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Abstract

In the last decades, Reinforcement Learning (RL) has emerged as an effective approach to
address complex control tasks. The formalism typically employed to model the sequential
interaction between the artificial agent and the environment is the Markov Decision Pro-
cess (MDP). In an MDP, the agent perceives the state of the environment and performs
actions. As a consequence, the environment transitions to a new state and generates a
reward signal. The goal of the agent consists of learning a policy, i.e., a prescription of
actions, that maximizes the long-term reward.

In the traditional setting, the environment is assumed to be a fixed entity that cannot
be altered externally. However, there exist several real-world scenarios in which the envi-
ronment can be modified to a limited extent and, therefore, it might be beneficial to act on
some of its features. We call this activity environment configuration, that can be carried
out by the agent itself or by an external entity, such as a configurator. Although environ-
ment configuration arises quite often in real applications, this topic is very little explored
in the literature.

In this dissertation, we aim at formalizing and studying the diverse aspects of environ-
ment configuration. The contributions are theoretical, algorithmic, and experimental and
can be broadly subdivided into three parts.

The first part of the dissertation introduces the novel formalism of Configurable Markov
Decision Processes (Conf-MDPs) to model the configuration opportunities offered by the
environment. At an intuitive level, there exists a tight connection between environment,
policy, and learning process. We explore the different nuances of environment configura-
tion, based on whether the configuration is fully auxiliary to the agent’s learning process
(cooperative setting) or guided by a configurator having an objective that possibly conflicts
with the agent’s one (non-cooperative setting).

In the second part, we focus on the cooperative Conf-MDP setting and we investigate
the learning problem consisting of finding an agent policy and an environment configura-
tion that jointly optimize the long-term reward. We provide algorithms for solving finite
and continuous Conf-MDPs and experimental evaluations are conducted on both synthetic
and realistic domains.



The third part addresses two specific applications of the Conf-MDP framework: policy
space identification and control frequency adaptation. In the former, we employ environ-
ment configurability to improve the identification of the agent’s perception and actuation
capabilities. In the latter, instead, we analyze how a specific configurable environmental
parameter, the control frequency, can affect the performance of the batch RL algorithms.
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Sommario

Negli ultimi decenni, l’Apprendimento per Rinforzo (Reinforcement Learning, RL) è emer-
so come un approccio efficace per affrontare complessi problemi di controllo. Il formali-
smo che viene solitamente impiegato per modellare l’interazione sequenziale tra l’agente
artificiale e l’ambiente è il Processo Decisionale di Markov (Markov Decision Process,
MDP). In un MDP, l’agente percepisce lo stato dell’ambiente e compie delle azioni. Come
conseguenza, l’ambiente evolve in un nuovo stato e genera un segnale di ricompensa. L’o-
biettivo dell’agente consiste nell’apprendere una politica, cioè una prescrizione di azioni,
che massimizza la ricompensa di lungo periodo.

Tradizionalmente, l’ambiente è considerato un’entità fissa che non può essere alte-
rata dall’esterno. Tuttavia, esistono numerosi scenari reali in cui l’ambiente può essere
modificato in modo limitato e, pertanto, può risultare conveniente agire su alcune delle
sue proprietà. Chiamiamo questa attività configurazione dell’ambiente, che può essere
effettuata dall’agente stesso o da un’entità esterna, come un configuratore. Nonostante
la configurazione dell’ambiente emerga piuttosto frequentemente nelle applicazioni reali,
questo argomento è esplorato molto poco nella letteratura.

In questa dissertazione, intendiamo formalizzare e studiare i vari aspetti della confi-
gurazione dell’ambiente. I contributi sono teorici, algoritmici e sperimentali e possono
essere suddivisi, a grandi linee, in tre parti.

La prima parte della dissertazione introduce il nuovo formalismo dei Processi Decisio-
nali di Markov Configurabili (Configurable Markov Decision Processes, Conf-MDPs) per
modellare le opportunità di configurazione offerte dall’ambiente. A livello intuitivo, esiste
una stretta connessione tra ambiente, politica e processo di apprendimento. Esploriamo le
diverse sfumature della configurazione dell’ambiente, a seconda che la configurazione sia
esclusivamente ausiliaria al processo di apprendimento dell’agente (contesto cooperativo)
o sia guidata da un configuratore con un obiettivo eventualmente conflittuale con quello
dell’agente (contesto non cooperativo).

Nella seconda parte, ci concentriamo sui Conf-MDP cooperativi e investighiamo il
problema di apprendimento che consiste nel trovare una politica dell’agente e una confi-
gurazione dell’ambiente che congiuntamente ottimizzano la ricompensa di lungo periodo.



Forniamo algoritmi per risolvere Conf-MDP finiti e continui e valutazioni sperimentali
condotte sia in domini sintetici che realistici.

La terza parte affronta due specifiche applicazioni dei Conf-MDP: l’identificazione
dello spazio delle politiche e l’adattamento della frequenza di controllo. Nel primo ca-
so, facciamo uso della configurabilità dell’ambiente per migliorare l’identificazione delle
capacità di percezione e attuazione dell’agente. Nel secondo caso, invece, analizziamo co-
me uno specifico parametro configurabile dell’ambiente, la frequenza di controllo, possa
impattare sulla performance degli algoritmi di RL batch.
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CHAPTER1
Introduction

Machine Learning (ML) is rapidly becoming pervasive in our world. Nowadays, we are
constantly inundated by huge amounts of data coming from an always growing spectrum
of sources: newspapers, radio, television, websites, social networks. In the meantime,
we have at our disposal powerful computational tools that we bring with us wherever we
go: smart-phones, tablets, computers. Data and information, as its refinement, are at the
basis of any decision-making process. Everyday we make decisions based on the avail-
able information. Clearly, as information is essential for this process, in the meantime,
an overload of information might be dangerous as well. Today, more than ever, the effec-
tive employment of information for decision-making has become a strategic goal; for the
governments, clearly, but also for ordinary people.

Considered the huge amount of data in play, that cannot be managed by human be-
ing, at least in its crude form, we must resort to automatic, algorithmic, methods. ML
provides suitable tools for this purpose. Tom M. Mitchell defined ML as “the study of
computer algorithms that allow computer programs to automatically improve through ex-
perience” (Mitchell, 1997). We immediately notice that the main character of this process
is a computer, or, using a more technical lexicon, an artificial agent. This definition im-
plicitly depicts the mechanism at the basis of the mentioned improvements: the presence
of experience, i.e., fresh information, that triggers a process of learning. Learning is at the
basis of the biological and intellectual development of any living being and experience is
the engine of this process. Therefore, ML is in all respects a part of Artificial Intelligence
(AI). The peculiar feature of ML is the constant presence of data. Data are usually gen-
erated by natural or artificial processes that are typically affected by noise. Consequently,
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the learning process is intrinsically performed under uncertainty. This makes probability
and statistics reference tools for ML, which is sometimes referred to as statistical learn-
ing (Hastie et al., 2009) to highlight this connection.

From a taxonomic point of view, ML paradigms can be subdivided into three cate-
gories, based on the fundamental features of the problem they address. Supervised learn-
ing aims at mapping data (input) to a value (output or target), that can be either a symbol
or a real value. The learning process involves observing a training dataset of input-output
pairs with the goal of inferring the pattern hidden in the dataset (Bishop, 2007; Mohri
et al., 2012). Within supervised learning, we can distinguish between regression if the
output is a real number or classification if, instead, the target is a class from a finite set.
Supervised learning is probably the most widespread and developed area of ML. Examples
of successful applications are image classification (Lu and Weng, 2007), which has nowa-
days overcome the human performance, recommendation systems (Bobadilla et al., 2013),
hand-written recognition (Puigcerver, 2017), to mention a few. Another paradigm of ML
is unsupervised learning, whose goal consists in identifying patterns in the data without
having a target value to predict (Ghahramani, 2003). Examples of unsupervised learning
tasks are clustering (Xu and Tian, 2015), anomaly detection (Chandola et al., 2009), and
latent variable models (Skrondal and Rabe-Hesketh, 2007). Finally, the third area of ML is
Reinforcement Learning (RL, Sutton and Barto, 2018), where the high-level goal consists
of learning a sequence of decisions in an unknown environment, so as to maximize some
utility function. Thus, while in supervised and unsupervised learning there is no notion
of sequentiality, as the decision is one-shot and it has no consequences on the future, in
RL the sequential nature of the interaction is essential. In a sense, RL takes a perspective
that is closer to classical AI (Russell and Norvig, 2010) in which the presence of an agent
performing decisions is explicit, while in the other paradigms the role of the agent tends
to be more blurred. Finally, we can look at RL as the most general ML setting, since both
supervised and unsupervised learning can be reduced to it.

1.1 What is Reinforcement Learning?

When we think of the process of learning for human beings, we realize that interaction
with the surrounding environment plays a crucial role. Human beings acquire abilities
in different ways, but all of them involve a certain degree of interaction with either the
external environment or other agents (biological or artificial). A baby, an example of
a biological agent, learns how to walk in a trial and error fashion. They try the first
movement and then they likely fall down, so they try another one and, sooner or later, they
manage to stay upright. No teacher is, in principle, needed in this process, as the effects
of the movement are associated with a feedback signal (falling down or staying upright)
that tells the baby whether it was profitable or not. This feedback triggers an adjustment
in the behavior and, hopefully, over multiple trials, leads to the realization of the ultimate
goal of walking. Thus, as supported by intuition, exercising the connection between the
agent and the environment helps the former to figure out, and consequently exploit, the
causal relations linking the actions to their effects in the specific environment. Clearly,
numerous and diverse examples of analogous learning processes carried out by human
beings exist, such as learning how to drive a car, how to play chess, or how to cook a cake.
All of them are characterized by the same basic ingredients: an agent interacting with an
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environment and a feedback signal evaluating the success of the actions the agent plays.
These elements constitute the fundamental elements of RL. The term reinforcement was
introduced for the first time in behavioral psychology and defined by Burrhus F. Skinner as
“a consequence applied that will strengthen an organism’s future behavior whenever that
behavior is preceded by a specific antecedent stimulus” (Skinner, 1938; Schultz, 2015).

In this dissertation, we take the AI perspective and we focus on RL as the “compu-
tational approach to learning from interaction” (Sutton and Barto, 2018). The entities
involved are the (artificial) agent and the environment. The agent is characterized by some
perception and actuation capabilities. The perception defines the ability to measure the
state of the environment. Thus, the perceived (or observed) state can be either the com-
plete internal environment state, in this case, we speak of full observability, or an obser-
vation hiding some features, i.e., we are in a partially observable setting. The actuation
possibilities, instead, are concerning the ability to perform actions on the environment.
Whenever an action is played, it produces an evolution of the environment state and the
agent is provided with a feedback signal, the immediate reward. According to the AI ter-
minology, the agent is goal-directed, i.e., it acts with the purpose of finding the proper
actions, so as to maximize some utility function. In RL, such a utility function is defined
as a notion of long-term reward, i.e., the cumulative (possibly discounted) sum of the
immediate rewards collected during the agent’s experience. This closed-loop interaction,
despite being a simplification of the one actually carried out by biological agents, is suffi-
ciently expressive to model numerous interesting real-world situations, such as controlling
an industrial robot (Meyes et al., 2017; Gu et al., 2017), autonomous driving (Kiran et al.,
2020), playing videogames (Mnih et al., 2013, 2015), robotic locomotion (Haarnoja et al.,
2019).

1.2 Why Environment Configurability?

Besides the remarkable success demonstrated in recent years, RL appears to be deeply
rooted in the definition of the environment as an immutable entity out of any control. In
the traditional model, the agent can indirectly control the environment by means of the
performed actions, but cannot directly change the environment dynamics. This is certainly
true in a large number of applications, although we can identify a huge number of examples
in which a “partial control” on the environment can be exercised.

For instance, a human car driver has at their disposal a number of possible vehicle con-
figurations they can act on (e.g., seasonal tires, stability, vehicle attitude, engine model,
automatic speed control, and parking aid system) to improve the driving style or quicken
the process of learning a good driving policy. Another example is the interaction between
a student and an automatic teaching system: the teaching model can be tailored to improve
the student’s learning experience (e.g., increasing or decreasing the difficulties of the ques-
tions or the speed at which the concepts are presented). It is worth noting that the active
entity in this configuration process might be the agent itself or an external supervisor (or
configurator) guiding the learning process. Another example is product placement in a
supermarket. A supervisor can dynamically adapt where to place the products in order
to maximize customer satisfaction. Differently from the previous examples, it might be
possible that the configurator (e.g., the supermarket staff) has a goal that is different from
that of the agent (e.g., the customer). Similarly, a street network could be configured, by
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changing the semaphore transition times or the direction of motion. The goal of the net-
work designer is to limit/control the average traffic, whereas the drivers try to reduce their
journey time. A similar setting arises in the project of a website in which the user desires
to find the information they need as fast as possible, whereas the website owner wants to
orientate the user towards specific pages or contents.

In all these scenarios, whenever altering some portions of the environment or some en-
vironmental parameters is allowed, we speak of environment configurability. Environment
configuration arises in several real-world scenarios, with different objectives, involving
different levels of cooperation and competition between agents and configurators. There-
fore, we believe, the nature of this kind of interaction deserves additional study and this
dissertation pursues this high-level goal. Before presenting the concrete contribution of
the dissertation, we briefly discuss why, in our opinion, the models already employed in
the literature turn out to be inappropriate to capture the peculiarities of environment con-
figurability.

Why not a unique agent? Representing the environment configurability in the agent’s
model when the environment is under the control of an external configurator is certainly
inappropriate. Even when the environment configuration is carried out by the agent itself,
this approach would require the inclusion of “configuration actions” to allow the agent
to configure the environment directly as a part of its policy. However, the configuration
activity cannot be placed at the same level as the agent’s learning process. Configuring
the environment may be more expensive and dangerous than updating the agent’s policy
and may occur on a different time scale w.r.t. the agent’s learning process. Moreover, such
a formulation would prevent distinguishing, during the process, the effects of the policy
from those of the environment, making it difficult to finely constrain the configurations,
and recovering, a posteriori, the agent’s policy.

Why not a multi-agent system? When there is no supervisor, the agent is the only
learning entity and the environment is completely passive. Even, in the presence of a
supervisor, adopting a multi-agent approach would be misleading and would certainly in-
troduce a complexity that is not needed. The supervisor acts externally, at a different level
and could be, possibly, totally transparent to the learning agent. Indeed, the supervisor
does not operate inside the environment but it is in charge of selecting a suitable configu-
ration, based on its interests (and possibly on those of the agent), whereas the agent has to
learn an optimal behavior in the given environment. In this sense, the configurator could
be thought of as an agent in a hierarchical multi-agent RL problem (Ghavamzadeh et al.,
2006). Nevertheless, this framework introduces additional issues related to communica-
tion and cooperation, that are not considered in our Conf-MDP.

1.3 Original Contributions

This dissertation pursues essentially three goals, that correspond to the three parts in which
it is subdivided. First, we aim at formalizing the notion of environment configurabil-
ity, study its properties, and provide suitable solution concepts. Second, we address the
learning problem, i.e., the problem of finding an optimal agent’s policy and environment

4
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configuration. Third, we study some applicative scenarios in which environment config-
urability plays a central role. In the following, we survey the main contributions of the
three parts of the dissertation.

1.3.1 Modeling Environment Configurability

The first part of the dissertation (Part I) is devoted to the formalization of environment con-
figurability and represents mainly a theoretical contribution. We propose a novel extension
of the traditional Markov Decision Process (MDP, Puterman, 2014), named Configurable
Markov Decision Process (Conf-MDP), in order to properly represent the configurability
possibilities of the environment. We extend the traditional tools for MDPs to Conf-MDPs,
including value functions, and we propose suitable Bellman operators and the correspond-
ing Bellman equations.

Then, we devise a taxonomy for the Conf-MDPs, according to the properties of the
interaction between the agent and the configurator. Specifically, we identify different set-
tings based on whether the agent is aware of the configurator presence and whether their
objectives coincide. This latter distinction reveals two wide settings that characterize the
interaction between the agent and the supervisor: the cooperative and the non-cooperative
setting.

For the cooperative setting, we introduce the optimality conditions which define when
an agent’s policy together with an environment configuration can be considered optimal.
Moreover, we show that this setting can be reduced to a standard MDP and, thus, it inherits
most of the properties of the traditional case, including the existence of an optimal policy
and environment configuration pair.

Then, we focus on the non-cooperative setting in which defining a notion of optimality
is less immediate. Indeed, when the configurator has a goal that is different from that of the
agent, we need to resort to game-theoretic equilibria in order to obtain a suitable solution
concept. Depending on whether the agent is aware of the supervisor, we propose to employ
different equilibria (Shapley, 1953). For both settings, we present the corresponding value
functions and, whenever possible, we discuss the extensions of the Bellman operators and
equations.

1.3.2 Learning in Cooperative Configurable Markov Decision Pro-
cesses

In the second part of the dissertation (Part II), we focus on the cooperative Conf-MDP
setting and we study the learning problem consisting of finding an agent’s policy together
with an environment configuration so as to maximize the long-term reward. This part
represents primarily an algorithmic and experimental contribution.

We start with the simpler setting in which the environment is characterized by a finite
state-action space. We propose a learning algorithm, Safe Policy Model Iteration (SPMI),
inspired by the safe learning approaches to RL (Kakade and Langford, 2002; Pirotta et al.,
2013b), that updates the policy and the environment configuration based on the maximiza-
tion of a lower bound on the performance improvement. This way it is possible to derive
strong theoretical guarantees on the performance gain between two consecutive iterations.
We present an experimental evaluation on two illustrative domains, inspired by the mo-

5
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tivating examples of Conf-MDPs, to show the advantages of environment configuration
over traditional fixed-environment learning.

Then, we move to the continuous environment case and we devise an approach, able
to overcome the main limitations of SPMI, i.e., the need for knowing the environment
model and the fact that it can be applied to finite state-action problems only. The new
algorithm, Relative Entropy Model Policy Search (REMPS) lies in the family of trust-
region methods (Schulman et al., 2015) and extends REPS (Peters et al., 2010) to account
for environment configuration learning. REMPS looks for the stationary distribution that
maximizes the long-term reward, by constraining the search in a neighborhood of the
current sampling distribution. We empirically evaluate REMPS on both synthetic and
realistic domains, including an experiment for the car configuration task, built on top of
the TORCS simulator (Loiacono et al., 2010).

1.3.3 Applications of Configurable Markov Decision Processes

The last part of the dissertation (Part III) is dedicated to the study of two applicative sce-
narios in which environment configuration can play a relevant role. This part includes
algorithmic, theoretical, and experimental contributions.

The first application we examine is policy space identification, i.e., the problem of
identifying the space of policies that an agent can access during the learning process. The
notion of optimal policy, in a learning process, it tightly connected to the agent’s perception
and actuation possibilities, combined with its ability to map states to actions. Knowing
the agent’s policy space can be particularly convenient when environment configuration
is possible. Indeed, agents optimizing the same objective but having access to different
policy spaces might benefit from different environment configurations. We propose two
identification rules based on likelihood ratio testing (Barnard, 1959; Casella and Berger,
2002) to identify the policy parameters an agent can access. Environment configurability is
also exploited to place the agent in a suitable configuration in which it is induced to reveal
the parameters it can access. Empirical results to validate the approach are presented as
well as applications on Conf-MDPs and Imitation Learning (IL, Osa et al., 2018).

The second application we explore is the control frequency adaptation. RL prob-
lems are typically formulated as discrete-times problems, but often derive from the time
discretization of continuous-time ones. Thus, the control frequency is a relevant design
choice and can be considered an environmental parameter that can be configured. We ad-
dress the setting in which we are provided with a finely discretized MDP and we model the
reduction of the control frequency as the repetition of an action for a fixed amount of con-
secutive steps, called persistence. We show how varying the persistence affects the agent’s
performance. Then, we provide an algorithm, Persistent Fitted Q-Iterations (PFQI), in-
spired to FQI (Ernst et al., 2005), able to learn the value function at different persistences
and we propose a heuristic persistence selection method. PFQI is evaluated on benchmark
domains as well as in a realistic trading environment.

This dissertation reports the content of four research papers. Three of them are pub-
lished at ICML (International Conference on Machine Learning) and one is currently un-
der review for Machine Learning (Springer). Table 1.1 reports the list of papers, including
the publication venue, the link to the paper, the link to the code, and the contributions
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of the author of this dissertation. Throughout the dissertation, we decided to focus the
presentation on the methodological aspects, favoring the theoretical and algorithmic con-
tributions. To make the presentation fluid, we decided not to include some material related
to experimental evaluations that were instead provided in the original papers, but we report
suitable references whenever necessary.

1.4 Overview

The dissertation is organized in three parts that are preceded by two chapters that intro-
duce the foundations of sequential decision-making and reinforcement learning. These
chapters must not be intended to provide an exhaustive overview of the topic, but just as
an introduction, tailored to the needs of the subsequent chapters. We conclude the disser-
tation with a chapter that provides a discussion on the research contributions and on future
directions. The detailed organization of the dissertation is described in the following.

• Chapter 2 introduces the fundamental notions of sequential decision-making, in-
cluding the definition of Markov Decision Process (Puterman, 2014), policy, value
functions, Bellman operators, and Bellman equations (Bellman, 1957). We discuss
the optimality criteria employed for MDPs and we provide a brief overview of the
exact solution methods.

• Chapter 3 provides a background on a selection of RL algorithms (Sutton and Barto,
2018), whose knowledge is essential to understand the subsequent chapters. We fo-
cus on temporal difference methods (Watkins and Dayan, 1992), approximate value
and policy iteration (Munos, 2003; Scherrer, 2014), and policy search (Deisenroth
et al., 2013).

Part I: Modeling Environment Configurability

This part aims at analyzing how to model the configuration opportunities offered by the
environment and discuss the solution concepts suitable for the different natures of interac-
tion between the agent and the configurator. Specifically, the contributions are organized
in two chapters.

• Chapter 4 provides the motivations behind environment configuration, introduces
the definition of Configurable Markov Decision Process and extends the notions of
value function, Bellman operators, and Bellman equations to the new framework.
Then, it provides a taxonomy for the Conf-MDPs and it concludes with a survey of
the frameworks and approaches that share some similarities with the Conf-MDPs.
Some parts of the chapter, especially the definition of Conf-MDP and a portion of
the literature review, appeared in a preliminary version in Metelli et al. (2018a),
whereas the remaining part is a novel contribution of this dissertation.

• Chapter 5 is devoted to the presentation of the solution concepts for Conf-MDPs.
The chapter is conceptually organized in two sections that correspond to the coop-
erative and non-cooperative settings respectively. For both of them, we introduce
the optimality conditions, present the value functions, Bellman operators, and Bell-
man equations and we discuss, whenever possible, the existence of optimal policies

7
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and environment configurations. Besides the optimality condition for the coopera-
tive setting that was already presented in Metelli et al. (2018a), the content of this
chapter is a contribution of the dissertation.

Part II: Learning in Cooperative Configurable Markov Decision Processes

This part is devoted to the study of the learning problem in cooperative Conf-MDPs, i.e.,
the problem of learning an optimal policy together with an optimal environment configu-
ration. The content of this part is organized in two chapters.

• Chapter 6 focuses on the learning problem in finite Conf-MDPs. The content of
the chapter is derived from Metelli et al. (2018a), although in this dissertation we
provide an improved derivation of the learning algorithm.

• Chapter 7 addresses the learning problem in continuous Conf-MDPs as well as the
problem of estimating the effects of the configurable parameters on the environment
dynamics. The results presented in this chapter appeared in Metelli et al. (2019a).

Part III: Applications of Configurable Markov Decision Processes

This part addresses two applications in which the Conf-MDPs play an important role:
policy space identification and control frequency adaptation. Specifically, the material of
this part is organized in two chapters.

• Chapter 8 analyzes the problem of the identification of the policy space accessible
to a learning agent, by observing its behavior in a configurable environment. A
preliminary version of the content of this chapter appeared in the preprint Metelli
et al. (2019c), but we include a more detailed comparison with the existing work as
well as additional experiments in the imitation learning setting.

• Chapter 9 studies the problem of adapting the control frequency of a system, an
environmental parameter that can be externally configured. We analyze the effect
of changing the control frequency on the agent’s performance and we apply this
finding in the batch RL setting. The content of this chapter is derived from Metelli
et al. (2020a).

• Chapter 10 revises the contributions of the dissertation, pointing out the main limi-
tations of the present work, and proposing directions for future research.

In Appendix A, we report some additional results and the proofs we omit in the main text
of the dissertation. In Appendix B, we present some properties of the policies belonging
to the exponential family.
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CHAPTER2
Foundations of Sequential Decision-Making

2.1 Introduction

In Chapter 1, we have introduced informally the main elements at the basis of any RL
problem: an artificial agent interacts with an environment by performing actions and sens-
ing observations. The agent’s learning process is guided by the reward signal and the
agent’s goal consists of finding a prescription of actions so as to maximize the long-term
reward. The mathematical tool used to model this kind of interaction is the Markov Deci-
sion Processes formalism (MDP, Puterman, 2014). This chapter is devoted to the presen-
tation of the fundamental elements of the sequential decision-making problems that will
be employed in the subsequent chapters of the dissertation. For an extensive review of the
numerous aspects of RL, we refer the reader to the Sutton and Barto’s book (Sutton and
Barto, 2018) and to the monographs (Szepesvári, 2010; Agarwal et al., 2019).

RL is intimately different, and arguably more challenging, than other machine learning
paradigms, like supervised learning (Mitchell, 1997; Bishop, 2007). In (online) supervised
learning, whenever a decision (e.g., a predicted label) is issued, immediate feedback is re-
ceived and the goal is to optimize that feedback (e.g., minimize the classification error).
The decision only determines the immediate feedback and it does not influence the subse-
quent ones or the corresponding feedback (Cesa-Bianchi and Lugosi, 2006). Instead, in the
typical RL setting the effect of an action determines not only the immediate reward, but it
affects the distribution of the subsequent states. Thus, RL deals with sequential decision-
making problems. As a consequence, to learn an optimal action prescription (a policy in
the RL terminology) an agent has to plan, being aware that the chosen actions might re-
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alize their relevant consequences in the future. Indeed, since the ultimate goal consists
in optimizing the long-term reward, it might be convenient to sacrifice some immediate
reward because this choice will lead, in the future, to more profitable states (Sutton and
Barto, 2018).

Any approach addressing the RL problem cannot disregard the way the environment
evolves as an effect of the actions the agent plays, i.e., the environment dynamics. When
the environment dynamics (and also the immediate reward) is known to the agent, finding
an optimal policy can be addressed by means of Dynamic Programming (DP, Bellman,
1957). However, in most of the scenarios of interest, the environment dynamics is either
unknown or captured by complex models (e.g., fluid dynamic models) that are computa-
tionally expensive to employ in practice. For these reasons, the RL algorithms need to
figure out the environment dynamics by either modeling it directly or learning its effects
implicitly. In both cases, in order to perform a modification in its behavior, the agent has
to collect sufficient information to understand the environment dynamics. Thus, the agent
faces the well-known exploration-exploitation dilemma, that formalizes the coexistence of
two conflicting propensities. On one hand, the agent should explore the environment to
understand the effects of its actions. Intuitively, this suggests that the agent should visit
every state and try every action indefinitely. However, on the other hand, to make the
learning process converge to an optimal policy, exploration should be stopped, or progres-
sively decreased, in favor of exploitation. Indeed, the agent needs to make use sooner or
later, or exploit, the acquired knowledge to play what is believed to be an optimal action.
When to stop exploration and begin exploitation or how to optimally mix the two phases
is one of the most significant challenges of RL (Lattimore and Szepesvári, 2020).

Chapter Outline The chapter is organized as follows. In Section 2.2 we formalize the
notion of Markov decision process and policy. Sections 2.3 and 2.4 are devoted to the pre-
sentation of the Markov reward process and Markov chains obtained by paring an MDP
with a policy. Then, in Section 2.5, we introduce the performance indexes used to for-
malize the intuitive notion of long-term reward. Section 2.6 is dedicated to the value
functions, the corresponding Bellman equations and operators for the discounted setting.
In Section 2.7, we present the optimality conditions for the discounted setting, along with
the optimal value functions and operators. We conclude in Section 2.8 with a brief presen-
tation of the methods to solve discounted MDPs when the environment dynamics and the
reward are known.

2.2 Markov Decision Processes

The interaction between an agent and an environment, in a sequential decision-making
problem, is typically modeled by means of the Markov Decision Process (MDP, Puterman,
2014) formalism. We restrict our attention to the case of discrete-time infinite-horizon
MDPs (Puterman, 2014), in which the time line is modeled as a discrete set of time in-
stants, called decision (time) steps.1 In each decision step, the agent perceives the state of
the environment and it is required to perform an action. As an effect of the action, the en-
vironment evolves, according to its dynamics, into a new state and provides the agent with
a real feedback, the immediate reward. The goal of the agent is to execute a prescription

1We will mention continuous-time MDPs (Doya, 1995) in Chapter 9.
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of actions, called policy, so as to maximize a notion of long-term reward, that encodes the
sequential nature of the task.

The RL literature has extensively studied the MDP framework (e.g., Bertsekas and
Tsitsiklis, 1996; Bertsekas, 2005). The terminology was introduced for the first time
in Bellman (1954) and the model components defined in Bellman (1957). Subsequently, a
number of diverse formalizations have been proposed (e.g., Dubins et al., 2014; Blackwell,
1965). We present the following definition that trade-offs generality and accessibility.

Definition 2.1 (Markov Decision Process). A discrete-time infinite-horizon discounted
Markov Decision Process (MDP) is a 6-tuple M “ pS,A, P, µ0, R, γq where:

• pS,FSq is a non-empty measurable space called state space;

• pA,FAq is a non-empty measurable space called action space;

• P : S ˆAÑ PpSq is the transition model, that for every state-action pair ps, aq P
S ˆA assigns a probability measure P p¨|s, aq over the measurable space pS,FSq;

• µ0 P PpSq is the initial state distribution, that assigns probability measure over the
measurable space pS,FSq;

• R : S ˆ A ˆ S Ñ PpRq is the reward model, that for every state-action-state
triple ps, a, s1q P S ˆ A ˆ S assigns a probability measure Rp¨|s, a, s1q over the
measurable space pR,BpRqq;

• γ P r0, 1s is the discount factor.

For a complete and formal review of the MDP models refer to the distinguished Puter-
man’s book (Puterman, 2014). In the following, we describe the components of our MDP
definition.

State and Action Spaces The perception and actuation capabilities of the agent are mod-
eled by means of the state space S and the action space A respectively, that can be either
finite, countable infinite, or continuous.2

Environment Dynamics The dynamics of the environment is encoded in the transition
model P p¨|s, aq that for each state-action pair ps, aq P S ˆ A provides the probability
distribution of the next state s1 P S when playing action a in state s. Unlike several
authors (e.g., Puterman, 2014), we included in Definition 2.1, the initial state distribution
µ0 that provides the probability distribution of the initial state, i.e., the state at which the
process is initialized. Whenever necessary, we will assume that P p¨|s, aq and µ0 admit a
probability density function w.r.t. to the Lebesgue measure denoted with pps1|s, aq, µ0psq
for all ps, a, s1q P SˆAˆS respectively. It is worth noting that the environment dynamics
fulfills the Markov property, i.e., the distribution of the next state s1 is a function of the
current state s and action a only and it is independent of the past.3

2In Definition 2.1, we did not specify explicitly the σ-algebras FS and FA. If S is finite or countable infinite
we can choose the power set as σ-algebra, i.e., FS “ 2S . If instead S is a topological space, like Rd, we can
resort to the Borel σ-algebra, i.e., FS “ BpSq. Analogous considerations hold for FA. Sometimes we need
a σ-algebra defined over the state-action space FSˆA. In such a case, we can use the tensor-product σ-algebra

13



Chapter 2. Foundations of Sequential Decision-Making

Agent

Environment

Action At

Reward Rt+1

State St+1

State St

Figure 2.1: Graphical representation of the interaction between an agent and an environ-
ment.

Reward Function The reward generation process is governed by the reward model
Rp¨|s, a, s1q that provides the probability distribution of the reward when playing action
a P A in state s P S and landing to state s1 P S. We define the reward function
r : S ˆ A ˆ S Ñ R as the expected reward received when performing action a P A
in state s P S and landing to stats s1 P S:

rps, a, s1q “

ż

R
rRpdr|s, a, s1q.

Sometimes it is convenient to define the reward function by computing an expectation over
the next state too.4 The (next-state) expected reward function rP : S ˆAÑ R is defined
for every state-action pair ps, aq P S ˆA as:

rP ps, aq “

ż

S
P pds1|s, aqrps, a, s1q.

With negligible overloading of notation, we remove the superscript P , writing simply
rps, aq. A typical assumption that is widely employed in the RL literature is that the
reward function is uniformly bounded.

Assumption 2.1 (Uniformly Bounded Reward). The reward function is uniformly bounded,
i.e., there exists a finite constant Rmax P Rą0 such that:

}r}8 “ sup
ps,a,s1qPSˆAˆS

t|rps, a, s1q|u ď Rmax.

Interaction The interaction between the agent and the environment starts at decision
step t “ 0 from state S0 „ µ0, i.e., sampled from the initial state distribution µ0. For each
decision step t P N, the agent selects an actionAt P A that is executed in the environment.

FSˆA “ FS b FF.
3More formally, a discrete-time stochastic process pXtqtPN , defined on a measurable space pX ,FX q and

adapted to the filtration pFtqtPN satisfies the Markov property if for every t P Ně1 and for every measurable set
U P FX it holds that (Durrett, 2010) P rXt P U |Fts “ P rXt P U |Xt´1s.

4For the MDPs, this simplification is w.l.o.g. for all the performance indexes since the transition model P is
fixed. We will see that in Conf-MDPs, in which P can be modified, considering rps, aq instead of rps, a, s1q
may lead to trivial solutions.
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As a result of the action execution, the environment transitions to the next state according
to the transition model St`1 „ P p¨|St, Atq and provides the agent with the immediate
reward generated by the reward model Rt`1 „ Rp¨|St, At, St`1q and then the process
is repeated. We restrict our attention to infinite-horizon MDPs, i.e., we assume that this
interaction continues indefinitely. A state s P S is called terminal (or absorbing) if no
other states can be reached from s and all actions provide zero reward, i.e., P p¨|s, aq “ δs
and Rp¨|s, a, sq “ δ0 for every a P A. An MDP that contains a terminal state that is
reachable with non-zero probability from any state is called episodic. Figure 2.1 illustrates
the interaction for a single decision step.

Histories This interactive process generates a sequence of states, actions, and rewards.
We define a state-ending history of length T P N as a sequence of T state-action-reward
triples followed by one state:

h “ ps0, a0, r1, . . . , sT´1, aT´1, rT , sT q P HS,T ,

where HS,T “ pS ˆAˆ RqT ˆ S is the set of all state-ending trajectories of length
T . Similarly, we define an action-ending history of length T P N as a sequence of T
state-action-reward triples followed by one state-action pair:

τ “ ps0, a0, r1, . . . , sT´1, aT´1, rT´1, sT , aT q P HA,T ,

where HA,T “ pS ˆAˆ RqT ˆSˆA is the set of all action-ending trajectories of length
T .5

Trajectories We can push the definition of history to infinity by introducing an (infinite-
length) trajectory as an infinite sequence of state-action-reward triples:

τ “ ps0, a0, r1, s1, a1, r2 . . . q “ pst, at, rt`1qtPN P T ,

where T “ pS ˆ A ˆ RqN is the set of all infinite-length trajectories. Given a discount
factor γ P r0, 1s we define the return function Gγ : T Ñ R for every trajectory τ “
pst, at, rt`1qtPN as the discounted sum of the rewards collected in the execution of τ :

Gγpτq “
8
ÿ

t“0

γtrt`1.

Given a trajectory τ P T , for every t1, t2 P N with t1 ă t2 we denote with τt1:t2 “

pst1 , at1 , rt, . . . st2´1, at2´1, rt2q the subtrajectory delimited by the time indexes t1 (in-
cluded) and t2 (excluded). In practice, finite-length trajectories are usually considered. In
such a case, we denote with T pτq the trajectory length.

We defer the discussion of the role of the discount factor γ in Section 2.5, after having
introduced the performance indexes. We now focus on the notion of policy.

5Clearly, for every T P N we have that HA,T “ HS,T ˆA.
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2.2.1 Policies
The role of the agent in an MDP consists in playing actions. The policy is the mathematical
formalization of the strategy the agent employs to select the action to be played at each
decision step, based on the history of previous observations. We start with the following
general definition of a history-dependent policy and then we show the most significant
particular cases.

Definition 2.2 (History-dependent Policy). A history-dependent policy is a sequence π “
pπtqtPN of functions πt : HS,t Ñ PpAq that for every decision step t P N and for every
state-ending history ht P HS,t of length t provide a probability measure πtp¨|htq over the
measurable space pA,FAq. We denote with ΠHR the set of history-dependent policies.

In this definition the distribution of the action is a function of the whole history ht “
ps0, a0, r1, . . . , st´1, at´1, rt, stq up to time t P N and, possibly, explicitly depends on
t. If the probability distribution of the action depends on the last state only, i.e., if for
every pair of histories ht, h1t P HS,t having the same st P S as the last state, we have
that πtp¨|htq “ πtp¨|h

1
tq a.s. for all t P N, we say that the policy is Markovian. In such

a case, we abbreviate with πtp¨|stq. Furthermore, if the policy does not depend explicitly
on the decision step t, i.e., if πtp¨|sq “ πt1p¨|sq a.s. for all t, t1 P N and s P S, then
we call it stationary. In such a case, we remove the subscript, simply writing πp¨|sq. We
denote with ΠSR the set of Markovian stationary policies. We assume that πp¨|sq admits
a probability density function w.r.t. the Lebesgue measure, that overloading the notation,
we denote with the same symbol πpa|sq for all ps, aq P S ˆ A. If for each state s P S
the policy provides probability to a single action (i.e., it is a Dirac delta measure), then we
call it deterministic. In such a case, with little abuse of notation, we write π : S Ñ A,
i.e., a function mapping states to actions, where πpsq the action prescribed in state s P S.
We denote with ΠSD “ AS the set of Markovian stationary deterministic policies. When-
ever not differently specified, we will use term “policy” to denote a Markovian stationary
policy.

2.3 Markov Reward Processes

An MDP M coupled with a policy π P ΠSR, induces a Markov Reward Process (MRP,
Puterman, 2014) that is formalized by the 5-tuple pS, Pπ, µ0, R

π, γq, where Pπ : S Ñ
PpSq is the state transition kernel that for every state s P S assigns a probability measure
over pS,FSq, defined for every s1 P S as:

Pπpds1|sq “

ż

A
πpda|sqP pds1|s, aq. (2.1)

Thus, Pπp¨|sq represents the probability distribution of the next state s1 P S obtained by
executing policy π in state s. Similarly, Rπ : S ˆ S Ñ PpRq provides for each state
pair ps, s1q P S ˆ S a probability measure over pR,BpRqq, defined for every real number
r P R as:

Rπpdr|s, s1q “

ż

A
πpda|sqRpdr|s, a, s1q.
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Therefore, Rπp¨|s, s1q corresponds to the probability distribution of the reward obtained
when starting from state s, executing an action according to π and landing to the next state
s1. Moreover, we can define the state-next state reward function rπ : S ˆ S Ñ R and the
state reward function rπ : S Ñ R, defined for every s, s1 P S as:

rπps, s1q “

ż

R
rRπpdr|s, s1q “

ż

A
πpda|sqrps, a, s1q,

rπpsq “

ż

A
πpda|sqrps, aq.

From a control theory point of view, the MDP can be seen as a suitable formalization
for an uncontrolled system, in which control is exercised externally by mean of the policy
π. Instead, the MRP can be interpreted as a model for a controlled system in which the
control intervention is already incorporated. Both models have in common the fact that, at
each decision step, they output the immediate reward.

2.4 Markov Chains

Given an MRP, if we ignore the reward generation process, we obtain a Markov Chain (MC,
Meyn and Tweedie, 1993), or Markov process. The (state) MC induced by policy π P ΠSR

in the MDP M is defined by the pair pS, Pπq, where Pπ is the state transition kernel, as de-
fined in Equation (2.1). Thus, it describes the evolution of the state over time, when execut-
ing policy π in MDP M. Sometimes it is useful to take a different point of view, focusing
on the evolution of the state-action pairs over time. In such a case, we introduce the (state-
action) MC induced by policy π P ΠSR in the MDP M is defined by the pair pS ˆA, Pπq.
With little overloading of notation, we denote here with Pπ : S ˆ A Ñ PpS ˆAq the
state-action transition kernel that for every state-action pair ps, aq P SˆA provides a prob-
ability measure over pS ˆA,FSˆAq, defined for every state-action pair ps1, a1q P S ˆA
as:

Pπpds1,da1|s, aq “ P pds1|s, aqπpda1|sq.

Thus, Pπ encodes the probability distribution of the next-state-next-action pair ps1, a1q P
S ˆ A obtained starting from state s, playing action a, choosing the next state according
to P , and selecting the next action according to π.

2.4.1 t-step Transition Kernels and Distributions
In both Markov chains introduced above, it is useful to define the state/state-action dis-
tributions after t P N steps of interaction. More formally, for any t P Ně1, the t-step
state transition kernel pPπqt : S Ñ PpSq and the t-step state-action transition kernel
pPπq

t
: S ˆAÑ PpS ˆAq are recursively defined for every ps, aq, ps1, a1q P S ˆA as:

pPπq
t
pds1|sq “

ż

S
pPπq

t´1
pds2|sqPπpds1|s2q,

pPπq
t
pds1,da1|s, aq “

ż

SˆA
pPπq

t´1
pds2,da2|s, aqPπpds1,da1|s2, a2q,
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convening that pPπq0 pds1|sq “ δspds
1q and pPπq0 pds1,da1|s, aq “ δps,aqpds

1,da1q.
In operator form, the recursive definition is particularly clear and concise: pPπqt “
pPπq

t´1
Pπ .

Furthermore, given an initial state distribution µ0 P PpSq we can introduce, for every
t P N, the t-step state distribution µπµ0,t P PpSq, defined for every state s P S as:

µπµ0,tpdsq “

ż

S
µ0pds

1q pPπq
t
pds|s1q.

To lighten the notation, we omit the subscript of the initial state distribution µ0, whenever
clear from the context, simply writing µπt . Given the recursive nature of pPπqt, we can
immediately recover the recursive relation for the t-step distribution: µπt “ µ0pP

πqt “

µπt´1P
π . Clearly, we can also define the t-step state-action distribution µπt P PpS ˆAq,

defined for every state-action pair ps, aq P S ˆA as:

µπt pds,daq “ µπt pdsqπpda|sq.

2.4.2 Stationary Distributions
Sometimes we are interested in looking at the distribution over all decision steps t P N at
once. In such a case, we need to combine the t-step distributions in an effective way. We
consider the following general definition that averages the pµπt qtPN in an exponential way
and then we provide the corresponding interpretation (Sutton et al., 1999a).

Definition 2.3 (γ-discounted Stationary Distribution). Let M be an MDP and π P ΠSR

be a policy. The state γ-discounted stationary distribution µπµ0,γ P PpSq is defined as the
probability measure solution (if it exists) of the equation defined for every state s P S as:

µπµ0,γpdsq “ p1´ γqµ0pdsq ` γ

ż

S
µπµ0,γpds

1qPπpds|s1q,

Similarly to the previous section, we will omit the dependence on the initial state dis-
tribution µ0 when not generating confusion, simply writing µπγ . When the discount factor
γ ă 1, we are guaranteed that the γ-discounted stationary distribution exists uniquely.
Indeed, by using the Neumann series in operator form, we have:

µπγ “ p1´ γqµ0 pIdS ´ γP
πq
´1
“ p1´ γq

8
ÿ

t“0

γtµπt ,

Whenever necessary, we assume that it admits probability density function w.r.t. Lebesgue
measure, denoted with the same symbol. From an intuitive point of view, µπγ is the nor-
malized discounted sum of the visits to states, when playing policy π in MDP M.

Instead, when γ “ 1, Definition 2.3 reduces the stationary distribution recursively
defined as µπ “ µπPπ . In finite Markov chains (when S is a finite set) the existence and
uniqueness of a stationary distribution is ensured for irreducible chains (Serfozo, 2009).
Moreover, if the chain is aperiodic the stationary distribution equals the limiting distri-
bution (Serfozo, 2009): µπ “ limtÑ8 µ

π
t . In other words, irreducible aperiodic Markov

chains forget the initial state distribution µ0. Additional technical conditions are necessary
for infinite Markov chains (Asmussen, 2003).
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Clearly, also for the γ-discounted stationary distributions, we can introduce the corre-
sponding state-action version µπγ P PpS ˆAq and state-action-next-state version µπγ P
PpS ˆAˆ Sq, defined for every state-action-state triple ps, a, s1q P S ˆAˆ S as:

µπγ pds,daq “ µπγ pdsqπpda|sq,

µπγ pds,da,ds
1q “ µπγ pdsqπpda|sqP pds

1|s, aq.

2.4.3 Trajectory Distributions

Given an MDP M and a policy π P ΠSR, we can characterize the distribution of the
trajectories. Specifically, for every trajectory τ P T and T P N, we can express the
probability measure PπT of the subtrajectories of length T induced by policy π P ΠSR in
MDP M, defined for every τ0:T “ ps0, a0, r1, . . . , sT´1, aT´1, rT , sT q as:

PπT pdτ0:T q “ µ0pds0q

T´1
ź

t“0

πpdat|stqP pdst`1|st, atqRpdrt`1|st, at, st`1q.

Clearly, the probability measure over subtrajectories of length T ` 1 can be easily defined
recursively in terms of the probability measure over subtrajectories of length T :

PπT`1pdτ0:T`1q “ PπT pdτ0:T qπpdaT |sT qP pdsT`1|sT , aT qRpdrT`1|sT , aT , sT`1q.

Finally, the probability measure Pπ P PpT q over infinite-length trajectories is defined for
every τ P T as the limit Pπpdτq “ limTÑ8 PπT pdτ0:T q. Whenever necessary, we assume
that these probability measures, PπT and Pπ , admit density function w.r.t. the Lebesgue
measure, denoted with pπT for subtrajectories of length T P N and pπ for infinite-length
trajectories.

We employ the following abbreviated notation for the expectation of a bounded mea-
surable function f P BpT q taken w.r.t. infinite-length trajectories:

Eπrfpτqs :“ E
τ„Pπ

rfpτqs “

ż

T
Pπpdτqfpτq.

Remark 2.1. The stationary distribution µπγ and the trajectory distribution Pπ provide
different views of the agent-environment interaction. While with the stationary distribu-
tions we focus on the states or state-action pairs, with the trajectory distributions we look
at the whole trajectory, i.e., state-action-reward triples sequences. Both can be used to
compute expectations of functions defined over S ˆAˆS ˆR, as shown in the following
result.

Lemma 2.1 (D’Oro et al. (2020), Lemma A.2). Let M be an MDP, π P ΠSR be a policy,
and f P BpS ˆAˆ S ˆ Rq be a bounded measurable function. Then, it holds that:

E
S,A,S1„µπγ

R„Rp¨|S,A,S1q

“

fpS,A, S1, Rq
‰

“ p1´ γqEπ
«

8
ÿ

t“0

γtfpSt, At, St`1, Rt`1q

ff

.
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This is particularly relevant when function fps, a, s1, rq “ r leading to the return
function:

E
S,A,S1„µπγ

R„Rp¨|S,A,S1q

rRs “ p1´ γqEπ rGγpτqs ,

where τ “ pSt, At, Rt`1qtPN . Unfortunately, this equivalence holds for the expectation
only and cannot be extended straightforwardly to higher-order moments (Bisi et al., 2020).

2.5 Performance Indexes

At the beginning of this chapter, we have stated informally that the goal of an agent in
an MDP consists of finding a policy that maximizes some notion of long-term reward. In
this section, we formalize it by presenting the main performance indexes employed in RL.
Formally, a performance index is a mapping pM, πq ÞÑ JπM that, given an MDP M and
a policy π P ΠHR provides a real number JπM P R, i.e., the performance of policy π in
MDP M. When there is no confusion, we will drop the dependence of M, abbreviating
with Jπ .

2.5.1 Expected Total Reward
The simplest formalization of the intuitive notion of long-term reward is the expected total
reward Jπtot. Given a policy π P ΠHR, Jπtot is defined as the expected sum of the rewards
collected along an infinite-length trajectory, with no discounting:

Jπtot “ lim
TÑ8

Eπ
«

T´1
ÿ

t“0

Rt`1

ff

“ lim
TÑ8

Eπ rG1pτ0:T qs . (2.2)

Unfortunately, despite its intuitive definition, the expected total reward is often an ill-
defined index. Indeed, the limit in Equation (2.2) might not exist or might be infinite,
unless the MDP is episodic, i.e., it reaches an absorbing state almost surely.

2.5.2 Expected Total Discounted Reward or Expected Return
To overcome this limitation, the expected total discounted reward, also known as expected
return, Jπ is introduced. For a policy π P ΠHR and a discount factor γ P r0, 1s, Jπ is
defined as the expected discounted sum of the rewards collected along an infinite-length
trajectory:

Jπ “ lim
TÑ8

Eπ
«

T´1
ÿ

t“0

γtRt`1

ff

“ lim
TÑ8

Eπ rGγpτ0:T qs . (2.3)

Under the assumption on the boundedness of the reward (Assumption 2.1), the limit in
Equation (2.3) exists finite and the expected total discounted return is always bounded
by |Jπ| ď Rmax

1´γ . For this reason, we can exchange the limit with the expectation and
rewrite its expression in the most common form: Jπ “ Eπ

“
ř8

t“0 γ
tRt`1

‰

“ Eπ rGγpτqs.
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It is worth noting that the expected total discounted reward can be alternatively defined
by means of the γ-discounted stationary distribution, as in Definition 2.3 (Sutton et al.,
1999a):

Jπ “
1

1´ γ

ż

S
µπγ pds,daqrps, aq.

The Role of the Discount Factor It is immediate to realize the mathematical advantage
of employing a discount factor γ ă 1 in avoiding the divergence of the series in Equa-
tion (2.3). However, the discount factor admits other interpretations. From an economical
point of view, the value of γ modules the interest the agent demonstrates in gaining re-
ward in the future. A small discount factor, i.e., γ » 0, is associated to a myopic attitude
since the agent is more interested in obtaining reward in the present or near future. The
extreme case γ “ 0 reduces RL to supervised learning since the only interest of the agent
is maximizing the immediate reward. Instead, large values of gamma, i.e., γ » 1, model
far-sighted agents that are willing to sacrifice immediate reward because they give im-
portance even to far-future rewards. Finally, the discount factor can be interpreted also
from a statistical perspective. Indeed, for every infinite-horizon discounted MDP M it is
possible to define an episodic undiscounted MDP ĂM equivalent M. In every state of ĂM
there is a probability 1 ´ γ to reach a zero-reward absorbing state, whichever action is
played (Puterman, 2014). It is simple to prove that for any policy π P ΠSR, the expected
total reward of π in the new MDP ĂM equals the expected total discounted reward of π in
the original MDP M. Thus, we can interpret γ as the probability that the interaction with
the environment continues for another time step. It is worth noting that the length of a
trajectory in ĂM is a geometric distribution of parameter 1´ γ. Thus, the expected length
is 1

1´γ , that is often referred as the effective horizon of the original MDP M.

2.5.3 Average Reward

Finally, we present one last performance index that is employed in the literature: the aver-
age reward Jπavg. Given a policy π P ΠHR, Jπavg is defined as the expected average of the
rewards collected along an infinite-length trajectory:

Jπavg “ lim
TÑ8

1

T
Eπ

«

T´1
ÿ

t“0

Rt`1

ff

“ lim
TÑ8

1

T
Eπ rG1pτ0:T qs . (2.4)

Whenever the limit in Equation (2.4) does not exist, it is replaced with lim inf or lim sup.
The average reward, whenever it exists, under Assumption 2.1, is bounded by |Jπavg| ď

Rmax. If they both exist, Jπavg can be expressed in terms of the stationary distribution (Sut-
ton and Barto, 2018) as follows:

Jπavg “

ż

S
µπpds,daqrps, aq.

In the rest of the dissertation, we will mainly focus on the expected total discounted
reward.
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Finally, given a probability measure µ P PpS ˆAˆ Sqwe define the expected return
induced by µ as:

Jµ “

ż

SˆAˆS
µpds,da,ds1qrps, a, s1q. (2.5)

2.6 Value Functions

A fundamental concept of RL is the value function (Sutton and Barto, 2018). Differently
from the performance indexes presented in Section 2.5 that associate a single real num-
ber to each policy, the value functions provide an index that is defined in terms of the
initial state choice pM, π, sq ÞÑ V πMpsq (or state-action pair choice pM, π, ps, aqq ÞÑ
QπMps, aq). Whenever clear from the context we will drop the dependence on the MDP
M. Value functions play a central role in value-based reinforcement learning since they
allow deriving an optimal policy. We limit our presentation to the discounted case, i.e.,
γ ă 1. We refer the reader to (Puterman, 2014) for the corresponding versions for the total
and average rewards. Let us start by defining the state value function.

Definition 2.4 (State Value Function or V-function). Let M be an MDP and π P ΠSR be
a policy. For every state s P S, the state value function V π : S Ñ R is defined as the
expected return starting from state s and following policy π thereafter:

V πpsq “ Eπ
«

8
ÿ

t“0

γtRt`1|S0 “ s

ff

.

The state value function finds its main application in policy evaluation, i.e., the process
of computing the performance of a policy π in an MDP. However, V π does not encom-
pass enough information for policy optimization, i.e., the process of finding a policy with
optimal performance without the knowledge of the transition model P . To this purpose,
the action value function is introduced.

Definition 2.5 (State-Action Value Function or Q-function). Let M be an MDP and π P
ΠSR be a policy. For every state-action pair ps, aq P SˆA, the state-action value function
Qπ : S ˆAÑ R is defined as the expected return starting from state s, playing action a,
and following policy π thereafter:

Qπps, aq “ Eπ
«

8
ÿ

t“0

γtRt`1|S0 “ s,A0 “ a

ff

.

Clearly, the V-function can be defined in terms of the Q-function by simply taking the
expectation over the action space: V πpsq “

ş

A πpda|sqQ
πps, aq. In turn, the expected

return, as defined in Equation (2.3), is the expectation of the V-function taken w.r.t. the
choice of the initial state:

Jπ “

ż

S
µ0pdsqV

πpsq.

In some contexts, it is useful to define the advantage function Aπ : S ˆ A Ñ R defined
for every ps, aq P S ˆA as (Baird III, 1993):

Aπps, aq “ Qπps, aq ´ V πpsq, (2.6)
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that quantifies the performance gain obtained by playing action a in state s compared to
executing policy πp¨|sq.

2.6.1 Bellman Equations and Operators
The definition of value function we provided above are trajectory-based, i.e., they are
defined as the expected return collected along an infinite-length trajectory. When we focus
on infinite-horizon MDPs and Markovian stationary polices, value function can also be
expressed in a recursive form. The technical tools employed to obtain these relations
are the Bellman Equations and the Bellman Expectation Operators (Bellman, 1957), that
represent the concrete basis of many RL algorithms.

Definition 2.6 (Bellman Expectation Operators). Let M be an MDP and π P ΠSR be a
policy. The Bellman expectation operator for the state value function Tπ : BpSq Ñ BpSq
is defined for every bounded measurable function f P BpSq and every state s P S as:

pTπfq psq “

ż

A
πpda|sq

ż

S
P pds1|s, aq

`

rps, a, s1q ` γfps1q
˘

. (2.7)

The Bellman expectation operator for the state-action value function Tπ : BpS ˆAq Ñ
BpS ˆAq is defined for every bounded measurable function f P BpS ˆAq and every
state-action pair ps, aq P S ˆA as:

pTπfq ps, aq “

ż

S
P pds1|s, aq

ˆ

rps, a, s1q ` γ

ż

A
πpda1|s1qfps1, a1q

˙

. (2.8)

It is worth noting that both Tπ are linear operators, that fulfill the monotonicity prop-
erty and for γ ă 1 they are a contraction in L8-norm (Bertsekas and Tsitsiklis, 1996;
Puterman, 2014), i.e., for appropriately defined bounded measurable functions f and g it
holds that:6

}Tπf ´ Tπg}8 ď γ }f ´ g}8 .

As a consequence, thanks to the Banach fixed-point theorem (Banach, 1922), the Tπ admit
a unique fixed-point that are, respectively, the state value function V π and the state action
value function Qπ (Puterman, 2014). The corresponding fixed-point equations are called
Bellman Expectation Equations:

V π “ TπV π,

Qπ “ TπQπ.

2.7 Optimality Criteria

In this section, we focus on how to define a notion of optimality in the discounted setting
(γ ă 1) and on how to compute the optimal value function and an optimal policy. Let us
start with the following definition that introduces the notion of optimality for the policy
and for the value function (Puterman, 2014).

6It is worth noting that by recalling the definition of rps, aq “
ş

S P pds
1|s, aqrps, a, s1q and rπpsq “

ş

A πpda|sqrps, aq, we can rephrase the Bellman expectation operators in operator form. For the V-function
Tπf “ rπ ` γPπf with f P BpSq and for the Q-function Tπf “ r ` γPπf with f P BpS ˆAq.
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Definition 2.7 (Optimality). Let M be an MDP. A history-dependent policy π˚ P ΠHR is
optimal if for every state s P S and history-dependent policy π P ΠHR it holds that:

V π
˚

psq ě V πpsq. (2.9)

The optimal state value function is defined for every state s P S as:

V ˚psq “ sup
πPΠHR

tV πpsqu . (2.10)

The definition makes use of history-dependent policies but we can freely restrict the
search to the Markovian stationary policies ΠSR since, in the discounted setting, for every
history-dependent policy π P ΠHR there exists a Markovian stationary policy π1 P ΠSR

such that V πpsq “ V π
1

psq (Puterman, 2014, Theorem 5.5.3).

2.7.1 Optimal Value Functions
The optimal state value function represents the best possible performance attainable in an
MDP starting from every state. Analogously it is possible to define the optimal state-action
value function defined for every state-action pair ps, aq P S ˆA as:

Q˚ps, aq “ sup
πPΠHR

tQπps, aqu . (2.11)

Clearly, V ˚ and Q˚ are related by the identity V ˚psq “ supaPAtQ
˚ps, aqu for every state

s P S. We can restrict the maximization to the Markovian stationary policies ΠSR also
in this case. Similarly to the value function presented in Section 2.6, the optimal value
functions can be expressed in terms of suitable Bellman operators.

Definition 2.8 (Bellman Optimality Operators). Let M be an MDP and π P ΠSR be a
policy. The Bellman optimality operator for the state value function T˚ : BpSq Ñ BpSq
is defined for every bounded measurable function f P BpSq and every state s P S as:

pT˚fq psq “ sup
aPA

"
ż

S
P pds1|s, aq

`

rps, a, s1q ` γfps1q
˘

*

. (2.12)

The Bellman optimality operator for the state-action value function T˚ : BpS ˆAq Ñ
BpS ˆAq is defined for every bounded measurable function f P BpS ˆAq and every
state-action pair ps, aq P S ˆA as:

pT˚fq ps, aq “

ż

S
P pds1|s, aq

ˆ

rps, a, s1q ` γ sup
a1PA

 

fps1, a1q
(

˙

. (2.13)

Compared to the Bellman expectation operators, introduced in Section 2.6.1, the Bell-
man optimality operators are no longer linear due to the presence of the supremum. Nev-
ertheless, for γ ă 1 they preserve the monotonicity and the contraction in L8-norm
properties (Proposition 6.2.4, Puterman, 2014), i.e., for appropriately defined bounded
measurable functions f and g it holds that:7

}T˚f ´ T˚g}8 ď γ }f ´ g}8 .

7By introducing the maximum operator over the action space MA : BpS ˆAq Ñ BpSq defined for
every bounded measurable function f P BpS ˆAq as: pMAfq psq “ supaPAtfps, aqu, we can redefine the
Bellman optimality operators in operator form. For the V-function T˚f “ MApr ` γPπfq with f P BpSq
and for the Q-function T˚f “ r ` γPπMAf with f P BpS ˆAq.

24



2.7. Optimality Criteria

Furthermore, it is possible to prove that their unique fixed-points are, respectively, the state
optimal value function V ˚ and the state-action optimal value functionQ˚ (Theorem 6.2.5,
Puterman, 2014). The corresponding fixed-point equations are called Bellman Optimality
Equations:

V ˚ “ T˚V ˚,

Q˚ “ T˚Q˚.

2.7.2 Greedy Policies
Before showing that under sufficiently general assumptions an optimal policy exists, we
need to introduce the notion of greedy action and greedy policy.

Definition 2.9 (Greedy Actions and Policies). Let f P BpS ˆAq be a bounded measur-
able function, for every state s P S we say that an action a` P A is greedy in state s
if fps, a`q “ supaPA tfps, aqu. A greedy policy w.r.t. a function f P BpS ˆAq is any
policy π` P ΠSR playing only greedy actions, i.e., for every state s P S it holds that:

ż

A
π`pda|sqfps, aq “ sup

aPA
tfps, aqu .

Consequently, if π` P ΠSR is greedy w.r.t. to the function f P BpS ˆAq, the follow-
ing identity involving the Bellman operators holds:

Tπ
`

f “ T˚f.

2.7.3 Optimal Policies
The optimality condition in Definition 2.7 prescribes that a policy π˚ for being optimal
must yield a value function in each state s P S at least as good as that of any other policy
π, i.e., V π

˚

psq ě V πpsq. We start by defining the following preorder (or preference)
relationship Á on the space of Markovoian stationary policies ΠSR.

Definition 2.10 (Preorder on ΠSR). Let M be an MDP. The preference relationship ÁĎ
ΠSR ˆΠSR is defined for two policies π, π1 P ΠSR as:

π Á π1 ðñ V πpsq ě V π
1

psq, @s P S. (2.14)

The relationshipÁ is clearly reflexive and transitive, but it is not antisymmetric (thus it
is a preorder but not a partial order) since there might be policies that are different yielding
the same value function. According to Definition 2.7, an optimal policy, if it exists, is a
maximum according to the preference Á. A way to construct an optimal policy consists
in deriving a greedy policy (Definition 2.9) w.r.t. the optimal Q-function, i.e., any policy
π˚ P ΠSR such that for every state s P S:

ż

A
π˚pda|sqQ˚ps, aq “ V ˚psq. (2.15)

The following result, that we report without proof, shows that under suitable conditions
such a policy exists and it is optimal.

25



Chapter 2. Foundations of Sequential Decision-Making

Theorem 2.2 (Theorem 6.2.7, Puterman (2014)). Let M be an MDP. If the state space
S is discrete and the supremum V ˚psq “ supaPAtQ

˚ps, aqu is attained for every state
s P S, then:

(a) there exists a Markovian stationary greedy policy π˚ P ΠSR w.r.t. to Q˚;

(b) π˚ is an optimal policy, i.e., π˚ Á π for every policy π P ΠSR;

(c) there exists a deterministic Markovian stationary optimal policy.

Let us discuss more in detail the meaning of Theorem 2.2. The statement requires that
the supremum is attained, i.e., for every state s P S there must exist an action a` such
that Q˚ps, a`q “ V ˚psq. If this is the case, a greedy policy π˚ is well-defined as any
policy that plays actions belonging to the set arg maxaPAtQ

˚ps, aqu. The main statement
of Theorem 2.2 is point (b) showing that such a greedy policy is an optimal policy in the
sense of Definition 2.7. Clearly, since a greedy policy exists, it follows that a deterministic
greedy policy exists too and, consequently, a deterministic optimal policy exists. Finally,
note that (but this was already evident in Definition 2.7) that all optimal policies attain
the optimal value function, i.e., V π

˚

psq “ V ˚psq for all states s P S. Unfortunately, the
result holds only when the state space S is discrete. When this is not the case, even if the
supremum is attained, an optimal policy might not exist (Blackwell, 1965). The discussion
of the conditions under which the existence of an optimal policy (or an ε-optimal policy) is
ensured is out of the scope of this dissertation. We refer the interested reader to Bertsekas
and Shreve (2004); Dynkin et al. (1979) for more details. In the following, whenever
necessary we will assume the existence of an optimal policy that can be expressed as a
greedy policy w.r.t. Q˚.

In practical applications, the condition requiring that the policy maximizes the value
function in all the states s P S is often too demanding, especially when the search is
carried out in a subset of ΠSR. For this reason, more relaxed definitions of optimality have
been proposed, like the following.

Definition 2.11 (J-optimality). Let M be an MDP and let J be a performance index. A
policy π˚ P ΠSR is J-optimal if for every policy π P ΠSR: Jπ

˚

ě Jπ .

Of course, since we are evaluating each policy by means of a scalar function, Defini-
tion 2.11 induces a complete preorder relation ÁJ on ΠSR. Typical choices for J are the
performance indexes presented in Section 2.5. When we employ the expected return Jπ

then we can relate the notion Jπ-optimality with the original notion of optimality. Indeed,
any optimal policy according to Definition 2.7 is also optimal according to Definition 2.11,
but, clearly, not vice versa.

2.8 Exact Solution Methods

In this section, we focus on the problem of finding an optimal policy, in the sense of
Definition 2.7, when considering a finite MDP. We consider the full knowledge of the
elements of the MDP, i.e., the transition model P and the reward function r. The funda-
mental idea at the basis of these algorithms is to first compute the optimal value function
and then recover an optimal policy as a greedy policy. Although the knowledge of the
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Algorithm 2.1: Value iteration (VI).
Input: MDP M, horizon T
Output: approximately optimal policy πpT q

1 Initialize V p0q arbitrarily
2 forall t“0,1,...,T´1 do
3 V pt`1q

psq“max
aPA

!

rps,aq`γ
ÿ

s1PS
pps1|s,aqV ptqpsq

)

, @sPS Ź Bellman Operator

4 πpT qpsqPargmax
aPA

!

rps,aq`γ
ÿ

s1PS
pps1|s,aqV pT qps1q

)

, @sPS Ź Greedy policy

5 return πpT q

environment dynamics is an unrealistic requirement in most applications of interest, these
algorithms are particularly relevant as they represent the building block of the value-based
RL algorithms. Section 2.8.1 and 2.8.2 are devoted to the presentation of the two dynamic
programming algorithms: Policy Iteration (PI, Howard, 1960) and Value Iteration (VI,
Bellman, 1957). Then, in Section 2.8.3 we present the Linear Programming approach (LP,
Wang et al., 2007).

2.8.1 Value Iteration
The value iteration algorithm (Bellman, 1957) is the most straightforward method to solve
a finite MDP and is based on the iterative application of the Bellman optimality operator
T˚, for a given number of iterations T P N (also known as optimization horizon). At the
end of the process, VI outputs a greedy policy πpT q w.r.t. to the T -approximation of the
value function V pT q. The pseudocode of VI is reported in Algorithm 2.1. Thanks to the
contraction property of T˚, it is immediate to prove that the sequence of value functions
pV ptqqTt“0 generated by VI converges in L8-norm to the optimal state value function.
Indeed, for every iteration t P Ně1, we have:

›

›

›
V ptq ´ V ˚

›

›

›

8
ď γ

›

›

›
V pt´1q ´ V ˚

›

›

›

8
,

leading to a linear convergence rate (Puterman, 2014). Since, at each iteration, VI requires
computing the optimal action in each state, that requires Op|S||A|q operations for each
state, the computational complexity of T iterations of VI is of OpT |S|2|A|q.

2.8.2 Policy Iteration
Policy iteration (Howard, 1960) solves a finite MDP by explicitly representing the inter-
mediate policies, during the considered iterations. Specifically, PI is composed of two
phases that are repeated in sequence: i) policy evaluation; ii) policy improvement. For
every iteration t P t0, . . . , T ´ 1u, the policy evaluation phase, given the current policy
πptq, consists in computing its value function V π

ptq

. This step can be carried out in several
ways, for instance by performing a repeated application of the Bellman expectation oper-
ator Tπ or solving the linear system of Bellman equations. In practice, it is not always
necessary to wait convergence to V π

ptq

, but a smaller number of applications of Tπ is
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Algorithm 2.2: Policy iteration (PI).
Input: MDP M, horizon T
Output: approximately optimal policy πpT q

1 Initialize πp0q arbitrarily
2 forall t“0,1,...,T´1 do
3 Solve V π

ptq

psq“
ř

aPA

´

rps,aq`γ
ř

s1PS pps
1
|s,aqV π

ptq

ps1q
¯

,@sPS Ź Evaluation

4 πpt`1q
psqPargmax

aPA

!

rps,aq`γ
ÿ

s1PS
pps1|s,aqV π

ptq

ps1q
)

, @sPS Ź Improvement

5 return πpT q

sufficient. This variant is known as modified policy iteration (Puterman and Shin, 1978).
The policy improvement step, instead, consists in computing a greedy policy πpt`1q w.r.t.
to the current approximation of the value function V π

ptq

. The pseudocode of PI is reported
in Algorithm 2.2. A remarkable property of the PI is that it is guaranteed to provide a
sequence of policies with non-decreasing performance.

Theorem 2.3 (Policy Improvement Theorem (Sutton and Barto, 2018)). Let M be an
MDP and π, π1 P ΠSR be two policies. If for every state s P S it holds that:

ż

A
π1pda|sqQπps, aq ě V πpsq,

then it holds that for every state s P S:

V π
1

psq ě V πpsq.

The theorem shows that if a policy π1 improves the one-step performance of π for
all the states, then it will yields a better value function overall. Clearly, the one-step
improvement condition is fulfilled by the greedy policy. Whenever PI stops it means that
we have reached an optimal policy. Since it iterates over the deterministic greedy policies,
that are at most |A||S|, PI converges in a finite number of iterations to an optimal policy.
The computational cost of policy evaluation by solving a linear system is O

`

|S|3
˘

,8 while
the cost of the policy improvement is O

`

|S|2|A|
˘

. Therefore, the computational cost of
T iterations of PI is O

`

T |S|2 p|S| ` |A|q
˘

.
Compared to VI, PI models explicitly the policy, while VI simply considers the value

function and the policy comes into place only at the end. It has been proved that, under
suitable conditions, PI enjoys a quadratic convergence rate (Mansour and Singh, 1999;
Puterman, 2014), compared to the linear rate of VI. This justifies the empirical evidence
that PI usually converges faster than VI. Finally, it was proven that PI is strongly polyno-
mial (Ye, 2011) and converges to the optimal policy in at most O

´

|A|
1´γ log 1

1´γ

¯

(Scher-
rer, 2013).

8For general square systems, the complexity can be reduced to |S|2.376 (Golub and Van Loan, 1996).
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2.8.3 Linear Programming
The solution of finite MDPs can be also addressed by means of linear programming (Wang
et al., 2007). In the discounted case (γ ă 1), the primal LP problem can be stated as
follows:

min
vPR|S|

ÿ

sPS
ν0psqvpsq

s.t. vpsq ě rps, aq ` γ
ÿ

s1PS
pps1|s, aqvps1q @s P S, @a P A,

where ν0 P PpSq is a distribution over the state space such that ν0psq ą 0 for all s P S.
The optimization problem is a linear program with |S| variables and |S||A| constraints.
It is possible to prove that the solution of this problem is the optimal value function V ˚

and an optimal policy can be recovered, as usual, as a greedy policy w.r.t. V ˚. Using the
Lagrangian duality it is possible to rephrase the dual LP (Wang et al., 2007):

max
dPR|S||A|

ÿ

sPS

ÿ

aPA
νps, aqrps, aq

s.t.
ÿ

aPA
νps1, aq “ p1´ γqν0ps

1q ` γ
ÿ

sPS

ÿ

aPA
νps, aqpps1|s, aq @s1 P S

νps, aq ě 0 @s P S, @a P A.

The dual problem is an LP with |S||A| variables and |S| constraints (neglecting the
non-negativity constraints). Thus, it is in general preferred to solve the dual formulation.
The solution of the dual LP ν˚ is the γ-discounted stationary distribution induced by the
initial state distribution ν0 and an optimal policy (Wang et al., 2007). Thus, an optimal
policy can be recovered a posteriori for every state action pair ps, aq P S ˆA as:

π˚pa|sq “
ν˚ps, aq

ř

a1PA ν
˚ps, a1q

.

Although the worst-case computational complexity results of solving MDPs with LP
are better than those of VI and PI, typically the DP approaches tend empirically to converge
faster (Littman, 1996).
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CHAPTER3
Reinforcement Learning Algorithms

The exact solution methods presented in Chapter 2, assume the full knowledge of the envi-
ronment dynamics and of the reward function. These methods do not scale to large state-
action spaces and they are inapplicable when the transition model or the reward functions
are unknown. In real-world applications, typically, the environment dynamics is either ap-
proximated by a complex model, that is usually computationally expensive, or completely
unknown. Consequently, sampling the environment becomes essential to estimate, im-
plicitly or explicitly, its dynamics and reward generation process. The sampling process
comes with uncertainty and managing uncertainty is at the basis of any RL algorithm. In
the following, we provide an overview of a selection of RL algorithms. This chapter has
no claim to be exhaustive; instead, it has to be considered just auxiliary to the effective
understanding of the subsequent chapters. For a complete review of the RL algorithms,
we refer the reader to the distinguished Sutton and Barto’s book (Sutton and Barto, 2018).

Reinforcement Learning Dichotomies The literature has extensively studied the RL
problem and proposed a heterogeneous variety of algorithms, that can be categorized ac-
cording to different dimensions.

Model-based vs model-free Model-based RL algorithms (e.g., Deisenroth and Rasmussen,
2011; Nagabandi et al., 2018; Wang et al., 2019a) aim at explicitly estimating the
transition model and the reward function of the environment and then employ them,
possibly with an exact solution method, to derive an approximate value function
and/or approximately optimal policy. Instead, model-free approaches (e.g., Mnih
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et al., 2015; Schulman et al., 2015; Lillicrap et al., 2016; Duan et al., 2016) do
not represent the transition model nor the reward function, but employ samples to
directly estimate the value function and/or the optimal policy.

On-policy vs off-policy When the policy that is employed to collect samples is the same
policy that is learned, then we speak of on-policy RL algorithms (e.g., Williams,
1992; Rummery and Niranjan, 1994; Jaksch et al., 2010). Whereas, if a behavioral
(or baseline) policy is used to explore the environment and a different policy, named
target policy, is optimized, we are in presence of an off-policy algorithm (e.g.,
Watkins and Dayan, 1992; Ernst et al., 2005; Silver et al., 2014; Schulman et al.,
2017; Metelli et al., 2018b).

On-line vs off-line On-line (or incremental) algorithms perform the sample collection dur-
ing the learning process. Thus, the algorithm has possibly access to fresh samples
every iteration (e.g., Watkins and Dayan, 1992; Jaksch et al., 2010; Schulman et al.,
2017). Instead, off-line (or batch) RL algorithms have access to a dataset of samples
previously collected and no further interaction with the environment is allowed (e.g.,
Lange et al., 2012; Ernst et al., 2005; D’Oro et al., 2020). Clearly, off-line algorithms
are necessarily off-policy.

Tabular vs function approximation When dealing with finite state-action MDPs, the value
functions can be represented as a finite array. In such a case, we refer to tabular
RL (e.g., Watkins and Dayan, 1992; Rummery and Niranjan, 1994). Clearly, when
the size of the state-action space grows or becomes infinite, we need to employ a
function space to approximate the value function or the optimal policy. In such a
case, we speak of function approximation (e.g., Munos, 2005; Scherrer, 2014).

Value-based vs policy-based vs actor-critic Value-based (or critic-only) methods aim at
learning an optimal value function and, then, derive the optimal policy as a greedy
policy (e.g., Watkins and Dayan, 1992; Rummery and Niranjan, 1994; Munos, 2005;
Scherrer, 2014). Policy-based (or actor-only) methods, instead, do not represent
the value function but focus on directly learning an optimal policy (e.g., Williams,
1992; Baxter and Bartlett, 2001; Pirotta et al., 2013a). Finally, actor-critic ap-
proaches (e.g., Konda and Tsitsiklis, 1999; Lillicrap et al., 2016) combine the form-
ers and model explicitly both the policy (actor) and the value function corresponding
to the current policy (critic).

Chapter Outline The chapter is organized as follows. We start in Section 3.1 by revis-
ing the basics of temporal difference learning in tabular MDPs, with particular attention
to SARSA and Q-learning algorithms. In Section 3.2, we survey the fundamental aspects
of function approximation, with specific reference to approximate value iteration and ap-
proximate policy iteration and the corresponding error propagation results. Finally, in Sec-
tion 3.3, we focus on policy search revising the policy gradients methods and trust-region
methods.
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3.1 Temporal Difference Methods

In this section, we briefly survey the Temporal Difference (TD) methods (Sutton, 1985,
1988), a class of online value-based RL algorithms. We start with the prediction problem,
i.e., the problem of estimating the value function of a given policy (Section 3.1.1), in order
to introduce the basic concepts. Then, we focus on the control problem that consists in
learning the optimal value function (Section 3.1.2). We restrict our attention to tabular
MDPs, i.e., problems with finite state-action spaces.

3.1.1 TD Prediction

Given a policy π P ΠSR, the prediction problem can be stated as estimating the value
function V π of π by observing some trajectories of interaction with the environment. The
estimation process is performed iteratively; at each time step t P N, state St P S is
observed and the estimated value function is updated according to the following rule:

V pt`1qpStq “ p1´ α
ptqqV ptqpStq ` α

ptqGptq,

where pαptqqtPN is a learning rate schedule and Gptq is an estimator of the value of policy
π in state St obtained from samples. The quantity δptq “ Gptq ´ V ptq is usually called
temporal difference error (Sutton and Barto, 2018). Different choices of Gptq lead to
different TD methods.

n-step Returns Considering a trajectory τ “ pSt, Rt`1, St`1, Rt`2, . . . q, in which we
have neglected the actions, starting in state St P S and given n P Ně1, we can define the
n-step return as (Sutton, 1988):

Gptqn “

n´1
ÿ

l“0

γlRt`l`1 ` γ
nV ptqpSt`nq.

Monte-Carlo vs Temporal Difference A particular case is n “ T pτq, i.e., the trajectory
length, leading to the Monte-Carlo (MC) return:

G
ptq
MC “

T pτq´1
ÿ

l“0

γlRt`l`1.

Clearly, MC requires considering a full-length trajectory and it is applicable only to episodic
MDPs, in which all trajectories are guaranteed to reach an absorbing state. MC has the de-
sirable property of generating an unbiased estimator for V π , i.e., Eπ

”

G
ptq
MC|St

ı

“ V πpStq

but, usually, it displays a large variance (Kearns and Singh, 2000). We can additionally
distinguish between first-visit MC, in which whenever a state is encountered multiple times
in a trajectory the update is performed for the first occurrence only, and every-visit MC, in
which the update is performed at every occurrence. Another remarkable case is n “ 1 that
corresponds to the 1-step return, leading to the well-known TD(0) method (Sutton, 1988):

G
ptq
1 “ Rt`1 ` γV

ptqpSt`1q.
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The important property of TD(0), and more generally of all TD algorithms, is the boot-
strapping, i.e., the reuse of the current estimate of the value function V ptqpSt`1q evaluated
in the next state. TD overcomes the MC limitation of requiring an episodic MDP, as it
is no longer necessary to wait for the end of the trajectory in order to perform an update.
Moreover, TD is typically affected by a lower variance w.r.t. MC at the price of intro-
ducing a bias due to the bootstrapping operation. Nevertheless, TD estimator preserves
consistency as the number of samples grows. Another relevant distinction is that MC does
not exploit the Markov property of the environment, whereas TD does. This explains, at
least at an intuitive level, why TD typically performs better than MC in Markovian envi-
ronments (Sutton and Barto, 2018).

TD(λ) A way of unifying the n-step returns consists in combining them via an exponen-
tial averaging. Specifically, given λ P r0, 1s, we can define λ-return as (Sutton, 1985):

G
ptq
λ “ p1´ λq

8
ÿ

n“1

λn´1Gptqn .

Special cases are when λ “ 0, that corresponds to the TD(0) update and λ “ 1 that reduces
to the first-visit MC method. In principle, to apply TD(λ) we have to wait for the end of the
trajectory, in order to be able to compute all n-step returns (backward view). To overcome
this limitation it is possible to employ eligibility traces (forward view) that quantify the
impact of the current TD error on all states of the MDP (Singh and Sutton, 1996; Sutton
and Barto, 2018). A bias-variance analysis of n-step TD and TD(λ) is provided in (Kearns
and Singh, 2000).

3.1.2 TD Control
When moving from the prediction to the control problem, i.e., the problem of learning the
optimal value function V ˚ of an MDP, we face additional challenges. First of all, since
the ultimate goal consists in producing an approximation of the optimal policy, we need
to estimate the Q-function, instead of the V-function, in order to output the corresponding
greedy policy. The update rule for the Q-function is the following, defined for a state-
action pair pSt, Atq P S ˆA and t P N as:

Qpt`1qpSt, Atq “ p1´ α
ptqqQptqpSt, Atq ` α

ptqGptq,

where pαptqqtPN is a learning rate schedule and Gptq now is an estimator of the optimal
value function V ˚pStq obtained from samples. Before showing how Gptq can be defined
using on-policy and off-policy TD approaches, we focus on the second, and most relevant,
challenge of control: exploration.

Exploration Strategies A crucial aspect of the control problem is that, in order to collect
useful information from the environment for estimating the value function, an exploration
strategy pπptqqtPN is needed. We already introduced the exploration-exploitation trade-
off in Chapter 2 as the dilemma between playing the action that is currently believed to
be optimal (the greedy action w.r.t. to Qptq) and collecting new samples to refine the Q-
function estimate.
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Typical undirected exploration strategies are ε-greedy and Boltzmann exploration. In
the former case, a greedy action arg maxaPAtQ

ptqps, aqu is played with probability 1´ ε
whereas an action chosen uniformly in A is played with probability ε, with ε P r0, 1s.
Boltzmann exploration instead prescribes to play an action with a probability proportional
to exp

´

Qptqps,aq
τ

¯

where τ P Rě0 is called the temperature. Thus, actions with high
estimated Q-function are exponentially preferred. Both exploration strategies can be made
GLIE (Greedy in the Limit with Infinite Exploration), i.e., they converge to the greedy
policy, under the assumption that εÑ 0 for the ε-greedy and τ Ñ 0 for the Boltzmann as
tÑ8.

Although these exploration strategies allow reaching convergence to the optimal Q-
function under certain conditions (Singh et al., 2000), they are not provably efficient, un-
less unrealistic assumptions are enforced (Auer et al., 2002; Cesa-Bianchi et al., 2017). A
number of approaches have been proposed in the literature to achieve provable efficiency
employing more directed exploration strategies (e.g., Kearns and Singh, 2002; Brafman
and Tennenholtz, 2002; Strehl et al., 2006; Strehl and Littman, 2008; Jaksch et al., 2010;
Jin et al., 2018; Metelli et al., 2019b; Jin et al., 2020). A complete treatment of the explo-
ration problem in RL is out of the scope of this dissertation.

On-policy TD Control In on-policy control, we estimate the Q-function of the policy
πptq we are currently running for exploration. It immediately follows that for convergence
to the optimal Q-function, it is necessary that the exploration policy changes during the
learning process, converging ultimately to the greedy policy. In order to define the term
Gptq we can employ the same approaches used for prediction, with the only difference
that we use the Q-function instead of the V-function. Specifically, given a trajectory τ “
pSt, At, Rt`1, St`1, At`1, Rt`2, . . . q, we can define the SARSA(n) algorithm, based on
the following n-step return (Rummery and Niranjan, 1994):

G
ptq
SARSApnq “

n´1
ÿ

l“0

γlRt`l`1 ` γ
nQptqpSt`n, At`nq.

Since we are considering MDPs with finite actions, we realize that it is not necessary to
wait for actionAt`n as we can compute exactly the expectation over the action space, once
we know the exploration policy πptq. This observation leads to the Expected SARSA(n)
algorithm (van Seijen et al., 2009):

G
ptq
ESARSApnq “

n´1
ÿ

l“0

γlRt`l`1 ` γ
n
ÿ

aPA
πptqpa|St`nqQ

ptqpSt`n, aq.

Clearly, by combining these terms with exponential average, just like in the prediction
methods, we obtain the SARSA(λ) and Expected SARSA(λ) algorithms (Sutton and Barto,
2018). These algorithms converge to the optimal value function under the GLIE condition
if every state-action pair is visited infinitely often and under the Robbins-Moore conditions
on the learning rate (Singh et al., 2000).1

1The Robbins-Moore conditions require that
ř

tPN α
ptq “ 8 and

ř

tPN pα
ptqq2 ă 8.
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Algorithm 3.1: Temporal Difference Control (TD).

Input: T number of iterations, Qp0q initial action-value function, pαptqqtPN learning rate
schedule, pπptqqtPN exploration policy schedule

Output: greedy policy pπ
1 forall t “ 0, . . . , T ´ 1 do
2 Play action At „ πptqp¨|Stq
3 Observe state St`1 and the reward Rt`1

4 Compute Gptq (e.g., using SARSA or Q-learning)
5 Qpt`1q

pSt, Atq “ p1´ α
ptq
qQptqpSt, Atq ` α

ptqGptq

6 πpT q P arg maxaPAtQ
pT q
ps, aqu, @s P S

7 return πpT q

Off-policy TD Control In the off-policy TD methods, we employ one policy to carry out
exploration whereas we learn the value function of a different policy, specifically the one
of the optimal policy. The most popular off-policy TD algorithm is Q-learning (Watkins
and Dayan, 1992), based on the idea of applying an empirical version of the Bellman
optimality operator T˚. Thus, given a trajectory τ “ pSt, At, Rt`1, St`1, . . . q, we define
the Q-learning return as:

G
ptq
QL “ Rt`1 ` γmax

aPA

!

QptqpSt`1, aq
)

.

We can rewrite Gptq “ pT˚Qptq, where pT˚ is the empirical Bellman optimality operator,
that is unbiased conditioned to the current state-action pair pSt, Atq:

Eπ
”´

pT˚f
¯

pSt, Atq|St, At

ı

“ pT˚fq pSt, Atq.

The convergence of Q-learning can be guaranteed even for non GLIE policies under the
assumption that every state-action pair is visited infinitely often and under the Robbins-
Moore conditions on the learning rate (Singh et al., 2000). The convergence rate of Q-
learning was first studied in the asymptotic regime in (Szepesvári, 1997) and subsequently
in (Even-Dar and Mansour, 2003; Beck and Srikant, 2012; Qu and Wierman, 2020; Li
et al., 2020) with also finite-time guarantees. Numerous extensions of Q-learning using
the multi-step TD(λ) approach have been proposed (Watkins, 1989; Peng and Williams,
1996), including unifying approaches, such as Q(σ) (Sutton and Barto, 2018).

The pseudocode of a general TD control algorithm is reported in Algorithm 3.1. For a
complete view of TD methods refer to (Sutton and Barto, 2018, Chapter 5, 6, 7, and 12).

3.2 Function Approximation

The methods we have presented above leverage on the tabular representation available for
finite MDPs. When the state-action space is too large or even continuous, tabular methods
become infeasible. A possible path to overcome this problem is discretization (e.g., Uther
and Veloso, 1998) or state aggregation (e.g., Singh et al., 1994) that allow recovering a
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finite MDP that can be regarded as an approximation of the original one. Another way to
approach the problem is function approximation. In this case, we decide to approximately
represent the Q-function, by resorting to a function space F Ď BpS ˆAq. Thus, we look
for the best approximation of the optimal Q-function Q˚ within the space F :

pQ P arg min
fPF

!

}f ´Q˚}p,ρ

)

, (3.1)

for some ρ P PpS ˆAq evaluation distribution and p ě 1. Given this approximation
pQ P F , we can derive the control policy pπ as a greedy policy w.r.t. pQ. The following result
shows that a good approximation of Q˚ determines a greedy policy whose performance is
close to V ˚.

Theorem 3.1 (Singh and Yee (1994), Corollary 2). Let pQ P BpS ˆAq and let pπ P

arg maxaPAt pQp¨, aqu be a greedy policy w.r.t. pQ. Then for every state s P S it holds that:

V pπpsq ě V ˚psq ´
2

1´ γ

›

›

›

pQ´Q˚
›

›

›

8
.

Clearly, F can be either a parametric or non-parametric function space and its choice
needs to be guided by the usual bias-variance trade-off (Györfi et al., 2002; Bishop, 2007).
There exists a significantly large surge of RL algorithms based on function approxima-
tion for both prediction and control, including Gradient TD methods (e.g., Boyan and
Moore, 1994; Sutton et al., 2008, 2009; Maei et al., 2009), Least Squares Temporal Differ-
ence (LSTD, Bradtke and Barto, 1996; Boyan, 2002; Xu et al., 2002; Nedic and Bertsekas,
2003), Least Squares Policy Evaluation (LSPI, Bertsekas and Ioffe, 1996; Lagoudakis
and Parr, 2003; Bertsekas et al., 2004). For an extensive review of approximate solu-
tion methods refer to (Sutton and Barto, 2018, Chapters 9, 10, and 11) and (Szepesvári,
2010, Sections 3 and 4). In the following we focus on batch RL methods, specifically on
Approximate Dynamic Programming approaches (API, Bertsekas, 2005; Powell, 2007),
which rephrase policy iteration and value iteration in a version obtained through samples.2

3.2.1 Approximate Value Iteration
Approximate Value Iteration (AVI, Gordon, 1995; Munos, 2005) can be thought as a ver-
sion of VI in which the application of the Bellman optimal operator T˚ is replaced by
its empirical version pT˚. We assume to be provided with a batch of transitions D “

tpSi, Ai, S
1
i, Riqu

n
i“1 collected with a sampling distribution ν P PpS ˆAq. Clearly,

whenever AVI is performed on continuous-state MDPs, we need to introduce an approx-
imation space F Ă BpS ˆAq. Thus, at each iteration t P N, AVI is composed of two
stages. Given the current approximation of the Q-function Qptq P F , we first perform an
application of the empirical Bellman operator pT˚Qptq. Then, we project back this quan-
tity onto F by means of a projection operator ΠF : BpS ˆAq Ñ F that is typically
implemented as a least squared regression. This procedure generates an approximation
error:

εptq “ T˚Qptq ´Qpt`1q,

2We are going to present the API algorithms for estimating the Q-function, instead of the V-function, because
we are mainly interested in the control problem rather than the prediction problem.
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Algorithm 3.2: Approximate Value Iteration (AVI).

Input: J number of iterations, Qp0q initial action-value function, F function space,
D “ tpSi, Ai, S1i, Riquni“1 batch samples

Output: greedy policy πpJq

1 forall j “ 0, . . . , J ´ 1 do
2 Y

pjq
i “ pT˚QpjqpSi, Aiq, i P t1, ..., nu

3 Qpj`1q
P arg minfPF

!

›

›f ´ Y pjq
›

›

2

2,D

)

4 πpJqpsq P arg maxaPAtQ
pJq
ps, aqu, @s P S

5 return πpJq

where Qpt`1q “ ΠF pT˚Qptq. This error incorporates an estimation component, due to the
usage of the empirical operator pT˚ instead of the exact one T˚ and a (properly called) ap-
proximation error due to the projection onto the function space F . A pseudocode of AVI is
reported in Algorithm 3.2. Some examples of AVI are tree-based Fitted Q-Iteration (FQI,
Ernst et al., 2005), multilayer perceptron-based Fitted Q-Iteration (Riedmiller, 2005), and
regularized Fitted Q-iteration (Farahmand, 2011). An extension to account for the con-
tinuous action spaces was proposed in (Antos et al., 2007). The theoretical analysis of
the error propagation in AVI algorithms was studied extensively and progressively re-
fined (Bertsekas and Tsitsiklis, 1996; Munos and Szepesvári, 2008; Antos et al., 2008;
Farahmand, 2011). We report the following result due to (Farahmand, 2011).

Theorem 3.2 (Theorem 3.4 of (Farahmand, 2011)). Let p ě 1, J P Ně1 and ρ P PpS ˆ
Aq. Then for any sequence pQpjqqJj“0 Ă F uniformly bounded by Qmax ď

Rmax

1´γ , the
corresponding pεpjqqJ´1

j“0 and for any r P r0, 1s it holds that:

›

›

›
Q˚ ´Qπ

pJq
›

›

›

p,ρ
ď

2γ

p1´ γq2

„

2

1´ γ
γ
J
pRmax ` C

1
2p

VI,ρ,νpJ, rqE
1
2p pεp0q, . . . , εpJ´1q; rq



,

where CVI,ρ,ν is a concentrability coefficient whose expression together with E can be
found in (Farahmand, 2011).

The concentrability coefficients CVI,ρ,ν account for the distribution shift between the
sampling distribution ν, the distribution generated by the sequence of policies pπpjqqJj“1

together with the evaluation distribution ρ. The approximation errors pεpjqqJj“1 can be fur-
ther analyzed, based on the statistical learning properties of the function space F (Farah-
mand, 2011).

3.2.2 Approximate Policy Iteration
Approximate Policy Iteration (API, Scherrer, 2014) can be considered the sample-based
version of PI, in which the evaluation step is performed in an approximate way and through
samples. Specifically, like for AVI, we assume to be provided with a batch of samples
D “ tpSi, Ai, S

1
i, Riqu

n
i“1 collected with a sampling distribution ν P PpS ˆAq. At

every iteration t P N, the evaluation step, i.e., the task of computing the value function
Qπ

ptq

of the current policy πptq is performed in an approximate way, by employing the
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samples D and a function space F . The result is an approximation Qptq of Qπ
ptq

. Instead,
the improvement step can be performed by computing the greedy policy w.r.t. to Qptq, i.e.,
πpt`1q P arg maxaPAtQ

ptqp¨, aqu.
The evaluation step can be performed in different ways that can be broadly classified

into two categories: Bellman Residual Minimization (BRM Antos et al., 2008) in which
we optimize the error between the value function and the corresponding application of the
Bellman operator

›

›

›
f ´ pTπf

›

›

›

p,D
and Least Square Temporal Difference (LSTD, Bradtke

and Barto, 1996) in which we minimize the error between the value function and the
projected application of the Bellman operator

›

›

›
f ´ΠF pTπf

›

›

›

p,D
. The error propagation

analysis for API can be carried out by employing differently defined errors:

ε
ptq
BR “ Qptq ´ Tπ

ptq

Qptq,

ε
ptq
AE “ Qptq ´Qπ

ptq

.

ε
ptq
BR is the Bellman residual error, that accounts for how far the approximation Qptq is

from the being the fixed point of the operator Tπ
ptq

, whereas εptqAE is the approximation
error that quantifies how well Qptq approximates Qπ

ptq

(this includes an estimation and
approximation error, just like in AVI). The following result due to (Farahmand, 2011)
provides the error propagation.

Theorem 3.3 (Theorem 3.2 of Farahmand (2011)). Let p ě 1, J P Ně1 and ρ P PpS ˆ
Aq. Then for any sequence pQpjqqJj“0 Ă F uniformly bounded by Qmax ď

Rmax

1´γ , the
corresponding pεpjqqJ´1

j“0 that can be either εBR or εAE and for any r P r0, 1s it holds that:

›

›

›
Q˚ ´Qπ

pJq
›

›

›

p,ρ
ď

2γ

p1´ γq2

„

2

1´ γ
γ
J
pRmax ` C

1
2p

PI,ρ,νpJ, rqE
1
2p pεp0q, . . . , εpJ´1q; rq



,

where CPI,ρ,ν is a concentrability coefficient whose expression together with E can be
found in (Farahmand, 2011).

Similarly to the AVI setting, the concentrability coefficients CPI,ρ,ν account for the
distribution shift and are defined according to which error (εBR or εAE) is employed.

API with Non-Greedy Updates The most traditional API algorithms focus on manag-
ing the approximation error in the policy evaluation step (e.g., Lagoudakis and Parr, 2003;
Lazaric et al., 2016) and then perform the policy improvement by computing the greedy
policy w.r.t. to the approximated Q-function. It has been observed that this approach might
lead to an oscillating behavior, that can be ascribed to the discontinuity introduced by the
greedy step (Bertsekas, 2011; Wagner, 2011). For this reason, a line of research focused
on conservative updates, in which the greedy improvement is replaced with more prudent
updates. An example is Conservative Policy Iteration (CPI, Kakade and Langford, 2002)
and subsequently Safe Policy Iteration (SPI, Pirotta et al., 2013b), in which the greedy
update is replaced with a soft update. In these algorithms, the next policy is computed as
a convex combination between the greedy and the old policy:

πpt`1q “ απ`,ptq ` p1´ αqπptq,
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where α P r0, 1s and π`,ptq is the greedy policy. The value of the coefficient α is selected
by optimizing a lower bound on the performance improvement that can be estimated us-
ing samples collected with πptq. These approaches succeeded to ensure strong theoretical
guarantees on the performance improvement and, for this reason, can be considered exam-
ples of safe RL algorithms (e.g., Pirotta et al., 2013a; García and Fernández, 2015; Papini
et al., 2017).

3.3 Policy Search

The methods we have presented so far are value-based, i.e., in order to learn the optimal
policy, they first approximate the optimal Q-function and then derive an approximation of
the optimal policy as a greedy policy. Clearly, those methods typically require that the ac-
tion space is finite since they need to compute a maximization over the action space. When
the action space is large the computation of the maximum becomes expensive. In these
cases and whenever we desire to avoid action discretization, Policy Search (PS, Deisenroth
et al., 2013) methods come into play. PS explicitly models the policy that is chosen in a
suitable approximation space Π Ă ΠSR. Formally, PS can be seen as the task of finding a
policy π P Π that minimizes the distance between its value function V π and the optimal
value function V ˚:

pπ P arg min
πPΠ

!

}V π ´ V ˚}p,ρ

)

, (3.2)

where p ě 1 and ρ P PpS ˆAq is an evaluation distribution. It is worth noting that
both policy-based and value-based methods try to achieve the same objective, i.e., maxi-
mizing the performance of the learned policy, but while value-based methods employ the
intermediate step of estimating the value function (Equation (3.1)), PS can directly focus
on the policy (Equation (3.2)). The explicit presence of a policy space allows modeling
restrictions in the behavior the agent can play that arise quite commonly in real-world
applications. A large variety of approaches to PS have been proposed in the literature in-
cluding model-based techniques (e.g., Ng and Jordan, 2000; Ko et al., 2007), expectation-
maximization algorithms (e.g., Kober and Peters, 2008), variational inference (e.g., Neu-
mann, 2011), and evolutionary computation (e.g., Heidrich-Meisner and Igel, 2009). In
this section, we focus on two classes of approaches that will be relevant in the subsequent
chapters.3

3.3.1 Policy Gradient Methods
Policy Gradient methods (PG, Williams, 1992; Baxter and Bartlett, 2001) are probably the
most straightforward and widespread policy search algorithms. PG algorithms assume that
the agent has access to a space of parametric policies:

ΠΘ “ tπθ : S Ñ PpAq : θ P Θ Ď Rpu,

where Θ is called parameter space. The goal consists in finding the policy parametriza-
tion that maximizes the expected return Jpθq that is an abbreviation for Jπθ to highlight

3To simplify the mathematical treatment, we will assume that all relevant distributions admit probability
density functions w.r.t. the Lebesgue measure.
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the dependence on the parameter space. If ΠΘ is a space of stochastic and differentiable
policies in θ, then the expected return Jpθq is differentiable in θ as well. Stochasticity is
essential to ensure exploration unless off-policy estimation techniques are employed (Sil-
ver et al., 2014). The gradient of the expected return ∇θJpθq is called policy gradient and
the following result provides its expression.

Theorem 3.4 (Policy Gradient Theorem (Sutton et al., 1999a)). Let M be an MDP and
πθ P ΠΘ be a policy. If πθ is stochastic and differentiable in θ , then the policy gradient
can be expressed as:

∇θJpθq “
1

1´ γ

ż

SˆA
µπθγ pds,daq∇θ log πθpa|sqQ

πθ ps, aq.

The policy gradient admits another expression that can be obtained by rephrasing the
policy gradient theorem to the trajectory-based formulation (Peters and Schaal, 2008):

∇θJpθq “ Eπθ r∇θ logpπθ pτqGγpτqs “

ż

T
p
πθ pτq∇θ logpπθ pτqGγpτqdτ, (3.3)

where we recall that Gγpτq “
ř8

t“0 γ
trt`1 is the trajectory return. The expression can be

further simplified by observing that the log-gradient of the trajectory density function, for
a given trajectory τ “ ps0, a0, r1, . . . q reduces to:

∇θ logpπθ pτq “ ∇θ log

˜

µ0ps0q

8
ź

t“0

πθpat|stqppst`1|st, atqrpst`1|st, at, st`1q

¸

“

8
ÿ

t“0

∇θ log πθpat|stq.

Once we computed the policy gradient, we can regard at the RL problem as stochastic
optimization. The most straightforward optimization approach is a simple gradient ascent
over the parameters, usually called vanilla gradient (Peters and Schaal, 2008):

θpt`1q
“ θptq ` αptq p∇θJpθptqq,

where pαptqqtPN is a learning rate schedule. More sophisticated approaches include natu-
ral gradient (Kakade, 2001; Peters et al., 2005), in which the policy gradient is premul-
tiplied by the inverse Fisher Information Matrix (FIM, Fisher, 1922), second-order meth-
ods (Furmston and Barber, 2012; Manganini et al., 2015), and coordinate ascent (Papini
et al., 2017).

Clearly, the policy gradient expression cannot be computed exactly in the RL setting
since it requires the knowledge of the transition model and the reward function in order
to compute either the γ-discounted stationary distribution µπθγ or the trajectory density
function pπθ . In practice, we resort to estimators that can be computed from samples, such
as likelihood ratio methods (Peters and Schaal, 2008), that we introduce in the following.
The general pseudocode of PG is reported in Algorithm 3.3.
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Algorithm 3.3: Policy Gradient (PG).

Input: MDP M, number of iterations T , learning rate schedule pαptqqT´1
t“0

Output: approximately optimal policy parameters θpT q

1 Initialize θp0q arbitrarily
2 forall t “ 0, 1, . . . , T ´ 1 do
3 Estimate the policy gradient p∇θJpθptqq
4 Update the parameters θpt`1q

“ θptq ` αptq p∇θJpθptqq
5 return θpT q

REINFORCE The REINFORCE estimator (Williams, 1992) is obtained by rephrasing
the policy gradient expression in Equation (3.3) in a sample-based version, in which we
replace the expectation with the corresponding sample mean. Specifically, given a set
of finite-length trajectories tτiuni“1 collected with Pπθ the estimator is given for every
k P t1, . . . , pu as:

p∇RF
θk
Jpθq “

1

n

n
ÿ

i“1

¨

˝

T pτiq´1
ÿ

t“0

∇θk log πθpAτi,t|Sτi,tq

˛

‚

¨

˝

T pτiq´1
ÿ

t“0

γtRτi,t`1 ´ bk

˛

‚,

where b P Rp is a baseline (Peters and Schaal, 2008) that is used to reduce the variance
of the estimate, while preserving the unbiasedness of the estimator. Indeed, it is possible to
prove that for a non-random vector b P Rp we have that Eπθ r∇θk log πθpAτi,t|Sτi,tqbks “
0. Therefore, it is convenient to derive the value of the baseline that minimizes the variance
of the estimator (Peters and Schaal, 2008), defined for every k P t1, . . . , pu as:

bRF˚
k “

Eπθ
”

`
ř8

t“0 ∇θk log πθpAt|Stq
˘2
Gγpτq

ı

Eπθ
”

`
ř8

t“0 ∇θk log πθpAt|Stq
˘2
ı .

G(PO)MDP One of the main drawbacks of REINFORCE is the high variance of the
gradient estimate. This phenomenon can be ascribed to the fact that REINFORCE does
not leverage the causality between actions and rewards. Indeed, we immediately realize
that the reward ad a given time step t P N is independent of the actions performed at
timesteps t1 ą t. This simple observation allows simplifying the expression of the policy
gradient as:

∇θJpθq “ Eπθ
«

8
ÿ

t“0

˜

t
ÿ

l“0

∇θ log πθpAl|Slq

¸

γtRt`1

ff

,

where we exploited the causality identity Eπθ r∇θ log πθpAl|Slqγ
tRt`1s “ 0, whenever

l ą t. This allows deriving the G(PO)MDP estimator (Baxter and Bartlett, 2001), obtained
from a set of trajectories tτiuni“1 and every k P t1, . . . , pu as:

p∇GpPOqMDP
θk

Jpθq “
1

n

n
ÿ

i“1

T pτiq´1
ÿ

t“0

˜

t
ÿ

l“0

∇θk log πθpAτi,l|Sτi,lq

¸

`

γtRτi,t`1 ´ bt,k
˘

,
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where similarly to the REINFORCE estimator, bt P Rp is a time-dependent baseline,
whose optimal value minimizing the variance is obtained for every t P N and k P t1, . . . , pu
as (Peters and Schaal, 2008):

b
GpPOqMDP˚
t,k “

Eπθ
„

´

řt
l“0 ∇θk log πθpAl|Slq

¯2

γtRt`1



Eπθ
„

´

řt
l“0 ∇θk log πθpAl|Slq

¯2
 .

A study of the statistical properties of REINFORCE and G(PO)MDP estimators can be
found in (Zhao et al., 2011; Pirotta et al., 2013a; Papini et al., 2019b).

3.3.2 Trust-Region Methods

PG methods are effective approaches to address continuous control tasks, especially in
presence of continuous action spaces. However, they are online by nature, as a single
batch of trajectories can be employed to perform just an individual update. Then, after
each update, further interaction with the environment is needed to collect fresh samples.
This is clearly inefficient since the same batch of samples could be used, in principle, to
perform multiple updates. Moreover, PGs are local methods since they employ first-order
information, such as the gradient, to identify an improvement direction. Other methods,
instead, perform the optimization of the policy parameters in a neighborhood of the current
parametrization. These methods are called trust-region (e.g., Schulman et al., 2015) and
they are based on the idea that we can employ the samples collected with one (behavioral)
policy to estimate the performance of other (target) policies, provided that the two policies
are not too “dissimilar”. In recent years, an incredibly large number of algorithms falling
in this category have been proposed (e.g., Peters et al., 2010; Daniel et al., 2012; Schulman
et al., 2015, 2017; Metelli et al., 2018b; Wang et al., 2019c,b; Metelli et al., 2020b). In this
section, we start introducing Importance Sampling (IS, Owen, 2013) and then we revise
two examples of trust-region methods, whose knowledge is necessary for the understand-
ing of the subsequent chapters: Relative Entropy Policy Search (REPS, Peters et al., 2010)
and Policy Optimization via Importance Sampling (POIS, Metelli et al., 2018b).

Importance Sampling The fundamental statistical tool at the basis of a large number of
trust-region methods is importance sampling (Owen, 2013). Given two probability mea-
sures µ, ν P PpX q and a bounded measurable function f P BpX q, IS allows estimating
the expected value of function f under the target distribution µ, having samples collected
with the behavioral distribution ν. Under the assumption that µ ! ν, i.e., µ is absolutely
continuous w.r.t. ν, the IS estimator reweights each sample with the likelihood ratio or
importance weight:4

pJµ{ν “
1

n

n
ÿ

i“1

µpxiq

νpxiq
fpxiq,

4We assume that µ and ν admit probability density function w.r.t. the Lebesgue measure, denoted with the
same symbols.
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where ωµ{νpxq “
µpxq
νpxq is the importance weight and xi „ ν independently for all i P

t1, . . . , nu. This estimator is unbiased and its variance can be bounded in terms of the
α-Rényi divergence between the probability measures µ and ν (Metelli et al., 2018b), a
dissimilarity index between probability distributions (Rényi, 1961).

The Rényi divergence is defined for two probability measures µ, ν P PpX q such that
µ ! ν, for every α P r0,8s as:5

Dαpµ}νq “
1

α´ 1
log

ż

X
νpxq

ˆ

µpxq

νpxq

˙α

dx.

Furthermore, we define the exponentiated Rényi divergence as dαpµ}νq “ exp pDαpµ}νqq
(Cortes et al., 2010).

Based on the results of (Metelli et al., 2020b), the variance of the IS estimator can be
bounded for every α P r1,8s as:

Var
xi„ν

”

pJµ{ν

ı

ď
1

n
}f}

2
2α
α´1 ,ν

d2α pµ}νq
2´ 1

α .

A common choice is α “ 1. As intuition suggests, the larger the divergence between the
two distributions, the larger the variance. Indeed, in presence of significantly dissimilar
distributions, the samples collected with one distribution provide poor information about
the other. The extension of these results to multiple importance sampling (Veach and
Guibas, 1995), i.e., the case in which multiple behavioral distributions are considered was
provided in (Papini et al., 2019a; Metelli et al., 2020b).

Relative Entropy Policy Search Relative Entropy Policy Search (REPS, Peters et al.,
2010; Daniel et al., 2012) is an information theoretic approach to PS that formulates the RL
problem as finding the stationary distribution µ P PpS ˆAq that maximizes the expected
return. The search is constrained in a trust-region centered in the stationary distribution
µπ P PpS ˆAq induced by the current policy π P ΠSR and formalized in terms of a
KL-divergence constraint. The optimization problem can be stated in terms of the KL-
divergence threshold κ P Rě0 as:

max
µPPpSˆAq

Jµ “

ż

SˆA
µps, aqrps, aqdsda

s.t. DKLpµ}µ
πq “

ż

SˆA
µps, aq log

µps, aq

µπps, aq
dsda ď κ,

ż

SˆAˆS
µps, aqpps1|s, aqφpsqdsdads1 “

ż

SˆA
µps1, a1qφps1qds1da1,

where the second constraint is a feature-based proxy of the recursive definition of station-
ary distribution (Definition 2.3), where φ : S Ñ Rp is a feature function. The stationary
distribution that solves the optimization problem can be stated in closed form, from which
it is possible to derive the policy:

π1pa|sq9 expπpa|sq

ˆ

1

η

ˆ

rps, aq `

ż

S
pps1|s, aqωTφps1qds1 ´ ωTφpsq

˙˙

,

5It is worth noting that when α “ 1, D1 is the KL-divergence and when α “ 8, D8pµ}νq “

log ess supX
!

dµ
dν

)

.
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where η P r0,8q and ω P Rp are the Lagrangian parameters that can be computed by
solving the dual problem:

gpη,ωq “ η log

ż

SˆA
µπps, aq exp

ˆ

1

η

ˆ

rps, aq `

ż

S
pps1|s, aqωTφps1qds1 ´ ωTφpsq

˙˙

dsda` ηκ.

In practice, when the policy that can be played by the agent belongs to a limited parametric
policy space ΠΘ, the policy π1 might not be representable within ΠΘ. For this reason, we
need to perform a projection onto ΠΘ. In Daniel et al. (2012), the authors suggest to
perform a moment projection, i.e., find the parameterization θ1 P Θ that minimizes the
expected KL-divergence averaged over µ:

θ1 P arg min
θPΘ

"
ż

S
µpsqDKL

`

π1p¨|sq}πθp¨|sq
˘

ds

*

.

This optimization can be performed through samples, leading to a maximum likelihood
estimation that requires to perform IS in order to estimate the expectation under the new
distribution µ (Daniel et al., 2012).

Policy Optimization via Importance Sampling Policy Optimization via Importance
Sampling (POIS, Metelli et al., 2018b, 2020b) is an actor-only off-policy policy optimiza-
tion algorithm that employs IS in order to perform multiple gradient steps with the same
batch of samples. The algorithm has been proposed initially in (Metelli et al., 2018b)
and subsequently refined in (Metelli et al., 2020b), thanks to the introduction of the per-
decision IS techniques (Precup et al., 2000). If we have at our disposal a set of trajectories
tτiu

n
i“1 sampled by running a behavioral policy πθ, we can estimate the performance of a

target policy πθ1 by resorting to the per-decision IS estimator:

pJpθ1{θq “
1

n

n
ÿ

i“1

T pτiq´1
ÿ

t“0

γtωθ1{θpτi, tqRτi,t`1,

where ωθ1{θpτi, tq “
śt
l“0

πθ1 pAτi,l|Sτi,lq

πθpAτi,l|Sτi,lq
is the importance weight. This estimator is

unbiased and its variance can be bounded as follows (Metelli et al., 2020b, Theorem 5):6

Varπθ
”

pJpθ1{θq
ı

ď
R2

max

n

1` γ

1´ γ

T´1
ÿ

t“0

γ2td2

`

Pπθ1t }Pπθt
˘

,

where d2

`

Pπθ1t }Pπθt
˘

is the Rényi divergence between the t-step trajectory distributions.
Based on these results, POIS optimizes a surrogate objective function in which the esti-
mated performance pJpθ1{θq is penalized by a function of its variance bound:

Cpθ1{θq “ pJpθ1{θq ´ ζ

g

f

f

e

1

n

T´1
ÿ

t“0

γ2td2

`

Pπθ1t }Pπθt
˘

.

This optimization is carried out performing multiple gradient steps by employing the same
batch of trajectories. Then, a new batch of trajectories is collected with the obtained policy.

6Here we provide a slightly looser bound for the variance that, we believe, is more readable.
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The hyperparameter ζ ą 0 can be interpreted in a probabilistic fashion by looking at the
objective as a lower bound on the true performance of the target policy Jpθ1q (Metelli
et al., 2018b). In practice, the Rényi divergence needs to be estimated from samples as
well, leading to the estimator:

pd2

`

Pπθ1t }Pπθt
˘

“
1

n

n
ÿ

i“1

˜

t
ź

l“0

πθ1pAτi,l|Sτi,lq

πθpAτi,l|Sτi,lq

¸2

.
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CHAPTER4
Configurable Markov Decision Processes

4.1 Introduction

In the previous chapters, we introduced the notion of Markov decision process as a math-
ematical formalism to model sequential decision-making problems under uncertainty in
which a goal-directed agent interacts with an environment. There are two fundamental
properties that the environment is typically assumed to satisfy: its dynamics is fixed and
stationary, i.e., it does not change over time either as an effect of a natural process (e.g., a
non-stationary environment) or as a consequence of some external intervention (e.g., some
other party altering the transition probabilities). Clearly, this assumption, together with the
other considered, such as the Markov property, are reasonable in a wide range of real-world
applications and they are particularly convenient (from a theoretical point of view) to state
the notion of optimality and assess the existence of optimal policies (Puterman, 2014).

Several exceptions to this scenario can be found in the literature. For instance, Markov
decision processes with imprecise probabilities (e.g., Satia and Jr., 1973; Givan et al.,
1997; Trevizan et al., 2007) represent an extension of the classical MDP model in which
a form of ambiguity is admitted on the transition probabilities, modeled by means of an
uncertainty set. Although these works mainly focus on the modelization, the notions of
optimality, typically, are derived from the robust control literature (Nilim and Ghaoui,
2003; Iyengar, 2005), with the goal of finding a policy that maximizes utility under the
worst possible transition model. Another line of research, in which modifications of the
transition model occur through time, are the non-stationary MDPs (e.g., Bowerman, 1974;
Hopp et al., 1987; Garcia and Smith, 2000). In these scenarios, the transition probabili-
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ties, and possibly also the reward function, change over time as an effect of the intrinsic
evolution of the environment.

Although the environment is no longer fixed, these models do not account for the
possibility to dynamically alter the environmental parameters. However, we can imagine
scenarios in which the environment modification is an effect of a strategy implemented
by an external party with a precise goal. As mentioned in Chapter 1, we call this goal-
directed process of modification environment configuration (Metelli et al., 2018a). We
find an example of this intentional point of view in the game-theoretic interpretation of the
objective functions employed in robust MDPs. Indeed, finding a robust optimal policy can
be seen as solving a zero-sum game (Shapley, 1953) in which one agent acts on the policy
with the goal of maximizing the expected return and the adversary acts on the transition
model with the opposite goal (Nilim and Ghaoui, 2003). In this example, the intentional
way of selecting the environment emerges beyond the specific modelization of uncertainty.

In this dissertation, we study the environment configuration as the process of changing
some parameters of the environment, having an effect on the transition probabilities. This
chapter is devoted to the presentation of the Configurable Markov Decision Processes
(Conf-MDPs) introduced in Metelli et al. (2018a) in its various aspects.

Chapter Outline The chapter is organized as follows. We start in Section 4.2 providing
an informal introduction to Conf-MDPs together with some motivational examples. Then,
we formally define the Conf-MDP in Section 4.3. We proceed by introducing the value
functions for the Conf-MDPs (Section 4.4) and the corresponding Bellman operators and
equations (Section 4.5). Then, in Section 4.6, we provide a taxonomy of the various sce-
narios that arise when considering Conf-MDPs. We conclude in Section 4.7 with a survey
of the literature connected with Conf-MDPs.

4.2 Motivations and Examples

Environment configuration might be performed in different ways, by different parties, and
with different goals. A prime scenario of environment configuration is what we call the
cooperative setting. Intuitively, in the cooperative setting, the process of environment con-
figuration is “functional” (auxiliary) to the agent, i.e., it is directed to improve its learning
experience. In turn, we can refine the interpretation by proposing two alternative views.
First, we can look at environment configuration in a static way, where the goal is to find
the environment that allows the agent to achieve the best performance possible at the end
of the learning process. In other words, we select the best MDP to solve for the agent. In
this setting, policy learning and environment configuration can be, in principle, viewed at
the same level. However, it is not infrequent that modifying the environment is an activity
to be performed carefully, maybe less frequently than policy updating and that might gen-
erate additional costs (computational or economical). Second, environment configuration
can be seen in a dynamic manner, as a way of speeding up the learning process. Here the
goal consists in finding the sequence of configurations that allows the agent to reach an
optimal policy in the original environment as fast as possible. In this sense, environment
configuration can be interpreted as a form of curriculum learning (Bengio et al., 2009;
Ciosek and Whiteson, 2017; Florensa et al., 2017), although in curriculum learning the
environment modification is typically simulated, while the underlying environment dy-
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namic remains unchanged. To have a more clear idea of the opportunities of environment
configuration, consider the following example.

Example 4.1 (F1 Driving). Suppose an F1 driver has to learn how to drive an F1 car.
The environment is composed of the car, the road and governed by the physical laws that
explain the functioning of the car and the interaction with the road. The driver, the agent
in this process, has at their disposal a number of possible vehicle configurations they can
act on: the kind of tires, the stability and the vehicle attitude, the engine model, and the
wing orientation. Being the car part of the environment, we have a scenario in which it
is possible to alter a part of the environment, i.e., some parameters of the vehicle, while
other portions of the environment, like the road and the physical laws must remain fixed.
It is worth noting that the environment configuration has a double purpose in this setting.
First, we want to find the car configuration that is best suited to the driver (static). In this
case, the configuration process can be carried out by the driver themself or by an external
configurator entity, like a track engineer. Second, we might decide to train the driver mak-
ing them try different vehicle configurations, maybe of increasing degree of “difficulty”, to
make the driver learning an optimal policy as fast as possible. In this second scenario, the
presence of an external configurator in charge of selecting the sequence of vehicle settings
is unavoidable.

From the example, it emerges that the active entity in the configuration process might
be the agent itself or an external supervisor/configurator guiding the learning process (e.g.,
the track engineer). The idea of supervision as a way of constraining the actions of an
agent to induce the desired behavior has been previously introduced in the field of situation
calculus (Giacomo et al., 2012; Banihashemi et al., 2016, 2018).

Another interesting aspect is that, in the cooperative setting, the environment configu-
ration should be carefully performed and customized to the specific agent. Different agents
might have different abilities, modeled, in the RL framework, as different perception and
actuation possibilities. For this reason, even under the same objectives, the performance
of a configuration is tightly related to the agent’s capabilities. Therefore, the configurator
has to be aware of the agent’s policy space in order to wisely identify the configuration.
The following example tries to clear this aspect.

Example 4.2 (Teacher-Student). Consider a student, representing the agent, interacting
with an automatic teaching system, the environment. Different students have different
learning abilities. Therefore, to maximize the knowledge acquired by the student, the
teaching model should be tailored to the student needs. For instance, some students prefer
a straight presentation of the theory and then dive into the examples. Instead, for other
students starting a topic with an example and then moving to formalization is more effec-
tive. Other tools the teaching system can leverage are the kind of material employed to
introduce the topics (e.g., pictures, plots, and videos). All these choices can be thought as
environment configurations having effects on the transition probabilities that govern the
student’s learning process. Ultimately, the optimal choice of the teaching system configu-
ration should be aware of the student’s capabilities.

Up to now, we have considered the setting (cooperative) in which, in some high-level
sense, the agent and the configurator, whenever present, pursue the same goal, i.e., improv-
ing the agent learning experience, either by quicken the learning process or identifying the
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most convenient MDP to solve. However, we can think of scenarios in which the goals
of configurator and agent are non-cooperative. In these cases, the agent learns based on
its own reward function, while the configurator aims at fulfilling a possibly different goal.
Clearly, in these contexts the presence of a configurator party is essential. From a static
perspective, we can look at the configurator as another agent with a different reward func-
tion. Instead, from a dynamic view point, the configurator might be interested in altering
the environment to induce a certain learning behavior in the agent. The following example
represents a case of these settings.

Example 4.3 (Supermarket). Consider the placement of products on the shelves of a su-
permarket. The supermarket director, or the persons in charge, should decide the product
placement in order to, from an intuitive sense, maximize the supermarket profit. Simpli-
fying, the supermarket, that is in charge of the configuration, might decide to act so that
to maximize the amount of money spent by its customers. It is reasonable to assume that
the customers, representing the agents in this setting, have different goals. For instance,
a customer might be interested in minimizing the time needed to complete their shopping.
We immediately realize that the supermarket and the customer objectives are different,
probably not fully competitive, but also not fully cooperative. Moreover, we can assume
that the agent, the customer, is unaware of the strategic behavior of the configurator (or
tends to act not accounting for it).

In the non-cooperative setting, it is important to understand the kind of interaction
taking place between the agent and the configurator. Since the two entities act following
different objectives, a way of addressing this scenario is to take inspiration from game-
theoretic tools, in order to define an appropriate solution concept. A first possible situation
is when the agent is unaware of the presence of the supervisor. In such a case, the configu-
rator selects a configuration and the agent perceives the modification of the environment as
a simple non-stationarity. Therefore, importing the game-theoretic terminology, the agent
is a best responder that learns its optimal policy, which might change over time since the
environment evolves, but without further strategic behavior. On the other hand, the con-
figurator is, of course, aware of the agent’s presence. This kind of interaction, thus, can
be effectively modeled as a leader-follower game (Shapley, 1953), where the configurator
being the leader and the agent being the follower. A reasonable solution concept is the
Stackelberg equilibrium (Von Stackelberg, 1934) that corresponds to the configurator se-
lecting the configuration that maximizes its performance under the agent’s optimal policy,
induced by that configuration. A different perspective, that positions the agent and the con-
figurator on the same lever, is when the agent is aware of the presence of the configurator.
Although we believe that this situation fits less to the real-world scenarios of interests in
which environment configuration is interesting, it is worth looking at the type of agent-
configurator interaction. The strategic interaction between the two entities is more visible
and a suitable solution concept is the Nash equilibrium (Nash, 1951), in which neither
the agent nor the configurator has individual interest to deviate from the equilibrium strat-
egy. A particular case of this setting is when the agent and the configurator have perfectly
competitive objectives, i.e., they play a zero-sum game. This is precisely the case that is
considered in robust control literature.

Example 4.4 (Robust Control). As we already mentioned, in robust control (Nilim and
Ghaoui, 2003) we seek the policy that maximizes the expected return under the worst
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Agent
(policy π)

Environment
(configuration P )

Action At

Reward RConf,t+1

Reward RAg,t+1

State St+1

State St

Figure 4.1: Graphical representation of the interaction between an agent and an environ-
ment in a Conf-MDP.

possible transition model (and possibly reward function) within the uncertainty set. We can
look at this process as the interaction between the agent learning the policy, that seeks to
maximize the expected return, and a configurator selecting the transition model, that tries
to minimize the expected return. The maximin solution typically employed corresponds to
the Nash and to the Stackelberg equilibria of the game.

It is worth noting that in all examples presented, the configuration activity is limited to
a portion of the environment, having limited effect on a limited part of the transition prob-
abilities. This represents an important asymmetry of environment configuration compared
to policy learning. Although there exist situations, like industrial applications, in which
the policy space accessible to the agent has to be limited (e.g., for safety reasons), in a
large number of applications it is reasonable to consider the full space of Markovian sta-
tionary policies for policy learning. Instead, environment configuration is typically more
constrained and the arbitrary alteration of the transition dynamics usually makes no sense,
especially in scenarios involving natural phenomena in which the physical laws are clearly
fixed. For this reason, it is common to restrict the power of the configurator to a set of
configuration parameters that, indirectly, affect in a controlled manner the transition prob-
abilities.

4.3 Definition

As we introduced in the previous section, a Conf-MDP can be thought of as an MDP in
which it is possible to configure some environmental parameters, having the effect of alter-
ing the transition probabilities. To account for the presence of a configurator we consider
two reward functions, one modeling the agent’s goal and one for the configurator. The
following definition formalizes the notion of Conf-MDP.

Definition 4.1 (Configurable Markov Decision Process). A discrete-time infinite-horizon
discounted Configurable Markov Decision Process (Conf-MDP) is defined as a 6-tuple
C “ pS,A, µ0, RAg, RConf , γq where:

• pS,FSq is a non-empty measurable space called state space;
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• pA,FAq is a non-empty measurable space called action space;

• µ0 P PpSq is the initial state distribution over the measurable space pS,FSq;

• RAg, RConf : S ˆ A ˆ S Ñ PpRq are the agent and configurator reward models
respectively, that for every state-action-state triple ps, a, s1q P S ˆA ˆ S assign a
probability measure RAgp¨|s, a, s

1q and RConfp¨|s, a, s
1q over the measurable space

pR,BpRqq;

• γ P r0, 1s is the discount factor.

Thus, a Conf-MDP is obtained by removing from the definition of the MDP (Defi-
nition 2.1) the transition model P and introducing two reward functions: the agent RAg

and the configurator RConf reward functions. Compared to the original definition of Conf-
MDP (Metelli et al., 2018a) there are essentially two differences. First, we consider dif-
ferent reward functions for the agent and the configurator to model situations that were
not considered in Metelli et al. (2018a), in which agent and configurator might have dif-
ferent, possibly conflicting, objectives. Second, we do not include the transition model
space and the policy space in the definition of Conf-MDP. A graphical representation of
the interaction between agent and environment in a Conf-MDP is reported in Figure 4.1.

Similarly to the case of MDPs, we introduce the agent and configurator reward func-
tions rAg, rConf : S ˆAˆ S Ñ R, defined for every triple ps, a, s1q P S ˆAˆ S as:

rAgps, a, s
1q “

ż

R
rRAgpdr|s, a, s

1q,

rConfps, a, s
1q “

ż

R
rRConfpdr|s, a, s

1q.

Whenever necessary, we will assume that both rAg and rConf are uniformly bounded.

Assumption 4.1 (Uniformly Bounded Reward). The agent and configurator reward func-
tions are uniformly bounded, i.e., there exists a finite constant Rmax P Rą0 such that:

}rAg}8 “ sup
ps,a,s1qPSˆAˆS

t|rAgps, a, s
1q|u ď Rmax,

}rConf}8 “ sup
ps,a,s1qPSˆAˆS

t|rConfps, a, s
1q|u ď Rmax.

4.3.1 Policies and Transition Models

A Conf-MDP is characterized by the presence of two entities: the agent and the configu-
rator, that are in charge of performing different tasks in the model. The agent is in charge
of selecting a policy, that is defined exactly as in the case of MDPs (Definition 2.2), so
that to maximize the long-term reward generated by the immediate reward RAg. Instead,
the configurator has the goal of selecting a transition model with the purpose of maxi-
mizing the long-term reward defined through the immediate reward RConf . Similarly to
Definition 2.2, we provide the following general definition for the transition model.
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Definition 4.2 (History-dependent Transition Model). A history-dependent transition model
is a sequence P “ pPtqtPN of functions Pt : HA,t Ñ PpSq that for every decision step
t P N and for every action-ending history ht P HA,t of length t provide a probability
measure Ptp¨|htq over the state space S. We denote with PHR the set of history-dependent
transition models.

This general definition requires the transition model to select the next state based on
a history τ “ ps0, a0, r1, . . . , st´1, at´1, rt, st, atq of length t P N. If the distribution of
the next state depends on the current state-action pair pst, atq only, the transition model
is called Markovian and abbreviated with Ptp¨|st, atq. Moreover, if the transition model
does not depend explicitly on time, it is called stationary and, in such a case, we remove the
subscript, simply writing P p¨|s, aq. We denote with PSR the set of Markovian stationary
transition models. Whenever necessary, we assume that P p¨|s, aq admits a probability
density function that we denote with pps1|s, aq for every ps, a, s1q P S ˆ A ˆ S. Finally,
if for each state-action pair ps, aq P S ˆA the transition model provides a probability to a
single state, we call it deterministic. With little abuse of notation, we indicate the transition
model P : S ˆAÑ S as a mapping from state-action pairs to next states, where P ps, aq
is the next state reached from playing action a P A in state s P S. We denote with
PSD “ SSˆA the set of Markovian stationary deterministic transition models. Whenever
not differently specified, we will employ the term “transition model” (or simply “model”)
to denote a Markovian stationary transition model.

All definitions provided in Chapter 3, can be reused for the case of Conf-MDPs.
Specifically, to highlight the dependence on the transition model P (that can be changed
in a Conf-MDP) we will explicitly report it. For instance, µπ,Pt is the t-step distribution,
µπ,Pγ is the γ-discounted stationary distribution, and Pπ,PAg (resp. Pπ,PConf ) is the distribution
over infinite-length trajectories, induced by the policy-model pair pπ, P q P ΠSR ˆ PSR

and the agent’s reward model RAg (resp. the configurator’s reward model RConf ).

Moreover, we employ the following abbreviated notation for expectations of a bounded
measurable function f P BpT q taken w.r.t. infinite-length trajectories by employing the
agent’s and the configurator’s reward functions respectively:

Eπ,PAg rfpτqs :“ E
τ„Pπ,PAg

rfpτqs “

ż

T
Pπ,PAg pdτqfpτq,

Eπ,PConfrfpτqs :“ E
τ„Pπ,PConf

rfpτqs “

ż

T
Pπ,PConfpdτqfpτq.

4.4 Value Functions

The notion of value function (Sutton and Barto, 2018) can be freely employed in the
context of Conf-MDPs, with the straightforward notational adaptations. For a Conf-
MDP, we have to distinguish between the agent and the configurator value functions.
Specifically, a value function provides a mapping based on the choice of the initial state
pC, π, P, sq ÞÑ V π,PAg,Cpsq (or state-action pair pC, π, P, ps, aqq ÞÑ Qπ,PAg,Cps, aq) that are de-
fined as in Section 2.6 but in terms of the agent’s reward function RAg. Analogously,
for the configurator, we employ the reward function RConf , and we denote pC, π, P, sq ÞÑ
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V π,PConf,Cpsq (or state-action pair pC, π, P, ps, aqq ÞÑ Qπ,PConf,Cps, aq). Similarly, we drop the
subscript C, whenever clear from the context. For the Conf-MDPs, it is convenient to in-
troduce a new value function that associates the performance index to a state-action-next-
state triple: pC, π, P, ps, a, s1qq ÞÑ Uπ,PAg,Cps, a, s

1q for the agent and pC, π, P, ps, a, s1qq ÞÑ
Uπ,PConf,Cps, a, s

1q for the configurator. We formally define it in the following.

Definition 4.3 (State-Action-Next-State Value Function or U-function). Let C be a Conf-
MDP, π P ΠSR be a policy, and P P PSR be a transition model. The state-action-next-
state value function Uπ,PAg , Uπ,PConf : SˆAˆS Ñ R are defined for every state-action-state
triple ps, a, s1q P S ˆAˆS as the expected return starting from state s, playing action a,
landing to state s1, and following policy π thereafter:

Uπ,PAg ps, a, s
1q “ Eπ,PAg

«

8
ÿ

t“0

γtRt`1|S0 “ s,A0 “ a, S1 “ s1

ff

,

Uπ,PConfps, a, s
1q “ Eπ,PConf

«

8
ÿ

t“0

γtRt`1|S0 “ s,A0 “ a, S1 “ s1

ff

,

The relationship between the U-function and the Q-function is easily highlighted since
the latter can be obtained as the expectation of the U-function over the next-state space:
Qπ,PAg ps, aq “

ş

S P pds
1|s, aqUπ,PAg ps, a, s

1q andQπ,PConfps, aq “
ş

S P pds
1|s, aqUπ,PConfps, a, s

1q.
Furthermore, we can define the model advantage functions as Aπ,PAg , A

π,P
Conf : SˆAˆS Ñ

R defined for every ps, a, s1q P S ˆAˆ S as:

Aπ,PAg ps, a, s
1q “ Uπ,PAg ps, a, s

1q ´Qπ,PAg ps, aq,

Aπ,PConfps, a, s
1q “ Uπ,PConfps, a, s

1q ´Qπ,PConfps, aq.

They quantify the performance gain obtained by selecting the next state s1 when having
played action a in state s compared to executing the transition model P p¨|s, aq. They are
the equivalent of the policy advantage functions defined in Equation (2.6), that here we
denote as Aπ,PAg ps, aq “ Qπ,PAg ps, aq ´ V

π,P
Ag psq and Aπ,PConfps, aq “ Qπ,PConfps, aq ´ V

π,P
Conf psq

to highlight the dependence on the transition model P . We can combine the model and the
policy advantage functions to get the coupled advantage functions rAπ,PAg ,

rAπ,PConf : S ˆAˆ
S Ñ R defined for every ps, a, s1q P S ˆAˆ S as:

rAπ,PAg ps, a, s
1q “ Uπ,PAg ps, a, s

1q ´ V π,PAg psq

“ Aπ,PAg ps, a, s
1q `Aπ,PAg ps, aq,

rAπ,PConfps, a, s
1q “ Uπ,PConfps, a, s

1q ´ V π,PConf psq

“ Aπ,PConfps, a, s
1q `Aπ,PConfps, aq.

The coupled advantage function models the gains experienced in selecting action a and
next state s1 from state s instead of playing policy πp¨|sq and transition model P p¨|s, aq.
They essentially combine the policy advantage functions and the model advantage func-
tions to quantify their joint effect.
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4.5 Bellman Equations and Operators

Similarly to the case of traditional MDPs, it is possible to rephrase the value functions in
terms of the Bellman equations and introducing suitable Bellman operators. Concerning
the V-function and the Q-functions the Bellman expectation operators are precisely those
introduced in Section 2.6.1 instanced with the suitable immediate reward functions (rAg for
the agent and rConf for the configurator). To highlight this difference and the dependence
on the transition model P , we will denote them with Tπ,PAg and Tπ,PConf for the agent and the
configurator respectively. For the U-function, instead, we provide the explicit definition of
the corresponding operator.

Definition 4.4 (Bellman Expectation Operators). Let C be a Conf-MDP, π P ΠSR be a
policy and P P PSR be a transition model. The Bellman expectation operators for the
state-action-next-state value function Tπ,PAg , Tπ,PConf : BpS ˆAˆ Sq Ñ BpS ˆAˆ Sq
are defined for every bounded measurable function f P BpS ˆAˆ Sq and every state-
action-state triple ps, a, s1q P S ˆAˆ S as:

´

Tπ,PAg f
¯

ps, a, s1q “ rAgps, a, s
1q ` γ

ż

A
πpda1|s1q

ż

S
P pds2|s, aqfps1, a1, s2q,

´

Tπ,PConff
¯

ps, a, s1q “ rConfps, a, s
1q ` γ

ż

A
πpda1|s1q

ż

S
P pds2|s, aqfps1, a1, s2q.

It is immediate to prove that Tπ,PAg and Tπ,PConf are γ-contractions in the L8-norm and,
consequently, they admit unique fixed points that are the corresponding U-function.

Proposition 4.1. Let Tπ,PAg , Tπ,PConf : BpS ˆAˆ Sq Ñ BpS ˆAˆ Sq be the operators
as in Definition 4.4. Then, if γ P r0, 1q they are a γ-contraction in the L8-norm, i.e., for
every bounded measurable function f, g P BpS ˆAˆ Sq we have:

›

›

›
Tπ,PAg f ´ Tπ,PAg g

›

›

›

8
ď γ }f ´ g}8 ,

›

›

›
Tπ,PConff ´ T

π,P
Confg

›

›

›

8
ď γ }f ´ g}8 .

Furthermore, Uπ,PAg and Uπ,PConf are their unique fixed points, i.e., they satisfy the following
Bellman equations:

Uπ,PAg “ Tπ,PAg Uπ,PAg ,

Uπ,PConf “ Tπ,PConfU
π,P
Conf .

Proof. We prove the statement for the agent case only, as the configurator counterpart is analogous.
Let f, g P BpS ˆAˆ Sq and ps, a, s1q P S ˆAˆ S, we have:

ˇ

ˇ

ˇ

´

Tπ,PAg f
¯

ps, a, s1q ´
´

Tπ,PAg g
¯

ps, a, s1q
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

rAgps, a, s
1
q ` γ

ż

A
πpda1|s1q

ż

S
P pds2|s, aqfps1, a1, s2q

´ rAgps, a, s
1
q ` γ

ż

A
πpda1|s1q

ż

S
P pds2|s, aqgps1, a1, s2q

ˇ

ˇ

ˇ

ˇ
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“ γ

ˇ

ˇ

ˇ

ˇ

ż

A
πpda1|s1q

ż

S
P pds2|s, aq

`

fps1, a1, s2q ´ gps1, a1, s2q
˘

ˇ

ˇ

ˇ

ˇ

“ γ sup
s1PS,a2PA,s2PS

 ˇ

ˇfps1, a2, s2q ´ gps1, a2, s2q
ˇ

ˇ

(

“ γ }f ´ g}
8
.

Thus, by applying the supremum on the left hand side, we obtain:
›

›

›
Tπ,PAg f ´ Tπ,PAg g

›

›

›

8
“ sup
sPS,aPA,s1PS

!ˇ

ˇ

ˇ

´

Tπ,PAg f
¯

ps, a, s1q ´
´

Tπ,PAg g
¯

ps, a, s1q
ˇ

ˇ

ˇ

)

ď γ }f ´ g}
8
.

Since BpS ˆAˆ Sq is the set of bounded measurable functions having image in R, it is a complete
metric space w.r.t. the metric induced by the L8-norm. Thus, we can apply the Banach fixed point
theorem (Banach, 1922) showing that Tπ,PAg has a unique fixed point. It is straightforward from
Definition 4.3 to prove that Uπ,PAg is a fixed point of Tπ,PAg .

Table 4.1 reports the value functions, the corresponding Bellman expectation operators
and equations for the Conf-MDPs.

4.6 Taxonomy

At the beginning of the chapter we provided a series of motivational examples showing
heterogeneous features of environment configuration. In this section, we propose an in-
formal taxonomy of the problems that can be addressed using Conf-MDPs, based on four
dimensions of classification.

Cooperative vs Non-Cooperative The first distinction is based on the agent and config-
urator’s reward functions. If they share the same reward function, we say that we are in a
cooperative setting in which agent and configurator act on different elements, the policy
and the transition model respectively, with the goal of finding a policy-transition model
pair that maximizes the long-term reward. Instead, if the reward functions are different,
we are in a non-cooperative setting. Each of the actors attempts to optimize its own reward
function. When the reward functions are opposite, we are in a fully competitive scenario
that can be thought of as a zero-sum game.

Number of Agents In principle, there can be multiple configurators as well as multiple
agents. For the sake of this dissertation, we restrict our attention to the case of a single
configurator and a single agent. The distinction between the two entities is essential in
the non-cooperative setting, while they can collapse into a unique entity in the cooperative
setting. In such a case, we assume that the agent has additional capabilities for acting on
the environment configuration.

Awareness In general, it is reasonable to assume that the entity entitled to the environ-
ment configuration is aware of the presence of the agent. Instead, the agent might not be
aware of the presence of the supervisor. In this case, the environment modifications are per-
ceived by the agent as a form of non-stationarity and, consequently, the strategic behavior
is limited to the configurator, while the agent reduces to a best responder player. Instead,
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Number
of agents

Setting Rewards Awareness Solution Concept

1 Cooperative rAg “ rConf - Optimal
2 Cooperative rAg “ rConf Yes/No Optimal
2 Non-cooperative rAg ‰ rConf Yes Nash
2 Non-cooperative rAg ‰ rConf No Stackelberg
2 Zero-sum rAg ` rConf “ 0 Yes/No Nash ” Stackelberg

Table 4.2: Table summarizing the main features of the settings generated by the dimen-
sions presented in Section 4.6.

when the agent is aware of the configurator’s presence, its behavior becomes strategic as
well.

Solution Concepts In the cooperative setting, being the two reward functions equal, it is
immediate to define a notion of optimality in which the policy-transition model pair jointly
maximizes the expected return. In the non-cooperative setting, instead, we have to refer to
game-theoretic notion of equilibrium. The choice of the solution concept has to account
for the awareness the agent has on the configurator presence. In particular, if the agent is
unaware of the configurator presence, we can look at the interaction as a leader-follower
game and refer to the Stackelberg equilibrium. Instead, when both are aware of each other,
the Nash equilibrium is a more appropriate solution concept. A particularly interesting
case is when the reward functions are opposite, i.e., the interaction can be modeled as a
zero-sum game. In such a case, the Nash and the Stackelberg equilibrium coincide.

Combining these dimensions generates several combinations, as illustrated in Table 4.2.
Other dimensions could be considered as well. For instance, in the cooperative setting,
when the configurator is present as an external entity, it might know or not the agent’s
reward function. If it does, then the configuration problem could be solved offline with
no need for interaction. Instead, when the agent’s reward is unknown to the configurator,
interaction becomes essential. This distinction can be extended also to the non-cooperative
setting. Nonetheless, we believe that our Conf-MDP model still misses capturing some
relevant situations, especially the curriculum learning view of the configuration activity,
mentioned in Section 4.1. We will discuss these issues in Chapter 10.

4.7 Related Literature

In this section, we provide a survey of the literature connected with the Conf-MDP frame-
work. Specifically, we will focus on three macro topics.

• In Section 4.7.1, we discuss the models that are employed to represent uncertainty
in the transition probabilities (Satia and Jr., 1973). These works mainly focus on
modelization and are extensively employed by the robust control community (Nilim
and Ghaoui, 2003).
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• In Section 4.7.2, we present the models and solution concepts that are employed
when the environment evolves naturally, i.e., the environmental modifications are a
form of non-stationarity (Bowerman, 1974).

• In Section 4.7.3, we illustrate the models and approaches that assume the possibility
to act explicitly on the environment in a strategic way (e.g., Zhang et al., 2009a;
Keren et al., 2017).

4.7.1 The Environment is Known under Uncertainty
There are several real-world cases in which the environment dynamics can only be known
under uncertainty. In this section, we revise this family of works. The interest in con-
nection with our Conf-MDPs lies in the modelization techniques, accounting for multiple
admissible transition models, as well as in the choice of the objective functions employed
to select a suitable transition model among the admissible ones.

Markov Decision Processes with Imprecise Probabilities Markov Decision Processes
with Imprecise Probabilities (MDPIPs, Satia and Jr., 1973; III and Eldeib, 1994; Bueno
et al., 2017) are an extension of traditional MDPs in which the transition model is only
known under uncertainty. Thus, the transition model is not expressed as a probability
distribution, as in traditional MDPs, but it is specified by means of a set of probability
distributions, defined for every for every ps, aq P S ˆA as:

P p¨|s, aq P Kp¨|s, aq ĎPpSq,
Kp¨|s, aq is named transition credal sets, also known as uncertainty set (Delgado et al.,
2009). The applications of MDPIPs might be numerous, including studying the sensitivity
of the value functions and the optimal policies under variation of the transition model
and robust control. The original work (Satia and Jr., 1973) proposed two objectives: the
maximax and maximin. The maximax objective seeks for the best policy and transition
model in the credal sets so as to maximize the expected return, leading to the following
value function defined for every s P S as:

V maximaxpsq “ sup
aPA

sup
P p¨|s,aqPKp¨|s,aq

"
ż

S
P pds1|s, aq

`

rps, a, s1q ` γV maximaxps1q
˘

*

.

Thus, V maximax is an upper bound on the expected reward under the true model (Utkin
and Augustin, 2005). Instead, the maximin criterion looks for the policy maximizing
the expected return while considering the worst possible transition model, leading to the
following value function defined for every s P S as:

V maximinpsq “ sup
aPA

inf
P p¨|s,aqPKp¨|s,aq

"
ż

S
P pds1|s, aq

`

rps, a, s1q ` γV maximinps1q
˘

*

.

V maximin represents a lower bound on the expected return (Delgado et al., 2009) and this
objective is closely related to the robust control literature (Nilim and Ghaoui, 2003). Vari-
ants of policy iteration have been proposed for solving both the problems (Satia and Jr.,
1973). Other objectives can be employed, like the maximix objective that considers a con-
vex combination of the maximax and maximin objectives, interval dominance, maximality,
and E-admissibility (Seidenfeld, 2004; Kikuti et al., 2005).
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Bounded-parameter Markov Decision Processes Bounded-parameter Markov Deci-
sion Processes (BMDPs, Givan et al., 1997; Ni and Liu, 2008) are a particular instance
of MDPIPs in which the credal sets are assumed to be intervals. Specifically, a BMDP
M

Ø

can be thought as a set of MDPs in which the transition probabilities are specified by
means of lower and upper bounds on their values: P

Ø

p¨|s, aq “ rlp¨|s, aq, up¨|s, aqs where
lp¨|s, aq ď up¨|s, aq for all ps, aq P S ˆ A. Additionally, BMDPs allow representing un-
certainty on the reward function by means of analogous intervals R

Ø

p¨|s, aq. This allows
extending the classical notion of value function, leading to the interval value functions
defined for every state s P S as:

V π

Ø

psq “

»

– inf
MPM

Ø
tV πMpsqu , sup

MPM

Ø

tV πMpsqu

fi

fl .

Interval value functions can be compared by defining suitable ordering relationships on
real intervals. Based on whether we employ the lower or the upper bound to sort value
functions, we can define pessimistic and optimistic estimates of the true optimal value
function. Besides modeling the uncertainty, BMDPs can be thought of as a way to rep-
resent an MDP obtained by means of the state aggregation of an original (primitive)
MDP (Givan et al., 1997). In this way, we replace the probability of each individual
transition (and the reward) with an interval. Interval policy evaluation and value iteration
can be employed to analyze the sensitivity of the value function of a policy and the optimal
value function to this form of aggregation (Givan et al., 1997).

Markov Decision Process with Set-valued Transition Another particularization of MD-
PIPs can be found in the Markov Decision Process with Set-valued Transition (MDPST,
Trevizan et al., 2007, 2008). MDPSTs extend the MDP considering probability distribu-
tions over state sets, i.e., mp¨|s, aq P PpF ps, aqq, where F ps, aq Ď 2Szttuu for every
ps, aq P S ˆ A are the reachable sets obtained by playing action a in state s. It can be
proved that an MDPST induces an MDPIP where the credal sets are defined in terms of
the reachable sets (Trevizan et al., 2007). It is possible to prove that the maximin criteria
of MDPIP is equivalent to the following simplified objective for MDPSTs, in which the
minimization over the transition model can be conveniently pushed inside the expectation:

V maxminpsq “ sup
aPA

#

ż

F ps,aq

mpdU |s, aq inf
s1PU

 

rps, a, s1q ` γV maxminps1q
(

+

.

Robust Markov Decision Processes Up to now, we have discussed different extensions
of the traditional MDP framework, all derived from the basic MDPIP model. These works
are more focused on modeling uncertainty rather than the nature of the objective function
employed to discriminate among the possible transition models. The robust control lit-
erature (Bagnell et al., 2001; Nilim and Ghaoui, 2003; Iyengar, 2005), instead, is based
on the idea of learning a robust policy, i.e., a policy that maximizes the expected return
under the worst admissible transition model. In this sense, robust control makes use of
the maximin objective previously introduced. While a large part of the research effort is
focused on rectangular ambiguity sets (Nilim and Ghaoui, 2003; Iyengar, 2005), it might
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be of interest considering the possibility that the transition probabilities of different state-
action pairs are related. In full generality, a transition model belonging to a subset of the
mappings from state-action pairs to probability measures over the state space:

P P K Ď tf : S ˆAÑ PpSqu.
Unfortunately, for general uncertainty sets it has been proven that solving the maximin
problem is NP-hard (Wiesemann et al., 2013). Instead, a robust policy can be computed ef-
ficiently for specific choices of the ambiguity set. An example is s-rectangularity (Le Tal-
lec, 2007), where the ambiguity set is defined separately for every state, modeling sit-
uations in which nature can see the last state but not the action. In this setting, it is
possible to derive a robust policy in polynomial time. Similar results hold for ps, aq-
rectangularity (Wiesemann et al., 2013), where for each state-action pair a separate am-
biguity set is considered. This is essentially the model employed in the credal sets of
MDPIP. The main difference between the two notions of rectangularity is that the optimal
robust policy for ps, aq-rectangularity can be proven to be deterministic whereas for s-
rectangularity the robust policy might be stochastic (Wiesemann et al., 2013). Several suc-
cessive works extended both the models of uncertainty (e.g., Goyal and Grand-Clement,
2018; Mannor et al., 2016) and the objective functions considered (e.g., Delage and Man-
nor, 2010).

4.7.2 The Environment Changes Naturally
In the previous section, we have illustrated the formalizations that account for multiple
transition models to represent a lack of knowledge. These approaches do not admit the
possibility that the environment changes over time and, consequently, during the learning
process. In this section, we present the modelizations and the approaches that consider a
“natural” evolution of the transition probabilities over time.

Non-Stationary Markov Decision Processes A Non-Stationary Markov Decision Pro-
cess (NSMDP, Bowerman, 1974) is an extension of the traditional MDP model that allows
the environment dynamics and the reward function to change over time. Formally, the tran-
sition model P “ pPtqtPN and reward model R “ pRtqtPN are parametrized by the time
index t P N. Non-stationarity can be seen as a form of partial observability (Kaelbling
et al., 1998) since the time index can be interpreted as a state mode that is not observed
by the agent. For this reason, a NSMDP can be always transformed in an MDP, by simply
adding the time variable in the state space. This evolution over time is natural, i.e., not de-
termined by an external, intentional, intervention. As intuition suggests, in NSMDP makes
sense to consider non-stationary policies π “ pπtqtPN . Consequently, the value functions
need to be indexed by time as well. For every t P N, the following Bellman equation can
be defined for every state s P S as (Lecarpentier and Rachelson, 2019):

V πt psq “

ż

A

ż

S
πtpda|sqPtpds

1|s, aq
`

rtps, a, s
1q ` γV πt`1ps

1q
˘

Concerning optimization, we have the following optimal Bellman equation, defined for
every state s P S and t P N as:

V ˚t psq “ sup
aPA

"
ż

S
Ptpds

1|s, aq
`

rtps, a, s
1q ` γV ˚t`1ps

1q
˘

*

,
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from which we can derive a greedy policy π˚t . NSMDPs can be treated with more gener-
ality referring to the framework of Hidden-Mode Markov Decision Processes (Choi et al.,
2001), a particular instance of POMDPs, in which some state modes are hidden to the
decision-maker. Several works have addressed the problem of defining a suitable objective
function and solution approaches (Lecarpentier and Rachelson, 2019), also in the robust
control setting (Sinha and Ghate, 2016).

4.7.3 The Environment Changes Strategically
In this section, we consider the possibility that the environment transition function changes
over time, not in a natural way, as in non-stationary models, but as an effect of the inter-
vention of a strategic actor. This setting is closely related to our Conf-MDPs that assumes
the presence of agent and configurator interacting with one another.

Environment Design A line of research that displays several similarities with Conf-
MDPs is environment design (Zhang and Parkes, 2008; Zhang et al., 2009a), which was
first introduced in the planning community with the value-based policy teaching (Zhang
and Parkes, 2008). The fundamental idea is that in a learning process there may be an
interested party, i.e., an entity different from the learning agent, that is allowed to change
dynamically the reward function of the MDP, providing some incentives, to induce the
agent displaying a certain behavior. The formalization of this process was provided with
more generality in Zhang et al. (2009a). Specifically, an environment design problem is
composed of:

• an environment e P E ;

• an agent model pθ, fq, where θ P I are the model parameters that represent the
agent’s preferences and capabilities and f : I ˆ E Ñ X is the agent function
mapping a parameter and an environment to a decision, in the decision set X ;

• the interested party knows the environment e and the agent function f and can act
by means of an environment change ∆ P ∆. Based on the current environment
e P E , agent’s decision x P X , an environment change ∆ P ∆ can be admissible if
it belongs to the set ∆ P admissiblepe, xq;

• the environment transition function F : E ˆ ∆ Ñ E that, given the current en-
vironment and the environment change, provides the modified environment. The
environment transition function is assumed to be known to the interested party;

• the goal function G : X ˆ∆ Ñ R that outputs the reward of the interested party.1

Therefore, in this model the interested party aims at finding the admissible environment
change ∆ P ∆ such that the agent’s behavior in the modified environment e1 “ Fpe,∆q
optimizes the goal function G:

max
∆P∆

G px,∆q

1In Zhang et al. (2009a) a slightly more general definition is provided, in which the agent function f is
admitted to output a set of decisions rather than a single decision and the agent function G depends on I and E
too.
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s.t. ∆ P admissiblepe, xq

e1 “ Fpe,∆q
x “ fpθ, e1q

It was proven that under certain convenient forms of the agent function the problem is
tractable and can be addressed using LP (Zhang et al., 2009a).

We can identify several similarities between this formulation of environment design
and the Conf-MDPs. Indeed, if we look at the agent’s function f as the agent’s best
response function, that is assumed to be known to the interested party (the configurator
in our setting), this formulation resembles a form of leader-follower game taking place
between agent and configurator. Indeed, the interested party (the configurator in our ter-
minology) seeks for the environment change (analogous to the environment configuration)
that optimizes its utility function G (the expected return for us) assuming that the agent
will react as a best responder. However, the main limitation, we believe, is the assump-
tion that the interested part knows the agent function. Subsequent works considered the
setting in which the interested part objective consists of teaching a specific policy to the
agent (Zhang et al., 2009b) or optimizing an environment tailored to the user needs by
selecting online the available action set (Mahmud et al., 2014).

Utility Maximizing Design A particular instance of environment design is represented
by Equi-Reward Utility Maximizing Design (ER-UMD, Keren et al., 2017). In ER-UMD
the agent and the interested party share the same goal and the formulation is restricted to
the MDP case. In this sense, ER-UMD resembles the cooperative view of Conf-MDPs.
Specifically, if we denote with J˚,e “ supπPΠSR tJπ,eu the optimal agent’s performance
in the environment e P E , the interested party looks for an admissible environment change
(or sequence of admissible environment changes) so that the agent’s performance is max-
imized:

max
∆P∆

J˚,e
1

s.t. ∆ P admissiblepeq

e1 “ Fpe,∆q.
(4.1)

Additionally in Keren et al. (2017) the possibility to associate to the environment modi-
fication a cost is considered. A cost function C : ∆ Ñ Rě0 is employed to brake ties
among the optimal changes ∆˚ solving the problem in Equation (4.1) preferring those of
minimal cost. Heuristic approaches have been subsequently proposed to make the search
for the sequence of changes tractable (Keren et al., 2018, 2019).

Cost-Aware Objectives A similar idea of including costs in the objective function was
recently proposed in Silva et al. (2018), in a framework closer to the RL formulation.
The idea consists in considering a parametric representation of the transition model Pω
and evaluate the cost of every parametrization via function C : Ω Ñ Rě0 leading to the
problem:

max
ωPΩ

J˚pωq ´ Cpωq,
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where J˚pωq “ supπPΠSR

 

Jπ,Pω
(

is the expected return of the optimal policy in the
MDP induced by the transition model Pω . The problem is tackled by means of a gradient-
based approach.

Threatened Markov Decision Process Threatened Markov Decision Process (TMDP,
Gallego et al., 2019a,b) is a recently introduced model that assumes the presence of an
opponent (a threatener) that performs a threat action selected within the set B that has
an effect on the transition probabilities P : S ˆAˆ B Ñ PpSq. Instead of tackling
the problem from a game-theoretic perspective, the authors propose to augment the MDP
accounting for the opponent presence, modeled with a prior belief pApb|sq that the agent
maintains on the threat action the opponent will play. A modified version of the Q-learning
algorithm is proposed, in which the target value is defined in terms of an expectation w.r.t.
to the belief pApb|sq:

Qps, aq “

ż

pApdb|sqQps, a, bq.

In order to deal with the uncertainty on the opponent’s policy pA, the authors propose to ei-
ther consider a non-strategic opponent or to employ level-k thinking mechanism (Gallego
et al., 2019a).

Off-Environment Reinforcement Learning OFFER (Ciosek and Whiteson, 2017) ad-
dresses the issue of significant rare events, i.e., situations that occur in the environment
with low probability but able to affect significantly the agent’s performance. The authors
propose an off-environment policy gradient method that, by means of a simulator, changes,
during the learning process, the probability of the rare events so that the trained agent can
learn to deal with them. Like the policy πθ, the environment is parametrized Pω , and the
optimization on these parameters aims at minimizing the variance of the policy gradient:

ω˚ P arg min
ωPΩ

!

Var
”

p∇θJpθ,ω0{ωq
ı)

,

where p∇θJpθ,ω0{ωq is an importance sampling estimator of the policy gradient of policy
πθ under the true environment Pω0

having samples collected in environment Pω . Since the
presence of significant rare events is a source of variance, this objective tends, indirectly, to
increase their probability to occur. This approach can be thought of as a form of curriculum
learning (Bengio et al., 2009) but, differently from Conf-MDPs, the configuration is only
simulated.

Adversarial Attacks in RL The vulnerability of deep learning classifiers to adversar-
ial inputs is a well-known issue in image classification Chakraborty et al. (2018). More
recently, this phenomenon has been studied in the field of RL. A first branch of ap-
proaches directly translates the techniques employed in image classification to RL, but
they are clearly limited to deep RL architectures with a state representation based on im-
ages (Huang et al., 2017; Lin et al., 2017). In these cases, an attack is considered successful
if it determines a significant worsening of the performance. More recently, the notion of
policy poisoning (Ma et al., 2019) has been introduced. In this setting, the goal of the
attacker is that of inducing the agent learning a specific policy. Such an attack can be
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carried out in different modalities. A first example proposed in (Ma et al., 2019) consists
in altering the reward function the agent observes. The paper proves that this intervention
is sufficient to poison the policy, with no need of acting on the state-action representation.
Furthermore, the possibility of acting on the transition model, in addition to the reward
function, is accounted in (Rakhsha et al., 2020), where a cost of altering the environ-
ment is also quantified. These latter examples can be considered a way of operating in
a non-cooperative Conf-MDP, where the configurator having the specific goal of policy
poisoning. We point out that, since these approaches aim at forcing a particular policy,
they cannot be directly mapped to the Conf-MDP definition, that requires a specific re-
ward function for the configurator. Indeed, treating policy poisoning in the Conf-MDP
framework would mean devising a suitable reward function inducing the desired policy
under the optimal configuration.
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CHAPTER5
Solution Concepts for Configurable Markov

Decision Processes

In Chapter 4, we have introduced the notion of configurable Markov decision process,
as a formalism to model the (possible) presence of a configurator in charge of acting on
the environmental parameters with a possibly non-cooperative goal compared to that of
the agent. Furthermore, we provided a taxonomy that qualitatively classifies the settings
that can emerge in the Conf-MDP framework and we discussed how they determine the
most suited solution concepts. In this dissertation, we primarily focus on the cooperative
setting in which a straightforward notion of optimality can be defined. The subsequent
chapters, therefore, will be devoted to the study of the solution techniques for cooperative
Conf-MDPs in both finite and continuous domains. In this chapter, instead, we provide the
formalization of the solution concepts for the cooperative and non-cooperative settings.

Chapter Outline The chapter is organized as follows. In Section 5.1, we focus on the
cooperative setting. We start by formally defining a cooperative Conf-MDP, we show how
this setting can be reduced to a standard MDP, and we provide the optimality conditions,
including the corresponding Bellman optimality operators and equations. In Section 5.2,
we discuss the non-cooperative setting. Based on whether the agent is aware of the config-
urator presence, we propose solution concepts based on Nash and Stackelberg equilibria,
and the corresponding value functions and operators.
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5.1 Cooperative Setting

In the cooperative setting, the agent and the configurator share the same reward function,
i.e., they act perusing the same objective. From a more formal point of view, we can define
a Cooperative Conf-MDP as follows.

Definition 5.1 (Cooperative Conf-MDP). Let C “ pS,A, µ0, RAg, RConf , γq be a Conf-
MDP. C is a Cooperative Conf-MDP if for every state-action-state triple ps, a, s1q P S ˆ
Aˆ S it holds that:

RAgp¨|s, a, s
1q “ RConfp¨|s, a, s

1q almost surely. (5.1)

In this case, we will abbreviate the notation reporting just one reward functionR “ RAg “

RConf in the tuple C “ pS,A, µ0, R, γq.

This definition implies that also the reward functions are equal, i.e., rAgps, a, s1q “
rConfps, a, s

1q for all ps, a, s1q P SˆAˆS. For notational convenience, we will remove the
subscripts Ag and Conf from all the relevant quantities, as the distinction is not necessary.
Specifically, we will denote the expectation of a bounded measurable function f P BpT q
under the infinite-length trajectory distribution as follows:

Eπ,P rfpτqs :“ E
τ„Pπ,P

rfpτqs “

ż

T
Pπ,P pdτqfpτq.

The goal in a cooperative Conf-MDP consists in finding a policy-transition model pair
that, jointly, maximize the long-term reward. This can be formalized, similarly to what is
done in Chapter 2 by introducing the notion of optimal value function and optimal policy-
transition model pair.

Definition 5.2 (Optimality in Conf-MDPs). Let C be an Conf-MDP. A policy-transition
model pair pπ˚, P˚q P ΠHRˆPHR is optimal if for every state s P S and policy-transition
model pair pπ, P q P ΠHR ˆ PHR it holds that:

V π
˚,P˚psq ě V π,P psq. (5.2)

The optimal state value function is defined for every state s P S as:

V ˚,˚psq “ sup
πPΠHR,PPPHR

 

V π,P psq
(

. (5.3)

Before proceeding further, it is convenient to show that a cooperative Conf-MDP can
be reduced to an equivalent MDP.

5.1.1 Reduction of Cooperative Conf-MDP to MDP
In this section, we show that a Cooperative Conf-MDP can be reduced to an “equivalent”
MDP, as shown in the following result.

Theorem 5.1. Let C “ pS,A, µ0, R, γq be a cooperative Conf-MDP and let ĂM “

pS,Aˆ S, rP , µ0, rR, γq be an MDP defined as follows:
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• rP : S ˆ pAˆ Sq Ñ PpSq, defined for every ps, pa, s1qq P S ˆ pAˆ Sq and
s2 P S as:

rP pds2|s, pa, s1qq “ δs1pds
2q,

• rR : S ˆ pAˆ Sq ˆ S Ñ PpRq, defined for ps, pa, s1q, s2q P S ˆ pAˆ Sq ˆ S
and r P R as:

rRpdr|s, pa, s1q, s2q “ Rpdr|s, a, s1q.

Let pπ, P q P ΠHR ˆ PHR be a policy-transition model pair for the Conf-MDP C. Let us
define the new policy rπ for the MDP ĂM for every t P N, state-ending history ht P HS,t,
and pa, s1q P Aˆ S as:

rπtpdpa, s
1q|htq “ πtpda|htqPtpds

1|ht, aq.

Then, the value function induced by the policy-model pair pπ, P q P ΠHR ˆ PHR in the
Conf-MDP C is equal to the value function induced by policy rπ in MDP ĂM, i.e., for every
state s P S it holds that:

V π,PC psq “ V rπ
ĂMpsq.

Proof. V π,PC is the expectation of the return
ř8

t“0 γ
tRt`1 under the trajectory distribution induced

in C by the pair pπ, P q P ΠHR
ˆ PHR, conditioned to the initial state s P S, denote it with PC .

Similarly, V rπ
ĂM is the expectation of the return under the trajectory distribution induced in ĂM by the

pair rπ, conditioned to the initial state s P S, denote it with P
ĂM. Thus, it suffices to prove that these

distributions are the same. Let us consider the following derivation:

P
ĂMpdτq “ δspds0q

8
ź

t“0

rπpdpat, s
1
tq|htq rP pdst`1|st, pat, s

1
tqq

rRpdrt`1|st, pat, s
1
tq, st`1q

“ δspds0q

8
ź

t“0

πtpda|htqPtpds
1
t|ht, atqδst`1pds

1
tq
rRpdrt`1|st, at, s

1
tq

“ δspds0q

8
ź

t“0

πtpda|htqPtpdst`1|ht, atqRpdrt`1|st, at, st`1q “ PCpdτq,

where we exploited the properties of the Dirac measure and the definitions of rP , rR, and rπ.

Intuition suggests that we can solve the equivalent MDP ĂM finding an optimal policy
rπ˚, that for every state prescribes both the action and the next state, and then derive an op-
timal policy-transition model pair pπ˚, P˚q. However, we do not see this as a constructive
result, but just as a tool to reuse the results of the traditional MDP theory to the Conf-MDP
setting.

Indeed, if the transition probabilities can be changed arbitrarily and there is no con-
straint on how frequently we can perform an update, we can simply translate the Conf-
MDP in the equivalent MDP ĂM. There are some reasons why this might not be convenient
and sometimes impossible. First, the policy and the transition model might be under the
control of different entities: the agent and the configurator, respectively. Moreover, they
might perform updates at different time scales. In realistic scenarios, changing the envi-
ronment might be an expensive operation (although at this level, we did not model cost) to
be performed less frequently compared to policy updates. This is clearly more reasonable
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in the non-cooperative setting. Even in the cooperative setting, when there is just the agent
configuring the environment, it is worth noting that while it has knowledge on its policy
space, it typically just knows which are the environment configurable parameters, but it
ignores the effect on the transition probabilities.

Remark 5.1 (On the Complexity of solving Conf-MDPs). Thanks to the reduction pro-
vided above, solving a cooperative Conf-MDP with |S| states and |A| action is equivalent
to solving an MDP with |S| states and |A||S| actions. In particular, based on (Papadim-
itriou and Tsitsiklis, 1987), it follows that solving a Conf-MDP is for sure P-complete, i.e.,
if an efficient algorithm were available then all problems in P would be solvable efficiently
in parallel. Actually, it was proven that solving deterministic MDPs is in NC (Papadim-
itriou and Tsitsiklis, 1987), i.e., deterministic MDPs can be solved efficiently in parallel.
Since the reduction we propose generates a deterministic equivalent MDP, we can con-
clude that solving a cooperative Conf-MDP is in NC. In other words, solving a Conf-MDP
is intrinsically simpler than solving an MDP.

There are some observations that need to be discussed. We are considering the gen-
eral setting in which we are allowed to change the probabilities of the transition model
arbitrarily. We have already observed that this context is unrealistic in several scenarios
of interest. Furthermore, the recent work (Silva et al., 2019) showed that solving a coop-
erative Conf-MDP is NP-hard even when no explicit cost function is considered. This is
not in contradiction with what we have stated above. Indeed, the result (Silva et al., 2019)
is based on a reduction that considers a specific way in which the transition model can
be modified, i.e., the search is restricted to a subset P Ă PSR of the space of Markovian
stationary transition models. This reflects the analogy with policy search. Indeed, when
the optimization is restricted to a generic subset Π Ă ΠSR of the Markovian stationary
policies the problem becomes NP-hard as well (Vlassis et al., 2012).

5.1.2 Optimal Value Functions
We defined the optimal state value function V ˚,˚ of a cooperative Conf-MDP as the best
performance we can obtain in the Conf-MDP starting from each state. Analogously, we
can define the optimal state-action value function Q˚,˚ and the optimal state-action-next-
state value function U˚,˚ defined for every ps, a, s1q P S ˆAˆ S as:

Q˚,˚ps, aq “ sup
πPΠHR,PPPHR

 

Qπ,P ps, aq
(

,

U˚,˚ps, a, s1q “ sup
πPΠHR,PPPHR

 

Uπ,P ps, a, s1q
(

.

Clearly, given the reduction of Theorem 5.1 we immediacy observe that we can restrict
w.l.o.g. the computation of the supremum to the space of Markovian stationary policies
ΠSR and transition models PSR. Similarly to the case of traditional MDPs, in the coop-
erative setting, we can define suitable Bellman optimal operators and equations. For the
sake of brevity, we report those of the V-function only. We refer the reader to Table 5.1 for
a complete view.

Definition 5.3 (Bellman Optimality Operator for Conf-MDPs). Let C be a cooperative
Conf-MDP, π P ΠSR be a policy, and P P PSR be a transition model. The Bellman

72



5.1. Cooperative Setting

optimality operator for the state value function T˚,˚ : BpSq Ñ BpSq is defined for every
bounded measurable function f P BpSq and every state s P S as:

pT˚,˚fq psq “ sup
aPA,s1PS

 

rps, a, s1q ` γfps1q
(

. (5.4)

Compared to the Bellman operators defined for traditional MDPs (Definition 2.8), in-
stead of computing the expectation w.r.t. the next state sampled from the (fixed) transition
model P , we perform a maximization on both the action and the next state. Clearly, these
operators are still a contraction in L8-norm when γ ă 1.

Proposition 5.2. Let T˚,˚ : BpSq Ñ BpSq be the operator as in Definition 5.3. Then,
if γ P r0, 1q it is a γ-contraction in the L8-norm, i.e., for every bounded measurable
functions f, g P BpSq it holds that:

}T˚,˚f ´ T˚,˚g}8 ď γ }f ´ g}8 .

Furthermore, V ˚,˚ is its unique fixed point, i.e., it fulfills the following Bellman optimality
equation:

V ˚,˚ “ T˚,˚V ˚,˚.

Proof. We limit the proof for the operator of the state value functions. The proof can be straightfor-
wardly extended for the operators for the Q-function and U-function. Let f, g P BpSq and s P S,
we have:

ˇ

ˇ

ˇ

ˇ

`

T˚,˚f
˘

psq ´
`

T˚,˚g
˘

psq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

sup
aPA,s1PS

 

rps, a, s1q ` γfps1q
(

´ sup
aPA,s1PS

 

rps, a, s1q ` γgps1q
(

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
aPA,s1PS

 
ˇ

ˇrps, a, s1q ` γfps1q ´ rps, a, s1q ´ γgps1q
ˇ

ˇ

(

ď γ sup
s1PS

 
ˇ

ˇfps1q ´ gps1q
ˇ

ˇ

(

“ γ }f ´ g}
8
,

Thus, by applying the supremum on the left hand side, we obtain:
›

›T˚,˚f ´ T˚,˚g
›

›

8
“ sup

sPS

 ˇ

ˇ

`

T˚,˚f
˘

psq ´
`

T˚,˚g
˘

psq
ˇ

ˇ

(

ď γ }f ´ g}
8
.

Since BpSq is the set of bounded measurable functions having image in R, it is a complete metric
space w.r.t. the metric induced by the L8-norm. Thus, we can apply the Banach fixed point the-
orem (Banach, 1922) showing that T˚,˚ has a unique fixed point. To prove the Bellman equation
V ˚,˚ “ T˚,˚V ˚,˚ we follow the reasoning of Theorem 6.2.2 of Puterman (2014), showing that
for every f P BpSq if f “ T˚,˚f then f “ V ˚,˚. Let us first prove that if f ě T˚,˚f then
f ě V ˚,˚. If f ě T˚,˚f it means that for all pπ, P q P ΠSR

ˆ PSR, we have f ě Tπ,P f . Thus,
for all pπ, P q P ΠSR

ˆ PSR we have:

f ´ V π,P ě Tπ,P f ´ Tπ,PV π,P

“ γPπ
´

f ´ V π,P
¯

ě 0,
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where we exploited the fact that for a function g P BpSq if g ě γPπg then pIdS ´ γP
π
q g ě 0 that,

in turn, implies g ě 0 whenever γ ă 1 thanks to Lemma 4.2 of (Munos, 2007). Since f ě V π,P

holds for all pπ, P q P ΠSR
ˆ PSR, we also have f ě supπPΠSR,PPPSRtV π,P u “ V ˚,˚. Now,

we have to prove that if f ď T˚,˚f then f ď V ˚,˚. We proceed analogously, recalling that if
f ď T˚,˚f , there exists pπ, P q P ΠSR

ˆ PSR such that f ď Tπ,P f . Consequently, there exists
pπ, P q P ΠSR

ˆ PSR such that:

f ´ V π,P ď Tπ,P f ´ Tπ,PV π,P

“ γPπ
´

f ´ V π,P
¯

ď 0.

Since f ď V π,P holds for at least one pair pπ, P q P ΠSR
ˆ PSR, we can conclude that f ď

supπPΠSR,PPPSRtV π,P u “ V ˚,˚. Combining these two statements, we conclude that if f “
T˚,˚f then f “ V ˚,˚. As an alternative, we could simply observe that these operators can be
defined in terms of the Bellman optimality operators of the equivalent MDP ĂM of Theorem 5.1,
from which we derive all the relevant properties.

Moreover, V ˚,˚, Q˚,˚, and U˚,˚ are related by the following identities, holding for
every ps, aq P S ˆA:

Q˚,˚ps, aq “ sup
s1PS

 

U˚,˚ps, a, s1q
(

,

V ˚,˚psq “ sup
aPA

tQ˚,˚ps, aqu “ sup
aPA,s1PS

 

U˚,˚ps, a, s1q
(

.

5.1.3 Greedy Policy-Transition Model Pairs
As the Q-function in an MDP allows defining the notion of greedy policy, the U-function
allows introducing the notion of greedy policy-transition model pairs.

Definition 5.4 (Greedy Policy-Transition Model Pairs). Let f P BpS ˆAˆ Sq be a
bounded measurable function, for every state s P S, we say that an action-state pair
pa`, ps1q`q P A ˆ S is greedy in state s if fps, a`, ps1q`q “ suppa,s1qPAˆS tfps, a, s

1qu.
A greedy policy-transition model pair w.r.t. a function f P BpS ˆAˆ Sq is any policy-
transition model pair pπ`, P`q P ΠSR ˆ PSR selecting only greedy pairs, i.e., for every
state s P S, we have:

ż

A
π`pda|sq

ż

S
P`pds1|s, aqfps, a, s1q “ sup

aPA,s1PS

 

fps, a, s1q
(

.

Thus, if pπ`, P`q P ΠSR ˆ PSR is greedy w.r.t. to the function f P BpS ˆAˆ Sq
the following identity involving the Bellman operators holds:

Tπ
`,P`f “ T˚,˚f.

5.1.4 Optimal Policy-Transition Model pairs
In the previous sections, we discussed the notion of optimal value function and derived
suitable Bellman equations and operators. We study now the existence of the optimal
policy-transition model pairs, that we have introduced in Definition 5.2. We proceed anal-
ogously to the case of traditional MDP, defining a suitable preference Á relationship on
the space of Markovian stationary policy-transition model pairs ΠSR ˆ PSR.
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Agent and Configurator

V
-f

un
ct

io
n

V ˚,˚psq“ sup
πPΠSR,PPPSR

!

V π,P psq
)

V ˚,˚psq“ sup
aPA,s1PS

 

rps,a,s1q`γV ˚,˚ps1q
(

`

T˚,˚f
˘

psq“ sup
aPA,s1PS

 

rps,a,s1q`γfps1q
(

Q
-f

un
ct

io
n

Q˚,˚ps,aq“ sup
πPΠSR,PPPSR

!

Qπ,P ps,aq
)

Q˚,˚ps,aq“sup
s1PS

"

rps,a,s1q`γ sup
a1PA

 

Q˚,˚ps1,a1q
(

*

`

T˚,˚f
˘

ps,aq“sup
s1PS

"

rps,a,s1q`γ sup
a1PA

 

fps1,a1q
(

*

U
-f

un
ct

io
n

U˚,˚ps,a,s1q“ sup
πPΠSR,PPPSR

!

Uπ,P ps,a,s1q
)

U˚,˚ps,a,s1q“rps,a,s1q`γ sup
a1PA,s2PS

 

U˚,˚ps1,a1,s2q
(

`

T˚,˚f
˘

ps,a,s1q“rps,a,s1q`γ sup
a1PA,s2PS

 

fps1,a1,s2q
(

Table 5.1: Summary of the value functions, Bellman optimal operators and Bellman opti-
mality equations for cooperative Conf-MDPs.

Definition 5.5 (Preorder on ΠSR ˆ PSR). Let C be a cooperative Conf-MDP. The prefer-
ence relationship ÁĎ pΠSR ˆ PSRq ˆ pΠSR ˆ PSRq is defined for two policy-transition
model pairs pπ, P q, pπ1, P 1q P ΠSR ˆ PSR as:

pπ, P q Á pπ1, P 1q ðñ V π,P psq ě V π
1,P 1psq, @s P S. (5.5)

This relationship inherits all the properties of the one defined for traditional MDPs
(Definition 2.10) thanks to the reduction of Theorem 5.1. It is reflexive and transitive,
but not antisymmetric. Based on the optimality conditions stated for Conf-MDPs (Def-
inition 5.2), if an optimal policy-transition model exists, it must be a maximum of the
preorder Á. The following result exploits the reduction of Theorem 5.1, to prove the exis-
tence of an optimal policy-transition model pair.

Theorem 5.3. Let C be a cooperative Conf-MDP. If the state space S is discrete and the
supremum V ˚,˚psq “ suppa,s1qPAˆStU

˚ps, a, s1qu is attained for every state s P S, then:

1. there exists a Markovian stationary greedy policy-transition model pair pπ˚, P˚q
w.r.t. U˚,˚;

2. pπ˚, P˚q is an optimal policy-transition model pair, i.e., pπ˚, P˚q Á pπ, P q for
every policy-transition model pairs pπ, P q P ΠSR ˆ PSR;

3. there exists a deterministic Markovian stationary optimal policy and a deterministic
Makovian stationary optimal transition model.
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Proof. The proof makes use of the reduction of Theorem 5.1. Consider the equivalent MDP ĂM.
Given Theorem 2.2, we know that there exists a policy rπ˚ for ĂM that is greedy w.r.t.Q˚

ĂM. Moreover,
we decide to pick a deterministic rπ˚. Thus, for every s P S if rπ˚psq “ pa, s1q we define the
deterministic policy π˚psq “ a and P˚ps, aq “ s1. Since Q˚

ĂM “ U˚,˚C , it follows that π˚ and P˚

are greedy w.r.t. U˚,˚C and optimal for the cooperative Conf-MDP C.

This theorem resembles the one presented in Chapter 2 for traditional MDPs. Thanks
to the reduction proposed in Theorem 5.1, the conclusions are essentially the same. There
always exists an optimal policy-transition model pair, that can be defined as greedy w.r.t. to
the suitable optimal value functions. Similarly to traditional MDPs, we can relax the defi-
nition of optimality considering a scalar objective function, instead of requiring optimality
for every state. This leads to the following condition.

Definition 5.6 (J-optimality for Conf-MDPs). Let C be a cooperative Conf-MDP and
let J be a performance index. A policy-transition model pair pπ˚, P˚q P ΠSR ˆ PSR is
J-optimal if for every policy-transition model pair pπ, P q P ΠSRˆPSR: Jπ

˚,P˚ ě Jπ,P .

Clearly, any policy-transition model pair that fulfills the optimality condition in Defi-
nition 5.3 also fulfills that of Definition 5.6, but not vice versa.

5.1.5 On Degenerate Solutions and Parametric Conf-MDPs
As intuition suggests, solving a Conf-MDP having access to the full set of Markovian sta-
tionary policy-transition model pairs might be of modest interest essentially for two rea-
sons. First, in all real-world interesting scenarios it is not allowed to change the transition
probabilities arbitrarily. This is because, typically, the environment dynamics incorporates
both configurable and non-configurable parts. For instance, in the car driving example,
the settings of the car influence the transition model and can be changed, although with
some constraints (maybe related to safety). Instead, the physical laws governing the in-
teraction between the tires and the road cannot be altered, and they also are part of the
transition model. Second, with this full control on the environment, the optimal solution
can be very degenerate. In this section, we investigate this phenomenon and we provide a
formalization of parametric Conf-MDP.

Consider for instance a Conf-MDP with a reward function depending on the current
state only rpsq. Since we are allowed to act on the policy as well as on the transition model
we solve the problem by simply picking as optimal transition model the one that determin-
istically transitions to the state with the highest reward P˚ps, aq P arg maxs1PStrps

1qu and
picking an arbitrary policy. More formally, consider the Bellman equation for the optimal
value function, defined for every s P S:

V ˚,˚psq “ rpsq ` γ sup
s1PS

 

V ˚,˚ps1q
(

“ rpsq `
γ

1´ γ
sup
s1PS

 

rps1q
(

,

where we simply observe that the action has no role since the reward is independent from
it and using the fact that, in this case, sups1PS tV

˚,˚ps1qu “ 1
1´γ sups1PS trps

1qu. Thus,
P˚, as defined before, yields this performance (provided that the supremum is attained).

Suppose now that the reward function depends on the current state-action pair rps, aq.
To get an optimal solution, we simply need a myopic policy that maximizes the immediate
reward π˚psq P arg maxaPAtrps, aqu and a transition model that deterministically moves
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to the state with the highest reward P˚ps, aq P arg maxs1PStmaxa1PAtrps, aquu. This can
be formalized by the following Bellman equation, defined for every s P S:

V ˚,˚psq “ sup
aPA
trps, aqu ` γ sup

s1PS

 

V ˚,˚ps1q
(

“ sup
aPA
trps, aqu `

γ

1´ γ
sup
s1PS

sup
a1PA

trps1, a1qu,

where we exploited the fact that sups1PS tV
˚,˚ps1qu “ 1

1´γ sups1PS supa1PAtrps
1, a1qu.

Thus, we observe that the choices of the policy do not influence those of the transition
models, leading to completely independent problems. For this reason, whenever the supre-
mums are attained, pπ˚, P˚q is an optimal pair.

Finally, if we consider a reward function depending on the state-action-next-state triple
rps, a, s1qwe start viewing a more interesting behavior. Indeed, while the policy just needs
to maximize the immediate reward π˚psq P arg maxaPAtrps, aqu, an optimal transition
model is no longer trivial since it has to trade-off between the immediate reward (that in
this case depends on the next state too) and the future reward. We formalize this phe-
nomenon in the following Bellman equation, defined for every s P S:

V ˚,˚psq “ sup
s1PS

"

sup
aPA
trps, a, s1qu ` γV ˚,˚ps1q

*

.

These results highlight the important asymmetry between the agent and the configurator
in a cooperative Conf-MDP when we enforce no constraint on the possible modifications
on the transition models. Indeed, the agent is always myopic maximizing the immediate
reward, whereas, when the reward function depends on the next state, the configurator
experiences a trade-off.

As we already pointed out, this setting is quite unrealistic because the transition model
typically encodes a configurable part of the environment as well as a non-configurable part.
Therefore, it might be convenient to consider transition models that explicitly depends on a
parameter PΩ “ tPω : ω P Ω P Rqu. Assuming that also the policy belongs to a suitable
parametric space ΠΘ “ tπθ : θ P Θ P Rpu, we can redefine the objective function in
terms of the parameters Jpθ,ωq “ Jπθ,Pω . Consequently, the optimization problem can
be stated in terms of the policy and transition model parameters:

pθ˚,ω˚q P arg max
pθ,ωqPΘˆΩ

tJpθ,ωqu .

We will refer to this setting as parametric Conf-MDP.

5.2 Non-Cooperative Setting

The non-cooperative setting of Conf-MDPs admits arbitrary, possibly conflicting, reward
functionsRAg andRConf . In this scenario, the game-theoretic view of environment config-
uration becomes relevant. In this section, we provide a brief introduction to the topic, that
we believe, deserves additional investigation as future research. Before formally defin-
ing the solution concepts and discussing their properties, let us define the notion of best
response value function (Pérolat et al., 2017).1

1We limit our presentation to the Markovian stationary policies and transition models. It has to be studied if,
in this non-cooperative setting, history-dependent policies and/or transition models play a more relevant role.
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Definition 5.7 (Best Response Value Function). Let C be a Conf-MDP. Let P P PSR be
a transition model, the agent best response value function is defined for every state s P S
as:

V ˚,PAg psq “ sup
πPΠSR

!

V π,PAg psq
)

.

Let π P ΠSR be a policy, the configurator best response value function is defined for every
state s P S as:

V π,˚Confpsq “ sup
PPPSR

!

V π,PConf psq
)

.

Thus, the agent’s best response value function V ˚,PAg represents the best performance
achievable, fixing the transition model, and looking for the policy in ΠSR. This is actu-
ally the traditional value function V ˚ for an MDP with transition model P and inherits all
the properties of standard MDPs. Instead, the configuration best response value function
V π,˚Conf represents the best performance achievable having fixed the policy and searching the
transition model in PSR. Clearly, we can define the best response value function in terms
of the Q-function and the U-function as well. To keep the presentation concise, we limit
to the V-function. The reader can refer to Table 5.2 for the complete overview of the best
response value functions. It is immediate to realize that finding the best response configu-
ration can be reduced to solving a particular MDP, in the same sense as in Theorem 5.1.

Theorem 5.4. Let C “ pS,A, µ0, RAg, RConf , γq be a Conf-MDP. Let P P PSR be a
transition model and ĂMAg “ pS,A, P, µ0, RAg, γq be an MDP. Then, for every π P ΠSR

and every state s P S it holds that:

V π,PC,Agpsq “ V π
ĂMAg
psq. (5.6)

Let π P ΠSR be a policy and let ĂMConf “ pSˆA,S, rPConf , rµ0,Conf , rRConf , γq be an MDP
defined as follows:

• rPConf : pS ˆAq ˆ S Ñ PpS ˆAq, defined for every pps, aq, s1q P pS ˆAq ˆ S
and ps2, a2q P S ˆA as:

rPConfpds
2,da2|ps, aq, s1q “ δs1pds

2qπpda2|s2q,

• rµ0,Conf P PpS ˆAq is defined for every ps, aq P S ˆA as:

rµ0,Confpdps, aqq “ rµ0pdsqπpda|sq,

• rRConf : pS ˆAq ˆ S ˆ pS ˆAq ÑPpRq, defined for every pps, aq, s1, ps2, a2qq P
pS ˆAq ˆ S ˆ pS ˆAq and r P R as:

rRConfpdr|ps, aq, s
1, ps2, a2qq “ RConfpdr|s, a, s

1q.
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Then, for every P P PSR define the policy rπConf : S ˆAÑ PpSq for every state-action
pair ps, aq P S ˆA and s1 P S as:

rπConfpds
1|s, aq “ P pds1|s, aq.

Then, for every P P PSR and for every state-action pair ps, aq P S ˆA it holds that:

Qπ,PC,Confps, aq “ V rπConf

ĂMConf
ps, aq. (5.7)

Proof. The first part of the theorem is straightforward. Concerning the second part, it suffices to
prove that the Bellman operator associated to pπ, P q in the Conf-MDP Tπ,PC,Conf equals the Bellman

operator associated to rπConf in the MDP MConf , i.e., T rπConf
ĂMConf

. Let f P BpS ˆAq and let ps, aq P
S ˆA:

´

T
rπConf
ĂMConf

f
¯

ps, aq “

ż

S
rπpds1|s, aq

ż

SˆA
rPConfpdps

2, a2q|ps, aq, s1q

ˆ
`

rrConfpps, aq, s
1, ps2, a2qq ` γfps2, a2q

˘

“

ż

S
P pds1|s, aq

ż

SˆA
δs1pds

2
qπpda2|s2q

ˆ
`

rrConfps, a, s
1
q ` γfps2, a2q

˘

“

ż

S
P pds1|s, aq

ż

A
πpda2|s1q

`

rrConfps, a, s
1
q ` γfps1, a2q

˘

“

´

Tπ,PC,Conff
¯

ps, aq.

This result shows that in a Conf-MDP the task of searching for the optimal policy, i.e.,
the activity carried out by the agent, is essentially equivalent to the solution of an MDP,
which was quite obvious. Less trivial is the reduction of the configurator’s activity, i.e., the
search of the optimal transition model, to the solution of a suitably defined MDP. Similarly
to Theorem 5.1, we do not see Theorem 5.4 from an algorithmic viewpoint, but as a way
to import the properties of standard MDPs to the case of non-cooperative Conf-MDPs. We
now define the following Bellman best response operators (Pérolat et al., 2017).

Definition 5.8 (Bellman Best Response Operators). Let C be a Conf-MDP, π P ΠSR be a
policy, and P P PSR be a transition model. The agent Bellman best response operator for
the state value function T˚,PAg : BpSq Ñ BpSq is defined for every bounded measurable
function f P BpSq and every state s P S as:

´

T˚,PAg f
¯

psq “ sup
aPA

"
ż

S
P pds1|s, aq

`

rps, a, s1q ` γfps1q
˘

*

. (5.8)

The configurator Bellman best response operator for the state value function T˚,PConf : BpSq Ñ
BpSq is defined for every bounded measurable function f P BpSq and every state s P S
as:

`

Tπ,˚Conff
˘

psq “

ż

A
πpda|sq sup

s1PS

 

rps, a, s1q ` γfps1q
(

. (5.9)
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It is immediate to notice that the agent Bellman best response operator T˚,PAg is the
Bellman optimality operator T˚ for traditional MDPs. For this reason, it inherits all the
properties, especially the contraction property and the fact that V ˚,PAg is its unique fixed
point. The very same properties can be proved for the configurator Bellman best response
operator Tπ,˚Conf .

Proposition 5.5. Let T˚,PAg , Tπ,˚Conf : BpSq Ñ BpSq be the operators as in Definition 5.8.
Then, if γ P r0, 1q they are a γ-contraction in the L8-norm, i.e., for every bounded mea-
surable functions f, g P BpSq it holds that:

›

›

›
T˚,PAg f ´ T˚,PAg g

›

›

›

8
ď γ }f ´ g}8 ,

›

›Tπ,˚Conff ´ T
π,˚
Confg

›

›

8
ď γ }f ´ g}8 .

Furthermore, V ˚,PAg and V π,˚Conf are their unique fixed points, i.e., they fulfill the following
Bellman best response equations:

V ˚,PAg “ T˚,PAg V ˚,PAg ,

V π,˚Conf “ Tπ,˚ConfV
π,˚
Conf .

Proof. The claims about T˚,PAg are trivial since T˚,PAg is the Bellman optimal operator in the MDP
ĂMAg defined in Theorem 5.4. Concerning Tπ,˚Conf , we can immediately prove V π,˚Conf is its fixed point,

we show that for every f P BpSq we have that if f “ Tπ,˚Conff then f “ V π,˚Conf . The argument is
analogous to that of Proposition 5.2.

5.2.1 The Agent is Aware of the Configurator Presence
When the agent is aware of the presence of the configurator, its behavior becomes strategic,
just like the configurator. This scenario can be thought of as a simultaneous game in which
the agent selects the action and the configurator chooses the next state. For this reason,
the Nash equilibrium (Başar and Olsder, 1998) can be a suitable solution concept for this
kind of Conf-MDPs. We now rephrase the definition of Nash equilibrium for the case of
Conf-MDPs.

Definition 5.9 (Nash Equilibrium in Conf-MDPs). Let C be a Conf-MDP. A policy π˚ P
ΠSR and a transition model P˚ P PSR are a Nash equilibrium for the Conf-MDP C if for
every state s P S, policy π P ΠSR, and transition model in P P PSR it holds that:

V π
˚,P˚

Ag psq ě V π,P
˚

Ag psq,

V π
˚,P˚

Conf psq ě V π
˚,P

Conf psq,

Given this definition, if pπ˚, P˚q P ΠSR ˆ PSR is a Nash equilibrium of the Conf-
MDP, V π

˚,P˚

Ag and V π
˚,P˚

Conf are fixed points of the corresponding best response operators

T˚,P
˚

Ag and Tπ
˚,˚

Conf . A particular case of interest, thanks to its convenient theoretical prop-
erties, is when the reward functions of agent and supervisor are opposite (Littman, 1994).
In such a case, we refer to zero-sum Conf-MDP.
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Definition 5.10 (Zero-Sum Conf-MDP). Let C “ pS,A, µ0, RAg, RConf , γq be a Conf-
MDP. C is a Zero-Sum Conf-MDP if for every state-action-state triple ps, a, s1q P S ˆ
Aˆ S it holds that:

RAg `RConf “ 0 almost surely, (5.10)

where RAg „ RAgp¨|s, a, s
1q and RConf „ RConfp¨|s, a, s

1q.

A zero-sum Conf-MDP models a fully competitive environment. It is immediate to
realize, thank to the Von Neumann minimax theorem (Von Neumann, 1928), that the min-
imax value functions V maximin

Ag , V maximin
Conf : S Ñ R can be defined for every state s P S as

follows:

V maximin
Ag psq “ sup

πPΠSR

inf
PPPSR

!

V π,PAg psq
)

“ inf
PPPSR

sup
πPΠSR

!

V π,PAg psq
)

,

V maximin
Conf psq “ ´V maximin

Ag psq.

The value functions can be easily defined in terms of the corresponding Bellman minimax
operators Tmaximin

Ag , Tmaximin
Conf : BpSq Ñ BpSq, defined for every state s P S as (Busoniu

et al., 2008):

`

Tmaximin
Ag f

˘

psq “ sup
πPΠSR

inf
PPPSR

"
ż

A
πpda|sq

ż

S
P pds1|s, aq

`

rAgps, a, s
1q ` γfps1q

˘

*

,

`

Tmaximin
Conf f

˘

psq “ ´
`

Tmaximin
Ag f

˘

psq.

Thus, when the state-action space is finite, each application of the operator Tmaximin
Ag

requires the solution of a linear program. It can be proved that Tmaximin
Ag is a γ-contraction in

L8-norm (Busoniu et al., 2008). Thus, it admits a unique fixed point, that is the minimax
value function V maximin

Ag . The same considerations hold for the configurator side.

Proposition 5.6. Let Tmaximin
Ag , Tmaximin

Conf : BpSq Ñ BpSq be the operator defined before.
Then, if γ P r0, 1q they are a γ-contraction in the L8-norm, i.e., for every bounded mea-
surable functions f, g P BpSq it holds that:

›

›Tmaximin
Ag f ´ Tmaximin

Ag g
›

›

8
ď γ }f ´ g}8 ,

›

›Tmaximin
Conf f ´ Tmaximin

Conf g
›

›

8
ď γ }f ´ g}8 .

Furthermore, V maximin
Ag and V maximin

Conf are their unique fixed points, i.e., they fulfill the fol-
lowing Bellman optimality equations:

V maximin
Ag “ Tmaximin

Ag V maximin
Ag ,

V maximin
Conf “ Tmaximin

Conf V maximin
Conf .

Proof. Let f, g P BpSq and s P S, we have:
ˇ

ˇ

ˇ

ˇ

´

Tmaximin
Ag f

¯

psq ´
´

Tmaximin
Ag g

¯

psq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

sup
πPΠSR

inf
PPPSR

"
ż

A
πpda|sq

ż

S
P pds1|s, aq

`

rAgps, a, s
1
q ` γfps1q

˘

*
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´ sup
πPΠSR

inf
PPPSR

"
ż

A
πpda|sq

ż

S
P pds1|s, aq

`

rAgps, a, s
1
q ` γgps1q

˘

* ˇ

ˇ

ˇ

ˇ

ď sup
πPΠSR

ˇ

ˇ

ˇ

ˇ

inf
PPPSR

"
ż

A
πpda|sq

ż

S
P pds1|s, aq

`

rAgps, a, s
1
q ` γfps1q

˘

*

´ inf
PPPSR

"
ż

A
πpda|sq

ż

S
P pds1|s, aq

`

rAgps, a, s
1
q ` γgps1q

˘

* ˇ

ˇ

ˇ

ˇ

ď sup
πPΠSR

sup
PPPSR

"ˇ

ˇ

ˇ

ˇ

ż

A
πpda|sq

ż

S
P pds1|s, aq

`

rAgps, a, s
1
q ` γfps1q

˘

´

ż

A
πpda|sq

ż

S
P pds1|s, aq

`

rAgps, a, s
1
q ` γgps1q

˘

ˇ

ˇ

ˇ

ˇ

*

(P.1)

ď γ sup
πPΠSR

sup
PPPSR

"
ż

A
πpda|sq

ż

S
P pds1|s, aq

ˇ

ˇfps1q ´ gps1q
ˇ

ˇ

*

ď γ sup
s1PS

 
ˇ

ˇfps1q ´ gps1q
ˇ

ˇ

(

γ }f ´ g}
8
,

where line (P.1) follows from observing that for two functions f and g it holds that:
ˇ

ˇ

ˇ
inf
xPX
tfpxqu ´ inf

xPX
tgpxqu

ˇ

ˇ

ˇ
ď sup
xPX

t|fpxq ´ gpxq|u .

By applying the supremum to the left hand side we get the contraction result. Thanks to the Banach’s
fixed point theorem (Banach, 1922), we conclude that the operator admits a unique fixed point. We
need to prove that V maximin

Ag is a fixed point of the operator Tmaximin
Ag . To this purpose, we prove that for

every f P BpSq, if f “ Tmaximin
Ag f we have that f “ V maximin

Ag . First, we prove that if f ě Tmaximin
Ag f ,

then f ě V maximin
Ag . Suppose that f ě Tmaximin

Ag f , this means that for all π P ΠSR there exists
P P PSR such that f ě Tπ,PAg f , consequently:

f ´ V π,PAg ě Tπ,PAg f ´ Tπ,PAg V π,PAg

“ γPπ
´

f ´ V π,PAg

¯

ě 0.

Since the inequality f ě V π,PAg holds for all π P ΠSR and a specific P P PSR, we have that
f ě supπPΠSR infPPPSRtV

π,P
Ag u “ V maximin

Ag . The reverse claim, i.e., if f ď Tmaximin
Ag f , then

f ď V maximin
Ag can be proved analogously. Consequently, if f “ Tmaximin

Ag f then f “ V maximin
Ag .

5.2.2 The Agent is Unaware of the Configurator Presence
When the agent is unaware of the presence of the configurator, it cannot display a strategic
behavior but it is reasonable to assume that it simply acts as a best responder. Thus, while
the configurator acts in order to maximize its utility, the agent perceives the environment
configuration as a form of non-stationarity and acts consequently. This kind of sequential
interaction can be effectively modeled as a leader-follower game and the corresponding
solution concept is the Stakelberg equilibrium (Conitzer and Sandholm, 2006).

Definition 5.11 (Stackelberg Equilibrium in Conf-MDPs). Let C be a Conf-MDP and let
βAg : PSR Ñ ΠSR be a choice function in the set of agent best responses, i.e., for every
transition model P P PSR, every state s P S and every policy π P ΠSR:

V βAgpP q,P psq ě V π,P psq. (5.11)
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A policy π˚ P ΠSR and a transition model P˚ P PSR are a βAg-Stackelberg equilibrium
for the Conf-MDP C if for every state s P S, policy π P ΠSR, and transition model in
P P PSR it holds that π˚ “ βAgpP

˚q and for every s P S:

V π
˚,P˚

Ag psq ě V π,P
˚

Ag psq,

V
βAgpP

˚
q,P˚

Conf psq ě V
βAgpP q,P
Conf psq,

Furthermore, we define the βAg-Stackelberg state value function for every state s P S
as:

V
βAgp˚q,˚
Conf “ sup

PPPSR

!

V
βAgpP q,P
Conf

)

.

Clearly, different choices of the best response function βAg lead to different notions of
Stackelberg equilibrium (Breton et al., 1988). Specifically, if ties are broken in favor of
the configurator, we refer to strong Stackelberg equilibrium, whereas if ties are broken in
favor of the agent, we refer to weak Stackelberg equilibrium. If pπ˚, P˚q P ΠSR ˆ PSR

is a βAg-Stackelberg Equilibrium then it must be that π˚ “ βAgpP q is a best response for
the agent, i.e., V π

˚,P˚

Ag must be a fixed point of the agent best response operator T˚,P
˚

Ag .
Concerning the configurator choice, we can define the βAg-Stackelberg Bellman operator
T
βAgp˚q,˚
Conf : BpSq Ñ BpSq defined for every s P S as:

´

T
βAgp˚q,˚
Conf f

¯

psq “ sup
PPPSR

"
ż

A

ż

S
pβAgpP qqpda|sqP pds

1|s, aq
`

rConfps, a, s
1q ` γfps1q

˘

*

.

This operator preserves most of the properties of the traditional Bellman operators,
especially the contraction in L8-norm.

Proposition 5.7. Let T βAgp˚q,˚
Conf : BpSq Ñ BpSq be the operator defined above. Then,

if γ P r0, 1q it is a γ-contraction in the L8-norm, i.e., for every bounded measurable
functions f, g P BpSq it holds that:

›

›

›
T
βAgp˚q,˚
Conf f ´ T

βAgp˚q,˚
Conf g

›

›

›

8
ď γ }f ´ g}8 .

Furthermore, V βAgpP
˚
q,P˚

Conf is its unique fixed point, i.e., it fulfills the following Bellman
optimality equation:

V
βAgp˚q,˚
Conf “ T

βAgp˚q,˚
Conf V

βAgp˚q,˚
Conf .

Proof. Let f, g P BpSq and s P S, we have:
ˇ

ˇ

ˇ

ˇ

´

T
βAgp˚q,˚

Conf f
¯

psq ´
´

T
βAgp˚q,˚

Conf g
¯

psq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

sup
PPPSR

"
ż

A

ż

S
pβAgpP qqpda|sqP pds

1
|s, aq

`

rConfps, a, s
1
q ` γfps1q

˘

*

´ sup
PPPSR

"
ż

A

ż

S
pβAgpP qqpda|sqP pds

1
|s, aq

`

rConfps, a, s
1
q ` γgps1q

˘

*
ˇ

ˇ

ˇ

ˇ

ď sup
PPPSR

"
ˇ

ˇ

ˇ

ˇ

ż

A

ż

S
pβAgpP qqpda|sqP pds

1
|s, aq

`

rConfps, a, s
1
q ` γfps1q

˘
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´

ż

A

ż

S
pβAgpP qqpda|sqP pds

1
|s, aq

`

rConfps, a, s
1
q ` γgps1q

˘

ˇ

ˇ

ˇ

ˇ

*

ď γ sup
PPPSR

"
ż

A

ż

S
pβAgpP qqpda|sqP pds

1
|s, aq

ˇ

ˇfps1q ´ gps1q
ˇ

ˇ

*

ď γ sup
s1PS

 ˇ

ˇfps1q ´ gps1q
ˇ

ˇ

(

γ }f ´ g}
8
.

By applying the supremum to the left hand side we get the result. By recalling that the conditions for
the application of the Banach’s fixed point theorem (Banach, 1922) are fulfilled, we conclude that
T
βAgp˚q,˚

Conf admits a unique fixed point. We now prove that V
βAgp˚q,˚

Conf is a fixed point of T
βAgp˚q,˚

Conf .
To this purpose, we show that for any bounded measurable function f P BpSq if f “ T

βAgp˚q,˚

Conf f

then f “ V
βAgp˚q,˚

Conf . By combining this with the existence of the fixed point we get to the result.
First, we prove that if f ě T

βAgp˚q,˚

Conf f , then f ě V
βAgp˚q,˚

Conf . Suppose that f ě T
βAgp˚q,˚

Conf f , this
means that for all P P PSR we have f ě T

βAgpP q,P

Conf f . Consequently:

f ´ V
βAgpP q,P

Conf ě T
βAgpP q,P

Conf f ´ T
βAgpP q,P

Conf V
βAgpP q,P

Conf

“ γP βAgpP q
´

f ´ V
βAgpP q,P

Conf

¯

ě 0.

Since f ě V
βAgpP q,P

Conf holds for all P P PSR, we have that f ě supPPPSRtV
βAgpP q,P

Conf u “

V
βAgp˚q,˚

Conf . The reverse claim, i.e., if f ď T
βAgp˚q,˚

Conf f , then f ď V
βAgp˚q,˚

Conf can be proved anal-
ogously. Consequently, if f “ T

βAgp˚q,˚

Conf f then f “ V
βAgp˚q,˚

Conf .

It is important to point out that, unfortunately, these properties are far from leading to
practical algorithms, as the operator requires the explicit knowledge of the best response
choice function. Although we believe that this non-cooperative view of Conf-MDPs is
quite appealing and of interest for the real-world applications, our current understating
of the problem is rather shallow. We still miss a study of the existence of the equilibria
presented above for the Conf-MDPs as well as suitable algorithms to compute them.

Remark 5.2 (Connection with Markov Games). The reader might be tempted to reduce
the non-cooperative Conf-MDP setting to a Markov game (Busoniu et al., 2008) having the
agent and the configurator as players. We believe that this reduction is not straightforward.
Indeed, while the agent takes its action based on the current state only (it plays a policy),
the configurator bases its next-state decision on the current state but also the current
action (it plays a transition model). This distinction is independent of the fact that the
configurator observes the current agent’s action. If it does, then we can map this setting to
a sequential game in which the agent plays first and the configurator plays later, observing
the agent’s action. Instead, if the configurator does not observe the action the setting is
that of a simultaneous game, but its strategy set is composed of transition models that
provide a probability distribution depending on the action too, leading to a form of partial
information.
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CHAPTER6
Learning in Finite Cooperative

Configurable Markov Decision Processes

6.1 Introduction

In this chapter, we study the problem of solving a Conf-MDP in the cooperative setting
when the state and action spaces are finite. Solving a Conf-MDP, as we introduced in
Chapter 5, according to the optimality condition of Definition 5.6, means finding a policy
and a transition model so that they jointly maximize the expected return:

pπ˚, P˚q P arg max
pπ,P qPΠSRˆPSR

 

Jπ,P
(

.

This general optimality condition, however, allows full control on both the policy and
the transition model. However, typically, the search must be constrained because of the
specific requirements that need to be guaranteed in the application of interest. This is
particularly true for the transition model. Indeed, in several cases of interest, the transition
model accounts for portions of the environment that are or immutable (e.g., physical laws).
Thus, the computation of the optimal policy-model pair is typically carried out in a suitably
tailored subspace Πˆ P Ď ΠSR ˆ PSR.

This problem can be addressed using numerous tools (e.g., gradient methods, entropy
methods). In this chapter, we propose a method to jointly and adaptively optimize the
policy and the transition model, named Safe Policy-Model Iteration (SPMI, Metelli et al.,
2018a). The algorithm adopts a safe learning approach (García and Fernández, 2015)
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based on the maximization of a lower bound on the guaranteed performance improvement,
yielding a sequence of policy-transition model pairs with monotonically increasing perfor-
mance. The safe learning perspective makes our approach suitable for critical applications
where performance degradation during learning is not allowed (e.g., industrial scenarios
where extensive exploration of the policy space might damage the machinery). In the
standard RL framework, the usage of a lower bound to guide the choice of the policy has
been first introduced by Conservative Policy Iteration (CPI, Kakade and Langford, 2002),
improved by Safe Policy Iteration (SPI, Pirotta et al., 2013b) and subsequently exploited
in (Ghavamzadeh et al., 2016; Abbasi-Yadkori et al., 2016; Papini et al., 2017, 2020; Vieil-
lard et al., 2020). These methods revealed their potential thanks to the preference towards
small policy updates, preventing from moving in a single step too far away from the current
policy and avoiding premature convergence to suboptimal policies. A similar rationale is
at the basis of Relative Entropy Policy Search (REPS, Peters et al., 2010), and, more re-
cently, Trust Region Policy Optimization (TRPO, Schulman et al., 2015), Proximal Policy
Optimization (PPO, Schulman et al., 2017), and Policy Optimization via Importance Sam-
pling (POIS, Metelli et al., 2018b). In order to introduce our framework and highlight
its benefits, we limit our analysis to the scenario in which the model space (and the pol-
icy space) is known. However, when the model space is unknown, we could resort to a
sample-based version of SPMI, which could be derived by adapting those of SPI (Pirotta
et al., 2013b).

Chapter Outline The chapter is organized as follows. We start in Section 6.2, in which
we introduce the notion of relative advantage function that will be employed in the the-
oretical results and in the derivation of the algorithm. In Section 6.3 we first derive a
bound on the divergence between the γ-discounted stationary distributions induced by dif-
ferent policy-transition model pairs. Then, we employ this result to obtain a performance
improvement bound. Based on these theoretical results, we outline the main features of
SPMI (Section 6.4) in comparison with the existing approaches, along with some theoreti-
cal results (Section 6.5). Then, we present the experimental evaluation (Section 6.6) in two
explicative domains, simple abstractions of the motivational applications of Conf-MDPs,
with the purpose of showing how configuring the transition model can be beneficial for the
final policy performance. Finally, we present in Section 6.7 two examples of Conf-MDPs
displaying some interesting behaviors when running SPMI.

6.2 Relative Advantage Functions

In this section, we introduce the notion of relative advantage function that will be exten-
sively employed in the derivation of the performance improvement bounds. We already
presented in Section 4.4 the notion of advantage function. Specifically, the policy, model,
and coupled advantage functions, respectively, are defined for every ps, a, s1q P SˆAˆS
as:

Aπ,P ps, aq “ Qπ,P ps, aq ´ V π,P psq,

Aπ,P ps, a, s1q “ Uπ,P ps, a, a1q ´Qπ,P psq,

rAπ,P ps, a, s1q “ Uπ,P ps, a, a1q ´ V π,P psq.
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These functions quantify the one-step gain in performance attained in state s P S by
either playing action a P A, for the policy advantage, selecting the next state s1 P S
given that action a P A was played, for the model advantage, or both for the coupled
advantage, compared to playing policy π and employing transition model P . In order to
evaluate the one-step improvement in performance attained by a new policy π1 or model
P 1 when the current policy is π and the current model is P , we introduce the (uncoupled)
relative advantage functions (Kakade and Langford, 2002) defined for every state-action
pair ps, aq P S ˆA as:

Aπ
1,P
π,P psq “

ż

A
π1pda|sqAπ,P ps, aq,

Aπ,P
1

π,P ps, aq “

ż

S
P 1pds1|s, aqAπ,P ps, a, s1q,

and the corresponding expected values under the γ-discounted distributions:

Aπ
1,P
π,P,µ0

“

ż

S
µπ,Pγ pdsqAπ

1,P
π,P psq

Aπ,P
1

π,P,µ0
“

ż

S

ż

A
µπ,Pγ pds,daqAπ,P

1

π,P ps, aq.

To capture the combined effect of selecting the action with a new policy π1 and the
next state with the new transition model P 1, we introduce the coupled relative advantage
function defined for every state s P S as:

Aπ
1,P 1

π,P psq “

ż

S

ż

A
π1pda|sqP 1pds1|s, aq rAπ,P ps, a, s1q,

Thus, Aπ
1,P 1

π,P represents the one-step improvement attained by the new policy-transition
model pair pπ1, P 1q P ΠSRˆPSR over the current one pπ, P q P ΠSRˆPSR, i.e., the local
gain in performance yielded by selecting an action with π1 and the next state with P 1. The
corresponding expectation under the γ-discounted distribution is given by:

Aπ
1,P 1

π,P,µ0
“

ż

S
µπ,Pγ pdsqAπ

1,P 1

π,P psq.

To lighten the notation, we remove the subscript of the initial state distribution µ0 when-
ever clear from the context. Thus, we simply write Aπ

1,P
π,P , Aπ,P

1

π,P , and Aπ
1,P 1

π,P . The follow-
ing result relates the coupled relative advantage function with the corresponding (uncou-
pled) relative advantage functions.

Lemma 6.1. Let Aπ
1,P 1

π,P be the coupled relative advantage function, Aπ
1,P
π,P and Aπ,P

1

π,P

be the (uncoupled) policy and model relative advantage functions respectively. Then, for
every state s P S it holds that:

Aπ
1,P 1

π,P psq “ Aπ
1,P
π,P psq `

ż

A
π1pda|sqAπ,P

1

π,P ps, aq.
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Proof. Let s P S, let us consider the following derivation:

Aπ
1,P 1

π,P psq “

ż

A

ż

S
π1pda|sqP 1pds1|s, aqUπ,P ps, a, s1q ´ V π,P psq

“

ż

A

ż

S
π1pda|sqP 1pds1|s, aqUπ,P ps, a, s1q ´ V π,P psq

˘

ż

A

ż

S
π1pda|sqP pds1|s, aqUπ,P ps, a, s1q

“

ż

A

ż

S
π1pda|sqP pds1|s, aqUπ,P ps, a, s1q ´ V π,P psq

`

ż

A

ż

S
π1pda|sq

`

P 1pds1|s, aq ´ P pds1|s, aq
˘

Uπ,P ps, a, s1q

“

ż

A
π1pda|sqQπ,P ps, aqda´ V π,P psq (P.1)

`

ż

A
π1pda|sq

ż

S

`

P 1pds1|s, aq ´ P pds1|s, aq
˘

Uπ,P ps, a, s1q

“ Aπ
1,P
π,P psq `

ż

A
π1pa|sqAπ,P

1

π,P ps, aqda, (P.2)

where line (P.1) is obtained by recalling that Qπ,P ps, aq “
ş

S P pds
1
|s, aqUπ,P ps, a, s1q, the first

addendum of line (P.2) follows from observing that:

Aπ
1,P
π,P psq “

ż

A
π1pda|sqAπ,P ps, aq “

ż

A
π1pda|sq

´

Qπ,P ps, aq ´ V π,P psq
¯

,

and similarly the second addendum of line (P.2) comes from the identity:

Aπ,P
1

π,P ps, aq “

ż

S
P 1pds1|s, aqAπ,P ps, a, s1q

“

ż

S
P 1pds1|s, aq

´

Uπ,P ps, a, s1q ´Qπ,P ps, aq
¯

.

6.3 Performance Improvement Bound

The goal of this section is to provide a lower bound to the performance improvement
Jπ

1,P 1´Jπ,P obtained by moving from a policy-transition model pair pπ, P q P ΠSRˆPSR

to another pair pπ1, P 1q P ΠSRˆPSR. Since we aim at providing a safe learning algorithm,
we look for a lower bound on the performance improvement that can be evaluated using
samples collected with the current pair pπ, P q. We follow a path similar to that of (Kakade
and Langford, 2002) and (Pirotta et al., 2013a). First, we derive an upper bound on the di-
vergence between the γ-discounted stationary distributions induced by pπ, P q and pπ1, P 1q
(Section 6.3.1). Then, we employ this result to lower bound the performance improvement
(Section 6.3.2). Finally, we compare the obtained result with the ones (mainly involving
the policy only) already existing in the literature.

6.3.1 Bound on the γ-discounted Stationary Distribution
We start providing a bound for the total variation distance of γ-discounted stationary dis-
tributions under different policy-transition model pairs.
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Proposition 6.2. Let pπ, P q, pπ1, P 1q P ΠSR ˆ PSR be two policy-transition model pairs
for a Conf-MDP C, the TV-norm of the difference between the γ-discounted state distribu-
tions can be upper bounded, for any γ P r0, 1q as:

›

›

›
µπ

1,P 1

γ ´ µπ,Pγ

›

›

›

TV
ď

γ

1´ γ

›

›

›
pP 1q

π1
´ Pπ

›

›

›

TV,µπ,Pγ
,

where:
›

›

›
pP 1q

π1
´ Pπ

›

›

›

TV,µπ,Pγ
“

ż

S
µπ,Pγ pdsq

›

›

›
P 1
π1
p¨|sq ´ Pπp¨|sq

›

›

›

TV
.

Proof. Exploiting the recursive equation of the γ-discounted state distribution (Section 2.3) we can
write the distributions difference as follows in operator form:

µπ
1,P 1

γ ´ µπ,Pγ “ p1´ γqµ0 ` γµ
π1,P 1

γ pP 1q
π1

´ p1´ γqµ0 ´ γµ
π,P
γ Pπ

“ γµπ
1,P 1

γ pP 1q
π1

´ γµπ,Pγ Pπ ˘ µπ,Pγ pP 1q
π1

“ γ
´

µπ
1,P 1

γ ´ µπ,Pγ

¯

pP 1q
π1

` γµπ,Pγ

´

pP 1q
π1

´ Pπ
¯

“ γµπ,Pγ

´

pP 1q
π1

´ Pπ
¯´

IdS ´ γpP
1
q
π1
¯´1

,

where we exploited the recursive definition of µπ
1,P 1

γ ´ µπ,Pγ and recalled that γ ă 1. We proceed
by applying the }¨}TV:

›

›

›
µπ
1,P 1

γ ´ µπ,Pγ

›

›

›

TV
“ γ

›

›

›

›

µπ,Pγ

´

pP 1q
π1

´ Pπ
¯´

IdS ´ γpP
1
q
π1
¯´1

›

›

›

›

TV

ď
γ

1´ γ

›

›

›
µπ,Pγ

´

pP 1q
π1

´ Pπ
¯
›

›

›

TV
(P.3)

“
1

2

γ

1´ γ

ˇ

ˇ

ˇ

ˇ

ż

S
µπ,Pγ pdsq

ż

S

´

pP 1q
π1

´ Pπ
¯

pds1|sq

ˇ

ˇ

ˇ

ˇ

ď
1

2

γ

1´ γ

ż

S
µπ,Pγ pdsq

ż

S

ˇ

ˇ

ˇ
pP 1q

π1

´ Pπ
ˇ

ˇ

ˇ
pds1|sq

“
γ

1´ γ

ż

S
µπ,Pγ pdsq

›

›

›

´

pP 1q
π1

´ Pπ
¯

p¨|sq
›

›

›

TV
(P.4)

“
γ

1´ γ

›

›

›
pP 1q

π1

´ Pπ
›

›

›

TV,µπ,Pγ
.

where line (P.3) derives Hölder’s inequality and by observing that:

›

›

›

›

´

IdS ´ γpP
1
q
π1
¯´1

›

›

›

›

8

“

›

›

›

›

›

8
ÿ

i“0

γi
´

pP 1q
π1
¯i

›

›

›

›

›

8

ď

8
ÿ

i“0

γi
›

›

›

›

´

pP 1q
π1
¯i
›

›

›

›

8

ď

8
ÿ

i“0

γi “
1

1´ γ
,

since
›

›

›

›

´

pP 1q
π1
¯i
›

›

›

›

8

“ 1 being a probability measure and via an application of Hölder’s inequality.

Line (P.4) follows from the definition of total variation norm.

This proposition provides a way to upper bound the difference of the γ-discounted
state distributions in terms of the state kernel dissimilarity. The state transition kernel
couples the effects of the policy and the transition model, but it is convenient to keep their
contribution separated, getting the following looser bound.
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Corollary 6.3. Let pπ, P q, pπ1, P 1q P ΠSRˆPSR be two policy-transition model pairs for
a Conf-MDP C, the TV-norm of the difference between the γ-discounted state stationary
distributions can be upper bounded, for any γ P r0, 1q as:

›

›

›
µπ

1,P 1

γ ´ µπ,Pγ

›

›

›

TV
ď

γ

1´ γ

´

›

›π1 ´ π
›

›

TV,µπ,Pγ
`
›

›P 1 ´ P
›

›

TV,µπ,Pγ

¯

,

where:

›

›π1 ´ π
›

›

TV,µπ,Pγ
“

ż

S
µπ,Pγ pdsq

›

›π1p¨|sq ´ πp¨|sq
›

›

TV ,

›

›P 1 ´ P
›

›

TV,µπ,Pγ
“

ż

S

ż

A
µπ,Pγ pds,daq

›

›P 1p¨|s, aq ´ P p¨|s, aq
›

›

TV .

Proof. We prove this corollary by bounding the expression
›

›

›
pP 1q

π1
´ Pπ

›

›

›

TV,µπ,Pγ
. Let us start with

the decomposition for every s, s1 P S:

pP 1q
π1

pds1|sq ´ Pπpds1|sq “ pP 1q
π1

pds1|sq ´ Pπpds1|sq ˘ pP 1q
π
pds1|sq

“

ż

A
P 1pds1|s, aq

`

π1pda|sq ´ πpda|sq
˘

`

ż

A

`

P 1pds1|s, aq ´ P pds1|s, aq
˘

πpda|sq.

We apply the total variation norm at the previous expression to get:

›

›

›
pP 1q

π1

p¨|sq ´ Pπp¨|sq
›

›

›

TV
ď

›

›

›

›

ż

A
P 1p¨|s, aq

`

π1pda|sq ´ πpda|sq
˘

›

›

›

›

TV

`

›

›

›

›

ż

A

`

P 1p¨|s, aq ´ P p¨|s, aq
˘

πpda|sq

›

›

›

›

TV

“
1

2

ż

S

ˇ

ˇ

ˇ

ˇ

ż

A
P 1pds1|s, aq

`

π1pda|sq ´ πpda|sq
˘

ˇ

ˇ

ˇ

ˇ

`
1

2

ż

S

ˇ

ˇ

ˇ

ˇ

ż

A

`

P 1pds1|s, aq ´ P pds1|s, aq
˘

πpda|sq

ˇ

ˇ

ˇ

ˇ

ď
1

2

ż

A

ˇ

ˇπ1pda|sq ´ πpda|sq
ˇ

ˇ

ż

S
P 1pds1|s, aq

`
1

2

ż

A
πpda|sq

ż

S

ˇ

ˇP 1pds1|s, aq ´ P pds1|s, aq
ˇ

ˇ

“
›

›π1p¨|sq ´ πp¨|sq
›

›

TV
`

ż

A
πpda|sq

›

›P 1p¨|s, aq ´ P p¨|s, aq
›

›

TV
.

We now take the expectation w.r.t. µπ,Pγ and exploit the monotonicity property of the expectation:

›

›

›
pP 1q

π1

´ Pπ
›

›

›

TV,µπ,Pγ
“

ż

S
µπ,Pγ pdsq

›

›

›
pP 1q

π1

p¨|sq ´ Pπp¨|sq
›

›

›

TV

ď

ż

S
µπ,Pγ pdsq

›

›π1p¨|sq ´ πp¨|sq
›

›

TV

`

ż

S
µπ,Pγ pdsq

ż

A
πpda|sq

›

›P 1p¨|s, aq ´ P p¨|s, aq
›

›

TV
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“

ż

S
µπ,Pγ pdsq

›

›π1p¨|sq ´ πp¨|sq
›

›

TV

`

ż

S

ż

A
µπ,Pγ pds, daq

›

›P 1p¨|s, aq ´ P p¨|s, aq
›

›

TV
(P.5)

“
›

›π1 ´ π
›

›

TV,µπ,Pγ
`
›

›P 1 ´ P
›

›

TV,µπ,Pγ
,

where line (P.5) follows by recalling that µπ,Pγ pdsqπpda|sq “ µπ,Pγ pds,daq.

It is worth noting that when P “ P 1 the bound resembles Corollary 3.2 of (Pirotta
et al., 2013b), but it is tighter as:

›

›π1 ´ π
›

›

TV,µπ,Pγ
“

ż

S
µπ,Pγ pdsq

›

›π1p¨|sq ´ πp¨|sq
›

›

TV

ď sup
sPS

 
›

›π1p¨|sq ´ πp¨|sq
›

›

TV

(

“
›

›π1 ´ π
›

›

TV,8 .

In particular, the bound of (Pirotta et al., 2013b) might yield a large bound value in case
there exist states in which the policies are very dissimilar even if those states are rarely
visited according to µπ,Pγ . In the context of policy learning, a lower bound employing
the same dissimilarity index }π1 ´ π}TV,µπ,Pγ

in the penalization term has been previously
proposed in (Achiam et al., 2017). Looser bounds, but more convenient from the optimiza-
tion standpoint, involving KL-divergence (Pirotta et al., 2013a; Schulman et al., 2015) or
other distributional divergences, like Rényi divergences (Metelli et al., 2018b), are often
employed in the literature.

6.3.2 Bound on the Performance Improvement
In this section, we exploit the previous results to obtain a lower bound on the performance
improvement determined by chaining the policy and the transition model. We have all
the elements to express the performance improvement in terms of the relative advantage
functions and the γ-discounted distributions.

Theorem 6.4. Let C be a Conf-MDP. The performance improvement of policy-transition
model pair pπ1, P 1q P ΠSR ˆ PSR over pπ, P q P ΠSR ˆ PSR is given by:

Jπ
1,P 1 ´ Jπ,P “

1

1´ γ

ż

S
µπ

1,P 1

γ pdsqAπ
1,P 1

π,P psq.

Proof. Let us start from the definition of Jπ
1,P 1 :

p1´ γqJπ
1,P 1

“

ż

S

ż

A

ż

S
µπ
1,P 1

γ pdsqπ1pda|sqP 1pds1|s, aqrps, a, s1q

“

ż

S

ż

A

ż

S
µπ
1,P 1

γ pdsqπ1pda|sqP 1pds1|s, aqrps, a, s1q ˘

ż

S
µπ
1,P 1

γ pdsqV π,P psq (P.6)

“

ż

S

ż

A

ż

S
µπ
1,P 1

γ pdsqπ1pda|sqP 1pds1|s, aqrps, a, s1q (P.7)

`

ż

S

ˆ

p1´ γqµ0pds
1
q ` γ

ż

S

ż

A
µπ
1,P 1

γ pdsqπ1pda|sqP 1pds1|s, aq

˙

V π,P ps1q

´

ż

S
µπ
1,P 1

γ pdsqV π,P psq
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“

ż

S
µπ
1,P 1

γ pdsq

ˆ
ż

A
π1pda|sq

ż

S
P 1pds1|s, aq

´

rps, a, s1q ` γV π,P ps1q
¯

´ V π,P psq

˙

`

ż

S
µ0pds

1
qV π,P ps1q “

“

ż

S
µπ
1,P 1

γ pdsqAπ
1,P 1

π,P psq ` p1´ γqJπ,P , (P.8)

where we have exploited the recursive formulation of µπ
1,P 1

γ (Definition 2.3) to rewrite line (P.6)
into line (P.7) and line (P.8) follows by observing that

ş

S µ0pds
1
qV π,P ps1q “ Jπ,P and using the

definition Uπ,P ps, a, s1q “ rps, a, s1q ` γV π,P ps1q.

This theorem is the natural extension of the result proposed by Kakade and Langford
(2002). It essentially highlights that to compute the performance improvement we need
to average the coupled relative advantage function Aπ

1,P 1

π,P by means of the γ-discounted
stationary distribution µπ

1,P 1

γ induced by the candidate policy-model pair pπ1, P 1q.

Coupled Bound Unfortunately, the expression of Theorem 6.4 cannot be directly ex-
ploited in an algorithm as the dependence of µπ

1,P 1

γ on the candidate policy-transition
model pair pπ1, P 1q is nonlinear and difficult to treat. We aim to obtain, from this result, a
lower bound on Jπ

1,P 1 ´ Jπ,P that can be efficiently computed using the information on
the current pair pπ, P q. Before moving to the main result, we introduce an auxiliary result
due to (Haviv and Van der Heyden, 1984) that we report in our notation without proof.

Lemma 6.5 (Corollary 2.4 of Haviv and Van der Heyden (1984)). Let µ, ν P PpX q be
two probability measures and let f P BpX q be a measurable function. Then, it holds that:

ˇ

ˇ

ˇ

ˇ

ż

X
pµpdxq ´ νpdxqq fpxq

ˇ

ˇ

ˇ

ˇ

ď }µ´ ν}TV sppfq,

where sppfq “ supxPX tfpxqu ´ infxPX tfpxqu.

We are now ready to prove the main result.

Theorem 6.6 (Coupled Bound). Let C be a Conf-MDP. The performance improvement of
policy-transition model pair pπ1, P 1q P ΠSR ˆ PSR over pπ, P q P ΠSR ˆ PSR can be
lower bounded as:

Jπ
1,P 1 ´ Jπ,P

performance
improvement

ě
1

1´ γ
Aπ

1,P 1

π,P

advantage

´
γ

p1´ γq2
sp
´

Aπ
1,P 1

π,P

¯
›

›

›
pP 1q

π1
´ Pπ

›

›

›

TV,µπ,Pγ

dissimilarity penalization

.

Proof. Exploiting the bounds on the γ-discounted state distributions difference (Proposition 6.2) we
can easily attain the performance improvement bound:

Jπ
1,P 1

´ Jπ,P “
1

1´ γ

ż

S
µπ
1,P 1

γ pdsqAπ
1,P 1

π,P psq

“
1

1´ γ

ż

S
µπ,Pγ pdsqAπ

1,P 1

π,P psq

`
1

1´ γ

ż

S

´

µπ
1,P 1

γ pdsq ´ µπ,Pγ pdsq
¯

Aπ
1,P 1

π,P psq (P.9)
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ě
Aπ

1,P 1

π,P

1´ γ
´

1

1´ γ

ˇ

ˇ

ˇ

ˇ

ż

S

´

µπ
1,P 1

γ pdsq ´ µπ,Pγ pdsq
¯

Aπ
1,P 1

π,P psq

ˇ

ˇ

ˇ

ˇ

(P.10)

ě
Aπ

1,P 1

π,P

1´ γ
´

1

1´ γ

›

›

›
µπ
1,P 1

γ ´ µπ,Pγ

›

›

›

TV
sp
´

Aπ
1,P 1

π,P

¯

(P.11)

ě
Aπ

1,P 1

π,P

1´ γ
´

γ

p1´ γq2

›

›

›
pP 1q

π1

´ Pπ
›

›

›

TV,µπ,Pγ
sp
´

Aπ
1,P 1

π,P

¯

, (P.12)

where line (P.10) follows from line (P.9) by observing that b ě ´|b| for any b P R, line (P.11)
follows from (P.10) by applying Lemma 6.5 and line (P.12) is obtained by using Corollary 6.2.

The bound is composed of two terms, like in (Kakade and Langford, 2002; Pirotta
et al., 2013b): the first term, advantage, represents how much gain in performance can be
locally obtained by moving from pπ, P q to pπ1, P 1q, whereas the second term, dissimilarity
penalization, discourages updates towards policy-model pairs that are too far away.

Decoupled Bound As we mentioned in Chapter 4, in several cases of interest, the pos-
sibility to act on the transition model is constrained, while the policy being under the
complete control of the agent. In other cases, although less frequent, the control on the
policy might be limited while the transition model can be changed arbitrarily. In both
scenarios, however, it seems quite impractical to account for these limitations when the
learning process is carried out on the state transition kernel Pπ directly. This makes the
coupled bound unsuitable in practice as it does not separate the contribution of the policy
and that of the model. It is worth noting that the following derivations are slightly dif-
ferent compared to the ones presented in the original paper (Metelli et al., 2018a). This
is because here we consider a reward function depending on the next state too rps, a, s1q
while in (Metelli et al., 2018a) only state-action rewards rps, aq were considered. We now
present the uncoupled bound, whose complete derivation can be found in Appendix A.1.

Theorem 6.7 (Decoupled Bound). Let C be a Conf-MDP. The performance improvement
of policy-transition model pair pπ1, P 1q P ΠSR ˆ PSR over pπ, P q P ΠSR ˆ PSR can be
lower bounded as:

Jπ
1,P 1 ´ Jπ,P

performance
improvement

ě Bpπ1, P 1q “
1

1´ γ

´

Aπ
1,P
π,P ` Aπ,P

1

π,P

¯

advantage

´
2

p1´ γq2

ˆ

„

›

›P 1 ´ P
›

›

TV,8

´

›

›π1 ´ π
›

›

TV,µπ,Pγ
` γ

›

›P 1 ´ P
›

›

TV,µπ,Pγ

¯

sup
sPS,aPA

 

sp
`

Uπ,P ps, a, ¨q
˘(

`γ
›

›π1 ´ π
›

›

TV,8

´

›

›π1 ´ π
›

›

TV,µπ,Pγ
`
›

›P 1 ´ P
›

›

TV,µπ,Pγ

¯

sup
sPS

 

sp
`

Qπ,P ps, ¨q
˘(



dissimilarity penalization

.

Proof. We start from the coupled bound and we manage the three terms separately:

Jπ
1,P 1

´ Jπ,P ě
Aπ

1,P 1

π,P

1´ γ

(i)

´
γ

p1´ γq2

›

›

›
pP 1q

π1

´ Pπ
›

›

›

TV,µπ,Pγ

(ii)

sp
´

Aπ
1,P 1

π,P

¯

(iii)

.
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(i) is bounded using Lemma A.1, (ii) is bounded using Lemma 6.3, and (iii) using Lemma A.2.
Putting all together we have:

Jπ
1,P 1

´ Jπ,P ě
Aπ

1,P
π,P ` Aπ,P

1

π,P

1´ γ

´
2

1´ γ

›

›π1 ´ π
›

›

TV,µπ,Pγ

›

›P 1 ´ P
›

›

TV,8
sup

sPS,aPA

!

sp
´

Uπ,P ps, a, ¨
¯)

´
γ

p1´ γq2

´

›

›π1 ´ π
›

›

TV,µπ,Pγ
`
›

›P 1 ´ P
›

›

TV,µπ,Pγ

¯

ˆ 2

ˆ

›

›π1 ´ π
›

›

TV,8
sup
sPS

!

sp
´

Qπ,P ps, ¨q
¯)

`
›

›P 1 ´ P
›

›

TV,8
sup

sPS,aPA

!

sp
´

Uπ,P ps, a, ¨q
¯)

˙

.

By rearranging the terms we get the result.

Comparison with Existing Bounds We compare the bound of Theorem 6.7 with Theo-
rem 3.3 of (Metelli et al., 2018a). In (Metelli et al., 2018a) only state-action reward func-
tions rps, aq were considered. We claim that our bound reduces to that of (Metelli et al.,
2018a) in such a case. Indeed, when the reward function is independent from the next
state, we have sp

`

Uπ,P ps, a, ¨q
˘

“ γsp
`

V π,P
˘

, by observing that sp
`

V π,P
˘

ď sp
`

Qπ,P
˘

and supsPS
 

sp
`

Qπ,P
˘

ps, ¨q
(

ď sp
`

Qπ,P
˘

, we reduce exactly to the bound of Theorem
3.3 of (Metelli et al., 2018a):

Jπ
1,P 1 ´ Jπ,P ě

1

1´ γ

´

Aπ
1,P
π,P ` Aπ,P

1

π,P

¯

´
2γ

p1´ γq2

ˆ

ˆ

›

›P 1 ´ P
›

›

TV,8

´

›

›π1 ´ π
›

›

TV,µπ,Pγ
` γ

›

›P 1 ´ P
›

›

TV,µπ,Pγ

¯

`
›

›π1 ´ π
›

›

TV,8

´

›

›π1 ´ π
›

›

TV,µπ,Pγ
`
›

›P 1 ´ P
›

›

TV,µπ,Pγ

¯

˙

sp
`

Qπ,P
˘

.

It is also worthwhile to analyze the form of the bound when either P 1 “ P or π1 “ π, i.e.,
when we change alternatively either the policy or the transition model but not both. The
following corollary provides the expression of the decoupled bound.

Corollary 6.8. Let C be a Conf-MDP and let pπ1, P 1q, pπ, P q P ΠSR ˆ PSR two policy-
transition models pairs. The performance improvement of policy π1 over π, under transi-
tion model P , can be lower bounded as:

Jπ
1,P ´ Jπ,P ě

1

1´ γ
Aπ

1,P
π,P

´
2γ

p1´ γq2
›

›π1 ´ π
›

›

TV,8

›

›π1 ´ π
›

›

TV,µπ,Pγ
sup
sPS

 

sp
`

Qπ,P ps, ¨q
˘(

.

Furthermore, the performance improvement of transition model P 1 over P , under policy
π, can be lower bounded as:

Jπ,P
1

´ Jπ,P ě
1

1´ γ
Aπ,P

1

π,P
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´
2γ

p1´ γq2
›

›P 1 ´ P
›

›

TV,8

›

›P 1 ´ P
›

›

TV,µπ,Pγ
sup

sPS,aPA

 

sp
`

Uπ,P ps, a, ¨q
˘(

.

It is worth comparing the first bound of Corollary 6.8 with the bound of Corollary 3.6
of (Pirotta et al., 2013b). We observe that our bound is tighter for two reasons. First, it em-
ploys as policy dissimilarity the product }π1 ´ π}TV,8 }π

1 ´ π}TV,µπ,Pγ
ď }π1 ´ π}

2
TV,8

used in (Pirotta et al., 2013b). Second, the term involving the Q-function is tighter since
supsPS

 

sp
`

Qπ,P ps, ¨q
˘(

ď sp
`

Qπ,P
˘

.

6.4 Safe Policy Model Iteration

To deal with the learning problem in the Conf-MDP framework we could, in principle,
learn the optimal policy by using a classical RL algorithm and adapt it to learn the opti-
mal model, sequentially or in parallel. Alternatively, we could resort to general-purpose
global optimization tools, like CEM (Rubinstein, 1999) or genetic algorithms (Holland
and Goldberg, 1989), using as objective function the performance of the policy learned
by a standard RL algorithm. Nonetheless, they may not correspond to the preferable, nor
the safest, choices in this context as there exists an inherent connection between policy
and model we could not overlook during the learning process. Indeed, a policy learned
by interacting with a sub-optimal model could result in poor performance paired with a
different, maybe optimal, model. At the same time, a policy far from the optimum could
mislead the search of the optimal model. The goal of this section is to present an approach,
Safe Policy-Model Iteration (SPMI), inspired to (Pirotta et al., 2013b), capable of learning
the policy and the model simultaneously, possibly taking advantage of the inter-connection
mentioned above.

Following the approach proposed in (Pirotta et al., 2013b), we define the policy and
model improvement update rules:

π1 “ απ ` p1´ αqπ,

P 1 “ βP ` p1´ βqP,

where α, β P r0, 1s, π P ΠSR and P P PSR are the target policy and the target transition
model respectively. Extending the rationale of (Pirotta et al., 2013b) to our context, we
aim to determine the values of α and β which jointly maximize the decoupled bound
(Theorem 6.7). In the following, for the sake of clarity, we will abbreviate the decoupled
bound Bpπ1, P 1q with Bpα, βq. The following result states a notable condition for the
optimization of the lower bound.

Theorem 6.9. For any π P ΠSR and P P PSR, the decoupled bound is optimized for:

pα˚, β˚q P arg max
pα,βqPV

tBpα, βqu,

where B is the bound in Theorem 6.7 and V “ tpα˚0 , 0q, pα˚1 , 1q, p0, β˚0 q, p1, β˚1 qu and:

α˚0 “
p1´ γqAπ,Pπ,P

4γ supsPS tsppQπ,P ps, ¨qqu }π ´ π}TV,8 }π ´ π}TV,µπ,Pγ

,
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Algorithm 6.1: Safe Policy Model Iteration (SPMI).
Input: Conf-MDP C, number of iterations T
Output: approximately optimal policy-transition model pair pπpT q, P pT qq

1 Initialize π0, P0 arbitrarily
2 forall i “ 0, 1, . . . , T ´ 1 do
3 πpiq “ PolicyChooserpπpiqq

4 P
piq
“ ModelChooserpP piqq

5 Vpiq “ tpα˚0,i, 0q, pα˚1,i, 1q, p0, β˚0,iq, p1, β˚1,iqu
6 α˚i , β

˚
i “ arg maxpα,βqPVpiqtBpα, βqu

7 πpi`1q
“ α˚i π

piq
` p1´ α˚i qπ

piq

8 P pi`1q
“ β˚i P

piq
` p1´ β˚i qP

piq

9 return pπpT q, P pT qq

α˚1 “α
˚
0 ´

›

›P ´ P
›

›

TV,µπ,Pγ

2 }π ´ π}TV,µπ,Pγ

´
supsPS,aPA

 

sp
`

Uπ,P ps, a, ¨q
˘(

›

›P ´ P
›

›

TV,8

2γ supsPS tsppQπ,P ps, ¨qqu }π ´ π}TV,8
,

β˚0 “
p1´ γqAπ,Pπ,P

4γ supsPS,aPA tsppUπ,P ps, a, ¨qqu
›

›P ´ P
›

›

TV,8

›

›P ´ P
›

›

TV,µπ,Pγ

,

β˚1 “β
˚
0 ´

}π ´ π}TV,µπ,Pγ

2γ
›

›P ´ P
›

›

TV,µπ,Pγ

´
supsPS

 

sp
`

Qπ,P ps, ¨q
˘(

}π ´ π}TV,8

2 supsPS,aPA tsppUπ,P ps, a, ¨qqu
›

›P ´ P
›

›

TV,8

,

to be clipped in the interval r0, 1s.

The proof of the theorem can be found in Appendix A.1. The theorem shows that the
optimal pα, βq pair lies on the boundary of r0, 1s ˆ r0, 1s, i.e., either one between policy
and model is moved and the other is kept unchanged or one is moved and the other is set
to the target.

Algorithm 6.1 reports the pseudocode of SPMI. The procedures PolicyChooser and
ModelChooser are designated for selecting the target policy and model (see Section 6.4.4).
In the following subsections, we briefly discuss two simplifications of the SPMI algorithm
in which we either keep the transition model fixed and update the policy, Safe Policy
Iteration (SPI, Section 6.4.1) or we keep the policy fixed and update the transition model,
Safe Model Iteration (SMI, Section 6.4.2).

6.4.1 Safe Policy Iteration
Safe Policy Iteration (SPI) is essentially the Unique-parameter SPI of (Pirotta et al., 2013b),
with the only difference that we employ the bound of Corollary 6.8 that is tighter. The ul-
timate goal consists in finding an optimal policy under the fixed model P P PSR, i.e.,
π˚ P arg maxπPΠSR

 

Jπ,P
(

. The policy improvement rule is given by:

π1 “ απ ` p1´ αqπ,

where α P r0, 1s and π P ΠSR is the target policy chosen by a suitable Policy Chooser
function. The following result provides the optimal value of the coefficient α and the
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Algorithm 6.2: Safe Policy Iteration (SPI).
Input: Conf-MDP C, number of iterations T
Output: approximately optimal policy πpT q

1 Initialize π0 arbitrarily
2 forall i “ 0, 1, . . . , T ´ 1 do
3 πpiq “ PolicyChooserpπpiqq
4 πpi`1q

“ α˚i π
piq
` p1´ α˚i qπ

piq

5 return πpT q

Algorithm 6.3: Safe Model Iteration (SMI).
Input: Conf-MDP C, number of iterations T
Output: approximately optimal transition model P pT q

1 Initialize P0 arbitrarily
2 forall i “ 0, 1, . . . , T ´ 1 do
3 P

piq
“ ModelChooserpP piqq

4 P pi`1q
“ β˚i P

piq
` p1´ β˚i qP

piq

5 return P pT q

corresponding performance improvement, while the pseudocode of SPI is reported in Al-
gorithm 6.2.

Corollary 6.10. For any π P ΠSR the first bound of Corollary 6.8 is optimized for:

α˚ “
p1´ γqAπ,Pπ,P

4γ supsPS tsppQπ,P ps, ¨qqu }π ´ π}TV,8 }π ´ π}TV,µπ,Pγ

,

to be clipped in the interval r0, 1s. In such a case, the performance improvement can be
lower bounded as:

Jπ
1,P 1 ´ Jπ,P ě

´

Aπ,Pπ,P
¯2

8γ supsPS tsppQπ,P ps, ¨qqu }π ´ π}TV,8 }π ´ π}TV,µπ,Pγ

.

Proof. The proof is obtained from Theorem 6.9, by simply setting β “ 0 and substituting the
optimal value α˚ in the performance improvement bound.

6.4.2 Safe Model Iteration
Analogously to SPI, we can devise a corresponding version for the transition model, named
Safe Model Iteration (SMI). Here, the goal consists in finding an optimal transition model,
under the fixed policy π P ΠSR, i.e., P˚ P arg maxPPPSR

 

Jπ,P
(

. The update rule is still
obtained by means of a convex combination:

P 1 “ βP ` p1´ βqP,
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where β P r0, 1s and P P PSR is the target model. The optimal value of the coefficient β
as well as the performance improvement are provided in the following result, whereas the
pseudocode of SMI is reported in Algorithm 6.3.

Corollary 6.11. For any P P PSR the second bound of Corollary 6.8 is optimized for:

β˚ “
p1´ γqAπ,Pπ,P

4γ supsPS,aPA tsppUπ,P ps, a, ¨qqu
›

›P ´ P
›

›

TV,8

›

›P ´ P
›

›

TV,µπ,Pγ

,

to be clipped in the interval r0, 1s. In such a case, the performance improvement can be
lower bounded as:

Jπ
1,P 1 ´ Jπ,P ě

´

Aπ,Pπ,P
¯2

8γ supsPS,aPA tsppUπ,P ps, a, ¨qqu
›

›P ´ P
›

›

TV,8

›

›P ´ P
›

›

TV,µπ,Pγ

.

Proof. The proof is analogous to that of Corollary 6.10.

6.4.3 Policy and Model Spaces
The selection of the target policy and model is a rather crucial component of the algorithm
since the quality of the updates largely depends on it. To effectively adopt a target selection
strategy we need to be aware of the degrees of freedom on the policy and model spaces.
Focusing on the model space first, it is easy to discriminate two macro-classes.

Unconstrained In some cases, there are almost no constraints on the direction in which
to update the model. In these scenarios, we can naturally design the first scenario as an
unconstrained model space and choosing P “ PSR the space of all Markovian stationary
transition models.

Parametric In other cases, only a limited model portion, typically a set of parameters in-
ducing transition probabilities, can be accessed. To represent this case, we limit the model
space to a parametric set PΩ “ tPω : ω P Ω P Rqu, as we have seen in Section 5.1.5. A
particular choice, that turns out to be convenient for SPMI (especially in the analysis), is
the convex hull of a set of vertex (or extreme) models (e.g., a set of deterministic models)
Pvtx “ tP1, . . . , PMu, with M P Ně1:

PΩ “ copPvtxq “

#

Pω “
M
ÿ

i“1

ωiPi, ωi ě 0, @i P t1, . . . , nu,
M
ÿ

i“1

ωi “ 1

+

.

It is worth noting that if we select as set of vertex models all the Markovian stationary
deterministic transition models, i.e., Pvtx “ PSD, we have that copPvtxq “ PSR.

It is noteworthy that we can symmetrically extend the dichotomy to the policy space,
although the need for limiting the agent on the direction of policy updates is less relevant
in our perspective.
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6.4.4 Target Choice

Up to now we have not specified the form of the PolicyChooser and ModelChooser func-
tions, in charge of outputting the target policy and the target model. To deal with uncon-
strained spaces, it is quite natural to adopt the target selection strategy presented in (Pirotta
et al., 2013b), choosing the greedy model, defined for every state-action pair ps, aq P SˆA
as:

P`ps, aq P arg max
s1PS

tUπ,P ps, a, s1qu,

that corresponds to the model that maximizes the relative advantage in each state-action
pair. Extending this rationale to the policy space, we obtain an algorithm in which, at each
step, the greedy policy and model w.r.t. the Qπ,P and Uπ,P are selected as targets.

When we are not free to choose the greedy model, like in the parametric setting, be-
cause the greedy model might not belong to the space of representable transition models
PΩ, we can resort to a relaxed notion of greedy model, as the one maximizing the expected
relative advantage function:

P P arg max
PPPSR

!

Aπ,Pπ,P
)

.

This greedy choice is based on local information and is not guaranteed to provide a policy-
transition model pair maximizing the bound. Nevertheless, testing all the policy-transition
model pairs is highly inefficient in the presence of large policy-transition model spaces.
To mitigate this effect, a reasonable compromise is to select, as a target, the model that
yields the maximum bound value between the greedy target and the previous target. This
procedure, named persistent choice, effectively avoids the oscillating behavior, common
with the greedy choice Wagner (2011).

6.5 Theoretical Analysis

In this section, we outline some relevant theoretical results related to SPMI. We start by
analyzing the scenario in which the model/policy space is parametric and limited to the
convex hull of a set of vertex models/policies, and then we provide some rationales for the
target choices adopted. In most of the section, we restrict our attention to the transition
model, as for the policy all results apply symmetrically. For this reason, we will remove the
dependence on the policy from the relevant quantities, whenever not generating confusion.

6.5.1 Convex Hull Model Space

We consider the setting in which the transition model space is limited to the convex hull
of a finite set of vertex models: PΩ “ copPvtxq, where Pvtx “ tP1, . . . , PMu. For the sake
of brevity, we omit the dependency on π of all the quantities and we abbreviate Jπ,Pω
as Jpωq. We define an optimal transition model Pω˚ as any model that maximizes the
expected return, i.e., Jpω˚q ě Jpωq for all Pω P copPvtxq. We start by stating some
results on the expected relative advantage functions.
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Lemma 6.12. Let Pω P copPvtxq be a transition model, where Pvtx “ tP1, . . . , PMu.
Then, for every state-action pair ps, aq P S ˆA it holds that:

M
ÿ

i“1

ωiA
Pi
Pω
ps, aq “ 0.

Proof. Let us rewrite the expected relative advantage by decomposing Pω:

APiPω ps, aq “

ż

S

`

Pipds
1
|s, aq ´ Pωpds

1
|s, aq

˘

UPω ps, a, s1q

“

ż

S

˜

Pipds
1
|s, aq ´

M
ÿ

j“1

ωjPjpds
1
|s, aq

¸

UPω ps, a, s1q.

Now we take the weighted sum of the previous equation:

M
ÿ

i“1

ωiA
Pi
Pω
ps, aq “

M
ÿ

i“1

ωi

ż

S

˜

Pipds
1
|s, aq ´

M
ÿ

j“1

ωjPjpds
1
|s, aq

¸

UPω ps, a, s1q

“

ż

S

˜

M
ÿ

i“1

ωiPipds
1
|s, aq ´

M
ÿ

j“1

ωjPjpds
1
|s, aq

¸

UPω ps, a, s1q “ 0,

where we just observed that
řM
i“1 ωiPipds

1
|s, aq ´

řM
j“1 ωjPjpds

1
|s, aq “ 0.

As a consequence, we observe that also the expected relative advantage functions APiPω
sum up to zero when weighted by the coefficients ω. An analogous statement holds when
the policy is defined as a convex combination of vertex policies. The following theorem
establishes an essential property of the optimal transition model.

Theorem 6.13. Let Pω P copPvtxq be a transition model, where Pvtx “ tP1, . . . , PMu.
Then, it holds that APωPω˚ ď 0. Moreover, for all Pω P co ptPi P Pvtx : ω˚i ą 0uq, it holds

that APωPω˚ “ 0.

Proof. We first prove that the expected relative advantage w.r.t. the vertex models is non-positive and
then we extend it to all the models. By contradiction, suppose there exists a vertex model Pi P Pvtx

having a positive expected relative advantage. Then, we can perform a step of model update with
SPMI starting from Pω˚ and getting the new model Pω with a performance improvement of at least
(Corollary 6.11):

Jpω1q ´ Jpω˚q

ě

´

APiP
ω˚

¯2

8γ supsPS,aPA
 

sp
`

UPω˚ ps, a, ¨q
˘(

}Pi ´ Pω˚}TV,8 }Pi ´ Pω˚}TV,µπ,Pγ

ą 0,

which is impossible as Pω˚ is the optimal model. Let us consider a generic model Pω , its advantage
decomposes linearly in the vertex models:

APωP
ω˚
“

M
ÿ

i“1

ωiAPiP
ω˚
ď 0.
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Let us now consider the subset of vertex models having non-zero coefficient for the optimal model
tPi P Pvtx : ω˚i ą 0u. From Lemma 6.12 we have:

M
ÿ

i“1

ω˚i APiP
ω˚
“

ÿ

i:ω˚i ą0

ω˚i APiP
ω˚
“ 0. (P.13)

Since APiP
ω˚
ď 0 from the first part of the theorem, it must be that all APiP

ω˚
“ 0. As an immediate

consequence, all transition models in co
`

tPi P Pvtx : ω˚i ą 0u
˘

must have zero expected relative
advantage, due to the linear decomposition of the advantage.

The theorem provides a necessary condition for a transition model to be optimal, i.e.,
all the expected relative advantages must be non-positive and, moreover, those of the vertex
transition models associated with non-zero coefficients must be zero. It is worth noting
that the expected relative advantage APω1Pω

represents only a local index of the performance
improvement, as it is defined by taking the expectation of the relative advantageAPω1Pω

ps, aq

w.r.t. the current µPωγ . On the other hand, the actual performance improvement Jpω1q ´
Jpωq is a global index, being obtained by averaging the relative advantage APω1Pω

ps, aq

w.r.t. the new µ
Pω1
γ (Theorem 6.4). This is intimately related to the measure mismatch

claim provided in (Kakade, 2003) as the model expected relative advantage APω˚Pω,
might

be null even if Jpω˚q ą Jpωq, making SPMI, just like CPI and SPI, stop into locally
optimal models. Furthermore, it is simple to see that asking for a guaranteed performance
improvement may prevent from finding the global optimum, as this may require visiting
a lower performance region (see Section 6.7.1 for an example). Nevertheless, we can
provide a bound for the performance gap between a locally optimal model and the global
optimal model.

Proposition 6.14. Let Pω P copPvtxq be a transition model, where Pvtx “ tP1, . . . , PMu.
If for all Pi P Pvtx it holds that the expected relative advantage function is non-positive,
i.e., APω˚Pi

ď 0, then it holds that:

Jpω˚q ´ Jpωq ď
1

1´ γ
sup

sPS,aPA

"

max
iPt1,...,Mu

!

APiPω ps, aq
)

*

.

Proof. Using Theorem 6.4 and Lemma 6.1 we can write:

Jpω˚q ´ Jpωq “
1

1´ γ

ż

S
µPω˚ pdsq

ż

A
πpda|sqA

P
ω˚

Pω
ps, aq

ď
1

1´ γ

ż

S

ż

A
µPω˚ pds, daq sup

sPS,aPA

!

A
P
ω˚

Pω
ps, aq

)

ď
1

1´ γ
sup

sPS,aPA

!

A
P
ω˚

Pω
ps, aq

)

,

Now we observe that the relative advantage decomposes linearly in the target models:

A
P
ω˚

Pω
ps, aq “

M
ÿ

i“1

ω˚i A
Pi
Pω
ps, aq ď max

iPt1,...,Mu

!

APiPω ps, aq
)

,

from which the theorem follows.
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From this result, we notice that a sufficient condition for a model to be optimal is that
APiPω ps, aq “ 0 for all state-action pairs. This is a stronger requirement than the maximiza-
tion of JPω as it asks the model to be optimal in every state-action pair independently of
the initial state distribution µ0;1 such a model might not exist when considering a model
space P that does not include all the possible transition models (see Section 6.7 for an
example).

6.5.2 P-Gradient Theorem
In this section, we elucidate the relationship between the relative advantage function and
the gradient of the expected return. Let us start by stating the expression of the gradient
of the expected return w.r.t. a parametric transition model. This is the equivalent of the
Policy Gradient Theorem (Sutton et al., 1999a) for the transition model.

Theorem 6.15 (P -Gradient Theorem). Let PΩ “ tPω : ω P Ω P Rqu be a set of
parametric stochastic transition models differentiable in ω P Ω. Then, the gradient of the
expected return Jpωq w.r.t. ω is given by:

∇ωJpωq “
1

1´ γ

ż

S

ż

A
µPωγ pds,daq

ż

S
∇ωPωpds1|s, aqUPω ps, a, s1q.

Proof. We just rephrase the proof of the Policy Gradient Theorem (Sutton et al., 1999a). Let us
compute the gradient of the Q-function for any state-action pair ps, aq P S ˆA:

∇ωQPω ps, aq “ ∇ω
ż

S
Pωpds

1
|s, aqUPω ps, a, s1q

“

ż

S

´

∇ωPωpds1|s, aqUPω ps, a, s1q ` Pωpds1|s, aq∇ωUPω ps, a, s1q
¯

(P.14)

“

ż

S
∇ωPωpds1|s, aqUPω ps, a, s1q

`

ż

S
Pωpds

1
|s, aq∇ω

ˆ

rps, a, s1q ` γ

ż

A
πpda1|s1qQPω ps1, a1q

˙

(P.15)

“

ż

S
∇ωPωpds1|s, aqUPω ps, a, s1q

` γ

ż

S
Pωpds

1
|s, aq

ż

A
πpda1|s1q∇ωQPω ps1, a1q, (P.16)

where (P.15) follows from (P.14) by expressing the U-function with the corresponding Bellman
equation. After unfolding (P.16) we get:

∇ωQPω ps, aq “ 1

1´ γ

ż

S

ż

A
µPωδps,aq,γpds

2, da2q

ż

S
∇ωPωpds1|s2, a2qUPω ps2, a2, s1q,

where µPωδps,aq,γ is the γ-discounted state-action distribution when forcing the first state to be s and
the first action to be a. We obtain the gradient of the expected return by observing that Jpωq “
ş

S
ş

A µ0pdsqπpda|sqQ
Pω ps, aq and therefore:

∇ωJpωq “ 1

1´ γ

ż

S

ż

A
µ0pdsqπpda|sq∇ωQPω ps, aq

1This is the same difference between a policy that maximizes the value function V π in all states and a policy
that maximizes the expected return Jπ .

106



6.6. Experimental Evaluation

“
1

1´ γ

ż

S

ż

A
µPωγ pds2,da2q

ż

S
∇ωPωps1|s2, a2qUPω ps2, a2, s1q,

by observing that
ş

S
ş

A µ0pdsqπpda|sqµ
Pω
δps,aq,γ

pds2,da2q “ µPωµ0,γpds
2,da2q and we agreed to

omit the subscript µ0. By remanding the integration variables we get the result.

Let us now show the connection between ∇ωJpωq and the expected relative advantage
functions. This result extends that of Kakade (2003) to the case of the transition model.

Proposition 6.16. Let P P PSR be the current transition model and P P PSR be the
target transition model. Let us consider the update rule:

P 1 “ βP ` p1´ βqP,

with β P r0, 1s. Then, the derivative of the expected return of P 1 w.r.t. the β coefficients
evaluated in P is given by:

BJP
1

Bβ

∣∣∣∣
β“0

“
1

1´ γ
APP .

Proof. Exploiting Theorem 6.15 and the definition of P 1 we can write the expression of the gradient:

BJP
1

Bβ
“

1

1´ γ

ż

S

ż

A
µP

1

γ pds, daq

ż

S

B

Bβ
P 1pds1|s, aqUP

1

ps, a, s1q

“
1

1´ γ

ż

S

ż

A
µP

1

γ pds, daq

ż

S

`

P pds1|s, aq ´ P pds1|s, aq
˘

UP
1

ps, a, s1q.

The result immediately follows by observing that P 1|β“0 “ P .

The proposition provides an interesting interpretation of the expected relative advan-
tage function. Suppose that Pω is the current model and we have to choose which update
direction (target model) to follow. If we consider the target model as a convex combination
of a set of vertex models Pvtx, i.e., P “

řM
i“1 ηiPi, the local performance improvement,

at the first order, is given by JP
1

´ JP » BJP
1

Bβ

∣∣
β“0

β “ 1
1´γβ

řM
i“1 ηiA

Pi
P . Given that

β will be determined later by maximizing the bound, the local performance improvement
is maximized by assigning one to the coefficient of the model yielding the maximal ad-
vantage. Therefore, the choice of the direction to follow, when considering the greedy
target choice, is based on local information only (gradient), while the step size β is ob-
tained by maximizing the bound on the guaranteed performance improvement (safe), as
done in (Pirotta et al., 2013a).

6.6 Experimental Evaluation

The goal of this section is to show the benefits of configuring the environment while the
policy learning proceeds. The experiments are conducted on two explicative domains:
the Student-Teacher domain (unconstrained model space) the Racetrack Simulator (para-
metric model space). We compare different target choices (greedy and persistent) and
different update strategies. Specifically, SPMI, that adaptively updates policy and model,
is compared with some alternative model learning approaches: SPMI-alt(ernated) in which
model and policy updates are forced to be alternated, SPMI-sup that uses a looser bound,
obtained from Theorem 6.7 by replacing }¨}TV,µπ,Pγ

with }¨}TV,8,2 SPI+SMI that optimizes

2When considering only policy updates, this is equivalent to the bound used in SPI (Pirotta et al., 2013b).
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Sequential: SPI+SMI, SMI+SPI

Alternated: SPMI-alt

Adaptive: SPMI, SPMI-sup, SPMI-greedy

Model update Policy update policy-transition model
update

Figure 6.1: Graphical representation of the update sequence performed by the algorithms
compared in the experiments.

policy and model in sequence and SMI+SPI that does the opposite. A graphical represen-
tation of the behavior in terms of policy and model updates of the compared algorithms is
reported in Figure 6.1. For the implementation details and additional experiments, refer to
Appendix E of the original paper (Metelli et al., 2018a).

6.6.1 Student-Teacher domain
The Student-Teacher domain is a simple model of concept learning, inspired to (Rafferty
et al., 2011), involving two entities: the teacher and the student. We assume both entities
share the same goal, i.e., maximizing the knowledge the student acquires. The teach-
ing model, however, should be suited for the specific learning policy of the student. For
instance, not all students have the same skills and are able to capture the information pro-
vided by the teacher with the same speed and effectiveness. Thus, the teaching model
should be tailored in order to meet the student’s needs. Given the goal of maximizing
learning, a teaching model induces an optimal learning policy (within the space of the
policies that a certain student can play). Symmetrically, a learning policy determines an
optimal teaching model (within the space of models available to the teacher). The question
we want to answer in this experiment is: “can we dynamically adapt the teaching model
to the learning policy and the learning policy to the teaching model, so to maximize the
learning?”

Environment Description We formalize the teaching/learning process as an MDP in
which the student is the agent and the teacher is the environment. To fit our framework
to this context, we can think of the teacher as an online learning platform that can be
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configured by the student in order to improve the learning experience. As in Rafferty et al.
(2011) we test the model on the “alphabet arithmetic” a concept-learning task in which
literals are mapped to numbers.

We consider n literalsL1, . . . , Ln, to which the student can assign the values t0, . . . ,mu.
The teacher, at each time step, provides an “example”, i.e., an equation where a number
(from 2 to p ď n) of distinct literals sum to a numerical answer (e.g., A+C=3). The set of
all possible examples is given by:

E “
#

ÿ

iPI

Li “ l : I Ď t1, . . . , nu, 2 ď |I| ď p, l P t0, . . . , |I|mu

+

.

The student reacts to an example by performing an action, i.e., an assignment of literals
(e.g., A=1, C=3). The set of all assignments, i.e., actions, is given by:

A “ tL1 “ l1, L2 “ l2, . . . , Ln “ ln : li P t0, ...,mu, i P t1, . . . , nuu ,

thus |A| “ pm` 1qn. In order to model the student policy space we assume that a student
can modify an arbitrary number of literals under the assumption that two consecutive as-
signments satisfy

řn
i“1 |l

1
i ´ li| ď k, i.e., the literal values can change by not more than

a total value of k. This models the learning limitations of the student, in particular how
hard is for the student to capture the teacher information. We assume that the teacher can
provide any example. The set of states is the Cartesian product between examples and as-
signments, i.e., S “ E ˆA. A problem setting is defined by the 4-tuple number of literals
- maximum literal value - maximum update allowed - maximum number of literals in the
statement (e.g., 2-1-1-2).

The goal of the student is to perform assignments that are consistent with the teacher’s
examples (within its limitations on the possible assignments). So, while the student is
learning the optimal policy it can configure the teacher to provide more suitable examples.
The reward is 1 when the assignment is consistent, 0, when it is not. Notice that we do not
have a goal state, differently from (Rafferty et al., 2011). We assume that, in the beginning,
both policy and model are uniform distribution on the allowed actions/states. Figure 6.2
reports a portion of the MDP corresponding to the 2-1-1-2 problem.

Experiments We start considering the illustrative example in which there are two binary
literals, and the student can change only one literal at a time (2-1-1-2). This example aims
to illustrate the benefits of SPMI over other update strategies and target choices.

In Figure 6.3, we show the behavior of the different update strategies starting from
a uniform initialization. We can see that both SPMI and SPMI-sup perform the policy
updates and the model updates in sequence. This is a consequence of the fact that, by
looking only at the local advantage function, it is more convenient for the student to learn
an almost optimal policy with no intervention on the teacher and then refining the teacher
model to gain further reward. The joint and adaptive strategy of SPMI outperforms both
SPMI-sup and SPMI-alt. The alternated policy-transition model update (SPMI-alt) is not
convenient since, with an initial poor-performing policy, updating the model does not yield
a significant performance improvement. It is worth noting that all the methods converge in
a finite number of steps and the learning rates α and β exhibit an exponential growth trend.
The bound value is not plotted for SPMI-alt since the algorithm keeps alternating between
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Figure 6.2: Portion of the MDP corresponding to the problem 2-1-1-2.

policy and model updates that are performed using different bounds. Thus, its behavior is
not really meaningful.

In Figure 6.4, we compare the greedy target selection with the persistent target selec-
tion. The former, while being the best local choice maximizing the advantage, might result
in an unstable behavior that slows down the convergence of the algorithm. This is con-
firmed since the number of times the target policy changes is significantly larger compared
to the persistent choice.

In Figure 6.5 (left), we compare SPMI, where both the policy and the transition model
are learned simultaneously, with the sequential approaches SPI+SMI and SMI+SPI. We
immediately notice that learning both policy and model is convenient since the perfor-
mance of SPMI at convergence is higher than that of SPI (only policy learned) and SMI
(only model learned), corresponding to the markers in Figure 6.5. Furthermore, we ob-
serve that SPMI outperforms SPI+SMI but displays a slower convergence compared to
SMI+SPI. This behavior can be explained based on the peculiar properties of the problem,
in combination with the local nature of our bound. Indeed, at the beginning, it is conve-
nient to learn the policy (the slope of the dotted line is larger w.r.t. that of the dash-dotted
line in the first iterations). However, it turns out that by sacrificing some performance im-
provement at the beginning it is possible to reach faster convergence. Nevertheless, if we
are interested in the online performance of the learning process, we clearly see that SPMI
reveals to be the best strategy. Figure 6.5 (right) proposes another interesting case in which
SPMI-sup, SPMI-alt, and SMI+SPI all converge faster than SPMI. From these examples,
we can conclude that although SPMI adopts the tightest bound, its update strategy is not
guaranteed to yield globally the fastest convergence as it is based on local information,
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Figure 6.3: Expected return, bound value, α and β coefficients, policy and model advan-
tages for the Student-Teacher domain 2-1-1-2 for different update strategies.

i.e., expected relative advantage.
In Table 6.1 we report the number of iterations to convergence for the different problem

settings we considered. We can see that SPMI is the first or the second algorithm to
converge in most of the cases.

6.6.2 Racetrack Simulator

The Racetrack simulator is an abstract representation of a car driving problem. The au-
tonomous driver (agent) has to optimize a driving policy to run the vehicle on the track,
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Figure 6.5: Expected return for the Student-Teacher domains 2-1-1-2 (left) and 2-3-1-2
(right) for different update strategies.

reaching the finish line as fast as possible. During the process, the agent can configure two
vehicle settings to improve their driving performance: the vehicle stability and the engine
boost.

Environment Description The autonomous driver, the learning agent, has to optimize a
driving policy in order to run the vehicle to the track finish line as fast as possible. The ve-
hicle and the track naturally compose the model of the learning process, however, there is
the possibility to tune a set of vehicle parameters, such as aerodynamic profile (to affect the
vehicle stability) and engine setting. Therefore, to maximize the performance, the driving
policy of the agent and the model configuration has to be jointly considered. It is note-
worthy that a specific model parametrization (vehicle setting) induces an optimal driving
policy and, on the other hand, a driving policy determines an optimal model parametriza-
tion. Moreover, a policy-transition model pair that results to be optimal for a specific track
may not be optimal for a (morphologically) different track. Then, the question we aim to
answer with this experiment is the following: “can we learn the optimal policy-transition
model pair for a given track by dynamically adapt the vehicle parametrization to the driv-
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Problem SPMI SPMI-sup SPMI-alt SPI+SMI SPI+SMI

2-1-1-2 16234 18054 30923 22130 7705
2-1-2-2 2839 3194 5678 2839 12973
2-2-1-2 20345 18287 ą50000 39722 10904
2-2-2-2 12025 14315 ą50000 ą50000 15257
2-3-1-2 14187 13391 11772 ą50000 12183
3-1-1-2 15410 17929 22707 31122 14257
3-1-2-2 3313 3313 8434 3313 22846
3-1-3-2 2945 3435 5891 2945 18090

Table 6.1: Number of steps for convergence for the update strategies in different problem
settings of the Student-Teacher domain. In bold the best algorithm and underlined the
second best. The runs were stopped after 50000 iterations.

ing policy and, conversely, the driving policy to the vehicle parametrization during the
learning process?”

We formalize the learning process as an MDP in which the driver is the agent and
the environment is composed by the track and the vehicle. The track is represented by
a grid of positions, each grid point is either of type roadway, wall, initial position,
goal position. A state in the learning process belongs to the set:

S “
!

px, y, vx, vyq :x P t0, . . . , xmaxu, y P t0, . . . , ymaxu,

vx P tvmin, . . . , vmaxu, vy P tvmin, . . . , vmaxu

)

,

where px, yq corresponds to a grid position and pvx, vyq are the speed along the coordinate
axes. At each step, the agent can increment or decrement the speed along a coordinate
direction or do nothing. Then, the action space is represented by the following:

A “
!

keep, increment vx, increment vy, decrement vx, decrement vy
)

.

The learning process starts at the state corresponding to the initial position with zero veloc-
ities; the agent collects reward 1 when it reaches a state corresponding to the goal position
he collects 0 reward in any other case.

The transition model induces a success probability to any action, a failed action causes
a random action to occur instead of the one selected by the agent. This probability aims
to model the stability of the vehicle, the more the vehicle is unstable, the more is hard
for the agent to drive it (or select an action). The model also induces a failure probabil-
ity to every action: a failure represents a break of the vehicle, thus it directly cause the
end of the episode. This feature represents the pressure on the vehicle engine, the more
performance the driver asks for, the more it may break down. We formalize the transition
model as a convex combination between a set of vertex models: these correspond to vehi-
cle configuration pushed towards the limit in terms of the aspects described above. For our
purpose, we define a model dichotomy related to vehicle stability: P_highspeed (P_hs)
trades stability at lower speed to have more stability (or high action success probability) in
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Figure 6.6: Graphical representation of the racetrack extreme models.

Figure 6.7: Graphical representation of the tracks used in the Racetrack Simulator. From
left to right: T1, T3, T4 and T2 just below. Each position has a type label: red for
initial states, green for goal states, gray for walls, and white for roadtracks.

high speed situations, P_lowspeed (P_ls), instead, provides more stability in low speed
situation and poor stability at higher speed. We define also a model dichotomy related to
engine boost: P_boost (P_b) guarantees higher engine performance and a lower reliability
(or higher failure probability), at the opposite P_noboost (P_nb) provides higher reliabil-
ity but poor engine performance. In Figure 6.6 we propose a graphical representation of
the features of these extreme models.

Considering any possible combination of stability and engine setting, we define the
model set (set of vertex models) Pvtx “ tP_hs_b, P_hs_nb, P_ls_b, P_ls_nbu. Each
model in this set is obtained by taking, for each state-action pair, the product of the tran-
sition probabilities of the components (e.g., P_hs_bp¨|s, aq “ P_hsp¨|s, aq ¨ P_bp¨|s, aq).
Then, we derive the model space as the convex hull of the vertices in the model set:

Pω “ ω1 ¨ P_hs_b` ω2 ¨ P_hs_nb` ω3 ¨ P_ls_b` ω4 ¨ P_ls_nb,

where
ř4
i“1 ωi “ 1 and ωi ě 0 for all i P t1, 2, 3, 4u. While the agent is learning the
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Figure 6.8: Expected return and coefficient of the high speed stability vertex model for
different update strategies in track T1.
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Figure 6.9: Expected return of the Racetrack Simulator in the T3 and T4 for different
update strategies and considering vehicle stability configuration only.

optimal driving policy, the model parametrization can be configured (selecting a vector
ω) trying to fit the vehicle settings to the driving policy and simultaneously trying to fit
the policy-settings pair to the morphology of the track. At the beginning of the learning
process, we assume the policy to be a uniform distribution on the action space and the
model to be p0, 0.5, 0, 0.5q, that we can consider the most conservative parametrization in
our context. We also report in Figure 6.7 an illustrative representation of the tracks used
in the experiments.

Two Vertex Models Experiment We first present an introductory example on a simple
track (T1) in which only the vehicle stability can be configured. In Figure 6.8 left, we
highlight the effectiveness of SPMI updates over SPMI-sup and SPMI-alt and sequential
executions of SMI and SPI on track T1. Furthermore, the SPMI-greedy, which selects
the target greedily in each iteration, results in lower performance w.r.t. SPMI. Comparing
SPMI with the sequential approaches, we can easily deduce that is not valuable to con-
figure the vehicle stability, i.e., updating the model, while the driving policy is still really
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Figure 6.10: Expected return in track T2 with 4 vertex models for different update strate-
gies.

rough. Although in the showed example the difference between SPMI and SPI+SMI is
way less significant in terms of expected return, their learning paths are quite peculiar. In
Figure 6.8 right, we show the trend of the model coefficient related to high-speed stabil-
ity. While the optimal configuration results in a mixed model for vehicle stability, SPMI
exploits the maximal high-speed stability to learn the driving policy efficiently in an early
stage, SPI+SMI, instead, executes all the policy updates and then directly leads the model
to the optimal configuration. SPMI-greedy prefers avoiding the maximal high-speed sta-
bility region as well. It is worthwhile to underline that SPMI could temporarily drive the
process aside from the optimum if it leads to higher performance from a local perspec-
tive. We consider this behavior quite valuable, especially in scenarios where performance
degradations during learning are unacceptable.

In Figure 6.9, we propose additional experiments on different tracks (T3 and T4). We
can notice that SPMI displays a better learning curve compared to the other strategies.
Moreover, we observe that, while the online performance is comparable with the previous
example, the convergence speed is significantly faster. This can be explained by the fact
that, in these tracks, the optimal environment configuration corresponds to a vertex model
(and not a mixed configuration). For this reason, when such a vertex model is selected as
target, it is kept fixed for the whole learning process.

Four Vertex Models Experiment Figure 6.10 shows how the previous considerations
generalize to an example on a morphologically different track (T4), in which also the en-
gine boost can be configured. The learning process is characterized by a long exploration
phase, both in the model and the policy space, in which the driver cannot lead the vehicle
to the finish line to collect any reward. Then, we observe a fast growth in expected re-
turn when the agent has acquired enough information to reach the finish line consistently.
SPMI displays a more efficient exploration phase compared to other update strategies and
target choices, leading the process to a quicker convergence to the optimal model. In Fig-
ure 6.11, we show the behavior of the convex combination coefficients associated with
the four vertex models. We can clearly see that the learning process prefers high speed
stability and an intermediate engine boost configuration. Nevertheless, it interesting to
observe that during the learning process the importance low speed stability is increased.
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Figure 6.11: Coefficients of the different vertex models for different update strategies in
track T2 with 4 vertex models.

Finally, we observe that all the algorithms, although with different paths, reach the same
final configuration.

6.6.3 Summary of the Experiments

We provided an experimental evaluation in simple discrete domains, inspired by the ex-
amples motivating the introduction of the Conf-MDP framework. The evaluation allowed
to highlight essentially two points. First, we have seen that learning the configuration,
together with the agent’s policy, allows reaching higher performances overall. This be-
havior is particularly visible in Student-Teacher domain (Section 6.6.2) and emerges in
the Racetrack simulator, in the particular choice of the coefficients (Section 6.6.1). This
empirically motivates the introduction of the Conf-MDP framework, regardless of the em-
ployed learning algorithm. Second, we illustrated that jointly and adaptively learning the
policy and the environment configuration is, most of the times, the preferable option, com-
pared to sequential approaches in terms of learning curve. This is a property of SPMI and
it can be observed in both the domains we tested.
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Figure 6.12: An example of Conf-MDP with local maxima. The transition probabilities
are reported on the arrows and the reward function inside the circles.

6.7 Examples of Conf-MDPs

In this section, we report two examples of Conf-MDPs that display interesting behaviors
when running SPMI. First, we show an example in which SPMI can be trapped into a
local optima solution (Section 6.7.1). This is a phenomenon that SPMI shares with SPI.
Second, we provide an example in which the optimal configuration parameters do not lie
in the border of the domain, even when considering a parametrization made of a convex
combination of vertex models (Section 6.7.2).

6.7.1 An example of Conf-MDP with local optima
Let us consider the Conf-MDP represented in Figure 6.12 where ω P r0, 1s is the parame-
ter, p P r0, 1s is a small fixed probability and M ą 0 is a large positive number. In each
state, there is only one action available (i.e., all policies are optimal).3 The vertex models
are obtained for ω P t0, 1u. For both target models, there is a small probability to get the
punishment ´M since for ω “ 0 the probability to reach state s3 from s2 is p and for
ω “ 1 state s2 is reachable from s1 with probability p. We expect that by mixing the two
target models we can only worsen the performance. It is simple to realize that the expected
return is a cubic function of ω. We report the expression for p “ 0.1 and γ “ 1:

Jpωq “
1

2

`

0.512ω3 ` p0.64M ´ 1.088qω2 ´ p0.64M ` 0.296qω ` 1.981´ 0.09M
˘

.

We can find the stationary points by looking at the derivative:

BJPω

Bω
“ 0.768ω2 ` p0.64M ´ 1.088qω ´ 0.32M ´ 0.148.

For M sufficiently large the derivative has one sign variation thus it has two solutions of
opposite sign, having expression:

ω1,2 “
1

24

´

17´ 10M ˘ 10
a

M2 ´M ´ 4
¯

.

3This is a simplification to focus the attention to the optimization of the transition model. These examples
can be generalized for the more realistic case of multiple actions.
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Clearly, we are interested only in the solutions within r0, 1s thus we discard the negative
one. It is simple to see that the positive solution is approximately 1

2 for M sufficiently
large, as:

lim
MÑ`8

1

24

´

17´ 10M ` 10
a

M2 ´M ´ 4
¯

“
1

2
.

However, having a look at the second derivative we realize that this is a point of minimum,
since

B2Jpωq

Bω2
“ 1.536ω ` 0.64M ´ 1.088

∣∣
ω“ 1

2

ą 0.

Notice that in the unfortunate case in which SPMI is initialized at this value of ω the
expected relative advantage (which is the same as the gradient) is zero for both the vertex
models and therefore there would be no update. Therefore, the maximum must lie on the
border, specifically either for ω “ 0 or ω “ 1. It is simple to see that Jp1q ą Jp0q.
Moreover, if we compute the value of the gradient for ω “ 0 and ω “ 1 we realize that
in both cases the value is negative. Having a negative advantage, SPMI would never make
any step even when the model is initialized at the lower performance vertex ω “ 0.
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6.7.2 An example of Conf-MDP with a mixed optimal model
We consider the Conf-MDP as represented in Figure 6.13. As in the previous case, the
parameter is ω P r0, 1s and p P r0, 1s is a fixed probability. We want to show that there
exists no value of ω such that Pω maximizes the value function in all states, while there
exists one value of ω maximizing the expected return. It is simple to compute the value
function in each state:

V Pω ps1q “ γ2 pωp` p1´ ωqp1´ pqq pωp1´ pq ` p1´ ωqpq ,

V Pω ps2q “ γ pωp1´ pq ` p1´ ωqpq ,

V Pω ps3q “ 1,

V Pω ps4q “ 0.

Since the initial state is s1 we have that Jpωq “ V Pω ps1q which is maximized for
ω “ 1

2 . However, there is no value of ω for which the value function of each state is
maximized. As shown in Figure 6.14, while V Pω ps1q is maximal in ω “ 1

2 , V Pω ps2q

is maximal for ω “ 1. All values of ω P
“

1
2 , 1

‰

are indeed Pareto optimal (Figure 6.15).
With some calculations we can determine the expression of the expected relative advantage
functions:

AP1

Pω
“ γ2p1´ ωqp1´ 2ωqp1´ 2pq2

AP2

Pω
“ ´γ2ωp1´ 2ωqp1´ 2pq2.

We clearly see that they both vanish for ω “ 1
2 .
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CHAPTER7
Learning in Continuous Configurable

Markov Decision Processes

7.1 Introduction

In Chapter 6, we introduced a safe-learning algorithm, Safe Policy Model Iteration (SPMI),
to solve the learning problem in the Conf-MDP framework, based on the optimization of a
lower bound of the performance improvement to ensure a monotonic increase of the long-
term reward (Kakade and Langford, 2002; Pirotta et al., 2013b). Although this approach
succeeded in showing the benefits of configuring the environment in some illustrative ex-
amples, it is quite far from being applicable to real-world scenarios. SPMI is affected by
two main limitations. First of all, it is only applicable to problems with a finite state-action
space, while the most interesting Conf-MDP examples have, at least, a continuous state
space (e.g., the car configuration problem). Second, it requires full knowledge of the en-
vironment dynamics. This latter limitation is the most relevant as, in reality, we almost
never know the true environment dynamics, and even if a model is available it could be
too approximate or too complex and computationally expensive (e.g., the fluid-dynamic
model of a car).

In this chapter, we propose a new learning algorithm for the Conf-MDP problem that
overcomes the main limitations of SPMI. Relative Entropy Model Policy Search (REMPS)
belongs to the trust-region class of methods (Schulman et al., 2015) and takes inspiration
from REPS (Peters et al., 2010). REMPS operates with parametric policies πθ and con-
figurations Pω and can be endowed with an approximate configuration model pPω that can
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be estimated from interaction with the environment. At each iteration, REMPS performs
two phases: optimization and projection. In the optimization phase, we aim at identifying
a new stationary distribution for the Conf-MDP that maximizes the long-term reward in
a neighborhood of the current stationary distribution. This notion of neighborhood is en-
coded in our approach as a KL–divergence constraint. However, this distribution may fall
outside the space of representable distributions, given the parametrization of the policy and
that of the configuration. Thus, the second phase performs a moment projection in order
to find an approximation of this stationary distribution in terms of representable policies
and configurations.

In principle, the learning process in a parametric Conf-MDP can be carried out by
a standard stochastic gradient method (Sutton et al., 1999a; Peters and Schaal, 2008).
We can easily adapt the classic REINFORCE (Williams, 1992) and G(PO)MDP (Baxter
and Bartlett, 2001) estimators for learning the configuration parameters. However, we
believe that a first-order method does not scale to relevant situations that are of motivating
interest in the Conf-MDP framework. For instance, it may be convenient to select a new
configuration that makes the performance of the current policy worse because, in this
new configuration, we have a much better chance of learning high-performing policies.
We argue that this behavior is impossible by using a gradient method, as the gradient
update direction attempts to improve performance for all parameters, including those in the
transition model. This example justifies the choice of our trust-region method that allows a
closed-form optimization in a controlled region. It has been proved empirically that these
methods, also in the policy search framework, are able to overcome local maxima (Levine
and Koltun, 2013).

Chapter Outline The chapter is organized as follows. We start in Section 7.2, by re-
calling the optimality conditions for solving a parametric Conf-MDP and presenting the
straightforward extensions of REINFORCE and G(PO)MDP for model learning. Sec-
tion 7.3 introduces our algorithm, REMPS, and its two phases: optimization and projec-
tion. The theoretical analysis of REMPS is provided in Section 7.4, including a finite-
sample analysis of the single step of REMPS. Section 7.5 shows how to equip REMPS
with an approximation of the environment dynamics. Finally, Section 7.6 presents the
experimental evaluation on both discrete and continuous tasks. To simplify the mathemat-
ical treatment, we will assume that all relevant distributions admit a probability density
function w.r.t. the Lebesgue measure.

7.2 Solving Parametric Conf-MDPs

In Chapter 5, we introduced the optimality conditions for Conf-MDPs assuming that the
search of the transition model and the policy is extended to the whole space of Markovian
stationary models PSR and policies ΠSR. As we already mentioned, this general setting,
although being extremely convenient from a theoretical standpoint, it might result quite
unrealistic, especially from the configuration standpoint. We recall that in a parametric
Conf-MDP we restrict the search of he transition model and the policy to appropriate
spaces:

ΠΘ “ tπθ : S Ñ PpAq : θ P Θ Ď Rpu,
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PΩ “ tPω : S ˆAÑ PpSq : ω P Ω Ď Rqu.

Given a pair of parameters pθ,ωq P Θ ˆ Ω, the corresponding policy πθ and transi-
tion model Pω , induce for every γ P r0, 1s a γ-discounted stationary distribution (Def-
inition 2.3) µπθ,Pωγ . We denote with DΘ,Ω “ tµπθ,Pωγ : pθ,ωq P Θ ˆ Ωu the set of
γ-discounted stationary distributions induced by the parameter spaces Θ and Ω. In a para-
metric setting, the goal consists in finding the best policy parameter θ˚ and best environ-
ment configuration parameter ω˚ so that they maximize the expected return:

pθ˚,ω˚q P arg max
pθ,ωqPΘˆΩ

tJpθ,ωqu , (7.1)

where Jpθ,ωq is an abbreviation of Jπθ,Pω “ Jµ
πθ ,Pω
γ that makes more explicit the

dependence on the parameters.

7.2.1 Gradient Estimators for Parametric Configuration Learning
When ΠΘ and PΩ are parametric spaces made of stochastic and differentiable policies and
transition models respectively, we can address the optimization problem in Equation (7.1)
via gradient ascent. In this section, we provide the straightforward extensions of REIN-
FORCE (Williams, 1992) and G(PO)MDP (Baxter and Bartlett, 2001) gradient estimators
that can be used to adapt policy gradient methods to the problem of learning paramet-
ric environment configurations. We have already provided in Chapter 6, the P-Gradient
Theorem, introduced in Metelli et al. (2018a), which is the natural adaptation of the Policy
Gradient Theorem of Sutton et al. (1999a). We can also directly derive the trajectory-based
expression of the gradient w.r.t. the environment configuration parameters.

Proposition 7.1. Let PΩ be a class of parametric stochastic transition models differen-
tiable in ω P Ω, let π P ΠSR be a policy (non necessarily parametric). Then, the gradient
of the expected return w.r.t. ω is given by:

∇ωJpωq “ Eπ,Pω
“

∇ω logpπ,Pω pτqGγpτq
‰

“ Eπ,Pω
«

8
ÿ

t“0

∇ω log pωpSt`1|St, AtqGγpτq

ff

,

where pπ,Pω is the trajectory density function andGγpτq “
ř8

t“0 γ
tRt`1 is the trajectory

return.

Proof. The result derives from the linearity of the gradient and expectation and using the log-trick:

∇ωJpωq “ ∇ω
ż

T
p
π,Pω pτqGγpτqdτ

“

ż

T
∇ωpπ,Pω pτqGγpτqdτ

“

ż

T
p
π,Pω pτq∇ω logpπ,Pω pτqGγpτqdτ.

By rewriting the log density and exploiting the properties of the logarithm and observing that the
terms depending on ω are those of the transition model only, we obtain:

∇ω logpπ,Pω pτq “ ∇ω log

˜

µ0pS0q

8
ź

t“0

πpAt|StqpωpSt`1|St, AtqrpRt`1|St, At, St`1q

¸
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“

8
ÿ

t“1

∇ωpωpSt`1|St, Atq.

We can now derive the REINFORCE and G(PO)MDP estimators for the gradient and
the corresponding optimal baselines.

REINFORCE The REINFORCE estimator is simply obtained by writing the sample-
based version of the second expression in Proposition 7.1. Let tτiuni“1 be a set of trajecto-
ries, the estimator can be expressed for every k P t1, . . . , qu as:

p∇RF
ωk
Jpωq “

1

n

n
ÿ

i“1

¨

˝

T pτiq´1
ÿ

t“0

∇ωk log pωpSτi,t`1|Sτi,t, Aτi,tq

˛

‚

ˆ

¨

˝

T pτiq´1
ÿ

t“0

γtRτi,t`1 ´ bk

˛

‚,

where b P Rq is the baseline. The estimator p∇RF
ωk
Jpωq is unbiased for every choice of b,

but its variance is minimized for the following baseline, defined for every k P t1, . . . , qu
as:

bRF˚
k “

Eπ,Pω
”

`
ř8

t“0 ∇ωk log pωpSt`1|St, Atq
˘2
Gγpτq

ı

Eπ,Pω
”

`
ř8

t“0 ∇ωk log pωpSt`1|St, Atq
˘2
ı

The derivation of the baseline is here omitted since it is analogous to that employed for
deriving the baseline in traditional REINFORCE.

G(PO)MDP The derivation of the G(PO)MDP estimator can be performed analogously
to that for the policy parameters, by observing that the reward is independent of the future
states and actions given the current and past ones. Indeed, we can simplify the second
expression of the gradient derived in Proposition 7.1 as follows:

∇ωJpωq “ Eπ,Pω
«

8
ÿ

t“0

t
ÿ

l“0

∇ω log pωpSl`1|Sl, Alqγ
tRt`1

ff

.

The estimator is obtained by simply replacing the expectation with the sample mean, ob-
tained with a set of trajectories tτiuni“1 and defined for every k P t1, . . . , qu as:

p∇GpPOqMDP
ωk

Jpωq “
1

n

n
ÿ

i“1

T pτiq´1
ÿ

t“0

˜

t
ÿ

l“0

∇ωk log pωpSτi,l`1|Sτi,l, Aτi,lq

¸

ˆ
`

γtRτi,t`1 ´ bt,k
˘

,
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Θ× Ω

µπθ ,pω

↑
(πθ, Pω)

DKL ≤ κ

op
ti
m
iz
at
io
n

µ′

µπθ′ ,pω′

↓
(πθ′ , Pω′)

projection

Figure 7.1: Graphical representation of the two phases of REMPS, optimization and pro-
jection.

where for every t P t0, . . . , T ´ 1u, we have that bt P Rq is a step-dependent baseline.
The expression of the baseline minimizing the variance is provided below for every t P
t0, . . . , T ´ 1u and k P t1, . . . , qu:

b
GpPOqMDP˚
t,k “

Eπ,Pω
„

´

řt
l“0 ∇ωk log pωpSl`1|Sl, Alq

¯2

γtRt`1



Eπ,Pω
„

´

řt
l“0 ∇ωk log pωpSl`1|Sl, Alq

¯2
 .

7.3 Relative Entropy Model Policy Search

In this section, we introduce an algorithm to solve the learning problem in the Conf-MDP
framework that can be effectively applied to continuous state-action spaces and overcomes
the local nature of the previously presented gradient methods. Relative Entropy Model Pol-
icy Search (REMPS), imports several ideas from the classic REPS (Peters et al., 2010); in
particular, the use of a constraint to ensure that the resulting new stationary distribution is
sufficiently close to the current one. REMPS consists of two subsequent phases: optimiza-
tion and projection. In the optimization phase (Section 7.3.1) we look for the stationary
distribution µ1 (discounted or not) that optimizes the expected return as in Equation (7.1).
This search is limited to the space of distributions that are not too dissimilar from the cur-
rent stationary distribution µπ,Pγ . The notion of dissimilarity is formalized in terms of a
threshold κ ą 0 on the KL-divergence. However, the resulting distribution µ1 may not
fall within the space of the representable stationary distributions given our parametrization
DΘ,Ω. Therefore, similarly to Daniel et al. (2012), in the projection phase (Section 7.3.2)
we need to retrieve a policy πθ and a configuration Pω inducing a stationary distribution
µπθ,Pωγ P DΘ,Ω as close as possible to µ1. Refer to Figure 7.1 for a graphical representation
of these two phases.
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7.3.1 Optimization
The optimization problem can be stated in terms of stationary distributions only. Given
a stationary distribution µ P PpS ˆAˆ Sq (e.g., the one used to collect samples µπ,Pγ )
and a KL–divergence threshold κ ą 0, we look for a new stationary distribution µ1 P
PpS ˆAˆ Sq that is the solution of the following optimization problem PRIMALκ:1

max
µ1PPpSˆAˆSq

Jµ
1

“

ż

SˆAˆS
µ1ps, a, s1qrps, a, s1qdsdads1

s.t. DKLpµ
1}µq “

ż

SˆAˆS
µ1ps, a, s1q log

µ1ps, a, s1q

µps, a, s1q
dsdads1 ď κ.

It is worth noting that, unlike REPS, we do not enforce a constraint on the validity of the
stationary distribution w.r.t. the transition model (see Section 3.3.2), as in a Conf-MDP we
have the possibility to change the transition model, determining an effect on the stationary
distribution. With similar mathematical tools, we can solve PRIMALκ in closed form.

Theorem 7.2. Let µ P PpS ˆAˆ Sq be a probability measure and κ ą 0 a KL-
divergence threshold. The solution µ1 P PpS ˆAˆ Sq of the problem PRIMALκ, for
κ ą 0, satisfies for every ps, a, s1q P S ˆAˆ S:

µ1ps, a, s1q9µps, a, s1q exp

ˆ

1

η
rps, a, s1q

˙

, (7.2)

where η is the unique solution of the dual problem DUALκ:

min
ηPr0,`8q

gpηq “ η log

ż

SˆAˆS
µps, a, s1q exp

ˆ

1

η
rps, a, s1q ` κ

˙

dsdads1.

Proof. For the sake of brevity, we define X “ S ˆ A ˆ S and ps, a, s1q “ x P X . We restate the
PRIMALκ problem in a more explicit form:

max
µ1

ż

X
µ1pxqrpxqdx (P.1)

s.t.
ż

X
µ1pxq log

µ1pxq

µpxq
dx ď κ (P.2)

ż

X
µ1pxqdx “ 1, (P.3)

where we simply made explicit the constraint guaranteeing that µ1 must sum up to one. Note that we
do not need to ensure that µ1pxq ě 0 for all x P X since this is guaranteed by the KL-divergence
constraint. We solve the optimization problem using the Lagrange multipliers. We denote with
η ě 0 the Lagrange multiplier associated with the KL constraint (P.2) and with λ the multiplier
associated with the constraint (P.3). The Lagrangian function becomes:

L
`

µ1, η, λ
˘

“

ż

X
µ1pxqrpxqdx` η

ˆ

κ´

ż

X
µ1pxq log

µ1pxq

µpxq
dx

˙

(P.4)

` λ

ˆ

1´

ż

X
µ1pxqdx

˙

(P.5)

1The KL-divergence allows solving the optimization problem in a particularly convenient way. In principle,
other divergences could be employed, like total variation or Rényi divergence (Rényi, 1961).
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“

ż

X
µ1pxq

ˆ

rpxq ´ η log
µ1pxq

µpxq
´ λ

˙

dx` ηκ` λ.

Taking the functional derivative of L w.r.t. µ1 and applying a simple form of the Euler-Lagrange
equation (Gelfand and Silverman, 2000), we get:

δL
δµ1pxq

“ rpxq ´ η log
µ1pxq

µpxq
´ η ´ λ “ 0

ùñ µ1pxq “ µpxq exp

ˆ

rpxq

η

˙

exp

ˆ

´1´
λ

η

˙

. (P.6)

We can derive an expression for µ1 by enforcing the constraint (P.3):

exp

ˆ

´1´
λ

η

˙´1

“

ż

X
µpxq exp

ˆ

rpxq

η

˙

dx

ùñ µ1pxq “
µpxq exp

´

rpxq
η

¯

ş

X µpxq exp
´

rpxq
η

¯

dx
. (P.7)

Substituting (P.6) into the Lagrangian function (P.4) and recalling (P.7), we obtain the dual function:

gpη, λq “ exp

ˆ

´1´
λ

η

˙
ż

X
µpxq exp

ˆ

rpxq

η

˙"

rpxq

´ η log

„

exp

ˆ

rpxq

η

˙

exp

ˆ

´1´
λ

η

˙

´ λ

*

dx` ηκ` λ

“ η exp

ˆ

´1´
λ

η

˙
ż

X
µpxq exp

ˆ

rpxq

η

˙

dx` ηκ` λ

“ η ` ηκ` λ

“ η log

«

exp

ˆ

´1´
λ

η

˙´1
ff

` ηκ

“ η log

ż

X
µpxq exp

ˆ

rpxq

η

˙

dx` ηκ

“ η log

ż

X
µpxq exp

ˆ

rpxq

η
` κ

˙

dx.

Making the change of variable η “ 1{η, we have that 1
η

log
ş

X µpxq exp pηrpxqq dx is convex (Boyd

et al., 2004). Moreover, κ
η

is strictly convex (as B2

Bη2
κ
η
“ 2κ

η3 ą 0 for κ ą 0), therefore their sum is
strictly convex. Furthermore, function g is proper as it admits at least one feasible point (e.g., η “ 1).
Thus, being g strictly convex and proper, the optimization problem admits a unique solution (Boyd
et al., 2004).

Thus, to find the optimal solution of PRIMALκ we must first determine η, by solving
DUALκ. It can be proved, as done in REPS, that with a change of variable η “ 1

η , we
have that gpηq is a convex function (Boyd et al., 2004), and therefore DUALκ can be
easily solved using standard optimization tools. Given a value of η, the new stationary
distribution µ1 is defined by the exponential reweighting of each ps, a, s1q P S ˆ A ˆ S
triple with its reward rps, a, s1q. Moreover, given a stationary distribution µ1, we can derive
a representation of a policy π1 and a configuration P 1 inducing µ1.
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Corollary 7.3. Let µ1 P PpS ˆAˆ Sq be a probability measure (e.g., the solution of
PRIMALκ). Then µ1 is induced by the transition model P 1 P PSR and the policy π1 P ΠSR

defined for every state-action pair ps, aq P S ˆA as:

p1ps1|s, aq9pps1|s, aq exp

ˆ

1

η
rps, a, s1q

˙

,

π1pa|sq9πpa|sq

ż

S
pps1|s, aq exp

ˆ

1

η
rps, a, s1q

˙

ds1.

Proof. Recall the factorization of µ1ps, a, s1q as µ1ps, a, s1q “ µ1psqπ1pa|sqp1ps1|s, aq for every
ps, a, s1q P S ˆAˆ S. Therefore, we have:

p1ps1|s, aq “
µ1ps, a, s1q

µ1psqπ1pa|sq
“
µ1ps, a, s1q

µ1ps, aq
“

µ1ps, a, s1q
ş

S µ
1ps, a, s1qds1

.

Now, we substitute the expression of µ1:

p1ps1|s, aq “
µps, a, s1q exp

´

rps,a,s1q
η

¯

ş

S µps, a, s
1q exp

´

rps,a,s1q
η

¯

ds1

“

µpsqπpa|sqpps1|s, aq exp
´

rps,a,s1q
η

¯

µpsqπpa|sq
ş

S pps
1|s, aq exp

´

rps,a,s1q
η

¯

ds1

“

pps1|s, aq exp
´

rps,a,s1q
η

¯

ş

S pps
1|s, aq exp

´

rps,a,s1q
η

¯

ds1
.

In a similar way for the policy, recall that µ1ps, aq “ µ1psqπ1pa|sq, we have:

π1pa|sq “
µ1ps, aq

µ1psq
“

ş

S µ
1
ps, a, s1qds1

ş

A
ş

S µ
1ps, a, s1qds1da

.

Now, we substitute the expression of µ1 again:

π1pa|sq “

ş

S µps, a, s
1
q exp

´

rps,a,s1q
η

¯

ds1

ş

A
ş

S µps, a, s
1q exp

´

rps,a,s1q
η

¯

ds1da

“

µpsqπpa|sq
ş

S pps
1
|s, aq exp

´

rps,a,s1q
η

¯

ds1

µpsq
ş

A πpa|sq
ş

S pps
1|s, aq exp

´

rps,a,s1q
η

¯

ds1da

“

πpa|sq
ş

S pps
1
|s, aq exp

´

rps,a,s1q
η

¯

ds1

ş

A πpa|sq
ş

S pps
1|s, aq exp

´

rps,a,s1q
η

¯

ds1da
.

Sample-based Optimization In practice, we do not have access to the functional form
of the sampling distribution µπ,P , so we cannot compute the exact solution of the dual
problem DUALκ. As in REPS, all expectations must be estimated from samples. Given
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a dataset D “ tpSi, Ai, S
1
i, Riqu

n
i“1 of n samples drawn from µπ,P , the empirical dual

problem ČDUALκ becomes:

min
rηPr0,`8q

rgprηq “ rη log
1

n

n
ÿ

i“1

exp

ˆ

1

rη
Ri ` κ

˙

,

which yields the solution rη inducing the distribution rµ1 as in Equation (7.2), defined for
every ps, a, s1q P S ˆAˆ S as:

rµps, a, s1q9µps, a, s1q exp

ˆ

1

rη
rps, a, s1q

˙

.

We discuss the effect of using a finite number of samples in Section 7.4.3.

7.3.2 Projection
The solution µ1 of the PRIMALκ problem does not belong, in general, to the class of
stationary distributions DΘ,Ω induced by ΠΘ and PΩ. For this reason, we look for a para-
metric policy πθ and a parametric configuration Pω that induce a stationary distribution
µπθ,Pω as close as possible to µ1, by performing a moment projection (PROJµ):2

θ1,ω1 P arg min
θPΘ,ωPΩ

 

DKL

`

µ1}µπθ,pω
˘(

“ arg max
θPΘ,ωPΩ

"

E
S,A,S1„µ1

“

logµπθ,Pω pS,A, S1q
‰

*

.

However, this problem is hard to solve as computing the functional form of µπθ,Pω is
complex and cannot be performed in closed form for most of the cases of interest. If
the state space and the action space are finite, we can formulate the problem as follows,
recalling the definition of γ-discounted stationary distribution (Definition 2.3):

max
θPΘ,ωPΩ

ÿ

sPS

ÿ

aPA
µps, a, s1q logµ1ps1qπθpa|sqpωps

1|s, aq

s.t. µ1psq “ p1´ γqµ0psq ` γ
ÿ

s1PS

ÿ

aPA
µ1ps1qπθpa|s

1qpωps|s
1, aq @s P S

µ1psq ě 0 @s P S.

Nevertheless, in most of the relevant cases, the problem remains intractable as the state
space could be very large. Therefore, we consider more convenient projection approaches
that we will justify from a theoretical standpoint in Section 7.4.1. A first relaxation consists
in finding an approximation of the transition kernel pP 1qπ

1

induced by µ1 (PROJPπ ):

θ1,ω1 P arg min
θPΘ,ωPΩ

"

E
S„µ1

”

DKL

´

pP 1q
π1
p¨|Sq}Pπθω p¨|Sq

¯ı

*

“ arg max
θPΘ,ωPΩ

"

E
S,A,S1„µ1

“

log pπθω pS
1|Sq

‰

*

.

2When using samples, the moment projection is equivalent to the maximum likelihood estimation.
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REMPSκ µ
PRIMALκ
ÝÝÝÝÝÑ µ1

PROJ
ÝÝÝÑ pθ1,ω1q

ČREMPSκ µ
ČPRIMALκ
ÝÝÝÝÝÑ rµ1

ĆPROJ
ÝÝÝÑ prθ

1
, rω1q

Figure 7.2: Summary of the symbols employed for two phases of REMPS and the corre-
sponding outputs.

Clearly, we need to be able to compute the functional form of the state transition kernel
Pπθω , which is only possible when considering finite action spaces. Indeed, in such case,
we just have to marginalize over the (finite) action space as, for every s, s1 P S:

pπθω ps
1|sq “

ÿ

aPA
πθpa|sqpωps

1|s, aq.

When also the action space is infinite, we resort to separate projections for the policy and
the transition model (PROJπ,P ):

θ1 P arg min
θPΘ

"

E
S„µ1

“

DKL

`

π1p¨|Sq}πθp¨|Sq
˘‰

*

“ arg max
θPΘ

"

E
S,A,S1„µ

rlog πθpA|Sqs

*

,

ω1 P arg min
ωPΩ

"

E
S,A„µ1

“

DKL

`

P 1p¨|S,Aq}Pωp¨|S,Aq
˘‰

*

“ arg max
ωPΩ

"

E
S,A,S1„µ1

“

log pωpS
1|S,Aq

‰

*

.

Sample-based Projection Similarly to what happens during the optimization phase, we
only have access to a finite dataset of n samples to perform the projection. Moreover, we
face an additional challenge, i.e., we need to compute expectations w.r.t. µ1, but our sam-
ples are collected with µ. This can be cast as an off-distribution estimation problem and
therefore we resort to importance weighting (Owen, 2013). In the importance weighting
estimation, each sample pSi, Ai, S1iq is reweighted by the likelihood of being generated by
µ1, i.e., by:

wi “
µ1pSi, Ai, S

1
iq

µpSi, Ai, S1iq
9 exp

ˆ

Ri
rη

˙

,

In the following, we will denote the approximate projections with ĆPROJ and with prθ
1
, rω1q P

Θ ˆ Ω the corresponding recovered policy and model parameters. A summary of the ob-
jective functions for the different projection approaches, their applicability, and the corre-
sponding estimators are reported in Table 7.1.

Therefore, the full REMPS problem can be stated as the composition of optimization
and projection, i.e., REMPSκ “ PROJ ˝ PRIMALκ, and the corresponding problem from
samples as ČREMPSκ “ ĆPROJ ˝ ČPRIMALκ (Figure 7.2). Refer to Algorithm 7.1 for a
high-level pseudocode of REMPS.
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Projection |S| “ 8 |A| “ 8 Exact objective Estimated objective

PROJµ 7 7 E
S,A,S1„µ1

“

logµπθ ,pω pS,A, S1q
‰

1
N

řN
i“1 wi logµπθ ,pω pSi, Ai, S

1
iq

PROJPπ 3 7 E
S,A,S1„µ1

“

log pπθω pS
1
|Sq

‰

1
N

řN
i“1 wi log p

πθ
ω pS

1
i|Siq

PROJπ,P 3 3

E
S,A,S1„µ1

rlog πθpA|Sqs

E
S,A,S1„µ1

“

log pωpS
1
|S,Aq

‰

1
N

řN
i“1 wi log πθpAi|Siq

1
N

řN
i“1 wi log pωpS

1
i|Si, Aiq

Table 7.1: Applicability, exact objective function and corresponding estimator for the
three projections presented. wi is the (non-normalized) importance weight defined as
wi “ exp

´

Ri
rη

¯

.

Algorithm 7.1: Relative Entropy Model Policy Search (REMPS).
Input: Conf-MDP C, number of iterations T
Output: approximately optimal policy-transition model pair pπθpT q , PωpT qq

1 Initialize θp0q,ωp0q arbitrarily
2 forall t “ 0, 1, . . . , T ´ 1 do
3 Collect n samples tpSi, Ai, S1i, Riqu

n
i“1 with µπθptq ,Pωptq

4 (Optimization) Compute rη and rµ1 solving the ČDUALκ
5 (Projection) Perform the projection of rµ1 and obtain θpt`1q and ωpt`1q

6 return πθpT q , PωpT q

7.4 Theoretical Analysis

In this section, we elaborate on three theoretical aspects of REMPS. First of all, we provide
three inequalities that bound the difference of performance when changing the policy and
the model in terms of distributional divergences between stationary distributions, policies,
and models (Section 7.4.1). Second, we present a sensitivity study of the hyper-parameter
κ (i.e., the KL-divergence threshold) of REMPS (Section 7.4.2). Finally, we discuss a
finite-sample analysis of the single step of REMPS (Section 7.4.3). Furthermore, we will
consider the following assumption on the regularity of the MDP induced by policies and
configurations.

Assumption 7.1. (Ergodicity) Let π P ΠSR and P P PSR, the ergodicity coefficient of
the Markov chain induced by π and P is defined as (Seneta, 1988):

τ pPπq “ sup
s,s1PS

 
›

›Pπp¨|sq ´ Pπp¨|s1q
›

›

TV

(

.

If γ “ 1, for every pθ,ωq P Θˆ Ω we assume τ pPπθω q ď τmax ă 1.3

7.4.1 Performance Bounds
We start with the following result that bounds the absolute difference of expected return
with a dissimilarity index between the stationary distributions. The results we provide

3Note that τ pPπq “ 1 in the case of deterministic transition models.

131



Chapter 7. Learning in Continuous Configurable Markov Decision
Processes

are stated in terms of the α-Rényi divergence (Rényi, 1961), that we have introduced in
Section 3.3.2, and extend those presented in Metelli et al. (2019a) which were formulated
in terms of the KL-divergence.

Proposition 7.4. Let µ, µ1 P PpS ˆAˆ Sq be two stationary distributions, then for any
α P r0, 1s it holds that:

ˇ

ˇ

ˇ
Jµ

1

´ Jµ
ˇ

ˇ

ˇ
ď 2Rmax

›

›µ1 ´ µ
›

›

TV ď Rmax

c

2

α
Dα pµ1}µq.

Proof. The first inequality is obtained with the following simple derivation:

ˇ

ˇ

ˇ
Jµ ´ Jµ

1
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ż

SˆAˆS

`

µpds, da,ds1q ´ µ1pds, da,ds1q
˘

rps, a, s1q

ˇ

ˇ

ˇ

ˇ

ď Rmax

ż

ˇ

ˇµpds, da,ds1q ´ µ1pds, da,ds1q
ˇ

ˇ

“ 2Rmax

›

›µ1 ´ µ
›

›

TV
.

The second inequality is a straightforward application of the extension of Pinsker’s inequality pre-
sented in (van Erven and Harremoës, 2014, Equation (8)).

This result justifies the projection PROJµ, since minimizing the KL-divergence be-
tween the stationary distributions allows controlling the performance difference. The
statement is presented for α P r0, 1s (the order of the Rényi divergence). Since the Rényi
divergence is monotonic in α,we obtain analogous expression also for α ą 1 (recall that
for α “ 1, we reduce to the KL-divergence). As we have seen in Section 7.3.2, the PROJµ
is typically intractable. Therefore, we now prove that performing the projection of the
state transition kernel (PROJPπ ) still allows controlling the performance difference.

Corollary 7.5. Let Pπ and pP 1qπ
1

two transition kernels, inducing the stationary distribu-
tions µ and µ1 respectively, then, under Assumption 7.1, it holds that for every α P r0, 1s:

ˇ

ˇ

ˇ
Jµ

1

´ Jµ
ˇ

ˇ

ˇ
ď Rmaxρ

d

2

α

ż

S
µ1pdsqDα

´

pP 1q
π1
p¨|sq}Pπp¨|sq

¯

,

where ρ “ γ
1´γ if γ ă 1 or ρ “ 1

1´τmax
if γ “ 1.

Proof. If γ ă 1, the statement is obtained starting from Proposition 6.2 and bounding
›

›µ1 ´ µ
›

›

TV
as in Proposition 3.1 of Metelli et al. (2018a):

›

›µ1 ´ µ
›

›

TV
“

γ

1´ γ

ż

S
µ1pdsq

›

›

›
pP 1q

π1

p¨|sq ´ Pπp¨|sq
›

›

›

TV
.

For the case γ “ 1, we start from the following inequality provided in Seneta (1988) (Section 2,
taking p “ 8) that we rewrite in our notation:

2
›

›µ1 ´ µ
›

›

TV
ď

1

2

8
ÿ

k“0

τ pPπqk
ż

S

ˇ

ˇ

ˇ

ˇ

ż

S
µ1pdsq

´

pP 1q
π1

pds1|sq ´ pπpds1|sq
¯

ˇ

ˇ

ˇ

ˇ

ď
1

2

ż

S
µ1pdsq

ż

S

ˇ

ˇ

ˇ
pP 1q

π1

pds1|sq ´ Pπpds1|sq
ˇ

ˇ

ˇ

8
ÿ

k“0

τkmax
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ď
1

1´ τmax

ż

S
µ1pdsq

›

›

›
Pπp¨|sq ´ pP 1q

π1

p¨|sq
›

›

›

TV
,

where we exploited Assumption 7.1 for the bound τ pPπq ď τmax ă 1. An application of the
extension of Pinsker’s inequality (van Erven and Harremoës, 2014) concludes the proof.

Finally, the following result provides a justification for the separate projections of pol-
icy and model (PROJπ,P ) .

Lemma 7.6. Let pπ, P q, pπ1, P 1q P ΠSRˆPSR be two policy-transition model pairs, then,
under Assumption 7.1, it holds that for every α P r0, 1s:

ˇ

ˇ

ˇ
Jµ

1

´ Jµ
ˇ

ˇ

ˇ
ď Rmaxρ

d

2

ż

SˆA
µ1pds,daq pDα pπ1p¨|sq}πp¨|sqq `Dα pP 1p¨|s, aq}P p¨|s, aqqq,

where ρ “ γ
1´γ if γ ă 1 or ρ “ 1

1´τmax
if γ “ 1.

Proof. To prove the result, we refer to the proof of Corollary 6.3 and we employ the inequality:
›

›

›
pP 1q

π1

´ Pπ
›

›

›

TV,µ1
ď

›

›π1 ´ π
›

›

TV,µ1
`
›

›P 1 ´ P
›

›

TV,µ1
.

Then, we bound each of the terms by using the extension of Pinsker’s inequality van Erven and
Harremoës (2014) to get the Rényi divergence.

7.4.2 Sensitivity to the KL threshold
We analyze how the performance of the solution of PRIMALκ changes when the KL-
divergence threshold κ varies. Suppose that κ1 ď κ, then the KL constraint is more re-
strictive, thus, we expect Jµ

1

ď Jµ. To analyze this setting, let us consider a new class
distributions µα “ αµ ` p1 ´ αqµ0, with α P r0, 1s and µ0 be the sampling distribution.
Ideally, we could increase α until we saturate the constraint κ1, getting a form of projec-
tion of µ onto the region that satisfies the constraint induced by κ1. The following result
provides a characterization of the value of α in this circumstance.

Lemma 7.7. Let µ, µ1 P PpS ˆAˆ Sq be the solutions of the problems PRIMALκ and
PRIMALκ1 with κ1 ď κ and µ0 as sampling distribution. Let µα “ αµ` p1´ αqµ0 with
α P r0, 1s. If DKLpµα}µ0q “ κ1, then α ě κ1

κ .

Proof. We use the convexity of the KL divergence: DKLpαη1 ` p1 ´ αqη2}αν1 ` p1 ´ αqν2q ď

αDKLpη1}ν1q ` p1´ αqDKLpη2}ν2q for α P r0, 1s. Take η1 “ µ, η2 “ ν1 “ ν2 “ µ0:

κ1 “ DKLpµα}µ0q “ DKLpαµ` p1´ αqµ0}αµ0 ` p1´ αqµ0q ď

ď αDKLpµα}µ0q ` p1´ αqDKLpµ0}µ0q “ αDKLpµα}µ0q.

Therefore, observing that DKLpµα}µ0q ď κ:

α ě
κ1

DKLpµα}µ0q
ě
κ1

κ
. (P.8)

The following result upper bounds the reduction in performance between the optimal
solution µ of PRIMALκ and the optimal solution µ1 of PRIMALκ1 when κ1 ď κ.
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Proposition 7.8. Let µ, µ1 P PpS ˆAˆ Sq be the solutions of PRIMALκ and PRIMALκ1
respectively with κ1 ď κ, having µ0 as sampling distribution. Then, it holds that:

Jµ ´ Jµ
1

ď 2Rmax }µ´ µ0}TV

ˆ

1´
κ1

κ

˙

. (7.3)

Proof. Consider the α1 P r0, 1s, as defined in Lemma 7.7, such that DKLpµα1}µ0q “ κ1. We start
observing that being µ1 the optimal solution with constraint κ1 and since µα1 fulfills the constraint,
we surely have Jµ

1

ě Jµα1 . Consider the following sequence of inequalities:

Jµ ´ Jµ
1

ď Jµ ´ Jµα1

ď 2Rmax }µ´ µα1}TV

ď 2Rmax

›

›p1´ α1qpµ´ µ0q
›

›

TV

“ 2Rmaxp1´ α
1
q }pµ´ µ0q}TV .

Applying Lemma 7.7 we get 1´ α1 ď 1´ κ1

κ
, from which the result follows.

This result is general and can be applied broadly to the class of trust-region methods,
when using the KL-divergence as a constraint to define the trust-region.

7.4.3 Finite-sample Analysis
We present a finite-sample analysis of the single step of REMPS. In particular, our
goal is to upper bound the difference Jµ

1

´ Jprθ
1
, rω1q between the performance of µ1 P

PpS ˆAˆ Sq, the solution of the exact problem PRIMALκ, and prθ
1
, rω1q P Θ ˆ Ω ob-

tained after solving the whole ČREMPSκ problem through samples. Thus, starting with
µπ,P P PpS ˆAˆ Sq, the initial γ-discounted stationary distribution, ČREMPSκ pro-
vides the solution µπrθ1

,P
Ăω1 which is in terms derived from the ČPRIMALκ problem yielding

rµ1 P PpS ˆAˆ Sq and the ĆPROJ problem. There are two sources of error in this process.
First of all, rµ1 is obtained from finite samples and thus it may differ from µ (estimation
error). Secondly, we limit to a hypothesis space DΘ,Ω that may not be able to represent
rµ1 (approximation error). Furthermore, the projection is performed from samples as well,
generating another source of estimation error.

For a given probability measure µ P PpS ˆAˆ Sq, we will denote the following set
of the possible solution of the PRIMALκ problem, ignoring the KL-divergence constraint:

Dµ “
"

µ1 P PpS ˆAˆ Sq :
µ1

µ
9 exp

ˆ

r

η

˙

: η P r0,`8q

*

.

In order to derive a meaningful bound, we consider the following additional assump-
tions.

Assumption 7.2. (Finite pseudo-dimension) Let µπ,P be the sampling distribution, the
pseudo-dimensions of the hypothesis spaces t µ

µπ,P
: µ P Dµπ,P u, t µ

µπ,P
r : µ P Dµπ,P u,

t
µ

µπ,P
log µ

µπ,P
: µ P Dµπ,P u and t µ

µπ,P
logµ1 : µ P Dµπ,P , µ1 P DΘ,Ωu are bounded by

v ă `8.
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Assumption 7.3. (Finite β–moments) There exist β P p1, 2q, such that

E
S,A,S1„µπ,P

«

ˇ

ˇ

ˇ

ˇ

µps, a, s1q

µπ,P ps, a, s1q

ˇ

ˇ

ˇ

ˇ

β
ff1{β

and

E
S,A,S1„µπ,P

«

ˇ

ˇ

ˇ

ˇ

µpS,A, S1q

µπ,P pS,A, S1q
logµ1pS,A, S1q

ˇ

ˇ

ˇ

ˇ

β
ff1{β

are bounded for all µ P Dµπ,P and µ1 P DΘ,Ω.

Assumption 7.2 requires that all the involved hypothesis spaces (for the solution of the
PRIMALκ and PROJ) are characterized by a finite pseudo-dimension. This assumption is
necessary to state learning theory guarantees. Assumption 7.3 is more critical as it requires
that the involved loss functions (used to solve the PRIMALκ and PROJ) have a uniformly
bounded (over the hypothesis space) moment of order β P p1, 2q. In particular, the first
line states that the exponentiated β-Rényi divergence (Rényi, 1961; Cortes et al., 2010)
between µ and µπ,P is finite for some β P p1, 2q. This requirement allows an analysis
based on Cortes et al. (2019) for unbounded loss function with bounded moments. A more
straightforward analysis can be made by assuming that the involved loss functions are uni-
formly bounded and using more traditional tools (Mohri et al., 2012) (see Appendix A.4.4
of Metelli et al. (2019a)). We report below the finite-sample result, under Assumption 7.3,
whose derivation is reported in Appendix A.2.

Theorem 7.9. (Finite–Sample Bound) Let µπ,P P PpS ˆAˆ Sq be the sampling distri-
bution, κ ą 0 be the KL–divergence threshold, µ1 P Dµ be the solution of the PRIMALκ
problem and prθ

1
, rω1q P Θˆ Ω be the solution of the ČREMPSκ problem with PROJµ com-

puted with n ą 0 samples collected with µ. Then, under Assumptions 4.1, 7.2 and 7.3, for
any α P p1, βq, there exist two constants χ, ξ and a function ζpnq “ Oplog nq depending
on α, and on the samples, such that for any δ P p0, 1q, with probability at least 1 ´ 4δ it
holds that:

Jµ
1

´ Jprθ
1
, rω1q ď

?
2Rmax sup

µPD
µπ,P

inf
µPDΘ,Ω

!

a

DKLpµ}µq
)

approximation error

`Rmaxχ
?
ε`Rmaxζpnqε`Rmaxξε

2

estimation error

,

where ε “ 2
α`2
2α

c

v log 2en
v `log 8

δ

n
2pα´1q
α

Γ

ˆ

α,

c

v log 2en
v `log 8

δ

n
2pα´1q
α

˙

, which depend on the pseudo-

dimension bound v ă `8 and Γpα, τq “ α´1
α ` 1

α

´

α
α´1

¯α´1 ´

1`
`

α´1
α

˘α´1
log 1

τ

¯

α´1
α

.

The estimation error is dominated by
?
ε. Ignoring logarithmic terms, we have that

Jµ
1

´ Jprθ
1
, rω1q “ rO

`

n´
2pα´1q

4α

˘

. In this analysis, we considered the case in which the
projection is performed over the stationary distribution (PROJµ).4 The result can be easily
extended to the case in which we resort to PROJPπ or PROJπ,P (Corollary A.6).

4Note that Assumption 7.3 ensures that the approximation error is finite, since the KL-divergence is the 1-
Rényi divergence and the Rényi divergence is non-decreasing in the order β (van Erven and Harremoës, 2014).
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7.5 Approximation of the Transition Model

The formulation of REMPS we presented above, requires access to a representation of the
environment model Pω , depending on a vector of parameters ω. Although the parame-
ters that can be configured are usually known; the environment dynamics is unknown in a
model-free scenario. Even when an environment model is available it may be too imprecise
or too complex to be used effectively. In principle, we could resort to a general model-
based RL approach to effectively approximate the transition model (Deisenroth and Ras-
mussen, 2011; Nagabandi et al., 2018). However, in our scenario, we need to learn a map-
ping from state-action-configuration triples to a new state. Our approach is based on a sim-
ple maximum likelihood estimation. Given a dataset of experience tpSi, Ai, S1i,ωiqu

n
i“1

(possibly collected with different policies πi and different configurations ωi) and given an
approximation space pPΩ Ă t pP : SˆAˆΩ Ñ PpSqu we solve the maximum likelihood
problem:

max
ppP pPΩ

1

n

n
ÿ

i“1

log pppS1i|Si, Ai,ωiq, (7.4)

where we made explicit that the distribution of the next state S1i depends also on the con-
figuration.5 Given the model approximation, we can run REMPS by replacing P with
pP P pPΩ. We do not impose any restriction on the specific model class pPΩ (e.g., neu-
ral network, Gaussian process) and on the moment in which the fitting phase has to be
performed (e.g., at the beginning of the training or every m iterations).

7.6 Experiments

In this section, we provide the experimental evaluation of REMPS on three domains: a
simple chain domain (Section 7.6.1), the classical Cartpole (Section 7.6.2), and a more
challenging car-configuration task based on TORCS (Section 7.6.3). In the first two exper-
iments, we compare REMPS with the extension of G(PO)MDP to the policy-configuration
learning, whereas in the last experiment we evaluate REMPS against REPS, the latter used
for policy learning only. For the implementation details and additional experimental re-
sults, refer to Appendix D and E of (Metelli et al., 2019a).

7.6.1 Chain Domain
We start the experimental evaluation with an illustrative example of Conf-MDP, the Chain
domain, to show the main features of REMPS compared with other algorithms for learning
in Conf-MDPs.

Environment Description In the Chain Domain (Figure 7.3) there are two states s1 and
s2 and the agent can perform two actions a (forward) and b (backward). The agent is
forced to play every action with the same probability in both states, i.e., πθpa|sq “ θ and
πθpb|sq “ 1´ θ for all s P ts1, s2u and θ P r0, 1s. The environment can be configured via
the parameter ω P r0, 1s, that is the probability of action failure. Action a, if successful,
takes the agent to state s2, whereas action b, if successful, takes the agent to state s1.

5Notice that the configuration parameters ω are an input of the approximate model.
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s1 s2
a,θ

1−ω,0

ω,s

b,1−θ
ω,0

1−ω,s

a,θ
ω,s

1−ω,L

b,1−θ
1−ζω,s ζω

Figure 7.3: The Chain Domain. On the edges outgoing each state s the pair
p‹, πp‹|sqq where ‹ P ta, bu, while on the arrows incoming to each state s1 the pair
ppps1|s, ‹q, rps, ‹, s1qq.

Parameter Value

ζ 0.2
L 10
l 8
s 2
ω0 0.8
θ0 0.2

Table 7.2: Parameter values used in the
experiments on the Chain domain,
including the initialization values for
θ and ω. Figure 7.4: Return surface of the Chain

domain.

When one action fails, the other is executed. The agent gets a high reward, L ą 0, if,
starting from state s1, it successfully executes action a, while it gets a smaller reward, l
(0 ă l ă L) if it lands in state s2 starting from 1 but by performing action b. The agent gets
an even smaller reward, s (0 ă s ă l), when it lands in state s1. The parameter ζ P r0, 1s
is not configurable and has been added to avoid symmetries in the return surface. The
values of the parameters is reported in Table 7.2.

Learning Experiments The main goal of this experiment is to show the benefits of
REMPS compared to a simple gradient method, assuming to know the exact environment
model. The return surface is characterized by two local maxima (Figure 7.4). If the sys-
tem is initialized in a suitable region (as in Figure 7.4), to reach the global maximum
we need to change the model in order to worsen the current policy performance. In Fig-
ure 7.5, we compare our algorithm REMPS using PROJPπ with different values of κ,
against G(PO)MDP adapted to model learning. We can see that G(PO)MDP, besides the
slow convergence, moves in the direction of the local maximum. Instead, for some ap-
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Figure 7.5: Expected return, configuration parameter ω, and policy parameter θ, as
a function of the number of iterations for REMPS with different values of κ and
G(PO)MDP. 20 runs, 95% c.i.
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Figure 7.6: Expected return, configuration parameter (ω) and policy parameter (θ) in
the Chain domain with different projection strategies, only-policy (REPS) and only-
configuration (REMS) learning as a function of the number of iterations. 20 runs 95%
c.i.

propriate values of the hyperparameter (e.g., κ P t0.1, 0.01u) REMPS is able to reach the
global optimum. It is worth noting that too small a value of κ (e.g., κ “ 0.0001) prevents
escaping the basin of attraction of the local maximum. Likewise, for too large κ (e.g.,
κ “ 10) the estimated quantities are too uncertain and therefore we are not able to reach
the global optimum as well.

Comparison of Projection Strategies In Figure 7.6, we compare the different projec-
tion strategies together with the no-configuration cases. We can see that the best learning
curve is attained by the PROJPπ that reaches the global optimum quickly. REMPS with
PROJπ,P is unable to reach the global optimum, indeed the configuration parameter gets
stuck to a suboptimal value (around 0.55), thus the performance is significantly worse w.r.t.
PROJPπ . The same behavior, limited to the configuration parameter value, is displayed by
the only-configuration (REMS, Relative Entropy Model Search) learning case. Finally, the
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Figure 7.7: Expected return after PRIMALκ (primal) and after PROJµ (projection) com-
pared with the optimal performance, as a function of the KL-threshold κ.

only-policy (REPS, Relative Entropy Policy Search) learning moves the policy parameter
towards zero, approaching the local optimum.

Effect of the Policy and Model Spaces The optimization phase (PRIMALκ) in REMPS
is able to find in closed-form a new stationary distribution µ1 that optimizes our perfor-
mance index subject to a trust-region constraint. As we have seen, this distribution is not
typically representable in space DΘ,Ω and, thus, we need to perform a projection. We
analyze how the limited representation power of DΘ,Ω affects performance. Figure 7.7
shows the performance of the best model-policy found as a function of κ and the value of
PRIMALκ which is the expected return obtained by evaluating µ1 after solving the primal.
We can see that the value of the primal is always larger than the performance after the
projection, i.e., the performance of the new policy-configuration pair. As expected, the
projection yields a degradation of performance. Notice that for κ ě 0.3, the primal op-
timization provides as solution the optimal stationary distribution, i.e., the one we would
find without the KL-divergence constraint. This distribution is representable exactly with
our policy and model parametrization and, thus, the error is null.

Sensitivity to Parameter Initialization REMPS behaves consistently with respect to
a random initialization of model and policy parameters. In Figure 7.8, we can see that
REMPS updates the model and policy parameters towards the global maximum while
G(PO)MDP updates vary across the different initializations. In the G(PO)MDP learning
curves it is possible to see clearly the two attractors.

7.6.2 Cartpole
The Cartpole domain (Widrow and Smith, 1964; Barto et al., 1983) is a continuous-state
and finite-action environment. We add to the standard Cartpole domain the possibility to
configure the cart force, via the parameter ω.

Environment Description The Cartpole domain (Widrow and Smith, 1964; Barto et al.,
1983) is a standard RL benchmark. The environment consists of a cart that moves along
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Figure 7.8: Expected return, configuration parameter (ω), policy parameter (θ) and in the
Chain domain with random initialization of model and policy parameter. Comparison
between G(PO)MDP and REMPS.

the horizontal axis and a pole that is anchored on the cart. The state space is continuous
and is represented by the position of the cart x, by the cart velocity 9x, by the pole angle γ
with respect to the vertical, and by the pole angular velocity 9γ. The action space is discrete
and consists of two actions: left L and right R. The model parameter is represented by
the force ω to be applied to the cart, which is the same for both actions, thus the resulting
force is ˘ω based on the action. The parameter space is Ω “ r0, 30s. Each action, when
performed, is affected by a noise term proportional to the applied force and independent
for each state component. The goal is to keep the pole in a vertical position (γ “ 0) as
long as possible. The episode ends when the pole reaches a certain angle (|γ| ą γ̄) or after
a predefined number of steps. We want to encourage smaller forces, to this end we use the
following reward function:

rps, a, s1q “ 10´
ω2

20
´ 20 ¨ p1´ cospγqq.

The first part of the reward function is a fixed bonus for each time step the pole is up and
the pole angle is within the range r´γ̄, γ̄s. The second part of the reward is a penalty
proportional to the force. The third part is a penalty proportional to the pole angle. Ideally,
the agent should learn to balance the pole with the smallest force possible, keeping it fixed
in a vertical position.

Policy and Model Approximators We evaluate the performance of our algorithm in the
exact case (known model) and in the approximate case. In the exact case, we know the
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Figure 7.9: Expected return as a function of the number of iterations for the Cartpole
experiment when the environment model is exact (left) or approximated from samples
(right) comparing REMPS with PROJPπ , PROJπ,P and G(PO)MDP. 20 runs, 95% c.i.

effect of the model parameters on the transition function, i.e., we know pωp¨|s, aq. The
policy πθ is softmax policy with a linear mapping in the state space s “ px, 9x, γ, 9γ, 1q.

For the approximate case, we assume the distribution over the next states can be ap-
proximated by a Gaussian distribution with diagonal covariance. We model the mean and
the variance using two independent neural networks with the same input ps, a, ωq and the
same architecture, i.e., one hidden layer made of 10 neurons with tanh activation. The
training is performed just once at the beginning of training, using a dataset made of 105

samples collected with different configuration parameters ω (randomly generated).

Experiment The goal of this experiment is to test the ability of REMPS to learn jointly
the policy and the environment configuration in a continuous state environment, as well
as the effect of replacing the exact environment model with an approximator, trained just
at the beginning of the learning process. In Figure 7.9, we compare the performance of
REMPS, with the two projection strategies PROJPπ and PROJπ,P , and G(PO)MDP, start-
ing from a fixed value of the model parameter (ω0 “ 8), both for the case of exact model
and approximate model. In the exact case, the performance of REMPS is similar to that of
G(PO)MDP. The latter is even faster to achieve a good performance, although it shows a
larger variance across the runs. No significant difference can be found between PROJPπ
and PROJπ,P in this case. Instead, in the approximated scenario, REMPS notably outper-
forms G(PO)MDP, which shows a very unstable curve. Indeed, constraining the search
in a trust-region, as REMPS does by means of κ, is even more important in the approx-
imate case, since the estimated quantities are affected by further uncertainty (injected by
the approximated model of the environment). It is worth noting that, in this case, the dif-
ference between PROJPπ and PROJπ,P is more visible. Indeed, PROJπ,P is less precise
than PROJPπ (being a relaxation) and thus, when projecting µ1, it trusts the approximate
model moving towards a suboptimal configuration.
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Parameter Description

α Angle between the car direction and the direction of the track axis.
rpm Number of rotation per minute of the car engine.
vx Speed of the car along the longitudinal axis of the car.
vy Speed of the car along the transverse axis of the car.
vz Speed of the car along the Z axis of the car.

track Vector of 19 range finder sensors: each sensor returns the distance between
the track edge and the car within a range of 200 meters.

trackPos Distance between the car and the track axis.
wheelSpinVel Vector of 4 sensors representing the rotation speed of wheels.

Table 7.3: State space of the TORCS experiment.

7.6.3 Driving and Configuring with TORCS
The Open Racing Car Simulator TORCS (Wymann et al., 2000) is a simulation tool for
driving racing. TORCS has been used several times in RL (Loiacono et al., 2010; Kout-
ník et al., 2013; Lillicrap et al., 2016; Mnih et al., 2016). We modified TORCS adding the
possibility to configure the car parameters taking inspiration from the “Car Setup Competi-
tion” (Loiacono et al., 2013). The agent’s observation is a low-dimensional representation
of the car’s sensors (including speed, focus and wheel speeds), while the action space is
composed of steering and acceleration/braking (continuous).

Environment Description The state space of the TORCS environment is composed by
29 dimensions, S Ď R29. The action space is composed by 2 dimensions, A Ď R2: accel-
eration/brake action, where `1 indicates full acceleration and ´1 full brake and steering
angle, where ´1 indicates maximum left steer and `1 maximum right steer. Among all
possible parameters, in our experiments, we focused on configuring the Rear and Front
Wings and the Front-Rare Brake Repartition. All configuration parameters are normalized
in the range r0, 1s. The state space space is summarized in Table 7.3 and the configuration
parameters in Table 7.4. We consider the following reward function:

rps, a, s1q “ v1x ¨ cospα1q, (7.5)

where v1x is the velocity on the longitudinal direction of the car in state s1 and α1 is the
angle between the car direction and the direction of the track axis. We give a penalty of
´1000 if the agent runs backward, if it goes out of track or if the progress in the race is
too small. The rationale behind this reward is to encourage the agent to go at high speed
and to stay centered with respect to the track.

Policy and Model Approximators The policy we used in the TORCS experiments is
a Gaussian Policy parameterized by a fully connected neural network with one hidden
layer with 64 neurons with tanh activations. The activation of the last layer is tanh since
actions are limited in r´1, 1s. The covariance matrix is diagonal and independent of the
state. We initialize the policy fitting, via maximum likelihood, a scripted policy (snakeoil)
using 45000 samples collected with 30 randomly generated values of the configurable
parameters.
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Parameter Description

Rear Wing Angle of the rear wing.
Front Wing Angle of the front wing.

Front-Rear Brake Repartition Repartition of the brake between the front and rear.
Front Anti-Roll Bar Front Spring.
Rear Anti-Roll Bar Rear Spring.

Front Left-Right Brake Brake disk diameter of the front wheels.
Rear Left-Right Brake Brake disk diameter of the rear wheels.

Table 7.4: Configuration space of the TORCS experiment. Underlined the parameters we
configure in the experiment.
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Figure 7.10: Expected return and episode duration as a function of the number of itera-
tions for the TORCS experiment comparing REMPS, REPS and the bot. 10 runs, 80%
c.i.

We considered a Gaussian model to approximate the dynamics of the task. The mean
network is composed of two hidden layers of 64 neurons each with tanh activation. The
covariance matrix is diagonal and independent of the state, action and, configurable param-
eters. The model fitting is performed at the beginning of learning using the same samples
employed for fitting the policy.

Experiment The goal of this experiment is to show the ability of REMPS to learn policy
and configuration in a continuous state-action space, like a car racing scenario. We con-
sider a configuration space made of three parameters: rear and front wing orientation and
brake repartition between front and rear. We start with a policy pretrained via behavioral
cloning, using samples collected with a driving bot (snakeoil). Using the same bot, we
collect a dataset of episodes with different parameter values, used to train an approxima-
tion of the environment. In Figure 7.10, we compare the Expected return and the average
lap time for REMPS (with PROJπ,P ), in which we act on both the policy and the model,
and REPS, in which only policy learning is enabled. We can notice that REMPS is able
to reach performances larger than those achievable without configuring the environment.
In this experiment, we can appreciate another remarkable benefit of environment con-
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Figure 7.11: Configurable parameters values and episode duration as a function of the
number of iterations for the TORCS experiment comparing REMPS and REPS. 10 runs,
80% c.i.

figurability: configuring the environment can also speed up the learning process (online
performance), as clearly visible in Figure 7.10. In Figure 7.11, we report the behavior of
the configurable parameters. We can notice that all parameters tend to be moved towards
zero. Indeed, a good behavior in the considered track consists of increasing the speed as
much as possible. Therefore, the orientation of the wing tends to be reduced to increase
the speed. A similar behavior is visible for the Front-Rear Brake Repartition.

7.6.4 Summary of the Experiments
The experimental evaluation confirmed the benefits of the Conf-MDP in terms of the final
performance, which can be achieved by acting on the environment configuration, in addi-
tion to the improvement of the agent’s policy. The take-home message of this evaluation
is that learning in continuous Conf-MDP poses new challenges related to the knowledge
of the transition model space and the need for parametric representations. We have shown
that REMPS is able to learn in this setting, with the limitations in performance due to
the approximation error introduced when resorting to a limited parametric representation.
Moreover, REMPS overcomes some limitations of purely gradient-based methods that
tend to be trapped in local optima. These two aspects were extensively analyzed in the
Chain Domain experiment (Section 7.6.1). Moreover, we illustrated that learning the ef-
fect of the configuration parameters on the transition probabilities can be performed during
the learning process, with acceptable degradation of the performance. This issue is exam-
ined in the Cartpole experiment (Section 7.6.2). Finally, in the TORCS experiment, we
observed that configuring the environment can have the side remarkable effect of speeding
up the learning process, in addition to increasing the final performance (Section 7.6.3).
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CHAPTER8
Policy Space Identification

8.1 Introduction

We introduced in Chapter 2 the nature of the interaction between an artificial agent and an
environment in the typical RL setting. The agent perceives the state of the environment
and performs actions that trigger an evolution of the state and generate a reward signal.
The agent aims at finding an optimal policy, i.e., a prescription of actions that maximizes a
performance index. Clearly, the performance of an agent in an environment is constrained
by its perception and its actuation possibilities, along with the ability to map observa-
tions to actions. These three elements (perception, actuation, and mapping) define the
policy space available to the agent in the learning process. Agents having access to differ-
ent policy spaces may exhibit different optimal behaviors, even in the same environment.
Therefore, the notion of optimality is necessarily connected to the space of policies the
agent can access, that we will call agent’s policy space in the following. While in tabular
RL we typically assume access to the complete (and finite) space of Markovian stationary
policies, in continuous control the policy space needs to be limited. In policy search meth-
ods (Deisenroth et al., 2013), the policies are explicitly modeled considering a parametric
function space (Sutton et al., 1999a; Peters and Schaal, 2008) or a kernel space (Deisenroth
and Rasmussen, 2011; Levine and Koltun, 2013); but even in value-based RL, a function
approximator induces a set of representable (greedy) policies. It is important to point out
that the notion of policy space is not just an algorithmic convenience. Indeed, the need
to limit the policy space naturally emerges in many industrial applications, where some
behaviors have to be avoided for safety reasons.
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Figure 8.1: An example of policy space modeled as a 1-layer neural network showing a
limitation in the (a) perception, (b) mapping, and (c) actuation.

The knowledge of the agent’s policy space turns out to be relevant in several fields
of RL. In the Conf-MDP framework, we have observed (Chapter 4) that the best envi-
ronment configuration is intimately related to the agent’s possibilities in terms of policy
space. When the configuration activity is performed by an external supervisor, it might be
helpful to know which parameters the agent can control in order to select the most appro-
priate configuration. Furthermore, in the field of Imitation Learning (IL, Osa et al., 2018),
having a grasp on the policy space of the expert’s agent, can aid the learning process of the
imitating policy, mitigating overfitting/underfitting phenomena.

Motivated by the examples presented above, we study the problem of identifying the
agent’s policy space in a Conf-MDP,1 by observing the agent’s behavior and, possibly,
exploiting the configuration opportunities of the environment. We consider the case in
which the agent’s policy space is a subset of a known super-policy space ΠΘ induced
by a parameter space Θ Ď Rd. Thus, any policy πθ is determined by a d-dimensional
parameter vector θ P Θ. However, the agent has control over a smaller number dAg ă d
of parameters (which are unknown), while the remaining ones have a fixed value, namely
zero.2 The choice of zero as a fixed value might appear arbitrary, but it is rather a common
case in practice. Indeed, the formulation based on the identification of the parameters
effectively covers the limitations of the policy space related to perception, actuation, and
mapping. For instance, in a linear policy, the fact that the agent does not observe a state
feature is equivalent to set the corresponding parameters to zero. Similarly, in a neural
network, removing a neuron is equivalent to neglecting all of its connections, which in turn
can be realized by setting the relative weights to zero. Figure 8.1 shows three examples of
policy space limitations in the case of a one hidden layer neural network policy, which can
be realized by setting the appropriate weights to zero.

Our goal is to identify the parameters that the agent can control (and possibly change)
by observing some demonstrations of an optimal policy πAg in the policy space ΠΘ.3 To
this end, we formulate the problem as deciding whether each parameter θi for i P t1, ..., du
is zero, and we address it by means of a frequentist statistical test. In other words, we check

1Although we assume to act in a Conf-MDP, we stress that our primary goal is to identify the policy space of
the agent, rather than learning a profitable configuration in the Conf-MDP.

2By “controllable” parameter we mean a parameter whose value can be changed by the agent, while the “un-
controllable” parameters are those which are permanently set to zero. This is a way of modeling the limitations
of the policy space.

3We stress that, since we restrict the search to the policy space ΠΘ, πAg might be suboptimal compared to
the optimal policy in the space of Markovian stationary policies.
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whether there is a statistically significant difference between the likelihood of the agent’s
behavior with the full set of parameters and the one in which θi is set to zero. In such a
case, we conclude that θi is not zero and, consequently, the agent can control it. On the
contrary, either the agent cannot control the parameter or zero is the value consciously
chosen by the agent.

Indeed, there could be parameters that, given the peculiarities of the environment, are
useless for achieving an optimal behavior or whose optimal value is actually zero, while
they could prove essential in a different environment. For instance, in a grid world where
the goal is to reach the right edge, the vertical position of the agent is useless, while if
the goal is to reach the upper right corner both horizontal and vertical positions become
relevant. In this spirit, configuring the environment can help the supervisor in identifying
whether a parameter set to zero is actually uncontrollable by the agent or just useless in
the current environment. Thus, the supervisor can change the environment configuration
ω P Ω, so that the agent will adjust its policy, possibly by changing the parameter value
and revealing whether it can control such a parameter. Consequently, the new configu-
ration should induce an optimal policy in which the considered parameters have a value
significantly different from zero. We formalize this notion as the problem of finding the
new environment configuration that maximizes the power of the statistical test and we
propose a surrogate objective for this purpose.

Chapter Outline The chapter is organized as follows. In Section 8.2, we introduce the
necessary background on likelihood ratio tests. The identification rules (combinatorial
and simplified) to perform parameter identification in a fixed environment are presented in
Section 8.3 and the simplified one is analyzed in Section 8.4. Section 8.5 shows how to
improve them by exploiting the environment configurability. In Section 8.6, we present the
connections between policy space identification and existing works in the literature. The
experimental evaluation, on discrete and continuous domains, is provided in Section 8.7.
Besides studying the ability of our identification rules in identifying the agent’s policy
space, we apply them to the IL and Conf-MDP frameworks. The results and proofs not
reported in this chapter can be found in Appendix A.3.

8.2 Generalized Likelihood Ratio Test

The Generalized Likelihood Ratio test (GLR, Barnard, 1959; Casella and Berger, 2002)
aims at testing the goodness of fit of two statistical models. Given a parametric model
having density function pp¨|θq with θ P Θ, we aim at testing the pair of hypothesis:

H0 : θAg P Θ0 vs H1 : θAg P ΘzΘ0,

where Θ0 Ă Θ is a subset of the parametric space. Given a dataset D “ tXiu
n
i“1 sampled

independently from pp¨|θAgq, where θAg is the true parameter, the GLR statistic is:

Λ “
supθPΘ0

tppD|θqu
supθPΘ tppD|θqu

“
supθPΘ0

!

pLpθq
)

supθPΘ

!

pLpθq
) , (8.1)
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where the likelihood function is defined as:

ppD|θq “ pLpθq “
n
ź

i“1

ppXi|θq.

Moreover, we denote with p`pθq “ ´ log pLpθq the negative log-likelihood function, pθ P
arg maxθPΘt pLpθqu and pθ0 P arg maxθPΘ0

t pLpθqu, i.e., the maximum likelihood solutions
in Θ and Θ0 respectively. Moreover, we define the expectation of the likelihood under the
true parameter: `pθq “ EXi„pp¨|θAgqr

p`pθqs. As the maximization is carried out employing
the same dataset D and recalling that Θ0 Ă Θ, we have that Λ P r0, 1s. It is usually
convenient to consider the logarithm of the GLR statistic:

λ “ ´2 log Λ “ 2
´

p`ppθ0q ´ p`ppθq
¯

.

Therefore, H0 is rejected for large values of λ, i.e., when the maximum likelihood pa-
rameter searched in the restricted set Θ0 significantly underfits the data D, compared to
Θ. Wilk’s theorem provides the asymptomatic distribution of λ when H0 is true (Wilks,
1938; Casella and Berger, 2002).

Theorem 8.1 (Casella and Berger (2002), Theorem 10.3.3). Let d “ dimpΘq and d0 “

dimpΘ0q ă d. Under suitable regularity conditions (see Casella and Berger (2002) Sec-
tion 10.6.2), if H0 is true, then when n Ñ `8, the distribution of λ tends to a χ2 distri-
bution with d´ d0 degrees of freedom.

The significance of a test α P r0, 1s, or type I error probability, is the probability to
reject H0 when H0 is true, while the power of a test 1 ´ β P r0, 1s is the probability to
reject H0 when H0 is false, β is the type II error probability.

8.3 Policy Space Identification in a Fixed Environment

As we introduced in Section 8.1, we aim at identifying the agent’s policy space, by observ-
ing a set of demonstrations coming from the optimal policy in the considered policy space
πAg P ΠΘ

4 only, i.e., D “ tpSi, Aiqu
n
i“1 where Si „ ν and Ai „ πAgp¨|Siq sampled

independently. ν P PpSq is a sampling distribution over the state space. Although we
will present the method for a generic ν, in practice we employ as ν the γ-discounted sta-
tionary distribution µπ

Ag

γ induced by πAg (Sutton et al., 1999a). We assume that the agent
has control over a limited number of parameters dAg ă d whose value can be changed dur-
ing learning, while the remaining d ´ dAg are kept fixed to zero.5 Given a set of indexes
I Ď t1, ..., du we define the subset of the parameter space:

ΘI “ tθ P Θ : θi “ 0, @i P t1, ..., duzIu .

4It is important to stress πAg is one of the possibly many optimal policies within the policy space ΠΘ, which
might be unable to represent the optimal Markovian stationary policy. Furthermore, we do not explicitly report
the dependence on the agent’s parameter θAg P Θ as, in the general case, there might exist multiple parameters
yielding the same policy πAg.

5The extension of the identification rules to (known) fixed values different from zero is straightforward.

150



8.3. Policy Space Identification in a Fixed Environment

Thus, the set I represents the indexes of the parameters that can be changed if the agent’s
parameter space were ΘI . Our goal is to find a set of parameter indexes IAg that are
sufficient to explain the agent’s policy, i.e., πAg P ΠΘ

IAg
but also necessary, in the sense

that when removing any i P IAg the remaining ones are insufficient to explain the agent’s
policy, i.e., πAg R ΠΘ

IAgztiu
. We formalize these notions in the following definition.

Definition 8.1 (Correctness). Let πAg P ΠΘ. A set of parameter indexes IAg Ď t1, ..., du
is correct w.r.t. πAg if:

πAg P ΠΘ
IAg
^ @i P IAg : πAg R ΠΘ

IAgztiu
.

We denote with IAg the set of all correct set of parameter indexes IAg.

Thus, there exist multiple IAg when multiple parametric representations of the agent’s
policy πAg are possible. The uniqueness of IAg is guaranteed under the assumption that
each policy admits a unique representation in ΠΘ, i.e., under the identifiability assumption.

Assumption 8.1 (Identifiability). The policy space ΠΘ is identifiable, i.e., for all θ,θ1 P
Θ, we have that if πθp¨|sq “ πθ1p¨|sq almost surely for all s P S then θ “ θ1.

The identifiability property allows rephrasing Definition 8.1 in terms of the policy
parameters only, leading to the following result.

Lemma 8.2 (Correctness under Identifiability). Under Assumption 8.1, let θAg P Θ be the
unique parameter such that πθAgp¨|sq “ πAgp¨|sq almost surely for all s P S. Then, there
exists a unique set of parameter indexes IAg Ď t1, ..., du that is correct w.r.t. πAg defined
as:

IAg “
!

i P t1, ..., du : θAgi ‰ 0
)

.

Consequently, IAg “ tIAgu.

Proof. The uniqueness of IAg is ensured by Assumption 8.1. Let us rewrite the condition of Defini-
tion 8.1 under Assumption 8.1:

πAg
P ΠΘ

IAg
^ @i P IAg : πAg

R ΠΘ
IAgztiu

ðñ θAg
P ΘIAg ^ @i P IAg : θAg

R ΘIAgztiu (P.1)

ðñ @i P IAg : θAgi ‰ 0 ^ @i P t1, ..., duzIAg : θAgi “ 0 (P.2)

ðñ IAg “
!

i P t1, ..., du : θAgi ‰ 0
)

,

where line (P.1) follows since there is a unique representation for πAg determined by parameter θAg

and line (P.2) is obtained from the definition of ΘI .

Remark 8.1 (About the Optimality of πAg). We started this section stating that πAg is
an optimal policy within the policy space ΠΘ. This is motivated by the fact that typically
we start with an overparametrized policy space ΠΘ and we seek for the minimal set of
parameters that allows the agent reaching an optimal policy within ΠΘ. However, in
practice, we usually have access to an ε-optimal policy πAg

ε , meaning that the performance
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of πAg
ε is ε-close to the optimal performance.6 Nevertheless, the notion of correctness

(Definition 8.1) makes no assumptions on the optimality of πAg. If we replace πAg with
πAg
ε we will recover a set of parameter indexes IAgε that is, in general, different from IAgε ,

but we can still provide some guarantees. If IAg Ď IAgε , then IAgε is sufficient to explain
the optimal policy πAg, but not necessary in general (it might contain useless parameters
for πAg). Instead, if IAg Ę IAgε , then IAgε is not sufficient to explain the optimal policy πAg.
In any case, IAgε is necessary and sufficient to represent, at least, an ε-optimal policy.

The following two subsections are devoted to the presentation of the identification
rules based on the application of Definition 8.1 (Section 8.3.1) and Lemma 8.2 (Sec-
tion 8.3.2) when we only have access to a dataset of samples D. The goal of an iden-
tification rule consists in producing a set pI, approximating IAg. The idea at the basis
of our identification rules consists in employing the GLR test to assess the correctness
(Definition 8.1 or Lemma 8.2) of a candidate set of indexes.

8.3.1 Combinatorial Identification Rule
In principle, using D “ tpSi, Aiquni“1, we could compute the maximum likelihood param-
eter pθ P arg maxθPΘt pLpθqu and employ it with Definition 8.1. However, this approach
has, at least, two drawbacks. First, when Assumption 8.1 is not fulfilled, it would pro-
duce a single approximate parameter, while multiple choices might be viable. Second,
because of the estimation errors, we would hardly get a zero value for the parameters the
agent might not control. For these reasons, we employ a GLR test to assess whether a
specific set of parameters is zero. Specifically, for all I Ď t1, ..., du we consider the pair
of hypotheses:

H0,I : πAg P ΠΘI vs H1,I : πAg P ΠΘzΘI

and the GLR statistic is given by:

λI “ ´2 log
supθPΘI

!

pLpθq
)

supθPΘ

!

pLpθq
) “ 2

´

p`ppθIq ´ p`ppθq
¯

, (8.2)

where the likelihood is defined as:

pLpθq “
n
ź

i“1

πθpAi|Siq,

and the maximum likelihood solutions are defined as pθI P arg maxθPΘI t
pLpθqu and pθ P

arg maxθPΘt pLpθqu respectively. We are now ready to state the identification rule derived
from Definition 8.1.

Identification Rule 8.1. The combinatorial identification rule with threshold function
tclu

d
l“0 selects pIc containing all and only the sets of parameter indexes I Ď t1, ..., du

such that:
λI ď c|I| ^ @i P I : λIztiu ą c|I|´1. (8.3)

6We can also look at πAg
ε as the optimal policy within ΠΘ for a different MDP Mε, that is an approximation

of the original MDP M.
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Algorithm 8.1: Identification Rule 8.1 (Combinatorial).
Input: dataset D, parameter space Θ, threshold function c (e.g., cl “ χ2

l,1´δ{2d )

Output: approximate set of correct sets of parameter indexes pIc
1 pIc Ð tu

2 pL “ maxθPΘ
!

pLpθq
)

3 for I Ď t1, ..., du sorted by cardinality do
4 pLI “ maxθPΘI

!

pLpθq
)

5 λI “ ´2 log
pLI
pL

6 if λI ď c|I| and @i P I : λIztiu ą c|I|´1 then
7 pIc Ð pIc Y tIu

8 return pIc

Thus, I is defined in such a way that the null hypothesis H0,I is not rejected, i.e., I
contains parameters that are sufficient to explain the data D, and necessary since for all
i P I the set Iztiu is no longer sufficient, as H0,Iztiu is rejected. The threshold function
cl, that depends on the cardinality l of the tested set of indexes, controls the behavior
of the tests. In practice, we recommend to set them by exploiting the Wilk’s asymptotic
approximation (Theorem 8.1) to enforce (asymptotic) guarantees on the type I error. Given
a significance level δ P r0, 1s, since for Identification Rule 8.1 we perform 2d statistical
tests by using the same dataset D, we partition δ using Bonferroni correction and setting
cl “ χ2

l,1´δ{2d , where χ2
l,‹ is the ‹-quantile of a chi square distribution with l degrees of

freedom. Refer to Algorithm 8.1 for the pseudocode of the identification procedure.7

8.3.2 Simplified Identification Rule

Identification Rule 8.1 is hard to be employed in practice, as it requires performing Op2dq
statistical tests. However, under Assumption 8.1, to retrieve IAg we do not need to test all
subsets, but we can just examine one parameter at a time (see Lemma 8.2). Thus, for all
i P t1, ..., du we consider the pair of hypotheses:

H0,i : θAgi “ 0 vs H1,i : θAgi ‰ 0,

and define the set of parameters:

Θi “ tθ P Θ : θi “ 0u.

The GLR test can be performed straightforwardly, using the following statistic:

λi “ ´2 log
supθPΘi

!

pLpθq
)

supθPΘ

!

pLpθq
) “ 2

´

p`ppθiq ´ p`ppθq
¯

, (8.4)

7The algorithm is designed to output all the sets of controllable parameters explaining the behavior demon-
strated by the agent. Clearly, within the set pIc we could select the “most reliable” set, i.e., the one with maximum
value of the likelihood function.
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Algorithm 8.2: Identification Rule 8.2 (Simplified).
Input: dataset D, parameter space Θ, threshold function c (e.g., c1 “ χ2

l,1´δ{d)
Output: approximate correct set of parameter indexes tpIcu

1 pIc Ð tu

2 pL “ maxθPΘ
!

pLpθq
)

3 for i P t1, ..., du do
4 pLi “ maxθPΘi

!

pLpθq
)

5 λi “ ´2 log
pLi
pL

6 if λi ą c1 then
7 pIc Ð pIc Y tiu

8 return tpIcu

where the likelihood is defined as pLpθq “ śn
i“1 πθpAi|Siq, pθi “ arg maxθPΘit

pLpθqu
and pθ “ arg maxθPΘt pLpθqu.8 In the spirit of Lemma 8.2, we define the following identi-
fication rule.

Identification Rule 8.2. The simplified identification rule with threshold function c1 se-
lects pIc containing the unique set of parameter indexes pIc such that:

pIc “ ti P t1, ..., du : λi ą c1u . (8.5)

Therefore, the identification rule constructs pIc by taking all the indexes i P t1, ..., du
such that the corresponding null hypothesis H0,i : θAgi “ 0 is rejected, i.e., those for
which there is statistical evidence that their value is not zero. Similarly to the combinatorial
identification rule, we recommend setting the threshold function c1 based on the Wilk’s
approximation. Given a significance level δ P r0, 1s, since we perform d statistical tests,
we employ Bonferroni correction and we set c1 “ χ2

1,1´δ{d. Refer to Algorithm 8.2 for
the pseudocode of the identification rule.

This second procedure requires a test for every parameter, i.e., Opdq instead of Op2dq
tests. However, it comes with the cost of assuming the identifiability property. What
happens if we employ this second procedure in a case where the assumption does not
hold?

Example 8.1. Consider for instance the case in which two parameters θ1 and θ2 are
exchangeable, we will include none of them in pIc as, individually, they are not necessary
to explain the agent’s policy, while the pair pθ1, θ2q

T is indeed necessary. We will discuss
how to enforce identifiability (Assumption 8.1), for the case of policies belonging to the
exponential family, in the following section.

Remark 8.2 (On Frequentist and Bayesian Statistical Tests). In this work, we restrict our
attention to frequentist statistical tests, but, in principle, the same approaches can be ex-
tended to the Bayesian setting (Jeffreys, 1935). Indeed, the GLR test admits a Bayesian

8This setting is equivalent to a particular case the combinatorial rule in which H‹,i ” H‹,t1,...,duztiu, with
‹ P t0, 1u and, consequently, λi ” λt1,...,duztiu and Θi “ Θt1,...,duztiu.
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counterpart, known as the Bayes Factor (BF, Goodman, 1999; Morey et al., 2016). We
consider the same setting presented in Section 8.2 in which we aim at testing the null
hypothesis H0 : θAg P Θ0, against the alternative H1 : θAg P ΘzΘ0. We take the
Bayesian perspective, looking at each θ not as an unknown fixed quantity but as a realiza-
tion of prior distributions on the parameters defined in terms of the hypothesis: ppθ|H‹q
for ‹ P t0, 1u. Thus, given a dataset D “ tXiu

n
i“1, we can compute the likelihood of D

given a parameter θ as usual: ppD|θq “ śn
i“1 ppXi|θq. Combining the likelihood and

the prior, we define the Bayes Factor as:

ΛBF “
ppD|H0q

ppD|H1q
“

ş

Θ
ppD|θqppθ|H0q dθ

ş

Θ
ppD|θq
likelihood

ppθ|H1q

prior

dθ

The Bayesian approach has the clear advantage of incorporating additional domain knowl-
edge by means of the prior. Furthermore, if also a prior on the hypothesis is available
ppH‹q for ‹ P t0, 1u it is possible to compute the ratio of the posterior probability of each
hypothesis:

ppH0|Dq
ppH1|Dq

posterior ratio

“
ppD|H0q

ppD|H1q

Bayes factor

¨
ppH0q

ppH1q

prior ratio

.

Compared to the GLR test, the Bayes factor provides richer information, since we can
compute the likelihood of each hypothesis, given the data D. However, like any Bayesian
approach, the choice of the prior turns out to be of crucial importance. The computa-
tionally convenient prior (which might allow computing the integral in closed form) is
typically not correct, leading to a biased test. In this sense, GLR replaces the integral
with a single-point approximation centered in the maximum likelihood estimate. For these
reasons, we leave the investigation of Bayesian approaches for policy space identification
as future work.

8.4 Analysis for the Exponential Family

In this section, we provide an analysis of the Identification Rule 8.2 for a policy πθ linear
in some state features φ that belongs to the exponential family.9 The section is organized
as follows. We first introduce the exponential family, deriving a concentration result of
independent interest (Theorem 8.4), and then we apply it for controlling the identification
errors made by our identification rule (Theorem 8.5). We provide in the following an
overview of the main results, while we defer to the Appendix A.3 the complete derivation.

8.4.1 Exponential Family

We refer to the definition of exponential family given in Brown (1986).

9We limit our analysis to Identification Rule 8.2 since we will show that, in the case of linear policies belong-
ing to the exponential family, the identifiability property can be easily enforced.

155



Chapter 8. Policy Space Identification

Policy Gaussian Boltzmann

A a P Rk ai P ta1, ..., ak`1u

π
rθ

1

p2πq
k
2 detpΣq

1
2

e´
1
2
pa´rθφpsqqTΣ´1pa´rθφpsqq

$

’

’

&

’

’

%

e
rθTi φpsq

1`
řk
j“1 e

rθTj φpsq
if i ď k

1

1`
řk
j“1 e

rθTj φpsq
if i “ k

t Σ´1abφpsq

#

ei bφpsq if i ď k

0 if i “ k ` 1

h
1

p2πq
k
2 det pΣq

1
2

e´
1
2
aTΣ´1a 1

Table 8.1: Action space A, probability density function π
rθ, sufficient statistic t, and func-

tion h for the Gaussian linear policy with fixed covariance and the Boltzmann linear

policy. For convenience of representation rθ P Rkˆq is a matrix and θ “ vecprθ
T
q P

Rd, with d “ kq. We denote with ei the i-th vector of the canonical basis of Rk and
with b the Kronecker product.

Definition 8.2 (Exponential Family). Let φ : S Ñ Rq be a feature function. The policy
space ΠΘ is a space of linear policies, belonging to the exponential family, if Θ “ Rd and
all policies πθ P ΠΘ have probability density function of the form:

πθpa|sq “ hpaq exp
!

θT t ps, aq ´Apθ, sq
)

, (8.6)

where h is a positive function, t ps, aq is the sufficient statistic depending on the state via
the features φ, i.e., t ps, aq “ tpφpsq, aq, and Apθ, sq “ log

ş

A hpaq exptθT tps, aquda is
the log partition function. We denote with tps, a,θq “ tps, aq ´ EA„πθp¨|sq

“

tps,Aq
‰

the
centered sufficient statistic.

This definition allows modeling the linear policies that are often used in RL (Deisen-
roth et al., 2013). Table 8.1 shows how to map the Gaussian linear policy with fixed
covariance, typically used in continuous action spaces, and the Boltzmann linear policy,
suitable for finite action spaces, to Definition 8.2. The complete derivation is reported in
Appendix B.1).

For the sake of the analysis, we enforce the following assumption concerning the tail
behavior of the policy πθ.

Assumption 8.2 (Subgaussianity). For any θ P Θ and for any s P S the centered sufficient
statistic tps, a,θq is subgaussian with parameter σ ě 0, i.e., for any α P Rd:

E
A„πθp¨|sq

“

exp
 

αT tps,A,θq
(‰

ď exp

"

1

2
}α}

2
2 σ

2

*

.

The subgaussianity property is easily met by the Gaussian and Boltzmann policies.
Proposition B.4 of Appendix B.3 proves that, when the features are uniformly bounded,
i.e., }φpsq}2 ď Φmax for all s P S, Assumption 8.2 is fulfilled by both Boltzmann and
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Gaussian linear policies with parameter σ “ 2Φmax and σ “ Φmax{
a

λminpΣq respec-
tively.

Furthermore, limited to the policies complying with Definition 8.2, the identifiability
(Assumption 8.1) can be restated in terms of the Fisher Information Matrix (FIM, Rothen-
berg, 1971; Little et al., 2010).

Lemma 8.3 (Rothenberg (1971), Theorem 3). Let ΠΘ be a policy space, as in Defini-
tion 8.2. Then, under suitable regularity conditions (see Rothenberg (1971)), if the Fisher
Information matrix (FIM) Fpθq:

Fpθq “ E
S„ν

A„πθp¨|sq

“

tpS,A,θqtpS,A,θqT
‰

(8.7)

is non-singular for all θ P Θ, then ΠΘ is identifiable. In this case, we denote with λmin “

infθPΘ tλmin pFpθqqu ą 0.

Proposition B.2 of Appendix B.2 shows that a sufficient condition for the identifiability
in the case of Gaussian and Boltzmann linear policies is that the second moment matrix of
the feature vector ES„ν

“

φpSqφpSqT
‰

is non-singular along with the fact that the policy
πθ plays each action with positive probability for the Boltzmann policy.

Remark 8.3 (How to enforce identifiability?). Requiring that ES„ν
“

φpSqφpSqT
‰

is full
rank is essentially equivalent to require that all features φi are linearly independent for
all i P t1, ..., du. This condition can be easily met with a preprocessing phase that re-
moves the linearly dependent features, for instance by employing Principal Component
Analysis (Jolliffe, 2011). For this reason, in our experimental evaluation, we will always
consider the case of linearly independent features.

We are now ready to present a concentration result, of independent interest, for the
parameters and the negative log-likelihood that represents the central tool of our analysis.

Theorem 8.4. Under Assumption 8.1 and Assumption 8.2, let D “ tpSi, Aiqu
n
i“1 be a

dataset of n ą 0 independent samples, where Si „ ν and Ai „ πθAgp¨|Siq. Let pθ “
arg minθPΘt

p`pθqu and θAg “ arg minθPΘt`pθqu . If the empirical FIM:

pFpθq “ 1

n

n
ÿ

i“1

E
A„πθp¨|Siq

“

tpSi, A,θqtpSi, A,θq
T
‰

(8.8)

has a positive minimum eigenvalue pλmin ą 0 for all θ P Θ, then, for any δ P r0, 1s, with
probability at least 1´ δ it holds that:

›

›

›

pθ ´ θAg
›

›

›

2
ď

σ

pλmin

c

2d

n
log

2d

δ
.

Furthermore, with probability at least 1´ δ, it holds that, individually:

`ppθq ´ `pθAgq ď
d2σ4

pλ2
minn

log
2d

δ
and

p`pθAgq ´ p`ppθq ď
d2σ4

pλ2
minn

log
2d

δ
.
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Proof Sketch. The idea of the proof is to first obtain a probabilistic bound on the parameter differ-
ence in norm

›

›

›

pθ ´ θAg
›

›

›

2
. This result is given in Theorem A.14. Then, we use the latter result

together with Taylor expansion to bound the differences `ppθq ´ `pθAg
q and p`pθAg

q ´ p`ppθq, as in
Corollary A.15. The full derivation can be found in Appendix A.3.1.

The theorem shows that the L2-norm of the difference between the maximum likeli-
hood parameter pθ and the true parameter θAg concentrates with rate Opn´1{2q while the
likelihood p` and its expectation ` concentrate with faster rate Opn´1q. Note that the result
assumes that the empirical FIM pFpθq has a strictly positive eigenvalue pλmin ą 0. This
condition can be enforced as long as the true Fisher matrix Fpθq has a positive minimum
eigenvalue λmin, i.e., under identifiability assumption (Lemma 8.3) and given a sufficiently
large number of samples. Proposition B.6 of Appendix B.2 provides the minimum number
of samples such that with high probability it holds that pλmin ą 0.

8.4.2 Identification Rule Analysis

We are now ready to start the analysis of Identification Rule 8.2. The goal of the analysis is,
informally, to bound the probability of an identification error, as a function of the number
of samples n and the threshold function c1. For this purpose, we define the following
quantities.

Definition 8.3. Consider an identification rule producing pI as approximate parameter
index set. We define the significance α and the power 1´ β of the identification rule as:

α “ P
´

Di R IAg : i P pI
¯

,

β “ P
´

Di P IAg : i R pI
¯

.

Thus, α represents the probability that the identification rule selects a parameter that
the agent does not control, whereas β is the probability that the identification rule does not
select a parameter that the agent does control.10 By employing the results we derived for
the exponential family (Theorem 8.4) we can now bound α and β.

Theorem 8.5. Let pIc be the set of parameter indexes selected by the Identification Rule 8.2
obtained using n ą 0 i.i.d. samples collected with πθAg , with θAg P Θ. Then, under
Assumption 8.1 and Assumption 8.2, let θAgi “ arg minθPΘit`pθqu for all i P t1, ..., du
and ξ “ min

 

1, λmin

σ2

(

. If pλmin ě
λmin

2
?

2
and `pθAgi q ´ `pθ

Ag
q ě c1, it holds that:

α ď 2d exp

"

´
c1λ

2
minn

16d2σ4

*

,

β ď p2d´ 1q
ÿ

iPIAg

exp

$

&

%

´

´

`pθAgi q ´ `pθ
Ag
q ´ c1

¯

λminξn

16pd´ 1q2σ2

,

.

-

.

10We use the symbols α and β to highlight the analogy between these probabilities and the type I and type II
error probabilities of a statistical test.
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Proof Sketch. Concerning α “ P
´

Di R IAg : i P pIc
¯

, we employ a technique similar to that of
Lemma 2 in (Garivier and Kaufmann, 2019) to remove the existential quantification. Instead, for
β “ P

´

Di P IAg : i R pIc
¯

we first perform a union bound over i P IAg and then we bound the

individual P
´

i R pIc
¯

. The full derivation can be found in Appendix A.3.2.

In principle, we could employ Theorem 8.5 to derive a proper value of c1 and n, given
a user-defined value of α and β. Unfortunately, their expressions depend on λmin which
is unknown in practice. As already mentioned in the previous sections, we recommend
employing the Wilk’s asymptotic approximation to set the threshold function as c1 “
1´ δ{d. This choice allows an asymptotic control of the significance of the identification
rule.

Theorem 8.6. Let pIc be the set of parameter indexes selected by the Identification Rule 8.2
obtained using n ą 0 i.i.d. samples collected with πθAg , with θAg P Θ. Then, under
suitable regularity conditions (see Casella and Berger (2002) Section 10.6.2), if c1 “
χ2
l,1´δ{d it holds that α ď δ when nÑ `8.

Proof. Starting from the definition of α, we first perform a union bound over i R IAg to remove the
existential quantification.

α “ P
´

Di R IAg : i P pIc
¯

“ P

¨

˝

ł

iRIAg

i P pIc

˛

‚ď
ÿ

iRIAg

P
´

i P pIc
¯

.

Now, we bound each P
´

i P pIc
¯

individually, recalling that λi is distributed asymptotically as a χ2

distribution with 1 degree of freedom and that c1 “ χ1,1´δ{d.

P
´

i P pIc
¯

“ P
`

λi ą χ1,1´δ{d

˘

Ñ
δ

d
, nÑ8.

Thus, we have that when nÑ `8:

α ď
d´ dAg

d
δ ď δ. (P.3)

8.5 Policy Space Identification in a Configurable Environment

The identification rules presented so far are unable to distinguish between a parameter
set to zero because the agent cannot control it, or because zero is its optimal value. To
overcome this issue, we employ the Conf-MDP properties to select a configuration in
which the parameters we want to examine have an optimal value other than zero. More
formally, like in Chapter 7, we consider a class of parametric Conf-MDPs whose transition
model Pω is parametrized inω P Ω Ď Rq . We denote with Jpθ,ωq for every θ,ω P ΘˆΩ
the expected return of executing policy πθ with the transition model Pω .

Intuitively, if we want to test whether the agent can control parameter θi, we should
place the agent in an environment ωi P Ω where θi is “maximally important” for the
optimal policy. This intuition is justified by Theorem 8.5, since to maximize the power of
the test (1 ´ β), all other things being equal, we should maximize the log-likelihood gap
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`pθAgi q ´ `pθ
Ag
q, i.e., parameter θi should be essential to justify the agent’s behavior. Let

I Ď t1, ..., du be a set of parameter indexes we want to test, our ideal goal is to find the
environment ωI such that:

ωI P arg max
ωPΩ

!

`pθAgI pωqq ´ `pθ
Ag
pωqq

)

, (8.9)

where θAgpωq P arg maxθPΘtJpθ,ωqu and θAgI pωq P arg maxθPΘI tJpθ,ωqu are the
parameters of the optimal policies in the environment Pω considering ΠΘ (the full policy
space) and ΠΘI (the policy space in which θi is fixed to zero) as policy spaces respectively.
Clearly, given the samples D collected with a single optimal policy πθAgpω0q

in a single
environment Pω0 , solving problem in Equation (8.9) is hard as it requires performing an
off-distribution optimization both on the space of policy parameters and configurations.
For these reasons, we consider a surrogate objective that assumes that the optimal param-
eter in the new configuration can be reached by performing a single gradient step.11

Theorem 8.7. Let I P t1, ..., du and I “ t1, ..., duzI . For a vector v P Rd, we denote
with v|I the vector obtained by setting to zero the components in I . Let θAgpω0q P Θ the
initial parameter. Let α ě 0 be a learning rate, θAgI pωq “ θ0 ` α∇θJpθAgpω0q,ωq|I
and θAgpωq “ θ0 ` α∇θJpθAgpω0q,ωq. Then, under Assumption 8.1, we have:

`pθAgI pωqq ´ `pθ
Ag
pωqq ě

λminα
2

2

›

›

›
∇θJpθAgpω0q,ωq|I

›

›

›

2

2
.

Proof. By second-order Taylor expansion of ` and recalling that ∇θ`pθAg
pωqq “ 0, we have:

`pθAg
I pωqq ´ `pθ

Ag
pωqq ě

λmin

2

›

›

›
θAg
I pωq ´ θ

Ag
pωq

›

›

›

2

2

“
λmin

2

›

›

›
θAg
pω0q ` α∇θJpθAg

pω0q,ωq|I ´ θAg
pω0q ´ α∇θJpθAg

pω0q,ωq
›

›

›

2

2

“
λminα

2

2

›

›

›
∇θJpθAg

pω0q,ωq|I
›

›

›

2

2
.

Thus, we maximize the L2-norm of the gradient components that correspond to the
parameters we want to test. Since we have at our disposal only samples D collected with
the current policy πθAgpω0q

and in the current environment ω0, we have to perform an off-
distribution optimization over ω. To this end, we employ an approach analogous to that
of (Metelli et al., 2018b), as introduced in Section 3.3.2, where we optimize the empirical
version of the objective with a penalization that accounts for the distance between the
distribution over trajectories:

CIpω{ω0q “

›

›

›

p∇θJpθAgpω0q,ω{ω0q

gradient estimator

|I
›

›

›

2

2

´ ζ

g

f

f

e

1

n

T´1
ÿ

t“0

γ2td2

´

P
π
θAgpω0q

,Pω

t }P
π
θAgpω0q

,Pω0

t

¯

,

(8.10)

11This idea shares some analogies with the adapted parameter in the meta-learning setting (Finn et al., 2017).
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Algorithm 8.3: Identification Rule 8.2 (Simplified) with Environment Configu-
ration.

Input: parameter space Θ, configuration space Ω, threshold function cl, number of
configuration attempts Nconf

Output: approximate correct set of parameter indexes tpIcu
1 Initialize ω0 arbitrarily
2 Collect D0 observing πAg

0 in environment Pω0

3 Run the Identification Rule 8.2 on D0 and obtain pI0

4 pI Ð pI0

5 for i P t1, ..., du : i R pI do
6 ωi,0 Ð ω0

7 Di,0 Ð D0

8 for j “ 1, ..., Nconf do
9 Optimize Ctiupω{ωi,j´1q getting ωi,j

10 Collect Di,j observing πAg
i,j in environment Pωi,j

11 Run the Identification Rule 8.2 on Di,j and obtain pIi,j

12 pI Ð pI Y pIi,j

13 return tpIu

where ζ ě 0 is a regularization parameter and d2

´

P
π
θAgpω0q

,Pω

t }P
π
θAgpω0q

,Pω0

t

¯

is the
Rényi divergence between the length t trajectory distributions. This penalization term
favors configurationsω not too far away fromω0. We assume to have access to a dataset of
trajectories D “ tτiuni“1 independently collected using policy πθAgpω0q

in the environment
Pω0 . Using D, we can estimate the gradient:

p∇θJpθ,ω{ω0q “
1

n

n
ÿ

i“1

T´1
ÿ

t“0

γtRτi,t

t
ź

j“0

pωpSτi,j`1|Sτi,j , Aτi,jq

pω0
pSτi,j`1|Sτi,j , Aτi,jq

importance weight

t
ÿ

j“0

∇θ log πθ pAτi,j |Sτi,jq .

The expression is obtained starting from the well-known G(PO)MDP gradient estimator
(Section 3.3.1) and adapting for off-distribution estimation, by introducing the importance
weight (Metelli et al., 2018b). The dissimilarity penalization term corresponds to the 2-
Rényi divergence (Rényi, 1961) that is estimated as the second moment of the importance
weight:

pd2

´

P
π
θAgpω0q

,Pω

t }P
π
θAgpω0q

,Pω0

t

¯

“
1

n

n
ÿ

i“1

˜

T
ź

t“1

pωpSτi,t`1|Sτi,t, Aτi,tq

pω0pSτi,t`1|Sτi,t, Aτi,tq

¸2

.

We refer the reader to Section 3.3.2 and to (Metelli et al., 2018b, 2020b) for the theoret-
ical background behind the choice of this objective function. We report the pseudocode of
the identification procedure in a configurable environment for the Identification Rule 8.2
in Algorithm 8.3, while the pseudocode for Identification Rule 8.2 is reported in Algo-
rithm 8.4.
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Algorithm 8.4: Identification Rule 8.1 (Combinatorial) with Environment Con-
figuration.

Input: parameter space Θ, configuration space Ω, threshold function c, number of
configuration attempts Nconf

Output: approximate set of correct sets of parameter indexes pIc
1 Initialize ω0 arbitrarily
2 Collect D0 observing πAg

0 in environment Pω0

3 Run the Identification Rule 8.1 on D0 with δ1 and get pI0

4 pI Ð pI0

5 for I Ď t1, ..., du : I R pI do
6 ωi,0 Ð ω0

7 Di,0 Ð D0

8 for j “ 1, ..., Nconf do
9 Optimize CIpω{ωi,j´1q getting ωi,j

10 Collect Di,j observing πAg
i,j in environment Pωi,j

11 Run the Identification Rule 8.1 on Di,j and obtain pIi,j
12 pI Ð pI Y pIi,j

13 return pI

8.6 Connections with Existing Work

The idea of identifying the policy parameters a learning agent can control by observing
its behavior by employing a statistical test, to the best of our knowledge, has not been ex-
plored in the literature yet. We believe that this abstract problem is by itself of interest for
understanding the capabilities of the agent in terms of perception, actuation, and mapping.
Furthermore, knowing the parameters an agent can control can help other subfields of RL.
In this section, we discuss how policy space identification can be beneficial for Imitation
Learning (IL, Osa et al., 2018, Section 8.6.1) algorithms and help a supervisor acting in a
Conf-MDP (Section 8.6.2).

8.6.1 Connections with Imitation Learning

IL is the framework in which an agent learns a policy by observing an expert, i.e., an
agent playing a (near) optimal policy. Selecting the parameters that an agent can control
can be interpreted as applying a form of regularization to the problem of imitating the ex-
pert. In the IL literature, a widely used technique is based on entropy regularization (Neu
et al., 2017), which was employed in several successful algorithms, such as Maximum
Causal Entropy IRL methods (MCE, Ziebart et al., 2008, 2010), and Generative Adversar-
ial IL (Ho and Ermon, 2016). Alternatively, other approaches aim at enforcing a sparsity
constraint on the recovered policy parameters (e.g., Lee et al., 2018; Reddy et al., 2019;
Brantley et al., 2020). In the field of IL, we believe that policy space identification could
help to prevent possible over/underfitting phenomena. Indeed, knowing the expert’s policy
space means knowing a suitable hypothesis space in which to look for the imitating policy.
While the methods mentioned above state the IL problem at a policy level, i.e., finding an
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imitating policy, IRL has the goal of recovering a reward function that explains the expert’s
choices (Ng and Russell, 2000). The reward is known to be a more succinct and transfer-
able representation of the optimal behavior than the optimal policy. The identification of
the parameters controlled by the agent can help to understand which class of objectives
the agent is actually able to optimize, with possible benefits in the reward reconstruction
phase. More directly, the IRL approaches based on the policy gradient (e.g., Pirotta and
Restelli, 2016; Metelli et al., 2017; Tateo et al., 2017; Ramponi et al., 2020; Metelli et al.,
2020c) require a parametric representation of the expert’s policy, whose choice might af-
fect the quality of the recovered reward function.

8.6.2 Connections with Configurable Markov Decision Processes
The knowledge of the agent’s policy space could be of crucial importance when the learn-
ing process involves the presence of an external supervisor. As intuition suggests, the best
environment configuration is closely related to the agent’s capabilities in terms of policy
space. For instance, in a car racing problem, the best car configuration depends on the car
driver and has to be selected, by a track engineer (the supervisor), according to the driver’s
skills. Thus, the external supervisor has to be aware of the agent’s policy space to select
the most appropriate configuration.

It is worth emphasizing that we use the Conf-MDP notion for two purposes. First, we
propose the problem of learning the optimal configuration in a Conf-MDP as a motivating
example in which the knowledge of the policy space is valuable. Second, we use the
environment configurability as a tool to improve the identification of the policy space.

8.7 Experimental Results

In this section, we present the experimental results, focusing on three aspects of policy
space identification.

• In Section 8.7.1, we provide experiments to assess the quality of our identification
rules in terms of the ability to correctly identifying the parameters controlled by the
agent.

• In Section 8.7.2, we focus on the application of policy space identification to IL,
comparing our identification rules with commonly employed regularization tech-
niques.

• In Section 8.7.3, we consider the Conf-MDP framework and we show how prop-
erly identifying the parameters controlled by the agent allows learning better (more
specific) environment configurations.

The complete experimental campaign, together with the implementation details and the
hyperparameter values can be found in Metelli et al. (2019c).

8.7.1 Identification Rules Experiments
In this section, we provide two experiments to test the ability of our identification rules in
properly selecting the parameters the agent controls in different settings. We start with an
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experiment on a discrete grid world to highlight the beneficial effects of environment con-
figuration in the parameter identification. Then, we provide an experiment on a simulated
car driving domain in which we compare the combinatorial and the simplified identifica-
tion rules.

Discrete Grid World The grid world environment is a simple representation of a two-
dimensional world (5ˆ5 cells) in which an agent has to reach a target position by moving
in the four directions. Whenever an action is performed there is a small probability of
failure (0.1) triggering a random action. The initial position of the agent and the target
position are drawn at the beginning of each episode from a Boltzmann distribution µ0,ω .
The agent plays a Boltzmann linear policy πθ with binary features φ indicating its current
row and column and the row and column of the goal.12 For each run, the agent can con-
trol a subset IAg of the parameters θIAg associated with those features, which is randomly
selected. Furthermore, the supervisor can configure the environment by changing the pa-
rameters ω of the initial state distribution µ0,ω .13 Thus, the supervisor can induce the
agent to explore certain regions of the grid world and, consequently, change the relevance
of the corresponding parameters in the optimal policy.

The goal of this set of experiments is to show the advantages of configuring the envi-
ronment when performing the policy space identification using rule 8.2. Figure 8.2 shows
the empirical pα and pβ, i.e., the fraction of parameters that the agent does not control that
are wrongly selected and the fraction of those the agent controls that are not selected re-
spectively, as a function of the number m of episodes used to perform the identification.
We compare two cases: conf where the identification is carried out by also configuring
the environment, i.e., optimizing Equation (8.10), and no-conf in which the identification
is performed in the original environment only. In both cases, we can see that pα is almost
independent of the number of samples, as it is directly controlled by the threshold function
c1. Differently, pβ decreases as the number of samples increases, i.e., the power of the test
1´ pβ increases with m. Remarkably, we observe that configuring the environment gives a
significant advantage in understanding the parameters controlled by the agent w.r.t. using
a fixed environment, as pβ decreases faster in the conf case. This phenomenon also justifies
empirically our choice of objective (Equation (8.10)) for selecting the new environment.

Simulated Car Driving We consider a simple version of a car driving simulator, in
which an agent has to drive a car to reach the end of the track without running off the road.
The control directives are the acceleration and the steering, and are expressed through
a two-dimensional bounded action space. The car has four sensors oriented in different
directions: ´π

4 , ´π
6 , π6 , π4 w.r.t. the axis pointing toward the front of the car. The values

of these sensors are the normalized distances from the car to the nearest road margin along
the direction of the sensor, or the maximum value if the margin is outside the range of
the sensor. The complete set of state features is made up of the normalized car speed
and the values of the four sensors. In the experiments, the agent has access to the speed
and the sensor at angles π

6 and π
4 . The track consists of a single road segment with a

12The features are selected to fulfill Lemma 8.3.
13Although in our Conf-MDP definition we limit the configurability part of the environment to the transition

model, assuming that also the initial state distribution can be configured is not an issue. Indeed, it is always
possible to define an MDP in which the effect of the initial state distribution is included in the transition model.
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fixed curvature. The rewards are given proportionally to the speed of the car, i.e., greater
speeds yield higher rewards. The episode finishes when the car goes outside the road, and
a negative reward is given in this case, when the track is completed, or when a maximum
number of time steps is elapsed.

The purpose of this experiment is to show a case in which the identifiability assump-
tion (Assumption 8.1) may not be satisfied. The policy πθ is modeled as a Gaussian policy
whose mean is computed via a single hidden layer neural network with 8 neurons. Some
of the sensors are not available to the agent, our goal is to identify which ones the agent
can perceive. In Figure 8.3, we compare the performance of the Identification Rules 8.1
(Combinatorial) and 8.2 (Simplified), showing the fraction of runs that correctly identify
the policy space. We note that, while for a small number of samples the simplified rule
seems to outperform, when the number of samples increases the combinatorial rule dis-
plays remarkable stability, approaching the correct identification in all the runs. This is
explained by the fact that, when multiple representations for the same policy are possible
(like in this case when having a neural network as policy), considering one parameter at a
time might induce the simplified rule to select a wrong set of parameters.

8.7.2 Imitation Learning Experiment
In this section, we present an experiment to study the application of policy space iden-
tification to the IL framework. The goal of this experiment consists in showing that if
we know which parameters are actually controlled by the expert agent, we can mitigate
overfitting/underfitting phenomena, with a general benefit on the process of learning the
imitating policy. This experiment is conducted in the grid world domain, introduced in
Section 8.7.1, using the same setting. In each run, the expert agent plays a (near) optimal
Boltzmann policy πθAg that makes use of a subset of the available parameters and provides
a dataset D “ tpSi, Aiquni“1 of n samples coming from m episodes.

As we mentioned in Section 8.6.1, in the IL framework knowing the policy space of
the expert agent means properly tailoring the hypothesis space in which we search for the
imitation policy. For this reason, we propose a comparison with common regularization
techniques, applied to maximum likelihood estimation. Figure 8.4 shows on the left the
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norm of the parameter difference
›

›

›

pθ ´ θAg
›

›

›

2
between the parameter recovered by the

different IL methods pθ and the true parameter employed by the expert θAg, whereas on the
right we plot the estimated expected KL-divergence between the imitation policy and the
expert’s policy computed as:

pDKL
`

πθAg}π
pθ

˘

“
1

n

n
ÿ

i“1

DKL
`

πθAgp¨|Siq}πpθp¨|Siq
˘

.

The lines Conf and No-conf refer to the results of ML estimation obtained by restrict-
ing the policy space to the parameters identified by our simplified rule with and with-
out employing environment configurability respectively (precisely as in Section 8.7.1).
ML, Ridge, and Lasso correspond to maximum likelihood estimation in the full parameter
space. Specifically, they are obtained by minimizing the objective:

Qpθ;λR, λRq “ ´

n
ÿ

i“1

log πθpAi|Siq

p`pθq log-likelihood

`λR }θ}
2
2

ridge

`λL }θ}1
lasso

.

For ML we perform no regularization (λR “ λL “ 0), for Ridge we set λR “ 0.001 and
λL “ 0, and for Lasso we have λR “ 0 and λL “ 0.001.

We observe that Conf, i.e., the usage of our identification rule, together with environ-
ment configuration, outperforms the other methods. This is more evident in the expected
KL-divergence plot (right), which is a more robust index compared to the norm of the
parameter difference (left). Ridge and Lasso regularizations display good behavior, better
than both the identification rule without configuration (No-Conf) and the plain maximum
likelihood without regularization (ML). This illustrates two important points. First, it con-
firms the benefits of configuring the environment for policy space identification. Second,
it shows that a proper selection of the parameters controlled by the agent allows improving
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over standard ML, which tends to overfit.14

It is worth noting that the specific IL setting we consider, i.e., the availability of an
initial dataset D of expert’s demonstrations with no further interaction allowed15 rules
out from the comparison a large body of the literature that requires the possibility to in-
teract with the expert or with the environment (e.g., Ho and Ermon, 2016; Lee et al.,
2018). Nevertheless, these IL algorithms could be in principle adapted to this challenging
no-interaction setting at the cost of restoring to off-policy estimation techniques (Owen,
2013), that however might inject further uncertainty in the learning process.

8.7.3 Conf-MDP Experiment
In the Minigolf environment (Lazaric et al., 2007), an agent hits a ball using a putter with
the goal of reaching the hole in the minimum number of attempts. Surpassing the hole
causes the termination of the episode and a large penalization. The agent selects the force
applied to the putter by playing a Gaussian policy linear in some polynomial features
(complying to Lemma 8.3) of the distance from the hole (x) and the friction of the green
(f ). Specifically, we consider the following polynomial features:

φpx, fq “
´

1, x, f,
?
x,

a

f,
a

xf
¯T

.

When an action is performed a Gaussian noise is added whose magnitude depends on the
green friction and on the action itself.

Experiment with fixed features The goal of this experiment is to highlight that know-
ing the policy space might be of crucial importance when learning in a Conf-MDP. We
consider two agents: A1 has access to both the x and f whereas A2 knows only x. Thus,
we expect that A1 learns a policy that allows reaching the hole in a smaller number of hits,

14It is worth noting that the classical regularization techniques, like ridge and lasso, require choosing the
regularization hyperparameter λ‹ with ‹ P tR,Lu. In our experiments, we searched for the best parameter in
t0.0001, 0.001, 0.01, 0.1, 1u.

15This setting was recently defined “truly batch model-free” (Ramponi et al., 2020).
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Figure 8.6: Experiment with randomly chosen features on the minigolf domain for differ-
ent numbers of episodes m. 100 runs, 95% c.i.

compared to A2, as it can calibrate force according to friction; whereas A2 has to be more
conservative, being unaware of f . Thus, while agent A1 perceives all the features, agent
A2 has access to p1, x,

?
xq
T only. There is also a supervisor in charge of selecting, for the

two agents, the best putter length ω, i.e., the configurable parameter of the environment.

Figure 8.5-left shows the performance of the optimal policy as a function of the putter
length ω. We can see that for agent A1 the optimal putter length is ωAg

A1
“ 5 while for

agent A2 is ωAg
A2
“ 11.5. Figure 8.5-right compares the performance of the optimal policy

of agent A2 when the putter length ω is chosen by the supervisor using four different
strategies. In (i) the configuration is sampled uniformly in the interval r1, 15s. In (ii) the
supervisor employs the optimal configuration for agent A1 (ω “ 5), i.e., assuming the
agent is aware of the friction. (iii) is obtained by selecting the optimal configuration of
the policy space produced by using our identification rule 8.2. Finally, (iv) is derived by
employing an oracle that knows the true agent’s policy space (ω “ 11.5). We can see that
the performance of the identification procedure (iii) is comparable with that of the oracle
(iv) and notably higher than the performance when employing an incorrect policy space
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(ii).

Experiment with randomly chosen features In the following, we report an additional
experiment in the minigolf domain in which the features that the agent can perceive are
randomly selected at the beginning, comparing the case in which we do not configure the
environment and the case in which environment configuration is performed, and for differ-
ent number of episodes collected. Although, less visible w.r.t. to the previous examples,
we can see that for some features (e.g.,

?
x and

?
xf ) the environment configurability is

beneficial (Figure 8.6).

8.7.4 Summary of the Experiments
The experimental evaluation highlights some essential points. First, we have shown that
configuring the environment is beneficial for speeding up the identification process (Sec-
tion 8.7.1). This aspect is analyzed in the Grid World experiment, showing that when
configuring the environment is possible, the performance of the identification rules im-
proves. Second, we have verified that policy space identification can improve the quality
of the policy derived through imitation learning (Section 8.7.2). Finally, the identification
of the policy space brings advantages to the learning process in a Conf-MDP, helping to
choose wisely the most suitable environment configuration. This is particularly visible in
the Minigolf experiment, in which we have illustrated that a wrong identification might
result in a suboptimal choice of the environment configuration (Section 8.7.3).
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CHAPTER9
Control Frequency Adaptation

9.1 Introduction

In the previous chapters, we modeled the sequential decision-making problem as a discrete-
time MDP (Puterman, 2014), or Conf-MDP (Metelli et al., 2018a), whenever altering some
parts of the environment is allowed. In these models, the control signal is issued at discrete
time instants. However, many relevant real-world problems are more naturally defined in
the continuous-time domain (Luenberger, 1979). Even though a branch of literature has
studied RL in continuous-time MDPs (e.g., Bradtke and Duff, 1994; Munos and Bourgine,
1997; Doya, 2000), the majority of the research has focused on the discrete-time formula-
tion, which appears to be a necessary, but effective, approximation.

Intuitively, increasing the control frequency of the system offers the agent more control
opportunities, possibly leading to improved performance as the agent has access to a larger
policy space. This might wrongly suggest that we should control the system with the
highest frequency possible, within its physical limits. However, in the RL framework,
the environment dynamics is unknown, thus, a too fine discretization could result in an
undesired effect, making the problem harder to solve. Indeed, any RL algorithm needs
samples to figure out (implicitly or explicitly) how the environment evolves as an effect
of the agent’s actions. When increasing the control frequency, the advantage of individual
actions becomes infinitesimal, making them almost indistinguishable for standard value-
based RL approaches (Tallec et al., 2019). As a consequence, the sample complexity
increases. Instead, low frequencies allow the environment to evolve longer, making the
effect of individual actions more easily detectable. Furthermore, in the presence of a
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Figure 9.1: Graphical representation of the discretization process and application of ac-
tion persistence.

system characterized by a “slowly evolving” dynamics, the gain obtained by increasing
the control frequency might become negligible. Finally, in robotics, lower frequencies
help to overcome some partial observability issues, like action execution delays (Kober
et al., 2013).

Therefore, we experience a fundamental trade-off in the control frequency choice that
involves the policy space (larger at high frequency) and the sample complexity (smaller at
low frequency). Thus, it seems natural to wonder: “what is the optimal control frequency?”
An answer to this question can disregard neither the task we are facing nor the learning
algorithm we intend to employ. Indeed, the performance loss we experience by reducing
the control frequency strictly depends on the properties of the system and, thus, of the task.
Similarly, the dependence of the sample complexity on the control frequency is related to
how the learning algorithm will employ the collected samples.

In this chapter, we analyze and exploit this trade-off in the context of batch RL (Lange
et al., 2012), with the goal of enhancing the learning process and achieving higher per-
formance. It is worth noting that the control frequency can be seen as an environmental
parameter of a Conf-MDP, that can be configured externally. In this sense, we can look
at the choice of the control frequency as a form of environment configuration having an
effect on the transition dynamics. Although we know in advance that the optimal control
frequency is the largest one, when only finite samples are available, smaller frequencies
can help to improve the learning experience.

We assume to have access to a discrete-time MDP M∆t0 , called base MDP, which is
obtained from the time discretization of a continuous-time MDP with fixed base control
time step ∆t0, or equivalently, a control frequency equal to f0 “

1
∆t0

. In this setting,
we want to select a suitable control time step ∆t that is an integer multiple of the base
time step ∆t0, i.e., ∆t “ k∆t0 with k P Ně1. This process is graphically represented
in Figure 9.1.1 Any choice of k generates an MDP Mk∆t0 obtained from the base one
M∆t0 by altering the transition model so that each action is repeated for k times. For
this reason, we refer to k as the action persistence, i.e., the number of decision epochs in
which an action is kept fixed. It is possible to appreciate the same effect in the base MDP
M∆t0 by executing a (non-Markovian and non-stationary) policy that persists every action

1We are considering the near-continuous time setting. This is almost w.l.o.g. compared to the continuous
time since the discretization time step ∆t0 can be chosen to be arbitrarily small. Typically, a lower bound on
∆t0 is imposed by the physical limitations of the system. Thus, we restrict the search of ∆t from the continuous
set Rą0 to the discrete set tk∆t0 : k P Ně1u. Moreover, considering an already discretized MDP simplifies
the mathematical treatment.
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for k time steps. The idea of repeating actions has been previously employed, although
heuristically, with deep RL architectures (Lakshminarayanan et al., 2017).

Chapter Outline The chapter is organized as follows. We start in Section 9.2 elab-
orating on the notion of action persistence and showing that it can be represented by a
suitable modification of the Bellman operators, which preserves the contraction property
and, consequently, allows deriving the corresponding value functions. Since increasing the
duration of the control time step k∆t0 has the effect of degrading the performance of the
optimal policy, in Section 9.3, we derive an algorithm-independent bound for the differ-
ence between the optimal value functions of MDPs M∆t0 and Mk∆t0 , which holds under
Lipschitz conditions. Then, in Section 9.4, we apply the notion of action persistence in the
batch RL scenario, proposing and analyzing an extension of Fitted Q-Iteration (FQI, Ernst
et al., 2005). The resulting algorithm, Persistent Fitted Q-Iteration (PFQI) takes as input a
target persistence k and estimates the corresponding optimal value function, assuming to
have access to a dataset of samples collected in the base MDP M∆t0 . Once we estimate
the value function for a set of candidate persistences K Ă Ně1, we aim at selecting the one
that yields the best performing greedy policy. Thus, we introduce a persistence selection
heuristic able to approximate the optimal persistence, without requiring further interac-
tions with the environment (Section 9.5). After having revised the approaches related to
action persistence (Section 9.6), we present an experimental evaluation on benchmark do-
mains, to confirm our theoretical findings and evaluate our persistence selection method
(Section 9.7). We conclude in Section 9.8 by discussing some open questions related to
action persistence and presenting some preliminary results.

9.2 Persisting Actions in MDPs

With the phrase “executing a policy π at persistence k”, with k P Ně1, we mean the
following type of agent-environment interaction. At decision step t “ 0, the agent selects
an action according to its policy A0 „ πp¨|S0q. Action A0 is kept fixed, or persisted, for
the subsequent k ´ 1 decision steps, i.e., actions A1, ..., Ak´1 are all equal to A0. Then,
at decision step t “ k, the agent queries again the policy Ak „ πp¨|Skq and persists
action Ak for the subsequent k ´ 1 decision steps and so on. In other words, the agent
employs its policy only at decision steps t that are integer multiples of the persistence k
(t mod k “ 0). Clearly, the usual execution of π corresponds to persistence 1.

9.2.1 Duality of Action Persistence
Unsurprisingly, the execution of a Markovian stationary policy π at persistence k ą 1
produces a behavior that, in general, cannot be represented by executing any Markovian
stationary policy at persistence 1. Indeed, at any decision step t, such a policy needs
to remember which action was taken at the previous decision step t ´ 1 (thus it is non-
Markovian with memory 1) and has to understand whether to select a new action based on
t (so it is non-stationary).

Definition 9.1 (k-persistent policy). Let π P ΠSR be a Markovian stationary policy. For
any k P Ně1, the k-persistent policy induced by π is a history-dependent policy πk P ΠHR,
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S0 S1 S2 Sk−1 Sk Sk+1

A0∼π(·|S0) A1∼π(·|S1) Ak−1∼π(·|Sk−1) Ak∼π(·|Sk)

S0 S1 S2 Sk−1 Sk Sk+1

A0∼π(·|S0) [A1=A0] [Ak−1=A0] Ak∼π(·|Sk)

A0 is persisted Ak is persisted

Figure 9.2: Agent-environment interaction without (top) and with (bottom) action persis-
tence, highlighting duality. The transition generated by the k-persistent MDP Mk is
the cyan dashed arrow, while the actions played by the k-persistent policy are inside
the cyan rectangle.

defined for every t P N, state-ending history ht “ ps0, a0, r1 . . . , st´1, at´1, rt, stq P
HS,t and a P A as:

πt,kpda|htq “

#

πpda|stq if t mod k “ 0

δat´1
pdaq otherwise

. (9.1)

Moreover, we denote with Πk “ tpπt,kqtPN : π P ΠSRu the set of the k-persistent policies.

Clearly, for k “ 1 we recover policy π as we always satisfy the condition t mod k “ 0
i.e., π “ πt,1 for all t P N. We refer to this interpretation of action persistence as policy
view.

A different perspective towards action persistence consists in looking at the effect of
the original policy π in a suitably modified MDP. To this purpose, we introduce the (state-
action) persistent transition probability kernel P δ : SˆAÑ PpSˆAq defined for every
ps, aq, ps1, a1q P S ˆA as:

P δpds1,da1|s, aq “ P pds1|s, aqδapda
1q. (9.2)

The crucial difference between Pπ and P δ is that the former samples the action a1 to be
executed in the next state s1 according to π, whereas the latter replicates in state s1 action a
that was previously executed in state s. We are now ready to define the k-persistent MDP.2

Definition 9.2 (k-persistent MDP). Let M be an MDP. For any k P Ně1, the k-persistent
MDP is the following MDP Mk “

`

S,A, Pk, µ0, Rk, γ
k
˘

, where Pk and Rk are the k-
persistent transition model and reward model respectively, defined for every state-action
pair ps, aq P S ˆA and every s1 P S and r P R as:

Pkpds
1|s, aq “

`

pP δqk´1P
˘

pds1|s, aq, (9.3)

Rkpdr|s, aq “
k´1
ÿ

i“0

γi
`

pP δqiR
˘

pdr|s, aq, (9.4)

and rkps, aq “
ş

R rRkpdr|s, aq “
řk´1
i“0 γ

i
`

pP δqir
˘

ps, aq is the reward function, uni-

formly bounded by Rmax
1´γk

1´γ .

2For the sake of simplicity, we consider reward models depending on the current state and current action only.
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The k-persistent transition model Pk keeps action a fixed for k´1 steps while making
the state evolve according to P . Similarly, the k-persistent reward Rk provides the cu-
mulative discounted reward over k steps in which a is persisted. We define the transition
kernel Pπk : S ˆAÑ PpS ˆAq for every ps, aq, ps1, a1q P S ˆA as:

Pπk pds
1,da1|s, aq “ Pkpds

1|s, aqπpda1|s1q.

Clearly, for k “ 1 we recover the base MDP, i.e., M “ M1. Indeed, if M is the base
MDP M∆t0 , the k-persistent MDP Mk corresponds to Mk∆t0 (Figure 9.1). We typically
omit the subscript ∆t0 for brevity, whenever clear from the context. Therefore, executing
policy π in Mk at persistence 1 is equivalent to executing policy π at persistence k in
the original MDP M. We refer to this interpretation of persistence as environment view
(Figure 9.2).

Thus, solving the base MDP M in the space of k-persistent policies Πk (Defini-
tion 9.1), thanks to this duality, is equivalent to solving the k-persistent MDP Mk (Defi-
nition 9.2) in the space of Markovian stationary policies ΠSR.

Remark 9.1 (Persistence as Environment Configurability). As we already mentioned in
Section 9.1, the persistence k P Ně1 can be seen as an environmental parameter affecting
the transition model P , the reward modelR, and the discount factor γ, which can be exter-
nally configured with the goal to improve the learning process for the agent. In this sense,
the MDP Mk can be seen as a Conf-MDP with parameter k P Ně1. More specifically, we
are considering a slightly extended version of the Conf-MDP, compared to that of Chap-
ter 4, in which the reward model and the discount factor can be configured, in addition
to the transition model. This is, by the way, an interesting setting in which configuring
the agent reward function (although in a quite constrained manned) is meaningful for the
learning process.

Remark 9.2 (Persistence as Reducing the Planning Horizon). A persistence of k induces a
k-persistent MDP Mk with smaller discount factor γk. Therefore, the effective horizon in
Mk is 1

1´γk
ă 1

1´γ . Interestingly, the end effect of persisting actions is similar to reducing
the planning horizon, by explicitly reducing the discount factor of the task (Petrik and
Scherrer, 2008; Jiang et al., 2016) or setting a maximum trajectory length (Farahmand
et al., 2016).

9.2.2 Persistent Bellman Operators

When executing policy π at persistence k in the base MDP M, we can evaluate its perfor-
mance starting from any state-action pair ps, aq P S ˆ A, inducing a Q-function that we
denote with Qπk and call k-persistent action-value function of π. Thanks to duality, Qπk
is also the action-value function of policy π when executed in the k-persistent MDP Mk.
Therefore, Qπk is the fixed point of the Bellman Expectation Operator of Mk, i.e., the
operator Tπk : BpS ˆAq Ñ BpS ˆAq defined for every bounded measurable function
f P BpS ˆAq and state-action pair ps, aq P S ˆA as:

pTπk fqps, aq “ rkps, aq ` γ
k

ż

S
Pπk pds

1,da1|s, aqfps, aq.
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We call this operator k-persistent Bellman Expectation Operator. Similarly, thanks to
duality, the optimal Q-function in the space of k-persistent policies Πk, denoted byQ˚k and
called k-persistent optimal action-value function, corresponds to the optimal Q-function
of the k-persistent MDP, i.e., Q˚kps, aq “ supπPΠSR tQπk ps, aqu for all ps, aq P S ˆA. As
a consequence, Q˚k is the fixed point of the Bellman Optimal Operator of Mk, i.e., T˚k :
BpS ˆAq Ñ BpS ˆAq defined for every bounded measurable function f P BpS ˆAq
and state-action pair ps, aq P S ˆA as:

pT˚k fqps, aq “ rkps, aq ` γ
k

ż

S
Pkpds

1|s, aq sup
a1PA

tfps1, a1qu,

We call this operator k-persistent Bellman Optimal Operator. Since they are the operators
for the k-persistent MDP Mk, both Tπk and T˚k are γk-contractions in L8-norm and their
unique fixed points are the value functions Qπk and Q˚k respectively. We now prove that
the k-persistent Bellman operators are obtained as the composition of the base operators
Tπ and T˚.

Theorem 9.1. Let M be an MDP, k P Ně1 and Mk be the k-persistent MDP. Let π P
ΠSR be a Markovian stationary policy. Then, Tπk and T˚k can be expressed as:

Tπk “
`

T δ
˘k´1

Tπ and T˚k “
`

T δ
˘k´1

T˚, (9.5)

where T δ : BpS ˆAq Ñ BpS ˆAq is the Bellman Persistent Operator, defined for every
bounded measurable function f P BpS ˆAq and state-action pair ps, aq P S ˆA as:

`

T δf
˘

ps, aq “ rps, aq ` γ

ż

S

ż

A
P δpds1,da1|s, aqfps1, a1q. (9.6)

Proof. We derive the result by explicitly writing the definitions of the k-persistent transition model
Pk and k-persistent reward distributionRk in terms ofP ,R and γ in the definition of the k-persistent
Bellman expectation operator Tπk . Let f P BpS ˆAq and ps, aq P S ˆA:

pTπk fqps, aq “ rkps, aq ` γ
k
pPπk fqps, aq

“

k´1
ÿ

i“0

γi
´

pP δqir
¯

ps, aq ` γkppP δqk´1Pπfqps, aq (P.1)

“

˜

k´1
ÿ

i“0

γipP δqir ` γkpP δqk´1Pπf

¸

ps, aq

“

˜

k´2
ÿ

i“0

γipP δqir ` γk´1
pP δqk´1

pr ` γPπfq

¸

ps, aq (P.2)

“

˜

k´2
ÿ

i“0

γipP δqir ` γk´1
pP δqk´1Tπf

¸

ps, aq, (P.3)

where line (P.1) follows from Definition 9.2, line (P.2) is obtained by isolating the last term in the
summation γk´1

pP δqk´1r and collecting γk´1
pP δqk´1 thanks to the linearity of pP δqk´1, and

line (P.3) derives from the definition of the Bellman expectation operator Tπ . It remains to prove
that for g P BpS ˆAq and ps, aq P S ˆA, we have the following identity:

pT δqk´1g “
k´2
ÿ

i“0

γipP δqir ` γk´1
pP δqk´1g. (P.4)
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9.3. Bounding the Performance Loss

We prove it by induction on k P Ně1. For k “ 1 we have only g “ pT δq0g. Let us assume that the
identity hold for all integers h ă k, we prove the statement for k:

´

pT δqk´1g
¯

ps, aq “

˜

k´2
ÿ

i“0

γipP δqir ` γk´1
pP δqk´1g

¸

ps, aq

“

˜

k´3
ÿ

i“0

γipP δqir ` γk´2
pP δqk´2

pr ` γP δgq

¸

ps, aq (P.5)

“

˜

k´3
ÿ

i“0

γipP δqir ` γk´2
pP δqk´2T δg

¸

ps, aq (P.6)

“

´

pT δqk´2T δg
¯

ps, aq “
´

pT δqk´1g
¯

ps, aq, (P.7)

where line (P.5) derives from isolating the last term in the summation and collecting γk´2
pP δqk´2

thanks to the linearity of pP δqk´2, line (P.6) comes from the definition of the Bellman persisted
operator T δ , and finally line (P.7) follows from the inductive hypothesis. We get the result by taking
g “ Tπf .

Concerning the k-persistent Bellman optimal operator the derivation is analogous. The Bellman
optimal operator becomes: T˚f “ r ` γPMAf . Therefore, we have:

pT˚k fqps, aq “ rkps, aq ` γ
k

ż

S
Pkpds

1
|s, aq sup

a1PA
tfps1, a1qu

“ rkps, aq ` γ
k

ż

S
Pkpds

1
|s, aqpMAfqps

1
q (P.8)

“

´

rk ` γ
kPkMAf

¯

ps, aq (P.9)

“

˜

k´1
ÿ

i“0

γipP δqir ` γkpP δqk´1PMAf

¸

ps, aq

“

˜

k´2
ÿ

i“0

γipP δqir ` γk´1
pP δqk´1

pr ` γPMAfq

¸

ps, aq (P.10)

“

˜

k´2
ÿ

i“0

γipP δqir ` γk´1
pP δqk´1T˚f

¸

ps, aq, (P.11)

where line (P.8) derives from the definition of the max-operator MA and line (P.9) from the definition
of the operator Pk. By applying Equation (P.4) we get the result.

The fixed point equations for the k-persistent Q-functions become:

Qπk “
`

T δ
˘k´1

TπQπk ,

Q˚k “
`

T δ
˘k´1

T˚Q˚k .

9.3 Bounding the Performance Loss

Learning in the space of k-persistent policies Πk, means reducing the control opportunities
available to the learner. Therefore, increasing k can only lower the performance of the
optimal policy, i.e., for every k, k1 P Ně1 and state s P S:

k ď k1 ùñ V ˚k psq ě V ˚k1 psq.
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The goal of this section is to quantify the performance loss by deriving a bound on the
quantity }Q˚ ´Q˚k}p,ρ as a function of the persistence k P Ně1, where p ě 1 and ρ P
PpS ˆAq is an evaluation distribution. To this purpose, we first focus on }Qπ ´Qπk}p,ρ
for a fixed policy π P ΠSR. Then, we show how to employ it to control }Q˚ ´Q˚k}p,ρ.

9.3.1 General Bound on }Qπ ´Qπ
k}p,ρ

We start presenting the following result that provides an exact expression of the difference
between the Q-functions of the same policy π P ΠSR when run at persistence 1 and at
persistence k P Ně1. The auxiliary results are reported in Appendix A.4.

Lemma 9.2 (Persistence Lemma). Let M be an MDP and π P ΠSR be a Markovian
stationary policy, then for any k P Ně1 the following identity holds:

Qπ ´Qπk “
ÿ

iPN
i mod k‰0

γi pPπq
i´1 `

Pπ ´ P δ
˘ `

T δ
˘k´2´pi´1q mod k

TπQπk .

Proof. Let us consider the first identity of Lemma A.17:

Qπ ´Qπk “
´

IdSˆA ´ γ
k
pPπqk

¯´1
ˆ

pTπqkQπk ´
´

T δ
¯k´1

TπQπk

˙

“

˜

8
ÿ

j“0

γkj pPπqkj
¸

ˆ

pTπqkQπk ´
´

T δ
¯k´1

TπQπk

˙

(P.12)

“

˜

8
ÿ

j“0

γkj pPπqkj
¸

k´2
ÿ

l“0

γl`1
pPπql

´

Pπ ´ P δ
¯´

T δ
¯k´2´l

TπQπk (P.13)

“

8
ÿ

j“0

γkj pPπqkj
k´2
ÿ

l“0

γl`1
pPπql

´

Pπ ´ P δ
¯´

T δ
¯k´2´l

TπQπk

“

8
ÿ

j“0

k´2
ÿ

l“0

γkj`l`1
pPπqkj`l

´

Pπ ´ P δ
¯´

T δ
¯k´2´l

TπQπk ,

where line (P.12) follows from applying the Neumann series at the first factor, line (P.13) is ob-
tained by applying the first identity of Lemma A.18 to the bounded measurable function TπQπk .
The subsequent lines are obtained by straightforward algebraic manipulations. Now we rename the
indexes by setting i “ kj ` l ` 1. Since l P t0, . . . , k ´ 2u we have that j “ pi ´ 1q div k
and l “ pi ´ 1q mod k. Moreover, we observe that i ranges over all non-negative integers values
except for the multiples of the persistence k, i.e., i P tn P N : n mod k ‰ 0u. Now, recalling
that i mod k ‰ 0, we observe that for the distributive property of the modulo operator we have
pi´ 1q mod k “ pi mod k ´ 1 mod kq mod k “ pi mod k ´ 1q mod k “ i mod k ´ 1.

It is worth noting that in Metelli et al. (2020a) another identity was provided in which
the roles of Pπ and P δ are switched. From this result, we can derive a bound on the norm
of the difference between the Q-functions, as shown in the following result.

Theorem 9.3. Let M be an MDP and π P ΠSR be a Markovian stationary policy. Let
Qk “ t

`

T δ
˘k´2´l

TπQπk : l P t0, . . . , k ´ 2uu and for all ps, aq P S ˆA let us define:

dπQkps, aq “ sup
fPQk

"
ˇ

ˇ

ˇ

ˇ

ż

S

ż

A

`

Pπpds1,da1|s, aq ´ P δpds1,da1|s, aq
˘

fps1, a1q

ˇ

ˇ

ˇ

ˇ

*

.
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Then, for any ρ P PpS ˆAq, p ě 1, and k P Ně1, it holds that:

}Qπ ´Qπk}p,ρ ď
γp1´ γk´1q

p1´ γqp1´ γkq

›

›dπQk
›

›

p,ηρ,πk
,

where ηρ,πk P PpS ˆ Aq is a probability measure defined for every state ps, aq P S ˆ A
as:

ηρ,πk pds,daq “
p1´ γqp1´ γkq

γp1´ γk´1q

ÿ

iPN
i mod k‰0

γi
´

ρ pPπq
i´1

¯

pds,daq.

Proof. We start from the first equality derived in Lemma 9.2, and we apply the Lppρq-norm both
sides, with p ě 1:

}Qπ ´Qπk}
p
p,ρ “

›

›

›

›

›

›

›

ÿ

iPN
i mod k‰0

γi pPπqi´1
´

Pπ ´ P δ
¯´

T δ
¯k´2´pi´1q mod k

TπQπk

›

›

›

›

›

›

›

p

p,ρ

“ ρ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPN
i mod k‰0

γi pPπqi´1
´

Pπ ´ P δ
¯´

T δ
¯k´2´pi´1q mod k

TπQπk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

(P.14)

ď ρ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPN
i mod k‰0

γi pPπqi´1 sup
fPQk

ˇ

ˇ

ˇ

´

Pπ ´ P δ
¯

f
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

(P.15)

“

ˆ

γp1´ γk´1
q

p1´ γqp1´ γkq

˙p

ρ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p1´ γqp1´ γkq

γp1´ γk´1q

ÿ

iPN
i mod k‰0

γi pPπqi´1 dπQk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

(P.16)

ď

ˆ

γp1´ γk´1
q

p1´ γqp1´ γkq

˙p
p1´ γqp1´ γkq

γp1´ γk´1q
ρ

ÿ

iPN
i mod k‰0

γi pPπqi´1
ˇ

ˇdπQk
ˇ

ˇ

p (P.17)

“

ˆ

γp1´ γk´1
q

p1´ γqp1´ γkq

˙p

ηρ,πk
ˇ

ˇdπQk
ˇ

ˇ

p (P.18)

“

ˆ

γp1´ γk´1
q

p1´ γqp1´ γkq

˙p
›

›dπQk
›

›

p

p,ηρ,π
. (P.19)

where line (P.14) is obtained by the definition of norm, written in the operator form, line (P.15)
is obtained by bounding

`

Pπ ´ P δ
˘ `

T δ
˘k´2´pi´1q mod k

ď supfPQk
 ˇ

ˇ

`

Pπ ´ P δ
˘

f
ˇ

ˇ

(

, recalling
the definition of Qk and that pi´1q mod k ď k´2 for all i P N and i mod k ‰ 0. Then, line (P.16)
follows from deriving the normalization constant to make the summation

ř

iPN
i mod k‰0

γi pPπqi´1 a

proper probability distribution. Such a constant can be obtained as follows:

ÿ

iPN
i mod k‰0

γi “
ÿ

iPN
γi ´

ÿ

iPN
γki “

γp1´ γk´1
q

p1´ γqp1´ γkq
.

Line (P.17) is obtained by applying Jensen’s inequality recalling that p ě 1. Finally, line (P.18)
derives from the definition of the distribution ηρ,πk and line (P.19) from the definition of Lppηρ,πk q-
norm.
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s´ s1 s2

s3

pa1, 1, 0q pa2, 1, Rq

pa
1 , 1,´

R
q

p‹, 1, Rq

p‹, 1,´Rq
pa2 , 1, 0q

Figure 9.3: The MDP counter-example of Proposition 9.4, where R ą 0. Each arrow
connecting two states s and s1 is labeled with the 3-tuple pa, pps1|s, aq, rps, aqq; the
symbol ‹ denotes any action in A. While the optimal policy in the original MDP
starting in s´ can avoid negative rewards by executing an action sequence of the kind
pa1, a2, . . . q, every policy in the k-persistent MDP, with k P Ně2, inevitably ends
in the negative terminal state, as the only possible action sequences are of the kind
pa1, a1, . . . q and pa2, a2, . . . q.

The bound shows that the Q-function difference depends on the discrepancy dπQk be-
tween the transition-kernel Pπ and the corresponding persistent version P δ , which is a
form of integral probability metric (Müller, 1997), defined in terms of the set Qk. This
term is averaged with the distribution ηρ,πk , which encodes the (discounted) probability
of visiting a state-action pair, ignoring the visitations made at decision steps i that are
multiple of the persistence k. Indeed, in those steps, we play policy π regardless which
persistence is used.3 The dependence on k is included in the term 1´γk´1

1´γk
. When k Ñ 1

this term displays a linear growth in k, being asymptotic to pk ´ 1q log 1
γ , and, clearly,

vanishes for k “ 1. Instead, when k Ñ8 this term tends to 1.
We can employ result derived above to obtain a bound on }Q˚ ´Q˚k}p,ρ. Indeed, let

π˚ P ΠSR be an optimal policy of M and with π˚k P Πk an optimal policy of Mk, we
have that for every state-action pair ps, aq P S ˆA:

Q˚ps, aq ´Q˚kps, aq “ Qπ
˚

ps, aq ´Q
π˚k
k ps, aq ď Qπ

˚

ps, aq ´Qπ
˚

k ps, aq,

since Qπ
˚
k

k ps, aq ě Qπ
˚

k ps, aq. Thus, we have that }Q˚ ´Q˚k}p,ρ ď
›

›

›
Qπ

˚

´Qπ
˚

k

›

›

›

p,ρ
.

9.3.2 Performance Loss without Regularity
The general bound we derived in the previous section applies for every MDP, without
further assumptions. However, it is defined in terms of the dissimilarity index dπQk , whose
value can become sufficiently large to make the bound vacuous. This circumstance is
clarified in the following negative result.

Proposition 9.4. For any MDP M and k P Ně2 it holds that for every state s P S:

V ˚k psq ě V ˚psq ´
2γRmax

1´ γ
. (9.7)

3ηρ,πk resembles the γ-discounted state-action distribution µπγ (Sutton et al., 1999a), but ignoring the decision
steps multiple of k.
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Furthermore, there exists an MDP M´ (Figure 9.3) and a state s´ P S such that the
bound holds with equality for all k P Ně2.

Proof. First of all, we recall that V ˚psq ´ V ˚k psq ě 0 since we cannot increase performance when
executing a policy with a persistence k. Let π˚ an optimal policy on the MDP M, we observe that
for all s P S:

V ˚psq ´ V ˚k psq ď V π
˚

psq ´ V π
˚

k psq, (P.20)

since V π
˚

psq “ V ˚psq and V ˚k psq ě V π
˚

k psq. Let us now consider the corresponding Q-functions
Qπ

˚

ps, aq and Qπ
˚

k ps, aq. Recalling that they are the fixed points of the Bellman operators Tπ
˚

and Tπ
˚

k we have:

Qπ
˚

´Qπ
˚

k “ Tπ
˚

Qπ
˚

´ Tπ
˚

k Qπ
˚

k

“ r ` γPπQπ
˚

´ rk ´ γ
kPπk Q

π˚

k

“ r ` γPπQπ
˚

´

k´1
ÿ

i“0

γi
´

P δ
¯i

r ´ γkPπk Q
π˚

k

“ γPπQπ
˚

´

k´1
ÿ

i“1

γi
´

P δ
¯i

r ´ γkPπk Q
π˚

k ,

where we exploited the definitions of the Bellman expectation operators in the k-persistent MDP.
As a consequence, we have that for all ps, aq P S ˆA:

Qπ
˚

ps, aq ´Qπ
˚

ps, aq ď γ
Rmax

1´ γ
`Rmax

k´1
ÿ

i“1

γi ` γk
Rmax

1´ γ

“ γ
Rmax

1´ γ
`Rmax

γp1´ γk´1
q

1´ γ
` γk

Rmax

1´ γ
“

2γRmax

1´ γ
,

where we considered the following facts that hold for all ps, aq P S ˆA:

´

PπQπ
˚
¯

ps, aq ď
Rmax

1´ γ
,

ˆ

´

P δ
¯i

r

˙

ps, aq ď Rmax,

´

Pπk Q
π˚

k

¯

ps, aq ď fracRmax1´ γ.

The result follows by observing that V π
˚

psq´V π
˚

k psq “
ş

A π
˚
pda|sq

´

Qπ
˚

ps, aq ´Qπ
˚

ps, aq
¯

.
We now prove that the bound is tight for the MDP of Figure 9.3. From inspection, we observe

that the optimal policy must reach the terminal state s2 yielding the positive reward R ą 0. Thus
the optimal policy plays action a1 in state s´ and action a2 in state s1, generating a value function
V ˚ps´q “ γR

1´γ
. Let us now consider the 2-persistent MDP M´

2 . Whichever action is played in
state s´ it is going to be persisted for the subsequent decision epoch and, consequently, we will
end up in state s3, yielding the negative reward ´R ă 0. Thus, the optimal value function will be
V ˚2 ps

´
q “ ´

γR
1´γ

. Clearly, the same rationale holds for any persistence k P Ně3.

The quantity 2γRmax

1´γ is the maximum performance that we can lose if we play the same
action at decision epoch t “ 0 and then we follow an arbitrary policy thereafter.

181



Chapter 9. Control Frequency Adaptation

9.3.3 Regularity Conditions
We have shown that, if no structure on the MDP and/or on the policy is enforced, the
dissimilarity term dπQk may become large enough to make the bound vacuous, i.e., larger
than γRmax

1´γ , even for k “ 2. Intuitively, since action persistence will execute old actions
in new states, we need to guarantee that the environment state changes slowly w.r.t. to time
and the policy must play similar actions in similar states. This means that if an action is
good in a state, it will also be almost good for states encountered in the near future. In order
to proceed, we need to introduce some basic notions of Lipschitz MDPs (Rachelson and
Lagoudakis, 2010; Pirotta et al., 2015). Although the condition on the policy is directly
enforced under Lipschitz conditions, we need a new notion of regularity over time for the
MDP.

Lipschitz MDPs Let pX , dX q and pY, dYq be two metric spaces, a function f : X Ñ Y
is called Lf -Lipschitz continuous (Lf -LC), where Lf ě 0, if for all x, x1 P X we have:

dYpfpxq, fpx
1qq ď LfdX px, x

1q.

Moreover, we define the Lipschitz semi-norm as:

}f}L “ sup
x,x1PX :x‰x1

"

dYpfpxq, fpx1qq
dX px, x1q

*

.

For real functions we employ Euclidean distance dYpy, y1q “ }y ´ y1}2, while for proba-
bility distributions we use the Kantorovich (L1-Wasserstein) metric defined for every pair
of probability measures µ, ν P PpZq as (Villani, 2008):

dYpµ, νq “W1pµ, νq “ sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

Z
fpzqpµ´ νqpdzq

ˇ

ˇ

ˇ

ˇ

. (9.8)

We now introduce the notions of Lipschitz MDP and Lipschitz policy that we will employ
in the following (Rachelson and Lagoudakis, 2010; Pirotta et al., 2015).

Assumption 9.1 (Lipschitz MDP). Let M be an MDP. M is called pLP , Lrq-LC if for
every ps, aq, ps, aq P S ˆA:

W1 pP p¨|s, aq, P p¨|s, aqq ď LP dSˆA pps, aq, ps, aqq ,

|rps, aq ´ rps, aq| ď Lr dSˆA pps, aq, ps, aqq .

Assumption 9.2 (Lipschitz Policy). Let π P ΠSR be a Markovian stationary policy. π is
called Lπ-LC if for every s, s P S:

W1 pπp¨|sq, πp¨|sqq ď Lπ dS ps, sq .

Time-Lipschitz MDP We now introduce a novel regularity condition for the MDP that
will turn out essential to complete the analysis of the performance loss due to action per-
sistence.
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Assumption 9.3. Let M be an MDP. M is LT -Time-Lipschitz Continuous (LT -TLC) if
for every ps, aq P S ˆA:

W1 pP p¨|s, aq, δsq ď LT . (9.9)

This assumption requires that the Kantorovich distance between the distribution of the
next state s1 and the deterministic distribution centered in the current state s is bounded by
LT , i.e., the system does not evolve “too fast”.

Remark 9.3. We draw a connection between the rate at which a dynamical system evolves
and the LT constant of Assumption 9.3. Consider a continuous-time dynamical system
having S “ RdS and A “ RdA governed by the law 9sptq “ fpsptq,aptqq such that
supsPS,aPA t}fps,aq}u ď F ă 8. Suppose to control the system with a discrete-time step
∆t0 ą 0, inducing an MDP with transition model P∆t0 . Using the norm }¨}, Assump-
tion 9.3 becomes:

W1 pP∆t0p¨|s,aq, δsq “ }spt`∆t0q ´ sptq}

“

›

›

›

›

›

ż t`∆t0

t

9spdtq

›

›

›

›

›

ď F∆t0.

Thus, the Time Lipschitz constantLT depends on: i) how fast the dynamical system evolves
(F ); ii) the duration of the control time step (∆t0).

Bound We are now ready to bound the dissimilarity term dπQk under the regularity as-
sumptions introduced above.

Theorem 9.5. Let M be an MDP and π P ΠSR be a Markovian stationary policy. Under
Assumptions 9.1, 9.2, and 9.3, if γmax tLP ` 1, LP p1` Lπqu ă 1 and if ρpds,daq “
ρSpdsqπpda|sq for every ps, aq P S ˆA with ρS P PpSq, then for any k P Ně1:

›

›dπQk
›

›

p,ηρ,πk
ď LQk rpLπ ` 1qLT ` σps .

where:

LQk “
Lr

1´ γmax tLP ` 1, LP p1` Lπqu
,

σpp “ sup
sPS

ż

A

ż

A
dA

`

a, a1
˘p
πpda|sqπpda1|sq.

Proof. Let us now consider the dissimilarity term in norm:

›

›dπQk
›

›

p

p,η
ρ,π
k
“

ż

S

ż

A
ηρ,πk pds, daq

ˇ

ˇ

ˇ

ˇ

ˇ

sup
fPQk

ˇ

ˇ

ˇ

ˇ

ż

S

ż

A

´

Pπpds1, da1|s, aq ´ P δpds1,da1|s, aq
¯

fps1, a1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

ď LpQk

ż

S

ż

A
ηρ,πk pds, daq

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S

ż

A

´

Pπpds1,da1|s, aq ´ P δpds1, da1|s, aq
¯

fps1, a1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

,
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where the inequality follows from Lemma A.20. We now consider the inner term and perform the
following algebraic manipulations:

sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S

ż

A

´

Pπpds1,da1|s, aq ´ P δpds1, da1|s, aq
¯

fps1, a1q

ˇ

ˇ

ˇ

ˇ

“ sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S

ż

A
P pds1|s, aqπpda1|s1qfps1, a1q ´

ż

S

ż

A
P pds1|s, aqδapda

1
qfps1, a1q

˘

ż

S

ż

A
δspds

1
qπpda1|s1qfps1, a1q ˘

ż

S

ż

A
δspds

1
qδapda

1
qfps1, a1q

ˇ

ˇ

ˇ

ˇ

ď sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S

`

P pds1|s, aq ´ δspds
1
q
˘

ż

A
πpda1|s1qfps1, a1q

ˇ

ˇ

ˇ

ˇ

` sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S

`

P pds1|s, aq ´ δspds
1
q
˘

ż

A
δapda

1
qfps1, a1q

ˇ

ˇ

ˇ

ˇ

` sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S
δspds

1
q

ż

A

`

πpda1|s1q ´ δapda
1
q
˘

fps1, a1q

ˇ

ˇ

ˇ

ˇ

.

We now consider the first two terms:

sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S

`

P pds1|s, aq ´ δspds
1
q
˘

ż

A
πpda1|s1qfps1, a1q

ˇ

ˇ

ˇ

ˇ

` sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S

`

P pds1|s, aq ´ δspds
1
q
˘

ż

A
δapda

1
qfps1, a1q

ˇ

ˇ

ˇ

ˇ

ď pLπ ` 1qW1 pP p¨|s, aq, δsq (P.21)

ď pLπ ` 1qLT ,

where line (P.21) follows from observing that the function gf ps1q “
ş

A πpda
1
|s1qfps1, a1q isLπ-LC,

and function hf ps1q “
ş

A δapda
1
qfps1, a1q “ fps1, aq is 1-LC. Moreover, under Assumption 9.3,

we have that W1 pP p¨|s, aq, δsq ď LT . Let us now focus on the third term:

sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S
δspds

1
q

ż

A

`

πpda1|s1q ´ δapda
1
q
˘

fps1, a1q

ˇ

ˇ

ˇ

ˇ

“ sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

A

`

πpda1|sq ´ δapda
1
q
˘

fps, a1q

ˇ

ˇ

ˇ

ˇ

“ sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

A

`

πpda1|sq ´ δapda
1
q
˘

fpa1q

ˇ

ˇ

ˇ

ˇ

(P.22)

“ sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

A

ˆ
ż

A
πpda2|sqδa1pda

2
q ´ δapda

1
q

˙

fpa1q

ˇ

ˇ

ˇ

ˇ

(P.23)

“ sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

A
πpda2|sq

ż

A

`

δa2pda
1
q ´ δapda

1
q
˘

fpa1q

ˇ

ˇ

ˇ

ˇ

(P.24)

ď

ż

A
πpda2|sq sup

f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

A

`

δa2pda
1
q ´ δapda

1
q
˘

fpa1q

ˇ

ˇ

ˇ

ˇ

(P.25)

“

ż

A
πpda2|sqdApa, a

2
q, (P.26)

where line (P.22) follows from observing that the dependence on s for function f can be neglected
because of the supremum, line (P.23) is obtained from the equality πpda1|sq “

ş

A πpda
2
|sqδa1pda

2
q,
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line (P.24) derives from moving the integral over a2 outside and recalling that δa2pda1q “ δa1pda
2
q,

line (P.25) comes from Jensen’s inequality. Finally, line (P.26) is obtained from the definition of
Kantorovich distance between Dirac deltas. Now, we take the expectation w.r.t. ηρ,πk . Recalling
that ρpds, daq “ ρSpdsqπpda|sq it follows that the same decomposition holds for ηρ,πk pds,daq “
ηρ,πk,Spdsqπpda|sq. Consequently, exploiting the above equation, we have:

ż

S
ηρ,πk,Spdsq

ż

A
πpda|sq

ˇ

ˇ

ˇ

ˇ

ż

A
πpda2|sqdApa, a

2
q

ˇ

ˇ

ˇ

ˇ

p

ď

ż

S
pηρ,πk qSpdsq

ż

A
πpda|sq

ż

A
πpda2|sqdApa, a

2
q
p

ď sup
sPS

ż

A

ż

A
πpda|sqπpda2|sqdApa, a

2
q
p
“ σpp ,

where the first inequality follows from an application of Jensen’s inequality. An application of
Minkowski’s inequality on the norm

›

›dπQk
›

›

p,η
ρ,π
k

concludes the proof.

Thus, the dissimilarity dπQk between Pπ and P δ can be bounded with four terms:

i. LQk is (an upper-bound of) the Lipschitz constant of the functions in the set Qk.
Indeed, under Assumptions 9.1 and 9.2 we can reduce the dissimilarity term to the
Kantorivich distance (Lemma A.20) for every ps, aq P S ˆA:

dπQkps, aq ď LQkW1

`

Pπp¨|s, aq, P δp¨|s, aq
˘

.

ii. pLπ ` 1q accounts for the Lipschitz continuity of the policy, i.e., policies that pre-
scribe similar actions in similar states have a small value of this quantity.

iii. LT represents the speed at which the environment state evolves over time.

iv. σp denotes the average distance (in Lp-norm) between two actions prescribed by
the policy in the same state. This term is zero for deterministic policies and can be
related to the maximum policy variance as shown in the following result.

Lemma 9.6. If A “ RdA , and dApa,a1q “ }a´ a1}2, then it holds that:

σ2
2 ď 2 sup

sPS

"

Var
A„πp¨|sq

rAs

*

.

Proof. Let s P S and define the mean-action in state s as:

apsq “

ż

A
aπpda|sq.

Thus, we have:

σ2
2 “ sup

sPS

ż

A

ż

A

›

›a´ a1
›

›

2

2
πpda|sqπpda1|sq

“ sup
sPS

ż

A

ż

A

›

›a´ a1 ˘ apsq
›

›

2

2
πpda|sqπpda1|sq

ď sup
sPS

ż

A

ż

A
}a´ apsq}22 πpda|sqπpda1|sq ` sup

sPS

ż

A

ż

A

›

›a1 ´ apsq
›

›

2

2
πpda|sqπpda1|sq
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“ sup
sPS

ż

A
}a´ apsq}22 πpda|sq ` sup

sPS

ż

A

›

›a1 ´ apsq
›

›

2

2
πpda1|sq

“ 2 sup
sPS

ż

A
}a´ apsq}22 πpda|sq “ 2 sup

sPS

"

Var
A„πp¨|sq

rAs

*

.

A more detailed discussion on the conditions requested in Theorem 9.5, with particular
reference to dynamical systems, is reported in Appendix B.4 of (Metelli et al., 2020a).

9.4 Persistent Fitted Q-Iteration

In this section, we introduce an extension of Fitted Q-Iteration (FQI, Ernst et al., 2005)
that employs the notion of persistence.4 We have introduced the class of AVI algorithms
in Section 3.2. Persisted Fitted Q-Iteration (PFQI) takes as input a target persistence
k P Ně1 and its goal is to approximate the k-persistent optimal action-value function
Q˚k . Starting from an initial estimate Qp0q, at each iteration we compute the next estimate
Qpj`1q by performing an approximate application of k-persistent Bellman optimal opera-
tor to the previous estimate Qpjq, i.e., Qpj`1q « T˚k Q

pjq. In practice, we have two sources
of approximation in this process: i) the representation of the Q-function; ii) the estimation
of the k-persistent Bellman optimal operator. (i) comes from the necessity of using func-
tion space F Ă BpS ˆ Aq to represent Qpjq when dealing with continuous state spaces.
(ii) derives from the approximate computation of T˚k which needs to be estimated from
samples.

Clearly, with samples collected in the k-persistent MDP Mk, the process described
above reduces to the standard FQI. However, our algorithm needs to be able to estimateQ˚k
for different values of k, using the same dataset of samples collected in the base MDP M
(at persistence 1).5 For this purpose, we can exploit the decomposition T˚k “ pT

δqk´1T˚

of Theorem 9.1 to reduce a single application of T˚k to a sequence of k applications of the
1-persistent operators. Specifically, at each iteration j with j mod k “ 0, given the current
estimate Qpjq, we need to perform (in this order) a single application of T˚ followed by
k ´ 1 applications of T δ , leading to the sequence of approximations:

Qpj`1q «

#

T˚Qpjq if j mod k “ 0

T δQpjq otherwise
. (9.10)

To estimate the Bellman operators, we access a dataset D “ tpSi, Ai, S
1
i, Riqu

n
i“1

collected in the base MDP M, where pSi, Aiq „ ν, S1i „ P p¨|Si, Aiq, Ri „ Rp¨|Si, Aiq,
and ν P PpS ˆ Aq is a sampling distribution. We employ D to compute the empirical
Bellman operators (Farahmand, 2011) defined for f P BpS ˆAq and i P t1, . . . , nu as:

p pT˚fqpSi, Aiq “ Ri ` γmax
aPA

 

fpS1i, aq
(

,

p pT δfqpSi, Aiq “ Ri ` γfpS
1
i, Aiq.

4From now on, we assume that |A| ă 8.
5In real-world cases, we might be unable to interact with the physical system to collect samples for any

persistence k of interest.

186



9.4. Persistent Fitted Q-Iteration

Algorithm 9.1: Persistent Fitted Q-Iteration PFQI (PFQI).

Input: k persistence, J number of iterations (J mod k “ 0), Qp0q initial action-value
function, F function space, D “ tpSi, Ai, S1i, Riquni“1 batch samples

Output: greedy policy πpJq

1 forall j “ 0, . . . , J ´ 1 do
2 if j mod k “ 0 then
3 Y

pjq
i “ pT˚QpjqpSi, Aiq, i P t1, ..., nu

4 else
5 Y

pjq
i “ pT δQpjqpSi, Aiq, i P t1, ..., nu

6 Qpj`1q
P arg minfPF

!

›

›f ´ Y pjq
›

›

2

2,D

)

7 πpJqpsq P arg maxaPAQ
pJq
ps, aq, @s P S

8 return πpJq

Phase 1

Phase 2

Phase 3

We have already shown in Section 3.1 that pT˚ is unbiased. Clearly, also pT δ is unbi-
ased conditioned to the current state-action pair pSi, Aiq, i.e., Erp pT δfqpSi, Aiq|Si, Ais “
pT δfqpSi, Aiq.

The pseudocode of PFQI is summarized in Algorithm 9.1. At each iteration j “
0, . . . J ´ 1, we first compute the target values Y pjq by applying the empirical Bellman
operators, pT˚ or pT δ , on the current estimate Qpjq (Phase 1). Then, we project the target
Y pjq onto the function space F by solving the least-squares problem (Phase 2):

Qpj`1q P arg min
fPF

"

›

›

›
f ´ Y pjq

›

›

›

2

2,D

*

“
1

n

n
ÿ

i“1

ˇ

ˇ

ˇ
fpSi, Aiq ´ Y

pjq
i

ˇ

ˇ

ˇ

2

.

Finally, we compute the approximation of the optimal policy πpJq, i.e., the greedy policy
w.r.t. QpJq (Phase 3).

9.4.1 Theoretical Analysis
In this section, we present the computational complexity analysis and the study of the error
propagation in PFQI.

Computational Complexity The computational complexity of PFQI decreases mono-
tonically with the persistence k. Whenever applying pT δ , we need a single evaluation of
Qpjq, while |A| evaluations are needed for pT˚ due to the max over the action space A.
The overall complexity of J iterations of PFQI with n samples is given in the following
result.

Proposition 9.7. Assuming that the evaluation of the estimated Q-function in a state action
pair has computational complexity Op1q, the computational complexity of J iterations of
PFQI run with a dataset D of n samples, neglecting the cost of the regression, is given by:

O
ˆ

Jn

ˆ

1`
|A| ´ 1

k

˙˙

.
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Proof. Let us consider an iteration j “ 0, . . . , J´1. If j mod k “ 0, we perform an application of
pT˚ which requires to perform n|A| evaluations of the next-state value function in order to compute
the maximum over the actions. On the contrary, when j mod k ‰ 0, we perform an application of
pT δ which requires just n evaluations, since the next-state value function is evaluated in the persistent
action only. By the definition of PFQI, J must be an integer multiple of the persistence k. Recalling
that a single evaluation of the approximate Q-function is Op1q, we have that the overall complexity
is given by:

O

¨

˝

ÿ

jPt0,...,J´1u^ j mod k“0

n|A| `
ÿ

jPt0,...,J´1u^ j mod k‰0

n

˛

‚

“ O
ˆ

J

k
n|A| ` Jpk ´ 1q

k
n

˙

“ O
ˆ

Jn

ˆ

1`
|A| ´ 1

k

˙˙

.

Error Propagation We now study the error propagation in PFQI. Given the sequence
of Q-functions estimates pQpjqqJj“0 Ă F produced by PFQI, we define the approximation
error at each iteration j “ 0, . . . , J ´ 1 as:

εpjq “

#

T˚Qpjq ´Qpj`1q if j mod k “ 0

T δQpjq ´Qpj`1q otherwise
. (9.11)

The goal of this analysis is to bound the distance between the k-persistent optimal Q-
function Q˚k and the Q-function Qπ

pJq

k of the greedy policy πpJq w.r.t. QpJq, after J iter-
ations of PFQI. Before proving the main result, we need to introduce a variation of the
concentrability coefficients (Antos et al., 2008; Farahmand, 2011) to account for action
persistence.

Definition 9.3 (Persistent Expected Concentrability). Let ρ, ν P PpS ˆ Aq, L P Ně1,
and an arbitrary sequence of stationary policies pπplqqLl“1. Let k P Ně1 be the persistence.
For any m1,m2,m3 P Ně1 and q P r1,8s, we define:

cVI1,k,q,ρ,νpm1,m2,m3;πq “

›

›

›

›

›

›

d
`

ρpPπk q
m1pP

π˚k
k qm2pP δqm3

˘

dν

›

›

›

›

›

›

q
q´1 ,ν

,

cVI2,k,q,ρ,νpm1,m2; pπplqqLl“1q “

›

›

›

›

›

d
`

ρpPπ
pLq

k qm1Pπ
pL´1q

k . . . Pπ
p1q

k pP δqm2
˘

dν

›

›

›

›

›

q
q´1 ,ν

.

If ρpPπk q
m1pP

π˚k
k qm2pP δqm3 (resp. ρpPπ

pLq

k qm1Pπ
pL´1q

k . . . Pπ
p1q

k pP δqm2 ) is not abso-
lutely continuous w.r.t. to ν, then we convene cVI1,ρ,νpm1,m2,m3;π, kq “ 8 (resp.
cVI2,ρ,νpm1,m2; pπplqqLl“1, kq “ 8).

This definition is a generalization of that provided in Farahmand (2011), that can be
recovered by setting k “ 1, q “ 2, and m3 “ 0 for the first coefficient and m2 “ 0 for
the second coefficient. The following result extends Theorem 3.4 of Farahmand (2011) to
account for action persistence.
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Theorem 9.8 (Error Propagation for PFQI). Let p ě 1, k P Ně1, J P Ně1 with J mod
k “ 0 and ρ P PpS ˆ Aq. Then for any sequence pQpjqqJj“0 Ă F uniformly bounded
by Qmax ď

Rmax

1´γ , the corresponding pεpjqqJ´1
j“0 defined in Equation (9.11) and for any

r P r0, 1s and q P r1,8s it holds that:

›

›

›
Q˚k ´Q

πpJq

k

›

›

›

p,ρ
ď

2γk

p1´ γqp1´ γkq

„

2

1´ γ
γ
J
pRmax

` C
1
2p

VI,ρ,νpJ, r, qqE
1
2p pεp0q, . . . , εpJ´1q; r, qq



,

where:

CVI,ρ,νpJ ; r, qq “

ˆ

1´ γk

2

˙2

sup
π0,...,πJPΠSR

#

J´1
ÿ

j“0

α
2p1´rq
s´1

j

ˆ 8
ÿ

m“0

γkm

ˆ

ˆ

cVI1,k,q,ρ,ν

ˆ

m,
J

k
´ j div k, k ´ j mod k ´ 1;πJ

˙

` cVI2,k,q,ρ,ν

´

m` 1, k ´ j mod k ´ 1; pπlq
j div k
l“1

¯

˙˙2
+

,

Epεp0q, . . . , εpJ´1q; r, qq “
J´1
ÿ

j“0

α2r
j

›

›

›
εpjq

›

›

›

2p

pq,ν
,

and αj “

$

&

%

p1´γqγJ´j´1

1´γJ`1 if 0 ď j ă J

p1´γqγJ

1´γJ`1 if j “ J
.

Proof. The proof follows most of the steps of Theorem 3.4 of Farahmand (2011). We start by
deriving a bound relating Q˚´QpJq to pεpjqqJ´1

j“0 . To this purpose, let us first define the cumulative
error over k iterations for every j mod k “ 0:

ε
pjq
k “ T˚k Q

pjq
´Qpj`kq. (P.27)

Let us denote with π˚k one of the optimal policies of the k-persistent MDP Mk. We have:

Q˚k ´Q
pj`kq

“ T
π˚
k

k Q˚k ´ T
π˚
k

k Qpjq ` T
π˚
k

k Qpjq ´ T˚k Q
pjq
` ε

pjq
k

ď γkP
π˚
k

k pQ˚k ´Q
pjq
q ` ε

pjq
k ,

Q˚k ´Q
pj`kq

“ T˚k Q
˚
k ´ T

πpjq

k Q˚ ` Tπ
pjq

k Q˚ ´ T˚k Q
pjq
` ε

pjq
k

ě γkPπ
pjq

k pQ˚k ´Q
pjq
q ` ε

pjq
k ,

where we exploited the fact that T˚k Q
pjq

ě T
π˚
k

k Qpjq, the definition of greedy policy πpjq that

implies that Tπ
pjq

k Qpjq “ T˚k Q
pjq and the definition of εpjqk . By unrolling the expression derived
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above, we have that for every J mod k “ 0:

Q˚k ´Q
pJq
ď

J
k
´1
ÿ

h“0

γJ´kph`1q

ˆ

P
π˚
k

k

˙ J
k
´h´1

ε
pjq
k ` γJ

ˆ

P
π˚
k

k

˙ J
k

pQ˚k ´Q
p0q
q

Q˚k ´Q
pJq
ě

J
k
´1
ÿ

h“0

γJ´kph`1q
´

Pπ
pJ´kq

k Pπ
pJ´2kq

k . . . Pπ
pkph`1qq

k

¯

ε
pjq
k

` γJ
´

Pπ
pJq

k Pπ
pJ´kq

k . . . Pπ
pkq

k

¯

pQ˚k ´Q
p0q
q.

(P.28)

We now provide the following bound relating the differenceQ˚k´Q
πpJq

k to the differenceQ˚k´Q
pJq:

Q˚k ´Q
πpJq

k “ T
π˚
k

k Q˚k ´ T
π˚
k

k QpJq ` T
π˚
k

k QpJq ´ T˚k Q
pJq
` T˚k Q

pJq
´ Tπ

pJq

k Qπ
pJq

k

ď T
π˚
k

k Q˚k ´ T
π˚
k

k QpJq ` T˚k Q
pJq
´ Tπ

pJq

k Qπ
pJq

k

“ γkP
π˚
k

k pQ˚ ´QpJqq ` γkPπ
pJq

k pQpJq ´Qπ
pJq

k q

“ γkP
π˚
k

k pQ˚ ´QpJqq ` γkPπ
pJq

k pQpJq ´Q˚k `Q
˚
k ´Q

πpJq

k q,

where we exploited the fact that T˚k Q
pJq

ě T
π˚
k

k QpJq and observed that T˚k Q
pJq

“ Tπ
pJq

k QpJq.
By using Lemma 4.2 of Munos (2007) we can derive:

Q˚k ´Q
πpJq

k ď γk
´

IdSˆA ´ γ
kPπ

pJq

k

¯´1
ˆ

P
π˚
k

k ´ Pπ
pJq

k

˙

pQ˚ ´QpJqq. (P.29)

By plugging Equation (P.28) into Equation (P.29):

Q˚k ´Q
πpJq

k ď γk
´

IdSˆA ´ γ
kPπ

pJq

k

¯´1

ˆ

„

J
k
´1
ÿ

h“0

γJ´kph`1q

˜

ˆ

P
π˚
k

k

˙ J
k
´h

´

´

Pπ
pJq

k Pπ
pJ´kq

k Pπ
pJ´2kq

k . . . Pπ
pkph`1qq

k

¯

¸

ε
pjq
k

` γJ
˜

ˆ

P
π˚
k

k

˙ J
k
`1

´

´

Pπ
pJq

k Pπ
pJq

k Pπ
pJ´kq

k . . . Pπ
pkq

k

¯

¸

pQ˚k ´Q
p0q
q



.

(P.30)
Before proceeding, we need to relate the cumulative errors εpjqk to the single-step errors εpjq:

ε
pjq
k “ T˚k Q

pjq
´Qpj`kq

“ pT δqk´1T˚Qpjq ´ pT δqk´1Qpj`1q
` pT δqk´1Qpj`1q

´Qpj`kq

“ γk´1
pP δqk´1

´

T˚Qpjq ´Qpj`1q
¯

` pT δqk´1Qpj`1q
´Qpj`kq

“ γk´1
pP δqk´1εpjq ` pT δqk´1Qpj`1q

´Qpj`kq.

Let us now consider the remaining term pT δqk´1Qpj`1q
´Qpj`kq:

pT δqk´1Qpj`1q
´Qpj`kq “ pT δqk´1Qpj`1q

´ pT δqk´2Qpj`2q
` pT δqk´2Qpj`2q

´Qpj`kq

“ γk´2
pP δqk´2

´

T δQpj`1q
´Qpj`2q

¯

` pT δqk´2Qpj`2q
´Qpj`kq

“ γk´2
pP δqk´2εpj`1q

` pT δqk´2Qpj`2q
´Qpj`kq
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“

k
ÿ

l“2

γk´lpP δqk´lεpj`l´1q,

where the last step is obtained by unrolling the recursion. Putting all together, we get:

ε
pjq
k “

k
ÿ

l“1

γk´lpP δqk´lεpj`l´1q. (P.31)

Consequently, we can rewrite Equation (P.30) as follows:

Q˚k ´Q
πpJq

k ď γk
´

IdSˆA ´ γ
kPπ

pJq

k

¯´1

ˆ

« J
k
´1
ÿ

h“0

γJ´kph`1q

˜

ˆ

P
π˚
k

k

˙ J
k
´h

´

´

Pπ
pJq

k Pπ
pJ´kq

k Pπ
pJ´2kq

k . . . Pπ
pkph`1qq

k

¯

¸

ˆ

k
ÿ

l“1

γk´lpP δqk´lεpj`l´1q (P.32)

` γJ
˜

ˆ

P
π˚
k

k

˙ J
k
`1

´

´

Pπ
pJq

k Pπ
pJq

k Pπ
pJ´kq

k . . . Pπ
pkq

k

¯

¸

pQ˚k ´Q
p0q
q

ff

“ γk
´

IdSˆA ´ γ
kPπ

pJq

k

¯´1

ˆ

„

J
k
´1
ÿ

h“0

k
ÿ

l“1

γJ´kh´l
˜

ˆ

P
π˚
k

k

˙ J
k
´h

´

´

Pπ
pJq

k Pπ
pJ´kq

k Pπ
pJ´2kq

k . . . Pπ
pkph`1qq

k

¯

¸

(P.33)

ˆ pP δqk´lεpj`l´1q

` γJ
˜

ˆ

P
π˚
k

k

˙ J
k
`1

´

´

Pπ
pJq

k Pπ
pJq

k Pπ
pJ´kq

k . . . Pπ
pkq

k

¯

¸

pQ˚k ´Q
p0q
q



“ γk
´

IdSˆA ´ γ
kPπ

pJq

k

¯´1

ˆ

„ J´1
ÿ

j“0

γJ´j´1

˜

ˆ

P
π˚
k

k

˙ J
k
´j div k

´

´

Pπ
pJq

k Pπ
pJ´kq

k Pπ
pJ´2kq

k . . . Pπ
pJ´kpj div k`1qq

k

¯

¸

ˆ pP δqk´j mod k´1εpjq

` γJ
˜

ˆ

P
π˚
k

k

˙ J
k
`1

´

´

Pπ
pJq

k Pπ
pJq

k Pπ
pJ´kq

k . . . Pπ
pkq

k

¯

¸

pQ˚k ´Q
p0q
q



(P.34)

ď γk
´

IdSˆA ´ γ
kPπ

pJq

k

¯´1

ˆ

„ J´1
ÿ

j“0

γJ´j´1

˜

ˆ

P
π˚
k

k

˙ J
k
´j div k

`

´

Pπ
pJq

k Pπ
pJ´kq

k Pπ
pJ´2kq

k . . . Pπ
pJ´kpj div k`1qq

k

¯

¸

ˆ pP δqk´j mod k´1
ˇ

ˇ

ˇ
εpjq

ˇ

ˇ

ˇ

` γJ
˜

ˆ

P
π˚
k

k

˙ J
k
`1

`

´

Pπ
pJq

k Pπ
pJq

k Pπ
pJ´kq

k . . . Pπ
pkq

k

¯

¸

ˇ

ˇ

ˇ
Q˚k ´Q

p0q
ˇ

ˇ

ˇ



, (P.35)

where line (P.33) derives from rearranging the two summations, line (P.34) is obtained from a re-
definition of the indexes. Specifically, we observed that h “ j div k, j ` 1 “ kh ` l, and

191



Chapter 9. Control Frequency Adaptation

l “ j mod k ` 1. Finally, line (P.35) is obtained by applying the absolute value to the right hand
side and using Jensen’s inequality. We now introduce the following terms. If 0 ď j ă J :

Aj “
1´ γk

2

´

IdSˆA ´ γ
kPπ

pJq

k

¯´1
˜

ˆ

P
π˚
k

k

˙ J
k
´j div k

`

´

Pπ
pJq

k Pπ
pJ´kq

k Pπ
pJ´2kq

k . . . Pπ
pJ´kpj div k`1qq

k

¯

¸

pP δqk´j mod k´1.

Instead, if j “ J :

AJ “
1´ γk

2

´

IdSˆA ´ γ
kPπ

pJq

k

¯´1
˜

ˆ

P
π˚
k

k

˙ J
k
`1

`

´

Pπ
pJq

k Pπ
pJq

k Pπ
pJ´kq

k . . . Pπ
pkq

k

¯

¸

.

Let us recall the definition of αj as in Farahmand (2011):

αj “

$

&

%

p1´γqγJ´j´1

1´γJ`1 if 0 ď j ă J

p1´γqγJ

1´γJ`1 if j “ J
. (P.36)

Recalling that
ˇ

ˇ

ˇ
Q˚k ´Q

p0q
ˇ

ˇ

ˇ
ď Qmax `

Rmax
1´γ

ď
2Rmax

1´γ
and applying Jensen’s inequality we get to

the inequality:

Q˚k ´Q
πpJq

k ď
2γkp1´ γJ`1

q

p1´ γkqp1´ γq

«

J´1
ÿ

j“0

αjAj

ˇ

ˇ

ˇ
εpjq

ˇ

ˇ

ˇ
` αJ

2Rmax

1´ γ
1

ff

,

where 1 denotes the constant function on S ˆ A with value 1. Taking the Lppρq-norm both sides,
recalling that

řJ
j“1 αj “ 1 and that the terms Aj are positive linear operators Aj : BpS ˆAq Ñ

BpS ˆ Aq such that Aj1 “ 1. Thus, by Lemma 12 of Antos et al. (2008), we can apply Jensen’s
inequality twice (once w.r.t. αj and once w.r.t. Aj), getting:

›

›

›
Q˚k ´Q

πpJq

k

›

›

›

p

p,ρ
ď

ˆ

2γkp1´ γJ`1
q

p1´ γkqp1´ γq

˙p

ρ

«

J´1
ÿ

j“0

αjAj

ˇ

ˇ

ˇ
εpjq

ˇ

ˇ

ˇ

p

` αJ

ˆ

2Rmax

1´ γ

˙p

1

ff

.

Consider now the individual terms ρAj
ˇ

ˇ

ˇ
εpjq

ˇ

ˇ

ˇ

p

for 0 ď j ă J . By the properties of the Neumann
series we have:

ρAj

ˇ

ˇ

ˇ
εpjq

ˇ

ˇ

ˇ

p

“
1´ γk

2
ρ
´

IdSˆA ´ γ
kPπ

pJq

k

¯´1

ˆ

˜

ˆ

P
π˚
k

k

˙ J
k
´j div k

`

´

Pπ
pJq

k Pπ
pJ´kq

k Pπ
pJ´2kq

k . . . Pπ
pJ´kpj div k`1qq

k

¯

¸

ˆ pP δqk´j mod k´1
ˇ

ˇ

ˇ
εpjq

ˇ

ˇ

ˇ

p

“
1´ γk

2
ρ

«

8
ÿ

m“0

γkm
˜

´

Pπ
pJq

k

¯m
ˆ

P
π˚
k

k

˙ J
k
´j div k

`

ˆ

´

Pπ
pJq

k

¯m`1

Pπ
pJ´kq

k Pπ
pJ´2kq

k . . . Pπ
pJ´kpj div kqq

k

˙

¸ff

ˆ pP δqk´j mod k´1
ˇ

ˇ

ˇ
εpjq

ˇ

ˇ

ˇ

p

.
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9.4. Persistent Fitted Q-Iteration

We now aim at introducing the concentrability coefficients and for this purpose, we employ the
following inequality. For any measurable function f P BpX q, and the probability measures µ1, µ2 P

PpX q such that µ1 ! µ2, we have the following Hölder’s inequality, for any q P r1,8s:

ż

X
fdµ1 ď

˜

ż

X

ˇ

ˇ

ˇ

ˇ

dµ1

dµ2

ˇ

ˇ

ˇ

ˇ

q
q´1

dµ2

¸

q´1
q ˆ

ż

X
|f |qdµ2

˙ 1
q

. (P.37)

We now focus on a single term ρ
´

Pπ
pJq

k

¯m
ˆ

P
π˚
k

k

˙ J
k
´j div k ˇ

ˇ

ˇ
εpjq

ˇ

ˇ

ˇ

p

and we apply the above in-

equality:

ρ
´

Pπ
pJq

k

¯m
ˆ

P
π˚
k

k

˙ J
k
´j div k

pP δqk´j mod k´1
ˇ

ˇ

ˇ
εpjq

ˇ

ˇ

ˇ

p

ď

¨

˚

˚

˚

˚

˝

ż

SˆA

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dρ
´

Pπ
pJq

k

¯m
ˆ

P
π˚
k

k

˙ J
k
´j div k

pP δqk´j mod k´1

dν

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

q
q´1

dν

˛

‹

‹

‹

‹

‚

q´1
q

ˆ

ˆ
ż

SˆA

ˇ

ˇ

ˇ
εpjq

ˇ

ˇ

ˇ

pq

dν

˙ 1
q

“ cVI1,k,q,ρ,ν

ˆ

m,
J

k
´ j div k, k ´ j mod k ´ 1;πpJq

˙

›

›

›
εpjq

›

›

›

p

pq,ν
.

Proceeding in an analogous way for the remaining terms, we get to the expression:

›

›

›
Q˚k ´Q

πpJq

k

›

›

›

p

p,ρ
ď

ˆ

2γkp1´ γJ`1
q

p1´ γkqp1´ γq

˙p
«

1´ γk

2

J´1
ÿ

j“0

8
ÿ

m“0

γkm

ˆ

ˆ

cVI1,k,q,ρ,ν

ˆ

m,
J

k
´ j div k, k ´ j mod k ´ 1;πpJq

˙

` cVI2,k,q,ρ,ν

´

m` 1, k ´ j mod k ´ 1; pπpJ´lkqqj div k
l“1

¯

˙

›

›

›
εpjq

›

›

›

p

pq,ν

` αJ

ˆ

2Rmax

1´ γ

˙p
ff

.

To separate the concentrability coefficients and the approximation errors, we apply Hölder’s inequal-
ity with s P r1,8s:

J
ÿ

j“0

ajbj ď

˜

J
ÿ

j“0

|aj |
s

¸
1
s
´

|bj |
s
s´1

¯
s´1
s
. (P.38)

Let r P r0, 1s, we set:

aj “ αrj

›

›

›
εpjq

›

›

›

p

pq,ν
,

bj “ α1´r
j

1´ γk

2

J´1
ÿ

j“0

8
ÿ

m“0

γkm
ˆ

cVI1,k,q,ρ,ν

ˆ

m,
J

k
´ j div k, k ´ j mod k ´ 1;πpJq

˙

` cVI2,k,q,ρ,ν

´

m` 1, k ´ j mod k ´ 1; pπpJ´lkqqj div k
l“1

¯

˙

.
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The application of Hölder’s inequality leads to:

›

›

›
Q˚k ´Q

πpJq

k

›

›

›

p

p,ρ
ď

ˆ

2γkp1´ γJ`1
q

p1´ γkqp1´ γq

˙p
1´ γk

2

«

J´1
ÿ

j“0

α
sp1´rq
s´1

j

ˆ 8
ÿ

m“0

γkm

ˆ

ˆ

cVI1,k,q,ρ,ν

ˆ

m,
J

k
´ j div k, k ´ j mod k ´ 1;πpJq

˙

` cVI2,k,q,ρ,ν

´

m` 1, k ´ j mod k ´ 1; pπpJ´lkqqj div k
l“1

¯

˙˙
s
s´1

ff

s´1
s

ˆ

«

J´1
ÿ

j“0

αsrj

›

›

›
εpjq

›

›

›

sp

pq,ν

ff
1
s

`

ˆ

2γkp1´ γJ`1
q

p1´ γkqp1´ γq

˙p

αJ

ˆ

2Rmax

1´ γ

˙p

.

Since the policies pπpJ´lkqqj div k
l“1 are not known, we define the following quantity by taking the

supremum over any sequence of policies:

CVI,ρ,νpJ ; r, s, qq “

ˆ

1´ γk

2

˙s

sup
π0,...,πJPΠ

SR

#

J´1
ÿ

j“0

α
sp1´rq
s´1

j

ˆ 8
ÿ

m“0

γkm

ˆ

ˆ

cVI1,k,q,ρ,ν

ˆ

m,
J

k
´ j div k, k ´ j mod k ´ 1;πJ

˙

` cVI2,k,q,ρ,ν

´

m` 1, k ´ j mod k ´ 1; pπlq
j div k
l“1

¯

˙˙
s
s´1

+

.

(P.39)

Moreover, we define the following term that embeds all the terms related to the approximation error:

Epεp0q, . . . , εpJ´1q; r, s, qq “
J´1
ÿ

j“0

αsrj

›

›

›
εpjq

›

›

›

sp

pq,ν
. (P.40)

Observing that 1´γ
1´γJ`1 ď 1 and 1´ γJ´1

ď 1, we can put all together and taking the p-th root and
recalling that the inequality holds for all q P r1,8s, r P r0, 1s, and s P r1,8s:

›

›

›
Q˚k ´Q

πpJq

k

›

›

›

p,ρ
ď

2γk

p1´ γkqp1´ γq

«

γ
J
p

2Rmax

1´ γ
`

` inf
qPr1,8s
rPr0,1s
sPr1,8s

!

CVI,ρ,νpJ ; r, s, qq
s´1
ps Epεp0q, . . . , εpJ´1q; r, s, qq

1
ps

)

ff

.

The statement is simplified by taking s “ 2.

We immediately observe that for k “ 1 we recover Theorem 3.4 of Farahmand (2011).
The term CVI,ρ,νpJ ; r, qq, defined in terms of suitable concentrability coefficients (Def-
inition 9.3), encodes the distribution shift between the sampling distribution ν and the
one induced by the greedy policy sequence pπpjqqJj“0 encountered along the execution of
PFQI. Ep¨; r, qq incorporates the approximation errors pεpjqqJ´1

j“0 . In principle, it is hard
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Algorithm 9.2: Heuristic Persistence Selection.
Input: batch samples D “ tτiumi“1, set of persistences K, set of Q-function tQk : k P Ku,

regressor Reg
Output: approximately optimal persistence rk

1 forall k P K do
2 pJρk “

1
m

řm
i“1 VkpSτi,0q

3 Use the Reg to get an estimate rQk of T˚k Qk
4

›

› rQk ´Qk
›

›

1,D “
1

řm
i“1 T pτiq

řm
i“1

řT pτiq´1
t“0 | rQkpSτi,t, Aτi,tq ´QkpSτi,t, Aτi,tq|

5 rk P arg maxkPKtBku “ pJρk ´
1

1´γk

›

› rQk ´Qk
›

›

1,D
6 return rk

to compare the values of these terms for different persistences k since both the greedy
policies and the regression problems are different. Nevertheless, it is worth noting that the
multiplicative term γk

1´γk
decreases in k P Ně1. Thus, other things being equal, the bound

value decreases when increasing the persistence.
It is worth noting that this analysis and PFQI more in general resembles a particular

instance of non-stationary AVI Scherrer and Lesner (2012); Lesner and Scherrer (2015) in
which the non-stationary policy is the k-persistent policy instead of the sequence of the
last k policies.

Visualizing the Control Frequency Trade-off Thus, the trade-off in the choice of con-
trol frequency, which motivates action persistence, can now be stated more formally. We
aim at finding the persistence k P Ně1 that, for a fixed J , allows learning a policy πpJq

whose Q-function Qπ
pJq

k is the closest to Q˚. Consider the decomposition obtained via
triangular inequality:

›

›

›
Q˚ ´Qπ

pJq

k

›

›

›

p,ρ
ď }Q˚ ´Q˚k}p,ρ `

›

›

›
Q˚k ´Q

πpJq

k

›

›

›

p,ρ
.

The term }Q˚ ´Q˚k}p,ρ accounts for the performance degradation due to action persis-
tence: it is algorithm-independent, and it increases in k (Theorem 9.3). Instead, the second
term }Q˚k ´Q

πpJq

k }p,ρ decreases with k and depends on the algorithm (Theorem 9.8). Un-
fortunately, optimizing their sum is hard since the individual bounds contain terms that are
not known in general (e.g., Lipschitz constants, εpjq). The next section proposes heuristics
to overcome this problem.

9.5 Persistence Selection

In this section, we discuss how to select a persistence k in a set K Ă Ně1 of candidate
persistences, when we are given a set of estimated Q-functions: tQk : k P Ku.6 Each Qk
induces a greedy policy πk. Our goal is to find the persistence k P K such that πk has the

6For instance, but not necessarily, the Qk can be obtained by executing PFQI with different persistences
k P K.
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maximum expected return in the corresponding k-persistent MDP Mk:

k˚ P arg max
kPK

tJρ,πkk u , (9.12)

where ρ P PpSq is an evaluation distribution and Jρ,πkk “
ş

S ρpdsqV
πk
k psq is the expected

return of policy πk executed in the k-persistent MDP Mk.
In principle, we could execute πk in Mk to get an estimate of Jρ,πkk and employ it

to select the persistence k. However, in the batch setting, further interactions with the
environment might be not allowed. On the other hand, directly using the estimated Q-
functionQk is inappropriate, since we need to take into account how wellQk approximates
Qπkk . This trade-off is encoded in the following result, which makes use of the expected
Bellman residual.

Lemma 9.9. LetQ P BpSˆAq and π be a greedy policy w.r.t.Q. Let Jρ “
ş

ρpdsqV psq,
with V psq “ maxaPAtQps, aqu for all s P S. Then, for any k P Ně1, it holds that:

Jρ,πk ě Jρ ´
1

1´ γk
}T˚k Q´Q}1,ηρ,π , (9.13)

where ηρ,π “ p1´γkqρπ
`

IdSˆA ´ γkPπk
˘´1

, is the γ-discounted stationary distribution
induced by policy π and initial state distribution ρ in MDP Mk.

Proof. We start by providing the following equality, recalling that T˚k Q “ Tπk Q, being π the greedy
policy w.r.t. Q:

Qπk ´Q “ Tπk Q
π
k ´ T

π
k Q` T

˚
k Q´Q

“ γkPπk pQ
π
k ´Qq ` T

˚
k Q´Q

“

´

IdSˆA ´ γ
kPπk

¯´1
`

T˚k Q´Q
˘

,

where the last equality follows from the properties of the Neumann series. We take the expectation
w.r.t. to the distribution ρπ both sides. For the left hand side we have:

Jρ,πk ´ Jρ “ ρπQπk ´ ρπQ.

Concerning the right hand side, instead, we have:

ρπ
´

IdSˆA ´ γ
kPπk

¯´1
`

T˚k Q´Q
˘

“
1

1´ γk
ηρ,π

`

T˚k Q´Q
˘

,

where we introduced the γ-discounted stationary distribution (Sutton et al., 1999a) after normaliza-
tion. Putting all together, we can derive the following inequality:

Jρ,πk ´ Jρ “
1

1´ γk
ηρ,π

`

T˚k Q´Q
˘

ě ´
1

1´ γk
ηρ,π

ˇ

ˇT˚k Q´Q
ˇ

ˇ

“ ´
1

1´ γk
›

›T˚k Q´Q
›

›

1,ηρ,π
.
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Heuristic To get a usable bound from Lemma 9.9, we need to make some simplifica-
tions. First, we assume that D „ ν is composed of m trajectories, i.e., D “ tτiu

m
i“1 and

the initial states are sampled as Sτi,0 „ ρ. In this way, Jρ can be estimated from samples
as:

pJρ “
1

m

m
ÿ

i“1

V pSτi,0q.

Second, since we are unable to compute expectations over ηρ,π , we replace it with the
sampling distribution ν.7 Lastly, estimating the expected Bellman residual is problematic
since its empirical version is biased (Antos et al., 2008). Thus, we resort to an approach
similar to (Farahmand and Szepesvári, 2011), assuming to have a regressor Reg able to
output an approximation rQk of T˚k Q. We can proceed to the decomposition, thanks to the
triangular inequality:

}T˚k Q´Q}1,ν ď
›

›

›

rQk ´Q
›

›

›

1,ν
`

›

›

›
T˚k Q´

rQk

›

›

›

1,ν
. (9.14)

As discussed in Farahmand and Szepesvári (2011), simply using
›

›

›

rQk ´Q
›

›

›

1,ν
as a proxy

for }T˚k Q´Q}1,ν might be overly optimistic. To overcome this problem we must prevent
the underestimation of the expected Bellman residual. The idea proposed in Farahmand
and Szepesvári (2011) consists in replacing the regression error

›

›

›
T˚k Q´

rQk

›

›

›

1,ν
with a

high-probability bound bk,G , depending on the function space G of the chosen regressor
Reg. Clearly, we have the new problem of deriving a meaningful bound bk,G . This issue is
treated in Section 7.4 of Farahmand and Szepesvári (2011). If G is a small function space,
i.e., with finite pseudo-dimension, we can employ a standard learning theory bound (Györfi
et al., 2002). Since for the persistence selection, we employ the same function space G and
the same number of samples m for all persistences k P K, the value of such a bound will
not depend on k and, therefore, it can be neglected in the optimization process. We stress
that our goal is to provide a practical method able to suggest a reasonable persistence. In
this way, we simply replace }T˚k Q´Q}1,ν with } rQk ´ Q}1,D. In practice, we set Q “

QpJq and we obtain rQk running PFQI for k additional iterations, setting rQk “ QpJ`kq.
Thus, the procedure (Algorithm 9.2) reduces to optimizing the index:

rk P arg max
kPK

tBku “ pJρk ´
1

1´ γk

›

›

›

rQk ´Qk

›

›

›

1,D
. (9.15)

9.6 Related Works

In this section, we revise the works connected to persistence, focusing on continuous-time
RL and temporal abstractions.

7This introduces a bias that is negligible if }ηρ,π{ν}8 « 1. More intuition about when this condition is
realized can be found in Appendix C.1 of Metelli et al. (2020a).
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Continuous-time RL Among the first attempts to extend value-based RL to continuous-
time there is advantage updating (Bradtke and Duff, 1994), in which Q-learning is mod-
ified to account for infinitesimal control timesteps. Instead of storing the Q-function,
the advantage function Aps, aq “ Qps, aq ´ V psq is recorded. The continuous time is
addressed in Baird (1994) by means of the semi-Markov decision processes (Howard,
1963) for finite-state problems. Restricting our brief treatment to the case of determinis-
tic systems, in which the state evolves through time according to the differential equation
9sptq “ fpsptq,uptqq, the goal consists in finding the control signal uptq P BpUq, where U
is the space of allowed control signals, for t P Rě0 so as to maximize the value function
as follows:

V upsq “

ż

Rě0

eβtrpsptq,uptqqdt,

where γ “ eβ is the discount factor. The optimal control literature has extensively studied
the solution of the Hamilton-Jacobi-Bellman equation (Kirk, 2004), i.e., the continuous-
time counterpart of the Bellman equation, that, for deterministic systems can be stated
as:

V ˚psq “ sup
up¨qPBpUq

tV upsqu “
1

β
sup
uPU

"

rps,uq `
BV ˚

Bs
psqT fps,uq

*

.

However, most of the works assume the knowledge of the environment (Bertsekas, 2005;
Menaldi, 1994). The model-free case has been tackled by resorting to time (and space)
discretizations (Peterson, 1993), with also convergence guarantees (Munos, 1997; Munos
and Bourgine, 1997), and coped with function approximation (Dayan and Singh, 1995;
Doya, 2000). More recently, the sensitivity of deep RL algorithm to the time discretization
has been analyzed in Tallec et al. (2019), proposing an adaptation of advantage updating
to deal with small time scales, that can be employed with deep architectures.

Temporal Abstractions The notion of action persistence can be seen as a form of tem-
poral abstraction (Sutton et al., 1999b; Precup, 2001). Temporally extended actions have
been extensively used in the hierarchical RL literature to model different time resolu-
tions (Singh, 1992a,b), subgoals (Dietterich, 1998), and combined with the actor-critic
architectures (Bacon et al., 2017). Persisting an action is a particular instance of a semi-
Markov option, always lasting k steps. According to the flat option representation (Pre-
cup, 2001), we have as initiation set I “ S the set of all states, as internal policy the
policy that plays deterministically the action taken when the option was initiated, i.e., the
k-persistent policy, and as termination condition whether k timesteps have passed after
the option started, i.e., βphtq “ 1tt mod k“0u. Interestingly, in Mann et al. (2015) an ap-
proximate value iteration procedure for options lasting at least a given number of steps is
proposed and analyzed. This approach shares some similarities with action persistence.
Nevertheless, we believe that the option framework is more general and usually the time
abstractions are related to the semantic of the tasks, rather than based on the modification
of the control frequency, like action persistence.
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Environment
Expected return at persistence k ( pJρ,πkk , mean ˘ std) Performance loss

k “ 1 k “ 2 k “ 4 k “ 8 k “ 16 k “ 32 k “ 64 (δ mean ˘ std)

Cartpole 169.9˘ 5.8 176.5˘ 5.0 239.5˘ 4.4 10.0˘ 0.0 9.8˘ 0.0 9.8˘ 0.0 9.8˘ 0.0 0.0˘ 0.0
MountainCar ´111.1˘ 1.5 ´103.6˘ 1.6 ´97.2˘ 2.0 ´93.6˘ 2.1 ´94.4˘ 1.8 ´92.4˘ 1.5 ´136.7˘ 0.9 1.88˘ 0.85
LunarLander ´165.8˘ 50.4 ´12.8˘ 4.7 1.2˘ 3.6 2.0˘ 3.4 ´44.1˘ 6.9 ´122.8˘ 10.5 ´121.2˘ 8.6 2.12˘ 4.21
Pendulum ´116.7˘ 16.7 ´113.1˘ 16.3 ´153.8˘ 23.0 ´283.1˘ 18.0 ´338.9˘ 16.3 ´364.3˘ 22.1 ´377.2˘ 21.7 3.52˘ 0.0
Acrobot ´89.2˘ 1.1 ´82.5˘ 1.7 ´83.4˘ 1.3 ´122.8˘ 1.3 ´266.2˘ 1.9 ´287.3˘ 0.3 ´286.7˘ 0.6 0.80˘ 0.27
Swimmer 21.3˘ 1.1 25.2˘ 0.8 25.0˘ 0.5 24.0˘ 0.3 22.4˘ 0.3 12.8˘ 1.2 14.0˘ 0.2 2.69˘ 1.71
Hopper 58.6˘ 4.8 61.9˘ 4.2 62.2˘ 1.7 59.7˘ 3.1 60.8˘ 1.0 66.7˘ 2.7 73.4˘ 1.2 5.33˘ 2.32
Walker 2D 61.6˘ 5.5 37.6˘ 4.0 62.7˘ 18.2 80.8˘ 6.6 102.1˘ 19.3 91.5˘ 13.0 97.2˘ 17.6 5.10˘ 3.74

Table 9.1: Results of PFQI in different environments and persistences. For each persis-
tence k, we report the sample mean and the standard deviation of the estimated return
of the last policy pJρ,πkk . For each environment, the persistence with the highest av-
erage performance and the ones not statistically significantly different from that one
(Welch’s t-test with p ă 0.05) are in bold. The last column reports the mean and the
standard deviation of the performance loss δ between the optimal persistence and the
one selected by the index Bk (Equation (9.15)).

9.7 Experimental Evaluation

In this section, we provide the empirical evaluation of PFQI, with the threefold goal: i)
proving that a persistence k ą 1 can boost learning, leading to more profitable policies, ii)
assessing the quality of our persistence selection method, and iii) studying how the batch
size influences the performance of PFQI policies for different persistences. For additional
experiments, the hyperparameter values, and the implementation details, please refer to
Appendix D of the original paper (Metelli et al., 2020a).

9.7.1 Main Experiment

We train PFQI, using extra-trees (Geurts et al., 2006) as a regression model, for J itera-
tions and different values of k, starting with the same dataset D collected at persistence
1. To compare the performance of the learned policies πk at the different persistences, we
estimate their expected return Jρ,πkk in the corresponding MDP Mk. Table 9.1 shows the
results for different continuous environments and different persistences averaged over 20
runs and highlighting in bold the persistence with the highest average performance and the
ones that are not statistically significantly different from that one. Across the different en-
vironments we observe some common trends in line with our theory: i) persistence 1 rarely
leads to the best performance; ii) excessively increasing persistence prevents the control at
all. In Cartpole (Barto et al., 1983), we easily identify a persistence (k “ 4) that outper-
forms all the others. In the Lunar Lander (Brockman et al., 2016) persistences k P t4, 8u
are the only ones that lead to positive return (i.e., the lander does not crash) and in the
Acrobot domain (Geramifard et al., 2015) we identify k P t2, 4u as optimal persistences.
A qualitatively different behavior is displayed in Mountain Car (Moore, 1991), Pendu-
lum (Brockman et al., 2016), and Swimmer (Coulom, 2002), where we observe a plateau
of three persistences with similar performance. An explanation for this phenomenon is
that, in those domains, the optimal policy tends to persist actions on its own, making the
difference less evident. Intriguingly, the more complex Mujoco domains, like Hopper and
Walker 2D (Erickson et al., 2019), seem to benefit from the higher persistences.
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Ĵ
ρ k

0 200 400

0

2

4

6

8

Iteration

‖Q̃
k
−
Q
k
‖ 1
,D

0 200 400

−400

−200

0

Iteration

In
de

x
B
k

k = 1 k = 2 k = 4 k = 8 k = 16

Figure 9.4: Expected return pJρ,πkk , estimated return pJρk , estimated expected Bellman resid-
ual } rQk ´ Qk}1,D, and persistence selection index Bk in the Cartpole experiment as
a function of the number of iterations for different persistences. 20 runs, 95 % c.i.
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9.7. Experimental Evaluation

9.7.2 Persistence Selection Experiment

To test the quality of our persistence selection method, we compare the performance of
the estimated optimal persistence, i.e., the one with the highest estimated expected return
pk P arg maxkPKt pJ

ρ,πk
k u, and the performance of the persistence rk selected by maximizing

the indexBk (Equation (9.15)). For each run i P t1, . . . , 20u, we compute the performance
loss δi “ pJ

ρ,π
pk

pk
´ pJ

ρ,π
rki

rki
and we report it in the last column of Table 9.1. In the Cartpole

experiment, we observe a zero loss, which means that our heuristic always selects the
optimal persistence (k “ 4). Differently, non-zero loss occurs in the other domains, which
means that sometimes the index Bk mispredicts the optimal persistence. Nevertheless, in
almost all cases the average performance loss is significantly smaller than the magnitude
of the return, proving the effectiveness of our heuristics.

In Figure 9.4, we show the learning curves for the Cartpole experiment, highlight-
ing the components that contribute to the index Bk. The first plot reports the estimated
expected return pJρ,πkk , obtained by averaging 10 trajectories executing πk in the environ-
ment Mk, which confirms that k “ 4 is the optimal persistence. The second plot shows
the estimated return pJρk obtained by averaging the Q-function Qk learned with PFQI, over
the initial states sampled from ρ. We can see that for k P t1, 2u, PFQI tends to overesti-
mate the return, while for k “ 4 we notice a slight underestimation. The overestimation
phenomenon can be explained by the fact that with small persistences we perform a large
number of applications of the operator pT˚, which involves a maximization over the action
space, injecting an overestimation bias. By combining this curve with the expected Bell-
man residual (third plot), we get the value of our persistence selection index Bk (fourth
plot). Finally, we observe that Bk correctly ranks persistences 4 and 8, but overestimates
persistences 8 and 16, compared to persistence 1.

9.7.3 Batch-Size Experiment

In previous experiments, we assumed we could choose the batch size, however, in real
contexts this is not always allowed. In PFQI, lower batch sizes increase the estimation
error, but the effect can change according to the used persistence. We investigate how the
batch size influences the performance of PFQI policies for different persistences. There-
fore, we run PFQI on the Trading environment (described below) changing the number of
sampled trajectories. In Figure 9.5, we notice that the performance improves as the batch
size increases, for all persistences. Moreover, as it can be noticed in Figure 9.6, if the batch
size is small n P t10, 50u, higher persistences k P t2, 4, 8u result in better performances,
while, with persistence k “ 1, performance decreases with the iterations. In particular,
with 50 trajectories, we can notice that all persistences except from k “ 1 obtain a posi-
tive gain. Since data is taken from real market prices, this environment is very noisy, thus,
when the amount of samples is limited, PFQI can exploit higher persistences to mitigate
the poor estimation.

FX Trading Environment Description This environment simulates trading on a foreign
exchange market. Trader’s own currency is USD and it can be traded with EUR. The trader
can be in three different positions w.r.t. the foreign currency: long, short or flat, indicated,
respectively, with 1,´1, 0. Short selling is possible, i.e., the agent can sell a stock it does
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Figure 9.5: Expected return pJρ,πkk in the Trading experiment as a function of the batch
size. 10 runs, 95 % c.i.

not own. At each timestep the agent can choose its next position with its action at. The
exchange rate at time t is pt, and the reward is equal to rt “ atppt ´ pt´1q ´ f |at ´
at´1|, where the first term is the profit or loss given by the action at, and the second term
represents the transaction costs, where f is a proportionality constant set to 4 ¨ 10´5. A
timestep corresponds to 1 minute, an episode corresponds to a workday and it is composed
by 1170 steps. It is assumed that at each time-step the trader goes long or short of the same
unitary amount, thus the profits are not re-invested (and similarly for the losses), which
means that the return is the sum of all the daily rewards (with a discount factor equal to
0.9999). The state consists of the last 60 minutes of price differences with the first price of
the day (pt´p0), with the addition of the previous portfolio position as well as the fraction
of time remaining until the end of the episode. For our experiments we sampled randomly
daily episodes from a window of 64 workdays of 2017, evaluating the performances on
the last 20 days of the window.

9.7.4 Summary of the Experiments

The experiments we presented justifies the introduction of persistence. Specifically, we
have illustrated three aspects related to action persistence. First, we have shown that ac-
tion persistence can lead to higher-performing policies when learning under uncertainty
(Section 9.7.1). Indeed, the optimal value of persistence is almost never one. Second, we
have shown that our persistence selection method, although approximate, is able to select
a reasonable persistence value with no need for further interaction with the environment
(Section 9.7.2). Finally, the experiment in the trading environment (Section 9.7.3) shows,
in alignment with our theoretical findings, that the optimal value of persistence changes as
a function of the available samples, finally converging to persistence one as the number of
samples grows.

9.8 Open Questions

In this section, we discuss some open questions related to action persistence and we present
preliminary results.
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Figure 9.6: Performances for each persistence along the iterations, with different numbers
of trajectories. 10 runs, 95% c.i.

9.8.1 Improving Exploration with Persistence

Action persistence might have an effect on the exploration properties of distribution ν used
to collect samples. To avoid this phenomenon, in the previous experiments, we assumed
to feed PFQI with the same dataset collected in the base MDP M, independently of which
target persistence k we are interested in. In this section, we briefly analyze what happens
when we feed standard FQI with a dataset collected by executing the same policy (e.g.,
the uniform policy over A) in the k-persistent MDP Mk, in order to estimate the corre-
sponding k-persistence action-value function Q˚k . In this way, for each persistence k we
have a different sampling distribution νk used to collect Dk. Refer to Figure 9.7 for a
graphical comparison between PFQI executed in the base MDP M and FQI executed in
the k-persistent MDP Mk.

When we compare the performances of the policies obtained with different persistence
levels learned starting with a dataset Dk „ νk, we should consider two different effects:
i) how training samples are generated (i.e., the sampling distribution νk, which changes
for every persistence k); ii) how they affect the learning process in FQI. Unfortunately, in
this setting, we are not able to separate the two effects. We compare, for different values
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Figure 9.7: Illustration of (a) PFQI executed in the base MDP M and (b) the standard
FQI executed in the k-persistent MDP Mk.

of k P K “ t1, 2, . . . 64u, the performance of PFQI and the performance of FQI run on
the k-persistent MDP Mk. In Figure 9.8, we show the performance at the end of training
of the policies obtained with PFQI, the one derived with FQI on Mk, and the uniform
policy over the action space. First of all, we observe that when k “ 1, executing FQI
on M1 is in all regards equivalent to executing PFQI(1) on M. We can see that in the
Cartpole environment, fixing a value of k P K, there is no significant difference in the
performances obtained with PFQI and FQI on Mk. The behavior is significantly different
when considering Mountain Car. Indeed, we notice that only FQI on Mk is able to learn
a policy that reaches the goal for some specific values of k P K. We can justify this
behavior with the fact that by collecting samples at a persistence k, like in FQI on Mk,
the exploration properties of the sampling distribution change, as we can see from the
line “Uniform policy”. If the input dataset contains no trajectory reaching the goal, our
algorithms cannot solve the task. This is why PFQI, that uses persistence 1 to collect the
samples, is unable to learn at all.

This experiment gives a preliminary hint on how action persistence can affect explo-
ration. More in general, we wonder which are the characteristics of the environment such
that the same sampling policy (e.g., the uniform policy over A) allows performing a more
effective exploration. More formally, we ask how the persistence affects the entropy of the
stationary distribution induced by the sampling policy.

9.8.2 Learn in Mk and execute in Mk1

In this section, we empirically analyze what happens when a policy is learned with PFQI
with a certain persistence level k and executed later on with a different persistence level
k1 ‰ k. We consider an experiment on the Cartpole environment, we run PFQI for k P
K “ t1, 2, . . . , 256u, and then for each k we execute policy πk (i.e., the policy learned by
applying the k-persistent operator) in the k1-persistent MDP Mk1 for k1 P K. For each pair
pk, k1q, Table 9.2 shows the sample mean and the sample standard deviation over 20 runs of
the expected return of policy πk in MDP Mk, i.e., Jρ,πkk1 . First of all, let us observe that the
diagonal of Table 9.2 corresponds to the first row of Table 9.1 (apart from the randomness
due to the evaluation). If we select a row k, i.e., we fix the persistence of the operator, we
notice that, in the majority of the cases, the persistence k1 of the MDP yielding the best
performance is smaller than k. Moreover, even if we learn a policy with the operator at
a given persistence k and we see that such a policy displays a poor performance in the
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k-persistent MDP (e.g., for k ě 8), when we reduce the persistence, the performance of
that policy seems to improve.

Figure 9.9 compares for different values of k, corresponding to the persistence of the
operator, the performance of the policy πk when we execute it in Mk and the performance
of πk in the MDP Mpk1q˚ , where pk1q˚ P arg maxk1PKt pJ

ρ,πk
k1 u. We clearly see that suit-

ably selecting the persistence k1 of the MDP in which we will deploy the policy, allows
reaching higher performances.

We wonder is whether this behavior is a property of the Cartpole environment or is a
general phenomenon that we expect to occur in environments, with certain characteristics.
If so, which are those characteristics? Furthermore, when we allow executing πk in Mk1

we should rephrase the persistence selection problem (Equation (9.12)) as follows:

k˚, pk1q˚ P arg max
k,k1PK

tJρ,πkk1 u , (9.16)

where ρ P PpSq is an evaluation distribution. Similarly to the case of Equation (9.12), we
cannot directly solve the problem if we are not allowed to interact with the environment.
Is it possible to extend Lemma 9.9 and the subsequent heuristic simplifications to get a
usable index Bk,k1 similar to Equation (9.15)?
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k1 “ 1 k1 “ 2 k1 “ 4 k1 “ 8 k1 “ 16 k1 “ 32 k1 “ 64 k1 “ 128 k1 “ 256

k “ 1 172.0˘ 6.8 174.1˘ 6.5 113.0˘ 5.3 9.8˘ 0.0 9.7˘ 0.0 9.7˘ 0.1 9.8˘ 0.0 9.7˘ 0.0 9.7˘ 0.0
k “ 2 178.4˘ 6.7 182.2˘ 7.2 151.6˘ 5.1 9.9˘ 0.0 9.8˘ 0.0 9.8˘ 0.0 9.8˘ 0.0 9.8˘ 0.0 9.8˘ 0.0
k “ 4 276.2˘ 3.8 287.3˘ 1.1 237.0˘ 5.4 10.0˘ 0.0 9.8˘ 0.0 9.8˘ 0.0 9.9˘ 0.0 9.8˘ 0.0 9.9˘ 0.0
k “ 8 284.3˘ 1.6 281.4˘ 3.0 211.5˘ 4.0 10.0˘ 0.0 9.8˘ 0.0 9.8˘ 0.0 9.8˘ 0.0 9.8˘ 0.0 9.9˘ 0.0
k “ 16 285.9˘ 1.1 282.9˘ 2.6 223.5˘ 3.2 10.0˘ 0.0 9.9˘ 0.0 9.8˘ 0.0 9.9˘ 0.0 9.9˘ 0.0 9.8˘ 0.0
k “ 32 285.7˘ 1.3 283.6˘ 2.7 222.2˘ 3.6 10.0˘ 0.0 9.9˘ 0.0 9.9˘ 0.0 9.8˘ 0.0 9.9˘ 0.0 9.9˘ 0.0
k “ 64 283.6˘ 2.3 284.1˘ 2.0 225.5˘ 4.4 10.0˘ 0.0 9.9˘ 0.0 9.8˘ 0.0 9.9˘ 0.0 9.8˘ 0.0 9.9˘ 0.0
k “ 128 282.9˘ 2.2 282.5˘ 3.1 221.9˘ 4.7 10.0˘ 0.0 9.8˘ 0.0 9.9˘ 0.0 9.9˘ 0.0 9.9˘ 0.0 9.9˘ 0.0
k “ 256 282.5˘ 2.3 283.4˘ 2.4 224.3˘ 3.9 10.0˘ 0.0 9.9˘ 0.0 9.9˘ 0.0 9.9˘ 0.0 9.9˘ 0.0 9.9˘ 0.0

Table 9.2: Results of PFQI execution of the policy πk learned with the k-persistent oper-
ator in the k1-persistent MDP Mk1 in the Cartpole experiment. For each k, we report
the sample mean and the standard deviation of the estimated return of the last pol-
icy pJρ,πkk1 . For each k, the persistence k1 with the highest average performance and
the ones k1 that are not statistically significantly different from that one (Welch’s t-test
with p ă 0.05) are in bold.
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Figure 9.9: Performance of the policies πk for k P K comparing when they are executed
in Mk and when they are executed in Mpk1q˚ . 20 runs, 95% c.i.
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CHAPTER10
Discussion and Conclusions

In this dissertation, we introduced and explored a novel research area of reinforcement
learning, providing theoretical, algorithmic, and experimental contributions. In Part I, we
introduced the Configurable Markov Decision Processes, a new tool to model the pos-
sibility of configuring the environment in a sequential decision-making problem and we
studied the different flavors of interaction between agent and configurator. In Part II, we
focused on the cooperative setting, proposing algorithms to learn in both finite and con-
tinuous Conf-MDPs and we evaluated them on synthetic and realistic domains. Finally,
in Part III, we investigated two applications of the Conf-MDPs: the policy space identifi-
cation, in which we employ environment configurability to infer the agent’s policy space
and action persistence in which we study the configuration of the control frequency of a
system.

This research allowed for a better understand of the problem of environment config-
uration, highlighting, on one hand, its opportunities and identifying, on the other hand,
limitations, and possible extensions. In the following, we will revise the contributions of
the dissertation and discuss possible future research directions.

10.1 Modeling Environment Configurability

We provided the first formalization of environment configurability. Specifically, we in-
troduced the notion of Configurable Markov Decision Process, as an extension of the tra-
ditional MDP model, in which we allow modifications of the transition model and we
consider two reward functions RAg and RConf to represent the agent’s and configurator’s
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interests (Chapter 4). We extended the notion of value function, Bellman operator, and
Bellman equation to the Conf-MDP setting. We observed that, in general, the possibility
to alter the environment has to be limited to some extent, to avoid degenerate solutions.
This is justified by the fact that the transition model typically encodes portions of the en-
vironment that can be configured as well as parts that are immutable (e.g., physical laws).
This observation leads to the formalization of the parametric Conf-MDP, in which the
transition model configuration is performed via a parametric vector.

Then, we focused on investigating the nature of the interaction between the agent and
the configurator (Chapter 5). We started with the cooperative setting, in which the agent
and the configurator share the same interests. This circumstance corresponds to the case
in which the reward functions are equal. In such a scenario, it is natural to define a notion
of optimality over the policy-transition model joint space. Then, we moved to the non-
cooperative setting, in which the agent and configurator interests might diverge. In this
setting, defining a suitable solution concept is less straightforward. Based on whether the
agent is aware of the configurator presence, we proposed to employ game-theoretic equi-
libria, either Nash equilibrium or Stackelberg equilibrium. For both settings, we extended
the notions of value function, Bellman operators, and Bellman equations.

Although our Conf-MDP model is rather simple and the optimality conditions we have
proposed for the diverse settings, we believe that there are still situations emerging in real-
world applications that cannot be captured. In the following, we outline some of them,
that might lead, in the future, to new research directions.

Cost of Environment Configuration Differently from policy learning, in many real-
world scenarios the configuration of environmental parameters is an activity that has to be
carried out with particular care since it can lead to unsafe behaviors. Moreover, compared
to policy learning, it might be performed less frequently and involve additional costs. In
our solution concepts, we did not include explicitly a component to account for the cost of
altering the environment, although this circumstance was already considered in Silva et al.
(2018, 2019). From the viewpoint of our Conf-MDP definition, including a “configuration
cost” component would result in a non-Markovian configurator reward function, explicitly
depending on the environment configuration.

Multiple Agents and Multiple Configurators The definition of Conf-MDP we pro-
vided in this dissertation assumes the presence of one agent and one configurator. In
principle, we might consider scenarios in which multiple agents interact with one another
and with multiple configurators. For instance, in Example 4.3, it is quite natural to con-
sider multiple customers in the supermarket, although it is probably unreasonable to take
into account multiple configurators. In more generality, we could extend our Conf-MDP
definition, accounting for multiple agent reward functions pRAgiq

NAg

i“1 and multiple config-
urator reward function pRConfj q

NConf
j“1 . This scenario would open new forms of interaction

since there would be multiple configurator entities acting on the same environmental pa-
rameters, whereas each agent would act on its individual policy.

Modeling the Configurator Interests At the beginning Chapter 4, we provided an
overview of the configuration activity in relation to the curriculum learning literature. We
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believe that our Conf-MDP definition, although quite natural and immediate, does not en-
compass the curriculum learning setting. Indeed, when the configurator is interested in
speeding up the learning process for the agent, in the original MDP, its reward cannot be
modeled as a Markovian stationary reward. For instance, a more effective modelization
of the configurator interest consists in employing an online learning performance index,
like the regret (Lattimore and Szepesvári, 2020), determined by the sequence of policies
the agent will learn. Clearly, this definition highlights the asymmetry between agent and
configurator, which is not completely captured in the present definition. As a consequence,
new solution concepts need to be explored.

Configurable Reward Function In our model, we limited the configuration opportu-
nities to the transition model. In principle, we could allow other elements of the MDP
definition to be configured. A very interesting element is the agent reward function. Mod-
ifying the reward function is tricky since it alters the agent utility function and conse-
quently, defining a suitable goal of the configuration activity becomes more blurred. We
have seen an example, in the control frequency adaptation (Chapter 9), in which the reward
function changes, although it can be considered a side effect of modifying the persistence.
From a curriculum learning perspective, configuring the agent reward function assumes a
more interpretable meaning. Indeed, we might be interested in providing the agent with
a reward function that is more informative (e.g., dense vs sparse reward) and allows ap-
proaching the optimal policy faster. In some sense, this can be thought of as a form of
reward shaping (Ng et al., 1999).

10.2 Learning in Configurable Markov Decision Process

We studied the learning problem in Conf-MDPs with attention to the cooperative setting,
in which a notion of optimal policy-transition model pair is simple to define. In this setting,
we first considered the case of finite Conf-MDPs, devising a safe learning approach, SPMI
(Chapter 6). SPMI is essentially a prototypical approximate policy iteration algorithm,
endowed with strong theoretical guarantees on the performance improvement. However,
SPMI requires the full knowledge of the environment model and, for this reason, its appli-
cability is restricted to toy domains.

For these reasons, we investigated the possibility to devise an algorithm that applies
to continuous Conf-MDPs, and that overcomes the limitation of knowing the environment
model. REMPS (Chapter 7) imports several notions from the trust-region methods and
allows solving parametric Conf-MDPs with a procedure that alternates an optimization
and a projection phase. Furthermore, we can endow REMPS with an approximation of the
transition model learned from samples. The only assumption requested for the configura-
tor is to know which are the parameters it can act on. REMPS allows scaling Conf-MDPs
on more realistic scenarios. The experimental evaluation showed that configuring the en-
vironment, on the one hand, allows the agent to learn highly performing policies; on the
other hand, it might speed up the learning process itself. Moreover, REMPS displayed
the ability to overcome some of the limitations of gradient methods when employed to
configure environments, even in the presence of approximate models.

The focus of this dissertation, concerning the learning problem in Conf-MDPs, is lim-
ited to the cooperative setting. We believe that there is room for further investigations

209



Chapter 10. Discussion and Conclusions

in this direction as well as on the study of the properties of the solution concepts for the
non-cooperative Conf-MDPs. We provide an overview of these research directions in the
following.

Online Learning in Cooperative Conf-MDPs An interesting research direction con-
sists of studying the well-known exploration problem, from the point of view of the Conf-
MDPs. In this setting, we would play the role of a configurator that is unaware of the
agent’s reward function and wants to identify the best configuration, within a suitably
defined set, that paired with the corresponding agent’s optimal policy, optimizes the long-
term reward. This problem could be treated as a bandit problem (Lattimore and Szepesvári,
2020), although with additional care. Indeed, whenever a configuration is set in the envi-
ronment, the agent needs a certain amount of time to adapt its policy. When should we
provide the agent with a new configuration? This is an instance of the exploration vs ex-
ploitation tradeoff in which we need to decide whether to exploit the current belief on the
best configuration or to explore new configurations to gather more information with the
risk of lowering the performance. Furthermore, it might be beneficial to exploit more ef-
fectively the structure (Lattimore and Munos, 2014) underlying the process. Specifically,
if the configurator knew the agent’s reward function, it could solve the learning problem
offline.

Learning in Non-Cooperative Conf-MDPs The study of Conf-MDPs we carried out so
far was limited to the cooperative setting. However, there exist several real-world scenarios
in which the agent and the configurator display non-cooperative goals. In principle, we
could investigate the possibility to extend the algorithms designed for cooperation Conf-
MDPs, such as SPMI and REMPS, to the non-cooperative setting. Clearly, the problem
needs to be formulated as learning a suitable equilibrium of the Conf-MDP. A possible
line of research consists in adapting the learning dynamics of stochastic games (e.g., Jin
et al., 2019; Fiez et al., 2019) to our Conf-MDP setting. Clearly, we could also focus on
an online learning approach in which the configurator learns the agent’s reward function
and then solves the game offline. We are convinced that this direction on non-cooperative
Conf-MDPs is very appealing and deserves to be further examined in the future.

10.3 Applications of Configurable Markov Decision Processes

We presented two heterogeneous applications in which the environment configuration op-
portunities can be beneficial. In policy space identification (Chapter 8), we studied the
problem of identifying the agent’s capabilities in terms of perception, actuation, and map-
ping, formalized in the notion of policy space. The role of the Conf-MDPs in this task is
twofold. First, we see the policy space identification as a relevant tool to properly select the
optimal configuration for the agent in a cooperative Conf-MDP. Indeed, agents optimizing
the same reward function but having access to different policy spaces might benefit from
different environment configurations. Second, environment configuration can be seen as a
tool to place the agent in a suitable MDP in which it is induced to reveal its capabilities.

Then, we focused on a different application related to the choice of a suitable control
frequency for an RL problem (Chapter 9). This issue is particularly relevant in robotics
and makes it manifest an important trade-off between control opportunities (larger at high
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frequencies) and sample complexity (lower at low frequencies). We started with an anal-
ysis of the performance loss we experience when with action persistence, i.e., when we
reduce the control frequency by an integer factor of the base one and we discussed the
required regularity conditions to bound the loss. Then, we provided an algorithmic con-
tribution with PFQI, a batch RL algorithm that is able to learn approximately the value
function at different persistences. Related to the topic of action persistence, we believe
there are opportunities for further research, that we outline in the following.

Online Action Persistence We considered the batch RL setting, in which the dataset of
samples is fixed and no further interaction with the environment is possible. This setting
leads to a notion of fixed optimal persistence, that is maintained for the whole learning
process. As supported by intuition, the larger the number of samples the lower the optimal
persistence. When we move to the online RL setting, in which the interaction with the
environment is possible to collect additional samples, it might be convenient to vary dy-
namically the action persistence during the learning process. For instance, we could start
with a high persistence to reach a policy with a reasonable performance with little data.
Then, as the available data grows, we could reduce the persistence, in order to refine the
learned policy and, eventually, converge to the optimal one.
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APPENDIXA
Additional Results and Proofs

In this appendix, we report additional results and proofs we have omitted in the main text
of the dissertation.

A.1 Additional Results and Proofs of Chapter 6

Lemma A.1. Let Aπ
1,P 1

π,P be the expected coupled relative advantage function, Aπ
1,P
π,P and

Aπ,P
1

π,P be the expected (uncoupled) policy and model relative advantage functions respec-
tively. Then, it holds that:

ˇ

ˇ

ˇ

ˇ

Aπ
1,P 1

π,P ´

´

Aπ
1,P
π,P ` Aπ,P

1

π,P

¯

ˇ

ˇ

ˇ

ˇ

ď 2
›

›π1 ´ π
›

›

TV,µπ,Pγ

›

›P 1 ´ P
›

›

TV,8

ˆ sup
sPS,aPA

 

sp
`

Uπ,P ps, a, ¨q
˘(

.

Proof. We can rewrite the expected relative advantage Aπ
1,P 1

π,P using Lemma 6.1:

Aπ
1,P 1

π,P “

ż

S
µπ,Pγ pdsqAπ

1,P 1

π,P psq

“

ż

S
µπ,Pγ pdsq

ˆ

Aπ
1,P
π,P psq `

ż

A
π1pda|sqAπ,P

1

π,P ps, aq

˙

(P.1)

“

ż

S
µπ,Pγ pdsqAπ
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π,P psq `
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S

ż

A
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1

π,P ps, aq
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`

ż

S
µπ,Pγ pdsq

ż

A

`

π1pda|sq ´ πpda|sq
˘

Aπ,P
1

π,P ps, aq

“ Aπ
1,P
π,P ` Aπ,P

1

π,P `
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S
µπ,Pγ pdsq

ż

A

`

π1pda|sq ´ πpda|sq
˘

Aπ,P
1

π,P ps, aq, (P.2)

where line (P.1) comes from Lemma 6.1. From Equation (P.2) we can straightforwardly state the
following inequalities:
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Then, we bound the absolute value in the right hand side:
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where line (P.3) follows from Lemma 6.5 and line (P.4) derives from observing that:
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sp
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where (P.5) follows from Lemma 6.5. Putting all together we get the result.

This result has an interesting interpretation. It tells that the maximum advantage (or
disadvantage) that can be obtained by moving the policy and the model simultaneously is
bounded by the advantage (or disadvantage) gained by moving the policy and the model
separately and a term that depends on the policy and model distance. Therefore, it can
happen that even if moving the policy and the model separately is convenient, the joint
movement may not.

Lemma A.2. Let Aπ
1,P 1

π,P be the expected coupled relative advantage function. Then, it
holds that:

sp
´
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¯
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Proof. Let us start rewriting the expression of the relative advantage Aπ
1,P 1

π,P using Lemma 6.1:
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whereas for the second term, we proceed analogously:
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Theorem 6.9. For any π P ΠSR and P P PSR, the decoupled bound is optimized for:
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to be clipped in the interval r0, 1s.
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Proof. Let us write explicitly the update coefficients in the decoupled bound (6.7):
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we now take the derivatives w.r.t. α and β to find the stationary points:
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When the target policy is different from the current one and, symmetrically, the target model is
different from the current model the linear system of the derivatives admits a unique solution. We
compute the second order derivative to discover the nature of such point:
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from the second order derivatives we can compute the Hessian matrix HBpα, βq and the corre-
spondig trace and determinant:

trpHBpα, βqq “ BB2

B2α
`
BB2

B2β

“ ´
4γ

p1´ γq2

„

}π ´ π}TV,8 }π ´ π}TV,µπ,Pγ
sup
sPS

!

sp
´

Qπ,P ps, ¨q
¯)

`
›

›P ´ P
›

›

TV,8

›

›P ´ P
›

›

TV,µπ,Pγ
sup

sPS,aPA

!

sp
´

Uπ,P ps, a, ¨q
¯)



ď 0,

detpHBpα, βqq “ BB2

B2α

BB2

B2β
´
BB2

BαBβ

BB2

BβBα
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“
16γ2

p1´ γq4
}π ´ π}TV,8 }π ´ π}TV,µπ,Pγ

›

›P ´ P
›

›

TV,8

›

›P ´ P
›

›

TV,µπ,Pγ

ˆ sup
sPS

!

sp
´

Qπ,P ps, ¨q
¯)

sup
sPS,aPA

!

sp
´

Uπ,P ps, a, ¨q
¯)

`
4

p1´ γq4

ˆ

γ }π ´ π}TV,8

›

›P ´ P
›

›

TV,µπ,Pγ
sup
sPS

!

sp
´

Qπ,P ps, ¨q
¯)

`
›

›P ´ P
›

›

TV,8
}π ´ π}TV,µπ,Pγ

sup
sPS,aPA

!

sp
´

Uπ,P ps, a, ¨q
¯)

˙2

ď ´
4

p1´ γq4

ˆ

}π ´ π}TV,µπ,Pγ

›

›P ´ P
›

›

TV,8
sup

sPS,aPA

!

sp
´

Uπ,P ps, a, ¨q
¯)

´ γ
›

›P ´ P
›

›

TV,µπ,Pγ
}π ´ π}TV,8 sup

sPS

!

sp
´

Qπ,P ps, ¨q
¯)

˙2

,

where we simply bounded 16γ2
ď 16γ. When P ‰ P and π ‰ π we observe that the Hessian

matrix is indefinite since both the trace and the determinant are negative. This means that the unique
stationary point is a saddle point which is uninteresting for optimization purposes. By the way,
Bpα, βq is a quadratic function, therefore it is continuous on the compact set r0, 1s2 and therefore,
from Weierstrass theorem, it admits a global maximum (and minimum). Since such point is not a
stationary point it must lie on the boundary of r0, 1s2.

Then, by setting to zero the equations BB
Bα

ˇ

ˇ

β“0
, BB
Bα

ˇ

ˇ

β“1
, BB
Bβ

ˇ

ˇ

α“0
, BB
Bβ

ˇ

ˇ

α“1
we can obtain the

following optimal values (which are clipped to lie in the interval r0, 1s):

α˚0 “
p1´ γqAπ,Pπ,P

4γ supsPS tsppQ
π,P ps, ¨qqu }π ´ π}TV,8 }π ´ π}TV,µπ,Pγ

,

α˚1 “
p1´ γqAπ,Pπ,P

4γ supsPS tsppQ
π,P ps, ¨qqu }π ´ π}TV,8 }π ´ π}TV,µπ,Pγ

´

›

›P ´ P
›

›

TV,µπ,Pγ

2 }π ´ π}TV,µπ,Pγ

´
supsPS,aPA

 

sp
`

Uπ,P ps, a, ¨q
˘(

›

›P ´ P
›

›

TV,8

2γ supsPS tsppQ
π,P ps, ¨qqu }π ´ π}TV,8

,

β˚0 “
p1´ γqAπ,Pπ,P

4γ supsPS,aPA tsppU
π,P ps, a, ¨qqu

›

›P ´ P
›

›

TV,8

›

›P ´ P
›

›

TV,µπ,Pγ

,

β˚1 “
p1´ γqAπ,Pπ,P

4γ supsPS,aPA tsppU
π,P ps, a, ¨qqu

›

›P ´ P
›

›

TV,8

›

›P ´ P
›

›

TV,µπ,Pγ

´
}π ´ π}TV,µπ,Pγ

2γ
›

›P ´ P
›

›

TV,µπ,Pγ

´
supsPS

 

sp
`

Qπ,P ps, ¨q
˘(

}π ´ π}TV,8

2 supsPS,aPA tsppU
π,P ps, a, ¨qqu

›

›P ´ P
›

›

TV,8

.

Instead, for γ P p0, 1q, the Hessian is singular when either the target policy or the target model are
equal to the current one. Those cases can be treated separately and clearly yield maxima points.
When P “ P then we have α˚ “ α˚0 , when π “ π we have β˚ “ β˚0 .

A.2 Additional Results and Proofs of Chapter 7

In this appendix, we report the proof of Theorem 7.9. For sake of brevity, we will denote
with X “ S ˆA ˆ S and with x “ ps, a, s1q a state-action-state triple. In order to make
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the presentation clearer, we revise in the following the formulation of the optimization
problems involved in REMPS.

A.2.1 Formulation of the Optimization Problems

The REMPS problem takes as input a stationary distribution µπ,P P DΘ,Ω and a KL–
divergence threshold κ ě 0 and provides as output a new stationary distribution in the
space DΘ,Ω. This process is dived into two consecutive phases: optimization and projec-
tion.

Optimization In the optimization phase, given a KL–divergence threshold κ ą 0, let
pπ, P q P ΠΘ ˆ PΩ be the current policy-configuration pair inducing a stationary distribu-
tion µπ,P , we seek for a new stationary distribution µ1 that solves the following optimiza-
tion problem PRIMALκ:

max
µ1PPpX q

Jµ
1

“

ż

µ1pxqrpxqdx

s.t. DKLpµ
1}µπ,P q “

ż

µ1pxq log
µ1pxq

µπ,P pxq
dx ď κ.

This problem, yields to the solution for all x P X :

µ1pxq “
µπ,P pxq exp

´

1
η rpxq

¯

ş

X µ
π,P pxq exp

´

1
η rpxq

¯

dx
, (A.1)

where η is the unique solution of the dual problem DUALκ:

min
ηPr0,8q

η log

ż

X
µπ,P pxq exp

ˆ

1

η
rpxq ` κ

˙

dx. (A.2)

In practice, we have no access to µπ,P . Therefore, we need to estimate the expecta-
tions from samples using a dataset tpSi, Ai, S1i, Riqu

n
i“1 “ tpXi, Riqu

n
i“1 of n samples

collected with µπ,P . Notice that we have only access to an empirical estimate of µπ,p,
which is pµπ,P pxq “ 1

n

řn
i“1 δpx´Xiq uniform on the observed samples. Using pµπ,P we

want to evaluate the performance of a candidate distribution µ1 defined over the observed
samples. For this purpose, we perform an importance weighting procedure. We define the
weight wpXiq “

µ1pXiq
pµπ,P pXiq

“ nµ1pXiq. The problem we aim to solve becomes ČPRIMALκ:

max
µ1PPptXi:iPt1,2,...,nuuq

rJµ
1

“
1

n

n
ÿ

i“1

wpXiqRi “
n
ÿ

i“1

µ1pXiqrpXiq

s.t. rDKLpµ
1}µπ,P q “

1

n

n
ÿ

i“1

wpXiq logwpXiq

“

n
ÿ

i“1

µ1pXiq
`

logµ1pXiq ` log n
˘

ď κ.
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This problem yields a solution which is defined only over the seen state-action-next-state
triples i P t1, 2, . . . , nu:

µ1pXiq “

exp
´

1
rηRi

¯

1
n

řn
j“1 exp

´

1
rη rpXjq

¯ , (A.3)

where rη is the unique solution of the dual problem ČDUALκ:

min
rηPr0,8q

rη log
1

n

n
ÿ

i“1

exp

ˆ

1

rη
Ri ` κ

˙

. (A.4)

Once we solved this problem, the new distribution over the whole X is characterized
by just the Lagrange multiplier rη, for all x P X :

rµ1pxq “
µπ,P pxq exp

´

1
rη rpxq

¯

ş

X µ
π,P pxq exp

´

1
rη rpxq

¯

dx
. (A.5)

We denote the performance of the new distribution rµ1 with J rµ1 “
ş

X rµ1pxqrpxqdx.

Projection In the projection phase we aim at finding the best representation of the sta-
tionary distribution we got from the optimization phase in a given hypothesis space DΘ,Ω.
Let µ1 be the solution of PRIMALκ, the projection problem PROJ can be stated as the
moment-projection of µ1 onto DΘ,Ω. According to the three projections presented in Sec-
tion 7.3.2, we have:

PROJµ max
pθ,ωqPΘˆΩ

Hpµ1}µπθ,Pω q “ E
X„µ1

“

logµπθ,Pω pXq
‰

` const,

PROJPπ
max

pθ,ωqPΘˆΩ
HppP 1qπ

1

}Pω
πθ q “ E

S,A,S1„µ1

”

HppP 1q
π1
p¨|Sq}Pω

πθ p¨|Sqq
ı

“ E
S,A,S1„µ1

rlog pω
πθ p¨|Sqs ` const

,

PROJπ,P
max
θPΘ

Hpπ1}πθq “ E
S,A,S1„µ1

“

Hpπ1p¨|Sq}πθp¨|Sqq
‰

“ E
S,A,S1„µ1

rlog πθp¨|Sqs ` const

max
ωPΩ

HpP }Pωq “ E
S,A,S1„µ1

“

HpP 1p¨|S,Aq}Pωp¨|S,Aqq
‰

“ E
S,A,S1„µ1

rlog pωp¨|S,Aqs ` const,

where Hpµ}µ1q is the cross–entropy, since DKLpµ}µ
1q “ Hpµ}µ1q ´Hpµq, the entropy

Hpµq is independent on µ1, and const denotes a constant that does not depend on the
quantities we are optimizing on. Clearly, also in this case we need to consider the Monte
Carlo estimates obtained from the very same samples tXiu

n
i“1 collected with µπ,P . Let rµ1

be the solution of ČPRIMALκ, the projection problem ĆPROJ becomes:
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ĆPROJµ max
pθ,ωqPΘˆΩ

rHprµ1}µπθ,Pω q “
1

n

n
ÿ

i“1

wpXiq logµπθ,Pω pXiq ` const,

ĆPROJPπ max
pθ,ωqPΘˆΩ

rHpČpP 1qπ
1

}Pω
πθ q “

1

n

n
ÿ

i“1

wpXiq log pω
πθ pS1i|Siq ` const,

ĆPROJπ,P max
θPΘ

rHprπ1}πθq “
1

n

n
ÿ

i“1

wpXiq log πθpAi|Siq ` const

max
ωPΩ

rHpĂP 1}Pωq “
1

n

n
ÿ

i“1

wpXiq log pωpS
1
i|Si, Aiq ` const,

A.2.2 Off-distribution estimation
Given a value of the Lagrange multiplier η inducing µ, let us define the ratio importance
weight pwpxq and the self-normalized importance weight rwpxq as:

pwpxq “
µpxq

µπ,P pxq
“

exp
´

1
η rpxq

¯

ş

X µ
π,P pxq exp

´

1
η rpxq

¯

dx
,

rwpxq “
pwpxq

řn
i“1 pwpXiq

“
exp

´

1
η rpxq

¯

řn
i“1 exp

´

1
η rpXiq

¯ .

Thus, the off-distribution estimator rJµ which is optimized by ČPRIMALκ is actually a self–
normalized importance weighting estimate, opposed to the ratio importance weighting
estimate pJµ which does not appear in the optimization problems, but will be useful in the
following:

pJµ “
1

n

n
ÿ

i“1

pwpXiqRi,

rJµ “
n
ÿ

i“1

rwpXiqRi.

Analogously we can define the KL divergence estimators:

pDKLpµ}µ
π,P q “

1

n

n
ÿ

i“1

pwpXiq log pwpXiq,

rDKLpµ}µ
π,P q “

n
ÿ

i“1

rwpXiq log pn rwpXiqq ,

and, given a µ1 P DΘ,Ω, we define the cross–entropy estimators:

pHpµ}µ1q “
1

n

n
ÿ

i“1

pwpXiq logµ1pXiq,
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rHpµ}µ1q “
n
ÿ

i“1

rwpXiq logµ1pXiq.

It is well known that the ratio estimation is unbiased while the self-normalized estimator
is biased but consistent Owen (2013).

A.2.3 Error Analysis
We have seen in the previous section that we need to solve both phases of the REMPS
problem using the samples. Starting with µπ,P , PRIMALκ yields the solution µ1 whereas
ČREMPSκ provides the solution µπrθ1

,P
Ăω1 which is in terms derived from the ČPRIMALκ

problem yielding rµ1 and the ĆPROJ problem. There are two sources of error in this process.
First of all, rµ1 is obtained from a finite sample and thus it may differ from µ1 (estimation
error). Secondly, we limit to a hypothesis space DΘ,Ω that may not be able to represent
rµ1 (approximation error). Furthermore, the projection is performed from samples as well
(another source of estimation error). The goal of this analysis is to provide a bound to the
quantity Jµ

1

´ Jprθ
1
, rω1q. To this end, we consider the following decomposition to isolate

the contribution of the two phases:

Jµ
1

´ Jprθ
1
, rω1q “ Jµ

1

´ J rµ1

(i)

` J rµ1 ´ Jprθ
1
, rω1q

(ii)

.

Recall, finally, that Jprθ
1
, rω1q “ Jµ

π
rθ1
,P

Ăω1 .

Term (i) A typical approach, from Empirical Risk Minimization (ERM), to bound the
estimation error is to add and subtract the empirical risk of the empirical risk minimizer
rJ rµ1 and exploit the fact that this quantity is larger (smaller in supervised learning) than
the empirical risk of any other hypothesis in the hypothesis space (being ERM), in par-
ticular µ1. However, in our framework, the hypothesis space changes since the constraint
on the KL–divergence is estimated from samples and, in principle, it can impose more
relaxed/tight conditions. For this purpose, we introduce a new distribution µ which is the
optimal solution to the PRIMALκ problem using the sample constraint. For this reason,
rµ1 and µ are searched in the same hypothesis space and thus we can apply the theory from
ERM. Clearly, we need to manage the discrepancy between µ and µ1. For this, we use the
sensitivity analysis (Section 7.4.2). Let us define the discrepancy in the constraint for a
given hypothesis µ:

∆κpµq “ DKLpµ}µ
π,P q ´ rDKLpµ}µ

π,P q. (A.6)

As a consequence rDKLpµ}µ
π,P q ď κ ðñ DKLpµ}µ

π,P q ď κ ` ∆κpµq. Finally,
we define ∆κ “ supµPD

µπ,P
∆κpµq. We have the usual two cases. i) If ∆κ ď 0 then

the exact constraint is always (i.e., for every hypothesis) tighter and thus Jµ ě Jµ. ii) If
∆κ ą 0 then there exists at least one hypothesis for which the constraint is looser; thus it
might be that Jµ ď Jµ. In general, the following result holds.

Lemma A.3. Let µ1, µ as defined before. The following bound holds:

Jµ
1

ď Jµ ` 2Rmax max

"

0,min

"

1

2
,

∆κ

κ

**

. (A.7)
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Proof. If Jµ
1

´ Jµ ď 0 then the theorem holds. Otherwise, it must be that ∆κpµ1q ě 0 (this is
because we defined µ as the optimal solution under the sample-based constraint). We define µα as
in Proposition 7.8, so we get:

Jµ
1

´ Jµ ď Jµ
1

´ Jµα

ď Rmax

ˆ

1´
κ

κ`∆κpµ1q

˙

}µ1 ´ µπ,P }1

ď Rmax
∆κpµ1q

κ`∆κpµ1q
}µ1 ´ µπ,P }1

ď 2Rmax min

"

1

2
,

∆κpµ1q

κ

*

ď 2Rmax min

"

1

2
,

∆κ

κ

*

,

where we exploited the fact that }µ1 ´ µπ,P }1 ď 2, ∆κpµ1q
κ`∆κpµ1q

ď
∆κpµ1q
κ

, being ∆κpµ1q ě 0, and
∆κpµ1q

κ`∆κpµ1q
ď 1

2
being ∆κpµ1q ď κ and finally ∆κpµ1q ď ∆κ. Taking the max between the two

cases we get the result.

Notice that:

max

"

0,min

"

1

2
,

∆κ

κ

**

ď
|∆κ|

κ
“

1

κ
sup

µPD
µπ,P

ˇ

ˇ

ˇ

rDKLpµ}µ
π,P q ´DKLpµ}µ

π,P q

ˇ

ˇ

ˇ
,

which is a convenient term for using ERM theory. Now we are ready to bound Jµ
1

´ J rµ1 .

Lemma A.4. Let µ1 and rµ1 be the solutions of the PRIMALκ and ČPRIMALκ problems, the
latter using n ą 0 i.i.d. samples collected with µπ,P . Let κ ą 0 be the KL–divergence
threshold. Then, it holds that:

Jµ
1

´ J rµ1 ď 2 sup
µPD

µπ,P

ˇ

ˇ

ˇ
Jµ ´ rJµ

ˇ

ˇ

ˇ
`

2Rmax

κ
sup

µPD
µπ,P

ˇ

ˇ

ˇ

rDKLpµ}µ
π,P q ´DKLpµ}µ

π,P q

ˇ

ˇ

ˇ
.

(A.8)

Proof. We use a very simple argument of ERM combined with the previous result. Let µ be defined
as before, we have:

Jµ
1

´ J rµ1
ď Jµ ´ J rµ1

` 2Rmax max

"

0,min

"

1

2
,

∆κ

κ

**

ď Jµ ´ J rµ1
`

2Rmax

κ
|∆κ|

“ Jµ ´ J rµ1
`

2Rmax

κ
|∆κ| ˘ rJ rµ1

ď Jµ ´ rJµ ` rJ rµ1
´ J rµ1

`
2Rmax

κ
|∆κ|

ď 2 sup
µPD

µπ,P

ˇ

ˇ

ˇ
Jµ ´ rJµ

ˇ

ˇ

ˇ
`

2Rmax

κ
sup

µPD
µπ,P

ˇ

ˇ

ˇ

rDKLpµ}µ
π,P
q ´DKLpµ}µ

π,P
q

ˇ

ˇ

ˇ
,

where we exploited the fact that rJµ ď rJ rµ1 , being rµ1 the ERM over the same hypothesis space.
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Term (ii) To bound this second term it is useful to recall the property of the KL–
divergence DKLpµ}µ

1q “ Hpµ}µ1q´Hpµq, where Hpµ}µ1q is the cross-entropy between
µ and µ1 and Hpµq is the entropy of µ. When performing the projection, we are minimiz-
ing the termHpµ}µ1q sinceHpµq does not depend on µ1. We can state the following result
for ĆPROJµ.

Lemma A.5. Let rµ1 and µπrθ1
,P

Ăω1 be the solutions of the ČPRIMALκ and ČPROJµ problems
using n ą 0 i.i.d. samples collected with µπ,P . Let κ ą 0 be the KL–divergence threshold.
Then, it holds that:

J rµ1 ´ Jµ
π
rθ1
,P

Ăω1

ď Rmax

c

2 sup
µPD

µπ,P

inf
µ1PDΘ,Ω

DKLpµ}µ1q

`Rmax

d

2 sup
µPD

µπ,P

sup
µ1PDΘ,Ω

ˇ

ˇ

ˇ

pHpµ}µ1q ´Hpµ}µ1q
ˇ

ˇ

ˇ
.

(A.9)

Proof. Let us define:

ε2 “ sup
µPD

µπ,P

sup
µ1PDΘ,Ω

ˇ

ˇ

ˇ

pHpµ}µ1q ´Hpµ}µ1q
ˇ

ˇ

ˇ
. (P.6)

Consider the best approximation of rµ1 contained in DΘ,Ω, let us denote it with µ˚, i.e., µ˚ P

arg minµPDΘ,Ω
Hprµ1}µq. Then we can state the following inequalities:

J rµ1
´ Jµ

π
rθ1
,P

Ăω1

ď Rmax

›

›

›
rµ1 ´ µπrθ1

,P
Ăω1

›

›

›

1

ď Rmax

b

2DKLprµ1}µ
π
rθ1
,P

Ăω1 q (P.7)

“ Rmax

b

2Hprµ1}µπrθ1
,P

Ăω1 q ´ 2Hprµ1q

ď Rmax

b

2 pHprµ1}µπrθ1
,P

Ăω1 q ´ 2Hprµ1q ` ε2 (P.8)

“ Rmax

g

f

f

e2

˜

1

n

n
ÿ

i“1

pwpXiq

¸

rHprµ1}µπθ ,Pω q ´ 2Hprµ1q ` ε2 (P.9)

ď Rmax

g

f

f

e2

˜

1

n

n
ÿ

i“1

pwpXiq

¸

rHprµ1}µ˚q ´ 2Hprµ1q ` ε2 (P.10)

“ Rmax

b

2 pHprµ1}µ˚q ´ 2Hprµ1q ` ε2

ď Rmax

a

2Hprµ1}µ˚q ´ 2Hprµ1q ` 2ε2 (P.11)

“ Rmax

a

2DKLprµ1}µ˚q ` 2ε2 (P.12)

ď Rmax

a

2DKLprµ1}µ˚q `Rmax

?
2ε2

ď Rmax

c

2 sup
µPD

µπ,P

inf
µ1PDΘ,Ω

DKLpµ}µ1q `Rmax

?
2ε2, (P.13)

where line (P.7) follows from Pinsker inequality, lines (P.8) and (P.11) follow from the hypothe-
sis, line (P.10) follows from the fact that µπrθ1

,P
Ăω1 is ERM, line (P.12) follows from the inequality?

a` b ď
?
a`

?
b and lines (P.9) and (P.11) follow from the fact that:

˜

1

n

n
ÿ

i“1

pwpXiq

¸

rHpµ1}µπrθ1
,P

Ăω1 q “ pHprµ1}µπθ ,Pω q.
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It is pretty straightforward to extent the previous result to the other two projections.

Corollary A.6. Let rµ1 and µπrθ1
,P

Ăω1 be the solutions of the ČPRIMALκ and ČPROJPπ prob-
lems using n ą 0 i.i.d. samples collected with µπ,P . Let κ ą 0 be the KL–divergence
threshold. Then, it holds that:

J rµ1 ´ Jµ
π
rθ1
,P

Ăω1

ďRmaxρ

d

2 sup
µPD

µπ,P

inf
pθ,ωqPΘˆΩ

E
S„µ

”

DKL

´

pP 1q
π1
p¨|Sq}Pπθω p¨|Sq

¯ı

`Rmaxρ

d

2 sup
µPD

µπ,P

sup
pθ,ωqPΘˆΩ

ˇ

ˇ

ˇ

pHppP 1qπ
1

}Pπθω q ´HppP 1qπ
1

}Pπθω q
ˇ

ˇ

ˇ
.

Let rµ1 and µπrθ1
,P

Ăω1 be the solutions of the ČPRIMALκ and ČPROJπ,P problems using
n ą 0 i.i.d. samples collected with µπ,P . Let κ ą 0 be the KL–divergence threshold.
Then, it holds that:

J rµ1 ´ Jµ
π
rθ1
,P

Ăω1

ďRmaxρ
c

2 sup
µPD

µπ,P

inf
θPΘ

E
S„µ

rDKL pπ1p¨|Sq}πθp¨|Sqqs

`Rmaxρ

d

2 sup
µPD

µπ,P

sup
θPΘ

ˇ

ˇ

ˇ

pHpπ1}πθq ´Hpπ1}πθq
ˇ

ˇ

ˇ

`Rmaxρ
c

2 sup
µPD

µπ,P

inf
ωPΩ

E
S,A„µ

rDKL pP 1p¨|S,Aq}Pωp¨|S,Aqqs

`Rmaxρ

d

2 sup
µPD

µπ,P

sup
ωPΩ

ˇ

ˇ

ˇ

pHpP 1}Pωq ´HpP 1}Pωq
ˇ

ˇ

ˇ
.

Proof. The result is obtained using an approach analogous to that of Lemma A.5, using Corollary 7.5
and Lemma 7.6.

From now on we will limit our attention to the case of PROJµ. Putting all together we
get the following result.

Theorem A.7. (Error Decomposition) Let µπ,P be the sampling distribution. Let κ ą 0
be the KL–divergence threshold. Let µ1 P Dµπ,P be the solution of the PRIMALκ problem

and prθ
1
, rω1q P Θˆ Ω be the solution of the ČREMPSκ problem computed with n ą 0 i.i.d.

samples collected with µπ,P . Then, it holds that:

Jµ
1

´ Jµ
π
rθ1
,P

Ăω1

ď 2 sup
µPD

µπ,P

ˇ

ˇ

ˇ
Jµ ´ rJµ

ˇ

ˇ

ˇ

`
2Rmax

κ
sup

µPD
µπ,P

ˇ

ˇ

ˇ

rDKLpµ}µ
π,P q ´DKLpµ}µ

π,P q

ˇ

ˇ

ˇ

`Rmax

c

2 sup
µPD

µπ,P

inf
µ1PDΘ,Ω

DKLpµ}µ1q

`Rmax

d

2 sup
µPDµπ,P

sup
µ1PDΘ,Ω

ˇ

ˇ

ˇ

pHpµ}µ1q ´Hpµ}µ1q
ˇ

ˇ

ˇ
.

Proof. Just sum together Lemma A.4 and Lemma A.5.
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A.2.4 Finite–Sample Analysis for finite β-moments
In the following, we provide the finite-sample analysis under Assumption 7.3. Since we
are not guaranteed that the involved loss functions have finite supremum. This problem can
be tackled by resorting to learning bounds that are applicable to unbounded loss functions
with bounded moments (Cortes et al., 2019). The main theoretical tool we are going to
use in the following comes from Cortes et al. (2019).

Theorem A.8. Let H be a family real-valued functions and let G “ tLhpxq : h P Hu
be the family of loss functions associated to H. Assume that PdimpGq “ v and that
there exists α P p1, 2q such that suphPH Lαphq “ EX r|LhpXq|αs ă `8. Let pLαphq “
1
n

řn
i“1 |LhpXiq|

α. Then, for any δ P p0, 1q, with probability at least 1´ δ, for all h P H
it holds that:

E
X
rLhpXqs ď

1

n

n
ÿ

i“1

LhpXiq ` 2
α`2
2α

α
a

Lαphq

d

v log 2en
v ` log 4

δ

n
2pα´1q
α

Γ

¨

˝α,

d

v log 2en
v ` log 4

δ

n
2pα´1q
α

˛

‚,

and also, with probability at least 1´ δ, for all h P H it holds that:

1

n

n
ÿ

i“1

LhpXiq ď E
X
rLhpXqs ` 2

α`2
2α

α

b

pLαphq

d

v log 2en
v ` log 4

δ

n
2pα´1q
α

Γ

¨

˝α,

d

v log 2en
v ` log 4

δ

n
2pα´1q
α

˛

‚,

where Γpα, εq “ α´1
α ` 1

α

´

α
α´1

¯α´1 ´

1`
`

α´1
α

˘α´1
log 1

ε

¯

α´1
α

.

In the following statements, we make use of the Rényi divergence between probability
distributions, and its exponentiated version, that we have introduced in Section 3.3.2. We
start by showing a trivial application of Theorem A.8 for bounding in probability several
deviations of interest.

Lemma A.9. Let us define ε “ 2
β`2
2β

c

v log 2en
v `log 8

δ

n
2pβ´1q
β

Γ

ˆ

β,

c

v log 2en
v `log 8

δ

n
2pβ´1q
β

˙

. Under

Assumption 7.3, each of these events holds with probability at least 1´ δ:

pE1q @µ P Dµπ,P :

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

pwpXiq ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď max

"

β

b

dβpµ}µπ,P q,
β

b

pdβpµ}µπ,P q

*

ε;

pE2q @µ P Dµπ,P :
ˇ

ˇ

ˇ

pJµ ´ Jµ
ˇ

ˇ

ˇ
ď Rmax

"

β

b

dβpµ}µπ,P q,
β

b

pdβpµ}µπ,P q

*

ε;

pE4q @µ P Dµπ,P ,@µ1 P DΘ,Ω :
ˇ

ˇ

ˇ

pHpµ}µ1q ´Hpµ}µ1q
ˇ

ˇ

ˇ

ď max

$

&

%

E
X„µπ,P

«

ˇ

ˇ

ˇ

ˇ

µpXq

µπ,P pXq
logµ1pXq

ˇ

ˇ

ˇ

ˇ

β
ff1{β

,

˜

1

n

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

µpXiq

µπ,P pXiq
logµ1pXiq

ˇ

ˇ

ˇ

ˇ

β
¸1{β

,

.

-

ε.

Proof. It is a simple application of Theorem A.8, using Assumption 7.3 and applying the definition
of Rényi divergence.
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Concerning the KL–divergence, the derivation is a bit more complicated. We first need
the following technical lemma.

Lemma A.10. Under Assumption 7.3, for any α P p1, βq, the following inequality holds:

E
X„µπ,p

„
ˇ

ˇ

ˇ

ˇ

µpXq

µπ,P pXq
log

µpXq

µπ,P pXq

ˇ

ˇ

ˇ

ˇ

α1{α

ď
1

e
`

α

β ´ α
E

X„µπ,P

«

ˇ

ˇ

ˇ

ˇ

µpXq

µπ,P pXq

ˇ

ˇ

ˇ

ˇ

β
ff1{α

“
1

e
`

α

β ´ α
dβpµ}µ

π,P qβ{α.

(A.10)

Proof. Let y “ µpxq{µπ,P pxq. We start proving that the following inequality hold for all α ą 1:

|y log y| ď max

"

1

e
,
yα

α´ 1

*

. (P.14)

Let gpyq “ |y log y|. For y P r0, 1s we know that y log y is negative, thus gpyq “ ´y log y that
has 1{e as maximum. Just take the derivative Bg{By “ ´ log y ´ 1 “ 0 ùñ y “ 1{e ùñ

gp1{eq “ 1{e. Clearly the second derivative is negative, thus 1{e is a maximum and at the extremes
gp0q “ gp1q “ 0 ă 1{e. We prove that for y P r1,8q, gpyq “ y log y ď yα

α´1
. It suffices to prove

that log y ď yα´1

α´1
. Consider the function hpyq “ log y´ yα´1

α´1
, it is enough to prove that hpyq ď 0

for all y P r1,8q. We know that hp1q “ ´ 1
α´1

ă 0 and hp8q “ ´8 and continuous. Therefore
we consider the derivative:

Bh

By
“

1

y
´ yα´2

ď 0 ùñ y ě 1. (P.15)

Thus hpyq is monotonically decreasing in r1,8q and therefore the statement holds. Now we observe
that maxtx, yu ď x` y for x, y ě 0 and we get using Minkowski’s inequality:

E
X„µπ,P

„
ˇ

ˇ

ˇ

ˇ

µpXq

µπ,P pXq
log

µpXq

µπ,P pXq

ˇ

ˇ

ˇ

ˇ

α1{α

ď E
X„µπ,p

„ˆ

1

e
`

1

γ ´ 1

ˆ

µpXq

µπ,P pXq

˙γ˙α1{α

ď
1

e
`

1

γ ´ 1
E

X„µπ,P

„ˆ

µpXq

µπ,P pXq

˙γα1{α

.

By taking γα “ β we get the result.

The following result is an immediate consequence.

Lemma A.11. For any α P p1, 2q, let ε “ 2
α`2
2α

c

v log 2en
v `log 8

δ

n
2pα´1q
α

Γ

ˆ

α,

c

v log 2en
v `log 8

δ

n
2pα´1q
α

˙

.

For any α P p1, βq, under Assumption 7.3, the following inequality holds with probability
1´ δ:

pE3q @µ P Dµπ,P :
ˇ

ˇ

ˇ

pDKLpµ}µ
π,P q ´DKLpµ}µ

π,P q

ˇ

ˇ

ˇ

ď max

$

&

%

1

e
`

α

β ´ α
E

X„µπ,P

«

ˇ

ˇ

ˇ

ˇ

µpXq

µπ,P pXq

ˇ

ˇ

ˇ

ˇ

β
ff1{α

,

˜

1

n

n
ÿ

i“1

| pwpXiq log pwpXiq|
β

¸1{β
,

.

-

ε.

Proof. It is a simple application of Theorem A.8, using Assumption 7.3 and Lemma A.10.
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Finally, we need the following result to relate the KL–divergence estimated with and
without the self–normalized estimator.

Lemma A.12. For any µ P Dµπ,P , the following inequality holds:

ˇ

ˇ

ˇ

pDKLpµ}µ
π,P q ´ rDKLpµ}µ

π,P q

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

ˇ

˜

1

n

n
ÿ

i“1

pwpXiq

¸

log

˜

1

n

n
ÿ

i“1

pwpXiq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

` 2 log n

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

pwpXiq ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

.

Proof. We perform some algebraic manipulation of the expression:

pDKLpµ}µ
π,P
q ´ rDKLpµ}µ

π,P
q “

1

n

n
ÿ

i“1

pwpXiq log pwpXiq

´
1

n

n
ÿ

i“1

pwpXiqn
řn
i“1 pwpXiq

log
pwpXiqn

řn
i“1 pwpXiq

“
1

n

n
ÿ

i“1

pwpXiq log
pwpXiqn

řn
i“1 pwpXiq

`

˜

1

n

n
ÿ

i“1

pwpXiq

¸

log

˜

1

n

n
ÿ

i“1

pwpXiq

¸

´
1

n

n
ÿ

i“1

pwpXiqn
řn
i“1 pwpXiq

log
pwpXiqn

řn
i“1 pwpXiq

“
1

n

n
ÿ

i“1

pwpXiqn
řn
i“1 pwpXiq

log
pwpXiqn

řn
i“1 pwpXiq

˜

1

n

n
ÿ

i“1

pwpXiq ´ 1

¸

`

˜

1

n

n
ÿ

i“1

pwpXiq

¸

log

˜

1

n

n
ÿ

i“1

pwpXiq

¸

.

Now, consider the term:

1

n

n
ÿ

i“1

pwpXiqn
řn
i“1 pwpXiq

log
pwpXiqn

řn
i“1 pwpXiq

“

n
ÿ

i“1

rwpXiq log rwpXiq ` logn.

Since the rwpXiq sum up to 1, the summation
řn
i“1 rwpXiq log rwpXiq is maximized in absolute

value when all pwpXiq are equal, thus |
řn
i“1 rwpXiq log rwpXiq| ď logn. By taking the absolute

value of the full expression, we get the result.

Now we can put all together.

Theorem 7.9. (Finite–Sample Bound) Let µπ,P P PpS ˆAˆ Sq be the sampling distri-
bution, κ ą 0 be the KL–divergence threshold, µ1 P Dµ be the solution of the PRIMALκ
problem and prθ

1
, rω1q P Θˆ Ω be the solution of the ČREMPSκ problem with PROJµ com-

puted with n ą 0 samples collected with µ. Then, under Assumptions 4.1, 7.2 and 7.3, for
any α P p1, βq, there exist two constants χ, ξ and a function ζpnq “ Oplog nq depending
on α, and on the samples, such that for any δ P p0, 1q, with probability at least 1 ´ 4δ it
holds that:

Jµ
1

´ Jprθ
1
, rω1q ď

?
2Rmax sup

µPD
µπ,P

inf
µPDΘ,Ω

!

a

DKLpµ}µq
)

approximation error
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`Rmaxχ
?
ε`Rmaxζpnqε`Rmaxξε

2

estimation error

,

where ε “ 2
α`2
2α

c

v log 2en
v `log 8

δ

n
2pα´1q
α

Γ

ˆ

α,

c

v log 2en
v `log 8

δ

n
2pα´1q
α

˙

, which depend on the pseudo-

dimension bound v ă `8 and Γpα, τq “ α´1
α ` 1

α

´

α
α´1

¯α´1 ´

1`
`

α´1
α

˘α´1
log 1

τ

¯

α´1
α

.

Proof. We start from Theorem A.7 and we bound each term using Lemma A.9 and Lemma A.11.

For brevity, we define ε “ 2
α`2
2α

c

v log 2en
v
`log 8

δ

n
2pα´1q
α

Γ

ˆ

α,

c

v log 2en
v
`log 8

δ

n
2pα´1q
α

˙

. Let us start with

supµPD
µπ,P

|Jµ ´ rJµ|:

sup
µPD

µπ,P

ˇ

ˇ

ˇ
Jµ ´ rJµ

ˇ

ˇ

ˇ
“ sup
µPD

µπ,P

ˇ

ˇ

ˇ
Jµ ´ rJµ ˘ pJµ

ˇ

ˇ

ˇ

ď sup
µPD

µπ,P

ˇ

ˇ

ˇ
Jµ ´ pJµ

ˇ

ˇ

ˇ
`Rmax sup

µPD
µπ,P

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

pwpXiq ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2Rmax max

"

α
a

dαpµ}µπ,P q,
α

b

pdβpµ}µπ,P q

*

ε,

where we exploited events pE1q and pE2q and simply observed that α ă β and thus Lemma A.11
holds as well. Consider supµPD

µπ,P

ˇ

ˇ

ˇ

rDKLpµ}µ
π,P
q ´DKLpµ}µ

π,P
q

ˇ

ˇ

ˇ
:

sup
µPD

µπ,P

ˇ

ˇ

ˇ

rDKLpµ}µ
π,P
q ´DKLpµ}µ

π,P
q

ˇ

ˇ

ˇ

“ sup
µPD

µπ,P

ˇ

ˇ

ˇ

rDKLpµ}µ
π,P
q ´DKLpµ}µ

π,P
q ˘ pDKLpµ}µ

π,P
q

ˇ

ˇ

ˇ

ď sup
µPD

µπ,P

ˇ

ˇ

ˇ
DKLpµ}µ

π,P
q ´ pDKLpµ}µ

π,P
q

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

˜

1

n

n
ÿ

i“1

pwpXiq

¸

log

˜

1

n

n
ÿ

i“1

pwpXiq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

` 2 logn

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

pwpXiq ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

.

To complete the derivation we have to analyze the term z log z with z “ 1
n

řn
i“1 pwpXiq. Now using

Lemma A.9 and defining τ “ max

"

α
a

dαpµ}µπ,P q,
α

b

pdβpµ}µπ,P q

*

ε we know that maxt0, 1 ´

τu ď z ď 1`τ as z ě 0. Consider a value of τ P r0, 1s it is simple to prove that p1`τq logp1`τq ě
´p1´ τq logp1´ τq, therefore |z log z| ď p1` τq logp1` τq. Therefore, we have:

sup
µPDµπ,p

ˇ

ˇ

ˇ

rDKLpµ}µ
π,P
q ´DKLpµ}µ

π,P
q

ˇ

ˇ

ˇ
ď

max

$

&

%

1

e
`

α

β ´ α
E

X„µπ,P

«

ˇ

ˇ

ˇ

ˇ

µpXq

µπ,P pXq

ˇ

ˇ

ˇ

ˇ

β
ff1{α

,

˜

1

n

n
ÿ

i“1

| pwpXiq log pwpXiq|
β

¸1{β
,

.

-

ε

`

ˆ

1`max

"

α
a

dαpµ}µπ,P q,
α

b

pdαpµ}µπ,P q

*

ε

˙

ˆ log

ˆ

1`max

"

α
a

dαpµ}µπ,P q,
α

b

pdαpµ}µπ,P q

*

ε

˙

230



A.3. Additional Results and Proofs of Chapter 8

` 2 lognmax

"

α
a

dβpµ}µπ,P q,
α

b

pdαpµ}µπ,P q

*

ε.

Finally, the term supµPD
µπ,P

supµ1PDΘ,Ω

ˇ

ˇ

ˇ

pHpµ}µ1q ´Hpµ}µ1q
ˇ

ˇ

ˇ
can be bounded using Lemma A.9.

We define:

fpαq “ max

"

1

e
`

α

β ´ α
E

X„µπ,P

«

ˇ

ˇ

ˇ

ˇ

µpXq

µπ,P pXq

ˇ

ˇ

ˇ

ˇ

β
ff1{α

,

˜

1

n

n
ÿ

i“1

| pwpXiq log pwpXiq|
β

¸1{β

,

α
a

dαpµ}µπ,P q,
α

b

pdαpµ}dπ,P q, E
X„µπ,P

«

ˇ

ˇ

ˇ

ˇ

µpXq

µπ,P pXq
logµ1pXq

ˇ

ˇ

ˇ

ˇ

β
ff1{β

,

˜

1

n

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

µpXiq

µπ,P pXiq
logµ1pXiq

ˇ

ˇ

ˇ

ˇ

β
¸1{β

*

.

Finally,

Jµ
1

´Jprθ
1
, rω1q ď 4Rmaxfpαqε

`
2Rmax

κ
rfpαqε` p1` fpαqεq log p1` fpαqεq ` 2 lognfpαqεs

`Rmax

?
2 sup
µPD

µπ,P

inf
µPDΘ,Ω

a

DKLpµ}µq `Rmax

a

2fpαqε

ď 4Rmaxfpαqε`
2Rmax

κ
p1` 2 logn` fpαqεq fpαqε

`Rmax

?
2 sup
µPD

µπ,P

inf
µPDΘ,Ω

a

DKLpµ}µq `Rmax

a

2fpαqε

“
?

2Rmax sup
µPD

µπ,P

inf
µPDΘ,Ω

a

DKLpµ}µq `Rmaxχ
?
ε`Rmaxζpnqε`Rmaxξε

2,

where we exploited the fact that logp1`xq ď x and χ “
a

2fpαq, ζpnq “ 4` 2
κ
p1`2 lognqfpαq

and ξ “ 2
κ

. Since we made a union bound over the events pE1q, pE2q, pE3q and pE4q, the statement
holds with probability 1´ 4δ.

A.3 Additional Results and Proofs of Chapter 8

A.3.1 Concentration Result

The goal of this appendix is to provide a probabilistic bound to the differences `ppθq ´
`pθAgq and p`pθAgq´p`ppθq. To this purpose, we start with a technical lemma (Lemma A.13)
which provides a concentration result involving a quantity that will be used later, under
Assumption 8.2. Then, we use this result to obtain the concentration of the parameters,
i.e., bounding the distance

›

›

›

pθ ´ θAg
›

›

›

2
(Theorem A.14), under suitable well–conditioning

properties of the involved quantities. Finally, we employ the latter result to prove the
concentration of the negative log–likelihood (Corollary A.15). Some parts of the derivation
are inspired to Li et al. (2017).

Lemma A.13. Under Assumption 8.1 and Assumption 8.2, let D “ tpSi, Aiqu
n
i“1 be a

dataset of n ą 0 independent samples, where Si „ ν and Ai „ πθAgp¨|Siq. For any
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θ P Θ, let gpθq be defined as:

gpθq “
1

n

n
ÿ

i“1

ˆ

E
A„πθp¨|Siq

rtpSi, Aqs ´ E
A„π

θAg
p¨|Siq

rtpSi, Aqs

˙

. (A.11)

Let pθ “ arg minθPΘt
p`pθqu “ 1

n

řn
i“1 log πθpAi|Siq. Then, under Assumption 8.2, for

any δ P r0, 1s, with probability at least 1´ δ, it holds that:

›

›

›
gppθq

›

›

›

2
ď σ

c

2d

n
log

2d

δ
. (A.12)

Proof. The negative log–likelihood of a policy complying with Definition 8.2 is C2
pRdq. Thus,

since pθ is a minimizer of the negative log–likelihood function p`pθq, it must fulfill the following
first–order condition:

∇θp`ppθq “ 1

n

n
ÿ

i“1

∇θ log π
pθpAi|Siq “

1

n

n
ÿ

i“1

˜

tpSi, Aiq ´ E
A„π

pθ
p¨|Siq

rtpSi, Aqs

¸

“ 0. (P.16)

As a consequence, we can rewrite the expression of gppθq exploiting this condition:

gppθq “
1

n

n
ÿ

i“1

˜

E
A„π

pθ
p¨|Siq

rtpSi, Aqs ´ E
A„π

θAg
p¨|Siq

rtpSi, Aqs

¸

“
1

n

n
ÿ

i“1

˜

tpSi, Aiq ´ E
A„π

θAg
p¨|Siq

rtpSi, Aqs

¸

“
1

n

n
ÿ

i“1

tpSi, Ai,θ
Ag
q.

By recalling that Ai „ πθAgp¨|Siq it immediately follows that gppθq is a zero-mean random vector,
i.e., E Si„ν

Ai„πθAg p¨|Siq

”

gppθq
ı

“ 0. Moreover, under Assumption 8.2, gppθq is the sample mean of

subgaussian random vectors. Our goal is to bound the probability P
´
›

›

›
gppθq

›

›

›

2
ą ε

¯

; to this purpose
we consider the following derivation:

P
´›

›

›
gppθq

›

›

›

2
ą ε

¯

“ P

¨

˝

g

f

f

e

d
ÿ

j“1

gjppθq2 ą ε

˛

‚

ď P
˜

d
ł

j“1

ˇ

ˇ

ˇ
gjppθq

ˇ

ˇ

ˇ
ą

ε
?
d

¸

(P.17)

ď

d
ÿ

j“1

P
ˆ

ˇ

ˇ

ˇ
gjppθq

ˇ

ˇ

ˇ
ą

ε
?
d

˙

, (P.18)

where we exploited in line (P.17) the fact that for a d-dimensional vector x if }x}2 ą ε it must
be that at least one component j “ 1, ..., d satisfy x2

j ą
ε2

d
and we used a union bound over the

d dimensions to get line (P.18). Since for each j “ 1, ..., d we have that gjppθq is a zero-mean
subgaussian random variable we can bound the deviation using standard results (Boucheron et al.,
2013):

P
ˆ

ˇ

ˇ

ˇ
gjppθq

ˇ

ˇ

ˇ
ą

ε
?
d

˙

ď 2 exp

"

´
ε2n

2dσ2

*

. (P.19)
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Putting all together we get:

P
´›

›

›
gppθq

›

›

›

2
ą ε

¯

ď 2d exp

"

´
ε2n

2dσ2

*

. (P.20)

By setting δ “ 2d exp
!

´ ε2n
2dσ2

)

and solving for ε we get the result.

We can now use the previous result to derive the concentration of the parameters, i.e.,
bounding the deviation

›

›

›

pθ ´ θAg
›

›

›

2
.

Theorem A.14 (Parameter concentration). Under Assumption 8.1 and Assumption 8.2,
let D “ tpSi, Aiqu

n
i“1 be a dataset of n ą 0 independent samples, where Si „ ν and

Ai „ πθAgp¨|Siq. Let pθ “ arg minθPΘt
p`pθqu. If the empirical FIM pFpθq has a positive

minimum eigenvalue pλmin ą 0 for all θ P Θ, for any δ P r0, 1s, with probability at least
1´ δ, it holds that:

›

›

›

pθ ´ θAg
›

›

›

2
ď

σ

pλmin

c

2d

n
log

2d

δ
. (A.13)

Proof. Recalling that gpθAg
q “ 0, we employ the mean value theorem to rewrite gppθq centered in

θAg:
gppθq “ gppθq ´ gpθAg

q “ pFpθq
´

pθ ´ θAg
¯

, (P.21)

where θ “ tpθ ` p1´ tqθAg for some t P r0, 1s and pFpθq is defined as:

pFpθq “ ∇θgpθq “ 1

n

n
ÿ

i“1

E
A„πθp¨|Siq

r∇θ log πθpA|SiqtpSi, Aqs

“
1

n

n
ÿ

i“1

E
A„πθp¨|Siq

„ˆ

tpSi, Aq ´ E
A„πθp¨|Sq

“

tpSi, Aq
‰

˙

tpSi, Aq



“ pFpθq,

where we exploited the expression of ∇θ log πθpa|sq and the definition of Fisher information matrix
given in Equation (B.3). Under the hypothesis of the statement, we can derive the following lower
bound:

›

›

›
gppθq

›

›

›

2

2
“

´

pθ ´ θAg
¯T

pFpθqT pFpθq
´

pθ ´ θAg
¯

ě pλ2
min

›

›

›

pθ ´ θAg
›

›

›

2

2
. (P.22)

By solving for
›

›

›

pθ ´ θAg
›

›

›

2
and applying Lemma A.13 we get the result.

Finally, we can get the concentration result for the negative log–likelihood.

Corollary A.15 (Negative log–likelihood concentration). Under Assumption 8.1 and As-
sumption 8.2, let D “ tpSi, Aiqu

n
i“1 be a dataset of n ą 0 independent samples, where

Si „ ν and Ai „ πθAgp¨|Siq. Let pθ “ arg minθPΘt
p`pθqu. If λminp pFpθqq “ pλmin ą 0 for

all θ P Θ, for any δ P r0, 1s, with probability at least 1´ δ, it holds that:

`ppθq ´ `pθAgq ď
d2σ4

pλ2
minn

log
2d

δ
, (A.14)

and also:
p`pθAgq ´ p`ppθq ď

d2σ4

pλ2
minn

log
2d

δ
. (A.15)
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Proof. Let us start with `ppθq ´ `pθAg
q. We consider the first order Taylor expansion of the negative

log–likelihood centered in θAg:

`ppθq ´ `pθAg
q “ ∇θ`pθAg

q
T
´

pθ ´ θAg
¯

`
1

2

´

pθ ´ θAg
¯T

Hθ`pθq
´

pθ ´ θAg
¯

, (P.23)

where θ “ tpθ` p1´ tqθAg for some t P r0, 1s. We first observe that ∇θ`pθAg
q “ 0 being θAg the

true parameter and we develop Hθ`pθq:

Hθ`pθq “ E
S„ν

A„π
θAg
p¨|Sq

rHθ log πθpA|Sqs

“ E
S„ν

A„π
θAg
p¨|Sq

«

∇θ
˜

tpS,Aq ´ E
A„π

θ
p¨|Sq

“

tpS,Aq
‰

¸ff

“ E
S„ν

«

∇θ E
A„π

θ
p¨|Sq

“

tpS,Aq
‰

ff

“ E
S„ν

«

E
A„π

θ
p¨|Sq

«˜

tpS,Aq ´ E
rA„π

θ
p¨|Sq

”

tpS, rAq
ı

¸

tpS,AqT
ffff

“ E
S„ν

“

Fpθ, Sq
‰

.

By using Lemma B.3 to bound the maximum eigenvalue of Fpθ, Sq, we can state the inequality:

1

2

´

pθ ´ θAg
¯T

Hθ`pθq
´

pθ ´ θAg
¯

ď
dσ2

2

›

›

›

pθ ´ θAg
›

›

›

2

2
. (P.24)

Using the concentration result of Theorem A.14, we get the result. Concerning p`pθAg
q ´ p`ppθq, the

derivation is analogous with the only difference that the Taylor expansion has to be centered in pθ
instead of θAg.

To conclude this section, we present the following technical lemma.

Theorem A.16. Under Assumption 8.1 and Assumption 8.2, let D “ tpSi, Aiqu
n
i“1 be a

dataset of n ą 0 independent samples, where Si „ ν and Ai „ πθAgp¨|Siq. Let θ,θ1 P Θ,
then for any ε ą 0, it holds that:

P
´”

`pθq ´ p`pθq
ı

´

”

`pθ1q ´ p`pθ1q
ı

ą ε
¯

ď exp

#

´
ε2n

2
›

›θ ´ θ1
›

›

2

2
σ2

+

.

Proof. We write explicitly the involved expression, using Definition 8.2 and perform some algebraic
manipulations:

”

`pθq ´ p`pθq
ı

´

”

`pθ1q ´ p`pθ1q
ı

“ E
S„ν

A„π
θAg
p¨|Sq

”

θT tpS,Aq ´Apθ, sq
ı

´
1

n

n
ÿ

i“1

´

θT tpSi, Aiq ´Apθ, Siq
¯

´ E
S„ν

A„π
θAg
p¨|Sq

”

`

θ1
˘T

tpS,Aq ´Apθ1, Sq
ı

`
1

n

n
ÿ

i“1

´

`

θ1
˘T

tpSi, Aiq ´Apθ
1, Siq

¯
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“ E
S„ν

A„π
θAg
p¨|Sq

”

`

θ ´ θ1
˘T

tpS,Aq ´
`

Apθ, Sq ´Apθ1, Sq
˘

ı

´
1

n

n
ÿ

i“1

´

`

θ ´ θ1
˘T

tpSi, Aiq ´
`

Apθ, Siq ´Apθ
1, Siq

˘

¯

.

We are comparing the mean and the sample mean of the random variable
`

θ ´ θ1
˘T

tpS,Aq ´
`

Apθ, Sq ´Apθ1, S
˘

. Let us now focus on Apθ, Sq ´Apθ1, Sq. From the mean value theorem we
know that, for some t P r0, 1s and θ “ tθ ` p1´ tqθ1, we have:

Apθ, Sq ´Apθ1, Sq “ ∇θApθ, SqT
`

θ ´ θ1
˘

. (P.25)

From Equation (P.1), we know that ∇θApθ, Sq “ EA„π
θ
p¨|Sq

“

tpS,Aq
‰

. The random variable

tpS,A,θq “ tpS,Aq ´ EA„π
θ
p¨|Sq

“

tpS,Aq
‰

is a subgaussian random variable for any θ P Θ.
Thus, under Assumption 8.2 we have:

”

`pθq ´ p`pθq
ı

´

”

`pθ1q ´ p`pθ1q
ı

“
`

θ ´ θ1
˘T

¨

˝ E
S„ν

A„π
θAg
p¨|Sq

“

tpS,A,θq
‰

´
1

n

n
ÿ

i“1

tpSi, Ai,θq

˛

‚.

If we apply Proposition B.5, we get the result.

A.3.2 Results on Significance and Power of the Tests

Theorem 8.5. Let pIc be the set of parameter indexes selected by the Identification Rule 8.2
obtained using n ą 0 i.i.d. samples collected with πθAg , with θAg P Θ. Then, under
Assumption 8.1 and Assumption 8.2, let θAgi “ arg minθPΘit`pθqu for all i P t1, ..., du
and ξ “ min

 

1, λmin

σ2

(

. If pλmin ě
λmin

2
?

2
and `pθAgi q ´ `pθ

Ag
q ě c1, it holds that:

α ď 2d exp

"

´
c1λ

2
minn

16d2σ4

*

,

β ď p2d´ 1q
ÿ

iPIAg

exp

$

&

%

´

´

`pθAgi q ´ `pθ
Ag
q ´ c1

¯

λminξn

16pd´ 1q2σ2

,

.

-

.

Proof. We start considering α “ P
´

Di R IAg : i P pIc
¯

. We employ an argument analogous to that
of (Garivier and Kaufmann, 2019):

P
´

Di R IAg : i P pIc
¯

“ P
´

Di R IAg : λi ą c1
¯

“ P
´

Di R IAg : p`pxθiq ´ p`ppθq ą
c1
2

¯

ď P
´

Di R IAg : p`pθAg
q ´ p`ppθq ą

c1
2

¯

“ P
´

p`pθAg
q ´ p`ppθq ą

c1
2

¯

ď 2d exp

"

´
c1λ

2
minn

16d2σ4

*

,

where we observed that p`pθAg
q ě p`pxθiq as θAg

P Θi under H0 and we applied Corollary A.15 in
the last line, recalling that pλmin ě

λmin

2
?

2
. For the second inequality, the derivation is a little more
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articulated. Concerning β “ P
´

i P IAg : i R pI
¯

, we first perform a union bound:

P
´

Di P IAg : i R pIc
¯

“ P
˜

ł

iPIAg

i R pIc

¸

ď
ÿ

iPIAg

P
´

i R pIc
¯

.

Let us now focus on the single terms P
´

i R pIc
¯

. We now perform the following manipulations:

P
´

i R pIc
¯

“ P
´

p`pxθiq ´ p`ppθq ď
c1
2

¯

“ P
´”

p`pxθiq ´ p`pθAg
i q

ı

`

”

p`pθAg
q ´ p`ppθq

ı

`

”

p`pθAg
i q ´

p`pθAg
q

ı

ď
c1
2

¯

(P.26)

ď P
´”

p`pxθiq ´ p`pθAg
i q

ı

`

”

p`pθi
Ag
q ´ p`pθAg

q

ı

ď
c1
2

¯

(P.27)

“ P
´ ”

p`pxθiq ´ p`pθAg
i q

ı

`

”

p`pθAg
i q ´ `pθ

Ag
i q

ı

`

”

`pθAg
q ´ p`pθAg

q

ı

ď

c1
2
`

”

`pθAg
q ´ `pθAg

i q

ı ¯

“ P
´ ”

p`pθAg
i q ´

p`pxθiq
ı

`

”

`pθAg
i q ´

p`pθAg
i q

ı

`

”

p`pθAg
q ´ `pθAg

q

ı

ě

”

`pθAg
i q ´ `pθ

Ag
q

ı

´
c1
2

¯

.

where line (P.27) is obtained by observing that p`pθAg
q ´ p`ppθq ě 0. Thus, we have:

P
´

i R pIc
¯

ď P
ˆ

p`pθi
Ag
q ´ p`pxθiq ě

1

2

”

`pθi
Ag
q ´ `pθAg

q

ı

´
c1
2

˙

` P
˜

”

`pθi
Ag
q ´ p`pθi

Ag
q

ı

`

”

p`pθAg
q ´ `pθAg

q

ı

ě

1

2

”

`pθi
Ag
q ´ `pθAg

q

ı

¸

(P.28)

ď P
ˆ

p`pθi
Ag
q ´ p`pxθiq ě

1

2

”

`pθi
Ag
q ´ `pθAg

q

ı

´
c1
2

˙

` P
˜

”

`pθi
Ag
q ´ p`pθi

Ag
q

ı

`

”

p`pθAg
q ´ `pθAg

q

ı

ě

1

2

„

1

2
λmin

´

`pθi
Ag
q ´ `pθAg

q

¯
›

›

›
θAg
i ´ θ

Ag
›

›

›

2

2

 1
2

¸

(P.29)

ď 2pd´ 1q exp

$

&

%

´

´

`pθAg
i q ´ `pθ

Ag
q ´ c1

¯

λ2
minn

16pd´ 1q2σ4

,

.

-

` exp

#

´

`

`pθi
Ag
q ´ `pθAg

q
˘

λminn

16σ2

+

(P.30)

ď 2pd´ 1q exp

#

´

`

`pθi
Ag
q ´ `pθAg

q ´ c1
˘

λminnξ

16pd´ 1q2σ2

+

` exp

#

´

`

`pθi
Ag
q ´ `pθAg

q ´ c1
˘

λminnξ

16pd´ 1q2σ2

+

(P.31)
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ď p2d´ 1q exp

#

´

`

`pθi
Ag
q ´ `pθAg

q ´ c1
˘

λminnξ

16pd´ 1q2σ2

+

.

where line (P.28) derives from the inequality PpX ` Y ě cq ď PpX ě aq ` PpY ě bq with
c “ a ` b, line (P.29) is obtained by the following second order Taylor expansion, recalling that
∇θ`pθAg

q “ 0:

`pθi
Ag
q ´ `pθAg

q “ ∇θ`pθAg
q
T
´

θi
Ag
´ θAg

¯

`
1

2

´

θi
Ag
´ θAg

¯T

Hθ`pθq
´

θi
Ag
´ θAg

¯

ě
λmin

2

›

›

›
θi

Ag
´ θAg

›

›

›

2

2
,

where θ “ tθAg
`p1´tqθAg

i for some t P r0, 1s. Line (P.30) is obtained by applying Corollary A.15,
recalling that pλmin ě

λmin

2
?

2
and Theorem A.16. Finally, line (P.31) derives by introducing the term

ξ “ min
!

1, λmin
σ2

)

and observing that:

`

`pθi
Ag
q ´ `pθAg

q ´ c1
˘

ξ

pd´ 1q2
ď

`

`pθi
Ag
q ´ `pθAg

q
˘

n

16
.

Clearly, this result is meaningful as long as `pθiAgq ´ `pθAg
q ´ c1 ě 0.

A.4 Additional Results and Proofs of Chapter 9

Lemma A.17. Let M be an MDP and π P ΠSR be a Markovian stationary policy, then
for any k P Ně1 the following two identities hold:

Qπ ´Qπk “
´

IdSˆA ´ γ
k pPπq

k
¯´1 ´

pTπq
k
Qπk ´

`

T δ
˘k´1

TπQπk

¯

“

´

IdSˆA ´ γ
k
`

P δ
˘k´1

Pπ
¯´1 ´

pTπq
k
Qπ ´

`

T δ
˘k´1

TπQπ
¯

.

Proof. We prove the equalities by exploiting the facts that Qπ and Qπk are the fixed points of Tπ

and Tπk :

Qπ ´Qπk “ TπQπ ´ Tπk Q
π
k

“ pTπqkQπ ´
´

T δ
¯k´1

TπQπk (P.32)

“ pTπqkQπ ´
´

T δ
¯k´1

TπQπk ˘ pT
π
q
kQπk (P.33)

“ γk pPπqk pQπ ´Qπk q `

ˆ

pTπqkQπk ´
´

T δ
¯k´1

TπQπk

˙

, (P.34)

where line (P.32) derives from recalling thatQπ “ TπQπ and exploiting Theorem 9.1, line (P.34) is
obtained by exploiting the identity that holds for two generic bounded measurable functions f, g P
BpS ˆAq:

pTπqk f ´ pTπqk g “ γk pPπqk pf ´ gq. (P.35)

We prove this identity by induction. For k “ 1 the identity clearly holds. Suppose Equation (P.35)
holds for all integers h ă k, we prove that it holds for k too:

pTπqk f ´ pTπqk g “ Tπ pTπqk´1 f ´ Tπ pTπqk´1 g
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“ r ` γPπ pTπqk´1 f ´ r ´ Pπγ pTπqk´1 g

“ γPπ
´

pTπqk´1 f ´ pTπqk´1 g
¯

(P.36)

“ γPπγk´1
pPπqk´1

pf ´ gq (P.37)

“ γk pPπqk pf ´ gq,

where line (P.36) derives from the linearity of operator Pπ and line (P.37) follows from the inductive
hypothesis. From line (P.34) the result follows immediately, recalling that since γ ă 1 the inversion
of the operator is well-defined:

Qπ ´Qπk “ γk pPπqk pQπ ´Qπk q `

ˆ

pTπqkQπk ´
´

T δ
¯k´1

TπQπk

˙

ùñ

´

IdSˆA ´ γ
k
pPπqk

¯

pQπ ´Qπk q “

ˆ

pTπqkQπk ´
´

T δ
¯k´1

TπQπk

˙

ùñ

Qπ ´Qπk “
´

IdSˆA ´ γ
k
pPπqk

¯´1
ˆ

pTπqkQπk ´
´

T δ
¯k´1

TπQπk

˙

.

The second identity of the statement is obtained with an analogous derivation, in which at line (P.33)
we sum and subtract

`

T δ
˘k´1

TπQπ and we exploit the identity for two bounded measurable func-
tions f, g P BpS ˆAq:

´

T δ
¯k´1

TπQf ´
´

T δ
¯k´1

TπQg “ γk
´

P δ
¯k´1

Pπpf ´ gq. (P.38)

Lemma A.18. Let M be an MDP and π P ΠSR be a Markovian stationary policy, then
for any k P Ně1 and any bounded measurable function f P BpS ˆAq the following two
identities hold:

pTπq
k´1

f ´
`

T δ
˘k´1

f “
k´2
ÿ

i“0

γi`1 pPπq
i `
Pπ ´ P δ

˘ `

T δ
˘k´2´i

f

“

k´2
ÿ

i“0

γi`1
`

P δ
˘i `

Pπ ´ P δ
˘

pTπq
k´2´i

f.

Proof. We start with the first identity and we prove it by induction on k. For k “ 1, we have that
the left hand side is zero and the summation on the right hand side has no terms. Suppose that the
statement holds for every h ă k, we prove the statement for k:

pTπqk´1f ´
´

T δ
¯k´1

f “ pTπqk´1 f ´
´

T δ
¯k´1

f ˘ pTπqk´2 T δf (P.39)

“

´

pTπqk´2 Tπf ´ pTπqk´2 T δf
¯

`

ˆ

pTπqk´2 T δf ´
´

T δ
¯k´2

T δf

˙

“ γk´2
pPπqk´2

´

Tπf ´ T δf
¯

`

ˆ

pTπqk´2 T δf ´
´

T δ
¯k´2

T δf

˙

(P.40)

“ γk´1
pPπqk´2

´

Pπ ´ P δ
¯

f `
k´3
ÿ

i“0

γi`1
pPπqi

´

Pπ ´ P δ
¯´

T δ
¯k´3´i

T δf

(P.41)
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“

k´2
ÿ

i“0

γi`1
pPπqi

´

Pπ ´ P δ
¯´

T δ
¯k´2´i

f, (P.42)

where in line (P.40) we exploited the identity at Equation (P.35), line (P.41) derives from observing
that Tπf ´T δf “ γ

`

Pπ ´ P δ
˘

f and by inductive hypothesis applied on T δf which is a bounded
measurable function as well. Finally, line (P.42) follows from observing that the first term completes
the summation up to k ´ 2. The second identity in the statement can be obtained by an analogous
derivation in which at line (P.39) we sum and subtract

`

T δ
˘k´2

Tπf and, later, exploit the identity
at Equation (P.38).

Lemma A.19. Let M be an MDP and π P ΠSR be a Markovian stationary policy. Let f P
BpS ˆAq that is Lf–LC. Then, under Assumptions 9.1 and 9.2, the following statements
hold:

1. Tπf is pLr ` γLP pLπ ` 1qLf q–LC;

2. T δf is pLr ` γpLP ` 1qLf q–LC;

3. T˚f is pLr ` γLPLf q–LC.

Proof. Let f P BpS ˆAq be Lf -LC. Consider an application of Tπ and ps, aq, ps, aq P S ˆA:

ˇ

ˇ

ˇ
pTπfqps, aq ´ pTπfqps, aq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

rps, aq ` γ

ż

S

ż

A
P pds1|s, aqπpda1|s1qfps1, a1q

´ rps, aq ´ γ

ż

S

ż

A
P pds1|s, aqπpda1|s1qfps1, a1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď |rps, aq ´ rps, aq| (P.43)

` γ

ˇ

ˇ

ˇ

ˇ

ż

S

`

P pds1|s, aq ´ P pds1|s, aq
˘

ż

A
πpda1|s1qfps1, a1q

ˇ

ˇ

ˇ

ˇ

(P.44)

ď |rps, aq ´ rps, aq| ` γpLπ ` 1qLf sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S

`

P pds1|s, aq ´ P pds1|s, aq
˘

fps1q

ˇ

ˇ

ˇ

ˇ

(P.45)

ď pLr ` γLP pLπ ` 1qLf q dSˆA pps, aq, ps, aqq , (P.46)

where line (P.44) follows from triangular inequality, line (P.45) is obtained from observing that the
function gf ps1q “

ş

A πpda
1
|s1qfps1, a1q is pLπ ` 1qLf–LC, since for any s, s P S:

|gf psq ´ gf psq| “

ˇ

ˇ

ˇ

ˇ

ż

A
πpda|sqfps, aq ´

ż

A
πpda|sqfps, aq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

A
πpda|sqfps, aq ´

ż

A
πpda|sqfps, aq ˘

ż

A
πpda|sqfps, aq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż

A
pπpda|sq ´ πpda|sqq fps, aq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

A
πpda|sq pfps, aq ´ fps, aqq

ˇ

ˇ

ˇ

ˇ

ď Lf sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

A
pπpda|sq ´ πpda|sqq fpaq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

A
πpda|sq pfps, aq ´ fps, aqq

ˇ

ˇ

ˇ

ˇ

ď LfLπdSps, sq ` LfdSps, sq,

239



Appendix A. Additional Results and Proofs

where we exploited the fact that Lπ–LC. Finally, line (P.46) is obtained by recalling that the reward
function is Lr–LC and the transition model is LP –LC. The derivations are analogous for T δ and
T˚. Concerning T δ we have:
ˇ

ˇ

ˇ
pT δfqps, aq ´ pT δfqps, aq

ˇ

ˇ

ˇ
ď |rps, aq ´ rps, aq|

` γ

ˇ

ˇ

ˇ

ˇ

ż

S

ż

A

`

δapda
1
qP pds1|s, aq ´ δapda

1
qP pds1|s, aq

˘

fps1, a1q

ˇ

ˇ

ˇ

ˇ

ď LrdSˆA pps, aq, ps, aqq

` γ

ˇ

ˇ

ˇ

ˇ

ż

S

`

P pds1|s, aq ´ P pds1|s, aq
˘

ż

A
δapda

1
qfps1, a1q

ˇ

ˇ

ˇ

ˇ

` γ

ż

S
P pds1|s, aq

ˇ

ˇ

ˇ

ˇ

ż

A

`

δapda
1
q ´ δapda

1
q
˘

fps1, a1q

ˇ

ˇ

ˇ

ˇ

ď pLr ` γLfLP ` γLf q dSˆA pps, aq, ps, aqq ,

where we observed that
ş

A δapda
1
qfps1, a1q “ fps1, aq is Lf–LC and exploited the inequality

ş

A
ˇ

ˇδapda
1
q ´ δapda

1
q
ˇ

ˇ fps1, a1q ď LfdApa, aq ď LfdSˆApps, aq, pa, aqq. Finally, considering
T˚, we have:

ˇ

ˇpT˚fqps, aq ´ pT˚fqps, aq
ˇ

ˇ ď |rps, aq ´ rps, aq|

` γ

ˇ

ˇ

ˇ

ˇ

ż

S

`

P pds1|s, aq ´ P pds1|s, aq
˘

sup
a1PA

fps1, a1q

ˇ

ˇ

ˇ

ˇ

ď pLr ` γLfLP q dSˆA pps, aq, ps, aqq ,

where we observed that the function hf ps1q “ supa1PAs fps
1, a1q is Lf–LC, since:

|hf psq ´ hf psq| “

ˇ

ˇ

ˇ

ˇ

sup
a1PA

fps, a1q ´ sup
a1PA

fps, a1q

ˇ

ˇ

ˇ

ˇ

ď sup
a1PA

ˇ

ˇfps, a1q ´ fps, a1q
ˇ

ˇ

ď LfdSps, sq.

Lemma A.20. Let M be an MDP and π P ΠSR be a Markovian stationary policy. Then,
under Assumptions 9.1 and 9.2, if γmaxtLP `1, LP pLπ`1qu ă 1, the functions f P Qk

are LQk–LC, where:

LQk ď
Lr

1´ γmaxtLP ` 1, LP pLπ ` 1qu
. (A.16)

Furthermore, for all ps, aq P S ˆA it holds that:

dπQkps, aq ď LQkW1

`

Pπp¨|s, aq, P δp¨|s, aq
˘

. (A.17)

Proof. First of all consider the action-value function of the k–persistent MDPQπk , which is the fixed
point of the operator Tπk that decomposes into pT δqk´1Tπ according to Theorem 9.1. It follows that
for any f P BpS ˆAq we have:

Qπk “ lim
jÑ`8

pTπk q
j f “ lim

jÑ`8

´

pT δqk´1Tπ
¯j

f.
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We now want to bound the Lipschitz constant of Qπk . To this purpose, let us first compute the
Lipschitz constant of Tπk f “ ppT

δ
q
k´1Tπqf for f P BpS ˆ Aq being an Lf–LC function. From

Lemma A.19 we can bound the Lipschitz constant ah of pT δqhTπf for h P t0, ...k´ 1u, leading to
the sequence:

ah “

#

Lr ` γLP pLπ ` 1qLf if h “ 0

Lr ` γpLP ` 1qah´1 if h P t1, ...k ´ 1u
.

Thus, the Lipschitz constant of ppT δqk´1Tπqf is ak´1. By unrolling the recursion we have:

ak´1 “ Lr

k´1
ÿ

i“0

γipLP ` 1qi ` γkLP pLπ ` 1qpLP ` 1qk´1Lf

“ Lr
1´ γkpLP ` 1qk

1´ γpLP ` 1q
` γkLP pLπ ` 1qpLP ` 1qk´1Lf .

Let us now consider the sequence bj of the Lipschitz constants of pTπk q
jf for j P N:

bj “

$

&

%

Lf if j “ 0

Lr
1´γkpLP`1qk

1´γpLP`1q
` γkLP pLπ ` 1qpLP ` 1qk´1bj´1 if j P Ně1

.

The sequence bj converges to a finite limit as long as γkLP pLπ ` 1qpLP ` 1qk´1
ă 1. In such

case, the limit b8 can be computed solving the fixed point equation:

b8 “ Lr
1´ γkpLP ` 1qk

1´ γpLP ` 1q
` γkLP pLπ ` 1qpLP ` 1qk´1b8

ùñ b8 “
Lr

`

1´ γkpLP ` 1qk
˘

p1´ γpLP ` 1qq p1´ γkLP pLπ ` 1qpLP ` 1qk´1q
.

Thus, b8 represents the Lipschitz constant of Qπk .
It is worth noting that when setting k “ 1 we recover the Lipschitz constant of the Qπ as

in (Rachelson and Lagoudakis, 2010). To get a bound that is independent on k we define L “

maxtLP pLπ ` 1q, LP ` 1u, assuming that γL ă 1 so that:

b8 “
Lr

`

1´ γkpLP ` 1qk
˘

p1´ γpLP ` 1qq p1´ γkLP pLπ ` 1qpLP ` 1qk´1q
ď

Lr
1´ γL

,

having observed that 1´γkpLP`1qk

1´γpLP`1q
ď

1´γkLk

1´γL
. Thus, we conclude thatQπk is also Lr

1´γL
–LC for any

k P Ně1. Consider now the application of the operator Tπ to Qπk , we have that the corresponding
Lipschitz constant can be bounded by:

LTπQπ
k
ď Lr ` γLP pLπ ` 1q

Lr
1´ γL

ď Lr ` γL
Lr

1´ γL
“

Lr
1´ γL

. (P.47)

A similar derivation holds for the application of T δ . As a consequence, any arbitrary sequence of
applications of Tπ and T δ to Qπk generates a sequence of Lr

1´γL
–LC functions. Even more so for

the functions in the set Qk “ t
`

T δ
˘k´2´l

TπQπk : l P t0, . . . , k´ 2uu. As a consequence, we can
rephrase the dissimilarity term dπQπ

k
ps, aq as a Kantorovich distance:

dπQπ
k
ps, aq “ sup

fPQk

ˇ

ˇ

ˇ

ˇ

ż

S

ż

A

´

Pπpds1,da1|s, aq ´ P δpds1, da1|s, aq
¯

fps1, a1q

ˇ

ˇ

ˇ

ˇ
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ď LQπ
k

sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S

ż

A

´

Pπpds1, da1|s, aq ´ P δpds1,da1|s, aq
¯

fps1, a1q

ˇ

ˇ

ˇ

ˇ

“ LQπ
k
W1

´

Pπp¨|s, aq, P δp¨|s, aq
¯

.
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APPENDIXB
Exponential Family Policies

In this appendix, we report some results about policies that belong to the exponential
family.

B.1 Gaussian and Boltzmann Linear Policies as Exponential
Family distributions

We show how a multivariate Gaussian with fixed covariance and a Boltzmann policy, both
linear in the state features φpsq can be cast into Definition 8.2. We are going to make use
of the following identities regarding the Kronecker product (Petersen and Pedersen, 2008):

vecpAXBq “
´

BT
bA

¯

vecpXq (B.1)

aTXBXT c “ vecpXqT
`

Bb caT
˘

vecpXq, (B.2)

where vecpXq is the vectorization of matrix X obtained by stacking the columns of X into
a single column vector.



Appendix B. Exponential Family Policies

B.1.1 Multivariate Linear Gaussian Policy with fixed covariance
The typical representation of a multivariate linear Gaussian policy is given by the following
probability density function:

π
rθpa|sq “

1

p2πq
k
2 detpΣq

1
2

exp

"

´
1

2
pa´ rθφpsqqTΣ´1

pa´ rθφpsqq

*

,

where rθ P Rkˆq is a properly sized matrix. Recalling Definition 8.2, we rephrase the
previous equation as:

π
rθpa|sq “

1

p2πq
k
2 detpΣq

1
2

exp

"

´
1

2
aTΣ´1a

*

exp

"

φpsqT rθ
T
Σ´1a´

1

2
φpsqT rθ

T
Σ´1

rθφpsq

*

.

Recalling the identities at Equation (B.1) and (B.2) and observing that φpsqT rθ
T
Σ´1a

and φpsqT rθ
T
Σ´1

rθφpsq are scalar, we can rewrite:

φpsqT rθ
T
Σ´1a “ vec

´

φpsqT rθ
T
Σ´1a

¯

“
`

aTΣ´1
b φpsqT

˘

vec
´

rθ
T
¯

“ vec
´

rθ
T
¯T

`

Σ´1ab φpsq
˘

,

φpsqT rθ
T
Σ´1

rθφpsq “ vec
´

rθ
T
¯T

`

Σ´1
b φpsqφpsqT

˘

vec
´

rθ
T
¯

.

Now, by redefining the parameter of the exponential family distribution θ “ vec
´

rθ
T
¯

we
state the following definitions to comply with Definition 8.2:

tps,aq “ Σ´1ab φpsq,

hpaq “
1

p2πq
k
2 detpΣq

1
2

exp

"

´
1

2
aTΣ´1a

*

,

Apθ, sq “ θT
`

Σ´1
b φpsqφpsqT

˘

θ.

B.1.2 Boltzmann Linear Policy
The Boltzmann policy on a finite set of actions ta1, ..., ak`1u is typically represented by
means of a matrix of parameters rθ P Rkˆq:1

π
rθpai|sq “

$

’

’

&

’

’

%

exp
!

rθ
T

i φpsq
)

1`
řk
j“1 exp

!

rθ
T

j φpsq
) if i ď k

1

1`
řk
j“1 exp

!

rθ
T

j φpsq
) if i “ k ` 1

,

1Notice that we are considering a set made of k ` 1 actions but the matrix rθ has only k rows. This allows
enforcing the identifiability property, otherwise if we had a row for each of the k ` 1 actions we would have
multiple representation for the same policy (rescaling the rows by the same amount).
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where with rθi we denote the i-th row of matrix rθ. In order to comply to Definition 8.2,
we rewrite the density function in the following form:

π
rθpai|sq “

$

&

%

exp
!

rθ
T

i φpsq ´ log
´

expt0u `
řk
j“1 exp

!

rθ
T

j φpsq
)¯)

if i ď k

exp
!

0´ log
´

expt0u `
řk
j“1 exp

!

rθ
T

j φpsq
)¯)

if i “ k ` 1
.

By introducing the vector ei as the i–th vector of the canonical basis of Rk, i.e., the vector
having 1 in the i–th component and 0 elsewhere, and recalling the definition of Kronecker
product, we can derive the following identity for i ď k:

rθ
T

i φpsq “ vec
´

rθ
T
¯T

pei b φpsqq .

In the case i “ k it is sufficient to replace the previous term with the zero vector 0.

Therefore, by renaming θ “ vec
´

rθ
T
¯

we can make the following assignments in order
to get the relevant quantities in Definition 8.2:

tps, aiq “

#

ei b φpsq if i ď k

0 if i “ k ` 1
,

hpaiq “ 1,

Apθ, sq “ log

˜

1`
k
ÿ

j“1

exp
!

θT pej b φpsqq
)

¸

.

B.2 Fisher Information Matrix

We start by providing an expression of the Fisher Information matrix (FIM) for the specific
case of the exponential family, that we are going to use extensively in the derivation. We
first define the FIM for a fixed state and then we provide its expectation under the state
distribution ν. For any state s P S, we define the FIM induced by πθp¨|sq as:

Fpθ, sq “ E
A„πθp¨|sq

“

∇θ log πθpA|sq∇θ log πθpA|sq
T
‰

. (B.3)

We can derive the following immediate result.

Lemma B.1. For a policy πθ belonging to the exponential family, as in Definition 8.2, the
FIM for state s P S is given by the covariance matrix of the sufficient statistic:

Fpθ, sq “ E
A„πθp¨|sq

“

tps,A,θqtps,A,θqT
‰

“ Cov
A„πθp¨|sq

rtps,Aqs .

Proof. Let us first compute the gradient log-policy for the exponential family:

∇θ log πθpa|sq “ tps, aq ´∇θApθ, sq

“ tps, aq ´

ş

A tps, aqhpaq exp
 

θT tps, aq
(

da
ş

A hpaq exp
 

θT tps, aq
(

da
(P.1)

245



Appendix B. Exponential Family Policies

“ tps, aq ´ E
A„πθp¨|sq

“

tps,Aq
‰

“ tps, a,θq.

Now, we just need to apply the definition given in Equation (B.3) and to recall the definition of
covariance matrix:

Fpθ, sq “ E
A„πθp¨|sq

”

tps,A,θqtps,A,θqT
ı

“ E
A„πθp¨|sq

«

ˆ

tps,Aq ´ E
A„πθp¨|sq

“

tps,Aq
‰

˙ˆ

tps,Aq ´ E
A„πθp¨|sq

“

tps,Aq
‰

˙T
ff

“ Cov
A„πθp¨|sq

rtps,Aqs .

We now define the expected FIM Fpθq and its corresponding estimator pFpθq under
the sampling distribution ν:

Fpθq “ E
S„ν

„

E
A„πθp¨|Sq

“

tpS,Aqtps, aqT
‰



,

pFpθq “ 1

n

n
ÿ

i“1

E
A„πθp¨|sq

“

tpSi, AqtpSi, Aq
T
‰

.

Finally, we provide a sufficient condition to ensure that the FIM Fpθq is non singular
in the case of Gaussian and Boltzmann linear policies.

Proposition B.2. If the second moment matrix of the feature vector ES„ν
“

φpSqφpSqT
‰

is non–singular, the identifiability condition of Lemma 8.3 is fulfilled by the Gaussian and
Boltzmann linear policies for all θ P Θ, provided that each action is played with non–zero
probability for the Boltzmann policy.

Proof. Let us start with the Boltzmann policy and consider the expression of tps, aiq with i P
t1, ..., ku:

tps, ai,θq “ tps, aiq ´ E
A„πθp¨|sq

“

tps,Aq
‰

“ ei bφpsq ´
k
ÿ

j“1

πθpai|sqei bφpsq

“ pei ´πq bφpsq,

where π is a vector defined as π “ pπθpa1|sq, ..., πθpak|sqq
T and we exploited the distributivity

of the Kronecker product. While for i “ k` 1, we have p0´πqbφpsq. For the sake of the proof,
let us define rei “ ei if i ď k and rek`1 “ 0. Let us compute the FIM:

Fpθq “ E
A„πθp¨|sq

”

tps,A,θqtps,A,θqT
ı

“ E
A„πθp¨|sq

”

pp rei ´πq bφpsqq pp rei ´πq bφpsqq
T
ı

“ E
A„πθp¨|sq

”

p rei ´πq p rei ´πq
T
bφpsqφpsqT

ı

“ E
A„πθp¨|sq

”

p rei ´πq p rei ´πq
T
ı

bφpsqφpsqT
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“

ˆ

E
A„πθp¨|sq

”

rei rei
T
ı

´ππT
˙

bφpsqφpsqT

“

´

diagpπq ´ππT
¯

bφpsqφpsqT ,

where we exploited the distributivity of the Kroneker product, observed that EA„πθp¨|sq r reis “ π
and EA„πθp¨|sq

”

rei rei
T
ı

“ diagpπq. Let us now consider the matrix:

diagpπq ´ππT “

¨

˚

˚

˚

˚

˚

˝

πθpa1|sq ´ πθpa1|sq
2

´πθpa1|sqπθpa2|sq . . . ´πθpa1|sqπθpak|sq

´πθpa1|sqπθpa2|sq πθpa2|sq ´ πθpa2|sq
2 . . . ´πθpa2|sqπθpak|sq

...
...

. . .
...

´πθpa1|sqπθpak|sq ´πθpa2|sqπθpak|sq . . . πθpak|sq ´ πθpak|sq
2

˛

‹

‹

‹

‹

‹

‚

.

Consider a generic row i P t1, ..., ku. The element on the diagonal is πθpai|sq ´ πθpai|sq
2
“

πθpai|sq p1´ πθpai|sqq, while the absolute sum of the elements out of the diagonal is:

πθpai|sq
ÿ

jPt1,...ku^j‰i

πθpaj |sq “ πθpai|sq p1´ πθpai|sq ´ πθpak`1|sqq .

Therefore, if all actions are played with non–zero probability, i.e., πθpai|sq ą 0 for all i P t1, ..., k`
1u it follows that the matrix is strictly diagonally dominant by rows and thus it is positive definite. If
also ES„ν

“

φpSqφpSqT
‰

is positive definite, for the properties of the Kroneker product, the FIM is
positive definite.

Let us now focus on the Gaussian policy. Let a P Rd and denote µpsq “ Ea„πθp¨|sq ras:

tps,a,θq “ tps,aq ´ E
a„πθp¨|sq

rtps,aqs “ Σ´1
pa´µpsqq bφpsq.

Let us compute the FIM:

Fpθq “ E
A„πθp¨|sq

”

tps,A,θqtps,A,θqT
ı

“ E
a„πθp¨|sq

”

`

Σ´1
pa´µpsqq bφpsq

˘ `

Σ´1
pa´µpsqq bφpsq

˘T
ı

“ E
a„πθp¨|sq

”

Σ´1
pa´µpsqq pa´µpsqqT Σ´1

bφpsqφpsqT
ı

“ Σ´1 E
a„πθp¨|sq

”

pa´µpsqq pa´µpsqqT
ı

Σ´1
bφpsqφpsqT

“ Σ´1ΣΣ´1
bφpsqφpsqT “ Σ´1

bφpsqφpsqT .

If Σ has finite values, then Σ´1 will be positive definite and, considering that ES„ν
“

φpSqφpSqT
‰

is positive definite, we have that the FIM is positive definite.

B.3 Subgaussianity Assumption

From Assumption 8.2, we can prove the following result that upper bounds the maximum
eigenvalue λmax of the Fisher information matrix with the subgaussianity parameter σ.

Lemma B.3. Under Assumption 8.2, for any θ P Θ and for any s P S the maximum
eigenvalue of the Fisher Information matrix Fpθ, sq is upper bounded by dσ2.
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Proof. Recall that the maximum eigenvalue of a matrix A can be computed as supx:}x}2ď1 xTAx

and the norm of a vector y can be computed as supx:}x}2ď1 xTy. Consider now the derivation for a
generic x P Rd such that }x}2 ď 1:

xTFpθ, sqx “ xT E
A„πθp¨|sq

”

tps,A,θqtps,A,θqT
ı

x

“ E
A„πθp¨|sq

”

xT tps,A,θqtps,A,θqTx
ı

“ E
A„πθp¨|sq

„

´

xT tps,A,θq
¯2



ď E
A„πθp¨|sq

«˜

sup
x:}x}2ď1

xT tps,A,θq

¸2ff

“ E
A„πθp¨|sq

”

›

›tps,A,θq
›

›

2

2

ı

,

where we employed Lemma B.1 and upper bounded the right hand side. By taking the supremum
over x P Rd such that }x}2 ď 1 we get:

λmax pFpθ, sqq “ sup
x:}x}2ď1

xTFpθ, sqx ď E
A„πθp¨|sq

”

›

›tps,A,θq
›

›

2

2

ı

. (P.2)

By applying the first inequality in Remark 2.2 of Hsu et al. (2011) and setting A “ I we get that
EA„πθp¨|sq

”

›

›tps,A,θq
›

›

2

2

ı

ď dσ2.

We now show that the subgaussianity assumption is satisfied by the Boltzmann and
Gaussian policies, as defined in Table 8.1, under mild assumptions.

Proposition B.4. If the featuresφ are uniformly bounded in norm over the state space, i.e.,
Φmax “ supsPS }φpsq}2, then Assumption 8.2 is fulfilled by the Boltzmann linear policy
with parameter σ “ 2Φmax and Gaussian linear policy with parameter σ “ Φmax?

λminpΣq
.

Proof. Let us start with the Boltzmann policy. From the definition of subgaussianity given in As-
sumption 8.2, requiring that the random vector tps, ai,θq is subgaussian with parameter σ is equiv-
alent to require that the random (scalar) variable 1

}α}2
αT tps, ai,θq is subgaussian with parameter

σ for anyα P Rd. Thus, we now bound the term:
ˇ

ˇ

ˇ
αT tps, a,θq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
αT pprei ´πq bφpsqq

ˇ

ˇ

ˇ

“ }α}2 }prei ´πq bφpsq}2

“ }α}2 }rei ´π}2 }φpsq}2

ď 2 }α}2 Φmax,

where we used Cauchy–Swartz inequality, the identity }xb y}22 “ pxb yqT pxb yq “
`

xTx
˘

b
`

yTy
˘

“ }x}22 }y}
2
2 and the inequality }rei ´π}22 ď 2. Therefore, we have that the random

variable 1
}α}2

αT tps, ai,θq ď 2Φmax is bounded. Thanks to Hoeffding’s lemma we have that the
subgaussianity parameter is σ “ 2Φmax.

Let us now consider the Gaussian policy. Let a P Rd and denote with µpsq “ Ea„πθp¨|sq ras:

tps,a,θq “ tps,aq ´ E
a„πθp¨|sq

rtps,aqs “ Σ´1
pa´µpsqq bφpsq.

248



B.3. Subgaussianity Assumption

Let us first observe that we can rewrite:

αT
`

Σ´1
pa´µpsqq bφpsq

˘

“

k
ÿ

i“1

q
ÿ

j“1

αij
`

Σ´1
pa´µpsqq

˘

i
φpsqj

“

k
ÿ

i“1

q
ÿ

j“1

αijφpsqj
`

Σ´1
pa´µpsqq

˘

i

“ βTΣ´1
pa´µpsqq ,

where βi “
ř

j αijφpsqj for i P t1, ..., ku. We now proceed with explicit computations:

E
a„πθp¨|sq

”

exp
!

αT tps,a,θq
)ı

“ E
a„πθp¨|sq

”

exp
!

αT
`

Σ´1
pa´µpsqq bφpsq

˘

)ı

“ E
a„πθp¨|sq

”

exp
!

βTΣ´1
pa´µpsqq

)ı

“

ż

Rd

exp
 

´ 1
2
pa´µpsqqTΣ´1

pa´µpsqq
(

p2πq
k
2 detpΣq

1
2

exp
!

βTΣ´1
pa´µpsqq

)

da.

Now we complete the square:

´
1

2
pa´µpsqqTΣ´1

pa´µpsqq ` βTΣ´1
pa´µpsqq

“ ´
1

2
pa´µpsq ´ βqTΣ´1

pa´µpsq ´ βq `
1

2
βTΣ´1β.

Thus, we have:

E
a„πθp¨|sq

”

exp
!

αT tps,a,θq
)ı

“ exp

"

1

2
βTΣ´1β

*
ż

Rd

exp
 

´ 1
2
pa´µpsq ´ βqTΣ´1

pa´µpsq ´ βq
(

p2πq
k
2 detpΣq

1
2

da

“ exp

"

1

2
βTΣ´1β

*

.

Now, we observe that:

βTΣ´1β ď }β}22
›

›Σ´1
›

›

2
ď }α}22}φpsq}

2
2

›

›Σ´1
›

›

2
,

having derived from Cauchy–Swartz inequality:

}β}22 “
k
ÿ

i“1

˜

q
ÿ

j“1

αijφpsqj

¸2

ď

k
ÿ

i“1

q
ÿ

j“1

α2
ij

q
ÿ

l“1

φpsq2l

“

˜

k
ÿ

i“1

q
ÿ

j“1

α2
ij

¸

q
ÿ

l“1

φpsq2l

“ }α}22}φpsq}
2
2.

We get the result by setting σ “ Φmax

b

›

›Σ´1
›

›

2
“

Φmax?
λminpΣq

.

Furthermore, we report for completeness the standard Hoeffding concentration in-
equality for subgaussian random vectors.
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Proposition B.5. Let X1,X2, ...,Xn be n i.i.d. zero–mean subgaussian d–dimensional
random vectors with parameter σ ě 0, then for any α P Rd and ε ą 0 it holds that:

P

˜

αT

˜

1

n

n
ÿ

i“1

Xi

¸

ě ε

¸

ď exp

#

´
ε2n

2 }α}
2
2 σ

2

+

.

Proof. The proof is analogous to that of the Hoeffding inequality for bounded random variables. Let
s ě 0:

P
˜

αT
˜

1

n

n
ÿ

i“1

Xi

¸

ě ε

¸

“ P
˜

exp

#

sαT
˜

1

n

n
ÿ

i“1

Xi

¸+

ě esε
¸

ď e´sε E
«

exp

#

sαT
˜

1

n

n
ÿ

i“1

Xi

¸+ff

“ e´sε
n

P
i“1

E
”

exp
! s

n
αTXi

)ı

ď e´sε exp

"

s2

2n
}α}22 σ

2

*

“ exp

"

´sε`
s2

2n
}α}22 σ

2

*

,

where we employed Markov inequality, exploited the subgaussianity assumption and the indepen-
dence. We minimize the last expression over s, getting the optimal s “ εn

}α}22σ
2 , from which we get

the result:

P
˜

αT
˜

1

n

n
ÿ

i“1

Xi

¸

ě ε

¸

ď exp

#

´
ε2n

2 }α}22 σ
2

+

.

Under the Assumption 8.2, we provide the following concentration inequality for the
minimum eigenvalue of the empirical FIM.

Proposition B.6. Let Fpθq and pFpθq be the FIM and its estimate obtained with n ą 0
independent samples. Then, under Assumption 8.2, for any ε ą 0 it holds that:

P
´
ˇ

ˇ

ˇ
λmin

´

pFpθq
¯

´ λmin pFpθqq
ˇ

ˇ

ˇ
ą ε

¯

ď 2 exp

"

´
ε2n

ψσd2σ4

*

,

where ψσ ą 0 is a constant depending only on the subgaussianity parameter σ. In partic-
ular, under the following condition on n we have that, for any δ P r0, 1s, λminp pFpθqq ą 0
with probability at least 1´ δ:

n ą
d2σ4ψσ log 2

δ

λminpFpθqq2
.

Proof. Let us recall that pFpθq and Fpθq are both symmetric positive semidefinite matrices, thus
their eigenvalues λj correspond to their singular values σj . Let us consider the following sequence
of inequalities:

ˇ

ˇ

ˇ
λmin

´

pFpθq
¯

´ λmin pFpθqq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
σmin

´

pFpθq
¯

´ σmin pFpθqq
ˇ

ˇ

ˇ
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ď max
jPt1,...,du

ˇ

ˇ

ˇ
σj

´

pFpθq
¯

´ σj pFpθqq
ˇ

ˇ

ˇ

ď

›

›

›

pFpθq ´ Fpθq
›

›

›

2
,

where last inequality follows from Ben-Israel and Greville (2003). Therefore, all it takes is to bound
the norm of the difference. For this purpose, we employ Corollary 5.50 and Remark 5.51 of Ver-
shynin (2012), having observed that the FIM is indeed a covariance matrix and its estimate is a
sample covariance matrix. We obtain that with probability at least 1´ δ:

›

›

›

pFpθq ´ Fpθq
›

›

›

2
ď }Fpθq}2

d

ψσ log 2
δ

n
, (P.3)

whereψσ ě 0 is a constant depending on the subgaussianity parameter σ. Recalling, from Lemma B.3,
that }Fpθq} “ λmax pFpθqq ď dσ2, we can rewrite the previous inequality as:

›

›

›

pFpθq ´ Fpθq
›

›

›

2
ď dσ2

d

ψσ log 2
δ

n
. (P.4)

By setting the right hand side equal to ε and solving for δ, we get the first result. The value of n can
be obtained by setting the right hand side equal to λminpFpθqq.
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