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Abstract

The accurate calibration of camera-laser systems is essential for various computer vision
applications, such as 3D reconstruction, object recognition, and robotics. This thesis
presents a comprehensive investigation into the extrinsic calibration of camera-laser sys-
tems, aiming to enhance the accuracy and efficiency of the calibration process. The
research begins with a comprehensive literature review, examining existing extrinsic cal-
ibration methods and mathematical models for both camera and laser sensors. Various
techniques for establishing correspondences between camera and laser data are explored
and categorized, establishing a strong theoretical foundation for the subsequent calibra-
tion methodologies. The first phase of the research focuses on the modeling of the camera
and laser systems. Mathematical formulations are derived to describe the geometric rela-
tionship between the 3D world coordinates and the corresponding image or laser points.
The camera model is based on the classical pinhole camera model, while the laser model in-
corporates parameters for range and intensity measurements. Next, the thesis delves into
the extrinsic calibration procedure. The process involves estimating the rotation matrix
and translation vector that defines the rigid transformation between the camera and laser
coordinate systems. Various calibration patterns, including checkerboards and laser lines,
are utilized to establish correspondences between the two sensors. The thesis presents
a novel calibration framework that combines feature-based correspondence analysis and
optimization algorithms. This framework leverages the rich geometric information cap-
tured by the camera and the line-laser sensor to accurately estimate the transformation
parameters. Experimental evaluations are conducted using a custom calibration setup,
validating the effectiveness and accuracy of the proposed framework. Furthermore, the
thesis explores the impact of different factors on calibration accuracy, including noise,
distortion, and environmental conditions. Robustness analysis and sensitivity studies are
performed to evaluate the resilience of the calibration methods under challenging scenar-
ios. The findings of this research contribute to the advancement of camera-laser extrinsic
calibration techniques, offering practical insights and recommendations for achieving pre-
cise alignment in real-world applications. The proposed methodologies serve as a reliable
foundation for accurate perception and measurement tasks.
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Abstract in lingua italiana

La calibrazione accurata dei sistemi fotocamera-laser è essenziale per varie applicazioni
di visione artificiale, come la ricostruzione 3D, il riconoscimento di oggetti e la robot-
ica. Questa tesi presenta un’indagine completa sulla calibrazione estrinseca dei sistemi
fotocamera-laser, con l’obiettivo di migliorare l’accuratezza e l’efficienza del processo di
calibrazione. La ricerca inizia con una revisione completa della letteratura, esaminando i
metodi di calibrazione estrinseca esistenti ei modelli matematici sia per i sensori a fotocam-
era che laser. Vengono esplorate e classificate varie tecniche per stabilire le corrispondenze
tra i dati della fotocamera e del laser, stabilendo una solida base teorica per le successive
metodologie di calibrazione. La prima fase della ricerca si concentra sulla modellazione
della telecamera e dei sistemi laser. Vengono derivate formulazioni matematiche per de-
scrivere la relazione geometrica tra le coordinate del mondo 3D e l’immagine o i punti laser
corrispondenti. Il modello della fotocamera si basa sul classico modello della fotocamera
stenopeica, mentre il modello laser incorpora i parametri per le misurazioni della portata
e dell’intensità. Successivamente, la tesi approfondisce la procedura di calibrazione estrin-
seca. Il processo prevede la stima della matrice di rotazione e del vettore di traslazione che
definisce la trasformazione rigida tra la telecamera e i sistemi di coordinate laser. Vari
modelli di calibrazione, tra cui scacchiere e linee laser, vengono utilizzati per stabilire
corrispondenze tra i due sensori. La tesi presenta un nuovo framework di calibrazione
che combina analisi delle corrispondenze basate su caratteristiche e algoritmi di ottimiz-
zazione. Questo framework sfrutta le ricche informazioni geometriche acquisite dalla foto-
camera e dal sensore laser lineare per stimare con precisione i parametri di trasformazione.
Le valutazioni sperimentali vengono condotte utilizzando un’impostazione di calibrazione
personalizzata, convalidando l’efficacia e l’accuratezza del framework proposto. Inoltre,
la tesi esplora l’impatto di diversi fattori sull’accuratezza della calibrazione, inclusi ru-
more, distorsione e condizioni ambientali. Vengono eseguiti analisi di robustezza e studi
di sensibilità per valutare la resilienza dei metodi di calibrazione in scenari difficili. I risul-
tati di questa ricerca contribuiscono al progresso delle tecniche di calibrazione estrinseca
laser-fotocamera, offrendo spunti pratici e raccomandazioni per ottenere un allineamento
preciso nelle applicazioni del mondo reale. Le metodologie proposte fungono da base af-



fidabile per compiti di percezione e misurazione accurati.

Parole chiave: visione artificiale, calibrazione estrinseca, sistemi camera-laser, matrice
di plücker, algoritmi di ottimizzazione, accuratezza della calibrazione, ricostruzione 3d,
analisi di robustezza.
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1| Introduction

1.1. Overview and Motivation

The usage of camera and laser systems has become increasingly common in various indus-
trial and scientific applications, for instance, robotics, machine vision, 3D reconstruction,
navigation systems, autonomous driving, and industrial automation. In order to ensure
that the multiple-view measurement data from the camera and laser can be accurately
fused and analyzed, it is essential to determine the relative position and orientation of the
sensors, a process known as extrinsic calibration. By calibrating the extrinsic parameters,
we can ensure that the camera and laser are correctly aligned, providing more accurate
3D data and improved results in various applications.

This thesis focuses on the extrinsic calibration of a camera and a laser, with the
goal of determining the position/orientation of the laser laine relative to the camera.
The proposed method to determine the position of the laser line involves intersecting
the laser with a set of planar checkerboards of known dimensions which are applied as
calibration object and they are actually completed with different postures on the same
planar checkerboard. This approach provides us with the joint objective of calibrating
the camera optics and determining the plane of the laser, thus allowing for the accurate
mapping of 3D data in the real world.

In an ideal scenario, two images of the checkerboards in different positions would
suffice to solve the problem of determining the plane of the laser, provided that the two
planes of the checkerboards and the laser do not belong to the same beam of planes.
However, in a real context, there are several sources of error and noise in the acquisition
process that need to be addressed to minimize their impact on the accuracy of the results.

To validate the proposed method, an experiment was performed using the system
of a real camera combined with a 2D laser sensor. This experiment involved the 3D
reconstruction of a complex-surfaced trunk model using calibrated laser line data. The
results of this experiment will demonstrate the effectiveness of the approach in providing
a robust and efficient solution for the extrinsic calibration of the camera and the laser.
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1.2. Organization of The Thesis

The remainder of this thesis is organized as follows: Chapter 2 provides a comprehensive
review of prior research concerning the extrinsic calibration of camera-laser line systems.
Following this, Chapter 3 delves into the mathematical foundations, notably Plücker
matrices, fundamental to this project. This chapter also delves into critical aspects such
as distortion and system stability. Subsequently, Chapter 4 provides a comprehensive
account of the experimental setup, detailing the datasets, algorithms, procedures, and
showcasing visual representations along with data analyses. Chapter 5 draws the work to
a conclusion and outline potential areas for further research and development.
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2| Background and Related works

This chapter will provide an overview of the development of joint external calibration
methods for cameras and other sensors, with a particular focus on laser in this article.
The narrative commences by delving into seminal works, including traditional camera
calibration, which serves as a catalyst for the subsequent discussion.

The primary objectives of this chapter are:

• provide a comprehensive understanding of the historical progression in joint extrinsic
calibration methodologies that involve the alignment of cameras and laser. By
examining the evolution of calibration techniques over time, this study seeks to shed
light on the advancements made in achieving accurate spatial alignment between
these two sensing modalities;

• To facilitate a better understanding of the available techniques, the existing extrinsic
calibration methods of the camera-laser system will be categorized based on their
fundamental principles and methodologies;

• To present state-of-the-art techniques for extrinsic calibration of cameras and laser,
highlighting their distinct approaches and advancements.

2.1. Traditional Camera Calibration as a Precursor

In computer vision, one of the fundamental tasks is to derive the geometric information
of objects in 3D space from the image data captured by cameras. This enables subse-
quent reconstruction and recognition of the objects. The geometric model of a camera
determines the relationship between the 3D position of an object point in space and its
corresponding projection in the image. This highlights the significance of the camera’s
geometric model, with the parameters encapsulated in the model referred to as camera
parameters. The process of determining these parameters is known as camera calibration.
To achieve 3D reconstruction, stereo vision methods typically involve three main steps.
Firstly, the corresponding points between images need to be determined, establishing the
relationship between the projection points of the same space point in different images.
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Secondly, camera calibration is performed to determine the connection line between the
image point and the camera’s optical center. This step involves determining both the
intrinsic and extrinsic parameters of the camera. Lastly, utilizing the camera’s intrinsic
and extrinsic parameters, along with the results of image matching, the 3D reconstruction
is carried out. This process calculates the distance between the object and the camera,
yielding comprehensive 3D information about the object. In this article, our primary
focus is on the crucial step of camera calibration which is the process of mapping pixel
coordinates of space points to their corresponding world coordinates and a vital process
in 3D stereo vision that directly impacts the accuracy of the subsequent reconstruction
results.

Camera calibration involves the determination of both intrinsic and extrinsic param-
eters of a camera based on the world coordinates of a reference point in space and its
corresponding image coordinates.

Intrinsic Parameter Determination:

• Accurate estimation of the camera’s intrinsic parameters is crucial for achieving
precise calibration. The lens focal length(f), lens distortion coefficients(k, s, p), co-
ordinate distortion factor(s), and image coordinate(u0, v0) origin play pivotal roles
in accurately mapping image coordinates to their corresponding world coordinates.
These parameters directly impact the geometric transformation between the real-
world coordinate system and the image coordinate system. Thorough understanding
and robust estimation of these parameters contribute to the improvement of image
quality, accurate feature extraction, and reliable camera pose estimation.

Extrinsic Parameter Determination:

• Determining the extrinsic parameters of the camera is also crucial for establishing
the relationship between the camera coordinate system and the world coordinate
system. The rotation matrix R and translation vector t define the position and
orientation of the camera in 3D space, enabling accurate registration of the captured
images with the corresponding real-world objects or scenes. The determination of
these parameters is essential for applications such as camera tracking, augmented
reality, and robotics.

The common theory and methods of high-precision camera calibration are thoroughly
discussed in [1], including the pinhole model which serves as a foundational concept in
camera calibration, serving as a starting point for many advanced techniques. This sim-
plified model assumes a small aperture and a single point of projection, providing a
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simplified yet effective representation of the camera’s imaging process. Virtually all ad-
vanced calibration techniques build upon the principles and concepts derived from the
pinhole model. Its use as a foundation allows for the development of more sophisticated
and accurate calibration methodologies.

Nowadays, the most widely used and representative calibration methods are the well-
known Tsai’s method [2, 3] and Zhang’s method [4].

2.1.1. Tsai Camera Calibration Method

This method was first proposed by Tsai in 1986. Its implementation requires a minimum
of six non-coplanar 3D points with known coordinates in the world coordinate system and
their corresponding 2D pixel coordinates in the image. The two-stage technique employed
in Tsai’s method enables the separate determination of intrinsic and extrinsic parameters.
In the first stage, the position and orientation of the camera are computed, establishing
the camera’s spatial relationship with the world coordinate system. This step provides
the foundation for subsequent calibration procedures. In the second stage, the intrinsic
parameters of the camera, including focal length and distortion coefficients, are calculated.
By separating the calibration of intrinsic and extrinsic parameters, Tsai’s method offers
flexibility in adjusting camera settings and accommodating different imaging scenarios.

Furthermore, Tsai’s method combines the advantages of the Direct Linear Transform
(DLT) algorithm and nonlinear optimization techniques. The utilization of the DLT
algorithm allows for the estimation of initial parameters, while the subsequent nonlinear
optimization further refines the calibration to achieve greater accuracy. By transforming
the nonlinear problem into the linear model, the calculation process is simplified, the
calculation efficiency is improved, and the calculation result is more accurate. In the
meanwhile, an important aspect of Tsai’s method is its consideration of various distortions
that can affect the camera’s imaging process. Distortions such as lens distortion can
introduce significant errors in the calibration results if not properly accounted for. By
integrating distortion considerations into the calibration process, Tsai’s method addresses
this challenge and improves the accuracy of the calibration model. This enables more
precise geometric reconstruction and accurate mapping between the real-world coordinates
and the image coordinates. Tsai’s method has proven to be an effective and valuable tool
in the field of camera calibration.
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2.1.2. Zhang Zhengyou Calibration Method

Zhang’s algorithm has emerged as the most commonly employed method for camera cali-
bration. This innovative approach addresses the challenges associated with radial distor-
tion in camera parameters through the utilization of multi-plane images. The calibration
process involves capturing multiple sets of images from various angles and directions using
a printed checkerboard pattern. By analyzing the relationship between the feature points
on the calibration pattern and their corresponding image points, namely the homography
matrix of each image, the intrinsic and extrinsic parameters of the camera are constrained
effectively. Then the maximum likelihood criterion is used to nonlinear optimize the cal-
culated results, minimize the re-projection error(RPE) in the image space, and estimate
the parameters of the pinhole model extended by some low-order polynomial distortion
terms.

The canonical version of Zhang’s algorithm requires a sparse set of point-like fea-
tures with known relative 3D positions, which can be reliably identified in 2D images.
Commonly used patterns include cell corners in a flat checkerboard pattern printed on a
rigid surface. However, more advanced calibration patterns, such as fractals or complex
star-shaped features, have been explored to reduce biases and enhance the robustness
of feature detection [5, 6]. In some cases, advanced detection algorithms may introduce
complexities in estimating residual localization errors. To mitigate these unknown errors,
sophisticated procedures like minimizing discrepancies between recorded and inversely
rendered pattern images have been employed [7]. However, it is important to note that
despite these improvements, the sparse nature of the datasets is still preserved.

One notable advantage of Zhang’s algorithm is the practicality and convenience it
offers. The checkerboard pattern, which is the calibration pattern mentioned earlier, can
be easily produced and reproduced by anyone. This approach combines high precision
and good robustness, facilitating its widespread adoption worldwide. As a result, it has
significantly accelerated the transition of 3D computer vision from laboratory research to
real-world applications. The experiment in this article applied such a standard calibration
checkerboard patter in Figure 2.1.
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Figure 2.1: Standard Calibration Checkerboard Pattern.

2.2. Integration of Camera and Laser

This article builds upon traditional camera calibration techniques and focuses on the in-
tegration of camera and laser. Recognizing the inherent limitations of a single sensor, the
adoption of multi-sensor fusion has emerged as a means to enhance system robustness.
Leveraging a multi-sensor approach enables the mitigation of intrinsic drawbacks associ-
ated with individual sensors, leading to more reliable and comprehensive data acquisition.
Extrinsic calibration procedures have been extensively explored in the literature, cater-
ing to the calibration of various configurations involving multiple laser units [8], multiple
cameras [9], and different combinations of cameras and lasers. However, the majority of
published calibration approaches have primarily concentrated on the extrinsic calibration
of a single camera and laser unit. This article follows a similar setup, conducting the
experiment based on this prevalent configuration.

A fundamental challenge lies in effectively matching data acquired by the distinct
sensors. This difficulty can be mitigated if the geometric transformations between sensor
frames are known. Extrinsic calibration plays a vital role in this regard, aiming to match
and align the data provided by the camera and laser, thereby enabling the identification of
the geometric transformation between these two sensors. Specifically, by deriving a closed-
form solution for the relative orientation between the two sensors, it becomes feasible to
linearly determine the translation. As a result, the rotation translation matrix between the
two sensors can be obtained. This enables the fusion of data in a coherent 3D coordinate
system.

Notably, the intrinsic parameters of the camera and the laser are assumed to be
known, given that both have undergone prior calibration(Intrinsic Calibration).



8 2| Background and Related works

Intrinsic Calibration of the Camera:

• The intrinsic parameters of the camera encompass the intrinsic matrix K and lens
distortion parameters D. Typically, users can position the camera at various loca-
tions to observe a calibration object and utilize nonlinear optimization techniques
to estimate K and D. This estimation process involves minimizing the re-projection
errors of detected corner points obtained from checkerboard patterns [4]. By opti-
mizing the intrinsic calibration, the camera’s inherent properties can be accurately
characterized.

Intrinsic Calibration of the Laser:

• In contrast to the camera, the intrinsic calibration of the laser presents additional
complexity as it is intricately linked to the laser’s mechanical structure. Conse-
quently, these parameters are meticulously calibrated by the laser manufacturer.
The intrinsic parameters of the laser, which remain constant during practical appli-
cations, play a crucial role in ensuring precise and consistent measurements.

While the laser sensor provides sparse yet precise depth information of the object or
scene, the camera captures its rich 2D appearance and color details. These distinct types
of information exhibit high complementarity, each possessing unique advantages, as well as
inherent limitations. The essence of a multi-sensor fusion system lies in effectively learning
from the strengths and weaknesses of each sensor, enabling a synergistic utilization of their
respective data.

2.2.1. Evolution of Extrinsic Calibration Approaches for Cam-
era and Laser

In 1995, Wasielewski and Strauss [10] proposed a calibration methodology specifically
designed for integrating a monochrome charge-coupled device (CCD) camera and a 2D
lidar sensor. This approach primarily relies on the constraints imposed by the projection
of lines onto the camera image and the intersection points of these lines with the slice
plane of the lidar sensor in the world coordinate system. The authors introduced a specific
calibration pattern, comprising two intersected planes, to facilitate the alignment of data
obtained from the camera and the lidar sensor, enabling the precise identification of the
geometric transformation between the lidar and camera. The estimation of calibration
parameters was achieved through the utilization of nonlinear least squares optimization
techniques. However, it is important to acknowledge that the calibration errors were found
to be influenced by the angle between the lines and the slice plane of the lidar sensor, a
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factor that varied with different sensor positions.

Zhang and Pless [11] proposed a widely popular solution using a checkerboard for
extrinsic calibration of a camera and a 2D laser sensor in 2004, marking a significant mile-
stone in this field. During the multi-sensor extrinsic calibration procedure, the 2D laser
sensor poses unique challenges due to its restricted field of view confined to 2D space,
rendering its calibration more complex compared to the 3D laser sensor. This approach
employs point-to-plane geometric constraints for extrinsic calibration, parameterizing the
calibration pattern based on its unit normal vector and distance to the camera coordinate
frame. For successful practical implementation, it is necessary to position a planar cali-
bration pattern within the field of view of both the camera and the laser. This positioning
ensures that the calibration pattern is visible to both sensors. Additionally, a minimum
of five plane inputs (five planar shots) is required to complete the calibration process
effectively. Initially, this solution minimizes an algebraic error which is the Euclidean
distance between a planar pattern and the scan data is computed. Subsequently, to fur-
ther refine the solution, the method employs a strategy of minimizing the re-projection
errors, taking into account the requirement that the laser points should lie on this plane.
This refinement process is carried out iteratively using advanced non-linear optimization
techniques, allowing for an effective solution to be obtained.

However, this approach has limitations, as it solely focuses on the distance between
laser points and the corresponding plane, and requires a significant number of diverse
observations over a wide range. Simultaneously, a systematic study exploring the minimal
solution to the original problem is lacking [12]. To address the limitations mentioned
above, researchers have explored alternative solutions. The perspective-three-point (P3P)
problem in [13] gives the minimum solution to the issue, Vasconcelos et al., deriving a
minimal solution using only three planar shots. However, this method involves solving
the sophisticated P3P problem in dual 3D space with eight solutions, thereby potentially
encountering degeneration issues. In order to mitigate the degeneration problem, Hu et
al. [14] proposed an alternative approach that relies on a single shot of a trirectangular
trihedron calibration object. By solving simplified P3P and perspective-three-line (P3L)
problems separately for the laser and camera poses, this method enables the derivation
of a unique and accurate solution.

Similar to [11], the Unnikrishnan and Herbert method [15] solves the extrinsic cal-
ibration problem using plane-to-plane geometric constraints. A plane is fitted to the
checkerboard in each coordinate frame and parameterized as a normal vector and a dis-
tance with respect to its origin coordinate frame. Later, the rigid body transformation
between the two reference frames is estimated by minimizing the difference in orientation
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and distance of the planes observed in each of the two coordinate systems.

In accordance with the proposed framework in the early stages, numerous research
studies have been conducted to investigate various calibration methods for determining
the parameters of the laser plane. It is important to highlight that all the aforemen-
tioned extrinsic calibration methods necessitate the usage of a calibration object, thereby
falling under the category of Target-Based Calibration Method within the current extrin-
sic calibration domain. It is evident that the fundamental element of the Target-Based
Calibration Method lies in the design of a specific target with well-defined structural
characteristics, referred to as the calibration target. In practice, this method is typi-
cally implemented in a specified location and relies on one or more specialized calibration
targets. These targets encompass a range of options, such as the planar checkerboard
pattern [11, 13, 16], the V-shaped calibration target [10, 17], the simple circle [18, 19],
or the planar board with circular holes [20], among others. When utilizing these diverse
calibration targets, estimation of the rotation (R) and translation (T) parameters is fa-
cilitated through the application of the perspective-n-point (PnP) algorithm [21], direct
linear transformation (DLT) method [22], and bundle adjustment (BA) algorithm [23].
The presence of the Target-Based Calibration Method naturally implies the existence of
the Targetless Calibration Method and various other calibration approaches. The classi-
fication of various extrinsic calibration methods for camera and laser will be explored in
Section 2.3.

2.3. Categorization of Existing Extrinsic Calibration

Methods of Camera and Laser

Based on the requirement for calibration target, the process of extrinsic calibration be-
tween a laser sensor and a camera can be categorized into two main approaches: Target-
Based Method and Target-Less Method. Moreover, these approaches can be further divided
into two groups depending on the level of human intervention involved: Manual and Auto-
matic methodologies. As indicated above, please consult Figure 2.2 for the categorization
reference.
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Figure 2.2: Categorization of Extrinsic Calibration Methods of Camera and Laser.

2.3.1. Manual Target-based Calibration Method

The Target-Based Method, as discussed in Section 2.2.1, involves the use of one or more
artificial calibration targets. Multiple views of the target are typically required to ex-
tract feature correspondences between the laser and the camera. These correspondences
serve as the basis for deriving geometric constraints, involving 3D points in point clouds
and corresponding pixels in the image, in order to estimate the relative transformation
between the sensors. The extraction of these feature correspondences can be performed
either manually, with human intervention, or automatically, without requiring human
involvement. Early studies, such as those conducted by Zhang and Pless [11] and Unnikr-
ishnan and Herbert [15] employed manual extraction of features, representing the Manual
Target-Based Method.

2.3.2. Automatic Target-based Calibration Method

Contrary to the Manual Target-Based Method, the Automatic Target-Based Calibration
Method eliminates the need for human intervention. In this method, the calibration
target is automatically detected, and correspondences between point clouds and images
are estimated using diverse features related to the calibration target. Within this category,
several calibration methods have been developed. Tulsuk et al. [24] presented a calibration
method similar to Zhang and Pless [11], which utilizes automatic feature correspondence
extraction. In this method, the extrinsic calibration parameters are refined by solving
a non-linear least square problem, where the orthogonal distances between laser points
and the 2D line (the intersection of the laser scan plane and checkerboard plane) were
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minimized. Geiger et al. [16] introduced an automated method that only required a single
shot. Specifically, the method involved identifying multiple checkerboards in different
locations instead of capturing multiple shots of a single checkerboard placed in varying
positions.

However, the automatic calibration method faces challenges in handling low-density
laser information for extrinsic calibration, as it requires relatively dense 3D points in point
clouds to match corresponding pixel data in the image. Additionally, automatic methods
are primarily effective in structured scenes, such as specially designed environments, and
may yield suboptimal results in natural environments. Therefore, the manual calibration
method remains effective in ensuring robust operation across diverse scenarios.

2.3.3. Manual Target-less Calibration Method

As its name implies, the Target-Less Method involves does not rely on any calibration
target to establish correspondences between features, such as edges, lines, and corners,
extracted from both the laser and camera systems. It instead utilizes natural scene fea-
tures to estimate the rigid transformation between the coordinate frames. Subsequently,
the re-projection error associated with these correspondences is minimized. Within this
category, the Manual Target-Less Calibration Method is distinguished by its reliance on
human intervention to localize feature correspondences from the natural scenes. As stated
above, this method eliminates the need for artificial calibration targets in the laser and
camera coordinate frames. In practical implementation, this method typically requires
the utilization of a predetermined set of rules or patterns.

In 2007, Scaramuzza et al. [25] introduced a Manual Target-Less Calibration Method.
The method involves a step-by-step procedure to establish point correspondences be-
tween 3D points in point clouds and pixels in images, forming point-to-point geometric
constraints. Once the point correspondences are identified, the extrinsic parameters, rep-
resenting the rigid transformation between the two reference frames, are estimated using
the widely-used PnP (Perspective from n Points) algorithm. Subsequently, an iterative
least-squares refinement is applied to enhance the accuracy of the calibration results.

2.3.4. Automatic Target-less Calibration Method

The Manual Method face substantial challenges in accurately identifying 3D point features
in laser data, a task that proves to be considerably more complex compared to identifying
their correspondences in images. Additionally, uncertainties in the laser data introduce
measurement errors, compromising the reliability of the calibration procedure. To im-
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prove these limitations, the Automatic Method are necessary to enhance the calibration
procedure.

The Automatic Target-Less Calibration Method aim to enhance the calibration pro-
cedure by either relying on extracted feature correspondences (point-to-point) from ob-
served natural scenes to establish geometric constraints or utilizing motion information
from the sensors to estimate the calibration parameters. This approach eliminates the
need for specified calibration targets and reduces the reliance on manual intervention, thus
streamlining the calibration process. Gomez-Ojeda et al. [26] introduced an Automatic
Target-Less Calibration Method for the alignment of an LRF (Laser Range Finder) and
a camera, utilizing both line-to-plane and point-to-plane geometric constraints. Notably,
their method does not require the presence of any artificial calibration pattern. Instead,
it relies on the detection of orthogonal trihedrons, commonly observed as scene corners
in various human-made environments.

Furthermore, the Automatic Target-Less Calibration Method have found wide appli-
cation in numerous practical scenarios involving autonomous systems. In this context,
Rodriguez-Garavito et al. [27] proposed a extrinsic calibration method that leverages
the simultaneous observation of a flat surface, typically a road, and an obstacle on the
road, using both LRF and stereo camera sensors. The authors employed the M-estimator-
Sample-Consensus (MSAC) algorithm to detect the road plane and resolve the alignment
between the point clouds obtained from both sensors, thereby estimating the necessary
extrinsic calibration parameters.

2.4. Advancements and Emerging Calibration Tech-

nologies Associated with Laser Line

Due to its remarkable resistance to interference, rapid scanning capabilities, and high
precision, the line laser technology has found extensive applications in various industrial
robot fields. The line-laser system emits a laser beam, which forms a fringe projection
on the surface of the object. Subsequently, the camera captures this laser stripe and
extracts its center. Finally, the system converts pixel information into range data using
the transformation matrix between the laser plane and the camera frame.

Calibrating the relationship between the camera and the laser line plane is of paramount
importance for line-laser systems. This calibration process can be broken down into two
key components: camera calibration and laser plane calibration. The camera calibration
technology has been comprehensively introduced in Section 2.1 and is considered rela-
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tively mature in the field. On the other hand, various research approaches have been
explored to determine the parameters of the laser plane. These calibration methods can
be broadly categorized into several types, including:

• Vector Cross Product [28]: This method calculates the normal vector of the light
plane by taking the cross product of two non-parallel laser stripe vectors;

• Solution of Linear Equations [29]: Here, a linear relationship between 3-D points
on the laser plane and their corresponding 2-D pixel points is established using a
transformation matrix;

• Cross Ratio Invariance [30]: Cross ratio invariance properties are leveraged to derive
3-D points on the laser plane, allowing for the conversion of the transformation
matrix into laser plane equation parameters;

• Vanishing Points and Lines [31]: Normal vectors of the laser plane are determined
through knowledge of vanishing points and lines in computer vision;

• Plücker Matrix [32]: This method directly solves the light plane equation using
the Plücker matrix. However, it should be noted that understanding the derivation
of the Plücker matrix method can be challenging, as it requires a background in
computer vision and matrix theory.

These diverse calibration techniques offer options for determining the laser plane pa-
rameters, each with its own advantages and complexities. The choice of method often
depends on the specific requirements of the application and the available expertise. In
this research, the Plücker matrix technique is employed for line laser system calibration.
Notably, this method eliminates the need to obtain standard points on the light plane,
thereby avoiding positioning errors associated with multiple spatial coordinate transfor-
mations. As a result, this technique offers high calibration accuracy.

However, it is important to acknowledge some limitations. While this method effec-
tively reduces image noise caused by electronic equipment, challenges remain in addressing
object occlusion and specular reflections, which can be difficult to eliminate. Additionally,
in complex environments, misoperations may occur, restricting its application in such sce-
narios. Despite these limitations, the current calibration methods for line-laser systems
align well with future imaging requirements.

Since most calibration errors are attributed to image processing, the denoising of
laser images can significantly reduce these errors. Line laser systems find applications in
specialized areas like forging measurement and welding seam tracking, where traditional
image processing techniques may not meet precision requirements. In recent years, neural-
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network-based denoising methods have emerged for various fields, yet their application to
line laser systems remains relatively unexplored. Leveraging existing image denoising al-
gorithms, particularly those based on neural networks and enhanced denoising techniques,
is poised to play a pivotal role in advancing line laser imaging systems.
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To establish data association between the two sensors which are the camera and the
laser, the initial step involves acquiring data in both coordinate systems. This article
focuses on utilizing the Manual Target-Based Calibration Method, which serves as the
fundamental approach for this purpose. A checkerboard is employed as the calibration
target due to its ease of fabrication and the ability to generate multiple correspondences
between the camera and the laser by manipulating the position of the pattern. The camera
efficiently samples the feature points on the checkerboard, while the laser sensor captures
information about the scanning plane. This chapter provides a comprehensive description
of the theoretical approaches and mathematical foundations utilized to accomplish the
extrinsic calibration of a camera and a laser within the scope of this research.

3.1. Camera Model

One of the fundamental objectives of computer vision is to derive the geometric properties
of objects in the 3D space based on the image information captured by a camera. This
process involves reconstructing and identifying objects using the relationship between the
3D geometric position of a point on the surface of a space object and its corresponding
point in the captured image. the correlation between the 3D information and the 2D
information is determined by the geometric model of the camera, as depicted in Figure 3.1,
and these geometric model parameters are camera parameters. The camera is modeled
typically represented using the classical pinhole camera model, which is based on three
elementary transformations.
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Figure 3.1: The Pinhole Camera Model [33].

Let M = [XW,YW,ZW]T represent a point in the 3D world reference frame RW, and
C = [XC,YC,ZC]

T represent a point in the camera coordinate system RC. The point C
can be projected onto a pixel O = [xi, yi]

T in the image frame RI. This change of coordi-
nate constitutes the first transformation, which is characterized by three rotations and
three translations.

Furthermore, we denote M̂ = [MT, 1]T and Ĉ = [CT, 1]T as the 3D point with homo-
geneous coordinate in the world reference frame RW and the camera coordinate system
RC, respectively. The first transformation between the M̂ and the Ĉ is mathematically
represented by a 2×2 matrix, denoted as T:

T =

[
R t
0 1

]
(3.1)

where R represents a 3×3 orthonormal rotation matrix, which can be parameterized
using three rotation angles. t represents a 3×1 translation vector defined by its three
components. And 0 is the zero vector. They can be described as follows:

[
R t
0 1

]
=


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 (3.2)
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The six parameters above comprising three rotation angles and three translations are com-
monly referred to as Extrinsic Matrix/Parameters. In the context of traditional single-
camera calibration, the extrinsic parameters define the positioning of the camera in 3D
space. However, in the case of multi-sensor calibration, such as combining the camera
with the laser, the extrinsic parameters take on a different significance. In this scenario,
the extrinsic parameters define the rigid transformation that establishes the spatial re-
lationship between the various sensors involved. For this experiment, the latter scenario
was adopted, focusing on the calibration of the camera-laser system and the estimation
of its extrinsic parameters, please refer to Figure 3.2 for visual reference.

Figure 3.2: The Extrinsic Calibration of The Camera-Laser System.

Let L = [XL,YL,ZL]
T represent a 3D point in the reference coordinate system corre-

sponding to the laser body frame RL. This point is referred to as a "laser point" which
is one of the points on the intersection line between the checkerboard and the laser in the
context of this research article. As previously discussed, The rigid transformation from
the laser coordinate system to the camera coordinate system can be represented by the
following equation:

C = R · L + t (3.3)

Obviously, the extrinsic calibrations for the two sensors is to determine R and t from the
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feature correspondences captured by the two sensors.

The second transformation corresponds to projecting the point C within the
camera coordinate system RC, to a pixel represented by a 2D point m within the 2D
image frame RI. This transformation entails the use of the camera’s focal length f and a
scale factor s to achieve accurate mapping. It can be expressed as follows:

s ·

xi

yi

1

 =

 f 0 0 0
0 f 0 0
0 0 1 0

 ·


XC

Y C

ZC

1

 (3.4)

The significance of this transformation is elucidated with reference to Figure 3.1, where the
point m is observed as the 2D reflection of 3D point M located in the 3D world reference
frame RW after passing through the camera coordinate system RC and subsequently onto
the image frame RI.

The determination of the homogeneous 2D coordinates x̂s = [xs, ys, 1]T of the projec-
tion point m in the sensor frame RS is the responsibility of the third transformation.
This transformation takes into account various camera characteristics, including:

• Skew Angle: The angle between the horizontal and vertical axes of the sensor. In
this case, it is assumed to be equal to 90°;

• Optical Center Position: The position of the optical center, which serves as the
reference point for the projection;

• Pixel Physical Size: The physical size of the pixel in both the horizontal and vertical
directions. This parameter affects the overall scale and resolution of the projected
image.

These various internal camera characteristics can be integrated into a 3×4 projection
matrix denoted as K :

K =

fx d cx 0
0 fy cy 0
0 0 1 0

 (3.5)

This projection matrix is determined by five intrinsic parameters associated with the
calibrated camera: the horizontal fx and vertical fy focal lengths in pixels, as well as the
position (cx, cy) in pixels of the optical center within the entire image plane. Additionally,
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it includes a skew coefficient d, which is non-zero when the image axes are not perfectly
perpendicular. We refer to this matrix as the camera Intrinsic Matrix. And it contribute
to the accurate representation of the projected point in the sensor frame RS.

The complete projection matrix M, which characterizes a camera, is thus formed
by combining an extrinsic parameter matrix T and an intrinsic parameter matrix K,
formulated as follows:

s · xs =
[
K
]
·
[
T
]
· XW =

[
M

]
· XW (3.6)

From the three transformations mentioned above, it becomes evident that camera
calibration aims to estimate intrinsic parameters and extrinsic parameters, represent those
of its projection matrix M.

3.2. Laser Line Model

A line in 3-space is determined by either joining two points or the intersection of two
planes. Such lines possess four degrees of freedom. An effective approach to understanding
these degrees of freedom is to envision a line as characterized by its intersection with two
mutually perpendicular planes, as depicted in Figure 3.3. As evident in the image, a line
may be specified by its points of intersection with two orthogonal planes. And on each
plane, the point of intersection is defined by two parameters, resulting in a collective total
of four degrees of freedom associated with the line.

Figure 3.3: Defining A Line in Three-Dimensional Space [1].
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Representing the line in 3-space can be challenging because an object with 4 degrees
of freedom would naturally be represented as a homogeneous 5-vector. However, using a
homogeneous 5-vector alongside the 4-vectors representing points and planes in mathe-
matical expressions can be cumbersome. To address this issue, various line representations
have been proposed, each with its own level of mathematical complexity.

3.2.1. Plücker Matrices Representation

This article utilizes the Plücker matrix representation, which offers several ways to define
the line: through the connection of two points, a dual version where the line arises from
the intersection of two planes, and a mapping between these two definitions. It also
facilitates the computation of join and incidence relations, such as determining the point
where a line intersects a plane.

In the Plücker matrix representation, a line is symbolized by a 4×4 skew-symmetric
homogeneous matrix. Specifically, the line that connects two points, A and B, is expressed
by the matrix L, consisting of elements:

lij = AiBj −BiAj (3.7)

Alternatively, in vector notation equivalently can be expressed as:

L = ABT − BAT (3.8)

Let’s break down a few key properties of L:

• The matrix L possesses a rank of 2. Its 2-dimensional null-space is generated by a
group of planes that share the line as their common axis. In mathematical terms,
this can be expressed as LWT = 0, where 0 represents a 4 × 2 null-matrix;

• The representation has the necessary 4 degrees of freedom to define a line. This can
be explained as follows: The skew-symmetric matrix has 6 independent non-zero
elements, but only 5 of their ratios are meaningful. Additionally, due to det L =

0, these elements satisfy a quadratic constraint. Consequently, the effective number
of degrees of freedom is 4;

• The relation 3.8 is the generalization to 4-space of the vector product formula l =

x × y of IP2 which is the projective space. It defines a line l based on two points
x and y, all represented by 3-vectors;
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• During the point transformation X′ = HX, the matrix undergoes a transformation
as well, changing into L′ = HLHT. In essence, this matrix can be classified as a
valency-2 tensor;

• The matrix L is independent of the points A, B used to define it. This independence
stems from the fact that even if a different point C along the same line is employed,
denoted as C = A + µB, the resulting matrix follows this pattern:

L̂ = ACT − CAT = A(AT + µBT )− (A + µB)AT =

ABT − BAT = L
(3.9)

Based on the description above, the X-axis is represented as:

L =


0
0
0
1


[
1 0 0 0

]
−


1
0
0
0


[
0 0 0 1

]
=


0 0 0 -1
0 0 0 0
0 0 0 0
1 0 0 0


Where the points A and B are the origin and ideal point in the X-direction respectively.

3.2.2. Dual Plücker Representation

A dual Plücker representation, denoted as L∗, is obtained for a line formed by the inter-
section of two planes, P and Q:

L∗ = PQT − QPT (3.10)

It possesses analogous properties to L. When subjected to the point transformation
X′ = HX, the matrix L∗ transforms as L∗ = H−TLH−1. The matrix L∗ can be derived
directly from L using a straightforward rewriting rule:

l12 : l13 : l14 : l23 : l42 : l34 = l34
∗ : l42

∗ : l23
∗ : l14

∗ : l13
∗ : l12

∗ (3.11)

The correspondence rule is quite straightforward: the indices of the dual and original
components always encompass all the numbers {1, 2, 3, 4}. Therefore, if the original is
represented by ij, then the dual is formed by those numbers from {1, 2, 3, 4} that are
not in ij. For instance, 12 is transformed to 34.
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Join and incidence properties are very elegantly represented in this notation. The
plane formed by joining the point X and the line L is defined as:

π = XL∗ (3.12)

The condition XL∗ = 0 holds if and only if point X lies on line L. And, the point defined
by the intersection of the line L with the plane π is:

X = πL (3.13)

The condition πL = 0 holds if, and only if, line L lies on plane π. The properties of two
(or more) lines, denoted as L1, L2, and so on, can be derived from the null-space of the
matrix N, defined as N = [L1, L2, ...]. For instance, if these lines lie in the same plane,
the transpose of N, NT, will have a 1-dimensional null-space representing the plane π

formed by these lines.

Based on the previous explanation, let’s consider an example. The intersection of
the X-axis with the plane X = 1 is given by X = πL as:

X =


0 0 0 -1
0 0 0 0
0 0 0 0
1 0 0 0




1
0
0
-1

 =


1
0
0
1


which is the inhomogeneous point (X,Y,Z)T = (1, 0, 0)T.

3.2.3. Plücker Line Coordinates

The Plücker line coordinates comprise the six non-zero elements found within the 4x4
skew-symmetric Plücker matrix [ 3.8 ], which are as follows:

L =
{
l12, l13, l14, l23, l42, l34

}
(3.14)

This forms a homogeneous 6-vector, making it an element within IP5. It can be deduced
from the evaluation of det L = 0 that these coordinates adhere to the equation:

l12l34 + l13l42 + l14l23 = 0 (3.15)
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A 6-vector L represents a line in 3-space only when it meets the condition satisfies above
equation. Geometrically, this constraint signifies that the lines in IP3 define a surface
within IP5, referred to as the Klein quadric, a quadric because the terms of above equation
are quadratic in the Plücker line coordinates.

Let’s consider two lines, L and L̂, formed by joining points A, B, and , , respec-
tively. These two lines intersect if and only if all four points are coplanar. A necessary
and sufficient condition for this is that det[A,B,Â,B̂] = 0. It can be shown that the
determinant expands as:

det[A,B,Â,B̂] = l12 ˆl34 + ˆl12l34 + l13 ˆl42 + l14 ˆl23 + ˆl14l23

= (L|L̂)
(3.16)

Given that the Plücker coordinates are independent of the particular points used to define
them, the bilinear product (L | L̂) is independent of the points used in the derivation and
only depends on the lines L and L̂. This leads to a crucial conclusion: Two lines, L and
L̂, are coplanar (and consequently intersect) if and only if (L | L̂) equals zero.

This conclusion appears in several valuable formula: A 6-vector L accurately repre-
sents a line in IP3 only when (L | L̂) = 0. This is essentially reiterating the Klein quadric
constraint [ 3.15 ] mentioned earlier. And suppose two lines L, L̂ are the intersections of
the planes P, Q and P̂ , Q̂ respectively. Then:

(L|L̂) = det[P,Q, P̂ , Q̂] (3.17)

and again the lines intersect if and only if (L | L̂) = 0. Furthermore, if L represents the
intersection of two planes P and Q, and L̂ represents the join of two points A and B,
then the following relationship holds:

(L|L̂) = (PTA)(QTB)− (QTA)(PTB) (3.18)

It is crucial to establish a common reference frame between the camera and laser line
system in this experiment. This involves transforming points and lines from one system to
another. Plücker matrix representation for lines facilitates this transformation efficiently.
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3.3. Taking Distortion into Account

The line modeling described above is integrated with equation 3.3 of the Section 3.1 to
accomplish the extrinsic calibration among various sensors. This process is elucidated ex-
tensively in the subsequent chapter, Chapter 4. Additionally, imperfections in the optical
system, such as irregularities in the shape and alignment of the camera lenses, can lead
to distortions in the projected image. These distortions cause light rays to deviate from
their expected positions, resulting in a positional discrepancy between multiple images
of light rays and an ideal model(refer to Figure 3.1). To create a comprehensive camera
model, it is necessary to introduce three primary types of distortions that have the most
significant impact, as illustrated in Figure 3.4. These distortions are radial, decentering,
and prismatic distortions, and they arise from issues related to curvature, lens parallelism
and coaxiality of the optical axes.

Figure 3.4: (a) Ideal Image and Effects of (b) Positive Radial, (c) Negative Radial, (d)
Decentering and (e) Prismatic Distortions. [34]

Inaccurate camera calibration frequently results in measurement distortions in both
displacements and deformations. Thus, the question arises: How can we prevent these
camera calibration errors? To guarantee accurate calibration, it may be advisable to
capture images of well-defined rigid body motions that include lens distortion (translation)
of known amplitude. Subsequently, we can validate the displacement measurements by
comparing them with the distorted image data to ensure consistency. Simultaneously,
the effectiveness of distortion reduction is greatly enhanced by employing an algorithm
characterized by strong stability, robustness, and high precision.
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4.1. Real Calibration Dataset Collection

In this experiment, a Basler acA 2040-90um USB 3.0 camera and a red laser source
with a wavelength of 650nm were applied to do the calibration setup work. The Basler
ace camera is a high-speed camera with a 2048 x 2048 pixel resolution and a maximum
frame rate of 90 frames per second. And the camera is equipped with a C-mount lens
mount and is capable of capturing high-quality images with low noise and high sensitivity.

To acquire accurate and meaningful data, it is essential to ensure the calibration tar-
get, specifically the checkerboard image, possesses a high degree of smoothness, uniformity
and regularity. This minimizes the adverse effects of distortion. In this regard, we em-
ployed a computer monitor as the flat support for the checkerboard image, which yielded
favorable outcomes. For a comprehensive overview of the experimental setup described
above, please refer to Figure 3.2.

With the help of these experimental devices, real image data is collected and or-
ganized in a structure. The detail of this structure will be described in-depth in the
subsequent section. Figure 4.2 serves as a intuitive visual reference, demonstrating a
practical utilization of camera extrinsic parameters from that structure which including
the rotation matrix and translation vector.
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(a) The Camera and The Laser Line Sen-
sor

(b) The Checkerboard Image on The Mon-
itor

(c) Acquisition of Real Image Data

Figure 4.1: Experimental Setup.
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Figure 4.2: Visual Representation Based on Extrinsic Parameters.

4.1.1. Re-projection Errors Related to This Experiment

The re-projection errors are a global measure of calibration error and the difference be-
tween the points detected in the image and points reprojected back onto the image using
the parameters that just calculated and stored in a data structure. For a clearer com-
prehension, kindly consult Figure 4.3. In essence, these errors represent the discrepancies
between the observed positions of known calibration points in the image and their corre-
sponding positions in the real world.
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Figure 4.3: Re-projection Error.

The calibration results can be evaluated by visualizing reproduction error. Figure 4.4
shows it related to this experiment. The objective is to identify the best-fitting trans-
formation that minimizes these errors. By comparing the projected 2D points (from 3D
world coordinates) with the actual 2D image points, the calibration algorithm adjusts the
extrinsic parameters until the re-projection errors are minimized. This ensures that the
pose of the camera in the world coordinates is accurately determined.
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Figure 4.4: Visualization of The Re-projection Errors.

4.2. Software Configuration

The objective of this experiment is to determine the plane of the laser line relative to
the position/orientation of the camera, essentially performing extrinsic calibration for
the camera and the laser. To achieve this, we intersect the laser line with a series of
checkerboards of known dimensions, thus achieving the dual purpose of calibrating the
camera optics and determining the plane of the laser line. In an ideal scenario devoid of
noise and acquisition errors, only two images with the checkerboards in different positions
would suffice to solve the problem (with geometric precision: "provided that the two
planes of the checkerboards and the laser line do not belong to the same plane bundle").
However, in a real-world context, various sources of error and noise exist in the acquisition
process that need to be minimized.
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Figure 4.5: Three-Dimensional Simulation of The Experiment Setup.

4.2.1. Commence with Camera Calibration

In the folder "cameraIntrinsic", there is a series of images of the checkerboard (without
the laser line) captured in different positions by the experimental setup in Section 4.1.
Then Using the MATLAB Computer Vision Toolbox app for camera intrinsic parameter
calibration, to obtain and store the calibration parameters in a structure called camera-
Params. You can directly load these parameters from the "intrinsic.mat" file located in
the same folder. This structure contains the parameters that describe the camera acquisi-
tion system, including the radial distortion, the focal length, the skew coefficient and the
optical center, also known as the principal point (which may not always coincide precisely
with the image center). It is worth mentioning that all measurements are in pixels due
to the absence of "pixel size" information, which represents the physical dimensions of
each individual pixel on the camera sensor. Consequently, the parameters such as focal
length and principal point are all quantified in pixels. In reality, as detailed in Section 3.1,
the intrinsic parameters (fx, fy), which represent the focal length in pixels, and (cx, cy),
denoting the optical center/principal point in pixels. They compose the intrinsic matrix
K [3.5], are both specified in pixels. And if F is defined as the focal length in world units,
which is typically expressed in millimeters, and the size of the pixel in world units is
described as (px, py). Then the relationship between these parameters can be formulated
as follows: fx = F/px , fy = F/py.

On the other hand, the translation vectors and rotation matrices, are responsible for
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reprojecting each checkerboard accurately into the reference system of the camera for every
frame, considering the structure of the checkerboard(in this case, the square dimensions
are provided in millimeters). To illustrate, if we take the checkerboard defined in the
WorldPoints matrix within cameraParams, the coordinates of the first three corners
(linked to the first three squares of the checkerboard) are as follows:

p1 =

x1

y1

z1

 =

0
0
0

 , p2 =

 0
60
0

 , p3 =

 0
120
0

 (4.1)

To obtain the spatial coordinates of these points after the rotation-translation, which
brings the checkerboards from having their origin coinciding with the reference system
origin of the camera to the coordinates they had when they were acquired, it is necessary
to apply the transformation using the rotation matrices and the indicated translation
vectors. This operation is performed in 3D space:

Pn = R · pn + t (4.2)

In the meanwhile, you can refer to Figure 4.6,

Figure 4.6: The reference system is transferred using extrinsic parameters.

Subsequently, if you intended to obtain the (homogeneous) coordinates of the corner
points on the image plane, with the exclusion of re-projection errors, you would execute
a multiplication of the 3D points of the camera coordinates which is obtained by the
above equation in the by the intrinsic matrix K. To view the entire flowchart illustrating
the transformation of coordinate systems via intrinsic and extrinsic parameters, please
consult Figure 4.7.
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Figure 4.7: The Transformation Flow Chart.

In our project, we need to know the 3D coordinates Pn of the checkerboard corners
in the camera coordinate system RC. This information will enable us to determine the
positions of the checkerboard planes in space within the reference system of the camera
and ultimately facilitating the determine of their spatial intersection with the laser line
plane.

4.2.2. Determining The Position of The Checkerboards in Space

"Cut" by The Laser Line

We are now calculating the spatial position of the checkerboards that have been intersected
by the laser line. While we could certainly use the same checkerboards that were employed
during the previous phase which is in Section 4.2.1, but in this case, we use a reduced
number of boards with the blue laser line positioned above them. These checkerboards
can be found in the "calibrationCameraLaserImages" folder.

The process described above is accomplished through Function 4.1, which is respon-
sible for deriving the rotation matrix and translation vector for these checkerboards based
on the checkerboard image, the intrinsic parameters of the camera, and the dimensions
of the squares in millimeters. The returned parameter, outputTarget, serves the sole
purpose of verification, as it applies a marker to each corner of the checkerboard. This
marker aids in validating the accuracy of the estimated rotation matrix and translation
vector.

1 function [rotationMatrix , translationVector , outputTarget , points3D ,
HorizPlane] = findCheckerboard3DPosition(target , cameraParams ,
squareSizeInMillimeters)

Listing 4.1: Function findCheckerboard3DPosition
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4.2.3. Determining The Position of The Intersection Line Be-

tween The Laser Line and The Checkerboard Plane

Firstly, the calculation of the blue laser line in the images (checkerboard planes) is per-
formed using these two functions,

1 function [Y,X,im] = bluePointExtraction(inputPar)
2 function param = lineExtraction(inputPar)

Listing 4.2: Function bluePointExtraction & lineExtraction

where 1 takes as input an image (or the filename of an image) and identifies the blue
pixels, returning their coordinates in arrays of X and Y. And 2 also receives an image,
or the filename of an image, as input and calculates the parameters a, b, c of the line
equation ax + by + c = 0 in the image plane. It performing by calling the function
bluePointExtraction to extract the three line coefficients from blue pixels in an image,
coefficients are in the pixel format.

Afterward, we can determine the spatial position of the intersection line between the
checkerboard plane and the laser line. For this purpose, it is necessary to define a third
plane, that pass through the center of the camera (global reference system) and the spatial
intersection line between the laser line and the checkerboard plane. This plane essentially
represents the spatial re-projection (inverse projection) in three-dimensional space of the
line segment that, within the image plane, corresponds to the projection of the intersection
line between the checkerboard and the laser line. For improved comprehension, please refer
to Figure 4.8.
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Figure 4.8: 3D Spatial Representation of The Experimental Setup Model and The Inter-
relation Between Various Planes.

The formulation of the intersection line, which serves as the axis of the bundle formed
by the three planes (checkerboard, laser line, and re-projection of line segment), is accom-
plished using Plücker notation with the below function,

1 function [L, H, P] = pluckerLineFromCheckerboarImagePlusLaser(
checkerboardImage , checherboardImagePlusLaser , cameraParams ,
squareSizeInMillimeters , ReferenceRotation ,ReferenceTranslation)

Listing 4.3: Function pluckerLineFromCheckerboarImagePlusLaser

Where the 3x4 projection matrix of the camera was constructed in, denoted as P cam. It
assuming the camera in the origin of the reference system with optical axis along the z
axis. And given a 3D point in homogeneous coordinates, it returns its 2D homogeneous
coordinates on the image plane. For the another projection matrix P which is as the
output parameter in this function, it is obtained by incorporating the intrinsic matrix
of the camera along with the rotation matrix and translation vector(rotationMatrix,
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translationVector), which are determined based on the assumption that the checker-
board in the current frame serves as the general reference system. It involves using the
Function 4.1. This is a necessary step because in the project a series of measurements
had to be obtained with respect to a specific reference system, as shown in Figure 4.9.
Therefore, all measurements are transformed into this reference system, which is deter-
mined by the reference system of the first checkerboard coplanar with the specific reference
system. Another output parameter, H, is the 4x4 homography matrix that projects 3D
points from the camera reference frame into the world reference frame. Its component
elements, rotationMatrix, and translationVector, are obtained from the current ac-
tual checkerboard image. In contrast, ReferenceRotation and ReferenceTranslation

represent the rotation and translation of the camera with respect to a global reference sys-
tem, as represented by the cartesian axis on the first checkerboard image. These two input
parameters are used to construct the 3D homography matrix, Href, which is also a 4x4
matrix responsible for rigidly transforming points in 3D space from camera coordinates
O to coordinates in the reference plane O’.
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Figure 4.9: 3D Spatial Representation and The Reference Plane.

The first if conditional statement in Function 4.3 serves to confirm the two conditions
related to the utilization of distinct checkerboards as previously discussed:

• In the first condition, a reference frame was defined using .e.g the first image of
the checkerboard. In order to obtain the 3D Plücker line relative to that reference
system. This involves a transformation process. Given the equation Plane×X = 0,
which can be expressed as Plane×H -1×H×X = 0, we can see that for transformed
points H×X, the plane transforms accordingly: newPlane = Plane×inv(H), which
can be rewritten as newPlane′ = inv(H)′ × Plane′;

• In the second condition, the current actual plane assumes the role of the reference
since the reference frame has not been defined. This condition happens during the
initial steps of a calibration process. And in this condition, any 3D line being worked
with is associated with or linked to this actual plane. Essentially, it is as if this plane
serves as the reference for that line. This suggests that, within the reference frame
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defined by this plane, the z-coordinates of points on the 3D line will consistently
have a value of zero.

As depicted in Figure 4.9, the plane passing through a line in the image (placed in
the 3D framework) and the optical center of the camera, that is the re-projection plane,
then the re-projection of a line from an image into the space defining this plane. The
re-projection plane is determined by straightforwardly pre-multiplying the equation of the
laser line in the image plane by the transpose of the projection matrix which is the P:
line×x = 0 → line× (P ×X) = 0 → (line×P )×X = 0 → X ′×P ′× line′ = 0. And the
re-projection is performed with the assumption that the coordinate system is centered at
the camera’s center, and in the Function 4.3, it is expressed as follows:

reprojectedPlaneFromLaserLine = Pcam’ * line;

Where the line is obtained from Function 4.2 (lineExtraction). Additionally, in the first
if conditional statement, it is worth noting that both conditions invoke the following
Function 4.4,

1 function [L_matrix , L, L_matrix_dual] = PluckerLineFromTwoPlanes(A, B)

Listing 4.4: Function PluckerLineFromTwoPlanes

The function takes two input parameters, A and B, which are represented as two 4-
element column vectors containing the plane parameters a, b, c, and d from the equation
ax + by + cz + d = 0. According to the principles outlined in Section 3.2, the function
returns the 4x4 matrix L_matrix, its dual L_matrix_dual, and a 6-element column vector
L(l12 : l13 : l14 : l23 : l42 : l34), which represents the line. However, it is essential to note
that all transpositions are consistently applied to align with the notation in Section 3.2,
which is inverted compared to the convention of MATLAB convention. Therefore, in
practical MATLAB applications, the line is represented as:

L = [L_matrix(1,4) L_matrix(4,2) L_matrix(3,4) L_matrix(2,3)...

L_matrix(1,3) L_matrix(1,2)];

In the case of calling Function 4.4 for the first checkerboard, the origin of that checker-
board becomes the origin of the entire reference system. The plane of that checkerboard
becomes the plane:

checkerboardPlaneEquation = [0 0 1 0]’;

Represents the checkerboard plane located at the origin. The 3D homography matrix then
becomes the one that rigidly transforms everything from the camera reference system to
the "first checkerboard" reference system. So:
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H = [rotationMatrix’ translationVector’; [0 0 0 1]];

When the parameter ReferenceRotation is empty, it signifies that the reference
frame is undefined. This typically occurs during the initial frame of the calibration process
when the first checkerboard plane intersects with the laser plane. During this phase,
the re-projection plane is represented by "H’*reprojectedPlaneFromLaserLine" and
"checkerboardPlaneEquation" from which:

[ ~, L, ~] = PluckerLineFromTwoPlanes(H’ * reprojectedPlaneFromLaserLine,

checkerboardPlaneEquation);

In Function 4.4, and it constitutes the second condition within the first "if " conditional
statement. For the subsequent acquisitions where the ReferenceRotation matrix and
ReferenceTranslation vector related to the reference frame are already defined, it is
possible to define the transformation:

Href = [ReferenceRotation ReferenceTranslation; [0 0 0 1]];

And consequently refer directly to the new reference system:

[ ~, L,~] = PluckerLineFromTwoPlanes(Href’ * reprojectedPlaneFromLaserLine,

Href’ * (H’ \ checkerboardPlaneEquation));

Where the second argument specifies that for each subsequent checkerboard plane (which
is always defined as [0 0 1 0]), the transformation first takes it into the the reference
plane of the camera and then into the reference system of the first checkerboard.

4.2.4. Determining The Laser Plane

The script "extractionLaserPlane.m" loads a series of images from the "calibrationSys-
tem" folder and, for each image, determines the line [L_matrix, L, L_matrix_dual] ac-
cording to the Plücker notation in the three formulations mentioned above, thereby creat-
ing three tensors [L(:,cursor), H(:,:,cursor), P(:,:,cursor)] with the following
Function 4.3 call:

[ L(:,cursor), H(:,:,cursor), P(:,:,cursor)]=

pluckerLineFromCheckerboarImagePlusLaser(image, image, cameraParams, 60,

H(1:3,1:3,1), H(1:3,4,1) );

Then, the Function 4.5 operates directly on the first tensor L(:,cursor) based on
the L_matrix.



4| Experimental Setup and Evaluation 41

1 function [laserPlane] = laserPlaneFromMultiplePluckerLines(LBlock)

Listing 4.5: Function laserPlaneFromMultiplePluckerLines

Where in LBlock every row represents a 3D line in the Plücker notation. And this function
is based on the Function 4.6, which extracts the footpoint of the distance of the line from
the origin based on the Plücker notation theroy in Section 3.2, and the direction of the
line in space.

1 function [point , direction] = getPointDirectionFromPluckerLine(
lineExtracted)

Listing 4.6: Function getPointDirectionFromPluckerLine

The plane of the laser is then determined, in terms of direction cosines, as the eigen-
vector associated with the smallest eigenvalue of the correlation matrix of the directions
determined in the previous step. Moreover, the final parameter, associated with the
distance of the plane from the origin, is obtained by projecting the point on the line
determined earlier onto the normal vector of the plane. Therefore, the parameters of the
plane become:

laserPlane = [PlaneNormal; -averageDistance];

4.2.5. Reconstruction of 3D Points

The process of determining the 3D coordinates of a point within the image (associated
with the laser line) is accomplished through the utilization of Function 4.7,

1 function [Point] = get3DPointThroughLaserPlaneWithReferenceSystem(
point2D , cameraParams , LaserPlane , referenceRotation ,
referenceTranslation , offset)

Listing 4.7: Function get3DPointThroughLaserPlaneWithReferenceSystem

Where the parameter offset is related to the movement of the conveyor belt between dif-
ferent frames and is used to reconstruct the profile of objects in motion on the belt. It can
be adopted in case of a displacement of the global reference system is needed. Set the point
in the 3D camera frame. This is analogous to assuming that the camera is located at the
origin, so the reference rotation and translation become null: P = K[eye(3) ones(3,1)],
then x = P * X -> P = inv(K) * x. In Function 4.7, it is depicted as:

scaledPoint3D = (cameraParams.IntrinsicMatrix’) \ [point2D 1]’;

And in Function 4.7, the input parameter LaserPlane is given in the global ref-
erence system, so, in order to identify it in the camera coordinate system, it must be
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divided by Href’ = [referenceRotation referenceTranslation; [0 0 0 1]]’. It is
represented as shown below:

LaserPlaneFromCamera = Href’ \ LaserPlane;

The formula a*lambda*x+b*lambda*y+c*lambda*z+d=0 -> lamda=-d/(ax+by+cz) is then
employed to determine the 3D intersection point, and its evaluation is carried out in the
global reference system:

intersectionPoint = scaledPoint3D * (-LaserPlaneFromCamera(4) /

(scaledPoint3D’ * LaserPlaneFromCamera(1:3)));

Point = Href \ [intersectionPoint; 1];

4.3. Simulation and Experimental Results

The constituent elements described above have been seamlessly integrated into the script
"FullReconstruction.m" which processes a sequence of images depicting a simulated log
which displacement between frames and employs the Function 4.7 to reconstruct its profile.

Now it is essential to choose a three-dimensional polygonal complex object as a target
for algorithm validation. In this context, the trunk is selected as the target object. And
the modeling model of this chosen target is depicted in Figure 4.10. The trunk model
represents a real-world object, using a realistic object ensures that the algorithm is tested
in conditions similar to its intended application. Moreover, the trunk typically exhibit
complex geometric shapes with irregular surfaces. Calibrating the camera and laser line
with such a complex object challenges the algorithm to handle diverse and non-uniform
surfaces, making the calibration more robust.

Following that, in order to perform 3D point reconstruction of the trunk model, the
laser line is "cut" on the trunk model. It serves as part of the input for Function 4.7 and
offers essential data support for the execution of the script "FullReconstruction.m". In this
simulation, the laser line "cut" 40 times at various locations on the same trunk model.
These 40 images can be found in the folder "reconstructionTrunk", with Figure 4.11
displaying four of them.

The ultimate result is shown in Figure 4.12. It can be seen from the figure that
the measured data points marked with "+" in various colors collectively form the three-
dimensional reconstruction of the trunk model. It’s important to highlight that in this
simulation, all measurement values must be acquired in a specific reference system (the
conveyor belt) Consequently, all measurement values are transformed into this reference
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(a) Modeling Procedure

(b) Modeling Outcomes

Figure 4.10: Modeling of The Trunk.
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Figure 4.11: Modeling of The Trunk and The Laser Line.

frame, which aligns with the initial checkerboard reference frame coplanar with the con-
veyor belt.
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Figure 4.12: 3D Reconstruction Simulation of The Trunk.
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5| Conclusions and Future

Developments

In this thesis, a novel approach for Camera-Laser line calibration has been presented,
which is a fundamental task in computer vision with a wide range of applications, from
3D reconstruction to robotics. The approach builds upon the principles of Plücker line
parameter extraction, laser plane determination, and 3D point reconstruction, offering a
robust and versatile solution.

While the current framework presents a valuable contribution forward in the field
of Camera-Laser line calibration, there are numerous exciting prospects for future re-
search and development that can further augment and extend this work: Integrating this
framework with specialized hardware, such as 3D cameras and LiDAR systems, can en-
hance the accuracy and versatility of the approach, making it suitable for a wider range
of scenarios; The integration of machine learning techniques for object recognition, line
detection and scene understanding can further augment the precision, speed and adapt-
ability of the calibration and the 3D reconstruction process; Optimizing the framework for
real-time processing is essential for applications demanding rapid decision-making, such
as autonomous navigation and surveillance systems; Designing an intuitive user interface
for this tool can democratize its usage, enabling non-experts to leverage its capabilities
effectively; Investigating how this approach can be applied in different domains, such as
medical imaging or archaeological surveys, could reveal new opportunities for innovation.
In summary, I am eager to witness how this work will inspire further research and inno-
vation, ultimately leading to groundbreaking solutions with far-reaching applications in
the world of computer vision and beyond.





49

Bibliography

[1] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge
university press, 2003.

[2] R. Y. Tsai, “An efficient and accurate camera calibration technique for 3d machine
vision,” in Computer Vision and Pattern Recognition, 1986.

[3] R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3d machine
vision metrology using off-the-shelf tv cameras and lenses,” IEEE J. Robotics Autom.,
vol. 3, pp. 323–344, 1987.

[4] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

[5] H. Schilling, M. Diebold, M. Gutsche, and B. Jähne, “On the design of a fractal cali-
bration pattern for improved camera calibration,” tm - Technisches Messen, vol. 84,
no. 7-8, pp. 440–451, 2017.

[6] T. Schöps, V. Larsson, M. Pollefeys, and T. Sattler, “Why having 10,000 parameters
in your camera model is better than twelve,” in 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2532–2541, 2020.

[7] M. R. Hannemose, J. Wilm, and J. R. Frisvad, “Superaccurate camera calibration
via inverse rendering,” in Optical Metrology, 2019.

[8] C. Gao and J. R. Spletzer, “On-line calibration of multiple lidars on a mobile vehi-
cle platform,” in 2010 IEEE International Conference on Robotics and Automation,
pp. 279–284, 2010.

[9] T. Svoboda, D. Martinec, and T. Pajdla, “A convenient multicamera self-calibration
for virtual environments,” Presence: Teleoperators & Virtual Environments, vol. 14,
pp. 407–422, 2005.

[10] S. Wasielewski and O. Strauss, “Calibration of a multi-sensor system laser rangefind-
er/camera,” in Proceedings of the Intelligent Vehicles ’95. Symposium, pp. 472–477,
1995.



50 | Bibliography

[11] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser range finder (im-
proves camera calibration),” in 2004 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, pp. 2301–2306
vol.3, 2004.

[12] L. Zhou, “A new minimal solution for the extrinsic calibration of a 2d lidar and a
camera using three plane-line correspondences,” IEEE Sensors Journal, vol. 14, no. 2,
pp. 442–454, 2014.

[13] F. Vasconcelos, J. P. Barreto, and U. Nunes, “A minimal solution for the extrin-
sic calibration of a camera and a laser-rangefinder,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2097–2107, 2012.

[14] Z. Hu, Y. Li, N. Li, and B. Zhao, “Extrinsic calibration of 2-d laser rangefinder
and camera from single shot based on minimal solution,” IEEE Transactions on
Instrumentation and Measurement, vol. 65, no. 4, pp. 915–929, 2016.

[15] R. Unnikrishnan and M. Hebert, “Fast extrinsic calibration of a laser rangefinder to
a camera,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-05-09, 2005.

[16] A. Geiger, F. Moosmann, O. Car, and B. Schuster, “Automatic camera and range
sensor calibration using a single shot,” in 2012 IEEE International Conference on
Robotics and Automation, pp. 3936–3943, 2012.

[17] S. Sim, J. Sock, and K. H. Kwak, “Indirect correspondence-based robust extrinsic
calibration of lidar and camera,” Sensors (Basel, Switzerland), vol. 16, 2016.

[18] C. Guindel, J. Beltrán, D. Martín, and F. T. García, “Automatic extrinsic calibration
for lidar-stereo vehicle sensor setups,” 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), pp. 1–6, 2017.

[19] S. A. Rodriguez F., V. Fremont, and P. Bonnifait, “Extrinsic calibration between a
multi-layer lidar and a camera,” in 2008 IEEE International Conference on Multi-
sensor Fusion and Integration for Intelligent Systems, pp. 214–219, 2008.

[20] H. Alismail, L. D. Baker, and B. Browning, “Automatic calibration of a range sensor
and camera system,” 2012 Second International Conference on 3D Imaging, Model-
ing, Processing, Visualization & Transmission, pp. 286–292, 2012.

[21] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n) solution to the
pnp problem,” International Journal of Computer Vision, vol. 81, pp. 155–166, 2009.

[22] Y. Abdel-Aziz and H. Karara, “Direct linear transformation into object space co-



| Bibliography 51

ordinates in close-range photogrammetry,” in In Proceedings of the Symposium on
Close-Range Photogrammetry, pp. 1–18, 1971.

[23] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjust-
ment — a modern synthesis,” in Vision Algorithms: Theory and Practice (B. Triggs,
A. Zisserman, and R. Szeliski, eds.), (Berlin, Heidelberg), pp. 298–372, Springer
Berlin Heidelberg, 2000.

[24] P. Tulsuk, P. Srestasathiern, M. Ruchanurucks, T. Phatrapornnant, and H. Naga-
hashi, “A novel method for extrinsic parameters estimation between a single-line
scan lidar and a camera,” in 2014 IEEE Intelligent Vehicles Symposium Proceedings,
pp. 781–786, 2014.

[25] D. Scaramuzza, A. Harati, and R. Y. Siegwart, “Extrinsic self calibration of a cam-
era and a 3d laser range finder from natural scenes,” 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4164–4169, 2007.

[26] R. Gomez-Ojeda, J. Briales, E. Fernandez-Moral, and J. Gonzalez-Jimenez, “Extrin-
sic calibration of a 2d laser-rangefinder and a camera based on scene corners,” in 2015
IEEE International Conference on Robotics and Automation (ICRA), pp. 3611–3616,
2015.

[27] C. Rodriguez Garavito, A. Ponz, F. Garcia, D. Martín Gómez, A. de la Escalera,
and J. Armingol, “Automatic laser and camera extrinsic calibration for data fusion
using road plane,” in FUSION 2014 - 17th International Conference on Information
Fusion, 07 2014.

[28] J. Fan, F. Jing, Z. Fang, and Z. Liang, “A simple calibration method of structured
light plane parameters for welding robots,” in 2016 35th Chinese Control Conference
(CCC), pp. 6127–6132, 2016.

[29] C. Che and J. Ni, “A ball-target-based extrinsic calibration technique for high-
accuracy 3-d metrology using off-the-shelf laser-stripe sensors,” Precision Engineer-
ing, vol. 24, no. 3, pp. 210–219, 2000.

[30] Z. Xie, X. Wang, and S. Chi, “Simultaneous calibration of the intrinsic and extrinsic
parameters of structured-light sensors,” Optics and Lasers in Engineering, vol. 58,
pp. 9–18, 2014.

[31] Z. Wei, M. Xie, and G. Zhang, “Calibration method for line structured light vision
sensor based on vanish points and lines,” in 2010 20th International Conference on
Pattern Recognition, pp. 794–797, 2010.



52 5| BIBLIOGRAPHY

[32] G. Xu, A. Zheng, X. Li, and J. Su, “Optimization solution of laser plane generated
from maximum likelihood estimation of projection plane,” Sensors and Materials,
vol. 30, no. 5, p. 1155 – 1164, 2018. Cited by: 3; All Open Access, Gold Open
Access.

[33] M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image correlation for shape, motion
and deformation measurements : basic concepts, theory and applications. Springer,
2009.

[34] G. Besnard, Caractérisation et quantification de surfaces par stéréocorrélation pour
des essais mécaniques du quasi statique à la dynamique ultra-rapide. Theses, École
normale supérieure de Cachan - ENS Cachan, Mar. 2010.



53

List of Figures

2.1 Standard Calibration Checkerboard Pattern. . . . . . . . . . . . . . . . . . 7
2.2 Categorization of Extrinsic Calibration Methods of Camera and Laser. . . 11

3.1 The Pinhole Camera Model [33]. . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 The Extrinsic Calibration of The Camera-Laser System. . . . . . . . . . . 19
3.3 Defining A Line in Three-Dimensional Space [1]. . . . . . . . . . . . . . . . 21
3.4 (a) Ideal Image and Effects of (b) Positive Radial, (c) Negative Radial, (d)

Decentering and (e) Prismatic Distortions. [34] . . . . . . . . . . . . . . . . 26

4.1 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Visual Representation Based on Extrinsic Parameters. . . . . . . . . . . . . 29
4.3 Re-projection Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Visualization of The Re-projection Errors. . . . . . . . . . . . . . . . . . . 31
4.5 Three-Dimensional Simulation of The Experiment Setup. . . . . . . . . . . 32
4.6 The reference system is transferred using extrinsic parameters. . . . . . . . 33
4.7 The Transformation Flow Chart. . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 3D Spatial Representation of The Experimental Setup Model and The In-

terrelation Between Various Planes. . . . . . . . . . . . . . . . . . . . . . . 36
4.9 3D Spatial Representation and The Reference Plane. . . . . . . . . . . . . 38
4.10 Modeling of The Trunk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.11 Modeling of The Trunk and The Laser Line. . . . . . . . . . . . . . . . . . 44
4.12 3D Reconstruction Simulation of The Trunk. . . . . . . . . . . . . . . . . . 45





55

List of Tables





57

List of Symbols




	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Overview and Motivation
	Organization of The Thesis

	Background and Related works
	Traditional Camera Calibration as a Precursor
	Tsai Camera Calibration Method
	Zhang Zhengyou Calibration Method

	Integration of Camera and Laser
	Evolution of Extrinsic Calibration Approaches for Camera and Laser

	Categorization of Existing Extrinsic Calibration Methods of Camera and Laser
	Manual Target-based Calibration Method
	Automatic Target-based Calibration Method
	Manual Target-less Calibration Method
	Automatic Target-less Calibration Method

	Advancements and Emerging Calibration Technologies Associated with Laser Line

	Methodology
	Camera Model
	Laser Line Model
	Plücker Matrices Representation
	Dual Plücker Representation
	Plücker Line Coordinates

	Taking Distortion into Account

	Experimental Setup and Evaluation
	Real Calibration Dataset Collection
	Re-projection Errors Related to This Experiment

	Software Configuration
	Commence with Camera Calibration
	Determining The Position of The Checkerboards in Space "Cut" by The Laser Line
	Determining The Position of The Intersection Line Between The Laser Line and The Checkerboard Plane
	Determining The Laser Plane
	Reconstruction of 3D Points

	Simulation and Experimental Results

	Conclusions and Future Developments
	Bibliography
	List of Figures
	List of Tables
	List of Symbols

