
ODIN Web: An interactive dash-
board for black-box deep learning
error diagnosis

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Alessandro Mastropasqua

Student ID: 944996
Advisor: Prof. Piero Fraternali
Co-advisors: Federico Milani, Rocio Nahime Torres, Niccolò Zangrando
Academic Year: 2021-22

i

Abstract

Classification, Object Detection, and Instance Segmentation have become key fields in
the computer vision research context. Their aim is to recognize the presence, or pres-
ence and location, of a specific class within an image in an automatic way using neural
models. Over the years, however, the architectures of these models have become progres-
sively complex due to the constant need to increase their performance. This has made
their evaluation more and more arduous, leading to evaluate them as "black-boxes" using
standard evaluation metrics necessary to perform fair analysis on models and understand
their behavior to be able to optimize it for a given dataset or task.

In this way, several papers describe the development of frameworks aimed at enhancing
the diagnosis of deep neural models over the standard evaluation metrics, implementing
tools with graphical interfaces that support the user during all analyzes by presenting the
results cleanly and legibly. The interfaces that these tools present are often sparse and do
not allow the user to vary the types of analysis, nor do they offer sets of metrics to fully
understand the behavior of the model.
ODIN Framework aims at generalizing and integrating into a unique solution the main
approaches to error diagnosis extending the standard evaluation metrics with custom
properties and metrics, a wide range of off-the-shelf metrics, and analysis reports. Being
ODIN a tool with great potential but with the limit of being python based and therefore
accessible only to users capable of programming, we felt the need to compensate for this
weakness by extending it with a dashboard that can quickly display the most common
reports without any programming effort, still allowing the more experienced to refine the
analysis as they want. The purpose of the presented work is to introduce ODIN Web,
a web-based application capable of compensating for the lack of a complete tool, with
an intuitive interface, easy to install, and which supports users in analyzing the results
of their models without any programming effort. Finally, to demonstrate the utility and
effectiveness of the tool, two types of use cases, applied to the ArtDL and PASCAL VOC
2007 datasets, are illustrated.

Keywords: Computer Vision, web-based application, diagnosis tool

Abstract in lingua italiana

Classificazione, rilevamento di oggetti e segmentazione delle istanze sono diventati campi
importanti nell’area di ricerca sulla visione artificiale. Il loro scopo è riconoscere la pre-
senza, o la presenza e la posizione, di una classe specifica all’interno di un’immagine in
modo automatico utilizzando modelli neurali. Nel corso degli anni, però, le architetture
di questi modelli sono diventate progressivamente complesse a causa della costante ne-
cessità di aumentarne le prestazioni. Ciò ha reso la loro valutazione sempre più ardua,
portando a valutarli come "scatole nere" utilizzando metriche di valutazione standard
necessarie per eseguire un’analisi equa sui modelli e comprenderne il comportamento per
poterlo ottimizzare per un determinato set di dati o attività. In questo modo, diversi
articoli descrivono lo sviluppo di framework volti a migliorare la diagnosi di modelli neu-
rali profondi rispetto alle metriche di valutazione standard, implementando strumenti con
interfacce grafiche che supportano l’utente durante tutte le analisi presentando i risultati
in modo pulito e leggibile. Le interfacce che questi strumenti presentano sono spesso
scarse e non consentono all’utente di variare i tipi di analisi, né offrono set di metriche
per comprendere appieno il comportamento del modello. ODIN Framework mira a gen-
eralizzare e integrare in un’unica soluzione i principali approcci alla diagnosi degli errori
estendendo le metriche di valutazione standard con proprietà e metriche personalizzate,
un’ampia gamma di metriche e report di analisi. Essendo ODIN uno strumento dalle
grandi potenzialità ma con il limite di essere python based e quindi accessibile solo agli
utenti capaci di programmare, abbiamo sentito la necessità di sopperire a questa de-
bolezza estendendolo con una dashboard in grado di visualizzare velocemente i report
più comuni senza alcun sforzo di programmazione, consentendo comunque ai più esperti
di affinare l’analisi a loro piacimento. Lo scopo di questo lavoro è quello di presentare
ODIN Web, un’applicazione web-based in grado di sopperire alla mancanza di uno stru-
mento completo, con un’interfaccia intuitiva, facile da installare, e che supporti gli utenti
nell’analisi dei risultati dei propri modelli senza alcun sforzo di programmazione. Infine,
per dimostrare l’utilità e l’efficacia dello strumento, vengono illustrate due tipologie di
casi d’uso, applicati ai dataset ArtDL e PASCAL VOC 2007.
Parole chiave: Computer Vision, applicazione web-based, strumento di diagnosi

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

2 Related Work 5
2.1 Computer Vision . 5
2.2 Black-box error diagnosis . 8
2.3 Annotation tools for ML datasets . 12

2.3.1 Data Annotation . 12
2.3.2 Annotation Tools . 14

2.4 User interface for dashboards . 19

3 An Interactive Dashboard for ODIN 23
3.1 Requirements . 23

3.1.1 Dataset use cases . 24
3.1.2 Annotator use cases . 26
3.1.3 Analyzer use cases . 28

3.2 System Architecture . 29
3.2.1 Technologies Involved . 32
3.2.2 Back-End . 35
3.2.3 Front-End . 42

4 ODIN Web In Action 61
4.1 ArtDL . 61
4.2 PASCAL VOC 2007 . 67

5 Conclusions and Future work 71

Bibliography 73

List of Figures 79

List of Tables 81

Ringraziamenti 83

1

1| Introduction

In Machine Learning, the vast availability of data sets and open challenges have made it
possible to create the essential foundations for the progress. In this vast environment it is
possible to identify a branch called Deep learning, which is a machine learning technique
that teaches computers to do what comes naturally to humans: learn by example.
It allows computational models, that are composed of multiple processing layers, to learn
representations of data with multiple levels of abstraction.
These methods have significantly improved the state of the art in many fields of analysis
such as medical image analysis[29], acoustic recognition of the road surface[44], finance[24],
regarding safety and construction of portfolios, and so on.
It has demonstrated incredible success in a variety of applications domain in the past few
years, and with some new applications, it continues to produce new possibilities.
Its main uses are in Image Classification, whose goal is to identify the categories of
objects present in a given image, Object Detection, whose aim is not only to identify the
categories of objects inside an image but also their location using bounding boxes and
Instance Segmentation, that requires to identify the objects and localize them in a finer
way providing a pixel-level segmentation mask for each object instance. These tasks are
obtained thanks to deep neural models which are constantly optimized based on their
performances with a bunch of data. Performance analysis on these architectures can be
achieved in two ways:

• Opening the box with model interpretation techniques those aim to break down
a complex model into smaller areas of interest that are processed sequentially, and
in this way try to asses the relationship between input, the inner layers and the
output.

• An alternative approach is to treat the model as a black box enriching the in-
put samples with labels, or extra annotations, useful for then model response but
that they do not impact on its training phase. Such performance-driven meta-
annotations enable the computation of tasks and data set specific metrics whereby
scientists can identify the features of the input responsible of prediction errors and

2 1| Introduction

focus their model improvement efforts.

Over the years many error diagnosis tools have made their way with the aim of expanding
the standard evaluation methods based on metrics by providing visual support through
graphs thanks to which it was possible to understand the behavior of the model and ex-
ploit this knowledge in order to increase its performance. However, nowadays many tools
do not offer a complete sector that supports the analysis, in the first place, but which also
offers to the user the possibility of having a complete view of the data used as input in
the model and the possibility of interacting with it.
In fact, the current state of the art does not provide a complete tool that allows to create
a dataset from scratch and, at the same time, once populated, to be able to analyze the
performance of your models for that particular dataset.
The aim of the presented work is to make up for the lack of a complete tool by presenting
ODIN Web, a web app that aims to integrate in a single tool all both the management of
the data sets and the error diagnosis for neural models.
ODIN Web offers a 360-degree analysis of the latter by exploiting analyzes that vary from
the analysis of the simple dataset created, up to that of the predictions of the model by
exploiting multiple metrics for analyzes that touch all the crucial points of the model’s
performance.

This work aims to extend ODIN [47], a complete framework developed entirely in python
that addressed Image Classification, Instance Segmentation, Object Detection tasks and
the possibility to enrich the training set, and export it into a web based solution. This
work stems from the need to make ODIN accessible to everyone, including people who are
not particularly familiar with python. This has led us to want to implement an intuitive
web-based application that does not require any programming skills but at the same time
allows any user to analyze their dataset and the predictions of their models by exploiting
all the analyzes that ODIN[47] offers. For this reason we have created a tool with:

• A visual interface that guide the user into the set preparation by labeling and
annotating it with categories and meta-annotations constantly added in real time.

• A complete interface that allows the user to inspect and analyze the results of the
model in order to improve performance through metrics and graphical results, And
in addition the possibility of comparing the model under analysis with the results
obtained from other models to which the same inputs were given in analysis.

• The ability to install the program locally through a simple installation guide with
the open source code or through the docker by installing its image

1| Introduction 3

In the course of this document we will analyze ODIN Web in detail, from why there was
a need to implement a tool with these features, up to a detailed analysis of each of its
individual components both as regards the client side and the server side. This document
is structured as follows:

• Chapter 2 – an overview of the computer vision is provided, the tools currently
available are subsequently presented both as regards the annotation of the dataset
and for the analysis phase and, finally, the guidelines used for the development of
the ODIN Web dashboard are introduced.

• Chapter 3 – the tool is analyzed in its entirety: starting with the description of the
technologies used, we then move on to the analysis of all the implementation and
structural aspects of the server side, with the description of each module, and of the
client side in which the developed interface and offered analyzes.

• Chapter 4 – ODIN Web use cases are illustrated for the analyzer applied to ArtDL
and PASCAL VOC 2007 datasets.

• Chapter 5 – conclusions are drawn and future works listed.

5

2| Related Work

2.1. Computer Vision

Computer vision is a field of artificial intelligence that aims to analyze images and videos
with the aim of extracting understandable information. Computer vision is also often
associated with human vision as it tries to mimic the sight of humans through machines
to interpret spatial data. Obviously it is a complex challenge but over the years researchers
have made great strides by improving themselves in various computer vision tasks, namely:

• Image Classification: is the task of recognizing classes of objects within images. This
task can be divided into sub-tasks that depend on the number of classes and objects
within the images. Starting from the binary image classification, it is addressed to
all those types of problems that go to have an image as input in which to detect
a single class out of a predefined set of two classes (for example whether an image
represents a certain class or not) . In multi-class (single-label) problems, on the
contrary, the image is associated with a class that belongs to a set of more than
two classes. A final task for classifying images is called multi-label, that is, unlike
the multi-class single label, the input image can be associated with an indefinite
number of classes on a set of classes greater than two. It is often used to recognize
various objects in images such as the Person class in the Figure 2.1.

• Object Detection: visualized in Figure 2.2 this type of task focuses more on identi-
fying the position of the object within the image rather than just labeling it. This
kind of task makes use of bounding boxes to locate and highlight the position of the
object.

• Instance Segmentation[21]: has come to be one of the relatively important, complex
and challenging areas in machine vision research. Aimed at predicting the object
class-label and the pixel-specific object instance-mask, as shown in 2.4 it localizes
different classes of object instances present in various images. Instance segmentation
aims to help largely robotics, autonomous driving, surveillance, etc.

6 2| Related Work

• Semantic Segmentation[18]: very close to the concept of instance segmentation, with
the simple difference that instead of identifying the object and its area pixel by pixel
within the image, it labels each pixel of the image not with the aim of identifying
an object in particular but to create a single cluster of the same class. An example
is provided in Figure 2.3.

• Pose Estimation[37]: Human pose estimation is the process of determining through
an image, the position of the various parts of the body of an individual such as head,
shoulders, elbows, hands etc. It has many applications in contexts such as sports,
character animation, clinical analysis and everything related to the recognition of
actions. as we can see in Figure 2.5 each person is identified by highlighting their
joints.

• Object Tracking [51]: which is similar to object detection with the difference that
the goal is to trace the movement of the object inside a sequence of frame (usually
a video).

• Action Detection[25]: aims to assign a label to the action presented in a video.

Over the years these tasks have been approached through neural models, also known as
CNN (Convolutional Neural Network)[50]. A CNN is a particular type of architecture
that is based on different building blocks, such as:

• Convolutional Layer – Layer in which filters are applied to the original image or
feature maps. They are characterized by an activation function that filters the
inputs by converting a 3D cube, previously set of feature maps to a 3D cube, with
one 2D map per filter.

• Pooling Layers – They tend to be exploited to reduce the size of the network.
They are similar to convolutional layers, with the difference that they perform spe-
cific functions, including max-pooling (maximum value per filter region), or average
pooling (average value in the filter region).

• Fully connected Layers – Inserted before CNN output to flatten the result before
classification

CNN consists of an alternation of stacks of different convolutional layers followed by
pooling layers all with different parameters as in Figure 2.6. Over the years, the need to
increase the performance of their models has led to a continuous increase in the size of
these structures up to the point of making them difficult to analyze and grasp the weak
points with certain types of data. Therefore, we reached the point where the analysis
where "the box is opened" was no longer sufficient as their demanding interpretation.

2| Related Work 7

Figure 2.1: Image Classification
Figure 2.2: Object Detection

Figure 2.3: Semantic Segmentation Figure 2.4: Instance Segmentation

Figure 2.5: Pose Estimation, source: [36]

This is the reason why the frequency of use of the tools, which exploit black-box analysis,
by directly analyzing the model’s performance under certain types of data has increased
over the years.

8 2| Related Work

Figure 2.6: Architecture of Krizhevsky et al.’s DCNN [31]

2.2. Black-box error diagnosis

To be able to fulfill the tasks that computer vision offers us, it is necessary to use deep
neural models, and, in order to understand the benefits of a given model, it is necessary
to analyze and catch the characteristics of its architecture. As mentioned earlier this
performance analysis can be performed in two ways: the first approach is to ’open the
box’ with the aim of finding a link between the input, the various internal layers of the
model, its nodes, and the output provided by it. The other, that is what we will discuss
in this document and implemented by ODIN, is the one called ’black-box’ and consists
in associating extra annotations to the input, which are not exploited in the training
phase, but capable to make us better understand the model output by analyzing which
meta-annotations had the greatest impact on model errors.
Many tools, nowadays, implement neural model analysis with a black-box approach. In
this section we will analyze some of the most important tools and, if they are provided,
a quick description of the interface they present. They will be described and compared
based on the following characteristics:

• Task : Type of task supported by the analyzes provided by the tool. The types of
tasks reported are: Classification (CL), Object Detection (OD), Instance Segmenta-
tion (IS), Semantic Segmentation (SS), Action Detection (AD), and Bias Detection
(BD).

• Media types : Each tool can support one or more types of media, including: image,
videos and Generic which comprises text, graph and etc.

• Dataset independence: possibility to process different data sets.

• Code: In case the tool is open source, the link to the code will be available.

2| Related Work 9

• Interface: if the tool provides a web-based/stand-alone interface or not.

Reference Year Task Media Data
set in-
depen-
dence

Code Interface

Hoiem et al.[26] 2012 OD Image Yes Link No
COCO API[32] 2014 OD, IS,

PE
Image Yes Link No

Alsallakh et al.[3] 2014 CL Generic Yes - Yes
ModelTracker[5] 2015 CL Generic Yes - Yes
Prospector[30] 2016 CL Generic Yes - Yes
Squares[40] 2016 CL Images Yes - Yes
Manifold[54] 2018 CL Generic No Link Yes
DETAD[4] 2018 AD Video Yes Link No
Ye et al.[49] 2019 BD Generic Yes - Yes
What If Tool[48] 2019 CL, BD Generic Yes Link Yes
TIDE[6] 2020 OD, IS Image Yes Link No
TF-GraF[52] 2020 OD Image Yes Link Yes
Boxer[16] 2020 CL Generic Yes Link Yes
OpenVino[12] 2020 CL, OD,

SS, IS
Image Yes Link Yes

GNNVis[27] 2020 CL Graph Yes - Yes

Table 2.1: Tools list ordered by ascending publication year. Adapted from [15]

Tools Description
Table 2.1 presents the identified tools. For each tool, the table reports the name, the
publication year, the task, the target media, if it can be used with different data set, and
the link to the code, if the tool is open-source.

• Hoiem et al. [26] is a pioneer work regarding the analysis of ML models with a
black-box approach. The author has shown how there is a correlation between the
characteristics of the object, such as size, occlusion, aspect ratio, truncation and
visibility of parts, and how they affect the performance of the model. The tool is
developed entirely in entirely in Matlab and does not provide a graphical interface.
Before analyzing the dataset and the predictions associated with it, the user needs to
manually modify the various parameters within the files. Furthermore, all analyzes
are performed through commands executed in Matlab.

• COCO API [32] in this framework it is possible to find a step towards using the
properties of the object in which the calculation of the mean Average Precision

https://github.com/wk910930/diagnosing-object-detectors
https://github.com/cocodataset/cocoapi
https://github.com/uber/manifold
https://github.com/HumamAlwassel/DETAD
https://github.com/PAIR-code/what-if-tool
https://github.com/dbolya/tide
https://github.com/boguss1225/ObjectDetectionGUI
https://github.com/uwgraphics/BoxerRelease/
https://github.com/openvinotoolkit/openvino

10 2| Related Work

(mAP) is different based on the size of the object. It includes APIs developed with
the following languages: Lua, Python, and Matlab. Specifically, the PythonAPI can
be run on any interpreter in order to take advantage of all the functions of COCO.
In fact, it allows the user to analyze the dataset and its annotations via a viewer,
but also to analyze the performance of the model whose results will be returned in
textual format within the Notebook. Coco has no web interface.

• Alsallakh et Al. [3] authors propose a new graphical analysis that arranges different
classes based on a radial layout and use histograms to show the statistics of the
true/false positive/negative associated with each class and their prediction confi-
dence. However, the technique lacks the ability to support effective comparison of
multiple models.

• ModelTracker [5] provides a stand-alone tool called Ice for analyzing the output of
a classification mixing traditional metrics summarization and novel types of inter-
active visualizations. This tool is aimed at experts, as the interface that describes
the overall performance of the model with direct data can be difficult to interpret
for a novice.

• Prospector [30] a web-based interface used for understanding how a specific feature
contributes to the prediction by adjusting the feature value and examine the corre-
sponding change of the predicted result.

• Squares [40] proposed by Ren et al., provides a stand-alone tool that offers a perfor-
mance analysis system based on histograms to expose prediction scores in a multi-
class classification task and allows the user to investigate multiple models by com-
paring multiple graphs. Although innovative, the concept of comparison is based
solely on comparing two histograms without creating a real visual indicator of how
the two models behave in front of the same instance. The technique lacks the ability
to characterize the model diversity at the instance level.

• Manifold [54] this tool is developed entirely in the React language and is the first
example of a tool in which performances were compared on multiple models. In
other words, the outputs of several models were compared trying to understand
the strengths and try to lead to a biased cognition based on their relation to the
underlying data.

• DETAD [4] developed entirely in python, it does not provide a stand-alone inter-
face but relies on a Conda environment to run. The focus of this work is on the
localization of temporal actions in videos. The diagnosis method and tool allow

2| Related Work 11

False-Positive and False-Negative analysis and the estimation of the sensitivity of
mAP-based metrics to six action characteristics: context size, context distance,
agreement, coverage, length, and the number of instances.

• Ye et al.[49] a stand-alone tool focused on the analysis of the dataset and the distri-
bution of classes within it. Provides a simple and effective interface supported by a
wide range of filters to analyze the components of the dataset on different degrees
of granularity. The authors present the results obtained with label noise and a vi-
sualization work for data quality management with some similarities to interactive
labeling.

• What If Tool [48] a web-based tool that leverages a visual interface to help under-
stand class distributions in the dataset and model output. It can also be used on
various notebooks. A user has the possibility to manage different characteristics of
the input data set in order to analyze how these changes affect the predictions of the
model. Furthermore, the tool provides a fairness analysis and different strategies
for optimization.

• TIDE [6]: a framework developed entirely in python but it does not develop any
type of interface. It is used for analyzing the sources of error in object detection
and instance segmentation algorithms. Error analysis is performed in such a way
that the impact of each error on the overall performance is handled in an isolated
way. It also allows the comparison of several models at the same time.

• TF-GraF [52] The authors provide a user-friendly graphical framework for object
detection built on TensorFlow Object Detection API[2]. It allows everyone, even
without any knowledge of DL frameworks, to design, train, and evaluate models
without coding efforts.

• Boxer [16] web-based application developed entirely in Vue and TypeScript. It pro-
vides a customizable interface in order to view only the analyzes of interest. The
graphs present in the analyzes are minimal and sometimes without the appropriate
filters in order to have a partial view of the analysis.

• OpenVino[12] a stand-alone tool that provides 360-degree support for analyzing the
results of a model. It has an intuitive but at the same time functional and complete
interface for the analysis of predictions. It focuses on model analysis, optimization
and deployment. Novel visualizations and evaluations are introduced to support
hardware optimization and model calibration. Computational graph visualization
allows developers to investigate the runtime representation of a model. Calibration

12 2| Related Work

techniques enable the acceleration of model performance while decreasing memory
impact (keeping in consideration accuracy) and deployment to a target system.

• GNNVis [27] The authors presented a new approach for the analysis of graphical
neural networks (GNNs) providing a performance analysis by analyzing common
error patterns in a group of nodes that directly influenced the model and also allow-
ing a comprehensive analysis of the graph topology. It is a web-based tool developed
in python and flask, for the back-end part, and with React, TypeScript, and D3 for
the front-end application. It features a clean and intuitive interface that guides the
user throughout the analysis.

As it could be deduced from the analysis, there are very few tools that allow having an
interactive interface and at the same time offer the user the complete customization of
the data and the analyzes performed on them. Furthermore, each tool focuses mainly on
a certain type of task, completely excluding the other. This is why we felt the need to
develop ODIN Web. That is to provide a tool with a user-friendly and attractive interface
but at the same time equipped with all the necessary features to be able to better analyze
your data.

2.3. Annotation tools for ML datasets

2.3.1. Data Annotation

Training models is one of the key parts when it comes to deep learning. Often the model’s
performance after being trained largely depends on the quality and breadth of data that
has been provided to it. For that reason, we can say that the preparation of the training
set is crucial to obtain excellent performance from the model and, therefore, it must be
supported by a tool that allows a quick, but at the same time efficient, annotation. Obvi-
ously, there are a huge amount of annotators on the market, each of which specializes in
annotating certain types of data. These data can range from simple text files, to images
up to multimedia files. But, before introducing them, it is important to define what a
data annotation is and how it is divided into categories according to the purpose of the
data set.
A Data Annotation is the process of making text, audio, or images of interest understand-
able to machines through labels. As already mentioned, the preparation of the data set to
be dared to feed the model is an essential step to achieve the goal that has been set for the
model as: the higher the quality of annotated data fed to the training model,
the higher the quality of the output. This is the reason why many developers prefer

2| Related Work 13

human labor for the annotation process as the process could also be automated using a
machine but the capacity of recognition and entity-relationship association that belong
to the human being are preferred in case of complex or sensitive data. After this brief
introduction to data annotation we can define the types of annotation that we will need
later to describe the Annotation tools. As mentioned previously, the types of annotation
depend primarily on the resource that must be annotated:

• Text Annotation: since the capacity for language is a subjective quality of the
person, a machine is not able to grasp the emotional characteristics of the person
which can be expressed through a totally subjective text with new trends, slang,
humor and different types of communication. For these reasons text annotation can
be categorized as: Sentiment Annotation, depicted in Figure 2.7, which evaluates
attitudes and emotions behind a text labeling it as Positive, Negative or Neutral.
Text or Semantic Classification is the analysis and categorization of a text under a
list of predefined labels, often used to group text files under a predetermined heading
shown in the 2.8, and finally the Entity Annotation which allows you to identify
keywords in the text (entities) with a close relationship between them (Figure 2.9).

Figure 2.7: Sentiment Annotation. Source
[41]

Figure 2.8: Semantic Classification. Source:
Link

Figure 2.9: Entity Annotation. Source [39]

• Image Annotation: one of the key aspects of computer vision, is the process of
classifying the images through labels that your model will subsequently analyze
and recognize in the future. In computer vision these labels are also called classes,
expanding the simple image with extra information about it. It is possible to identify
several task of image annotation, the most used are: Image Classification, that

https://www.datacamp.com/community/tutorials/discovering-hidden-topics-python

14 2| Related Work

requires images to have a single label or multi labels to identify the entire image,
aims to build a model capable of recognizing the presence of one or more elements
within the images in the data test. Object Detection or Recognition adds a further
step to the simple concept of classification by giving the developer the possibility
to identify which class a certain object belongs to, as happens for classification, but
also to delimit its position in the image by drawing a bounding box, allowing to
know the exact position and number of occurrences of the class within the image.
An evolution that aims to identify the exact position of the element is called Image
segmentation which divides the image through lines, points, etc. for example, a
pixel-level analysis where each pixel is assigned to a certain class. Obviously the
programmer’s task is not to label every single pixel but to delimit as precisely
as possible the element in the image through segments. This type of annotation
can in turn be divided into two sub-categories that focus either on identifying the
presence of the category by approximating it (Semantic Segmentation[17]) or on
identifying the exact number of elements by dividing them one by one (Instance
Segmentation[20]).

• Video Annotation: video annotation is defined as the task of labeling and tagging
video frames to train the model later. The difference between simple image anno-
tation is that the video annotation process is done frame-by-frame. As with image
annotation, video annotation can be used for the following types of tasks: Object
detection and Object localization, as for Image annotation, and in addition a bunch
of new tasks which are Object Tracking, in which the aim is to annotate a series
of frames being careful to ensure consistent identifiers for each unique object in
the sequence of images, and Activity Tracking, similar to object tracking, consists in
navigating through human activity also contributes to a better perception of the en-
vironment and helps prevent accidents, even if those are initiated by unpredictable
pedestrian behavior.

• Audio Annotation: a subset of data annotations that involves the classification of
audio components from people, animals, the environment, instruments, and so on.

2.3.2. Annotation Tools

Annotation tools are an important resource for developing custom models for a variety
of purposes. The choice of the annotator in the initial stages of building the data set,
is therefore, crucial. The researcher must be able to identify the objective of the model
(type of annotation and consequently on which task type the model will be based), the

2| Related Work 15

development environment and the effectiveness of the annotator that is going to be used.
Many annotation tools, also listed in this work[34], have been developed over the years
and in this section, the most used will be cited and analyzed by comparing them based
on the following criteria:

• Technical Criteria, with which technical aspects of the software will be treated, are:

– Technologies involved – with which the tool is built.

– Installation Type – this entry will be divided into two categories: web-based
(running on a server) and stand-alone(as a program that can works even offline)

– Source Code – with this criterion the possibility of analyzing the source code
of the tool is taken into account.

– Online Demo – categorized as yes or no in case is possible to test the tool with
an online demo that briefly sum up the main features

– Free – whether the software is free or paid

• Functional Criteria, with which functionalities of the tool are analyzed, are:

– Annotations Format – in which format annotations are saved: XML, JSON,
TXT, other

– Type of Annotations – based on the annotation types mentioned in the previ-
ous section they will be labeled as SA (Sentiment Annotation), SC (Semantic
Classification), EA (Entity Annotation) for what concern the Text Annotation
type, and IC (Image Classification), OD (Object Detection), SS (Semantic
Segmentation) and IS (Instance Segmentation) for Image Annotations.

– Pre-Annotation support – if it has the support to already created annotations
or it gives the possibility to load it.

Tools description

• PhotoStuff [22] is a platform independent, image annotation tool which uses an
ontology to provide the expressiveness required to assert the contents of an image,
as well information about the image.

• Light Tag [38]: Text annotation tool that allows you to take advantage of all the
annotation tasks: Semantic Classification, Sentiment Annotation and Entity Anno-
tation with a clean and intuitive interface. It allows you to manage the dataset in a

16 2| Related Work

Tool Reference Year Doc.
PhotoStuff [22] 2005 -
LightTag [38] 2009 Link
Anafora [11] 2013 Link
TagTog [10] 2014 Link

VIA [13] 2016 Link
VoTT [1] 2017 Link

ImgLab [19] 2018 Link
CVAT [43] 2018 Link

Label Studio [45] 2019 Link
COCO [7] 2019 Link

Table 2.2: Annotators list ordered by ascending publication year

complete way from creation to its enrichment with meta-data. It also permits you
to have a visual feedback regarding entity annotations through trees.

• Anafora [11]: is an annotator used to annotate documents based on previous works,
such as Protege1 and Knowtator [35]. It has been designed to read AnaforaXML
only, a format defined by the developers themselves, who provide a script that allows
you to convert files to the required format. Anafora allows the user to annotate text
files with an entity annotations format which divides annotations into two types:
Entity and Relation. An Entity annotation associates a certain span in the text with
a type and list of properties. Relation annotations specify a relationship between
multiple Entities.

• TagTog [10]: one of the best text annotation tools. Tagtog is a text annotation tool
that can be used to annotate text either automatically or manually. It supports
native PDF annotation and includes pre-trained NER templates for automatic text
annotation. In addition to the Tagtog tool, the company provides an annotation
service through a network of skilled workers in the required sector who will annotate
the texts under commission.

• VGG Image Annotator (VIA) [13] is a stand alone annotation tool for images,
audio and video developed to work offline without the need of installation or setup,
running on a web browser. The VIA software allows human annotators to define
and describe spatial regions in images or video frames, and temporal segments in
audio or video. It also allows to export annotations in a plain text data formats,
such as JSON and CSV, and, therefore, are amenable to further processing by other
software tools.

1https://protege.stanford.edu/

https://www.lighttag.io/help
https://github.com/weitechen/anafora
https://docs.tagtog.net/
https://github.com/ox-vgg/via
https://github.com/microsoft/VoTT/tree/v2.2.0
https://github.com/NaturalIntelligence/imglab
https://github.com/openvinotoolkit/cvat
https://github.com/heartexlabs/label-studio
https://github.com/jsbroks/coco-annotator

2| Related Work 17

• VoTT [1] is one of the most used tools with ImgLab, it allows the annotation of
images for both object detection and Instance segmentation. The tool allows both to
label images with classes preloaded from a .vott file or with new classes added during
the annotation phase. VoTT also allows the annotation of video files frame by frame,
with an interface full of commands and shortcuts to make the annotation faster and
more functional. Finally, export annotations in different formats including: Azure
Custom Vision Service, Microsoft, Cognitive Toolkit (CNTK)[42], TensorFlow[2]
(Pascal VOC and TFRecords), VoTT (generic JSON schema), Comma Separated
Values (CSV) is granted.

• ImgLab[19] is the most used image annotator at the moment, based entirely on
web but it also offers the possibility to be installed locally. One of its greatest
advantages is the support of multiple file formats including: XML, Pascal VOC,
COCO. It allows multiple tasks including object detection, Semantic and Instance
segmentation with a user friendly interface and rich documentation.

• Computer Vision Annotation Tool (CVAT) [43]: is a classic image annotator that al-
lows to performs Object Detection, Instance Segmentation and image classification,
using powerful features those including: interpolation of bounding boxes between
key frames, automatic annotation using TensorFlow OD API [2] and deep learning
models in Intel OpenVINO[12] IR format and shortcuts for most of critical actions.
It also offers UX and UI optimized for computer vision annotation tasks.

• Label Studio[45]: is a complete 360-degree tool, covering all aspects of data annota-
tion, as it offers services for annotating texts, with classification, entity annotation,
question answering and sentiment analysis, images and videos with image classifica-
tion, object detection and semantic segmentation. The installation of the tool could
be performed locally or deploy it in a cloud instance and has a unique configuration
setup called Labeling Config where you can design your own customized UI.

• COCO Annotator [7] provides many distinct features including the ability to label
an image segment (or part of a segment), track object instances, labeling objects
with disconnected visible parts, efficiently storing and export annotations in the
well-known COCO format. It also exploits advanced tools such as DEXTR and
MaskRCNN and Magic Wand to execute automatic annotation.

Tools Comparison
In this sections, a comparison of the Technical and Functional criteria of the tools listed
in 2.2 and described in Section 2.3.2 are discussed. In table 2.3 it is possible to note

18 2| Related Work

Reference Techs. Installation Code Demo Free to
charge

[22] Java Web Not
Available

No Yes

[38] - Web Not
Available

No No

[11] Apache,
Django

Web Available Yes Yes

[10] - Web Not
Available

No No

[13] - Stand-
Alone

Available Yes Yes

[1] React +
Redux

Web Available No Yes

[19] jQuery,
Bootstrap,

Riot.js,
SVG.js

Web Available Yes Yes

[43] - Web Available Yes Yes
[45] Nginx,

PostgreSQL
Stand-
Alone

Available Yes Yes

[7] Flask,
MongoDb,
Mongo-
Engine,

Vue, Axios,
PaperJS,
Bootstrap

Web Available Yes Yes

Table 2.3: Technical criteria of the annotation tool

that most of the annotation tools are web-based, to avoid, probably, the installation of
the software locally and to have the possibility to exploit the computational power of
the server to perform more complex tasks needed to prepare the data set. In fact, in
table 2.4 it is possible to see how most of the tools based on image annotation prefer
an approach based on instance segmentation while not neglecting object detection. In
most cases, especially with regard to recently developed tools, the annotation process
is not completely left in the hands of the user, but instead the researcher is the person
who completes the annotations of images not recognized by the annotation system. An
example of a tool that takes advantage of this type of approach is CVAT [43]. In fact,
it has a tool called automation instruments which copy and propagate objects such as
bounding boxes, segments, etc. so as not to leave the user with the task of having to

https://github.com/weitechen/anafora
https://github.com/ox-vgg/via
https://github.com/microsoft/VoTT/tree/v2.2.0
https://github.com/NaturalIntelligence/imglab
https://github.com/openvinotoolkit/cvat
https://github.com/heartexlabs/label-studio
https://github.com/jsbroks/coco-annotator

2| Related Work 19

Reference Annotation Type Annotation
Format

Pre-Annotation

[22] OD RDF/XML Yes
[38] SA, SC, EA CSV, JSON Yes
[11] EA AnaforaXML No
[10] SC, EA JSON Yes
[13] OD, IS, SS CSV, JSON Yes
[1] OD, IS JSON Yes
[19] OD, SS, IS XML,JSON Yes
[43] OD, IS, SS CSV, JSON, other Yes
[45] SA, SC, EA, OD,

IS, SS
CSV, JSON, other Yes

[7] OD, IS, SS JSON Yes

Table 2.4: Functional criteria of the annotation tool

select all the objects labeled by the element but to execute it automatically.
Over the years, standard formats have also been set for saving on file (also called ground
truth) of annotations. In fact, as we can see from the table, most of the files, both input
and output, are generated as JSON (Javascript Object Notation) files with MS COCO as
standard format. As for the annotations saved in XML it is assumed a standard format
dictated by Pascal VOC. Finally, Table 2.4 shows that the most developed task type is
certainly that of Entity Annotation (as regards the tools considered).

2.4. User interface for dashboards

The continuous increase in data and consequently the analyzes carried out on them has led
over the years to the increasingly looming need for the creation of increasingly effective,
simple and accessible dashboards. In this section we will discuss all the best practices 23

that should be respected during the implementation and that have been useful for the
implementation of ODIN Web. To develop the ODIN Web dashboard it was necessary to
compare different tools, both for the annotator and for the analyzer, to find the strengths
and shortcomings that made the tool itself and the data easy to analyze and usable.

• Audience: the priority aspect that must be addressed when developing a dashboard
is: the user target. ODIN Web was born with the aim of making ODIN[47] known to
users who were not familiar with the python programming language. Furthermore,
the idea was to create a user friendly interface capable of being professional but at

2https://www.sisense.com/blog/4-design-principles-creating-better-dashboards/
3https://www.toptal.com/designers/data-visualization/dashboard-design-best-practices

20 2| Related Work

the same time understandable even by a novice user

• Color Design: One of the fundamental principles for dashboard design. Colors
are a great way to grab the user’s attention. As many application design guides
recommend, it is best to choose a pair, maximum of three, minimal colors for the
application design and a couple of colors to help describe tasks such as adding (blue)
or removing (red) data. Furthermore, the inclusion of an intuitive color scale that
defines a range of data can give the user a clear and quick idea of what the data is
saying.

• Minimalist : Another good practice for developing the design of a dashboard is to
keep on the screen only and only the information that is useful at the moment. From
a design point of view "anything that doesn’t convey useful information should be
removed". In ODIN Web, the creation of the graphs has been structured in such a
way that every single element within them is useful for the purposes of interpreting
the data.

• Consistency : one of the most important features a dashboard must have is con-
sistency. Having a consistent layout impresses the user with an idea of cleanliness
and order. The information and layouts of the various components, including the
page structure, must be somewhat similar and in the same positions. This concept
applies to the dashboard itself but also to the graphs contained in it. An example
could be the labels, the legend, the axes, the chart style and the tools must always
appear in the same position and with the same layout.

• Context : especially in a dashboard where there are only graphs, the user must have
a clear idea of what data he is going to analyze and what their meanings are. In
ODIN Web we have solved this problem by inserting, first of all, self-explanatory
titles for each card containing a chart and in addition a tooltip, thus maintaining
the concept of minimality mentioned above, where a description of the chart and a
link to the documentation are provided. Furthermore, thanks to the library used to
draw the graphs, labels are generated every time a data point is hovered, adding an
additional layer of information.

• 5-seconds rule: this is a classic rule that can be found on the net and consists in the
concept of speed in the rediscovery of information. A user should be able to find
any information they need in less than 5 seconds. This problem can be solved in
two ways: the first is to remove unnecessary graphs while the second, exploited in
ODIN Web, is to organize the dashboard into sections of different graphs that can
be easily localized through keywords.

2| Related Work 21

• Performance: This is the last, but perhaps most important, rule for implementing
a good dashboard. A dashboard may also have satisfied all the previous princi-
ples but if the performance in obtaining, processing and displaying data is bad the
user will suffer. For this reason we have tested ODIN Web both on small amounts
of data but also and above all on large datasets trying to optimize data process-
ing by transferring only and only the required data, thus not weighing down its
performance.

In order to implement the ODIN Web interface, many tools that offer dashboards have
been taken into consideration both for what concerns the layout and for the functionalities
present, or in some cases missing. The main tools are COCO and Label Studio, for what
concern the annotator component, and What If Tool and OpenVino for the analyzer part.
Obviously, also with regard to the organization of the code, some best practices have been
followed which will be covered more in Chapter 3.

23

3| An Interactive Dashboard for

ODIN

3.1. Requirements

For what concern this section, the non-functional and functional requirements are taken
in consideration. This work aims to develop a web interface capable of exploiting all the
features of the previous work [46], [47] and subsequently [53], implementing an application
capable of relieving the user of any programming effort with the aim of:

• providing the user with a simple and intuitive tool in use. For this reason a
README guides the user in the installation process: from cloning the repository,
to installing the required packages, and starting the dashboard. To relieve the user
to those steps, we also provide ODIN Web as a Docker1 container in order to benefit
from the features, listed in the following sections, that dockerizing the app offers us.
The decision to offer ODIN Web also in dockerized format stems from the aim of
making a tool that is simple to use but also to be installed, ensure the possibility
to make it accessible in different ways.

• support the user throughout the management of the data set

• support the user in the comprehension of the results provided by the model using
properties, i.e., annotations that do not contribute to model training but can be
exploited for understanding performance

ODIN Web supports multiple computer vision tasks which, depending on the task, apply
slight modifications to the observations. Tasks are divided into two macro categories:
classification and localization.

The classification task refer to the problems where the model needs to identify one or
more categories present in the observations. The classification tasks supported for this

1https://www.docker.com/

24 3| An Interactive Dashboard for ODIN

macro-category are:

• Single-Label Classification: input is classified in only one class, but with a class set
that contains more than two categories.

• Multi-Label Classification: multiple categories are associated to the observations
those can represent different classes. In this case the model can output more than
one category

• Binary Classification: refers to all the problems that has the need to recognize only
one class inside the input image considering tow categories only.

The localization task, instead, is supported through:

• Object Detection: refers to the task of recognizing an object and find its location by
surrounding it with a bounding box.

• Instance Segmentation: refers to the task of recognizing an object and find its
location by providing a pixel-level segmentation mask.

Both classification and localization are supported by the ground truth file and predictions
which are expressed in MS COCO format. For what concern the functional requirements
that the application must meet, a bunch of user cases from the creation of the data set,
to the creation of the observations, up to the analysis of the results are provided. All use
cases will be organized as follows:

• Use Case: the goal that the user wants to achieve through the application.

• Preconditions : statements, or truths, about what must take place before and after
the use case.

• Basic Flow : the series of steps required to achieve the goal.

• Alternative Flow : is a variation of the basic flow scenario

• Conclusion: the final output of the application.

In all the cases the only actor of the system is the User which interact with ODIN Web
in order to accomplish 3 macro categories of tasks:

3.1.1. Dataset use cases

Create a dataset
An ODIN Web user wants to create a new dataset with which to train, and subsequently
analyze, their model

3| An Interactive Dashboard for ODIN 25

• Precondition: user must be logged in to ODIN Web.

• Basic Flow:The user is on the dataset selection page. Go and press the button to
add a new dataset. The user must enter the name of the new dataset, a list of classes
and specify the task type. In addition, ODIN Web offers the possibility to insert the
properties with the relative values and in case already exists, the path that directs
to the folder of the images to be noted. In the event that one of the mandatory
fields has not been satisfied, the user will be notified via toast, otherwise he will
be redirected to the main page of the annotator where he can start annotating the
images.

Import a dataset
An ODIN Web user wants to import one of him/her dataset in order to perform some
analysis on the results of its model

• Precondition: user must be logged in to ODIN Web.

• Basic Flow: The user is on the dataset selection page. Press the button to add
a new dataset when you are on the creation page press the link "Already have
a dataset? Import". The user enters the name with which the dataset will be
displayed in ODIN Web and specifies all required fields such as: path to the ground
truth file and the task type. If he wants to carry out the analysis of the model
results, in addition to those of the dataset, he can enter the path to the predictions
also assigning an identification name for that model. In the event that one of the
mandatory fields has not been satisfied, the user will be notified via toast, otherwise
he will be redirected to the landing page in which can access to the annotator page
or into the analyzer.

• Alternative Flow: The user is on the dataset selection page. Press the button to
add a new dataset when you are on the creation page press the link "Already have
a dataset? Import".The user wants to import a specific dataset already present in
ODIN Web but assigning them different predictions. In this case the user chooses
the dataset to import in the list of datasets present in ODIN Web on the left, in
this way all the fields will be filled in automatically. The only thing the user has to
enter is the name of the new dataset and the new path to the predictions folder. If
the name does not already exist, the user is redirected to the landing page where he
can annotate the imported dataset or analyze it together with the new predictions.

26 3| An Interactive Dashboard for ODIN

Edit settings of the created dataset
An ODIN Web user wants to take advantage of the function offered by the analyzer which
allows to compare several models at the same time.

• Precondition: user must be logged in to ODIN Web and must have already entered
the dataset to which he wants to add the model.

• Basic Flow:The user is on the dataset selection page. Choose the dataset to add
the model to and press the edit pop-up button on the dataset card. It is redirected
to the page where all the settings concerning the dataset are listed, presses the
button to add a new model, assigns the name and path to the predictions. If the
data entered is in the right format, the user is directed to the landing page where
he can proceed with the analysis. Otherwise a toast with the error to be corrected
will be displayed.

3.1.2. Annotator use cases

Add images
An ODIN Web user wants to add multiple images to the dataset in order to be able to
annotate them.

• Precondition: the user must be logged in to ODIN Web and must have already
entered the dataset in which he wants to add the images.

• Basic Flow:The user is on the dataset selection page. He chooses the dataset to
annotate and, when he is on the landing page, he starts the annotator. The user
opens the folder in which the current images are located and drags the new ones
into it. Finally press the Refresh button which will load the new images and display
them in the annotator.

• Alternative Flow: The user is on the dataset selection page. He chooses the
dataset to annotate and, when he is on the landing page, he starts the annotator.
The user goes into the settings and changes the path of the images to that of the
folder with the updated images. When saved, it will be returned to the main page
of the annotator.

Create an annotation
An ODIN Web user wants to annotate some images to be able to train his model later.

• Precondition: the user must be logged in to ODIN Web.

3| An Interactive Dashboard for ODIN 27

• Basic Flow:The user is on the dataset selection page. It follows the same steps
described in the use case Create Dataset [3.1.1]. Once they have landed on the main
page of the annotator, choose the image they want to annotate and, by clicking on
it, the editor, in which is possible to annotate the image, will be open. In case of
classification task the user will have the possibility to select the category/categories
and the properties that belong to the image. In case of localization task, it will be
able to create the bounding box / segmentation mask and apply the respective cat-
egory and associated properties to it. Once the last annotation has been completed,
the user can return to the home by pressing the save button which will update the
ground truth file with the latest annotations.

Add a Category
The user has realized that many of his images contain a category not yet present in the
ground truth file and wants to add it to update the annotations.

• Precondition: the user must be logged in to ODIN Web and must have already
entered the dataset in which he wants to add the category.

• Basic Flow: the user is on the data set selection page. Navigate through the
datasets and select the one you want to add the category to, after which start the
annotator. By going to the annotator settings, the user will be able to enter the
name of the category in the appropriate box. Once all the missing categories have
been entered, without any replication, he can save and be redirected to the main
page of the annotation. Here the user can choose any image to annotate and in the
list of available categories there will also be the new ones.

Export the ground truth file
The user wants to use the gt file externally from ODIN Web, and they want to download
it.

• Precondition: the user must be logged in to ODIN Web and must have already
entered the dataset.

• Basic Flow: the user is on the data set selection page. Navigate through the
datasets and select the one you want to add the category to, after which start the
annotator. By going to the annotator settings, the user will be able to download the
gt file by clicking on the button Export GT. Once done, the file will be automatically
downloaded by the browser.

28 3| An Interactive Dashboard for ODIN

3.1.3. Analyzer use cases

Dataset analyses
The user wants to analyze if the dataset he has created is well balanced as regards the
number of classes and if they are well distributed for each property.

• Precondition: the user must be logged in to ODIN Web and must have already
entered the dataset.

• Basic Flow: the user is on the data set selection page. Browse the datasets and
select the one you want to analyze. Once directed to the landing page, start the
analyzer. After setting the required parameters, he is directed to the analysis page.
In the Dataset tab, select the categories tab to understand if in the annotation phase
it has distributed the number of categories well or if one has more occurrences than
the others. After which he moves to the Distribution of Property tab in which,
navigating between the properties and their relative values, he tries to understand
if the property values are well distributed among all categories.

Model analyses
The user has just tested his model and wants to find out what the weaknesses of his model
are.

• Precondition: the user must be logged in to ODIN Web and must have already
entered the dataset with the predictions.

• Basic Flow: the user is on the data set selection page. Browse the datasets and
select the one you want to analyze. Once directed to the landing page, start the
analyzer. After setting the required parameters, he is directed to the analysis page.
Clicking on the prediction tab and selecting properties, it analyzes each score per-
property. The user notes that, for a given property value, the model has a low score.
This highlighted a weakness under that particular condition. The user therefore
tries to clarify whether the problem is due to a low number of observations with
that property value or if the model actually has a weakness by displaying both the
distributions of the property on the categories, and the false positives and negatives
distributions.

Compare multiple models
The user has built two models with different structures but with the same purpose. Now
he wants to understand where one model is more robust than the other and how to exploit
these differences in order to built a complete one.

3| An Interactive Dashboard for ODIN 29

• Precondition: the user must be logged in to ODIN Web and must have already
entered the dataset with the two predictions.

• Basic Flow: the user is on the data set selection page. Browse the datasets and
select the one you want to analyze. Once directed to the landing page, start the
analyzer. After setting the required parameters, he is directed to the analysis page.
Browsing through the various analyzes he decides to start trying to grasp what are
the weaknesses in the recognition of the various categories for each model. Going into
the error analysis select both models to carry out the analysis. Browsing through
the various categories, they notice a huge difference in terms of false positive errors
for category x. In this case, model one is weaker in terms of its identification caused
by similarity errors. Similarly, the second model has a lower error impact but for
generic errors. This means that model one was able to recognize the discriminating
feature of category x, unlike the second, but made more mistakes as another category
is similar to x.

3.2. System Architecture

In this section, the proposed architecture for ODIN Web will be dealt with in detail,
analyzing the different components on both client and server sides and the various tech-
nologies used for its implementation.
ODIN Web focuses on the concept of dataset, which is a folder created and stored on
the server side that contains the ground truth, predictions, images, and, optionally, the
properties_file.
For what concern the ground truth file, it contains all the information relating to the
dataset, jointly with the observations and related annotations that will be compared with
the model’s predictions. Entering into the specifics of the file composition, the following
fields are stored:

• categories – an updated list of all the categories present in the data set with their
relative ids.

• meta-annotations – a list of all the properties associated to the images with their
related values.

• task_type – is the task related to this data set.

• images – an updated list of all the images present in the data set with their relative
ids and a flag used to know if this image was discarded in annotation phase.

30 3| An Interactive Dashboard for ODIN

• observations/annotations – a list of all the observations/annotations for all the
images that contain, not only the category and, in case of localization, the relative
position (as bounding box or segmentation), but also the properties that denote
domain specific characteristic of the object.

Moreover, in this version, to give the user the possibility to exploit the same data set
for multiple tasks (in case it has been imported and therefore the annotation structure
is different) the concept of configuration has been introduced. Each data set has a .json
file containing the configuration to be analyzed, with the addition of alternative paths for
predictions and a series of customized properties such as the name of the model in case
the user wants to take advantage of the option of comparator, the properties file path, in
case there is one already existing in another folder, and the match_on_filename function.
In addition to the ground truth file, the folder also has (user-loaded) model predictions
that make it possible for ODIN Web to elaborate the data and provides, as output,
different analyses as shown in Figure 3.1. In order to create or modify the ground truth

Figure 3.1: ODIN Web architecture

file, the user has the option to add annotations and properties, or modify them, using the
Annotator component. For more information about the Annotator see Section 3.2.3.
The application flow will be divided into two main components:

• Annotator : allows the user to access, or if necessary create, the data set to provide
to the model. Once created, the user can populate the data set and specify, for each
observation, the category, or categories in case of multi-label classification, it repre-
sents and the properties that characterize it. Once all the samples are annotated,
they will be saved in the right format on the ground truth file.

• Analyzer : it can be defined as the main feature of ODIN Web. It allows you to
analyze the predictions of one or more models easily and without programming

3| An Interactive Dashboard for ODIN 31

effort. By simply selecting the dataset, the predictions associated with it, and
the settings with which you want to perform the analyzes, you can access all the
functions that ODIN Framework already offers, provided with a simple interface
and equipped with all the filters necessary for inspection and comprehension of the
analyzes at different levels of granularity.

32 3| An Interactive Dashboard for ODIN

3.2.1. Technologies Involved

ODIN Web was developed using various technologies to create both the Client and the
Server part of the application. In this section we will analyze in detail the technologies
used both in the front-end and back-end and those used in the communication between
them, going to support the choice.
Starting from the client side, for the construction of the application user interface it was
chosen to take advantage of Vue.js thanks to its ability to break down the application into
modules making the code cleaner and tidier. The processing part of the client is managed
through the Javascript scripting language. As for the Server part, it is developed entirely
in python, following the line of the previous work [47][53]. As for the communication and
reception of requests by the server, it is handled entirely by Flask. In the next part we
will analyze these technologies specifically.

Docker
Docker is an open-source project that automates the process of deploying applications
within software containers, providing an additional abstraction thanks to virtualization
at the Linux operating system level. Thanks to docker are ensured:

• Portability : docker containers offer a lot of portability. With containers, it is possible
to build an application once, place it inside a container image and run it on any
host environment that supports Docker and runs on the same family of operating
system.

• Code Isolation: docker allows to run many containers simultaneously on a given host.
Containers are lightweight and include everything needed to run the application, so
it is not necessary to rely on what is currently installed on the host.

• Dependencies packaging : every library or dependency that the container needs to
work is already installed inside it so as to encapsulate everything inside it without
the need to be supported by external libraries

• Fast Installation Procedure

In order to take advantage of the features offered by Docker, We have decided to divide
the architecture as follows:

• a Docker container in which MongoDB resides and communicates with the ODIN
container only to exchange information within the same network and avoiding to
expose a port outside the network.

3| An Interactive Dashboard for ODIN 33

• A Docker container in which ODIN and the Redis database reside.

We, therefore, decided to expose a single port outside the network and it will be the
fundamental one for the communication between the Client (Vue and Axios) and the
Flask server, which is mapped on port 6006.

Vue.js
Vue.js2, or Vue, is a javascript framework that allows you to create user interfaces through
a declarative approach, abstracting the process of rendering data and updating the DOM.
It is based on the HTML, CSS and javascript standards, and offers a minimal and orga-
nized component declaration. Furthermore, the two main features that make Vue one of
the most used frameworks for developing Web interfaces are:

• Declarative Rendering : Vue extends standard HTML with a template syntax that
allows us to declaratively describe HTML output based on JavaScript state.

• Reactivity : Vue automatically tracks JavaScript state changes and efficiently up-
dates the DOM when changes happen.

Its choice was guided by the fact that it allows to develop a software with a reactive
MVVM(Model-View-ViewModel) architecture. In fact, the user interacts with the HTML
based web page and normally the whole page has to refresh even if just one object changes.
Vue uses a virtual copy of the original DOM that figures out what elements require updat-
ing, without re-rendering the entire DOM, greatly improving app performance and speed.

import { createApp } from ’vue’

createApp ({

data() {

return {

count: 0

}

}

}). mount(’#app’)

<div id="app">

<button @click="count++">

Count is: {{ count }}

</button>

</div>

The above image is an example of the features offered by Vue. In this case it is possible to
see how the javascript code and the component template are completely separated from
each other. The @click event allows javascript to keep track of state changes, in this case
pressing the button to increase the counter.

2https://vuejs.org

34 3| An Interactive Dashboard for ODIN

Axios
As for asynchronous calls we have decided to rely on Axios3. Defined by Vue as the unof-
ficial library for handling ajax calls, it is a derivative of the $http Service module used by
Angular and made standalone. Axios is a Javascript library used to make HTTP requests
from node.js or XMLHttpRequests from the browser and it supports the Promise API
that is native to JS ES6. It was chosen for its ease of use but at the same time its ability
to handle promise-based calls, which give the possibility to take advantage of Javascript
async and wait for a more readable and effective asynchronous code. Finally, as regards
security, It can be used to intercept HTTP requests and responses and enables client-side
protection against XSRF. It also has the ability to cancel requests.

import axios from "axios";

axios.get(’/users ’)

.then(res => {

console.log(res.data);

});

In this figure an example of a call made by the client is shown. In this case a Promise
is generated by Axios, when the asynchronous call is successful, the result is printed in
console.

Flask
Flask4 is a web framework. This means flask provides tools, libraries, and technologies
that allow you to build a web application.
Flask is part of the categories of the micro-framework. Micro-framework are normally
framework with little to no dependencies to external libraries. This has pros and cons.
Pros would be that the framework is light, there are little dependency to update and
watch for security bugs, cons is that some time you will have to do more work by yourself
or increase yourself the list of dependencies by adding plugins. For what concern Flask,
its dependencies are:

• Werkzeug a WSGI utility library

• jinja2 which is its template engine

In ODIN Web we used Flask mainly for its App Routing functionality, which is used to
map specific URLs with associated functions that are built to perform a task. In addition

3https://axios-http.com/docs/intro
4https://flask.palletsprojects.com/en/2.0.x/

3| An Interactive Dashboard for ODIN 35

to the URL as a route parameter, the @app.route() decorator also accepts a second
argument: the list of HTTP methods that are supported by that URL. Furthermore, it
is possible to define a route with carrot brackets <> inside that indicate a variable, in
order to enable routes to be dynamically generated.

Redis
For this work Redis5 was used as a memory to store the data structure converted into
Bitmap of the instances of the objects associated with the user as regards Dataset, Ana-
lyzer and Comparator. It was chosen, first of all for its performance, as it offers response
times of less than a millisecond, allowing millions of requests per second. Also, since Redis
data resides in memory, it enables data access with low latency and high throughput. The
main advantage is that, unlike traditional databases, data in memory does not require
going to disk, minimizing engine latency to microsecond levels.

MongoDB
MongoDB6 is a NoSQL database used for managing large volumes of data to be stored.
ODIN Web has adopted this type of database as regards the storage of observations /
annotations of a dataset which can vary from hundreds to thousands. MongoDB is a
document-oriented NoSQL database used for high volume data storage. Instead of using
tables and rows as in the traditional relational databases, MongoDB makes use of collec-
tions and documents. Documents consist of key-value pairs which are the basic unit of
data in MongoDB.
We opted to use MongoDB as it was developed specifically for the management of un-
structure data, allowing them to be stored in json format. In this way it is possible to
save automatically and without manipulating the annotations provided by the client, in
addition it allows to update the schemes quickly. In our case the structure of the collec-
tions is very simple as the only data to manage are the observations and annotations, two
collections have been created to manage these data in an orderly and separate way.

3.2.2. Back-End

In this section we will break down and analyze in detail the computational part of ODIN
Web. It has been built in modules in order to have a clear distinction of what are the
features offered and to facilitate subsequent extensions of the app. In this case, each
module covers a specific function, from the management of annotations, to the creation
of the data set, up to the management of the analyzes. As we can see in Figure 3.2 every

5https://redis.io/
6https://www.mongodb.com/

36 3| An Interactive Dashboard for ODIN

Figure 3.2: UML Class Diagram representing the main components

module is split in order to manage in a separated way the two type of analyzes performed
by ODIN Framework and each of their functions are invoked through Flask thanks to the
concept of routing.

Dataset

The dataset component deals with the management of the dataset in its entirety. To
create it, on the client side, the following parameters must be entered:

• dataset_name: the name with which the folder in which the data set will reside will
be generated.

• categories : list of classes belonging to the data set.

• meta_annotations : a dictionary that has properties as keys and a list of property
values as values. (’property’: [’property_value1’, ’property_value2’, ...])

• taskType: type of the task that the user wants to address.

• images_path: the relative path in which the dataset can found the images.If the
user does not specify any folder, a specific folder will be created for that dataset
that the user will have to populate manually.

In addition, it is possible to import an existing data set. In this case the parameters to
specify are:

• dataset_name: the name with which the folder in which the data set will reside will
be generated.

• ground_truth_file: path to the ground truth file.

3| An Interactive Dashboard for ODIN 37

• prediction_path: Path of the proposals of a single model or list of couples. Each
couple contains the model name and the corresponding proposals path.

• images_path: the relative path in which the dataset can found the images.

• properties_file: in an optional path, and it refers to the properties_file created by
ODIN for that data set.

• taskType: task for which the ground truth file was created.

• match_on_filename: Indicates whether the predictions refer to the ground truth
by file_name or by id.

In both cases, the folder is generated with the name chosen by the user and a configura-
tion file in which the main information will be saved such as: path for the ground truth,
predictions, images and the properties file, the match on file name and the type of task
requested. In the event that the data set has been imported and the ground truth file
does not have the meta-annotations field, it will be generated automatically by extracting
all the properties and their values from the annotations field inside the file.
The component also contains all the methods necessary for the management of the con-
figuration file and the analyzes that can be carried out on the data set such as:

• get_categories_distributions : it returns the distribution values of the categories in
the dataset

• get_properties_distributions : provides the distribution of all the properties loaded
in the dataset instance, and for each of their value, its distribution among all the
categories.

• get_co_occurrence_matrix : provides the matrix of the occurrences between cate-
gories.

Analyzer

The modules shown in the figure 3.3 deal with the reception and processing of data
concerning the model analysis phase. As we can see, the components are divided by type
of task:

• analyzer_classification: deals with the reception and routing of all analysis requests
concerning a dataset with task type single, multi label and binary classification.

• analyzer_localization: deals with the reception and routing of all analysis requests
concerning a dataset with task type object detection or instance segmentation.

38 3| An Interactive Dashboard for ODIN

Figure 3.3: UML of the Analyzer Component

• comparator : used when it is necessary to carry out analyzes with multiple models.

The analyzer is the main component of ODIN Web that takes care of instantiating the
analyzer class, saving it and subsequently calling all the functions from the ODIN Frame-
work and generating the ideal data format to be sent later to the client. To create the
analyzer the only required parameters are:

• properties : a list of all the properties that the user wants to load and view during
the analysis.

• already_loaded : a boolean indicating whether the dataset has loaded a proper-
ties_file or created a new one

Furthermore, the first time a dataset analysis with predictions is performed, a series of
parameters can be set:

• similar_classes : list of groups of categories inside the dataset which are similar to
each other

• Threshold : the confidence threshold applied to each model loaded

• iou-threshold : used only for localization tasks, the intersection-over-union threshold
is divided in strong-threshold, used in order to consider all the predictions with a

3| An Interactive Dashboard for ODIN 39

IoU value less than it as False Positive, and weak-threshold for the identification of
the localization errors

• categories-factor-check : a boolean to know if the user wants to apply the normal-
ization

• categories-factor : is the normalization factor applied by the analyzer for each cate-
gory

• properties-factor-check : a boolean to know if the user wants to apply the normal-
ization also on the properties

• properties-factor : list of all the normalization factors for each property

Those parameters are stored in the config.json file. In this way, the next time the user
chooses to analyze the model, it will be loaded automatically with the parameters selected
the previous time, or modified within the analyzer settings. When the analyzer is created,
ODIN Web instantiates two different objects based on the number of models loaded. In
this way the user has the possibility, in the event that more than one model has been
loaded, to take advantage of one of the main features of ODIN Framework, that is the
ability to compare multiple models at the same time in the analyzes that support this
mode through the Comparator. All the analyses are listed in the comparator object in
Figure 3.3.

Annotator

The ODIN Web annotator has been divided into modules, as shown in Figure 3.4, that
independently manage all the operations concerning the required task. Based on it, the
right module is taken into account in order to perform a Classification task with classi-
fication_annotator or a Localization task with localization_annotator, for what concern
the management of the annotations made by the user. While, for everything related to
the management of the ground truth, the annotator module is designed.

Start the annotator
By accessing the main page of the annotator the start_annotator() function is invoked.
It performs all the operations necessary for the validation and loading of the data residing
in the ground truth file in order to provide the user with a complete view of the data set
and annotations applied to it so far. In the event that the user has inserted, or removed,
images the function will automatically update the ground truth file, without deleting the

40 3| An Interactive Dashboard for ODIN

Figure 3.4: UML of the Annotator Component

annotations that could be useful at a later time.
As for saving annotations, it was decided to take advantage of MongoDB. In fact, in
anticipation of a large number of annotations, it was decided to adopt a non-relational
DBMS in order to be able to perform queries, such as get annotations referring to a spe-
cific image, instantly without compromising the user experience and limit the number of
accesses to the ground truth file. In this way, two collections, in order to store annotations
separately for each task, are made.
In Figure 3.5 the composition of the Observation collection within MongoDB is figured.
In this case, it is managed in such a way as to support both annotations for the multi-label
task, and for single and binary. The collection contains the following fields:

• _id : Primary key used by MongoDb to identify a document in a particular col-
lection. An ObjectID is a 12-byte Field Of BSON type where: the first 4 bytes
representing the Unix Timestamp of the document, next 3 bytes are the machine
Id on which the MongoDB server is running, next 2 bytes are of process id and the
last Field is 3 bytes used for increment the objectid.

3| An Interactive Dashboard for ODIN 41

• file_name: name of the image the observation is associated with.

• category : field used by binary and single-label classification tasks, reports the class
identifier in the categories field of the ground truth file.

• categories : field used by multi-label classification tasks, reports a list of class iden-
tifiers which refers to the ids of the categories field of the ground truth file.

• uid : identifier of the observation within the ground truth file. Used in such a way
that each annotation will always and only have an identifier. (Different from _id in
that two different datasets can have annotations with the same id).

• datasetName: Name of the dataset to which the observation refers

• meta_annotation_values : generic field that indicates one / more fields referring to
properties. (If a dataset has "Color?" with "rgb" or "bw" values, there will be a
"Color?" with value "yes / no" if it is inserted ad null if it is not specified).

As for the Annotation collection, the structure is almost the same, except for some small
differences due to the type of annotation that the task requires. Indeed Figure 3.6 exhibit:

• category_id : field used to report the class identifier in the categories field of the
ground truth file to which the annotation is referred.

• segmentation: list of points with the following pattern () needed to reconstruct the
pixel mask of the segment. This field is used for the instance segmentation task.

• bbox : contains four values. The first two refer to the coordinates of the top left
point of the bounding box, while the other two values refer to the width and height
of the bounding box. This field is used for the object detection task.

• image_id : field to associate the annotation to the image at which are referred.

Redis

This component manages everything related to saving and extracting instances of objects
used by the analyzer and to maintain the user’s session in case of reloading the page. It
consists of the following functions:

• redis_get/store: function used to save dataset and analyzer instances. Being Redis
a Remote Dictionary Service, it is managed with a concept of key: value. In this
case the instances are saved with the key my_dataset and my_analyzer and in
addition the user uuid in order to manage the analyzes of several users at the same
time without generating conflicts.

42 3| An Interactive Dashboard for ODIN

Figure 3.5: MongoDB Observation
Structure

Figure 3.6: MongoDB Annotation
Structure

• get/store_model_name: Handles the case in which the analyzer has been created
to use the comparator functionality. In this way, it is always possible to know which
model is currently being analyzed.

• change_analyzer : since the model in position 0 in the list is the one analyzed at
the moment, this function allows you to change the model under analysis with the
one chosen by the user.

• redis_annotator_get/store: function used to maintain the user’s session in the an-
notator without having to log in again every time the page is reloaded.

This module is essential to guarantee speed of response to the client when a request is
made regarding an analysis previously made. In fact, thanks to the caching performed
by the analyzer, it maintains its instance without going to recreate it at each request.
In this way it is possible to provide the results of the analyzes in case the user wants to
compare a model already analyzed with a new one. In this case, only the analysis of the
new model will be calculated.

3.2.3. Front-End

In this section we will introduce all the functions offered by Odin Web and, for each of
them, a brief description of the layout.
In order to take advantage of both the annotator and the analyzer the user needs to create
or import a dataset to which the observations will initially be associated and later, with
the addition of the model predictions, the analyzes will be carried out.

3| An Interactive Dashboard for ODIN 43

In order to create a dataset from scratch it will be necessary to enter in the interface,

Figure 3.7: ODIN Web Interface: create new dataset

shown in Figure 3.7, the following parameters:

• Dataset Name – mandatory – name of the dataset to create

• Classes – mandatory – categories of the dataset, it will be necessary to enter at
least two categories in order to continue.

• Properties – optional – A list of properties with their relative values

• Task type – mandatory – task necessary to then create the annotations in the an-
notator

• Images path – optional – Path to the folder containing the images to be annotated.
In the event that the user does not specify any path, a folder will be generated
within that of the dataset in which the images can be subsequently inserted

If the user wants to import parts of the dataset already present in the folder or not created
by ODIN Web, it will be possible to do so through the interface shown in Figure 3.8 and
which is accessed through the link ’Already have a dataset? Import’. On the left side you
can see the complete list of all the datasets present in the datasets folder that resides in
the server. In this way the user can decide to import an entire dataset and, by clicking
on it, the form fields will be filled in automatically. The fields present are:

• Dataset Name – mandatory – name of the dataset to create

44 3| An Interactive Dashboard for ODIN

Figure 3.8: ODIN Web Interface: import dataset

• Dataset GT path – mandatory – path of the folder containing the gt file they want
to use

• Prediction Path – optional – Name to be displayed during analysis and path for
model predictions. it is possible to insert more than one model to take advantage
of the comparator option

• Properties path – optional – Path to the properties file previously created for another
dataset from ODIN. If it remains empty, it will be updated with a new file called
<dataset_name>_properties at the first instantiation of the dataset.

• Images path – optional – Path to the folder containing the images to be annotated.
In the event that the user does not specify any path, a folder will be generated
within that of the dataset in which the images can be subsequently inserted

• Task type – mandatory – task necessary to then create the annotations in the an-
notator

• Match on Filename – optional – take advantage of the match on file name. Default
is false.

After the creation of the dataset it will be possible to take advantage of all the following
features offered by ODIN Web which will be extensively discussed in the following sections.

3| An Interactive Dashboard for ODIN 45

Annotator

As already mentioned, ODIN Framework gives the possibility to create and populate the
ground truth file of the data set through the annotator. In this way, it offers a user
friendly interface that allows you to have an overview of the entire dataset and various
functions able to break it down according to criteria such as type of category, properties
or absence of annotations. It also offers an intuitive editor that supports the user in
manually annotating images quickly and with every tool at hand.In fact, the user can
add observations/annotations, depending on the required task, with the categories and
properties previously inserted in the creation of the dataset or added in the course of
work.
As already said, in order to work it is necessary that the user has created/imported a
dataset with ODIN Web by referencing the directory in which to find the images and
providing/creating the ground truth file containing the list of categories and, optionally,
of the properties. The first time the annotator is accessed, it will scan the ground truth
file and, in case it has been imported, will automatically extract the properties present in
the observations field.
At startup the user lands on the annotator main page, figured in 3.9, in which images

Figure 3.9: Landing page of the annotator

are displayed, with their related information, in a carousel form. The number of images
displayed can be modified with the appropriate filter. It also provides a series of filters
useful for the user to select only the images of interest: such as those that have yet to be
annotated or labeled as belonging to a specific class / property or a set of them. In case

46 3| An Interactive Dashboard for ODIN

the user wants to add more images when he is already inside, he will only have to insert
the new images in the folder of that dataset designated during creation, or created by
ODIN Web, and by clicking the Refresh button, it analyzes if there are new images and,
if so, will automatically update the ground truth file and the related annotator view.
In order to start the annotation task is necessary to click on the image the user wants to
annotate, after that they are displayed two different screens based on the required task:

Figure 3.10: Annotator page for Classification tasks

• Classification: if the task is classification, the user is directed to the page shown in
Figure 3.10 which is divided into two macro columns. In the left section everything
concerning the visualization and management of the image is managed. It includes
the buttons that allow you to zoom in and out the image, the button to center it
(in case the user moves it) and the buttons that allow you to navigate between the
images in the lower part of the screen.
In fact, they are created in order to browse one image at a time or go to the first
non-annotated image in that direction (if they are all annotated, it remains on the
current image). In this way the annotation task is optimized and there is no need
to search for the single image to annotate.
In the right column, on the other hand, the categories and the properties previously
entered by the user, or automatically loaded by ODIN Web if the dataset has been
imported, are shown. In case the task types are single label or binary classification
ODIN Web offers the possibility to select only one category through radio buttons,
in case of multi-label classification a list of checking box categories are displayed. If

3| An Interactive Dashboard for ODIN 47

the image does not contains classes it can be labeled as ’no categories’ so that it is
not taken into account when the user wants to move to the nearest non-annotated
image. This feature is only available if there are not selected categories yet.
The Discard Image button instead allows the user to completely discard the image
from those displayed, in this way inside the carousel of the images on the main page
the image will be displayed as darkened and right clicking it offers the possibility to
re-integrate it in the images to be displayed.

• Localization: as far as localization tasks are concerned, the interface is slightly dif-
ferent. As we can see in Figure 3.11 the view is always divided into two components.

Figure 3.11: Annotator page for Object Detection(left) and Instance Segmentation(right)

In addition to the buttons for managing the image, a button used to create a bound-
ing box, in case the task type is Object detection, or assign the drawing tool to the
mouse pointer that allows the user to identify the points of the segmentation mask
for that class in the case of instance segmentation, is added. Finally, the right col-
umn is the one that concerns the management of annotations. In fact, it lists the
annotations created for the current image and the class associated with it. By click-
ing on an element it is possible to highlight the bounding box / segment associated
with it and assign the meta annotations displayed in the Instance Segmentation case
in Figure 3.11. Even in this case there is the possibility to label the image as no
classes in order to skip in case of search to a non-annotated image, or to completely
discard it from the list of images.

48 3| An Interactive Dashboard for ODIN

Analyzer

The analyzer is the main component of ODIN Framework that allows users to perform
different analyses on the model in order to understand the performances of it with different
levels of abstraction. In Figure 3.13 it is possible to visualize the flow of the application
through all the components and the interfaces of the analyzer. To access it, the analyzer
needs to have, on the server side, an instantiated data set with ground truth and, if the
user wants to access all the analyzes, the prediction of the models. Once the dataset has

Figure 3.12: Dataset Selection page

been added, it will be displayed in the list in Figure 3.12, which presents all the datasets
loaded on ODIN Web. Once the dataset of interest has been selected and the analyzer
started, the user has the possibility to configure the various settings that can subsequently
be modified, with which the analyzes will be carried out and that they will be saved for
subsequent times. After that it will be possible to access all the analyzes made available
by ODIN.

With the aim of providing a simple, clean but at the same time functional interface, the
entire structure of the analyzer has been divided, and depicted in Figure 3.14, as follows:

• Analyzes list(A): each type of analysis has its own tab, in this way the user has the
list of all possible analyzes on the top of the screen.

• Filters column(B): in the left part of the screen, it is possible to view different
components depending on the type of analysis being carried out, among these there
are:

3| An Interactive Dashboard for ODIN 49

Figure 3.13: Analyzer Flow

– About : A resealable box that summarizes in a few lines how the graph must
be interpreted.

– Selectors : A series of selectors that allow you to change the entity analyzed by
the graph.

– Filters : filters that allow you to narrow or broaden the data basin for the
creation of the graph.

• Plot tabs(C): A series of cards that contain a certain plot that falls under that
category of analysis.

The graphs and the availability of data are managed independently by the tab in which
they are contained. The sequence diagram shown in Figure 3.15 describes a classic request
for data by the tab under analysis, if it is not updated with the latest changes made by
the user as regards the number of models or the parameters set in the settings. As we
can see, the graphs inside the tab are not updated to the last parameters set by the user.
In this case it performs an asynchronous GET request for the data necessary for each
analysis. When the data is received, they are supplied to the various sub-components
with the generatePlot function that store the actual data in the component and create
the plot that deal with the generation of the chart. After that, each change performed
on filters is managed through the updateChart function. If it does not have the necessary
data to display the graph, the tab will make a second call.

50 3| An Interactive Dashboard for ODIN

Figure 3.14: Basic structure of each Analyzer Tab

Figure 3.15: Sequence Diagram of the plot creation

The structure of the various tabs and the analyzes are discussed and reported in detail in
the following sections.

Dataset
On this page are reported all the analyses related to the data set. In fact, it offers 3

3| An Interactive Dashboard for ODIN 51

Figure 3.16: Tool Interface for Dataset analyzes (Top), Distribution of Property, Distri-
bution of Property for Categories and Categories Co-occurrence Matrix

functions that allow you to analyze the distributions of categories and properties within
the data set. These features are essential in case you want to find a bias in the data set
and therefore whether or not to apply normalization during the performance evaluation.

• Categories – as we can see in Figure 3.16, it provides a visual representation of the
distribution of the selected categories in the dataset. Thanks to the provided filter
is possible to exclude some categories by deselecting them for a partial view.

• Distribution of Property – offers a visual representation of the distribution of all
the properties selected during the analyzer creation phase, or added later in the
settings, and for each of them the distribution of each value on all categories.

• Distribution of property for Categories – It allows to view the distribution of the
property values selected by the filter on the categories chosen by the user through
the category filter.

• Categories co-occurrence matrix – offers a graphical representation of the occurrence
of a certain category in relation to the others. That is, it highlights a relationship
between them.

Analyzer: Properties
In this section all the analyzes concerning properties and their values have been grouped.
Two analyzes can be identified in this interface:

52 3| An Interactive Dashboard for ODIN

Figure 3.17: Per property (on left) and Sensitivity and Impact (on right) analyzes

• Properties Analysis – This analysis shows all the results obtained from the various
property values, sorted by overall performance, for each category. The user has the
option to divide the values by:

– Properties Values : in this case, the user will have a broader view of the cate-
gories and the scores they have obtained for the various values.

– Categories : split used in case they want to analyze a possible relationship
between property values.

If they want to exclude certain categories or values, it will be possible to do so
through the relative filters.
In the case of a comparison between multiple models, a chart will be generated for
each property value, in this way the user can analyze which model has made the
highest score for that value in a given category

• Sensitivity and Impact of Properties – Two parameters are taken into consideration
in this analysis: the first is all the properties loaded by the analyzer at that moment,
the other is the evaluation metric used for the analysis. As we can see in Figure 3.17
for each loaded property two values are defined, the minimum and the maximum
evaluation score reached by the model. The values are calculated by averaging
all the evaluation scores (minimum / maximum) achieved for each category by
the property. Sensitivity is defined as the difference between the minimum and
maximum of each property. Finally, the overall performance value of the model
defined by the horizontal dashed line is also displayed.
Also this analysis support multi-model comparison, in which is simply displayed a
chart per property that plots the values for each model.

3| An Interactive Dashboard for ODIN 53

Analyzer: Distributions
This part is entirely dedicated to the results given by the model in terms of:

• True Positive: a result is defined as true positive when the prediction performed by
the model matches the observation regarding the presence of the class in the image.

• True Negative: is an outcome where the model correctly predicts the negative class.

• False Positive: it is a result given by the model, in which it incorrectly predicted
the presence of a class

• False Negative: it is a result given by the model, in which it incorrectly predicted
the negative class.

Three types of analysis are offered here, namely:

• Distribution – a pie chart that offers the possibility of viewing the distribution of
categories for each type of result (True-Positive, True-Negative, False-Positive and
False-Negative) selectable through the relative filter. On the right of the graph,
a table is also provided which lists, for each category, the number of predictions
that fall into that distribution. In this case the comparator allows to have a visual
representation of the result of each model, per category, through a bar chart.

• Distribution Per-Property – provides a higher level of abstraction than the previous
analysis, displaying the distribution of the values of the property selected by the
user in the appropriate filter, for each category. Like the previous analysis it is
possible to browse the distributions through the provided filter.

• Confusion Matrix – Provides a global view of distributions for each category, allow-
ing the user to filter by property and value of it as shown in Figure 3.18. In this way
the user can analyze in detail what are the strong points of the model, and where
it needs to be strengthened.

Analyzer: Top-1 Top-5
This analysis reports the Top-1 and Top-5 scores in terms of accuracy (Figure 3.19) or

error rate for each property value.
In particular, we talk about:

• Top-1 score: Only the highest probability prediction is taken into account

• Top-5 score: checks if the target label is one of the top 5 predictions which are the
5 ones with the highest probabilities.

Regarding the metrics used:

54 3| An Interactive Dashboard for ODIN

Figure 3.18: Confusion Matrix Interface with filter on Character Property

Figure 3.19: Accuracy of Top-1 and Top-5 for Property prop1

• Accuracy : is the number of correctly predicted data points out of all the data points.
In other words, it is defined as:

Accuracy = TruePositive+TrueNegative
Totalpredictions

• Error Rate: is the number of wrongly predicted data points out of all the data
points. In other words, it is defined as:

ErrorRate = FalsePositive+FalseNegative
Totalpredictions

= (1− Accuracy)

Analyzer: Performance Curves
This section is devoted entirely to analyzing the model’s performance using evaluation
curves. The curves offer us the possibility to compare overall and categories performances
using:

3| An Interactive Dashboard for ODIN 55

• Precision-Recall Curve – For each threshold value, the precision and recall are cal-
culated and plotted. The more the curve is flattened at the top, the higher the
performance of the model is.

• Receiver operating Characteristic Curve – The ROC curve shows the trade-off be-
tween sensitivity (or TPR) and specificity (1 – FPR). Classifiers that give curves
closer to the top-left corner indicate a better performance. The closer the curve
comes to the 45-degree diagonal of the ROC space, the less accurate the test.

• F1 Curve – F1 Score is the weighted average of Precision and Recall. Therefore,
this score takes both false positives and false negatives into account. It is based on
the following formula:

Fbeta = (1 + β2) precision∗recall
β2∗precision+recall

Thanks to the filters on the left side of the screen, it is possible to change the number of
categories displayed, in case the check categories is active, otherwise the type of averaging
method.

Analyzer: IoU Curve
Here the graph of the IoU metric is displayed, i.e. Intersection Over Union, which consists

Figure 3.20: Intersection Over Union Curve

56 3| An Interactive Dashboard for ODIN

of the following formula:
IoU = AreaofOverlap

AreaofUnion

in this way the user can analyze how precise the model is in the creation of bounding
boxes / segments to locate the class within the image. Here too it is possible to analyze
the IoU threshold using all the metrics offered by ODIN and selectable by the filter.

Analyzer:Reliability
For each prediction, the classification models assign a value between 0 and 1 called the

Figure 3.21: Confidence Histogram and Reliability Diagram

confidence score. The plot on the left in the 3.21 image represents the distribution of the
confidence scores generated by the model. On the right side, instead, Reliability diagram,
which is a visual representation of the model calibration that plot the Expected sample
accuracy as a function of the confidence, is visualized. In the second one are also reported:

• Expected Calibration Error (ECE): defined as a weighted average of the difference
between the accuracy and confidence difference.

• Maximum Calibration Error (MCE), which indicates the worst-case deviation be-
tween confidence and accuracy.

Thanks to the related filter is possible to increment or reduce the number of bins which
is the number of intervals the confidence scores are grouped into.

Analyzer:Errors
On this page all the analyzes on the prediction errors that the model has committed have

3| An Interactive Dashboard for ODIN 57

Figure 3.22: Example of False Positive Errors Distribution with their Impact and the
False Negative Distribution of Errors

been grouped. These errors are divided into:

• False-Positive: it is a result given by the model, in which it incorrectly predicted
the presence of a class.

• False-Negative: it is a result given by the model, in which it incorrectly predicted
the negative class.

as we can see from the Figure 3.22.
The analysis of these errors needs two input parameters that can be chosen through the
available filters: the category and the metric used for the analysis. The analyzes are:

• False-Positive Errors – this analysis is divided into two plots. The first create
the error distribution for that category, instead the error’s impact allows the user
to understand the weight of the error and how much the model would gain in
performance if it were able to completely eliminate that type of error for that class.
As regards the errors of the classification tasks, they are divided into:

– class : classification error. It is done when the model predicts the wrong class
for an observation

– sim: similarity error. It is performed when the model assigns an incorrect class
but belonging to the group of similar classes in which the correct class is also
present.

– background : error made when the model assigns a class to an image that does
not contain classes.

While the errors for the localization tasks are:

– duplicated : caused by the presence of two predictions for the same element in

58 3| An Interactive Dashboard for ODIN

the image.

– localization: the model has identified the correct class but the intersection over
union of the bounding box/segmentation mask is less than the IoU-Threshold
Strong and greater than the IoU Threshold Weak.

– sim: the model correctly generated the bounding box / segmentation mask
but confused the class with a similar one.

– loc + sim: the model generated the bounding box / segmentation mask with
an IoU between the Weak and Strong thresholds and, in addition, confused the
class with a similar one.

– class : classification error. It is done when the model predicts the wrong class
for an annotation

– loc + class : the model generated the bounding box / segmentation mask with
an IoU between the Weak and Strong thresholds and, in addition, it predicts
the wrong class.

– background : error for which the model generated a bounding box / segmenta-
tion mask with an IoU Threshold lower than n Weak. Often associated with
predictions about objects present in the image but not part of one of the classes.

• False-Negative Errors – as for false positives, this analysis displays the distribution
of false-negative errors committed by the model. These errors are divided into:

– Similar : class associated with an image containing the similar class.

– Other : classification and background errors.

for what concern the classification tasks. In addition to these, for localization tasks
are defined also:

– Localization: there are no prediction such that the IoU is greater than the IoU
Strong threshold.

– No_prediction: there are no prediction such that the IoU is at least equal or
greater than the IoU Weak threshold.

Analyzer:Report
This page summarizes all the performance scores of the model at each level of granularity.
The performances can be summarized as follow:

3| An Interactive Dashboard for ODIN 59

• Overall performance: set of model performances by evaluating the entire data set
and providing two different calculation methods, the micro and macro average.

• Per category performance: the evaluation metrics are calculated for each category
within the data set.

• Per property performance: the evaluation metrics are calculated for each property
value of those previously loaded with the format property_value.

The filters allow the user to view only the essential data, excluding the scores of the
categories / properties and the irrelevant metrics at the moment. Furthermore, once all
the filters have been set, the user can download the table into a file with the .xls extension
in order to export it to a spreadsheet application or in Latex7 format.

Model Comparator
As already mentioned ODIN allows you to load multiple model predictions at the same
time to be able to compare them. The analyzes that allow the comparison between
multiple models are:

• Per-Property Analysis : generate a graph for each property value in which the scores
obtained by the models for that value for a given property are compared.

• Sensitivity and Impact Analysis : the comparison of the models is based on the
different error types and their impact on the evaluation metric selected.

• Performance curves : The selected curve is generated for each model in order to have
a clearer view of the performance obtained by them, both overall and by category

• False-Positive and False Negative Errors : The distribution of errors associated with
a category is plotted in the form of a bar graph in order to compare multiple models
at the same time

• Distributions : all model distributions are plotted and categorized in order to com-
pare the values obtained by the two models for those distributions.

• Report : all the scores for the different metrics obtained by each model for each
category and property are reported at the same time

7https://it.overleaf.com/learn/latex/Tables

61

4| ODIN Web In Action

In this chapter we will exploit the functionality of ODIN Web in real cases by analyzing
two datasets as regards the analyzer. The first will be ArtDL[33] with a multi-label
classification problem, the second one it will be a localization problem on the PASCAL
VOC 2007 [14] dataset applied on multiple models, in order to introduce the comparator’s
functionalities.

4.1. ArtDL

ArtDL dataset is a set of images of paintings by iconography classification, composed of 42
thousand annotated images belonging to a set of 10 classes. This use case exploits a subset
of the dataset containing 1864 annotated images belonging to the following classes: An-
thony of Padua, John Baptist - Adult, Paul, Francis of Assisi, Mary Magdalena, Jerome,
Saint Dominic, Virgin Mary, Peter, and Saint Sebastian. For this dataset, the ground
truth file was imported. It contains the observations, associated to each image, that in-
cludes the categories depicted in the image and, for each observation, 3 meta-annotations:

• Source – Name of the museum from which the image was collected. In the case under
analysis, the property values are: beni culturali, wga, wikidata, wikiart, gallerix,
pharos, prado, met, nga, rijksmuseum. This property is already inside in the ArtDL
dataset.

• Characters – Number of characters present in the painting. They have been catego-
rized as: 0-1, 2-4, 5+. The information related to this property are retrieved using
openpose[9], a real-time multi-person human pose detection library used to count
the number of faces, with a cap of 5 for this dataset, inside the images.

• Color – identifies if an image is greyscaled or colored with bw and rgb. This infor-
mation is extracted in an automatic way from the image.

When the analyzer is started, the first analysis to be performed is made directly on the
dataset used. Figure 4.1 shows the distribution of the various classes in the dataset,
showing a presence of the Virgin Mary class with a percentage of 63.8%. This graph

62 4| ODIN Web In Action

Figure 4.1: Categories distribution of
ArtDL dataset

Figure 4.2: Categories distribution of
ArtDL dataset without Virgin Mary

denotes a large imbalance in the dataset which makes the performance of the ruling class
prevail, in this case Virgin Mary, over those of the lower classes, making the comparison
difficult. For this reason, a suitable solution could be to apply some balancing technique,
such as weighted loss, undersampling of the majority classes, and oversampling of the
minority classes, in order to achieve a fair distribution among categories. Going to filter
the prevailing class, as Figure 4.2 shown, it is possible to notice how the remaining classes
are equally distributed, except for Anthony Of Padua and Saint Dominic.
In this way, the model of which we are going to analyze the predictions, it is based on
a ResNet50 [23] architecture and, in order to overcome the problems of the majority
class, an oversampling of the minority classes to the majority class Virgin Mary, has been
applied before training.

Figure 4.3: Property Analysis of the model

Figure 4.3 shows the performance evaluation of the character property on the model. By
analyzing the model performances, it can be seen that has achieved better performance
in cases where the painting has a number of characters less than 5.This behavior can be
justified by the fact that the presence of more characters within the image leads to have
images in which the only feature that can be seen is the face, losing those details which

4| ODIN Web In Action 63

often helps the model to recognize the class. On the other hand, the presence of few
characters inside the image (0-1 or 2-4 cases) allows the image to better represents the
saint and, therefore, most of its iconographic symbols are visible. Figure 4.4 presents the

Figure 4.4: False-Positive distribution for the model on ArtDL dataset

False-Positive distribution of the model. Analyzing it, it is clear that the class that scored
the highest number of classification errors, in addition to Virgin Mary, is the one associ-
ated with John Baptist -Adult with a percentage of 18.8 % on total errors. This advises
us that this class could be a potential weakness of our model. In this way, inspecting the

Figure 4.5: False-Positive Errors And Error’s Impact of class John Baptist - Adult

False-Positive’s errors distribution shown in Figure4.5, it is clear that the John Baptist
- Adult class heavily affects the performance of the model. As most of the errors are of
classification nature, this means that the model failed to highlight any unique character-
istics of the class making it a weakness of the model and suggesting to focus the next

64 4| ODIN Web In Action

efforts on the improvement of this class first. A solution could be to enrich the dataset
with more representations of the class in order to help the model grasp the discriminative
features of it.

Figure 4.6: False-Negative distribution for the model on ArtDL dataset

Inspecting the distribution of False-Negatives, Figure 4.6 shows Virgin Mary has, also, the
higher number of False-Negative errors, which could be caused by other women present
in the image and classified as Mary, or by images that have incorrect annotations. But,
the most interesting data concerns the Paul class, which scores with a percentage of 11.7
% on total errors despite being one of the least present classes within the dataset as seen
in Figure 4.1 (about 2.8%). The reason for this high number of errors is due to the fact
that, in this dataset, there are similar classes and, thanks to the ODIN Web settings, it
is possible to specify them in order to have a clearer overview of the error types.

Similar classes present in this datasets are setted in setting as it shows Figure 4.7.
Figure 4.8 represents the distribution of the error types over the two classes taken into
account. It is possible to see how making similar classes explicit revealed that almost 20%
of the model errors attributed to the Peter class are caused by similarity with the Jerome
and Paul classes. In the same way, the Maria Magdalena class has a high number of
False-negatives, mainly caused by its resemblance to the Virgin Mary class. The analysis
suggests to apply some Fine-Grained Visual Categorization(FGVC) Techniques to help
the model focus on the subtle iconographic symbols that are unique for each class.

Table 4.1 is the summary of evaluation score obtained by the model. As we can see, the

4| ODIN Web In Action 65

Figure 4.7: Similar Classes Loaded in the tool

Figure 4.8: Mary Magdalena and Peter False Negative errors with similar classes

overall performances of the model are good. However, analyzing the individual scores
obtained from the categories and properties, some of the considerations made previously
are confirmed. In fact, as regards the character properties, it is clearly visible that as the
number of characters increases, the performance decreases considerably.

66 4| ODIN Web In Action

type
label

P
recision

R
ecall

F
1

Average_
P

recision
ece

m
ce

Total
avg

m
acro

0.7095
0.7062

0.7005
0.7087

not
supp.

not
supp.

avg
m

icro
0.838

0.8443
0.8412

0.8692
0.1088

0.3815
C

ategory
A

nthony
ofP

adua
0.7273

0.5714
0.64

0.648
0.1679

0.7407
John

B
aptist

-
A

dult
0.5809

0.798
0.6723

0.7492
0.1632

0.5562
P
aul

0.5455
0.3462

0.4235
0.3684

0.1251
0.896

Francis
ofA

ssisi
0.6923

0.8265
0.7535

0.7482
0.1485

0.6354
M

ary
M

agdalena
0.7927

0.7222
0.7558

0.7903
0.1343

0.6875
Jerom

e
0.7077

0.7797
0.7419

0.7727
0.1652

0.6612
Saint

D
om

inic
0.5

0.6333
0.5588

0.509
0.1224

0.755
V

irgin
M

ary
0.9304

0.91
0.9201

0.9647
0.0807

0.3528
P
eter

0.7295
0.7479

0.7386
0.757

0.1484
0.8573

Saint
Sebastian

0.8889
0.7273

0.8
0.7799

0.1148
0.5461

P
roperty

source_
w

ikidata
0.6737

0.665
0.668

0.7129
not

supp.
not

supp.
source_

w
ga

0.5732
0.4603

0.4945
0.6252

not
supp.

not
supp.

source_
gallerix

0.6467
0.6376

0.633
0.6696

not
supp.

not
supp.

source_
beniculturali

0.546
0.595

0.5631
0.5698

not
supp.

not
supp.

source_
rijksm

useum
0.3

0.3
0.3

0.5125
not

supp.
not

supp.
source_

prado
0.5417

0.575
0.5514

0.5396
not

supp.
not

supp.
source_

w
ikiart

0.5667
0.4362

0.4845
0.6786

not
supp.

not
supp.

source_
m

et
0.55

0.55
0.5333

0.51
not

supp.
not

supp.
source_

nga
0.5

0.5
0.5

0.5
not

supp.
not

supp.
source_

pharos
0.335

0.34
0.2993

0.4551
not

supp.
not

supp.
color_

bw
0.5621

0.6038
0.5689

0.5961
not

supp.
not

supp.
color_

rgb
0.7737

0.7458
0.7565

0.7671
not

supp.
not

supp.
characters_

0-1
0.8041

0.7326
0.7564

0.7783
not

supp.
not

supp.
characters_

2-4
0.6133

0.6694
0.6063

0.65
not

supp.
not

supp.
characters_

5+
0.4152

0.5486
0.4541

0.4741
not

supp.
not

supp.

Table
4.1:

B
ase

R
eport

A
nalysis

for
A

rtD
L

D
ataset

4| ODIN Web In Action 67

4.2. PASCAL VOC 2007

PASCAL VOC 2007 is a dataset for image recognition consisting of 9963 images containing
24640 annotated objects. This dataset is time-honored to evaluate performance in object
category detection. For this analysis the test set of PASCAL VOC 2007, which comprises
of 4952 images, is treated. The classes taken into account for this analysis and belonging
to the dataset are:

• Person: person

• Animal: bird, cat, cow, dog, horse, sheep

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

For each annotation, a set of properties are placed side by side, namely:

• AreaSize: is the dimension of its bounding box. Values are: XS (extra-small), S
(small), M (medium), L (large), and XL (extra-large).

• AspectRatio: is defined as object width divided by object height, computed from the
PASCAL VOC 2007 bounding box annotation. Similarly to object size, objects are
categorized into extra-tall (XT), tall (T), medium (M), Wide (W), and extra-wide
(XW), using the same percentiles.

In this analysis, we compare two models: Faster-RCNN (with MobileNet backbone) and
the same with the addition of the Feature Feature Pyramid Network (FPN). The weights
of the models are obtain from public repositories trained with COCO dataset (since this
dataset also contains the PASCAL VOC). The models are compared in ODIN Web to
catch the strengths and weaknesses of each.

Figure 4.9 reports the Per-Property analysis made over the Area Size property for the
Faster-RCNN model. It is possible to notice how the performances decrease as the size
of the object decreases. One possible solution is to adopt architectural improvement
techniques to also allow small object detection, such as the one proposed in [8]. Another
hint, in case the researcher wants to trade some performance aspects with the recognition
of the presence of particularly small objects, it could be adopt a different type of model,
for example, a Feature Pyramid Network (FPN).

The performances of the FPN model are depicted in Figure 4.10 and, as expected, it
presents higher performance for annotations associated with properties values, such as XS

68 4| ODIN Web In Action

Figure 4.9: Per-Property Analysis on Faster-RCNN model

Figure 4.10: Per-Property Analysis on FPN model

and S, but significantly decreasing performance in cases where the size is larger proving
that, for this particular model, performances are less affected by the size of the bounding
boxes. Figure 4.11 represents the sensitivity and impact graph that compares the two
models simultaneously. As already said, it is possible to see how FPN is much less sensi-
tive and with a lower impact than Faster-RCNN, while as regards aspect ratio property
the two models have similar behaviors. From this analysis, we can conclude that the
FPN model would be a valid substitute for the Faster-RCNN if the researcher is willing
to give up to 6.0% of the overall performances (from 68 to 62) while having a model that
recognizes all types of bounding boxes.
By analyzing Figure 4.12, it reports the reliability diagram applied to the two models

separately, we can see how, unlike the FPN model, the Faster-RCNN model is not well cal-
ibrated. In this case, the model is underestimating its predictions, presenting an expected
calibration value of 11.37. This condition can be improved by applying some calibration
technique such as Bayesian Binning into Quantiles, Platt scaling, or its simplest version,
temperature scaling.

4| ODIN Web In Action 69

Figure 4.11: Sensitivity and Impact of the FPN and Faster-RCNN compared

Figure 4.12: Reliability Diagram of the Faster-RCNN(left) and FPN(right)

Focusing on the FPN model, we can notice that it is well calibrated with an expected
calibration value of 2.96 while overestimating its predictions. This behavior is also noted
by analyzing the distribution of False-Positives, in 4.13, between the two models, in which
FPN commits almost twice as many errors compared to Faster-RCNN. Therefore, It may
be useful to understand what are the types of false-positive errors committed by FPN to
find optimizations to further improve its performance.

What emerges from the analysis, and depicted in Figure 4.14, is that many classes within
the dataset are confused by the model due to their similarity, impacting on performances.

70 4| ODIN Web In Action

Figure 4.13: False-Positive distribution of the Faster-RCNN and FPN compared

Figure 4.14: False-Positive Error’s Impact of cat, cow, dog, and horse classes in FPN
model

In this example we have taken only one case of similar classes referring to classes: cat, cow,
dog, and horse. Therefore, it would be useful to apply fine-grain classification techniques
or Loss functions in order to better discriminate against similar classes. For example,
by applying entropy into loss term, it is possible to achieve better performance for multi
similar object pairs as well as single similar object pairs as demonstrated in [28].

71

5| Conclusions and Future work

In this work, ODIN Web, a web app that aims to extend the already existing ODIN
framework, is presented. ODIN Web offers the possibility to exploit all the functionalities
provided by ODIN simply and without any programming effort. During this project two
of the main features of ODIN were provided with a graphical interface: the Annotator
can guide the user in a simple but effective way during the entire phase of the dataset
population, offering a clean and user-friendly interface. In this way, they can create or add
new annotations, for each created/imported dataset facilitating them in the management
of the ground truth file that will be automatically generated in the correct format (based
on the MS COCO format). The annotation phase supports both classification, through
labels, and localization tasks, through bounding boxes and segmentation masks, with an
interactive editor in which is possible to modify the annotations related to the dataset. As
for the analyzer, it provides all the analyzes implemented by ODIN Framework, allowing
the user to view the results in graphical format and providing all the filters necessary to
view only the data of interest. It also allows you to compare multiple models at the same
time and update the analysis parameters in real-time. As for future works, we expect to
expand ODIN Web with features already present in the framework, such as:

• implement the Visualizer component to give the user the ability to fully explore the
ground truth and predictions of his model for both computer vision tasks.

• allow the annotator to support textual observations in the annotation phase

• expansion of the types of meta-annotations offered by the annotator: range of values
and textual parameters.

• add support analysis for Class Activation Maps (CAMs), both from a quantitative
and qualitative point of view.

• implement automatic extraction of certain types of properties such as: object-count
and colors.

In conclusion, it has been demonstrated that the current state of the art in the field of
black-box analysis frameworks there are very few tools that allow having an interactive

72 5| Conclusions and Future work

interface and at the same time offer the user the complete customization of the data
and the analyzes performed on them. Therefore, we think that ODIN Web could be a
considerable step forward that can allow anyone to interface with the world of computer
vision in a simple way but, at the same time, can also support researchers, and not, to
extract multiple and useful information for the refinement of their models.

73

Bibliography

[1] Vott (visual object tagging tool), 2017.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pages 265–283, 2016.

[3] B. Alsallakh, A. Hanbury, H. Hauser, S. Miksch, and A. Rauber. Visual methods for
analyzing probabilistic classification data. IEEE Transactions on Visualization and
Computer Graphics, 20(12):1703–1712, 2014. doi: 10.1109/TVCG.2014.2346660.

[4] H. Alwassel, F. C. Heilbron, V. Escorcia, and B. Ghanem. Diagnosing error in
temporal action detectors. ArXiv, abs/1807.10706, 2018.

[5] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh. Model-
tracker: Redesigning performance analysis tools for machine learning. In Proceed-
ings of the 33rd Annual ACM Conference on Human Factors in Computing Sys-
tems, CHI ’15, page 337–346, New York, NY, USA, 2015. Association for Com-
puting Machinery. ISBN 9781450331456. doi: 10.1145/2702123.2702509. URL
https://doi.org/10.1145/2702123.2702509.

[6] D. Bolya, S. Foley, J. Hays, and J. Hoffman. Tide: A general toolbox for identifying
object detection errors. In ECCV, 2020.

[7] J. Brooks. COCO Annotator. https://github.com/jsbroks/coco-annotator/,
2019.

[8] C. Cao, B. Wang, W. Zhang, X. Zeng, X. Yan, Z. Feng, Y. Liu, and Z. Wu. An
improved faster r-cnn for small object detection. IEEE Access, 7:1–1, 08 2019. doi:
10.1109/ACCESS.2019.2932731.

[9] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Re-
altime multi-person 2d pose estimation using part affinity fields. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019.

https://doi.org/10.1145/2702123.2702509
https://github.com/jsbroks/coco-annotator/

74 | Bibliography

[10] J. M. Cejuela, P. McQuilton, L. Ponting, S. J. Marygold, R. Stefancsik, G. H.
Millburn, B. Rost, and the FlyBase Consortium. tagtog: interactive and text-
mining-assisted annotation of gene mentions in PLOS full-text articles. Database,
2014, 04 2014. ISSN 1758-0463. doi: 10.1093/database/bau033. URL https:

//doi.org/10.1093/database/bau033. bau033.

[11] W. Chen, Wei-Teand Styler. Anafora: A web-based general purpose annotation
tool. In Proceedings of the 2013 NAACL HLT Demonstration Session, pages 14–19.
Association for Computational Linguistics, 2013. URL http://www.aclweb.org/

anthology/N13-3004.

[12] A. Demidovskij, Y. Gorbachev, M. Fedorov, I. Slavutin, A. Tugarev, M. Fatekhov,
and Y. Tarkan. Openvino deep learning workbench: Comprehensive analysis and
tuning of neural networks inference. In 2019 IEEE/CVF International Conference on
Computer Vision Workshop (ICCVW), pages 783–787, 2019. doi: 10.1109/ICCVW.
2019.00104.

[13] A. Dutta and A. Zisserman. The VIA annotation software for images, audio and
video. In Proceedings of the 27th ACM International Conference on Multimedia,
MM ’19, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6889-6/19/10. doi:
10.1145/3343031.3350535. URL https://doi.org/10.1145/3343031.3350535.

[14] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.

[15] P. Fraternali, F. Milani, R. N. Torres, and N. Zangrando. Black-box error diagnosis
in deep neural networks, 2021. URL https://arxiv.org/pdf/2201.06444.pdf.

[16] M. Gleicher, A. Barve, X. Yu, and F. Heimerl. Boxer: Interactive comparison of
classifier results. Computer Graphics Forum, 39, 2020.

[17] Y. Guo, Y. Liu, T. Georgiou, and et al. A review of semantic segmentation using
deep neural networks. In International Journal of Multimedia Information Retrieval
7, pages 87–93, 2018. URL https://doi.org/10.1007/s13735-017-0141-z.

[18] Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew. A review of semantic segmentation
using deep neural networks. In International Journal of Multimedia Information
Retrieval, pages 87–93, 2018. ISBN 2192-662X. doi: 10.1007/s13735-017-0141-z.
URL https://doi.org/10.1007/s13735-017-0141-z.

[19] A. K. Gupta and et. al. Imglab, 2018.

https://doi.org/10.1093/database/bau033
https://doi.org/10.1093/database/bau033
http://www.aclweb.org/anthology/N13-3004
http://www.aclweb.org/anthology/N13-3004
https://doi.org/10.1145/3343031.3350535
https://arxiv.org/pdf/2201.06444.pdf
https://doi.org/10.1007/s13735-017-0141-z
https://doi.org/10.1007/s13735-017-0141-z

| Bibliography 75

[20] A. Hafiz and G. Bhat. A survey on instance segmentation: state of the art. In
International Journal of Multimedia Information Retrieval 9, pages 171–189, 2020.
URL https://doi.org/10.1007/s13735-020-00195-x.

[21] A. M. Hafiz and G. M. Bhat. A survey on instance segmentation: state of the art.
In International Journal of Multimedia Information Retrieval, pages 171–189, 2020.
ISBN 2192-662X. doi: 10.1007/s13735-020-00195-x. URL https://doi.org/10.

1007/s13735-020-00195-x.

[22] C. Halaschek-wiener, J. Golbeck, A. Schain, M. Grove, B. Parsia, and J. Hendler.
Photostuff-an image annotation tool for the semantic web. 01 2005.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

[24] J. Heaton, N.G.Polson, and J.H.White. Deep learning in finance, 2016. URL https:

//arxiv.org/pdf/1602.06561.pdf.

[25] S. Herath, M. Harandi, and F. Porikli. Going deeper into action recognition: A sur-
vey. Image and Vision Computing, 60:4–21, 2017. ISSN 0262-8856. doi: https:
//doi.org/10.1016/j.imavis.2017.01.010. URL https://www.sciencedirect.com/

science/article/pii/S0262885617300343. Regularization Techniques for High-
Dimensional Data Analysis.

[26] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object detectors.
Computer Vision–ECCV 2012, pages 340–353, 2012.

[27] Y. Huang, J. Zhang, Y. Yang, Z. Gong, and Z. Hao. Gnnvis: Visualize large-scale
data by learning a graph neural network representation. In Proceedings of the 29th
ACM International Conference on Information and Knowledge Management, CIKM
’20, page 545–554, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450368599. doi: 10.1145/3340531.3411987. URL https://doi.org/10.

1145/3340531.3411987.

[28] M. Ju, S. Moon, and C. D. Yoo. Object detection for similar appearance objects based
on entropy. In 2019 7th International Conference on Robot Intelligence Technology
and Applications (RiTA), pages 192–198, 2019. doi: 10.1109/RITAPP.2019.8932791.

[29] J. Ker, L. Wang, J. Rao, and T. Lim. Deep learning applications in medical im-
age analysis, 2017. URL https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=8241753.

https://doi.org/10.1007/s13735-020-00195-x
https://doi.org/10.1007/s13735-020-00195-x
https://doi.org/10.1007/s13735-020-00195-x
https://arxiv.org/pdf/1602.06561.pdf
https://arxiv.org/pdf/1602.06561.pdf
https://www.sciencedirect.com/science/article/pii/S0262885617300343
https://www.sciencedirect.com/science/article/pii/S0262885617300343
https://doi.org/10.1145/3340531.3411987
https://doi.org/10.1145/3340531.3411987
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8241753
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8241753

76 | Bibliography

[30] J. Krause, A. Perer, and K. Ng. Interacting with predictions: Visual inspection of
black-box machine learning models. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, CHI ’16, pages 5686–5697, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-3362-7. doi: 10.1145/2858036.2858529. URL
http://doi.acm.org/10.1145/2858036.2858529.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 25. Cur-
ran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/

file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[32] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. Zitnick. Microsoft coco: Common objects in context. volume 8693, 04 2014. ISBN
978-3-319-10601-4. doi: 10.1007/978-3-319-10602-1_48.

[33] F. Milani and P. Fraternali. A dataset and a convolutional model for iconography
classification in paintings. Journal on Computing and Cultural Heritage (JOCCH),
14(4):1–18, 2021.

[34] M. neves and J. Seva. Annotationsaurus: A searchable directory of annotation tools,
10 2020.

[35] P. V. Ogren. Knowtator: a protégé plug-in for annotated corpus construction. In
Proceedings of the 2006 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics on Human Language Technology, pages 273–
275, Morristown, NJ, USA, 2006. Association for Computational Linguistics. doi:
http://dx.doi.org/10.3115/1225785.1225791.

[36] Y. Okugawa, M. Kubo, H. Sato, and V. Bui. Evaluation for the synchronization of
the parade with openpose. Proceedings of International Conference on Artificial Life
and Robotics, 24:443–446, 01 2019. doi: 10.5954/ICAROB.2019.OS17-2.

[37] W. Ouyang, X. Chu, and X. Wang. Multi-source deep learning for human pose
estimation. pages 2337–2344, 06 2014. doi: 10.1109/CVPR.2014.299.

[38] T. Perry. LightTag: Text annotation platform. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing: System Demonstra-
tions, pages 20–27, Online and Punta Cana, Dominican Republic, Nov. 2021. As-
sociation for Computational Linguistics. URL https://aclanthology.org/2021.

emnlp-demo.3.

http://doi.acm.org/10.1145/2858036.2858529
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://aclanthology.org/2021.emnlp-demo.3
https://aclanthology.org/2021.emnlp-demo.3

| Bibliography 77

[39] S. Pyysalo, T. Ohta, R. Rak, D. Sullivan, C. Mao, C. Wang, B. Sobral, J. Tsujii,
and S. Ananiadou. Overview of the id, epi and rel tasks of bionlp shared task 2011.
BMC bioinformatics, 13 Suppl 11:S2, 06 2012. doi: 10.1186/1471-2105-13-S11-S2.

[40] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams. Squares: Supporting
interactive performance analysis for multiclass classifiers. IEEE Transactions on
Visualization and Computer Graphics, 23(1):61–70, 2017. doi: 10.1109/TVCG.2016.
2598828.

[41] H. Saif and H. Alani. Alleviating data sparsity for twitter sentiment analysis. CEUR
Workshop Proceedings, 838, 01 2012.

[42] F. Seide. Keynote: The computer science behind the microsoft cognitive toolkit:
An open source large-scale deep learning toolkit for windows and linux. In 2017
IEEE/ACM International Symposium on Code Generation and Optimization (CGO),
pages xi–xi, 2017. doi: 10.1109/CGO.2017.7863722.

[43] B. Sekachev, N. Manovich, M. Zhiltsov, A. Zhavoronkov, D. Kalinin, B. Hoff, TOs-
manov, D. Kruchinin, A. Zankevich, DmitriySidnev, M. Markelov, Johannes222,
M. Chenuet, a andre, telenachos, A. Melnikov, J. Kim, L. Ilouz, N. Glazov, Priya4607,
R. Tehrani, S. Jeong, V. Skubriev, S. Yonekura, vugia truong, zliang7, lizhming, and
T. Truong. opencv/cvat: v1.1.0, Aug. 2020. URL https://doi.org/10.5281/

zenodo.4009388.

[44] S. Squartini and L. G. et al. Riconoscimento acustico del fondo stradale attraverso al-
goritmi di deep learning. URL https://web.uniroma1.it/et2018/sites/default/

files/memorie/Squartini.pdf.

[45] M. Tkachenko, M. Mikhail, S. Nikita, H. Andrey, and L. Nikolai. La-
bel studio: Data labeling software, 2020-2021. URL https://github.

com/heartexlabs/label-studio. Open source software available from
https://github.com/heartexlabs/label-studio.

[46] R. N. Torres, P. Fraternali, and J. Romero. Odin: An object detection and instance
segmentation diagnosis framework. In A. Bartoli and A. Fusiello, editors, Computer
Vision – ECCV 2020 Workshops, pages 19–31, Cham, 2020. Springer International
Publishing. ISBN 978-3-030-65414-6.

[47] R. N. Torres, F. Milani, and P. Fraternali. Odin: Pluggable meta-annotations and
metrics for the diagnosis of classification and localization. In G. Nicosia, V. Ojha,
E. La Malfa, G. La Malfa, G. Jansen, P. M. Pardalos, G. Giuffrida, and R. Umeton,

https://doi.org/10.5281/zenodo.4009388
https://doi.org/10.5281/zenodo.4009388
https://web.uniroma1.it/et2018/sites/default/files/memorie/Squartini.pdf
https://web.uniroma1.it/et2018/sites/default/files/memorie/Squartini.pdf
https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio

78 5| BIBLIOGRAPHY

editors, Machine Learning, Optimization, and Data Science, pages 383–398, Cham,
2022. Springer International Publishing. ISBN 978-3-030-95467-3.

[48] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viégas, and J. Wilson.
The what-if tool: Interactive probing of machine learning models. IEEE Transactions
on Visualization and Computer Graphics, 26(1):56–65, 2020. doi: 10.1109/TVCG.
2019.2934619.

[49] S. Xiang, X. Ye, J. Xia, J. Wu, Y. Chen, and S. Liu. Interactive correction of
mislabeled training data. In 2019 IEEE Conference on Visual Analytics Science and
Technology (VAST), pages 57–68, 2019. doi: 10.1109/VAST47406.2019.8986943.

[50] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi. Convolutional neural net-
works: an overview and application in radiology. In Insights into Imaging, pages
611–629, 2018. URL https://doi.org/10.1007/s13244-018-0639-9.

[51] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Comput.
Surv., 38(4):13–es, dec 2006. ISSN 0360-0300. doi: 10.1145/1177352.1177355. URL
https://doi.org/10.1145/1177352.1177355.

[52] H. Yoon, S.-H. Lee, and M. Park. Tensorflow with user friendly graphical framework
for object detection api. 06 2020.

[53] N. Zangrando. The odin framework, a tool for image classification diagnosis.
Master’s thesis, Politecnico di Milano, ING - Scuola di Ingegneria Industriale e
dell’Informazione, 2021. URL http://hdl.handle.net/10589/177405.

[54] J. Zhang, Y. Wang, P. Molino, L. Li, and D. S. Ebert. Manifold: A model-
agnostic framework for interpretation and diagnosis of machine learning models.
IEEE Transactions on Visualization and Computer Graphics, 25(1):364–373, 2019.
doi: 10.1109/TVCG.2018.2864499.

https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1145/1177352.1177355
http://hdl.handle.net/10589/177405

79

List of Figures

2.1 Image Classification . 7
2.2 Object Detection . 7
2.3 Semantic Segmentation . 7
2.4 Instance Segmentation . 7
2.5 Pose Estimation, source: [36] . 7
2.6 Architecture of Krizhevsky et al.’s DCNN [31] 8
2.7 Sentiment Annotation. Source [41] . 13
2.8 Semantic Classification. Source: Link . 13
2.9 Entity Annotation. Source [39] . 13

3.1 ODIN Web architecture . 30
3.2 UML Class Diagram representing the main components 36
3.3 UML of the Analyzer Component . 38
3.4 UML of the Annotator Component . 40
3.5 MongoDB Observation Structure . 42
3.6 MongoDB Annotation Structure . 42
3.7 ODIN Web Interface: create new dataset 43
3.8 ODIN Web Interface: import dataset . 44
3.9 Landing page of the annotator . 45
3.10 Annotator page for Classification tasks . 46
3.11 Annotator page for Object Detection(left) and Instance Segmentation(right) 47
3.12 Dataset Selection page . 48
3.13 Analyzer Flow . 49
3.14 Basic structure of each Analyzer Tab . 50
3.15 Sequence Diagram of the plot creation . 50
3.16 Tool Interface for Dataset analyzes (Top), Distribution of Property, Distri-

bution of Property for Categories and Categories Co-occurrence Matrix . . 51
3.17 Per property (on left) and Sensitivity and Impact (on right) analyzes . . . 52
3.18 Confusion Matrix Interface with filter on Character Property 54
3.19 Accuracy of Top-1 and Top-5 for Property prop1 54

https://www.datacamp.com/community/tutorials/discovering-hidden-topics-python

80 | List of Figures

3.20 Intersection Over Union Curve . 55
3.21 Confidence Histogram and Reliability Diagram 56
3.22 Example of False Positive Errors Distribution with their Impact and the

False Negative Distribution of Errors . 57

4.1 Categories distribution of ArtDL dataset 62
4.2 Categories distribution of ArtDL dataset without Virgin Mary 62
4.3 Property Analysis of the model . 62
4.4 False-Positive distribution for the model on ArtDL dataset 63
4.5 False-Positive Errors And Error’s Impact of class John Baptist - Adult . . 63
4.6 False-Negative distribution for the model on ArtDL dataset 64
4.7 Similar Classes Loaded in the tool . 65
4.8 Mary Magdalena and Peter False Negative errors with similar classes . . . 65
4.9 Per-Property Analysis on Faster-RCNN model 68
4.10 Per-Property Analysis on FPN model . 68
4.11 Sensitivity and Impact of the FPN and Faster-RCNN compared 69
4.12 Reliability Diagram of the Faster-RCNN(left) and FPN(right) 69
4.13 False-Positive distribution of the Faster-RCNN and FPN compared 70
4.14 False-Positive Error’s Impact of cat, cow, dog, and horse classes in FPN

model . 70

81

List of Tables

2.1 Tools list ordered by ascending publication year. Adapted from [15] 9
2.2 Annotators list ordered by ascending publication year 16
2.3 Technical criteria of the annotation tool 18
2.4 Functional criteria of the annotation tool 19

4.1 Base Report Analysis for ArtDL Dataset 66

83

Ringraziamenti

Questo messaggio è rivolto alle persone più importanti della mia vita: la mia famiglia.
Voglio ringraziare i miei genitori e i miei nonni che mi hanno dato l’opportunità di pros-
eguire gli studi e di arrivare a questo punto.
Vi ringrazio per essermi stati vicini e avermi sempre supportato anche nei momenti in cui
pensavo di non potercela fare.
Grazie per avermi spronato e reso la persona che sono oggi.
Grazie Giulia, per essermi stata vicino nel periodo più importante della mia vita e avermi
sopportato nei momenti più bui di questi ultimi anni, sei stata il regalo più grande.
Vi ringrazio, questo traguardo è dedicato a tutti voi.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Related Work
	Computer Vision
	Black-box error diagnosis
	Annotation tools for ML datasets
	Data Annotation
	Annotation Tools

	User interface for dashboards

	An Interactive Dashboard for ODIN
	Requirements
	Dataset use cases
	Annotator use cases
	Analyzer use cases

	System Architecture
	Technologies Involved
	Back-End
	Front-End

	ODIN Web In Action
	ArtDL
	PASCAL VOC 2007

	Conclusions and Future work
	Bibliography
	List of Figures
	List of Tables
	Ringraziamenti

