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Abstract

Digital twin technologies aim to create a digital representation of a physical phenomena.
These techniques has become very popular in recent years and are nowadays applied in
several industrial contests. This work shows how dynamic Bayesian networks (DBNs)
can be used to represent the interactions between the Digital and the Physical state and
how they can be used to carry out control and prediction analysis. In particular, I will
explore how dynamic Bayesian networks can be used to perform structural health moni-
toring (SHM), and how these information can be used to support decisions regarding its
maintenance and repair. I will also examine the computational capabilities and accuracy
of dynamic Bayesian networks, and propose a method to improve these capabilities by
exploiting a reduced order method (ROM) to build the input dataset of the DBN when
dealing with problems related with structural mechanic. Considering different case stud-
ies, this work provides a comprehensive overview of the power and versatility of dynamic
Bayesian network to enable digital twins for SHM purposes.

Keywords: Digital Twin, Dynamic Bayesian Network, Inverse problem, Structural health
monitoring, Reduced Order Models





Abstract in lingua italiana

Le tecnologie dei gemelli digitali mirano a creare una rappresentazione digitale di un
fenomeno fisico. Queste tecniche sono diventate molto popolari negli ultimi anni e sono
oggi applicate in diversi contesti industriali. Questo lavoro mostra come le reti bayesiane
dinamiche (DBN) possano essere utilizzate per rappresentare le interazioni tra lo stato
digitale e quello fisico e con lo scopo ultimo di effettuare analisi di controllo e previsione.
In particolare, la tesi mira ad esplorare le reti bayesiane dinamiche per il monitoraggio
della salute strutturale (SHM) e come queste informazioni possano essere sfruttate per
supportare le decisioni relative alla manutenzione e alla riparazione di una struttura.
Verranno inoltre esaminate le capacità computazionali e l’accuratezza delle reti bayesiane
dinamiche e proporrò un metodo per migliorare queste capacità sfruttando un metodo di
ordine ridotto (ROM) per costruire il set di dati di input del DBN quando si affrontano
problemi legati alla meccanica strutturale. Considerando diversi casi di studio, questo
lavoro fornisce una panoramica della potenza e della versatilità delle reti bayesiane di-
namiche per la creazione di gemelli digitali per scopi di SHM.

Parole chiave: Gemello digitale, Rete Bayesiana dinamica, Problema inverso, Monitor-
aggio della salute strutturale, Modelli di ordine ridotto
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1

Introduction

Digital twin methods aim to built a virtual representation of a physical object or process
capable of collecting information from the real environment to represent, validate, and
simulate the present and future behavior of the corresponding physical asset. For the pur-
pose of closely characterize the operations of the original physical asset, the digital twin
must be kept synchronized through the assimilation of observational data, and update
of the parameters involved in the digital state, which characterize the variability in the
physical asset. The updated digital state thus enables to predict the expected evolution
of digital state and the associated uncertainty, as well as to inform an optimal planning
of control inputs feeding back to the physical system. Digital twins are nowadays be-
ing used in several industries such as as manufacturing, healthcare, and transportation,
[2, 5, 11, 21], gaining more and more importance and attention.

In this thesis, I focus on the use of Dynamic Bayesian networks (DBNs), that are prob-
abilistic graphical models, as a mathematical foundation for enabling predictive Digital
Twins at scale. Bayesian networks provide a framework for modeling the relationship
between the physical asset, the digital twin and all the variables which describe their
interactions. This approach offers several advantages over traditional digital twins such
as the possibility of incorporating the uncertainty on the estimate of the parameters along
all the duration of the considered simulation.

Among the others applications, digital twin have been proposed as a feasible solution
to monitor the health state of a structure. Structural health monitoring (SHM) refers
to strategies aimed at detecting changes and damages in structures from sensed data,
thus allowing to promptly implement maintenance actions before the occurrence of major
failures. As we can see in [1, 7, 8, 24, 27] in recent years digital twins have started to play
an important role in the field of structural health monitoring. In this thesis, I propose
the use of dynamic Bayesian network framework introduced in [14] to monitor the health
state of a concrete beam and of a concrete frame in different situations.
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I also focus on reduced order models (ROMs), which are mathematical models that aim
to reduce the computational cost of a high-fidelity full order model (FOM) [10, 15, 16]. In
particular reduced order models will be employed to compute faster but accurate input
datasets of the Dynamic Bayesian networks. When dealing with structural problems the
physical state can be modeled in terms of partial differential equations. Figure 1 shows
the interactions among these techniques and how the simulation process considered in
this thesis actually works.

Figure 1: A schematic representation of the main methodologies involved in the considered
digital twin framework.

The observational data collected from a sensing system deployed on the structure are
assumed to be simulated using a high-fidelity full-order model (FOM) of the monitored
structure. On the other hand, the dataset provided to the DBN to perform the digital
state updating is instead generated by exploiting a faster reduced-order model (ROM).
In the thesis I will explain how these relationships and processes works. The thesis is
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organized as follows:

• Chapter 1 introduces and describes dynamic Bayesian networks and reduced order
models, and their theoretical background.

• Chapter 2 describes the first test case I considered where dynamic Bayesian networks
are used to describe the evolution of the health state of a concrete beam that can
crack.

• Chapter 3 describes the second test case I considered where ROMs have been em-
ployed to create the input dataset of the dynamic Bayesian network.

• Chapter 4 describes the third test case I considered where dynamic Bayesian net-
works have been employed in a time-dependent framework to make structural health
monitoring of a four-stories frame.

• Chapter 5 finally reports the main conclusions of this work and propose some ideas
for possible future developments.
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1| Digital twinning

In this chapter I will introduce the concept of digital twin by showing the relevance of
these methods in engineering (section 1.1). Then I will analyze the methods introduced
in [14] based on dynamic Bayesian networks (section 1.2) and introduce reduced order
models showing how effective these mathematical tools are in providing new data for
digital twin analysis (section 1.3). In particular, I focus my attention on the Galerkin
Reduces Basis method that I will use in the analyses carried out throughout of the thesis.

1.1. Digital twins

The first definition of digital twin method was given in [9] where “A Digital Twin is an
integrated multiphysics, multiscale, probabilistic simulation of an as-built vehicle or system
that uses the best available physical models, sensor updates, fleet history, etc., to mirror
the life of its corresponding flying twin.” The latter definition is specific to digital twins
used in the aerospace domain. In general, a digital twin is a computational model which
aim to represent a physical phenomenon in the digital space for the purpose of closely
characterizing the operations of the original physical asset. The physical and the digital
twins can be represented as two dynamical systems which evolve during a time interval
(0, T ). During the simulation interval, the digital twin must be updated; to this aim,
it receives information from its physical counterpart and it becomes a realistic copy of
the original physical asset. The updated digital state allows the users to make prediction
and control analysis on the physical phenomena; for this reason, it is important to find a
method to suitably represent changes in the physical state in real time.
The digital twin methods are gaining more and more importance in a wide range of
applications such as automotive, aerospace engineering, energy and civil engineering. For
example, as we can see in [26], digital twins can be used to estimate the capacity fade
of a battery and choosing the optimal timing to remove the battery. Another important
application is the one concerning the fault diagnosis and the monitoring of damage and
health of a structure, as we can see in [18, 27, 28].
Two different types of digital twinning methods can be found in the literature: those
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characterized by three dimensions and those characterized by five dimensions. The three-
dimensional digital twins are characterized by a physical state (PS), a digital state (DS)
and by the exchange of information and data between them. The five-dimensional digital
twins are more complex models, that can be described by the following relationship

DS = f(FS,DS, P2V, V 2P,OPT ). (1.1)

This equation represent the relationship between the five dimensions which characterize
the digital twin: the physical state (PS), the digital state (DS), the updating on the
digital model based on the information coming from the physical state (P2V ), the predic-
tion process which can be used for control the physical state (V 2P ) and the optimization
process (OPT ) which optimize all the functionalities of the other dimension.

1.2. Probabilistic graphical model for digital twin

In [14], a new method based on dynamic Bayesian graphical networks has been introduced,
which allows to accurately describe the information exchange that takes place between
the physical asset and the digital model; in this section I will describe the main innovative
ideas and features that allow to describe this new digital twin model. Starting from the
equation (1.1) and setting the goal of representing a physical phenomena, which evolves
in a time interval (0, T ), the relevant quantities which characterize a digital twin model
could be summarized as:

• St, the physical state at time t, which is only indirectly observable via observational
data Ot;

• Dt, the digital state at time t;

• Ut, collecting the actions and the decisions which influence the physical state;

• Qt, encoding the quantities of interest (QoI) computed from the updated digital
state;

• Rt, representing the reward quantifying the performance of the asset-twin system.

Treating all these quantities as random variables, it is possible to build a probabilistic
graphical model (PGM) adding a set of decision nodes that allow to take control actions
based on estimated quantities. Such a graph aims at representing the interactions between
the asset-twin system and its evolution over time. The PGM we will rely on, inspired by
[14], is a dynamic Bayesian network. Dynamic Bayesian networks are probabilistic graph-
ical models that represent a set of variables and their conditional dependencies using a
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directed acyclic graph. These kind of graphs also relate variables to each other over adja-
cent time steps, [3]. In the proposed PGM , the nodes of the graph represent the random
variables of interest at a given time, and the arcs between the nodes represent the de-
pendence relationship among the random variables, so the nodes not connected represent
variables which are conditionally independent. It is important to note that the variables
referred to a time step are also related with the ones referring to adjacent time-steps.
To construct this graph, first the simulation time interval (0, T ) needs to be discretized;
when a new observation ot from the physical state is collected, a node, representing the
observation Ot = ot, the digital state Dt, the QoI Qt and the reward Rt, are added to
the graph. A decision node, which represents the control action Ut, is also added. As
said before, the link between these new nodes represents a conditional probability; in
particular, based on the structure of the graph, we can define these probabilities:

ϕdynamics
t = P (Dt|Dt−1, Ut−1), (1.2)

ϕQoI
t = P (Qt|Dt), (1.3)

ϕevaluation
t = P (Rt|Qt, Dt, Ot = ot, Ut = ut), (1.4)

ϕassimilation
t = P (Ot|Dt), (1.5)

ϕcontrol
t = P (Ut|Dt, Qt). (1.6)

In these equations, uppercase letters are used to define the random variables represented
in the graph; corresponding lowercase letters are used to represent the values that these
random variables can take. Therefore, at each timestep of the simulation, we are going
to update the pre-existing graph in the way described above. In figure 1.1, the Bayesian
dynamic network obtained from the initial time of the simulation , t = 0, to the current
time, t = tc, and to future to the prediction horizon, t = tp, is represented. From the
figure, it can be seen that the resulting graph is acyclic and directed, in fact it consists
of vertices and edges, with each edge directed from a vertex to another vertex, such that
following these directions will never form a closed loop.
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Figure 1.1: Adopted DBN (figure taken from [14]): nodes with bold outline represent the
observed quantities (sensed data and enacted actions), while nodes with thin outline rep-
resent estimated quantities. Edges represent the conditional dependence between random
variables.

Once the graph topology has been established, the belief about unobserved variables is
updated and propagated using the loopy belief propagation algorithm, see e.g. [17]. The
loopy belief propagation algorithm, also know as sum-product algorithm, consists of two
steps: first, we need to compute the joint distributions of the random variables in the
graph, then, we have to compute their marginals. In this way, once a new observation ot
is collected, the posterior distribution for each random variable can be updated. In this
algorithm, the joint distribution is computed as

p(D0, ..., Dtp , Q0, ..., Qtp , R0, ..., Rtp , Utc+1, ..., Utp |o0, ..., otp , u0, ..., utc) =
tc∏
t=0

[ϕupdate
t ϕQoI

t ϕevaluation
t ],

(1.7)

where tc is the current time-step and ϕupdate
t are defined:

ϕupdate
t = P (Dt|Dt−1, Ut−1 = ut−1, Ot = ot) ∝ ϕdynamics

t ϕassimilation
t . (1.8)

Using the properties of the dynamic Bayesian probabilistic graphical model and the sum-
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product algorithm, it is possible to predict the value of the characteristic random variables
in future time-step. In this case, the joint distribution is defined as

p(D0, ..., Dtp , Q0, ..., Qtp , R0, ..., Rtp , Utc+1, ..., Utp |o0, ..., otp , u0, ..., utc) =
tp∏
t=0

[ϕdynamics
t ϕQoI

t ϕevaluation
t ]

tc∏
t=0

ϕassimilation
t

tp∏
t=tc+1

ϕcontrol
t

(1.9)

where tc is the current time step, tp is the prediction horizon. Computing as before
the marginal probabilities, it is possible to predict the future digital states, quantities of
interest and control actions; this prediction is very important when this graph is used
as a digital twin model. We remark that to compute the joint distribution we need to
compute the decision output ut; in section 1.2.1 we will discuss on how compute it. More
details on loopy belief propagation algorithm are given in Appendix A.

1.2.1. Decision Node

Starting from the Figure 1.1, between the current time-step and the prediction one, we
can look to our model as a partially observable Markov decision process (POMDP ). This
kind of processes provides an extension of the fully observable Markov decision processes
(MDPs). In a MDP , the state is fully observable, while in a POMDP the state is
hidden, it is observable only in an indirect way. In particular, the only thing that we
know of a state s is its emission probability P (o|s) where o is a possible observation of
the state s. As said before, at every time step, a control-input ut is chosen in such a way
that it maximises an expected future reward. This problem is a reinforcement learning
problem, which has as solution a policy π defined as:

ut = π(p(D0, ..., Dt, Q0, ..., Qt|o0, ..., ot, u0, ..., ut−1)). (1.10)

Among all these possible policies, the agent wants to find the optimal one which allows
him to maximize a reward function, Rt. The optimal policy, π∗, can be found solving an
optimization problem of the form

π∗ = argmin
π

tp∑
t=tc+1

γt−tc−1Eπ[Rt], (1.11)

where Eπ[·] represents the expetation when the policy π is followed and γ ∈ [0, 1] is
a discount factor. In particular, if γ = 0 the agent is only interested on the immediate
reward, while if γ → 1 the agent only cares about the maximization of future time reward.
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Typically, it is very hard to solve this kind of problems; for this reason we approximate it
to a fully observable MDP . In particular, every state is approximated with its maximum
a posteriori estimate. In this way, the policy is now defined as π(d∗, q∗), where d∗, q∗

are the maximum a posteriori estimates for the digital twin state and for the quantity
of interest state respectively. This approximation also allows to use the value-iteration
algorithm to find the π∗; for more details about this algorithm, see [6]. Once the optimal
policy is found, it is possible to choose at each time-step the control action ut to take; in
particular, this also allows to compute ϕcontrol

t in an easy way:

ϕcontrol
t =

1 if π∗(dt, qt) = ut,

0 otherwise.
(1.12)

1.2.2. Digital twin at scale

As discussed in [14], the strength of probabilistic graphical networks lies in the fact that
they make possible to move from one-off digital twin to robust digital twin implemen-
tations at scale. As said before the crucial idea of all digital twin models is to provide
virtual replicas of physical systems. This kind of models consider all the different vari-
ables which characterize the physical state and all the interactions between the physical
and the digital assets. The digital twin simulation is carried out in two different phases
the first one is the calibration phase, in which the parameters describing the digital state
are calibrated, to closely reflect the physical asset. The calibration phase is included in
the structure of the graph; this allows us to incorporate the uncertainty on the calibrated
parameters in the rest of the simulation. The calibration phase allows the digital twin
to be used at scale provided that each system analyzed is in principle calibrated; this
is the real advantage of digital twin based on DBN, [14]. Once the calibration phase is
performed starts the second phase, referred to as the operational phase, starts, during
which the digital state is continuously updated through the assimilation of observational
data, and adopted to compute quantities of interest and to choose the most appropriate
control input.

1.3. Reduced order models

To perform the digital state updating, dynamic Bayesian networks require an input
dataset. In this thesis, I investigate how this digital twin model behaves if instead of
creating the input dataset using observations from real instruments, as was done in [14],
the input dataset is generated using numerical simulations. Usually, obtaining a numerical
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solution of a given system is a computationally expensive process, so it is important to rely
on new techniques capable to overcome this drawback. Reduced order models (ROMs)
encompass all those techniques used to reduce the computational complexity of a given
numerical method. These methods are are very popular when dealing with parameterized
partial differential equation (PDEs). In particular, the final goal of these methods is to
find an approximate solution for any new parameter instance, however entailing a much
smaller computational cost with respect to the one required by a full order model (FOM),
guaranteeing that the error between the high fidelity solution and the ROM one is smaller
than a given threshold. The most important class of ROMs in the contest of parametrised
PDEs is provided by the reduced basis methods. Their basic idea is to construct a small
finite-dimension subspace where to seek the solution of the PDE, and to represent the
approximated solution as a linear combination of the basis functions spanning this sub-
space.
Another possible application of ROMs is to augment the data required as input by the
Bayesian network; a process that usually goes under the name of data augmentation used
to refer to all the techniques used for increasing the amount of data by creating synthetic
data and adding them to existing data. Usually, it is expensive to build out a dataset,
since the data usually come from sensors or high-fidelity numerical simulations. Data
augmentation is used when the input data set is small and one would increase its di-
mension to improve the generalization performances of a model which receives in input
this dataset. In this contest, data augmentation consists of adding to the starting data
some data obtained easily from already existing ones, to increase the dataset used by the
dynamic Bayesian network needs so that more accurate results can be obtained with a
low computational cost. In particular the dataset needed by the DBN contains sensor
measurement for each possible value of the digital space Dt. I will explore the idea to
increase this dataset by adding sensor measurements for different health state parameters.

1.3.1. Parameterized PDE

The reduced order models are typically used to find the solution of partial differential
equations depending on a set of parameters P ⊂ RP , with P ≥ 1. These parameters
affect the behavior of the solution and allow this kind of equations to describe a wide
range of physical and operational conditions. For this reason, it is important to be able to
solve efficiently PDEs for different parameter values. An example of parameterized PDE
formulation is the linear elasticity equation, which is used to describe the deformation of
a body with density ρ and with Lamé coefficients equal to λ, µ. The static version of the
linear elasticity equation reads as: given the parameters ν, λ, µ find d(x) : Ω → Rd such
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that: 
−divP (d) = f in Ω,

d = 0 on ΓD,

P (d)n = h(ν) on ΓN ,

(1.13)

where P (d) = 2µϵ + λtr(ϵ) and ϵ = 1
2
(∇d + ∇Td). The time-dependent version of the

linear elasticity equation reads as follows: given the parameters ν, λ, µ, ρ find d(x, t) :

Ω× (0, T ) → Rd such that:

ρ∂2d
∂t2

− divP (d) = f in Ω× (0, T ),

d = 0 on ΓD × (0, T ),

P (d)n = h(ν) on ΓN × (0, T ),

d = d0 in Ω when T = 0.

(1.14)

Also in this latter equation we have that P (d) = 2µϵ+ λtr(ϵ) and ϵ = 1
2
(∇d +∇Td). In

both equations, we have an external force equal to f, homogeneous Dirichlet conditions
are imposed on ΓD, while a Numeann condition, which depends on the parameter ν, is
imposed on ΓN . In all my further analysis, I will solve the equations (1.13), (1.14) for
different parameter values.
The general formulation of a stationary parametrized PDE reads as: given the Hilbert
space V and its dual V ′ , given µ ∈ P, find the solution u(µ) ∈ V such that

L(µ)u(µ) = f(µ) in V
′
, (1.15)

where L is a partial differential operator, while f is a suitable functional.

Starting from equation (1.15), we can find its weak formulation, which reads as follows:
given µ ∈ P, find u(µ) ∈ V such that

a(u(µ), v;µ) = f(v;µ) ∀v ∈ V, (1.16)

where
a(u(µ), v;µ) =< L(µ)u, v >∗ (1.17)

f(v;µ) =< f(µ), v >∗ . (1.18)

Starting from the weak formulation (1.16) and considering a finite dimensional subspace
Vh ⊂ V , dim(Vh) = Nh, we can find the algebraic Galerkin formulation of problem (1.15).
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This formulation reads as follows: given µ ∈ P find the solution uh(µ) ∈ Vh such that

Ah(µ)uh(µ) = fh(µ). (1.19)

By solving the system (1.19) we can find an accurate numerical solution for the starting
problem, so this system represent our high-fidelity FOM. The matrix associated with this
system is a Nh×Nh matrix, where Nh is the number of degrees of freedom (Dof) associated
with the trial space Vh, which is usually very high; for this reason, solving the system
(1.19) could be computationally expensive.

1.3.2. Reduced basis strategy

The reduced basis method is a ROM based on the idea of building a low dimensional
subspace VN ⊂ Vh of dimension N ≪ Nh and finding an approximate solution as a linear
combination of the basis functions spanning the space VN . To set up the reduced basis
problem, we have to follow these three steps:

• Step 1: construct a basis {ζ1, ..., ζN} for the reduced space such that VN = span{ζ1, ...., ζN}.
This basis is called reduced basis (RB).

• Step 2: express the approximate RB solutions as uN(µ) =
∑N

i=0 u
(i)
N (µ)ζi, guaran-

teeing that the error between this solution and the FOM one is smaller than a fixed
threshold.

• Step 3: set up a problem to find the RB coefficients u(i)N with i = 1, ...., N ; this prob-
lem will be found using a projection approach, and imposing a set of N constraints.

Proper orthogonal decomposition

As said before, the first step of the RB method is to find an orthonormal basis of the
subspace VN . To do this, given a set of ns parameters properly sampled from the parameter
space P, we compute ns high-fidelity solutions {uh(µ1), ...., uh(µns)}, called snapshots. In
order to have a better representation of the parameters space P as sampling method we use
the Latin hypercube sampling. Given these snapshots, we define the matrix S ∈ RNh×ns

as
S = [u1|...|uns ],

where the vector ui ∈ RNh , 1 ≤ i ≤ ns, represents the degrees of freedom of the high
fidelity solution uh(µi). Given this matrix, we use the proper orthogonal decomposition
(POD) method to find an orthonormal basis for our subspace VN . POD is based on



14 1| Digital twinning

the singular value decomposition (SVD) of the snapshot matrix S, Indeed, given a real
matrix A ∈ Rm×n, there exist two orthogonal matrices U = [ζ1|...|ζm] ∈ Rm×m and
Z = [ψ1|...|ψn] ∈ Rn×n such that

A = UΣZ with Σ = diag(σ1, ..., σp) ∈ Rm×n (1.20)

and σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0, with p = min(m,n). In the decomposition (1.20) the numbers
σi are the singular values of the matrix A and they are defined as the square root of the
eigenvalues of the matrix AAT . The columns of the matrices U,Z are respectively the
left and right singular vectors of A and are defined respectively as the eigenvectors of the
matrices AAT and ATA. A remarkable result concerning the SVD decomposition of a
matrix is the Schmidt-Eckart-Young theorem which states that given a matrix A ∈ Rm×n

of rank r the matrix

Ak =
k∑

i=1

σiζiψ
T
i , 0 ≤ k ≤ r, (1.21)

satisfy the optimality property

∥A− Ak∥F = min
B∈Rm×n

rank(B)≤k

∥A−B∥F =

√√√√ r∑
i=k+1

σ2
i , (1.22)

where, the norm ∥ · ∥F denotes the Frobenius norm. The idea of proper orthogonal
decomposition for the RB method consists of applying the decomposition defined in (1.20)
to the snapshot matrix S = UΣZ; in this way, we can define a basis for the subspace VN
being formed by the first N < ns columns of the matrix U . If we define the correlation
matrix C = STS, we can define the POD basis matrix V ∈ RNh×N as a matrix whose
columns are equal to :

ζi =
1

σi
Sψi, i = 1, ..., N (1.23)

where σ, ψ are the eigenvalues and eigenvectors of the correlation matrix C. The dimension
N of the subspace VN can be selected so that the sum of squared errors between each
snapshot and tits projection on the subspace generated by VN is minimum. As reported
in [23], it is possible to prove that:

ns∑
i=1

∥ui − V V Tui∥
2

2 =
r∑

i=N+1

σ2
i , (1.24)

so that to select the minimal POD dimension N such that the projection error is lower
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than a fixed tolerance ϵPOD we have simply to select N so that:

I(N) =

∑N
i=1 σ

2
i∑r

i=N+1 σ
2
i

≥ 1− ϵ2POD. (1.25)

Note that condition (1.25) is equivalent to state that the N -rank approximation SN to S
satisfies

∥S − SN∥F
∥S∥F

≤ ϵPOD. (1.26)

In Appendix B I reported the algorithm I used in my tests to find a suitable POD basis.

1.3.3. Galerkin Reduced Basis Method for stationary problems

Once we have found a basis {ζ1, ...., ζN} using the POD method, we have to set up a
problem which allows us to write the approximated solution as uN(µ) =

∑N
i=0 u

(i)
N (µ)ζi.

We build a reduced problem by projection; and in such a way we can find N equations
whose solution is equal to u(i)N , i = 1, ..., N . In particular, we can impose that the residual
of the FOM is orthogonal to the subspace VN ⊂ Vh of dimension N . Starting from the
weak formulation (1.16) we obtain the Galerkin reduced basis (G-RB) formulation, which
reads as: given µ ∈ P, find uN(µ) ∈ VN such that:

a(uN(µ), vN ;µ) = f(vN ;µ) ∀vN ∈ VN . (1.27)

Inserting uN(µ) =
∑N

i=0 u
(i)
N (µ)ζi in 1.27 and choosing vN = ζj we obtain

N∑
i=1

a(ζi, ζj;µ)u
(i)
N (µ) = f(ζj;µ) , i = 1, ..., N. (1.28)

The problem above is equivalent to the following N ×N linear system:

AN(µ)uN(µ) = fN(µ) (1.29)

where the matrix AN ∈ RN×N has components (AN(µ))ij = a(ξi, ξj;µ), the vector fN ∈
RN has components (fN(µ))i = f(ξj;µ), and the solution uN(µ) ∈ RN is a vector whose
components are equal to u

(i)
N (µ). Usually, the matrix AN is full while the matrix Ah is

in general sparse. However, we usually have that N ≪ Nh, so the system (1.29) is is
much faster and less expensive to solve than the one related to the high-fidelity problem
(1.19). Unfortunately, the assembling of the matrix AN and of the vector fN still involves
a computational complexity of order Nh. To overcame this drawback, it is possible to
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introduce the affine (or separable) parametric dependence assumption. The bilinear form
a and the functional f are said to be affine with respect to the parameter µ if the following
relations are satisfied:

a(w, v;µ) =

Qa∑
q=1

θqa(µ)a
q(w, v) ∀v, w ∈ V, µ ∈ P, (1.30)

f(v;µ) =

Qf∑
q=1

θqf (µ)f
q(v) ∀v ∈ V, µ ∈ P, (1.31)

where θqa(µ) : P → R, q = 1, ..., Qa and θqf (µ) : P → R, q = 1, ..., Qf are µ-dependent
functions, and aq : V × V → R, q = 1, ..., Qa and f q : V → R, q = 1, ..., Qf are µ-
independent forms. The affine assumption is also inherited by the algebraic problem;
indeed, we can redefine AN and fN as:

AN(µ) =

Qa∑
q=1

θqa(µ)A
q
N , (1.32)

fN(µ) =

Qf∑
q=1

θqf (µ)f
q
N , (1.33)

where we have that (Aq
N)ij = aq(ξi, ξj) and (f qN)i = f q(ξi), we can obtain these matrices

and vectors using the POD decomposition. Indeed, Aq
N = V TAq

hV ∈ RN×N and f qN =

V T f qh ∈ RN , where V is the matrix whose columns are the POD basis. The real advantage
of this affine transformation is that we can compute and store all the quantities which
are µ-independent in an offline phase. Then, for any given parameter value µ ∈ P, we
assemble and solve the RB system (1.29) using the sums reported in 1.32, 1.33 with a
cost depending only on N . For further details on the RB models, see [23].

1.3.4. Galerkin RB Method for time dependent problems

The Galerkin RB method can be extended to time dependent problems as well. Suppose
that we want to solve a first order time dependent problem whose weak formulation reads
as follows: given µ ∈ P, ∀t > 0 find u(t;µ) ∈ V such that u(µ) = u0 when t = 0 and

(
∂u(µ)

∂t
, v) + a(u(µ), v;µ) = f(v;µ) ∀v ∈ V, t ∈ (0, T ) (1.34)
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Proceeding as in [22], the space discretization formulation of (1.34) reads as:

Mh(µ)
∂uh(t;µ)

∂t
+ Ah(µ)uh(t;µ) = fh(t;µ), t ∈ (0, T ). (1.35)

with uh = uh,0 when t = 0. In the equation (1.35), Mh(µ) is the mass matrix and
both Mh and Ah are of dimension Nh ×Nh and parameter dependent. If now we choose
V = VN , where VN is the subspace spanned by the POD basis functions {ζ1, ...., ζN} and
we define uN(t;µ) =

∑N
i=0 u

(i)
N (t;µ)ζi, we obtain a weak formulation of the corresponding

RB problem which reads as follows: given µ ∈ P, find uN(µ) ∈ VN such that uN(µ) = u0,N

when t = 0 and:

(
∂uN(µ)

∂t
, vN) + a(uN(µ), vN ;µ) = f(vN ;µ) ∀vN ∈ VN , t ∈ (0, T ). (1.36)

Proceeding as before, we obtain the following system to solve:

MN(µ)
∂uN(t;µ)

∂t
+ AN(µ)uN(t;µ) = fN(t;µ), t ∈ (0, T ) (1.37)

where the matrices are defined as (MN(µ))ij = m(ξi, ξj;µ), being m(u, v;µ) = (u, v)µ,
(AN(µ))ij = a(ξi, ξj;µ), the vector (fN(µ))i = f(ξj;µ). These matrices and vectors have
dimension N , so that problem (1.37) has a low computational cost than the one in (1.35).
Once we have found this space discretization, we can simply solve (1.36) using a temporal
discretization scheme like the one used in the FOM [22]. It is important to notice that
the considered time-dependent problem 1.14 is a second order problem; in order to apply
the techniques described in this section is important to rewrite it as a first order problem,
see [22].
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2| An application: structural
health monitoring of a concrete
beam

In this chapter I will describe the application of the Bayesian network to monitor the health
state of a bridge like structure. Starting from the unmanned aerial vehicle (UAV)test case
reported in [14], I introduce a new test case involving a concrete doubly clamped beam,
that is stressed by applying a weight at its midspan. As in [14], the aim is to monitor
the health state of the beam by estimating the length of two different cracks which can
form on the upper face of the beam after the application of the weight.. The dynamic
Bayesian network receives information from the physical state thought 24 different sensor
which can measure both the von Mises stress and the vertical displacement of the beam.
In the absence of experimental data, these quantities were simulated through high fidelity
numerical simulations, using a finite element method to solve the equation (1.13). The
numerical simulations carried out to describe the potential behaviors of the beam are
performed on the redbKIT Matlab finite element library [19].The aim of this test case is
to verify that the methodology proposed in [14] can be also applied to more general test
cases and therefore analyze its robustness.

2.1. Problem description

This test case involves the monitoring of the health state of a structure describing an
idealized bridge model, during a time interval [0, T ]. To model this kind of structure,
I considered a concrete doubly clamped beam. This beam has height h = 1m, length
l = 6m and width w = 1m. At every timestep of the simulation, the beam can be loaded
by two different weights placed on its midspan; this kind of loading scenario is assumed
to represent the load induced by traffic over the bridge. In particular, the severe load is
equal to 300 kg, and represents a situation in which there is a lot of traffic over the bridge;
the less severe load, equal to 200 kg, represents a low traffic situation. Similar to [14],
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time is discretized in such a way that the transient period between the two admissible
loading conditions is neglected, and only the related static configuration is accounted for.
In this way, we only need to solve the static version of equation (1.13), with homogeneous
Dirichlet boundary conditions on the two clamped sides and imposing a non-homogeneous
Neumann boundary condition on the top surface of the beam, representing the external
surface forces. The Lamè coefficients result from a Poisson ratio equal to 0.1, density
equal to 2400 kg/m3 and Young modulus E = 47.25Gpa. In figure 2.1 we can see how
a beam without cracks deforms when a weight equal to 200 kg is applied on its middle
section.

At each time step of the simulation, a weight is applied and the beam health state may
worsen. I model the health state of the beam with a vector z whose components represent
the length of a crack in a specific area of the beam, in percentage terms with respect
to the total height of the beam. In particular, I assume that the cracks cannot change
their position during the simulation and that they can only be stretched, worsening the
health situation of the beam, with their width kept fixed to 0.02m. These assumptions
allow to describe the health state of the beam using a limited number of parameters. To
simulate the evolution of the structural degradation, similarly to [14] I prescribe a ground
truth model which describes how the components of z evolve. This model is unknown
to the digital twin and it is simply used to simulate sensor data. In particular, at every
time-step we generate observation data starting from the current state, described by the
ground truth model, and from the most recent input control; then these data are then
passed to the probabilistic graphical model. As described in section 1.2, we have to model
the probability ϕdynamics

t ; to this aim, I suppose that the probability of damage progression
in each defect region is known, fixed, and conditionally independent given the load on the
middle of the beam.
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Figure 2.1: Beam displacement when z = 0 and a 200 kg weight applied at its midspan.

The digital Dt state needs to include geometrical parameters and material parameters
which have to be calibrated before the operational phase of the digital twin, as well as
the parameters describing the current health situation of the beam. The digital state is
described by the following vector of parameters:

d =
[
l, h, w, e, z

]T
. (2.1)

Where l, h, w are geometrical parameters describing the sizes of the beam, e is a material
parameter adopted to rescale the concrete Young’s modulus, and z is a vector of structural
health parameters describing the health state of the structure as explained above. It is
important to notice that the parameters which describe the digital state are similar to
the one used in [14]; this is done on purpose, with the aim of testing the framework
proposed in [14] in a new different setting. The principal difference between the two set
of parameters is the fact that the parameters used in [14] in relation to the mass of the
sensors are here neglected, because the observations used as input to the digital twin do
not come from a real sensor but from numerical simulations. Similarly to [14], to estimate
the digital state I calibrate all the parameters as described in the next section but the
health state z which will be estimated in the operational phase.
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2.2. Calibration phase

In this section I describe the calibration process of the parameters, d, describing the
digital state. This phase is crucial since it is very important that a digital twin describes
in a persistent way the physical asset. The calibration phase is done at the first time-step
of the simulation, t = 0, by adapting the code [13] to my test case. To do this, I consider
a beam without crack so both the components of z are equal to zero, and by assimilating
the data coming from the physical beam I calibrate the other parameters of d, except
for z. For the geometrical parameters, instead of a proper calibration I simply created
a mesh with height, length and width fixed to l = 6m, h = 1m, w = 1m. The Young’s
modulus scaling factor e is an important parameter related with the material properties
of the beam, which takes into account differences between beam asset due to variability
in materials, manufacturing, or operational history. As in [14], the prior information
of Young’s modulus scale factor is modeled as a Gaussian distribution with mean equal
to one and variance chosen in such a way the 95% credible interval covers the 5% of
variability. To calibrate the Young’s modulus scaling factor e I a particle filter algorithm,
as in [14]. To apply this algorithm, I have to find a relationship between the scaling factor
and the elastic modulus k, then I can proceed to calibrate e and update my prior belief
on this parameter. To find a relationship between k and e a load displacement test was
simulated. First of all, I have to verify that there is a linear relationship between the force
applied in the middle of the beam f and the maximum measured displacement x. To find
the relationship between f and x I put on the middle of the beam some weights between
0.2 kg and 20 kg keeping fixed the Young’s modulus to E = 47.25Gpa.



2| An application: structural health monitoring of a concrete beam 23

Figure 2.2: Linear relationship between the maximum displacement of the beam and a
force applied in the middle of a beam with Young modulus equal to E = 47.25Gpa.

As shown in figure 2.2, we have a linear relationship between x, f , and so the elastic
coefficient can be computed as k = f/x. To find a relationship between the Young’s
modulus scaling factor and the linear elastic coefficient, I have first drawn 30 samples
from the prior distribution of e, and for each of them, the corresponding displacement at
midspan was computed under the action of a 10Kg mass applied at midspan, from which
the elastic coefficient k was finally computed. Using linear regression, I found the results
in Figure 2.3 and the following relationship:

k = 2.8229e. (2.2)

Once this relationship is found, I can use the particle filter algorithm implemented in [13]
to calibrate the Young’s modulus scaling factor e by updating the prior information on
this parameter. In particular, I tuned the number of particles used by the particle filter
algorithm so that the variance of the posterior distribution was as small as possible.
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Figure 2.3: Linear relationship between the measured young coefficient k̂ varing the
Young’s modulus scaling factor e.

Figure 2.4 reports the obtained posterior probability distribution, which is centered at
0.9919 (corresponding to a 0.81% reduction) and features a reduced standard deviation.
Once the calibration phase is completed, the input dataset for the DBN is assembled by
simulating a set of potential damage scenarios affecting the structure. This is done for
each possible damage state z with reference to the updated distribution of parameter e,
by taking 30 samples from the posterior and computing the relevant quantities of interest
for each sample, for instance in terms of displacements or strains.
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Figure 2.4: Prior and posterior distributions of the Young’s modulus scaling factor e for
the beam test case.

2.3. Operational phase

In this section I describe the prediction of the health state z, by adapting the code [12]
to my test case. Is important to notice that all the parameters characterizing the digital
state d, except z, are fixed to their values or distribution found during the calibration
phase. The variables that characterize the probabilistic graphical model for all t > 0 are:

• Ot, the observation data measured by the sensors placed on the lower face of the
beam;

• Dt, the digital state characterized by the parameters collected in d;

• Qt, the quantity of interest, approximating the sensors measurements, as computed
from the updated digital state;

• Ut, represents the decision node.

Is important to notice that in this case Rt is not defined; indeed, the adopted control
policy is prescribed without solving a planning problem. Here we note that, with respect
to [14], we have a different quantity of interest, a different number of actions and a greater
dimension of the vector z which describes the health state of the beam. In particular, I
focused on four different tests:
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• Test 1: using the stress as QoI;

• Test 2: using the displacement as QoI;

• Test 3: three control actions;

• Test 4: the dimension of the vector z equal to three.

In all these tests, to measure the performances I used an error function similar to the one
used in [14], which is defined as:

E = − 1

24

24∑
i=1

|ϵi − ϵ̂i|
σsensor

, (2.3)

where ϵ is the considered QoI while the ϵ̂ indicates the real measured data and σsensor

is equal to 125microstrains in the case in which I used the stress as quantity of interest
and to 12.5 × 10−4m in the case the displacement is used as QoI. For all these tests
I prescribed a precise policy which I will illustrate in details in the following. As time
interval I consider [0, 40] and as prediction horizon I set a time equal to tp = tc+10, where
tc is the current time-step. The figures reporting the result include both the ground truth
true value of each quantity and the estimated ones, as well as the 95% confidence interval
for the prediction. To validate the prediction capacity of the digital twin, the results are
reported for two different time-steps, tc = 30 and tc = 40.

2.3.1. Test 1: using the stress as QoI

First of all, I validate the code using a test case similar to the one in [12], by defining
ϕdynamics
t and the parameter z as in [14], thus yielding z = {0%, 20%, 40%, 60%, 80%} ×

{0%, 20%, 40%, 60%, 80%}. I do not report the results for this validation test case as the
values of possible crack lengths are unrealistically too high. Once I have validated the
code, I considered a new test case with reasonable values for the lengths of the cracks
z = {0%, 10%, 20%, 30%} × {0%, 10%, 20%, 30%}. For this test case, I consider a new
definition of ϕdynamics

t . In particular, I suppose that the structural health in each defect
region has a probability equal to 0.05 to worsen by 10% when the 200 kg load is applied,
and a probability equal to 0.05 to worsen by 10% when the heaviest weight is applied.
For this test case I defined a policy Π which consists in two actions: if a component of
z is greater then 10% the beam is excited with smallest weight; in the other cases, the
heaviest weight is placed on the beam. The von Mises stress is considered as quantity of
interest. In Figure 2.5, I reported the results regarding the prediction of the components
of z. In these figures, we can see that both components are well predicted and that in
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the region in which the ground truth model visits the states not belonging to the range
{0%, 10%, 20%, 30%} × {0%, 10%, 20%, 30%} there is a greater uncertainty.

(a) Prediction of the state at tc = 30.

(b) Prediction of the state at tc = 40.

Figure 2.5: Test case 1, using the stress as QoI: estimated and predicted evolution of the
health state and the prescribed ground truth model for two different current time steps.

The results regarding the prediction of the quantity of interest are reported in Figure 2.6,
highlighting that also the prediction of the stress measured by the sensors is good, and
the relative uncertainty is attributed to the uncertainty affectingly the prediction of z.
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(a) Prediction of the state at tc = 30.

(b) Prediction of the state at tc = 40.

(c) Error during simulation time interval

Figure 2.6: Test case 1, using the stress as QoI: estimated, predicted evolution and
measured values of the quantity of interest with reference to two different current time
steps and their relative error.
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From these results, we can conclude that the method described in [14] can be used in
different test cases where the health state is no longer described through the percentage
reduction in material stiffness, but by the length of the cracks that form on the upper
face of the beam.

2.3.2. Test 2: using the displacement as QoI.

As in test 1, I have considered z = {0%, 10%, 20%, 30%} × {0%, 10%, 20%, 30%} and the
same definition of both ϕdynamics

t and Π. Through this test, I want to verify that the
digital twin model also works in the case in which I do not consider the stress as QoI.
Indeed, the only difference with respect to the previous test is that now I consider the
displacement as quantity of interest. In particular, I consider the vertical displacement of
the beam, measured by 24 sensors located uniformly on the bottom surface of the beam.
In figure 2.7, I reported the results concerning the prediction of the components of z. In
particular, we can see that the uncertainty bounds are greater then before; this can be
due to the fact that the displacement is less informative about the components of z, and
for this reason in the further tests I keep using the stress as quantity of interest.

(a) Prediction of the state at tc = 30.
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(b) Prediction of the state at tc = 40.

Figure 2.7: Test case 2, using the displacement as QoI: estimated and predicted evolution
of the health state and the prescribed ground truth model.

In figure 2.8, I report the results concerning the estimate and the prediction of the dis-
placement measured by the sensors.

(a) Prediction of the state at tc = 30.
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(b) Prediction of the state at tc = 40.

(c) Error during simulation time interval.

Figure 2.8: Test case 2, using the displacement as QoI: estimated, predicted evolution
and measured values of the quantity of interest with reference to two different current
time steps and their relative error.

Looking at these results, it is evident that some quantities of interest might be more
significant than others in describing the state of health of the physical space. For example,
in this case the uncertainty bands of the second test case turn out to be wider than those
of the first test case, where the stress is considered as QoI.

2.3.3. Test 3: three control actions

In this third test I keep the same definition of both z, and ϕdynamics
t and I used the stress as

quantity of interest; the novelty is that a new action r, is now introduced, consisting in the
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reparation of the beam. Indeed, it is important to notice that another difference between
this test case and the UAV test cases presented in [14] is the fact that during a mission the
UAV cannot be repaired, but only a less aggressive manoeuvre can be taken, while a beam
during its life cycle can be repaired. The new policy Π̂ consists in performing the action
r in the case in which there is at least one component of z greater than 20%, doing the
action SW in the case in which there is at least one component greater than 10% and apply
the heaviest weight in all the other cases. To describe the evolution of the component of
z, I do not use anymore a custom model but a linear one. In figure 2.9, I report the results
regarding the prediction of the health state, despite of the good estimation capabilities of
the digital twin, the relative uncertainty is increased with respect to the previous cases;
this is likely due to the introduction of a new action and the higher complexity of the
ground truth model. By looking at the prediction interval, it is interesting to note that
the digital twin is also able to predict when the repair action r should be performed.

(a) Prediction of the state at tc = 30.
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(b) Prediction of the state at tc = 40.

Figure 2.9: Test case 3, three control actions: estimated and predicted evolution of the
health state and the prescribed ground truth model.

In Figure 2.10, I report the results regarding the estimate of the data measured by the
sensor and the relative error between measured and estimated quantities, E. In particular,
we can notice that this estimate is good in every time step, but the ones in which the
action r is applied.

(a) Prediction of the state at tc = 30.
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(b) Prediction of the state at tc = 40.

(c) Error during simulation time interval.

Figure 2.10: Test case 3, three control actions: estimated, predicted evolution and mea-
sured values of the quantity of interest with reference to two different current time steps
and their relative error.

This test case allows me to state that the Bayesian network can also be used in complex
cases similar to reality. In fact, in this test case, due to the presence of the r action, the
health state of the beam can change suddenly, however the digital twin strategy is still
able to correctly estimate both the crack length and the stress measurements.

2.3.4. Test 4: dimension of the vector z equal to three

In all the previous test cases, the health state of the beam z is modeled by two components
representing the length of two different cracks. In this new test case, I want to analyze a
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more complex situation with an health state vector z characterized by three components.
In particular, the i-th component of this vector represents the length of a crack (in per-
centage terms) in the i-th zone. The three different zones are located at y = 2, 4, 5m,
yielding z = {0%, 10%, 20%, 30%}×{0%, 10%, 20%, 30%}×{0%, 10%, 20%, 30%} and re-
spectively ϕdynamics

t is as before. In this test case, for the sake of simplicity, I only consider
the actions SW and HW, prescribing the same policy of tests 1 and 2. In figure 2.11, I re-
ported the results regarding the prediction of the health state and, from which it can be
observed that the digital twin seems to work better in the case in which it has to estimate
more than two parameters.

(a) Prediction of the state at tc = 30.

(b) Prediction of the state at tc = 40.

Figure 2.11: Test case 4, dimension of the vector z equal to three: estimated and predicted
evolution of the health state and the prescribed ground truth model.



36 2| An application: structural health monitoring of a concrete beam

In Figure 2.12, I report the results regarding the estimate of the stress measured by the
sensors. Also in this case, we have good prediction and estimate results, as confirmed also
by the plot of the error in Figure 2.12c.

(a) Prediction of the state at tc = 30.

(b) Prediction of the state at tc = 40.
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(c) Error during simulation time interval.

Figure 2.12: Test case 4, dimension of the vector z equal to three: estimated, predicted
evolution and measured values of the quantity of interest with reference to two different
current time steps and their relative error.

In light of these results, I can conclude that the probabilistic graphical digital twin model
can be used also to manage situations characterized by more than two structural health
parameters. These four test cases allow us to conclude that the digital twin metodology
proposed in [14] is a very robust and flexible tool. This model works in the case where a
different definition of the health of the system is used, it is not dependent on the quantity
of interest considered, and it can be also used in more complex cases where there are more
than two actions or more than two parameters involved.
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3| Combined use of a ROM and of
a Dynamic Bayesian Network
for structural monitoring

In this chapter, I consider a new test case to assess the performance of the dynamic
Bayesian network. This new test case consists of a beam which is composed by ten
different subregions, where the Young modulus E is parametrized to account for different
damage scenarios. I use this test case to fully exploit the framework described in Figure 1,
see Chaper 1. The two main results presented deal with the use of data augmentation to
improve the accuracy performance of the DBN and the use of a ROM to build the input
dataset and to model the sensor observations. In this way we can simulate many scenarios
at a very low computational cost: for example, we can load the beam with different weights
or take into account different damage scenarios. Then we use the digital twin to predict
the health of a beam model in all these cases. The reminder of the chapter is organized as
follows. In Section 3.1 we describe the problem at hand; the adopted strategy for model
order reduction is detailed in Section 3.2, and the obtained results in terms of estimation
and prediction of the health state of the beam are finally reported in Section 3.3.

3.1. Problem description

Once again, the objective is to estimate the health state of an idealized bridge-like struc-
ture, in this new test case, the physical asset to be monitored is a doubly clamped concrete
beam. The lenght of the beam is 6m while its height and width are fixed to 1m. The
mechanical properties are those of concrete: Poisson ratio equal to 0.1, Young’s modulus
E = 47.25GPa, density equal to 2400 kg/m3. At every time step of the simulation, the
beam can be loaded by a weight located at its midspan that can be equal to 150 kg or to
100 kg. As done in [14], the time interval of the simulation is discretized in such a way that
we can consider only what happen when the weight is applied and ignoring the transient
period between two load applications. In this new test case, the health state is a vector
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z = [z1, z2] and its components represent the percentage of material stiffness reduction in
two of the ten subregions in which the beam is partitioned in order to model possible dam-
age scenarios. An undamaged beam feature a Young modulus E = 47.25GPa in all the
ten subregions; when one of the ten subregions features a reduced value of the Young mod-
ulus, the beam is damaged. As before, this physical state can be observed only through
numerical simulations, in particular, we assume to observe numerically generated pseudo-
expirimental recordings, in terms of displacements or stresses from 24 sensors placed on
the lower face of the beam. Also in this case, before the operational phase in which the
digital twin estimates the health state of the beam, we need to calibrate the parameters
which characterize the digital state. In order to use the same calibration carried out in
Section 2.2, I use the typical lengths of the beam and the Young modulus scaling factor
as the parameters which describe the digital state and that need to be calibrated. Note
that the calibration phase is done assuming that the beam is in a undamaged health state
so that the definition of the health state vector z does not affect the calibration phase.

Figure 3.1: Mesh of the beam used for numerical simulations. The different colors
underline the subregions of the beam in which the Young modulus can take different
values.

3.2. Reduced order modeling

In this section, I will present the mathematical formulation of the problem which I need
to solve and all the properties of the ROM used. The high fidelity FOM that I use
for computing the stress measurements solve the linear elasticity equation (1.13) which
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describes how an elastic material moves when is subjected to external forces. The unknown
of this equation is the displacement of the beam d⃗; Ω is the domain occupied by the
undeformed beam and in particular we have that Ω = ∪10

i=1Ωi being Ωi are the subdomains
of the mesh, see Figure 3.1. In the linear elasticity equation solved in this test case f = 0,
indeed there are no volumetric forces which act on the beam, ΓN is the upper face of
the beam, while ΓD are the ends of the beam, the function h(l) = l1(ΓF ), where ΓF

is the subregion of the upper face of the beam for which 2 ≤ y ≤ 3. This equation is
characterized by three different parameters, l, λ, µ. The parameters ν, λ are dependent
on the Poisson ratio ν and on the Young modulus E, indeed we have that µ = E

2(1+ν)

and λ = Eν
(1+ν)(1−2ν)

. Note that the Young modulus could be different in each zone of the
beam; the parameter l represents instead the weight of the load that is applied on the
midspan of the beam. Starting from the equation (1.13) we can find its associated weak
formulation that read as:

∫
Ω

P (d) : ∇w dΩ =

∫
ΓN

h(l)w dΓ ∀w ∈ V. (3.1)

Considering the partitioning of the domain Ω and using the linear property of the integral
we have that (3.1) is equivalent to:

10∑
i=1

∫
Ωi

P (d) : ∇w dΩi =

∫
ΓN

h(l)w dΓ ∀w ∈ V. (3.2)

Substituting the linear constitutive law, we have that:

10∑
i=1

µi

∫
Ωi

(∇d +∇dT ) : ∇w dΩi +
10∑
i=1

λi

∫
Ωi

tr(∇d) : ∇w dΩi = l

∫
ΓF

w dΓ ∀w ∈ V,

(3.3)

where µi, λi are the coefficient computed using the Young modulus of the subdomain Ωi.
Introducing the operators ci(u,v) =

∫
Ωi
(∇u + ∇uT ) : ∇v dΩi, bi(u,v) =

∫
Ωi

tr(∇u) :

∇v dΩi, and f(v) =
∫
ΓF

v dΓ, we can rewrite equation (3.1) as:

10∑
i=1

µici(d,w) +
10∑
i=1

λibi(d,w) = lf(w) ∀w ∈ V. (3.4)

We can note that the bilinear forms that we have introduced are affine with respect to the
parameters λ, µ and l. Proceeding as in [22], the algebraic formulation of the Galerkin
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finite element FOM reads as:
Ah(µ)uh = bh. (3.5)

The affine property is also inherited by this algebraic problem so we can decompose Ah(µ)

as

Ah(µ) =
10∑
i=1

θic(µ)C
i
h + θib(µ)B

i
h (3.6)

where the entrance of the matrices are defined as (Ci
h)jk = ci(ϕk, ϕj), (Bi

h)jk = bi(ϕk, ϕj)

and the element of the vector are defined as (bh)k = lf(ϕk). The matrices Ci
h, B

i
h are

independent by the parameters while the functions θic(µ), θib(µ) are defined as:

θic(µ) =
Ei

2 + 2ν
, θib(µ) =

Eiν

(1 + ν)(1− 2ν)
(3.7)

where Ei, ν are the Young modulus and the Poisson ratio referred to the subdomain Ωi.

3.2.1. Reduced order model

The ROM I used to carry out our further analyses is a Galerkin reduced basis method.
To train this method, first of all I computed ns = 100 snapshots for different values of the
parameters Ei and l, suitably sampled with the Latin hypercube sampling technique. In
particular, I sampled each Ei in a range of values [4.725Gpa , 51.975Gpa] and I sampled l
in a range of values [98N ,1783.6N]. Then, I computed the RB using the POD technique
reported in appendix B with ϵPOD = 10−3. As we can see in figure 3.2, under these
assumptions the resulting reduced order model only features N = 43 degrees of freedom.
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Figure 3.2: Solution snapshots spectrum obtained with a ns = 100 snapshots and a
tolerance ϵPOD = 10−3.

Once I have obtained the desired ROM, I test its accuracy and performance on a testing
set of dimension 10 and I compare its performance and accuracy with the one of the FOM
used to compute the snapshots. The obtained results are reported in 3.1.

FOM ROM

DOF 4547 43

Time 4.47× 10−1s 1.27× 10−2s

Error - 0.268 %

Table 3.1: Comparison between the performances and the accuracy of the FOM and the
Galerkin RB method with N = 43 basis.

In particular, the time is referred to the mean time of assembling and solving both the
FOM and the ROM, while the error is the relative error between the solution obtained
using the ROM and the FOM. By analyzing the results reported in Table 3.1, we can
notice that despite a relative error equal to 0.268% the ROM is more or less 35 faster
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then the FOM. So, the ROM allows us to obtain accurate numerical results in a very
rapid time.

3.3. Operational phase

In this section, I report all the results concerning with the prediction of the health state
z. In particular, I want to improve what proposed in [14] by using the ROM presented in
subsection 3.2.1 by allowing for a data augmentation on the input dataset to improve the
accuracy of the dynamic Bayesian network; the relevant results are reported in subsection
3.3.1. In a subsequent analysis, I use the ROM to create an input dataset in which the
user can choose wherein the material stiffness is reduced and also choose the two weights
to be applied at the midspan; the relevant results are reported in subsection 3.3.2. Then,
I consider a test case in which the location of the region wherein the stiffness is reduced
is supposed to be unknown and the digital twin to find the position of this zone; the
relevant results are reported in subsection 3.3.3. The last two test cases in subsections
3.3.4, 3.3.5 instead focus on the importance of the ROM accuracy and of the calibration
phase; in particular, I want to analyze how the results of the Dynamic Bayesian network
are influenced by an inaccurate ROM or by a poor calibration phase.

3.3.1. Test 1: Data Augmentation using a ROM

In the present test case, the health state of the beam is modeled using a vector of two
components z = {0%, 20%, 40%, 60%} × {0%, 20%, 40%, 60%}; the first component rep-
resents the percentage reduction of the material stiffness of the fourth subregion of the
beam while the second one is referred to the seventh subregion of the beam. As said in
the previous chapters, the input dataset for the dynamic Bayesian network contains the
measurements of the 24 sensors for each possible health state situation and for each pos-
sible value of the load applied on the midspan of the beam. The sensors measurement are
obtained with an high fidelity FOM providing the numerical solution of equation (1.13)
and the stress value at the locations where the sensors are positioned. To evaluate the
accuracy performances of the digital twin prediction, I used the error function described
by equation 2.3. In Figure 3.3, I report the estimation and prediction results for the
health state z and the behaviour of the error function.
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(a) Prediction of the health state at tc = 40.

(b) Error at tc = 40.

Figure 3.3: Data Augmentation using a ROM: estimated and predicted evolution of the
health state and prescribed ground truth model; below is reported the trend of the relative
error between estimated quantities of interest and their measured counterparts.

Figure 3.3 shows that when a linear model is introduced to describe the evolution of
the structural health, the accuracy of the digital twin worsens when the health state z
takes values far from those contained in the input dataset. To improve the estimation
and prediction capabilities of the digital twin, I chose to perform a data augmentation of
the dataset provided to the DBN. This is done by refining the possible states that can
be assumed by the structural health parameters as {0%, 10%, 20%, 30%, 40%, 50%, 60%}.
For each of the new possible configuration, I compute the value of the stress values using
the Galerkin Reduced Basis method described in 3.2.1, to obtain an augmented input
dataset for the digital twin. Once the data augmentation is completed, I use the digital
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twin to estimate and to predict the health state z; the corresponding results are reported
in Figure 3.4.

(a) Prediction of the health state at tc = 40 using data augmentation.

(b) Error at tc = 40 using data augmentation.

Figure 3.4: Data Augmentation using a ROM: estimated and predicted evolution of the
health state and the prescribed ground truth model; below is reported the trend of the
relative error between estimated quantities of interest and their measured counterparts.
The size of the input dataset is increased using a ROM.

Looking at the error reported in figure 3.4b, I can see that this is lower in modulus then
the one reported in figure 3.3b, and also that the estimation and prediction of the health
state improved in this new test case. Therfore, data augmentation on the input dataset
can helps the dynamic Bayesian network to improve its performances at the price of mild
increase of computational time.
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3.3.2. Test 2: Online input dataset creation using a ROM

In this test case, I consider as health state a vector z = {0%, 20%, 40%, 60%}×{0%, 20%,
40%, 60%}; the two components quantify the percentage reduction in material stiffness
of two zones of interest. In this test case I use the ROM described in section 3.2.1 to
build the input dataset for the dynamic Bayesian network; in particular the user, before
using the digital twin to make prediction on the health state of the beam, can select the
the two zones of interest which the component of z are referred to, as well as the two
weights which correspond to the actions SW and HW. The creation of the input dataset in
an online phase allows to use the dynamic Bayesian network to make predictions while
a ROM allows to obtain this dataset in a short time. In particular, I choose a test case
in which I consider the third and the sixth subregion of the beam as regions of interest
and I defined the action SW and HW as placing a weight equal to 100 kg and 150 kg on the
midspan of the beam, respectively. In this new test case, I consider as quantity of interest
the beam vertical displacement at the sensors position, instead of the stress. In figure 3.5,
I report the results regarding the estimate and prediction of the health state of the beam:

(a) Prediction of the state at tc = 30.
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(b) Prediction of the state at tc = 40

Figure 3.5: Online input dataset creation using a ROM: estimated and predicted evolution
of the health state and prescribed ground truth model.

The estimate of the health state is rather good. Also in this case, I reported the results at
two different time steps of the simulation in order to check that the prediction in future
is reliable. In figure 3.6, I report the estimate and prediction results for the quantity of
interest. The estimate and prediction of the displacement of the beam is rather accurate
also in this case.

(a) Prediction of the state at tc = 30.
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(b) Prediction of the state at tc = 40.

(c) Error during simulation time interval

Figure 3.6: Online input dataset creation using a ROM: estimated, predicted evolution
and measured values of the quantity of interest with reference to two different current
time steps and their relative error.

These results allow us to validate the framework described in Figure 1 and the online
creation of the input dataset enables the user to study a wide range of test cases using
few computational resources.

3.3.3. Test 3: Localization of damaged subregions using the
DBN

In this third test case, I only consider one region of interest where a reduction in material
stiffness can take place. Unlike the previous cases, I suppose that the position of the
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region of interest is not known and the dynamic Bayesian network has to be used to
estimate the position of this region. To this aim, I have to redefine the health state vector
z, with its first component representing the position of the region of interest while the
second one representing the percentage of material stiffness reduction in this zone. So
we have that z = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} × {0%, 20%, 40%, 60%}. It is important to
notice that this test case represents a real case scenario, indeed usually the position of a
structural damage is not known a priori. Once again, as quantity of interest measured
by the sensors I consider the stress of the beam and the weights which correspond to the
actions SW and HW are respectively equal to 100 kg and 150 kg. In Figures 3.7, I report the
results concerning with the health state estimate and prediction and the behavior of the
error.

(a) Prediction of the state at tc = 30.

(b) Prediction of the state at tc = 40.

Figure 3.7: Localization of the damage location: estimated and predicted evolution of
the health state and prescribed ground truth model.
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Looking at figure 4.5a and 4.5b, we can see that the estimate of the percentage reduction
in material stiffness is more or less accurate in all the simulation intervals. The situation
is different for the estimation of the location of the zone of interest, i.e. the component z1,
indeed we have a precise estimate only for t > 5 when the component z2 starts increasing.
This is a quite expected outcome, since there is no sensitivity with respect to z2 if z1 is
equal to 0%. The prediction for future time step is characterized by a lot of uncertainly,
indeed in the above Figures we report a very big 95% confidence interval. The behaviour
of the error is reported in figure 3.8, showing that it is very large in modulus for the time
steps t < 5 when the prediction of the first component of z is not accurate.

(a) Error during simulation time interval

Figure 3.8: Localization of the damage location: relative error between estimated quan-
tities of interest and their measured counterparts.

3.3.4. Test 4: inaccurate ROM effects on DBN predictions

In this test case, I want to analyze how the accuracy of the ROM affects the results of the
digital twin. In particular as explained in the flowchart reported in figure 1, I assume that
the observation Ot are obtained thought a FOM while the input dataset is obtained with
a ROM. The input dataset for the DBN requires a large amount of numerical simulations.
If these simulations are characterized by a high number of degrees of freedom, the creation
of the input dataset requires a lot of computational time. For this reason, is important to
rely on a method that enables to reduce the computational complexity of this process. In
particular, in this test case, I want to analyze the behaviour of the digital twin in the case
in which an inaccurate ROM is used to create the input dataset. I obtained this ROM
following the same procedure described in subsection 3.2.1, but selecting a tolerance equal
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to ϵPOD = 3×10−1; the resulting Galerkin RB model only features N = 5 basis functions.
The accuracy and computational time entailed by the ROM are reported in table 3.2.

FOM ROM

DOF 4547 5

Time 4.47× 10−1s 6.24× 10−3s

Error - 19.887 %

Table 3.2: Comparison between the performances and the accuracy of the FOM and the
Galerkin RB method with N = 5 basis.

As in the previous case, the computational times refer to the mean assembling and solving
time while the error is the relative error between the ROM and FOM solutions. This new
reduced order method is not accurate but features a very little computational cost indeed
it is two time faster than the ROM adopted in subsection 3.2.1 and 70 time faster than
the high fidelity FOM. Once I obtained this new reduced order model, I want to use it
to create the input dataset of the Dynamic Bayesian Network; in particular, I consider
the same physical asset described in 3.3.2, to compare how the ROM accuracy impacts
on the prediction results of the digital twin. In figure 3.9, I report the prediction results
for the health state of the beam in this new.

(a) Prediction of the state at tc = 30.
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(b) Prediction of the state at tc = 40.

Figure 3.9: Effects of an inaccurate ROM: estimated and predicted evolution of the health
state and prescribed ground truth model.

We can notice that the predictions and estimates are worse than those obtained in section
3.3.2. In particular, the first component of the health state vector z is overestimated for
all the simulations. In figure 3.10, I report the error on the estimation of the quantity of
interest.

(a) Error during simulation time interval

Figure 3.10: Effects of an inaccurate ROM: relative error between estimated quantities
of interest and their measured counterparts.

Therefore using a reduce order method to create the DBN input dataset is useful to
reduce the computational cost of the simulation; however, an accurate ROM is required
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to guarantee the performance of the digital twin in terms of estimation and evolution
prediction of the parameters affecting the digital state and the quantity of interest.

3.3.5. Test 5: poor calibration effects on DBN predictions

In this test case, I want to show how a bad calibration can affect the prediction and
the estimate results of the digital twin. This test case is useful because sometimes is
not possible to calibrate the parameters of the digital state. I suppose to have the same
physical asset described in section 3.3.2 so that I can compare the two results. In this test
case, the only parameter that has to be calibrated is the Young modulus scaling factor. I
suppose that the only information that I have on e is that its distribution is a Gaussian
distribution with mean equal to one and variance chosen in such a way the 95% credible
interval is equal to the 5% of variability. I create the input dataset by drawing 30 samples
from the prior distribution and using the RB Galerkin method described in section 3.2.1.
In figure 3.11, I report the results regarding the estimation and prediction of the health
state vector z.

(a) Prediction of the state at tc = 30.
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(b) Prediction of the state at tc = 40

Figure 3.11: Poor calibration effects: estimated and predicted evolution of the health
state and prescribed ground truth model.

We can see that a bad calibration does not influence on these results, indeed the prediction
obtained is very similar to the one shown in figure 3.5. In figure 3.12, I report the results
regarding the prediction of the displacement measured by the sensors.

(a) Prediction of the state at tc = 30.
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(b) Prediction of the state at tc = 40.

(c) Error during simulation time interval

Figure 3.12: Poor calibration effects: estimated, predicted evolution and measured values
of the quantity of interest with reference to two different current time steps and their
relative error.

We can therefore concludethat poor calibration does not negatively affect the estimate
and prediction of the z health state, but it only has a negative influence on the estimate
and prediction of the quantity of interest. In fact we can see that the uncertainty bands
in Figure 3.12 are much larger than those reported in Figure 3.6, where a more accurate
calibration was performed.
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In this chapter, I analyze a new test case involving a portal frame structure that is
excited by random forces, applied on its surface to mimic the action of low-intensity
seismic loads, such as ambient vibrations. The main difference between this new test case
and the previous ones is that I no longer consider a static case but a dynamic one. I
will use this test case to verify the performance of the Bayesian network in this dynamic
case where the forces corresponding to the different control actions are not known but are
instead random. Another substantial difference between this test case and the previous
ones lies in the choice of the quantity of interest considered: I no longer consider a directly
measured quantity such as stress or displacement, but indirect quantities such as the first
four eigenfrequencies.

4.1. Problem description

This test case consists in monitoring the health state of a four-story portal frame. This
structure has a total height h = 6m, length l = 0.3m and width w = 0.4m. I describe the
the response of the structure under the applied loading by solving the equation (1.14) in
a time interval (0,5 s) with a finite element method implemented in [19], in particular for
the time discretization I used the second order Newmark scheme choosing the coefficients
β = 0.25 and γ = 0.5 yielding an unconditionally stable method; for further details see
[20]. The equation (1.14) is solved homogeneous Dirichlet boundary condition on the
two faces resting on the ground, while a pressure condition h(y, t) = N(t)1{2.7 < y <

3}+2N(t)1{5.7 < y < 6}+3N(t)1{8.7 < y < 9}+4N(t)1{11.7 < y < 12} is imposed on
the right lateral face. The latter describes an activation function resulting in distributed
forces applied in correspondence of the four stories, with a modulation coefficient that
increases linearly with the height. N(t) is a Gaussian signal of mean 0 and variance 1,



58 4| An application: vibration-based structural health monitoring

which has been attenuated with a low-pass filter featuring a cutoff frequency of 20Hz.
The Lamè coefficients are computed considering a Young modulus equal to 30GPa and
a Poisson ratio equal to 0.2, while the density of the structure is equal to 2500Kg/m3.
Each time-step of the in time interval [0, T ] considered by the dynamic Bayesian network
corresponds to a 5 s simulation. To model the health state of this system I considered a
vector z of two components which represent the percentage of material stiffness reduction
of two of the ten zones located at the ends of the four stories, in proximity of the clamped
sides. Figure 4.1 shows the four-story portal frame and specifically highlights the zones
that could be damaged.

Figure 4.1: Four-story portal frame structure, the zones that could be damaged are
highlighted in red.

The structure is monitored by considering as quantity of interest the first four eignefre-
quencies of the structure instead of stress or displacement measurements. To compute
these quantities, I use the frequency domain decomposition method using the horizontal
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and vertical displacement signals measured by eight different sensors, as detailed in sub-
section 4.1.1. It is important to notice that in this new test case the input dataset for
the digital twin contains less data for each health state situation. Therefore, test case is
also useful to show how the performance and accuracy of the Bayesian network vary as a
function of the number of data it receives as input. In figure 4.2, I reported the four-story
frame in a deformed configuration.

Figure 4.2: Four-story frame displacement contour plot at time t = 5 s.

The final aim of this test case is to monitor the health state of this kind of frame using the
Bayesian network; to this aim, we need to parameterize the digital state Dt, which needs
to include geometrical, material, and health parameters. The digital state is described by
the following vector of parameters:

d =
[
l, h, w, n, e, z

]T
. (4.1)

Where l, h, w are geometrical parameters describing the dimensions of the frame, n is the
number of stories, e is a material parameter adopted to rescale the concrete Young’s mod-
ulus, and z is a vector of structural health parameters describing the health state of the
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structure as previously explained. Once again this vector of parameters is similar to the
one used in [14] except that now sensor masses are not considered since all measurements
are obtained from numerical experiments.

4.1.1. Frequency domain decomposition

In this new test case, as previously said, as quantity of interest I considered the firsts four
eigenfrequencies of the structure. These are computed with the frequency domain decom-
position method (FDD), a powerful method of modal analysis that enables to compute
the eigenfrequencies of a system knowing only its output. As an output-only algorithm,
it is useful when the input data is unknown like in this test case in which the input is a
random signal. The frequency domain decomposition is based on the SV D decomposi-
tion. In particular, the output of the system is rewritten as y(t) = Φq(t) where Φ is the
mode shape matrix; starting from this definition, we can compute the covariance of the
output and by taking its Fourier transform we can compute the spectral density matrix
evaluated at the frequency f , as follows:

Gyy(f) = ΦGqq(f)Φ
T . (4.2)

The FDD is a method based on the singular value decomposition of the spectral density
matrix, that reads as:

Gyy(f) = U(f)SV (f)T , with S = diag(s1, ..., sn), (4.3)

S is the diagonal matrix of singular values while U is the matrix of singular vectors. It is
important to remark that the singular vector matrices are a function of the frequency f .
Once the SVD decomposition of Gyy(f) is found, we can plot the singular values against
their corresponding frequency lines, and by picking the peak values we can estimate the
natural frequencies. Finally, the mode shape vectors are estimated from the singular vec-
tors corresponding to each identified natural frequency; for example, the mode associated
to the natural frequency f0 is computed as ϕ = u1(f0). For further details about the
frequency domain decomposition method see [4]. In figure 4.3, I report the plot of the
first singular values against frequency underling the firsts four peaks selected to find the
firsts four eigenfrequency.
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Figure 4.3: First singular value with red dots over the first four peaks selected.

As mentioned before, the output analyzed by the FDD method is a signal measured by
eight different sensors placed on the frame and capable of measuring both the vertical
and horizontal displacement of this structure. Specifically, I placed one sensor at the
midspan of each story, and an additional sensor at the extremity of each story, and four
more sensors near the areas where the force acts. It is also important to note that these
frequencies are not a directly measured quantity such as the displacement or the stress,
but are indirect quantities, so it is interesting to see how the Bayesian network will behaves
when receiving them as input data.

4.2. Calibration phase

In this section, I will describe how the calibration process of the parameters contained
in the vector d is carried out. As said before, this phase is crucial in order to have
a precise description of the physical asset and to obtain a digital twin at-scale. The
calibration phase is performed at the first time step of the digital twin simulation. As in
chapter 2 I adapted the code already exploited and developed in [12] to the four-stories
frame. This process is done at t = 0 when the frame has a good health state, z = 0;
by using observation coming from the physical state the other parameters contained in
d are calibrated. For what concern the geometrical parameters l, h, w, n, without any
measurement of these quantities I simply create the frame mesh fixing h = 6m, l = 0.3m,
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w = 0.4m and n = 4, so that only the Young modulus scaling factor e, which is related to
the material properties of the frame considered has to be calibrated. To this goal, as in [14],
I used a particle filter algorithm. The prior information of this parameter is a Gaussian
with unit mean and variance is chosen in such a way the 95% credible interval equal to 5%
of variability. To use the particles filter algorithm is crucial to find a relationship between
the Young modulus scaling factor and the elastic modulus k, proceeding as in Chapter 2,
the relationship found in this case is

k = 0.0012478e (4.4)

Then, the prior information update takes place using the particles filter algorithm with
105 particles, this number of particles is chosen in such a way the variance of the posterior
is smallest as possible. In figure 4.4, I reported the result of this algorithm, showing with
a blue line the prior and with a black line the posterior.

Figure 4.4: Prior and posterior distributions of the Young’s modulus scaling factor for
the frame test case.

Figure 4.4 reports the obtained posterior probability distribution, which is centered at
0.9927 (corresponding to a 0.73% reduction of e) and features a much reduced standard
deviation compared to the prior distribution. Once this parameter is calibrated, we have
to create the input dataset for the Bayesian network. In particular, we have to sample 30

values from the posterior distribution and for each of these samples the first four natural
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frequencies are computed using the FDD method, for each possible damage state z.

4.3. Operational phase

After having calibrated the parameters in d, the operational phase, where the components
of z are predicted, can start. As in the beam test case, the positions of the two regions
that can be damaged by the random force applied to the lateral face of the frame are
supposed to be known. These two zones are located in correspondence of ends of the first
two inter-planes and I suppose that the Young modulus of the other regions of the beam
remains unchanged. The nodes which characterize the Bayesian network for t > 0 are:

• Ot, the natural frequencies computed at time t using the FDD approach;

• Dt, the digital state at time t characterized by the parameters d;

• Qt, the quantity of interest which approximates the natural frequencies at time t;

• Ut, the action acted on the frame at time t.

At each timestep, Ut can be equal to h, which corresponds to the situation in which
a random signal stresses the frame, or it can be r, which corresponds to the situation
in which the frame is repaired and it returns to its original health state, z = 0. As
in Chapter 2, reward functions are not introduced and a policy is fixed. This policy
consists of repairing the frame, by taking the action r, in the case where at least one
of the two areas of interest has more than 30% damage; in all other cases, the random
surface force is assumed to act on the lateral face of the frame, so that the action h

is taken. It is important to remark that the test case considered is very different from
those considered previously; in fact, now the weight corresponding to the control action
h is not known and the quantity of interest considered is not measured directly by the
sensors placed on the frame, but it is an indirect quantity. In this test case, the health
state z represents the percentage of material stiffness reduction in two distinct zones, as
z = {0%, 20%, 40%, 60%} × {0%, 20%, 40%, 60%}; where the first component is referred
to the zone near the first story, while the second component is referred to the zone near
the second story. Φdynamics

t is defined in such a way that when the action h is played we
have a worsening probability equal to 0.05; instead when r is played, the frame returns
to the state z = 0 with probability one. Regarding the evolution of the health state
z, a step-wise ground truth model is considered, involving that when t > 5 the health
state of the two areas of interest increases by 20% every ten time steps. In figure 4.5, I
report the health state estimation and prediction results in a time simulation (0, 40); in
particular, I reported the estimated together with the prescribed health state dynamics
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and the predicted health state in future timestep. As prediction interval, an interval
(0, 10) is considered. We can see the accuracy of the Bayesian network is good, as small
uncertainties only arise when the action r is played. These results allow us to conclude
that the digital twin considered succeeds in predicting well the health status of the frame
even in the case where few data are observed, in fact only the first four natural frequencies
are considered, even if they are not directly measured quantities from the frame but are
indirect quantities.

(a) Prediction of the state at tc = 30.

(b) Prediction of the state at tc = 40.

Figure 4.5: Vibration-based structural health monitoring: estimated and predicted evo-
lution of the health state and prescribed ground truth model.

In figure 4.6, I report the results concerning the accuracy of the estimate and the prediction
of the first four natural frequencies. In this case, the prediction of these quantities turns
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out to be more affected by uncertainty; in fact, the confidence interval bands turn out to
be very large.

(a) Prediction of the natural frequencies at tc = 30.

(b) Prediction of the natural frequencies at tc = 40.

Figure 4.6: Vibration-based structural health monitoring: estimated, predicted evolution
and measured values of the quantity of interest with reference to two different current time
steps.

From these results, we can conclude that the Bayesian network can be used to estimate the
health state of a structure even in more complex cases where directly measured quantities
are not available, the force acting on the structure is not known, and in situations where
the transient period between the application of two forces is not neglected.
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developments

Through the tests proposed in this thesis, I wanted to investigate the accuracy and per-
formance of the Bayesian dynamical network proposed in [14] as a digital twin method.
As proved from the collected results, this method can be reliably used in several contexts
to estimate the health state of a structure. In particular, this strategy for building digital
twins has been used to estimate structural health parameters that could correspond to
specific causes of damage, for example, the length of a crack or the percentage reduction in
material stiffness in a zone of interest. As seen by the tests described in Sections 2.3.1 and
3.3.1, the probabilistic graphical model allows estimating the health state in both these
situations. Through these test cases, I also showed that the accuracy of this method is not
affected by the observation Ot it receives as input; in these test cases, different quantities
of interest such as Von Mises stresses, structural displacements, or the eigenfrequencies of
the monitored structure were indeed used. This allowed me to conclude that the method
works correctly whether we have directly observed quantities or indirectly observed quan-
tities.

The other goal of my thesis was to extend the range of applications of the Bayesian
network to more complex situations than the unmanned aerial vehicle (UAV) test de-
scribed in [14]. I wanted to study the behavior of this method in the case where more
than two control actions are applied. As reported in Section 2.3.3, the digital twin is
accurate even in the case where there are three control actions. In the UAV test, strong
hypothesis was stated, assuming to know the area of interest where the UAV health wors-
ened. In the test described in Section 3.3.3, I investigated the use of the Bayesian network
to locate this region of interest and to study the evolution of the parameters describing the
worsening of the structural health. I also investigated what happens if the health state of
the system is described by more than two parameters. In Section 2.3.4, I reported a case
in which the health state is described by three parameters, finding that the method is still
accurate. Among several attempts made, I also tried to consider more than three param-
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eters; however, the belief propagation algorithm did not converge in these cases and the
simulation of the digital twin crashed after a few timesteps. In the last test case reported
in section 4.3, I also demonstrated how this method can be used in a dynamical test case,
and when the control input applied on the structure is not known. The latter test case is
much more complex than the UAV test case in which the forces characterizing the control
action are known and the transient period between the application of two forces is ignored.

As we have seen in all these cases tests, before using the Bayesian network to estimate
the health parameters of the system, we had to calibrate the parameters that describe the
digital state using the particle filter algorithm. As we have seen in the test case reported
in Section 3.3.5 the calibration phase is crucial to obtain good estimates of the quantity
of interest. Once the calibration phase is carried out, we sample from the posterior dis-
tribution of the calibrated parameters, and for each of these samples, observations are
computed for each possible damage state and for each control action. Creating this input
dataset using numerical simulations can be very expensive from a computational point
of view. For example, to create the input dataset of the test described in Section 2.3.1,
960 simulations with a full order model would be required. To reduce the relative com-
putational burden, it is of key importance to introduce a suitable ROM. As we have seen
in Chapter 3, the combined use of Bayesian networks and reduce order models allowed
us to create the input dataset in a very short time, on the order of ten seconds, and to
perform a data augmentation on the input dataset, useful to ensure a greater accuracy
of the digital twin. It is important to remark that a fairly accurate ROM is required to
get accurate predictions from the DBN as we have seen in the test reported in Section 3.3.4.

The main problem of this method is that it has been reported so far to be not suitable
to estimate more than three parameters. It would therefore be interesting to investigate
how to design the Bayesian network in these cases. A further problem with this method
is that it is computational expensive to be used to estimate parameters that describe the
health state of a system in simulations where there are many time steps. In fact, the
time taken to calculate the joint probabilities increases with the increase of time steps.
The latter fact is due to the increase of the dimension of the considered graph with the
simulation time; indeed, at each time step new nodes representing the digital state, the
control action, the quantity of interest and the observation are added to the graph. In
figure 5.1, I report the behavior of the computational time required to compute the joint
probabilities varying the number of time step of the simulations for the test case described
in Section 3.3.1. In particular, the computational time at t = 41 is equal to 17.052 s, while
the computational time at the first time step is equal to 0.006 s.
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Figure 5.1: Computational time required by the Bayesian network to compute the joint
probabilities at different times of the simulation.

The computational time behavior features this trend because no real dynamic Bayesian
network is implemented in [12], but new nodes are added to the graph at each time step
and the belief propagation algorithm is then applied to this new graph. One possible
solution to improve the computational performance of the digital twin would be therefore
to implement a true dynamic Bayesian network and update the information contained in
the nodes referring to time t only by considering the nodes referring to time t− 1.

In conclusion, all the tests described in the present thesis allowed to show the strength
of dynamic Bayesian networks as enablers for digital twins. In the context of structural
health monitoring, this method allows to build digital twins at-scale starting from a few
input information such as the dimensions of the structure and its material properties.
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The general pseudocode for the belief propagation algorithm for a factor graph G(X,F ),
where X are the variable vertices and F are the factor vertices which represent the con-
ditional probabilities of the variable vertices, is as follows:

Algorithm A.1 Belief Propagation Algorithm
1: while not converged do
2: for all i ∈ X do
3: for all a ∈ N(i) do
4: if N(i) \ a = ∅ then
5: µi→a(xi) is set to the uniform distribution.
6: end if
7: compute message update µi→a(xi) =

∏
k∈N(i)\a µk→i(xi)

8: where N(i) is the set of neighboring factor nodes of i.
9: end for

10: end for
11: for all a ∈ F do
12: for all i ∈ N(a) do
13: if N(a) \ I = ∅ then
14: µa→i(xi) = fa(xi)

15: end if
16: update message µa→i(xi) =

∑
x′
a:x

′
i=xi

fa(x
′
a)
∏

v∗∈N(a)\i µv∗→a(x
′
i)

17: where N(a) is the set of neighboring variable nodes of a.
18: end for
19: end for
20: end while
21: The marginal distribution of each variable nodes is pxi

(xi) ∝
∏

a∈N(i) µa→i(xi)

22: The joint marginal distribution of the set of variables belonging to one factor is
pxa(xa) ∝ fa(xa)

∏
i∈N(a) µi→a(xi)



76 A| Appendix A

This algorithm is implemented in [25] in method predict_proba.
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In this appendix I report the algorithm used for compute the reduced basis using the
proper orthogonal decomposition presented in section 1.3.2.

Algorithm B.1 POD Algorithm
1: Compute ns snapshot using a FOM.
2: Fix a tolerance ϵPOD

3: if ns ≤ Nh then
4: Compute the correlation matrix C = STS.
5: Solve the eigenvalue problem Cψi = σ2

iψi.
6: Set ζi = 1

σi
Sψi

7: else
8: Compute the matrix K = SST .
9: Solve the eigenvalue problem Kζi = σ2

i ζi.
10: end if
11: Define N as the minimum integer such that I(N) ≥ 1− ϵ2POD.
12: Compute the matrix V = [ζ1|...|ζN ]

This algorithm is implemented in [19], in particular in my test cases I used the function
VPOD_basis_computation.
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