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Abstract

T he continuously growing number of small satellites which needs to be
launched around Earth nowadays [1] [2] asks for new releasing strategies.

This work suggests a new approach to solve the routing problem [3] [4] and
fast identify feasible profiles to simultaneously and efficiently inject into orbit
multiple space assets by means of a deployer equipped with low-thrust control
authority. The possibility to perform the transfers with impulsive maneuvers
was also investigated. A multi-satellites single launch injection scenario asks
solving two main challenges from the dynamics control management per-
spective: fast converge on a feasible release history to maximise the launcher
utilisation and revenue; grant flexibility and robustness in managing on or-
bit operations quick reshaping along the whole time window devoted to the
complete set of satellites injection. Therefore, the proposed algorithm, while
finding the near-optimal releasing order to deploy N heterogeneous satellites
correctly phased on their operational orbits, aims of being computationally
light and fast. The algorithm is proposed to be as flexible as possible in terms
of scenarios, being compatible with both single-launch homogeneous space
assets constellation and heterogeneous multi-satellites deployment, differing
in final orbit insertion and physical properties. A multi-objective heuris-
tic optimization is here preferred to find the optimal releasing order and
transfer strategies, aiming to minimize the fuel consumption and the time
to operations. Furthermore, the algorithm easily manages the introduction
of engineering constraints, such as maximum thrust or power available, and
of operative constraints, such as scheduling constraints. The most demand-
ing transfers in term of propellant and time, which are those entailing large
plane changes (i.e. RAAN and inclination), are performed through the ex-
ploitation of the asymmetrical Earth gravitational field [5]. This approach
leads to consistent savings in propellant, at the cost of increase in overall
time of deployment, granting the great flexibility of the algorithm in terms
of applications, allowing performing several transfers connecting orbits with
very different parameters. Performances of the algorithm are tested when
stressed in terms of both search space and constraints set size.

Keywords: low-thrust; impulsive; routing; optimization; constellation;
multi-mission; multi-injection; multi-deployment.
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Estratto

L a continua crescita del numero di satelliti di piccole dimensioni che ne-
cessitano di essere lanciati oggigiorno [1] [2] richiede nuove strategie di

rilascio. Questo lavoro propone un nuovo approccio per risolvere il problema
di routing [3] [4] ed identificare velocemente dei possibili profili per rilasciare
simultaneamente ed efficacemente in orbita più satelliti per mezzo di un dis-
penser equipaggiato con propulsori a bassa spinta. La possibilità di effettuare
i trasferimenti attraverso manovre impulsive è anche presa in considerazione.
Il planning di una missione di multi-rilascio con un singolo lancio richiede la
soluzione di due principali problemi: convergere velocemente su un ordine di
rilascio fattibile che massimizzi l’utilizzo del lanciatore ed il guadagno; garan-
tire flessibilità e robustezza nel gestire operazioni on orbit durante tutta la
finestra temporale della missione. L’algoritmo proposto punta a trovare una
traiettoria sub-ottimale per il rilascio di N satelliti e correttamente distribuiti
sulle rispettive orbite operazionali e ad essere computazionalmente leggero
e veloce. L’algoritmo si propone inoltre di essere il più flessibile possibile in
termini di scenari di applicazione, essendo compatibile con rilascio multiplo
di satelliti sia omogenei, ovvero con caratteristiche simili sia in orbita di ri-
lascio che in proprietà fisiche, che eterogenei. Un metodo di ottimizzazione
euristico multi-obiettivo è stato preferito per trovare l’ordine di rilascio sub-
ottimale e le singole strategie di trasferimento, con l’obiettivo di minimiz-
zare il consumo di propellente e la durata della missione. Inoltre, l’algoritmo
garantisce la possibilità di introdurre vincoli ingegneristici, quali la massima
spinta o massima potenza disponibile, o operativi, come sull’ordine di rilas-
cio. I trasferimenti più impegnativi in termini di consumo di propellente e
durata, ovvero quelli che comprendono grandi cambi di piano (i.e. RAAN e
inclinazione), sono eseguiti sfruttando l’asimmetria del campo gravitazionale
terrestre [5]. Questo approccio porta a significativi risparmi nel consumo di
propellente al costo di un aumento della durata della missione, garantendo
così la grande flessibilità dell’algoritmo in termini di applicazione. Le per-
formance dell’algoritmo sono testate quando sottoposto a condizioni limite
sia in termini di dimensioni dello spazio di ricerca che di vincoli.

Parole chiave: bassa spinta; impulsivo; routing; ottimizzazione; costel-
lazione; multi-satellite; multi-rilascio.
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1. Introduction

1.1 Motivation of the research

I nterest in space and space applications is growing. With the advent of
CubeSats and SmallSats, which range from 0.01 to 180 kg [6], the need

for new techniques to launch in space these classes of satellites is arising. In
the incoming years, a substantial increment in the number of small satellites
to be launched has been forecasted [2]. Studies suggest that the number of
satellites launched in the decade 2019-2028 will have a x4 growth rate com-
pared to the previous decade and that satellites with a launch mass < 500
kg will account for 87% of such number. In addition to this, it was found
that "despite a growing number of operational dedicated launch vehicles, the
majority of nano/microsatellites in 2019 chose to leverage rideshare alterna-
tives" [1]. The drawback of piggyback launches is in the fact that usually
the small satellites are released on the target orbit of the main payload or
in its proximity. Consequently, these satellites would need their propulsive
system to be capable to allocate themselves on the correct orbit and with
the desired phasing. Also, they would need to wait for a launch whose main
payload has a target orbit as similar as possible to their final one.

Being such satellites the largest market share, new ways to facilitate
their access to space are being investigated. A possible solution to overcome
the drawbacks of piggyback payload launches is to develop the last stages
of launchers or dedicated vehicles able to carry the small satellites directly
on their operational orbit. Some of such vehicles already exist, such as
the Small Launch Orbital Maneuvering Vehicle (SL-OMV), as a propulsive
tug for secondary payload deployment equipped with green monopropellant
thrusters, developed by Moog Inc. [7]. Spaceflight Inc. is working at the
Sherpa-NG (Next Generation) program, a new program to release smallsats
to custom orbital destinations. The company has already developed and
successfully deployed 14 satellites (January 2021) with the Sherpa-FX and is
planning to launch also the Sherpa-LTE, a next-generation transfer vehicle
capable of multiple deployments based on electric propulsion [8]. In addition
to them, the Italian company D-Orbit has developed the ION (InOrbit Now)
satellite carrier [9], a dispenser that transports spacecraft to the desired
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1.2. Contribution of the work

operational orbits and deploys them at the correct phasing.

1.2 Contribution of the work

While most of the existing or under study multi-deploying vehicles rely on
chemical propulsion, one interesting way to approach the problem may be
considering a low-thrust vehicle to release several satellites in their respective
operational orbits. Previous works dealing with routing problems mainly
focused on Active Debris Removal (ADR) [10] [11] [12] [13], on-orbit servicing
[14] [15] or Multiple Gravity Assists (MGA) [16]. The problem of small-
satellites multi-platform insertion is different from ADR missions since the
former is characterized by a negative variation in dry mass after each release.
MGA missions are different for the application scenario since do not take
place around Earth but in outer space.

Only a few of the previous studies about routing problems focused on
low-thrust. The introduction of low-thrust instead of impulsive maneuvers
makes this work different from the vast majority of previous studies about
multi-deployment. This new approach leads to a substantial increase in the
complexity of the problem since keplerian dynamics is now affected by the
thrust for the whole duration of the orbital transfers. Also, natural distur-
bances must be taken into account to achieve good results since they are
in some cases about the same order of magnitude of the low-thrust propul-
sion if not higher. In particular, this work will consider an upper stage of
a launcher, provided with electric primary propulsion and in charge of the
multi-delivery

This research wants to develop an algorithm to optimize the combina-
tion of the low-thrust trajectories between the different release orbits around
Earth. In particular, this work focuses on developing an algorithm that is
able to give an estimate of the duration and of the propellant consumption
of a multi-deployment mission in a fast and efficient way. Keeping the com-
putational cost of the algorithm low is of paramount importance to allow
the exploration of numerous routing possibilities in a small amount of time.
Given its significant value, the computational effort of the algorithm will be
the main driver in the algorithm development and hence affecting most of
the choices behind it.

The problem of deploying several satellites in different positions around
Earth can be seen as a variant of the Travelling Salesman Problem (TSP), a
well-known problem of operations research, which is a particular case of the
more general Vehicle Routing Problem (VRP). The main difference with the
usual formulation of the problem is that, in its application to space dynamics,
the destinations are not fixed in time and space anymore. The slots in
which the satellites have to be released are indeed dependent on the epoch.
A heuristic optimization method will be selected to find the sub-optimal

2



Chapter 1. Introduction

solution of the VRP [11] [12] [14]. Indeed, due to the very large search space
characterizing the problem of releasing satellites on a high number of different
orbits, there is the need to choose an optimization method that allows finding
optimal or near-optimal solutions with low computational effort. This is
indeed necessary to compare different options and efficiently plan the multi-
deployment mission.

1.3 State of the art

This section presents the current level of development of the three main
pillars of the thesis:

1. First, the state of the art of the studies about the VRP in the space
environment is summarized.

2. Afterwards, an overview of the current development of optimization
methods and in particular heuristic ones is reported.

3. Lastly, the methods in which the low-thrust trajectories can be com-
puted, with particular focus on the shape-based methods, are pre-
sented.

1.3.1 Vehicle routing problem

Finding the optimal hopping path between different orbits means solving a
variant of the TSP, which is a particular formulation of the VRP. The latter
belongs to the class of the NP-hard problems, meaning that the computa-
tional time required to solve them dramatically increases with the size of the
problem.

The application of the VRP to space is not an absolute novelty. One of
the first applications can be found in the work by Alfriend et al. [14], where
the optimal rendezvous with geosynchronous satellites is dealt with. The
objective of the optimization is minimizing the velocity change ∆v induced
by out-of-plane maneuvers, considered the most significant part of the con-
sumption. Most of the VRP applications to space have been about ADR,
such as the work by Izzo et al. [12], where the VRP is approached through
different methods, such as the inver-over algorithm or the tree search. First,
the problem is treated as a static one, meaning with orbits fixed in space and
time. Afterward, the dynamic variant is approached, where the orbits are
not considered fixed anymore but perturbed by natural disturbances. An-
other interesting work is the one by Bèrend et al. [11], where instead branch
and bound is used to define the visiting order of the different debris of the
TSP. The previous works mainly focused on chemical-propelled spacecraft.
Only a few VRP studies have focused on low-thrust, such as the one by Yam
et al. [17], which deals with a low-thrust MGA problem.

3



1.3. State of the art

Many problems in orbital mechanics, like this variant of the TSP, can
be formulated as Hybrid Optimal Control Problem (HOCP). These prob-
lems include two different kinds of variables: continuous-valued variables,
such as the ones describing the state of the spacecraft in time, and binary
variables, such as the ones defining the visiting order of the hopping tra-
jectory. In particular, this problem belongs to the Mixed-Integer Nonlinear
Programming (MINLP), the area of optimization which deals with non-linear
problems with continuous and integer variables. Alternatively, to solve the
problem a two-layer optimization scheme can be adopted, as suggested by
Conway and Wall [18]. There, an outer-loop genetic algorithm defines the
visiting order while the inner-loop one locates near-optimal solutions for the
trajectory, computes the cost and returns it to the outer-loop genetic al-
gorithm. In this way, it can be avoided to deal simultaneously with both
discrete and continuous-valued variables. These different options were in-
vestigated in the work by Zhang et al. [4], who showed that the two-level
optimization presented the worst performance. In light of such results, this
work focuses on finding a solution to the MINLP.

1.3.2 Heuristic methods

A mission scenario with numerous satellites to release would lead to a prob-
lem with a really large solution space. Being the VRP an NP-hard problem,
this would lead to the need for a very high computational time to find the
optimal solution. In addition to this, the research space in this kind of prob-
lem is not a simply connected domain. For these reasons, it is necessary
to take into account optimization methods that trade optimality for speed.
Heuristic methods [19] do not grant to find the optimal solutions to the prob-
lem but the low computational effort required to achieve this near-optimal
solution makes them very valuable. Most complex problems like this variant
of the VRP require the evaluation of an immense number of possibilities to
determine an exact solution; the time required to find it may sometimes re-
quire even more than a lifetime. In addition to this, some problems such as
the one dealt with in this thesis may require to be solved much more than
one time, depending on their use and goal. For this reason, it is useful to
have an algorithm whose solution can be found in a relatively short amount
of time. Heuristics play an effective role in such problems by finding a way
to reach solutions with reasonable computational effort.

In particular problem-independent algorithms are often referred to as
"metaheuristic" algorithms. There is a number of metaheuristic algorithms
that could be adopted to solve the problem and it is important to select a
performing one. Each algorithm is characterized by a particular set of tuning
parameters that could be optimally set to maximize its efficiency. In the last
years, several metaheuristic methods have been developed and they can be
classified in many ways. One of the most significant classification [20] is the
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Chapter 1. Introduction

following:

• Trajectory methods: these algorithms work on one single solution
at a time, describing a trajectory in the search space during the search
process. They encompass local search-based metaheuristics.

• Population-based methods: these algorithms, on the contrary, deal
in every iteration with a set of solutions, therefore providing a way to
efficiently explore the search space.

While the former class of metaheuristics may enable better exploration of
a promising area, the latter ones are more suitable to find promising areas in
the search space [20]. Due to the vast solution space of the problem treated in
this work, population-based methods will be preferred to the trajectory ones
for this application. Among the population-based methods, one particular
method has been selected: the Particle Swarm Optimization (PSO). PSO
was first introduced by Kennedy and Eberhart in 1995 [21] as a development
of the Evolutionary Algorithms (EA). The most famous and commonly used
algorithm belonging to this family is the Genetic Algorithm (GA). This field
of study was first initiated in 1975 by Holland [22] and due to the promising
results it was successfully addressed towards optimization problems. GAs
take their inspiration from the biological evolution of species inside an en-
vironment. The latter is defined by the problem itself and the individuals
(also called chromosomes) represent the candidate solutions. Iteration by
iteration, new individuals are generated through recombination and muta-
tion of previous ones, imitating Darwin’s theory of natural selection. The
individuals with higher fitness have more probability to survive to the next
generation. PSO was instead inspired by the movement of birds in flocks [21].
Even though being classified as an evolutionary algorithm at the beginning,
its theoretical background along with its great potential gave origin to a new
category of algorithms known as Swarm Intelligence (SI). This algorithm was
chosen to perform the optimizations in this work of thesis due to its outstand-
ing performances. Differently from GA, PSO does not rely on probability
but on social behavior, implementing rules such as neighbor velocity match-
ing and acceleration by distance [23]. In particular, a multi-objective version
of PSO, known as Multi-Objective Particle Swarm Optimization (MOPSO)
[24] and specially modified to work with discrete variables, will be used since
better suited to the optimization of a multi-deployment mission.

1.3.3 Low-thrust trajectory design

Spacecraft trajectories are characterized by six coupled differential equa-
tions [25]. In addition to this, the motion of the spacecraft is perturbed by
natural disturbances and by its propulsive system. When considering contin-
uous thrust maneuvers, such as the low-trust case, also a seventh uncoupled
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differential equation is needed to model the mass variation in time due to
propellant consumption.

When perturbations and thrust are considered it is not possible to analyt-
ically solve the system of equations apart from really peculiar cases [26][27].
Solving the equation now becomes an optimal control problem. The control
law, given by the time history of the thrust, the in-plane and the out-of-
plane thrust angles, can be found with different methods belonging to the
following three macro-categories: direct methods [28] [29], indirect methods
[30] and shape-based methods.

• Direct methods have high computational cost since based on the
conversion of the continuous optimal control problem into a high para-
metric one.

• When using indirect methods, the problem is converted into a Two-
Points Boundary Values Problem (TPBVP) that can be solved with a
lower computational cost with respect to direct methods but requiring
an initial guess close to the optimal one.

• The shape-based methods instead have relatively low computational
cost and provide a good sub-optimal solution, making them the most
useful when dealing with large-search domains. This solution can later
be used as initial guess for a direct or indirect method to find the
optimal one.

For these reasons, since many evaluations of the low-thrust transfers will
be necessary to define the overall deploying trajectories, a shape-based ap-
proach will be used in this work to solve the optimization problem. Some
exact shape-based solutions are summarised by Petropoulos and Sims [31].
These analyses can be defined to be shape-based since the shape of the tra-
jectory is assumed a priori and the required thrust is computed a posteriori.
However, these solutions only take into account the planar problem and do
not give the possibility to exactly fix the boundary conditions of the trajec-
tory. One of the most used shape-based approaches for low-thrust trajectory
computation is the one developed by Conway and Wall, first only for the 2D
case [3] and then extended to the three-dimensional one [32], which however
only works for really small displacements in the third dimension. Neverthe-
less, when dealing with planetocentric scenarios like the one object of this
thesis, the thrusting of the spacecraft occurs over many revolutions around
the main planet. This further increases the complexity of the problem, mak-
ing the solutions found by Conway ineffective. The choice for the algorithm
to be used in the optimization process has therefore fallen on the work by
Prinetto [33], who developed an analytical shape-based method particularly
suitable for multi-revolution low-thrust trajectory design. This shape-based
approach is described in detail in section 4.1.1.
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1.4 Thesis outline

This work of thesis will be organized in the following structure:

• First, in chapter 2 the main structure of the routing algorithm will
be presented. This algorithm will be first kept as general as possible
and applies to any routing problem. Afterward, the approach through
which the routing and transfers will be optimized is presented in detail.

• In chapter 3 the routing algorithm will be specialized for the multi-
deployment scenario with impulsive maneuvers. Also, in this chapter,
a validation of the routing algorithm is performed and commented.

• In chapter 4 the routing algorithm is applied to the low-thrust multi-
deployment scenario. Afterward, the low-thrust transfer strategy is
compared to the impulsive one.

• Later, in chapter 5 some applications of the multi-deployment algo-
rithm are dealt with. Both constellation and multi-satellites deploy-
ment scenarios are taken into consideration

• Finally, chapter 6 critically comments the results achieved in the pre-
vious chapters and suggests some possible future works on the matter.
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2. Routing architecture
development and optimization

This chapter is divided into two main sections:

• Routing algorithm: the workflow of the algorithm is explained, still
independently from the propulsion of the vehicle at this point. This
algorithm will be applied to a multi-deployment mission scenario but
is a generic algorithm solving the routing which can be applied to any
other routing problem, such as MGA, on-orbit servicing or ADR.

• Optimization: the peculiar optimization approach developed and
adopted for the optimization of the routing and transfers is presented.

2.1 Routing algorithm

First, the main structure of the algorithm is presented. Afterward, more
details about the reasoning behind the developing choices are reported.

2.1.1 Algorithm workflow

The main workflow of the algorithm is shown in Figure 2.1.

Routing 
Initialization

Single Transfer 
Initialization

Transfer TRUE

FALSE

IMPULSIVE ALGORITHM

Input

Output
Index
Check

Figure 2.1: Routing algorithm main workflow.

• Input: at first, the main inputs are given to the function. The main
inputs of the algorithm are the initial wet mass of the vehicle M0, the
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2.1. Routing algorithm

initial time JD0, the specific impulse Isp, the initial state KP0 and the
two matrices K and P. The former is a matrix of dimensions 6 × N ,
where N is the number of orbits onto which to deploy the satellites.
Each column of the matrix contains the KP of each orbit. Matrix P is
presented in the next item.

• Routing Initialization: In this block, the releasing order is defined.
Given N orbits onto which to release the satellites, the optimal path
will be one of the possible permutations of the vector [1, 2, ..., N ], where
each number identifies one of the columns of K. The matrix P is built
outside the algorithm through the operator in eq. (2.1), where x =
[1, 2, 3, .., N − 1, N ].

P = perms(x) (2.1)

The operator builds the matrix P such to contain all the possible per-
mutations of x and its size will be N ×N !. For instance, if N = 3 the
following matrix is created:

P =

3 3 2 2 1 1
2 1 3 1 3 2
1 2 1 3 2 3

 (2.2)

Once the matrix P is built, only one discrete variable identifying one of
the columns of P is enough to define the releasing order. The selected
column will be referred to as p. Arithmetic overflow might occur when
building the matrix P. Such issue and more details about the choice
of introducing P to solve the VRP are discussed in section 2.1.2.

• Single Transfer Initialization: Once the releasing order is fixed,
the first of the N transfers must be initialized. In this block, the initial
mass and date of the transfer are updated, together with the target
state position which also depends on the epoch (see section 2.1.3).

• Transfer: In this block, the transfer between the current state and
the next one in the releasing order is computed.

• Index Check: In this block a check about the progress of the releasing
mission takes place. If the last released satellite does not correspond
with the last element of p, the next transfer is initialized. Otherwise,
the mission is completed and the final output can be computed.

• Output: Once the last element of p has been reached, the total pro-
pellant consumption and duration of the transfer can be computed. In
particular, the total values are the sum of the partial contributions of
each transfer.
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2.1.2 VRP solution

As aforementioned, the problem belongs to the MINLP family, presenting
both discrete and continuous variables. The latter are the ones optimizing
the transfers, while the discrete variables are needed to define the route of
the releasing vehicle. Since the multi-deployment algorithm must run inside
an optimizer in order to find the optimal or near-optimal solutions, it was
necessary to find a way to help the optimizer to efficiently evaluate different
releasing orders. To solve the problem, two main ways were identified:

1. One way to approach the problem may have been working with N
discrete variables, each one assuming a value from one to N, which put
together in a vector would compose the visiting order of the hopping
trajectory. However, this solution did not result to be efficient since
a constraint of mutual diversity of the N variables would have to be
introduced. Every visiting order vector with two repeating numbers
would indeed represent a solution with no practical meaning since it
would imply reaching twice the same orbit.

2. In order to speed up the algorithm and guarantee convergence onto
a solution with practical meaning, the introduction of the matrix P
was considered. This approach guaranteed that the optimizer only
evaluates solutions with practical meaning, i.e. only solutions with
no repetitions in the releasing order. Also, this solution resulted to
be particularly efficient since thanks to this choice only one discrete
variable identifying the column of the matrix in eq. (2.2) is sufficient
to define the visiting order of the orbits, allowing to drastically reduce
the search space. This variable will be the only discrete variable of the
optimization and shall adopt values from 1 to N !, which is the number
of columns of matrix P.

On the one hand, the latter solution speeds up the convergence of the
algorithm with respect to considering N discrete variables to define the vis-
iting order. On the other hand, the building of P can require large storage
space with increasing values of N. For these reasons the matrix P is built
only once outside the multi-deployment algorithm and this approach proves
ineffective for values of N larger than 11 (e.g. the storage of matrix P for
N = 12 would require 42.8 GB of space). To avoid this limitation, a hybrid
optimization approach between a branch and bound method and a heuristic
method was implemented, explained in section 2.2.2.

2.1.3 Target state dependence on epoch

Sometimes environmental perturbations are so high that it would be in-
feasible and even useless counteracting them for the whole duration of the
mission. This is the case of the Earth’s gravitational perturbation in Low
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Earth Orbit (LEO) region. The most important effect of such perturbation
is a secular variation of the RAAN of a spacecraft over time. The zonal
harmonic J2 is the only one taken into account in this analysis since it con-
stitutes the main contribution to the gravitational perturbation of the Earth.
The rate of change is described by eq. (2.3), where n represents the mean
angular velocity on the orbit, R⊕ the radius of the central attractor, i the
inclination of the orbit and p its semi-latus rectum. It is clear that the closer
to the Earth’s surface, the higher the rate of change.

Ω̇sec = −
3nR2

⊕J2
2p2

cos(i) (2.3)

Since changing the RAAN basically is a plane change maneuver, the latter
is really expensive from a propellant consumption point of view and must
therefore be avoided as much as possible. However, most times satellites let
the RAAN shift according to the J2 accelerations while compensating only
some short and long period variations due to the J2 effect, such as the one of
the semi-major axis. Two are the most important cases in which the RAAN
is left free to shift:

1. For instance, when dealing with a constellation of satellites usually
what really is important is the RAAN difference of the orbital planes
rather than the absolute values of this parameter. Orbital planes are
left free to shift their RAAN, as long as the shift is the same for all of
them.

2. Another case in which the RAAN is willingly left to shift is when a
satellite is placed on Sun-Synchronous Orbit (SSO). These orbits are
characterized by a net effect of the Earth gravitational perturbation
which makes the RAAN precesses in such a way that a satellite on
this orbit passes over any point of the Earth surface at the same local
time, meaning that the angle between the Sun and the orbital plane
stays constant. When describing a SSO, the RAAN is substituted
by the Local Time of the Ascending Node (LTAN). LTAN represents
the time when the satellite crosses the equator when traveling from
the south pole to the north pole, that is why it is called ascending.
Consequently, it defines the time of day at that Earth location when
the satellite is overhead. A SSO is characterized by a constant LTAN.

These are the reasons why the target state depends on the epoch and this
dependence must be accounted for in the multi-deployment algorithm. In the
block Single Transfer Initialization, once the JD is updated it is possible
to accordingly update the target state through eq. (2.3), knowing the initial
condition which is stored in matrix K. By doing so only the secular variation
of the orbital parameters is taken into consideration. However, integrating

12



Chapter 2. Routing architecture development and optimization

the target state to consider each oscillation would not only dramatically slow
down the algorithm but also lead to no improvement in terms of propellant
and time estimation.

2.2 Optimization

Once the routing algorithm is built, this algorithm is run through an opti-
mizer to find the optimal or near-optimal visiting order and transfer strategy.
In this section, first, an overview of the kind of optimization adopted is given.
Afterward, the particular optimization approach developed to solve the prob-
lem is presented. Finally, the way the constraints are introduced into the
optimization process is explained.

2.2.1 Multi-objective optimization

When dealing with a multi-deployment mission, two are the most impor-
tant values to be careful about: the overall propellant consumption and
the mission duration. For this reason, a bi-objective optimization aimed at
minimizing these two values was chosen.

While the result of a single-objective optimization problem is a single
solution, in a non-trivial multi-objective optimization problem the result is a
set of optimal solutions. This is due to the fact that there is no single solution
that simultaneously minimizes all the objectives. The set of optimal solutions
is composed of all the non-dominated solutions found by the optimization
method, also known as Pareto solutions. A solution S1 dominates a solution
S2 if each of the objectives of the solutions S1 are most performing than the
ones of S2. In the case of bi-objective optimization, the set of non-dominated
solutions presents itself as a line known as Pareto front. The classic output
of bi-objective optimization is represented in Figure 2.2. The non-dominated
solutions compose the set of optimal solutions found by the algorithm.

Alternatively, a single-objective optimization could be performed but a
constraint on the other quantity must be introduced. This would not be
effective for two reasons:

1. It is not always easy or possible to define a net constraint of a quan-
tity. Also, introducing the latter to one of the two quantities, would
automatically discard solutions with a slightly higher value than the
constraint but maybe with a really convenient final objective value.

2. The final solution of the single-objective optimization would be very
likely to have the constrained quantity adopting a value very close
to the constraint. This would not allow the investigation of solutions
with a lower value of the constrained quantity but with a slightly worse
objective value.
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f1(x)

f2(x)

Non-dominated solutions
Dominated solutions

Figure 2.2: Pareto front.

For these reasons, a bi-objective optimization was adopted to solve the
problem. As already stated in section 1.3.2, due to the vastness of the search
space it would be infeasible to choose an exact method for the optimization.
It was necessary to select an optimization method that trades the optimality
of the solution for computational speed. For this reason, a heuristic method
was selected, in particular a population-based method which is the most
suitable for very large search space problems, since based on the simultaneous
evaluations of more solutions. From now on, the MOPSO [24] method,
specially modified to work with discrete variables, will be used to perform
all the multi-objective optimizations.

2.2.2 Optimization approach

While the optimization method selected was the MOPSO, a particular ap-
proach to deal with the optimization of the problem was developed and is
presented in this section.

On the one hand, using the matrix P proved extremely effective in the
numerical validation of the routing algorithm (see section 3.4). On the other
hand, it does not allow to deal with a problem with more than 11 orbits
to reach. To overcome this limitation a branch and bound based heuristic
approach was considered. This approach is a hybrid between the classical
exact branch and bound method and a heuristic algorithm. Given a set of
N orbits to reach onto which to release the satellites, instead of dealing with
the whole hopping trajectory at once, the problem is broken up into smaller
and consequential subproblems. A parameter r which defines the dimension
of the subproblem is chosen, defining also the number of iterations necessary
to solve the problem of reaching the N orbits. The number of iterations
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Niter needed to solve the problem can be computed by eq. (2.4), where the
operator rounds the result of the fraction to the nearest integer greater than
or equal to it.

Niter = ceil
(
N

r

)
(2.4)

In the case in which the remainder after the division of N by r is different
from zero, the last iteration is performed with a subset of size r equal to the
remainder. For instance in the case of N = 14 and r = 4, four iterations will
be needed, the latter of which with r = 2.

When adopting this hybrid approach, the matrix P to give as input to
the routing algorithm is built through the use of a different operator than
eq. (2.1). The new operator is shown in eq. (2.5) and builds a matrix which,
given a set of N orbits to reach, only contains the permutations of a subset
of r elements of the vector x.

P = subperms(x, r) (2.5)

The number of possible permutations Nperms, in this case, can be found
through eq. (2.6).

Nperms =
N !

(N − r)!
(2.6)

The size of the matrix P will be r × Nperms. For instance, with N = 4
and r = 2, matrix P coming as output from eq. (2.5) would appear as in
eq. (2.7).

P =

[
2 1 3 1 4 1 3 2 4 2 4 3
1 2 1 3 1 4 2 3 2 4 3 4

]
(2.7)

However, again, the value of r must be carefully selected to avoid the
memory problem which occurs computing the permutations of the whole
set. It can be easily seen from eq. (2.6) that the larger the subset, the
higher the number of columns of the matrix P and therefore the higher its
storage space required. Choosing therefore a too high parameter r defining
the dimension of the subsearch would not allow solving large-N problems
anyway.

Optimization approach pseudo code

The pseudo code of the optimization approach is presented in Alg. 1, whose
steps are described below, and is represented by the scheme in Figure 2.3.
In the latter, each circle represents a single solution. The grey solutions
actually represent several solutions, whose number is unknown a priori due
to the heuristic nature of the optimization.

15



2.2. Optimization

… ……𝑓 , 𝑓 ,
𝑭
𝑯

𝑥 , ℎ , 𝑖 , 𝑁 , 𝑟

ℎ ,

𝑥 ,

ℎ ,

𝑥 ,

𝑭 ,

𝑯 ,

𝑭
𝑯

… … … …… 𝑭 ,

𝑯 ,

Figure 2.3: Branch and bound based heuristic approach scheme.

Algorithm 1: Branch and bound based heuristic approach
Data: x0, i0, h0, Niter, r
Result: FNiter , HNiter

begin
[F1, H1] = branching(x0, i0, h0, r)
for j = 2 to Niter do

Nj−1 = length(Hj−1(:, 1))
for k = 1 to Nj−1 do

hj−1,k = Hj−1(k, :))
xj−1,k = exclude(x0, hj−1,k)
ij−1,k = Fj−1(k, :))
[Fj,k, Hj,k] = branching(xj−1,k, ij−1,k, hj−1,k, r)

end
Hj = [Hj,1; Hj,2; ... ;Hj,Nj−1 ]

Fj = [Fj,1; Fj,2; ... ; Fj,Nj−1 ]

[Fj , Hj ] = bounding(Fj , Hj)

end
[Fj , Hj ] = boundingpareto(Fj , Hj)

end

• The inputs to the algorithm are the vector of all the elements still to
be reached x, the vector of initial conditions i, the vector containing
the indices of the destinations already reached h. At the first iteration
x0 = [1, 2, .., N ] and h0 is initialized as an empty vector. In addition
to these, the number of iterations Niter computed in eq. (2.4) and the
sub-search dimension r are also given as input to the algorithm.
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• The first iteration is performed outside the for loop. The operator
branching, starting from one initial condition, runs the heuristic opti-
mizer and finds a set of partial solutions which make the first branches
of the algorithm. The matrix P at this iteration is computed through
eq. (2.5), with x0 as input. The heuristic algorithm only gives as out-
put the solution which respect the bounding criteria (explained in the
next paragraphs). Each solution is characterised by fj,1, hj,1 and xj,1
vectors. The survived solutions are stored in two matrices:

– Fj = [fj,1; fj,2; ... ; fj,Nj ] is the matrix containing the final
conditions of each solution, including the values of the objectives.

– Each row of Hj = [hj,1; hj,2; ... ; hj,Nj ] contains the indices of
the elements reached by the respective partial solution.

• Now the first for loop begins. At each iteration, Nj−1 is computed,
which is the number of the branches coming from the previous iteration.
The operator length computes the number of elements of the vector
of input. Each of the branches represents a solution that must be
expanded in the following for loop.

• One branch at a time, the iteration is initialized defining hj−1,k, ij−1,k

and xj−1,k. The latter in particular is defined by the operator exclude.
This operator cancels from x0 all the elements already reached by that
partial solution, identified by hj−1,k. The new vector xj−1,k will have
dimension N − r · j.

• From each branch, a new set of branches is found again through the
operator branching. At each iteration a different P is given as input
to the routing algorithm, again computed through eq. (2.5), each time
with xj−1,k as input. The branches are stored in Fj,k and Hj,k.

• Once all the branches have been expanded, the solutions are stored in
the matrices Fj and Hj , which include all the branches born from the
current iteration.

• Before starting the next iteration, the bounding criteria must be ap-
plied to Fj and Hj . While it is true that each Fj,k is composed by
solutions which survived the bounding inside the single optimization,
now they must be compared to the all the other set of solutions of the
iteration. The bounding criteria are applied by the operator bounding
and the new Fj and Hj , containing only the survived solutions, are
given as output. In Figure 2.3 the solutions which do not survive the
bounding criteria are indicated with the symbol ⊥.

• The solutions of the iteration j − 1 which survived the bounding op-
erator, are now expanded themselves.
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• After the last iteration, if necessary, a more stringent bounding crite-
rion is applied to the final set of solutions. In particular, through the
use of the operator boundingpareto only the non-dominated solutions
are kept.

Bounding criteria

The operator bounding, given a set of solutions and some bounding crite-
ria, only keeps the solutions that respect the latter while discarding all the
others. For a single-objective optimization, the criterion could be discarding
all the solutions out of a certain percentage range from the optimal solution
found. For a multi-objective solution, the choice of a bounding criterion is
more complex since usually a set of optimal solutions is found. One way
might be discarding all the solutions not belonging to the Pareto front of the
sub-problem, whose properties have been explained in section 2.2.1. How-
ever, there is the risk of discarding some partial solutions really close to
the Pareto front, which might eventually become optimal solutions when ex-
tending them. Therefore, also in the case of a multi-objective optimization, a
region of solutions must be selected: all the solutions belonging to the Pareto
front or within a certain percentage range from one of the solutions in the
front can be kept and then extended. These solutions outside the Pareto
front but which survive the bounding criterion are referred to as "partially
dominated solutions", even though they are actually fully dominated accord-
ing to the definition of dominated solutions in section 2.2.1. The value rperc,
chosen between 0 and 1, sets the percentage range within which a dominated
solution is considered to be only partially dominated. A schematic represen-
tation of such solutions is reported in Figure 2.4. Indicating with f1,D and

f1(x)

f2(x)

Non-dominated solutions
Dominated solutions

Partially Dominated Solutions

Figure 2.4: Pareto front and partially dominated solutions.

f2,D the objectives of a dominated solutions and with f1,P and f2,P the ones

18



Chapter 2. Routing architecture development and optimization

of the closest non-dominated solution, a dominated solutions is considered
to be partially dominated if both the criteria in eq. (2.8) are met.

f1,D − f1,P
f1,P

< rperc (2.8a)

f2,D − f2,P
f2,P

< rperc (2.8b)

Graphically, each Pareto solution has a rectangle with sides of length
rperc · f1,P and rperc · f2,P which defines the range into which a dominated
solution is considered to be partially dominated.

2.2.3 Constraints introduction

When dealing with engineering problems, it is of paramount importance that
an algorithm allows the introduction of constraints to some of the variables.
In the routing algorithm, the constraints will be introduced by the use of
penalty functions.

Penalty functions allow treating of constrained problems as unconstrained
problems, introducing an artificial penalty when the constraint is violated.
The constraints can be applied both to a variable or to one or more of the
objectives. However, the introduction of penalty functions may create severe
slope changes or discontinuities in the solution space, which could interfere
with the optimization algorithms chosen in this thesis. For example, intro-
ducing a fixed penalty when a constraint is violated may lead to these kinds
of complications since the optimization algorithms investigate the search-
space focusing on the directions where the objective functions improve. A
constant penalty might interfere with this research and therefore with the
convergence of the method since no improvement in the objective function
violated would be found and it would be more difficult to redirect the search
towards regions that respect the constraint. One way to solve this problem
is by introducing a penalty function whose penalty is proportional to the
amount of violation of the constraint. By doing so, the algorithm even if
in a region of the search space which violates the constraint is able to exit
from such region. For instance, considering a generic objective f1 and an
upper limit L1, the objective function is modified adding the quadratic loss
function λ(f1, L1) in eq. (2.9).

λ(f1, L1) = max(0, f1 − L1)
2 (2.9)

The new formulation of the objective is presented in eq. (2.10),

f1 = f1 + F · λ(f1, L1) (2.10)

where F is the penalty factor, a scalar greater than 0 and arbitrarily chosen
depending on the order of magnitude of f1.
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3. Multi-deployment
impulsive algorithm

Once the main structure of the routing algorithm has been presented, it is
possible to go in-depth with impulsive and low-thrust versions of the multi-
deployment algorithm. This chapter is organized in the following way:

• Single transfer: the first section briefly presents how the impulsive
single transfers are computed.

• Transfer strategy: the second section explains the strategy selected
to perform the transfers between the states of matrix K.

• Multi-insertion on same orbit: this section explains the algorithm
developed to take into account the scenario in which more than one
satellite has to be released on the same orbit but at different anomalies.

• Numerical results: in the last section the impulsive routing algo-
rithm is tested on a problem already solved in literature, to test the
performances of the main algorithm structure presented in the previous
chapter.

Once the impulsive transfer strategy is chosen, it is enough to integrate
it with the routing algorithm of Figure 2.1 to create the impulsive multi-
deployment algorithm represented in Figure 3.1.

Routing 
Initialization

Single Transfer 
Initialization

Impulsive 
Transfer

TRUE

FALSE

IMPULSIVE ALGORITHM

Input

Output
Index
Check

Figure 3.1: Impulsive multi-deployment algorithm algorithm main workflow.
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3.1. Single transfer

3.1 Single transfer

The single transfers, when dealing with impulsive maneuvers, are simply
modeled as a solution of the Lambert problem [34]. Once the transfer trajec-
tory is defined, the cost of the transfer can be easily obtained by computing
the differences in the velocity vectors at the injection onto the transfer orbit
and at the moment of the arrival at the desired state. From the solution of
the Lambert problem, the transfer orbit is defined and it is, therefore, pos-
sible to compute the magnitude of the ∆v of the two impulses. In this case,
the only variable of the transfer optimization is the Time Of Flight (TOF)
of the transfer.

Usually, when dealing with impulsive maneuvers the cost of the transfer
is measured in the total change of velocity ∆v and it is therefore considered
the objective of the minimization in an optimization problem. The issue with
adopting such objective is that the purpose to save propellant mass coincides
with the minimization of the ∆v only under the assumption that the mass
variation of the vehicle occurs solely by depletion of the fuel. This is not
true for the application dealt with in this thesis, since after each transfer
a satellite is deployed varying the dry mass of the vehicle. In that case,
the minimization of the propellant mass must be addressed directly. After
each transfer the ∆v cost must be converted into propellant cost through
the Tsiolkovsky equation in eq. (3.1), where g0 is the average Earth gravity
acceleration, M0 the mass of the spacecraft before the transfer and Mf the
mass at the end.

∆v = Isp · g0 · ln
(
M0

Mf

)
(3.1)

From eq. (3.1), Mf can be obtained and the propellant cost of the transfer
Mprop is found simply by computing the difference between initial and final
mass.

In spite of its simplicity, this transfer strategy is not efficient at all when
connecting two orbits with large differences in RAAN. Since having in matrix
K orbits characterized by different values in RAAN was considered a really
likely case in a multi-deployment mission scenario, a different strategy was
chosen to perform the transfers.

3.2 J2 exploiting transfer strategy

To perform the transfers in the most efficient way, a transfer strategy exploit-
ing the secular effect of the J2 perturbation was planned and is explained
in the next paragraphs. The main idea behind this different approach is to
change the RAAN of the spacecraft not by thrusting the spacecraft but only
exploiting the gravitational perturbation due to the not spherically symmet-
ric mass distribution of the central attractor [5]. The RAAN of a spacecraft
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on a given orbit can be changed for free by waiting the necessary amount
of time without counteracting the J2 perturbation. By doing so, the rate of
change of the RAAN would be the one in eq. (2.3). Alternatively, the space-
craft can also move to another orbit in order to make the desired change of
RAAN happen faster at a cost of a little propellant consumption. This two-
legs transfer option is the most efficient in terms of propellant consumption
and turns the transfer problem into an optimization problem whose variables
are the KP of the intermediate orbit onto which to stationary for the change
of RAAN and the TOF of the two transfer legs. The workflow of the transfer
strategy is shown in Figure 3.2

Define KPd

KP1 KP2

First 
Lambert 
Transfer

Compute
Drifting Time

Second 
Lambert 
Transfer

Mprop TOFTOF1 TOF2

Figure 3.2: J2-exploiting impulsive transfer strategy workflow.

• Inputs: The starting orbit KP1 and the target orbit KP2 are the two
main inputs to the function. TOF1 and TOF2 are the TOF of the two
legs of the transfer strategy and are the variables of the optimization
for each single transfer.

• Drifting Orbit Definition: Starting from the two orbits, it is pos-
sible to define the orbit onto which to stationary to shift the RAAN,
here referred to as drifting orbit KPd. The drifting orbit is completely
defined by 6 variables, which are its 6 KP. The way such parameters
are defined is presented in Table 3.1.

ad ed id Ωd ωd θd

var 0 var Ω1
1
2(ω1 + ω2) θ1 + pi

Table 3.1: KP of the drifting orbit for impulsive maneuvers.

As it can be seen from eq. (2.3), the three parameters which affect the
RAAN variation are the semi-major axis a, the eccentricity e and the
inclination i. For this reason, not all the KP are considered as variables
in order to reduce the size of the optimization problem:

– The semi-major axis is the one which has the greatest impact
on the RAAN variation and it is also an element whose value
is relatively cheap to control and change, making it the main
variable of the optimization.
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3.2. J2 exploiting transfer strategy

– Eccentricity affects the RAAN change since a high value means
an orbit perigee at a lower altitude and therefore more subject to
the gravitational asymmetries of the central planet. However, it
is preferred to have a uniform influence of such asymmetry on the
spacecraft over the revolutions and therefore this value is chosen
to be 0. This parameter might be taken as a variable for further
and more detailed optimizations; it may be more relevant when
dealing with starting or target orbits with high eccentricity.

– The inclination is a parameter that also greatly affects the RAAN
variation but it is also extremely expensive to change. Therefore,
it is considered as variable but only when a change of inclination
is necessary from original to target orbit. In that case, the value of
the inclination of the drifting orbit is selected between i1 and i2.
In the case in which i1 and i2 have the same value, the inclination
is kept the same as the ones of the two orbits unless polar orbits
are dealt with. Polar orbits do not experience the RAAN secular
variation and, for this reason, it is necessary to depart from 90◦

inclination to shift the orbital plane.

– The argument of perigee ω of an orbit does not affect the secular
variation of the RAAN. For this reason, ωd was not taken as
variable of the problem and was arbitrarily set to have a halfway
value between ω1 and ω2.

– The RAAN of the drifting orbit is chosen to be equal to Ω1 since
the RAAN variation will be fully achieved through the exploita-
tion of the secular effect of the perturbation.

– The true anomaly θ was also discarded as variable since it does not
affect the secular RAAN variation and therefore was considered
to be θ2 = θ1 + pi to resemble as much as possible a Hohmann
transfer.

• First transfer: Once the drifting orbit is defined, the cost and dura-
tion of the first transfer are computed.

• Drifting Time Computation: Once the target orbit has been reached,
it is necessary to compute the amount of time necessary to close the
RAAN gap. Generally speaking, knowing the elements of the drift-
ing orbit KPd and the ones of the target orbit KP2 it is possible to
compute the RAAN gap (eq. (3.2a)) at the moment of the arrival on
the drifting orbit and the relative drift rate (eq. (3.2b)). Once these
two quantities are known, it is possible to compute the waiting time
(eq. (3.2c)) necessary to have Ω2 = Ωd, at a value different from the
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two original ones.

∆Ω = Ω2 − Ωd (3.2a)

∆Ω̇ = Ω̇d − Ω̇2 (3.2b)

twait =
∆Ω

∆Ω̇
(3.2c)

• Second Transfer: Once the RAAN has been updated for both the
orbits after the stationing onto the drifting orbit, the second transfer
to the target orbit KP2 can effectively be computed.

• Outputs: At the end, the whole cost of the two-legs transfer is com-
puted. In terms of propellant, the total amount needed to reach the
target orbit is the sum of the propellant consumed in the two legs of
the transfer. In terms of time, the total duration of the transfer is the
sum of the TOF of the two legs and also the waiting time onto the
drifting orbit.

Numerical example

It is interesting to find some numerical results about the J2 exploiting strat-
egy. The KP of the two starting and target orbits are the ones in Table 3.2.
The spacecraft initial mass is considered to be 100 kg with a specific impulse
Isp of 350 s.

a [DU] e [-] i [deg] Ω [deg] ω [deg] θ [deg]

KP1 1.1 0.1 67 30 0 0

KP2 1.3 0 67 0 0 0

Table 3.2: KP of starting and target orbit for impulsive transfer strategy
example.

The multi-objective optimization was performed through the MOPSO,
whose two main parameters to tune are the population size Np and the
maximum number of generations Mgen. For the optimization of the single
transfer these parameters were chosen to assume the values Np = 50 and
Mgen = 100. The variables of the optimization, as already stated in Ta-
ble 3.1, were the semi-major axis, the inclination of the drifting orbit and
the TOF of the two transfers. The lower and upper bounds, lb and ub, of the
optimization are shown in Table 3.3. The upper bound of the TOF of the
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Parameter lb ub

ad [DU] 1.05 1.5

id [deg] 67 67

TOF1 [d] 0 T2

TOF2 [d] 0 T2

Table 3.3: Lower and upper bounds for the impulsive transfer strategy ex-
ample.

two transfers was set equal to the larger period of the two orbits T2. Since
the inclination of starting and target orbit are the same, fictitious lower and
upper bounds for this variable were considered. Performing the optimization
with a range of inclination as solution space would lead to the same results
in the optimization of the single transfer. However, when dealing with a
multi-deployment scenario with N different transfers, considering a range of
inclination for each transfer would critically increase the size of the solution
space negatively affecting the quality of the final solution. For this reason,
the range of inclination can be neglected if the orbits belong to the same
inclination plane.

Figure 3.3: J2-exploiting impulsive transfer strategy example results (M0 =
100 kg; Isp = 350 s).
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The results of the bi-objective optimization are shown in Figure 3.3.
When dealing with impulsive maneuvers, the times of flight of the transfers
are short and the greatest part of the duration of the mission is the drifting
time. However, as it can be seen from Figure 3.3, adopting the J2 exploiting
transfer strategy with impulsive maneuvers does not necessarily lead to a
short duration of the mission. These results will be later compared to the
low-thrust case in section 4.2.

3.3 Multi-insertion on same orbit

When more than one satellite has to be released onto the same orbit, a
phasing maneuver must be performed to release them at the correct true
anomaly. When not dealing with low-thrust, a phasing maneuver is a two-
impulse Hohmann transfer from and back to the same orbit [35]. The first
impulse is given at the perigee of the orbit in order to insert on one with
a smaller (larger) period when the target is ahead (behind) the chaser in
terms of anomaly. The period T2 of the intermediate orbit is computed
with eq. (3.3), where T1 is the period of the original orbit, tAB the time
needed on the original orbit to close the anomaly gap and Nrev the number
of revolutions that needs to wait for on the intermediate orbit. Of course the
higher Nrev, the longer the duration of the phasing maneuver, the lower the
cost since T2 will be more similar to T1 and therefore requiring a smaller ∆v.
Once waited for the desired number of revolutions, the chaser will exactly
rendezvous the target at the perigee and a second impulse is given to insert
again on the original orbit.

T2 = T1 −
tAB

Nrev
(3.3)

The way the phasing maneuver will be taken into account is presented in
Figure 3.4. The value ofNrev is estimated iteratively, starting from Nrev = 1,

T2
TRUE

FALSE

PHASING MANEUVER

Nrev=1
Semi-Major Axis

Check
a2

Mprop

TOF

Nrev= Nrev +1

Figure 3.4: Phasing maneuver algorithm.

such that a2 is greater than a certain fraction of a1, where a1 refers to the
original orbit and a2 to the orbit onto which to wait. By arbitrarily fixing
a low value of Nrev, such as 1, the algorithm would eventually select an a2
extremely different than a1 which would require a really large propellant

27



3.4. Numerical results

consumption. For this reason, a fraction of a1 which defines the lower bound
of a2 must be chosen, depending on the orders of magnitude of the semi-
major axes. Whether a2 is higher or not the lower bound is checked in the
Semi-Major Axis Check block. Once the period T2 of the orbit onto
which to wait for Nrev revolutions is known, it is possible to compute its
semi-major axis and subsequently the cost ∆vH of the Hohmann transfer to
reach it and to go back to the original orbit. The propellant mass necessary
is then computed once ∆vH is known and inverting the Tsiolkovsky equation
in eq. (3.1).

3.4 Numerical results

It was interesting to compare the results obtained applying the impulsive
algorithm to problems whose solution was known in order to validate it and
also to assess the algorithm quality and efficiency. The algorithm valida-
tion was carried on by solving the problem faced in the 5th GTOC, whose
solution is known and was already used for validation in several papers [4]
[36]. The scenario of this problem is different from the multi-deployment
mission which is the main focus of the algorithm developed in this thesis.
However, the two problems share similar features and therefore by apply-
ing only really little changes to the algorithm it was possible to apply it to
this different problem. The problem deals with three versions of a multiple
asteroids rendezvous task, respectively with 4, 8 and 16 targets. The opti-
mization approach developed in section 2.2.2 to enlarge the capabilities of
the algorithm only suits multi-objective optimization (due to the branching
and bounding criteria chosen). For this reason, the algorithm will only be
tested on the 4 and 8 target cases.

The workflow of the algorithm stays the one of the routing algorithm
represented in Figure 2.1. In this case, the impulsive transfer will be per-
formed as a single Lambert transfer, the first transfer option reported in
section 3.1. Also, besides the TOFs of the transfers, other variables for the
optimization had to be introduced: the departure date t0 from Earth (which
influences the state of the Earth at that date) and the exploration time texp
on each asteroid (which is the time passing from the arrival at one asteroid
to the departure from it). These two kinds of variables were not considered
in the multi-deployment algorithm but can easily be added if necessary. The
constraints on the lower and upper bounds of the variables were fixed and
are listed in Table 3.4. The date of departure from Earth is expressed in
Modified Julian Date (MJD).

The starting point of the hopping path is the Earth, whose state at the
epoch 54000 Julian Date (JD) is reported with the ID 0 in Table 3.5. The
other IDs represent the states of the eight targets of the multiple rendezvous
trajectory at the epoch 2456600.5 JD.
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Parameter lb ub

TOF1 [d] 0 730

texp [d] 7 365

t0 [MJD] 57023 61041

Table 3.4: 5th GTOC problem lower and upper bounds.

ID a [AU] e [-] i [deg] Ω [deg] ω [deg] M [deg]

0 0.9999880 0.0167168 0.00089 287.61578 175.40648 257.60684
1 1.0377497 0.0740190 1.27980 196.84658 111.32136 220.55456
2 1.0537339 0.0604714 0.23523 216.10320 134.34440 242.72351
3 1.0099643 0.0830940 1.43929 43.48569 273.55713 57.93400
4 0.9593424 0.1448353 0.72205 36.86737 316.29050 146.08995
5 1.0617043 0.0515307 1.26705 253.32360 316.76764 115.45581
6 1.0382537 0.1065636 0.55071 225.80291 281.99557 136.76768
7 1.0332190 0.0684246 0.26337 21.04400 300.95352 345.64862
8 1.0235198 0.0985837 1.40948 139.83156 94.80897 84.23810

Table 3.5: 5th GTOC problem initial Earth and target conditions.

PSO was chosen as computational method for the single-objective opti-
mization to minimize the total ∆v of the hopping journey. In particular, the
particleswarm function of Matlab Global Optimization Toolbox [37] was
used. The default tuning parameters of the algorithm were adopted in this
case; a research of the optimal ones might further increase the performances
reported in the next paragraphs.

For both the 4 and the 8 targets cases, respectively identified as Case
1 and Case 2, the problem was solved 10 times and the results are shown
in Table 3.7. The results of the routing algorithm (M1) here proposed are
compared to the ones found by solving it through two different methods (M2
and M3). The three methods are summarized in Table 3.6.

M1 Routing algorithm

M2 GA with search enhancement

M3 Two Phase Algorithm (TPA)

Table 3.6: Methods for routing algorithm validation.

The results are compared to the ones found by Zhang et al [4], who tried
different computational methods to solve the problem. Only the method
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which provided the best results is here reported, which are the ones found
by performing the minimization through the adoption of a GA with search
enhancement (M2). The proposed method will be compared also to the one
proposed by Bang and Ahn [36] which consists in a TPA (M3) characterized
by a first phase in which some elementary solutions are found which are later
used as starting point to solve the TSP.

The results are shown in Table 3.7, which confirms the validity of the
algorithm and also proves its quality in performances. Only the information
about the best results found by adopting M3 was available.

Method Case 1 [km/s] Case 2 [km/s]

Best Mean STD Best Mean STD

M1 6.068 7.558 0.779 17.350 20.989 1.921

M2 6.397 7.307 0.570 19.153 22.978 3.044

M3 6.360 - - 16.400 - -

Table 3.7: Results comparison for algorithm validation.

It is interesting to compare not only the results but also the rapidity with
which the algorithm finds its final solution. The computation procedure pre-
sented in this report ran on a personal computer with an Intel(R) Core(TM)
i7-7500 (2.7 GHz) processor and a 16 GB RAM. However, the rapidity of the
codes is measured through the evaluation of how many times the Lambert
functions are called to find the final solution and therefore independently on
the computing machine. For the proposed method M1 the averages of the
10 runs are reported in Table 3.8 and compared to the number of Lambert
calls of the other methods [36]. The results indicate that the computational
resource spent by the proposed method is about one order of magnitude
smaller than adopting M2 and two than the M3, even though the latter was
capable to find a better solution for Case 2.

Method Number of Lambert routine calls
Case 1 Case 2

M1 88,000 348,320

M2 960,000 7,680,000

M3 3,526,933 25,392,677

Table 3.8: Number of Lambert routine calls comparison.

All things considered, it is possible to deduce that the algorithm works
and finds reliable solutions to the problem. Also, it is competitive with

30



Chapter 3. Multi-deployment impulsive algorithm

respect to similar algorithms in terms of solutions found and especially of
computational cost.
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4. Multi-deployment
low-thrust algorithm

After the development of the impulsive multi-deployment algorithm, the low-
thrust version was implemented and is presented in this chapter. The latter
is organized in the following way:

• Single transfer: the first section presents the method with which the
low-thrust single transfers are computed and the changes applied to it
to apply it to the multi-deployment scenario.

• Transfer strategy: the second section explains the strategy selected
to perform the transfers between the states of matrix K. The perfor-
mances are compared to the ones of the parallel impulsive transfer
strategy.

• Multi-insertion on same orbit: this section explains how the phas-
ing maneuvers were taken into account in the low-thrust scenario.

• Numerical results: in the last section the low-thrust algorithm is
tested on a simple multi-deployment scenario and the hybrid optimiza-
tion approach presented in section 2.2.2 is critically analyzed.

In the same way, done for the impulsive case, the low-thrust transfer
strategy must be integrated with the routing algorithm of Figure 2.1 to
create the impulsive multi-deployment algorithm, schematized in Figure 4.1.

Routing 
Initialization

Single Transfer 
Initialization

Low-Thrust
Transfer

TRUE

FALSE

IMPULSIVE ALGORITHM

Input

Output
Index
Check

Figure 4.1: Low-thrust multi-deployment algorithm main workflow.
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4.1. Single transfer

4.1 Single transfer

First, the algorithm chosen for the trajectory computation is presented. Af-
terward, how the algorithm deals with the anomaly of the target state and its
suitability to the deployment scenario is discussed. Finally, the changes ap-
plied to shape-based algorithm to apply it to the multi-deployment mission
are described.

4.1.1 Shape-based algorithm

A 3-dimensional shape-based algorithm [33] was selected for the single trans-
fers since particularly suited to planetocentric mission scenarios. The shape
of the transfer is proposed a priori as a non-linear interpolation of similar and
consecutive orbits. At this stage of the trajectory computation, only keple-
rian dynamic is taken into consideration for the construction of the transfer
orbit. Given the initial and final states, the algorithm recovers the trajec-
tory and the dynamics of the transfer. The workflow of the shape-based
algorithm is presented in Figure 4.2.

Initialize
MEEk

Compute 
Trajectory

max(|T|) ≤ Tmax

Suppose 
MEEk

MEEk = MEE2

Compute Full 
Dynamic

MEE1

MEE2

Tmax

True

False

False

T(x) m(x) t(x)

M0

JD0

Isp True

Figure 4.2: Shape-based algorithm workflow.

• Inputs: the initial and the final states in Modified Equinoctial Ele-
ments (MEE) are given as input, respectively referred to as MEE1 and
MEE2. The other inputs are the spacecraft maximum thrust available
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Tmax, the specific impulse Isp, the initial mass M0 and initial time JD0

(time is expressed in JD).

• Intermediate Orbit Initialization: at the first iteration MEEk is
initialized equal to MEE2.

• Trajectory computation: the trajectory is computed. Both the dis-
tance from the attractor and the declination above the plane identified
by the initial and final states, from here on referred to as reference
plane, are parametrized as a function of the non-dimensional angular
displacement x in the reference plane.

• Thrust Check: The thrust history T(x) is recovered and its peak in
absolute value is compared to Tmax. If the thrust excess constraint
is not respected, the algorithm introduces one fictitious intermediate
orbit located via several numerical procedures, such as the Newton or
the bisection methods, aiming to make the thrust peaks coincide with
the maximum thrust available of the spacecraft.

• Intermediate Orbit Check: Once MEEk has been reached, whether
or not it is equal to the original target state MEE2 is checked. If not,
a new intermediate MEEk is introduced and the cycle starts again. If
the check is respected, the full dynamic can be recovered.

• Full Dynamic Computation: The thrust profile T(x), mass profile
m(x) and time history t(x) are obtained numerically integrating the
equations of motion.

The shape-based algorithm presented works with MEE for ease and to
avoid singularities. However, such elements have weak physical meaning
with respect to other possible orbit representations and therefore the orbits
in this thesis will be expressed in KP for easier comprehension.

A completely analytical shape based approach was necessary due to its
really low computational complexity, which makes it possible to evaluate
several different trajectories in few seconds. This is of paramount impor-
tance for the scope of the multi-deployment algorithm since a really large
number of transfers have to be computed as fast as possible. As already
stated in the introduction to the problem, increasing the size of the problem
the dimension of the solution space of the optimization critically increases.
Despite the choice of a heuristic method to perform the optimizations, the
needed function evaluations are still numerous and therefore the selection of
a fast algorithm for the low-thrust trajectory computation was of paramount
importance.
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Numerical example

For the sake of completeness, an example of the algorithm output for a
single transfer is here reported. The transfer was studied for three different
values of thrust-to-mass ratio. A case of LEO to GEO orbit raising has been
considered. The KP of the initial and final orbits are reported in Table 4.1.
For all the three cases a spacecraft with initial massM0 = 100 kg and specific
impulse Isp = 3500 s was considered.

a [DU] e [-] i [deg] Ω [deg] ω [deg] θ [deg]

LEO 1.3136 0.1 30 0 0 0

GEO 5.6108 0 0 0 0 0

Table 4.1: LEO and GEO keplerian elements.

The results of the three runs of the shape-based algorithm with the three
different thrust levels are reported in Table 4.2. The propellant consumption

T [N ] Mprop [kg] TOF [d] Nrev [-]

10 13.88 1.2589 5

1 13.89 11.3462 46

0.1 13.89 107.5011 452

Table 4.2: LEO-GEO transfer results.

stays the same since the energetic change necessary depends only on the
departure and target orbit. Obviously, by decreasing the maximum thrust,
and consequently the maximum acceleration of the spacecraft, the TOF of
the transfers increases in the same way. The same happens for the number of
revolutions, which also increases by about one order of magnitude together
with the TOF.

Only the trajectory and control law of the case which needs fewer revolu-
tions around the attractor is here reported to make the solution more easily
interpretable. The trajectory of the transfer is shown in Figure 4.3 while in
Figure 4.4 the control law recovered at the end of the shape-based algorithm
is represented. T is the thrust in absolute value, while Tin and Tout are re-
spectively the in-plane and out-of-plane components. Rev1 indicates the first
revolution around Earth, Revint each of the intermediate ones while Revlast
the last one. It is possible to assess how the maximum thrust constraint of
10 N is respected for each revolution.
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Figure 4.3: LEO-GEO transfer trajectory.

Figure 4.4: LEO-GEO transfer control law.
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4.1.2 Target anomaly

The shape-based algorithm presented in section 4.1.1 matches the target
state KP2 given as input in all its components. However, the correct anomaly
at which to release a satellite depends on the time of the arrival and therefore
it is not necessarily equal to θ2 (the sixth element of the input vector KP2).
The impact of the value of the target anomaly θ2 on the cost and duration
of low-thrust transfers is shown by Figure 4.5. For the analysis, for instance,
an arbitrary starting orbit with keplerian elements presented in Table 4.3
was selected.

a1 [DU] e1 [-] i1 [deg] Ω1 [deg] ω1 [deg] θ1 [deg]

1.1 0.1 67 60 0 0

Table 4.3: KP of the starting orbit for the analysis of the target anomaly
impact on low-thrust trajectories.

Figure 4.5: Maximum percentage change in propellant and TOF varying
target anomaly and target semi-major axis.

For simplicity, the target orbit has been chosen to have the same elements
as the starting one, apart from a2 and θ2. Different target orbits are taken
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into consideration during the analysis, with semimajor-axis a2 = a1 + ∆a.
At each value of a2, the propellant and TOF of the transfer, with θ2 ranging
from 0◦ to 360◦, have been computed. The average of the results for each
θ2 was computed and the maximum percentage difference in absolute value
was kept. This has been repeated for each value of a2 and the interpolation
of the results is presented in Figure 4.5. It is clear how the propellant cost
experiences nearly no impact by the variation of the target anomaly. The
TOF has a slightly greater dependence from θ2, which stays however confined
inside reasonable percentage bounds.

A low-thrust transfer in planetocentric scenarios involves many revolu-
tions around the main attractor to reach the target. For this reason, reaching
the correct phasing on an orbit is just a control problem and does not deeply
affect the cost or the duration of the transfer.

In conclusion, it was confirmed that the scope of estimating the duration
and propellant consumption of the mission can be fully achieved without
considering the exact anomaly at which to reach the target orbit.

4.1.3 Improvements to shape based algorithm

The shape-based algorithm presented in section 4.1.1 only deals with keple-
rian motion. At the current state of the art, the environmental perturbations
could be accounted a posteriori only in the case in which the perturbing
acceleration was at least about one order of magnitude less than the accel-
eration provided by the thrusters. When dealing with orbits in the LEO
region, environmental perturbations have an important role when dealing
with low-thrust, since the order of magnitude of the perturbing accelera-
tions are sometimes the same as (if not higher than) the thrust acceleration,
as it can be seen from Figure 4.6 [38]. In the latter for each effect the loga-
rithm of the disturbing acceleration, normalized to 1 g, is shown as a function
of altitude. For this reason, the impact of the perturbations, especially the
J2 effect, on the spacecraft trajectories must be taken into account when
planning the transfers, since it cannot be simply counteracted and canceled
by the spacecraft.

The shape-based algorithm workflow in Figure 4.2 is then modified to
take into account the J2 perturbation disturbances. The new workflow is
schematized in Figure 4.7.

The only difference compared to the previous version is the introduction
of the perturbing block, whose functioning is here described:

• J2 Perturbation: The impact of the Earth gravitational perturbation
is twofold and both the effects are accounted for in this block.

1. First, the J2 perturbation obviously has an effect on the spacecraft
trajectory. The most accurate way to consider this perturbation
would be considering its punctual effect on each revolution around
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Figure 4.6: Comparisons of the disturbing accelerations for the main sources
of perturbation.

the main attractor. However, this approach would need the inte-
gration of the equations of motion which would dramatically in-
crease the computational load. In addition to this, the adoption
of a shape-based algorithm, which recovers the dynamics from a
pre-imposed shape, further complicates the introduction of such
accelerations a posteriori. For this reason, only the integral of
the effects of the J2 perturbation are considered in the trajectory
computation. Once target current target state MEEk is reached,
the RAAN of the current state is corrected with the secular ef-
fect of the perturbation over that revolution. The validity of this
approximation is discussed in the next paragraphs.

2. Second, as stated in section 2.1.3, the J2 perturbation affects the
target state position. When dealing with impulsive maneuvers,
the Lambert theorem allows to fix the TOF a priori and therefore
the exact target state position can be computed to perform the
transfer. The adopted shape-based approach does not allow to
know the TOF before the trajectory computation. For this reason,
after each revolution (of the many which compose a low-thrust
transfer) the target state also is updated with the secular effect
of the J2 perturbation. A tolerance is introduced on the RAAN,
such that when |Ωk − Ω2| is less than this value, the target state
is considered to be reached.

40



Chapter 4. Multi-deployment low-thrust algorithm
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Figure 4.7: Shape-based algorithm workflow with J2 correction.

While correcting the current state with the secular effect of the pertur-
bation introduces some discontinuities in the trajectory and control low, it
provides a good estimation of the propellant consumption and transfer du-
ration with a really low computational load, which is the main driver of
the algorithm development. To assess the validity of such an approach, the
results were compared to an integration of the equations of motion of the
spacecraft, considering both the J2 punctual accelerations and the control
low found from the shape-based approach. A generic starting orbit was se-
lected for this analysis, whose parameters are reported in Table 4.4, while
the semi-major axis was left to vary between 1.1 and 2 DU . The target
orbit of the single revolution was considered to be an orbit with the same
parameters but with a semi-major axis 0.5% greater.

e [-] i [deg] Ω [deg] ω [deg] θ [deg]

0.1 70 78 5 0

Table 4.4: KP of the starting orbit for comparison between integration and
shape-based approach with and without J2 correction.

The results of the comparison are presented in Figure 4.8. Special con-
sideration has been given to the RAAN error, which is one of the most
affected parameters by the J2 effect and also the most expensive to eventu-
ally compensate by thrusting the spacecraft. The error in the RAAN ∆Ω
is shown in absolute value on the y-axis and represents the difference be-
tween the shape-based algorithm final state RAAN and the integration final
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Figure 4.8: Shape-based approach error in final state RAAN with and with-
out J2 correction compared to the integration of the control law.

state RAAN, integration performed considering the punctual J2 accelera-
tions. The solid line in Figure 4.8 shows how the error in the target RAAN
would be two orders of magnitude higher without the correction and would
accumulate over the many revolutions of the transfer. The J2 correction al-
lows to take into account the secular effect of the perturbation and therefore
keeps the error on the final state limited to the short-period and long-period
variations of the parameter.

4.2 J2 exploiting transfer strategy

The same transfer strategy to perform the transfers with consistent changes
in RAAN presented in section 3.2 is adopted also in the low-thrust scenario.
The workflow of the transfer strategy is equal to the impulsive one, apart
from the transfers of course, and is reported again in Figure 4.9. However,
some differences inside some of the blocks must be highlighted.

• Inputs: The starting orbit KP1 and the target orbit KP2 are the two
main inputs to the function. This time there is no TOF anymore since

42



Chapter 4. Multi-deployment low-thrust algorithm

Define KPd

KP1 KP2

First 
Low-Thrust

Transfer

Compute
Drifting Time

Second 
Low-Thrust

Transfer

Mprop TOF

Figure 4.9: Single low-thrust J2-exploiting transfer scheme.

it is not a variable of the optimization but an output of the shape-based
algorithm.

• Drifting Orbit Definition: The drifting orbit in the low-thrust
transfer is defined in a different way. The 6 KP are reported in Ta-
ble 4.5.

ad ed id Ωd ωd θd

var 0 var free 1
2(ω1 + ω2) free

Table 4.5: KP of the drifting orbit for low-thrust J2-exploiting transfer strat-
egy.

The two differences compared to Table 3.1 are in the RAAN and the
anomaly:

– Saying that Ωd is left free means that no control is considered on
the final value of the RAAN when moving to the drifting orbit.
The RAAN of the spacecraft is left to vary according to the J2
effect. There would be no point or convenience in controlling the
RAAN since the goal itself of reaching the drifting orbit is to
change such parameter by exploiting the natural perturbations
instead of the propellant.

– θd is left free since it affects neither the secular RAAN variation
nor the cost or duration of the transfer, as proved before.

• First Transfer: Once the drifting orbit is defined, the cost and dura-
tion of the first low-thrust transfer are computed.

• Drifting Time Computation: Once the target orbit has been reached,
it is necessary to compute the amount of time necessary to close the
RAAN gap. While what said for the impulsive transfer strategy was
true for that kind of maneuvers, when dealing with low-thrust trans-
fers the definition of the exact Ωd at which to depart from the drifting
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orbit is slightly more complicated. Since low-thrust transfers between
the orbits have large times of flight, an amount of relative RAAN shift
happens also during the transfer from the drifting to the target orbit.
For this reason, departing when the two values of the RAAN are al-
ready equal would require some degree of control on such parameter
during the transfer to the target orbit to keep such values equal. The
most efficient and less expensive way to perform the transfer would be
to estimate the relative drift which takes place during the transfer from
the drifting to the target orbit and to take it into account when com-
puting the drifting time. To adopt this approach the following steps
must be taken:

– A fictitious target orbit is defined with the same parameters as
the true target orbit apart from the RAAN, which is left free, in
order to estimate the amount of shift that would take place during
the transfer. Such shift is referred to as ∆Ωt,1 and is computed
by evaluating at the end of the trajectory computation how much
the J2 effect made the RAAN change.

– Once computed the transfer to the fictitious target orbit, knowing
the TOF of the transfer it is possible to estimate also how much
the target orbit shifts during the duration of the transfer. This
amount of RAAN shift is defined as ∆Ωt,2.

– From these two quantities it is possible to compute the amount
of relative shift ∆Ωt (eq. (4.1a)) and use it to correct the RAAN
gap to close (eq. (4.1b)). The time necessary is then computed
according to eq. (3.2c) and with eq. (2.3) the new values of the
RAAN at the end of the waiting time are updated.

∆Ωt = ∆Ωt,1 −∆Ωt,2 (4.1a)

∆Ω = Ω2 − Ωd + ∆Ωt (4.1b)

Shortly, this correction on ∆Ω allows finding the correct Ωd at which
to depart from the drifting orbit, which does not coincide with Ω2

unless the two orbits are so close or so high in altitude that the J2
effect during the transfer can be considered negligible. Thanks to this
estimation, no propellant has to be consumed to control the RAAN
because the transfer is planned in such a way to meet the target orbit
at the correct value of this parameter.

• Second Transfer: Once the RAAN of current and target orbits have
been updated after the stationing onto the drifting orbit, the second
low-thrust transfer to the target orbit can effectively be computed.
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• Outputs: At the end, the whole cost of the two-legs transfer is com-
puted. In terms of propellant, the total amount needed to reach the
target orbit is the sum of the propellant consumed in the two legs of
the transfer. In terms of time, the total duration of the transfer is the
sum of the TOFs of the two legs and also the waiting time onto the
drifting orbit.

Numerical results

As a first example of this low-thrust transfer strategy, the same problem
investigated in section 3.2 for the impulsive strategy was taken into consid-
eration. The parameters of the two orbits are the ones in Table 3.2 and the
spacecraft has again initial mass M0 = 100 kg, but this time with a specific
impulse Isp of 3500 s and a maximum available thrust of 0.1 N .

For the optimization, Np = 10 andMgen = 20 were chosen. These values
are lower comparing to the one used in the optimization of the impulsive
transfer since this time TOF is not a variable of the optimization. Even
if the trajectory computation through the shape-based is slower than the
Lambert transfer, the TOF as a variable strongly affects the final result
and therefore more generations are necessary in the impulsive transfer to
find good solutions. The variables of the optimization, as already stated
in Table 4.5, were the semi-major axis and the inclination of the drifting
orbit. The lower and upper bounds, lb and ub, are the same as in Table 3.3,
reported again in Table 4.6.

Parameter lb ub

ad [DU] 1.05 1.5

id [deg] 67 67

Table 4.6: Lower and upper bounds for the low-thrust transfer strategy
example.

The final results of the optimization are presented in Figure 4.10, where
all the non-dominated solutions found by the optimization method are stored.
The Pareto front does not present its typical shape due to the strong non-
linearity of the problem. For instance, the Pareto front would present itself
as the one in Figure 2.2 if adopting the same transfer strategy but to move
between orbits which are fixed in space, which means that do not experience
the RAAN variation explained in section 2.1.3.

It is interesting to focus on one of the solutions, such as the fastest one,
which is the one in the lower right of the Pareto front. The results in detail
are shown in Table 4.7. The drifting orbit in this case has a semi-major axis
ad equal to 1.1432 DU while the inclination is fixed at 67◦.
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Figure 4.10: J2-exploiting low-thrust transfer strategy example results
(M0 = 100 kg; Isp = 3500 s).

Mprop [kg] TOF [d]

Transfer 1 2.51 24.80

Drifting - 0.24

Transfer 2 1.28 6.82

Total 3.79 31.86

Table 4.7: Fastest solution details of the low-thrust transfer strategy exam-
ple.

When using low-thrust propulsion, a relevant portion of the total TOF
of the missions is made by the two transfers. In some peculiar cases, the
transfers may also take the greater part of the TOF, as it can be seen in
Table 4.7. When dealing with impulsive maneuvers, the times of flight of
the transfers are much shorter and therefore the greatest part of the duration
of the mission is the drifting time. However, as it can be seen from Figure 3.3,
this does not necessarily lead to improvements in the duration of the mission
due to two main reasons. First, no portion of the RAAN gap may be covered
during the transfers due to their short duration. In addition to this, the fact
that the transfers are more expensive makes it less convenient to go far from
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the target orbit in order to make the RAAN shift happen faster.
The Pareto fronts of Figure 3.3 and Figure 4.10 are compared in Fig-

ure 4.11. The advantages in adopting low-thrust propulsion are flagrant,

Impulsive maneuvers

Low-thrust maneuvers

Figure 4.11: J2-exploiting transfer strategy example results comparison
(M0 = 100 kg).

since the low-thrust Pareto achieves the same TOF with way lower propel-
lant necessary. While a slight reduction in the minimum total TOF of the
mission may be achieved, the propellant cost of one single transfer in an
impulsive maneuvers scenario becomes critically high.

It is interesting to repeat the same example as before, again in low-thrust
but this time with Ω1 = 0◦ and Ω2 = 30◦. Since the starting orbit is below
the target one, ∆Ω̇ = Ω̇1 − Ω̇2 will be a negative quantity. In the previous
case this rate of precession was coherent with the amount of shift needed
since it was Ω1 − Ω2 = −30◦. In this second example, the direction of the
shift needed is opposite, meaning that with the latter shift rate the RAAN
gap to cover would be 350◦ instead of 30◦. One faster option, but more
expensive, would be to choose a drifting orbit with a larger semi-major axis
than the target one, in order to have a ∆Ω̇ > 0.

The results of the optimization of this second example, performed with
the same tuning parameters and bounds, are shown in Figure 4.12. It is
clear how the total time of flight of the mission increases in this case. All
the solutions presented in the figure adopted the second strategy mentioned
before, which means selecting ad > a2. In particular, the fastest solution
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Figure 4.12: Low-thrust transfer strategy variant example results (M0 = 100
kg; Isp = 3500 s).

presented ad = 1.5 DU, suggesting that increasing the value of the upper
bound of the solution space would lead to faster solutions at the cost of an
increase in propellant consumption. The slowest solution in figure presents
ad = 1.34. The solutions characterized by ad < a2 resulted in much higher
TOFs and were not reported in the figure. These two examples highlight
the importance of the planning of the multi-deployment strategy and in
particular of the releasing order of the satellites when dealing with different
RAAN values.

4.3 Multi-insertion on same orbit

Conceptually, phasing maneuvers in low-thrust work the same way as in
section 3.3. However, the decreasing/increasing of the semi-major axis, in
this case, is not instantaneous and therefore part of the anomaly gap is
already covered during the transfer from the original to the intermediate
orbit. Low-thrust phasing maneuvers could be object of the optimization
as well as the single transfers between orbits. The semi-major axis of the
intermediate orbit indeed cannot be defined analytically with an equation
like eq. (3.3), but depends on the duration of the single transfers (which
is not known a priori using the free-time-of-flight shape-based algorithm).
One way to solve the problem may be performing a optimization with a
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semi-major axis of the intermediate orbit and waiting time on the latter as
variables of the optimization to perfectly rendezvous the target on the way
back to the original orbit. Even though this would be the most accurate
way to approach the problem, this is not the most suited way to implement
the phasing maneuver inside the multi-deployment algorithm. Such a way
would indeed introduce two additional variables for each phasing to perform,
eventually critically increasing the size of the optimization problem. Since
the prime goal of the algorithm is to define a multi-deployment strategy
and assess its cost and duration, at this stage the phasing problem can be
treated in a less detailed way and then be optimized a posteriori. The orders
of magnitude of cost and duration of the phasing maneuvers are indeed
smaller than the ones of the overall multi-deployment mission and therefore
their approximation does not affect the validity of the results of the multi-
deployment algorithm.

For this reason, a fast and efficient way to approach and approximate
the phasing problem was selected. The possibility to compute the propellant
mass needed for the low-thrust phasing starting from the ∆v of the impulsive
maneuver was investigated. The difference between the cost of the Hohmann
maneuver, ∆vH , and the one needed to perform the same maneuver in low-
thrust, ∆vLT , is represented by the parameter GL, shown in eq. (4.2).

GL = 100 ·
(

∆vLT
∆vH

− 1

)
(4.2)

The gravity loss GL is an important parameter of merit of a low-thrust
trajectory: it shows how a specific low-thrust maneuver is more expensive
in terms of ∆v when compared to the corresponding impulsive one. It is
necessary to study the behaviour of this parameter. A parametric analysis
was performed, whose results are shown in Figure 4.13. The analysis was
carried on assuming a change in the semi-major axis of 10% of its nominal
value but changing this percentage does not affect the trend shown in the
figure. The behaviour of GL was studied for different values of a and e. It
can be seen how the loss is under 10% for values of eccentricity less than 0.3
and almost null for nearly-circular orbits.

Numerical example

Such methodology was compared to the results of a problem of design and
optimization of low-thrust orbital phasing maneuver already fully solved in
literature [39], where a preliminary design method is developed to estimate
the cost and duration of a low-thrust phasing maneuver. As an example,
a GEO phasing mission was taken into account. The KP of the GEO are
presented in Table 4.8. Since the value of a1 is large and the duration of a
revolution on the orbit is long, a lower bound for a2 not so close to a1 has
to be chosen to keep the number of revolutions to wait relatively low. It was
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Figure 4.13: Gravity losses for semi-major axis change maneuvers.

a [DU] e [-] i [deg] Ω [deg] ω [deg]

6.6109 0 0 0 0

Table 4.8: KP of GEO for phasing maneuver example.

chosen therefore to select a number of revolutions Nrev such that a2 > 0.9·a1.
The initial mass of the chaser is 1000 kg, and the specific impulse of the
electric thruster is 3000 s. The results of the preliminary design method
are compared to the ones of the impulsive approximation presented in this
thesis in Table 4.9, where the phase angle indicates the amount of phasing
necessary. In all of the three cases the chaser is considered to be behind the
target.

With respect to the method developed by Shang et al. [39], the present
impulsive approximation underestimates the duration of the phasing while
overestimating the propellant mass. The underestimation of the time of flight
does not impact the multi-deployment results since the order of magnitude is
much lower than the one of the whole duration of the mission. This impulsive
approximation is a preliminary way to take into account phasing maneuvers
into the multi-deployment algorithm and therefore it is important that the
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Phase angle [deg] 30 90 150

Phasing time by 1.8696 2.6795 3.5034impulsive approximation [d]

Phasing time by 3.5985 6.2000 7.9760preliminary design method [d]

Propellant consumption by 6.1383 9.4832 10.6436impulsive approximation [kg]

Propellant consumption by 3.0720 5.3850 6.9560preliminary design method [kg]

Table 4.9: GEO phasing mission results comparison.

results found are in the same order of magnitude as the ones found through
an optimization of the maneuver. Once the best multi-deployment strategy
is defined, the various phasing maneuvers can be treated more in detail and
optimized.

4.4 Numerical results

Some examples of the functioning of the low-thrust multi-deployment algo-
rithm and the highlight of its main features are here reported. Also, an
example introducing the constraints in the way presented in section 2.2.3 is
reported.

4.4.1 Multi-deployment mission optimization

A generic set of 6 satellites to deploy in LEO was considered. The KP of the
orbits into which to insert each of them are reported in Table 4.10, together

ID a [DU] e [-] i [deg] Ω [deg] ω [deg]

0 1.05 0.02 66 0 0
1 1.06 0.01 67 10 5
2 1.07 0.02 66 8 0
3 1.08 0.01 67 328 3
4 1.09 0.03 66 161 0
5 1.10 0 68 22 0
6 1.11 0.05 66 159 20

Table 4.10: Initial states for multi-deployment mission example.
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with the starting orbit, indicated by the index 0, from which the vehicle
starts the journey. All the KP reported are the ones at the time of the
departure from orbit KP0. The actual state of insertion will be different
according to the J2 perturbation.

Since the size of the problem increases with respect to the optimization
of a single transfer, the population size Np and the number of maximum
generations Mgen must increase as well with respect to the ones in Table 4.6
to guarantee good results. Np = 20 and Mgen = 30 were chosen. The
lower and upper bounds of the optimization for this example are the ones
in Table 4.11. The inclinations of the drifting orbits are allowed to vary
between the minimum and maximum value of the inclinations of the sets of
orbits into which to release the satellites.

Parameter lb ub

ad [DU] 1.0314 1.300

id [deg] 66 68

Table 4.11: Optimization tuning parameters for multi-deployment mission
example.

The characteristics of the deploying vehicle chosen for this example are
presented in Table 4.12. All the 6 satellites to be released have been consid-
ered to be nanosatellites with 5 kg mass each.

M0 [kg] T [N] Isp

100 0.5 3500

Table 4.12: Spacecraft characteristics for multi-deployment mission exam-
ple.

The results of the optimization are visible in Figure 4.14. The two dif-
ferent colors represent solutions with different releasing orders, identified by
different vectors p. All the solutions found from this run of the optimiza-
tion algorithm have releasing order p = [1, 2, 3, 4, 5, 6] apart from one, which
instead releases the satellites in the order p = [1, 2, 3, 4, 6, 5].

It is interesting also in this case to focus on one solution. Again, the
fastest solution found from the algorithm will be analysed in detail, whose
final objectives are reported in Table 4.13. The details of the single releases
(indicated by the capital letter R) are reported in Table 4.14. For instance,
R1 indicates the first release, which corresponds to the first element of the
vector p. For each transfer, the pedices 1 and 2 respectively indicates the
first and second leg of the transfer.

It is clear that also in the fastest route possible found by the algorithm,
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Figure 4.14: Multi-deployment mission example results (M0 = 100 kg; Isp =
3500 s).

Mprop [kg] TOF [d]

10.70 391.6480

Table 4.13: Final objectives of the fastest solution for multi-deployment
mission example.

R1 R2 R3 R4 R5 R6

ad [DU] 1.0948 1.0326 1.0375 1.3000 1.0314 1.2698

id [deg] 66.44 66.60 66.54 66.71 66.37 67.63

Mprop,1 [kg] 0.75 0.43 0.62 1.58 0.69 1.01

TOF1 [d] 3.2585 1.8196 2.6659 4.4483 3.4542 2.8178

twait [d] 34.8707 6.5801 52.1309 127.2152 59.5546 70.5217

Mprop,2 [kg] 0.55 0.69 0.51 1.59 0.91 1.37

TOF2 [d] 2.2958 3.1638 1.9813 5.6794 3.5002 5.6899

Table 4.14: Release details of the fastest solution for multi-deployment mis-
sion example.
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the vast majority of the mission time is made up by the time needed to shift
the RAAN. In particular, the most time-requiring transfer is the fourth one,
which also happens to be the one to release the satellite of index 4 after
having released the satellite 3, according to the releasing order. It can be
seen from Table 4.10 that the orbits 3 and 4 have a large initial difference in
RAAN, which justifies the long wait necessary to nearly (section 4.2) match
the two values of such parameter. Also, the semi-major axis of the drifting
orbit for this transfer was chosen to be ad = 1.3, which is also the value
of the upper bound given to this variable in the optimization. This choice
suggests that a higher semi-major axis may be chosen to speed up the drift
at the cost of higher consumption as well. This transfer is already the most
expensive one of the six since it required a consistent orbit raising to reach
the desired drifting orbit.

4.4.2 Multi-deployment mission constrained optimization

It is interesting to study the problem in the case in which some constraints
are applied. One of the mission constraints that may be necessary is the
maximum releasing time of one or more of the satellites. Also, there may be
a maximum mission duration, that is a limit date at which the last satellite
has to be released. The same example as before was studied again, but this
time with the constraints in Table 4.15.

Constraint Value [d]

Max mission duration 730

Max release time ID 5 90

Table 4.15: Constraints for multi-deployment mission constrained example.

The result of the constrained optimization is the Pareto front in Fig-
ure 4.15. As expected, the results are worst with respect to the uncon-
strained problem since the solutions respecting the constraints are a subset
of all the solutions. Differently from the releasing orders of the unconstrained
solutions, which released the satellite on the orbit 5 as last or second last,
all the solutions in Figure 4.15 release it as first to respect the constraint
in Table 4.15. The three releasing orders of the solutions are reported in
Table 4.16.

4.4.3 Heuristic - hybrid optimization approaches comparison

Even if the approach in section 2.2.2 was developed to allow the solution of
cases with N > 11, the adoption of this approach for cases with N < 11
was also investigated. This approach reduces the search space in each step,
allowing the heuristic algorithm to focus only on the best solutions. For
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Figure 4.15: Multi-deployment mission constrained example results (M0 =
100 kg; Isp = 3500 s).

Color Releasing order

Red [5,4,3,2,6,1]

Blue [5,4,6,2,1,3]

Green [5,6,2,1,3,4]

Table 4.16: Multi-deployment mission constrained example releasing orders.

this reason, it was interesting to compare the two approaches in terms of
computational time and quality of the solutions. Since the final result of
a heuristic optimization method strongly depends on the initial solution,
comparing only one optimization run to compare the results would not be
really significant. For this reason, in order to truly assess whether or not
one approach is better than the other, more than one run per each must be
considered. For both of them, 10 runs were performed and the 10 Pareto
fronts have been merged into one, where only the non-dominated solutions
survived.

The same example which was analyzed in section 4.4.1 is used here for the
comparison. The hybrid approach was carried on with r = 3, meaning that
two iterations were needed to find the final solutions. The 10 runs of the pure
heuristic method were performed with Np = 20 and Mgen = 20. About the
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hybrid approach, two different values of these two parameters were chosen for
the first and second iteration. This was done since the second iteration has
a solutions space smaller than the first iteration. While the first iteration
has 120 possible permutations according to eq. (2.6), the second iteration
only has 6, since the matrix P in this case only has N! possible columns
(eq. (2.1)), with this time N = r = 3. The two sets of values are reported in
Table 4.17. The upper and lower bounds are the same as in Table 4.11.

Iter 1 Iter 2

Np 10 5

Mgen 20 10

Table 4.17: Optimization tuning parameters of hybrid approach for opti-
mization approaches comparison.

The two Pareto fronts are shown in Figure 4.16, while the transparent

Figure 4.16: Comparison of optimization approaches results (M0 = 100 kg;
Isp = 3500 s).

markers represent the clouds of solutions found by the 10 runs of the opti-
mization for both the approaches. It is clear how the Pareto front found from
the hybrid optimization approach is composed by far better solutions with
respect to the pure heuristic one. Indeed, the blue Pareto front dominates
the red one in all its solutions found.
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It is important when comparing the two optimization approaches to com-
pare not only the final results but also the computational effort necessary
to achieve them. The parameters which tune the population size Np and
the maximum generationMgen were chosen to have a similar duration of the
runs between the two approaches. The time is indeed proportional to the
function evaluations necessary to find the solution. The average duration
of the 10 runs of the hybrid approach was 225.5 s, while the heuristic one
needed an average of 282.3 s per run.

It is possible to conclude that the hybrid approach outperforms the pure
heuristic one both in terms of results and computing effort. In light of such
results, the hybrid optimization approach will be chosen as the standard to
perform the minimization of the objectives, also when dealing with problems
characterized by N < 11.
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5. Simulation results

D ue to the flagrant advantages in performing the transfers in the J2 ex-
ploiting transfer strategy with low-thrust propulsion, only this propul-

sive class will be considered for the simulations of this chapter. The latter
is organized as below:

• First, the most important features considered for the releasing vehicle
are presented.

• Second, applications of the algorithm to a constellation deployment
case are considered.

• Finally, the algorithm is applied to some multi-satellites deployment
scenarios.

5.1 Vehicle definition

Before analyzing some case studies, it is necessary to exactly define the main
characteristics of the multi-deployment vehicle:

• Mass: the dry mass of the vehicle Mv was estimated through an an-
alytical statistical relationship [40]. In particular, a linear regression
of the mass of launcher adapters in function of the supported mass
Ms was considered to estimate it. The reasons behind this choice are
twofold:

1. First, the adapter is dimensioned to sustain the weight of all the
supported mass on top of it, which is the worst-case scenario in
terms of loads. The actual disposition of the satellites on the
releasing vehicle is likely to be different and less critical in terms
of loads.

2. In addition to this, the adapter mass is dimensioned to sustain
the launcher loads, which are the most critical ones.

For these two reasons, this approximation was found to be useful for a
preliminary mass allocation to the multi-deployment vehicle dry mass.
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The analytic relationship is the one in eq. (5.1). The mass Mv already
includes the mass of the supported mass.

Mv = 0.0755 ·Ms + 50.252 +Ms (5.1)

• Thruster: the thrust level of electric thrusters nowadays ranges from
µN to few tenths of N . The thrust class greater than 0.01 N is com-
monly used for missions of orbit raising or characterized with consistent
orbit changes [41]. For this analysis, the characteristics of the RIT 2X
Series [42] thruster will be taken into account. The nominal thrust of
171 mN will be considered the maximum thrust available for every
single thruster and for the specific impulse the constant value of 3500
s will be considered. This class of thrusters also guarantees one of
the longest lifetimes on the market with more than 2 years of proved
lifetime and a total impulse higher than 10 MNs.

5.2 Constellation insertion

In this section, the cases of constellation deployment are dealt with. First, an
example with an existing constellation is reported. Due to the relatively high
mass of the satellites belonging to existing constellations around Earth, the
deployment of only one portion of the constellation is considered. Afterward,
the deployment of a whole nano-satellites constellation is studied.

5.2.1 Starlink replacement mission

When planning and then deploying a constellation around Earth, usually
spare satellites are accounted for. Spare satellites are inactive satellites
exactly equal to the active ones of the constellations. Usually, the spare
satellites are usually held on storage orbits and kept ready to move to the
working orbit and substitute one of the active ones in case of failure. How-
ever, it could happen that spare satellites are not available or that satellites
with new features have to be launched and released on different orbital planes
of the constellation. In this case, more than one launch would be necessary
to release each satellite on the correct orbital plane. Thanks to the multi-
deployment strategy analyzed in this thesis, this goal could be achieved with
a single launch.

The deployment of a portion of the satellites belonging to the Starlink
[43] constellation has been considered. The satellites of this constellation
have a mass of 260 kg each. The Starlink spacecraft constellation will be
spread into 24 orbital planes with an inclination of 53◦, on circular orbits
with an altitude of 550 km. A possible case may be the replacement of 6
satellites of the constellation, each on a different orbital plane. Supposing
that the multi-deployment vehicle is already released on one of the orbital
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ID a [DU] e [-] i [deg] Ω [deg]

0 1.0862 0 53 0
1 1.0862 0 53 15
2 1.0862 0 53 30
3 1.0862 0 53 45
4 1.0862 0 53 60
5 1.0862 0 53 90
6 1.0862 0 53 105

Table 5.1: Initial states for Starlink replacement mission.

planes of the constellation (the one referred to with ID 0), the planes onto
which to release the satellites are reported in Table 5.1.

According to eq. (5.1), the dry mass of the vehicle would be Mv = 1.728
kg. The wet mass, which is the initial mass M0 of the spacecraft, was
rounded up to 2000 kg. The propulsive characteristics of the vehicle are
the ones explained in section 5.1. Due to the high initial value of M0, the
vehicle was considered to be provided with 10 RIT 2X thrusters, for a total
maximum thrust available of 1.71 N .

The optimization of the multi-deployment mission was carried on through
the use of the branch and bound based heuristic approach. With the size of
the problem N = 6 and the size of the subsearch r = 3, two iterations were
needed to find the final solutions. The tuning parameters of the optimization
are reported in Table 5.2, while the lower and upper bounds of the research
are shown in Table 5.3.

Iter 1 Iter 2

Np 15 10

Mgen 30 20

Table 5.2: Optimization tuning parameters for Starlink replacement mission.

Parameter lb ub

ad [DU] 1.0314 1.250

id [deg] 53 53

Table 5.3: Lower and upper bounds for Starlink replacement mission.

The results of one run of the algorithm are presented in the top Pareto
front in Figure 5.1. A constraint on a maximum mission time of 2 years was

61



5.2. Constellation insertion

imposed, reason why all the results do not exceed 700 d of duration. The
bottom subfigure in Figure 5.1 represents a focus on the fastest solutions of
the complete Pareto front of the top one. Also, it is possible to see that also
the most expensive solution does not exceed the propellant mass that was
allocated a priori to the vehicle when assuming the initial mass M0.

Figure 5.1: Top: Pareto front for Starlink replacement mission. Bottom:
focus on fastest solutions (M0 = 2000 kg; Isp = 3500 s).

Let’s focus again on the fastest solution. As it could be expected from
Table 5.1, the fastest solutions are characterized by the releasing order p =
[1, 2, 3, 4, 5, 6]. The release details of this solution are reported in Table 5.4.
Some considerations arise by analyzing the results:

• In four out of the six transfers, the value of ad was set equal to the
upper bound of the solutions space. Again, this suggests that faster
solutions, if desired, can be achieved by setting a higher upper bound.

• It can be noticed how the propellant mass required for the last transfers
is smaller in magnitude than the one of the initial transfers. This
is due to the lightening of the vehicle, whose main contribution is
given by the release of the satellites rather than by the propellant
consumption. Together with the propellant mass, also the times of
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R1 R2 R3 R4 R5 R6

ad [DU] 1.2136 1.2500 1.1898 1.2500 1.2500 1.2500

id [deg] 53.00 53.00 53.00 53.00 53.00 53.00

Mprop,1 [kg] 23.44 24.91 13.40 16.14 11.86 7.68

TOF1 [d] 7.1962 7.7478 4.2896 5.0999 3.7778 2.5871

twait [d] 2.8250 0.3743 7.7710 3.1846 13.1871 5.8489

Mprop,2 [kg] 23.16 24.54 13.27 15.92 11.67 7.57

TOF2 [d] 7.1659 7.6668 4.2363 5.0745 3.7877 2.4532

Table 5.4: Release details of the fastest solution for Starlink replacement
mission.

flight of the transfers decrease due to the higher acceleration peaks
that can be achieved, being the maximum available thrust constant.

• Finally, it is possible to notice how the waiting times twait on the
drifting orbits grow bigger with the going on of the mission. Due
to the smaller times of flight, a smaller portion of the RAAN gap is
covered during the two legs of the transfers. For this reason, more time
must be spent on the drifting orbit to obtain the desired RAAN shift.

Due to the really high initial mass of the vehicle, an extreme case with
10 thrusters simultaneously firing was considered to get the previous results.
It is interesting to study the behaviour of the solutions when changing the
number of thrusters the vehicle is provided with. A run of the optimization
with the same tuning parameters as before has been performed with 7, 5 and
2 thrusters. The resulting Pareto fronts are plotted in the same figure in Fig-
ure 5.2, where the numbers in the legend represent the number of thrusters
that can be fired simultaneously. Respectively, the three configurations lead
to a maximum thrust available of 1.1970 N , 0.8550 N and 0.3420 N . As
expected, there is no difference in the slow solutions, even due to the maxi-
mum mission time duration set to 2 years. The solutions with low propellant
consumption and high mission duration are characterized by the choice of a
ad really similar to the semi-major axis of the orbits of the constellation, so-
lutions that can be carried out with each propulsive configuration. The real
difference is in the fastest solutions, since the higher the maximum thrust
available the faster an orbit with different ad can be reached. Ten thrusters
allow the deployment of the whole set of satellites in about 100 days, while
two thrusters only require at least about 250 days to release the six of them.
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Figure 5.2: Pareto fronts with different number of thrusters for Starlink
replacement mission (M0 = 2000 kg; Isp = 3500 s).

5.2.2 Nano-satellites constellation deployment

It is interesting to analyze the case in which a complete constellation is
deployed in one launch thanks to the multi-deployment strategy developed
in this work. A constellation of nano-satellites is considered in order to keep
the overall dry mass low. In particular, three different cases of the same
problem have been investigated.

1. Case 1: Walker constellation (N = 8), 1 satellite per each orbit.

2. Case 2: Walker constellation (N = 8), 5 satellites per each orbit.

3. Case 3: Walker constellation (N = 16), 1 satellite per each orbit.

Case 1 A Walker constellation with N = 8 circular orbits with 53◦ incli-
nation and an altitude of 1000 km was considered. The KP of the orbits are
summarised in Table 5.5. Each orbit belongs to an orbital plane which is 45◦

a [DU] e [-] i [deg]

1.1568 0 53

Table 5.5: KP of Walker constellation.
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separated from the two adjacent planes. One nano-satellite of 10 kg has to
be released on each orbit. According to eq. (5.1), the dry mass of the vehicle
would be Mv = 136.29 kg. The wet mass in this case was rounded up to 200
kg. The propulsive characteristics of the vehicle are the ones explained in
section 5.1. This time, the vehicle was considered to be provided with two
RIT 2X thrusters, for a total maximum thrust available of 0.342 N . The
case was anaysed with a subsearch dimension of r = 4, therefore requiring
two iterations of the hybrid optimization method to find the final solutions.
Again, different tuning parameters, listed in Table 5.6, were selected for the

Iter 1 Iter 2

Np 20 15

Mgen 40 20

Table 5.6: Optimization tuning parameters for nano-satellites constellation
deployment case 1.

two iterations due to the differences in the size of the search space. The lb
and ub of the variables are instead presented in Table 5.7.

Parameter lb ub

ad [DU] 1.0314 1.5000

id [deg] 53 53

Table 5.7: Lower and upper bounds for nano-satellites constellation deploy-
ment case 1.

The results of the optimization are presented in Figure 5.3. This multi-
deployment strategy would allow to release a whole constellation with only
one launch and in less than one year with a contained amount of propel-
lant consumption. As expected, due to the particular configuration of the
releasing orbits, the best releasing order is the one which includes releas-
ing the satellites on each orbit in order of RAAN. In particular, all the
solutions of the Pareto in Figure 5.3 belong to the same releasing order
p = [5, 6, 7, 8, 1, 2, 3, 4], found by the algorithm to be the optimal one.

Case 2 Up to now, only cases in which only one satellite has to be re-
leased on one orbit have been considered. The real potential of this multi-
deployment strategy can be seen when a cluster of satellites has to be re-
leased on the same orbit with a desired phasing difference. The same case
was therefore analyzed but this time with 5 satellites of 10 kg to release on
each of the 8 orbits. To have the satellites equidistant from the others in
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Figure 5.3: Pareto front for nano-satellites constellation deployment case 1
(M0 = 200 kg; Isp = 3500 s).

the same orbit, there must be a 72◦ gap in anomaly between each of them.
According to eq. (5.1), the dry mass of the vehicle would be Mv = 480.45
kg. The wet mass, in this case, was rounded up to 700 kg. The propulsive
characteristics of the vehicle are the ones explained in section 5.1. The ve-
hicle was considered to be provided with five RIT 2X thrusters, for a total
maximum thrust available of 0.855 N . The optimization was performed as
before, again with the tuning parameters in Table 5.6 and the lower and
upper bounds in Table 5.7.

The phasing maneuver is computed through the approach explained in
section 4.3. The values of the semi-major axis a2 to reach is chosen iteratively
by changing the number of revolutions Nrev to wait on the orbit, such that
a2 > 0.97 · a1. All the orbits are at 1000 km altitude, therefore being
characterized by a1 = 1.1568 DU. The consequent phasing orbit will have
a2 = 1.1257 DU, with a number of revolutions to wait on that orbitNrev = 5
to perform the 72◦ phasing maneuver. This value is the same for all the
phasing maneuvers to perform since its computation only depends on the
amount of phasing needed and on a1.

The results are visible in Figure 5.4. While the impulsive approximation
grants a good accuracy on the propellant cost, it may slightly underesti-
mate the duration of the phasing maneuver. However, the latter is about
two orders of magnitude lower than the total time of the mission and is
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Figure 5.4: Pareto front for nano-satellites constellation deployment case 2
(M0 = 700 kg; Isp = 3500 s).

therefore a valid approximation at this point of the analysis. The propel-
lant consumption of course increases with respect to Figure 5.3, since the
phasing maneuvers have of course a cost and also because the initial mass of
the spacecraft is much higher than in the previous case. However, the total
time of the mission shows how it is possible in about the same amount of
time to release a huge number of satellites at the desired state. The case
of constellation deployment is the classical application in which more than
one satellite has to be released on the same orbit. However, independently
from the final mission of the satellites, the results in Figure 5.4 show how
clustering the satellites to launch in such a way that more than one has to
be released on the same orbit would make the low-thrust multi-deployment
strategy extremely competitive.

Case 3 The case of the deployment of a nano-satellite constellation was
also considered the perfect one to finally study a problem with size N > 10.
The same problem as in case 1 was therefore considered for aN = 16 problem
to test the performance and quality of results of the hybrid optimization
method. The constellation this time is characterized by 16 orbital planes
shifted of 22.5◦ in RAAN one from another. Again, only one spacecraft to
be released on each orbit was considered. In this case, the dry mass of the
vehicle would be Mv = 222.3 kg and therefore the wet mass was rounded up
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to 300 kg. The same number of thrusters as before was kept for the analysis.
The optimization was performed again with a sub-search size r = 4. Again,
the tuning parameters of the optimization at the various steps were different,
due to the different sizes of the sub-problems. In particular, a high value
of Np and Mgen were necessary for the first iteration since the the matrix
P, according to eq. (2.6), contains Nperms = 43680 possible releasing orders.
The selected values are visible in Table 5.8.

Iter 1 Iter 2 Iter 3 Iter 4

Np 30 25 20 15

Mgen 50 40 30 20

Table 5.8: Optimization tuning parameters for nano-satellites constellation
deployment case 3.

The Pareto front resulting from the latter is represented in Figure 5.5.
At least one year is required to complete the release of all the satellites on
board. All the solutions found share the same first 8 elements of the releasing
order (p = [13, 14, 15, 16, 4, 3, 2, 1]), while changing the release orders of the
last 8. This feature is due to the nature of the search which is heuristic even
though with a branch-and-bound pruning iteration by iteration.

Figure 5.5: Pareto front for nano-satellites constellation deployment case 3
(M0 = 300 kg; Isp = 3500 s).
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5.3 Multi-mission insertion

In this section, two examples involving the deployment of satellites belonging
to different missions are reported. First, an example of the deployment of
different satellites onto SSOs is considered. Afterward, a special application
is presented, where the algorithm is used not only to select the transfer
strategy but also to select the satellites to release.

5.3.1 SSO satellites multi-deployment

Most of the satellites launched nowadays are designed to be released on
SSOs. For this reason, this class of orbits was chosen for this case of multi-
mission deployment. Nine different satellites to be released on nine different
orbits were considered. SSOs are commonly referred to through the LTAN
parameter, rather than the RAAN. The orbits are listed in Table 5.9. Orbits

ID a [DU] e [-] i [deg] LTAN [h]

0 1.1000 0 98.60 12.00
1 1.1087 0 98.60 12.30
2 1.1277 0 98.65 12.00
3 1.1171 0 98.50 11.30
4 1.1152 0 98.45 11.30
5 1.1226 0 98.65 12.00
6 1.1189 0 98.55 11.30
7 1.1201 0 98.58 11.30
8 1.1239 0 98.66 12.00
9 1.1167 0 98.49 12.00

Table 5.9: SSO satellites multi-deployment initial states.

1 and 2 are respectively the orbits onto which Sentinel-1 [44] and Sentinel-3
[45] are released, apart from the LTAN which was chosen arbitrarily. Semi-
major axis and inclination of the other orbits in Table 5.9 were fixed such to
have a nodal regression rate Ω̇sec due to J2 equal to 1 degree per day, which is
approximately the regression needed to have a SSO. Fixing the inclination i
and Ω̇sec, it was possible to find the value of the semi-major axis a of the orbit
from eq. (2.3). Through the use of root-finding algorithms, it was possible
to locate the value of a granting the correct nodal regression since both n
and p depend on such value, as it is shown in eq. (5.2) where µ represents
the standard gravitational parameter of the planet.

p = a · (1− e2) (5.2a)
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n =

√
µ

a3
(5.2b)

The values of LTAN were chosen to be similar from one to another in
order to have final results with reasonable duration and propellant consump-
tion. While in the previous examples (section 5.2) large differences in RAAN
were accounted for, this time orbits belonging to the same region of space
were selected due to their inclination value. As it is clear from eq. (2.3),
the higher the inclination the slower the nodal regression due to J2. Large
RAAN changes when dealing with nearly-polar orbits would require either
a really large amount of time (in the order of several months or even years)
or large plane change maneuvers which would accelerate the nodal regres-
sion but also dramatically increase the propellant consumption. For these
reasons, the most likely application for a multi-mission deployment in this
region of space around Earth was considered to be the deployment of sev-
eral small-satellites on different orbits but characterized by similar values of
inclination and LTAN, like the ones in Table 5.9.

The mass of the satellites to release are listed in Table 5.10. Differently

ID 1 2 3 4 5 6 7 8 9

Mass [kg] 114 125 50 60 50 40 10 8 9

Table 5.10: SSO satellites multi-deployment mass.

from the previous example, this time the masses of the satellites are differ-
ent from each other since each of them belongs to a different mission and
therefore has different purposes. The masses were chosen arbitrarily to have
an assorted cluster of satellites: two small-satellites (> 100 kg), four micro-
satellites (10-100 kg), three nano-satellites (1-10 kg). Dealing with satellites
with different mass increases the complexity of the releasing order definition.
As it is known, the cost of a transfer depends on the distance of the target
but also on the mass of the vehicle. While previously there was no difference
in releasing one satellite instead of another in terms of mass, in this case
releasing the heavier satellites first would also deeply impact the mass of
propellant needed for the successive transfers.

By using eq. (5.1) it was possible to computeMv = 551.4 kg. Considering
the propellant, the initial mass M0 was rounded up to 700 kg. Five RIT 2X
thrusters were considered for a preliminary analysis.

The problem has N = 9 orbits to reach and was solved considering a
sub-search of dimension r = 3. Therefore, three iterations of the hybrid
optimization approach were necessary to solve the problem and the tuning
parameters of each iterations are shown in Table 5.11. Lower and upper
bounds are reported in Table 5.12.
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Iter 1 Iter 2 Iter 3

Np 20 20 15

Mgen 50 30 25

Table 5.11: Optimization tuning parameters for SSO satellites multi-
deployment.

Parameter lb ub

ad [DU] 1.0314 1.6000

id [deg] 97 103

Table 5.12: Lower and upper bounds for SSO satellites multi-deployment.

Usually, the search space of id is defined between the minimum and the
maximum inclinations of the orbits to reach. In this case, since the mission
copes with nearly-polar orbits, the search space is enlarged in order to give
the possibility to accelerate the nodal regression at the cost of a higher
amount of propellant consumption to change the plane.

The results of the optimization are shown in Figure 5.6. The minimum

Figure 5.6: Pareto front for SSO satellites multi-deployment (M0 = 700 kg;
Isp = 3500 s).
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time found to release all the satellites is around 200 days, while, again, the
maximum mission time was set to be 2 years. It is interesting to focus on
the releasing orders of the optimal solutions. As aforementioned, when some
satellites are much heavier than others it is convenient to release them as
soon as possible to minimize the overall propellant consumption. This is
confirmed by the releasing orders of the solutions found since satellites 1 and
2 are always two of the first three satellites released. 10 different releasing
orders were found as optimal solutions, even if not highlighted in different
colors in Figure 5.6 this time.

It is interesting also in this case to study the same problem with a dif-
ferent amount of thrusters. The previous results are compared to the case
in which the vehicles is provided with only two electic thrusters. The results
of the comparison are shown in Figure 5.7. Again, it can be seen how the

2

5

Figure 5.7: Pareto fronts comparison for SSO satellites multi-deployment
(M0 = 700 kg; Isp = 3500 s).

satellites can be released in reasonable amounts of time even with a lower
thrust authority. This is due to the fact that the greatest contribution to the
total mission duration is given by the stationary time waited on the drifting
orbits rather than the TOF of the low-thrust transfers.

5.3.2 Satellites clustering choice

The last case analyzed is slightly different from the previous ones. This time,
the multi-deployment algorithm is used not only to optimize the deploying
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strategy in terms of propellant and duration but also to choose which satel-
lites to deploy with that particular launch. Given a set of N satellites, the
algorithm this time has to define the best sub-sets of dimension n, with
n < N .

This approach is applied to a multi-mission deployment case. Also, this
was the chance to test the algorithm when working with orbits with larger
differences in the semi-major axis. A set of N = 9 orbits was selected, whose
parameters are shown in Table 5.13. A satellite of 50 kg was considered to
be released on each orbit. The objective of the algorithm is therefore finding
the best subsets, of dimension n = 6, to deploy.

ID a [AU] e [-] i [deg] Ω [deg]

0 1.1000 0 98.60 281.37
1 1.1087 0 98.60 285.87
2 1.1277 0 98.65 281.37
3 1.1171 0 98.50 270.87
4 1.1152 0 98.45 270.87
5 1.4000 0 98.65 200.00
6 1.3000 0 98.55 50.00
7 1.2000 0 98.58 70.00
8 1.2500 0 98.66 6.00
9 1.3700 0 98.49 134.00

Table 5.13: Satellites clustering choice initial states.

Considering that the vehicle will have on-board n satellites, according to
eq. (5.1) Mv = 372.9 kg was found. Considering the propellant, the initial
mass M0 was rounded up to 500 kg. Five RIT 2X thrusters were considered
for a preliminary analysis.

The lower and upper bounds of the optimization are shown in Table 5.14.
The optimization was performed through the use of the hybrid approach,

Parameter lb ub

ad [DU] 1.0314 1.600

id [deg] 97 103

Table 5.14: Lower and upper bounds for satellites clustering choice.

with a sub-search dimension r = 3 but stopping after two iterations, such
to achieve a total N = 6. The tuning parameters of the two are shown in
Table 5.15.

The resulting Pareto front is represented in Figure 5.8 and the releasing
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Iter 1 Iter 2

Np 20 10

Mgen 30 20

Table 5.15: Optimization tuning parameters for satellites clustering choice.

Figure 5.8: Pareto front for satellites clustering choice (M0 = 500 kg; Isp =
3500 s).

orders of the subset belonging to the optimal solutions are listed in Ta-
ble 5.16. Three different releasing orders were found to be optimal but only
two clusters of satellites, since the red and blue solutions involve the same
satellites but with a different order of deployment.

It can be observed that the first three releases are the same for all of them,
which could be expected given the similarities to the initial state KP0. Since
also the orbit 4 is really close to the first three, all the releasing orders but
one consider deploying this satellite immediately after having released the
first three on orbits 1, 2 and 3. Differently, this run of the optimization found
a solution that does not consider the deployment of the satellite 4, preferring
other satellites to deploy, to achieve a faster overall deployment at the cost
of an increase in propellant consumption.

Even if presented as last, this application of the multi-deployment algo-
rithm could turn really useful when planning not only the deploying strategy
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Color Releasing order

Red [3,2,1,4,6,8]

Blue [3,2,1,4,8,6]

Green [3,2,1,8,7,9]

Table 5.16: Releasing orders for satellites clustering choice.

but also the launches. This application can indeed suggest, out of a large set
of satellites, which are the most convenient ones to put to orbit in a single
launch and, in addition to this, the deploying strategy to follow to insert
them.
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6. Conclusions

T he main goal of this work of thesis, which is the development of a compu-
tationally fast algorithm for the planning of a multi-deployment mission,

has been achieved.
First, a competitive routing algorithm, whose performances showed really

good results in the comparison with the GTOC problem, was developed.
Besides its promising performances, the great advantage of the developed
routing algorithm is in the numerous fields of applications it can be applied
to. While this thesis focuses on the analysis of a multi-deployment mission
scenario, the routing algorithm presented in chapter 2 can be applied to any
routing problem, such as ADR, MGA or on-orbit servicing.

In addition to this, a branch and bound based heuristic approach was de-
veloped and used for the optimization. Since MINLPs belong to the NP-hard
problems family, studying the whole routing problem at once becomes the
most important challenge when dealing with problems of large dimensions.
This hybrid optimization approach which divides the problem into various
subsets and performs several consequential heuristic optimizations proved to
achieve better results than a pure heuristic approach which directly addresses
the whole routing problem.

In addition to these considerations, some comments on the results found
in the simulations in chapter 5 must be done. This thesis particularly focused
on a dispenser with a low-thrust control authority. This choice was driven
by the analysis in chapter 4 which highlighted how performing the transfer
strategy selected with impulsive maneuvers would lead to way higher pro-
pellant consumptions, not justified by a decrease in the mission duration.
The choice of the low-thrust propulsive system and above all of the J2 ex-
ploiting transfer strategy lead to total multi-deployment mission durations
in the order of months. These mission durations are indeed justified by the
choice of the orbits into which to release the satellites. It was chosen to
address the problem focusing on orbits with very different RAAN values, a
choice that required to plan the transfers exploiting the J2 effect to make a
mission with multiple transfers feasible. While the order of magnitude of the
mission duration may sound unattractive, the alternatives to accomplish the
deployment of satellites with such RAAN differences must be analyzed. A
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first alternative may be to launch them in separate launches, deploying each
of them in the correct region in space. This option would of course dras-
tically reduce the time to operations of the satellites. However, it may be
difficult to arrange the launches when several satellites need to be released
each in a different region. Alternatively, a single launch solution may be
to focus on impulsive maneuvers and to not exploit the J2 effect to achieve
the RAAN changes. This would of course decrease the duration of the sin-
gle transfers but would also make the propellant consumption increase to
infeasible amounts.

Finally, some possible future works on the problem are here suggested:

• The introduction of the J2 effect punctually on the orbit, rather than
only considering the secular effect, could be considered. This would
allow to more carefully design the trajectories and consequently to get
more accurate results in terms of control low, propellant consumption
and times of flight. However, this should be achieved through an an-
alytical or semi-analytical approach to not increase the computational
load of the algorithm.

• One other extension of the algorithm may also be addressing more in
detail the case of several satellites to release on one orbit. In particu-
lar, it should be studied how the optimization of the phasing maneuver
could be integrated with the optimization of the multi-deployment mis-
sion and in particular of the releasing order.

• Finally, it would be interesting to study the problem from a six degrees
of freedom point of view, paying attention to the attitude of the re-
leasing vehicle. In particular, the configuration of the vehicle and how
the releases affect its inertia values should be investigated.
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