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Abstract

In the last decades, Reinforcement Learning (RL) has emerged as an effective approach to
address complex control tasks. The formalism typically employed to model the sequential
interaction between the artificial agent and the environment is the Markov Decision Pro-
cess (MDP). In an MDP, the agent perceives the state of the environment and performs
actions. As a consequence, the environment transitions to a new state and generates a
reward signal. The goal of the agent consists of learning a policy, i.e., a prescription of
actions, that maximizes the long-term reward.

In the traditional setting, the environment is assumed to be a fixed entity that cannot
be altered externally. However, there exist several real-world scenarios in which the envi-
ronment can be modified to a limited extent and, therefore, it might be beneficial to act on
some of its features. We call this activity environment configuration, that can be carried
out by the agent itself or by an external entity, such as a configurator. Although environ-
ment configuration arises quite often in real applications, this topic is very little explored
in the literature.

In this dissertation, we aim at formalizing and studying the diverse aspects of environ-
ment configuration. The contributions are theoretical, algorithmic, and experimental and
can be broadly subdivided into three parts.

The first part of the dissertation introduces the novel formalism of Configurable Markov
Decision Processes (Conf-MDPs) to model the configuration opportunities offered by the
environment. At an intuitive level, there exists a tight connection between environment,
policy, and learning process. We explore the different nuances of environment configura-
tion, based on whether the configuration is fully auxiliary to the agent’s learning process
(cooperative setting) or guided by a configurator having an objective that possibly conflicts
with the agent’s one (non-cooperative setting).

In the second part, we focus on the cooperative Conf-MDP setting and we investigate
the learning problem consisting of finding an agent policy and an environment configura-
tion that jointly optimize the long-term reward. We provide algorithms for solving finite
and continuous Conf-MDPs and experimental evaluations are conducted on both synthetic
and realistic domains.



The third part addresses two specific applications of the Conf-MDP framework: policy
space identification and control frequency adaptation. In the former, we employ environ-
ment configurability to improve the identification of the agent’s perception and actuation
capabilities. In the latter, instead, we analyze how a specific configurable environmental
parameter, the control frequency, can affect the performance of the batch RL algorithms.

ii



Sommario

Negli ultimi decenni, I’Apprendimento per Rinforzo (Reinforcement Learning, RL) & emer-
so come un approccio efficace per affrontare complessi problemi di controllo. Il formali-
smo che viene solitamente impiegato per modellare 1’interazione sequenziale tra I’agente
artificiale e 1’ambiente ¢ il Processo Decisionale di Markov (Markov Decision Process,
MDP). In un MDP, I’agente percepisce lo stato dell’ambiente e compie delle azioni. Come
conseguenza, I’ambiente evolve in un nuovo stato e genera un segnale di ricompensa. L’o-
biettivo dell’agente consiste nell’apprendere una politica, cio¢ una prescrizione di azioni,
che massimizza la ricompensa di lungo periodo.

Tradizionalmente, 1’ambiente ¢ considerato un’entita fissa che non puo essere alte-
rata dall’esterno. Tuttavia, esistono numerosi scenari reali in cui I’ambiente pud essere
modificato in modo limitato e, pertanto, pud risultare conveniente agire su alcune delle
sue proprieta. Chiamiamo questa attivita configurazione dell’ambiente, che pud essere
effettuata dall’agente stesso o da un’entita esterna, come un configuratore. Nonostante
la configurazione dell’ambiente emerga piuttosto frequentemente nelle applicazioni reali,
questo argomento € esplorato molto poco nella letteratura.

In questa dissertazione, intendiamo formalizzare e studiare i vari aspetti della confi-
gurazione dell’ambiente. I contributi sono teorici, algoritmici e sperimentali e possono
essere suddivisi, a grandi linee, in tre parti.

La prima parte della dissertazione introduce il nuovo formalismo dei Processi Decisio-
nali di Markov Configurabili (Configurable Markov Decision Processes, Conf-MDPs) per
modellare le opportunita di configurazione offerte dall’ambiente. A livello intuitivo, esiste
una stretta connessione tra ambiente, politica e processo di apprendimento. Esploriamo le
diverse sfumature della configurazione dell’ambiente, a seconda che la configurazione sia
esclusivamente ausiliaria al processo di apprendimento dell’agente (contesto cooperativo)
o sia guidata da un configuratore con un obiettivo eventualmente conflittuale con quello
dell’agente (contesto non cooperativo).

Nella seconda parte, ci concentriamo sui Conf-MDP cooperativi e investighiamo il
problema di apprendimento che consiste nel trovare una politica dell’agente e una confi-
gurazione dell’ambiente che congiuntamente ottimizzano la ricompensa di lungo periodo.



Forniamo algoritmi per risolvere Conf-MDP finiti e continui e valutazioni sperimentali
condotte sia in domini sintetici che realistici.

La terza parte affronta due specifiche applicazioni dei Conf-MDP: 1’identificazione
dello spazio delle politiche e I’ adattamento della frequenza di controllo. Nel primo ca-
so, facciamo uso della configurabilita dell’ambiente per migliorare 1’identificazione delle
capacita di percezione e attuazione dell’agente. Nel secondo caso, invece, analizziamo co-
me uno specifico parametro configurabile dell’ambiente, la frequenza di controllo, possa
impattare sulla performance degli algoritmi di RL batch.
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CHAPTER

Introduction

Machine Learning (ML) is rapidly becoming pervasive in our world. Nowadays, we are
constantly inundated by huge amounts of data coming from an always growing spectrum
of sources: newspapers, radio, television, websites, social networks. In the meantime,
we have at our disposal powerful computational tools that we bring with us wherever we
go: smart-phones, tablets, computers. Data and information, as its refinement, are at the
basis of any decision-making process. Everyday we make decisions based on the avail-
able information. Clearly, as information is essential for this process, in the meantime,
an overload of information might be dangerous as well. Today, more than ever, the effec-
tive employment of information for decision-making has become a strategic goal; for the
governments, clearly, but also for ordinary people.

Considered the huge amount of data in play, that cannot be managed by human be-
ing, at least in its crude form, we must resort to automatic, algorithmic, methods. ML
provides suitable tools for this purpose. Tom M. Mitchell defined ML as “the study of
computer algorithms that allow computer programs to automatically improve through ex-
perience” (Mitchell, |1997). We immediately notice that the main character of this process
is a computer, or, using a more technical lexicon, an artificial agent. This definition im-
plicitly depicts the mechanism at the basis of the mentioned improvements: the presence
of experience, i.e., fresh information, that triggers a process of learning. Learning is at the
basis of the biological and intellectual development of any living being and experience is
the engine of this process. Therefore, ML is in all respects a part of Artificial Intelligence
(AI). The peculiar feature of ML is the constant presence of data. Data are usually gen-
erated by natural or artificial processes that are typically affected by noise. Consequently,
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the learning process is intrinsically performed under uncertainty. This makes probability
and statistics reference tools for ML, which is sometimes referred to as statistical learn-
ing (Hastie et al.}2009)) to highlight this connection.

From a taxonomic point of view, ML paradigms can be subdivided into three cate-
gories, based on the fundamental features of the problem they address. Supervised learn-
ing aims at mapping data (input) to a value (output or target), that can be either a symbol
or a real value. The learning process involves observing a training dataset of input-output
pairs with the goal of inferring the pattern hidden in the dataset (Bishop, 2007} [Mohri
et al., 2012). Within supervised learning, we can distinguish between regression if the
output is a real number or classification if, instead, the target is a class from a finite set.
Supervised learning is probably the most widespread and developed area of ML. Examples
of successful applications are image classification (Lu and Weng}, 2007)), which has nowa-
days overcome the human performance, recommendation systems (Bobadilla et al.| [2013),
hand-written recognition (Puigcerver, 2017), to mention a few. Another paradigm of ML
is unsupervised learning, whose goal consists in identifying patterns in the data without
having a target value to predict (Ghahramani, 2003). Examples of unsupervised learning
tasks are clustering (Xu and Tian, [2015), anomaly detection (Chandola et al., |2009), and
latent variable models (Skrondal and Rabe-Hesketh| [2007). Finally, the third area of ML is
Reinforcement Learning (RL, |Sutton and Bartol [2018), where the high-level goal consists
of learning a sequence of decisions in an unknown environment, so as to maximize some
utility function. Thus, while in supervised and unsupervised learning there is no notion
of sequentiality, as the decision is one-shot and it has no consequences on the future, in
RL the sequential nature of the interaction is essential. In a sense, RL takes a perspective
that is closer to classical Al (Russell and Norvig, [2010) in which the presence of an agent
performing decisions is explicit, while in the other paradigms the role of the agent tends
to be more blurred. Finally, we can look at RL as the most general ML setting, since both
supervised and unsupervised learning can be reduced to it.

1.1 What is Reinforcement Learning?

When we think of the process of learning for human beings, we realize that interaction
with the surrounding environment plays a crucial role. Human beings acquire abilities
in different ways, but all of them involve a certain degree of interaction with either the
external environment or other agents (biological or artificial). A baby, an example of
a biological agent, learns how to walk in a trial and error fashion. They try the first
movement and then they likely fall down, so they try another one and, sooner or later, they
manage to stay upright. No teacher is, in principle, needed in this process, as the effects
of the movement are associated with a feedback signal (falling down or staying upright)
that tells the baby whether it was profitable or not. This feedback triggers an adjustment
in the behavior and, hopefully, over multiple trials, leads to the realization of the ultimate
goal of walking. Thus, as supported by intuition, exercising the connection between the
agent and the environment helps the former to figure out, and consequently exploit, the
causal relations linking the actions to their effects in the specific environment. Clearly,
numerous and diverse examples of analogous learning processes carried out by human
beings exist, such as learning how to drive a car, how to play chess, or how to cook a cake.
All of them are characterized by the same basic ingredients: an agent interacting with an

2
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environment and a feedback signal evaluating the success of the actions the agent plays.
These elements constitute the fundamental elements of RL. The term reinforcement was
introduced for the first time in behavioral psychology and defined by Burrhus F. Skinner as
“a consequence applied that will strengthen an organism’s future behavior whenever that
behavior is preceded by a specific antecedent stimulus” (Skinner, |1938; Schultz, 2015)).

In this dissertation, we take the Al perspective and we focus on RL as the “compu-
tational approach to learning from interaction” (Sutton and Bartol 2018). The entities
involved are the (artificial) agent and the environment. The agent is characterized by some
perception and actuation capabilities. The perception defines the ability to measure the
state of the environment. Thus, the perceived (or observed) state can be either the com-
plete internal environment state, in this case, we speak of full observability, or an obser-
vation hiding some features, i.e., we are in a partially observable setting. The actuation
possibilities, instead, are concerning the ability to perform actions on the environment.
Whenever an action is played, it produces an evolution of the environment state and the
agent is provided with a feedback signal, the immediate reward. According to the Al ter-
minology, the agent is goal-directed, i.e., it acts with the purpose of finding the proper
actions, so as to maximize some utility function. In RL, such a utility function is defined
as a notion of long-term reward, i.e., the cumulative (possibly discounted) sum of the
immediate rewards collected during the agent’s experience. This closed-loop interaction,
despite being a simplification of the one actually carried out by biological agents, is suffi-
ciently expressive to model numerous interesting real-world situations, such as controlling
an industrial robot (Meyes et al.| 2017} |Gu et al.,|2017), autonomous driving (Kiran et al.}
2020), playing videogames (Mnih et al., 2013}, 2015}, robotic locomotion (Haarnoja et al.}
2019).

1.2 Why Environment Configurability?

Besides the remarkable success demonstrated in recent years, RL appears to be deeply
rooted in the definition of the environment as an immutable entity out of any control. In
the traditional model, the agent can indirectly control the environment by means of the
performed actions, but cannot directly change the environment dynamics. This is certainly
true in a large number of applications, although we can identify a huge number of examples
in which a “partial control” on the environment can be exercised.

For instance, a human car driver has at their disposal a number of possible vehicle con-
figurations they can act on (e.g., seasonal tires, stability, vehicle attitude, engine model,
automatic speed control, and parking aid system) to improve the driving style or quicken
the process of learning a good driving policy. Another example is the interaction between
a student and an automatic teaching system: the teaching model can be tailored to improve
the student’s learning experience (e.g., increasing or decreasing the difficulties of the ques-
tions or the speed at which the concepts are presented). It is worth noting that the active
entity in this configuration process might be the agent itself or an external supervisor (or
configurator) guiding the learning process. Another example is product placement in a
supermarket. A supervisor can dynamically adapt where to place the products in order
to maximize customer satisfaction. Differently from the previous examples, it might be
possible that the configurator (e.g., the supermarket staff) has a goal that is different from
that of the agent (e.g., the customer). Similarly, a street network could be configured, by
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changing the semaphore transition times or the direction of motion. The goal of the net-
work designer is to limit/control the average traffic, whereas the drivers try to reduce their
journey time. A similar setting arises in the project of a website in which the user desires
to find the information they need as fast as possible, whereas the website owner wants to
orientate the user towards specific pages or contents.

In all these scenarios, whenever altering some portions of the environment or some en-
vironmental parameters is allowed, we speak of environment configurability. Environment
configuration arises in several real-world scenarios, with different objectives, involving
different levels of cooperation and competition between agents and configurators. There-
fore, we believe, the nature of this kind of interaction deserves additional study and this
dissertation pursues this high-level goal. Before presenting the concrete contribution of
the dissertation, we briefly discuss why, in our opinion, the models already employed in
the literature turn out to be inappropriate to capture the peculiarities of environment con-
figurability.

Why not a unique agent? Representing the environment configurability in the agent’s
model when the environment is under the control of an external configurator is certainly
inappropriate. Even when the environment configuration is carried out by the agent itself,
this approach would require the inclusion of “configuration actions” to allow the agent
to configure the environment directly as a part of its policy. However, the configuration
activity cannot be placed at the same level as the agent’s learning process. Configuring
the environment may be more expensive and dangerous than updating the agent’s policy
and may occur on a different time scale w.r.t. the agent’s learning process. Moreover, such
a formulation would prevent distinguishing, during the process, the effects of the policy
from those of the environment, making it difficult to finely constrain the configurations,
and recovering, a posteriori, the agent’s policy.

Why not a multi-agent system? When there is no supervisor, the agent is the only
learning entity and the environment is completely passive. Even, in the presence of a
supervisor, adopting a multi-agent approach would be misleading and would certainly in-
troduce a complexity that is not needed. The supervisor acts externally, at a different level
and could be, possibly, totally transparent to the learning agent. Indeed, the supervisor
does not operate inside the environment but it is in charge of selecting a suitable configu-
ration, based on its interests (and possibly on those of the agent), whereas the agent has to
learn an optimal behavior in the given environment. In this sense, the configurator could
be thought of as an agent in a hierarchical multi-agent RL problem (Ghavamzadeh et al.|
2006). Nevertheless, this framework introduces additional issues related to communica-
tion and cooperation, that are not considered in our Conf-MDP.

1.3 Original Contributions

This dissertation pursues essentially three goals, that correspond to the three parts in which
it is subdivided. First, we aim at formalizing the notion of environment configurabil-
ity, study its properties, and provide suitable solution concepts. Second, we address the
learning problem, i.e., the problem of finding an optimal agent’s policy and environment
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configuration. Third, we study some applicative scenarios in which environment config-
urability plays a central role. In the following, we survey the main contributions of the
three parts of the dissertation.

1.3.1 Modeling Environment Configurability

The first part of the dissertation (Part[l) is devoted to the formalization of environment con-
figurability and represents mainly a theoretical contribution. We propose a novel extension
of the traditional Markov Decision Process (MDP, |Puterman, |2014), named Configurable
Markov Decision Process (Conf-MDP), in order to properly represent the configurability
possibilities of the environment. We extend the traditional tools for MDPs to Conf-MDPs,
including value functions, and we propose suitable Bellman operators and the correspond-
ing Bellman equations.

Then, we devise a taxonomy for the Conf-MDPs, according to the properties of the
interaction between the agent and the configurator. Specifically, we identify different set-
tings based on whether the agent is aware of the configurator presence and whether their
objectives coincide. This latter distinction reveals two wide settings that characterize the
interaction between the agent and the supervisor: the cooperative and the non-cooperative
setting.

For the cooperative setting, we introduce the optimality conditions which define when
an agent’s policy together with an environment configuration can be considered optimal.
Moreover, we show that this setting can be reduced to a standard MDP and, thus, it inherits
most of the properties of the traditional case, including the existence of an optimal policy
and environment configuration pair.

Then, we focus on the non-cooperative setting in which defining a notion of optimality
is less immediate. Indeed, when the configurator has a goal that is different from that of the
agent, we need to resort to game-theoretic equilibria in order to obtain a suitable solution
concept. Depending on whether the agent is aware of the supervisor, we propose to employ
different equilibria (Shapley}, [ 1953). For both settings, we present the corresponding value
functions and, whenever possible, we discuss the extensions of the Bellman operators and
equations.

1.3.2 Learning in Cooperative Configurable Markov Decision Pro-
cesses

In the second part of the dissertation (Part [[T), we focus on the cooperative Conf-MDP
setting and we study the learning problem consisting of finding an agent’s policy together
with an environment configuration so as to maximize the long-term reward. This part
represents primarily an algorithmic and experimental contribution.

We start with the simpler setting in which the environment is characterized by a finite
state-action space. We propose a learning algorithm, Safe Policy Model Iteration (SPMI),
inspired by the safe learning approaches to RL (Kakade and Langford, |2002; |Pirotta et al.,
2013b), that updates the policy and the environment configuration based on the maximiza-
tion of a lower bound on the performance improvement. This way it is possible to derive
strong theoretical guarantees on the performance gain between two consecutive iterations.
We present an experimental evaluation on two illustrative domains, inspired by the mo-
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tivating examples of Conf-MDPs, to show the advantages of environment configuration
over traditional fixed-environment learning.

Then, we move to the continuous environment case and we devise an approach, able
to overcome the main limitations of SPMI, i.e., the need for knowing the environment
model and the fact that it can be applied to finite state-action problems only. The new
algorithm, Relative Entropy Model Policy Search (REMPS) lies in the family of trust-
region methods (Schulman et al.,2015)) and extends REPS (Peters et al.| 2010) to account
for environment configuration learning. REMPS looks for the stationary distribution that
maximizes the long-term reward, by constraining the search in a neighborhood of the
current sampling distribution. We empirically evaluate REMPS on both synthetic and
realistic domains, including an experiment for the car configuration task, built on top of
the TORCS simulator (Loiacono et al .l [2010).

1.3.3 Applications of Configurable Markov Decision Processes

The last part of the dissertation (Part is dedicated to the study of two applicative sce-
narios in which environment configuration can play a relevant role. This part includes
algorithmic, theoretical, and experimental contributions.

The first application we examine is policy space identification, i.e., the problem of
identifying the space of policies that an agent can access during the learning process. The
notion of optimal policy, in a learning process, it tightly connected to the agent’s perception
and actuation possibilities, combined with its ability to map states to actions. Knowing
the agent’s policy space can be particularly convenient when environment configuration
is possible. Indeed, agents optimizing the same objective but having access to different
policy spaces might benefit from different environment configurations. We propose two
identification rules based on likelihood ratio testing (Barnard|, [1959; [Casella and Berger,
2002) to identify the policy parameters an agent can access. Environment configurability is
also exploited to place the agent in a suitable configuration in which it is induced to reveal
the parameters it can access. Empirical results to validate the approach are presented as
well as applications on Conf-MDPs and Imitation Learning (IL,|Osa et al., |[2018]).

The second application we explore is the control frequency adaptation. RL prob-
lems are typically formulated as discrete-times problems, but often derive from the time
discretization of continuous-time ones. Thus, the control frequency is a relevant design
choice and can be considered an environmental parameter that can be configured. We ad-
dress the setting in which we are provided with a finely discretized MDP and we model the
reduction of the control frequency as the repetition of an action for a fixed amount of con-
secutive steps, called persistence. We show how varying the persistence affects the agent’s
performance. Then, we provide an algorithm, Persistent Fitted Q-Iterations (PFQI), in-
spired to FQI (Ernst et al.,[2005)), able to learn the value function at different persistences
and we propose a heuristic persistence selection method. PFQI is evaluated on benchmark
domains as well as in a realistic trading environment.

This dissertation reports the content of four research papers. Three of them are pub-
lished at ICML (International Conference on Machine Learning) and one is currently un-
der review for Machine Learning (Springer). Table[I.T|reports the list of papers, including
the publication venue, the link to the paper, the link to the code, and the contributions
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of the author of this dissertation. Throughout the dissertation, we decided to focus the
presentation on the methodological aspects, favoring the theoretical and algorithmic con-
tributions. To make the presentation fluid, we decided not to include some material related
to experimental evaluations that were instead provided in the original papers, but we report
suitable references whenever necessary.

1.4 Overview

The dissertation is organized in three parts that are preceded by two chapters that intro-
duce the foundations of sequential decision-making and reinforcement learning. These
chapters must not be intended to provide an exhaustive overview of the topic, but just as
an introduction, tailored to the needs of the subsequent chapters. We conclude the disser-
tation with a chapter that provides a discussion on the research contributions and on future
directions. The detailed organization of the dissertation is described in the following.

* Chapter [2] introduces the fundamental notions of sequential decision-making, in-
cluding the definition of Markov Decision Process (Puterman, 2014), policy, value
functions, Bellman operators, and Bellman equations (Bellman) [1957)). We discuss
the optimality criteria employed for MDPs and we provide a brief overview of the
exact solution methods.

* Chapter[3|provides a background on a selection of RL algorithms (Sutton and Barto,
2018)), whose knowledge is essential to understand the subsequent chapters. We fo-
cus on temporal difference methods (Watkins and Dayan), [1992)), approximate value
and policy iteration (Munos, 2003} |Scherrer, [2014), and policy search (Deisenroth
et al.,[2013).

Partm: Modeling Environment Configurability

This part aims at analyzing how to model the configuration opportunities offered by the
environment and discuss the solution concepts suitable for the different natures of interac-
tion between the agent and the configurator. Specifically, the contributions are organized
in two chapters.

» Chapter 4| provides the motivations behind environment configuration, introduces
the definition of Configurable Markov Decision Process and extends the notions of
value function, Bellman operators, and Bellman equations to the new framework.
Then, it provides a taxonomy for the Conf-MDPs and it concludes with a survey of
the frameworks and approaches that share some similarities with the Conf-MDPs.
Some parts of the chapter, especially the definition of Conf-MDP and a portion of
the literature review, appeared in a preliminary version in |Metelli et al.| (2018a)),
whereas the remaining part is a novel contribution of this dissertation.

* Chapter [5]is devoted to the presentation of the solution concepts for Conf-MDPs.
The chapter is conceptually organized in two sections that correspond to the coop-
erative and non-cooperative settings respectively. For both of them, we introduce
the optimality conditions, present the value functions, Bellman operators, and Bell-
man equations and we discuss, whenever possible, the existence of optimal policies
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Paper

Reference

Paper link

Code link

Contribution statement

Alberto Maria Metelli, Mirco Mutti, and Marcello
Restelli

Configurable Markov Decision Processes

In Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, pages 3488-3497.
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1.4. Overview

and environment configurations. Besides the optimality condition for the coopera-
tive setting that was already presented in Metelli et al.| (2018a), the content of this
chapter is a contribution of the dissertation.

Part@: Learning in Cooperative Configurable Markov Decision Processes

This part is devoted to the study of the learning problem in cooperative Conf-MDPs, i.e.,
the problem of learning an optimal policy together with an optimal environment configu-
ration. The content of this part is organized in two chapters.

* Chapter [] focuses on the learning problem in finite Conf-MDPs. The content of
the chapter is derived from Metelli et al.| (2018a), although in this dissertation we
provide an improved derivation of the learning algorithm.

* Chapter 7] addresses the learning problem in continuous Conf-MDPs as well as the
problem of estimating the effects of the configurable parameters on the environment
dynamics. The results presented in this chapter appeared in|Metelli et al.| (2019a).

Part@]: Applications of Configurable Markov Decision Processes

This part addresses two applications in which the Conf-MDPs play an important role:
policy space identification and control frequency adaptation. Specifically, the material of
this part is organized in two chapters.

* Chapter [§] analyzes the problem of the identification of the policy space accessible
to a learning agent, by observing its behavior in a configurable environment. A
preliminary version of the content of this chapter appeared in the preprint |Metelli
et al.| (2019c), but we include a more detailed comparison with the existing work as
well as additional experiments in the imitation learning setting.

* Chapter [J] studies the problem of adapting the control frequency of a system, an
environmental parameter that can be externally configured. We analyze the effect
of changing the control frequency on the agent’s performance and we apply this
finding in the batch RL setting. The content of this chapter is derived from Metelli
et al.|(2020a).

* Chapter[I0|revises the contributions of the dissertation, pointing out the main limi-
tations of the present work, and proposing directions for future research.

In Appendix[A] we report some additional results and the proofs we omit in the main text
of the dissertation. In Appendix [B] we present some properties of the policies belonging
to the exponential family.






CHAPTER

Foundations of Sequential Decision-Making

2.1 Introduction

In Chapter [I] we have introduced informally the main elements at the basis of any RL
problem: an artificial agent interacts with an environment by performing actions and sens-
ing observations. The agent’s learning process is guided by the reward signal and the
agent’s goal consists of finding a prescription of actions so as to maximize the long-term
reward. The mathematical tool used to model this kind of interaction is the Markov Deci-
sion Processes formalism (MDP, [Putermanl 2014). This chapter is devoted to the presen-
tation of the fundamental elements of the sequential decision-making problems that will
be employed in the subsequent chapters of the dissertation. For an extensive review of the
numerous aspects of RL, we refer the reader to the Sutton and Barto’s book (Sutton and
Bartol 2018)) and to the monographs (Szepesvari, |2010; |Agarwal et al., 2019).

RL is intimately different, and arguably more challenging, than other machine learning
paradigms, like supervised learning (Mitchell,|1997; |Bishopl |2007). In (online) supervised
learning, whenever a decision (e.g., a predicted label) is issued, immediate feedback is re-
ceived and the goal is to optimize that feedback (e.g., minimize the classification error).
The decision only determines the immediate feedback and it does not influence the subse-
quent ones or the corresponding feedback (Cesa-Bianchi and Lugosi,2006). Instead, in the
typical RL setting the effect of an action determines not only the immediate reward, but it
affects the distribution of the subsequent states. Thus, RL deals with sequential decision-
making problems. As a consequence, to learn an optimal action prescription (a policy in
the RL terminology) an agent has to plan, being aware that the chosen actions might re-
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alize their relevant consequences in the future. Indeed, since the ultimate goal consists
in optimizing the long-term reward, it might be convenient to sacrifice some immediate
reward because this choice will lead, in the future, to more profitable states (Sutton and
Bartol [2018)).

Any approach addressing the RL problem cannot disregard the way the environment
evolves as an effect of the actions the agent plays, i.e., the environment dynamics. When
the environment dynamics (and also the immediate reward) is known to the agent, finding
an optimal policy can be addressed by means of Dynamic Programming (DP, Bellman,
1957). However, in most of the scenarios of interest, the environment dynamics is either
unknown or captured by complex models (e.g., fluid dynamic models) that are computa-
tionally expensive to employ in practice. For these reasons, the RL algorithms need to
figure out the environment dynamics by either modeling it directly or learning its effects
implicitly. In both cases, in order to perform a modification in its behavior, the agent has
to collect sufficient information to understand the environment dynamics. Thus, the agent
faces the well-known exploration-exploitation dilemma, that formalizes the coexistence of
two conflicting propensities. On one hand, the agent should explore the environment to
understand the effects of its actions. Intuitively, this suggests that the agent should visit
every state and try every action indefinitely. However, on the other hand, to make the
learning process converge to an optimal policy, exploration should be stopped, or progres-
sively decreased, in favor of exploitation. Indeed, the agent needs to make use sooner or
later, or exploit, the acquired knowledge to play what is believed to be an optimal action.
When to stop exploration and begin exploitation or how to optimally mix the two phases
is one of the most significant challenges of RL (Lattimore and Szepesvari, [2020).

Chapter Outline The chapter is organized as follows. In Section [2.2] we formalize the
notion of Markov decision process and policy. Sections[2.3|and [2.4]are devoted to the pre-
sentation of the Markov reward process and Markov chains obtained by paring an MDP
with a policy. Then, in Section [2.5] we introduce the performance indexes used to for-
malize the intuitive notion of long-term reward. Section is dedicated to the value
functions, the corresponding Bellman equations and operators for the discounted setting.
In Section[2.7] we present the optimality conditions for the discounted setting, along with
the optimal value functions and operators. We conclude in Section [2.8 with a brief presen-
tation of the methods to solve discounted MDPs when the environment dynamics and the
reward are known.

2.2 Markov Decision Processes

The interaction between an agent and an environment, in a sequential decision-making
problem, is typically modeled by means of the Markov Decision Process (MDP, Puterman),
2014) formalism. We restrict our attention to the case of discrete-time infinite-horizon
MDPs (Puterman, 2014), in which the time line is modeled as a discrete set of time in-
stants, called decision (time) steps In each decision step, the agent perceives the state of
the environment and it is required to perform an action. As an effect of the action, the en-
vironment evolves, according to its dynamics, into a new state and provides the agent with
a real feedback, the immediate reward. The goal of the agent is to execute a prescription

'We will mention continuous-time MDPs (Doya, |1995) in Chapter@
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of actions, called policy, so as to maximize a notion of long-term reward, that encodes the
sequential nature of the task.

The RL literature has extensively studied the MDP framework (e.g., [Bertsekas and
Tsitsiklis, {1996} Bertsekas, [2005). The terminology was introduced for the first time
in|Bellman| (1954) and the model components defined in [Bellman|(1957). Subsequently, a
number of diverse formalizations have been proposed (e.g.,[Dubins et al., 2014} Blackwell|
1965). We present the following definition that trade-offs generality and accessibility.

Definition 2.1 (Markov Decision Process). A discrete-time infinite-horizon discounted
Markov Decision Process (MDP) is a 6-tuple M = (S, A, P, uo, R,~) where:

* (S,Fs) is a non-empty measurable space called state space;
* (A, T 4) is a non-empty measurable space called action space;

¢ P:SxA— P(S)is the transition model, that for every state-action pair (s, a) €
S x A assigns a probability measure P(+|s, a) over the measurable space (S,§s);

o o € P(S) is the initial state distribution, that assigns probability measure over the
measurable space (S, §s);

*R:SxAxS — Z(R) is the reward model, that for every state-action-state
triple (s,a,s') € S x A x S assigns a probability measure R(-|s,a,s’) over the
measurable space (R, B(R));

* «v € [0, 1] is the discount factor.

For a complete and formal review of the MDP models refer to the distinguished Puter-
man’s book (Puterman, |2014)). In the following, we describe the components of our MDP
definition.

State and Action Spaces The perception and actuation capabilities of the agent are mod-
eled by means of the state space S and the action space A respectively, that can be either
finite, countable infinite, or continuousE]

Environment Dynamics The dynamics of the environment is encoded in the transition
model P(|s,a) that for each state-action pair (s,a) € S x A provides the probability
distribution of the next state s’ € S when playing action « in state s. Unlike several
authors (e.g., Puterman, 2014}, we included in Definition @ the initial state distribution
4o that provides the probability distribution of the initial state, i.e., the state at which the
process is initialized. Whenever necessary, we will assume that P(|s,a) and uo admit a
probability density function w.r.t. to the Lebesgue measure denoted with p(s’|s, a), fio(s)
forall (s,a,s’) € S x A x S respectively. It is worth noting that the environment dynamics
fulfills the Markov property, i.e., the distribution of the next state s’ is a function of the
current state s and action a only and it is independent of the past

2In Deﬁnition we did not specify explicitly the o-algebras §s and § 4. If S is finite or countable infinite
we can choose the power set as o-algebra, i.e., §s = 25. If instead S is a topological space, like R%, we can
resort to the Borel o-algebra, i.e., §s = B(S). Analogous considerations hold for § 4. Sometimes we need
a o-algebra defined over the state-action space §sx.4. In such a case, we can use the tensor-product o-algebra
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State Sy ;rﬁ Action A
A

Reward Ri41

{ ENVIRONMENT [

State Siy1

Figure 2.1: Graphical representation of the interaction between an agent and an environ-
ment.

Reward Function The reward generation process is governed by the reward model
R(:|s,a,s") that provides the probability distribution of the reward when playing action
a € A in state s € S and landing to state s’ € S. We define the reward function
r:S§xAxS — R as the expected reward received when performing action a € A
in state s € S and landing to stats s’ € S:

r(s,a,s") =J rR(dr|s,a,s’).
R

Sometimes it is convenient to define the reward function by computing an expectation over
the next state too The (next-state) expected reward function 7 : S x A — R is defined
for every state-action pair (s,a) € S x A as:

r(s,a) = s'ls,a)r(s,a,s’).
(s.0) = |_P(]s.0)r(s.0.)

With negligible overloading of notation, we remove the superscript P, writing simply
r(s,a). A typical assumption that is widely employed in the RL literature is that the
reward function is uniformly bounded.

Assumption 2.1 (Uniformly Bounded Reward). The reward function is uniformly bounded,
i.e., there exists a finite constant Ry,.x € R~q such that:

Il = sup  {|r(s,a,8")[} < Rmax-
(s,a,s")ESXAXS

Interaction The interaction between the agent and the environment starts at decision
step t = 0 from state Sy ~ g, i.e., sampled from the initial state distribution ziy. For each
decision step t € N, the agent selects an action A, € A that is executed in the environment.

TsxA =38s®TF5-

3More formally, a discrete-time stochastic process (X¢)sen, defined on a measurable space (X, §x) and
adapted to the filtration (¢ )+ satisfies the Markov property if for every ¢ € N> and for every measurable set
U € T x itholds that (Durrett, 2010) P [ X € U|F¢] = P[ Xt € U| X¢—1]-

“4For the MDPs, this simplification is w.1.0.g. for all the performance indexes since the transition model P is
fixed. We will see that in Conf-MDPs, in which P can be modified, considering (s, a) instead of r(s, a, s’)
may lead to trivial solutions.
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As a result of the action execution, the environment transitions to the next state according
to the transition model S;y; ~ P(:|St, At) and provides the agent with the immediate
reward generated by the reward model R; 1 ~ R(-|S;, A¢, Si+1) and then the process
is repeated. We restrict our attention to infinite-horizon MDPs, i.e., we assume that this
interaction continues indefinitely. A state s € S is called terminal (or absorbing) if no
other states can be reached from s and all actions provide zero reward, i.e., P(-|s,a) = d5
and R(-|s,a,s) = dp for every a € A. An MDP that contains a terminal state that is
reachable with non-zero probability from any state is called episodic. Figure[2.1|illustrates
the interaction for a single decision step.

Histories This interactive process generates a sequence of states, actions, and rewards.
We define a state-ending history of length T' € N as a sequence of T state-action-reward
triples followed by one state:

h = (s0,a0,71,...,87—1,ar—1,771,5T) € Hs 1!
where Hsr = (S x A x ]R)T x &S is the set of all state-ending trajectories of length
T. Similarly, we define an action-ending history of length T € N as a sequence of T’
state-action-reward triples followed by one state-action pair:

T = (80,80,71,-..,87-1,47-1,TT-1, ST, 0T) € H AT,

where H g1 = (S x A x ]R)T x S x A is the set of all action-ending trajectories of length

TPl

Trajectories We can push the definition of history to infinity by introducing an (infinite-
length) trajectory as an infinite sequence of state-action-reward triples:

T = (So,ao,T1,81,a1,T2 . ) = (st;atart-&-l)teN eT,

where 7 = (S x A x R)N is the set of all infinite-length trajectories. Given a discount
factor v € [0, 1] we define the return function G, : T — R for every trajectory 7 =
(8¢, at, Te+1)ten as the discounted sum of the rewards collected in the execution of 7:

©
G«/(T) = Z VtTt+1~
t=0

Given a trajectory 7 € T, for every t1,t2 € N with t; < ¢t we denote with 73,.;, =
(Sty, Gty s Tty -« Sty—1,0t,—1,Tt,) the subtrajectory delimited by the time indexes 1 (in-
cluded) and ¢, (excluded). In practice, finite-length trajectories are usually considered. In
such a case, we denote with 7'(7) the trajectory length.

We defer the discussion of the role of the discount factor v in Section [2.3] after having
introduced the performance indexes. We now focus on the notion of policy.

3Clearly, for every T' € N we have that Har =HsT X< A
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2.2.1 Policies

The role of the agent in an MDP consists in playing actions. The policy is the mathematical
formalization of the strategy the agent employs to select the action to be played at each
decision step, based on the history of previous observations. We start with the following
general definition of a history-dependent policy and then we show the most significant
particular cases.

Definition 2.2 (History-dependent Policy). A history-dependent policy is a sequence m =
(m¢)ten of functions m, : Hs, — P (A) that for every decision step t € N and for every
state-ending history hy € Hs 1 of length t provide a probability measure . (-|ht) over the
measurable space (A, T 4). We denote with TI'R the set of history-dependent policies.

In this definition the distribution of the action is a function of the whole history h; =
(80,00,T1,- -+, St—1,at—1, 7, S¢) up to time ¢ € N and, possibly, explicitly depends on
t. If the probability distribution of the action depends on the last state only, i.e., if for
every pair of histories h, h; € Hs, having the same s; € S as the last state, we have
that ¢ (-|ht) = m¢(-|h}) as. for all t € N, we say that the policy is Markovian. In such
a case, we abbreviate with m(-|s;). Furthermore, if the policy does not depend explicitly
on the decision step ¢, i.e., if m(-|s) = mp(-|s) a.s. for all t,#’ € N and s € S, then
we call it stationary. In such a case, we remove the subscript, simply writing 7 (-|s). We
denote with TIS® the set of Markovian stationary policies. We assume that 7(-|s) admits
a probability density function w.r.t. the Lebesgue measure, that overloading the notation,
we denote with the same symbol 7(a|s) for all (s,a) € S x A. If for each state s € S
the policy provides probability to a single action (i.e., it is a Dirac delta measure), then we
call it deterministic. In such a case, with little abuse of notation, we write ™ : S — A,
i.e., a function mapping states to actions, where 7(s) the action prescribed in state s € S.
We denote with ITI5P = A the set of Markovian stationary deterministic policies. When-
ever not differently specified, we will use term “policy” to denote a Markovian stationary
policy.

2.3 Markov Reward Processes

An MDP M coupled with a policy = € IIS®, induces a Markov Reward Process (MRP,
Puterman, 2014) that is formalized by the 5-tuple (S, P™, o, R™,~), where P™ : S —
P(S8) is the state transition kernel that for every state s € S assigns a probability measure
over (S,§s), defined for every s’ € S as:

PT(ds'|s) = f 7(da|s)P(ds’|s,a). .1
A

Thus, P™(+|s) represents the probability distribution of the next state s’ € S obtained by
executing policy 7 in state s. Similarly, R™ : § x § — Z?(R) provides for each state
pair (s, s") € § x S a probability measure over (R, B(R)), defined for every real number
r € R as:

R™(dr|s,s") = f w(dals)R(dr|s,a,s").
A
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Therefore, R™(-|s, s) corresponds to the probability distribution of the reward obtained
when starting from state s, executing an action according to 7 and landing to the next state
s’. Moreover, we can define the state-next state reward function r™ : S x S — R and the
state reward function 7™ : § — R, defined for every s, s’ € S as:

r(s,s') = J rR™(dr|s,s’) = J w(da|s)r(s,a,s’),
R A
r’(s) = J m(dal|s)r(s,a).
A
From a control theory point of view, the MDP can be seen as a suitable formalization
for an uncontrolled system, in which control is exercised externally by mean of the policy
m. Instead, the MRP can be interpreted as a model for a controlled system in which the

control intervention is already incorporated. Both models have in common the fact that, at
each decision step, they output the immediate reward.

2.4 Markov Chains

Given an MRP, if we ignore the reward generation process, we obtain a Markov Chain (MC,
Meyn and Tweedie, |1993), or Markov process. The (state) MC induced by policy 7 € ISR
in the MDP M is defined by the pair (S, P™), where P7 is the state transition kernel, as de-
fined in Equation @ Thus, it describes the evolution of the state over time, when execut-
ing policy 7 in MDP M. Sometimes it is useful to take a different point of view, focusing
on the evolution of the state-action pairs over time. In such a case, we introduce the (state-
action) MC induced by policy 7 € ITS® in the MDP M is defined by the pair (S x A, P™).
With little overloading of notation, we denote here with P™ : S x A — Z(S x A) the
state-action transition kernel that for every state-action pair (s, a) € S x A provides a prob-
ability measure over (S x A, Fsx.4), defined for every state-action pair (s,a’) € S x A
as:

P™(ds’,dd’|s,a) = P(ds'|s,a)m(dd’|s).

Thus, P™ encodes the probability distribution of the next-state-next-action pair (s',a’) €
S x A obtained starting from state s, playing action a, choosing the next state according
to P, and selecting the next action according to 7.

2.4.1 t-step Transition Kernels and Distributions

In both Markov chains introduced above, it is useful to define the state/state-action dis-
tributions after ¢ € N steps of interaction. More formally, for any ¢ € Ny, the t-step
state transition kernel (P™)" : & — 2(S) and the t-step state-action transition kernel
(P™) . S x A — P(S x A) are recursively defined for every (s, a), (s',a') € S x A as:

(P (@s1s) = [ (P)7 (@5 P (a5,

(P™) (ds',dd’|s,a) = (P™)"! (ds”, da"|s,a)P™(ds', dd’|s", a"),
SxA
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convening that (P™)° (ds'|s) = d,(ds’) and (P7™)° (ds',da’|s,a) = §(s.a)(ds’,da’).
In operator form, the recursive definition is particularly clear and concise: (P’T)t =
(Pt pr,

Furthermore, given an initial state distribution pg € &?(S) we can introduce, for every
t € N, the t-step state distribution pj; , € #(S), defined for every state s € S as:

i (ds) = L o(ds) (P™)" (ds]s").

To lighten the notation, we omit the subscript of the initial state distribution (o, whenever
clear from the context, simply writing ;7. Given the recursive nature of (P”)t, we can
immediately recover the recursive relation for the ¢-step distribution: pf = po(P™)t =
uT_ 4 P™. Clearly, we can also define the ¢-step state-action distribution uf € 2(S x A),
defined for every state-action pair (s,a) € S x A as:

7 (ds,da) = 7 (ds)r(dals).

2.4.2 Stationary Distributions

Sometimes we are interested in looking at the distribution over all decision steps ¢ € N at
once. In such a case, we need to combine the ¢-step distributions in an effective way. We
consider the following general definition that averages the (7 )iy in an exponential way
and then we provide the corresponding interpretation (Sutton et al.,|1999a).

Definition 2.3 (v-discounted Stationary Distribution). Let M be an MDP and m € TISR
be a policy. The state y-discounted stationary distribution ;. € Z(S) is defined as the
probability measure solution (if it exists) of the equation defined for every state s € S as:

i (ds) = (1—7)po(ds) + L i (ds') P (ds]s'),

Similarly to the previous section, we will omit the dependence on the initial state dis-
tribution z40 when not generating confusion, simply writing x7. When the discount factor
v < 1, we are guaranteed that the y-discounted stationary distribution exists uniquely.
Indeed, by using the Neumann series in operator form, we have:

0
u5 = (1 =m0 (1ds =4 P") ™" = (1 =) 3 7'ui
t=0

Whenever necessary, we assume that it admits probability density function w.r.t. Lebesgue
measure, denoted with the same symbol. From an intuitive point of view, p7 is the nor-
malized discounted sum of the visits to states, when playing policy 7 in MDP M.

Instead, when v = 1, Definition @] reduces the stationary distribution recursively
defined as ™ = p”™ P™. In finite Markov chains (when S is a finite set) the existence and
uniqueness of a stationary distribution is ensured for irreducible chains (Serfozol [2009).
Moreover, if the chain is aperiodic the stationary distribution equals the limiting distri-
bution (Serfozo, [2009): p™ = lim;_,« pf . In other words, irreducible aperiodic Markov
chains forget the initial state distribution yo. Additional technical conditions are necessary
for infinite Markov chains (Asmussen, 2003]).
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Clearly, also for the y-discounted stationary distributions, we can introduce the corre-
sponding state-action version p7 € P (S x A) and state-action-next-state version Wy €
P (S x A x §), defined for every state-action-state triple (s,a,s’) € S x A x S as:

15 (ds, da) = pf(ds)m(dals),
p5(ds,da,ds’) = pf(ds)m(dals)P(ds'[s, a).

2.4.3 Trajectory Distributions

Given an MDP M and a policy 7 € IIS®, we can characterize the distribution of the
trajectories. Specifically, for every trajectory 7 € 7 and T € N, we can express the
probability measure P7. of the subtrajectories of length 7" induced by policy 7 € ISR in

MDP M, defined for every 19.7 = (S0, @0,71,- .-, ST—1,8T7—1,TT, ST) aS:
T—1
PT(dro.7) = po(dso) 1_[ m(dag|se) P(dsy1|se, ar) R(dres1]|se, aty Sp41)-
t=0

Clearly, the probability measure over subtrajectories of length 7" + 1 can be easily defined
recursively in terms of the probability measure over subtrajectories of length 7":

P71 (dro.r41) = Pr(dro.r)m(dar|sT)P(dsry1|sT, ar) R(droi1|st, ar, s741).

Finally, the probability measure P™ € 42(T) over infinite-length trajectories is defined for
every 7 € T as the limit P™(dr) = limy_,o PT.(d70.7). Whenever necessary, we assume
that these probability measures, IPT. and P™, admit density function w.r.t. the Lebesgue
measure, denoted with p7. for subtrajectories of length 7" € N and p”™ for infinite-length
trajectories.

We employ the following abbreviated notation for the expectation of a bounded mea-
surable function f € %(T) taken w.r.t. infinite-length trajectories:

ET[f(T)]= _E_[f(7)] —LIP’”(dT)f(T)

T~P7

Remark 2.1. The stationary distribution p7, and the trajectory distribution P™ provide
different views of the agent-environment interaction. While with the stationary distribu-
tions we focus on the states or state-action pairs, with the trajectory distributions we look
at the whole trajectory, i.e., state-action-reward triples sequences. Both can be used to
compute expectations of functions defined over S x A x S x R, as shown in the following
result.

Lemma 2.1 (D’Oro et al[(2020), Lemma A.2). Let M be an MDP, 7 € TISR pe a policy,
and f € B(S x A x S x R) be a bounded measurable function. Then, it holds that:

0
E  [f(S A8, R)]=(1—-7E"| > 7' (St Ar, Sis1, Reta)
S,A,S ~,u,’yr =0

R~R(|S.A,5")
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This is particularly relevant when function f(s,a,s’,r) = r leading to the return
function:

E  [R]=(Q—=7E"[Gy(7)],
S,A,S ~pl
R~R(:|S,A,S")

where T = (S;, Ay, Ri+1)ten. Unfortunately, this equivalence holds for the expectation
only and cannot be extended straightforwardly to higher-order moments (Bisi et al.| |2020).

2.5 Performance Indexes

At the beginning of this chapter, we have stated informally that the goal of an agent in
an MDP consists of finding a policy that maximizes some notion of long-term reward. In
this section, we formalize it by presenting the main performance indexes employed in RL.
Formally, a performance index is a mapping (M, 7) — J} that, given an MDP M and
a policy 7 € ITHR provides a real number J3 € R, ie., the performance of policy 7 in
MDP M. When there is no confusion, we will drop the dependence of M, abbreviating
with J7.

2.5.1 Expected Total Reward

The simplest formalization of the intuitive notion of long-term reward is the expected total
reward JT,. Given a policy m € II"R, JT is defined as the expected sum of the rewards
collected along an infinite-length trajectory, with no discounting:

T-1

Z Ry

T 18 iy

Jor = lim E
T—0

t=0

= Th_T)IéC E™ [G1(10:7)] - (2.2)

Unfortunately, despite its intuitive definition, the expected total reward is often an ill-
defined index. Indeed, the limit in Equation (2.2) might not exist or might be infinite,
unless the MDP is episodic, i.e., it reaches an absorbing state almost surely.

2.5.2 Expected Total Discounted Reward or Expected Return

To overcome this limitation, the expected total discounted reward, also known as expected
return, J™ is introduced. For a policy 7 € IT"R and a discount factor v € [0,1], J™ is
defined as the expected discounted sum of the rewards collected along an infinite-length
trajectory:

T—-1
T 1: T t 1 s
J7 = lim B LZ;) Y R | = lim E7[G,(ro7)] (2.3)

Under the assumption on the boundedness of the reward (Assumption [2.1)), the limit in
Equation (2.3) exists finite and the expected total discounted return is always bounded
by |[J7| < If‘jyx For this reason, we can exchange the limit with the expectation and

rewrite its expression in the most common form: J™ = E™ [}})7 7' Ry11] = E™ [G,(7)].
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It is worth noting that the expected total discounted reward can be alternatively defined
by means of the y-discounted stationary distribution, as in Definition [2.3] (Sutton et al.,
1999a):

1

JT = i Suv(ds,da)r(s,a).

The Role of the Discount Factor It is immediate to realize the mathematical advantage
of employing a discount factor v < 1 in avoiding the divergence of the series in Equa-
tion (2.3). However, the discount factor admits other interpretations. From an economical
point of view, the value of v modules the interest the agent demonstrates in gaining re-
ward in the future. A small discount factor, i.e., v ~ 0, is associated to a myopic attitude
since the agent is more interested in obtaining reward in the present or near future. The
extreme case vy = 0 reduces RL to supervised learning since the only interest of the agent
is maximizing the immediate reward. Instead, large values of gamma, i.e., v ~ 1, model
far-sighted agents that are willing to sacrifice immediate reward because they give im-
portance even to far-future rewards. Finally, the discount factor can be interpreted also
from a statistical perspective. Indeed, for every 1nﬁn1te horizon discounted MDP M it 1s
possible to define an episodic undiscounted MDP M equivalent M. In every state of M
there is a probability 1 — ~ to reach a zero-reward absorbing state, whichever action is
played (Puterman, 2014). It is simple to prove that for any policy 7 € IISR, the expected
total reward of 7 in the new MDP M equals the expected total discounted reward of 7 in
the original MDP M. Thus, we can interpret -y as the probability that the interaction with
the environment continues for another time step. It is worth noting that the length of a
trajectory in Misa geometric distribution of parameter 1 — . Thus, the expected length
is ﬁ, that is often referred as the effective horizon of the original MDP M.

2.5.3 Average Reward

Finally, we present one last performance index that is employed in the literature: the aver-
age reward J,. Given a policy 7 € ITHR, Jave 1s defined as the expected average of the

rewards collected along an infinite-length trajectory:

T-1

Z Riyq

Whenever the limit in Equation (2:4) does not exist, it is replaced with lim inf or lim sup.
The average reward, whenever it exists, under Assumption , is bounded by [J3,| <
Rinax. If they both exist, Jj, can be expressed in terms of the stationary distribution (Sut-

ton and Barto, 2018)) as follows:

1 1
Jr, = lim E’T = hm 1 E™ [G1(70.7)]- 2.4)

e = Js u™(ds,da)r(s,a).

In the rest of the dissertation, we will mainly focus on the expected total discounted
reward.
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Finally, given a probability measure u € & (S x A x S) we define the expected return
induced by p as:

JH = J p(ds,da,ds")r(s,a, s"). (2.5)
SxAxS

2.6 Value Functions

A fundamental concept of RL is the value function (Sutton and Barto, [2018). Differently
from the performance indexes presented in Section [2.5] that associate a single real num-
ber to each policy, the value functions provide an index that is defined in terms of the
initial state choice (M, 7,s) — V[ (s) (or state-action pair choice (M, 7, (s,a)) —
Q%4 (s,a)). Whenever clear from the context we will drop the dependence on the MDP
M. Value functions play a central role in value-based reinforcement learning since they
allow deriving an optimal policy. We limit our presentation to the discounted case, i.e.,
v < 1. We refer the reader to (Putermanl [2014) for the corresponding versions for the total
and average rewards. Let us start by defining the state value function.

Definition 2.4 (State Value Function or V-function). Let M be an MDP and 7 € TIS® be
a policy. For every state s € S, the state value function V7™ : § — R is defined as the
expected return starting from state s and following policy T thereafter:

o0
Z Y R41]S0 = 5] .

t=0

V7(s) =

The state value function finds its main application in policy evaluation, i.e., the process
of computing the performance of a policy 7 in an MDP. However, V™ does not encom-
pass enough information for policy optimization, i.e., the process of finding a policy with
optimal performance without the knowledge of the transition model P. To this purpose,
the action value function is introduced.

Definition 2.5 (State-Action Value Function or Q-function). Let M be an MDP and m €
ISR be a policy. For every state-action pair (s, a) € S x A, the state-action value function
Q™ : S x A — R is defined as the expected return starting from state s, playing action a,
and following policy w thereafter:

o0
DY RipalSo = s, Ag = a
t=0

Q"(s,a) =E

Clearly, the V-function can be deﬁned in terms of the Q-function by simply taking the
expectation over the action space: V7 (s) = {, m(da|s)Q™(s,a). In turn, the expected
return, as defined in Equation @ is the expectation of the V-function taken w.r.t. the
choice of the initial state:

JT = Js to(ds)V™(s).

In some contexts, it is useful to define the advantage function A™ : S x A — R defined
for every (s,a) € S x A as (Baird III, [1993):

A™(s,a) = Q7 (s,a) — V7 (s), (2.6)
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that quantifies the performance gain obtained by playing action a in state s compared to
executing policy 7(+|s).

2.6.1 Bellman Equations and Operators

The definition of value function we provided above are trajectory-based, i.e., they are
defined as the expected return collected along an infinite-length trajectory. When we focus
on infinite-horizon MDPs and Markovian stationary polices, value function can also be
expressed in a recursive form. The technical tools employed to obtain these relations
are the Bellman Equations and the Bellman Expectation Operators (Bellman, |1957), that
represent the concrete basis of many RL algorithms.

Definition 2.6 (Bellman Expectation Operators). Let M be an MDP and 7 € 1IS® be a
policy. The Bellman expectation operator for the state value function T™ : Z(S) — B(S)
is defined for every bounded measurable function f € B(S) and every state s € S as:

(T™f) (s) = JAw(das) L‘ P(ds'|s,a) (r(s,a,s") +vf(s)). 2.7

The Bellman expectation operator for the state-action value function T™ : B(S x A) —
PB(S x A) is defined for every bounded measurable function f € B(S x A) and every

state-action pair (s,a) € S x A as:

@7 0) (50) = [ Plaslsa) () oo [ m@alfea)). )

It is worth noting that both T'" are linear operators, that fulfill the monotonicity prop-
erty and for v < 1 they are a contraction in Ly,-norm (Bertsekas and Tsitsiklis| (1996
Puterman, |2014), i.e., for appropriately defined bounded measurable functions f and g it
holds that{f]

1T f =T7gls <7 1F =9l -

As a consequence, thanks to the Banach fixed-point theorem (Banach,|1922), the 7™ admit
a unique fixed-point that are, respectively, the state value function V™ and the state action
value function Q™ (Puterman) 2014). The corresponding fixed-point equations are called
Bellman Expectation Equations:

VTF — TTFVTF’
QTF — TTFQTI'-

2.7 Optimality Criteria

In this section, we focus on how to define a notion of optimality in the discounted setting
(v < 1) and on how to compute the optimal value function and an optimal policy. Let us
start with the following definition that introduces the notion of optimality for the policy
and for the value function (Puterman, 2014]).

81t is worth noting that by recalling the definition of r(s,a) = {¢ P(ds'|s,a)r(s,a,s’) and r™(s) =
§ 4 m(da|s)r (s, a), we can rephrase the Bellman expectation operators in operator form. For the V-function
T™f =7r™ +~P7 f with f € #(S) and for the Q-function T™ f = r + vP™ f with f € B(S x A).

23



Chapter 2. Foundations of Sequential Decision-Making

Definition 2.7 (Optimality). Let M be an MDP. A history-dependent policy m* € TIHR js
optimal if for every state s € S and history-dependent policy © € II'R it holds that:

VT (s) = V7 (s). 2.9)
The optimal state value function is defined for every state s € S as:

V*(s) = sup {V™(s)}. (2.10)

mellHR

The definition makes use of history-dependent policies but we can freely restrict the

search to the Markovian stationary policies ITSR since, in the discounted setting, for every

history-dependent policy m € IT'R there exists a Markovian stationary policy 7’ € ISR
such that V™ (s) = V™ (s) (Puterman, 2014, Theorem 5.5.3).

2.7.1 Optimal Value Functions

The optimal state value function represents the best possible performance attainable in an
MDP starting from every state. Analogously it is possible to define the optimal state-action
value function defined for every state-action pair (s,a) € S x A as:

Q*(s,a) = SEER {Q™(s,a)}. (2.11)

Clearly, V* and Q* are related by the identity V*(s) = sup,c 4{Q*(s,a)} for every state
s € S. We can restrict the maximization to the Markovian stationary policies II5? also
in this case. Similarly to the value function presented in Section [2.6] the optimal value
functions can be expressed in terms of suitable Bellman operators.

Definition 2.8 (Bellman Optimality Operators). Let M be an MDP and 7 € 1I5% be a
policy. The Bellman optimality operator for the state value function T* : B(S) — %(S)
is defined for every bounded measurable function f € B(S) and every state s € S as:

(T*f) (s) = sup {f P(ds'|s,a) (r(s,a, s') + Vf(s'))} ) (2.12)
aeA S

The Bellman optimality operator for the state-action value function T* : (S x A) —

PB(S x A) is defined for every bounded measurable function [ € B(S x A) and every

state-action pair (s,a) € S x A as:

(T*f) (s,a) = L P(ds|s,a) (r(s, a,s’) + 75};3 {r(s, a')}) . (2.13)

Compared to the Bellman expectation operators, introduced in Section[2.6.1] the Bell-
man optimality operators are no longer linear due to the presence of the supremum. Nev-
ertheless, for v < 1 they preserve the monotonicity and the contraction in L.,-norm
properties (Proposition 6.2.4, |Puterman, [2014), i.e., for appropriately defined bounded
measurable functions f and g it holds thatﬂ

IT*f =Tgll, <71 = 9llos -

"By introducing the maximum operator over the action space M 4 : %(S x A) — %(S) defined for
every bounded measurable function f € #(S x A) as: (M4 f) (s) = sup,ec4{f(s,a)}, we can redefine the
Bellman optimality operators in operator form. For the V-function T* f = M 4 (r + vP™ f) with f € Z(S)
and for the Q-function T* f = 7 + yP™M 4 f with f € B(S x A).
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2.7. Optimality Criteria

Furthermore, it is possible to prove that their unique fixed-points are, respectively, the state
optimal value function V* and the state-action optimal value function Q* (Theorem 6.2.5,
Puterman, [2014). The corresponding fixed-point equations are called Bellman Optimality
Equations:

2.7.2 Greedy Policies

Before showing that under sufficiently general assumptions an optimal policy exists, we
need to introduce the notion of greedy action and greedy policy.

Definition 2.9 (Greedy Actions and Policies). Letr f € #(S x A) be a bounded measur-
able function, for every state s € S we say that an action a* € A is greedy in state s
if f(s,a™) = sup,ea {f(s,a)}. A greedy policy w.r.t. a function f € B(S x A) is any
policy ©+ e TISR playing only greedy actions, i.e., for every state s € S it holds that:

| 7 als) (s,0) = sup {r(s,0))
A acA

Consequently, if 7+ € II5R is greedy w.r.t. to the function f € Z(S x A), the follow-
ing identity involving the Bellman operators holds:

T f =T*f.

2.7.3 Optimal Policies

The optimality condition in Definition prescribes that a policy 7* for being optimal
must yield a value function in each state s € S at least as good as that of any other policy
™ ie, VT (s) = V7(s). We start by defining the following preorder (or preference)
relationship > on the space of Markovoian stationary policies TIS®.

Definition 2.10 (Preorder on IIS®). Let M be an MDP. The preference relationship =<
ISR x ISR js defined for two policies 7,7’ € TISR as:

Tz = Vi(s)=V"(s), Vsed. (2.14)

The relationship 2 is clearly reflexive and transitive, but it is not antisymmetric (thus it
is a preorder but not a partial order) since there might be policies that are different yielding
the same value function. According to Definition [2.7, an optimal policy, if it exists, is a
maximum according to the preference 2. A way to construct an optimal policy consists
in deriving a greedy policy (Definition [2.9) w.r.t. the optimal Q-function, i.e., any policy
7* € TISR such that for every state s € S:

J 7*(da|s)Q*(s,a) = V*(s). (2.15)
A

The following result, that we report without proof, shows that under suitable conditions
such a policy exists and it is optimal.
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Theorem 2.2 (Theorem 6.2.7, |Puterman| (2014))). Let M be an MDP. If the state space
S is discrete and the supremum V*(s) = sup,c 4{Q*(s,a)} is attained for every state
s €S, then:

(a) there exists a Markovian stationary greedy policy ©* € ISR w.r.t. to Q*;
(b) * is an optimal policy, i.e., 7 =  for every policy T € TISR;
(c) there exists a deterministic Markovian stationary optimal policy.

Let us discuss more in detail the meaning of Theorem [2.2] The statement requires that
the supremum is attained, i.e., for every state s € S there must exist an action a™ such
that Q*(s,a™) = V*(s). If this is the case, a greedy policy 7* is well-defined as any
policy that plays actions belonging to the set arg max,. 4{Q* (s, a)}. The main statement
of Theorem [2.2]is point (b) showing that such a greedy policy is an optimal policy in the
sense of Definition[2.7] Clearly, since a greedy policy exists, it follows that a deterministic
greedy policy exists too and, consequently, a deterministic optimal policy exists. Finally,
note that (but this was already evident in Definition that all optimal policies attain
the optimal value function, i.e., V™" (s) = V*(s) for all states s € S. Unfortunately, the
result holds only when the state space S is discrete. When this is not the case, even if the
supremum is attained, an optimal policy might not exist (Blackwell,|1965). The discussion
of the conditions under which the existence of an optimal policy (or an e-optimal policy) is
ensured is out of the scope of this dissertation. We refer the interested reader to [Bertsekas
and Shreve| (2004); Dynkin et al.| (1979) for more details. In the following, whenever
necessary we will assume the existence of an optimal policy that can be expressed as a
greedy policy w.r.t. Q*.

In practical applications, the condition requiring that the policy maximizes the value
function in all the states s € S is often too demanding, especially when the search is
carried out in a subset of IIS®. For this reason, more relaxed definitions of optimality have
been proposed, like the following.

Definition 2.11 (J-optimality). Let M be an MDP and let J be a performance index. A
policy ©* € TISR is J-optimal if for every policy m € TISR: J =

Of course, since we are evaluating each policy by means of a scalar function, Defini-
tion induces a complete preorder relation > ; on TISR. Typical choices for .J are the
performance indexes presented in Section[2.5] When we employ the expected return J™
then we can relate the notion J™-optimality with the original notion of optimality. Indeed,
any optimal policy according to Definition[2.7]is also optimal according to Definition[2.T1]
but, clearly, not vice versa.

2.8 Exact Solution Methods

In this section, we focus on the problem of finding an optimal policy, in the sense of
Definition when considering a finite MDP. We consider the full knowledge of the
elements of the MDP, i.e., the transition model P and the reward function r. The funda-
mental idea at the basis of these algorithms is to first compute the optimal value function
and then recover an optimal policy as a greedy policy. Although the knowledge of the
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Algorithm 2.1: Value iteration (VI).
Input: MDP M, horizon T’
Output: approximately optimal policy ™
1 Initialize V() arbitrarily
2 forall t=0,1,...,7—1do

3 L VD (o) = max{ s,a +72 s'|s,a) 5)}7 VseS  © Bellman Operator
s'eS

4 W(T)(s)eargmax{ 5,a)+7 Z §'ls,a)V ™ (s )}7 VseS = Greedy policy
acA
s'eS

s return (")

environment dynamics is an unrealistic requirement in most applications of interest, these
algorithms are particularly relevant as they represent the building block of the value-based
RL algorithms. Section[2.8.T]and[2.8.2] are devoted to the presentation of the two dynamic
programming algorithms: Policy Iteration (PI, Howard, [1960) and Value Iteration (VI,
Bellman, [1957). Then, in Section[2.8.3] we present the Linear Programming approach (LP,
Wang et al., 2007).

2.8.1 Value Iteration

The value iteration algorithm (Bellman, 1957) is the most straightforward method to solve
a finite MDP and is based on the iterative application of the Bellman optimality operator
T*, for a given number of iterations 7" € N (also known as optimization horizon). At the
end of the process, VI outputs a greedy policy 7(7) w.r.t. to the T-approximation of the
value function V(7). The pseudocode of VI is reported in Algorithm Thanks to the
contraction property of 7%, it is immediate to prove that the sequence of value functions
(V(t)) generated by VI converges in L,-norm to the optimal state value function.
Indeed, for every iteration ¢t € N1, we have:

)
o0

-

<y HV“‘U —V*
o0

leading to a linear convergence rate (Puterman, 2014)). Since, at each iteration, VI requires
computing the optimal action in each state, that requires O(|S||.A|) operations for each
state, the computational complexity of T iterations of VI is of O(T|S|?|A|).

2.8.2 Policy Iteration

Policy iteration (Howard| [1960) solves a finite MDP by explicitly representing the inter-
mediate policies, during the considered iterations. Specifically, PI is composed of two
phases that are repeated in sequence: i) policy evaluation; ii) policy improvement. For
every iteration ¢ € {0,...,T — 1}, the policy evaluation phase, given the current policy
7(), consists in computing its value function V™" This step can be carried out in several
ways, for instance by performing a repeated application of the Bellman expectation oper-
ator T'™ or solving the linear system of Bellman equations. In practice, it is not always
necessary to wait convergence to V”m, but a smaller number of applications of 1™ is
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Algorithm 2.2: Policy iteration (PI).
Input: MDP M, horizon T’
Output: approximately optimal policy 7
1 Initialize 7(*) arbitrarily
forall t=0,1,...,7—1 do
3 Solve V“(t)( )—ZGEA< (s,0)+7> 5esP(s '|s a)V’rm (s')>7Vs€S = Evaluation

(5]

. 7r(t+1)( )eargmax{ 5,0)+7 Z |s a) (s/)}, VseS = Improvement
s'eS

5 return 77

sufficient. This variant is known as modified policy iteration (Puterman and Shinl, [1978]).
The policy improvement step, instead, consists in computing a greedy policy 7(**1) w.r.t.
to the current approximation of the value function V™" The pseudocode of PI is reported
in Algorithm [2.2] A remarkable property of the PI is that it is guaranteed to provide a
sequence of policies with non-decreasing performance.

Theorem 2.3 (Policy Improvement Theorem (Sutton and Barto, 2018)). Let M be an
MDP and m, 7" € IR be two policies. If for every state s € S it holds that:

| 7 al@r .0 = v,
A
then it holds that for every state s € S:

V™ (s) = V7(s).

The theorem shows that if a policy 7’ improves the one-step performance of 7 for
all the states, then it will yields a better value function overall. Clearly, the one-step
improvement condition is fulfilled by the greedy policy. Whenever PI stops it means that
we have reached an optimal policy. Since it iterates over the deterministic greedy policies,
that are at most |.4|!S!, PI converges in a finite number of iterations to an optimal policy.
The computational cost of policy evaluation by solving a linear system is O (\S |3) ﬁwhile
the cost of the policy improvement is O (|S|?|A]). Therefore, the computational cost of
T iterations of PLis O (T|S|? (S| + | A])).

Compared to VI, PI models explicitly the policy, while VI simply considers the value
function and the policy comes into place only at the end. It has been proved that, under
suitable conditions, PI enjoys a quadratic convergence rate (Mansour and Singh) [1999;
Puterman, 2014])), compared to the linear rate of VI. This justifies the empirical evidence
that PI usually converges faster than VI. Finally, it was proven that PI is strongly polyno-

mial (Ye,2011) and converges to the optimal policy in at most O (% log ﬁ) (Scher-
rer, [2013)).

8For general square systems, the complexity can be reduced to |S|2-376 (Golub and Van Loanl|1996).
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2.8.3 Linear Programming

The solution of finite MDPs can be also addressed by means of linear programming (Wang

et al 2007). In the discounted case (y < 1), the primal LP problem can be stated as
follows:

min Z vo(s)v(s)

|S]
veR P

st. v(s) =r(s,a +’yZ (s's,a)v(s’) Vse 8, Vae A,
s'eS

where vy € Z(S) is a distribution over the state space such that v(s) > 0 forall s € S.
The optimization problem is a linear program with |S| variables and |S||.A| constraints.
It is possible to prove that the solution of this problem is the optimal value function V'*
and an optimal policy can be recovered, as usual, as a greedy policy w.r.t. V*. Using the
Lagrangian duality it is possible to rephrase the dual LP (Wang et al.l 2007):

Jmax Z Z v(s,a)r(s,a)

seS acA
s.t. Zy(s’,a):(l— —|—72 Z (s'|s,a) Vs'eS
acA seS aceA

v(s,a) =20 VseS, Vae A

The dual problem is an LP with |S||.A| variables and |S| constraints (neglecting the
non-negativity constraints). Thus, it is in general preferred to solve the dual formulation.
The solution of the dual LP v* is the ~-discounted stationary distribution induced by the
initial state distribution vy and an optimal policy (Wang et al., 2007). Thus, an optimal
policy can be recovered a posteriori for every state action pair (s,a) € S x A as:

v*(s,a)
Za’e_A V*(S, G/) .

Although the worst-case computational complexity results of solving MDPs with LP
are better than those of VI and PI, typically the DP approaches tend empirically to converge
faster (Littmanl 1996).

m*(a|s) =
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CHAPTER

Reinforcement Learning Algorithms

The exact solution methods presented in Chapter 2] assume the full knowledge of the envi-
ronment dynamics and of the reward function. These methods do not scale to large state-
action spaces and they are inapplicable when the transition model or the reward functions
are unknown. In real-world applications, typically, the environment dynamics is either ap-
proximated by a complex model, that is usually computationally expensive, or completely
unknown. Consequently, sampling the environment becomes essential to estimate, im-
plicitly or explicitly, its dynamics and reward generation process. The sampling process
comes with uncertainty and managing uncertainty is at the basis of any RL algorithm. In
the following, we provide an overview of a selection of RL algorithms. This chapter has
no claim to be exhaustive; instead, it has to be considered just auxiliary to the effective
understanding of the subsequent chapters. For a complete review of the RL algorithms,
we refer the reader to the distinguished Sutton and Barto’s book (Sutton and Barto, [2018]).

Reinforcement Learning Dichotomies The literature has extensively studied the RL
problem and proposed a heterogeneous variety of algorithms, that can be categorized ac-
cording to different dimensions.

Model-based vs model-free Model-based RL algorithms (e.g.,|Deisenroth and Rasmussen,
2011} |Nagabandi et al.| [2018; [Wang et al., 2019a) aim at explicitly estimating the
transition model and the reward function of the environment and then employ them,
possibly with an exact solution method, to derive an approximate value function
and/or approximately optimal policy. Instead, model-free approaches (e.g., Mnih
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et al.l |2015; Schulman et al.l 2015} [Lillicrap et al.l 2016 [Duan et al., 2016) do
not represent the transition model nor the reward function, but employ samples to
directly estimate the value function and/or the optimal policy.

On-policy vs off-policy When the policy that is employed to collect samples is the same
policy that is learned, then we speak of on-policy RL algorithms (e.g., [Williams)|
1992 Rummery and Niranjanl [1994; Jaksch et al.l 2010). Whereas, if a behavioral
(or baseline) policy is used to explore the environment and a different policy, named
target policy, is optimized, we are in presence of an off-policy algorithm (e.g.,
Watkins and Dayan, (1992} [Ernst et al., 2005} [Silver et al., 2014} [Schulman et al.|
2017; Metelli et al., [2018b).

On-line vs off-line On-line (or incremental) algorithms perform the sample collection dur-
ing the learning process. Thus, the algorithm has possibly access to fresh samples
every iteration (e.g., Watkins and Dayan, {1992} Jaksch et al.,[2010; Schulman et al.}
2017). Instead, off-line (or batch) RL algorithms have access to a dataset of samples
previously collected and no further interaction with the environment is allowed (e.g.,
Lange et al.,2012; [Ernst et al., | 2005;D’Oro et al.}[2020). Clearly, off-line algorithms
are necessarily off-policy.

Tabular vs function approximation When dealing with finite state-action MDPs, the value
functions can be represented as a finite array. In such a case, we refer to tabular
RL (e.g.,/Watkins and Dayan| 1992 [Rummery and Niranjan, [1994). Clearly, when
the size of the state-action space grows or becomes infinite, we need to employ a
function space to approximate the value function or the optimal policy. In such a
case, we speak of function approximation (e.g., Munos, 2005; Scherrer, 2014).

Value-based vs policy-based vs actor-critic Value-based (or critic-only) methods aim at
learning an optimal value function and, then, derive the optimal policy as a greedy
policy (e.g., Watkins and Dayanl|1992; Rummery and Niranjanl|1994; Munos| 2005}
Scherrer,, [2014). Policy-based (or actor-only) methods, instead, do not represent
the value function but focus on directly learning an optimal policy (e.g., [Williams|
1992} Baxter and Bartlett, 2001} |Pirotta et al.l 2013a). Finally, actor-critic ap-
proaches (e.g., Konda and Tsitsiklis| |1999; |[Lillicrap et al.,|2016) combine the form-
ers and model explicitly both the policy (actor) and the value function corresponding
to the current policy (critic).

Chapter Outline The chapter is organized as follows. We start in Section [3.1] by revis-
ing the basics of temporal difference learning in tabular MDPs, with particular attention
to SARSA and Q-learning algorithms. In Section[3.2] we survey the fundamental aspects
of function approximation, with specific reference to approximate value iteration and ap-
proximate policy iteration and the corresponding error propagation results. Finally, in Sec-
tion[3.3] we focus on policy search revising the policy gradients methods and trust-region
methods.
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3.1. Temporal Difference Methods

3.1 Temporal Difference Methods

In this section, we briefly survey the Temporal Difference (TD) methods (Sutton) [1985|
1988)), a class of online value-based RL algorithms. We start with the prediction problem,
i.e., the problem of estimating the value function of a given policy (Section[3.1.T)), in order
to introduce the basic concepts. Then, we focus on the control problem that consists in
learning the optimal value function (Section [3.1.2). We restrict our attention to tabular
MDPs, i.e., problems with finite state-action spaces.

3.1.1 TD Prediction

Given a policy m € TISR, the prediction problem can be stated as estimating the value
function V™ of 7 by observing some trajectories of interaction with the environment. The
estimation process is performed iteratively; at each time step t € N, state S; € S is
observed and the estimated value function is updated according to the following rule:

VDS = (1 —aV®(S,) + a®G®,

where (a(t))teN is a learning rate schedule and G(*) is an estimator of the value of policy
7 in state S; obtained from samples. The quantity 6) = G(*) — V®) is usually called
temporal difference error (Sutton and Barto, 2018). Different choices of G® lead to
different TD methods.

n-step Returns Considering a trajectory 7 = (S;, Ry 41, S¢4+1, Rito, - - . ), in which we
have neglected the actions, starting in state S; € S and given n € N5 1, we can define the
n-step return as (Sutton, |1988)):

n—1

G = Y A Rivisr + 7"V (Sppn).
=0

Monte-Carlo vs Temporal Difference A particular case isn = T(7), i.e., the trajectory
length, leading to the Monte-Carlo (MC) return:

T(r)—1
Gl(\f[)c = Z ’YlRt+l+1~
1=0
Clearly, MC requires considering a full-length trajectory and it is applicable only to episodic
MDPs, in which all trajectories are guaranteed to reach an absorbing state. MC has the de-
sirable property of generating an unbiased estimator for V™, i.e., E™ [GI(\ZQ.S}] =V7(S)
but, usually, it displays a large variance (Kearns and Singh, 2000). We can additionally
distinguish between first-visit MC, in which whenever a state is encountered multiple times
in a trajectory the update is performed for the first occurrence only, and every-visit MC, in
which the update is performed at every occurrence. Another remarkable case is n = 1 that
corresponds to the 1-step return, leading to the well-known TD(0) method (Sutton, |1988]):

th) =Ry + ’YV(t)(StH)-
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The important property of TD(0), and more generally of all TD algorithms, is the boot-
strapping, i.., the reuse of the current estimate of the value function V() (S;+1) evaluated
in the next state. TD overcomes the MC limitation of requiring an episodic MDP, as it
is no longer necessary to wait for the end of the trajectory in order to perform an update.
Moreover, TD is typically affected by a lower variance w.r.t. MC at the price of intro-
ducing a bias due to the bootstrapping operation. Nevertheless, TD estimator preserves
consistency as the number of samples grows. Another relevant distinction is that MC does
not exploit the Markov property of the environment, whereas TD does. This explains, at
least at an intuitive level, why TD typically performs better than MC in Markovian envi-
ronments (Sutton and Barto, [2018)).

TD()\) A way of unifying the n-step returns consists in combining them via an exponen-
tial averaging. Specifically, given A € [0, 1], we can define A-return as (Sutton, |1985):

0
GV =1 -x D aiad.
n=1

Special cases are when A = 0, that corresponds to the TD(0) update and A = 1 that reduces
to the first-visit MC method. In principle, to apply TD(\) we have to wait for the end of the
trajectory, in order to be able to compute all n-step returns (backward view). To overcome
this limitation it is possible to employ eligibility traces (forward view) that quantify the
impact of the current TD error on all states of the MDP (Singh and Sutton, |1996; Sutton
and Barto, [2018). A bias-variance analysis of n-step TD and TD() is provided in (Kearns
and Singhl, 2000).

3.1.2 TD Control

When moving from the prediction to the control problem, i.e., the problem of learning the
optimal value function V* of an MDP, we face additional challenges. First of all, since
the ultimate goal consists in producing an approximation of the optimal policy, we need
to estimate the Q-function, instead of the V-function, in order to output the corresponding
greedy policy. The update rule for the Q-function is the following, defined for a state-
action pair (Sy, A;) € S x Aand t € N as:

Q(t+1)(st714t) = (1- a(t))Q(t)(St,At) + a(t)G(t),

where (a(t))teN is a learning rate schedule and G® now is an estimator of the optimal
value function V*(S;) obtained from samples. Before showing how G*) can be defined
using on-policy and off-policy TD approaches, we focus on the second, and most relevant,
challenge of control: exploration.

Exploration Strategies A crucial aspect of the control problem is that, in order to collect
useful information from the environment for estimating the value function, an exploration
strategy (7("))en is needed. We already introduced the exploration-exploitation trade-
off in Chapter [2] as the dilemma between playing the action that is currently believed to
be optimal (the greedy action w.r.t. to @) and collecting new samples to refine the Q-
function estimate.
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3.1. Temporal Difference Methods

Typical undirected exploration strategies are e-greedy and Boltzmann exploration. In
the former case, a greedy action arg max,. 4, {Q(") (s, a)} is played with probability 1 — e
whereas an action chosen uniformly in A is played with probability €, with € € [0, 1].
Boltzmann exploration instead prescribes to play an action with a probability proportional

®
to exp (M) where 7 € Ry is called the temperature. Thus, actions with high

estimated Q-function are exponentially preferred. Both exploration strategies can be made
GLIE (Greedy in the Limit with Infinite Exploration), i.e., they converge to the greedy
policy, under the assumption that e — 0 for the e-greedy and 7 — 0 for the Boltzmann as
t — 0.

Although these exploration strategies allow reaching convergence to the optimal Q-
function under certain conditions (Singh et al.l [2000), they are not provably efficient, un-
less unrealistic assumptions are enforced (Auer et al., 2002} |Cesa-Bianchi et al.| 2017). A
number of approaches have been proposed in the literature to achieve provable efficiency
employing more directed exploration strategies (e.g., Kearns and Singh, [2002; |Brafman
and Tennenholtz, [2002; |Strehl et al., 2006} [Strehl and Littmanl [2008; |Jaksch et al.| [2010;
Jin et al., [2018; Metelli et al.,|2019b; Jin et al.,2020). A complete treatment of the explo-
ration problem in RL is out of the scope of this dissertation.

On-policy TD Control In on-policy control, we estimate the Q-function of the policy
7(!) we are currently running for exploration. It immediately follows that for convergence
to the optimal Q-function, it is necessary that the exploration policy changes during the
learning process, converging ultimately to the greedy policy. In order to define the term
G® we can employ the same approaches used for prediction, with the only difference
that we use the Q-function instead of the V-function. Specifically, given a trajectory 7 =
(St, A¢, Rev1, Stt1, Atr1, Rita, ... ), we can define the SARSA(n) algorithm, based on
the following n-step return (Rummery and Niranjan, [1994)):

n—1

GSA)RSA(n) = Z YV Rysr41 4+ 7" QW (St Avin).
=0

Since we are considering MDPs with finite actions, we realize that it is not necessary to
wait for action Ay, ,, as we can compute exactly the expectation over the action space, once
we know the exploration policy 7(*). This observation leads to the Expected SARSA(n)
algorithm (van Seijen et al.,|2009):

n—1

GI(Ets)ARSA(n) = Z 71Rt+l+1 +9" Z 7r(t)(a|5t+n)Q(t)(Stera)~
=0 aceA

Clearly, by combining these terms with exponential average, just like in the prediction
methods, we obtain the SARSA()\) and Expected SARSA(\) algorithms (Sutton and Barto),
2018)). These algorithms converge to the optimal value function under the GLIE condition
if every state-action pair is visited infinitely often and under the Robbins-Moore conditions
on the learning rate (Singh et al., ZOOO)E]

!'The Robbins-Moore conditions require that 3,y a(?) = o0 and ', ()2 < o0.
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Algorithm 3.1: Temporal Difference Control (TD).

Input: 7 number of iterations, Q(®) initial action-value function, (a(t>)teN learning rate
schedule, (7®),cy exploration policy schedule
Output: greedy policy 7
forallt =0,...,7 —1do
Play action A; ~ 7 (-|S;)
Observe state S;11 and the reward R;:41
Compute G (e.g., using SARSA or Q-learning)
Q(t“)(st,At) =(1- a“))Q(t)(St,At) +a®a®

7™ e argmax,. ,{Q(s,a)}, VseS
T)

R W N -

N

return ¢

~

Off-policy TD Control In the off-policy TD methods, we employ one policy to carry out
exploration whereas we learn the value function of a different policy, specifically the one
of the optimal policy. The most popular off-policy TD algorithm is Q-learning (Watkins
and Dayan| [1992), based on the idea of applying an empirical version of the Bellman
optimality operator 7*. Thus, given a trajectory 7 = (S, A¢, Ret1, St+41, . - . ), we define
the Q-learning return as:

Ggﬁ = Riy1 + 7 max {Q(t)(SHl, a)} .

We can rewrite G = T *Q®), where T* is the empirical Bellman optimality operator,
that is unbiased conditioned to the current state-action pair (S, A;):

B[ (7% £) (S, A0ISw Ad| = (T*£) (81, Av),

The convergence of Q-learning can be guaranteed even for non GLIE policies under the
assumption that every state-action pair is visited infinitely often and under the Robbins-
Moore conditions on the learning rate (Singh et al.| [2000). The convergence rate of Q-
learning was first studied in the asymptotic regime in (Szepesvari, | 1997) and subsequently
in (Even-Dar and Mansour, [2003; [Beck and Srikant, 2012} |Qu and Wierman), [2020; |Li
et al., [2020) with also finite-time guarantees. Numerous extensions of Q-learning using
the multi-step TD()) approach have been proposed (Watkins| |1989; Peng and Williams)
1996), including unifying approaches, such as Q(o) (Sutton and Bartol, 2018).

The pseudocode of a general TD control algorithm is reported in Algorithm [3.1] For a
complete view of TD methods refer to (Sutton and Bartol 2018, Chapter 5, 6, 7, and 12).

3.2 Function Approximation

The methods we have presented above leverage on the tabular representation available for
finite MDPs. When the state-action space is too large or even continuous, tabular methods
become infeasible. A possible path to overcome this problem is discretization (e.g.,Uther
and Veloso, [1998)) or state aggregation (e.g., |Singh et al., [1994) that allow recovering a
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3.2. Function Approximation

finite MDP that can be regarded as an approximation of the original one. Another way to
approach the problem is function approximation. In this case, we decide to approximately
represent the Q-function, by resorting to a function space F < (S x A). Thus, we look
for the best approximation of the optimal Q-function Q* within the space F:

po ) G.1)

Qe argmin {1 - Q¥
feF

for some p € (S x A) evaluation distribution and p > 1. Given this approximation
@ € F, we can derive the control policy 7 as a greedy policy w.r.t. @ The following result
shows that a good approximation of Q* determines a greedy policy whose performance is
close to V'*.

Theorem 3.1 (Singh and Yee| (1994), Corollary 2). Let Q € (S x A) and let 7 €
arg max,. 4{Q(-, a)} be a greedy policy w.rt. Q. Then for every state s € S it holds that:

Vi) 2 V() - o |0 - Q7]
1—7 o

Clearly, F can be either a parametric or non-parametric function space and its choice
needs to be guided by the usual bias-variance trade-off (Gyorfi et al.| 2002} Bishop} [2007).
There exists a significantly large surge of RL algorithms based on function approxima-
tion for both prediction and control, including Gradient TD methods (e.g., | Boyan and
Moore, | 1994; Sutton et al., 2008}, 2009; |Maei et al., | 2009)), Least Squares Temporal Differ-
ence (LSTD, |Bradtke and Barto,|1996;|Boyan, 2002; Xu et al.| [2002; Nedic and Bertsekas|
2003), Least Squares Policy Evaluation (LSPI, Bertsekas and Ioffe| 1996} [Lagoudakis
and Parr, 2003} [Bertsekas et al., [2004). For an extensive review of approximate solu-
tion methods refer to (Sutton and Barto}, 2018, Chapters 9, 10, and 11) and (Szepesvaril
2010, Sections 3 and 4). In the following we focus on batch RL methods, specifically on
Approximate Dynamic Programming approaches (API, Bertsekas, 2005} |Powell, [2007)),
which rephrase policy iteration and value iteration in a version obtained through samples

3.2.1 Approximate Value Iteration

Approximate Value Iteration (AVI, |Gordon, |1995; Munos} [2005) can be thought as a ver-
sion of VI in which the application of the Bellman optimal operator 7* is replaced by
its empirical version T*. We assume to be provided with a batch of transitions D =
{(S;, Ai, S}, R;)}, collected with a sampling distribution v € (S x A). Clearly,
whenever AVI is performed on continuous-state MDPs, we need to introduce an approx-
imation space F < (S x A). Thus, at each iteration ¢ € N, AVI is composed of two
stages. Given the current approximation of the Q-function Q" e F, we first perform an
application of the empirical Bellman operator 7*Q(®). Then, we project back this quan-
tity onto F by means of a projection operator IIx : B(S x A) — F that is typically
implemented as a least squared regression. This procedure generates an approximation

erTor:
e® — T*Q(t) _ Q(t+1),

2We are going to present the API algorithms for estimating the Q-function, instead of the V-function, because
we are mainly interested in the control problem rather than the prediction problem.
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Algorithm 3.2: Approximate Value Iteration (AVI).

Input: J number of iterations, Q(O) initial action-value function, F function space,
D = {(S:, Ai, Si, Ri)}7—1 batch samples
Output: greedy policy 7(”
1 forallj =0,...,J —1do
2 Yi(j) = f*Q(j)(SuAi), 1e{l,...,n}
QU+D ¢ arg min ;. » {| f— y(j)H; D}

4 7 (s) € argmax, {Q)(s,a)}, VseS
s return (/)

3

where QU1 = II }-f*Q(t). This error incorporates an estimation component, due to the
usage of the empirical operator T* instead of the exact one T* and a (properly called) ap-
proximation error due to the projection onto the function space F. A pseudocode of AVIis
reported in Algorithm[3.2] Some examples of AVI are tree-based Fitted Q-Iteration (FQI,
Ernst et al., 2005), multilayer perceptron-based Fitted Q-Iteration (Riedmiller, 2005), and
regularized Fitted Q-iteration (Farahmand, 2011). An extension to account for the con-
tinuous action spaces was proposed in (Antos et al., |2007). The theoretical analysis of
the error propagation in AVI algorithms was studied extensively and progressively re-
fined (Bertsekas and Tsitsiklis} [1996} [Munos and Szepesvari, 2008; |/Antos et al., 2008
Farahmand, 2011)). We report the following result due to (Farahmand, 2011).

Theorem 3.2 (Theorem 3.4 of (Farahmand, |2011)). Letp > 1, J € Nsj and p € P (S x

A). Then for any sequence (Q(j))‘j]=0 c F uniformly bounded by Qunax < 1“17”"_“‘2;‘, the
corresponding (€U ));-];01 and for any r € [0, 1] it holds that:

()

oo

2 2 a1
o | T B 4 O I EB (O, i) |

where Cyr,p,, Is a concentrability coefficient whose expression together with £ can be
found in (Farahmand, 201 1)).

The concentrability coefficients Cyt, , ., account for the distribution shift between the
sampling distribution v, the distribution generated by the sequence of policies (7)) 3]:1
together with the evaluation distribution p. The approximation errors (€(/)) 3]:1 can be fur-
ther analyzed, based on the statistical learning properties of the function space F (Farah-
mand, 2011]).

3.2.2 Approximate Policy Iteration

Approximate Policy Iteration (API, Scherrer, 2014)) can be considered the sample-based
version of PI, in which the evaluation step is performed in an approximate way and through
samples. Specifically, like for AVI, we assume to be provided with a batch of samples
D = {(S;, A, S}, R;)} collected with a sampling distribution v € Z(S x A). At
every iteration t € N, the evaluation step, i.e., the task of computing the value function

me

of the current policy 7(*) is performed in an approximate way, by employing the
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samples D and a function space F. The result is an approximation Q) of Q”m. Instead,
the improvement step can be performed by computing the greedy policy w.r.t. to Q) i.e.,
T+ € argmax,e 4 {Q) (-, a)}.

The evaluation step can be performed in different ways that can be broadly classified
into two categories: Bellman Residual Minimization (BRM |Antos et al., 2008) in which
we optimize the error between the value function and the corresponding application of the

Bellman operator H f- v f ‘ and Least Square Temporal Difference (LSTD, |Bradtke
p,D

and Bartol [1996) in which we minimize the error between the value function and the

projected application of the Bellman operator H f—1 ]:ZIA’Tr f

‘ . The error propagation
p,D

analysis for API can be carried out by employing differently defined errors:
7 (®
e = QW) — 1 QW)
®
e =Q" Q7.

e](;]% is the Bellman residual error, that accounts for how far the approximation Q) is

from the being the fixed point of the operator 7" , whereas E;,t]z: is the approximation

error that quantifies how well Q) approximates Q“m (this includes an estimation and
approximation error, just like in AVI). The following result due to (Farahmand, 2011}
provides the error propagation.

Theorem 3.3 (Theorem 3.2 of Farahmand| (2011)). Lerp > 1, J € Nxq and p € P(S x
A). Then for any sequence (Q(j))‘j]:O c F uniformly bounded by Quax < %};‘ the
corresponding (U ))3-]:_01 that can be either egg or exr and for any r € [0, 1] it holds that:

2y 2 J L a1
< —— | =77 Rmax + Cp¥ J,r)€z 6(0)7...,6(']_1);7"]7
v (1—7)2 [ v Pl (S 7)E ( )

[t
where Cpr,p,, is a concentrability coefficient whose expression together with £ can be
found in (Farahmand, 201 1|).

)

HQ* —Qr

Similarly to the AVI setting, the concentrability coefficients Cpr, ., account for the
distribution shift and are defined according to which error (egr or €ag) is employed.

API with Non-Greedy Updates The most traditional API algorithms focus on manag-
ing the approximation error in the policy evaluation step (e.g.,|Lagoudakis and Parr, 2003
Lazaric et al., 2016) and then perform the policy improvement by computing the greedy
policy w.r.t. to the approximated Q-function. It has been observed that this approach might
lead to an oscillating behavior, that can be ascribed to the discontinuity introduced by the
greedy step (Bertsekas, 2011} [Wagner| 2011)). For this reason, a line of research focused
on conservative updates, in which the greedy improvement is replaced with more prudent
updates. An example is Conservative Policy Iteration (CPI, |Kakade and Langford, 2002)
and subsequently Safe Policy Iteration (SPI, [Pirotta et al.l 2013b), in which the greedy
update is replaced with a soft update. In these algorithms, the next policy is computed as
a convex combination between the greedy and the old policy:

2D — ar b0 4 (1 = a)r®,
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where a € [0, 1] and 7+ () is the greedy policy. The value of the coefficient « is selected
by optimizing a lower bound on the performance improvement that can be estimated us-
ing samples collected with 7(*). These approaches succeeded to ensure strong theoretical
guarantees on the performance improvement and, for this reason, can be considered exam-
ples of safe RL algorithms (e.g., [Pirotta et al.| 2013a; |Garcia and Fernandez, [2015}; [Papini
et al.l[2017).

3.3 Policy Search

The methods we have presented so far are value-based, i.e., in order to learn the optimal
policy, they first approximate the optimal Q-function and then derive an approximation of
the optimal policy as a greedy policy. Clearly, those methods typically require that the ac-
tion space is finite since they need to compute a maximization over the action space. When
the action space is large the computation of the maximum becomes expensive. In these
cases and whenever we desire to avoid action discretization, Policy Search (PS,|Deisenroth
et al.l [2013)) methods come into play. PS explicitly models the policy that is chosen in a
suitable approximation space IT — IISR. Formally, PS can be seen as the task of finding a
policy 7 € II that minimizes the distance between its value function V™ and the optimal
value function V'*:

# € arg min {nw - V*HW} , (3.2)
mell

where p > 1 and p € H(S x A) is an evaluation distribution. It is worth noting that
both policy-based and value-based methods try to achieve the same objective, i.e., maxi-
mizing the performance of the learned policy, but while value-based methods employ the
intermediate step of estimating the value function (Equation (3.1I), PS can directly focus
on the policy (Equation (3.2))). The explicit presence of a policy space allows modeling
restrictions in the behavior the agent can play that arise quite commonly in real-world
applications. A large variety of approaches to PS have been proposed in the literature in-
cluding model-based techniques (e.g.,[Ng and Jordan, |2000; |Ko et al.,[2007), expectation-
maximization algorithms (e.g., [Kober and Peters| [2008)), variational inference (e.g., Neu-
mann) |2011), and evolutionary computation (e.g., [Heidrich-Meisner and Igel, [2009). In
this section, we focus on two classes of approaches that will be relevant in the subsequent
chaptersE]

3.3.1 Policy Gradient Methods

Policy Gradient methods (PG, [Williams}|1992; Baxter and Bartlett, 2001)) are probably the
most straightforward and widespread policy search algorithms. PG algorithms assume that
the agent has access to a space of parametric policies:

H@Z{’/TQZSHW(A):OEGQRP},

where O is called parameter space. The goal consists in finding the policy parametriza-
tion that maximizes the expected return J(0) that is an abbreviation for J™ to highlight

3To simplify the mathematical treatment, we will assume that all relevant distributions admit probability
density functions w.r.t. the Lebesgue measure.
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the dependence on the parameter space. If Ilg is a space of stochastic and differentiable
policies in 0, then the expected return J (@) is differentiable in 6 as well. Stochasticity is
essential to ensure exploration unless off-policy estimation techniques are employed (Sil-
ver et al., 2014). The gradient of the expected return V. J(8) is called policy gradient and
the following result provides its expression.

Theorem 3.4 (Policy Gradient Theorem (Sutton et al {1999a)). Let M be an MDP and
g € llg be a policy. If wg is stochastic and differentiable in 0 , then the policy gradient
can be expressed as:

1

Vol (6) = »

M:e (d87 da)Vg log o (a|S)Qﬂ-e (87 a)'

The policy gradient admits another expression that can be obtained by rephrasing the
policy gradient theorem to the trajectory-based formulation (Peters and Schaall, 2008)):

Ve J(0) = E™ [Vologp™ (7)G+(T)] = L p"™(T)Velogp™ (7)G(7)dr,  (3.3)

where we recall that G, (1) = Z:o: 0 V'7¢41 is the trajectory return. The expression can be
further simplified by observing that the log-gradient of the trajectory density function, for
a given trajectory 7 = (g, ag, 71, . . . ) reduces to:

[00)
Vo logp™ (7') = Vg log (NO S0 H at|5t 3t+1|staat)r(5t+1|st7at73t+1)>

[e@]
Z Ve log me at|5t)

Once we computed the policy gradient, we can regard at the RL problem as stochastic
optimization. The most straightforward optimization approach is a simple gradient ascent
over the parameters, usually called vanilla gradient (Peters and Schaall, 2008)):

ottt — g 4 O[(t)ﬁﬁ.h](g(t))7

where (a®)cy is a learning rate schedule. More sophisticated approaches include natu-
ral gradient (Kakadel 2001} [Peters et al.l [2005)), in which the policy gradient is premul-
tiplied by the inverse Fisher Information Matrix (FIM, |[Fisher, [1922), second-order meth-
ods (Furmston and Barber, 2012; |Manganini et al., [2015)), and coordinate ascent (Papini
et al.,|2017).

Clearly, the policy gradient expression cannot be computed exactly in the RL setting
since it requires the knowledge of the transition model and the reward function in order
to compute either the ~-discounted stationary distribution £7° or the trajectory density
function p™®. In practice, we resort to estimators that can be computed from samples, such
as likelihood ratio methods (Peters and Schaall 2008)), that we introduce in the following.
The general pseudocode of PG is reported in Algorithm[3.3]

41



Chapter 3. Reinforcement Learning Algorithms

Algorithm 3.3: Policy Gradient (PG).

Input: MDP M, number of iterations T, learning rate schedule (Oz<t))g:01
Output: approximately optimal policy parameters oM

1 Initialize 6 arbitrarily

2 forallt =0,1,...,7 —1do

3 Estimate the policy gradient V¢.J(0*))

4 Update the parameters 8(‘*1) — (") 4 a(t)ﬁgJ(O(t))
s return 87

REINFORCE The REINFORCE estimator (Williams, |1992) is obtained by rephrasing
the policy gradient expression in Equation (3.3) in a sample-based version, in which we
replace the expectation with the corresponding sample mean. Specifically, given a set

of finite-length trajectories {7;}7"_; collected with P™® the estimator is given for every
ke{l,...,p}as:

1 & T(ri)—1 T(;)—1
VOREJ(B) = E Z Z vek IOg 7"-O(A‘ri,t S‘ri,t) Z ’VtRn,t-Fl — by |,
i=1 t=0 +=0

where b € RP? is a baseline (Peters and Schaal, 2008) that is used to reduce the variance
of the estimate, while preserving the unbiasedness of the estimator. Indeed, it is possible to
prove that for a non-random vector b € R we have that E™ [V, log mg(A+, +|S7,.1)bk] =
0. Therefore, it is convenient to derive the value of the baseline that minimizes the variance
of the estimator (Peters and Schaal, 2008), defined for every k € {1,...,p} as:

B [(372, Vo, logmo(44]51)) G, ()|
E™e [(Z?:O Ve, log 7T9(At|St))2]

RF %
bk =

G(PO)MDP One of the main drawbacks of REINFORCE is the high variance of the
gradient estimate. This phenomenon can be ascribed to the fact that REINFORCE does
not leverage the causality between actions and rewards. Indeed, we immediately realize
that the reward ad a given time step ¢ € N is independent of the actions performed at
timesteps ¢’ > ¢. This simple observation allows simplifying the expression of the policy
gradient as:

)

o0 t
Ve J(0) = E™® lZ (2 Vo logm)(Al|Sl)> Y Ris1
t=0

=0

where we exploited the causality identity E™® [Vg log m(A;|S;)y  Ri1 1] = 0, whenever
{ > t. This allows deriving the G(PO)MDP estimator (Baxter and Bartlett, 2001), obtained
from a set of trajectories {7;}!, and every k € {1,...,p} as:

n T(Tm

@SfPO)MDP Z Z (Z Ve, log mo(Ar, 1S )) (V'Rr, 41 —bek)
=1 t=0
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where similarly to the REINFORCE estimator, b; € RP is a time-dependent baseline,
whose optimal value minimizing the variance is obtained forevery ¢t € Nand k € {1,...,p}
as (Peters and Schaal, [2008):

2
G(PO)MDPx* E" [(Z?o Ve, log T (Al|51)) ,thHl]
bt k =

E™e [(Zfo Ve, log mg (4, Sl)>2]

A study of the statistical properties of REINFORCE and G(PO)MDP estimators can be
found in (Zhao et al.,[2011}; Pirotta et al., 2013a; [Papini et al., 2019b).

3.3.2 Trust-Region Methods

PG methods are effective approaches to address continuous control tasks, especially in
presence of continuous action spaces. However, they are online by nature, as a single
batch of trajectories can be employed to perform just an individual update. Then, after
each update, further interaction with the environment is needed to collect fresh samples.
This is clearly inefficient since the same batch of samples could be used, in principle, to
perform multiple updates. Moreover, PGs are local methods since they employ first-order
information, such as the gradient, to identify an improvement direction. Other methods,
instead, perform the optimization of the policy parameters in a neighborhood of the current
parametrization. These methods are called frust-region (e.g., Schulman et al.l [2015) and
they are based on the idea that we can employ the samples collected with one (behavioral)
policy to estimate the performance of other (target) policies, provided that the two policies
are not too “dissimilar”. In recent years, an incredibly large number of algorithms falling
in this category have been proposed (e.g., Peters et al.,[2010; |Danziel et al.| 20125 |Schulman
et al.| 2015 2017; Metelli et al., 2018b;Wang et al.,|2019c|b; [Metelli et al., 2020b). In this
section, we start introducing Importance Sampling (IS, Owen| 2013) and then we revise
two examples of trust-region methods, whose knowledge is necessary for the understand-
ing of the subsequent chapters: Relative Entropy Policy Search (REPS, Peters et al.,|[2010)
and Policy Optimization via Importance Sampling (POIS, Metelli et al., | 2018b).

Importance Sampling The fundamental statistical tool at the basis of a large number of
trust-region methods is importance sampling (Owen, 2013). Given two probability mea-
sures i, v € #(X) and a bounded measurable function f € #(X), IS allows estimating
the expected value of function f under the target distribution u, having samples collected
with the behavioral distribution v. Under the assumption that ;1 < v, i.e., p is absolutely
continuous w.r.t. v, the IS estimator reweights each sample with the likelihood ratio or
importance weightﬂ

o= 1y e 1@,

v(x

4We assume that . and v admit probability density function w.r.t. the Lebesgue measure, denoted with the
same symbols.
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where w,,/, () = % is the importance weight and x; ~ v independently for all ¢ €
{1,...,n}. This estimator is unbiased and its variance can be bounded in terms of the

a-Rényi divergence between the probability measures ¢ and v (Metelli et al.| [2018b)), a
dissimilarity index between probability distributions (Rényil [1961).
The Rényi divergence is defined for two probability measures p, v € & (X) such that

u < v, forevery a € [0, 0] asﬂ
1 () \*
p— logJX v(x) (V(x)) dz

Furthermore, we define the exponentiated Rényi divergence as d,, (u||v) = exp (Do (p]|v))
(Cortes et al., 2010).

Based on the results of (Metelli et al., 2020Db), the variance of the IS estimator can be
bounded for every « € [1, 0] as:

Da(ulv) =

~

1 9 o1
Jar [JN/V] sz 1F 2o,y doa ()™=

A common choice is & = 1. As intuition suggests, the larger the divergence between the
two distributions, the larger the variance. Indeed, in presence of significantly dissimilar
distributions, the samples collected with one distribution provide poor information about
the other. The extension of these results to multiple importance sampling (Veach and
Guibas) [1995), i.e., the case in which multiple behavioral distributions are considered was
provided in (Papini et al., |2019a; Metelli et al., 2020b)).

Relative Entropy Policy Search Relative Entropy Policy Search (REPS, Peters et al.|
2010;[Daniel et al.,2012) is an information theoretic approach to PS that formulates the RL
problem as finding the stationary distribution ; € £(S x A) that maximizes the expected
return. The search is constrained in a trust-region centered in the stationary distribution
u™ e P(S x A) induced by the current policy 7 € II® and formalized in terms of a
KL-divergence constraint. The optimization problem can be stated in terms of the KL-
divergence threshold x € R as:

max JM = J w(s,a)r(s,a)dsda
) SxA

HEP(SX A
st. Dgr(p|p™) = J u(s,a)log s, a) dsda < k,
SxA :u’7r(57a)
| napsls@odsads’ = [ u(s,a)(s)dsda
SxAxS SxA

where the second constraint is a feature-based proxy of the recursive definition of station-
ary distribution (Definition [2.3)), where ¢ : S — RP? is a feature function. The stationary
distribution that solves the optimization problem can be stated in closed form, from which
it is possible to derive the policy:

Falrep(als) (1 (1) + [ 150w o) - w700 ).

STt is worth noting that when o = 1, Djp is the KL-divergence and when o = 00, Deo(pufv) =
log ess sup » {%}
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where € [0,00) and w € RP are the Lagrangian parameters that can be computed by
solving the dual problem:

g(n,w) = nlogf

SxA

1™ (s, a) exp G] (T(s, a) + L p(s']s, )T (s )ds’ — wT¢(s))) dsda + nr.

In practice, when the policy that can be played by the agent belongs to a limited parametric
policy space Ilg, the policy 77" might not be representable within I1g. For this reason, we
need to perform a projection onto Ilg. In Daniel et al.| (2012), the authors suggest to
perform a moment projection, i.e., find the parameterization 8’ € © that minimizes the
expected KL-divergence averaged over p:

[Z56)

o' casgumin{ [ o) (w(19lma(49)) s}

This optimization can be performed through samples, leading to a maximum likelihood
estimation that requires to perform IS in order to estimate the expectation under the new
distribution p (Daniel et al., 2012).

Policy Optimization via Importance Sampling Policy Optimization via Importance
Sampling (POIS, [Metelli et al.| 2018b}, 2020b) is an actor-only off-policy policy optimiza-
tion algorithm that employs IS in order to perform multiple gradient steps with the same
batch of samples. The algorithm has been proposed initially in (Metelli et al.| 2018b)
and subsequently refined in (Metelli et al., |2020b)), thanks to the introduction of the per-
decision IS techniques (Precup et al.,|2000). If we have at our disposal a set of trajectories
{7}, sampled by running a behavioral policy mg, we can estimate the performance of a
target policy g by resorting to the per-decision IS estimator:

n T(Tm)_l

~ 1
J(el/e) = - Z Z ’the’/e (Ti7 t)RTi,t+17
i3 ico
_ t We/(ATiﬁllsfiwl) . . . . . .
where wgr/9(7i,t) = [, ATy s the importance weight. This estimator is

unbiased and its variance can be bounded as follows (Metelli et al., |2020b, Theorem S)E]

T R2 ]- = To!
Var™ [ 70'/0)] < S 17T 3 s (B 1P
t=0

where ds (IF’:"' HIP’?Q) is the Rényi divergence between the t-step trajectory distributions.
Based on these results, POIS optimizes a surrogate objective function in which the esti-
mated performance .J(6'/6) is penalized by a function of its variance bound:

T-1
CO'/6) = T(6'/6) ~ ¢\ | = 3 % (B} |FF*).
t=0

This optimization is carried out performing multiple gradient steps by employing the same
batch of trajectories. Then, a new batch of trajectories is collected with the obtained policy.

®Here we provide a slightly looser bound for the variance that, we believe, is more readable.
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The hyperparameter ¢ > 0 can be interpreted in a probabilistic fashion by looking at the
objective as a lower bound on the true performance of the target policy J(8') (Metelli
et al.| [2018b)). In practice, the Rényi divergence needs to be estimated from samples as
well, leading to the estimator:
2
. S 'iyl)
ST{,J)

T Tg/ 7T 1 = 71-9/(14‘f'i,l
e - 8 (I

=0
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CHAPTER

Configurable Markov Decision Processes

4.1 Introduction

In the previous chapters, we introduced the notion of Markov decision process as a math-
ematical formalism to model sequential decision-making problems under uncertainty in
which a goal-directed agent interacts with an environment. There are two fundamental
properties that the environment is typically assumed to satisfy: its dynamics is fixed and
stationary, i.e., it does not change over time either as an effect of a natural process (e.g., a
non-stationary environment) or as a consequence of some external intervention (e.g., some
other party altering the transition probabilities). Clearly, this assumption, together with the
other considered, such as the Markov property, are reasonable in a wide range of real-world
applications and they are particularly convenient (from a theoretical point of view) to state
the notion of optimality and assess the existence of optimal policies (Puterman, [2014).
Several exceptions to this scenario can be found in the literature. For instance, Markov
decision processes with imprecise probabilities (e.g., |Satia and Jr.,, [1973}; |Givan et al.|
1997; Trevizan et al., [2007) represent an extension of the classical MDP model in which
a form of ambiguity is admitted on the transition probabilities, modeled by means of an
uncertainty set. Although these works mainly focus on the modelization, the notions of
optimality, typically, are derived from the robust control literature (Nilim and Ghaouil
2003} [Iyengar, |2005), with the goal of finding a policy that maximizes utility under the
worst possible transition model. Another line of research, in which modifications of the
transition model occur through time, are the non-stationary MDPs (e.g.,|Bowerman), 1974
Hopp et al., [1987; |Garcia and Smithl, 2000). In these scenarios, the transition probabili-
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ties, and possibly also the reward function, change over time as an effect of the intrinsic
evolution of the environment.

Although the environment is no longer fixed, these models do not account for the
possibility to dynamically alter the environmental parameters. However, we can imagine
scenarios in which the environment modification is an effect of a strategy implemented
by an external party with a precise goal. As mentioned in Chapter [I] we call this goal-
directed process of modification environment configuration (Metelli et al., [2018a). We
find an example of this intentional point of view in the game-theoretic interpretation of the
objective functions employed in robust MDPs. Indeed, finding a robust optimal policy can
be seen as solving a zero-sum game (Shapley, | 1953) in which one agent acts on the policy
with the goal of maximizing the expected return and the adversary acts on the transition
model with the opposite goal (Nilim and Ghaoui, [2003). In this example, the intentional
way of selecting the environment emerges beyond the specific modelization of uncertainty.

In this dissertation, we study the environment configuration as the process of changing
some parameters of the environment, having an effect on the transition probabilities. This
chapter is devoted to the presentation of the Configurable Markov Decision Processes
(Conf-MDPs) introduced in Metelli et al.| (2018al) in its various aspects.

Chapter Outline The chapter is organized as follows. We start in Section[4.2] providing
an informal introduction to Conf-MDPs together with some motivational examples. Then,
we formally define the Conf-MDP in Section .3} We proceed by introducing the value
functions for the Conf-MDPs (Section f.4) and the corresponding Bellman operators and
equations (Section[4.3). Then, in Section[4.6] we provide a taxonomy of the various sce-
narios that arise when considering Conf-MDPs. We conclude in Section[d.7] with a survey
of the literature connected with Conf-MDPs.

4.2 Motivations and Examples

Environment configuration might be performed in different ways, by different parties, and
with different goals. A prime scenario of environment configuration is what we call the
cooperative setting. Intuitively, in the cooperative setting, the process of environment con-
figuration is “functional” (auxiliary) to the agent, i.e., it is directed to improve its learning
experience. In turn, we can refine the interpretation by proposing two alternative views.
First, we can look at environment configuration in a static way, where the goal is to find
the environment that allows the agent to achieve the best performance possible at the end
of the learning process. In other words, we select the best MDP to solve for the agent. In
this setting, policy learning and environment configuration can be, in principle, viewed at
the same level. However, it is not infrequent that modifying the environment is an activity
to be performed carefully, maybe less frequently than policy updating and that might gen-
erate additional costs (computational or economical). Second, environment configuration
can be seen in a dynamic manner, as a way of speeding up the learning process. Here the
goal consists in finding the sequence of configurations that allows the agent to reach an
optimal policy in the original environment as fast as possible. In this sense, environment
configuration can be interpreted as a form of curriculum learning (Bengio et al.l |2009;
Ciosek and Whiteson, [2017; [Florensa et al., [2017), although in curriculum learning the
environment modification is typically simulated, while the underlying environment dy-
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namic remains unchanged. To have a more clear idea of the opportunities of environment
configuration, consider the following example.

Example 4.1 (F1 Driving). Suppose an F1 driver has to learn how to drive an FI car.
The environment is composed of the car, the road and governed by the physical laws that
explain the functioning of the car and the interaction with the road. The driver, the agent
in this process, has at their disposal a number of possible vehicle configurations they can
act on: the kind of tires, the stability and the vehicle attitude, the engine model, and the
wing orientation. Being the car part of the environment, we have a scenario in which it
is possible to alter a part of the environment, i.e., some parameters of the vehicle, while
other portions of the environment, like the road and the physical laws must remain fixed.
It is worth noting that the environment configuration has a double purpose in this setting.
First, we want to find the car configuration that is best suited to the driver (static). In this
case, the configuration process can be carried out by the driver themself or by an external
configurator entity, like a track engineer. Second, we might decide to train the driver mak-
ing them try different vehicle configurations, maybe of increasing degree of “difficulty”, to
make the driver learning an optimal policy as fast as possible. In this second scenario, the
presence of an external configurator in charge of selecting the sequence of vehicle settings
is unavoidable.

From the example, it emerges that the active entity in the configuration process might
be the agent itself or an external supervisor/configurator guiding the learning process (e.g.,
the track engineer). The idea of supervision as a way of constraining the actions of an
agent to induce the desired behavior has been previously introduced in the field of situation
calculus (Giacomo et al., 2012} |Banithashemi et al., 2016, 2018)).

Another interesting aspect is that, in the cooperative setting, the environment configu-
ration should be carefully performed and customized to the specific agent. Different agents
might have different abilities, modeled, in the RL framework, as different perception and
actuation possibilities. For this reason, even under the same objectives, the performance
of a configuration is tightly related to the agent’s capabilities. Therefore, the configurator
has to be aware of the agent’s policy space in order to wisely identify the configuration.
The following example tries to clear this aspect.

Example 4.2 (Teacher-Student). Consider a student, representing the agent, interacting
with an automatic teaching system, the environment. Different students have different
learning abilities. Therefore, to maximize the knowledge acquired by the student, the
teaching model should be tailored to the student needs. For instance, some students prefer
a straight presentation of the theory and then dive into the examples. Instead, for other
students starting a topic with an example and then moving to formalization is more effec-
tive. Other tools the teaching system can leverage are the kind of material employed to
introduce the topics (e.g., pictures, plots, and videos). All these choices can be thought as
environment configurations having effects on the transition probabilities that govern the
student’s learning process. Ultimately, the optimal choice of the teaching system configu-
ration should be aware of the student’s capabilities.

Up to now, we have considered the setting (cooperative) in which, in some high-level
sense, the agent and the configurator, whenever present, pursue the same goal, i.e., improv-
ing the agent learning experience, either by quicken the learning process or identifying the
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most convenient MDP to solve. However, we can think of scenarios in which the goals
of configurator and agent are non-cooperative. In these cases, the agent learns based on
its own reward function, while the configurator aims at fulfilling a possibly different goal.
Clearly, in these contexts the presence of a configurator party is essential. From a static
perspective, we can look at the configurator as another agent with a different reward func-
tion. Instead, from a dynamic view point, the configurator might be interested in altering
the environment to induce a certain learning behavior in the agent. The following example
represents a case of these settings.

Example 4.3 (Supermarket). Consider the placement of products on the shelves of a su-
permarket. The supermarket director, or the persons in charge, should decide the product
placement in order to, from an intuitive sense, maximize the supermarket profit. Simpli-
fying, the supermarket, that is in charge of the configuration, might decide to act so that
to maximize the amount of money spent by its customers. It is reasonable to assume that
the customers, representing the agents in this setting, have different goals. For instance,
a customer might be interested in minimizing the time needed to complete their shopping.
We immediately realize that the supermarket and the customer objectives are different,
probably not fully competitive, but also not fully cooperative. Moreover, we can assume
that the agent, the customer, is unaware of the strategic behavior of the configurator (or
tends to act not accounting for it).

In the non-cooperative setting, it is important to understand the kind of interaction
taking place between the agent and the configurator. Since the two entities act following
different objectives, a way of addressing this scenario is to take inspiration from game-
theoretic tools, in order to define an appropriate solution concept. A first possible situation
is when the agent is unaware of the presence of the supervisor. In such a case, the configu-
rator selects a configuration and the agent perceives the modification of the environment as
a simple non-stationarity. Therefore, importing the game-theoretic terminology, the agent
is a best responder that learns its optimal policy, which might change over time since the
environment evolves, but without further strategic behavior. On the other hand, the con-
figurator is, of course, aware of the agent’s presence. This kind of interaction, thus, can
be effectively modeled as a leader-follower game (Shapley} |1953)), where the configurator
being the leader and the agent being the follower. A reasonable solution concept is the
Stackelberg equilibrium (Von Stackelberg} |1934) that corresponds to the configurator se-
lecting the configuration that maximizes its performance under the agent’s optimal policy,
induced by that configuration. A different perspective, that positions the agent and the con-
figurator on the same lever, is when the agent is aware of the presence of the configurator.
Although we believe that this situation fits less to the real-world scenarios of interests in
which environment configuration is interesting, it is worth looking at the type of agent-
configurator interaction. The strategic interaction between the two entities is more visible
and a suitable solution concept is the Nash equilibrium (Nash, [1951), in which neither
the agent nor the configurator has individual interest to deviate from the equilibrium strat-
egy. A particular case of this setting is when the agent and the configurator have perfectly
competitive objectives, i.e., they play a zero-sum game. This is precisely the case that is
considered in robust control literature.

Example 4.4 (Robust Control). As we already mentioned, in robust control (Nilim and
Ghaouil 2003) we seek the policy that maximizes the expected return under the worst
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Figure 4.1: Graphical representation of the interaction between an agent and an environ-
ment in a Conf-MDP.

possible transition model (and possibly reward function) within the uncertainty set. We can
look at this process as the interaction between the agent learning the policy, that seeks to
maximize the expected return, and a configurator selecting the transition model, that tries
to minimize the expected return. The maximin solution typically employed corresponds to
the Nash and to the Stackelberg equilibria of the game.

It is worth noting that in all examples presented, the configuration activity is limited to
a portion of the environment, having limited effect on a limited part of the transition prob-
abilities. This represents an important asymmetry of environment configuration compared
to policy learning. Although there exist situations, like industrial applications, in which
the policy space accessible to the agent has to be limited (e.g., for safety reasons), in a
large number of applications it is reasonable to consider the full space of Markovian sta-
tionary policies for policy learning. Instead, environment configuration is typically more
constrained and the arbitrary alteration of the transition dynamics usually makes no sense,
especially in scenarios involving natural phenomena in which the physical laws are clearly
fixed. For this reason, it is common to restrict the power of the configurator to a set of
configuration parameters that, indirectly, affect in a controlled manner the transition prob-
abilities.

4.3 Definition

As we introduced in the previous section, a Conf-MDP can be thought of as an MDP in
which it is possible to configure some environmental parameters, having the effect of alter-
ing the transition probabilities. To account for the presence of a configurator we consider
two reward functions, one modeling the agent’s goal and one for the configurator. The
following definition formalizes the notion of Conf-MDP.

Definition 4.1 (Configurable Markov Decision Process). A discrete-time infinite-horizon
discounted Configurable Markov Decision Process (Conf-MDP) is defined as a 6-tuple
C = (S, A, o, Rag, Reont, 7y) where:

* (S8,Fs) is a non-empty measurable space called state space;
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e (A, 5 4) is a non-empty measurable space called action space;
o 1o € P(S) is the initial state distribution over the measurable space (S,Fs);

* Rag, Rcont : S X A x & — P(R) are the agent and configurator reward models
respectively, that for every state-action-state triple (s,a,s') € S x A x S assign a
probability measure Rpg(-|s, a,s") and Rcont(-|s, a, s") over the measurable space
(R, B(R));

* v € [0,1] is the discount factor.

Thus, a Conf-MDP is obtained by removing from the definition of the MDP (Defi-
nition the transition model P and introducing two reward functions: the agent Rag
and the configurator Rcons reward functions. Compared to the original definition of Conf-
MDP (Metelli et al., 2018a) there are essentially two differences. First, we consider dif-
ferent reward functions for the agent and the configurator to model situations that were
not considered in Metelli et al.| (2018a), in which agent and configurator might have dif-
ferent, possibly conflicting, objectives. Second, we do not include the transition model
space and the policy space in the definition of Conf-MDP. A graphical representation of
the interaction between agent and environment in a Conf-MDP is reported in Figure [4.1]

Similarly to the case of MDPs, we introduce the agent and configurator reward func-
tions rag, Tconf : S X A x & — R, defined for every triple (s,a,s’) € S x A x S as:

rag(s,a,s’) = J rRag(dr|s,a, s'),
R

TConf(8,a,8") = J rReon(dr]s, a, s').
R

Whenever necessary, we will assume that both rag and rconf are uniformly bounded.

Assumption 4.1 (Uniformly Bounded Reward). The agent and configurator reward func-
tions are uniformly bounded, i.e., there exists a finite constant Ry,,x € R~ such that:

HTAgHoo = sup {|TA8(53 a, 5,)|} < Rmaxv
(s,a,8")ESXAXS

HTCoanoo = sup {‘TConf(svaa 5,)|} < Rmax~
(s,a,s")ESXAXS

4.3.1 Policies and Transition Models

A Conf-MDP is characterized by the presence of two entities: the agent and the configu-
rator, that are in charge of performing different tasks in the model. The agent is in charge
of selecting a policy, that is defined exactly as in the case of MDPs (Definition [2.2)), so
that to maximize the long-term reward generated by the immediate reward Rag. Instead,
the configurator has the goal of selecting a transition model with the purpose of maxi-
mizing the long-term reward defined through the immediate reward Rconf. Similarly to
Definition [2.2] we provide the following general definition for the transition model.
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Definition 4.2 (History-dependent Transition Model). A history-dependent transition model
is a sequence P = (Py)ien of functions Py : H o — P(S) that for every decision step
t € N and for every action-ending history hy € H, of length t provide a probability
measure Py(-|h;) over the state space S. We denote with PHR the set of history-dependent
transition models.

This general definition requires the transition model to select the next state based on
a history 7 = (80, a0,71,---,8t—1,t—1,Tt, St, az) of length ¢ € N. If the distribution of
the next state depends on the current state-action pair (s, a;) only, the transition model
is called Markovian and abbreviated with P;(-|s;, a;). Moreover, if the transition model
does not depend explicitly on time, it is called stationary and, in such a case, we remove the
subscript, simply writing P(-|s, a). We denote with PS® the set of Markovian stationary
transition models. Whenever necessary, we assume that P(-|s,a) admits a probability
density function that we denote with p(s’|s, a) for every (s,a,s’) € S x A x S. Finally,
if for each state-action pair (s,a) € S x A the transition model provides a probability to a
single state, we call it deterministic. With little abuse of notation, we indicate the transition
model P : § x A — S as a mapping from state-action pairs to next states, where P (s, a)
is the next state reached from playing action a € A in state s € S. We denote with
PSP = SS*A the set of Markovian stationary deterministic transition models. Whenever
not differently specified, we will employ the term “transition model” (or simply “model”)
to denote a Markovian stationary transition model.

All definitions provided in Chapter [3] can be reused for the case of Conf-MDPs.
Specifically, to highlight the dependence on the transition model P (that can be changed
in a Conf-MDP) we will explicitly report it. For instance, /Lf’P is the ¢-step distribution,
u;“P is the vy-discounted stationary distribution, and IP’Z’gP (resp. ]P’Tcr;f:f) is the distribution
over infinite-length trajectories, induced by the policy-model pair (7, P) € ISR x PSR
and the agent’s reward model Rag (resp. the configurator’s reward model Rconf).

Moreover, we employ the following abbreviated notation for expectations of a bounded

measurable function f € %B(T) taken w.r.t. infinite-length trajectories by employing the
agent’s and the configurator’s reward functions respectively:

BP0 = E [f(r)] = f PEP (dr) (1),

T~IF’ZE’P T
Beml/(M = E [0 - | Paianso).

Conf

4.4 Value Functions

The notion of value function (Sutton and Barto, 2018) can be freely employed in the
context of Conf-MDPs, with the straightforward notational adaptations. For a Conf-
MDP, we have to distinguish between the agent and the configurator value functions.
Specifically, a value function provides a mapping based on the choice of the initial state
C,m P,s) — V[g’z(s) (or state-action pair (C, 7, P, (s,a)) — QK’;C(S, a)) that are de-
fined as in Section [2.6] but in terms of the agent’s reward function Rag. Analogously,
for the configurator, we employ the reward function Rconf, and we denote (C, 7, P, s) —
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V&’ﬂ’c(s) (or state-action pair (C,, P, (s,a)) — ng:ﬂc(s, a)). Similarly, we drop the
subscript C, whenever clear from the context. For the Conf-MDPs, it is convenient to in-
troduce a new value function that associates the performance index to a state-action-next-
state triple: (C, 7, P, (s,a,s’)) — Kg’i(s, a, s") for the agent and (C,, P, (s,a,s’)) —
U Coﬁ c(s,a, s") for the configurator. We formally define it in the following.

Definition 4.3 (State-Action-Next-State Value Function or U-function). Let C be a Conf-
MDP, 7 € TIR be a policy, and P € PSR be a transition model. The state-action-next-
state value function U;rg’P, UDE - S x Ax S — R are defined for every state-action-state
triple (s,a,s’) € S x A x S as the expected return starting from state s, playing action a,
landing to state s', and following policy 7 thereafter:

0
Z Rt+1|So—SAO—a51—S],

UKgP(s a,s)

[}
,P /
UConf(s,a,s =E&¢ Z 'Ri11|So = 5,40 =a,S; = 31 ,

The relationship between the U-function and the Q-function is easily highlighted since
the latter can be obtained as the expectation of the U- function over the next state space:

Q = {5 P(ds'|s,a UAg (s,a,s') and QTF (s, a) =g P(ds’ Ps,a,9).
Furthermore, we can define the model advantage functions as Azgp, Agol:f S XAxS —
R defined for every (s,a,s’) € S x A x § as:

P P P
Agenf(s7 a, S/) = U(Tlronf(“s’ a, S/) - QTCronf(S’ a)'

They quantify the performance gain obtained by selecting the next state s’ when having
played action a in state s compared to executing the transition model P(:|s,a). They are
the equivalent of the policy advantage functions defined in Equation , that here we
denote as Ax"(s,a) = Qu (s,a) = VI (5) and AT (5,a) = QCone(s,@) — Vi (5)
to highlight the dependence on the transition model P. We can combine the model and the
policy advantage functions to get the coupled advantage functions A Agp, Agol:f S x Ax
S — R defined for every (s,a,s’) € S x A x § as:

T, P P P
AZé (Svaa S/) = U:g, (S’ a, S/) - VATrg (5)

= AL (s,a,8) + AR (s a),

P 7, P ,P
AConf(S a,s ) UConf( ) - VConf (8)
P ’ P
= Agonf(s,a, s') + Alo(s,a).
The coupled advantage function models the gains experienced in selecting action a and
next state s’ from state s instead of playing policy 7(+|s) and transition model P(-|s,a).

They essentially combine the policy advantage functions and the model advantage func-
tions to quantify their joint effect.
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4.5 Bellman Equations and Operators

Similarly to the case of traditional MDPs, it is possible to rephrase the value functions in
terms of the Bellman equations and introducing suitable Bellman operators. Concerning
the V-function and the Q-functions the Bellman expectation operators are precisely those
introduced in Section[2.6.T]instanced with the suitable immediate reward functions (rag for
the agent and rcons for the configurator). To highlight this difference and the dependence
on the transition model P, we will denote them with T;Tg’P and T&’f; for the agent and the
configurator respectively. For the U-function, instead, we provide the explicit definition of
the corresponding operator.

Definition 4.4 (Bellman Expectation Operators). Let C be a Conf-MDP, 7 € II5R be a
policy and P € PSR be a transition model. The Bellman expectation operators for the
state-action-next-state value function ng’P, Tg(;ﬂ F BEXAXS) > B(SxAxS)
are defined for every bounded measurable function f € B(S x A x 8) and every state-
action-state triple (s,a,s') € S x A x S as:

(T;;Pf) (57 a, s/) = TAg(S, a, S/> + ’yf

A

(Tg‘;,ﬁ ) (87 a, Sl) = rConf(S; a, S/) + JA

T(dd]s) | P ls.)f (s, ),
s

w(da'|s’)f P(ds"|s,a)f(s',d,s").
s

It is immediate to prove that TZg’P and Tgo’ff are ~y-contractions in the Lq,-norm and,

consequently, they admit unique fixed points that are the corresponding U-function.
Proposition 4.1. Let TZ\Tg’P, TER - B(S x Ax S) — B(S x A x S) be the operators
as in Definition Then, if vy € [0, 1) they are a y-contraction in the Ly,-norm, i.e., for
every bounded measurable function f,g € B(S x A x S) we have:

7, P 7, P

,P P
TEn s - Tahe| <1 -l

L.

Furthermore, U, Kg’;P and Ug(;ff are their unique fixed points, i.e., they satisfy the following
Bellman equations:

P _ pm,Pyrm,P
UAg —TAg UAg ,
P _ pm,Pyrm,P
UConf - ConfUConf'

Proof. We prove the statement for the agent case only, as the configurator counterpart is analogous.
Let f,g€ B(S x A x S)and (s,a,s') €S x A x S, we have:

[(1571) (s.a,8) = (T579) (s,0.8))
rag(s, a, s') + 7-[

A

7r(da'|s/)j P(ds"|s,a)f(s',a’,s")

s

—rag(s,a,s’) + 'yj m(da’|s") J P(ds"|s,a)g(s’,a’,s")
A s
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= || w(da's") | P(ds"|s,a) (f(s,d,s") = g(s',a’,s"))
IREH l

=7 sup {|f(s/,a”,s”) 7g(sl7a‘/las//)|}
s’eS,a’e A,s"eS

=7f -9l

Thus, by applying the supremum on the left hand side, we obtain:
’T/:;’Pf - T:g’PgHOO = sup {‘(T:épf> (s,a,8") — (T:g’Pg) (s,a,s')‘}
sES,a€A,s’eS
< vy Hf - g”oc .
Since Z(S x A x S) is the set of bounded measurable functions having image in R, it is a complete

metric space w.r.t. the metric induced by the Lo-norm. Thus, we can apply the Banach fixed point
theorem (Banach, [1922) showing that TKg’P has a unique fixed point. It is straightforward from

Deﬁnitionto prove that U:g’P is a fixed point of T/fg‘P . O

Table[.T|reports the value functions, the corresponding Bellman expectation operators
and equations for the Conf-MDPs.

4.6 Taxonomy

At the beginning of the chapter we provided a series of motivational examples showing
heterogeneous features of environment configuration. In this section, we propose an in-
formal taxonomy of the problems that can be addressed using Conf-MDPs, based on four
dimensions of classification.

Cooperative vs Non-Cooperative The first distinction is based on the agent and config-
urator’s reward functions. If they share the same reward function, we say that we are in a
cooperative setting in which agent and configurator act on different elements, the policy
and the transition model respectively, with the goal of finding a policy-transition model
pair that maximizes the long-term reward. Instead, if the reward functions are different,
we are in a non-cooperative setting. Each of the actors attempts to optimize its own reward
function. When the reward functions are opposite, we are in a fully competitive scenario
that can be thought of as a zero-sum game.

Number of Agents In principle, there can be multiple configurators as well as multiple
agents. For the sake of this dissertation, we restrict our attention to the case of a single
configurator and a single agent. The distinction between the two entities is essential in
the non-cooperative setting, while they can collapse into a unique entity in the cooperative
setting. In such a case, we assume that the agent has additional capabilities for acting on
the environment configuration.

Awareness In general, it is reasonable to assume that the entity entitled to the environ-
ment configuration is aware of the presence of the agent. Instead, the agent might not be
aware of the presence of the supervisor. In this case, the environment modifications are per-
ceived by the agent as a form of non-stationarity and, consequently, the strategic behavior
is limited to the configurator, while the agent reduces to a best responder player. Instead,
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Number Setting Rewards Awareness Solution Concept
of agents

1 Cooperative TAg = TConf - Optimal

2 Cooperative TAg = TConf Yes/No Optimal

2 Non-cooperative TAg 7 TConf Yes Nash

2 Non-cooperative TAg 7 TConf No Stackelberg

2 Zero-sum TAg + TConf = 0 Yes/No Nash = Stackelberg

Table 4.2: Table summarizing the main features of the settings generated by the dimen-
sions presented in Section

when the agent is aware of the configurator’s presence, its behavior becomes strategic as
well.

Solution Concepts In the cooperative setting, being the two reward functions equal, it is
immediate to define a notion of optimality in which the policy-transition model pair jointly
maximizes the expected return. In the non-cooperative setting, instead, we have to refer to
game-theoretic notion of equilibrium. The choice of the solution concept has to account
for the awareness the agent has on the configurator presence. In particular, if the agent is
unaware of the configurator presence, we can look at the interaction as a leader-follower
game and refer to the Stackelberg equilibrium. Instead, when both are aware of each other,
the Nash equilibrium is a more appropriate solution concept. A particularly interesting
case is when the reward functions are opposite, i.e., the interaction can be modeled as a
zero-sum game. In such a case, the Nash and the Stackelberg equilibrium coincide.

Combining these dimensions generates several combinations, as illustrated in Table 4.2
Other dimensions could be considered as well. For instance, in the cooperative setting,
when the configurator is present as an external entity, it might know or not the agent’s
reward function. If it does, then the configuration problem could be solved offline with
no need for interaction. Instead, when the agent’s reward is unknown to the configurator,
interaction becomes essential. This distinction can be extended also to the non-cooperative
setting. Nonetheless, we believe that our Conf-MDP model still misses capturing some
relevant situations, especially the curriculum learning view of the configuration activity,
mentioned in Section[d.T] We will discuss these issues in Chapter [I0]

4.7 Related Literature

In this section, we provide a survey of the literature connected with the Conf-MDP frame-
work. Specifically, we will focus on three macro topics.

* In Section we discuss the models that are employed to represent uncertainty
in the transition probabilities (Satia and Jr., [1973). These works mainly focus on
modelization and are extensively employed by the robust control community (Nilim
and Ghaoui, 2003)).
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e In Section we present the models and solution concepts that are employed
when the environment evolves naturally, i.e., the environmental modifications are a
form of non-stationarity (Bowerman, [1974).

* In Sectiond.7.3] we illustrate the models and approaches that assume the possibility
to act explicitly on the environment in a strategic way (e.g., Zhang et al., [2009a}
Keren et al., 2017)).

4.7.1 The Environment is Known under Uncertainty

There are several real-world cases in which the environment dynamics can only be known
under uncertainty. In this section, we revise this family of works. The interest in con-
nection with our Conf-MDPs lies in the modelization techniques, accounting for multiple
admissible transition models, as well as in the choice of the objective functions employed
to select a suitable transition model among the admissible ones.

Markov Decision Processes with Imprecise Probabilities Markov Decision Processes
with Imprecise Probabilities (MDPIPs, |Satia and Jr., [1973; [III and Eldeibl 1994} Bueno
et al., [2017) are an extension of traditional MDPs in which the transition model is only
known under uncertainty. Thus, the transition model is not expressed as a probability
distribution, as in traditional MDPs, but it is specified by means of a set of probability
distributions, defined for every for every (s,a) € S x A as:

P(:|s,a) € K(:|s,a) € H(S),

K(:|s,a) is named transition credal sets, also known as uncertainty set (Delgado et al.,
2009). The applications of MDPIPs might be numerous, including studying the sensitivity
of the value functions and the optimal policies under variation of the transition model
and robust control. The original work (Satia and Jr.| [1973) proposed two objectives: the
maximax and maximin. The maximax objective seeks for the best policy and transition
model in the credal sets so as to maximize the expected return, leading to the following
value function defined for every s € S as:

ymaximax (o) — gup sup {f P(ds'|s,a) (r(s,a, s+ VVm“imax(s’))} .
acA P(-|s,a)eK(-]s,a) S

Thus, V™M js an upper bound on the expected reward under the true model (Utkin
and Augustin, 2005). Instead, the maximin criterion looks for the policy maximizing
the expected return while considering the worst possible transition model, leading to the
following value function defined for every s € S as:

maximin . . / / maximin / _/
1% (s) 21615) P(.‘S’al)réf)c(.‘sﬂ) {JS P(ds'|s,a) (r(s,a,s") + 4V (s ))} .
ymaximin represents a lower bound on the expected return (Delgado et al., [2009) and this
objective is closely related to the robust control literature (Nilim and Ghaoui, [2003)). Vari-
ants of policy iteration have been proposed for solving both the problems (Satia and Jr.,
1973)). Other objectives can be employed, like the maximix objective that considers a con-
vex combination of the maximax and maximin objectives, interval dominance, maximality,
and E-admissibility (Seidenfeld} 2004} [Kikuti et al.,[2005).
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Bounded-parameter Markov Decision Processes Bounded-parameter Markov Deci-
sion Processes (BMDPs, |Givan et al.l [1997; N1 and Liul 2008) are a particular instance
of MDPIPs in which the credal sets are assumed to be intervals. Specifically, a BMDP
Mi can be thought as a set of MDPs in which the transition probabilities are specified by

means of lower and upper bounds on their values: PI (-|s,a) = [I(:]s,a),u(-|s, a)] where
I(:]s,a) < u(:]s,a) forall (s,a) € S x A. Additionally, BMDPs allow representing un-
certainty on the reward function by means of analogous intervals Ri (|8, a). This allows
extending the classical notion of value function, leading to the interval value functions
defined for every state s € S as:

V0= |, RO g (VR

Interval value functions can be compared by defining suitable ordering relationships on
real intervals. Based on whether we employ the lower or the upper bound to sort value
functions, we can define pessimistic and optimistic estimates of the true optimal value
function. Besides modeling the uncertainty, BMDPs can be thought of as a way to rep-
resent an MDP obtained by means of the state aggregation of an original (primitive)
MDP (Givan et al.l [{1997). In this way, we replace the probability of each individual
transition (and the reward) with an interval. Interval policy evaluation and value iteration
can be employed to analyze the sensitivity of the value function of a policy and the optimal
value function to this form of aggregation (Givan et al.,|1997).

Markov Decision Process with Set-valued Transition Another particularization of MD-
PIPs can be found in the Markov Decision Process with Set-valued Transition (MDPST,
Trevizan et al., 2007, [2008). MDPSTs extend the MDP considering probability distribu-
tions over state sets, i.e., m(-|s,a) € P(F(s,a)), where F(s,a) < 25\{{}} for every
(s,a) € S x A are the reachable sets obtained by playing action « in state s. It can be
proved that an MDPST induces an MDPIP where the credal sets are defined in terms of
the reachable sets (Trevizan et al.| [2007). It is possible to prove that the maximin criteria
of MDPIP is equivalent to the following simplified objective for MDPSTSs, in which the
minimization over the transition model can be conveniently pushed inside the expectation:

/mamin (o) — sup {f m(dU|s,a) inf {r(s,a,s’) + 'yVmaxmi“(s’)}} :
acA | JF(s,a) s'eU
Robust Markov Decision Processes Up to now, we have discussed different extensions
of the traditional MDP framework, all derived from the basic MDPIP model. These works
are more focused on modeling uncertainty rather than the nature of the objective function
employed to discriminate among the possible transition models. The robust control lit-
erature (Bagnell et al.| 2001; [Nilim and Ghaoui, 2003} {Iyengar, 2005), instead, is based
on the idea of learning a robust policy, i.e., a policy that maximizes the expected return
under the worst admissible transition model. In this sense, robust control makes use of
the maximin objective previously introduced. While a large part of the research effort is
focused on rectangular ambiguity sets (Nilim and Ghaouil [2003}; Iyengar} [2005), it might
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be of interest considering the possibility that the transition probabilities of different state-
action pairs are related. In full generality, a transition model belonging to a subset of the
mappings from state-action pairs to probability measures over the state space:

PeKc{f:SxA— PS))

Unfortunately, for general uncertainty sets it has been proven that solving the maximin
problem is NP-hard (Wiesemann et al.,|2013). Instead, a robust policy can be computed ef-
ficiently for specific choices of the ambiguity set. An example is s-rectangularity (Le Tal-
lec, |2007), where the ambiguity set is defined separately for every state, modeling sit-
uations in which nature can see the last state but not the action. In this setting, it is
possible to derive a robust policy in polynomial time. Similar results hold for (s,a)-
rectangularity (Wiesemann et al., 2013), where for each state-action pair a separate am-
biguity set is considered. This is essentially the model employed in the credal sets of
MDPIP. The main difference between the two notions of rectangularity is that the optimal
robust policy for (s, a)-rectangularity can be proven to be deterministic whereas for s-
rectangularity the robust policy might be stochastic (Wiesemann et al.,[2013)). Several suc-
cessive works extended both the models of uncertainty (e.g., |Goyal and Grand-Clement,
2018; Mannor et al., 2016) and the objective functions considered (e.g., Delage and Man-
nor, 2010).

4.7.2 The Environment Changes Naturally

In the previous section, we have illustrated the formalizations that account for multiple
transition models to represent a lack of knowledge. These approaches do not admit the
possibility that the environment changes over time and, consequently, during the learning
process. In this section, we present the modelizations and the approaches that consider a
“natural” evolution of the transition probabilities over time.

Non-Stationary Markov Decision Processes A Non-Stationary Markov Decision Pro-
cess (NSMDP, [Bowerman, |1974) is an extension of the traditional MDP model that allows
the environment dynamics and the reward function to change over time. Formally, the tran-
sition model P = (P;);en and reward model R = (Ry)en are parametrized by the time
index ¢t € N. Non-stationarity can be seen as a form of partial observability (Kaelbling
et al., [1998) since the time index can be interpreted as a state mode that is not observed
by the agent. For this reason, a NSMDP can be always transformed in an MDP, by simply
adding the time variable in the state space. This evolution over time is natural, i.e., not de-
termined by an external, intentional, intervention. As intuition suggests, in NSMDP makes
sense to consider non-stationary policies m = (7;)¢en. Consequently, the value functions
need to be indexed by time as well. For every ¢ € N, the following Bellman equation can
be defined for every state s € S as (Lecarpentier and Rachelson [2019):

V() = || mldals) P, ) (s, ) 9V (<)

Concerning optimization, we have the following optimal Bellman equation, defined for
every state s € Sand t € N as:

V(o) = sup { [ Piasls.a) (s, s) Vi () |
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from which we can derive a greedy policy 7;*. NSMDPs can be treated with more gener-
ality referring to the framework of Hidden-Mode Markov Decision Processes (Choi et al.|
2001)), a particular instance of POMDPs, in which some state modes are hidden to the
decision-maker. Several works have addressed the problem of defining a suitable objective
function and solution approaches (Lecarpentier and Rachelson, [2019)), also in the robust
control setting (Sinha and Ghatel 2016).

4.7.3 The Environment Changes Strategically

In this section, we consider the possibility that the environment transition function changes
over time, not in a natural way, as in non-stationary models, but as an effect of the inter-
vention of a strategic actor. This setting is closely related to our Conf-MDPs that assumes
the presence of agent and configurator interacting with one another.

Environment Design A line of research that displays several similarities with Conf-
MDPs is environment design (Zhang and Parkes| [2008}; Zhang et al., [2009a)), which was
first introduced in the planning community with the value-based policy teaching (Zhang
and Parkes| [2008). The fundamental idea is that in a learning process there may be an
interested party, i.e., an entity different from the learning agent, that is allowed to change
dynamically the reward function of the MDP, providing some incentives, to induce the
agent displaying a certain behavior. The formalization of this process was provided with
more generality in |[Zhang et al.| (2009a)). Specifically, an environment design problem is
composed of:

e an environment e € g;

* an agent model (0, f), where 6 € Z are the model parameters that represent the
agent’s preferences and capabilities and f : Z x £ — X is the agent function
mapping a parameter and an environment to a decision, in the decision set X’;

* the interested party knows the environment e and the agent function f and can act
by means of an environment change A € A. Based on the current environment
e € £, agent’s decision x € X, an environment change A € A can be admissible if
it belongs to the set A € admissible(e, z);

¢ the environment transition function F : £ x A — & that, given the current en-
vironment and the environment change, provides the modified environment. The
environment transition function is assumed to be known to the interested party;

e the goal function G : X x A — R that outputs the reward of the interested partyE]

Therefore, in this model the interested party aims at finding the admissible environment
change A € A such that the agent’s behavior in the modified environment e’ = F(e, A)
optimizes the goal function G:

max G (z,A)
AeA

In |Zhang et al.| (2009a) a slightly more general definition is provided, in which the agent function f is
admitted to output a set of decisions rather than a single decision and the agent function G depends on Z and £
too.
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s.t. A € admissible(e, x)
e = Fle,A)
T = f(ev 6/)

It was proven that under certain convenient forms of the agent function the problem is
tractable and can be addressed using LP (Zhang et al.| 2009a).

We can identify several similarities between this formulation of environment design
and the Conf-MDPs. Indeed, if we look at the agent’s function f as the agent’s best
response function, that is assumed to be known to the interested party (the configurator
in our setting), this formulation resembles a form of leader-follower game taking place
between agent and configurator. Indeed, the interested party (the configurator in our ter-
minology) seeks for the environment change (analogous to the environment configuration)
that optimizes its utility function G (the expected return for us) assuming that the agent
will react as a best responder. However, the main limitation, we believe, is the assump-
tion that the interested part knows the agent function. Subsequent works considered the
setting in which the interested part objective consists of teaching a specific policy to the
agent (Zhang et al., 2009b) or optimizing an environment tailored to the user needs by
selecting online the available action set (Mahmud et al., 2014).

Utility Maximizing Design A particular instance of environment design is represented
by Equi-Reward Utility Maximizing Design (ER-UMD, |[Keren et al.,2017). In ER-UMD
the agent and the interested party share the same goal and the formulation is restricted to
the MDP case. In this sense, ER-UMD resembles the cooperative view of Conf-MDPs.
Specifically, if we denote with J*¢ = sup,..sr {J™¢} the optimal agent’s performance
in the environment e € &, the interested party looks for an admissible environment change
(or sequence of admissible environment changes) so that the agent’s performance is max-
imized:

max J*¢
AeA
s.t. A e admissible(e) 4.1
e’ = F(e,A).

Additionally in [Keren et al.| (2017) the possibility to associate to the environment modi-
fication a cost is considered. A cost function C : A — Ry is employed to brake ties
among the optimal changes A* solving the problem in Equation {.I)) preferring those of
minimal cost. Heuristic approaches have been subsequently proposed to make the search
for the sequence of changes tractable (Keren et al., 2018, |2019).

Cost-Aware Objectives A similar idea of including costs in the objective function was
recently proposed in |Silva et al.| (2018)), in a framework closer to the RL formulation.
The idea consists in considering a parametric representation of the transition model P,
and evaluate the cost of every parametrization via function C' : 2 — R leading to the
problem:

max J*(w) — C(w),

we
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where J*(w) = sup,cpse {J™} is the expected return of the optimal policy in the
MDP induced by the transition model F,,. The problem is tackled by means of a gradient-
based approach.

Threatened Markov Decision Process Threatened Markov Decision Process (TMDP,
Gallego et al) 2019alb) is a recently introduced model that assumes the presence of an
opponent (a threatener) that performs a threat action selected within the set B that has
an effect on the transition probabilities P : S x A x B — Z2(S). Instead of tackling
the problem from a game-theoretic perspective, the authors propose to augment the MDP
accounting for the opponent presence, modeled with a prior belief p4 (b|s) that the agent
maintains on the threat action the opponent will play. A modified version of the Q-learning
algorithm is proposed, in which the target value is defined in terms of an expectation w.r.t.
to the belief p 4 (b]s):

Q(s,a) = JpA(db|s)Q(s, a,b).

In order to deal with the uncertainty on the opponent’s policy p 4, the authors propose to ei-
ther consider a non-strategic opponent or to employ level-k thinking mechanism (Gallego
et al.,[2019al).

Off-Environment Reinforcement Learning OFFER (Ciosek and Whiteson, [2017) ad-
dresses the issue of significant rare events, i.e., situations that occur in the environment
with low probability but able to affect significantly the agent’s performance. The authors
propose an off-environment policy gradient method that, by means of a simulator, changes,
during the learning process, the probability of the rare events so that the trained agent can
learn to deal with them. Like the policy mg, the environment is parametrized P,,, and the
optimization on these parameters aims at minimizing the variance of the policy gradient:

w™ € arg min {Var [@gJ(O,wo/w)]} ;

we

where @QJ (0, w(/w) is an importance sampling estimator of the policy gradient of policy
me under the true environment P,,,, having samples collected in environment F,,. Since the
presence of significant rare events is a source of variance, this objective tends, indirectly, to
increase their probability to occur. This approach can be thought of as a form of curriculum
learning (Bengio et al., [2009) but, differently from Conf-MDPs, the configuration is only
simulated.

Adversarial Attacks in RL  The vulnerability of deep learning classifiers to adversar-
ial inputs is a well-known issue in image classification |(Chakraborty et al.[| (2018). More
recently, this phenomenon has been studied in the field of RL. A first branch of ap-
proaches directly translates the techniques employed in image classification to RL, but
they are clearly limited to deep RL architectures with a state representation based on im-
ages (Huang et al.|2017;|Lin et al.,2017). In these cases, an attack is considered successful
if it determines a significant worsening of the performance. More recently, the notion of
policy poisoning (Ma et al.| 2019) has been introduced. In this setting, the goal of the
attacker is that of inducing the agent learning a specific policy. Such an attack can be

66



4.7. Related Literature

carried out in different modalities. A first example proposed in (Ma et al.,|2019) consists
in altering the reward function the agent observes. The paper proves that this intervention
is sufficient to poison the policy, with no need of acting on the state-action representation.
Furthermore, the possibility of acting on the transition model, in addition to the reward
function, is accounted in (Rakhsha et al) [2020), where a cost of altering the environ-
ment is also quantified. These latter examples can be considered a way of operating in
a non-cooperative Conf-MDP, where the configurator having the specific goal of policy
poisoning. We point out that, since these approaches aim at forcing a particular policy,
they cannot be directly mapped to the Conf-MDP definition, that requires a specific re-
ward function for the configurator. Indeed, treating policy poisoning in the Conf-MDP
framework would mean devising a suitable reward function inducing the desired policy
under the optimal configuration.
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CHAPTER

Solution Concepts for Configurable Markov
Decision Processes

In Chapter @ we have introduced the notion of configurable Markov decision process,
as a formalism to model the (possible) presence of a configurator in charge of acting on
the environmental parameters with a possibly non-cooperative goal compared to that of
the agent. Furthermore, we provided a taxonomy that qualitatively classifies the settings
that can emerge in the Conf-MDP framework and we discussed how they determine the
most suited solution concepts. In this dissertation, we primarily focus on the cooperative
setting in which a straightforward notion of optimality can be defined. The subsequent
chapters, therefore, will be devoted to the study of the solution techniques for cooperative
Conf-MDPs in both finite and continuous domains. In this chapter, instead, we provide the
formalization of the solution concepts for the cooperative and non-cooperative settings.

Chapter Outline The chapter is organized as follows. In Section[5.1] we focus on the
cooperative setting. We start by formally defining a cooperative Conf-MDP, we show how
this setting can be reduced to a standard MDP, and we provide the optimality conditions,
including the corresponding Bellman optimality operators and equations. In Section
we discuss the non-cooperative setting. Based on whether the agent is aware of the config-
urator presence, we propose solution concepts based on Nash and Stackelberg equilibria,
and the corresponding value functions and operators.



Chapter 5. Solution Concepts for Configurable Markov Decision Processes

5.1 Cooperative Setting

In the cooperative setting, the agent and the configurator share the same reward function,
i.e., they act perusing the same objective. From a more formal point of view, we can define
a Cooperative Conf-MDP as follows.

Definition 5.1 (Cooperative Conf-MDP). Let C = (S, A, o, Rag, Rcont, ) be a Conf-
MDP. C is a Cooperative Conf-MDP if for every state-action-state triple (s,a,s’) € S x
A x 8 it holds that:

Rag(-|s,a,s") = Rconf(+]s,a,s") almost surely. (5.1

In this case, we will abbreviate the notation reporting just one reward function R = Rag =
Rconf inthe tuple C = (S, A, po, R, 7).

This definition implies that also the reward functions are equal, i.e., m\g(s7 a,s') =
rconf(8,a, s") forall (s, a,s") € S x Ax S. For notational convenience, we will remove the
subscripts Ag and Conf from all the relevant quantities, as the distinction is not necessary.
Specifically, we will denote the expectation of a bounded measurable function f € Z(T)
under the infinite-length trajectory distribution as follows:

ETPLf(r)] = E [f(r)] :f P™F(dr) f(7).
T

T~Pm, P

The goal in a cooperative Conf-MDP consists in finding a policy-transition model pair
that, jointly, maximize the long-term reward. This can be formalized, similarly to what is
done in Chapter 2| by introducing the notion of optimal value function and optimal policy-
transition model pair.

Definition 5.2 (Optimality in Conf-MDPs). Let C be an Conf-MDP. A policy-transition
model pair (7*, P*) € TIHR x PHR j5 optimal if for every state s € S and policy-transition
model pair (m, P) € TINR x PHR jt holds that:

VTP (5) = VP (s). (5.2)
The optimal state value function is defined for every state s € S as:

Vs = s {VER() 5:3)

mellHR pePHR

Before proceeding further, it is convenient to show that a cooperative Conf-MDP can
be reduced to an equivalent MDP.

5.1.1 Reduction of Cooperative Conf-MDP to MDP

In this section, we show that a Cooperative Conf-MDP can be reduced to an “equivalent”
MDP, as shown in the following result.

Theorem 5.1. Let C = (S, A, o, R,v) be a cooperative Conf-MDP and let M =
(S8, A xS, P, ug, R,~) be an MDP defined as follows:
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e P Sx(AxS8) — P(S), defined for every (s,(a,s')) € Sx (AxS) and
s" € S as:

P(ds"|s, (a,s")) = 85(ds"),

*R:Sx(AxS8) xS — P(R), defined for (s, (a,s),s") € Sx (AxS) xS
andr € R as: N
R(dr|s, (a,s’),s") = R(dr|s,a,s’).

Let (1, P) € II'R x PHR be q policy-transition model pair for the Conf-MDP C. Let us

define the new policy T for the MDP M for every t € N, state-ending history hy € Hs 4,
and (a,s’) € A x S as:

%t(d(avsl)‘ht) = Wt(da\ht)Pt(d3/|ht,a)-

Then, the value function induced by the policy-model pair (7, P) € ITHR x PHR jn the

Conf-MDP C is equal to the value function induced by policy T in MDP M, i.e., for every
state s € S it holds that:
,P _ 7
Ve (s) = V().

Proof. Vc”‘P is the expectation of the return Z;O:O ~* Ry+1 under the trajectory distribution induced
in C by the pair (7, P) € MTHR « PHR conditioned to the initial state s € S, denote it with Pe.
Similarly, V/a is the expectation of the return under the trajectory distribution induced in M by the
pair 7, conditioned to the initial state s € S, denote it with P e Thus, it suffices to prove that these
distributions are the same. Let us consider the following derivation:

P (dr) = 8:(dso) | [ #(d(ar, st)|he) P(dsesalse, (ar, s1)) R(dres|se, (ac, st), se41)

=

t=0
0
= d5(dso) H m(da|ht)Pt(dsHht, at)ds, (dsé)R(drHﬂst, at, st)
t=0
e
= 55((180) 1_[ 7rt(da|ht)Pt(dst+1|ht, at)R(th+1‘$t, ag, St+1) = ]P)c(dT),
t=0

where we exploited the properties of the Dirac measure and the definitions of P, R, and 7. O

Intuition suggests that we can solve the equivalent MDP M finding an optimal policy
7%, that for every state prescribes both the action and the next state, and then derive an op-
timal policy-transition model pair (7*, P*). However, we do not see this as a constructive
result, but just as a tool to reuse the results of the traditional MDP theory to the Conf-MDP
setting.

Indeed, if the transition probabilities can be changed arbitrarily and there is no con-
straint on how frequently we can perform an update, we can simply translate the Conf-
MDP in the equivalent MDP M. There are some reasons why this might not be convenient
and sometimes impossible. First, the policy and the transition model might be under the
control of different entities: the agent and the configurator, respectively. Moreover, they
might perform updates at different time scales. In realistic scenarios, changing the envi-
ronment might be an expensive operation (although at this level, we did not model cost) to
be performed less frequently compared to policy updates. This is clearly more reasonable
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in the non-cooperative setting. Even in the cooperative setting, when there is just the agent
configuring the environment, it is worth noting that while it has knowledge on its policy
space, it typically just knows which are the environment configurable parameters, but it
ignores the effect on the transition probabilities.

Remark 5.1 (On the Complexity of solving Conf-MDPs). Thanks to the reduction pro-
vided above, solving a cooperative Conf-MDP with |S| states and | A| action is equivalent
to solving an MDP with |S| states and | A||S| actions. In particular, based on (Papadim-
itriou and Tsitsiklis| |1987), it follows that solving a Conf-MDP is for sure P-complete, i.e.,
if an efficient algorithm were available then all problems in P would be solvable efficiently
in parallel. Actually, it was proven that solving deterministic MDPs is in NC (Papadim-
itriou and Tsitsiklis, |1987), i.e., deterministic MDPs can be solved efficiently in parallel.
Since the reduction we propose generates a deterministic equivalent MDP, we can con-
clude that solving a cooperative Conf-MDP is in NC. In other words, solving a Conf-MDP
is intrinsically simpler than solving an MDP.

There are some observations that need to be discussed. We are considering the gen-
eral setting in which we are allowed to change the probabilities of the transition model
arbitrarily. We have already observed that this context is unrealistic in several scenarios
of interest. Furthermore, the recent work (Silva et al.| 2019) showed that solving a coop-
erative Conf-MDP is NP-hard even when no explicit cost function is considered. This is
not in contradiction with what we have stated above. Indeed, the result (Silva et al.||2019)
is based on a reduction that considers a specific way in which the transition model can
be modified, i.e., the search is restricted to a subset P PSR of the space of Markovian
stationary transition models. This reflects the analogy with policy search. Indeed, when
the optimization is restricted to a generic subset I1 — ISR of the Markovian stationary
policies the problem becomes NP-hard as well (Vlassis et al.| [2012).

5.1.2 Optimal Value Functions

We defined the optimal state value function V** of a cooperative Conf-MDP as the best
performance we can obtain in the Conf-MDP starting from each state. Analogously, we
can define the optimal state-action value function Q** and the optimal state-action-next-
state value function U** defined for every (s,a,s’) € S x A x S as:

Q**(s,a) = sup  {Q"F(s,a)},

rellHR, PePHR

U**(s,a,s) = sup {U™(s,a,8)}.

mellHR pePHR

Clearly, given the reduction of Theorem[5.1|we immediacy observe that we can restrict
w.l.o.g. the computation of the supremum to the space of Markovian stationary policies
II5® and transition models PSR, Similarly to the case of traditional MDPs, in the coop-
erative setting, we can define suitable Bellman optimal operators and equations. For the
sake of brevity, we report those of the V-function only. We refer the reader to Table[5.]for
a complete view.

Definition 5.3 (Bellman Optimality Operator for Conf-MDPs). Let C be a cooperative
Conf-MDP, w € TISR be a policy, and P € PSR be a transition model. The Bellman
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optimality operator for the state value function T** : B(S) — HB(S) is defined for every
bounded measurable function | € B(S) and every state s € S as:

(T**f)(s) = eiupes {r(s, a,s) + vf(s’)} ) (5.4)

Compared to the Bellman operators defined for traditional MDPs (Definition [2.), in-
stead of computing the expectation w.r.t. the next state sampled from the (fixed) transition
model P, we perform a maximization on both the action and the next state. Clearly, these
operators are still a contraction in L,-norm when vy < 1.

Proposition 5.2. Let T** : B(S) — B(S) be the operator as in Definition Then,
if v € [0,1) it is a y-contraction in the Ly,-norm, ie., for every bounded measurable
Junctions f, g € B(S) it holds that:

|75 f =T%%gl e < VIS = 9l -

Furthermore, V** is its unique fixed point, i.e., it fulfills the following Bellman optimality
equation:

Vo R

Proof. We limit the proof for the operator of the state value functions. The proof can be straightfor-
wardly extended for the operators for the Q-function and U-function. Let f,g € #(S) and s € S,
we have:

() ()~ (1%%9)

sup  {r(s,a,8") +7f(s)} — sup {r(s,a,s") +9(s")}
acA,s'eS acA,s'eS

= sup {[r(s,a,8) +7f(s") —r(s,a,8") —7g(s)[}
acA,s’'eS

<ysup {[£(s) —a(s")]}
=71f=9lu,

Thus, by applying the supremum on the left hand side, we obtain:
|7%% 5 =T*%g],, = sup {[(T™"£) (s) = (T""9) O} < 7If = 9l -

Since Z(S) is the set of bounded measurable functions having image in R, it is a complete metric
space w.r.t. the metric induced by the Ly-norm. Thus, we can apply the Banach fixed point the-
orem (Banach| |1922) showing that T*'* has a unique fixed point. To prove the Bellman equation
VEE = THFY*% we follow the reasoning of Theorem 6.2.2 of [Puterman| (2014), showing that
for every f € B(S)if f = T**f then f = V**. Let us first prove that if f > T** f then
f = V** If f > T%*f it means that for all (7, P) € II°F x P5F, we have f > T™% f. Thus,
for all (m, P) € II°® x PSR we have:

f o V‘n-,P > TW,Pf o Tﬂ',PVﬂ',P
:,YPW (f_VTr,P> > 07
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where we exploited the fact that for a function g € Z(S) if g = yP" g then (Ids — vP™) g = O that,
in turn, implies g > 0 whenever v < 1 thanks to Lemma 4.2 of (Munos, [2007). Since f > V™
holds for all (7, P) € I x P%, we also have f > sup,psr_pepse{V"7} = VF*. Now,
we have to prove that if f < T**f then f < V**. We proceed analogously, recalling that if
f < T**f, there exists (m, P) € ISR x PSR guch that f < T™F f. Consequently, there exists
(m, P) € IR x PSR such that:

f _ V‘/r,P < TW,Pf _ Tﬂ,Pv‘rr,P
—4P" (f - V”’P) <0.
Since f < V™% holds for at least one pair (7, P) € 5% x PSR we can conclude that f <
Supﬂ.eHSRype-pSR{Vw’P} = V**_  Combining these two statements, we conclude that if f =
T**f then f = V**. As an alternative, we could simply observe that these operators can_be

defined in terms of the Bellman optimality operators of the equivalent MDP M of Theorem
from which we derive all the relevant properties. O

Moreover, V** Q** and U** are related by the following identities, holding for
every (s,a) € S x A:

Q**(s,a) = sup {U**(s,a,5")},

s’'eS
V**(s) = sup{Q™*(s,a)} = sup {U*’*(s,a,s’)} )
acA acA,s’'eS

5.1.3 Greedy Policy-Transition Model Pairs

As the Q-function in an MDP allows defining the notion of greedy policy, the U-function
allows introducing the notion of greedy policy-transition model pairs.

Definition 5.4 (Greedy Policy-Transition Model Pairs). Let f € B(S x A x S) be a
bounded measurable function, for every state s € S, we say that an action-state pair
(a™,(s")") € A x Sis greedy in state s if f(s,a™,(s')7) = sup(, s)eaxs 1f(5,a,5)}.
A greedy policy-transition model pair w.r.t. a function f € B(S x A x S) is any policy-
transition model pair (7%, P*) e TISR x PSR selecting only greedy pairs, i.e., for every
state s € S, we have:

f 7r+(da|s)f P*(ds'|s,a)f(s,a,8') = sup {f(s,a,)}.
A S

acA,s’'eS

Thus, if (7F, P*) e TIS® x PSR is greedy w.r.t. to the function f € B(S x A x S)
the following identity involving the Bellman operators holds:

Tﬂ—+’P+f _ T*’*f

5.1.4 Optimal Policy-Transition Model pairs

In the previous sections, we discussed the notion of optimal value function and derived
suitable Bellman equations and operators. We study now the existence of the optimal
policy-transition model pairs, that we have introduced in Definition[5.2] We proceed anal-
ogously to the case of traditional MDP, defining a suitable preference 2 relationship on
the space of Markovian stationary policy-transition model pairs IIS® x PSR,
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Agent and Configurator
VHEE(s)= sup {Vﬁ’P(s)}
o rellSR pe PSR
2
2 VH*(s)= sup {r(s,a,s)+yV**(s)}
,E a€A,s'eS
> ®,% ’ ’
(T**f)(s)= sup {r(s,a,s")+~vf(s")}
a€A,s'eS
Q**(sa)=  sw  {Q"(s,a)}
rellSR pepSR
=
S
2 Q- rsas) s (@70}
2 s'eS a’e A
o
(T*’*f)(Sva):SUP{T(S’G,S/)JrWSUP{f(S/’a')}}
s’'eS a’e A
U**(s,a,8' )= sup {U"’P(s,a,s')}
o nelISR, pePSR
8
2 U**(s,a,s')=7r(s,a,s')+y sup {U*’*(s',a',s”)}
e a’eA,s"eS
=]

(T*%f) (s,a,8") =r(s,0,8 )+ sup  {f(s",a’,s")}

a’eA,s"eS

Table 5.1: Summary of the value functions, Bellman optimal operators and Bellman opti-
mality equations for cooperative Conf-MDPs.

Definition 5.5 (Preorder on ISR x PSR, Let C be a cooperative Conf-MDP. The prefer-
ence relationship =< (ITSR x PSR) x (ISR x PSR) is defined for two policy-transition
model pairs (7, P), (', P') € TIS® x PSR gg:

(m,P) 2 (7', P) < V"P(s)= V™ (s), Vsed. (5.5)

~

This relationship inherits all the properties of the one defined for traditional MDPs
(Definition 2:10) thanks to the reduction of Theorem [5.1} It is reflexive and transitive,
but not antisymmetric. Based on the optimality conditions stated for Conf-MDPs (Def-
inition [5.2)), if an optimal policy-transition model exists, it must be a maximum of the
preorder 2. The following result exploits the reduction of Theorem[5.1} to prove the exis-
tence of an optimal policy-transition model pair.

Theorem 5.3. Let C be a cooperative Conf-MDP. If the state space S is discrete and the
supremum V**(s) = sup(, syeaxs{U* (s, a,s')} is attained for every state s € S, then:

1. there exists a Markovian stationary greedy policy-transition model pair (7*, P*)
w.rt. U**;

2. (7*, P*) is an optimal policy-transition model pair, i.e., (7*, P*) 2 (m, P) for
every policy-transition model pairs (7, P) € IR x PSR,

3. there exists a deterministic Markovian stationary optimal policy and a deterministic
Makovian stationary optimal transition model.
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Proof. The proof makes use of the reduction of Theorem Consider the equivalent MDP M.
Given Theorem , we know that there exists a policy #* for M that is greedy w.r.t. Q;"q Moreover,
we decide to pick a deterministic #*. Thus, for every s € S if #*(s) = (a,s’) we define the
deterministic policy 7*(s) = a and P*(s,a) = s’. Since QTVI = UZ*, it follows that 7* and P*
are greedy w.r.t. UC* ** and optimal for the cooperative Conf-MDP C. O

This theorem resembles the one presented in Chapter |2| for traditional MDPs. Thanks
to the reduction proposed in Theorem[5.1] the conclusions are essentially the same. There
always exists an optimal policy-transition model pair, that can be defined as greedy w.r.t. to
the suitable optimal value functions. Similarly to traditional MDPs, we can relax the defi-
nition of optimality considering a scalar objective function, instead of requiring optimality
for every state. This leads to the following condition.

Definition 5.6 (J-optimality for Conf-MDPs). Let C be a cooperative Conf-MDP and
let J be a performance index. A policy-transition model pair (7*, P*) € ISR x PSR jg
J-optimal if for every policy-transition model pair (7, P) € TISR x PSR; JrH P 5 gm P

Clearly, any policy-transition model pair that fulfills the optimality condition in Defi-
nition [5.3]also fulfills that of Definition [5.6] but not vice versa.

5.1.5 On Degenerate Solutions and Parametric Conf-MDPs

As intuition suggests, solving a Conf-MDP having access to the full set of Markovian sta-
tionary policy-transition model pairs might be of modest interest essentially for two rea-
sons. First, in all real-world interesting scenarios it is not allowed to change the transition
probabilities arbitrarily. This is because, typically, the environment dynamics incorporates
both configurable and non-configurable parts. For instance, in the car driving example,
the settings of the car influence the transition model and can be changed, although with
some constraints (maybe related to safety). Instead, the physical laws governing the in-
teraction between the tires and the road cannot be altered, and they also are part of the
transition model. Second, with this full control on the environment, the optimal solution
can be very degenerate. In this section, we investigate this phenomenon and we provide a
formalization of parametric Conf-MDP.

Consider for instance a Conf-MDP with a reward function depending on the current
state only r(s). Since we are allowed to act on the policy as well as on the transition model
we solve the problem by simply picking as optimal transition model the one that determin-
istically transitions to the state with the highest reward P*(s, a) € arg maxg.g{r(s’")} and
picking an arbitrary policy. More formally, consider the Bellman equation for the optimal
value function, defined for every s € S:

VEE(s) =r(s) + 7?2@ {VE*(s")} =r(s) + T E}.lgg {r(s"},

where we simply observe that the action has no role since the reward is independent from
it and using the fact that, in this case, sup, g {V**(s')} = ﬁ Supges {r(s’)}. Thus,
P*, as defined before, yields this performance (provided that the supremum is attained).
Suppose now that the reward function depends on the current state-action pair (s, a).
To get an optimal solution, we simply need a myopic policy that maximizes the immediate
reward 7* (s) € arg max, 4{r(s,a)} and a transition model that deterministically moves
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to the state with the highest reward P* (s, a) € arg maxgg{maxqe4{r(s,a)}}. This can
be formalized by the following Bellman equation, defined for every s € S:

Vi (s)

sup{r(s,a)} +ysup {V**(s")}
aeA s'eS

sup{r(s,a)} + ] T sup sup {r(s’,a’)},
ac A — 7 s’eSa’eA

where we exploited the fact that sup,.cs {V**(s")} = ﬁ SUDgcs SUDgreair(s’,a’)}.
Thus, we observe that the choices of the policy do not influence those of the transition
models, leading to completely independent problems. For this reason, whenever the supre-
mums are attained, (7*, P*) is an optimal pair.

Finally, if we consider a reward function depending on the state-action-next-state triple
(s, a, s") we start viewing a more interesting behavior. Indeed, while the policy just needs
to maximize the immediate reward 7*(s) € argmax,c 4{r(s,a)}, an optimal transition
model is no longer trivial since it has to trade-off between the immediate reward (that in
this case depends on the next state too) and the future reward. We formalize this phe-
nomenon in the following Bellman equation, defined for every s € S:

VH*(s) = sup {sup{r(s7 a,s')} + ’YV*’*(S/)} .
s’eS \acA

These results highlight the important asymmetry between the agent and the configurator

in a cooperative Conf-MDP when we enforce no constraint on the possible modifications

on the transition models. Indeed, the agent is always myopic maximizing the immediate

reward, whereas, when the reward function depends on the next state, the configurator

experiences a trade-off.

As we already pointed out, this setting is quite unrealistic because the transition model
typically encodes a configurable part of the environment as well as a non-configurable part.
Therefore, it might be convenient to consider transition models that explicitly depends on a
parameter Py, = {P,, : w € Q € RY}. Assuming that also the policy belongs to a suitable
parametric space IIg = {mg : 8 € © € RP}, we can redefine the objective function in
terms of the parameters .J(0,w) = J7¢I~ Consequently, the optimization problem can
be stated in terms of the policy and transition model parameters:

(0%, w*) € argmax {J(0,w)}.
(6,w)eOXQ

We will refer to this setting as parametric Conf-MDP.

5.2 Non-Cooperative Setting

The non-cooperative setting of Conf-MDPs admits arbitrary, possibly conflicting, reward
functions Rag and Rconf. In this scenario, the game-theoretic view of environment config-
uration becomes relevant. In this section, we provide a brief introduction to the topic, that
we believe, deserves additional investigation as future research. Before formally defin-
ing the solution concepts and discussing their properties, let us define the notion of best
response value function (Pérolat et al., 2017)

'We limit our presentation to the Markovian stationary policies and transition models. It has to be studied if,
in this non-cooperative setting, history-dependent policies and/or transition models play a more relevant role.
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Definition 5.7 (Best Response Value Function). Let C be a Conf-MDP. Let P € PSR be
a transition model, the agent best response value function is defined for every state s € S
as:

VasP(s) = sup (ViR (s)}.

TellSR

Let 7 € IISR be a policy, the configurator best response value function is defined for every
state s € S as:

V& (s) = sup {V&rﬁ(s)}

PePSR

Thus, the agent’s best response value function V:ép represents the best performance

achievable, fixing the transition model, and looking for the policy in IIS®. This is actu-
ally the traditional value function V* for an MDP with transition model P and inherits all
the properties of standard MDPs. Instead, the configuration best response value function
V&:} represents the best performance achievable having fixed the policy and searching the
transition model in PSR, Clearly, we can define the best response value function in terms
of the Q-function and the U-function as well. To keep the presentation concise, we limit
to the V-function. The reader can refer to Table [5.2]for the complete overview of the best
response value functions. It is immediate to realize that finding the best response configu-
ration can be reduced to solving a particular MDP, in the same sense as in Theorem [5.1]

Theorem 5.4. Let C = (S, A, po, Rag, Rconf, ) be a Conf-MDP. Let P € PSR be a

transition model and Mpag = (S, A, P, j1o, Rag, ) be an MDP. Then, for every m € II5F
and every state s € S it holds that:

Vine(s) = Vg, (s). (5.6)

Letm e HSR be apolicy and let MConf = (8 X .A, 87 ﬁ)Confa ﬁO,Confa EConfv 7) be an MDP
defined as follows:

o Peoni 1 (S x A) x 8 = P(S x A), defined for every ((s,a),s') € (S x A) x S
and (s",a") e § x Aas:

Pront (ds”,da"|(s,a),s") = 0 (ds”)m(da"|s"),

* [ip,conf € P (S x A) is defined for every (s,a) € S x Aas:

fio,con (d(s, @) = fio(ds)m(dals),

* Reonf : (S x A) x 8 x (8 x A) — P(R), defined for every ((s,a), s', (s",a"))
(ExA) xS x(8SxA) andr € R as:

éconf<d7"|(8, a),s’, (s",a")) = Reont(dr]s,a, s').
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5.2. Non-Cooperative Setting

Then, for every P € PSR define the policy Fconf : S x A — P(S) for every state-action
pair (s,a) € S x Aand s' € S as:

Teonf(ds'|s, a) = P(ds'[s, a).
Then, for every P € PSR and for every state-action pair (s,a) € S x A it holds that:

QF ont(5,0) = VEE (5, a). (5.7)

Conf

Proof. The first part of the theorem is straightforward. Concerning the second part, it suffices to

prove that the Bellman operator associated to (7, P) in the Conf-MDP Tg_”clznf equals the Bellman

operator associated to Tconf in the MDP M con, i.€., TE""‘ . Let f € (S x A) and let (s,a) €
Conf

S x A

(Tl%cc‘;"nff f) (s,a) = L %(ds’\s,a)f Peons(d(s",a")[(s,a), )

SxA
X (7~'Conf((3, a)7 S/a (5//7 CL//)) + ’Yf('s//a a”))
=J P(ds'|s, a) J 5o (ds")m(da”|s")
S SxA
X (FCOnf(s, a,s') +vf(s", a"))

= f P(ds'|s,a)f m(da”[s") (Feont(s,a,s") + v f(s',a"))
s A
— (12&1) (5,0).
O

This result shows that in a Conf-MDP the task of searching for the optimal policy, i.e.,
the activity carried out by the agent, is essentially equivalent to the solution of an MDP,
which was quite obvious. Less trivial is the reduction of the configurator’s activity, i.e., the
search of the optimal transition model, to the solution of a suitably defined MDP. Similarly
to Theorem [5.1} we do not see Theorem [5.4] from an algorithmic viewpoint, but as a way
to import the properties of standard MDPs to the case of non-cooperative Conf-MDPs. We
now define the following Bellman best response operators (Pérolat et al.| 2017).

Definition 5.8 (Bellman Best Response Operators). Let C be a Conf-MDP, 7 € TIS® be a
policy, and P € PS® be a transition model. The agent Bellman best response operator for
the state value function T:ép : B(S) — HB(S) is defined for every bounded measurable
function f € B(S) and every state s € S as:

(TAﬂ‘éPf) (s) = sup {Js P(ds'|s,a) (r(s,a,s") + ’yf(s’))} . (5.8)

aeA

The configurator Bellman best response operator for the state value function Tc* (;ﬂ : HB(S) —
PB(S) is defined for every bounded measurable function f € B(S) and every state s € S
as:

(TEEF) () = Lw<da|s> sup {r(s,a, ) + 7£(s")} . (5.9)

s'eS

79



Chapter 5. Solution Concepts for Configurable Markov Decision Processes

It is immediate to notice that the agent Bellman best response operator T:g’P is the
Bellman optimality operator 7* for traditional MDPs. For this reason, it inherits all the
properties, especially the contraction property and the fact that VA*g’P is its unique fixed
point. The very same properties can be proved for the configurator Bellman best response
operator T, %.

Proposition 5.5. Let T:gp, TR« B(S) — B(S) be the operators as in Definition
Then, if v € [0, 1) they are a y-contraction in the Loy-norm, i.e., for every bounded mea-
surable functions f, g € B(S) it holds that:

HT*P T:ngH < 1f =gl
|| Conf onfg“ < Y Hf gH

Furthermore, VA*g’P and VConf are their unique fixed points, i.e., they fulfill the following
Bellman best response equations:

*,P _ %, P *,P
Vag =Tag Vag
% %
VConf TConf VConf
Proof. The claims about T*’J‘D are trivial since T*g’P is the Bellman optimal operator in the MDP

MAg defined in Theorem|5.4} Concerning TZ.%, we can immediately prove VConf is its fixed point,
we show that for every f € Z(S) we have that if f = Tgo:; f then f = chf The argument is
analogous to that of Proposition[5.2} O

5.2.1 The Agent is Aware of the Configurator Presence

When the agent is aware of the presence of the configurator, its behavior becomes strategic,
just like the configurator. This scenario can be thought of as a simultaneous game in which
the agent selects the action and the configurator chooses the next state. For this reason,
the Nash equilibrium (Basar and Olsder} |1998) can be a suitable solution concept for this
kind of Conf-MDPs. We now rephrase the definition of Nash equilibrium for the case of
Conf-MDPs.

Definition 5.9 (Nash Equilibrium in Conf-MDPs). Let C be a Conf-MDP. A policy m* €
ISR and a transition model P* € PS® are a Nash equilibrium for the Conf-MDP C if for
every state s € S, policy € IISR, and transition model in P € PSR it holds that:

‘n'*,P* ‘n',P*
VAg (S) = VAg (8)7
¥ p¥ ¥ P
VConf (S) = VCon{’ (S)’
Given this deﬁnition if (7%, P*) e ISR x PSR is a Nash equilibrium of the Conf-
MDP, V2 " and VE,

* . . . .
T:g’;P and Tgonf*. A particular case of interest, thanks to its convenient theoretical prop-
erties, is when the reward functions of agent and supervisor are opposite (Littman, |1994).
In such a case, we refer to zero-sum Conf-MDP.

* . .
oni  are fixed points of the corresponding best response operators
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5.2. Non-Cooperative Setting

Definition 5.10 (Zero-Sum Conf-MDP). Let C = (S, A, o, Rag, Rconf,Y) be a Conf-
MDP. C is a Zero-Sum Conf-MDP if for every state-action-state triple (s,a,s’) € S x
A x 8 it holds that:

Rpag + Reonf =0 almost surely, (5.10)

where Rpg ~ Rag(-|s,a,s") and Rconf ~ Reont(+|s, a, s).

A zero-sum Conf-MDP models a fully competitive environment. It is immediate to
realize, thank to the Von Neumann minimax theorem (Von Neumannl 1928)), that the min-
imax value functions V™", VEGE™" : § — R can be defined for every state s € S as
follows:

Vapimin(g) = sup _inf {VAﬂg’P(s)} = inf sup {VAﬂg’P(s)} )

relISR PePSR

ércl)z:]);_imin (5) — 7VAnéaximin (S) )

The value functions can be easily defined in terms of the corresponding Bellman minimax
operators Ty, TEOLMN + B(S) — Z(S), defined for every state s € S as (Busoniu
et al.| |2008)):

(TR ) (5) = sup inf { [ mtaals) [ Pass.a) (rAg<s,a,s'>+vf<s'>)}7

relISR PePSR
(TERF) (5) = = (TR 1) (s).

Thus, when the state-action space is finite, each application of the operator TA“;Ximi"

requires the solution of a linear program. It can be proved that T,&“;"imi“ is a y-contraction in
Ly -norm (Busoniu et al.l 2008)). Thus, it admits a unique fixed point, that is the minimax
value function V,g™"™". The same considerations hold for the configurator side.

Proposition 5.6. Let TA"E”?X[”‘[”, Tpaximin . 8(S) — PB(S) be the operator defined before.
Then, if v € [0, 1) they are a y-contraction in the Loy-norm, i.e., for every bounded mea-
surable functions f,g € B(S) it holds that:

“Tmaximinf __ rpmaximin

Ag gHOO<7Hf_gHOO’
| Tt f — Teani™ g, < YIf =9l -

Furthermore, V™™™ and VZui™" are their unique fixed points, i.e., they fulfill the fol-
lowing Bellman optimality equations:

Vmaximin _ Tmaximinvmaximin
Ag - *tAg Ag )
Vmaximin maximin y ymaximin

Conf = 4L Conf Conf

Proof. Let f,g € AB(S) and s € S, we have:

‘ (T/Tgaximin f) (s) — (T/&ngaximing) (s)

sup inf {L‘ m(dals) J:s P(ds'|s, a) (TAg(s, a,s') + 'yf(s’))}

<SR PePSR
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~ sup inf {L‘Tr(da|s)£§P(ds’\s,a) (TAg(s,a,S’)-i-’\/g(s/))}‘

relISR PePSR

< sup
wellSR

— inf UA (dals) L P(ds'[s,a) (rag(s,a,s') + 79(8'))} ‘

PePSR

PePSR

inf {L‘ m(dals) J; P(ds'[s,a) (rag(s,a,s’) + ’Yf(sl))}

< sup sup ][ wlaals) [ P(@s1s.0) (rns(sva ) 4 27(6)

mnellISR pepSR

- L (dals) L Pds'|s,a) (rag(s, a, 8') + 79(s")) H» P1)
<~ sup  sup {Lw(da\s) L P(ds']s, a) |£() —g(s/)\}

melISR pepSR
<7ysup {l£(s) = g(sN]}
YN =9l s
where line follows from observing that for two functions f and g it holds that:

[inf {/(@)} — inf {o()}] < sup {|/(2) — g(@)]}

By applying the supremum to the left hand side we get the contraction result. Thanks to the Banach’s
fixed point theorem (Banachl [1922), we conclude that the operator admits a unique fixed point. We

need to prove that V,g‘“mm is a fixed point of the operator T[\"g*“‘imi“. To this purpose, we prove that for
every f € B(S),if f = Tag ™" f we have that f = V,g™"™". First, we prove that if f > Tx;""™"f,
then f > VA“;’“mi“. Suppose that f > T,&“;Ximi“ f, this means that for all 7 € IIS® there exists

P e PS® such that f > TKg’P f, consequently:
™, P 7, P 7w, Py ,m,P
f_ VAg = TAg f _TAg VAg
T w, P
— P (JuvAg ) > 0.
Since the inequality f > VA’;’P holds for all # € II°® and a specific P € PSF, we have that

f = sup,epsr infpepSR{VAT;P} = Vaimi - The reverse claim, ie., if f < Tae™" f, then
f < Vag ™" can be proved analogously. Consequently, if f = Tpg™™" f then f = Vg™™". O

5.2.2 The Agent is Unaware of the Configurator Presence

When the agent is unaware of the presence of the configurator, it cannot display a strategic
behavior but it is reasonable to assume that it simply acts as a best responder. Thus, while
the configurator acts in order to maximize its utility, the agent perceives the environment
configuration as a form of non-stationarity and acts consequently. This kind of sequential
interaction can be effectively modeled as a leader-follower game and the corresponding
solution concept is the Stakelberg equilibrium (Conitzer and Sandholm) 2006).

Definition 5.11 (Stackelberg Equilibrium in Conf-MDPs). Let C be a Conf-MDP and let
Bag : PSR, TISR be a choice function in the set of agent best responses, i.e., for every
transition model P € PSR, every state s € S and every policy m € TISR:

VﬂAg(P)»P(S) > V”7P<s>. 5.11)
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5.2. Non-Cooperative Setting

A policy 7* € TIS® and a transition model P* € PS® are a Bag-Stackelberg equilibrium
for the Conf-MDP C if for every state s € S, policy © € TI°R, and transition model in
P € PSR it holds that T* = Bag(P*) and for every s € S:

¥ P * ,P *
VAg ( ) = VAg (S),
Bag(P* Bag (P
VCoAnf( P ( ) VCoAnf( P (8)’
Furthermore, we define the Sag-Stackelberg state value function for every state s € S
as:
ngf(*) Y= swp {VgnAff(P)’P} :
PePSR
Clearly, different choices of the best response function az lead to different notions of
Stackelberg equilibrium (Breton et al.l [1988)). Specifically, if ties are broken in favor of
the configurator, we refer to strong Stackelberg equilibrium, whereas if ties are broken in

favor of the agent, we refer to weak Stackelberg equilibrium. If (7*, P*) e ISR x PSR
is a Sag-Stackelberg Equilibrium then it must be that 7* = [Sag(P) is a best response for

. * pk . *
the agent, i.e., V,;; P” must be a fixed point of the agent best response operator T:g’P
Concerning the configurator choice, we can define the ag-Stackelberg Bellman operator

Tg’:ﬁg*) ¥ B(S) — B(S) defined for every s € S as:

(Tcﬁgﬁf(*) *r ) sup {J- J- (Bag(P))(da|s)P(ds'|s, a) (Tconf(s,a,s’) + vf(s’))}.

PGPSR

This operator preserves most of the properties of the traditional Bellman operators,
especially the contraction in Lq,-norm.

Proposition 5.7. Let Tcﬁ;ff(*)* : B(S) — HB(S) be the operator defined above. Then,
if v € [0,1) it is a y-contraction in the Lo,-norm, i.e., for every bounded measurable
Sunctions f, g € B(S) it holds that:

B B
HTC:;#* 1 -Tou | <A1f = gl
Furthermore, VﬁAg(P PP s ts unique fixed point, i.e., it fulfills the following Bellman
Conf

optimality equation:
Bag ()% Bhg ()% 1 7Bag ()
Veont = Teont " Veons

Proof. Let f,g € B(S) and s € S, we have:
B ) B ,
(T2 1) )= (7257%) o

sup {f J (Bag(P))(da|s)P(ds’|s, a) (rcont(s, a, s) +’Yf(5/))}

PePSR
~ sup { j f (Brs(P))(dals) P(ds'|s, a) (rcc,nf(s,a,s/)ﬂg(s/))}‘
PePSR
< sup {‘f J (Bag(P))(dals)P(ds'|s, a) (Tconf(S,CL,S/)+’Yf(SI))
PePSR
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_ L L(ﬂAg(P))(da|s)P(ds’|s,a) (reent (50, 8') + 79(s) ’}
< sup { LL(ﬂAg(P))(dals)P(ds’ls,a)!f(s’)fg(S')\}

PePSR
<ysup {[£(s) —g(s")]}
v ”f - gHoo .

By applying the supremum to the left hand side we get the result. By recalling that the conditions for
the application of the Banach’s fixed point theorem (Banach| |1922) are fulfilled, we conclude that

Tgff(*)’* admits a unique fixed point. We now prove that Vciﬁgf(*)’* is a fixed point of Tgﬁ]gf(*)’*.
To this purpose, we show that for any bounded measurable function f € &(S) if f = Tffngf(*)’* f
then f = Vciﬁi(*)’*. By combining this with the existence of the fixed point we get to the result.
First, we prove that if f > T2 £ then f > V2%™)*  guppose that f > TS5 ¢, this
means that for all P € PS® we have f > Tfjjf’))”) f. Consequently:
Bag(P), P Bag(P), P Bag(P), P Bag(P), P
f - VCOIZ% = Tc:rff f - TCoAngf VCo/;gf
P (5 ) 5,
since f = VI holds for all P e PSE, we have that f > suppepse{Vers"y =
Vci’;gf(*)’*. The reverse claim, i.e., if f < Tgﬁ‘gf(*)’*f, then f < Vciﬁ(*%* can be proved anal-
ogously. Consequently, if f = Tgfrff(*)’* fthen f = Vci’:ﬁ(*>’*. O

It is important to point out that, unfortunately, these properties are far from leading to
practical algorithms, as the operator requires the explicit knowledge of the best response
choice function. Although we believe that this non-cooperative view of Conf-MDPs is
quite appealing and of interest for the real-world applications, our current understating
of the problem is rather shallow. We still miss a study of the existence of the equilibria
presented above for the Conf-MDPs as well as suitable algorithms to compute them.

Remark 5.2 (Connection with Markov Games). The reader might be tempted to reduce
the non-cooperative Conf-MDP setting to a Markov game (Busoniu et al.| 2008) having the
agent and the configurator as players. We believe that this reduction is not straightforward.
Indeed, while the agent takes its action based on the current state only (it plays a policy),
the configurator bases its next-state decision on the current state but also the current
action (it plays a transition model). This distinction is independent of the fact that the
configurator observes the current agent’s action. If it does, then we can map this setting to
a sequential game in which the agent plays first and the configurator plays later, observing
the agent’s action. Instead, if the configurator does not observe the action the setting is
that of a simultaneous game, but its strategy set is composed of transition models that
provide a probability distribution depending on the action too, leading to a form of partial
information.
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CHAPTER

Learning in Finite Cooperative
Configurable Markov Decision Processes

6.1 Introduction

In this chapter, we study the problem of solving a Conf-MDP in the cooperative setting
when the state and action spaces are finite. Solving a Conf-MDP, as we introduced in
Chapter 5] according to the optimality condition of Definition[5.6] means finding a policy
and a transition model so that they jointly maximize the expected return:

(r*, P*) e  argmax {J“’P} .
(m,P)elISR x PSR

This general optimality condition, however, allows full control on both the policy and
the transition model. However, typically, the search must be constrained because of the
specific requirements that need to be guaranteed in the application of interest. This is
particularly true for the transition model. Indeed, in several cases of interest, the transition
model accounts for portions of the environment that are or immutable (e.g., physical laws).
Thus, the computation of the optimal policy-model pair is typically carried out in a suitably
tailored subspace IT x P < IISE x PSR,

This problem can be addressed using numerous tools (e.g., gradient methods, entropy
methods). In this chapter, we propose a method to jointly and adaptively optimize the
policy and the transition model, named Safe Policy-Model Iteration (SPMI, |[Metelli et al.}
2018al). The algorithm adopts a safe learning approach (Garcia and Fernandez, 2015
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based on the maximization of a lower bound on the guaranteed performance improvement,
yielding a sequence of policy-transition model pairs with monotonically increasing perfor-
mance. The safe learning perspective makes our approach suitable for critical applications
where performance degradation during learning is not allowed (e.g., industrial scenarios
where extensive exploration of the policy space might damage the machinery). In the
standard RL framework, the usage of a lower bound to guide the choice of the policy has
been first introduced by Conservative Policy Iteration (CPI, [Kakade and Langford, |[2002),
improved by Safe Policy Iteration (SPI, |Pirotta et al., [2013b) and subsequently exploited
in (Ghavamzadeh et al.,2016;/Abbasi- Yadkori et al., | 2016} [Papini et al.| 2017} 2020 |Vieil-
lard et al.|, [2020). These methods revealed their potential thanks to the preference towards
small policy updates, preventing from moving in a single step too far away from the current
policy and avoiding premature convergence to suboptimal policies. A similar rationale is
at the basis of Relative Entropy Policy Search (REPS, Peters et al.| [2010), and, more re-
cently, Trust Region Policy Optimization (TRPO, [Schulman et al., 2015}, Proximal Policy
Optimization (PPO, [Schulman et al.,[2017)), and Policy Optimization via Importance Sam-
pling (POIS, Metelli et al., 2018b). In order to introduce our framework and highlight
its benefits, we limit our analysis to the scenario in which the model space (and the pol-
icy space) is known. However, when the model space is unknown, we could resort to a
sample-based version of SPMI, which could be derived by adapting those of SPI (Pirotta
et al.,2013b).

Chapter Outline The chapter is organized as follows. We start in Section[6.2} in which
we introduce the notion of relative advantage function that will be employed in the the-
oretical results and in the derivation of the algorithm. In Section [6.3] we first derive a
bound on the divergence between the «y-discounted stationary distributions induced by dif-
ferent policy-transition model pairs. Then, we employ this result to obtain a performance
improvement bound. Based on these theoretical results, we outline the main features of
SPMI (Section[6.4) in comparison with the existing approaches, along with some theoreti-
cal results (Section[6.5). Then, we present the experimental evaluation (Section[6.6)) in two
explicative domains, simple abstractions of the motivational applications of Conf-MDPs,
with the purpose of showing how configuring the transition model can be beneficial for the
final policy performance. Finally, we present in Section [6.7]two examples of Conf-MDPs
displaying some interesting behaviors when running SPMI.

6.2 Relative Advantage Functions

In this section, we introduce the notion of relative advantage function that will be exten-
sively employed in the derivation of the performance improvement bounds. We already
presented in Section 4] the notion of advantage function. Specifically, the policy, model,
and coupled advantage functions, respectively, are defined for every (s, a,s’) e S x Ax S
as:

A™F (s a) = Q™F(s,a) — V™ (s),

A™F(s,a,8") = U™F (s,a,d") — Q™F(s),

AP (s a,8") = U™ (s,a,a’) — VP (s).
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These functions quantify the one-step gain in performance attained in state s € S by
either playing action a € A, for the policy advantage, selecting the next state s’ € S
given that action a € A was played, for the model advantage, or both for the coupled
advantage, compared to playing policy 7 and employing transition model P. In order to
evaluate the one-step improvement in performance attained by a new policy 7’ or model
P’ when the current policy is 7 and the current model is P, we introduce the (uncoupled)
relative advantage functions (Kakade and Langford, 2002) defined for every state-action
pair (s,a) € S x A as:

AT R (s) = f = (dals) A" (s, ),
A

A (sv0) = | P )s,0) A7 (5,08,
' S
and the corresponding expected values under the y-discounted distributions:
' P , ', P
Az Pouo = f P(dS)ATr,P (s)

A:iuo J f P(ds da)A (s a).

To capture the combined effect of selecting the action with a new policy 7’ and the
next state with the new transition model P’, we introduce the coupled relative advantage
function defined for every state s € S as:

A::’;/ J f '(dal|s)P'(ds'|s,a) A" (s,a, s'),

Thus, A7r P represents the one-step improvement attained by the new policy-transition

model pair (7', P’) € II® x PSR over the current one (7 P) e II3R x PSR ie., the local
gain in performance yielded by selecting an action with 7’ and the next state with P’. The
corresponding expectation under the y-discounted distribution is given by:

/7P/ T, /7P/
KTH = [ a9aTd o)

To lighten the notation, we remove the subscript of the initial state distribution Lo when-

ever clear from the context. Thus, we simply write A” If ,AT Ilj ,and A” ' The follow-
ing result relates the coupled relative advantage function with the corresponding (uncou-
pled) relative advantage functions.

Lemma 6.1. Let A7r P be the coupled relative advantage function, ATr p» and ATp b

be the (uncoupled) pollcy and model relative advantage functions respecnvely Then for
every state s € S it holds that:

AT (@) = AT )+ [ (alAT (5.0
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Proof. Let s € S, let us consider the following derivation:
A:j’lf, f f (da|s)P'(ds'|s,a) U™ (s,a,s") — V™F(s)
J J (da|s)P'(ds'|s,a)U™ (s,a,s") — V™ (s)
J J (da|s)P(ds'|s,a) U™ (s,a,s")
= f J 7' (da|s)P(ds'|s,a)U™ " (s,a,s") — V"F (s)
J J (dals) (P'(ds’|s,a) — P(ds'|s,a)) U™"(s,a,s")
= L‘ 7' (da|s)Q™ (s,a)da — V™ (s) (P.1)
+ JA 7' (dals) js (P'(ds'|s,a) — P(ds'[s,a)) U™"(s,a,s")
—ATE )+ [ 7l Az (s a)da, ®2)

A

where line (PI) is obtained by recalling that Q™" (s,a) = {5 P(ds'[s,a)U™" (s, a, '), the first
addendum of line (P.2)) follows from observing that:

ATE() = | el 4™ (s,) = [ 7 (dals) (@77 (.0) VTP (9)).

and similarly the second addendum of line comes from the identity:

™

A’r:g/(s,a) = J P'(ds'|s,a)A™ " (s,a, ")
s

= -L P'(ds'|s,a) (U"’P(s,a, )= Q™ (s, a)) .

6.3 Performance Improvement Bound

The goal of this section is to provide a lower bound to the performance improvement
J™ P — J™P obtained by moving from a policy-transition model pair (7, P) € IISR x PSR
to another pair (7/, P’) € IISR x PSR, Since we aim at providing a safe learning algorithm,
we look for a lower bound on the performance improvement that can be evaluated using
samples collected with the current pair (7, P). We follow a path similar to that of (Kakade
and Langford, [2002)) and (Pirotta et al., 2013a)). First, we derive an upper bound on the di-
vergence between the y-discounted stationary distributions induced by (7, P) and (', P’)
(Section[6.3.1). Then, we employ this result to lower bound the performance improvement
(Section[6.3.2)). Finally, we compare the obtained result with the ones (mainly involving
the policy only) already existing in the literature.

6.3.1 Bound on the y-discounted Stationary Distribution

We start providing a bound for the total variation distance of y-discounted stationary dis-
tributions under different policy-transition model pairs.
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Proposition 6.2. Let (m, P), (7', P') € TISR x PSR be two policy-transition model pairs
for a Conf-MDP C, the TV-norm of the difference between the ~y-discounted state distribu-
tions can be upper bounded, for any v € [0, 1) as:

|

o -

! / /'Y /
R I i

TV, u3 P

where:

7, P /7’ I
— | uzP(as) [P () = PCLs)
e = @ [P = P

Proof. Exploiting the recursive equation of the -discounted state distribution (Section[23) we can
write the distributions difference as follows in operator form:

=, P’ w, P x' P’ w’ P pm
phy =yt = (L= po + (P = (1= ~)po —yuy " P

=y (P =3 TP £ 3 (P
=y (W =) (P () - P

—1

=P ((P/)’*' - P) (Ids - v(P/)”') 7

where we exploited the recursive definition of yz/’P g 75 ' and recalled that v < 1. We proceed
by applying the ||-[y:

b =] =t (e =) (s =)
ﬁw«m w>tw
-1 U ((p')”' ~ P7) (ds'ls)
< ;1_ P (ds) f (P = P as']s)
-1 Su? @) | (P =P7) (19)] (P4)
Sh ] (UOAEE W

where line (P3) derives Holder’s inequality and by observing that:

o] gl

H (Ids (P )_

()|

Line (P4) follows from the definition of total variation norm. O

)

= 1 being a probability measure and via an application of Holder’s inequality.

g 1
< e,

since

This proposition provides a way to upper bound the difference of the y-discounted
state distributions in terms of the state kernel dissimilarity. The state transition kernel
couples the effects of the policy and the transition model, but it is convenient to keep their
contribution separated, getting the following looser bound.
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Corollary 6.3. Let (1, P), (7', P') € TISR x PSR be two policy-transition model pairs for
a Conf-MDP C, the TV-norm of the difference between the ~y-discounted state stationary
distributions can be upper bounded, for any v € [0,1) as:

L

7' P’ H
~
v 1-—

; ™, P
Hey My

||7T B 7THTV YLt + HP/ PHTV,,uW’P )
z

where:
7 = g = |57 (@5) [ (1) = 7o)y

1P~ Pl = [, [ #5000 1P o) = Pl

Proof. We prove this corollary by bounding the expression H (P’)”l — P7 - Letus start with

V1l
the decomposition for every s, s’ € S:

(P (ds']s) = P(ds]s) = (P')" (ds'[s) = P"(ds'|s) + (P))" (ds'])
= f P'(ds'|s,a) (7'(dals) — m(dals))
A
+ J (P'(ds'[s,a) — P(ds|s,a)) m(dals).
A

We apply the total variation norm at the previous expression to get:

7y = ris)] < | [ P Clsa) (v (aals) ~ n(aals)

TV

Hf (s,a) = P(|s,a)) m(dals)

vV

_ 5 ) JA P/(ds']s, a) (' (dals) fﬁ(da|s))‘

s
2 s

1 / / /
<35 L |7’ (dals) — m(dals)| L P'(ds|s, a)

J (P'(ds'|s,a) — P(ds|s,a)) m(dals)
A

+ %L 7r(da|s)f |P/(ds']s,a) — P(ds']s, a)
= [ C1s) = )y + | 7(dals) [P'Clsa) = Pl a)y

We now take the expectation w.r.t. ;17 ' and exploit the monotonicity property of the expectation:

e = | @ [l —P”<-|8>HTV
sHy S
< f M;’P(ds) Hﬂ'/(‘ —( HTV
S

+Lu§’P(ds)J (dals) |P'(]s,a) — P(s,a)|,

o -
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- f 1P (A8) | (1) = 7 (19) |y

J J P(ds, da) )P (-|s,a) — (-|s,a)HTV (P5)
- H?‘r - TrHTV it + HP PHTV P
where line (P.3) follows by recalling that 17" (ds)w(dals) = u3'* (ds, da). O

It is worth noting that when P = P’ the bound resembles Corollary 3.2 of (Pirotta
et al.,[2013b), but it is tighter as:

7 =l = [ 457 8) 1) = )y
S ilelg {Hﬂ/“s) - 7T('ls)HTv} = ||7r/ - 7THTV,oc ‘

In particular, the bound of (Pirotta et al.,|2013b) might yield a large bound value in case
there exist states in which the policies are very dissimilar even if those states are rarely
visited according to u;“P . In the context of policy learning, a lower bound employing
the same dissimilarity index ||7" — F“TV’H:‘P in the penalization term has been previously
proposed in (Achiam et al.|[2017). Looser bounds, but more convenient from the optimiza-
tion standpoint, involving KL-divergence (Pirotta et al., 2013a; Schulman et al., 2015) or
other distributional divergences, like Rényi divergences (Metelli et al., |2018b)), are often
employed in the literature.

6.3.2 Bound on the Performance Improvement

In this section, we exploit the previous results to obtain a lower bound on the performance
improvement determined by chaining the policy and the transition model. We have all
the elements to express the performance improvement in terms of the relative advantage
functions and the y-discounted distributions.

Theorem 6.4. Let C be a Conf-MDP. The performance improvement of policy-transition
model pair (', P') € TISR x PSR oyer (r, P) € ISR x PSR is given by:

! 1 Y Y
' P T, P _ 7', P P
JTA gt = i JS/,L,Y (ds)A7 p (s).

Proof. Let us start from the definition of J P

(1—7) JF J J f 7' (da|s)P'(ds'|s, a)r(s, a, s")

JJJ m'(dals)P (d5’|57“)7’(57“75')iLMQ"P'(ds)V”’P(s) (P6)
J J J 7' (da|s)P'(ds'|s, a)r(s, a, s') (P7)
+

| ((1 o)+ [ [ 4 @9 (als) P s,) ) VI S)

)i
= | VT (s)
S
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_ L P (ds) < L ' (dals) L P'(ds']s,a) (r(s,a.8) +VTP()) - V”’P(s))
+ Js po(ds VP (s') =
- [ @ an @+ = (®3)

where we have exploited the recursive formulation of MQI‘P ' (Definition to rewrite line
into line (P.7) and line follows by observing that § pio(ds’)V™" (s") = J™" and using the
definition U™" (s, a, s') = r(s,a,s') + YV (). O

This theorem is the natural extension of the result proposed by Kakade and Langford
(2002). It essentially highlights that to compute the performance improvement we need

to average the coupled relative advantage function A:_’; by means of the ~y-discounted

stationary distribution ug/’P " induced by the candidate policy-model pair (7/, P').

Coupled Bound Unfortunately, the expression of Theorem [6.4] cannot be directly ex-
ploited in an algorithm as the dependence of pgl’P " on the candidate policy-transition
model pair (7', P’) is nonlinear and difficult to treat. We aim to obtain, from this result, a
lower bound on J™ F" — J™F that can be efficiently computed using the information on
the current pair (7, P). Before moving to the main result, we introduce an auxiliary result
due to (Haviv and Van der Heyden, |1984) that we report in our notation without proof.

Lemma 6.5 (Corollary 2.4 of [Haviv and Van der Heyden| (1984)). Let u,v € 2 (X) be
two probability measures and let f € B(X) be a measurable function. Then, it holds that:

| tutae) = vtae) 1) < I = vl o).

where sp(f) = supe v {f ()} — infoex {f()}.
We are now ready to prove the main result.

Theorem 6.6 (Coupled Bound). Let C be a Conf-MDP. The performance improvement of
policy-transition model pair (', P') € ISR x PSR over (7, P) € TI® x PSR can be
lower bounded as:

ey 1 /' p’ Y ! p’ '
I g s AT T e (any ) )T P
[ A (I—7) ’ TV,
performance L 1L 1
improvement advantage dissimilarity penalization

Proof. Exploiting the bounds on the y-discounted state distributions difference (Proposition[6.2) we
can easily attain the performance improvement bound:

1
1—vJs

1 T, P ' P’
— | 7 (ds)AL % (s)
177 s vy ( ) ,P(

1 =, P’ 7, P =, P’
e 5<“” (ds) — 7 (ds))AW’P (s) (P9)

g p3 " (ds) AT B ()
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>A:7FI’D 1 ‘J ( ﬂ’P’(d) WP(d) A‘/r’P’() (PIO)

P L ul s) — = S ) (s )

L=y 1-9[Js\"7 K o
AWl}:I,DI 1 1 pt P / p’

>mP 2 | AT ) P11
1—7v 1—x H Hy HTV Sp( P ( )
Aﬂlgﬂ vy ! Y

S —— 170 —P”‘ (A” ’P), P12
11—y (1—7)2 H( ) v,u P PAp 12

where line (PI0) follows from line (P9) by observing that b > —|b| for any b € R, line (PII)
follows from by applying Lemma[6.5]and line (P12} is obtained by using Corollary[6.2] O

The bound is composed of two terms, like in (Kakade and Langford, 2002; Pirotta
et al.l 2013b): the first term, advantage, represents how much gain in performance can be
locally obtained by moving from (7, P) to (7', P’), whereas the second term, dissimilarity
penalization, discourages updates towards policy-model pairs that are too far away.

Decoupled Bound As we mentioned in Chapter [4] in several cases of interest, the pos-
sibility to act on the transition model is constrained, while the policy being under the
complete control of the agent. In other cases, although less frequent, the control on the
policy might be limited while the transition model can be changed arbitrarily. In both
scenarios, however, it seems quite impractical to account for these limitations when the
learning process is carried out on the state transition kernel P™ directly. This makes the
coupled bound unsuitable in practice as it does not separate the contribution of the policy
and that of the model. It is worth noting that the following derivations are slightly dif-
ferent compared to the ones presented in the original paper (Metelli et al., [2018a)). This
is because here we consider a reward function depending on the next state too r(s, a, s’)
while in (Metelli et al.,[2018a) only state-action rewards 7 (s, a) were considered. We now
present the uncoupled bound, whose complete derivation can be found in Appendix [A.T]

Theorem 6.7 (Decoupled Bound). Let C be a Conf-MDP. The performance improvement
of policy-transition model pair (7', P') € TIS® x PSR over (7, P) € ISR x PSR can be
lower bounded as:

! pl 1 / 4 2
S e B P = (a7 +a77) o
performance L 1
improvement advantage
|1 = Pl (7 = Tl 1P = Pl ) s (07 (5,009}

+y " = 7r||w,oo (Hw’ — ’R—HTV,M,’;’P +|P - PHw,@?) sup {sp(Q™"(s,))} ] )

L 1
dissimilarity penalization

Proof. We start from the coupled bound and we manage the three terms separately:

1 pt

! pr AT ! ! pr
JTI' ,P _Jﬂ',P > LP_% (Pl) _P7r . sp A:y,}f .
TR () T
| L Hy j_

@) ) (iii)
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(i) is bounded using Lemma [A]] (ii) is bounded using Lemma [6.3] and (iii) using Lemma
Putting all together we have:

', P 7, P’

JTA‘,,P/ 7 J‘rr,P > Aﬂ',P +A7T,P

=

1—~
2 x
-1 Hﬂ'/ _ ﬂ'HTv,u;”P ”P’ — PHTV’SO seil,lapeA {sp(U P(s,a, )}
i
T 1-n)2 <H7T, - 7THTV,;LZ;*P + HP/ - PHTV,;L;”P>

x 2 ( 7 =l 500 {0 (@77 (5,)) |

/ 7, P X
+ [P —PHW,@OSE;?;;A{SP(U (52, >>})'

By rearranging the terms we get the result. O

Comparison with Existing Bounds We compare the bound of Theorem [6.7 with Theo-
rem 3.3 of (Metelli et al.,[2018a). In (Metelli et al., [2018a) only state-action reward func-
tions 7 (s, a) were considered. We claim that our bound reduces to that of (Metelli et al.|
2018a)) in such a case. Indeed, when the reward function is independent from the next
state, we have sp(U™" (s, a,-)) = ysp(V™"), by observing that sp(V™") < sp(Q™")
and sup,.g {sp(Q“*P) (s, )} < sp(Q”’P), we reduce exactly to the bound of Theorem
3.3 of (Metell1 et al.,[2018a):

/1 pt 1 ’ 7 2’)/
Jﬂ' 7P _ JTI',P 2 (Aﬂ' ,P + Aﬂ',P) _
L—ny Tl 2ol (1 )2

(1P = Pl (17 = oy + 917 = Pl z0)

+ "~ 7THTV,oo (Hﬂ'/ - 7THTV,MI,"P + [P = P”TV,MZ,“P> )SP(QWVP)'

It is also worthwhile to analyze the form of the bound when either P’ = P or ’ = m, i.e.,
when we change alternatively either the policy or the transition model but not both. The
following corollary provides the expression of the decoupled bound.

Corollary 6.8. Let C be a Conf-MDP and let (7', P'), (x, P) € ISR x PSR two policy-
transition models pairs. The performance improvement of policy ' over =, under transi-
tion model P, can be lower bounded as:

‘P P 1 !
Jﬂ', _Jﬂ'v 27

2y P
T 1= |7 — 7THTV,ao |~ — 7THTV,[}.$’P igg {sp(@™"(s.))}-

Furthermore, the performance improvement of transition model P’ over P, under policy
T, can be lower bounded as:
Jfr,P’ JoP > 1 AW’P,

- ~1_ v P
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2 T,
- (1— HP/ PHTVOQ HP/ P”TV uit Sup {Sp(U P(s a, ))}
seS,ace A

It is worth comparing the first bound of Corollary [6.8] with the bound of Corollary 3.6
of (Pirotta et al.,|2013b). We observe that our bound is tighter for two reasons. First, it em-
ploys as policy dissimilarity the product |7" — 7|3y o, |7 — 7THTV,HZ,"P < 7' — 7TH$V7OC
used in (Pirotta et al.| 2013b). Second, the term involving the Q-function is tighter since

sup,es {sp(Q™" (s:-)) } <sp(Q™7).

6.4 Safe Policy Model Iteration

To deal with the learning problem in the Conf-MDP framework we could, in principle,
learn the optimal policy by using a classical RL algorithm and adapt it to learn the opti-
mal model, sequentially or in parallel. Alternatively, we could resort to general-purpose
global optimization tools, like CEM (Rubinstein, [1999) or genetic algorithms (Holland
and Goldberg, [1989), using as objective function the performance of the policy learned
by a standard RL algorithm. Nonetheless, they may not correspond to the preferable, nor
the safest, choices in this context as there exists an inherent connection between policy
and model we could not overlook during the learning process. Indeed, a policy learned
by interacting with a sub-optimal model could result in poor performance paired with a
different, maybe optimal, model. At the same time, a policy far from the optimum could
mislead the search of the optimal model. The goal of this section is to present an approach,
Safe Policy-Model Iteration (SPMI), inspired to (Pirotta et al., 2013b)), capable of learning
the policy and the model simultaneously, possibly taking advantage of the inter-connection
mentioned above.

Following the approach proposed in (Pirotta et al.l 2013b)), we define the policy and
model improvement update rules:

' =am+ (1-a)m,

= BP +(1-pB)P,
where «, 3 € [0,1], 7 € IIS® and P € PSR are the target policy and the target transition
model respectively. Extending the rationale of (Pirotta et al.l [2013b) to our context, we
aim to determine the values of « and 5 which jointly maximize the decoupled bound
(Theorem [6.7). In the following, for the sake of clarity, we will abbreviate the decoupled

bound B(7’, P’) with B(a, ). The following result states a notable condition for the
optimization of the lower bound.

Theorem 6.9. For any 7 € IIS® and P € PSR, the decoupled bound is optimized for:

(o*, 5%) € arg max{B(a, §)},

(e, B)eV
where B is the bound in Theorem[6.7)and V = {(a§,0), (of, 1), (0, 5F), (1, BF)} and:
(L-7ATE

4y supges {sp(Q™F (s, )} |7 — 7T”Tv,oo T — 7THTV7M1{’=P

ap =

)

99



Chapter 6. Learning in Finite Cooperative Configurable Markov Decision
Processes

Algorithm 6.1: Safe Policy Model Iteration (SPMI).
Input: Conf-MDP C, number of iterations 7"
Output: approximately optimal policy-transition model pair (7I'(T), P(T))

1 Initialize o, Py arbitrarily

2 foralli =0,1,...,7 —1do

3 7@ = PolicyChooser(m®)

4 PV = ModelChooser(P™)

5 V<i) = {(az)k,i? 0)7 (O‘ik,w 1)’ (07 53,1% (17 /8ik,z)}

6 of, B = argmax, g v {B(a, B)}

7 70 = o7 4 (1 — af)n®

s | POD = gxP 4 (1 - gF)p®

9 return (77, P(T))

”F - PHTV,,LZ}P SUPsesS,acA {SP(UTr P (s, a, >} HP PHTV 0

of =af — —— - ,
P 2T = Ay 2ysupyes {sp(Q™F (s, N}HT = Ty o0
. (1- V)Aijﬁ

Bo =

4y SUPgses aeA {Sp(UmP(S’ a,- } HP - PHTV o0 Hﬁ - P”TV i F 7

17 = Tlheyupr supees {5p(Q7 (s, )waﬂhv
27 HP - PHTV,HQ’P 2Sups€S,aeA {Sp(U‘“— P(s7 a,: } ||P - PHTV,OO

Bt =55 -

9

to be clipped in the interval [0, 1].

The proof of the theorem can be found in Appendix The theorem shows that the
optimal (v, 3) pair lies on the boundary of [0, 1] x [0, 1], i.e., either one between policy
and model is moved and the other is kept unchanged or one is moved and the other is set
to the target.

Algorithm [6.T] reports the pseudocode of SPMI. The procedures PolicyChooser and
ModelChooser are designated for selecting the target policy and model (see Section[6.4.4).
In the following subsections, we briefly discuss two simplifications of the SPMI algorithm
in which we either keep the transition model fixed and update the policy, Safe Policy
Iteration (SPI, Section [6.4.T) or we keep the policy fixed and update the transition model,
Safe Model Iteration (SMLI, Section[6.4.2).

6.4.1 Safe Policy Iteration

Safe Policy Iteration (SPI) is essentially the Unique-parameter SPI of (Pirotta et al.,[2013b),
with the only difference that we employ the bound of Corollary [6.8]that is tighter. The ul-
timate goal consists in finding an optimal policy under the fixed model P € PSR, ie.,
m* € arg max sk {J P } The policy improvement rule is given by:

™ =ar+ (1 - a)m,

where o € [0,1] and T e ISR is the target policy chosen by a suitable Policy Chooser
function. The following result provides the optimal value of the coefficient a and the
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Algorithm 6.2: Safe Policy Iteration (SPI).
Input: Conf-MDP C, number of iterations 7"
Output: approximately optimal policy ™

1 Initialize 7o arbitrarily

2 foralli =0,1,...,7 —1do

3 L 7@ = PolicyChooser(n™®)

4 D — afﬁ(i) + (1 - Oé;-k)ﬂ'(i)

5 return (7

Algorithm 6.3: Safe Model Iteration (SMI).

Input: Conf-MDP C, number of iterations 7"

Output: approximately optimal transition model P
1 Initialize Py arbitrarily
2 foralli =0,1,...,7 —1do

3 PY = ModelChooser(P™)
pl+1) _ ngﬁ(i) + (1 _ ﬂi*)P(i)

5 return P(7)

corresponding performance improvement, while the pseudocode of SPI is reported in Al-

gorithm [6.2]
Corollary 6.10. For any 7@ € IIS® the first bound of Comllary is optimized for:
% _ (1- ’Y)Ajjﬁ
550D (3D(Q (5 N 7 — Ty 7 = Wy

to be clipped in the interval [0,1]. In such a case, the performance improvement can be
lower bounded as:

(+27)

JTr',P/ o JTr,P > .
8y SUpges {sp(Q™F (s, )} |7 — 7THTV,O@ I — ﬂ'HTV,#;”P

Proof. The proof is obtained from Theorem by simply setting 5 = 0 and substituting the
optimal value o™ in the performance improvement bound. O

6.4.2 Safe Model Iteration

Analogously to SPI, we can devise a corresponding version for the transition model, named
Safe Model Iteration (SMI). Here, the goal consists in finding an optimal transition model,
under the fixed policy 7 € TISR, i.e., P* € arg max pcpsr {J“’P}. The update rule is still
obtained by means of a convex combination:
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where 3 € [0, 1] and P € PSR is the target model. The optimal value of the coefficient 3
as well as the performance improvement are provided in the following result, whereas the
pseudocode of SMI is reported in Algorithm[6.3]

Corollary 6.11. For any P € PSR the second bound of Corollary is optimized for:

. (1—)azp
4y SUDges qen {sp(U™"(s,a,"))} ”P - PHTV,oo HP - PHTV,M{’P

)

to be clipped in the interval [0,1]. In such a case, the performance improvement can be
lower bounded as:

—\ 2
T, P
J7r',P' o Jﬂ',P > (AW,P)i — .
By SUPses,ac A {sp(U™"(s,a,-))} HP - PHTV,oo HP - PHTV#:;'P

Proof. The proof is analogous to that of Corollary [6.10] O

6.4.3 Policy and Model Spaces

The selection of the target policy and model is a rather crucial component of the algorithm
since the quality of the updates largely depends on it. To effectively adopt a target selection
strategy we need to be aware of the degrees of freedom on the policy and model spaces.
Focusing on the model space first, it is easy to discriminate two macro-classes.

Unconstrained In some cases, there are almost no constraints on the direction in which
to update the model. In these scenarios, we can naturally design the first scenario as an
unconstrained model space and choosing P = PSR the space of all Markovian stationary
transition models.

Parametric In other cases, only a limited model portion, typically a set of parameters in-
ducing transition probabilities, can be accessed. To represent this case, we limit the model
space to a parametric set Py = {P,, : w € {2 € R?}, as we have seen in Section A
particular choice, that turns out to be convenient for SPMI (especially in the analysis), is
the convex hull of a set of vertex (or extreme) models (e.g., a set of deterministic models)
Pyx = {Pl, - ,P]w}, with M € N>11

M M
PQ = CO(Pm) = {Pw = Zwipi, w; = O, Vi e {1,...,TL}, Zwi = 1}.
i=1 =1

It is worth noting that if we select as set of vertex models all the Markovian stationary
deterministic transition models, i.e., Py = PSP, we have that co(Pyx) = PSR,

It is noteworthy that we can symmetrically extend the dichotomy to the policy space,
although the need for limiting the agent on the direction of policy updates is less relevant
in our perspective.
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6.4.4 Target Choice

Up to now we have not specified the form of the PolicyChooser and ModelChooser func-
tions, in charge of outputting the target policy and the target model. To deal with uncon-
strained spaces, it is quite natural to adopt the target selection strategy presented in (Pirottal
et al.,2013b)), choosing the greedy model, defined for every state-action pair (s,a) € S x A
as:
P (s,a) € argmax{U™" (s,a,s")},
s'eS

that corresponds to the model that maximizes the relative advantage in each state-action
pair. Extending this rationale to the policy space, we obtain an algorithm in which, at each
step, the greedy policy and model w.r.t. the Q™% and U™ are selected as targets.

When we are not free to choose the greedy model, like in the parametric setting, be-
cause the greedy model might not belong to the space of representable transition models
Pq, we can resort to a relaxed notion of greedy model, as the one maximizing the expected
relative advantage function:

P € arg max {A;:g} .
PePSR
This greedy choice is based on local information and is not guaranteed to provide a policy-
transition model pair maximizing the bound. Nevertheless, testing all the policy-transition
model pairs is highly inefficient in the presence of large policy-transition model spaces.
To mitigate this effect, a reasonable compromise is to select, as a target, the model that
yields the maximum bound value between the greedy target and the previous target. This
procedure, named persistent choice, effectively avoids the oscillating behavior, common
with the greedy choice Wagner| (201 1).

6.5 Theoretical Analysis

In this section, we outline some relevant theoretical results related to SPMI. We start by
analyzing the scenario in which the model/policy space is parametric and limited to the
convex hull of a set of vertex models/policies, and then we provide some rationales for the
target choices adopted. In most of the section, we restrict our attention to the transition
model, as for the policy all results apply symmetrically. For this reason, we will remove the
dependence on the policy from the relevant quantities, whenever not generating confusion.

6.5.1 Convex Hull Model Space

We consider the setting in which the transition model space is limited to the convex hull
of a finite set of vertex models: P = co(Py ), where Py = { Py, ..., Pas}. For the sake
of brevity, we omit the dependency on 7 of all the quantities and we abbreviate J™F«
as J(w). We define an optimal transition model P, as any model that maximizes the
expected return, i.e., J(w*) > J(w) for all P,, € co(Pyx). We start by stating some
results on the expected relative advantage functions.
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Lemma 6.12. Let P,, € co(P,y) be a transition model, where Py, = {Py,..., Py}.
Then, for every state-action pair (s,a) € S x A it holds that:

M
Z wiAIP;L (s,a) =0.
i=1

Proof. Let us rewrite the expected relative advantage by decomposing P.,,:

Ag; (s,a) =J (Pi(ds|s,a) — Pu(ds'|s, a)) U (s,a,s")
s
= f ( (ds'|s, a) Z w; Pj(ds’|s, a)) Ur«(s,a,s).
s

Now we take the weighted sum of the previous equation:

sz B (s,a) ZMJ ( (ds'[s,a) — ij (ds'[s, a)) UPw(Sva’sl)
J <Z w; Pi(ds']s, a) Z i (ds'|s, a)) Upw(57a75/) =0,

where we just observed that 3 | w; P;(ds'|s, a) — Zﬁl w; Pj(ds’|s,a) = 0. O

As a consequence, we observe that also the expected relative advantage functions AP
sum up to zero when weighted by the coefficients w. An analogous statement holds when
the policy is defined as a convex combination of vertex policies. The following theorem
establishes an essential property of the optimal transition model.

Theorem 6.13. Let P,, € co(Pyy) be a transition model, where Py, = {Py,..., Py}.
Then, it holds that Ag‘“* < 0. Moreover, for all P,, € co ({P; € Pyy : wf > 0}), it holds

Pw p—
that A~ = 0.
Proof. We first prove that the expected relative advantage w.r.t. the vertex models is non-positive and
then we extend it to all the models. By contradiction, suppose there exists a vertex model P; € Py

having a positive expected relative advantage. Then, we can perform a step of model update with
SPMI starting from P,,x and getting the new model Pz with a performance improvement of at least

(Corollary [6.TT):
J(@') = J(w™)

(o)

8’7 SupseS aeA {sp(UPu* )} HP Pw* HTV ve) HP Pw* HTV,M: F

> 0,

which is impossible as P,,x is the optimal model. Let us consider a generic model P,,, its advantage
decomposes linearly in the vertex models:

M
Py, _ AP
APM* - Zw’AP % <0
y w
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Let us now consider the subset of vertex models having non-zero coefficient for the optimal model
{P; € Pux : w¥ > 0}. From Lemma6.12| we have:

M

P; Py
> wiAD, = > wiAL =0, (P.13)
i=1 i:w;k >0
Since A < 0 from the first part of the theorem, it must be that all A = 0. As an immediate

consequence all transition models in co ({P € Pux : wf > 0}) must have zero expected relative
advantage, due to the linear decomposition of the advantage. O

The theorem provides a necessary condition for a transition model to be optimal, i.e.,
all the expected relative advantages must be non-positive and, moreover, those of the vertex
transition models associated with non-zero coefficients must be zero. It is worth noting
that the expected relative advantage Ai:' represents only a local index of the performance
improvement, as it is defined by taking the expectation of the relative advantage Aﬁ:’ (s,a)
w.r.t. the current - ~. On the other hand, the actual performance improvement .J (W) —
J(w) is a global index, being obtained by averaging the relative advantage Aﬁ:' (s,a)
w.r.t. the new ,u,lyj " (Theorem [6.4). This is intimately related to the measure mismatch
claim provided in (Kakade, |2003) as the model expected relative advantage A P might
be null even if J(w¥) > J(w), making SPMI, just like CPI and SPI, stop mto locally
optimal models. Furthermore, it is simple to see that asking for a guaranteed performance
improvement may prevent from finding the global optimum, as this may require visiting
a lower performance region (see Section for an example). Nevertheless, we can

provide a bound for the performance gap between a locally optimal model and the global
optimal model.

Proposition 6.14. Let Pz € co(P,,) be a transition model, where Py, = {P1, ..., Py}.
If for all P; € P, it holds that the expected relative advantage function is non-positive,
ie., A,’}* < 0, then it holds that:

J(w*) — J(@) < ——  sup { max {A,ﬁ:(s,a)}}.

1— 7 ses,aea Lieft,... .M}

Proof. Using Theorem[6.4]and Lemma[6.1] we can write:

He*) = (@) = 7= [ e @s) [ wldal) AT s.0)
< J J pFe* (ds, da) sei},lfeA {Agg*(s,a)}
< GS;%;A{A o)

Now we observe that the relative advantage decomposes linearly in the target models:

Ap u* (s,a) ZW*AP (s,a) < ie{rlr,l.?‘.),(kﬂ {Ag;(s,a)},

i=1

from which the theorem follows. O
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From this result, we notice that a sufficient condition for a model to be optimal is that
AIP;;(S, a) = 0 for all state-action pairs. This is a stronger requirement than the maximiza-
tion of J= as it asks the model to be optimal in every state-action pair independently of
the initial state distribution Moﬂ such a model might not exist when considering a model
space P that does not include all the possible transition models (see Section for an
example).

6.5.2 P-Gradient Theorem

In this section, we elucidate the relationship between the relative advantage function and
the gradient of the expected return. Let us start by stating the expression of the gradient
of the expected return w.r.t. a parametric transition model. This is the equivalent of the
Policy Gradient Theorem (Sutton et al.,[1999a)) for the transition model.

Theorem 6.15 (P-Gradient Theorem). Let Po = {P, : w € Q € R} be a set of
parametric stochastic transition models differentiable in w € ). Then, the gradient of the
expected return J(w) w.r.t. w is given by:

1
va(W) = ﬁ JS J:4 M,IY)“’ (dS, da) JS VoPo (d8/|57 CL)UPW (5, a, 5’).

Proof. We just rephrase the proof of the Policy Gradient Theorem (Sutton et al.l |1999a). Let us
compute the gradient of the Q-function for any state-action pair (s,a) € S x A:

VuQ™ (s,a) = Vo f P (ds']s,a)U"™ (s, a,s")
s
= J (Vwa (ds'|s, a)U"™ (s,a,s") + Pu(ds'|s,a) VU™ (s, a, 5')) (P.14)
s

= J Ve Po(ds'|s,a) U™ (s,a, ")
s

+ J P.(ds'|s,a)Ve (r(s,a, s') + 'yf
s

A

m(dd|s) QT (s, a’)) (P.15)
= J Ve Po(ds'|s,a) U™ (s,a,s")
s

- ’Yf Pw(ds’laa)f 7(dd'[s")Vu Q™ (s',d), (P.16)
S A

where follows from (P.I4) by expressing the U-function with the corresponding Bellman
equation. After unfolding we get:

VuQ™ (s,a) = 71i J f /L(I;D(: a’)ﬁ(ds”,da”)f Ve Po(ds'|s”, ") U (s",d",5"),
VJsJa ’ s

where ,uf;( w " is the y-discounted state-action distribution when forcing the first state to be s and
s,a)?

the first action to be a. We obtain the gradient of the expected return by observing that J(w) =
§s § 4 no(ds)m(dals)Q" (s, a) and therefore:

Ve J (w) = ﬁ L L jio(ds)(da]s) Ve Q7 (s, )

IThis is the same difference between a policy that maximizes the value function V'™ in all states and a policy
that maximizes the expected return J™.
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f f dS” da// f v P ( |S//7 //)UP“, (S/,’a”,S/)’

by observing that § SA o ds)w(da|s)M6:1 - (ds”,da") = pP_(ds”,da") and we agreed to
omit the subscript p9. By remanding the integration variables we get the result. O

Let us now show the connection between V,,,J(w) and the expected relative advantage
functions. This result extends that of Kakade|(2003)) to the case of the transition model.

Proposition 6.16. Let P € PSR be the current transition model and P € PSR be the
target transition model. Let us consider the update rule:

with B € [0,1]. Then, the derivative of the expected return of P’ w.r.t. the (B coefficients
evaluated in P is given by:

oJ” 1

B lgeg 1777
Proof. Exploiting Theorem- 16.15|and the deﬁnmon of P’ we can write the expression of the gradient:

0" = J J ut ds da) —P (ds'|s a)UPl(s a,s’)
a/@ ¥ a,@ ) ) &y
= 7J f ul (d&da)f (P(ds'[s,a) — P(ds'|s, a)) UP/(S7 a,s).
—7JsJa S

The result immediately follows by observing that P’|g—o = P. O

The proposition provides an interesting interpretation of the expected relative advan-
tage function. Suppose that P,, is the current model and we have to choose which update
direction (target model) to follow. If we consider the target model as a convex combination
of a set of vertex models Py, ie., P = Zf\il 1, P;, the local performance improvement,

at the first order, is given by J© — J¥ ~ aé; 5B = 158 M niAL:. Given that
B will be determined later by maximizing the bound, the local performance improvement
is maximized by assigning one to the coefficient of the model yielding the maximal ad-
vantage. Therefore, the choice of the direction to follow, when considering the greedy
target choice, is based on local information only (gradient), while the step size [ is ob-
tained by maximizing the bound on the guaranteed performance improvement (safe), as

done in (Pirotta et al., 2013a)).

6.6 Experimental Evaluation

The goal of this section is to show the benefits of configuring the environment while the
policy learning proceeds. The experiments are conducted on two explicative domains:
the Student-Teacher domain (unconstrained model space) the Racetrack Simulator (para-
metric model space). We compare different target choices (greedy and persistent) and
different update strategies. Specifically, SPMI, that adaptively updates policy and model,
is compared with some alternative model learning approaches: SPMI-alt(ernated) in which
model and policy updates are forced to be alternated, SPMI-sup that uses a looser bound,
obtained from Theoremby replacing |- ”TV,,uZ,"P with [y o ﬂ SPI+SMI that optimizes

2When considering only policy updates, this is equivalent to the bound used in SPI (Pirotta et al., 2013b).
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Sequential: SPI+SMI, SMI+SPI

Alternated: SPMI-alt

Adaptive: SPMI, SPMI-sup, SPMI-greedy

] ] L
policy-transition model

Model update Policy update update

Figure 6.1: Graphical representation of the update sequence performed by the algorithms
compared in the experiments.

policy and model in sequence and SMI+SPI that does the opposite. A graphical represen-
tation of the behavior in terms of policy and model updates of the compared algorithms is
reported in Figure[6.1] For the implementation details and additional experiments, refer to
Appendix E of the original paper (Metelli et al., 2018a)).

6.6.1 Student-Teacher domain

The Student-Teacher domain is a simple model of concept learning, inspired to (Rafferty
et al.| 2011), involving two entities: the teacher and the student. We assume both entities
share the same goal, i.e., maximizing the knowledge the student acquires. The teach-
ing model, however, should be suited for the specific learning policy of the student. For
instance, not all students have the same skills and are able to capture the information pro-
vided by the teacher with the same speed and effectiveness. Thus, the teaching model
should be tailored in order to meet the student’s needs. Given the goal of maximizing
learning, a teaching model induces an optimal learning policy (within the space of the
policies that a certain student can play). Symmetrically, a learning policy determines an
optimal teaching model (within the space of models available to the teacher). The question
we want to answer in this experiment is: “can we dynamically adapt the teaching model
to the learning policy and the learning policy to the teaching model, so to maximize the
learning?”

Environment Description We formalize the teaching/learning process as an MDP in
which the student is the agent and the teacher is the environment. To fit our framework
to this context, we can think of the teacher as an online learning platform that can be
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configured by the student in order to improve the learning experience. As in|Rafferty et al.
(2011) we test the model on the “alphabet arithmetic” a concept-learning task in which
literals are mapped to numbers.

We consider n literals Ly, . . ., L, to which the student can assign the values {0, . .., m}.
The teacher, at each time step, provides an “example”, i.e., an equation where a number
(from 2 to p < n) of distinct literals sum to a numerical answer (e.g., A+C=3). The set of
all possible examples is given by:

5_{2@_1 :1g{1,...,n},2<zgp,ze{o,...,|f|m}}.

el

The student reacts to an example by performing an action, i.e., an assignment of literals
(e.g., A=1, C=3). The set of all assignments, i.e., actions, is given by:

A= {Ll :ll,LQ :lg,...,Ln :ln :lie{O,...,m},ie{l,...,n}},

thus |A| = (m + 1)™. In order to model the student policy space we assume that a student
can modify an arbitrary number of literals under the assumption that two consecutive as-
signments satisfy Y., |I; — l;| < k, i.e., the literal values can change by not more than
a total value of k. This models the learning limitations of the student, in particular how
hard is for the student to capture the teacher information. We assume that the teacher can
provide any example. The set of states is the Cartesian product between examples and as-
signments, i.e., S = £ x A. A problem setting is defined by the 4-tuple number of literals
- maximum literal value - maximum update allowed - maximum number of literals in the
statement (e.g., 2-1-1-2).

The goal of the student is to perform assignments that are consistent with the teacher’s
examples (within its limitations on the possible assignments). So, while the student is
learning the optimal policy it can configure the teacher to provide more suitable examples.
The reward is 1 when the assignment is consistent, 0, when it is not. Notice that we do not
have a goal state, differently from (Rafferty et al.,[2011). We assume that, in the beginning,
both policy and model are uniform distribution on the allowed actions/states. Figure [6.2]
reports a portion of the MDP corresponding to the 2-1-1-2 problem.

Experiments We start considering the illustrative example in which there are two binary
literals, and the student can change only one literal at a time (2-1-1-2). This example aims
to illustrate the benefits of SPMI over other update strategies and target choices.

In Figure [6.3] we show the behavior of the different update strategies starting from
a uniform initialization. We can see that both SPMI and SPMI-sup perform the policy
updates and the model updates in sequence. This is a consequence of the fact that, by
looking only at the local advantage function, it is more convenient for the student to learn
an almost optimal policy with no intervention on the teacher and then refining the teacher
model to gain further reward. The joint and adaptive strategy of SPMI outperforms both
SPMI-sup and SPMI-alt. The alternated policy-transition model update (SPMI-alt) is not
convenient since, with an initial poor-performing policy, updating the model does not yield
a significant performance improvement. It is worth noting that all the methods converge in
a finite number of steps and the learning rates o and [ exhibit an exponential growth trend.
The bound value is not plotted for SPMI-alt since the algorithm keeps alternating between
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Figure 6.2: Portion of the MDP corresponding to the problem 2-1-1-2.

policy and model updates that are performed using different bounds. Thus, its behavior is
not really meaningful.

In Figure[6.4] we compare the greedy target selection with the persistent target selec-
tion. The former, while being the best local choice maximizing the advantage, might result
in an unstable behavior that slows down the convergence of the algorithm. This is con-
firmed since the number of times the target policy changes is significantly larger compared
to the persistent choice.

In Figure[6.5] (left), we compare SPMI, where both the policy and the transition model
are learned simultaneously, with the sequential approaches SPI+SMI and SMI+SPI. We
immediately notice that learning both policy and model is convenient since the perfor-
mance of SPMI at convergence is higher than that of SPI (only policy learned) and SMI
(only model learned), corresponding to the markers in Figure [6.5] Furthermore, we ob-
serve that SPMI outperforms SPI+SMI but displays a slower convergence compared to
SMI+SPI. This behavior can be explained based on the peculiar properties of the problem,
in combination with the local nature of our bound. Indeed, at the beginning, it is conve-
nient to learn the policy (the slope of the dotted line is larger w.r.t. that of the dash-dotted
line in the first iterations). However, it turns out that by sacrificing some performance im-
provement at the beginning it is possible to reach faster convergence. Nevertheless, if we
are interested in the online performance of the learning process, we clearly see that SPMI
reveals to be the best strategy. Figure[6.5](right) proposes another interesting case in which
SPMI-sup, SPMI-alt, and SMI+SPI all converge faster than SPMI. From these examples,
we can conclude that although SPMI adopts the tightest bound, its update strategy is not
guaranteed to yield globally the fastest convergence as it is based on local information,
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Figure 6.3: Expected return, bound value, o and (3 coefficients, policy and model advan-
tages for the Student-Teacher domain 2-1-1-2 for different update strategies.

i.e., expected relative advantage.

In Table[6.1]we report the number of iterations to convergence for the different problem
settings we considered. We can see that SPMI is the first or the second algorithm to
converge in most of the cases.

6.6.2 Racetrack Simulator

The Racetrack simulator is an abstract representation of a car driving problem. The au-
tonomous driver (agent) has to optimize a driving policy to run the vehicle on the track,

111



Chapter 6. Learning in Finite Cooperative Configurable Markov Decision
Processes

ST T T T TTTTT T T T TTTTT T T . T T T T TTTTT T T T TTTTT T T
= | S 30 - FEETET :
E g ]

: :
7 57 ; |
B N ° J
> & 10 i -
o = .~
A - - S (lmm====== hd B
Ll Lol Lol L1 = OHM Lol Lol L1
10? 103 104 10? 103 104
Iteration Iteration
—— SPMl-persistent ---- SPMI-greedy

Figure 6.4: Policy dissimilarity and number of target policy changes for greedy and per-
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Figure 6.5: Expected return for the Student-Teacher domains 2-1-1-2 (left) and 2-3-1-2
(right) for different update strategies.

reaching the finish line as fast as possible. During the process, the agent can configure two
vehicle settings to improve their driving performance: the vehicle stability and the engine
boost.

Environment Description The autonomous driver, the learning agent, has to optimize a
driving policy in order to run the vehicle to the track finish line as fast as possible. The ve-
hicle and the track naturally compose the model of the learning process, however, there is
the possibility to tune a set of vehicle parameters, such as aerodynamic profile (to affect the
vehicle stability) and engine setting. Therefore, to maximize the performance, the driving
policy of the agent and the model configuration has to be jointly considered. It is note-
worthy that a specific model parametrization (vehicle setting) induces an optimal driving
policy and, on the other hand, a driving policy determines an optimal model parametriza-
tion. Moreover, a policy-transition model pair that results to be optimal for a specific track
may not be optimal for a (morphologically) different track. Then, the question we aim to
answer with this experiment is the following: “can we learn the optimal policy-transition
model pair for a given track by dynamically adapt the vehicle parametrization to the driv-
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Problem SPMI  SPMI-sup SPMI-alt SPI+SMI  SPI+SMI

2-1-1-2 16234 18054 30923 22130 7705

2-1-2-2 2839 3194 5678 2839 12973
2-2-1-2 20345 18287 >50000 39722 10904
2-2-2-2 12025 14315 >50000  >50000 15257

2-3-1-2 14187 13391 11772 >50000 12183
3-1-1-2 15410 17929 22707 31122 14257
3-1-2-2 3313 3313 8434 3313 22846
3-1-3-2 2945 3435 5891 2945 18090

Table 6.1: Number of steps for convergence for the update strategies in different problem
settings of the Student-Teacher domain. In bold the best algorithm and underlined the
second best. The runs were stopped after 50000 iterations.

ing policy and, conversely, the driving policy to the vehicle parametrization during the
learning process?”’

We formalize the learning process as an MDP in which the driver is the agent and
the environment is composed by the track and the vehicle. The track is represented by
a grid of positions, each grid point is either of type roadway, wall, initial position,
goal position. A state in the learning process belongs to the set:

S= {(a:,y,vw,vy) cx €{0,..., Tmax},¥ € {0,. .., Ymax},
Vg € {Umirn DR 7Umax}7vy € {Umina <o 7Umax}}7

where (z,y) corresponds to a grid position and (v, v,) are the speed along the coordinate
axes. At each step, the agent can increment or decrement the speed along a coordinate
direction or do nothing. Then, the action space is represented by the following:

A= {keep, increment v, increment v,, decrement v,,, decrement vy}.

The learning process starts at the state corresponding to the initial position with zero veloc-
ities; the agent collects reward 1 when it reaches a state corresponding to the goal position
he collects 0 reward in any other case.

The transition model induces a success probability to any action, a failed action causes
a random action to occur instead of the one selected by the agent. This probability aims
to model the stability of the vehicle, the more the vehicle is unstable, the more is hard
for the agent to drive it (or select an action). The model also induces a failure probabil-
ity to every action: a failure represents a break of the vehicle, thus it directly cause the
end of the episode. This feature represents the pressure on the vehicle engine, the more
performance the driver asks for, the more it may break down. We formalize the transition
model as a convex combination between a set of vertex models: these correspond to vehi-
cle configuration pushed towards the limit in terms of the aspects described above. For our
purpose, we define a model dichotomy related to vehicle stability: P_highspeed (P_hs)
trades stability at lower speed to have more stability (or high action success probability) in
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—— P_highspeed ----- P_lowspeed —@— P_noboost —— P_boost

Figure 6.6: Graphical representation of the racetrack extreme models.

Figure 6.7: Graphical representation of the tracks used in the Racetrack Simulator. From

left to right: T1, T3, T4 and T2 just below. Each position has a type label: red for
initial states, green for goal states, gray for walls, and white for roadtracks.

high speed situations, P_lowspeed (P_ls), instead, provides more stability in low speed
situation and poor stability at higher speed. We define also a model dichotomy related to
engine boost: P_boost (P_b) guarantees higher engine performance and a lower reliability
(or higher failure probability), at the opposite P_noboost (P_nb) provides higher reliabil-
ity but poor engine performance. In Figure [6.6] we propose a graphical representation of
the features of these extreme models.

Considering any possible combination of stability and engine setting, we define the
model set (set of vertex models) Py = {P_hs_b, P_hs_nb, P_ls_b, P_ls_nb}. Each
model in this set is obtained by taking, for each state-action pair, the product of the tran-
sition probabilities of the components (e.g., P_hs_b(+|s,a) = P_hs(:|s,a) - P_b(:|s, a)).
Then, we derive the model space as the convex hull of the vertices in the model set:

P,=wy-P_hs b+ws-P_hs nb+ws-P_ls_ b+ wy- P_ls_nb,

where Zle w; = land w; > 0 for all ¢ € {1,2,3,4}. While the agent is learning the
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different update strategies in track T1.
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Figure 6.9: Expected return of the Racetrack Simulator in the T3 and T4 for different
update strategies and considering vehicle stability configuration only.

optimal driving policy, the model parametrization can be configured (selecting a vector
w) trying to fit the vehicle settings to the driving policy and simultaneously trying to fit
the policy-settings pair to the morphology of the track. At the beginning of the learning
process, we assume the policy to be a uniform distribution on the action space and the
model to be (0,0.5,0,0.5), that we can consider the most conservative parametrization in
our context. We also report in Figure[6.7] an illustrative representation of the tracks used
in the experiments.

Two Vertex Models Experiment We first present an introductory example on a simple
track (T1) in which only the vehicle stability can be configured. In Figure [6.8] left, we
highlight the effectiveness of SPMI updates over SPMI-sup and SPMI-alt and sequential
executions of SMI and SPI on track T1. Furthermore, the SPMI-greedy, which selects
the target greedily in each iteration, results in lower performance w.r.t. SPMI. Comparing
SPMI with the sequential approaches, we can easily deduce that is not valuable to con-
figure the vehicle stability, i.e., updating the model, while the driving policy is still really
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Figure 6.10: Expected return in track T2 with 4 vertex models for different update strate-
gies.

rough. Although in the showed example the difference between SPMI and SPI+SMI is
way less significant in terms of expected return, their learning paths are quite peculiar. In
Figure right, we show the trend of the model coefficient related to high-speed stabil-
ity. While the optimal configuration results in a mixed model for vehicle stability, SPMI
exploits the maximal high-speed stability to learn the driving policy efficiently in an early
stage, SPI+SMI, instead, executes all the policy updates and then directly leads the model
to the optimal configuration. SPMI-greedy prefers avoiding the maximal high-speed sta-
bility region as well. It is worthwhile to underline that SPMI could temporarily drive the
process aside from the optimum if it leads to higher performance from a local perspec-
tive. We consider this behavior quite valuable, especially in scenarios where performance
degradations during learning are unacceptable.

In Figure [6.9] we propose additional experiments on different tracks (T3 and T4). We
can notice that SPMI displays a better learning curve compared to the other strategies.
Moreover, we observe that, while the online performance is comparable with the previous
example, the convergence speed is significantly faster. This can be explained by the fact
that, in these tracks, the optimal environment configuration corresponds to a vertex model
(and not a mixed configuration). For this reason, when such a vertex model is selected as
target, it is kept fixed for the whole learning process.

Four Vertex Models Experiment Figure [6.10] shows how the previous considerations
generalize to an example on a morphologically different track (T4), in which also the en-
gine boost can be configured. The learning process is characterized by a long exploration
phase, both in the model and the policy space, in which the driver cannot lead the vehicle
to the finish line to collect any reward. Then, we observe a fast growth in expected re-
turn when the agent has acquired enough information to reach the finish line consistently.
SPMI displays a more efficient exploration phase compared to other update strategies and
target choices, leading the process to a quicker convergence to the optimal model. In Fig-
ure we show the behavior of the convex combination coefficients associated with
the four vertex models. We can clearly see that the learning process prefers high speed
stability and an intermediate engine boost configuration. Nevertheless, it interesting to
observe that during the learning process the importance low speed stability is increased.
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Figure 6.11: Coefficients of the different vertex models for different update strategies in
track T2 with 4 vertex models.

Finally, we observe that all the algorithms, although with different paths, reach the same
final configuration.

6.6.3 Summary of the Experiments

We provided an experimental evaluation in simple discrete domains, inspired by the ex-
amples motivating the introduction of the Conf-MDP framework. The evaluation allowed
to highlight essentially two points. First, we have seen that learning the configuration,
together with the agent’s policy, allows reaching higher performances overall. This be-
havior is particularly visible in Student-Teacher domain (Section [6.6.2) and emerges in
the Racetrack simulator, in the particular choice of the coefficients (Section [6.6.1). This
empirically motivates the introduction of the Conf-MDP framework, regardless of the em-
ployed learning algorithm. Second, we illustrated that jointly and adaptively learning the
policy and the environment configuration is, most of the times, the preferable option, com-
pared to sequential approaches in terms of learning curve. This is a property of SPMI and
it can be observed in both the domains we tested.
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Figure 6.12: An example of Conf-MDP with local maxima. The transition probabilities
are reported on the arrows and the reward function inside the circles.

6.7 Examples of Conf-MDPs

In this section, we report two examples of Conf-MDPs that display interesting behaviors
when running SPMI. First, we show an example in which SPMI can be trapped into a
local optima solution (Section [6.7.1). This is a phenomenon that SPMI shares with SPL
Second, we provide an example in which the optimal configuration parameters do not lie
in the border of the domain, even when considering a parametrization made of a convex
combination of vertex models (Section [6.7.2).

6.7.1 An example of Conf-MDP with local optima

Let us consider the Conf-MDP represented in Figure Where w € [0, 1] is the parame-
ter, p € [0, 1] is a small fixed probability and M > 0 is a large positive number. In each
state, there is only one action available (i.e., all policies are optimal)E] The vertex models
are obtained for w € {0, 1}. For both target models, there is a small probability to get the
punishment —M since for w = 0 the probability to reach state ss from ss is p and for
w = 1 state sy is reachable from s; with probability p. We expect that by mixing the two
target models we can only worsen the performance. It is simple to realize that the expected
return is a cubic function of w. We report the expression for p = 0.1 and v = 1:

J(w) = = (0.512w® + (0.64M — 1.088)w? — (0.64M + 0.296)w + 1.981 — 0.09M) .

N | =

We can find the stationary points by looking at the derivative:

0J e
ow

= 0.768w? + (0.64M — 1.088)w — 0.32M — 0.148.

For M sufficiently large the derivative has one sign variation thus it has two solutions of
opposite sign, having expression:

1
wiz = o7 (17 —10M + 10@) .

4

3This is a simplification to focus the attention to the optimization of the transition model. These examples
can be generalized for the more realistic case of multiple actions.
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Figure 6.13: An example of Conf-MDP with mixed optimal model. The transition proba-
bilities are reported on the arrows and the reward function inside the circles.
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Clearly, we are interested only in the solutions within [0, 1] thus we discard the negative
one. It is simple to see that the positive solution is approximately % for M sufficiently
large, as:

. 1 1

lim o (17 10M + 10V = M —4) = =

M—+o 24 2

However, having a look at the second derivative we realize that this is a point of minimum,
since

2
TI) _ ) 5360 +0.640 — 1.088]_, > 0.
ow 2

Notice that in the unfortunate case in which SPMI is initialized at this value of w the
expected relative advantage (which is the same as the gradient) is zero for both the vertex
models and therefore there would be no update. Therefore, the maximum must lie on the
border, specifically either for w = 0 or w = 1. It is simple to see that J(1) > J(0).
Moreover, if we compute the value of the gradient for w = 0 and w = 1 we realize that
in both cases the value is negative. Having a negative advantage, SPMI would never make
any step even when the model is initialized at the lower performance vertex w = 0.
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6.7.2 An example of Conf-MDP with a mixed optimal model

We consider the Conf-MDP as represented in Figure As in the previous case, the
parameter is w € [0,1] and p € [0, 1] is a fixed probability. We want to show that there
exists no value of w such that P, maximizes the value function in all states, while there
exists one value of w maximizing the expected return. It is simple to compute the value
function in each state:

VP (s1) =92 (wp + (1 = w)(1 = p) (Wl = p) + (1~ w)p),
VP (s2) = v (Wl —p) + (1 —w)p),
VPw (83) = ]-7
VP“’ (84) =0
Since the initial state is s; we have that J(w) = V%(s;) which is maximized for
w = % However, there is no value of w for which the value function of each state is
maximized. As shown in Figure [6.14] while V7 (s1) is maximal in w = 4, V% (s5)

is maximal for w = 1. All values of w € [, 1] are indeed Pareto optimal (Figure[6.15).
With some calculations we can determine the expression of the expected relative advantage
functions:

AE 21— w)(1 - 2)(1 — 2)?
Agi = —2w(l —2w)(1 —2p)>.

We clearly see that they both vanish for w = %
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CHAPTER

Learning in Continuous Configurable
Markov Decision Processes

7.1 Introduction

In Chapter[6] we introduced a safe-learning algorithm, Safe Policy Model Iteration (SPMI),
to solve the learning problem in the Conf-MDP framework, based on the optimization of a
lower bound of the performance improvement to ensure a monotonic increase of the long-
term reward (Kakade and Langford, 2002} Pirotta et al., 2013b). Although this approach
succeeded in showing the benefits of configuring the environment in some illustrative ex-
amples, it is quite far from being applicable to real-world scenarios. SPMI is affected by
two main limitations. First of all, it is only applicable to problems with a finite state-action
space, while the most interesting Conf-MDP examples have, at least, a continuous state
space (e.g., the car configuration problem). Second, it requires full knowledge of the en-
vironment dynamics. This latter limitation is the most relevant as, in reality, we almost
never know the true environment dynamics, and even if a model is available it could be
too approximate or too complex and computationally expensive (e.g., the fluid-dynamic
model of a car).

In this chapter, we propose a new learning algorithm for the Conf-MDP problem that
overcomes the main limitations of SPMI. Relative Entropy Model Policy Search (REMPS)
belongs to the trust-region class of methods (Schulman et al., [2015) and takes inspiration
from REPS (Peters et al.l 2010). REMPS operates with parametric policies 7g and con-
figurations P,, and can be endowed with an approximate configuration model P, that can
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be estimated from interaction with the environment. At each iteration, REMPS performs
two phases: optimization and projection. In the optimization phase, we aim at identifying
a new stationary distribution for the Conf-MDP that maximizes the long-term reward in
a neighborhood of the current stationary distribution. This notion of neighborhood is en-
coded in our approach as a KL.—divergence constraint. However, this distribution may fall
outside the space of representable distributions, given the parametrization of the policy and
that of the configuration. Thus, the second phase performs a moment projection in order
to find an approximation of this stationary distribution in terms of representable policies
and configurations.

In principle, the learning process in a parametric Conf-MDP can be carried out by
a standard stochastic gradient method (Sutton et al., |1999a; Peters and Schaall [2008]).
We can easily adapt the classic REINFORCE (Williams)}, [1992)) and G(PO)MDP (Baxter
and Bartlett, 2001)) estimators for learning the configuration parameters. However, we
believe that a first-order method does not scale to relevant situations that are of motivating
interest in the Conf-MDP framework. For instance, it may be convenient to select a new
configuration that makes the performance of the current policy worse because, in this
new configuration, we have a much better chance of learning high-performing policies.
We argue that this behavior is impossible by using a gradient method, as the gradient
update direction attempts to improve performance for all parameters, including those in the
transition model. This example justifies the choice of our trust-region method that allows a
closed-form optimization in a controlled region. It has been proved empirically that these
methods, also in the policy search framework, are able to overcome local maxima (Levine
and Koltun), 2013)).

Chapter Outline The chapter is organized as follows. We start in Section by re-
calling the optimality conditions for solving a parametric Conf-MDP and presenting the
straightforward extensions of REINFORCE and G(PO)MDP for model learning. Sec-
tion [7.3]introduces our algorithm, REMPS, and its two phases: optimization and projec-
tion. The theoretical analysis of REMPS is provided in Section including a finite-
sample analysis of the single step of REMPS. Section shows how to equip REMPS
with an approximation of the environment dynamics. Finally, Section presents the
experimental evaluation on both discrete and continuous tasks. To simplify the mathemat-
ical treatment, we will assume that all relevant distributions admit a probability density
function w.r.t. the Lebesgue measure.

7.2 Solving Parametric Conf-MDPs

In Chapter 5| we introduced the optimality conditions for Conf-MDPs assuming that the
search of the transition model and the policy is extended to the whole space of Markovian
stationary models S and policies ITSR. As we already mentioned, this general setting,
although being extremely convenient from a theoretical standpoint, it might result quite
unrealistic, especially from the configuration standpoint. We recall that in a parametric
Conf-MDP we restrict the search of he transition model and the policy to appropriate
spaces:

Il = {mg:S —» P(A): 0 €0 c R},
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Po={P,:SxA— P(S): weQc R}

Given a pair of parameters (8,w) € © x (), the corresponding policy 7g and transi-
tion model P,,, induce for every v € [0, 1] a y-discounted stationary distribution (Def-
inition pZe-Pe. We denote with Do o = {ul®" : (6,w) € © x Q} the set of
~-discounted stationary distributions induced by the parameter spaces © and €. In a para-
metric setting, the goal consists in finding the best policy parameter 8 and best environ-
ment configuration parameter w™* so that they maximize the expected return:

(0%, w*) € argmax {J(0,w)}, (7.1)
(6,w)eO® %O
where J(6,w) is an abbreviation of J™o:Fw = J#°"™ that makes more explicit the

dependence on the parameters.

7.2.1 Gradient Estimators for Parametric Configuration Learning

When Ilg and P, are parametric spaces made of stochastic and differentiable policies and
transition models respectively, we can address the optimization problem in Equation (7.1)
via gradient ascent. In this section, we provide the straightforward extensions of REIN-
FORCE (Williams},[1992)) and G(PO)MDP (Baxter and Bartlett, 2001) gradient estimators
that can be used to adapt policy gradient methods to the problem of learning paramet-
ric environment configurations. We have already provided in Chapter [f] the P-Gradient
Theorem, introduced in|Metelli et al.|(2018a)), which is the natural adaptation of the Policy
Gradient Theorem of|Sutton et al.|(1999a). We can also directly derive the trajectory-based
expression of the gradient w.r.t. the environment configuration parameters.

Proposition 7.1. Let Pq be a class of parametric stochastic transition models differen-
tiable in w € ), let ™ € IR be a policy (non necessarily parametric). Then, the gradient
of the expected return w.r.t. w is given by:

Vol (W) = E™P [V, log p™ P (1)G, (7))

0
= E™ ZVwIngu(St+1|StaAt)G'y(7) )

t=0

where p™T« is the trajectory density function and G, (7) = Y12, 7' Ri41 is the trajectory
return.

Proof. The result derives from the linearity of the gradient and expectation and using the log-trick:

Veol(w) = Ve L p™ e ()G, (r)dr
=j Vop ™ (1)G, (7)dr
-

_ f p™ P (1)Vo log p™ 7= ()G, ()dr.
T

By rewriting the log density and exploiting the properties of the logarithm and observing that the
terms depending on w are those of the transition model only, we obtain:

Ve logp™™ (1) = V., log <M0 So) H (At|St)pw (Se+1|Se, Ae)r (Rt+1|5t7-4t75t+1)>
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o0
= Z wPw St+l|SﬁAt)
O

We can now derive the REINFORCE and G(PO)MDP estimators for the gradient and
the corresponding optimal baselines.

REINFORCE The REINFORCE estimator is simply obtained by writing the sample-

based version of the second expression in Proposition n 7.1} Let {r;}"_, be a set of trajecto-
ries, the estimator can be expressed for every k € {1, ..., ¢} as:
1 n T(T,; ) —1
VRFJ g Z ;} Vwk 1ngw(STi,t+1‘STi,taATi7t)
T(Ti)fl
X Z rthTht"’l - bk )
t=0

where b € RY is the baseline. The estimator @BEJ (w) is unbiased for every choice of b,
but its variance is minimized for the following baseline, defined for every k € {1, ..., ¢}
as:

E™-Fe [(Z:OZO Ve, 108 Do (Si41]St, At))2Gw(7)]

bRF*
7, P, © 2
Em P [(Zt=o Ve 10g P (Si41[S:, Ar)) ]

E e

The derivation of the baseline is here omitted since it is analogous to that employed for
deriving the baseline in traditional REINFORCE.

G(PO)MDP The derivation of the G(PO)MDP estimator can be performed analogously
to that for the policy parameters, by observing that the reward is independent of the future
states and actions given the current and past ones. Indeed, we can simplify the second
expression of the gradient derived in Proposition [7.1] as follows:

o t
Vol (w) = EMF lZZ w108 Do (Si1]S1, Ay Re

The estimator is obtained by simply replacing the expectation with the sample mean, ob-
tained with a set of trajectories {7;}?_; and defined for every k € {1, ..., ¢} as:

n T(r)-1 / t
1
V (PO)MDPJ( ) ﬁ Z Z (Z Vwk Ingw(Sﬂ,l-&-ﬂSﬂ,l; ATi,l))
=1

t=0 1=0
X (’YtRn,tH - bt,k) )
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Figure 7.1: Graphical representation of the two phases of REMPS, optimization and pro-
Jjection.

where for every ¢ € {0,...,T — 1}, we have that b; € R? is a step-dependent baseline.
The expression of the baseline minimizing the variance is provided below for every ¢ €
{0,...,T—1}and ke {1,...,q}:

2
E™Fe [(Zfo Vo Ingw(SHl‘SlvAl)) ’YthH]
bG]iPO)MDP* _
t,

t 2
EmPo [(Zl_o Vo, 10gpw(Sl+1|Sl’Al)) ]

7.3 Relative Entropy Model Policy Search

In this section, we introduce an algorithm to solve the learning problem in the Conf-MDP
framework that can be effectively applied to continuous state-action spaces and overcomes
the local nature of the previously presented gradient methods. Relative Entropy Model Pol-
icy Search (REMPS), imports several ideas from the classic REPS (Peters et al.,|2010); in
particular, the use of a constraint to ensure that the resulting new stationary distribution is
sufficiently close to the current one. REMPS consists of two subsequent phases: optimiza-
tion and projection. In the optimization phase (Section [7.3.1)) we look for the stationary
distribution z’ (discounted or not) that optimizes the expected return as in Equation (7.1).
This search is limited to the space of distributions that are not too dissimilar from the cur-
rent stationary distribution uZ{T’P . The notion of dissimilarity is formalized in terms of a
threshold k > 0 on the KL-divergence. However, the resulting distribution x' may not
fall within the space of the representable stationary distributions given our parametrization
De q. Therefore, similarly toDaniel et al.| (2012), in the projection phase (Section
we need to retrieve a policy mg and a configuration P, inducing a stationary distribution
pe P e Dg g as close as possible to 1i/. Refer to Figurefor a graphical representation
of these two phases.
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7.3.1 Optimization

The optimization problem can be stated in terms of stationary distributions only. Given
a stationary distribution u € Z(S x A x S) (e.g., the one used to collect samples ulf“P )
and a KL—divergence threshold k > 0, we look for a new stationary distribution y’ €
P(S x A x S) that is the solution of the following optimization problem PRIMALnﬂ

!
,__max JH =J W (s,a,s)r(s,a,s’)dsdads’
WeZ(SxAxS) SxXAXS

!/ !/
s.t. Dgp(u'|p) = J i (s,a,s)log Mdsdads’ < K.
SxAxS /L(saavsl)
It is worth noting that, unlike REPS, we do not enforce a constraint on the validity of the
stationary distribution w.r.t. the transition model (see Section[3.3.2)), as in a Conf-MDP we
have the possibility to change the transition model, determining an effect on the stationary
distribution. With similar mathematical tools, we can solve PRIMAL,, in closed form.

Theorem 7.2. Let yp € (S x A x S) be a probability measure and x > 0 a KL-
divergence threshold. The solution ' € P (S x A x 8) of the problem PRIMAL,, for
k > 0, satisfies for every (s,a,s') € S x A x S:

1
w (s, a,s Yocu(s, a, s") exp <nr(s,a,5’)> , (7.2)

where 1 is the unique solution of the dual problem DUAL,;:

1

min g(n) = nlogJ u(s,a,s") exp (nr(s,a, s') + Ii) dsdads’.

nel0,+0) SxAxS

Proof. For the sake of brevity, we define X = S x A x S and (s,a,s’) = x € X. We restate the
PRIMAL,, problem in a more explicit form:

max J w (z)r(x)d (P.1)
v Jx
s.t. J u' (z) log () dr <k (P2)
x ()
f p(z)de =1, (P3)
x

where we simply made explicit the constraint guaranteeing that 4’ must sum up to one. Note that we
do not need to ensure that ' (x) > 0 for all x € X since this is guaranteed by the KL-divergence
constraint. We solve the optimization problem using the Lagrange multipliers. We denote with
n = 0 the Lagrange multiplier associated with the KL constraint and with \ the multiplier
associated with the constraint (P3). The Lagrangian function becomes:

EW%M=J

X

p (z)r(z)dz + 7 (/-c — L{ w'(x) log Z/((;)) dx) (P4)

+A (1 - L ,/(x)dx) (P5)

IThe KL-divergence allows solving the optimization problem in a particularly convenient way. In principle,
other divergences could be employed, like total variation or Rényi divergence (Rényil|1961).
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_ L W (x) (r(z) — nlog Z/((;)) - )\) dz + 1k + A

Taking the functional derivative of £ w.r.t. ¢ and applying a simple form of the Euler-Lagrange
equation (Gelfand and Silverman, [2000), we get:

0L =r(x)— Oﬂl(fﬂ)i — A=
=r(z) nlgﬂ(m) n—A=0

e W (@) = () exp (%) exp (_1 _ %) . (P6)

We can derive an expression for u’ by enforcing the constraint (P3):

exp (_1 - 2)_1 _ L () exp (%) dz

, . m@)exp (%)
p(z) = [ n@) o (%> "

Substituting (P.6) into the Lagrangian function (P-4) and recalling (P.7), we obtain the dual function:

o1 = op (1= 2) [ u@e (M) {r0
~log [exp (%) exp <71 _ %)] _ )\}dx A

= nexp (—1 - %) L () exp (L;)) dz + nk + A

=n+ne+ A

= nlog L w(zx) exp (T(x)
=1 log L p(z) exp (r(x) + m) dz.

Making the change of variable 77 = 1/7, we have that 1] log §,, () exp (7jr()) da is convex (Boyd

(P7)

7
2 . .
0 2 = %g > 0 for k > 0), therefore their sum is

et al.,|2004). Moreover, £ is strictly convex (as 2
strictly convex. Furthermore, function g is proper as it admits at least one feasible point (e.g.,n = 1).
Thus, being g strictly convex and proper, the optimization problem admits a unique solution (Boyd

et al.,[2004). O

Thus, to find the optimal solution of PRIMAL,, we must first determine 7, by solving
DUAL,. It can be proved, as done in REPS, that with a change of variable 7 = %, we
have that ¢(7j) is a convex function (Boyd et al., [2004), and therefore DUAL, can be
easily solved using standard optimization tools. Given a value of 7, the new stationary
distribution g’ is defined by the exponential reweighting of each (s,a,s’) € S x A x S
triple with its reward (s, a, s'). Moreover, given a stationary distribution ', we can derive
a representation of a policy " and a configuration P’ inducing p’'.
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Corollary 7.3. Let i/ € P (S x A x S) be a probability measure (e.g., the solution of
PRIMAL,,). Then 1’ is induced by the transition model P’ € PSR and the policy 7' e TISR
defined for every state-action pair (s,a) € S x A as:

P (8'|s,a)ocp(s'|s, a) exp <1T(s,a, 5')> ,
n
77’(a|3)oc7r(a|s)J p(s'|s,a) exp (7177“(8,@, s’)) ds’.
S

Proof. Recall the factorization of u'(s,a,s’) as p'(s,a,s’) = p'(s)7’'(als)p’(s'|s, a) for every
(s,a,5") € S x A x S. Therefore, we have:

o (s)m(als) T w(s,a) §o1/(s,a,s)ds"
Now, we substitute the expression of p’:
’ r(s,a,s’)
wu(s,a, s )exp( = )
§s1(s,a,s")exp (T(S’;’S/)) ds’
(s)m(als)p(s']s, @) exp (")
5)§sp(s'|s,a) exp (T(s’;’sl)) ds’
’ r(s,a,s’)
p(s']s, a) exp( . )

Ss s'|s,a) exp <T(S “’s,)> ds’

’ / / ’ !
p/(S/‘S,CL)* /J(S,(J,,S) /"’(Svavs) _ ,LL(S,G/,S

P'(s]s,a) =

In a similar way for the policy, recall that p' (s, a) = u'(s)7’(als), we have:

7' (als) = w(s,a) _ §s 1 (s,a,8")ds’
w(s) §a8s (s a,8)ds'da’

Now, we substitute the expression of u’ again:
§sn(s,a,8) exp (g) w
la SS 1(s, a, s") exp (M) ds'da
als) {5 p(s']s, a) exp(M)d/
s) XA m(als) §s p(s']s, a) exp (M) dsda
als) §sp(s']s, a) exp (m, 5 )) s’

- § 4 7(als) §sp(s'|s, a) exp (T(S — )) ds'da’

' (als) =

O

Sample-based Optimization In practice, we do not have access to the functional form
of the sampling distribution 1™*, so we cannot compute the exact solution of the dual
problem DUAL,,. As in REPS, all expectations must be estimated from samples. Given
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a dataset D = {(S;, A;, S/, R;)}™, of n samples drawn from p™*, the empirical dual
problem DUAL,; becomes:

1
min _g(7) = nlogn ZGXP <77Ri +n) 7

ne[0,40)

which yields the solution 7} inducing the distribution fi’ as in Equation (7.2), defined for
every (s,a,s’) €S x Ax S as:

s 0o s o) xp (s ) ).

We discuss the effect of using a finite number of samples in Section[7.4.3]

7.3.2 Projection

The solution p’ of the PRIMAL, problem does not belong, in general, to the class of
stationary distributions Dg ¢, induced by Ilg and Pgq. For this reason, we look for a para-
metric policy mg and a parametric configuration P, that induce a stationary distribution
p™e P as close as possible to 1/, by performing a moment projection (PROJ u)

0, w' € argmin {DKL (M’H,u”"’pw)}

0O ,weN
= arg max E log u™e-F (S, A, S’ }
96%),0)69 {SvA’S'N#/ [ o ( )]

However, this problem is hard to solve as computing the functional form of p™-"« is
complex and cannot be performed in closed form for most of the cases of interest. If
the state space and the action space are finite, we can formulate the problem as follows,
recalling the definition of y-discounted stationary distribution (Definition [2.3):

max Z Z s,a,8" ) log i’ (s")me(als)pw(s'|s, a)

0€O,weN eSacA
st p(s)=(1- s) 4+ Z Z W (s me(als )pw(s|s’sa) Vse S
s'eS acA
W(s)=0 VseS.

Nevertheless, in most of the relevant cases, the problem remains intractable as the state
space could be very large. Therefore, we consider more convenient projection approaches
that we will justify from a theoretical standpoint in Section[7.4.1] A first relaxation consists

in finding an approximation of the transition kernel (P’ )”, induced by ' (PROJpr):

@', W' € argmin {SiEu' [DKL ((Pl)ﬂl(-|5)||P£9(-|S))]}

0O ,weN

= arg max E log pZe (S'|S }
96%,4069 {SvAvS/"’l"/[ & ( | )]

2When using samples, the moment projection is equivalent to the maximum likelihood estimation.
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REMPS,, PRIMAL MI PROJ ( 9/’ w’)
RMS . @ PRIMAL, ,17/ PROJ (5’ 7 a)/)

Figure 7.2: Summary of the symbols employed for two phases of REMPS and the corre-
sponding outputs.

Clearly, we need to be able to compute the functional form of the state transition kernel
PTe, which is only possible when considering finite action spaces. Indeed, in such case,
we just have to marginalize over the (finite) action space as, for every s, s’ € S:

P (s']s) = 3 molals)pu(s'ls, a).
aceA
When also the action space is infinite, we resort to separate projections for the policy and
the transition model (PROJ; p):

0 argmin{SE [DxL (W/('S)|7T9('|S))]}

[Z5S) ~p!

= arg max E logmg(A|S)] ¢,
g { B flogmo(41)1

W' € arg min {571&“/ [Dkr, (P'(:]S, A)| P (]S, A))]}

we

= argmax{s’AIg [log pe, (5|5, A)]}

we S~

Sample-based Projection Similarly to what happens during the optimization phase, we
only have access to a finite dataset of n samples to perform the projection. Moreover, we
face an additional challenge, i.e., we need to compute expectations w.r.t. z/, but our sam-
ples are collected with p. This can be cast as an off-distribution estimation problem and
therefore we resort to importance weighting (Owen, 2013). In the importance weighting
estimation, each sample (.S;, 4;,.S}) is reweighted by the likelihood of being generated by
', i.e., by:

w;

(S, ALS) (R
T u(Sn Ay 8 TP\ )

In the following, we will denote the approximate projections with PROJ and with (5/, &) e
O x € the corresponding recovered policy and model parameters. A summary of the ob-
jective functions for the different projection approaches, their applicability, and the corre-
sponding estimators are reported in Table[7.1]

Therefore, the full REMPS problem can be stated as the composition of optimization
and projection, i.e., REMPS,, = PROJ o PRIMAL,, and the corresponding problem from
samples as REIV[?S,.C = PROJ o Pl/{—IIT/ITAL,.i (Figure . Refer to Algorithm for a
high-level pseudocode of REMPS.
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Projection |S| = o |A] = oo Exact objective Estimated objective
o Pw ' ” ,
PROJ,, x X B Nogu™ (S, A SD] LS s log o (S, As, SY)
PROJ p~ v X S,A,IE, [IOgP (8'19)] + Z _, wi logpe? (Si]S:)
E 1 A
PROJ v v s Hog 7o (415)] % Dy wilog mo(AilS:)
mF E [logpw (5']S, 4)] + 37 wilog pu (S7S:, Ai)

S,A,S~

Table 7.1: Applicability, exact objective function and corresponding estimator for the
three projections presented. w; is the (non-normalized) importance weight defined as

w; = exp %

Algorithm 7.1: Relative Entropy Model Policy Search (REMPS).
Input: Conf-MDP C, number of iterations 7"
Output: approximately optimal policy-transition model pair (74 (1), P, 1))
1 Initialize 89, w® arbitrarily
2 forallt =0,1,...,7 —1do
3 Collect n samples {(S;, A;, S;, R;)}i—1 with p"e® O]
4 (Optimization) Compute 7] and fi’ solving the DUAL.

5 (Projection) Perform the projection of i’ and obtain 8+ and w*+Y

6 return To(T), Pw(T)

7.4 Theoretical Analysis

In this section, we elaborate on three theoretical aspects of REMPS. First of all, we provide
three inequalities that bound the difference of performance when changing the policy and
the model in terms of distributional divergences between stationary distributions, policies,
and models (Section[7.4.T)). Second, we present a sensitivity study of the hyper-parameter
k (i.e., the KL-divergence threshold) of REMPS (Section [7.4.2). Finally, we discuss a
finite-sample analysis of the single step of REMPS (Section [7.4.3)). Furthermore, we will
consider the following assumption on the regularity of the MDP induced by policies and
configurations.

Assumption 7.1. (Ergodicity) Let 7 € TI? and P € PSR, the ergodicity coefficient of
the Markov chain induced by  and P is defined as (Senetal |19588):

7(PT) = sup {|P7(|s) = PT(|s") |y} -

SSE

Ify =1, forevery (0,w) € © x Q we assume 7 (P7°) < Tax < 1[3_1

7.4.1 Performance Bounds

We start with the following result that bounds the absolute difference of expected return
with a dissimilarity index between the stationary distributions. The results we provide

3Note that 7 (P™) = 1 in the case of deterministic transition models.
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are stated in terms of the a-Rényi divergence (Rényil, |1961)), that we have introduced in
Section [3.3.2] and extend those presented in Metelli et al.| (2019a) which were formulated
in terms of the KL-divergence.

Proposition 7.4. Let i, ' € P (S x A x S) be two stationary distributions, then for any
€ [0, 1] it holds that:

’ 2
‘Ju - J”‘ < 2Rmax Hf“/ - 'U’HTV < Riax aDa (W)
Proof. The first inequality is obtained with the following simple derivation:

Jr— g

= J (1(ds,da,ds”) — ¢/ (ds,da,ds")) (s, a, s")
SXAXS
< Rumax J. |p(ds, da,ds’) — ¢/ (ds, da, ds/)‘

= 2Rmax HMI - MHTV'

The second inequality is a straightforward application of the extension of Pinsker’s inequality pre-
sented in (van Erven and Harremogs| 2014, Equation (8)).

This result justifies the projection PROJ,,, since minimizing the KL-divergence be-
tween the stationary distributions allows controlling the performance difference. The
statement is presented for o € [0, 1] (the order of the Rényi divergence). Since the Rényi
divergence is monotonic in a,we obtain analogous expression also for o > 1 (recall that
for o = 1, we reduce to the KL-divergence). As we have seen in Section[7.3.2} the PROJ,
is typically intractable. Therefore, we now prove that performing the projection of the
state transition kernel (PROJ p~) still allows controlling the performance difference.

Corollary 7.5. Let P™ and (P’ )Trl two transition kernels, inducing the stationary distribu-
tions p and ' respectively, then, under Assumption it holds that for every a € [0, 1]:

o~ | < maxp\/ | w@spa (e coipe).

wherep:ﬁlf7<1orp:17: ify=1.

Proof. If v < 1, the statement is obtained starting from Proposition and bounding H,u' - /,LHTV
as in Proposition 3.1 of Metelli et al.|(2018a):

= ey = 2 [ @) [P Cls) = Pl

TV

For the case v = 1, we start from the following inequality provided in [Seneta) (1988) (Section 2,
taking p = 00) that we rewrite in our notation:

1 & .
QHM’*MHTﬂggT(P )'“L

1

5fs,u dsj‘ T(ds'|s ‘Zdex
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1

< —
1_Tmax

JLras|prei -y el
S

where we exploited Assumption [7.1] for the bound 7 (P™) < Tmax < 1. An application of the
extension of Pinsker’s inequality (van Erven and Harremoés| 2014)) concludes the proof. O

Finally, the following result provides a justification for the separate projections of pol-
icy and model (PROJ; p) .

Lemma 7.6. Let (7, P), (7', P") € ISR x PSR be two policy-transition model pairs, then,
under Assumption[7.1} it holds that for every o € [0, 1]:

7 — | < Rmaxp% L H(d5,4) (Da (w'(3)[n(-1s)) + Dt (P'(3, )| P( |3, @),

wherep=ﬁif’y<10rp: L jfy =1

1—Tmax

Proof. To prove the result, we refer to the proof of Corollary[6.3]and we employ the inequality:

[CNE s R L

TV,

TV, ! + HPI - PHTV,,u’ :

Then, we bound each of the terms by using the extension of Pinsker’s inequality [van Erven and
Harremogs| (2014) to get the Rényi divergence. O

7.4.2 Sensitivity to the KL threshold

We analyze how the performance of the solution of PRIMAL,, changes when the KL-
divergence threshold « varies. Suppose that k' < k, then the KL constraint is more re-
strictive, thus, we expect J W < J#. To analyze this setting, let us consider a new class
distributions 1, = ap + (1 — ) pg, with « € [0, 1] and p be the sampling distribution.
Ideally, we could increase « until we saturate the constraint x’, getting a form of projec-
tion of y onto the region that satisfies the constraint induced by «’. The following result
provides a characterization of the value of « in this circumstance.

Lemma 7.7. Let p, 1)/ € (S x A x S) be the solutions of the problems PRIMAL,, and
PRIMAL, with k' < k and i as sampling distribution. Let o, = ap + (1 — «)po with
a € [0,1]. If Dxw(pallio) = K, then o > .

K
Proof. We use the convexity of the KL divergence: Dxr,(an + (1 — a)nzfavs + (1 — a)rz) <
aDxkr(mllvi) + (1 — @) Dkw(n2|v2) for a € [0,1]. Take n1 = p, 2 = 11 = v2 = ot
K" = Dxr(palpo) = Dxr(ap + (1 — @)polapo + (1 — a)po) <
< aDkr(palpo) + (1 — @) Dxr(pol o) = aDkr(pa | po)-
Therefore, observing that Dk, (fa [ 10) < &:

’
K

;R\

oz == —. (P8)
DxvL(palpo) — &

O

The following result upper bounds the reduction in performance between the optimal
solution i of PRIMAL,, and the optimal solution i’ of PRIMAL, when k' < k.
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Proposition 7.8. Let pu, ' € P(S x A x S) be the solutions of PRIMAL,, and PRIMAL,./
respectively with k' < k, having ug as sampling distribution. Then, it holds that:

’ I{/
JH — J" < 2Rpmax |10 — tollpy (1 — H) ) (7.3)

Proof. Consider the o’ € [0, 1], as defined in Lemma|7.7} such that Dk, (pto/ |120) = £’. We start
observing that being i’ the optimal solution with constraint £’ and since o+ fulfills the constraint,
we surely have J# > J"e’. Consider the following sequence of inequalities:

Ry (L [y (%
< 2Rmax |1 — prerllpy
< 2Rmax H(]‘ - Oé/)(ll - MO)HTV
= 2Rumac(1 — ') [ (1 — 10) Iy -
Applying Lemmawe getl—a' <1— "’“:/, from which the result follows. O

This result is general and can be applied broadly to the class of trust-region methods,
when using the KL-divergence as a constraint to define the trust-region.

7.4.3 Finite-sample Analysis

We present a finite-sample analysis of the single step of REMPS. In particular, our
goal is to upper bound the difference J* — .J (5/, @') between the performance of 1/ €
P(S x A x §), the solution of the exact problem PRIMAL,, and (5/, @&') € © x Q ob-
tained after solving the whole RfET/I_I;S,.i problem through samples. Thus, starting with
u~f e 2(S x A x S), the initial y-discounted stationary distribution, REMPS,, pro-
v1des the solution ™#" &’ which is in terms derived from the PRfIF/ITXL,i problem yielding

'e (S x A xS)andthe PROJ problem. There are two sources of error in this process.
First of all, i’ is obtained from finite samples and thus it may differ from p (estimation
error). Secondly, we limit to a hypothesis space Dg (, that may not be able to represent
1’ (approximation error). Furthermore, the projection is performed from samples as well,
generating another source of estimation error.

For a given probability measure y € (S x A x §), we will denote the following set
of the possible solution of the PRIMAL,; problem, ignoring the KL-divergence constraint:

D, {u e PSxAxS): u/ocexp(;):ne[o,—l-OO)}.

In order to derive a meaningful bound, we consider the following additional assump-
tions.

Assumption 7.2. (Finite pseudo-dimension) Let ,u” P be the sampling distribution, the
D W€ Dl,ﬂp} { ,rpr i € Dymp},
{u" = log e ‘s pt € Dyr.p} and {Mfrfp logu’ pEDyxr, € ’D@vQ} are bounded by
v < +.
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Assumption 7.3. (Finite f—moments) There exist 8 € (1,2), such that

8 1/8
] and
5] 1/8

Assumption[7.2]requires that all the involved hypothesis spaces (for the solution of the
PRIMAL,, and PROJ) are characterized by a finite pseudo-dimension. This assumption is
necessary to state learning theory guarantees. Assumption[7.3]is more critical as it requires
that the involved loss functions (used to solve the PRIMAL,, and PROJ) have a uniformly
bounded (over the hypothesis space) moment of order 5 € (1,2). In particular, the first
line states that the exponentiated 5-Rényi divergence (Rényi, [1961}; |Cortes et al., 2010)
between p and p™F is finite for some 3 € (1,2). This requirement allows an analysis
based on|Cortes et al.|(2019) for unbounded loss function with bounded moments. A more
straightforward analysis can be made by assuming that the involved loss functions are uni-
formly bounded and using more traditional tools (Mobhri et al.|[2012) (see Appendix A.4.4
of Metelli et al.[ (2019a)). We report below the finite-sample result, under Assumption[7.3]
whose derivation is reported in Appendix [A.2]

Theorem 7.9. (Finite—Sample Bound) Let i™* € (S x A x S) be the sampling distri-
bution, k > 0 be the KL—divergence threshold, ;' € D,, be the solution of the PRIMAL,

problem and (5/, &) € © x Q be the solution of the REMPS,, problem with PROJ,, com-
puted with n > 0 samples collected with . Then, under Assumptions|.1} [7.2|and[7.3] for
any « € (1, ), there exist two constants x, & and a function {(n) = O(logn) depending
on «, and on the samples, such that for any 6 € (0, 1), with probability at least 1 — 44 it
holds that:

p(s,a, )
84,8 ~pmP | | u™F (s, a,s")

n(S, A, 8"

—— " log ' (S, A, S’
S,A,S ~um P l‘MW’P(S7A>S/) og 1 (Sv aS)

are bounded for all j € D~.r and |1/ € De q.

’ ~I . —
JW —J(0,8") < V2Rmax sup _inf { DKL(,LLH/L)}
peD -, p FEDO,0
: approximation error !

+ RunaxXVe + Rmax((n)e + Rmaxe?,

estimation error

vlog 2¢% t]og & vlog 22 +]og & .
— 1 | o,y | —=&=——= |, which depend on the pseudo-
n [ n a

a+2
where € = 272a

a-1 - ot
dimension bound v < +ow andT'(a,7) = <141 (L) (1 + (%)a ! log %) .

« a \ a—1

The estimation error is dominated by /€. Ignoring logarithmic terms, we have that

JH — J(él, &' = @(n* 25 ). In this analysis, we considered the case in which the

projection is performed over the stationary distribution (PROJ H)E] The result can be easily
extended to the case in which we resort to PROJp~ or PROJ; p (Corollary @

4Note that Assumption ensures that the approximation error is finite, since the KL-divergence is the 1-
Rényi divergence and the Rényi divergence is non-decreasing in the order 8 (van Erven and Harremoés| [2014).
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7.5 Approximation of the Transition Model

The formulation of REMPS we presented above, requires access to a representation of the
environment model P,,, depending on a vector of parameters w. Although the parame-
ters that can be configured are usually known; the environment dynamics is unknown in a
model-free scenario. Even when an environment model is available it may be too imprecise
or too complex to be used effectively. In principle, we could resort to a general model-
based RL approach to effectively approximate the transition model (Deisenroth and Ras-
mussen, 2011} Nagabandi et al., 2018)). However, in our scenario, we need to learn a map-
ping from state-action-configuration triples to a new state. Our approach is based on a sim-
ple maximum likelihood estimation. Given a dataset of experience {(S;, A;, S}, w;) 4
(possibly collected with different policies 7; and different configurations w;) and given an
approximation space Py © {P: 8 x A x Q2 — 2(8)} we solve the maximum likelihood

problem:

mafologp SiSi, Ag,ws), (7.4)
pePo M i
where we made explicit that the distribution of the next state .S} depends also on the con-
ﬁAgurationE] Given the model approximation, we can run REMPS by replacing P with
P € Pq. We do not impose any restriction on the specific model class Pgq (e.g., neu-
ral network, Gaussian process) and on the moment in which the fitting phase has to be
performed (e.g., at the beginning of the training or every m iterations).

7.6 Experiments

In this section, we provide the experimental evaluation of REMPS on three domains: a
simple chain domain (Section [7.6.T), the classical Cartpole (Section [7.6.2)), and a more
challenging car-configuration task based on TORCS (Section[7.6.3)). In the first two exper-
iments, we compare REMPS with the extension of G(PO)MDP to the policy-configuration
learning, whereas in the last experiment we evaluate REMPS against REPS, the latter used
for policy learning only. For the implementation details and additional experimental re-
sults, refer to Appendix D and E of (Metelli et al.,2019a)).

7.6.1 Chain Domain

We start the experimental evaluation with an illustrative example of Conf-MDP, the Chain
domain, to show the main features of REMPS compared with other algorithms for learning
in Conf-MDPs.

Environment Description In the Chain Domain (Figure[7.3) there are two states s; and
s and the agent can perform two actions a (forward) and b (backward). The agent is
forced to play every action with the same probability in both states, i.e., my(a|s) = 6 and
mg(b|s) =1 —0forall s € {s1,s2} and § € [0, 1]. The environment can be configured via
the parameter w € [0, 1], that is the probability of action failure. Action a, if successful,
takes the agent to state so, whereas action b, if successful, takes the agent to state s;.

SNotice that the configuration parameters w are an input of the approximate model.
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Figure 7.3: The Chain Domain. On the edges outgoing each state s the pair
(x,7(*|8)) where x € {a,b}, while on the arrows incoming to each state s' the pair
(p(s'|s, %), 7(s, %, 8))-

v
local

_— optimum

Parameter Value 0.75 sty point
¢ 0.2
L 10 3 0.5
l 8
N 2 0.25 lobal

globa.

wo 0.8 optimum
0o 0.2

Table 7.2: Parameter values used in the
experiments on the Chain domain,
including the initialization values for
0 and w.

Figure 7.4: Return surface of the Chain
domain.

When one action fails, the other is executed. The agent gets a high reward, L > 0, if,
starting from state sq, it successfully executes action a, while it gets a smaller reward, [
(0 <1 < L)ifitlands in state sq starting from 1 but by performing action b. The agent gets
an even smaller reward, s (0 < s < [), when it lands in state s;. The parameter ¢ € [0, 1]
is not configurable and has been added to avoid symmetries in the return surface. The
values of the parameters is reported in Table[7.2]

Learning Experiments The main goal of this experiment is to show the benefits of
REMPS compared to a simple gradient method, assuming to know the exact environment
model. The return surface is characterized by two local maxima (Figure [7.4). If the sys-
tem is initialized in a suitable region (as in Figure [7.4), to reach the global maximum
we need to change the model in order to worsen the current policy performance. In Fig-
ure we compare our algorithm REMPS using PROJp~ with different values of &,
against G(PO)MDP adapted to model learning. We can see that G(PO)MDP, besides the
slow convergence, moves in the direction of the local maximum. Instead, for some ap-
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Figure 7.5: Expected return, configuration parameter w, and policy parameter 0, as
a function of the number of iterations for REMPS with different values of k and
G(PO)MDP. 20 runs, 95% c.i.
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Figure 7.6: Expected return, configuration parameter (w) and policy parameter (0) in
the Chain domain with different projection strategies, only-policy (REPS) and only-
configuration (REMS) learning as a function of the number of iterations. 20 runs 95%
c.i.

propriate values of the hyperparameter (e.g., < € {0.1,0.01}) REMPS is able to reach the
global optimum. It is worth noting that too small a value of « (e.g., x = 0.0001) prevents
escaping the basin of attraction of the local maximum. Likewise, for too large ~ (e.g.,
x = 10) the estimated quantities are too uncertain and therefore we are not able to reach
the global optimum as well.

Comparison of Projection Strategies In Figure[7.6] we compare the different projec-
tion strategies together with the no-configuration cases. We can see that the best learning
curve is attained by the PROJp~ that reaches the global optimum quickly. REMPS with
PROJ p is unable to reach the global optimum, indeed the configuration parameter gets
stuck to a suboptimal value (around 0.55), thus the performance is significantly worse w.r.t.
PROJ p~. The same behavior, limited to the configuration parameter value, is displayed by
the only-configuration (REMS, Relative Entropy Model Search) learning case. Finally, the
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Expected return

—4— Primal -#- Projection - Optimal

Figure 7.7: Expected return after PRIMAL,, (primal) and after PROJ,, (projection) com-
pared with the optimal performance, as a function of the KL-threshold k.

only-policy (REPS, Relative Entropy Policy Search) learning moves the policy parameter
towards zero, approaching the local optimum.

Effect of the Policy and Model Spaces The optimization phase (PRIMAL,;) in REMPS
is able to find in closed-form a new stationary distribution ' that optimizes our perfor-
mance index subject to a trust-region constraint. As we have seen, this distribution is not
typically representable in space Dg o and, thus, we need to perform a projection. We
analyze how the limited representation power of Dg (, affects performance. Figure
shows the performance of the best model-policy found as a function of x and the value of
PRIMAL,, which is the expected return obtained by evaluating .’ after solving the primal.
We can see that the value of the primal is always larger than the performance after the
projection, i.e., the performance of the new policy-configuration pair. As expected, the
projection yields a degradation of performance. Notice that for x > 0.3, the primal op-
timization provides as solution the optimal stationary distribution, i.e., the one we would
find without the KL-divergence constraint. This distribution is representable exactly with
our policy and model parametrization and, thus, the error is null.

Sensitivity to Parameter Initialization REMPS behaves consistently with respect to
a random initialization of model and policy parameters. In Figure we can see that
REMPS updates the model and policy parameters towards the global maximum while
G(PO)MDP updates vary across the different initializations. In the G(PO)MDP learning
curves it is possible to see clearly the two attractors.

7.6.2 Cartpole

The Cartpole domain (Widrow and Smith} |1964; Barto et al., [1983) is a continuous-state
and finite-action environment. We add to the standard Cartpole domain the possibility to
configure the cart force, via the parameter w.

Environment Description The Cartpole domain (Widrow and Smith||1964; Barto et al.}
1983)) is a standard RL benchmark. The environment consists of a cart that moves along
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Figure 7.8: Expected return, configuration parameter (w), policy parameter (8) and in the
Chain domain with random initialization of model and policy parameter. Comparison
between G(PO)MDP and REMPS.

the horizontal axis and a pole that is anchored on the cart. The state space is continuous
and is represented by the position of the cart x, by the cart velocity x, by the pole angle ~
with respect to the vertical, and by the pole angular velocity 7. The action space is discrete
and consists of two actions: left L and right R. The model parameter is represented by
the force w to be applied to the cart, which is the same for both actions, thus the resulting
force is +w based on the action. The parameter space is 2 = [0, 30]. Each action, when
performed, is affected by a noise term proportional to the applied force and independent
for each state component. The goal is to keep the pole in a vertical position (y = 0) as
long as possible. The episode ends when the pole reaches a certain angle (|y| > #¥) or after
a predefined number of steps. We want to encourage smaller forces, to this end we use the
following reward function:

w2

r(s,a,s’) =10 — 20 20 - (1 — cos(7)).
The first part of the reward function is a fixed bonus for each time step the pole is up and
the pole angle is within the range [—7%,7]. The second part of the reward is a penalty
proportional to the force. The third part is a penalty proportional to the pole angle. Ideally,
the agent should learn to balance the pole with the smallest force possible, keeping it fixed
in a vertical position.

Policy and Model Approximators We evaluate the performance of our algorithm in the
exact case (known model) and in the approximate case. In the exact case, we know the
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Figure 7.9: Expected return as a function of the number of iterations for the Cartpole
experiment when the environment model is exact (left) or approximated from samples
(right) comparing REMPS with PROJ p~, PROJ . p and G(PO)MDP. 20 runs, 95% c.i.

effect of the model parameters on the transition function, i.e., we know p,,(-|s,a). The
policy g is softmax policy with a linear mapping in the state space s = (x, &, 7,7, 1).
For the approximate case, we assume the distribution over the next states can be ap-
proximated by a Gaussian distribution with diagonal covariance. We model the mean and
the variance using two independent neural networks with the same input (s, a,w) and the
same architecture, i.e., one hidden layer made of 10 neurons with tanh activation. The
training is performed just once at the beginning of training, using a dataset made of 10°
samples collected with different configuration parameters w (randomly generated).

Experiment The goal of this experiment is to test the ability of REMPS to learn jointly
the policy and the environment configuration in a continuous state environment, as well
as the effect of replacing the exact environment model with an approximator, trained just
at the beginning of the learning process. In Figure we compare the performance of
REMPS, with the two projection strategies PROJ p~ and PROJ; p, and G(PO)MDP, start-
ing from a fixed value of the model parameter (wg = 8), both for the case of exact model
and approximate model. In the exact case, the performance of REMPS is similar to that of
G(PO)MDP. The latter is even faster to achieve a good performance, although it shows a
larger variance across the runs. No significant difference can be found between PROJ p~
and PROJ; p in this case. Instead, in the approximated scenario, REMPS notably outper-
forms G(PO)MDP, which shows a very unstable curve. Indeed, constraining the search
in a trust-region, as REMPS does by means of k, is even more important in the approx-
imate case, since the estimated quantities are affected by further uncertainty (injected by
the approximated model of the environment). It is worth noting that, in this case, the dif-
ference between PROJp~ and PROJ; p is more visible. Indeed, PROJ; p is less precise
than PROJ p~ (being a relaxation) and thus, when projecting i/, it trusts the approximate
model moving towards a suboptimal configuration.
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Parameter  Description

«a Angle between the car direction and the direction of the track axis.
rpm Number of rotation per minute of the car engine.
Vg Speed of the car along the longitudinal axis of the car.
Vy Speed of the car along the transverse axis of the car.
v, Speed of the car along the Z axis of the car.
track Vector of 19 range finder sensors: each sensor returns the distance between

the track edge and the car within a range of 200 meters.
trackPos  Distance between the car and the track axis.
wheelSpinVel Vector of 4 sensors representing the rotation speed of wheels.

Table 7.3: State space of the TORCS experiment.

7.6.3 Driving and Configuring with TORCS

The Open Racing Car Simulator TORCS (Wymann et al., 2000) is a simulation tool for
driving racing. TORCS has been used several times in RL (Loiacono et al., 2010; [Kout-
nik et al., 2013} [Lillicrap et al.l 2016; Mnih et al., | 2016). We modified TORCS adding the
possibility to configure the car parameters taking inspiration from the “Car Setup Competi-
tion” (Loiacono et al.;[2013). The agent’s observation is a low-dimensional representation
of the car’s sensors (including speed, focus and wheel speeds), while the action space is
composed of steering and acceleration/braking (continuous).

Environment Description The state space of the TORCS environment is composed by
29 dimensions, S < R?°. The action space is composed by 2 dimensions, A < R?: accel-
eration/brake action, where +1 indicates full acceleration and —1 full brake and steering
angle, where —1 indicates maximum left steer and +1 maximum right steer. Among all
possible parameters, in our experiments, we focused on configuring the Rear and Front
Wings and the Front-Rare Brake Repartition. All configuration parameters are normalized
in the range [0, 1]. The state space space is summarized in Table and the configuration
parameters in Table[7.4] We consider the following reward function:

r(s,a,s’) = vl - cos(a’), (7.5)

where v/, is the velocity on the longitudinal direction of the car in state s’ and ¢’ is the
angle between the car direction and the direction of the track axis. We give a penalty of
—1000 if the agent runs backward, if it goes out of track or if the progress in the race is
too small. The rationale behind this reward is to encourage the agent to go at high speed
and to stay centered with respect to the track.

Policy and Model Approximators The policy we used in the TORCS experiments is
a Gaussian Policy parameterized by a fully connected neural network with one hidden
layer with 64 neurons with tanh activations. The activation of the last layer is tanh since
actions are limited in [—1, 1]. The covariance matrix is diagonal and independent of the
state. We initialize the policy fitting, via maximum likelihood, a scripted policy (snakeoil)
using 45000 samples collected with 30 randomly generated values of the configurable
parameters.
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Parameter Description
Rear Wing Angle of the rear wing.
Front Wing Angle of the front wing.

Front-Rear Brake Repartition Repartition of the brake between the front and rear.
Front Anti-Roll Bar Front Spring.
Rear Anti-Roll Bar Rear Spring.
Front Left-Right Brake Brake disk diameter of the front wheels.
Rear Left-Right Brake Brake disk diameter of the rear wheels.

Table 7.4: Configuration space of the TORCS experiment. Underlined the parameters we
configure in the experiment.
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Figure 7.10: Expected return and episode duration as a function of the number of itera-
tions for the TORCS experiment comparing REMPS, REPS and the bot. 10 runs, 80%
C.l.

We considered a Gaussian model to approximate the dynamics of the task. The mean
network is composed of two hidden layers of 64 neurons each with tanh activation. The
covariance matrix is diagonal and independent of the state, action and, configurable param-
eters. The model fitting is performed at the beginning of learning using the same samples
employed for fitting the policy.

Experiment The goal of this experiment is to show the ability of REMPS to learn policy
and configuration in a continuous state-action space, like a car racing scenario. We con-
sider a configuration space made of three parameters: rear and front wing orientation and
brake repartition between front and rear. We start with a policy pretrained via behavioral
cloning, using samples collected with a driving bot (snakeoil). Using the same bot, we
collect a dataset of episodes with different parameter values, used to train an approxima-
tion of the environment. In Figure[7.10] we compare the Expected return and the average
lap time for REMPS (with PROJ p), in which we act on both the policy and the model,
and REPS, in which only policy learning is enabled. We can notice that REMPS is able
to reach performances larger than those achievable without configuring the environment.
In this experiment, we can appreciate another remarkable benefit of environment con-
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figurability: configuring the environment can also speed up the learning process (online
performance), as clearly visible in Figure In Figure we report the behavior of
the configurable parameters. We can notice that all parameters tend to be moved towards
zero. Indeed, a good behavior in the considered track consists of increasing the speed as
much as possible. Therefore, the orientation of the wing tends to be reduced to increase
the speed. A similar behavior is visible for the Front-Rear Brake Repartition.

7.6.4 Summary of the Experiments

The experimental evaluation confirmed the benefits of the Conf-MDP in terms of the final
performance, which can be achieved by acting on the environment configuration, in addi-
tion to the improvement of the agent’s policy. The take-home message of this evaluation
is that learning in continuous Conf-MDP poses new challenges related to the knowledge
of the transition model space and the need for parametric representations. We have shown
that REMPS is able to learn in this setting, with the limitations in performance due to
the approximation error introduced when resorting to a limited parametric representation.
Moreover, REMPS overcomes some limitations of purely gradient-based methods that
tend to be trapped in local optima. These two aspects were extensively analyzed in the
Chain Domain experiment (Section [7.6.1). Moreover, we illustrated that learning the ef-
fect of the configuration parameters on the transition probabilities can be performed during
the learning process, with acceptable degradation of the performance. This issue is exam-
ined in the Cartpole experiment (Section [7.6.2). Finally, in the TORCS experiment, we
observed that configuring the environment can have the side remarkable effect of speeding
up the learning process, in addition to increasing the final performance (Section(/7.6.3).
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CHAPTER

Policy Space Identification

8.1 Introduction

We introduced in Chapter 2] the nature of the interaction between an artificial agent and an
environment in the typical RL setting. The agent perceives the state of the environment
and performs actions that trigger an evolution of the state and generate a reward signal.
The agent aims at finding an optimal policy, i.e., a prescription of actions that maximizes a
performance index. Clearly, the performance of an agent in an environment is constrained
by its perception and its actuation possibilities, along with the ability to map observa-
tions to actions. These three elements (perception, actuation, and mapping) define the
policy space available to the agent in the learning process. Agents having access to differ-
ent policy spaces may exhibit different optimal behaviors, even in the same environment.
Therefore, the notion of optimality is necessarily connected to the space of policies the
agent can access, that we will call agent’s policy space in the following. While in tabular
RL we typically assume access to the complete (and finite) space of Markovian stationary
policies, in continuous control the policy space needs to be limited. In policy search meth-
ods (Deisenroth et al., [2013), the policies are explicitly modeled considering a parametric
function space (Sutton et al.,|{1999a; [Peters and Schaall, |2008) or a kernel space (Deisenroth
and Rasmussen, 2011}, [Levine and Koltun) [2013)); but even in value-based RL, a function
approximator induces a set of representable (greedy) policies. It is important to point out
that the notion of policy space is not just an algorithmic convenience. Indeed, the need
to limit the policy space naturally emerges in many industrial applications, where some
behaviors have to be avoided for safety reasons.
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Figure 8.1: An example of policy space modeled as a 1-layer neural network showing a
limitation in the (a) perception, (b) mapping, and (c) actuation.

The knowledge of the agent’s policy space turns out to be relevant in several fields
of RL. In the Conf-MDP framework, we have observed (Chapter ED that the best envi-
ronment configuration is intimately related to the agent’s possibilities in terms of policy
space. When the configuration activity is performed by an external supervisor, it might be
helpful to know which parameters the agent can control in order to select the most appro-
priate configuration. Furthermore, in the field of Imitation Learning (IL,|Osa et al.,[2018)),
having a grasp on the policy space of the expert’s agent, can aid the learning process of the
imitating policy, mitigating overfitting/underfitting phenomena.

Motivated by the examples presented above, we study the problem of identifying the
agent’s policy space in a Conf—MDPﬂ by observing the agent’s behavior and, possibly,
exploiting the configuration opportunities of the environment. We consider the case in
which the agent’s policy space is a subset of a known super-policy space Ilg induced
by a parameter space © < R?. Thus, any policy 7g is determined by a d-dimensional
parameter vector @ € ©. However, the agent has control over a smaller number d”*& < d
of parameters (which are unknown), while the remaining ones have a fixed value, namely
Zer0E| The choice of zero as a fixed value might appear arbitrary, but it is rather a common
case in practice. Indeed, the formulation based on the identification of the parameters
effectively covers the limitations of the policy space related to perception, actuation, and
mapping. For instance, in a linear policy, the fact that the agent does not observe a state
feature is equivalent to set the corresponding parameters to zero. Similarly, in a neural
network, removing a neuron is equivalent to neglecting all of its connections, which in turn
can be realized by setting the relative weights to zero. Figure[8.I] shows three examples of
policy space limitations in the case of a one hidden layer neural network policy, which can
be realized by setting the appropriate weights to zero.

Our goal is to identify the parameters that the agent can control (and possibly change)
by observing some demonstrations of an optimal policy 7”€ in the policy space H@E| To
this end, we formulate the problem as deciding whether each parameter 6; fori € {1, ..., d}
is zero, and we address it by means of a frequentist statistical test. In other words, we check

! Although we assume to act in a Conf-MDP, we stress that our primary goal is to identify the policy space of
the agent, rather than learning a profitable configuration in the Conf-MDP.

2By “controllable” parameter we mean a parameter whose value can be changed by the agent, while the “un-
controllable” parameters are those which are permanently set to zero. This is a way of modeling the limitations
of the policy space.

3We stress that, since we restrict the search to the policy space Ilg, /8 might be suboptimal compared to
the optimal policy in the space of Markovian stationary policies.
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whether there is a statistically significant difference between the likelihood of the agent’s
behavior with the full set of parameters and the one in which 6; is set to zero. In such a
case, we conclude that 6; is not zero and, consequently, the agent can control it. On the
contrary, either the agent cannot control the parameter or zero is the value consciously
chosen by the agent.

Indeed, there could be parameters that, given the peculiarities of the environment, are
useless for achieving an optimal behavior or whose optimal value is actually zero, while
they could prove essential in a different environment. For instance, in a grid world where
the goal is to reach the right edge, the vertical position of the agent is useless, while if
the goal is to reach the upper right corner both horizontal and vertical positions become
relevant. In this spirit, configuring the environment can help the supervisor in identifying
whether a parameter set to zero is actually uncontrollable by the agent or just useless in
the current environment. Thus, the supervisor can change the environment configuration
w € ), so that the agent will adjust its policy, possibly by changing the parameter value
and revealing whether it can control such a parameter. Consequently, the new configu-
ration should induce an optimal policy in which the considered parameters have a value
significantly different from zero. We formalize this notion as the problem of finding the
new environment configuration that maximizes the power of the statistical test and we
propose a surrogate objective for this purpose.

Chapter Outline The chapter is organized as follows. In Section[8.2] we introduce the
necessary background on likelihood ratio tests. The identification rules (combinatorial
and simplified) to perform parameter identification in a fixed environment are presented in
Section [8.3] and the simplified one is analyzed in Section Section [8.5] shows how to
improve them by exploiting the environment configurability. In Section[8.6 we present the
connections between policy space identification and existing works in the literature. The
experimental evaluation, on discrete and continuous domains, is provided in Section
Besides studying the ability of our identification rules in identifying the agent’s policy
space, we apply them to the IL and Conf-MDP frameworks. The results and proofs not
reported in this chapter can be found in Appendix

8.2 Generalized Likelihood Ratio Test

The Generalized Likelihood Ratio test (GLR, Barnard, [1959; |Casella and Berger, [2002))
aims at testing the goodness of fit of two statistical models. Given a parametric model
having density function p(-|@) with @ € ©, we aim at testing the pair of hypothesis:

Ho : 0% € O vs Hi : 7% € ©\O,,

where © C O is a subset of the parametric space. Given a dataset D = {X i}?zl sampled
independently from p(-|§"€), where ”€ is the true parameter, the GLR statistic is:

| SDaeo, (p(DIO)} _ SPoce, {£(6)] 8.1
WPco (PP} supyeq {£(6)} '
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where the likelihood function is defined as:

n

p(D|0) = L(8) = | [ p(Xil6).

i=1

Moreover, we denote with ?(0) = —log EA(B) the negative log-likelihood function, 8 €
arg maxg.e{L(6)} and 6 € arg maxg.q, {L(6)}, i.¢., the maximum likelihood solutions
in © and O respectively. Moreover, we define the expectation of the likelihood under the
true parameter: £(0) = Ex. . om0 [2(0)] As the maximization is carried out employing
the same dataset D and recalling that ©y — O, we have that A € [0, 1]. It is usually
convenient to consider the logarithm of the GLR statistic:

~ A~

A= —2logA =2 (2(50) - f(o)) .

Therefore, Hg is rejected for large values of ), i.e., when the maximum likelihood pa-
rameter searched in the restricted set © significantly underfits the data D, compared to
O. Wilk’s theorem provides the asymptomatic distribution of A when H is true (Wilks|
1938 |Casella and Berger} |2002).

Theorem 8.1 (Casella and Berger (2002), Theorem 10.3.3). Let d = dim(0) and dy =
dim(©g) < d. Under suitable regularity conditions (see|Casella and Berger|(2002) Sec-
tion 10.6.2), if Hg is true, then when n — +00, the distribution of A tends to a X2 distri-
bution with d — dy degrees of freedom.

The significance of a test « € [0, 1], or type I error probability, is the probability to
reject Ho when H is true, while the power of a test 1 — 5 € [0, 1] is the probability to
reject Ho when H, is false, /3 is the type II error probability.

8.3 Policy Space Identification in a Fixed Environment

As we introduced in Section[8.1] we aim at identifying the agent’s policy space, by observ-
ing a set of demonstrations coming from the optimal policy in the considered policy space
7 € Tgf|only, ie, D = {(S;, A;)}?, where S; ~ v and A; ~ 7°8(-|S;) sampled
independently. v € Z(S) is a sampling distribution over the state space. Although we
will present the method for a generic v, in practice we employ as v the -discounted sta-
tionary distribution uZYTAg induced by 7€ (Sutton et al., 1999a). We assume that the agent
has control over a limited number of parameters d*¢ < d whose value can be changed dur-
ing learning, while the remaining d — d”# are kept fixed to zero Given a set of indexes
I < {1,...,d} we define the subset of the parameter space:

O, ={0cO©:0,=0,Vie{l, .. d\I}.

“It is important to stress 778 is one of the possibly many optimal policies within the policy space I1g, which
might be unable to represent the optimal Markovian stationary policy. Furthermore, we do not explicitly report
the dependence on the agent’s parameter 8”8 € © as, in the general case, there might exist multiple parameters
yielding the same policy 7",

5The extension of the identification rules to (known) fixed values different from zero is straightforward.
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Thus, the set I represents the indexes of the parameters that can be changed if the agent’s
parameter space were O;. Our goal is to find a set of parameter indexes /"€ that are
sufficient to explain the agent’s policy, i.e., T8 € le,,, but also necessary, in the sense
that when removing any i € "€ the remaining ones are insufficient to explain the agent’s
policy, i.e., mhe ¢ H@I ps (i) We formalize these notions in the following definition.
Definition 8.1 (Correctness). Let 7°¢ € Tlg. A set of parameter indexes I*8 < {1,...,d}
is correct w.r.t. w8 if:

Ag ; Ag . _Ag
ntellg,, AViel™ m ¢H91Ag\m.

We denote with T8 the set of all correct set of parameter indexes I"€.

Thus, there exist multiple /¢ when multiple parametric representations of the agent’s
policy 7”& are possible. The uniqueness of 1”& is guaranteed under the assumption that
each policy admits a unique representation in Ilg, i.e., under the identifiability assumption.

Assumption 8.1 (Identifiability). The policy space Ilg is identifiable, i.e., for all 0,0’ €
O, we have that if mg(-|s) = e (+|s) almost surely for all s € S then 8 = 6’

The identifiability property allows rephrasing Definition in terms of the policy
parameters only, leading to the following result.

Lemma 8.2 (Correctness under Identifiability). Under Assumption let 0" € © be the
unique parameter such that Tgns(-|s) = 7°(-|s) almost surely for all s € S. Then, there
exists a unique set of parameter indexes I"8 < {1, ..., d} that is correct w.r.t. 7€ defined
as:

e = {z € {1,..d} : 075 # 0}.
Consequently, T"8 = {I"8}.

Proof. The uniqueness of I is ensured by Assumption Let us rewrite the condition of Defini-

tion[8.7Junder Assumption

"8 e H@IAg A Vie I8 phe ¢ Ilo

18\ {4}
= 0% e AViel™:0%¢0un, (P.1)
— Viel™: 0720 A Vie{l,. ., d\[®:0/%=0 (P2)

— = {ie{l,...,d} WA ;eo},

where line follows since there is a unique representation for 7€ determined by parameter 6
and line (P2) is obtained from the definition of ©;. O

Remark 8.1 (About the Optimality of 7°€). We started this section stating that 7€ is
an optimal policy within the policy space 1lg. This is motivated by the fact that typically
we start with an overparametrized policy space Ilg and we seek for the minimal set of
parameters that allows the agent reaching an optimal policy within 1lg. However, in
practice, we usually have access to an e-optimal policy T8, meaning that the performance
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of ™X8 is e-close to the optimal performance.E] Nevertheless, the notion of correctness
(Definition makes no assumptions on the optimality of ™. If we replace & with
728 we will recover a set of parameter indexes I™® that is, in general, different from 118,
but we can still provide some guarantees. If I"8 < I8, then I7® is sufficient to explain
the optimal policy 7, but not necessary in general (it might contain useless parameters
for ™). Instead, if I"® & IA8, then I"® is not sufficient to explain the optimal policy T"€.
In any case, I™® is necessary and sufficient to represent, at least, an e-optimal policy.

The following two subsections are devoted to the presentation of the identification
rules based on the application of Definition [8.1] (Section [8.3.1) and Lemma [8.2] (Sec-
tion when we only have access to a dataset of samples D. The goal of an iden-
tlﬁcatlon rule consists in producing a set I approximating Z”¢. The idea at the basis
of our identification rules consists in employing the GLR test to assess the correctness
(Definition [8:T]or Lemma[8.2) of a candidate set of indexes.

8.3.1 Combinatorial Identification Rule

In principle, using D = { (Si, A;) -, we could compute the maximum likelihood param-
eter 0 € arg maxee@{ﬁ( )} and employ it with Definition However, this approach
has, at least, two drawbacks. First, when Assumption @] is not fulfilled, it would pro-
duce a single approximate parameter, while multiple choices might be viable. Second,
because of the estimation errors, we would hardly get a zero value for the parameters the
agent might not control. For these reasons, we employ a GLR test to assess whether a
specific set of parameters is zero. Specifically, for all I < {1, ..., d} we consider the pair
of hypotheses:

7‘[07] : 7'('/_\g EH@I VS Hl,I : 71'Ag € H@\@I

and the GLR statistic is given by:

SUPgeco, {5(0)} - R .
supgeo {£0)} =2 (60 ~1®). 82)

where the likelihood is defined as:

Ar = —2log

n

L(6) = ] [ro(AilSy),

i=1

and the maximum likelihood solutions are defined as 8; € arg maXg.g, {[1(0)} and 6 €

arg MaXgeg {E(B)} respectively. We are now ready to state the identification rule derived
from Definition .11

Identification Rule 8.1. 7he combinatorial identification rule with threshold function
{ci}d selects 7. containing all and only the sets of parameter indexes I {1,...,d}
such that:

A1 <O A ViEI:)\[\{i} > -1 (8.3)

SWe can also look at 7r€Ag as the optimal policy within I1g for a different MDP M, that is an approximation
of the original MDP M.
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Algorithm 8.1: Identification Rule [8.1] (Combinatorial).

Input: dataset D, parameter space ©, threshold function ¢ (e.g., ¢; = XZQ.lf s /2d)

Output: approximate set of correct sets of parameter indexes 7.
Ze < {}
L= maxgee {5(9)}
for I < {1, ..., d} sorted by cardinality do
21 = maxegeo, {2(9)}
Ar = —2log %
if\r <c¢pandViel : Apgy > ¢r—1 then

~

7 | Z. < Z.u i}

[

(]

w

'S

N w

8 return Z.

Thus, I is defined in such a way that the null hypothesis H  is not rejected, i.e., I
contains parameters that are sufficient to explain the data D, and necessary since for all
i € I the set I\\{i} is no longer sufficient, as Hy p\(;y is rejected. The threshold function
¢y, that depends on the cardinality [ of the tested set of indexes, controls the behavior
of the tests. In practice, we recommend to set them by exploiting the Wilk’s asymptotic
approximation (Theorem[8.T)) to enforce (asymptotic) guarantees on the type I error. Given
a significance level § € [0, 1], since for Identification Rule [8.1| we perform 2¢ statistical
tests by using the same dataset D, we partition § using Bonferroni correction and setting
c = XIQ,l— 5/20> where Xl%* is the *-quantile of a chi square distribution with [ degrees of

freedom. Refer to Algorithm|8.1for the pseudocode of the identification procedure!/]

8.3.2 Simplified Identification Rule

Identification Rule is hard to be employed in practice, as it requires performing O(2%)
statistical tests. However, under Assumption to retrieve 7”¢ we do not need to test all
subsets, but we can just examine one parameter at a time (see Lemma [8.2)). Thus, for all
i € {1, ..., d} we consider the pair of hypotheses:

Hoi: 0085 =0 vs  Hy;:008#0,

7

and define the set of parameters:
0,={0e€0 :0,=0}.

The GLR test can be performed straightforwardly, using the following statistic:

SUPgeo, {5(9)} ~ ~
A= —2log —— - =2 ((8:) - 1(9)), (84)
SUPgeco {5(0)}
TThe algorithm is designed to output all the sets of controllable parameters explaining the behavior demon-

strated by the agent. Clearly, within the set fc we could select the “most reliable” set, i.e., the one with maximum
value of the likelihood function.
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Algorithm 8.2: Identification Rule[8.2](Simplified).

Input: dataset D, parameter space O, threshold function ¢ (e.g., c1 = X12,1—5 /a)

Output: approximate correct set of parameter indexes {f c}
1 I —{}

L= maxeco {2(0)}
forie {1,...,d} do

4 EAZ = maxeco, {5(0)}
5 Ai = —2log %

if \; > c; then

7 | I« Lo {i}

(5]

“w

N

return {IAC}

o«

where the likelihood is defined as £(6) = [T, me(A;ilS:), 0 ; = arg MaXgee, (L£(6)}

and 6 = arg maxgeo{ﬁ }I In the spirit of Lemma | we define the following identi-
fication rule.

Identification Rule 8.2. The simplified identification rule with threshold function c se-
lects I containing the unique set of parameter indexes I such that:

I={ie{l,...d}: )\ >c1}. (8.5)

Therefore, the identification rule constructs IAC by taking all the indexes i € {1, ..., d}
such that the corresponding null hypothesis Hg; : 0?’% = 0 is rejected, i.e., those for
which there is statistical evidence that their value is not zero. Similarly to the combinatorial
identification rule, we recommend setting the threshold function c¢; based on the Wilk’s
approximation. Given a significance level ¢ € [0, 1], since we perform d statistical tests,
we employ Bonferroni correction and we set ¢; = xl 1-6/d" Refer to Algonthm H for
the pseudocode of the identification rule.

This second procedure requires a test for every parameter, i.e., O(d) instead of O(29)
tests. However, it comes with the cost of assuming the identifiability property. What
happens if we employ this second procedure in a case where the assumption does not
hold?

Example 8.1. Consider for instance the case in which two parameters 01 and 03 are
exchangeable, we will include none of them in I as, individually, they are not necessary
to explain the agent’s policy, while the pair (01,02)7 is indeed necessary. We will discuss
how to enforce identifiability (Assumption [8.1)), for the case of policies belonging to the
exponential family, in the following section.

Remark 8.2 (On Frequentist and Bayesian Statistical Tests). In this work, we restrict our
attention to frequentist statistical tests, but, in principle, the same approaches can be ex-
tended to the Bayesian setting (Jeffreys, [1935)). Indeed, the GLR test admits a Bayesian

8This setting is equivalent to a particular case the combinatorial rule in which Hayi = Ha(1,...,d3\{i}» With
* € {0, 1} and, consequently, A; = A1 api) and ©; = Oy ay\ (i)
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counterpart, known as the Bayes Factor (BF, |Goodman, |1999; |Morey et al.| 2016). We
consider the same setting presented in Section in which we aim at testing the null
hypothesis Hy : 0" ¢ O, against the alternative H; : 0" O\Og. We take the
Bayesian perspective, looking at each 6 not as an unknown fixed quantity but as a realiza-
tion of prior distributions on the parameters defined in terms of the hypothesis: p(0|H.)
for = € {0,1}. Thus, given a dataset D = {X;};_,, we can compute the likelihood of D
given a parameter 6 as usual: p(D|0) = []_, p(X;|0). Combining the likelihood and
the prior, we define the Bayes Factor as:

_ p(D|Ho) _ o P(DIO)p(6]Ho) d6
p(DIH1)  §gp(D|6) p(6|H:) A0

likelihood ~ prior

ABF

The Bayesian approach has the clear advantage of incorporating additional domain knowl-
edge by means of the prior. Furthermore, if also a prior on the hypothesis is available
p(H.) for x € {0, 1} it is possible to compute the ratio of the posterior probability of each
hypothesis:

p(Ho|D) _ p(DIHo) p(Ho)
p(Ha|D)  p(DIH1)  p(H) -

posterior ratio Bayes factor  prior ratio

Compared to the GLR test, the Bayes factor provides richer information, since we can
compute the likelihood of each hypothesis, given the data D. However, like any Bayesian
approach, the choice of the prior turns out to be of crucial importance. The computa-
tionally convenient prior (which might allow computing the integral in closed form) is
typically not correct, leading to a biased test. In this sense, GLR replaces the integral
with a single-point approximation centered in the maximum likelihood estimate. For these
reasons, we leave the investigation of Bayesian approaches for policy space identification
as future work.

8.4 Analysis for the Exponential Family

In this section, we provide an analysis of the Identification Rule 8.2 for a policy g linear
in some state features ¢ that belongs to the exponential familye section is organized
as follows. We first introduce the exponential family, deriving a concentration result of
independent interest (Theorem [8.4), and then we apply it for controlling the identification
errors made by our identification rule (Theorem [8.5). We provide in the following an
overview of the main results, while we defer to the Appendix[A.3|the complete derivation.

8.4.1 Exponential Family

We refer to the definition of exponential family given in [Brown|(1986).

9We limit our analysis to Identification Rulesince we will show that, in the case of linear policies belong-
ing to the exponential family, the identifiability property can be easily enforced.
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Policy Gaussian Boltzmann
A aERk aie{al,...,akH}
5T e
. . L ifi<k
- 1 o 5@-0b()TE " a—0g(s)) ) 145k, % )
%
(27) % det(%)? — . ifi=k

1+Zj?zleéjT¢(S)

ei@¢(s) ifi<k

0 ifi=Fk+1
1 —1aTy—1,

(27)% det ()2

t S la® ¢(s)

Table 8.1: Action space A, probability density function 7y, sufficient statistic t, and func-
tion h for the Gaussian linear policy with fixed covariance and the Boltzmann linear

~ ~T
policy. For convenience of representation @ € R¥*9 is a matrix and @ = vec(0 ) €
R?, with d = kq. We denote with e; the i-th vector of the canonical basis of RF and
with & the Kronecker product.

Definition 8.2 (Exponential Family). Let ¢ : S — R? be a feature function. The policy
space Ilg is a space of linear policies, belonging to the exponential family, if © = R? and
all policies mg € llg have probability density function of the form:

me(als) = h(a) exp {OTt (s,a) — A(0, 5)} , (8.6)

where h is a positive function, t (s, a) is the sufficient statistic depending on the state via
the features ¢, i.e., t (s, a) = t(¢(s),a), and A(8,s) = log | , h(a) exp{0”t(s,a)}da is
the log partition function. We denote with t(s,a,8) = t(s,a) —Ez_. |, [t(s, A)] the
centered sufficient statistic.

This definition allows modeling the linear policies that are often used in RL (Deisen-
roth et all [2013). Table shows how to map the Gaussian linear policy with fixed
covariance, typically used in continuous action spaces, and the Boltzmann linear policy,
suitable for finite action spaces, to Definition[8.2] The complete derivation is reported in
Appendix [B.T).

For the sake of the analysis, we enforce the following assumption concerning the tail
behavior of the policy .

Assumption 8.2 (Subgaussianity). Forany 6 € © and for any s € S the centered sufficient

statistic t(s, a, 0) is subgaussian with parameter o > 0, i.e., for any o € R%:

A~E(-|s) [exp {at(s, A,0)}] < exp {; |2 02} :

The subgaussianity property is easily met by the Gaussian and Boltzmann policies.
Proposition of Appendix proves that, when the features are uniformly bounded,
ie., [|¢(s)], < Pmax for all s € S, Assumption [8.2]is fulfilled by both Boltzmann and
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Gaussian linear policies with parameter o = 2P, and 0 = Ppax/A/ Amin (2) respec-
tively.

Furthermore, limited to the policies complying with Definition the identifiability
(Assumption[8.T)) can be restated in terms of the Fisher Information Matrix (FIM, Rothen-
bergl (1971} LLittle et al., 2010).

Lemma 8.3 (Rothenberg| (1971), Theorem 3). Let Ilg be a policy space, as in Defini-
tion[8.2] Then, under suitable regularity conditions (see Rothenberg| (1971)), if the Fisher
Information matrix (FIM) F(0):

FO)= E [t(S, A 005 4,0)] (8.7)

~v
A~Tg(:|s)

is non-singular for all @ € ©, then llg is identifiable. In this case, we denote with Apin =
infpee {Amin (F(0))} > 0.

Proposition[B.2]of Appendix[B.2]shows that a sufficient condition for the identifiability
in the case of Gaussian and Boltzmann linear policies is that the second moment matrix of
the feature vector Eg., [¢(S)#(S)” ] is non-singular along with the fact that the policy
e plays each action with positive probability for the Boltzmann policy.

Remark 8.3 (How to enforce identifiability?). Requiring that Eg, [¢(S)@(S)T] is full
rank is essentially equivalent to require that all features ¢; are linearly independent for
all i € {1,...,d}. This condition can be easily met with a preprocessing phase that re-
moves the linearly dependent features, for instance by employing Principal Component
Analysis (Jolliffe, |2011)). For this reason, in our experimental evaluation, we will always
consider the case of linearly independent features.

We are now ready to present a concentration result, of independent interest, for the
parameters and the negative log-likelihood that represents the central tool of our analysis.

Theorem 8.4. Under Assumption (8.1| and Assumption let D = {(S;, Ai)}y be a

dataset of n > 0 independent samples, where S; ~ v and A; ~ mgas(+]S;). Let @ =
arg ming.o {£(0)} and 6% = arg ming o {¢(0)} . If the empirical FIM:

F(8) = Zl AWE_‘&) [€(S:, A,0)t(S:,A,0)7] (8.8)

S|

has a positive minimum eigenvalue S\min > 0 for all @ € O, then, for any ¢ € [0, 1], with
probability at least 1 — ¢ it holds that:

~ 2. 2d
0—0AgH <2y P10g 22
H 2 A n 875

m

Furthermore, with probability at least 1 — 0, it holds that, individually:

0(0) — 1(6"¢ < = log — and
0 -0 < 557w
~ Aot 2d
Agy _ log ==
0(078) — £(0) < S\fninn og 5
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Proof Sketch. The idea of the proof is to first obtain a probabilistic bound on the parameter differ-

ence in norm H@ — OAgH . This result is given in Theorem |A.14] Then, we use the latter result
2

together with Taylor expansion to bound the differences Z(é) — £(6%¢) and 0 (0"¢) — Z(@), as in
Corollary [A.T3] The full derivation can be found in Appendix[A.31] O

The theorem shows that the Lo-norm of the difference between the maximum likeli-
hood parameter 6 and the true parameter 6 A& concentrates with rate O(n~1/?) while the
likelihood 7 and its expectation £ concentrate with faster rate O(n~!). Note that the result
assumes that the empirical FIM F (0) has a strictly positive eigenvalue Xmin > 0. This
condition can be enforced as long as the true Fisher matrix F (@) has a positive minimum
eigenvalue Ay, i.e., under identifiability assumption (Lemmaf8.3)) and given a sufficiently
large number of samples. Proposition[B.6]of Appendix @]provides the minimum number
of samples such that with high probability it holds that A\p,;,, > O.

8.4.2 Identification Rule Analysis

We are now ready to start the analysis of Identification Rule[8.2] The goal of the analysis is,
informally, to bound the probability of an identification error, as a function of the number
of samples n and the threshold function c;. For this purpose, we define the following
quantities.

Definition 8.3. Consider an identification rule producing I as approximate parameter
index set. We define the significance o and the power 1 — (3 of the identification rule as:

:P(Hi¢lAg:ief),
B:P(HieIAg:i¢f).

Thus, « represents the probability that the identification rule selects a parameter that
the agent does not control, whereas [ is the probability that the identification rule does not
select a parameter that the agent does control@] By employing the results we derived for
the exponential family (Theorem [8.4) we can now bound « and /3.

Theorem 8.5. Let I, ¢« be the set of parameter indexes selected by the Identification Rule
obtained using n > 0 i.i.d. samples collected with mgne, With 0" c o. Then, under
Assumptionand Assumption let O?g = argming.g {£(0)} for all i € {1,...,d}

and £ = min{l, A;“g“ } Imein > ;% and E(OiAg) — E(OAg) cy, it holds that:

Cl)\mln
a < 2d exp{ W
(ﬁ(efg) — (6% — cl) Aminén
< — —
B<(2d-1) Z exp T6(d — 1)%0?

ielhe

10We use the symbols « and 3 to highlight the analogy between these probabilities and the type I and type I
error probabilities of a statistical test.
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Proof Sketch. Concerning o = P (Eli ¢I%® e fc), we employ a technique similar to that of
Lemma 2 in (Garivier and Kaufmann, [2019) to remove the existential quantification. Instead, for
B8 =P (Eli eI . i¢ fc) we first perform a union bound over i € I”® and then we bound the

individual P (z ¢ f) The full derivation can be found in Appendix 0

In principle, we could employ Theorem|[8.5]to derive a proper value of ¢; and n, given
a user-defined value of o and . Unfortunately, their expressions depend on A,;, which
is unknown in practice. As already mentioned in the previous sections, we recommend
employing the Wilk’s asymptotic approximation to set the threshold function as ¢; =
1 — 40/d. This choice allows an asymptotic control of the significance of the identification
rule.

Theorem 8.6. Let I, < be the set of parameter indexes selected by the Identification Rule
obtained using n > 0 i.i.d. samples collected with Tgne, With 08 € ©. Then, under

suitable regularity conditions (see |Casella and Bergen (2002) Section 10.6.2), if ¢ =
Xl21—6/d it holds that o < § when n — +o0.

Proof. Starting from the definition of ¢, we first perform a union bound over i ¢ "¢ to remove the
existential quantification.

a=P(3i¢1Ag:iefC)=P \iel|< Y P(iefc).
igIA8 ig¢IA8

Now, we bound each P (z el C) individually, recalling that ); is distributed asymptotically as a x2
distribution with 1 degree of freedom and that ¢1 = x1,1-s/4-

]P)(Zefp> =P(AZ > X1,175/d) — g, n — 0.
Thus, we have that when n — +00:
_ JPs
a<d dd 0 < 4. P.3)

O

8.5 Policy Space Identification in a Configurable Environment

The identification rules presented so far are unable to distinguish between a parameter
set to zero because the agent cannot control it, or because zero is its optimal value. To
overcome this issue, we employ the Conf-MDP properties to select a configuration in
which the parameters we want to examine have an optimal value other than zero. More
formally, like in Chapter[7] we consider a class of parametric Conf-MDPs whose transition
model P, is parametrized in w € {2 € R%. We denote with J (6, w) forevery 8, w € O xQ
the expected return of executing policy 7g with the transition model P,,.

Intuitively, if we want to test whether the agent can control parameter ¢;, we should
place the agent in an environment w; € () where 6; is “maximally important” for the
optimal policy. This intuition is justified by Theorem 8.5] since to maximize the power of
the test (1 — ), all other things being equal, we should maximize the log-likelihood gap
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14 (H?g) — £(6"#), i.e., parameter 0; should be essential to justify the agent’s behavior. Let
I < {1,...,d} be a set of parameter indexes we want to test, our ideal goal is to find the
environment w; such that:

wj € arg max {K(G?g(w)) — €(0Ag(w))} ) (3.9

weN

where 0°8(w) € argmaxg.g{J(0,w)} and O?g(w) € argmaxgg,{.J(0,w)} are the
parameters of the optimal policies in the environment P,, considering Ilg (the full policy
space) and Ilg, (the policy space in which 6, is fixed to zero) as policy spaces respectively.
Clearly, given the samples D collected with a single optimal policy mgag () in a single
environment P, , solving problem in Equation is hard as it requires performing an
off-distribution optimization both on the space of policy parameters and configurations.
For these reasons, we consider a surrogate objective that assumes that the optimal param-
eter in the new configuration can be reached by performing a single gradient stepE-]

Theorem 8.7. Let I € {1,....d} and I = {1,...,d}\I. For a vector v € RY, we denote
with v|; the vector obtained by setting to zero the components in I. Let 0”%(w) € © the
initial parameter. Let o > 0 be a learning rate, O?g(w) = 0 + aVeJ (0" (wo),w)|
and 0™ (w) = 0y + aVeJ (0”8 (wp),w). Then, underAssumption we have:

A

00" (w)) — (0" (w)) = L‘“O‘ HVQJ (0”& (wy), w)|7 H

Proof. By second-order Taylor expansion of £ and recalling that V¢£(8”8(w)) = 0, we have:

)\min
2

0% (wo) + aVeJ (8" (wo), w)|r — 0% (wo) — aVeJ (6™ (wo), w)HZ

UO7F(w)) — L(0%(w)) >

)\min
2

0 (w) — 0" (w) |

2

Amlna

= 225 Vo0 o) i,
O

Thus, we maximize the Lo-norm of the gradient components that correspond to the
parameters we want to test. Since we have at our disposal only samples D collected with
the current policy mgag(,,,) and in the current environment wy, we have to perform an off-
distribution optimization over w. To this end, we employ an approach analogous to that
of (Metell1 et al., [2018b), as introduced in Section where we optimize the empirical
version of the objective with a penalization that accounts for the distance between the
distribution over trajectories:

Crlwfoon) = | 90 (0% (w0), w/wo)l].

gradient estimator

ToAg (w) L ToAs (wy) T wo
Zv”d( e ),

(8.10)

""This idea shares some analogies with the adapted parameter in the meta-learning setting (Finn et al.l2017).
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Algorithm 8.3: Identification Rule (Simplified) with Environment Configu-
ration.
Input: parameter space O, configuration space 2, threshold function ¢;, number of
configuration attempts Nconf R
Output: approximate correct set of parameter indexes {I.}
1 Initialize wq arbitrarily

2 Collect Dy observing Wég in environment P,

3 Run the Identification Ruleon Dy and obtain fo
T—1,

forie{1,..,d}:i¢ Ido

-

5
6 Wi 0 < Wo

7 'D-;,o <« Do

3 for j =1, ..., Neonr do

9 Optimize Cy;) (w/w;,j—1) getting w;j

10 Collect D; ; observing 7TA in environment P, ;

11 Run the Identification Ruleon D;,; and obtain I, i
12 T<T U I1 .

return {1}

-
w

Ag T gAg P .
where ¢ > 0 is a regularization parameter and d (]P’ %8 T “ |, o 0) is the

Rényi divergence between the length ¢ trajectory distributions. This penalization term
favors configurations w not too far away from w,. We assume to have access to a dataset of
trajectories D = {7;}"_; independently collected using policy T9As (o) IN the environment
P,,,. Using D, we can estimate the gradient:

1 U pw Ti, I‘Sﬂ, 7AT,,') -
Vo (6,w/wy) = 5; ;) V'R, 4 1_[ Ll L N Vg log g (Ar, j1Sr ) -

-0 Puo (S7;,5+1157:,5, Ari 5) 720
1

importance weight

The expression is obtained starting from the well-known G(PO)MDP gradient estimator
(Section[3.3.1)) and adapting for off-distribution estimation, by introducing the importance
weight (Metell: et al.| |2018b). The dissimilarity penalization term corresponds to the 2-
Rényi divergence (Rényi, [1961) that is estimated as the second moment of the importance
weight:

ni:l t=1 pwo(S'ri,t—H‘Sn,taAn,t)

n T 2
&\2 (P:QAg(w0)7Pw HP:BAE(MO)7Pwn) _ l Z < Pw(Sn,t+1|Sri,t, An,t) >
We refer the reader to Section[3.3.2]and to (Metelli et al., 2018b| [2020b) for the theoret-
ical background behind the choice of this objective function. We report the pseudocode of
the identification procedure in a configurable environment for the Identification Rule
in Algorithm [8.3] while the pseudocode for Identification Rule [8.2]is reported in Algo-
rithm 8.4
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Algorithm 8.4: Identification Rule 8.1] (Combinatorial) with Environment Con-
figuration.

Input: parameter space ©, configuration space {2, threshold function ¢, number of
configuration attempts Neont R
Output: approximate set of correct sets of parameter indexes Z.
1 Initialize wg arbitrarily
2 Collect Dy observing wg % in environment P,

3 Run the Identification Ruleon Do with &’ and get Zo

4 T «— 71

sfor/c{l,...d}:1¢7do

6 Wi,0 < Wo

7 Dio < Do

8 for j =1,..., Neonr do

9 Optimize C;(w/w;,j—1) getting w;,;

10 Collect D; ; observing 7riA5 in environment P, ;

1 Run the Identification Ruleon D;,; and obtain i j
12 T—Tul,

13 return 7

8.6 Connections with Existing Work

The idea of identifying the policy parameters a learning agent can control by observing
its behavior by employing a statistical test, to the best of our knowledge, has not been ex-
plored in the literature yet. We believe that this abstract problem is by itself of interest for
understanding the capabilities of the agent in terms of perception, actuation, and mapping.
Furthermore, knowing the parameters an agent can control can help other subfields of RL.
In this section, we discuss how policy space identification can be beneficial for Imitation
Learning (IL,|Osa et al.| 2018], Section [8.6.T)) algorithms and help a supervisor acting in a
Conf-MDP (Section[8.6.2).

8.6.1 Connections with Imitation Learning

IL is the framework in which an agent learns a policy by observing an expert, i.e., an
agent playing a (near) optimal policy. Selecting the parameters that an agent can control
can be interpreted as applying a form of regularization to the problem of imitating the ex-
pert. In the IL literature, a widely used technique is based on entropy regularization (Neu
et al.l 2017), which was employed in several successful algorithms, such as Maximum
Causal Entropy IRL methods (MCE, Ziebart et al.,[2008, [2010), and Generative Adversar-
ial IL (Ho and Ermonl 2016). Alternatively, other approaches aim at enforcing a sparsity
constraint on the recovered policy parameters (e.g., [Lee et al.l [2018; Reddy et al., [2019;
Brantley et al., 2020). In the field of IL, we believe that policy space identification could
help to prevent possible over/underfitting phenomena. Indeed, knowing the expert’s policy
space means knowing a suitable hypothesis space in which to look for the imitating policy.
While the methods mentioned above state the IL problem at a policy level, i.e., finding an
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imitating policy, IRL has the goal of recovering a reward function that explains the expert’s
choices (Ng and Russelll 2000). The reward is known to be a more succinct and transfer-
able representation of the optimal behavior than the optimal policy. The identification of
the parameters controlled by the agent can help to understand which class of objectives
the agent is actually able to optimize, with possible benefits in the reward reconstruction
phase. More directly, the IRL approaches based on the policy gradient (e.g., [Pirotta and
Restelli, 2016; Metelli et al., [2017} [Tateo et al., 2017;|Ramponi et al., 2020; Metelli et al.|
2020c) require a parametric representation of the expert’s policy, whose choice might af-
fect the quality of the recovered reward function.

8.6.2 Connections with Configurable Markov Decision Processes

The knowledge of the agent’s policy space could be of crucial importance when the learn-
ing process involves the presence of an external supervisor. As intuition suggests, the best
environment configuration is closely related to the agent’s capabilities in terms of policy
space. For instance, in a car racing problem, the best car configuration depends on the car
driver and has to be selected, by a track engineer (the supervisor), according to the driver’s
skills. Thus, the external supervisor has to be aware of the agent’s policy space to select
the most appropriate configuration.

It is worth emphasizing that we use the Conf-MDP notion for two purposes. First, we
propose the problem of learning the optimal configuration in a Conf-MDP as a motivating
example in which the knowledge of the policy space is valuable. Second, we use the
environment configurability as a tool to improve the identification of the policy space.

8.7 Experimental Results

In this section, we present the experimental results, focusing on three aspects of policy
space identification.

e In Section we provide experiments to assess the quality of our identification
rules in terms of the ability to correctly identifying the parameters controlled by the
agent.

e In Section we focus on the application of policy space identification to IL,
comparing our identification rules with commonly employed regularization tech-
niques.

* In Section [8.7.3] we consider the Conf-MDP framework and we show how prop-
erly identifying the parameters controlled by the agent allows learning better (more
specific) environment configurations.

The complete experimental campaign, together with the implementation details and the

hyperparameter values can be found in Metelli et al.|(2019c¢).

8.7.1 Identification Rules Experiments

In this section, we provide two experiments to test the ability of our identification rules in
properly selecting the parameters the agent controls in different settings. We start with an
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experiment on a discrete grid world to highlight the beneficial effects of environment con-
figuration in the parameter identification. Then, we provide an experiment on a simulated
car driving domain in which we compare the combinatorial and the simplified identifica-
tion rules.

Discrete Grid World The grid world environment is a simple representation of a two-
dimensional world (5 x5 cells) in which an agent has to reach a target position by moving
in the four directions. Whenever an action is performed there is a small probability of
failure (0.1) triggering a random action. The initial position of the agent and the target
position are drawn at the beginning of each episode from a Boltzmann distribution fig .
The agent plays a Boltzmann linear policy mg with binary features ¢ indicating its current
row and column and the row and column of the goalF_T] For each run, the agent can con-
trol a subset "€ of the parameters 6 ;s associated with those features, which is randomly
selected. Furthermore, the supervisor can configure the environment by changing the pa-
rameters w of the initial state distribution Mo,wEI Thus, the supervisor can induce the
agent to explore certain regions of the grid world and, consequently, change the relevance
of the corresponding parameters in the optimal policy.

The goal of this set of experiments is to show the advantages of configuring the envi-
ronment when performing the policy space identification using rule[8.2} Figure [8.2]shows
the empirical & and B, i.e., the fraction of parameters that the agent does not control that
are wrongly selected and the fraction of those the agent controls that are not selected re-
spectively, as a function of the number m of episodes used to perform the identification.
We compare two cases: conf where the identification is carried out by also configuring
the environment, i.e., optimizing Equation @, and no-conf in which the identification
is performed in the original environment only. In both cases, we can see that & is almost
independent of the number of samples, as it is directly controlled by the threshold function
c;. Differently, B decreases as the number of samples increases, i.e., the power of the test
1—- B increases with m. Remarkably, we observe that configuring the environment gives a
significant advantage in understanding the parameters controlled by the agent w.r.t. using
a fixed environment, as B decreases faster in the conf case. This phenomenon also justifies
empirically our choice of objective (Equation (8.10)) for selecting the new environment.

Simulated Car Driving We consider a simple version of a car driving simulator, in
which an agent has to drive a car to reach the end of the track without running off the road.
The control directives are the acceleration and the steering, and are expressed through
a two-dimensional bounded action space. The car has four sensors oriented in different
directions: —g, —%, %, % w.r.t. the axis pointing toward the front of the car. The values
of these sensors are the normalized distances from the car to the nearest road margin along
the direction of the sensor, or the maximum value if the margin is outside the range of
the sensor. The complete set of state features is made up of the normalized car speed
and the values of the four sensors. In the experiments, the agent has access to the speed
s

and the sensor at angles ¢ and 7. The track consists of a single road segment with a

12The features are selected to fulfill Lemma

13 Although in our Conf-MDP definition we Iimit the configurability part of the environment to the transition
model, assuming that also the initial state distribution can be configured is not an issue. Indeed, it is always
possible to define an MDP in which the effect of the initial state distribution is included in the transition model.
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Figure 8.2: Discrete Grid World: @ and 8 Figure 8.3: Simulated Car Driving: frac-

error for conf and no-conf cases vary- tion of correct identifications varying
ing the number of episodes. 25 runs the number of episodes. 100 runs 95%

fixed curvature. The rewards are given proportionally to the speed of the car, i.e., greater
speeds yield higher rewards. The episode finishes when the car goes outside the road, and
a negative reward is given in this case, when the track is completed, or when a maximum
number of time steps is elapsed.

The purpose of this experiment is to show a case in which the identifiability assump-
tion (Assumption[8.1)) may not be satisfied. The policy g is modeled as a Gaussian policy
whose mean is computed via a single hidden layer neural network with 8 neurons. Some
of the sensors are not available to the agent, our goal is to identify which ones the agent
can perceive. In Figure we compare the performance of the Identification Rules
(Combinatorial) and [8.2] (Simplified), showing the fraction of runs that correctly identify
the policy space. We note that, while for a small number of samples the simplified rule
seems to outperform, when the number of samples increases the combinatorial rule dis-
plays remarkable stability, approaching the correct identification in all the runs. This is
explained by the fact that, when multiple representations for the same policy are possible
(like in this case when having a neural network as policy), considering one parameter at a
time might induce the simplified rule to select a wrong set of parameters.

8.7.2 Imitation Learning Experiment

In this section, we present an experiment to study the application of policy space iden-
tification to the IL framework. The goal of this experiment consists in showing that if
we know which parameters are actually controlled by the expert agent, we can mitigate
overfitting/underfitting phenomena, with a general benefit on the process of learning the
imitating policy. This experiment is conducted in the grid world domain, introduced in
Section using the same setting. In each run, the expert agent plays a (near) optimal
Boltzmann policy mgae that makes use of a subset of the available parameters and provides
a dataset D = {(S;, 4;)}"_; of n samples coming from m episodes.

As we mentioned in Section in the IL framework knowing the policy space of
the expert agent means properly tailoring the hypothesis space in which we search for the
imitation policy. For this reason, we propose a comparison with common regularization
techniques, applied to maximum likelihood estimation. Figure [8.4] shows on the left the
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collected episodes m. 25 runs, 95% c.i.

norm of the parameter difference HB — 0AgH between the parameter recovered by the
2

different IL methods 6 and the true parameter employed by the expert 0”8, whereas on the
right we plot the estimated expected KL-divergence between the imitation policy and the
expert’s policy computed as:

Z Dy ﬂ'gAg( |S )Hﬂ'g( |S ))

i=1

]D)KL (7T0Ag Hﬂ'e

The lines Conf and No-conf refer to the results of ML estimation obtained by restrict-
ing the policy space to the parameters identified by our simplified rule with and with-
out employing environment configurability respectively (precisely as in Section [8.7.1).
ML, Ridge, and Lasso correspond to maximum likelihood estimation in the full parameter
space. Specifically, they are obtained by minimizing the objective:

Q0: A%, X8) = = 3 log mo(A;[5) + A% 013 + X 6]

1=1
L 1

() log-likelihood

ridge lasso

For ML we perform no regularization (AR = \I' = 0), for Ridge we set AR = 0.001 and
AL = 0, and for Lasso we have AR = 0 and A\ = 0.001.

We observe that Conf, i.e., the usage of our identification rule, together with environ-
ment configuration, outperforms the other methods. This is more evident in the expected
KL-divergence plot (right), which is a more robust index compared to the norm of the
parameter difference (left). Ridge and Lasso regularizations display good behavior, better
than both the identification rule without configuration (No-Conf) and the plain maximum
likelihood without regularization (ML). This illustrates two important points. First, it con-
firms the benefits of configuring the environment for policy space identification. Second,
it shows that a proper selection of the parameters controlled by the agent allows improving
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Figure 8.5: Mingolf: Performance of the optimal policy varying the putter length w for
agents Ay and s (left) and performance of the optimal policy for agent Ao with four
different strategies for selecting w (right). 100 runs 95% c.i.

over standard ML, which tends to overﬁt

It is worth noting that the specific IL setting we consider, i.e., the availability of an
initial dataset D of expert’s demonstrations with no further interaction allowed™| rules
out from the comparison a large body of the literature that requires the possibility to in-
teract with the expert or with the environment (e.g., Ho and Ermon, 2016; Lee et al.|
2018)). Nevertheless, these IL algorithms could be in principle adapted to this challenging
no-interaction setting at the cost of restoring to off-policy estimation techniques (Owen,
2013), that however might inject further uncertainty in the learning process.

8.7.3 Conf-MDP Experiment

In the Minigolf environment (Lazaric et al.,[2007)), an agent hits a ball using a putter with
the goal of reaching the hole in the minimum number of attempts. Surpassing the hole
causes the termination of the episode and a large penalization. The agent selects the force
applied to the putter by playing a Gaussian policy linear in some polynomial features
(complying to Lemma [8.3)) of the distance from the hole () and the friction of the green
(f). Specifically, we consider the following polynomial features:

oo 1) = (1L, J, Vo VT VaT)

When an action is performed a Gaussian noise is added whose magnitude depends on the
green friction and on the action itself.

Experiment with fixed features The goal of this experiment is to highlight that know-
ing the policy space might be of crucial importance when learning in a Conf-MDP. We
consider two agents: 2, has access to both the x and f whereas 25 knows only . Thus,
we expect that 2, learns a policy that allows reaching the hole in a smaller number of hits,

141t is worth noting that the classical regularization techniques, like ridge and lasso, require choosing the
regularization hyperparameter A* with » € {R, L}. In our experiments, we searched for the best parameter in
{0.0001, 0.001,0.01,0.1, 1}.

15This setting was recently defined “truly batch model-free” (Ramponi et al., [2020).
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Figure 8.6: Experiment with randomly chosen features on the minigolf domain for differ-
ent numbers of episodes m. 100 runs, 95% c.i.

compared to 2o, as it can calibrate force according to friction; whereas 2 has to be more
conservative, being unaware of f. Thus, while agent 2(; perceives all the features, agent
s has access to (1, z, \/E)T only. There is also a supervisor in charge of selecting, for the
two agents, the best putter length w, i.e., the configurable parameter of the environment.

Figure 85} left shows the performance of the optimal policy as a function of the putter

length w. We can see that for agent 2(; the optimal putter length is wggl: = 5 while for

agent 25 is wéé = 11.5. Figure right compares the performance of the optimal policy
of agent 2> when the putter length w is chosen by the supervisor using four different
strategies. In (i) the configuration is sampled uniformly in the interval [1, 15]. In (ii) the
supervisor employs the optimal configuration for agent 2; (w = 5), i.e., assuming the
agent is aware of the friction. (iii) is obtained by selecting the optimal configuration of
the policy space produced by using our identification rule[8.2] Finally, (iv) is derived by
employing an oracle that knows the true agent’s policy space (w = 11.5). We can see that
the performance of the identification procedure (iii) is comparable with that of the oracle
(iv) and notably higher than the performance when employing an incorrect policy space
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(ii).

Experiment with randomly chosen features In the following, we report an additional
experiment in the minigolf domain in which the features that the agent can perceive are
randomly selected at the beginning, comparing the case in which we do not configure the
environment and the case in which environment configuration is performed, and for differ-
ent number of episodes collected. Although, less visible w.r.t. to the previous examples,
we can see that for some features (e.g., /= and v/ f) the environment configurability is
beneficial (Figure [8.6).

8.7.4 Summary of the Experiments

The experimental evaluation highlights some essential points. First, we have shown that
configuring the environment is beneficial for speeding up the identification process (Sec-
tion [8.7.1). This aspect is analyzed in the Grid World experiment, showing that when
configuring the environment is possible, the performance of the identification rules im-
proves. Second, we have verified that policy space identification can improve the quality
of the policy derived through imitation learning (Section [8.7.2)). Finally, the identification
of the policy space brings advantages to the learning process in a Conf-MDP, helping to
choose wisely the most suitable environment configuration. This is particularly visible in
the Minigolf experiment, in which we have illustrated that a wrong identification might
result in a suboptimal choice of the environment configuration (Section [8.7.3).
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CHAPTER

Control Frequency Adaptation

9.1 Introduction

In the previous chapters, we modeled the sequential decision-making problem as a discrete-
time MDP (Puterman), 2014), or Conf-MDP (Metelli et al., 2018a), whenever altering some
parts of the environment is allowed. In these models, the control signal is issued at discrete
time instants. However, many relevant real-world problems are more naturally defined in
the continuous-time domain (Luenberger, |1979). Even though a branch of literature has
studied RL in continuous-time MDPs (e.g.,|Bradtke and Duff}|1994; Munos and Bourginel
1997; Doya, |2000), the majority of the research has focused on the discrete-time formula-
tion, which appears to be a necessary, but effective, approximation.

Intuitively, increasing the control frequency of the system offers the agent more control
opportunities, possibly leading to improved performance as the agent has access to a larger
policy space. This might wrongly suggest that we should control the system with the
highest frequency possible, within its physical limits. However, in the RL framework,
the environment dynamics is unknown, thus, a too fine discretization could result in an
undesired effect, making the problem harder to solve. Indeed, any RL algorithm needs
samples to figure out (implicitly or explicitly) how the environment evolves as an effect
of the agent’s actions. When increasing the control frequency, the advantage of individual
actions becomes infinitesimal, making them almost indistinguishable for standard value-
based RL approaches (Tallec et al., 2019). As a consequence, the sample complexity
increases. Instead, low frequencies allow the environment to evolve longer, making the
effect of individual actions more easily detectable. Furthermore, in the presence of a
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Figure 9.1: Graphical representation of the discretization process and application of ac-
tion persistence.

system characterized by a “slowly evolving” dynamics, the gain obtained by increasing
the control frequency might become negligible. Finally, in robotics, lower frequencies
help to overcome some partial observability issues, like action execution delays (Kober
et al.,[2013).

Therefore, we experience a fundamental frade-off in the control frequency choice that
involves the policy space (larger at high frequency) and the sample complexity (smaller at
low frequency). Thus, it seems natural to wonder: “what is the optimal control frequency?”
An answer to this question can disregard neither the task we are facing nor the learning
algorithm we intend to employ. Indeed, the performance loss we experience by reducing
the control frequency strictly depends on the properties of the system and, thus, of the task.
Similarly, the dependence of the sample complexity on the control frequency is related to
how the learning algorithm will employ the collected samples.

In this chapter, we analyze and exploit this trade-off in the context of batch RL (Lange
et al., [2012), with the goal of enhancing the learning process and achieving higher per-
formance. It is worth noting that the control frequency can be seen as an environmental
parameter of a Conf-MDP, that can be configured externally. In this sense, we can look
at the choice of the control frequency as a form of environment configuration having an
effect on the transition dynamics. Although we know in advance that the optimal control
frequency is the largest one, when only finite samples are available, smaller frequencies
can help to improve the learning experience.

We assume to have access to a discrete-time MDP M., called base MDP, which is
obtained from the time discretization of a continuous-time MDP with fixed base control
time step Atg, or equivalently, a control frequency equal to f, = ﬁ' In this setting,
we want to select a suitable control time step At that is an integer multiple of the base
time step Atg, i.e., At = kAty with k € N-4. This process is graphically represented
in Figure Any choice of k generates an MDP M, obtained from the base one
My, by altering the transition model so that each action is repeated for &k times. For
this reason, we refer to k as the action persistence, i.e., the number of decision epochs in
which an action is kept fixed. It is possible to appreciate the same effect in the base MDP
M ¢, by executing a (non-Markovian and non-stationary) policy that persists every action

'We are considering the near-continuous time setting. This is almost w.l.o.g. compared to the continuous
time since the discretization time step Atg can be chosen to be arbitrarily small. Typically, a lower bound on
Aty is imposed by the physical limitations of the system. Thus, we restrict the search of At from the continuous
set R- g to the discrete set {kAto : k € N>1}. Moreover, considering an already discretized MDP simplifies
the mathematical treatment.
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for k time steps. The idea of repeating actions has been previously employed, although
heuristically, with deep RL architectures (Lakshminarayanan et al., 2017).

Chapter Outline The chapter is organized as follows. We start in Section elab-
orating on the notion of action persistence and showing that it can be represented by a
suitable modification of the Bellman operators, which preserves the contraction property
and, consequently, allows deriving the corresponding value functions. Since increasing the
duration of the control time step kAt has the effect of degrading the performance of the
optimal policy, in Section [0.3] we derive an algorithm-independent bound for the differ-
ence between the optimal value functions of MDPs M a,, and Mja¢,, which holds under
Lipschitz conditions. Then, in Section[9.4] we apply the notion of action persistence in the
batch RL scenario, proposing and analyzing an extension of Fitted Q-Iteration (FQI, [Ernst
et al.| [2005). The resulting algorithm, Persistent Fitted Q-Iteration (PFQI) takes as input a
target persistence k and estimates the corresponding optimal value function, assuming to
have access to a dataset of samples collected in the base MDP M a,,. Once we estimate
the value function for a set of candidate persistences I < N1, we aim at selecting the one
that yields the best performing greedy policy. Thus, we introduce a persistence selection
heuristic able to approximate the optimal persistence, without requiring further interac-
tions with the environment (Section [0.3). After having revised the approaches related to
action persistence (Section[0.6)), we present an experimental evaluation on benchmark do-
mains, to confirm our theoretical findings and evaluate our persistence selection method
(Section0.7). We conclude in Section [0.8] by discussing some open questions related to
action persistence and presenting some preliminary results.

9.2 Persisting Actions in MDPs

With the phrase “executing a policy 7 at persistence k”, with k € N>;, we mean the
following type of agent-environment interaction. At decision step ¢ = 0, the agent selects
an action according to its policy Ag ~ m(-|Sp). Action Ay is kept fixed, or persisted, for
the subsequent & — 1 decision steps, i.e., actions Ay, ..., Ay_1 are all equal to Ay. Then,
at decision step ¢ = k, the agent queries again the policy Ay ~ 7(:|S;) and persists
action Ay, for the subsequent k£ — 1 decision steps and so on. In other words, the agent
employs its policy only at decision steps ¢ that are integer multiples of the persistence k
(t mod k = 0). Clearly, the usual execution of 7 corresponds to persistence 1.

9.2.1 Duality of Action Persistence

Unsurprisingly, the execution of a Markovian stationary policy 7 at persistence £ > 1
produces a behavior that, in general, cannot be represented by executing any Markovian
stationary policy at persistence 1. Indeed, at any decision step ¢, such a policy needs
to remember which action was taken at the previous decision step ¢ — 1 (thus it is non-
Markovian with memory 1) and has to understand whether to select a new action based on
t (so it is non-stationary).

Definition 9.1 (k-persistent policy). Let w € ISR be a Markovian stationary policy. For
any k € N1, the k-persistent policy induced by 7 is a history-dependent policy 7, € TIHE,
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Figure 9.2: Agent-environment interaction without (top) and with (bottom) action persis-
tence, highlighting duality. The transition generated by the k-persistent MDP M, is
the cyan dashed arrow, while the actions played by the k-persistent policy are inside
the cyan rectangle.

defined for every t € N, state-ending history hy = (sg,a0,71...,St—1,0t-1,7¢,St) €
Hsianda e Aas:

m(dalsy) ift mod k=0

7 i (dalhy) = { 9.1

0a,_,(da) otherwise

Moreover, we denote with Ty, = {(; i )ten : T € ISR} the set of the k-persistent policies.

Clearly, for £ = 1 we recover policy 7 as we always satisfy the condition ¢ mod k = 0
ie, m = m; forall ¢ € N. We refer to this interpretation of action persistence as policy
view.

A different perspective towards action persistence consists in looking at the effect of
the original policy 7 in a suitably modified MDP. To this purpose, we introduce the (state-
action) persistent transition probability kernel P? : S x A — (S x A) defined for every
(s,a),(s,d')eS x Aas:

P(ds’,dd’|s,a) = P(ds'|s,a)d,(da’). 9.2)

The crucial difference between P™ and P? is that the former samples the action a’ to be
executed in the next state s’ according to 7, whereas the latter replicates in state s’ action a
that was previously executed in state s. We are now ready to define the k-persistent MDPE]

Definition 9.2 (k-persistent MDP). Let M be an MDP. For any k € Nx1, the k-persistent
MDP is the following MDP M, = (S, A, Py, pio, R, ’yk), where Py, and Ry, are the k-
persistent transition model and reward model respectively, defined for every state-action
pair (s,a) €S x Aand every s’ € S andr € R as:

Py(ds'|s,a) = ((P°)F~1P) (ds'|s,a), (9.3)

k—1
Ry (dr|s,a) = 2 t ((P‘s)iR) (dr|s,a), (9.4)

and ri,(s,a) = §, rRi(dr|s,a) = Zf;ol v ((P°)ir) (s, a) is the reward function, uni-

1— k
formly bounded by Rmaxﬁ.

2For the sake of simplicity, we consider reward models depending on the current state and current action only.

174



9.2. Persisting Actions in MDPs

The k-persistent transition model Py keeps action a fixed for k£ — 1 steps while making
the state evolve according to P. Similarly, the k-persistent reward Ry provides the cu-
mulative discounted reward over & steps in which a is persisted. We define the transition
kernel P[ : § x A — (S x A) for every (s,a),(s',a’) e S x Aas:

Pl (ds',dd’|s,a) = Px(ds’|s,a)m(da’|s").

Clearly, for £ = 1 we recover the base MDP, i.e., M = M. Indeed, if M is the base
MDP M a,, the k-persistent MDP M, corresponds to M.y, (Figure[9.T). We typically
omit the subscript Atq for brevity, whenever clear from the context. Therefore, executing
policy 7 in M, at persistence 1 is equivalent to executing policy 7 at persistence k in
the original MDP M. We refer to this interpretation of persistence as environment view
(Figure[9.2).

Thus, solving the base MDP M in the space of k-persistent policies 11 (Defini-
tion [9.1)), thanks to this duality, is equivalent to solving the k-persistent MDP M, (Defi-
nitio in the space of Markovian stationary policies II5®.

Remark 9.1 (Persistence as Environment Configurability). As we already mentioned in
Section[9.1) the persistence k € Nx1 can be seen as an environmental parameter affecting
the transition model P, the reward model R, and the discount factor vy, which can be exter-
nally configured with the goal to improve the learning process for the agent. In this sense,
the MDP M, can be seen as a Conf-MDP with parameter k € Nx1. More specifically, we
are considering a slightly extended version of the Conf-MDP, compared to that of Chap-
ter [ in which the reward model and the discount factor can be configured, in addition
to the transition model. This is, by the way, an interesting setting in which configuring
the agent reward function (although in a quite constrained manned) is meaningful for the
learning process.

Remark 9.2 (Persistence as Reducing the Planning Horizon). A persistence of k induces a
k-persistent MDP M, with smaller discount factor v*. Therefore, the effective horizon in
My, is ﬁ < ﬁ Interestingly, the end effect of persisting actions is similar to reducing
the planning horizon, by explicitly reducing the discount factor of the task (Petrik and
Scherrer, 2008; Jiang et al.| |2016) or setting a maximum trajectory length (Farahmand
et al.||2016).

9.2.2 Persistent Bellman Operators

When executing policy 7 at persistence k in the base MDP M, we can evaluate its perfor-
mance starting from any state-action pair (s,a) € S x A, inducing a Q-function that we
denote with Q7 and call k-persistent action-value function of 7. Thanks to duality, Q7
is also the action-value function of policy m when executed in the k-persistent MDP M.
Therefore, Q7 is the fixed point of the Bellman Expectation Operator of My, i.e., the
operator T}7 : #(S x A) — (S x A) defined for every bounded measurable function
f € B(S x A) and state-action pair (s,a) € S x A as:

(TF F)(s,a) = ru(s,a) + L PE(ds',dd|s, a)f(s, a).
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We call this operator k-persistent Bellman Expectation Operator. Similarly, thanks to
duality, the optimal Q-function in the space of k-persistent policies 11}, denoted by Q5 and
called k-persistent optimal action-value function, corresponds to the optimal Q-function
of the k-persistent MDP, i.e., Q (s,a) = sup,.psr {QF (s,a)} forall (s,a) € S x A. As
a consequence, Q5 is the fixed point of the Bellman Optimal Operator of My, i.e., T}* :
B(S x A) > B(S x A) defined for every bounded measurable function f € Z(S x A)
and state-action pair (s,a) € S x A as:

(T )(s.0) = ri(sv) +9* | Pu(a¥|s.) sup (5.),

We call this operator k-persistent Bellman Optimal Operator. Since they are the operators
for the k-persistent MDP M., both T} and T} are ~*-contractions in L,-norm and their
unique fixed points are the value functions @} and Q) respectively. We now prove that
the k-persistent Bellman operators are obtained as the composition of the base operators
T™ and T*.

Theorem 9.1. Let M be an MDP, k € N> and M, be the k-persistent MDP. Let 7 €
ISR be a Markovian stationary policy. Then, T and T}¥ can be expressed as:
17 = (1) T and T = (T°)" T, 9.5)

where T? : B(S x A) — %(S x A) is the Bellman Persistent Operator, defined for every
bounded measurable function f € B(S x A) and state-action pair (s,a) € S x Aas:

(Taf) (s,a) =r(s,a) + 'yJ J P(ds’,dd'|s,a)f(s',d'). (9.6)
SJA

Proof. We derive the result by explicitly writing the definitions of the k-persistent transition model
Py, and k-persistent reward distribution Ry, in terms of P, R and +y in the definition of the k-persistent
Bellman expectation operator Ty, . Let f € Z(S x A) and (s,a) € S x A:

(TF f)(s,a) = ril(s,a) + 7 (PF f)(s,a)
k

1

4 " ((Pé)ir) (s:0) + " ((P")* P f)(s,0) (1)
= <k: V(P7)'r + vk(P‘s)’“P”f> (s,a)

N <k_: V(P T+ TP T WP”f)) (s,a) (P2)
- <It:7i(P6)ir + Vk_l(Pa)k_lTWf> (s,a), (P3)

where line follows from Definition line is obtained by isolating the last term in the
summation 4"~ (P?)*~1r and collecting v*~1(P°)*~! thanks to the linearity of (P°)*~*, and
line (P3) derives from the definition of the Bellman expectation operator 7. It remains to prove
that for g € #(S x A) and (s, a) € S x A, we have the following identity:

k—2
(1) g = X (P + 4" (P . (P4)

=0
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We prove it by induction on k& € N> 1. For K = 1 we have only g = (T‘S)Og. Let us assume that the
identity hold for all integers h < k, we prove the statement for k:

(()*"g) (s,0) = (

k

32 (P + v’“*(P‘S)’“—lg) (5,0)

- ( Y (PYor + A2 (PO 2 (r 4 '7P6g)> (s,a) (P.5)
k—3

= ( Y(P°)'r +7'°2(P5)k2T59) (s,a) (P.6)
=0

= (@) 1°9) (s.0) = ((1°)*'g) (s, ), ®7)

where line (P3) derives from isolating the last term in the summation and collecting k=2 (P‘;)k -2
thanks to the linearity of (P°)*~2, line (P.6) comes from the definition of the Bellman persisted
operator T°, and finally line (P7) follows from the inductive hypothesis. We get the result by taking
g=T"f.

Concerning the k-persistent Bellman optimal operator the derivation is analogous. The Bellman
optimal operator becomes: T* f = r + yPM 4 f. Therefore, we have:

(T £)(s,a) = ra(s,0) + 7" f Pu(ds'[s, a) sup {f(s', ')}

a’e A
= ri(s,a) +~F J Pi.(ds'|s, a)(Maf)(s") (P.8)
S

= (rk + 'ykPkMAf) (s,a) (P.9)
k—1

- ( V(P + fy’“(Pé)k_lPMAf) (s,a)
i=0

= ( Y (P + AP T (r + vPMAf)> (s,a) (P.10)
i=0
k—2 ) ]

= ( ’YZ(P‘S)ZTJrVkl(P‘;)le*f) (s,a), (P.11)
=0

where line (P.8) derives from the definition of the max-operator M 4 and line (P.9) from the definition
of the operator Px. By applying Equation (P4) we get the result. O

The fixed point equations for the k-persistent Q-functions become:
T k-1 T )T
Qk = (Té) T Qka
Qr = (1) Tat

9.3 Bounding the Performance Loss

Learning in the space of k-persistent policies 11, means reducing the control opportunities
available to the learner. Therefore, increasing k& can only lower the performance of the
optimal policy, i.e., for every k, k' € N>, and state s € S:
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The goal of this section is to quantify the performance loss by deriving a bound on the
quantity [|Q* — QZHRP as a function of the persistence k € N>;, where p > 1 and p €
P(8 x A) is an evaluation distribution. To this purpose, we first focus on Q™ — QF |, ,
for a fixed policy 7 € IISR. Then, we show how to employ it to control [|Q* — Q¥ I,

9.3.1 General Bound on [Q™ - Q] ,

We start presenting the following result that provides an exact expression of the difference
between the Q-functions of the same policy m € IIS® when run at persistence 1 and at
persistence k € Nx;. The auxiliary results are reported in Appendix

Lemma 9.2 (Persistence Lemma). Let M be an MDP and w € TISR be a Markovian
stationary policy, then for any k € Ny the following identity holds:
- - : ni—1 T k—2—(i—1) mod k . .
Q" -Qr= D>, @) (P -P°) (1) T"Q5%.
ieN
12 mod k#0
Proof. Let us consider the first identity of Lemma[A 17}

@ - = (1sa = 7)) (@ e - (7))

Il
oY

7 (P“)“) <(T”)kQ’k’ - (T‘S)k_lT"Q;:) (P.12)

[RIE

Il
7~
<

g

55 (P )2 b1 (pry! ( _Ps) <Ta>k*2*lTsz (P13)

Z L (pr! ( 7P5) (Ta)k—Q—lTng

O 1=0
— k—2—1
Z kj+l+1 (P™) kj+l (Pw Pa) (Ta) T™Qr,

where line follows from applying the Neumann series at the first factor, line is ob-
tained by applying the first identity of Lemma to the bounded measurable function 7" Q7.
The subsequent lines are obtained by straightforward algebraic manipulations. Now we rename the
indexes by setting ¢ = kj +{ + 1. Since [ € {0,...,k — 2} we have that j = (i — 1) div k
and ! = (¢ — 1) mod k. Moreover, we observe that 7 ranges over all non-negative integers values
except for the multiples of the persistence k, i.e., i € {n € N : nmod k # 0}. Now, recalling
that 2 mod k # 0, we observe that for the distributive property of the modulo operator we have
(¢t —1) mod k = (¢ mod k — 1 mod k) mod k = (¢ mod k — 1) mod k = ¢ mod k — 1. O

[
M8

<.
Il

Il
u Ms

It is worth noting that in [Metelli et al.|(2020a)) another identity was provided in which
the roles of P™ and P? are switched. From this result, we can derive a bound on the norm
of the difference between the Q-functions, as shown in the following result.

Theorem 9.3. Let M be an MDP and © € TIS® be a Markovian stationary policy. Let
Ok = {(T‘S)k_Q_l T7Q7 : 1€{0,...,k—2}} and for all (s,a) € S x A let us define:

.

(P™(ds',dd’|s,a) — P°(ds',dd'|s,a)) f(s',d)

dg, (s,a) = sup {
feQr
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9.3. Bounding the Performance Loss

Then, for any p € P (S x A), p = 1, and k € Nx1, it holds that:

- T '7(1 — ’Vkil) L
Q™ — Q%ll, , < (EDEED) |5, Hp,ngv“ ,

where ny™ € P(S x A) is a probability measure defined for every state (s,a) € S x A
as:
. 1—7)(1 -7 : e
(s, day = Lo DUZT) S (0 (P71 (s, da)

7(1 - ’ykil) ieN
7 mod k#0

Proof. We start from the first equality derived in Lemma (9.2 and we apply the L, (p)-norm both
sides, with p > 1:

P

Z fyi (PW)1—1 (P’T B P6> (T5>k727(1'71) mod k O

€N
1 mod k#0

Q™ - Q%I

D,p
p

—pl X Ay (e ) ()T rgr ey

ieN
4+ mod k#0
P
< NGO PP’ (P.15)
p % ¥ (PT) fseugpk( )f‘
1 mod k#0
P
v (1 — %) .
:((1* P ) % Y (P™)hdD, | (P16)
imédk#O
k
v i T\T— T
< ((1_ ) = 1))0 ZN (P dg, " A7)
imcl)flk#()
- <(1W— ) e lda, (P.18)
_ (A =7")
= (m) lda, [5 o - (P.19)

where line (P.I4) is obtained by the definition of norm, written in the operator form, line (PI3)
is obtained by bounding (P~ — P%) (T%)* 2707V ™0k < qup o {|(PT — P?) f|}. recalling
the definition of Qj, and that (:—1) mod k < k—2foralli € Nand ¢ mod k # 0. Then, line (P.16)

follows from deriving the normalization constant to make the summation >’ ey 7 (P”)if1 a
1 mod k#0

proper probability distribution. Such a constant can be obtained as follows:

kl)

_ _ kz: (1 -
2 2 aa

1eN 1eN ieN
i mod k#0

Line (P.I7) is obtained by applying Jensen’s inequality recalling that p > 1. Finally, line
derives from the definition of the distribution 1" and line (P.I9) from the definition of Ly (n{"™)-
norm. O

179



Chapter 9. Control Frequency Adaptation

vy

Figure 9.3: The MDP counter-example of Proposition where R > 0. Each arrow
connecting two states s and s' is labeled with the 3-tuple (a,p(s'|s,a),r(s,a)); the
symbol * denotes any action in A. While the optimal policy in the original MDP
starting in s~ can avoid negative rewards by executing an action sequence of the kind
(a1,as,...), every policy in the k-persistent MDP, with k € N, inevitably ends
in the negative terminal state, as the only possible action sequences are of the kind
(a1,a1,...)and (ag,as,...).

The bound shows that the Q-function difference depends on the discrepancy dg, be-
tween the transition-kernel P™ and the corresponding persistent version P°, which is a
form of integral probability metric (Miiller, [1997), defined in terms of the set Q. This
term is averaged with the distribution 7}"™, which encodes the (discounted) probability
of visiting a state-action pair, ignoring the visitations made at decision steps ¢ that are
multiple of the persistence k. Indeed, in those steps, we play policy 7 regardless which
persistence is used The dependence on k is included in the term 11_1:;1 . Whenk — 1
this term displays a linear growth in k, being asymptotic to (k — 1) log %, and, clearly,
vanishes for &£ = 1. Instead, when & — oo this term tends to 1.

We can employ result derived above to obtain a bound on |Q* — Q} Hp’p. Indeed, let

7* € IISR be an optimal policy of M and with 7rj € IIj, an optimal policy of My, we
have that for every state-action pair (s,a) € S x A:

Q*(5,0) — QE(s,0) = Q7 (s,0) — Q1 (s,0) < Q™" (5,0) — QF (5, ),

ok
since Q¢ (s,a) = QF" (s, a). Thus, we have that |Q* — Qil,, < HQW* - Q"

p,p

9.3.2 Performance Loss without Regularity

The general bound we derived in the previous section applies for every MDP, without
further assumptions. However, it is defined in terms of the dissimilarity index dg, , whose
value can become sufficiently large to make the bound vacuous. This circumstance is
clarified in the following negative result.

Proposition 9.4. For any MDP M and k € Nx it holds that for every state s € S:

2 RIH&X
ViE(s) > V¥ (s) — —Lomax 9.7)
I—v
3,057

n;,~ resembles the y-discounted state-action distribution 7, (Sutton et al.;|1999a), but ignoring the decision
steps multiple of k.
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9.3. Bounding the Performance Loss

Furthermore, there exists an MDP M~ (Figure and a state s~ € S such that the
bound holds with equality for all k € Nx,.

Proof. First of all, we recall that V*(s) — V;*(s) > 0 since we cannot increase performance when
executing a policy with a persistence k. Let 7 an optimal policy on the MDP M, we observe that
forall s e S:
* * ¥ ¥
VE3(s) = Vi (s) < VT (s) = Vi (s), (P.20)

since V™ (s) = V*(s)and Vi¥(s) = V,f* (s). Let us now consider the corresponding Q-functions

Q”* (s,a) and Qz* (s,a). Recalling that they are the fixed points of the Bellman operators 7"
and T * we have:

Q" —Qr =T" Q" —Ty Q
=r+vP"Q" — 1 —v"PLQF
w b i *
—r 9P Q" = Y4 (P°) r - PEGE
i=0
S N . .
=P"Q" = Y4 (P) r—y"PIQL,

i=1

where we exploited the definitions of the Bellman expectation operators in the k-persistent MDP.
As a consequence, we have that for all (s,a) € S x A:

Qﬂ—* (87(1) - QW* (87@) < "yM mdx Z ’7 + kRmax

1—7v 1—7

Rmax 17 k-l Rmax 2 Rmax
. b R X)) _ 27 Bmax.

1—x 1—x 1—7 1—7

where we considered the following facts that hold for all (s,a) € S x A:

(Pr@™) (s < 722,

((P‘S)i r) (5,0) < Runas,

(PEQZ*) (s,a) < fracRmaxl — 7.

The result follows by observing that v* (s)— = §, 7*(dals) (Q”* (s,a) — Q"* (s, a)).

We now prove that the bound is tight for the MDP of Figure[9.3] From inspection, we observe
that the optimal policy must reach the terminal state sz yielding the positive reward R > 0. Thus
the optimal policy plays action a; in state s~ and action az in state s, generating a value function

V*(s7) = %. Let us now consider the 2-persistent MDP M, . Whichever action is played in

state s~ it is going to be persisted for the subsequent decision epoch and, consequently, we will
end up in state sz, yielding the negative reward —R < 0. Thus, the optimal value function will be

V¥ (s7) = — f'fy . Clearly, the same rationale holds for any persistence k € Nx3. O
The quantlty “)ya" is the maximum performance that we can lose if we play the same

action at decision epoch t = 0 and then we follow an arbitrary policy thereafter.
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9.3.3 Regularity Conditions

We have shown that, if no structure on the MDP and/or on the policy is enforced, the
dissimilarity term d,, may become large enough to make the bound vacuous, i.e., larger
than %, even for k = 2. Intuitively, since action persistence will execute old actions
in new states, we need to guarantee that the environment state changes slowly w.r.t. to time
and the policy must play similar actions in similar states. This means that if an action is
good in a state, it will also be almost good for states encountered in the near future. In order
to proceed, we need to introduce some basic notions of Lipschitz MDPs (Rachelson and
Lagoudakis,, |2010; [Pirotta et al., [2015). Although the condition on the policy is directly
enforced under Lipschitz conditions, we need a new notion of regularity over time for the
MDP.

Lipschitz MDPs Let (X, dy) and (), dy) be two metric spaces, a function f : X — Y
is called L ¢-Lipschitz continuous (L ¢-LC), where L > 0, if for all z, 2’ € X’ we have:

dy(f(ﬂ?), f('r/)) < Lde(x7 1‘/)'
Moreover, we define the Lipschitz semi-norm as:

) (10,50
”f”L B w,w’esélkl'l::;#w’ { dX(m’ J)/) } .

For real functions we employ Euclidean distance dy (y,y’) = |y — v'||5, while for proba-
bility distributions we use the Kantorovich (L;-Wasserstein) metric defined for every pair
of probability measures u, v € £2(Z) as (Villani, 2008):

[REL

We now introduce the notions of Lipschitz MDP and Lipschitz policy that we will employ
in the following (Rachelson and Lagoudakis} 2010; Pirotta et al., [2015).

dy(pv) = Wi(p,v) = sup
il flp<t

dz)|. 9.8)

Assumption 9.1 (Lipschitz MDP). Let M be an MDP. M is called (Lp, L,)-LC if for
every (s,a), (5,a) € S x A:

Wi (P(|57 a)v P(~|§,E)) <Lp dSXA ((57(1)’ (55 a)) )
|r(s,a) —r(5,a)| < Ly dsxa ((s,a), (5,a)).

Assumption 9.2 (Lipschitz Policy). Let 7 € ISR be a Markovian stationary policy. T is
called L-LC if for every s,S € S:

Wi (w(-]s), 7([5)) < Lx ds (5,73) -
Time-Lipschitz MDP We now introduce a novel regularity condition for the MDP that
will turn out essential to complete the analysis of the performance loss due to action per-

sistence.
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9.3. Bounding the Performance Loss

Assumption 9.3. Let M be an MDP. M is Lp-Time-Lipschitz Continuous (L-TLC) if
forevery (s,a) € S x A:
Wi (P(]s,a),0s) < L. 9.9

This assumption requires that the Kantorovich distance between the distribution of the
next state s’ and the deterministic distribution centered in the current state s is bounded by
Ly, i.e., the system does not evolve “too fast”.

Remark 9.3. We draw a connection between the rate at which a dynamical system evolves
and the Ly constant of Assumption [9.3] Consider a continuous-time dynamical system
having S = R%s and A = R4 governed by the law $(t) = f(s(t),a(t)) such that
SUDgcs aca {|E(s,a)|} < F < 0. Suppose to control the system with a discrete-time step
Aty > 0, inducing an MDP with transition model Pas,.
tion[9.3]becomes:

Wi (Pat,(+[s, a),0s) = [s(t + Ato) —s(t)]
t+Atg
L 5(dt)

Thus, the Time Lipschitz constant L depends on: i) how fast the dynamical system evolves
(F); ii) the duration of the control time step (Atg).

< FAt().

Bound We are now ready to bound the dissimilarity term dg, under the regularity as-
sumptions introduced above.

Theorem 9.5. Let M be an MDP and 7 € TIS® be a Markovian stationary policy. Under
Assumptions [9.1] and[9.3] if ymax {Lp + 1,Lp(1 + L)} < 1 and if p(ds,da) =
ps(ds)m(dals) for every (s,a) € S x Awith ps € P(S), then for any k € Nx1:

Hd LQA-, [(/,ﬁ + 1)Ly + O'p] .

where:

L,
ko l—ymaX{Lp—i-l Lp(1+4 Ln)}’

Lo

ob = supf f da (a,a’)’ w(da|s)m(dd’|s).

seS

Proof. Let us now consider the dissimilarity term in norm:
P
sup

us P _ ,TT
5,10 = [ [ 05,00 | sup

Lpgkj f " (ds, da)

ff P™(ds,dd|s,a) — P°(ds,dd|s, a)) f(s',a")

L L‘ <P”(ds',da/\s,a) — Pé(ds/,da/|s,a)) f(s',a")

P

X )

bE HfHL<1
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where the inequality follows from Lemma[A-20] We now consider the inner term and perform the
following algebraic manipulations:

J J PTr ds’,dd’|s,a) — P°(ds’,dd’|s, a)) f(s',a")

foHL<1

ijdsLsa (da'|s") f(s',a") JdesLsa o(da") f(s',a")
foHL<1

+ f L 6,(ds')e(da’|s) [ (', a') & f L 5.(ds')3a (da') £ (s', a')

< sup J (P(ds'[s,a) — 55(ds'))f m(da'|s) f(s',a")
Flflp<stiJs A
+ sup J (P(ds'[s,a) — d5(ds")) J Sa(da’)f(s',a")
Filfll<t A
; Hsflﬁ)gl J 3s(ds") J m(da'|s") — da(da’)) f(s',a")].

We now consider the first two terms:

J (P(ds']s,a) — 8.(ds’ ))f 2(dd'|s) £ (s, a)

A

f: HfHLgl
+ sup f (P(ds'|s,a) — 6s(ds/))f So(da") f(s',a")
flflp st s A

(L + 1)W1 (P(-]s, ), 6.) (P21)
(L‘"' + 1)LT7

<
<

where line m follows from observmg that the function g¢(s') = § , 7(da’|s") f(s', a’) is LA-LC,
and function hy(s") = §, 0 (s',a") = f(s',a)is 1- LC Moreover under Assumption
we have that W1 ( s, a) 5 ) < LT Let us now focus on the third term:

sup_ [ 8.0 [ (n(da’ls) = ba(da)) £ a)
Flflp<t A
= sup f (m(da'|s) — 6a(da’)) f(s,a’)
fAflp<tlJA
= sup f (m(da'|s) — 8a(da’)) f(a') (P22)
fAflp<tlJA
~ sup f < f (da”|s)8, (da") féa(da’)> () (P23)
flflpstiJa \Ja
= sup J- ﬂ(da”\s)f (64 (da’) — ba(da’)) f(a) (P.24)
FlflpstiJa A
<J m(da”|s) sup J (6ar(da’) — ba(da’)) f(a') (P.25)
A FlflpstiJa
=J n(da"|s)da(a,a”), (P.26)
A

where line (P22) follows from observing that the dependence on s for function f can be neglected
because of the supremum, line (P23) is obtained from the equality 7 (da’[s) = § , w(da”|s)da (da”),
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9.3. Bounding the Performance Loss

line derives from moving the integral over a” outside and recalling that §,»(da’) = 6,/ (da”),
line comes from Jensen’s inequality. Finally, line is obtained from the definition of
Kantorovich distance between Dirac deltas. Now, we take the expectation w.r.t. n{’". Recalling
that p(ds, da) = ps(ds)m(dals) it follows that the same decomposition holds for 7™ (ds,da) =
s (ds)m(dals). Consequently, exploiting the above equation, we have:

P

[, mztas) [ wtaals
< | @700 | w(aols) | w(ao’|s)data.a’

J w(da”|s)d4(a,a”)
A

A
Ssupf J w(dals)m(da”|s)da(a,a”)? = oF,
seSJAJA

where the first inequality follows from an application of Jensen’s inequality. An application of
Minkowski’s inequality on the norm Hd’é X Hp e concludes the proof. O
M

Thus, the dissimilarity dg,, between P™ and P9 can be bounded with four terms:

i. Lo, is (an upper-bound of) the Lipschitz constant of the functions in the set Q.
Indeed, under Assumptions [0.1]and [0.2] we can reduce the dissimilarity term to the
Kantorivich distance (LemmalA.20) for every (s,a) € S x A:

s
dgk (57 a’) < Lkal (Pﬂ-('|85 Cl), P (|57 CL)) .
ii. (L, + 1) accounts for the Lipschitz continuity of the policy, i.e., policies that pre-
scribe similar actions in similar states have a small value of this quantity.
iii. L represents the speed at which the environment state evolves over time.

iv. o, denotes the average distance (in L,-norm) between two actions prescribed by
the policy in the same state. This term is zero for deterministic policies and can be
related to the maximum policy variance as shown in the following result.

Lemma 9.6. If A = R, and d4(a,a’) = |a — a'|,, then it holds that:
2
05 < 2su Var [A];.
257 {Aw(-m[ ]}

Proof. Let s € S and define the mean-action in state s as:

a(s) = J:4 ar(dals).

Thus, we have:

o5 = supj f |la— a’Hi n(dals)mr(da’|s)
seS JAJA

_ supf f Ja - +a(s)| m(dals)n(da’]s)
seS JAJA

< sup L L Ja — a(s)[ n(dals)r(dal]s) + sup L L o’ — &(s) |’ n(dals)r(da’|s)

seS
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_ —\2
= supf |la —a(s) |3 w(dals) + supj Ja" —a(s)[ w(da'|s)
seS JA seS JA

= 2supj |a—a(s)|3n(da|s) = 2sup{ Var [A]} .
seS Ja ses (A~m(ls)
O

A more detailed discussion on the conditions requested in Theorem[9.5] with particular
reference to dynamical systems, is reported in Appendix B.4 of (Metelli et al.| 2020a)).

9.4 Persistent Fitted Q-lteration

In this section, we introduce an extension of Fitted Q-Iteration (FQI, Ernst et al.l 2005])
that employs the notion of persistenceE] We have introduced the class of AVI algorithms
in Section Persisted Fitted Q-Iteration (PFQI) takes as input a target persistence
k € N3, and its goal is to approximate the k-persistent optimal action-value function
Q;. Starting from an initial estimate Q9), at each iteration we compute the next estimate
QU+ by performing an approximate application of k-persistent Bellman optimal opera-
tor to the previous estimate Q7). i.e., QU*Y ~ T#QU). In practice, we have two sources
of approximation in this process: i) the representation of the Q-function; ii) the estimation
of the k-persistent Bellman optimal operator. (i) comes from the necessity of using func-
tion space F = (S x A) to represent Q\Y) when dealing with continuous state spaces.
(i) derives from the approximate computation of 7;* which needs to be estimated from
samples.

Clearly, with samples collected in the k-persistent MDP M, the process described
above reduces to the standard FQI. However, our algorithm needs to be able to estimate Q;
for different values of k, using the same dataset of samples collected in the base MDP M
(at persistence 1) For this purpose, we can exploit the decomposition 7" = (To)k=11*
of Theoremto reduce a single application of 7}* to a sequence of k applications of the
1-persistent operators. Specifically, at each iteration j with 7 mod k = 0, given the current
estimate Q), we need to perform (in this order) a single application of T* followed by
k — 1 applications of T, leading to the sequence of approximations:

" o
QU ~ {T Q@ ifjmodk =0 (9.10)
T°QU  otherwise

To estimate the Bellman operators, we access a dataset D = {(S;, A;, S}, Ri)}1,
collected in the base MDP M, where (S;, A;) ~ v, S ~ P(-|S;, A;), Ri ~ R(-|S:, 4;),
and v € Z(S x A) is a sampling distribution. We employ D to compute the empirical
Bellman operators (Farahmand, 201 1) defined for f € #(S x A) andi € {1,...,n} as:

(T*£)(Si, A;) = R; + Wrééai{f(&’»,a)},
(T° 1) (Si, Ai) = Ri + 7 (Sl Ay).

“From now on, we assume that |A| < c0.
SIn real-world cases, we might be unable to interact with the physical system to collect samples for any
persistence k of interest.
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Algorithm 9.1: Persistent Fitted Q-Iteration PFQI (PFQI).

Input: k persistence, J number of iterations (J mod k = 0), Q' initial action-value
function, F function space, D = {(S;, Ai, S;, R;)}}—1 batch samples
QOutput: greedy policy )
1 forallj =0,...,J —1do

2 if 7 mod k& = 0 then Phase 1
3 L Yz‘m = T*Q(j)(si,Ai), 1e{l,...,n}

4 else

s | Y9 =1°QU(S;, A)), i€ {l,...,n}

Phase 2

6 Q(j+1) € arg minfef {Hf - YU)H;’D}

Phase 3

7|7 (s) € argmax,. , Q) (s,a), VseS

8 return ()

We have already shown in Section that 7% is unbiased. Clearly, also T3 is unbi-
ased conditioned to the current state-action pair (S;, A;), i.e., E[(T° f)(S;, A;)|S:, Ai] =
The pseudocode of PFQI is summarized in Algorithm 0.1} At each iteration j =

0,...J — 1, we first compute the target values Y () by applying the empirical Bellman
operators, T or T°, on the current estimate Q) 1)

. Then, we project the target
Y (9) onto the function space F by solving the least-squares problem (Phase 2)):
QU+ ¢ : {Hf Y(j)H2 } 1 i ’f(S ) Y(j)‘z
arg min - == A — Y,
]%E]: 2,D n i

Finally, we compute the approximation of the optimal policy 7(/), i.e., the greedy policy
w.rt. Q) (Phase 3)

9.4.1 Theoretical Analysis

In this section, we present the computational complexity analysis and the study of the error
propagation in PFQIL.

Computational Complexity The computational complexity of PFQI decreases mono-
tonically with the persistence k. Whenever applying T?, we need a single evaluation of
QY), while |.A| evaluations are needed for T* due to the max over the action space A.
The overall complexity of .J iterations of PFQI with n samples is given in the following
result.

Proposition 9.7. Assuming that the evaluation of the estimated Q-function in a state action
pair has computational complexity O(1), the computational complexity of J iterations of
PFQI run with a dataset D of n samples, neglecting the cost of the regression, is given by:

o (om {1+ H1=1)).
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Proof. Let us consider an iteration j = 0,...,J —1. If j mod k = 0, we perform an application of
T* which requires to perform n|.A| evaluations of the next-state value function in order to compute
the maximum over the actions. On the contrary, when j mod k # 0, we perform an application of
T which requires just  evaluations, since the next-state value function is evaluated in the persistent
action only. By the definition of PFQI, J must be an integer multiple of the persistence k. Recalling
that a single evaluation of the approximate Q-function is O(1), we have that the overall complexity
is given by:

O Z n|Al + Z n

j€{0,..., J—1} A j mod k=0 j€{0,..., J—1} A j mod k#0
-0 (%n|A| n w,&

o (om (1+421Y),

Error Propagation We now study the error propagation in PFQI. Given the sequence
of Q-functions estimates (Q'/))7_; = F produced by PFQI, we define the approximation
error at each iteration j = 0,...,J — 1 as:

*)(J) _ G+ i 5 =
) _ TQ‘ Q‘ if j mod k 0.
T9QW — QU+ otherwise

O

9.11)

The goal of this analysis is to bound the distance between the k-persistent optimal Q-
function Q; and the Q-function ng of the greedy policy 7(/) w.r.t. Q(7), after J iter-
ations of PFQI. Before proving the main result, we need to introduce a variation of the
concentrability coefficients (Antos et al., 2008} [Farahmand, 2011)) to account for action
persistence.

Definition 9.3 (Persistent Expected Concentrability). Let p,v € P (S x A), L € N5,
and an arbitrary sequence of stationary policies (7T(l) )lel. Let k € N> be the persistence.
For any my, mo, m3 € N>y and q € [1, 0], we define:

il m me
o ld(p(PEym (P e (PO)me)
VI, kq,pw (M1, M2, M35 T) = ;

dv

q
q—1°Y

7T(1) m
L PEY (POyma) ‘

(L) (L-1)
)

d(p(Pr" ) Py

Vg kgopu (1, ma; (T) ) =

dv

q
q—1 i

(L—1)

If p(P[)™ (P,:r’zk)m2 (P%)™3 (resp. p(Pg(L))mng . .Pg(l) (P°)™2) is not abso-
lutely continuous w.r.t. to v, then we convene cvi, p. (M1, ma, m3;m, k) = 0 (resp.
VI (M, ma; (T D)L k) = o0).

This definition is a generalization of that provided in |[Farahmand (2011), that can be
recovered by setting k = 1, ¢ = 2, and m3 = 0 for the first coefficient and my = 0 for
the second coefficient. The following result extends Theorem 3.4 of [Farahmand| (2011)) to
account for action persistence.
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9.4. Persistent Fitted Q-lteration

Theorem 9.8 (Error Propagation for PFQI). Letp > 1, k € N34, J € Ny with J mod
k=0and p € P(S x A). Then for any sequence (Q(j))fzo c F uniformly bounded
by Qmax < If‘ji;‘, the corresponding (U ));-];01 defined in Equation (9.11) and for any
r € [0,1] and q € [1, 0] it holds that:

) 2~k
po (L= (1=~

1
+ C\i?,ﬂ’u(‘L T, Q)gﬁ (6(0)7 RN 6(‘]—1)3 T, q):|,

ot —ax

2 J
;Rmax
[1—77

where:

1 ’}/k 2 J=1 501_p) 0 .
Cyvipw(Jimq) = < 5 ) sup DT ( Ak
) :

7...,7‘|’JEI-[SR' j=0 m=0

J
X (cVIl,k,q7p7,, <m, i’ —jdivk,k—jmodk — 1;7TJ>

2
+ CVIzJ%q,ﬂW <m + 1, k 7j mod k — 1; (ﬂ'l)?:dlw k) >) },

2p

)
pq,v

J—1
EE®, . e Vi q) = Z of’ e(j)H

=0
U™ fo<j<J

and o = S
e ifj=J

Proof. The proof follows most of the steps of Theorem 3.4 of |[Farahmand| (2011). We start by
deriving a bound relating Q* — QY 1o (e(J))JJ;Ol. To this purpose, let us first define the cumulative
error over k iterations for every j mod k = O:

&9 — QU _ QUh), (P27)

Let us denote with 7} one of the optimal policies of the k-persistent MDP M. We have:

. ok ok o ) .
Q;: _ Q(J+k) =T k Q;: — T k Q(J) + T k Q(J) _ T:Q(J) + el(c])
. . .
<P (QF - Q) + ¢,
- ) () , ;
QF—QUY = TrQE -1 Q* + 17 QF — TEQY +
(@) ; ;
=P QF - Q) + ¢,
: N » . .
where we exploited the fact that 7}* QY > T, * QY9), the definition of greedy policy =) that

(€2

implies that T~ QW) = T QY and the definition of e,(cj ). By unrolling the expression derived
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above, we have that for every J mod k = O:

%1 I h-1 P
QF — QW) < 3 o kY (P,f ¢ ) T Ay (P,?’f ) " (QF - Q)

h=0

F-1 » o ‘ _ (P28)
Q;: _ Q(J) > Z ,nyk(h+1) (p]:r(‘] k)PI:(J 2k) .”P]:r“‘(h“))) 6;cj)

h=0

(D) (J=k) (k)
+7J<Pk Py By )(Q:—Q<O))~
We now provide the following bound relating the difference Q7 —QZ(J) to the difference QF —QW:
(I ik ¥ ¥ () ()
QE-QF " =T Qi —TF QY+ T QY - TFQY + TFQY — 17 QF
ik ik (D) ()
STFQE -1 QY + TEQY) — T Q;
ik o)) ()
=P QF - Q)+ P QY — Qi)
¥ () ()
=P (QF = Q)+ P QY —QE + QF - QT ),

TI'* .
where we exploited the fact that 7;*Q(”) > T} * Q') and observed that TFQ") = T,f( g QY.
By using Lemma 4.2 of Munos|(2007) we can derive:

2D E A ¥ (D)
QF - Qi <4 (ssa =" P77 (Pk F- P ) (@ - Q™). (P29)
By plugging Equation (P28) into Equation (P29):

_e) 2D\ L
Q- Q" < (sxa—~"B7")

Bl

1 J_p
_ <%\ & (J) __(J—k) __(J—2k) (k(h+1)) .
x[ 5 W”“)((Pkk) o G Y & )>e§j)
h=0

J
A\ kT A () (T ()
+7J((Pkk) *(Pk P Py Py ) (Qz*Q(O))}

Before proceeding, we need to relate the cumulative errors eV

~ (P30)
Py ) to the single-step errors )

ez(gj) _ T,:‘QU) _ Q(j+k)
_ (Té)k—lT*Q(j) _ (T5)k—1Q(J'+1) + (Té)k—lQ(j-H) _ Q(J'+k)
_ rykfl(Pé)kfl (T*Q(j) . Q(j+1)) + (Té)kle(g#l) . Q(j+k)
_ lykfl(P(s)k:fle(j) + (Té)kle(]H»l) _ Q(]+k)
Let us now consider the remaining term (7°)*~1QU+1 — QU*+k).
(Té)k—lQ(j-*-l) _ Q(j+k) _ (Tts)k—lQ(j-*-l) _ (Té)k—QQ(j-*-?) + (T5)k—2Q(j+2) _ Q(j+k)
_ ,yk—z(Pé)k—z (T6Q(j+1) . Q(j+2)> n (Té)k-—QQ(j+2) _ Q(j+k)

_ 7k72(P5)k726(j+1) + (T5)k72Q(j+2) _ Q(j+k)
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9.4. Persistent Fitted Q-lteration

k
Z PS k—1 (J+l 1)

where the last step is obtained by unrolling the recursion. Putting all together, we get:

k
9 _ Z’ykfl(Pé)kfle(jﬁ»lfl)' (P31)
=1

Consequently, we can rewrite Equation (P30) as follows:

() (DN T
QF —Qr" <A (IdeA — Py )

J_q J

K A\ F R D) prlI=h) pr(=2)  pp(k(n)
« [ Z rnyk(h+1) ((Pkk) _ (P];rj P,;TJ k Pr J—2k Pr k(h+1 )

h=0

k
% Z,Yk—l(Pts)k—le(j+l_1) (P.32)
=1

L\ BTl
+ 47 (Pk’“) -
k
=7

k L_p

o *\ k (J) (J—k) (J—2k) (k(h+1))
N7k l((P,jk) —(P,;r J R P ))
I=1

(P33)

/N

(D) (D) (J—k) o)
I Y ))(QZ‘Q“)))}

o O Y & “”))(Q Q‘”)] (P34)

J 2o
%I divk (D) o (T=R) (I 2k) o(J—k( div k+1))
) + (P,f [ P )

x (Pé)k7] mod k—1 6(])

J
A\ BT D) () (TR )
+v"<(Pk’V) S G Y \Q;“—Q(O’(], (P35)

where line (P33) derives from rearranging the two summations, line (P34) is obtained from a re-
definition of the indexes. Specifically, we observed that h = jdivk, j +1 = kh + [, and
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! = j mod k + 1. Finally, line is obtained by applying the absolute value to the right hand
side and using Jensen’s inequality. We now introduce the following terms. If 0 < j < J:

J_ g
1—~F Ay 1 o\ BT divE

(J) __(J—k) __(J—2k) (J—k(j div k+1)) . _
+ (P,;’ pr’ " pr P ))(P‘S)k jmod k=1

Instead, if j = J:
J
1—~F (1 L\ B L)) (k) ()

Let us recall the definition of a; as in[Farahmand| (2011):

J—j—1
O o< <J

=)y’ ifj=J

1—~J+1

oy = (P36)

Recalling that ‘Q: — Q<O)) < Qmax + %‘;" < 21}2_% and applying Jensen’s inequality we get to

the inequality:

2 Rimax ]
4oy omaxy |
1—~

%)
QrF—Qn <

2,_Yk(1_,_YJ+1) J—1 G)
== | 2
j=0

where 1 denotes the constant function on S x .4 with value 1. Taking the L, (p)-norm both sides,
recalling that Ztl a; = 1 and that the terms A; are positive linear operators A; : (S x A) —
P(S x A) such that A;1 = 1. Thus, by Lemma 12 of |Antos et al.|(2008), we can apply Jensen’s
inequality twice (once w.r.t. a; and once w.r.t. A;), getting:
k J+1 P J—-1
P (27 (1—~ )) p ZajAj‘e(”
a-Ha-) | &

X
p,p

) P (ZRmax)p
+ay| —— 1
1—v

oo

| P
Consider now the individual terms pA; €9|" for 0 < j < J. By the properties of the Neumann

series we have:

P l—fyk

pA; ‘G(j)

koor(D\ 1
p(1dsxa =7 PE")
J o
%\ &7 divk (J) __(J—k) ___(J—2k) (J—k(j div k+1))
X (P,jk) +(P,§ eV pr L prTY )

2
S\k—j mod k—1 | (5)]P
x (P°) €

J . oqs
1— k [ee) " LD\ 7T=!< z*jdlvk
m=0

(yym+1 (J—k) (J—2k) (J—k(j div k))
+((P,: ) pr "V pr ..P] ))]

P

y (Pé)k—j mod k=1 (5)
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9.4. Persistent Fitted Q-lteration

We now aim at introducing the concentrability coefficients and for this purpose, we employ the
following inequality. For any measurable function f € Z(X), and the probability measures pi1, p2 €
P(X) such that u1 < pe2, we have the following Holder’s inequality, for any ¢ € [1, o0]:

f fdu1<( " duz) (f |f|qduz)q- (P37)
X X X

) (Hym o < —jdiv k P
We now focus on a single term p (P,;T ) Pk ‘6(7 )
equality:

dul
dug

and we apply the above in-

. m ok E J div k . .
p (Plzr(])> (Pkk) (Pé)k7J mod k—1 ‘6(3) P

(H\™ . 5 div k ]
dp (P}? ) (Pkk) (Pé)k—] mod k—1
.[SX.A

D dv

pq 7
X (J € dl/)
SxA

—CVIlkqu(m7%_jlek k—jmodk —1; 71(‘])) H @|”

pq,v

Proceeding in an analogous way for the remaining terms, we get to the expression:
2,Yk 1_,)/J+1 P ’YkJ 1 o
< (@S0 3 3
pp (I=7)1 =)

x (cwl,k,q,p,u (m, % —j div k,k — j mod k — 1;7T<J>)

ot -ai”|

- A ||P
+ CViy kg, pv (m + 1,k —jmod k — 1; (z/71F))7 div k) ) He(”‘

rq,v

To separate the concentrability coefficients and the approximation errors, we apply Holder’s inequal-

ity with s € [1, o0]:
J J % B g
Moajb; < (Z ajls) (1bs177) * . (P38)
=0

Letr € [0, 1], we set:

o= et
rq,v
17 k J—1 o J
by =a; " > (cvn,k,q,p,u (m,@—jdivk,k—jmodk—l;w”))
7=0 m=0

+ Vg kq,00 (m +1,k—jmod k—1;(m = lk))f—dlw k) )
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The application of Holder’s inequality leads to:

J—=1  s(1—r
p - (271@(177”1) >P1,yk|:2 N (:71) ( i vkm
o (1 =9%)(1 =) 2 7 =

Jj=0

()

oo

X (cvh,k,q,p,y (m, % —jdivk,k—jmodk — 1;7T(J)>
s—1

o P s
+ CViy,k,q,0,v (m +1,k—jmodk —1; (7r<"7”“)){:dlIV k) )) ]

1

J-1 w 1°
X Z a;’ e
2o pa,v

() = ()

J— j div k
(T

Since the policies are not known, we define the following quantity by taking the
supremum over any sequence of policies:

1 —’yk s J-1 5(1 1)
CVI,/),U(J; T757Q) = ( 2 ) sup Z ( Z ’Y
T, SR

jen g€ j=0

X (cvh,k,q,p,y (m, % —jdivk,k—jmodk—1; 71']) (P.39)

=1
+ CVis,k,q,p,v (m + ]. k — ] mod k — ( l)g d1lv k) )) }

Moreover, we define the following term that embeds all the terms related to the approximation error:

J-1 .
EED, YV s,q) = Z a;” €W (P.40)

o pq,v

Observing that ﬁ < land1—~771 < 1, we can put all together and taking the p-th root and
recalling that the inequality holds for all g € [1,00], 7 € [0, 1], and s € [1, o0]:

* (D) 2~k 2 2Rmax
- < z +
ot -, < 7= {7 T
+ inf {C’VI,,U(J r, s, q) ps S( O eV s q) e »s } .
q€[1,00]
re[0,1]
s€[1,00]

The statement is simplified by taking s = 2.
O

We immediately observe that for & = 1 we recover Theorem 3.4 of [Farahmand|(2011).
The term Cyr,, . (J;7,q), defined in terms of suitable concentrability coefficients (Def-
inition 0.3)), encodes the distribution shift between the sampling distribution v and the
one induced by the greedy policy sequence (707 ))J 0 encountered along the execution of

PFQI. £(-;r,q) incorporates the approximation errors (¢l/ )) . In principle, it is hard
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9.5. Persistence Selection

Algorithm 9.2: Heuristic Persistence Selection.

Input: batch samples D = {7;}{~,, set of persistences /X, set of Q-function {Qy. : k € K},
regressor Reg
Output: approximately optimal persistence k
1 forall k£ € K do

sz = %ZZI Vk‘(s‘rwo) N
Use the Reg to get an estimate Qr of TFQy

”@k Qk”l D = T(T,) Z T(ﬂ') ! |Qk(STL t7 ) Qk( Ti» t7 t)l
ske argmaxke;c{Bk} = J£ - mHQk — @l

6 return k

s W N

to compare the values of these terms for different persistences k since both the greedy
policies and the regression problems are different. Nevertheless, it is worth noting that the

multiplicative term =~ decreases in k € N ;. Thus, other things being equal, the bound
value decreases when i 1ncreasmg the persistence.

It is worth noting that this analysis and PFQI more in general resembles a particular
instance of non-stationary AVI|Scherrer and Lesner (2012); Lesner and Scherrer| (2015) in
which the non-stationary policy is the k-persistent policy instead of the sequence of the
last k policies.

Visualizing the Control Frequency Trade-off Thus, the trade-off in the choice of con-
trol frequency, which motivates action persistence, can now be stated more formally. We
aim at finding the persistence k € N> that, for a fixed .J, allows learning a policy 7(*)
whose Q-function Q’,;(J) is the closest to Q*. Consider the decomposition obtained via
triangular inequality:

() ()

-

<1Q* — Qil,, + |@k - @

p,p

The term |Q* — Q} |, , accounts for the performance degradation due to action persis-
tence: it is algonthm 1ndependent and it increases in k (Theorem[9.3). Instead, the second
term ||Q} — k Hp7 o decreases with £ and depends on the algorithm (Theorem. Un-
fortunately, optimizing their sum is hard since the individual bounds contain terms that are
not known in general (e.g., Lipschitz constants, €(/)). The next section proposes heuristics
to overcome this problem.

9.5 Persistence Selection

In this section, we discuss how to select a persistence k in a set K < N3 of candidate
persistences, when we are given a set of estimated Q-functions: {Qy : k € IC}E] Each Qy
induces a greedy policy 7. Our goal is to find the persistence k € X such that 7, has the

SFor instance, but not necessarily, the Q;, can be obtained by executing PFQI with different persistences
keK.
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maximum expected return in the corresponding k-persistent MDP M,

k* € argmax {J"""}, 9.12)
kek

where p € 2(S) is an evaluation distribution and J;"™ = {4 p(ds)V,"* (s) is the expected
return of policy 7, executed in the k-persistent MDP M.

In principle, we could execute 7 in M}, to get an estimate of J;™* and employ it
to select the persistence k. However, in the batch setting, further interactions with the
environment might be not allowed. On the other hand, directly using the estimated Q-
function @), is inappropriate, since we need to take into account how well Q}, approximates

Z"’. This trade-off is encoded in the following result, which makes use of the expected
Bellman residual.

Lemma 9.9. Let Q € #(S x A) and 7 be a greedy policy w.r.t. Q. Let J* = § p(ds)V (s),
with V (s) = maxaea{Q(s,a)} forall s € S. Then, for any k € Nx, it holds that:

i 1
IO = P — T ITQ — Qllyyor » (9.13)

where n”™ = (1—~+*)pr (Idng — ’ykP,f) 71, is the y-discounted stationary distribution
induced by policy m and initial state distribution p in MDP Mj,.

Proof. We start by providing the following equality, recalling that ;¥ Q = T} @, being 7 the greedy
policy w.r.t. Q:

Qr —Q=TIQF ~TFrQ+T¥Q - Q
=v"Pf (QF — Q)+ T¥Q - Q
= (IdeA - WkPéT)_l (TFQ-Q),

where the last equality follows from the properties of the Neumann series. We take the expectation
w.r.t. to the distribution p7r both sides. For the left hand side we have:

JT = J% = prQk — pmQ.

Concerning the right hand side, instead, we have:

L7 (17Q - q),

k pm -1 *
pw(ldsxA—’YPk) (TkQ_Q):l_,y

where we introduced the y-discounted stationary distribution (Sutton et al.,[1999a)) after normaliza-
tion. Putting all together, we can derive the following inequality:

u 1 s
ST 0 = e (1 Q- Q)

\%

1 ™
TR - Q)

1
T |T7Q = Ql, 0m -
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Heuristic To get a usable bound from Lemma we need to make some simplifica-
tions. First, we assume that D ~ v is composed of m trajectories, i.e., D = {r;}I; and
the initial states are sampled as S, o ~ p. In this way, J# can be estimated from samples

as:

Second, since we are unable to compute expectations over n”°™, we replace it with the
sampling distribution VE] Lastly, estimating the expected Bellman residual is problematic
since its empirical version is biased (Antos et al., 2008). Thus, we resort to an approach
similar to (Farahmand and Szepesvari, |2011)), assuming to have a regressor Reg able to
output an approximation Qy, of T7¥Q. We can proceed to the decomposition, thanks to the
triangular inequality:

IT#Q - Ql,, < H@k -Q 9.14)

LT

1,v

As discussed in [Farahmand and Szepesvari (2011), simply using H@k - QH as a proxy
1,v

for [T;¥Q — Q| , might be overly optimistic. To overcome this problem we must prevent
the underestimation of the expected Bellman residual. The idea proposed in [Farahmand

with a
high-probability bound by g, depending on the function space G of the chosen fegressor
Reg. Clearly, we have the new problem of deriving a meaningful bound b, . This issue is
treated in Section 7.4 of [Farahmand and Szepesvari| (2011). If G is a small function space,
i.e., with finite pseudo-dimension, we can employ a standard learning theory bound (Gyorfi
et al.,[2002). Since for the persistence selection, we employ the same function space G and
the same number of samples m for all persistences & € /C, the value of such a bound will
not depend on k and, therefore, it can be neglected in the optimization process. We stress
that our goal is to provide a practical method able to suggest a reasonable persistence. In
this way, we simply replace |7;*Q — Q| , with [Q — Q||1,p. In practice, we set @ =

Q) and we obtain Q;, running PFQI for k additional iterations, setting Q, = Q(/*%).
Thus, the procedure (Algorithm[9.2) reduces to optimizing the index:

and Szepesvdri| (2011) consists in replacing the regression error HT,;“Q — Qn

k € argmax { B} = j,f -

1
= o1

‘@k — Qk

1,D

9.6 Related Works

In this section, we revise the works connected to persistence, focusing on continuous-time
RL and temporal abstractions.

"This introduces a bias that is negligible if |1?™ /v|, ~ 1. More intuition about when this condition is
realized can be found in Appendix C.1 of Metelli et al.|(2020a)).
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Continuous-time RL.  Among the first attempts to extend value-based RL to continuous-
time there is advantage updating (Bradtke and Duff] |1994), in which Q-learning is mod-
ified to account for infinitesimal control timesteps. Instead of storing the Q-function,
the advantage function A(s,a) = Q(s,a) — V(s) is recorded. The continuous time is
addressed in Baird| (1994) by means of the semi-Markov decision processes (Howard,
1963) for finite-state problems. Restricting our brief treatment to the case of determinis-
tic systems, in which the state evolves through time according to the differential equation
$(t) = £(s(t),u(t)), the goal consists in finding the control signal u(t) € Z(U), where U
is the space of allowed control signals, for t € R> so as to maximize the value function
as follows:

Vi(s) = JR ePlr(s(t),u(t))dt,

where v = ¢” is the discount factor. The optimal control literature has extensively studied
the solution of the Hamilton-Jacobi-Bellman equation (Kirk, 2004), i.e., the continuous-
time counterpart of the Bellman equation, that, for deterministic systems can be stated
as:

*(s)= su u :lsu r(s,u WV T u
Ve = s (VRS = G {rls )+ G0 s

However, most of the works assume the knowledge of the environment (Bertsekas| 2005
Menaldil [1994). The model-free case has been tackled by resorting to time (and space)
discretizations (Peterson, [1993)), with also convergence guarantees (Munos} |1997; [Munos
and Bourgine, |1997), and coped with function approximation (Dayan and Singhl [1995}
Doyal, 2000). More recently, the sensitivity of deep RL algorithm to the time discretization
has been analyzed in Tallec et al.|(2019), proposing an adaptation of advantage updating
to deal with small time scales, that can be employed with deep architectures.

Temporal Abstractions The notion of action persistence can be seen as a form of tem-
poral abstraction (Sutton et al., | 1999b; Precupl |2001). Temporally extended actions have
been extensively used in the hierarchical RL literature to model different time resolu-
tions (Singhl [1992alb)), subgoals (Dietterich, [1998)), and combined with the actor-critic
architectures (Bacon et al., [2017). Persisting an action is a particular instance of a semi-
Markov option, always lasting k steps. According to the flat option representation (Pre-
cupl 2001), we have as initiation set Z = S the set of all states, as internal policy the
policy that plays deterministically the action taken when the option was initiated, i.e., the
k-persistent policy, and as termination condition whether & timesteps have passed after
the option started, i.e., 3(ht) = 1 mod k—o}- Interestingly, in Mann et al.| (2015) an ap-
proximate value iteration procedure for options lasting at least a given number of steps is
proposed and analyzed. This approach shares some similarities with action persistence.
Nevertheless, we believe that the option framework is more general and usually the time
abstractions are related to the semantic of the tasks, rather than based on the modification
of the control frequency, like action persistence.
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9.7. Experimental Evaluation

Environment Expected return at persistence k (jﬁ'"‘”, mean + std) Performance loss
k=1 k=2 k=4 k=38 k=16 k=32 k=64 (6 mean + std)

Cartpole 169.9 £ 5.8 176.5 £ 5.0 2395+44 10.0 £ 0.0 9.8 +£0.0 9.8 £0.0 9.8+ 0.0 0.0+0.0
MountainCar —111.1 +1.5 —103.6 + 1.6 -9724+20 -936+21 -944+18 -924+15 -136.7+0.9 1.88 +0.85
LunarLander —165.8 + 50.4 —12.8 +4.7 12+36 20+34 —4414+6.9 -1228+10.5 —121.2+8.6 2.12+4.21
Pendulum —116.7+16.7 —113.1 + 16.3 —153.8 + 23.0 —283.1 + 18.0 —338.9 + 16.3 —364.3 +22.1 —377.2 + 21.7 3.52 4+ 0.0
Acrobot —89.2+ 1.1 —825+17 —-834+13 -1228+1.3 -2662+19 —-287.3+0.3 —286.7+0.6 0.80 +0.27
Swimmer 21.3+1.1 2521038 25.0+0.5 24.0+03 224403 128+ 1.2 14.0 £0.2 2.69 +1.71
Hopper 58.6 £ 4.8 61.9+4.2 62.2 £ 1.7 59.7+ 3.1 60.8 £ 1.0 66.7 £2.7 73.4+1.2 5.33 £2.32
Walker 2D 61.6 +5.5 37.6 £4.0 62.7+18.2 80.8+6.6 1021+19.3 91.5+13.0 97.2+17.6 5.10+£3.74

Table 9.1: Results of PFQI in different environments and persistences. For each persis-
tence k, we report the sample mean and the standard deviation of the estimated return
of the last policy J{"™*. For each environment, the persistence with the highest av-
erage performance and the ones not statistically significantly different from that one
(Welch’s t-test with p < 0.05) are in bold. The last column reports the mean and the
standard deviation of the performance loss § between the optimal persistence and the
one selected by the index By, (Equation (9.13)).

9.7 Experimental Evaluation

In this section, we provide the empirical evaluation of PFQI, with the threefold goal: 1)
proving that a persistence & > 1 can boost learning, leading to more profitable policies, ii)
assessing the quality of our persistence selection method, and iii) studying how the batch
size influences the performance of PFQI policies for different persistences. For additional
experiments, the hyperparameter values, and the implementation details, please refer to
Appendix D of the original paper (Metelli et al., 2020a)).

9.7.1 Main Experiment

We train PFQI, using extra-trees (Geurts et al., 2006) as a regression model, for J itera-
tions and different values of k, starting with the same dataset D collected at persistence
1. To compare the performance of the learned policies 7y, at the different persistences, we
estimate their expected return J;"™ in the corresponding MDP M. Table shows the
results for different continuous environments and different persistences averaged over 20
runs and highlighting in bold the persistence with the highest average performance and the
ones that are not statistically significantly different from that one. Across the different en-
vironments we observe some common trends in line with our theory: i) persistence 1 rarely
leads to the best performance; ii) excessively increasing persistence prevents the control at
all. In Cartpole (Barto et al., [1983)), we easily identify a persistence (k = 4) that outper-
forms all the others. In the Lunar Lander (Brockman et al., 2016)) persistences k € {4, 8}
are the only ones that lead to positive return (i.e., the lander does not crash) and in the
Acrobot domain (Geramifard et al., 2015) we identify k € {2, 4} as optimal persistences.
A qualitatively different behavior is displayed in Mountain Car (Moore, |1991), Pendu-
lum (Brockman et al.,[2016), and Swimmer (Coulom) |2002), where we observe a plateau
of three persistences with similar performance. An explanation for this phenomenon is
that, in those domains, the optimal policy tends to persist actions on its own, making the
difference less evident. Intriguingly, the more complex Mujoco domains, like Hopper and
Walker 2D (Erickson et al.,2019), seem to benefit from the higher persistences.
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Figure 9.4: Expected return J"™", estimated return J!, estimated expected Bellman resid-

ual |Qr — Qr|1,p, and persistence selection index By, in the Cartpole experiment as
a function of the number of iterations for different persistences. 20 runs, 95 % c.i.
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9.7.2 Persistence Selection Experiment

To test the quality of our persistence selection method, we compare the performance of
the estimated optimal persistence, i.e., the one with the highest estimated expected return
ke arg maXyex {f 27k, and the performance of the persistence k selected by maximizing
the index Bk (Equat1on -) Foreachruni € {1,...,20}, we compute the performance

loss 0; = JA’ J~ " and we report it in the last column of Table In the Cartpole

experlment we observe a zero loss, which means that our heuristic always selects the
optimal persistence (k = 4). Differently, non-zero loss occurs in the other domains, which
means that sometimes the index Bj, mispredicts the optimal persistence. Nevertheless, in
almost all cases the average performance loss is significantly smaller than the magnitude
of the return, proving the effectiveness of our heuristics.

In Figure 9.4 we show the learning curves for the Cartpole experiment, highlight-
ing the components that contribute to the index By. The first plot reports the estimated
expected return J), 7P obtained by averaging 10 trajectories executing 7y, in the environ-
ment My, which conﬁrms that £ = 4 is the optimal persistence. The second plot shows
the estimated return J{, obtained by averaging the Q-function @}, learned with PFQI, over
the initial states sampled from p. We can see that for k € {1, 2}, PFQI tends to overesti-
mate the return, while for k£ = 4 we notice a slight underestimation. The overestimation
phenomenon can be explained by the fact that with small persistences we perform a large
number of applications of the operator T*, which involves a maximization over the action
space, injecting an overestimation bias. By combining this curve with the expected Bell-
man residual (third plot), we get the value of our persistence selection index By, (fourth
plot). Finally, we observe that B, correctly ranks persistences 4 and 8, but overestimates
persistences 8 and 16, compared to persistence 1.

9.7.3 Batch-Size Experiment

In previous experiments, we assumed we could choose the batch size, however, in real
contexts this is not always allowed. In PFQI, lower batch sizes increase the estimation
error, but the effect can change according to the used persistence. We investigate how the
batch size influences the performance of PFQI policies for different persistences. There-
fore, we run PFQI on the Trading environment (described below) changing the number of
sampled trajectories. In Figure[9.5] we notice that the performance improves as the batch
size increases, for all persistences. Moreover, as it can be noticed in Figure if the batch
size is small n € {10, 50}, higher persistences k € {2, 4, 8} result in better performances,
while, with persistence £ = 1, performance decreases with the iterations. In particular,
with 50 trajectories, we can notice that all persistences except from k£ = 1 obtain a posi-
tive gain. Since data is taken from real market prices, this environment is very noisy, thus,
when the amount of samples is limited, PFQI can exploit higher persistences to mitigate
the poor estimation.

FX Trading Environment Description This environment simulates trading on a foreign
exchange market. Trader’s own currency is USD and it can be traded with EUR. The trader
can be in three different positions w.r.t. the foreign currency: long, short or flat, indicated,
respectively, with 1, —1, 0. Short selling is possible, i.e., the agent can sell a stock it does
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Figure 9.5: Expected return f,’; ™% in the Trading experiment as a function of the batch
size. 10 runs, 95 % c.i.

not own. At each timestep the agent can choose its next position with its action a;. The
exchange rate at time ¢ is p;, and the reward is equal to r; = a¢(py — pe—1) — flas —
, where the first term is the profit or loss given by the action a;, and the second term
represents the transaction costs, where f is a proportionality constant set to 4 - 107°. A
timestep corresponds to 1 minute, an episode corresponds to a workday and it is composed
by 1170 steps. It is assumed that at each time-step the trader goes long or short of the same
unitary amount, thus the profits are not re-invested (and similarly for the losses), which
means that the return is the sum of all the daily rewards (with a discount factor equal to
0.9999). The state consists of the last 60 minutes of price differences with the first price of
the day (p; — po), with the addition of the previous portfolio position as well as the fraction
of time remaining until the end of the episode. For our experiments we sampled randomly
daily episodes from a window of 64 workdays of 2017, evaluating the performances on
the last 20 days of the window.

a1

9.7.4 Summary of the Experiments

The experiments we presented justifies the introduction of persistence. Specifically, we
have illustrated three aspects related to action persistence. First, we have shown that ac-
tion persistence can lead to higher-performing policies when learning under uncertainty
(Section . Indeed, the optimal value of persistence is almost never one. Second, we
have shown that our persistence selection method, although approximate, is able to select
a reasonable persistence value with no need for further interaction with the environment
(Section[9.7.2). Finally, the experiment in the trading environment (Section [9.7.3) shows,
in alignment with our theoretical findings, that the optimal value of persistence changes as
a function of the available samples, finally converging to persistence one as the number of
samples grows.

9.8 Open Questions

In this section, we discuss some open questions related to action persistence and we present
preliminary results.
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Figure 9.6: Performances for each persistence along the iterations, with different numbers
of trajectories. 10 runs, 95% c.i.

9.8.1 Improving Exploration with Persistence

Action persistence might have an effect on the exploration properties of distribution v used
to collect samples. To avoid this phenomenon, in the previous experiments, we assumed
to feed PFQI with the same dataset collected in the base MDP M, independently of which
target persistence k we are interested in. In this section, we briefly analyze what happens
when we feed standard FQI with a dataset collected by executing the same policy (e.g.,
the uniform policy over \A) in the k-persistent MDP M, in order to estimate the corre-
sponding k-persistence action-value function Q}. In this way, for each persistence k we
have a different sampling distribution v used to collect Dy. Refer to Figure [9.7) for a
graphical comparison between PFQI executed in the base MDP M and FQI executed in
the k-persistent MDP M.

When we compare the performances of the policies obtained with different persistence
levels learned starting with a dataset Dy, ~ v, we should consider two different effects:
i) how training samples are generated (i.e., the sampling distribution v}, which changes
for every persistence k); ii) how they affect the learning process in FQI. Unfortunately, in
this setting, we are not able to separate the two effects. We compare, for different values
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Figure 9.7: Illustration of (a) PFQI executed in the base MDP M and (b) the standard
FQI executed in the k-persistent MDP M.

of k e K = {1,2,...64}, the performance of PFQI and the performance of FQI run on
the k-persistent MDP M ;. In Figure[9.8] we show the performance at the end of training
of the policies obtained with PFQI, the one derived with FQI on My, and the uniform
policy over the action space. First of all, we observe that when k = 1, executing FQI
on M is in all regards equivalent to executing PFQI(1) on M. We can see that in the
Cartpole environment, fixing a value of & € /C, there is no significant difference in the
performances obtained with PFQI and FQI on M. The behavior is significantly different
when considering Mountain Car. Indeed, we notice that only FQI on M}, is able to learn
a policy that reaches the goal for some specific values of k € K. We can justify this
behavior with the fact that by collecting samples at a persistence k, like in FQI on My,
the exploration properties of the sampling distribution change, as we can see from the
line “Uniform policy”. If the input dataset contains no trajectory reaching the goal, our
algorithms cannot solve the task. This is why PFQI, that uses persistence 1 to collect the
samples, is unable to learn at all.

This experiment gives a preliminary hint on how action persistence can affect explo-
ration. More in general, we wonder which are the characteristics of the environment such
that the same sampling policy (e.g., the uniform policy over .A) allows performing a more
effective exploration. More formally, we ask how the persistence affects the entropy of the
stationary distribution induced by the sampling policy.

9.8.2 Learnin M, and execute in M,

In this section, we empirically analyze what happens when a policy is learned with PFQI
with a certain persistence level k and executed later on with a different persistence level
k' # k. We consider an experiment on the Cartpole environment, we run PFQI for k €
K ={1,2,...,256}, and then for each k we execute policy 7 (i.e., the policy learned by
applying the k-persistent operator) in the k’-persistent MDP My for &’ € K. For each pair
(k, K, Table shows the sample mean and the sample standard deviation over 20 runs of
the expected return of policy 7 in MDP My, i.e., J, ,f}ﬂ’“ . First of all, let us observe that the
diagonal of Table 0.2 corresponds to the first row of Table [9.1] (apart from the randomness
due to the evaluation). If we select a row £, i.e., we fix the persistence of the operator, we
notice that, in the majority of the cases, the persistence k’ of the MDP yielding the best
performance is smaller than k. Moreover, even if we learn a policy with the operator at
a given persistence k and we see that such a policy displays a poor performance in the
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Figure 9.8: Performance of the policies learned with FQI on My, PFQI on M and the
one of the uniform policies for different values of the persistence k € IC. 10 runs. 95%
C.i.

k-persistent MDP (e.g., for £ > 8), when we reduce the persistence, the performance of
that policy seems to improve.

Figure [9.9] compares for different values of &, corresponding to the persistence of the
operator, the performance of the policy 7, when we execute it in M, and the performance
of 7y, in the MDP M /)%, where (k')* € argmaxy,cx{J}; ™" }. We clearly see that suit-
ably selecting the persistence k&’ of the MDP in which we will deploy the policy, allows
reaching higher performances.

We wonder is whether this behavior is a property of the Cartpole environment or is a
general phenomenon that we expect to occur in environments, with certain characteristics.
If so, which are those characteristics? Furthermore, when we allow executing 75 in My
we should rephrase the persistence selection problem (Equation (9.12)) as follows:

k*, (K')* € argmax {J,™*}, 9.16)

k.k'ek

where p € (8) is an evaluation distribution. Similarly to the case of Equation (9:12)), we
cannot directly solve the problem if we are not allowed to interact with the environment.
Is it possible to extend Lemma [9.9] and the subsequent heuristic simplifications to get a
usable index By, ;s similar to Equation (9:13)?
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K=1 K =2 k=4 K =8 =16 Kk =32 kK =64 k' =128 k' =256
k=1 1720+6.8 1741+6.5 113.0+53 98+00 97+00 97+0.1 98400 9.7+0.0 9.7+£0.0
k=2 1784 +6.7 1822+72 151.6+51 99+00 98+0.0 98+0.0 98400 9.8+0.0 9.8+0.0
k=4 276.2+38 2873+1.1 237.0+54 100+0.0 98+00 984+0.0 99+£00 98+0.0 9.9+0.0
k=8 284.3+1.6 281.4+3.0 211.5+4.0 10.0£0.0 98+0.0 98400 9.8+0.0 9.8+0.0 9.9+0.0
k=16 2859+1.1 2829+26 2235+32 10.0+0.0 99+0.0 98+0.0 99+0.0 99+0.0 9.8+0.0
k=32 2857+13 2836+27 2222+36 10.0£0.0 99+00 9.9+00 98+0.0 99+0.0 9.9+0.0
k=64 283.6+23 284.1+20 2255+44 10.0+0.0 99+0.0 98+0.0 99+0.0 98+0.0 9.9+0.0
k=128 2829+22 2825+31 221.9+47 10.0£0.0 9.8+0.0 9.9+£0.0 99+£0.0 99£0.0 99+0.0
k=256 282.5+23 283.4+24 2243+39 10.0+0.0 9.9+0.0 99+0.0 99+0.0 99+0.0 9.9+0.0

Table 9.2: Results of PFQI execution of the policy . learned with the k-persistent oper-
ator in the k'-persistent MDP My, in the Cartpole experiment. For each k, we report
the sample mean and the standard deviation of the estimated return of the last pol-

~

icy J&™.

For each k, the persistence k' with the highest average performance and

the ones k' that are not statistically significantly different from that one (Welch’s t-test
with p < 0.05) are in bold.
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Figure 9.9: Performance of the policies my, for k € K comparing when they are executed
in My, and when they are executed in M yx. 20 runs, 95% c.i.
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CHAPTER 1 0

Discussion and Conclusions

In this dissertation, we introduced and explored a novel research area of reinforcement
learning, providing theoretical, algorithmic, and experimental contributions. In Part[[, we
introduced the Configurable Markov Decision Processes, a new tool to model the pos-
sibility of configuring the environment in a sequential decision-making problem and we
studied the different flavors of interaction between agent and configurator. In Part[[I} we
focused on the cooperative setting, proposing algorithms to learn in both finite and con-
tinuous Conf-MDPs and we evaluated them on synthetic and realistic domains. Finally,
in Part[ITI} we investigated two applications of the Conf-MDPs: the policy space identifi-
cation, in which we employ environment configurability to infer the agent’s policy space
and action persistence in which we study the configuration of the control frequency of a
system.

This research allowed for a better understand of the problem of environment config-
uration, highlighting, on one hand, its opportunities and identifying, on the other hand,
limitations, and possible extensions. In the following, we will revise the contributions of
the dissertation and discuss possible future research directions.

10.1 Modeling Environment Configurability

We provided the first formalization of environment configurability. Specifically, we in-
troduced the notion of Configurable Markov Decision Process, as an extension of the tra-
ditional MDP model, in which we allow modifications of the transition model and we
consider two reward functions Rag and Rcons to represent the agent’s and configurator’s
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interests (Chapter [d). We extended the notion of value function, Bellman operator, and
Bellman equation to the Conf-MDP setting. We observed that, in general, the possibility
to alter the environment has to be limited to some extent, to avoid degenerate solutions.
This is justified by the fact that the transition model typically encodes portions of the en-
vironment that can be configured as well as parts that are immutable (e.g., physical laws).
This observation leads to the formalization of the parametric Conf-MDP, in which the
transition model configuration is performed via a parametric vector.

Then, we focused on investigating the nature of the interaction between the agent and
the configurator (Chapter [5). We started with the cooperative setting, in which the agent
and the configurator share the same interests. This circumstance corresponds to the case
in which the reward functions are equal. In such a scenario, it is natural to define a notion
of optimality over the policy-transition model joint space. Then, we moved to the non-
cooperative setting, in which the agent and configurator interests might diverge. In this
setting, defining a suitable solution concept is less straightforward. Based on whether the
agent is aware of the configurator presence, we proposed to employ game-theoretic equi-
libria, either Nash equilibrium or Stackelberg equilibrium. For both settings, we extended
the notions of value function, Bellman operators, and Bellman equations.

Although our Conf-MDP model is rather simple and the optimality conditions we have
proposed for the diverse settings, we believe that there are still situations emerging in real-
world applications that cannot be captured. In the following, we outline some of them,
that might lead, in the future, to new research directions.

Cost of Environment Configuration Differently from policy learning, in many real-
world scenarios the configuration of environmental parameters is an activity that has to be
carried out with particular care since it can lead to unsafe behaviors. Moreover, compared
to policy learning, it might be performed less frequently and involve additional costs. In
our solution concepts, we did not include explicitly a component to account for the cost of
altering the environment, although this circumstance was already considered in|Silva et al.
(2018 [2019). From the viewpoint of our Conf-MDP definition, including a “configuration
cost” component would result in a non-Markovian configurator reward function, explicitly
depending on the environment configuration.

Multiple Agents and Multiple Configurators The definition of Conf-MDP we pro-
vided in this dissertation assumes the presence of one agent and one configurator. In
principle, we might consider scenarios in which multiple agents interact with one another
and with multiple configurators. For instance, in Example {£.3] it is quite natural to con-
sider multiple customers in the supermarket, although it is probably unreasonable to take
into account multiple configurators. In more generality, we could extend our Conf-MDP
definition, accounting for multiple agent reward functions (RAgi)fv:f and multiple config-
urator reward function (Rconf]. );-V:C"l"f. This scenario would open new forms of interaction
since there would be multiple configurator entities acting on the same environmental pa-
rameters, whereas each agent would act on its individual policy.

Modeling the Configurator Interests At the beginning Chapter ] we provided an
overview of the configuration activity in relation to the curriculum learning literature. We
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believe that our Conf-MDP definition, although quite natural and immediate, does not en-
compass the curriculum learning setting. Indeed, when the configurator is interested in
speeding up the learning process for the agent, in the original MDP, its reward cannot be
modeled as a Markovian stationary reward. For instance, a more effective modelization
of the configurator interest consists in employing an online learning performance index,
like the regret (Lattimore and Szepesvari, 2020), determined by the sequence of policies
the agent will learn. Clearly, this definition highlights the asymmetry between agent and
configurator, which is not completely captured in the present definition. As a consequence,
new solution concepts need to be explored.

Configurable Reward Function In our model, we limited the configuration opportu-
nities to the transition model. In principle, we could allow other elements of the MDP
definition to be configured. A very interesting element is the agent reward function. Mod-
ifying the reward function is tricky since it alters the agent utility function and conse-
quently, defining a suitable goal of the configuration activity becomes more blurred. We
have seen an example, in the control frequency adaptation (Chapter[9), in which the reward
function changes, although it can be considered a side effect of modifying the persistence.
From a curriculum learning perspective, configuring the agent reward function assumes a
more interpretable meaning. Indeed, we might be interested in providing the agent with
a reward function that is more informative (e.g., dense vs sparse reward) and allows ap-
proaching the optimal policy faster. In some sense, this can be thought of as a form of
reward shaping (Ng et al.,|{1999).

10.2 Learning in Configurable Markov Decision Process

We studied the learning problem in Conf-MDPs with attention to the cooperative setting,
in which a notion of optimal policy-transition model pair is simple to define. In this setting,
we first considered the case of finite Conf-MDPs, devising a safe learning approach, SPMI
(Chapter [6). SPMI is essentially a prototypical approximate policy iteration algorithm,
endowed with strong theoretical guarantees on the performance improvement. However,
SPMI requires the full knowledge of the environment model and, for this reason, its appli-
cability is restricted to toy domains.

For these reasons, we investigated the possibility to devise an algorithm that applies
to continuous Conf-MDPs, and that overcomes the limitation of knowing the environment
model. REMPS (Chapter [/)) imports several notions from the trust-region methods and
allows solving parametric Conf-MDPs with a procedure that alternates an optimization
and a projection phase. Furthermore, we can endow REMPS with an approximation of the
transition model learned from samples. The only assumption requested for the configura-
tor is to know which are the parameters it can act on. REMPS allows scaling Conf-MDPs
on more realistic scenarios. The experimental evaluation showed that configuring the en-
vironment, on the one hand, allows the agent to learn highly performing policies; on the
other hand, it might speed up the learning process itself. Moreover, REMPS displayed
the ability to overcome some of the limitations of gradient methods when employed to
configure environments, even in the presence of approximate models.

The focus of this dissertation, concerning the learning problem in Conf-MDPs, is lim-
ited to the cooperative setting. We believe that there is room for further investigations
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in this direction as well as on the study of the properties of the solution concepts for the
non-cooperative Conf-MDPs. We provide an overview of these research directions in the
following.

Online Learning in Cooperative Conf-MDPs An interesting research direction con-
sists of studying the well-known exploration problem, from the point of view of the Conf-
MDPs. In this setting, we would play the role of a configurator that is unaware of the
agent’s reward function and wants to identify the best configuration, within a suitably
defined set, that paired with the corresponding agent’s optimal policy, optimizes the long-
term reward. This problem could be treated as a bandit problem (Lattimore and Szepesvari,
2020), although with additional care. Indeed, whenever a configuration is set in the envi-
ronment, the agent needs a certain amount of time to adapt its policy. When should we
provide the agent with a new configuration? This is an instance of the exploration vs ex-
ploitation tradeoff in which we need to decide whether to exploit the current belief on the
best configuration or to explore new configurations to gather more information with the
risk of lowering the performance. Furthermore, it might be beneficial to exploit more ef-
fectively the structure (Lattimore and Munos| 2014)) underlying the process. Specifically,
if the configurator knew the agent’s reward function, it could solve the learning problem
offline.

Learning in Non-Cooperative Conf-MDPs The study of Conf-MDPs we carried out so
far was limited to the cooperative setting. However, there exist several real-world scenarios
in which the agent and the configurator display non-cooperative goals. In principle, we
could investigate the possibility to extend the algorithms designed for cooperation Conf-
MDPs, such as SPMI and REMPS, to the non-cooperative setting. Clearly, the problem
needs to be formulated as learning a suitable equilibrium of the Conf-MDP. A possible
line of research consists in adapting the learning dynamics of stochastic games (e.g., Jin
et al., 2019; [Fiez et al., 2019) to our Conf-MDP setting. Clearly, we could also focus on
an online learning approach in which the configurator learns the agent’s reward function
and then solves the game offline. We are convinced that this direction on non-cooperative
Conf-MDPs is very appealing and deserves to be further examined in the future.

10.3 Applications of Configurable Markov Decision Processes

We presented two heterogeneous applications in which the environment configuration op-
portunities can be beneficial. In policy space identification (Chapter [§), we studied the
problem of identifying the agent’s capabilities in terms of perception, actuation, and map-
ping, formalized in the notion of policy space. The role of the Conf-MDPs in this task is
twofold. First, we see the policy space identification as a relevant tool to properly select the
optimal configuration for the agent in a cooperative Conf-MDP. Indeed, agents optimizing
the same reward function but having access to different policy spaces might benefit from
different environment configurations. Second, environment configuration can be seen as a
tool to place the agent in a suitable MDP in which it is induced to reveal its capabilities.
Then, we focused on a different application related to the choice of a suitable control
frequency for an RL problem (Chapter [9). This issue is particularly relevant in robotics
and makes it manifest an important trade-off between control opportunities (larger at high
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frequencies) and sample complexity (lower at low frequencies). We started with an anal-
ysis of the performance loss we experience when with action persistence, i.e., when we
reduce the control frequency by an integer factor of the base one and we discussed the
required regularity conditions to bound the loss. Then, we provided an algorithmic con-
tribution with PFQI, a batch RL algorithm that is able to learn approximately the value
function at different persistences. Related to the topic of action persistence, we believe
there are opportunities for further research, that we outline in the following.

Online Action Persistence We considered the batch RL setting, in which the dataset of
samples is fixed and no further interaction with the environment is possible. This setting
leads to a notion of fixed optimal persistence, that is maintained for the whole learning
process. As supported by intuition, the larger the number of samples the lower the optimal
persistence. When we move to the online RL setting, in which the interaction with the
environment is possible to collect additional samples, it might be convenient to vary dy-
namically the action persistence during the learning process. For instance, we could start
with a high persistence to reach a policy with a reasonable performance with little data.
Then, as the available data grows, we could reduce the persistence, in order to refine the
learned policy and, eventually, converge to the optimal one.
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APPENDIX

Additional Results and Proofs

In this appendix, we report additional results and proofs we have omitted in the main text
of the dissertation.

A.1 Additional Results and Proofs of Chapter|§|

Lemma A.1. Let A:y’; be the expected coupled relative advantage function, A:”If and

A::g/ be the expected (uncoupled) policy and model relative advantage functions respec-
tively. Then, it holds that:

T = (2 + 875 | <20 =l [P~ Pl

X supA{sp(U“’P(s,a,'))}.

s€S,a€e

Proof. We can rewrite the expected relative advantage A:t}f' using Lemma
' P’ T, P ', P’
AT = [ AT o)
s
_ J 2 (ds) (A;;f;’(s) + f n'(da|5)A§;{;’(s,a)) (1)
s A

~ [ AT E @ + [ [ i @m(aal AT (50
S S
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+ Js o (ds) JA (7'(dals) — w(dals)) ATp (s, a)

= A:”If + A::g + f ,ug’P(ds)J (7T’(dCL|S) — 7T(da|s)) A:jg (s,a), (P2)
s A

where line (PI) comes from Lemma [6.1] From Equation (P2) we can straightforwardly state the

following inequalities:

’

w7 =Tzl | [t [ (' als) - wlaals) AT (s,0)
S A

?

’

ATE < AT F + AT + \ f u:*”<ds>j (n'(dals) — 7(dals)) ATF (s, a)
S A

Then, we bound the absolute value in the right hand side:

‘A;;:g”’ - (A:],f + A:;,’i’) ] < ‘ L pF (ds) L (n'(dals) — w(da|s)) ATE (s, a)

< J 15 (ds)
S

J 7' (dals) — 7r(da|s)A::£/(s, a)
A

< j W27 (A3) [ (ls) — 71|y sp(ATE (5,))  (B3)

<7 =y o sp(ATE), (P4)

where line (P3) follows from Lemmal[6.5]and line (P4) derives from observing that:

sp(AZ:i (s, )) < SLGIE {Sp(A:jg (s, ))} < sp(Azzg )

We conclude by bounding the term sp (AZ:}P;/) :
w(4zF) <2]azr]
, Pl

<2 sup {L (P'(ds'|s,a) — P(ds'|s,a)) U”’P(s,a,s/)}

s€S,aeA
<2 sup {HP/(-|5, a) — P(-|s,a)|y, sp (U”’P(s, a, ))} (P5)
s€S,ac A
<2|P - Pl ,,  Sup {sp (U"’P(s7 a, ))} ,
7 s,e8,ae A
where (P3)) follows from Lemmal6.3] Putting all together we get the result. O

This result has an interesting interpretation. It tells that the maximum advantage (or
disadvantage) that can be obtained by moving the policy and the model simultaneously is
bounded by the advantage (or disadvantage) gained by moving the policy and the model
separately and a term that depends on the policy and model distance. Therefore, it can
happen that even if moving the policy and the model separately is convenient, the joint
movement may not.

Lemma A.2. Let AZ:;{D/ be the expected coupled relative advantage function. Then, it
holds that:

Sp (AZ:35/> <2 Hﬂ/ - 7THTV,CO Sgg {Qﬂ’P(S’ )}
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+ [P =Pl sup {sp(U™7)(s,a,)}.
T seS,aeA

Proof. Let us start rewriting the expression of the relative advantage A7 }f using Lemma

sp(A:j’;/) < 2‘

-
?

Thus, we have to bound the two L -norms )

! pr
7, P
A‘rr,P
[e¢]

TS+ | 7 al Az (o
A

,,P
ATE| 2|
0

0

P’
Az |
0

A:/}f’H and ‘
. . ! ©
we already bounded it in the proof of Lemma [A-T}

whereas for the second term, we proceed analogously:

P’ .
ATp H . Concerning the second term,
;
0

ATE L < I =Pl g ooV 000)

a7f], = s { [ (aale) = mtaals) @7 (5.0

<smp {7 ()~ =il (@776
< =y o sup {sp(Q77 () }-

Theorem 6.9. For any 7 € IIS® and P € PSR, the decoupled bound is optimized for:

(o, 5%) € arg max{B(a, §)},

(a0, B)EV
where B is the bound in Theorem[6.7jand V = {(a§,0), (of, 1), (0, BF), (1, BF)} and:
- (1-7)ATE
Aysupes {sp(Q™F (s, DT = gy o0 1T = Tllpy e’

HP - P”TV,MZ,”P SUDPseS acA {SP(UW P 85 @y )} HP PHTV ©

Oé* =Ot* _ — _ ,
2 m = wlpy e 275D (P@QTF (5, DHIF = Ty
. 6! —v)AZ:ﬁ

ﬂo =

4y SUPses ac A {sp(U™"(s,a,-))} HP - PHTV o) H? - PHTV BT ’

|7 — 7T”TV,,uZ,r’P B SUDges {SP(Q7r P( )} (e 7THTV 0
2y HP - P”Tv,ul,r’P 2supseS,a€A {Sp(UW P(Sv a,: } HP P“TV,oo ’

BT =65 —

to be clipped in the interval [0, 1].
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Proof. Let us write explicitly the update coefficients in the decoupled bound (6.7):

’ ’ 1 = =l 2
JF — JF > Ba, B) = (aA:P + 5A;’P) S S
( ) 1— ~ ,P P (1 _ ,Y)Q
— _ - ,P
x (5 [P = Plyy o (@7 = Ty z.m + BY[P = Ply o) o {so(U""(5.0.9)) }

= = D , P
0y |7 = Ty o (@7 = Ty zr + B[P = Plyy nr ) sup {sp(@7"(5,)) } )
Y seS
we now take the derivatives w.r.t. & and [ to find the stationary points:

0B  ATL 2 B _ S
e m - W 2ay |7 — 7THTV,00 I — ﬂ'HTV,uZ’P SSLGIE {SP(Q (s, ))}

B 17 = 7l [P = Pl . sup {sp (@77 (s,)) |

+ B[P = Plyy oo IF =gy xr sup {sp(U”’P(s, a, ~)) } )

7 seS,acA
,P
aB A‘/r,P

— _L D _ D _ T, P .
T T (1P Pl [P Pl s (077 6.009)

+ 07 |7 = Wy [P = Plyy e sup {sp(Q7 " (5,)) |

+al|lP=-P P—P - su {s (U"’Psa-)} .

H HTv,oo H HTV,M P SE&EEA p (s,a,°)

When the target policy is different from the current one and, symmetrically, the target model is
different from the current model the linear system of the derivatives admits a unique solution. We
compute the second order derivative to discover the nature of such point:

0B? 4 _ _ n

2o = i T v 17 = wlay o sup {0 (@77 (5,)) |

o0B? 0B? 2 _ — -

2008 ~ 3Boa . (1—7)? (7 7 =y [P = Pley o sup {sp(@77 (0.}

_ _ , ™, P
1P = Pl 7=l s fop (U7 (50.9)} ).
0B? 4y

@3 =2 [P = Plyy [P = Plyy zr sup {Sp (U”’P(s, a, ))} ;

7 seS,aceA

from the second order derivatives we can compute the Hessian matrix HB(«, 3) and the corre-
spondig trace and determinant:

?a %P

4"}/ _ — T,
=—a= 17 = Ty o0 7 = 7y o sup {Sp (Q (s, ))}

tr(HB(a, 8)) =

s€S,acA

#IP =Pl P Plyer sup {sp(U7"(s.0.) }] <o,

_ dB*0B*>  0B® 0B’
~ 0%a 0?8 dadp 0Bda

det(HB(«, B))
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16'\/2 _ _
= (1 — 7)4 Hﬂ- - 7T”T\/,oo Hﬂ- 7r”TV BT P ”P PHTV,oc ”P PHTV Ty
T, P - U7r7P ,a,-
caplae o)} gy (o070

b st (17l [P Pl s fon (@766,

2
#IP Pl 7=l (s (5.00)} )

4 _ , P
< 77(1 — (”ﬂ' TrHTV P HP PHTv,oo se?,lfeA {sp(U (s,a, ))}

2
77HP*PHTV,#:}P H?*WHTV,OC Ssgg ‘{Sp(QmP(Sa‘»}) )

where we simply bounded 167> < 16y. When P # P and T # m we observe that the Hessian
matrix is indefinite since both the trace and the determinant are negative. This means that the unique
stationary point is a saddle point which is uninteresting for optimization purposes. By the way,
B(a, B) is a quadratic function, therefore it is continuous on the compact set [0, 1]* and therefore,
from Weierstrass theorem, it admits a global maximum (and minimum). Since such point is not a
stationary point it must lie on the boundary of [O 1]°.

Then, by setting to zero the equations 5= ‘B o «B ‘/B v ‘ffg 0 (g—lg -
following optimal values (which are clipped to lie in the interval [0, 1]):

we can obtain the

e (1-7ATH
Ay supes {sp(Q™ (8, T = Ty oo [T = Tlgy mp
e (1-7ATH
dysupses {sp(Q™F (8, DI T = Ty o0 [T = 7y iz p
HP - PHTV,HZY"P SUPses,acA {Sp(UTr P $a, } HP PHTV [°e)
2|7 =7y mop 2ysup,es {sp(Q™F (8, DT = Tlpy o
e (1—7)AT L
0o = — = )
4y SUPges aeA {sp(U™* (s,a,-))} HP - PHTv,oc HP - PHTV,;A{'P
. (L-7A7R

_47 SUPes aeA {sp(U™T(s,a,-))} HF - PHTV,oc HF - PHTV,HZ;'P

B I — 7THTv,,ﬂ;,P B sup,es {sp(Q™ " (5,)) } IT = 7l1v.o0
29 [P = Plyy mr 250Dses,0ea (DU (5,0, ))

TV,00

Instead, for v € (0, 1), the Hessian is singular when either the target policy or the target model are
equal to the current one. Those cases can be treated separately and clearly yield maxima points.
When P = P then we have o = o, when 7 = 7 we have 8* = 3. O

A.2 Additional Results and Proofs of Chapter|?|

In this appendix, we report the proof of Theorem[7.9] For sake of brevity, we will denote
with X = § x A x S and with x = (s, a, s') a state-action-state triple. In order to make
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the presentation clearer, we revise in the following the formulation of the optimization
problems involved in REMPS.

A.2.1 Formulation of the Optimization Problems

The REMPS problem takes as input a stationary distribution ™ € Dg ¢ and a KL~
divergence threshold x > 0 and provides as output a new stationary distribution in the
space Dg q. This process is dived into two consecutive phases: optimization and projec-
tion.

Optimization In the optimization phase, given a KL—divergence threshold £ > 0, let
(m, P) € Ilg x Pgq be the current policy-configuration pair inducing a stationary distribu-
tion ™, we seek for a new stationary distribution 4/ that solves the following optimiza-
tion problem PRIMAL,:

JE = d
e Ju (z)r(z)dz

!
st. D "™P :J’:clo (@) dz < k.
ke (™) w () & P ()

This problem, yields to the solution for all x € A’

pmF (@) exp (Lr(2))

W) = —— : : (A1)
§ 0™ () exp (;T(Z‘)) dx
where 7 is the unique solution of the dual problem DUAL,;:
. <P 1
min nlog | p™" (x)exp | —r(z) + x | dz. (A.2)
776[0700) X n

In practice, we have no access to ™. Therefore, we need to estimate the expecta-
tions from samples using a dataset {(S;, A;, S}, R;)}iy = {(X;, R;)}?, of n samples
collected with ;™ *. Notice that we have only access to an empirical estimate of /™,
which is ™ (z) = L 37" | 6(2 — X;) uniform on the observed samples. Using ™ we
want to evaluate the performance of a candidate distribution z’ defined over the observed
samples. For this purpose, we perform an importance weighting procedure. We define the

weight w(X;) = ﬁﬁf llg)fx)) = ny/(X;). The problem we aim to solve becomes PRIMAL,:

max
weP({Xie{1,2,....n}})
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This problem yields a solution which is defined only over the seen state-action-next-state
triples ¢ € {1,2,...,n}:

exp (%Ri)
(X)) = — - : (A3)
7 2j—1 €XD (ﬁr(Xj))
where 7 is the unique solution of the dual problem DfU\A/L,i:
o 1Y 1
min 7log — Z exp (NRi + m) . (A4)
7€[0,00) n n

i=1

Once we solved this problem, the new distribution over the whole X is characterized
by just the Lagrange multiplier 77, for all z € X’:

W7 () exp ()

= fo imP (@) exp (Lr(2)) do

(A.5)

We denote the performance of the new distribution i’ with J# = { 2 W (z)r(z)dz.

Projection In the projection phase we aim at finding the best representation of the sta-
tionary distribution we got from the optimization phase in a given hypothesis space Dg .
Let p’ be the solution of PRIMAL,, the projection problem PROJ can be stated as the
moment-projection of x' onto Dg . According to the three projections presented in Sec-

tion we have:

PR H 1,70, P ) 1 70,Po De
O g ax (Wlpmer) = B, [log 1170 P (X)] + const,
max H((P/)‘IT/”PWTVG) = E H((P/)‘/r’(|S)HPw7rg(|S))
PROJ p- (0,0)e@x $,A,8" ~p [ ]
= ﬂ'e .
S,A,IENM/ [log pw, ™ (+|S)] + const
/ N ' '
maxFl(r'|7o) = B [H(@ (19w (15))]
PROJ, p o . t
TS AS [log e (:|S)] + cons
= / . .
max H(P|P,) = B [H(P'(1S,4)|P(1S, 4))]
- S,A,%{NH/ [log pu(:]S, A)] + const,

where H (u|p’) is the cross—entropy, since Dy, (u|p') = H(u|p') — H(p), the entropy
H(p) is independent on g/, and const denotes a constant that does not depend on the
quantities we are optimizing on. Clearly, also in this case we need to consider the Monte
Carlo estimates obtained from the very same samples {X;}"_; collected with u™ . Let ji/
be the solution of PIMLH, the projection problem PROJ becomes:
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— N 1 n
PROJ H({|pmet) = ~ ) log pe P (X, t,
a (e,g)lgcz)(xg (B n ; )log p® " (X;) + cons
PROTp= H((P)™[P,™) = ~ 1) log ™ (S1S; £,
P (e,g)lggxn (@)™ n ; ) log p,™® (S;|S;) + cons
P/-R\6J7T P maXH /“ﬂ'e l i log 7T9 A ‘S ) + const
’ 60 n =
H(P|P.) 12 i) log pe, (5] Si, A;) + const
oo n ) log pe, iy const,

A.2.2 Off-distribution estimation

Given a value of the Lagrange multiplier 7 inducing , let us define the ratio importance
weight w(x) and the self-normalized importance weight w(x) as:

ey = @) _ “ﬁ (@)
pmF () § o 1P () exp (%r(x )

by 0 “W @)
Liea D) 3 exp ($r(X0))

Thus, the off-distribution estimator J# which is optimized by PRIMAL, is actually a self-
normalized importance weighting estimate, opposed to the ratio importance weighting
estimate J# which does not appear in the optimization problems, but will be useful in the

following:
JH =
Jh =Y W(Xi)R;.
Analogously we can define the KL divergence estimators:
1 n
D — i) 1
rr(ufu™” - ; ) log @(X;),

w(X;)log (nw(X5)),

M:

Dy (pu|p™") =
1

<.
Il

and, given a 1/ € Dg q, we define the cross—entropy estimators:

Hpp') = D(X;)log 1 (X,),

S
=

S
l
—_
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n

H(py) Z X;) log p'(X;).

It is well known that the ratio estimation is unbiased while the self-normalized estimator
is biased but consistent Owen| (2013)).

A.2.3 Error Analysis

We have seen in the previous section that we need to solve both phases of the REMPS
problem using the samples. Starting with ™", PRIMAL,, yields the solution z’ whereas
R/lgl\\/lﬁs,i provides the solution ,u”e”P &’ which is in terms derived from the P}i_Il\\/IXLN
problem yielding i’ and the PROJ problem. There are two sources of error in this process.
First of all, i’ is obtained from a finite sample and thus it may differ from p’ (estimation
error). Secondly, we limit to a hypothesis space Dg o that may not be able to represent
i’ (approximation error). Furthermore, the projection is performed from samples as well
(another source of estimation error). The goal of this analysis is to provide a bound to the

/ ~/ ~ . . . .. .
quantity J* — J(0 ,@"). To this end, we consider the following decomposition to isolate
the contribution of the two phases:

T = J@,&y = g — T 7 J(@,8).
0] (ii)

5 Pt

Recall, finally, that J (8, &) = J#'°

Term (i) A typical approach, from Empirical Risk Minimization (ERM), to bound the
estimation error is to add and subtract the empirical risk of the empirical risk minimizer
J" and exploit the fact that this quantity is larger (smaller in supervised learning) than
the empirical risk of any other hypothesis in the hypothesis space (being ERM), in par-
ticular p/. However, in our framework, the hypothesis space changes since the constraint
on the KL—divergence is estimated from samples and, in principle, it can impose more
relaxed/tight conditions. For this purpose, we introduce a new distribution 7 which is the
optimal solution to the PRIMAL,; problem using the sample constraint. For this reason,
1’ and Tz are searched in the same hypothesis space and thus we can apply the theory from
ERM. Clearly, we need to manage the discrepancy between &z and p’. For this, we use the
sensitivity analysis (Section[7.4.2). Let us define the discrepancy in the constraint for a
given hypothesis u:

Aw(p) = Dgr(u|p™") — Dcr (u|u™"). (A.6)

As a consequence Dy (pu|p™F) < k < Dyy(u|p™F) < & + Ar(p). Finally,
we define Ax = sup,cp _, Ax(p). We have the usual two cases. i) If Ak < 0 then
s

the exact constraint is always (i.e., for every hypothesis) tighter and thus J# > J#. ii) If
Ak > 0 then there exists at least one hypothesis for which the constraint is looser; thus it
might be that J# < JH. In general, the following result holds.

Lemma A.3. Let i/, Tz as defined before. The following bound holds:

1 A
JH <J”+2Rmaxmax{0 mm{2 H}} (A7)
K
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Proof. If J* — JF < 0 then the theorem holds. Otherwise, it must be that Ak(p') = 0 (this is
because we defined 1z as the optimal solution under the sample-based constraint). We define j. as
in Proposition[7.8] so we get:

’ —

JH _JN’<JN,_J:U’L!

(1= iy ) = e

/ T, P
; f<a+Af<¢(,u')Hu O

’
< 2Rmax min {1 AH(M ) }

2" Kk
1

<2Rmaxmin{7,ﬁ},
2" K

where we exploited the fact that ||’ — u™"||; < 2, ngf:‘(/g,) < A”,E“,) , being Ax(p') = 0, and
ngi% < 5 being Ak(y') < k and finally Ar(p') < Ak. Taking the max between the two

cases we get the result. O

Notice that:

. 1 Ak Ak 1 ~ . .
nwx{oJmn{27ﬁi}}<"= sup | D (uli™7) — D (uli™P)|

K K HED, =, P

which is a convenient term for using ERM theory. Now we are ready to bound J' W gi

Lemma A4. Let /' and iV’ be the solutions of the PRIMAL,, and PRIMAL,, problems, the
latter using n > 0 i.i.d. samples collected with u™*. Let k > 0 be the KL-divergence
threshold. Then, it holds that:

JH — T <2 sup

~ 2Rmax ~
=T+ 2 sup | Dyer (ua™F) = Dicw (™)
HED, =, P

K HED, =, P

(A.8)

Proof. We use a very simple argument of ERM combined with the previous result. Let z be defined
as before, we have:
’ ~/ _— ~/ 1 A
JE —J" < J* — J" + 2Rpax max {O,min {5, —K}}
K
2anax
K
2Rmax

K

S | Ak
|Ak| £ J"

2Rmax
K

Sy [ [

S I N A |Ak|

7 2Rmax N ™ ™
T =T+ = sup (D (ulp™") = Din(ulp™ )|,

K pneD

<2 sup

K€D, . P o P

where we exploited the fact that JE<J ﬂ/, being fi’ the ERM over the same hypothesis space. [
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Term (ii) To bound this second term it is useful to recall the property of the KL—
divergence Dk, (u|p') = H(u|pn') — H (), where H (u|p') is the cross-entropy between
wand p' and H (p) is the entropy of x. When performing the projection, we are minimiz-
ing the term H (u] ) since H () does not depend on p’. We can state the following result

for PROJ,,.

Lemma A.5. Let [i' and 1™ **s" be the solutions of the PI’Q_IM\ZL,{ and PROJ 1 problems
using n > 0 i.i.d. samples collected with /™ *. Let r > 0 be the KL—divergence threshold.
Then, it holds that:

~7 "”’PG’ "
JE— T < Rinax \/2 sup inf Dy (ulu)
Do,

peD, - p WEDPE
(A9)
+ Ruax, (2 sup  sup |H(p|p) — H(u|w)|.
peDM,r,p p'eDe o
Proof. Let us define:
€2= sup  sup ff(uHu')—H(MHu')‘- (P.6)

n€D, =, p w'€Do,q

Consider the best approximation of /i’ contained in Dg o, let us denote it with p*, ie., u* €

argminep, , H (f'||p£)- Then we can state the following inequalities:
Y A S P )
< Rmax\/ 2Dk (i | e T (P7)
— R\ 2H (770 75" ) — 20 (j1)
< Rmax\/QfI(ﬁf\|u“é"Pm') —2H(J') + €2 (P8)
~ Ry |2 (}1 3 @(X») (| prome) — 2H(G) + s (B9)
i=1
S Rumaxy | 2 (711 i@(xﬂ) H(|p*) = 2H(V) + e (P.10)

= R\ 28 (7 |0%) — 2H () + €2

< Runax/2H (/| i) — 2H(JI') + 2€2 (P.11)

= Rumax\/2Dxw (/| 1*) + 2¢2 (P.12)

< Runax/2Dxr (7| 1*) + Rmaxy/2e2

< Rmax\/2 sup 1nf D (1| p') + Rumax /262, (P.13)
HED, n P w'e

where line (P7) follows from Pinsker inequality, lines (P.8) and (PII) follow from the hypothe-
sis, line (P.10) follows from the fact that ;™8 7%’ is ERM, line (P12) follows from the inequality

Va+b < y/a+ v/band lines and (P.IT)) follow from the fact that:
( Z ) (W' |p"eFa") = H( | "),

3\*—‘
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It is pretty straightforward to extent the previous result to the other two projections.

Corollary A.6. Let [i' and j™'**s" be the solutions of the PI/Q—IXIAL,.C and PROJ pr prob-
lems using n > 0 i.i.d. samples collected with ™ *. Let k > 0 be the KL—divergence
threshold. Then, it holds that:

i g <Rmaxp\/2 s it B D (P (19)|P(15)) |

pHED x, P (6,w)EOXQ S~pu

+ Ruaxpy [2 swpsup|B((P)T|PS?) — H((P) | PZ)|
HED = p (8,w)EO XN
Let [i' and ™'Y be the solutions of the PI?I]T/IZL,Q and IER\ij p problems using
n > 0 iid. samples collected with /™F. Let k > 0 be the KL-divergence threshold.
Then, it holds that:

/

JH g Rep 2 sup inf E [Dxr (7/(-S)|me(-19))]
HED,, - p OO S~

+ Ranaxp, [2 sup sup || o) — H(r|mo)|
,LLE'DH.,‘-,p 6O

+Rmaxp\/2 sup inf E [Dkr (P'(-S, A)|Pu(-]S, A))]
HED . p WER S, A~ p

neD um P weN

+ Rmaxp\/Z sup sup ]I?]I(P’HP‘,,) — H(P’pr))-

Proof. The result is obtained using an approach analogous to that of Lemmal[A.3] using Corollary-
and Lemmal[7.6l

From now on we will limit our attention to the case of PROJ,,. Putting all together we
get the following result.

Theorem A.7. (Error Decomposition) Let ;™ be the sampling distribution. Let > 0
be the KL—divergence threshold. Let ' € D,,~.r be the solution of the PRIMAL,; problem

and (517 ') € © x Q be the solution of the REMPS,, problem computed with n. > 0 i.i.d.
samples collected with /™ *'. Then, it holds that:

-/, P

B T S fﬂ‘
HED, =, P
2Rmax ~ g ™
+ sup |Dicr (™) = D ()|

K HED, = P

+ Rmax\/Z sup 1nf DKL(HHM )
,LLE'D P w'eDeo

H(pw') — H(plw)|-

+ Ruax, (2 sup sup
peDr™F p'eDe o

Proof. Just sum together Lemma[A:4Jand Lemma[A.3] O
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A.2.4 Finite-Sample Analysis for finite 5-moments

In the following, we provide the finite-sample analysis under Assumption Since we
are not guaranteed that the involved loss functions have finite supremum. This problem can
be tackled by resorting to learning bounds that are applicable to unbounded loss functions
with bounded moments (Cortes et al., 2019). The main theoretical tool we are going to
use in the following comes from [Cortes et al.|(2019).

Theorem A.8. Let H be a family real-valued functions and let G = {Lp(x) : h € H}
be the family of loss functions associated to H. Assume that PAim(G) = v and that
there exists a € (1,2) such that supycy Lo(h) = Ex [|Lp(X)|*] < 400. Let Lo (h) =
L |Ln(X3)|®. Then, for any 6 € (0, 1), with probability at least 1 — 6, for all h € H
it holds that:

2en

. vlog +log 4 viog 2% 4 log 2
Z Li(X:) +25%/La TBF — e |
n- «a

n

and also, with probability at least 1 — 6, for all h € H it holds that:

at2, / |vlog =¢ Zen 4 og 4 vlog =2 Zen 4 og 4
- Z Lh z Lh + 272a z(a 1) i r 2(& 1) g )

a—1

a—1 — =
whereF(oz,e):o‘T’l_q_é(ﬁ) (14_(&7,1) 1log%) .

In the following statements, we make use of the Rényi divergence between probability
distributions, and its exponentiated version, that we have introduced in Section@ We
start by showing a trivial application of Theorem [A.8]for bounding in probability several
deviations of interest.

2en 2en

M lo +lo 1 +log &
Lemma A.9. Let us define e = 225 vgﬂwg"slj B, % . Under

n

Assumption[7.3} each of these events holds wnh probablllty at least 1 — 5

E a1

=1

€ e D 17— ) < R {{fdatuli ) Dl

(&) V€ Dy, i € Do : ]ﬁ(ﬂu,/) — H(|)
8 1/B

< max E
X~pmP

Proof. Ttis a simple application of Theorem[A 8] using Assumption [7.3]and applying the definition
of Rényi divergence. O

(51) vu € IDM”

< ma ({05l ol ) f

1/8
p(X) el 1
,UW’P(X) lOg/L(X)’ :| ,(HZ

i=1

(X,
Miﬁg—())logw )

227



Appendix A. Additional Results and Proofs

Concerning the KL—divergence, the derivation is a bit more complicated. We first need
the following technical lemma.

Lemma A.10. Under Assumption Sor any « € (1, B), the following inequality holds:

11/ 1/
g [| 20, s [0 P e o [lae |
o ||[pmP(X) EmPX)| | ST B a x| [imP(X)
1 «
=+ —d ™ Py\B/a
T a s(ulp™")

(A.10)

Proof. Lety = p(x)/u™ T (x). We start proving that the following inequality hold for all o > 1:

o1

lylogy| < max{l L } (P.14)
e

a—1

Let g(y) = |ylogy|. Fory € [0, 1] we know that y log y is negative, thus g(y) = —ylogy that
has 1/e as maximum. Just take the derivative dg/0y = —logy — 1 =0 = y = 1l/e =
g(1/e) = 1/e. Clearly the second derivative is negative, thus 1/e is a maximum and at the extremes
g(0) = g(1 ) = O < 1/e. We prove that for y € [1,00), g(y) = ylogy < j—jl It suffices to prove

that log y < £—-. Consider the function h(y) = logy — f%ll, it is enough to prove that h(y) < 0
forall y € [17 oo). We know that h(1) = ——5 < 0 and h(c0) = —o0 and continuous. Therefore
we consider the derivative:

ah 1 a—2

— =——y <0 = y=1. P.15)

dy y

Thus h(y) is monotonically decreasing in [1, c0) and therefore the statement holds. Now we observe
that max{z, y} < x + y for z, y = 0 and we get using Minkowski’s inequality:

a]l/o‘ < E, [(% + % (%)v)a]ya

1 1 X yaql/a
Sl b ([0 )
e y—1x~pmr [\ pmFP(X)

By taking ya =  we get the result. O

w(X) w(X)
X ? HW(X) 8 L mr ()

The following result is an immediate consequence.

2en

at2 1 +1 log 2¢% 4+]og &
Lemma A.11. Forany a € (1,2), lete = 272a Wf ( % .
n

For any a € (1, 3), under Assumption the following inequality holds with probability
1—-9:

(&) VueDunr:  |Dir(ulu™) = Di(ulu™")|
g Ve 1/8
1 o p(X) i 8
< max g + /B o XNIEWYP UM Z |w IOg w( z)‘ €.
Proof. Ttis a simple application of Theorem [A.8] using Assumption[7.3]and Lemma[A.10] O
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Finally, we need the following result to relate the KL—divergence estimated with and
without the self-normalized estimator.

Lemma A.12. For any p € D~ r, the following inequality holds:

(i ) @(Xn) log (i > w(x») |

Dy (pu|p™F) — DKL(MHM’“P)‘ <
=1

n

DI(X) 1

1

+ 2logn |—

n 4
i=1

Proof. We perform some algebraic manipulation of the expression:

~ . ~ W 1< -
Dice (™) = Dicn(uli™") = — 3 @(X.) log #(X:)
=1
1 oX; W(Xi)n
- n ~ lOg n ~
=1 i1 WX i1 W(X4)

Now, consider the term:

1 eXgn o a(Xaon 3
n ST a(x) B (%)~ &

=1 i=1

Since the @W(X;) sum up to 1, the summation Y} | w(X;)log @W(X;) is maximized in absolute
value when all @(X;) are equal, thus | >, @W(X;)log W(X:)| < logn. By taking the absolute
value of the full expression, we get the result. O

Now we can put all together.

Theorem 7.9. (Finite—Sample Bound) Let i™* € 22(S x A x S) be the sampling distri-
bution, k > 0 be the KL-divergence threshold, ;' € D,, be the solution of the PRIMAL,

problem and (5/, &') € © x Q be the solution of the REMPS,, problem with PROJ,, com-
puted with n > 0 samples collected with . Then, under Assumptions{.1} [7.2|and[7.3] for
any « € (1, 8), there exist two constants x, & and a function {(n) = O(logn) depending
on «, and on the samples, such that for any 6 € (0, 1), with probability at least 1 — 46 it
holds that:

’ ~/
JV — J(8,8) < V2Rmax sup _inf { DKL(MHE)}
HED . P 1€Deo,q
l approximation error !
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+ RmaxX\/E + Rmax((n>€ + Rmax£€27

estimation error

at2 v lo 26"+10 vlog 2¢ 4 1og 8 .
where € = 272a %F ( % , which depend on the pseudo-

n n @
—1

a—1 a—1
dimension boundv < +w andT'(o, 7) = <=L 4+1 (L) (1 + (O‘T_l)(k1 log %) o

a—1
Proof. We start from Theorem [A7|and we bound each term using Lemma[A.9and Lemma [A.TT]
. at2 log 2€n 4] log 2¢2 41og 8 .
For brevity, we define ¢ = 27za %I‘ ( \/ %). Let us start with

n o

n o

SUWPuep . p |JH — JH|:

sup ‘J“ —j”‘ = sup ‘J“ —J"+ j“)
He€D, =, p He€D, =, p
~ 14 .
< sup ‘J“fJ“ + Rmax  sup |— Zw(Xi)fl
’U'EDM"’P HEDHW,P n i=1

szaxmax{\/ Wl ?), 345 mwp}e,

where we exploited events (€1) and (£2) and simply observed that & < 8 and thus Lemma
holds as well. Consider sup,,cp _,, )ﬁKL (™) — DKL(uHu’T’P)‘:
T

sup | Dics (™) = Dice (ul ™)

HeD . p

= swp | Dicr(ulp™") = D (™) £ Dice (ul™")|

HED . P

< swp |[Dio(uli™") = Dice(uli™")|

( 2, )bg( | @(X») () —

To complete the derivation we have to analyze the term z log z with z = £ 37" | @(X;). Now using

+ 2logn

Sl
7=

S|

S\H

Lemmaand defining 7 = max {«‘I/d (ppmr) dﬁ (| ) } € we know that max{0,1 —
7} < z < 14+7asz = 0. Consider a value of 7 € [0, 1] itis simple to prove that (1+7) log(1+7) >
—(1 —7)log(1 — 7), therefore |zlog z| < (1 + 7)log(1 + 7). Therefore, we have:

sup
HED 7, p

Dicr (uli™") = Dicw (™) <

1/a n 1/B
1, «a px) |° I NN
max | + -« XNIEmP Uﬂﬂ,P(X) A n 2 |w(X;) log w(X;)| €

(1 max {9 Gl § c?amumf)} )
x log (1 + max { o (™), A da (] = P)
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+ 2tog nma {8/l ), )

Finally, the term sup,,cp _ ,, SUp,repg | ‘ﬁ[(pHp/) — H(/LH,LL’)‘ can be bounded using Lemma
}Lﬂ? il
We define:

a*maxl @ &ﬁ W(X;) log w( .ﬁl/B
f( )7 {e+ﬂ—aX~IE”=P|:MW’P(X)’:| < Z‘ lg )|> R

Y da (1P, R da (u]d=P), [

18
n(X)
X )logu(X)” ;

Finally,

J¥ —J(0,&") < ARmax f(a)e
+ 2”% [f(a)e+ (1 + f(a)e)log (1 + f(a)e) + 2log nf(a)e]
+ Rmax\/i sDup ﬁe%l(_f)‘ o DKL (,U/Hﬁ) + Rmax V Qf(a)E

< 4Rmaxf(0)e + 21%% (1 +2logn + f(a)e) f(a)e

+ Rmax\/7 sup inf V DKL ,U/H,U/ + Rmax \/ )

HED x, P neDo,q

= \/ERmax sup lnf \/ DKL /,L”,LL + Rmaxxf + Rmaxg( )6 + RmangQa

weD, =.p PED

where we exploited the fact that log(1+x) < z and x = 1/2f(«), {(n) = %(1 +2logn)f(a)
and £ = 2. Since we made a union bound over the events (£1), (£2), (€3) and (€4), the statement
holds with probability 1 — 46. O

A.3 Additional Results and Proofs of Chapter|§|

A.3.1 Concentration Result

The goal of this appendix is to provide a probabilistic bound to the differences ¢ ) —
£(6”%) and 0 (67€) — 7 (é) To this purpose, we start with a technical lemma (Lemma
which provides a concentration result involving a quantity that will be used later, under
Assumption Then, we use this result to obtain the concentration of the parameters,

i.e., bounding the distance H@ —g"e H (Theorem|A.14)), under suitable well-conditioning
2

properties of the involved quantities. Finally, we employ the latter result to prove the
concentration of the negative log-likelihood (Corollary[A.T5]). Some parts of the derivation
are inspired to|Li et al.[(2017).

Lemma A.13. Under Assumption[8.1) and Assumption[8.2] let D = {(S;, A;)}?_ be a
dataset of n > 0 independent samples, where S; ~ v and A; ~ wgae(+|S;). For any
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0 € O, let g(0) be defined as:

1 n
g(0) = - ; <A~W£E<.|si> [o(sis A = B [t(Si,A)]> . (A.11)

Let 6 = arg mineee{z(O)} = 237" logme(Ai]S;). Then, under Assumption for
any ¢ € [0, 1], with probability at least 1 — 0, it holds that:

8| <o % log 2; (A.12)

Proof. The negative log-likelihood of a policy complying with Definition is C2(R%). Thus,
since O is a minimizer of the negative log-likelihood function £(@), it must fulfill the following
first—order condition:

AA 1 &
Vol(0) Zve log 74 (As]S:) n;( (S;, A7) Aw]}i(ﬂﬁ[t(&,A)]) = 0. (P.16)

=1

As a consequence, we can rewrite the expression of g(é) exploiting this condition:

~ 1 &
6)=— E t(S;, A)] — E t(S;, A
8(0) nZ<A< N UG L >]>
1 & 1 & A
== t(Si, A;) — E t(S:, A)] = (Si, Ai, 67%)
Z(( )7 B s I ) I

By recalling that A; ~ mgag(-|S;) it immediately follows that g(@ is a zero-mean random vector,

ie, E s~ g(O)] 0. Moreover, under Assumption [8.2] g(O) is the sample mean of
Ai~mong (155)

subgaussian random vectors. Our goal is to bound the probability P Hg(a) H > e) ; to this purpose
2
we consider the following derivation:

€
— .1
\/E) P.17)

(P.18)

where we exploited in line (P.17) the fact that for a d-dimensional vector x if ||x[, > e it must

: . 2 .
be that at least one component j = 1, ..., d satisfy m? > < and we used a union bound over the

d dimensions to get line (PI8). Since for each j = 1,...,d we have that g;(8) is a zero-mean
subgaussian random variable we can bound the deviation using standard results (Boucheron et al.

2013):
IP’( en

gj(e)‘>ﬁ) <2exp{72da2}. (P.19)
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Putting all together we get:

P (Hg(é)”2 > e) < 2dexp {—26;—:2} . (P.20)

By setting § = 2d exp { } and solving for € we get the result.

O

We can now use the previous result to derive the concentration of the parameters, i.e.,
bounding the deviation HG - OAgH .
2

Theorem A.14 (Parameter concentration). Under Assumption (8.1| and Assumption
let D = {(S;, A;) 1 _y be a dataset of n > 0 independent samples where S; ~ v and
A; ~ mgns(:|S;). Let 6 = arg ming.g {E( )}. If the empirical FIM F () has a positive
minimum eigenvalue S\min > 0 for all O € O, for any § € [0, 1], with probability at least
1 — 4, it holds that:

o 2d 2d

H@ . aAgH2 <y s (A.13)

Proof. Recalling that g(8”€) = 0, we employ the mean value theorem to rewrite g(é) centered in
0"e:
8(0) — 5(0) — g(6™) - 7(9) (6 - 6™), (P21)

where 8 = 0 + (1 — )" for some ¢ € [0, 1] and ]-A'(é) is defined as:

F(8) = Vog(8) = [V log 7o (A[S:)t(Si, A)]

1
n ~7re(IS)

3\>—‘

2.
2 weum[(t(s“‘”‘— E [t(Si,Z)])t(Si,A)]=}A'(0),

A~mg(-]S)

where we exploited the expression of Vg log e (a|s) and the definition of Fisher information matrix
given in Equation (B.3). Under the hypothesis of the statement, we can derive the following lower
bound:

Hg(?))Hz - (é - eAg)T F(@)TF(0) (?) - eAg) > 22 16— 0% z (P22)

By solving for Hé — 0"

and applying Lemma|A.13|we get the result. O
2

Finally, we can get the concentration result for the negative log—likelihood.

Corollary A.15 (Negative log-likelihood concentration). Under Assumption 8.1 and As-
sumption[8.2) let D = {(S;, A; )}" | be a dataset of n. > 0 independent samples, where
S; ~ vand A; ~ mgrs(-|S;). Let & = arg mingee{£(0)}. If Amin(F(0)) = Amin > 0 for
all @ € ©, for any § € [0, 1], with probability at least 1 — 6, it holds that:

0(8) — £(6"%) < ——log —, (A.14)
ﬁiinn 6
and also: -
~ o 2
Q0" — i(0) < L7 1052 (A.15)
A2 n 0
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Proof. Let us start with £ (é) — £(0"8). We consider the first order Taylor expansion of the negative
log—likelihood centered in 68:

~ ~ ~ T N
0(0) — 0(6%) = Vol (0%)" (9 - 9“%) +1 (9 - 9“%) Hol(O) (0 - eAg> . (P23)
2
where 8 = t0 + (1 — )" for some ¢ € [0, 1]. We first observe that Vol(6”8) = 0 being 8¢ the
true parameter and we develop He/(6):

Hol(@) = E  [Helogmg(AlS)]

S~v
A~ (19)

E [Ve (t(& A) ‘z~ﬂ§<<\5) [t(&A)])]

A~ (19)

S~v |7 Avmg(l9)

E [ E [(1;(5,14)—~ E [t(S,E)])t(s,A)T]
S~v | Anmg(]S) A~mg(-]S)

By using Lemmato bound the maximum eigenvalue of F(8, S), we can state the inequality:

- E [vg E [t(S,A)]]

- E [F®.9)].

S~v

L (6-0")" ot(@) (6 - 0) < T |60’

2

(P24)

Using the concentration result of Theorem , we get the result. Concerning /| (0%8) — 1 (@), the
derivation is analogous with the only difference that the Taylor expansion has to be centered in @
instead of . u

To conclude this section, we present the following technical lemma.

Theorem A.16. Under Assumption|S.1| and Assumption let D = {(S;, A;)}_ 1 bea
dataset of n > 0 independent samples, where S; ~ v and A; ~ mgns(:|S;). Let 0,6 € O,
then for any € > 0, it holds that:

P(|«e) )| - |ue) - 0| > ) <exp {—2“962;”202} .
2

Proof. We write explicitly the involved expression, using Definition[8.2]and perform some algebraic
manipulations:

[z(e)—Z(e)}—[5(9’)—2(9’)]= E [OTt(S,A)—A(&s)]

S~v
Anigag (18)
1 n
E;( t(Ss, As) A(e,si))

- E |7 t(S,A)—A(e’,S)]

S~
Anong (19)

+ = Z( 6(S5, Ai) — A0, 51))
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- E [(9 — 07 4(S, A) — (A(0,S) — A8, S))]

S~v
A~w9Ag(»|S>
_ L Z ((6—6)7t(S:,4) — (A(6,8:) — A(6',5))) ).
We are comparing the mean and the sample mean of the random variable (0 — 9’)T t(S,A) —

(A(,5) — A(6',S). Let us now focus on A(6,S) — A(6’, S). From the mean value theorem we
know that, for some t € [0,1] and 8 = t0 + (1 — t)8’, we have:

A(8,S) - A(6',8) = VeA(0,5)" (6 -6). (P25)

From Equation (PI), we know that Vo A(0,S) = B rg(ls) [t(S, A)]. The random variable
t(S,4,0) = t(S,A) — A~1r7 18 [t(S, A)] is a subgaussian random variable for any 6 € ©.
Thus, under Assumption 8.2 we have

[6) - 7t0)] - e~ e - (6 - &) ( E o [Es5.4.8)] - % 3 t(Si,Ai,O))
A~rng (15) i=1

If we apply Proposition[B.3] we get the result. O

A.3.2 Results on Significance and Power of the Tests

Theorem 8.5. Let I, ¢ be the set of parameter indexes selected by the Identification Rule
obtained using n > 0 i.i.d. samples collected with Tgne, With 0"t ¢ o. Then, under

Assumptionand Assumption let 078 = arg mingeg, {£(0)} for all i € {1,...,d}
and £ = min {1, ’\;‘5“ } Ifj\min > /;\/5 and E(Bfg) E(GAg) ¢y, it holds that:

A2
a< 2dexp{ T } :

B<(2d—1) Z exp { —

ielhs

(4(07%) — €(6"%) — 1) Aninén
16(d — 1)202

Proof. We start considering a = P <3i g1 ic fc) We employ an argument analogous to that
of (Garivier and Kaufmann, [2019):

P(HigtIAg:iefC) =P(Hi¢1Ag:)\i >c1)
—P (Hi ¢ 1" 0(0;) — 1(8) > 21>
<P (31 ¢ 1' . 1(67%) — 1(0) > %)
=P (A(GAg) —0(6) > C—l) < 2dexp _E At
2/~ 16d%0* |’
where we observed that Z(OAg) > A(O ) as 8" € ©; under Ho and we applied Corollarym
the last line, recalling that Amin > ’\2‘\/%“ For the second inequality, the derivation is a little more
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articulated. Concerning 8 = P <Z elte:i¢ 7 ), we first perform a union bound:

P(ﬂie[Ag:i¢fC)=P(\/i¢fc> <) ]P’(i¢fc).

ieIAe ieIPg

Let us now focus on the single terms P (1 ¢ IAF) . We now perform the following manipulations:

P (z ¢ fc) =P (4(91) —0(0) < 5
-P ( 70, — Z(OAg)] + [Z(eAg) - A(?))] + [Z(eﬁg) - Z(e“g)] < %) (P26)
<P ([0 - o) + |16, - i(6"%)] < %1) (P27)
=7 ([0@:) - 20| + [402%) — e07%)| + [6™) — U(0™%)| <

~

- ( [Z(efg) N Z@)} + [z(ej\e - z(ejg)] + [Z(eAg) - z(e“g)] >

~

where line (P.27) is obtained by observing that Z(OAg) — é(é) > 0. Thus, we have:

P(i¢l)<P (2(9/*%) ~U6:) = % |(6.%) — e(6™) | - %1)
+P < [E(OiAg) - Z(e#‘g)] + [Z(eAg) - z(eAg)] >

5 [e0) — ™) ) (P28)

<P (2(9/*%) —0(6,) = % [e(e/*g) - e(eAg)] - %)

+P < [Z(eﬁ‘g) - Z(eﬁg)] + [Z(eAg) - e(e*‘g)] >

1[1 A ae) [are  oel?]?
5 [gxmm («(6.%) — e(6™)) |0 — 0 2] ) (P29)
(€02%) = £(0%) = 1) Nzum
<2d—lexpy -~ 16(d — 1)%0%
6 eiAg — g eAg >\min
+eXp{—( o) 16572 ) n} (P.30)
(E(OzAg) — Z(OAg) - Cl) )\minné-
<2(d—1)exp{— 16(d — 17202
((6:"8) — £(078) — ¢1) Aminné
+exp{— 16(d = 1202 P.31)
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R

where line (P28) derives from the inequality P(X +Y > ¢) < P(X > a) + P(Y > b) with
¢ = a + b, line (P29) is obtained by the following second order Taylor expansion, recalling that
Vol(08) = 0:

(0.%) — £(8"%) = Vor(6")" (6. — 0°¢) +
)\min
=

=

(eiAg - eAg)T Hol(8) (ei“g - 9“%)

N =

BiAg _ eAg 2

2

where 8 = t0"¢+(1 —t)Ofg for some ¢ € [0, 1]. Line (P30) is obtained by applying Corollary A.15]
16

recalling that Amin > AQ“‘\/%‘ and Theorem |A. } Finally, line (P31) derives by introducing the term

I

¢ = min {17 %} and observing that:

((0:%) — £(8%) — 1) & _ (U(6:"%) — £(8"%)) n
(d—1)2 = 16 ’

Clearly, this result is meaningful as long as £(0,"€) — £(0%8) — ¢; = 0.

A.4 Additional Results and Proofs of Chapter|§|

Lemma A.17. Let M be an MDP and © € 1IS® be a Markovian stationary policy, then
for any k € N3 the following two identities hold:
-1 k—1
Q"= Qf = (Wsxa =" (P)Y)  ((r7)F Qp - (1) 17Q7)
k-1 -1 E o k—1
= (Mssa =" (P P7) (™) Q7 = (1) Q).
Proof. We prove the equalities by exploiting the facts that Q™ and Q7 are the fixed points of T
and T} :
QT -Qr=T"Q" - Ty Qx,
k—1
— (1 Q= (1°) TTeR (P32)
k—1
— (@' Q - (T°) TTQE £ (1) Qf (33)
k 7\ k T T T\k AT 8 k=1 LY
=P -QD + (@) QE- (1°) TTRE), @34
where line (P:32)) derives from recalling that Q™ = 7™ Q™ and exploiting Theorem[9.1} line (P:34) is
obtained by exploiting the identity that holds for two generic bounded measurable functions f, g €
B(S x A):
T\ k T\ k T\ k
(T f = (T g =" (P (f —9)- (P35)

We prove this identity by induction. For k = 1 the identity clearly holds. Suppose Equation (P:33)
holds for all integers h < k, we prove that it holds for £ too:

(@) f = (@) g =T (T f =TT () g
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=7+ P (T f—r =Py (T")" g
=P () f - (@) g) (P36)
=P P (f —g) (P37)
=" (P (f —9),

where line (P36) derives from the linearity of operator P™ and line (P37) follows from the inductive

hypothesis. From line (P34) the result follows immediately, recalling that since v < 1 the inversion
of the operator is well-defined:

@ - Qf - ()@ Q) + () ar - (1) 1) —
(Msua = (P @ - @b = () i - (1) 70x ) —
(e - ()" rar).

The second identity of the statement is obtained with an analogous derivation, in which at line (P33)

—1

Q" - Qf = (dssa — 2" (P")")
we sum and subtract (T‘s) ot T™Q™ and we exploit the identity for two bounded measurable func-
tions f,g € B(S x A):

S\ S\ k(po\* ! on
(1) 1mQr = (1) 1o =" (P) PT(f - ). (P38)

O

Lemma A.18. Let M be an MDP and © € TISR be a Markovian stationary policy, then
Sor any k € Nx1 and any bounded measurable function f € B(S x A) the following two
identities hold:

T
[ V)

(T‘/r)kfl f - (T(S)k—l f _ ’Yi+1 (PTr)i (PTr _ Pé) (Té)k_Q_if

|
N O

= Nyt (PO (PT = PO) (1) .
0

.
|

Proof. We start with the first identity and we prove it by induction on k. For £ = 1, we have that
the left hand side is zero and the summation on the right hand side has no terms. Suppose that the
statement holds for every h < k, we prove the statement for k:

k—1 k—

e ) N e e () I R C o bk (P39)
= (- @) s (@ - () )
= AF2 (pryE-2 (T"f - T“f) + ((T”)k_z T°f — (T“)k*2 T‘if) (P40)

_ k=1, pmk=2 (pr _ pb S i (pr po) (T3 s
— A1) 2(13 P)f+i§:07+1(P)(P P)(T) T f
(P41)
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k=2 , k—2—i
=T (Pr-P) (1), (P42)
i—0

where in line (P40) we exploited the identity at Equation (P33), line (P4T) derives from observing
that T™ f —T° f = (P" — P‘s) f and by inductive hypothesis applied on T f which is a bounded
measurable function as well. Finally, line (P42) follows from observing that the first term completes
the summation up to £ — 2. The second identity in the statement can be obtained by an analogous

derivation in which at line (P39) we sum and subtract (7°°) k2 f and, later, exploit the identity
at Equation (P38). O

Lemma A.19. Let M be an MDP and w € TI® be a Markovian stationary policy. Let f €
B(S x A) that is Ly—-LC. Then, under Assumptionsand the following statements
hold:

1. T™ fis (L, + YLp(Lx + 1)Ly)-LC;
2. T°fis (L, +~v(Lp + 1)Ly)-LC;
3. T*fis (L, +yLpLy)-LC.
Proof. Let f € (S x A) be L;-LC. Consider an application of T” and (s, a), (5,a) € S x A:

(@ Ps.0) = (7 NED)| = |rlsa) 7 || PS5 apr(aal) ')

JJ P(ds'|5,@)n(da’|s") f(s',a")
< |r(s,a) —r(5,a (P43)

+ Us (P(ds’\s, a) — P(ds'[s,a)) L‘ n(da'|s) f(s',a")

(P.44)

< |r(s,a) —r(s,a)| + v(Lx + 1)Ly sup
Felfllp<t

J (P(ds/\s,a) — P(ds'[3, E)) (s
(P.45)
< (L +vLp(Lx +1)Lys)dsxa ((s,a), (5,a)), (P.46)

where line (]Eb follows from triangular inequality, line (P43) is obtained from observing that the
function g;(s') = § , m(da’|s") f(s',a’) is (Lx + 1) Ly-LC, since for any s,5 € S:

195(5) — 95(3)] = L w(dals)f(s,a) — L w(dafs) f(s, a)

- Lﬂ(da\s)f(s,a) L 7(dafs) £ (5, a) + f r(daf3) £ (5, @)

< L (n(dals) — m(dals)) £(s, ) H (daf3) (s,a))‘
<Ly s | (rtdals) = m(@afs) f(a)

N \ [ wtaals) (5.0 - f(s,a»\
< LyLrds(s,3) + Lyds(s,s),
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where we exploited the fact that L,-LC. Finally, line is obtained by recalling that the reward
function is L,—LC and the transition model is L p—LC. The derivations are analogous for T and
T*. Concerning T°° we have:

(T°f)(s,a) = (Téf)(gﬁ)‘ <|r(s,a) —r(5,@)

+ P(ds'[s,a) — da(da’)P(ds'[5,a)) f(s',a)

< erSx.A (( s,a),(5,a))

f (P(ds'|s,a) — P(ds'[s,a)) J’ So(da") f(s', a")
S A

+7

+ yL P(ds'[5,a) L (6a(da’) — da(da’)) f(s',a)

< (Lr +9LyLp +vLf) dsxa((s,a), (5,a)),

where we observed that {, & 4 o(da’)f(s',a") = f(s',a) is Ly-LC and exploited the inequality
a(da’) = 6z(da’)| f(s’ a) < Lyda(a,a) < Lydsxa((s,a),(a,a)). Finally, considering
T* we have

(T*f)(s,a) = (T* £)(5,a)| < |r(s,a) —r(5,)]

f (P(ds/|s,a) — P(ds'|§,ﬁ)) sup f(s/,a/)
S a’e A

< (L"" + fYLfLP)dSXA ((S7a)7 (§>a)) ’

+7

where we observed that the function hf(s") = sup,c 4, f(s',a’) is Ly-LC, since:

|hs(s) — hs(3)| = [sup f(s,a’) — sup f(5,a")

a’e A a’e A
< sup |f(s,d') = f(5,d")|
a’e A

< Lfds(s,§).
O

Lemma A.20. Let M be an MDP and 7 € IIS® be a Markovian stationary policy. Then,
underAssumptionsand ifymax{Lp+1, Lp(L,+1)} < 1, the functions f € Qy,
are Lo, —LC, where:

L,
Lo, < . A.16
% ST ymax{Lp + 1, Lp(L, + 1)} (A.16)

Furthermore, for all (s,a) € S x A it holds that:
g, (s,a) < Lo, Wi (P™(+]s,a), P°(-]s,a)) . (A.17)

Proof. First of all consider the action-value function of the k—persistent MDP Q)7;, which is the fixed
point of the operator T} that decomposes into (7°°)*~1T™ according to Theorem It follows that
forany f € A(S x A) we have:

Qf = lm (17) f = tm ((@)'17) 1

Jj—+ Jj—+0
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We now want to bound the Lipschitz constant of Q);. To this purpose, let us first compute the
Lipschitz constant of 77 f = ((T°)*~'T™) f for f € #(S x A) being an L ;~LC function. From
Lemmawe can bound the Lipschitz constant ay, of (T°)"T™ f for h € {0, ...k — 1}, leading to
the sequence:

L +~yLp(Lr + 1)Ly ifh =0
ap = .
L +~(Lp +1)an_1 ifhe{l,.k—1}

Thus, the Lipschitz constant of ((7°)*~'T™) f is aj_1. By unrolling the recursion we have:

k-1

ak-1 =Ly 3,7 (Lp+ 1) + 7" Lp(Le + 1)(Lp + 1) 'Ly
1=0
- L 1-"(Lp+ 1" + 4" Lp(Lx +1)(Lp + D)L
"1 A(Lp+1) v a

Let us now consider the sequence b; of the Lipschitz constants of (TiF)? f for j € N:

Ly ifj=0

Lrllvwgiiii; +9"Lp(Lr +1)(Lp + 1)* b1 if j € Ny

b; =

—1

The sequence b; converges to a finite limit as long as v*Lp(L, 4+ 1)(Lp + 1)*7' < 1. In such

case, the limit b, can be computed solving the fixed point equation:

1=y @e+ )" k k-1
bow = Lr T (Lr +1) +7°Lp(Lr+1)(Lp +1)" b
Ly (1—~"(Lp +1)¥)

= T U @r 1)) (LA Lr(Lr + D(Lp £ DR

Thus, by, represents the Lipschitz constant of Q7.

It is worth noting that when setting k = 1 we recover the Lipschitz constant of the Q™ as
in (Rachelson and Lagoudakis| 2010). To get a bound that is independent on k we define L =
max{Lp(Lr + 1), Lp + 1}, assuming that yL < 1 so that:

Ly (1=~"(Lp +1)") oL
(1—v(Lp+1) A —=~*Lp(Lr + 1)(Lp + 1)k=1) = 1 —~L’

boo =

. _k k _kpk .
having observed that ! 11752}’313 <! 1172 . Thus, we conclude that Q7 is also 1fﬁ—LC for any

k € Nx;. Consider now the application of the operator T to Q%, we have that the corresponding
Lipschitz constant can be bounded by:

L. L.
1—~yL  1—~L°

L
LT”QE <L, + FYLP(LW + 1) - < Lr+nL (PA47)

1—~L
A similar derivation holds for the application of 7°. As a consequence, any arbitrary sequence of

applications of 7™ and T° to QF generates a sequence of I f; +—LC functions. Even more so for
) k—2—1

the functions in the set Q = {(7° T"Q% : 1€{0,...,k—2}}. Asaconsequence, we can
rephrase the dissimilarity term déZ (s, a) as a Kantorovich distance:

de s,a) = sup
feQx

f f P7r ds’,dd’|s,a) — (ds',da/|s,a)) f(s',a")
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< LQE sup
Filflp<1

= Loy (P”(-\s,a),P6(~|s,a)> .

Js JA (Pw(ds/,da/\s, a) — P°(ds’,dd|s, a)) f(s',a")
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APPENDIX

Exponential Family Policies

In this appendix, we report some results about policies that belong to the exponential
family.

B.1 Gaussian and Boltzmann Linear Policies as Exponential
Family distributions

We show how a multivariate Gaussian with fixed covariance and a Boltzmann policy, both
linear in the state features ¢(s) can be cast into Deﬁnition We are going to make use
of the following identities regarding the Kronecker product (Petersen and Pedersen| 2008)):

vec(AXB) = (BT ® A) vec(X) (B.1)
a’XBX"¢ = vec(X)” (B® ca’) vec(X), (B.2)

where vec(X) is the vectorization of matrix X obtained by stacking the columns of X into
a single column vector.



Appendix B. Exponential Family Policies

B.1.1 Multivariate Linear Gaussian Policy with fixed covariance

The typical representation of a multivariate linear Gaussian policy is given by the following
probability density function:

1

o o aa®)t

exp {5 (a - 9()75  a - B(s) |

where 6 € RF¥? js a properly sized matrix. Recalling Definition we rephrase the
previous equation as:

(el = o o {%aTz*la} exp {¢(3)T§Tz*1a - %qs(s)TéTz*léqs(s)} .

~T
Recalling the identities at Equation and (B-2) and observing that ¢(s)70 X 'a
~T ~
and ¢(s5)70 X 7'0¢(s) are scalar, we can rewrite:
¢(3)T5T271a = vec (qb(s)TéTZ*la)
~T

= (@’ ' ®@¢(s)") vec (0 )
~T\T

—vec(87) (Z7'a®@(s)),

qb(s)TéTE_lbqb(s) = vec (5T)T (E_l @ P(s)(s)") vec (ET) .

~T
Now, by redefining the parameter of the exponential family distribution 8 = vec (0 ) we
state the following definitions to comply with Definition[8.2}

t(s,a) = X 'a® ¢(s),
1

h(a) = T ae®)? exp {—;aTE_la} :

AB,5) =0" (T ' @¢(s)p(s)") 6.

B.1.2 Boltzmann Linear Policy
The Boltzmann policy on a finite set of actions {a1, ..., a1} is typically represented by
means of a matrix of parameters € R¥> q

exp{8; ¢(s)}
1+Z?:1 exp{éfd)(s)}
1

mg(ails) =

1+Z_’7‘7:1 exp{é?d)(s)}

"Notice that we are considering a set made of k 4 1 actions but the matrix 0 has only k rows. This allows
enforcing the identifiability property, otherwise if we had a row for each of the k£ + 1 actions we would have
multiple representation for the same policy (rescaling the rows by the same amount).
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where with @ we denote the i-th row of matrix 6. In order to comply to Definition
we rewrite the density function in the following form:

exp {éipq&(s) — log (exp{O} + 25:1 exp {5?¢(5)})} ifi <k

alesle) = exp {0~ log (exp{0} + X5_, exp {8; ¢(s)} )} fimk+l

By introducing the vector e; as the i—th vector of the canonical basis of R*, i.e., the vector
having 1 in the i—th component and 0 elsewhere, and recalling the definition of Kronecker
product, we can derive the following identity for ¢ < k:

~T

52Tq_’>(s) = vec (0 )T (e; ® @(3)).

In the case ¢ = k it is sufficient to replace the previous term with the zero vector 0.
~T
Therefore, by renaming 8 = vec <0 ) we can make the following assignments in order

to get the relevant quantities in Definition

.0 e @¢(s) ifi<k
S,Qa;) = ’
0 ifi=k+1

h(al) = ].,

A(0.5) = log (H > exp {07 (e, @ (s >>}>

7j=1

B.2 Fisher Information Matrix

We start by providing an expression of the Fisher Information matrix (FIM) for the specific
case of the exponential family, that we are going to use extensively in the derivation. We
first define the FIM for a fixed state and then we provide its expectation under the state
distribution v. For any state s € S, we define the FIM induced by 7g(-|s) as:

F(0,s) = A~E<-|s> [Velog me(Als) Ve log mg(Als)"] . (B.3)

We can derive the following immediate result.

Lemma B.1. For a policy mg belonging to the exponential family, as in Definition[8.2] the
FIM for state s € S is given by the covariance matrix of the sufficient statistic:

F(O,5)= E [t(s,A,0)t(s,4,0)"] = Cov [t(s,A)].

A~mg(-]s) A~mg(:|s)
Proof. Let us first compute the gradient log-policy for the exponential family:
Ve logme(als) = t(s,a) — Ve A(8,s)

§ 4 t(s,@)h(a)exp {07 t(s,a)} da
§, h(@)exp {07t(s,a)} da

=t(s,a) — (P.1)
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=t(s,a) — ZMTIE(-\S) [t(s,4)] = t(s,a,0).

Now, we just need to apply the definition given in Equation (B3) and to recall the definition of
covariance matrix:

H&Q=AJ2M[SA0ﬁ@Aﬁf]
™ aretio [(t(s’ 4= Zw%(-\s) [e(e A)]> (t(s’ 4= Zw%ms) [t(e A)]>
N Ag%s) [t(s 4)]

O

We now define the expected FIM F(6) and its corresponding estimator 7 (6) under
the sampling distribution v:

F0) - £ |, B [ 2807
1 n
== ;

Finally, we provide a sufficient condition to ensure that the FIM F(0) is non singular
in the case of Gaussian and Boltzmann linear policies.

[£(Si, A)E(S, A)7] .

~Tre(l

Proposition B.2. [f the second moment matrix of the feature vector Eg..,, [d)(S Yp(S )T]
is non—singular, the identifiability condition of Lemma (8.3 is fulfilled by the Gaussian and
Boltzmann linear policies for all @ € ©, provided that each action is played with non—zero
probability for the Boltzmann policy.

Proof. Let us start with the Boltzmann policy and consider the expression of t(s,a;) with i €
{1,...,k}:
t(s,a:,0) = t(s,a;) — E t(s, 4)]
A~mg(c|s)

k

—e® d)(s) - Z 7Te(ai|8)ei ® ¢’(3)

= (ei - 7‘-) ® d)(S),

where 7 is a vector defined as 7 = (7o (a1s), ..., 7o (ax|s))” and we exploited the distributivity
of the Kronecker product. While for i = k + 1, we have (0 — 7) ® ¢(s). For the sake of the proof,
let us define €; = e; if i < k and €41 = 0. Let us compute the FIM:

F(6)

f@,A,OﬂX&fLO)T}

A~mg(-|s)

() (& — ™) @ b(s)" |
-m)" @ ¢(s)¢(s)" |

AN‘"e(l )

[
Avrge >[
[ -
[@-

~m)" | @ p(s)e(s)"

A~7r9( [s)
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- ( E [siez-T] - mrT> ® B(s)p(s)”

A~mg(-]s)
— (diag(m) - 77") @ p(s)b(s)",

where we exploited the distributivity of the Kroneker product, observed that E s, (.|s) [€] ==

and Egrp()s) [&'&-T] = diag(r). Let us now consider the matrix:

ne(ai|s) — me(ar]s)? —me(ai|s)me(azls) ... —me(ai|s)me(ar|s)
—7T9((11|S)7Tg(a2|3) 71'9(0,2‘5)—7T9(G,2|S)2 —7r9(a2\5)7r9(ak\s)
diag(w) — wr’ =
—mo(a|s)mo(akls)  —mo(azls)me(arls) ... me(ar|s) — me(ak|s)®

Consider a generic row i € {1,...,k}. The element on the diagonal is 7g(a;|s) — me(as|s)? =
mo(ails) (1 — we(as|s)), while the absolute sum of the elements out of the diagonal is:

molails) Y] melasls) = me(ails) (1 — me(ails) — mo(ansls)).
je{1,...k} nj#i

Therefore, if all actions are played with non—zero probability, i.e., g (a;|s) > Oforalli € {1,...,k+
1} it follows that the matrix is strictly diagonally dominant by rows and thus it is positive definite. If
also Es. [¢(S)(S)" | is positive definite, for the properties of the Kroneker product, the FIM is
positive definite.

Let us now focus on the Gaussian policy. Let a € R* and denote 1(s) = Eavrp(.|s) [a]:

B(s.80)=t(sa)~ E [t(s8)] =3 (a— u(s) @ p(s).

a~7g(|s)
Let us compute the FIM:
FO)= E [f(S,A,O)f(S,A,e)T}
A~mg(:|s)

E (=7 (a-n) @) (57" (a—p(s) @b(s) |
= E B e ne) @-p6) 5T @6)60)]|

a~(-]s)

=3 a3 [(a —n(s)) (a— H(S))T] ST @¢(s)p(s)"

=2'EE T Rp(s)p(s)" =T @ p(s)p(s)".

If X has finite values, then 3" will be positive definite and, considering that Eg.,, [p(S)p(S )T]
is positive definite, we have that the FIM is positive definite. O

B.3 Subgaussianity Assumption

From Assumption we can prove the following result that upper bounds the maximum
eigenvalue Ay, .y of the Fisher information matrix with the subgaussianity parameter o.

Lemma B.3. Under Assumption for any @ € © and for any s € S the maximum
eigenvalue of the Fisher Information matrix F (0, s) is upper bounded by do>.
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1 xT Ax

1 xTy. Consider now the derivation for a

Proof. Recall that the maximum eigenvalue of a matrix A can be computed as SUDx: x|, <

and the norm of a vector y can be computed as sup,, ||, <

generic x € R? such that x|, < 1:

x"F(0,s)x =x" E [E(s, A, 0)t(s, A, O)T} x

A~mg(-|s)

T - T
A~7rIE(»|s) [x t(s, A, 0)t(s, A, 0) x}

LE [(XTE(S, A, 9))2]

2
< E TE(s, A, 0 = E t(s,A,0)°],
A~mg(-]s) |:<x:sxu£)glx (S )) :| A~mg(-]s) [” (S )H2:|

where we employed Lemma and upper bounded the right hand side. By taking the supremum
over x € R? such that ||x||, < 1 we get:

Amax (F(8,5)) = sup xTF(0,s)x< E [||E(s, A, e)Hj] . (P2)
x:[|x[o <1 A~mg(-]s)

By applying the first inequality in Remark 2.2 of [Hsu et al.| (2011) and setting A = I we get that

Ear(ls) | [E(s,4,0)[3] < do®. O

We now show that the subgaussianity assumption is satisfied by the Boltzmann and
Gaussian policies, as defined in Table@ under mild assumptions.

Proposition B.4. Ifthe features ¢ are uniformly bounded in norm over the state space, i.e.,
Qo = SUp,es |@(5)|,, then Assumption is fulfilled by the Boltzmann linear policy

with parameter o = 2P, and Gaussian linear policy with parameter o = fia?g)

Proof. Let us start with the Boltzmann policy. From the definition of subgaussianity given in As-
sumption requiring that the random vector t(s, a;, 8) is subgaussian with parameter o is equiv-
1

alent to require that the random (scalar) variable man(s, a;, @) is subgaussian with parameter

o for any o € R%. Thus, we now bound the term:

(;fo(s7 a, 0)‘ = )OLT (& — ) ® @(s))
= e, (& — ) ® &(s)ll,

= |y & = 7|, [@(s)l,
<2 HaH2 Prax,

where we used Cauchy—-Swartz inequality, the identity [x @ |2 = (x®y)" (x®y) = (x"x)®

(y"y) = Ix[3lly|3 and the inequality & — 7|3 < 2. Therefore, we have that the random
variable maTE(S’ ai, 0) < 2®Ppax is bounded. Thanks to Hoeffding’s lemma we have that the
subgaussianity parameter is 0 = 2P ax.

Let us now consider the Gaussian policy. Let a € R? and denote with p4(s) = Earg(.|s) [a]:

t(s,a,0) =t(s,a)— E [t(s,a)] = »! (a— pu(s)) ® @(s).

a~mg(-|s)
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Let us first observe that we can rewrite:

o’ (=7 (a— u(s)

— u(s))), 8(s);

k q
aPIPIEY
k q
2 2 ayd(s); (57" (a - u(s),

ﬁTz* (a—p(s)),

where B; = 3, aij¢(s); fori € {1,...,k}. We now proceed with explicit computations:

[exp (@000} = = [ew{a’ (57 (a-pus) @ () }]

LE e {BTET @ mi)]

_ J exp{—1(a—pu(s)) "= (a—p(s)}
R (27) % det(X)2

a~mg(-|s)

exp{BT271 (a— y,(s))}da.
Now we complete the square:
= ()5 @ () + 875 @ - u(s))
= S pls) ~B)' @ uls) - B) + 367578,

Thus, we have:
[exp {an(& a,0) }]

— ox 1 re-1 eXp{*%(a*M(s)*ﬁ)Tzil(afﬂ'(s)*,3)} a
- p{2ﬁ > ﬁ”ﬂw (27) % det(X)3 4

a~mg(-|s)

= exp {%ﬁTﬁflﬁ} .
Now, we observe that:

BTETB < B |=7Y, < lel3los) 3 [=7,

having derived from Cauchy—Swartz inequality:

1815 = Z (Z aij¢(3)j>

N
0=
D=

Q
SIv
0=

©

@
=%

_ Pmax O

HQ T A i (D)

Furthermore, we report for completeness the standard Hoeffding concentration in-
equality for subgaussian random vectors.

We get the result by setting 0 = ®Prax HE
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Proposition B.5. Let X1, Xo, ..., X,, be n i.i.d. zero-mean subgaussian d—dimensional
random vectors with parameter o = 0, then for any o € R% and € > 0 it holds that:

1< en
Pla" =)' X;]| =€ <exp{—2}.
( (" ; ) ) 2|af; o

Proof. The proof is analogous to that of the Hoeffding inequality for bounded random variables. Let
5= 0:

(o (GEx) ) el (L))

where we employed Markov inequality, exploited the subgaussianity assumption and the indepen-
dence. We minimize the last expression over s, getting the optimal s = Mizﬂ, from which we get
2

1 & en
P aT — X; Z €| <ex _—— .
( (Z ) ) "{ 2]z o?

Under the Assumption [8.2] we provide the following concentration inequality for the
minimum eigenvalue of the empirical FIM.

the result:
O

Proposition B.6. Let F(0) and F (0) be the FIM and its estimate obtained with n > 0
independent samples. Then, under Assumption[8.2] for any € > 0 it holds that:

~ en
where ¢, > 0 is a constant depending only on the subgaussianity parameter o. In partic-
ular, under the following condition on n we have that, for any 6 € [0, 1], Apmin(F(0)) > 0
with probability at least 1 — 6:

d?0*), log %
n>- ——y-
Amin (-7: (9) ) 2

Proof. Let us recall that F(8) and F(8) are both symmetric positive semidefinite matrices, thus
their eigenvalues \; correspond to their singular values o;. Let us consider the following sequence
of inequalities:

~

Amin (]—"(0)) — Amin (]—'(0))‘ - ]amm (f(e)) — Cuin (F(0))
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B.3. Subgaussianity Assumption

< max

max o; (F(9)) ~o; (F(6))

<|76) - 7o)

)
2

where last inequality follows from |Ben-Israel and Greville|(2003). Therefore, all it takes is to bound
the norm of the difference. For this purpose, we employ Corollary 5.50 and Remark 5.51 of [Ver-
shynin| (2012)), having observed that the FIM is indeed a covariance matrix and its estimate is a
sample covariance matrix. We obtain that with probability at least 1 — §:

70) - 70)] < 17(6)1, /LB, ®3)

where ¥, > 0is a constant depending on the subgaussianity parameter o. Recalling, from Lemma|B.3|
that | F(0)| = Amax (F(8)) < do?, we can rewrite the previous inequality as:

- log 2
< da%/wn&. (P4)

By setting the right hand side equal to € and solving for §, we get the first result. The value of n can
be obtained by setting the right hand side equal to Amin (F(8)). O
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