HCW model is used, the only parameter that needs to be computed is the average
orbital angular velocity, N .
If the TH model is used, the following steps are needed:

1. From the Keplerian elements of the leader satellite compute its initial state:

XL(0) =
[
XL,0 YL,0 ZL,0 ẊL,0 ẎL,0 ŻL,0

]
= [XL(0)]1×6 (3.43)

2. Perform the orbit propagation of the leader satellite in the interval t in order to
obtain a matrix having in each row the state of the leader satellite at a given time:

XL =

XL,0 YL,0 ZL,0 ẊL,0 ẎL,0 ŻL,0

...
XL,ToF YL,ToF ZL,ToF ẊL,ToF ẎL,ToF ŻL,ToF

 = [XL]npoints×6 (3.44)

24 3| Trajectory Optimization Problem

3. For each row of XL, compute the true anomaly, θL, and the position, RL.

4. Compute ωz, ω̇z, and C1, as shown in Sec. 2.2.2, for each time instant prescribed by
t.

3.5.3. Definition of the Bernstein Polynomials and its Deriva-

tives

The mathematical framework of the Bernstein polynomials and its derivatives has already
been presented in Sec. 3.2.1.
Concerning the MATLAB implementation, it is worth to highlight that the Bernstein
polynomials and its derivatives are computed for each component only once in order to
save computational time. To do so, the order of the Bézier series, n, and the dimensionless
time vector, τ , are needed.

3.5.4. Computation of the Geometric Coefficients Based on the
Boundary Conditions

The geometric coefficients based on the boundary conditions are computed twice, once
before the process of making the quantities dimensionless, and the second time after this
process.
The computation of the geometric coefficients based on the boundary conditions has
already been addressed in Sec. 3.2.3 and in Sec. 3.3.2, for the dimensionless case; in
particular, such coefficients are computed by means of Eq. (3.23), when computed the
first time, and by means of Eq. (3.35), when computed with the dimensionless boundary
conditions.

3| Trajectory Optimization Problem 25

3.5.5. Process of Making the Quantities Dimensionless

The process used in order to make the quantities dimensionless has already been explained
in detail in Sec. 3.3; Figure 3.2 shows the workflow of the process.

Figure 3.2: Workflow of the Process of Making the Quantities Dimensionless.

3.5.6. Initial Guess Computation

The initial guess computation has already been addressed in Sec. 3.4.2; in particular, the
operations that are performed are the following:

1. With the geometric coefficients computed in Sec. 3.5.4, define the trajectory by
means of a third order Bézier series for all the components.

2. Compute the geometric coefficients for each component and for the desired order
of the Bézier series, that could be different for each coordinate, by means of data
fitting from the trajectory computed at the previous step.

Note that for the computation of such geometric coefficients the MATLAB’s built-in
lsqcurvefit function has been exploited.

26 3| Trajectory Optimization Problem

3.5.7. Computation of a Scaling Parameter for the Objective

Function

In this section a scaling parameter related to the objective function is presented. The
reasons for the introduction of such parameter are mainly two:

• Due to the fact that the objective function is the result of an integration, numerical
errors might arise if the involved quantities are too small or too big; in order to avoid
such issues, the thrust acceleration is multiplied by a value, the scaling parameter
of the objective function, before the integration.

• One of the goals of the process of making the quantities dimensionless was to have
values ranging between 0 and 1 during the optimization; in order to achieve this
also for the objective function a scaling parameter is introduced.

The process that allows the computation of the scaling parameter, outlined in Figure 3.3,
is the following:

1. Compute the position, velocity, and acceleration components of the follower satel-
lite by means of the Bézier series and its derivatives. Note that four geometric
coefficients for each component are obtained from the boundary conditions in di-
mensionless form while the remaining ones are the ones computed in Sec. 3.5.6.

2. Compute the thrust acceleration components, as already shown in Eq. (3.37) or
Eq. (3.38), and the total thrust acceleration.

3. Compute the definite integral, between 0 and 1, of the total thrust acceleration;
note that this is the objective function as defined in Eq. (3.39).

4. Compute the scaling of the objective function as follows:

obj_fun_scaling =
0.5

obj_fun
(3.45)

The reason for this choice is to have the objective function equal to 0.5 at the first
iteration of the optimization process and between 0 and 1, or at least in an order of
magnitude close to this range, in the following iterations.

3| Trajectory Optimization Problem 27

Three remarks:

• All the involved quantities are in dimensionless form.

• The position, velocity, and acceleration components, the thrust acceleration com-
ponents, and the total thrust acceleration are computed at discrete times based on
the dimensionless time vector, τ .

• The integral is computed by means of the MATLAB’s built-in trapz function.

Figure 3.3: Workflow of the Computation of a Scaling Parameter for the Objective Func-
tion.

28 3| Trajectory Optimization Problem

3.5.8. Optimization Process

The optimization has been performed by means of the MATLAB’s built-in fmincon

function; this function, for the problem at hand, requires the following:

• A function that computes the objective function.

• A function that computes the nonlinear inequality constraints.

• An initial guess.

The process for the computation of the objective function, outlined in Figure 3.4, is similar
to the one presented in Sec. 3.5.7:

1. Compute the position, velocity, and acceleration components of the follower satellite
by means of the Bézier series and its derivatives.

2. Compute the thrust acceleration components and the total thrust acceleration.

3. Compute the objective function as:

obj_fun =

∫ 1

0

obj_fun_scaling ∗ f(τ) dτ (3.46)

The process for the computation of the nonlinear inequality constraints, outlined in Fig-
ure 3.5, is the following:

1. Compute the position, velocity, and acceleration components of the follower satellite
by means of the Bézier series and its derivatives.

2. Compute the thrust acceleration components and the total thrust acceleration.

3. Compute the nonlinear inequality constraints as:

(f (τ))2 − f 2
max ≤ 0

d2min − (d (τ))2 ≤ 0
(3.47)

Note that the quantities are all in dimensionless form.

3| Trajectory Optimization Problem 29

Figure 3.4: Workflow of the Computation of the Objective Function.

30 3| Trajectory Optimization Problem

Figure 3.5: Workflow of the Computation of the Nonlinear Inequality Constraints.

31

4| Testing of the Optimizer and a

Study on the Bézier Series

This chapter presents the testing of the developed model and an analysis on how the
results of the optimization process are affected by the order of the Bézier series.

4.1. Testing of the Developed Models

The developed models and code have been tested by comparing the results of the opti-
mization with data available from literature [15].
The considered scenario as well as the optimization parameters are the following:

• The leader satellite is on a geostationary orbit.

• In literature, the dynamical model for the follower satellites is the HCW one.

• The minimum distance between the leader and the follower satellite is 1.6 m.

• The maximum thrust acceleration is 6× 10−3 m/s2.

• The time of flight is 300 s.

• The order of the Bézier series for each coordinate is n = [12 12 16].

Six different set of boundary conditions for the follower satellite have been considered and
are reported in Table 4.1.
There are three differences between the implemented code and the one found in literature:

• In the implemented code 100 discretization points have been considered while in
literature this number is equal to 120.

• In the implemented code the time of flight is not an optimization variable while in
the literature implementation it is.

• In the implemented code each case is considered independently while in literature
the first three cases are associated to three follower satellites that have to perform

32 4| Testing of the Optimizer and a Study on the Bézier Series

the reconfiguration maneuver simultaneously; the same is done for the last three
cases. Note that, for this reason in literature an additional condition, in the form
of nonlinear inequality constraint, about the minimum distance between follower
satellites is implemented.

Initial Conditions - [m, m/s] Final Conditions - [m, m/s]

Case 1 [0 2 0 0 0 0] [0 − 4 0 0 0 0]

Case 2 [0 4 0 0 0 0] [0 − 2 0 0 0 0]

Case 3 [0 2 3 0 0 0] [0 − 2 − 3 0 0 0]

Case 4 [2 − 3 0 0 0 0] [−2 2 0 0 0 0]

Case 5 [−1.5 − 3 3 0 0 0] [1 2 − 1.5 0 0 0]

Case 6 [−1.5 − 3 − 3 0 0 0] [1 2 1.5 0 0 0]

Table 4.1: Boundary Conditions for the Test Cases.

The ∆V obtained after the optimization process for each case and for both the HCW and
the TH model is reported in Table 4.2.
It can be noted that the obtained results for both the HCW and TH model are equal or
better than the ones obtained in literature. It is worth noting that the results obtained
in literature could be higher than the ones obtained by means of the developed code due
to the fact that in literature three satellites are being considered at the same time and a
minimum distance between the follower satellites is enforced.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Method

[m/s] [m/s] [m/s] [m/s] [m/s] [m/s]

Literature 0.081 0.081 0.083 0.076 0.079 0.083

HCW Model 0.080 0.080 0.082 0.076 0.078 0.078

TH Model 0.080 0.080 0.082 0.076 0.078 0.078

Table 4.2: ∆V for the Different Cases with the Different Methods.

The computation time is reported in Table 4.3. It is worth noting that all the tests were
carried out on a i7-4720HQ 2.60 GHz processor, 16.0 GB RAM, with Windows 10 and
run on MATLAB R2022b.

4| Testing of the Optimizer and a Study on the Bézier Series 33

It can be noted that the computation time is quite low in all the considered cases, with
the TH model being slightly faster than the HCW one. It is also worth noting that the
computation times are in agreement with the ones found in literature [15] in which for
the first three cases a computation time of 138.848 s is obtained, while for the last three,
a value of 233.338 s is obtained.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Method

[s] [s] [s] [s] [s] [s]

HCW Model 26.579 25.451 29.364 17.189 15.712 13.204

TH Model 25.962 21.751 27.047 14.999 13.605 16.333

Table 4.3: Computation Time for the Different Cases with the Different Methods.

Figure 4.1 and Figure 4.2 show the thrust acceleration history and the projection of the
trajectory for the first case obtained with the HCW model. Figure 4.3 shows the distance
between the leader and the follower satellite as a function of time, the trajectory in the
LVLH reference frame, and the velocity and the position components for the first case
obtained with the HCW model. Worth noting that the obtained trajectory is an in-plane
one with the z component remaining equal to zero for the entire time.

Figure 4.1: Total Thrust Acceleration and Thrust Acceleration Components as a Function
of Time - Case 1.

34 4| Testing of the Optimizer and a Study on the Bézier Series

Figure 4.2: Projection of the Trajectory - Case 1.

Figure 4.3: Distance Between Leader and Follower Satellites as a Function of Time (Top
Left), Trajectory on the LVLH Reference Frame (Top Right), Velocity Components as a
Function of Time (Bottom Left), Position Components as a Function of Time (Bottom
Right) - Case 1.

4| Testing of the Optimizer and a Study on the Bézier Series 35

Figure 4.4 and Figure 4.5 show the thrust acceleration history and the projection of the
trajectory for the last case obtained with the HCW model. Figure 4.6 shows the distance
between the leader and the follower satellite as a function of time, the trajectory in the
LVLH reference frame, and the velocity and the position components for the last case
obtained with the HCW model. Worth noting that in this case the obtained trajectory is
not an in-plane one.
It can be noted that in both cases the obtained total thrust acceleration, f , tries to re-
semble a bang-bang solution, which is the optimal one when dealing with the fuel-optimal
problem; such solution cannot be obtained by means of the implemented method due to
the mathematical description of the shape function. It is also worth noting a common
feature of all the obtained solutions: the follower satellite tends to get closer to the leader
one, up until the safe distance is reached, and then reaches the final position imposed by
the boundary conditions. Finally note that the same results are obtained when using the
TH model.
The figures for the remaining cases show a similar behavior and can be found in Ap-
pendix A.
Overall, the developed tool for trajectory optimization can be considered successful, based
on the obtained results and their comparison with data available from literature.

Figure 4.4: Total Thrust Acceleration and Thrust Acceleration Components as a Function
of Time - Case 6.

36 4| Testing of the Optimizer and a Study on the Bézier Series

Figure 4.5: Projection of the Trajectory - Case 6.

Figure 4.6: Distance Between Leader and Follower Satellites as a Function of Time (Top
Left), Trajectory on the LVLH Reference Frame (Top Right), Velocity Components as a
Function of Time (Bottom Left), Position Components as a Function of Time (Bottom
Right) - Case 6.

4| Testing of the Optimizer and a Study on the Bézier Series 37

4.2. An Analysis on the Order of the Bézier Series

This section presents an analysis on how the order of the Bézier series affects the results
of the trajectory optimization in terms of obtained ∆V , computation time, and thrust
acceleration.
Additionally, it has been studied the difference between the trajectory, obtained by means
of the Bézier series, and the one obtained after applying the control to the dynamics of
the follower satellite. To make this part clearer, the following process has been performed:

1. Perform trajectory optimization, as presented in Chapter 3.

2. With the geometric coefficients obtained at the previous step, compute the trajec-
tory and the thrust acceleration components:

x(t) =
[
x(t) y(t) z(t)

]
= xdim(τ) ∗ sscal = ...

... =
[
Bx(τ) By(τ) Bz(τ)

]Px,dim

Py,dim

Pz,dim

 ∗ sscal (4.1)

f(t) =
[
fx(t) fy(t) fz(t)

]
= fdim(τ) ∗ sscal

ToF 2
= ...

... =

1 0 0

0 1 0

0 0 1

B

′′
x(τ)Px,dim

B′′
y (τ)Py,dim

B′′
z (τ)Pz,dim

 ∗ sscal
ToF 2

+ ...

...+

 0 −2N 0

2N 0 0

0 0 0

B

′
x(τ)Px,dim

B′
y(τ)Py,dim

B′
z(τ)Pz,dim

 ∗ sscal
ToF

+ ...

...+

−3N2 0 0

0 0 0

0 0 N2

Bx(τ)Px,dim

By(τ)Py,dim

Bz(τ)Pz,dim

 ∗ sscal (4.2)

3. Substitute the thrust acceleration components in the HCW dynamical model, pre-
sented in Sec. 2.2.1, and perform the numerical integration to obtain the actual
trajectory of the satellite, xcontrol(t).

38 4| Testing of the Optimizer and a Study on the Bézier Series

4. Compute the absolute value of the difference between the two:

|xcontrol(t)− xBézier(t)| (4.3)

In which xcontrol(t) is the trajectory obtained after numerical integration, while
xBézier(t) is the one obtained by means of Eq. (4.1).

Figure 4.7 shows the ∆V as a function of the order of the Bézier series for all the six
cases presented in Sec. 4.1. It can be noted that in all the cases the ∆V decreases for
increasing orders of the Bézier series up to n = 10; instead, when the order is n ≥ 12

the ∆V remains almost constant. Also note that in a few instances, when n ≥ 12, the
obtained ∆V is higher than the one obtained by adjacent orders of the Bézier series, this
is probably due to some issues in the optimization process.
Figure 4.8, instead, shows the computation time as a function of the order of the Bézier
series for all six cases presented in Sec. 4.1. It can be noted that the computation time
increases for increasing order of the Bézier series; this is expected since, as the order of
the Bézier series increases, the number of optimization variables increases as well.
Finally note that by analyzing these two figures it is possible to conclude that a Bèzier
series of order 10 is the best trade-off between ∆V and computation time. Indeed, for
such order of the Bèzier series the computation time is still limited; on the other hand,
the ∆V does not decrease significantly for higher orders of the series.

Figure 4.7: ∆V as a Function of the Order of the Bézier Series.

4| Testing of the Optimizer and a Study on the Bézier Series 39

Figure 4.8: Computation Time as a Function of the Order of the Bézier Series.

Figure 4.9 shows the thrust acceleration components and the total thrust acceleration as
a function of time, for different orders of the Bézier series for case 2. Figure 4.10, instead,
shows the same quantities but for case 4. It can be noted that in both cases, for n ≤ 10,
the obtained thrust acceleration profile varies with the order of the Bézier series; on the
other hand, for n ≥ 12 the thrust acceleration profile remains almost unchanged. It is
worth noting that for lower orders of the Bézier series the thrust acceleration profiles
are quite simple and resemble a second or third order polynomial; this is expected since
Bézier series of lower orders are limited in terms of the possible functions that they can
represent and, therefore, only simple functions can be obtained. For higher orders of the
Bézier series, instead, the thrust acceleration profiles remain almost unchanged since an
optimal solution has been reached and a different profile would lead to a higher ∆V .
Finally, as already mentioned in Sec. 4.1, it is possible to note that, as the order of the
Bézier series increases, the obtained thrust profile tends to resemble as much as possible
a bang-bang solution. Obtaining such solution is limited by the mathematical nature of
the Bézier series but, more in general, by the use of a shape-based method.
The figures of the thrust acceleration components and the total thrust acceleration as a
function of time, for different orders of the Bézier series, for the remaining cases show a
similar behavior and can be found in Appendix B.

40 4| Testing of the Optimizer and a Study on the Bézier Series

Figure 4.9: Thrust Acceleration as a Function of Time for Different Orders of the Bézier
Series - Case 2.

Figure 4.10: Thrust Acceleration as a Function of Time for Different Orders of the Bézier
Series - Case 4.

Figure 4.11 shows the plot of Eq. (4.3) for different orders of the Bézier series for case 2.
Figure 4.12, instead, shows the same quantities but for case 5. It can be noted that in
both cases the difference between the trajectory, computed by means of the Bézier series,
and the one obtained by applying the control is in the order of 10−14 m, therefore it is

4| Testing of the Optimizer and a Study on the Bézier Series 41

negligible. Additionally, when the order of the Bézier series is ≤ 8 the obtained behavior
is typical of when the values are close to the machine epsilon; when the order of the Bézier
series is ≥ 8 such behavior is still present, but it is more difficult to grasp due to the values
being one order of magnitude bigger with respect to the former cases. Another trend that
can be noted in most cases is that the difference between the computed trajectory and
the one obtained by applying the control is increasing in time; this is expected in all of
the dynamical problems of such kind. However, it must be pointed out that such trend
is not always present, an example can be seen in Figure 4.11 for the x coordinate when
the order of the Bézier series is equal to 12. A possible explanation of this unusual trend
could be the fact that, in the considered case, the x component is initially equal to 0,
then it increases with time until a maximum is reached, and finally it decreases until 0
is reached again; the decreasing in the x coordinate might be related to the decrease in
the difference between the computed trajectory and the one obtained by applying the
control. However, this explanation can justify this unusual trend only partially, indeed
for the same case different trends are obtained for different orders of the Bézier series.
The figures for the remaining cases show a similar behavior and can be found in Ap-
pendix B.

Figure 4.11: |xcontrol(t)− xBézier(t)| for Different Orders of the Bézier Series - Case 2.

42 4| Testing of the Optimizer and a Study on the Bézier Series

Figure 4.12: |xcontrol(t)− xBézier(t)| for Different Orders of the Bézier Series - Case 5.

43

5| Formation Reconfiguration

This chapter presents the developed strategy for formation reconfiguration. This chapter
is structured as follows: the first part presents the general idea that has been implemented;
the second part provides the MATLAB implementation highlighting the criticalities of the
approach; the third part proposes a solution for such criticalities. Finally, the last part
presents the results for some test cases.

5.1. Introduction

The developed tool for formation reconfiguration has one important constraint: it can be
applied when the involved satellites are flying on a circular orbit. Even if this is a quite
limiting constraint, it is worth noting that most of the applications for formation flying
are coupled with circular orbits.
The general idea for the developed strategy for formation reconfiguration is the following:
once the trajectory for a follower satellite is computed, such result is valid at any point
along the orbit; this is true when dealing with circular orbits. Due to the fact that the
computed trajectory is valid at any time, collision avoidance between the follower satellites
can be enforced by time-shifting the starting maneuvering time of each satellite.

5.2. Formation Reconfiguration, a Simple Approach

to the Problem

The workflow of the implemented tool for formation reconfiguration, shown in Figure 5.1,
is the following:

1. Each satellite performs its own trajectory optimization, as presented in Chapter 3.

2. The minimum distance between the involved satellites is computed: if such distance
is higher than the minimum prescribed value, it is possible to perform formation
reconfiguration without a shift in maneuvering times of the involved satellites, and
the algorithm ends.

44 5| Formation Reconfiguration

3. If the minimum distance between the involved satellites is lower than the mini-
mum prescribed value, then formation reconfiguration is performed by shifting the
maneuvering times of the involved satellites by means of a genetic algorithm.

Figure 5.1: Workflow of Formation Reconfiguration, a Simple Algorithm.

Note that trajectory optimization is performed individually by each satellite; on the other
hand formation reconfiguration by means of a genetic algorithm is performed by a devoted
satellite. In this way formation reconfiguration is performed by means of a decentralized
approach and exploiting the computational power of all the involved satellites; it is worth
noting that to do so a strong inter-satellite communication is necessary.
Concerning the formation reconfiguration by means of a genetic algorithm, it is an op-
timization problem in which the objective function is to minimize the time required to
complete the formation reconfiguration:

min
tstart

max (tstart)

s.t. dmin − dFF (t) ≤ 0
(5.1)

In which:

• tstart is the optimization variable; it is a vector that contains the starting maneu-
vering times for each satellite.

• dFF (t) is a vector that contains the distances between all the follower satellites
taken two at a time.

• dmin is the minimum distance between the follower satellites.

It can be noted that the fitness function of the genetic algorithm is to reduce the maxi-
mum of the starting times, while the nonlinear inequality constraints enforce a minimum
distance between all the follower satellites in the form of dmin − dFF (t) ≤ 0.

5| Formation Reconfiguration 45

Some remarks: the optimization variables can range between 0 and ToF ∗ (nsats − 1) with
nsats being the number of follower satellites; the reason for the upper boundary is that,
due to the fact that the leader satellite is on a circular orbit, all the possible reconfigura-
tion strategies are found within this maximum value and outside of this range the same
results will be found. From the MATLAB implementation point of view, the vector of
optimization variables is made dimensionless as follows:

τstart =
tstart

ToF ∗ (nsats − 1)
(5.2)

In this way all the optimization variables can range between 0 and 1 with 1 corresponding
to a time of ToF ∗ (nsats − 1).
Finally, note that there is no need to impose constraints on the maximum total thrust
acceleration and minimum distance between the follower and leader satellites since such
constraints are already enforced in the trajectory optimization for each satellite.
After having introduced the dimensionless time, the problem described in Eq. (5.1) can
be rewritten as follows:

min
τstart

max (τstart)

s.t. dmin − dFF (τ) ≤ 0
(5.3)

Two remarks: the reason behind the choice of a genetic algorithm is that, unlike for tra-
jectory optimization, for such optimization problem there is not a mathematical meaning
in terms of derivative of the fitness function with respect to the optimization variables;
therefore, a stochastic, population-based algorithm that searches randomly by mutation
and crossover among population members [21] is more suitable for the solution of such
problem rather than a gradient-based approach, which also requires an initial guess. Fi-
nally, to solve this optimization problem the MATLAB’s built-in ga function has been
exploited.

5.2.1. Limits of This Approach

With the developed algorithm there is one big criticality: there are several instances in
which a solution to the formation reconfiguration cannot be found.
An example in which it is not possible to find a solution is shown in Figure 5.2 and
Figure 5.3. Figure 5.2 shows the distances between the follower satellites and the distances
between the leader and the follower satellites in two cases: in the top part such distances
are obtained in case all the satellites perform the reconfiguration maneuvers at the same
time; in the bottom part, instead, are the results after the formation reconfiguration
algorithm. In Figure 5.3, instead, are reported the final trajectories for all the satellites.

46 5| Formation Reconfiguration

This happens when the involved satellites get close to each other in the proximity of the
initial or final positions. Indeed, in such cases, even delaying the starting maneuvering
time as much as possible would lead to an unfeasible trajectory.
To solve this issue a more complex algorithm is needed and will be presented in Sec. 5.3.

Figure 5.2: Distance Between Satellites as a Function of Time When Reconfiguration
Maneuvers are Performed at the Same Time (Top) and After Formation Reconfiguration
Algorithm (Bottom).

Figure 5.3: Trajectory of the Satellites in the LVLH Reference Frame.

5| Formation Reconfiguration 47

5.3. Advanced Formation Reconfiguration

The idea of the advanced formation reconfiguration algorithm is to add nonlinear inequal-
ity constraints in the trajectory optimization problem to avoid collision with the other
follower satellites while keeping the process as much decentralized as possible.

5.3.1. Introduction

In order to make all the parts of the algorithm clear, a brief overview of the whole process
could be useful. The workflow of the algorithm, represented in Figure 5.4, is the following:

1. The first part of the algorithm is the same as the one found in Sec. 5.2.

2. If such algorithm fails in finding a possible reconfiguration strategy, some computa-
tions, necessary for the next part of the process, are performed.

3. In the last part of the algorithm a while loop, in which a possible reconfiguration
strategy is searched, is performed.

Figure 5.4: Workflow of the Advanced Formation Reconfiguration Algorithm.

48 5| Formation Reconfiguration

In the setup for the while loop two operations are performed:

1. The distances between the initial and the final positions of all the involved satellites
are computed. Those values will be necessary when defining the additional nonlinear
inequality constraints in the trajectory optimization process.

2. All possible pairs of follower satellites are considered, and, by means of a genetic
algorithm, it is checked if a formation reconfiguration, between the two considered
satellites, is possible. If formation reconfiguration is not possible, the involved satel-
lites will compute a new trajectory by adding the additional nonlinear inequality
constraints. Otherwise, if a satellite does not have problems with all the other satel-
lites, its trajectory will not be computed again but the same results obtained in the
first part of the algorithm will be kept valid.

The reason for the second step of the setup process is to identify which are the satellites
that do not allow the reconfiguration and so to modify their trajectory.

5.3.2. Additional Nonlinear Inequality Constraints

The additional nonlinear inequality constraints are in the form of a minimum distance
between the trajectory of the follower satellites with respect to some prescribed positions;
in particular, such prescribed positions are the boundary conditions of the other follower
satellites. Such nonlinear inequality constraints are added so that each satellite will try
to avoid the initial and the final positions of all the other follower satellites, and a feasible
formation reconfiguration could be obtained.
To make this clearer, consider the following example: a formation reconfiguration is re-
quired between the satellites 1, 2, and 3. By performing the genetic algorithm between
satellite 1 and satellite 2, and between satellite 1 and satellite 3, it is found that formation
reconfiguration is not possible. Therefore, the additional nonlinear inequality constraints
added to satellite 1 are the following:

dmin,Sat1−x2(0) − dSat1−x2(0)(t) ≤ 0

dmin,Sat1−x2(ToF) − dSat1−x2(ToF)(t) ≤ 0

dmin,Sat1−x3(0) − dSat1−x3(0)(t) ≤ 0

dmin,Sat1−x3(ToF) − dSat1−x3(ToF)(t) ≤ 0

(5.4)

In which:

• dSat1−x2(0)(t) is the distance between satellite 1 and the initial position of satellite
2, while dmin,Sat1−x2(0) is the prescribed minimum distance.

5| Formation Reconfiguration 49

• dSat1−x2(ToF)(t) is the distance between satellite 1 and the final position of satellite
2, while dmin,Sat1−x2(ToF) is the prescribed minimum distance.

• dSat1−x3(0)(t) is the distance between satellite 1 and the initial position of satellite
3, while dmin,Sat1−x3(0) is the prescribed minimum distance.

• dSat1−x3(ToF)(t) is the distance between satellite 1 and the final position of satellite
3, while dmin,Sat1−x3(ToF) is the prescribed minimum distance.

Generalizing Eq. (5.4), for each satellite i the following nonlinear inequality constraints
are added to the trajectory optimization problem:

dmin,Sati−xj(0) − dSati−xj(0)(t) ≤ 0

dmin,Sati−xj(ToF) − dSati−xj(ToF)(t) ≤ 0
j = 1, 2, ..., nsats, j ̸= i (5.5)

Concerning the prescribed minimum distances, they are obtained considering two satellites
at a time. In particular, for each possible satellite pair, such minimum distance is the
minimum among the following quantities:

• The minimum allowed distance between the satellites, dmin, as already presented in
Sec. 3.1.3.

• The distance between the initial positions of the considered pair.

• The distance between the final positions of the considered pair.

• The distance between the initial position of one satellite and the final one of the
other.

• The distance between the final position of one satellite and the initial one of the
other.

Considering again the example with satellites 1, 2, and 3, the following is valid:

dmin,Sat1−x2(0) = dmin,Sat1−x2(ToF) = min(dmin, |x2(0)− x1(0)| , ...

... |x2(0)− x1(ToF)| , |x2(ToF)− x1(0)| , |x2(ToF)− x1(ToF)|)

dmin,Sat1−x3(0) = dmin,Sat1−x3(ToF) = min(dmin, |x3(0)− x1(0)| , ...

... |x3(0)− x1(ToF)| , |x3(ToF)− x1(0)| , |x3(ToF)− x1(ToF)|)

(5.6)

50 5| Formation Reconfiguration

Generalizing Eq. (5.6), for each satellite i the following is obtained:

dmin,Sati−xj(0) = dmin,Sati−xj(ToF) = min(dmin, ...

|xj(0)− xi(0)| , |xj(0)− xi(ToF)| , ...

|xj(ToF)− xi(0)| , |xj(ToF)− xi(ToF)|

j = 1, 2, ..., nsats, j ̸= i (5.7)

Due to the fact that dmin,Sati−xj(0) = dmin,Sati−xj(ToF) the following notation will be used:

dmin,Sati−xj(0) = dmin,Sati−xj(ToF) = dmin,Sati−xj
j = 1, 2, ..., nsats, j ̸= i (5.8)

Such minimum distance is computed in this manner for two reasons: the first one is to
avoid enforcing a too high constraint if the initial and final positions of the considered
satellites are far from each other; in this case dmin would be used. The second one is to
avoid an unfeasible trajectory optimization problem, that is when dmin is not the lowest
computed value.

5.3.3. Advanced Formation Reconfiguration Algorithm

It is now possible to tackle the developed algorithm with additional details. Figure 5.5
shows the workflow of the developed algorithm; as already mentioned, the first part of the
algorithm is exactly the same as the one presented in Sec. 5.2, and in case such algorithm
fails in finding a feasible reconfiguration, a new process is performed.
As already mentioned, the first step of this new process is the setup of the while loop
in which the minimum distances, dmin,Sati−xj

, are computed as already explained in
Sec. 5.3.2. After that, all possible pairs of follower satellites are considered, and, by
means of a genetic algorithm, it is checked if a formation reconfiguration, between the
two considered satellites, is possible. If a satellite does not have problems with all the
other satellites for formation reconfiguration, its trajectory will not be computed again
but the same results obtained in the first part of the algorithm will be kept valid. Oth-
erwise, the involved satellites will compute a new trajectory by adding the additional
nonlinear inequality constraints presented in Sec. 5.3.2. Note that these additional con-
straints are only with respect to the satellites that have formation reconfiguration issues
between each other; an example will be provided later in this section in order to make
this concept clearer.

5| Formation Reconfiguration 51

The advanced formation reconfiguration algorithm is based on a while loop. Before
explaining the processes that are performed in that part of the algorithm, it is necessary
to define the exit conditions from the while loop; there are two possible exit conditions:

• At a certain iteration no collisions are detected, this can be either before or after
having performed the formation reconfiguration by means of the genetic algorithm.

• The maximum number of iterations is reached.

The difference between one iteration and the following one is in the imposed minimum
distance: indeed, the minimum distance, dmin,Sati−xj

, is not set from the beginning of
the while loop, but rather is reached at the last iteration; additionally, a total of three
iterations are performed. To make this clearer, consider the following example: given two
satellites, satellite 1 and satellite 2, the following has been computed for the minimum
distances:

dmin,Sat1−x2 = dmin,Sat2−x1 = 1.2 m (5.9)

Therefore, the following values will be enforced at each iteration k:

k = 1 dmin,Sat1−x2 = dmin,Sat2−x1 = 0.1 m

k = 2 dmin,Sat1−x2 = dmin,Sat2−x1 = 0.65 m

k = 3 dmin,Sat1−x2 = dmin,Sat2−x1 = 1.2 m

(5.10)

It is worth noting that 0.1 m is the lowest value, and in case a lower value is obtained in
Eq. (5.7) the constraint is dropped since it becomes useless in the trajectory optimization
process. Also note that the the value used at iteration 2 is the average between the values
at the first and the last iterations.
It is now possible to tackle the while loop itself, in this part of the algorithm the following
operations are performed:

1. Satellites that require a new trajectory, with the additional nonlinear inequality
constraints, perform trajectory optimization.

2. The minimum distance among the involved satellites is computed, if such distance
is higher than the minimum prescribed value, it is possible to perform formation
reconfiguration without a shift in maneuvering times of the involved satellites and
the while loop ends.

3. If the minimum distance among the involved satellites is lower than the minimum
prescribed value, then formation reconfiguration is performed by shifting the ma-
neuvering times of the involved satellites by means of a genetic algorithm.

52 5| Formation Reconfiguration

4. The minimum distance among the involved satellites is computed once again, if
such distance is higher than the minimum prescribed value, it is possible to perform
formation reconfiguration with a shift in maneuvering times of the involved satel-
lites and the while loop ends. Note that this process is embedded in the genetic
algorithm, as shown in Eq. (5.3).

5. If the minimum distance among the involved satellites is lower than the minimum
prescribed value but the maximum number of iterations, which has been set to 3,
has been reached, the while loop ends.

6. If the maximum number of iterations has not been reached, all the follower satellites
are considered two at a time, and, by means of a genetic algorithm, it is checked
if a formation reconfiguration between the two considered satellites is possible. If
formation reconfiguration is not possible, the involved satellites will compute a new
trajectory in the following iteration with an increased value of dmin,Sati−xj

.

Note that the last step of the while loop is performed, since computing new trajectories
for some satellites might give rise to issues that with previous trajectories would not come
up.
It is now possible to present an example that clarifies the algorithm: four satellites are
considered, satellite 1, satellite 2, satellite 3, and satellite 4. The first part of the algorithm
fails in finding a possible solution to the formation reconfiguration problem, therefore the
advanced formation reconfiguration is performed. The following result is obtained when
all the satellites are considered two at a time, and it is checked, by means of a genetic
algorithm, if a formation reconfiguration between the two considered satellites is possible:

Satellite 1 Satellite 2 Satellite 3 Satellite 4

Satellite 1 - IMPOSSIBLE IMPOSSIBLE POSSIBLE

Satellite 2 IMPOSSIBLE - POSSIBLE POSSIBLE

Satellite 3 IMPOSSIBLE POSSIBLE - IMPOSSIBLE

Satellite 4 POSSIBLE POSSIBLE IMPOSSIBLE -

Table 5.1: Example, Iteration 0.

This means that all the satellites require a new trajectory, in particular:

• Satellite 1 requires additional constraints with respect to satellite 2 and satellite 3;
there is no need to add constraints with respect to satellite 4.

5| Formation Reconfiguration 53

• Satellite 2 requires additional constraints only with respect to satellite 1; there is
no need to add constraints with respect to satellite 3 and satellite 4.

• Satellite 3 requires additional constraints with respect to satellite 1 and satellite 4;
there is no need to add constraints with respect to satellite 2.

• Satellite 4 requires additional constraints only with respect to satellite 3; there is
no need to add constraints with respect to satellite 1 and satellite 2.

After computing the minimum distances, dmin,Sati−xj
, the while loop is performed; in

the first iteration a new trajectory is computed for all the satellites, but formation re-
configuration is still not possible. At the end of the first iteration all the satellites are
considered two at a time and it is checked, by means of a genetic algorithm, if a formation
reconfiguration between the two considered satellites is possible. The following result is
obtained:

Satellite 1 Satellite 2 Satellite 3 Satellite 4

Satellite 1 - POSSIBLE POSSIBLE POSSIBLE

Satellite 2 POSSIBLE - POSSIBLE POSSIBLE

Satellite 3 POSSIBLE POSSIBLE - IMPOSSIBLE

Satellite 4 POSSIBLE POSSIBLE IMPOSSIBLE -

Table 5.2: Example, Iteration 1.

This means that satellite 1 and satellite 2 solved their issues and no issues arose with the
other satellites; it is not necessary to compute a new trajectory for such satellites in the
following iteration. Satellite 3 solved the issue with satellite 1 but not with satellite 4.
Instead, nothing changed for satellite 4.
After the end of the second iteration, still no formation reconfiguration is possible and
only satellite 3 and 4 require a new trajectory. Finally, at the end of the third, and last,
iteration a possible formation reconfiguration strategy is found.

54 5| Formation Reconfiguration

Figure 5.5: Extended Workflow of the Advanced Formation Reconfiguration Algorithm.

5| Formation Reconfiguration 55

5.4. Testing of the Developed Algorithm

The developed algorithm has been tested in two different scenarios: the first one considers
the satellites reported in Table 5.3, while the second one the ones reported in Table 5.4.
The considered satellites are the ones that have already been used in Sec. 4.1, while
the two scenarios are the ones found in [15]. In particular, in the first scenario the
follower satellites move from a planar configuration to another planar one; instead, in the
second scenario the follower satellites move from a tetrahedral configuration to another
tetrahedral one.

Initial Conditions - [m, m/s] Final Conditions - [m, m/s]

Satellite 1 [0 2 0 0 0 0] [0 − 4 0 0 0 0]

Satellite 2 [0 4 0 0 0 0] [0 − 2 0 0 0 0]

Satellite 3 [0 2 3 0 0 0] [0 − 2 − 3 0 0 0]

Table 5.3: Boundary Conditions for the Satellites of Scenario 1.

Initial Conditions - [m, m/s] Final Conditions - [m, m/s]

Satellite 4 [2 − 3 0 0 0 0] [−2 2 0 0 0 0]

Satellite 5 [−1.5 − 3 3 0 0 0] [1 2 − 1.5 0 0 0]

Satellite 6 [−1.5 − 3 − 3 0 0 0] [1 2 1.5 0 0 0]

Table 5.4: Boundary Conditions for the Satellites of Scenario 2.

The conditions for the formation reconfiguration are the same as the ones used in Sec. 4.1;
following the most relevant ones:

• The leader satellite is on a geostationary orbit.

• The minimum distance between the leader and the follower satellite is 1.6 m.

• The maximum thrust acceleration is 6× 10−3 m/s2.

• The time of flight is 300 s.

• The order of the Bézier series for each coordinate is n = [12 12 16].

56 5| Formation Reconfiguration

5.4.1. Planar Configuration to Planar Configuration

In Table 5.5 are reported the results of this reconfiguration and are compared with the
data available from literature [15].
Note that the computation time is obtained by assuming that the trajectory optimization
is simultaneously performed by each satellite.
It can be noted that the obtained ∆V is slightly lower than the one obtained in literature
while the computation time is approximately half than the one obtained in literature. The
total time of flight, instead, is higher due to the idea behind the implemented algorithm.
It is worth noting that the main reason for such a low computation time is that for this
scenario the advanced formation reconfiguration algorithm was not necessary; indeed, by
shifting the initial maneuvering times it was already possible to obtain a feasible formation
reconfiguration with the trajectories already computed in Sec. 4.1.

Literature Implemented Algorithm

∆V Sat 1 - [m/s] 0.081 0.080

∆V Sat 2 - [m/s] 0.081 0.080

∆V Sat 3 - [m/s] 0.083 0.082

Total ∆V - [m/s] 0.246 0.242

Time of Flight - [s] 299.952 407.828

Computation Time - [s] 138.848 68.045

Table 5.5: Results of Scenario 1.

Figure 5.6 shows the distances between the follower satellites and the distances between
the leader and the follower satellites in two cases: in the top part such distances are
the ones obtained in case all the satellites perform the reconfiguration maneuvers at the
same time; in the bottom part, instead, are the results after the formation reconfiguration
algorithm. Finally, Figure 5.7 shows the final trajectories for all the involved satellites.

5| Formation Reconfiguration 57

Figure 5.6: Distance Between Satellites as a Function of Time When Reconfiguration
Maneuvers are Performed at the Same Time (Top) and After Formation Reconfiguration
Algorithm (Bottom) for the Scenario 1.

Figure 5.7: Trajectory of the Satellites in the LVLH Reference Frame for the Scenario 1.

58 5| Formation Reconfiguration

5.4.2. Tetrahedral to Tetrahedral Configuration

In Table 5.6 are reported the results of this reconfiguration and are compared with the
data available from literature [15].
Note that the computation time is obtained by assuming that the trajectory optimization
is simultaneously performed by each satellite.
It can be noted that, similarly to the previous scenario, also in this case the obtained
∆V is slightly lower than the one obtained in literature and the total time of flight is
higher. On the other hand, the computation time is higher than the one obtained in
literature. The main reason for the higher computation time is that for this scenario the
advanced formation reconfiguration algorithm was necessary; indeed, shifting the initial
maneuvering times was not enough to obtain a feasible formation reconfiguration and it
was necessary to compute new trajectories by including additional constraints.

Literature Implemented Algorithm

∆V Sat 4 - [m/s] 0.076 0.076

∆V Sat 5 - [m/s] 0.079 0.079

∆V Sat 6 - [m/s] 0.083 0.079

Total ∆V - [m/s] 0.238 0.234

Time of Flight - [s] 299.992 525.711

Computation Time - [s] 233.338 406.101

Table 5.6: Results of Scenario 2.

Figure 5.8 shows the distances between the follower satellites and the distances between
the leader and the follower satellites in two cases: in the top part such distances are
the ones obtained in case all the satellites perform the reconfiguration maneuvers at the
same time; in the bottom part, instead, are the results after the advanced formation
reconfiguration algorithm. Finally, Figure 5.9 shows the trajectories for all the involved
satellites, in particular: the initial trajectories are on the left side, they are obtained
without the introduction of the additional constraints; while on the right side are the
final trajectories, obtained after the execution of the advanced formation reconfiguration
algorithm. In particular, it can be noted that the trajectories of satellites 5 and 6 have
been changed in order to make the formation reconfiguration possible.

5| Formation Reconfiguration 59

Figure 5.8: Distance Between Satellites as a Function of Time When Reconfiguration
Maneuvers are Performed at the Same Time (Top) and After Advanced Formation Re-
configuration Algorithm (Bottom) for the Scenario 2.

Figure 5.9: Trajectory of the Satellites in the LVLH Reference Frame Before (Left) and
After (Right) Advanced Formation Reconfiguration Algorithm for the Scenario 2.

60 5| Formation Reconfiguration

5.5. Final Comments About the Developed Algorithm

It is worth spending a few more words about the developed algorithm. The strengths
of such algorithm are that the computation time is quite low, especially when there is
no need to compute the trajectories multiple times, the total ∆V is still optimal since
each satellite has an optimized trajectory, and it has a decentralized approach, therefore
the computational power of all the platforms can be exploited. Additionally, with the
developed algorithm it could also be possible to deal with more complex problems in
terms of number of involved satellites; indeed, it was also possible to solve the formation
reconfiguration with all six satellites at the same time. The downside of increasing too
much the number of involved satellites is that the algorithm’s performance, in terms of
computation time, decreases rapidly due to the complexity of the problem. On the other
hand, it is worth to note that this algorithm has been developed for satellites flying in
close formation, that is, for satellites flying within 15 m from the leader one, and, in such
scenario, it is unlikely that the number of involved satellites will be greater than four.
There are three additional important considerations to make: the first one is that the
comparison, in terms of ∆V , that has been performed in Sec. 5.4 with respect to the
literature findings must be correctly contextualized; such comparison is only related to
the quality, in terms of ∆V , of the reconfiguration maneuver but the two results cannot
quite be compared directly. Indeed, to correctly compare the two results an equal time
window would be required. The second and third considerations relate to the conditions
of the satellites before and after having performed the reconfiguration maneuver; as it
can be seen in Figure 5.6 and in Figure 5.8, the satellites remain fixed in either the initial
and/or the final positions depending on their starting maneuvering times. To do that an
additional control is necessary; such control is negligible in the considered scenarios due to
the fact that the initial and final velocities, in the LVLH reference frame, are equal to zero,
but this might not be the case when such velocities are different from zero. This leads to
the final remark: the developed tool works well when a zero velocity at the boundaries is
assumed and, in case this condition cannot be imposed, not only a poor solution might
be obtained, but also errors could arise.

61

6| Conclusions and Future

Developments

There are two main results from this work: the first one concerns trajectory optimization
while the second is related to formation reconfiguration.
Considering the former, trajectory optimization has been performed by means of a shape-
based method; in particular, the Bèzier series has been exploited for the solution of such
problem. The developed algorithm has been compared to results from literature and can
be considered successful. Additionally, a study on how the Bézier series affects the ob-
tained results has been performed. The are two main lessons that have been learned from
such an analysis: the first one is that, even increasing the order of the Bézier series, the
obtained result is limited by the mathematical nature of the shape function; indeed, from
the mathematical point of view there are limitations in terms of the possible shapes that
such function can achieve. The second lesson is that a good trade-off between the obtained
∆V and computation time is achieved when the order of the Bézier series is equal to 10.
Concerning shape-based methods for the fuel-optimal trajectory optimization problem,
possible improvements could be achieved by exploiting a different shape function. Ideal
shape functions for such problems would be those that allow to resemble a bang-bang so-
lution as close as possible; therefore, when considering the control, the obtained solution
must have two features: two peaks in the initial and final parts of the trajectory and, if
needed, a lower control in the central part in order to correct the trajectory. Additionally,
the shape function shall be capable of abruptly vary from a maximum value to zero in
order to make the control as efficient as possible.
Considering now formation reconfiguration, a number of observations can be done. Firstly,
this optimization problem has been tackled by means of a decentralized approach; this
choice is dictated by the goal of achieving a higher autonomy with respect to ground
stations for satellites flying in formation. Indeed, as the number of missions that exploits
formation flying increases, a higher autonomy will not only be desirable, but also manda-
tory. Concerning the developed algorithm, it has been proved to be working correctly
when tested with data available from literature. Nonetheless it has some limitations from

62 6| Conclusions and Future Developments

the application point of view, the two major ones are related to the conditions of the
satellites: the leader satellite must be on a circular orbit and the velocities of the follower
satellites, in the LVLH reference frame, must be equal to zero at the boundaries. For these
reasons, future works could aim at improving such algorithm to be used in a broader range
of scenarios such as different conditions of the leader and follower satellites or different
relative distances between the involved satellites.

63

Bibliography

[1] Jonas Radtke, Enrico Stoll, Hugh Lewis, and Benjamin Bastida Virgili. The impact
of the increase in small satellite launch traffic on the long-term evolution of the
space debris environment. In T. Flohrer and F. Schmitz, editors, Proceedings of the
7th European Conference on Space Debris, volume 7. The European Space Agency
(ESA), 2017.

[2] Owen Brown, Paul Eremenko, and Paul Collopy. Value-centric design methodologies
for fractionated spacecraft: Progress summary from phase i of the darpa system f6
program. In AIAA SPACE 2009 Conference & Exposition, Pasadena, California, Sep
2009. American Institute of Aeronautics and Astronautics.

[3] Jesse Leitner. Formation flying-the future of remote sensing from space. In 18th
International Symposium on Space Flight Dynamics, volume 548, page 621, 2004.

[4] Saptarshi Bandyopadhyay, Rebecca Foust, Giri P. Subramanian, Soon-Jo Chung,
and Fred Y. Hadaegh. Review of formation flying and constellation missions using
nanosatellites. Journal of Spacecraft and Rockets, 53(3):567–578, May 2016.

[5] Francesca Scala, Gabriella Gaias, Camilla Colombo, and Manuel Martín-Neira. De-
sign of optimal low-thrust manoeuvres for remote sensing multi-satellite formation
flying in low earth orbit. Advances in Space Research, 68(11):4359–4378, 2021.

[6] Forrester T. Johnson. Approximate finite-thrust trajectory optimization. AIAA
Journal, 7(6):993–997, 1969.

[7] J. Vlassenbroeck and R. Van Dooren. A chebyshev technique for solving nonlinear
optimal control problems. IEEE Transactions on Automatic Control, 33(4):333–340,
Apr 1988.

[8] Anastassios E. Petropoulos and James M. Longuski. Shape-based algorithm for the
automated design of low-thrust, gravity assist trajectories. Journal of Spacecraft and
Rockets, 41(5):787–796, 2004.

64 | Bibliography

[9] Massimiliano Vasile. Preliminary design of low-thrust multiple gravity assist trajec-
tories. Journal of Spacecraft and Rockets, 43, 09 2006.

[10] Bradley Wall. Shape-Based Approximation Method for Low-Thrust Trajectory Opti-
mization. American Institute of Aeronautics and Astronautics, Jun 2008.

[11] Ehsan Taheri and Ossama Abdelkhalik. Shape based approximation of constrained
low-thrust space trajectories using fourier series. Journal of Spacecraft and Rockets,
49(3):535–546, 2012.

[12] Ehsan Taheri and Ossama Abdelkhalik. Fast initial trajectory design for low-
thrust restricted-three-body problems. Journal of Guidance, Control, and Dynamics,
38(11):2146–2160, 2015.

[13] Ehsan Taheri and Ossama Abdelkhalik. Initial three-dimensional low-thrust trajec-
tory design. Advances in Space Research, 57(3):889–903, 2016.

[14] Mingying Huo, Giovanni Mengali, Alessandro A. Quarta, and Naiming Qi. Electric
sail trajectory design with bezier curve-based shaping approach. Aerospace Science
and Technology, 88:126–135, 2019.

[15] Zichen Fan, Mingying Huo, Song Xu, Jun Zhao, and Naiming Qi. Fast cooperative
trajectory optimization for close-range satellite formation using bezier shape-based
method. IEEE Access, 8:30918–30927, 2020.

[16] Naiming Qi, Zichen Fan, Mingying Huo, Desong Du, and Ce Zhao. Fast trajec-
tory generation and asteroid sequence selection in multispacecraft for multiasteroid
exploration. IEEE Transactions on Cybernetics, 52(7):6071–6082, 2022.

[17] Roberto Armellin, Mauro Massari, and Amalia Ercoli Finzi. Optimal formation
flying reconfiguration and station keeping maneuvers using low thrust propulsion. In
Proceedings of the 18th International Symposium on Space Flight Dynamics (ESA
SP-548), pages 429–434, 2004.

[18] Marco Sabatini and Giovanni B. Palmerini. Collective control of spacecraft
swarms for space exploration. Celestial Mechanics and Dynamical Astronomy,
105(1–3):229–244, Mar 2009.

[19] Yue Hang, Guangyan Xu, Danwei Wang, and Eng Kee Poh. Comparison study of
relative dynamic models for satellite formation flying. In 2008 2nd International
Symposium on Systems and Control in Aerospace and Astronautics, pages 1–6, 2008.

[20] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-Spline

6| BIBLIOGRAPHY 65

Techniques. Mathematics and Visualization. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2002.

[21] The MathWorks Inc. Genetic Algorithm, 2023.

66

A| Appendix A

This appendix shows the remaining results of the trajectory optimization presented in
Sec. 4.1.
Figure A.1 and Figure A.2 show the thrust acceleration history and the projection of
the trajectory for the second case obtained with the HCW model. Figure A.3 shows the
distance between the leader and the follower satellite as a function of time, the trajectory
in the LVLH reference frame, and the velocity and the position components for the second
case obtained with the HCW model.

Figure A.1: Total Thrust Acceleration and Thrust Acceleration Components as a Function
of Time - Case 2.

A| Appendix A 67

Figure A.2: Projection of the Trajectory - Case 2.

Figure A.3: Distance Between Leader and Follower Satellites as a Function of Time (Top
Left), Trajectory on the LVLH Reference Frame (Top Right), Velocity Components as a
Function of Time (Bottom Left), Position Components as a Function of Time (Bottom
Right) - Case 2.

68 A| Appendix A

Figure A.4 and Figure A.5 show the thrust acceleration history and the projection of
the trajectory for the third case obtained with the HCW model. Figure A.6 shows the
distance between the leader and the follower satellite as a function of time, the trajectory
in the LVLH reference frame, and the velocity and the position components for the third
case obtained with the HCW model.

Figure A.4: Total Thrust Acceleration and Thrust Acceleration Components as a Function
of Time - Case 3.

Figure A.5: Projection of the Trajectory - Case 3.

A| Appendix A 69

Figure A.6: Distance Between Leader and Follower Satellites as a Function of Time (Top
Left), Trajectory on the LVLH Reference Frame (Top Right), Velocity Components as a
Function of Time (Bottom Left), Position Components as a Function of Time (Bottom
Right) - Case 3.

Figure A.7 and Figure A.8 show the thrust acceleration history and the projection of
the trajectory for the fourth case obtained with the HCW model. Figure A.9 shows the
distance between the leader and the follower satellite as a function of time, the trajectory
in the LVLH reference frame, and the velocity and the position components for the fourth
case obtained with the HCW model.

Figure A.7: Total Thrust Acceleration and Thrust Acceleration Components as a Function
of Time - Case 4.

70 A| Appendix A

Figure A.8: Projection of the Trajectory - Case 4.

Figure A.9: Distance Between Leader and Follower Satellites as a Function of Time (Top
Left), Trajectory on the LVLH Reference Frame (Top Right), Velocity Components as a
Function of Time (Bottom Left), Position Components as a Function of Time (Bottom
Right) - Case 4.

A| Appendix A 71

Figure A.10 and Figure A.11 show the thrust acceleration history and the projection of
the trajectory for the fifth case obtained with the HCW model. Figure A.12 shows the
distance between the leader and the follower satellite as a function of time, the trajectory
in the LVLH reference frame, and the velocity and the position components for the fifth
case obtained with the HCW model.

Figure A.10: Total Thrust Acceleration and Thrust Acceleration Components as a Func-
tion of Time - Case 5.

72 A| Appendix A

Figure A.11: Projection of the Trajectory - Case 5.

Figure A.12: Distance Between Leader and Follower Satellites as a Function of Time (Top
Left), Trajectory on the LVLH Reference Frame (Top Right), Velocity Components as a
Function of Time (Bottom Left), Position Components as a Function of Time (Bottom
Right) - Case 5.

73

B| Appendix B

This appendix shows the remaining results of the study of how the trajectory optimization
is affected by the order of the Bézier series presented in Sec. 4.2.
From Figure B.1 to Figure B.4 are reported the thrust acceleration components and the
total thrust acceleration as a function of time, for different orders of the Bézier series for
the cases 1, 3, 5, and 6.

Figure B.1: Thrust Acceleration as a Function of Time for Different Orders of the Bézier
Series - Case 1.

74 B| Appendix B

Figure B.2: Thrust Acceleration as a Function of Time for Different Orders of the Bézier
Series - Case 3.

Figure B.3: Thrust Acceleration as a Function of Time for Different Orders of the Bézier
Series - Case 5.

B| Appendix B 75

Figure B.4: Thrust Acceleration as a Function of Time for Different Orders of the Bézier
Series - Case 6.

From Figure B.5 to Figure B.8 are reported the plots of Eq. 4.3 for different orders of the
Bézier series for the cases 1, 3, 4, and 6.

Figure B.5: |xcontrol(t)− xBézier(t)| for Different Orders of the Bézier Series - Case 1.

76 B| Appendix B

Figure B.6: |xcontrol(t)− xBézier(t)| for Different Orders of the Bézier Series - Case 3.

Figure B.7: |xcontrol(t)− xBézier(t)| for Different Orders of the Bézier Series - Case 4.

B| Appendix B 77

Figure B.8: |xcontrol(t)− xBézier(t)| for Different Orders of the Bézier Series - Case 6.

78

Acknowledgements

Before ending the thesis I would like to spend a few words for all the people that helped
and supported me not only in this work, but also during the journey of my university
years.
I am extremely grateful to Professor Mauro Massari for giving me the opportunity to work
on such an interesting topic, for always being available to answer all my questions, and
for providing invaluable scientific guidance. Concerning the thesis, I would also like to
express my deepest gratitude to my sister Federica that greatly helped me in the review
of the written part.
Special thanks to my parents, my sister, and my girlfriend Alice for loving and supporting
me, especially in times where I did not believe in myself. They are my pillars, and I
could have not made it without them. My sincere thanks also goes to all my relatives for
constantly encouraging me and showing interest in my studies.
There are three groups of friends that I would like to thank. My favorite group of engi-
neers, Giacomo, Edoardo, and Andrea, one of the few friends that could actually under-
stand the topic of this thesis and always ready to help when in need; special shoutout
to Andrea for listening to me and providing useful material when I was dealing with the
optimization problem. Next, I would like to thank my dear friends Matteo, Rachele, Fed-
erico, Edoardo, Claudia, Diego, Amanda, Mattia, Davide, and Nicolò whose support was
beyond all my expectations. Finally, I would like to thank Josh and Piana who were the
most incredible thing that could have happened to me during the epidemic, and kept my
enthusiasm and motivation high during tough times.

	Abstract
	Abstract in lingua italiana
	Contents
	List of Figures
	List of Tables
	Introduction
	Trajectory Optimization by Means of Shape-Based Methods
	Trajectory Optimization for Formation Reconfiguration

	Reference Frames and Dynamical Models
	Reference Frames
	Dynamical Models
	Hill-Clohessy-Wiltshire Model
	Tschauner-Hempel Model

	Trajectory Optimization Problem
	Optimization Problem Definition
	Objective Function
	Boundary Conditions
	Nonlinear Inequality Constraints

	Shape Function
	Bézier Series and Its Derivatives
	Position, Velocity, and Acceleration Components by Means of the Bézier Series
	Bézier Series and Boundary Conditions

	Dimensionless Quantities
	Dimensionless Time
	Dimensionless Space

	Optimization Problem by Means of a Shape-Based Method
	Optimization Variables
	Initial Guess

	MATLAB Implementation
	Initial Data
	Relative Dynamics Model
	Definition of the Bernstein Polynomials and its Derivatives
	Computation of the Geometric Coefficients Based on the Boundary Conditions
	Process of Making the Quantities Dimensionless
	Initial Guess Computation
	Computation of a Scaling Parameter for the Objective Function
	Optimization Process

	Testing of the Optimizer and a Study on the Bézier Series
	Testing of the Developed Models
	An Analysis on the Order of the Bézier Series

	Formation Reconfiguration
	Introduction
	Formation Reconfiguration, a Simple Approach to the Problem
	Limits of This Approach

	Advanced Formation Reconfiguration
	Introduction
	Additional Nonlinear Inequality Constraints
	Advanced Formation Reconfiguration Algorithm

	Testing of the Developed Algorithm
	Planar Configuration to Planar Configuration
	Tetrahedral to Tetrahedral Configuration

	Final Comments About the Developed Algorithm

	Conclusions and Future Developments
	Bibliography
	Appendix A
	Appendix B
	Acknowledgements

