

Real Time Recommendations

with Clickstream Data

TESI DI LAUREA MAGISTRALE IN

COMPUTER SCIENCE AND ENGINEERING -

INGEGNERIA INFORMATICA

Author: Alessandro Messori

Student ID:

Advisor:

Academic Year:

962606

Emanuele Della Valle

2021-2022

 i

Abstract

One of the most popular research threads and challenges of modern machine learning

scientists and engineers is how to build models that can update themselves in real time

as soon as new data is generated, without the need for periodically retraining the

system from scratch. Streaming machine learning is the term used to describe models

that work with real time data streams instead of traditional batch processes.

Recommender Systems greatly benefit from the use of stream processing, for many

reasons: real time machine learning offers a very low latency in the update of

recommendations, which can be extremely useful in highly dynamic context such as

media consumption or e-commerce where users may change or update their tastes

very frequently or perform sessions with a specific navigation target in mind. Thanks

to real time recommendations, systems can immediately adapt to the sudden change

in behavior and tastes of users and offer them exactly what they need as soon as they

express a new interest.

This thesis has the objective of experimenting with different techniques and

architectures for building real time recommender systems. This work focuses on a

matrix factorization implementation of the popular collaborative filtering approach

and proposes a way to integrate it with data stream inputs of user navigation events,

called clickstreams, containing implicit item ratings. A model architecture and

algorithm implementation will be proposed and explained, by using the distributed

processing engine Spark and the message broker Kafka.

The proposed algorithms focus on working with many different categories of user to

item interactions and integrate them in a single model, while also proposing a novel

way of extracting common user behavioral patterns from clickstream sequences and

exploiting them as a form of implicit item rating.

The potential and capabilities of the proposed approaches have then been proven by

various experiments conducted in a local setting over multiple clickstream datasets.

Key-words: Stream Processing, Spark, Kafka, Collaborative Filtering, Incremental

Learning

iii

Abstract in lingua italiana

Uno dei campi di ricerca più diffusi e maggiore sfida dei moderni scienziati e ingegneri

del machine learning è quelli di costruire modelli in grado di aggiornarsi in tempo

reale non appena vengono generati nuovi dati, senza la necessità di allenare

periodicamente il sistema da zero. Streaming machine learning è il termine utilizzato

per descrivere i modelli che funzionano con stream di dati in tempo reale.

I sistemi di raccomandazione, in particolare, traggono grandi vantaggi dall'uso

dell'elaborazione degli stream, per molte ragioni: il machine learning in tempo reale

offre una latenza molto bassa nell'aggiornamento delle raccomandazioni, che può

essere estremamente utile in contesti altamente dinamici come il consumo di media o

l'e-commerce dove gli utenti possono cambiare i propri gusti molto frequentemente o

eseguire sessioni con uno specifico target di navigazione in mente. Grazie alle

raccomandazioni in tempo reale, i sistemi possono adattarsi immediatamente al

cambiamento improvviso di comportamento e gusti degli utenti e offrire loro

esattamente ciò di cui hanno bisogno non appena manifestano un nuovo interesse.

Questa tesi ha l'obiettivo di sperimentare diverse tecniche per la costruzione di sistemi

di raccomandazione in tempo reale. Questo lavoro si concentra su

un'implementazione dell’approccio collaborative filtering con fattorizzazione di

matrice e propone un modo per integrarlo con gli input di stream di dati degli eventi

di navigazione dell'utente, chiamati clickstream. Verrà proposta e spiegata

un'architettura di modello e l'implementazione di un algoritmo, utilizzando Spark per

l’ elaborazione distribuita e Kafka come broker di messaggi.

Gli algoritmi proposti funzionano con diverse categorie di interazioni utente-elemento

e le integrano in un unico modello, proponendo anche un nuovo modo di estrarre

pattern comportamentali degli utenti dalle sequenze di clickstream e sfruttarli come

una forma di valutazione implicita degli elementi.

Il potenziale e le capacità degli approcci proposti sono stati poi dimostrati da vari

esperimenti condotti in un contesto locale su più set di dati clickstream.

Parole chiave: Stream Processing, Spark, Kafka, Collaborative Filtering, Incremental

Learning

v

Contents

Abstract .. i

Abstract in lingua italiana .. iii

Contents ... v

1. Problem Settings ... 3

1.1 Problem Definition ... 3

1.2 State of the Art... 5

1.2.1 Distributed Computing .. 5

1.2.2 Stream Processing ... 7

1.2.3 Collaborative Filtering .. 9

1.2.4 Real time recommendations .. 10

2. Technology Choices .. 12

2.1 Stream Processing Engine ... 12

2.1.1 Alternatives .. 12

2.1.2 Apache Spark over Flink .. 12

2.1.3 Apache Spark over Apache Storm .. 13

2.2 Message Broker ... 14

2.3 Programming Language .. 15

3. Proposed Approach .. 16

3.1 Distributed Collaborative Filtering .. 16

3.1.1 Theory Overview ... 16

3.1.2 Spark Implementation .. 18

3.1.3 Pseudocode .. 21

3.2 Implicit Multimodal Collaborative Filtering .. 27

3.2.1 Theory Overview ... 27

3.2.2 Pseudocode .. 29

vi Contents

3.3 Association Rule Matching.. 32

3.3.1 Theory Overview ... 32

3.3.2 Spark Implementation .. 33

3.3.3 Spark Implementation .. 34

3.3.4 Pattern Matching Spark SQL Implementation .. 34

4. Experiments and Evaluation ... 35

4.1 Datasets .. 35

4.1.1 Cloudera Clickstream ... 35

4.1.2 Retailrocket Recommender System Dataset .. 37

4.2 Simulating the Real Time Interactions... 39

4.3 Architecture ... 41

4.4 Testing the Architecture .. 42

4.5 Implicit Single Modal ... 44

4.5.1 Introduction and Objective Definition ... 44

4.5.2 Data Preprocessing .. 44

4.5.3 Experiment Setup .. 45

4.6 Implicit Multimodal ... 46

4.6.1 Introduction and Objective Definition ... 46

4.6.2 Weighted Importance ... 46

4.6 Implicit Multimodal with Association Rules .. 49

4.7 Evaluation Methodology .. 51

4.8 Experimental Results .. 54

5. Conclusion and Future Developments ... 57

5.1.1 Results Discussion ... 57

5.1.2 Large-Scale Testing and Deployment .. 58

5.1.3 Increase the Amount of Interaction Categories .. 59

5.1.4 Real Time navigation pattern mining... 60

5.1.5 Real Time User-Item List .. 61

5.1.6 User Interest Drift .. 62

5.1.7 Conclusion .. 63

Bibliography .. 67

Contents vii

List of Figures .. 73

List of Tables ... 75

List of Algorithms .. 76

2. Acknowledgements .. 77

 1

 3

1. Problem Settings

1.1 Problem Definition

Traditional Recommendation algorithms work in an offline and non-distributed

setting, meaning that all the processing is executed on a single machine and that the

model is executed periodically.

This kind of approach works very well for use cases that don’t require big amounts of

data to process or in cases in which user interest doesn’t evolve too frequently.

However, as applications and systems grow in size, there comes a point where one

single machine can’t hold all the data in memory anymore and doesn’t have enough

processing power to train the machine learning model in a reasonable time.

To overcome these limitations, machine learning models can be trained and deployed

in distributed systems, that split the storage and processing of the big amounts of data

needed for training.

Writing distributed counterpart of any algorithm can be quite difficult, it’s necessary

to consider how to distribute data evenly between all the nodes of the system, while

keeping the amount of data shuffling to a minimum.

Apache Spark is currently the most popular and widespread project offering libraries

enabling parallel computing and offering distributed implementation of the most

popular machine learning algorithms.

The second big limitation of classical ml algorithms is that they typically work in an

offline setting, this means that they are trained on a fixed dataset that was gathered at

a certain point in time (usually extracted by a database), but in order to take into

account the new data that is being continuously generated they need to be trained

again from scratch, which introduces a lot of delay in recommendations context when

users change their interests very quickly.

4 1. Problem Settings

It is becoming more and more apparent the huge impact of real time prediction in data

heavy apps and websites [14].

For example, being able to learn about the user’s interest while he is navigating an app

or website and update the next recommended item while the user is browsing content

can have a huge impact on the success of a product.

Many prominent analysts attribute the recent Tik Tok success to their excellent real

time recommendation algorithm [2], who keeps users engaged by suggesting videos

who will be next in the viewing queue of the spectator.

Implementing a machine learning algorithm that works with data in real time (called

streaming data) comes with many more challenges and hardships with respect to their

offline version, and the streaming machine learning landscape is lagging a lot [15, 26].

Apache Spark for example, as of this moment only offers a working streaming

implementation of a fraction of the models they have available offline.

Netflix has been famously struggling with implementing a real time version of their

recommender engine and is still looking for an optimal way to discover what would

be the best content by analyzing its real time behavior on their website.

This thesis proposes and explores a possible implementation of a distributed and real

time version of famous algorithm for user-item recommendations (Collaborative

Filtering with Matrix Factorization) and experiments with new ways of handling the

input signal typically used in clickstream data analysis for recommendation.

Chapter 1 goes over the state of the art for all the main technologies and techniques

used in the experiments presented in this thesis.

Chapter 2 analyzes the technological choices and libraries used for the experiments

presented in this document, by comparing different tools and highlighting the tradeoff

that came with each alternative.

Chapter 3 presents our approaches to tackling the problem defined in the first chapter

and goes over the pseudocode of the developed algorithms.

Chapter 4 goes over the different experiments and dataset that were used to evaluate

the approaches proposed in chapter 3.

Finally, chapter 5 comments on the results obtained in the previous chapter and talks

about the limitations and possible future improvements of the work.

1. Problem Settings 5

1.2 State of the Art

1.2.1 Distributed Computing

The basic idea behind distributed computing is simple: increase the time and space

capabilities of a computer system by having the computations performed not by a

single machine but by a cluster of nodes, by splitting the task into many subtasks that

can be executed in parallel.

Every computing system that aspires to handle big amounts of data eventually needs

to split the load of its traffic and divide processing into multiple machines (this

technique is called horizontal scaling).

The paradigm that popularized the distributed model was MapReduce [28, 29]

(alongside the Hadoop framework that offered all the tools to make it work on a

cluster).

Figure 1.1: MapReduce Example [29]

MapReduce works by splitting the computation into steps that can be computed in

parallel:

- Mapping, the input records get translated into a set of key-value pairs

- Shuffling, each pair generated in the mapping stage gets assigned and transmitted

to a node in the cluster by following a partitioning policy (that should ideally keep

the size of the partitions balanced)

- Reducing, all the data associated to the same key gets processed and transformed

into a final output.

6 1. Problem Settings

Hadoop and MapReduce in their original connotation have been replaced in the

industry by more efficient and flexible distributed processing frameworks for a long

time.

Apache Spark is one of these, it is based on the same concepts of Hadoop but offers

10x increases in performance thanks to its memory-based processing, compared to the

disk-based system of Hadoop [37].

Figure 1.2: Hadoop vs Spark [37]

Spark offers a much more flexible and easier to use interface, based on the concept of

RDDs (Resilient Distributed Datasets), immutable and distributed collections that can

be treated in a similar way to an array.

RDDs are the basis for more complex data structures such as Block Matrixes and

DataFrames, which are core aspects of Spark MlLib, a library which contains all the

1. Problem Settings 7

necessary tools and models to implement machine learning at scale in a distributed

setting.

Among the models offered by MlLib we have a distributed implementation of the

Collaborative Filtering algorithm with ALS, which will be a great point of reference

for our work.

1.2.2 Stream Processing

Stream processing allows for computation on data as soon as it’s generated (or with

minimal latencies), this allows to have a huge reduction in response time and can

deliver a great impact on businesses that can benefit from delivering analysis as soon

as possible to their customers.

Data streaming, even though it has been experiencing a big growth in popularity in

recent years, remain somewhat of a niche field in the data analysis landscape, and the

great majority of data scientists and engineers still uses offline/batch computations for

all their needs [14].

This phenomenon happens mainly for 2 different reasons, first many still have the

perception of online processing as a technology that is only needed for very specific

tasks and don’t fully realize the huge impact that very low latency analyses can have

on a business.

The other reason is that writing streaming algorithms is generally much more

complicated than writing offline ones. Streaming introduces in fact a lot of

complexities and limitations into the computational model:

- Streaming data has unbound size, since it represents an ever-growing sequence

of events

- Working with data coming in real time means that the system also needs to

have a mechanism to handle record coming in late

Different processing engines tackle these challenges in different ways, Spark

Structured Streaming for example adopts a microbatching approach, adjuvated by

techniques like windowing, stateful processing and watermarking [32].

Windows are ways of grouping streaming data and perform computations on related

data, the tree most used types of windows are:

- Tumbling Windows: fixed size, there is no overlapping among the events of

each window

- Sliding Windows: fixed size, a new window is created each time a new event is

generated

8 1. Problem Settings

- Session Windows: dynamic size, a window is built around the concept of

session

Figure 1.3: Windowing in Spark

Stream processing is typically used for computing small statistics or KPIs in real time,

but it’s also possible to use it for more complex analyses, such as training machine

learning models and using them to make predictions.

As of right now there has been a lot of experimentation with streaming machine

learning [12, 25], but online models represent only a tiny fraction of their offline

counterpart: Apache Spark for example, allows to make predictions on streaming

data with all their offline ml models, but only offers online training (which is the most

effective form of real-time machine learning, and the one this thesis is focusing on) for

a very small subset of them (currently k-means, linear regression and logistic

regression).

One of the main objectives of this thesis is to propose and test an implementation of a

streaming version of the collaborative filtering algorithm for recommendations with

online training.

1. Problem Settings 9

1.2.3 Collaborative Filtering

Collaborative filtering is probably the most popular and effective machine learning

algorithm used for generating items to user recommendations in content-based

applications [30, 34].

Unlike the content-based approaches, that work by analyzing the content of the item

liked in the past by the users and finding similar products to recommend, collaborative

filtering leverages only user past interactions and preferences and suggests items that

were liked by other users who have had similar patterns in the past.

It works by storing the interactions of user to item inside an M by N rating matrix

(where M represents the number of users and N the number of items) and the cell m,n

contains the preferences of the user m for the item n.

The values inside the rating matrix are the user to item ratings, which can either be

explicit or implicit [1, 19, 21].

Explicit recommendations have traditionally been used in collaborative filtering

systems, and they are integer values (usually ranging from 1 to 5) that represent a

preference a used has expressed over an item (websites often ask their users to leave

these kinds of ratings after interacting with a certain item, for example reproducing a

video on YouTube or purchasing a product on Amazon).

Explicit ratings guarantee a high degree of accuracy and reliability on the user

preference, they are however often not enough for building an effective recommender

system since they are not always available, and even if they are they usually on a

smaller amount than their implicit counterpart (users typically interact with many

more items than they leave a review for).

That’s why the use of implicit rating has gained a lot of popularity in recent years; an

implicit rating is derived from an interaction between a user and an item from which

we can derive with some level of confidence how a user feels about an item.

Examples of implicit interactions could be the amount of time a user has spent

watching a reel on TikTok, or how many times a customer has purchased a certain

product on Amazon.

10 1. Problem Settings

Figure 1.2: Rating Matrix Example in Collaborative Filtering [30]

The great majority of recommender systems only consider one single type of implicit

interaction at the same time to estimate the ratings.

While there has been some research around it [9, 17, 18, 22], the use of multimodal

inputs as implicit ratings is still for the most part an uncharted territory, and in this

thesis, there will be an attempt of exploiting this kind of data to increase the

recommender system accuracy.

1.2.4 Real time recommendations

As for any other machine learning models, recommender systems still work only with

batch predictions in almost all their implementations, and for a good reason, since

many websites/applications don’t have this kind of low latency needs.

Usually, recommender systems get updated once a day, so users will start to receive

recommendations with the updated preferences discovered during their navigation

one day after displaying them, which is fine for most use cases.

There are also many situations however, in which user preferences gets updated very

frequently, think for example about the eCommerce / Video sharing users that log-in

to the website one day and starts looking for a new topic/product they have just hear

about.

That’s why in recent years a new thread of research was born, focusing on bringing

user recommendations updated with the preferences they had displayed in that very

same session [5, 16, 17, 18, 25].

1. Problem Settings 11

Many real time recommendation systems are based on the concept of user similarity

(often computed with cosine similarity) combined with clustering techniques such as

k-nearest neighbors.

These kinds of approaches can offer good predictions (even though not as accurate as

the one produced by collaborative filtering) and work well in an online setting given

the limited computation time required to compute similarities.

More recent approaches leverage LHS blocking and Hamming Distance to compute in

real time topic recommendations [3], these methods are quite flexible as they allow us

to work with both explicit and implicit user preferences.

Finally, there are also proofs of real time recommender systems developed by Tencent

based on item similarity and pair count and implicit collaborative filtering

implemented in Apache Storm, that have the very interesting aspect of handling the

processing of the data stream in a pipelined manner [38].

This thesis approach on the other hand will focus on an couple of key aspects that are

often overlooked in the field, which are the sequence of user interactions inside a single

website rather than a single user-item interaction, and an attempt to try to include

many different kinds of actions into the implicit preference computation, instead of

choosing a single kind of action as a proxy for explicit ratings (single-modal vs multi-

modal approach).

The proposed collaborative filtering method is based on a lightweight variant of ALS

matrix factorization, that can map our interaction sequences into preferences well.

12 2. Technology Choices

2. Technology Choices

2.1 Stream Processing Engine

2.1.1 Alternatives

There is currently a plethora of possible choices when it comes to stream processing

engines. The options were evaluated based on how well they could satisfy the project

requirements, which are:

- High throughput distributed processing, with latency in the range of tens of

seconds

- Low level algebraic distributed operations (mainly basic matrix operations,

such as dot product, inverse and transpose)

- Support for running machine learning models at scale, both in a streaming and

batch environment

- Some kind of stateful processing over streams

The three candidates that covered most of these aspects were Apache Spark, Apache

Storm and Flink.

2.1.2 Apache Spark over Flink

Apache Spark and Flink have 2 fundamentally different execution models [32]:

The former simulates real time processing with a micro batching execution model

while the latter offers an actual streaming engine.

This means that for some use cases, where the application requires millisecond levels

of latency, Spark can’t offer the same guarantees as Flink. On the other hand, Spark

compensates with an increased throughput.

2. Technology Choices 13

Figure 2.1: Processing Engines performance comparison [32]

While having such a millisecond level latency can seem very attractive for any real

time use case, in our specific project the time scope of the recommendations is to the

concept of user sessions, which on average operate on the scale of minutes

(requirement that can be easily fulfilled by Spark Structured Streaming).

On the other hand, implementing a real time Matrix Factorization algorithm can be

very demanding on the throughput side, so Spark has an edge over Flink on this

aspect.

Moreover, both frameworks contain a machine learning library and toolset offering

many of the most common models, but only Spark offers access to low level distributed

matrixes, which are crucial for our implementation.

Due to all these reasons, Spark appeared as a better fit for the thesis needs.

2.1.3 Apache Spark over Apache Storm

The comparison among Spark and Storm is similar to the previous one with Flink [32]:

Storm too offers a real streaming processing model with milliseconds levels of latency

at the cost of a reduced throughput and lacks in support with respect to distributed

data structures for low level algebraic operations and high-level machine learning

models.

14 2. Technology Choices

Furthermore, Storm’s community is less extended and established than Spark’s,

which, even though it doesn’t really constitute a technical limitation, can make

development more difficult.

Considering all the aforementioned points, Apache Spark was chosen as the most

fitting tool for implementing our distribute, real time model.

2.2 Message Broker

To make our system more efficient and reliable, it’s necessary to add a mediator

component that will receive all the streaming data from our data sources, store it safely

for a limited time, and then deliver each message exactly once to our stream processing

cluster with the lowest possible latency.

The 2 technologies that were considered for this task were Apache Kafka and

RabbitMQ, as they both satisfied the requirements.

While both these message brokers could provide good performances for this use case,

the final choice landed on Kafka, that can offer higher horizontal scalability and

guarantees a higher throughput for analytical applications such as this, while

RabbitMQ performs better with low latency transactional systems.

Figure 2.2: Kafka Architecture [31]

What makes Kafka so fast and efficient is its architecture: messages are published to a

topic by one or more producers, and the data is stored in the Kafka brokers, which are

multiple nodes that form a cluster and allow for partitioning and replication of the

2. Technology Choices 15

data [31]. When the system needs to increase its speed or data processing capabilities,

new brokers can be added to the cluster, allowing for horizontal scaling.

The streaming data can then be read in parallel by consumers (in our case the Spark

clusters), which can be grouped into consumers groups to further increase throughput.

2.3 Programming Language

Having chosen Spark as our distributed streaming processing engine, the possible

alternatives for programming languages were the ones officially supported by the

Spark API: Scala, Java and Python.

The first option to be ruled out was Java, since it offers the same functionalities of the

Scala API, while having an older interface and limited support to functional

programming.

Python, on the other hand, while not offering support to some of the latest features of

the Spark library, was a much more compelling option, mainly thanks to its ease of use

compared to Scala and the wide community support and native compatibility with

most of the tools and libraries used in the data and machine learning field.

Ultimately, the language chosen for implementing the model and conducting the

experiments was Scala, for the following reasons:

- A good chunk of the work consists in building a recommender algorithm from

scratch, which involves performing mathematical operations with complex

data structures such as distributed matrixes, in this context having a strongly

typed language can make it easier to structure the code in a modular, well

defined style and can speed up development by allowing to find many errors

at compile time rather than run time

- The Scala API offers more functionalities with respect to the Python one,

particularly the Dataset interface and the stateful processing capabilities.

- The core apache Spark and MlLib frameworks are open source and built with

Scala, and it can be easier to replicate patterns and best practices from the

original library when working with the same language.

- This thesis will make heavy use of the User Defined Functions in Spark (UDF),

which can be quite inefficient if not programmed properly, using a native JVM

language with access to low level operations can help write more optimized

UDFs.

16 3. Proposed Approach

3. Proposed Approach

3.1 Distributed Collaborative Filtering

3.1.1 Theory Overview

In this chapter we will dive deeper into the latent factor models for recommendations,

and propose a version of this algorithm that could work in our distributed, real-time

environment.

As we mentioned in chapter 1, collaborative filtering algorithms work by storing the

user-product preferences in a m x n matrix called rating matrix.

Since on almost every big website each user interacts with a very small fraction of the

products/items, the rating matrix will be very sparse, which means that most of the

preferences will be unknown.

In this context, generating recommendations comes down to solving 2 fundamental

issues:

- How do we deal with a matrix that can potentially have millions of rows and

millions of columns? Is there any way to reduce its dimensionality?

- How do we find the items that will most likely be appreciated by a user inside

this huge problem space?

Latent factor models are a solution that has proven to be very effective for solving this

complex challenge.

This class of algorithms works by trying to factorize the rating matrix by using much

expressing it as a dot product of user and item factors.

The matrix R, of dimension m x n, will then be estimated as the dot product of the item

factors, of size m x k, and of the transposed of the item factors, of size n x k, where k

<< m,n. This operation not only allows us to work with data structures with a greatly

3. Proposed Approach 17

reduced dimensionality, but can also be used for estimating the rating of unknown

user-item pairs, and thus matrix factorization becomes a great way to compute user

recommendations.

How can this work? The idea behind every factorization method is that dimensionality

gets reduced by expressing each product and each user as a linear combination of k

fundamental tastes. To express it in a human readable way we could say that for

example Harry Potter is composed of 40% adventure, 30% fantasy, 20% drama and

10% comedy.

The main objective of the latent factor algorithm is then to minimize the estimation

error, which is the difference between the actual rating matrix and the estimated

matrix obtained from the factor multiplication:

ℓ𝐴𝐿𝑆 = ∑

𝑥,𝑦∈𝒯

(R𝑥,𝑦 − R̂𝑥,𝑦)
2
+ 𝜆(∥ U ∥2 +∥ P ∥2)

Where the rating matrixes are expressed as R and 𝑈 and P are respectively the user

and item factors, while 𝜆 is a regularization parameter.

It’s possible to find the factor values that minimize the loss by computing the partial

derivatives and setting them to zero:

{

𝜕𝑙

𝜕𝑈𝑥
= 0

𝜕𝑙

𝜕𝑃𝑦
= 0

This implementation is very efficient and works very well in an offline setting but

doesn’t respect the latency requirements of a real time application.

18 3. Proposed Approach

Figure 3.1: Matrix Factorization [29]

The objective of this thesis is to apply this approach in a distributed and real-time

setting, let’s focus on each problem at a time and then we’ll see how to integrate them.

3.1.2 Spark Implementation

Apache Spark will be our main tool to tackle the distributed portion of this problem;

MLlib implements a distributed offline version of the ALS algorithms itself, our

approach will be an alternative implementation, adapted to our streaming use-case.

In order to implement a distributed matrix factorization algorithm, we need a data

structure that represents a distributed matrix, supporting basic algebraic operations

such as dot product, matrix inverse and transpose and efficient selection of specific

rows and cells [33].

Apache Spark represents this concept with its abstract interface DistributedMatrix,

implemented by two data structures that are very fitting for this use case:

- BlockMatrix, which represents a simple matrix divided into partitions and

stored in distributed worker nodes. It offers interfaces to all the matrix

operations we need (matrix sum, dot product, matrix transpose). The dot

product implementation is particularly efficient, as it breaks down the matrix

multiplication into blocks, minimizing the data shuffling among nodes. One big

limitation of this data structure is that it doesn’t allow for efficient selection of

a specific row or cell.

- IndexedRowMatrix, an alternate implementation in which each Row as an

index associated with it, which can be exploited to efficiently select a single row

or cell. This class doesn’t support basic algebraic operations but it’s possible to

efficiently convert it to a BlockMatrix to handle these kinds of operations.

3. Proposed Approach 19

By leveraging these 2 interfaces alongside the standard Spark RDDs we have

everything we need to start working on our distributed Matrix Factorization

implementation efficiently.

Figure 3.2: Distributed Matrix Multiplication [33]

Let’s focus now on the challenges introduced by the real time requirement of the

algorithm:

Having to process the data in real time gives a lot of limitations to our processing times,

this means that we can’t rely on the standard training processes since it would take too

much time to factorize the whole rating matrix each time a new interaction (or a new

minibatch of interactions) is generated.

The solution to this problem is not factorizing the whole matrix each time but using

Stochastic Gradient Descent to update the factors with only one observation at the

same time. [4 ,5]

This technique will come with a slight decrease in the factorization accuracy, but this

is a necessary tradeoff for gaining the huge advantages of near real time latency we

have already discussed about.

We will also introduce the concept of biases into the learning algorithm to represent

how much different users rate the same products (this helps compensate for the

sparser factorization method).

The estimated ratings formula with biases becomes:

20 3. Proposed Approach

R̂𝑥,𝑦 = 𝑏𝑥,𝑦 + 𝑈𝑥
𝑇 × 𝑃𝛾

Therefore, the loss function for B-SGD (Bias Stochastic Gradient Descent) is:

ℓ𝑆𝐺𝐷 = ∑

𝑥,𝑦∈𝒯

(R𝑥,𝑦 − R̂𝑥,𝑦)
2
+ 𝜆(∥ U ∥2 +∥ P ∥2+ 𝑏𝑥

2 + 𝑏𝑦
2)

As mentioned before, we won’t be computing the full gradient for this loss function as

it’s unfeasible in an online scenario, but from this formula we can derive the B-SDG

terms update equations, if we define the estimation error as:

 𝜀𝑥,𝑦 = R𝑥,𝑦 − R̂𝑥,𝑦

Then the update equations become:

𝑏𝑥 ← 𝑏𝑥 + 𝛾(𝜖𝑥,𝑦 − 𝜆𝑥𝑏𝑥)

𝑏𝑦 ← 𝑏𝑦 + 𝛾(𝜖𝑥,𝑦 − 𝜆𝑦𝑏𝑦)

U𝑥 ← U𝑥 + 𝛾(𝜖𝑥,𝑦P𝑦 − 𝜆𝑥
′ U𝑥)

P𝑦 ← P𝑦 + 𝛾(𝜖𝑥,𝑦U𝑥 − 𝜆𝑦
′ P𝑦)

Where 𝛾 is the learning rate hyperparameter.

The algorithm is implemented using Spark Structured Streaming, all the necessary

processing (data cleaning, wrong record eliminations, weighted multimodal

interaction computation) will be executed using the Stream Dataframes API, and the

model updates will be performed on minibatches of data aggregated by user id,

implemented with a User Defined Function.

3. Proposed Approach 21

3.1.3 Pseudocode

Let’s now dive deeper into the code implementation of the algorithm, the main

variables involved are:

Variable Name
Variable

Type
Description

userProductMatrix BlockMatrix[Double]

Matrix containing the

ratings currently processed

by the real time model

userFactors BlockMatrix[Double]
Matrix with the user

factors

productFactors BlockMatrix[Double]
Matrix with the product

factors

userBiases BlockMatrix[Double]
Matrix with the current

user biases

productBiases BlockMatrix[Double]
Matrix with the current

product biases

userProductUpdateMa

trix
BlockMatrix[Double]

Matrix containing the

implicit ratings updates

from the current mini

batch, all the other values

in the matrix are set to 0

estimatedUserProduct

Matrix
BlockMatrix[Double]

Matrix representing the

estimate of the rating

matrix obtained by

22 3. Proposed Approach

performing dot product

among user and product

factors

estimationError Double

Difference between the

current factor estimation

and the actual rating

ratingBatch Array[Ratings]
Array containing the

current ratings mini batch

currentUserRow Array[Double]

Row of the actual rating

matrix with the data of the

current user

estimatedUserRow Array[Double]

Row of the estimated

rating matrix with the data

of the current user

currentUserFactors Array[Double]

Array with the factor row

of the user being currently

updated

currentProductFactors Array[Double]

Array with the factor row

of the item being currently

updated

currentUserBiases Array[Double]

Array with the bias row of

the user being currently

updated

currentProductBiases Array[Double]

Array with the bias row of

the item being currently

updated

Table 3.1: Streaming Matrix Factorization Variables

3. Proposed Approach 23

While the models hyperparameters are:

Hyperparam Name
Hyperparam

Type
Description

N_FACTORS Integer

number of of factors used

in the matrix factorization

algorithm

N_USERS Integer
Current number of users

considered by the model

N_PRODUCTS Integer
current number of items

considered by the model

GAMMA Double Learning Rate

ALPHA Double SGD Hyperparameter

LAMBDA Double SGD Hyperparameter

Table 3.2: Streaming Matrix Factorization Hyperparameters

24 3. Proposed Approach

Here’s the pseudocode for our streaming, distributed Matrix Factorization

implementation in Spark.

Some clarifications:

- The BlockMatrix type is the Spark data type discussed in the previous chapter,

all the matrix operations cited in the pseudocode are part of its API and can be

executed efficiently and in parallel

- The toBlockMatrix() function is a helper tool that I wrote to efficiently convert

standard Scala arrays in BlockMatrixes

- The toIndexedRowMatrix() function converts a Spark Block Matrix to a Spark

IndexedRowMatrix, that are needed to extract specific rows from the matrixes

Algorithm 1 Distributed Streaming Matrix Factorization, Model Minibatch

Update

1: userProductUpdateMatrix ratingBatch.toBlockMatrix()

 // updates the rating matrix with the new events

2: userProductMatrix userProductMatrix + userProductUpdateMatrix

 // computes the new estimatedProductMatrix

3: estimatedUserProductMatrix

 userFactors.multiply(productFactors.transpose)

4: for rating in ratingBatch do

5: estimatedUserRow // extracts estimated user row from

 estimatedUserProductMatrix // estimated rating matrix

3. Proposed Approach 25

 .toIndexedRowMatrix()

 .filter(rowId == rating.userId)

6: currentUserRow // extracts actual user row from

 userProductMatrix // actual rating matrix

 .toIndexedRowMatrix()

 .filter(rowId == rating.userId)

 7: estimationError currentUserRow – estimatedUserRow

 8: currentUserFactors // extracts current user factor row

 userFactors

 .toIndexedRowMatrix()

 .filter(rowId == rating.userId)

 9: currentProductFactors // extracts current product factor row

 productFactors

 .toIndexedRowMatrix()

 .filter(rowId == rating.productId)

10: userFactorsUpdate // computes the factors update with SGD

 currentUserFactors zip currentProductFactors

 .map(x, y => GAMMA * (estimationError * y - LAMBDA * x))

11: productFactorsUpdate // computes the factors update with SGD

 currentUserFactors zip currentProductFactors

 .map(x, y => GAMMA * (estimationError * x - LAMBDA * y))

 12: // adds update increment to user factors

 userFactors userFactors + userFactorsUpdate.toBlockMatrix()

 // adds update increment to product factors

 13: productFactors

 productFactors + productFactorsUpdate.toBlockMatrix()

26 3. Proposed Approach

14: currentUserBias // extracts current user bias row

 userBias

 .toIndexedRowMatrix()

 .filter(rowId == rating.userId)

 15: currentProductBias // extracts current product bias row

 productBias

 .toIndexedRowMatrix()

 .filter(rowId == rating.productId)

 // computes the user bias update with SGD

 16: userBiasUpdate

 GAMMA* (estimationError - LAMBDA * currentUserBias)

 // computes the product bias update with SGD

 17: productBiasUpdate

 GAMMA * (estimationError - LAMBDA * currentProductBias)

 // adds update increment to user biases

 18: userBiases userFactors + userBiasUpdate.toBlockMatrix()

 // adds update increment to product biases

 19: productBiases

 productFactors + productBiasUpdate.toBlockMatrix()

 20: endfor

3. Proposed Approach 27

3.2 Implicit Multimodal Collaborative Filtering

3.2.1 Theory Overview

The approaches we have explored up until now were conducted in the classical setting

of a recommender systems with explicit rating. As we mentioned before, the majority

of real-life systems don’t have access to explicit rating but have to estimate user

preferences by using many different types of user-item interactions.

The use of implicit ratings for generating recommendations has been around for many

years now [1, 9, 19, 21, 29], and it’s become a popular solution for building

recommender systems when explicit ratings are unavailable or not enough (which is

by far the more common scenario).

Figure 3.3: Collaborative Filtering [34]

This can be obtained by introducing the concept of preference (which is set to 1 if

there’s been any interaction among the user and the item) and confidence, derived

from the implicit user-item interactions and representing how much we are sure of the

rating we have estimated from the user interactions.

28 3. Proposed Approach

𝑝𝑢𝑖 = {
1 𝑟𝑢𝑖 > 0
0 𝑟𝑢𝑖 = 0

There are many ways for computing confidence from the implicit rating, this formula

is very simple yet effective:

𝑐𝑢𝑖 = 1 + α𝑟𝑢𝑖

With these new concepts introduced into our recommendations systems, we can

update the loss function as follows:

l = ∑  

𝑢,𝑖

𝑐𝑢𝑖(𝑝𝑢𝑖 − 𝑥𝑢
𝑇𝑦𝑖)

2 + 𝜆(∑  

𝑢

∥∥𝑥𝑢∥∥
2 +∑  

𝑖

∥∥𝑦𝑖∥∥
2)

This approach allows the system to function with implicit ratings, but we still don’t

have a way to take into account different types of interaction in the same

recommendation model.

A very basic solution that incorporates this concept into the preference estimation is

the weighted importance of interactions: each event will be used as an indicator of

preference between the user performing the action and the item receiving it, and the

amount of confidence increase will depend on the type of interaction.

For this approach to work, it’s necessary to manually define the value of each

interaction kind, in an e-commerce website a possible interaction-weight mapping

could be:

- Item Search → 1

- Item Page View → 2

- Item Added to Favorites → 3

- Item Added to Cart → 4

- Item Purchase → 5

This method has the disadvantage of introducing more hyperparameters in the model

that will have to be fine-tuned, but it allows for more accurate recommendations

thanks to the more complete and diverse interaction set.

3. Proposed Approach 29

3.2.2 Pseudocode

Here’s the pseudocode for our streaming, distributed Matrix Factorization

implementation in Spark.

The pseudocode is similar to algorithm 1, with a couple of differences used to integrate

implicit ratings and weighted importance:

- The weightedImportanceRatings is a function that given in input a batch of

implicit ratings computes the updateMatrix taking into account the weights of

each interaction kind

- The estimation error is computed using the implicit ratings methodology, using

rating preference and confidence

Algorithm 2: Distributed Streaming Matrix Factorization, Model Minibatch

Update with Multimodal Implicit Ratings

1: userProductUpdateMatrix weightedImportanceRatings(ratingBatch)

 // updates the rating matrix with the new events

2: userProductMatrix userProductMatrix + userProductUpdateMatrix

 // computes the new estimatedProductMatrix

3: estimatedUserProductMatrix

 userFactors.multiply(productFactors.transpose)

4: for rating in ratingBatch do

5: estimatedUserRow // extracts estimated user row from

 estimatedUserProductMatrix // estimated rating matrix

 .toIndexedRowMatrix()

 .filter(rowId == rating.userId)

30 3. Proposed Approach

6: currentUserRow // extracts actual user row from

 userProductMatrix // actual rating matrix

 .toIndexedRowMatrix()

 .filter(rowId == rating.userId)

 7: estimationError c(p(currentUserRow) – estimatedUserRow)

 8: currentUserFactors // extracts current user factor row

 userFactors

 .toIndexedRowMatrix()

 .filter(rowId == rating.userId)

 9: currentProductFactors // extracts current product factor row

 productFactors

 .toIndexedRowMatrix()

 .filter(rowId == rating.productId)

10: userFactorsUpdate // computes the factors update with SGD

 currentUserFactors zip currentProductFactors

 .map(x, y => GAMMA * (estimationError * y - LAMBDA * x))

11: productFactorsUpdate // computes the factors update with SGD

 currentUserFactors zip currentProductFactors

 .map(x, y => GAMMA * (estimationError * x - LAMBDA * y))

 12: // adds update increment to user factors

 userFactors userFactors + userFactorsUpdate.toBlockMatrix()

 // adds update increment to product factors

 13: productFactors

 productFactors + productFactorsUpdate.toBlockMatrix()

14: currentUserBias // extracts current user bias row

 userBias

3. Proposed Approach 31

 .toIndexedRowMatrix()

 .filter(rowId == rating.userId)

 15: currentProductBias // extracts current product bias row

 productBias

 .toIndexedRowMatrix()

 .filter(rowId == rating.productId)

 // computes the user bias update with SGD

 16: userBiasUpdate

 GAMMA* (estimationError - LAMBDA * currentUserBias)

 // computes the product bias update with SGD

 17: productBiasUpdate

 GAMMA * (estimationError - LAMBDA * currentProductBias)

 // adds update increment to user biases

 18: userBiases userFactors + userBiasUpdate.toBlockMatrix()

 // adds update increment to product biases

 19: productBiases

 productFactors + productBiasUpdate.toBlockMatrix()

 20: endfor

32 3. Proposed Approach

3.3 Association Rule Matching

3.3.1 Theory Overview

The weighted importance approach to multimodal, while being a viable and

functioning solution, comes with many limitations and inefficiencies:

- The weight of each type of interaction must be defined manually, and there’s

no guarantee that the decided value will be the optimal ones

- Whenever a new kind of interaction gets added to the system, the weight

configuration needs to be updated

- Each action is still considered as a standalone event, we never consider the

meaning of action sequences when computing user preferences

A better way to handle multimodal interaction would be focusing more on the patterns

and sequences of interaction that each user performs on the website and try to derive

some information about their future behavior given this information.

A very common and effective way to discover common patterns inside sequences of

events is the data mining technique called association rules mining [35].

Association Rules mining takes all possible itemsets in a list of transactions (an itemset

is a subset of all the possible sequences of transactions) and computes 2 key metrics:

- Support: number of times an itemset appears in a transaction with respect to

the total number of transactions.

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐼𝑡𝑒𝑚𝑠𝑒𝑡) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐼𝑡𝑒𝑚𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

- Confidence: likeliness of an association rules, meaning how probable is that a

pattern X in the user navigation will lead to a pattern Y in the future.

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)

There are many different algorithms for finding association rules from a transaction

set and for computing support and confidence of the itemset, one of the most recent

and efficient approaches is the FPGrowh algorithm [40, 41].

3. Proposed Approach 33

3.3.2 Spark Implementation

Spark offers an efficient distributed implementation of the FPGrowth algorithm for

Association Rules mining, that can be used to compute all the transaction sets that

display a support or confidence exceeding a certain threshold.

In our specific use case, we could use transactions to compute with how much

confidence we can say that a user will perform an action after displaying a certain

interaction pattern. We could for example discover that in our ecommerce website,

after a user view an item A for 10 seconds, clicks on an item B and scrolls through the

item B description we could say with 80% confidence that he will purchase item A.

The concept of confidence in association rules is similar to the one used in collaborative

filtering with implicit preferences, so it seems reasonable that there could be a way to

integrate these 2 approaches.

Figure 3.4: Support and Confidence in Association Rules [35]

34 3. Proposed Approach

3.3.3 Spark Implementation

A good approach could be to perform association rules mining with the FPGrowth

algorithm on a subset of the clickstream dataset, and then use them to compute the

ratings value on the remaining clickstream real time events.

The basic idea is that people that share similar behavioral patterns would also share

similar tastes, so whenever the stream processing engine finds a match between the

dataset of popular patterns and the sequence of live events of a certain user, we can

increase the confidence for the rating of the item that pattern leads to, in a proportional

manner with the confidence value of the association rule.

Pattern matching on live clickstream can be performed with the Spark Streaming SQL

engine and using a 2-minute sliding window function, which will concatenate all the

events descriptors (view_on_item_x, addToCart_on_item_y…) and aggregate the by

user id.

This Stream will then be joined with the static Association Rules dataset and for every

match found the rule confidence will be extracted and added to the next model update

UDF minibatch.

3.3.4 Pattern Matching Spark SQL Implementation

Here’s the Spark code used for generating the pattern detection and matching on live

clickstream data:

Figure 3.5: Pattern Matching on Clickstream Spark SQL Query

4. Experiments and Evaluation 35

4. Experiments and Evaluation

4.1 Datasets

4.1.1 Cloudera Clickstream

The objective of this thesis is to explore the potential of distributed, real time

recommender systems under different scenarios.

This means that the structure of the conducted experiments will be hierarchical,

starting with simple datasets and algorithms and then moving on with more and more

sophisticated simulations as we move one.

The requirements for the first experiments are just to test our recommender system in

a distributed and streaming scenario, so the first iteration will be performed on a very

basic clickstream dataset representing user navigation [39], taken from Cloudera

Omniture

Here’s an extract of the dataset loaded as a Spark Dataframe, after being preprocessed

and selecting only the relevant columns for this experiment:

Figure 4.1: Cloudera Clickstream dataset

36 4. Experiments and Evaluation

- Timestamp, used to build the event order in our real time interaction simulator

- The ip address, necessary to differentiate between different user session and

build the stream aggregation windows

- User and Item identifiers, essential to the Matrix Factorization algorithm.

- User and Item name, helpful during the testing and evaluation phases

The preference rating proxy will be unimodal and represented by the user to item url

navigation.

4. Experiments and Evaluation 37

4.1.2 Retailrocket Recommender System Dataset

In order to progress with the more complex experiments and leverage multimodal

clickstream input, it is necessary to exploit a richer dataset, offering more details into

the user navigation patterns.

The Retailrocket dataset, used also in a 2017 Kaggle challenge [40], is a very good fit

for these requirements.

Figure 4.2: Retailrocket Dataset

As before, we have all the necessary features to perform real time recommendations

on clickstream data (timestamp, userID and productID), with the additional

information of the type of interaction, which can be:

- View

- AddToCart

- Transaction

38 4. Experiments and Evaluation

Having a richer set of information on the clickstream action makes it possible to apply

the weighted importance and association rules-based approaches to this dataset, we

will have then a chance to compare these 2 methods with the unimodal one.

4. Experiments and Evaluation 39

4.2 Simulating the Real Time Interactions

Since we are dealing with streaming data, the data ingestion phase assumes critical

importance in the overall functioning of the system.

In an offline setting it would be enough to just collect all the most recent user

preferences/ratings and feed them to our recommendation model for the training

phase, without paying too much attention to the generation time of each record.

In our case, having realistic ingestion times is necessary for simulating what the

behavior of the model would be in a real-life setting.

The next best thing is writing a Kafka Producer that would produce a semi-realistic

simulation of the interaction streams generated by the user navigation.

Of course, to make the simulation feasible with our limited resources and in our

limited time scope, it was necessary to make a few simplifications and assumptions

while designing the producer, that would allow our experiment to function but at the

same time not impact the overall model behavior:

- One single producer acting as multiple users conducting clickstream events on

a website

- Simple loop going through the clickstream datasets periodically and publishing

event data in a Kafka topic

- Data is published in Avro format with the following schema:

Column Name Type Description

Timestamp Unix Timestamp

Unix Timestamp of

the record time of

the clickstream

RemoteHost String Client device info

User String

Name of the user

producing the

event

UserId String

Id of the user

producing the

event

40 4. Experiments and Evaluation

Product String

Name of the item

involved in the

interaction

ProductId String

Id of the item

involved in the

interaction

EventType String
Category of the

interaction event

Table4.1: Clickstream message schema

And this is a diagram explaining the application logic of the simulation:

Figure 4.3: Simulation Architecture

 41

4.3 Architecture

The architecture of the system will remain substantially the same among all

experiments, with 3 main processing components, 1 data source and 1 data sink:

- Input Datasets with Clickstream data and Association Rules

- Scala Interaction Simulator

- Kafka Cluster and Brokers + Zookeeper

- Spark Streaming processing cluster

- Ouput File Sink

All the experiments will be run on a single laptop with an octa-core Intel i5 processor,

8 GB of RAM and SSD storage inside a standard Ubuntu Docker container.

The system will have 2 Kafka brokers deployed, 1 core will be occupied by the

interaction simulator and another 1 by the Zookeeper server, while the Spark cluster

will have 3 nodes with 1 core each.

Figure 4.4: Experimental Architecture

42 4. Experiments and Evaluation

4.4 Testing the Architecture

The very first experiment that was conducted was meant to test out the processing

capabilities of the system and simulate realistic real-time clickstream data generation,

ingestion, and processing.

The basic idea of this initial experiment is to simulate in order to have a general-

purpose testing environment to familiarize and perform the first real time

transformations on clickstream data, as a starting point to conduct progressively more

complex analyses.

The idea is to run a local e-commerce website from an open-source frontend

application, write customized clickstream tracking scripts in Javascript to collect

different kind of user to item interactions, record them all in a clickstream collector

and then feed them as an input to our analytical architecture to test out its functioning

capabilities.

Figure 4.5: Divolte example data collection architecture [43]

An additional component that was introduced during the architecture in this step was

the clickstream collector Divolte: this component allows to easily collect and customize

and kind of user interaction and behavior in a website through asynchronous browser

event tracking, collect all this data in a scalable way and then channel all this data a

variety of sinks, in our case a Kafka cluster, where it can be used for analytical

purposes.

4. Experiments and Evaluation 43

Figure 4.6: Divolte testing environment

This local environment was used to test the basic data flow of the system and

experiment with spark queries and real time model capabilities, before moving on to

more complex and extensive experiments.

This kind of architecture is also very descriptive because it can be a pretty good

approximation of an architecture for a real-world deployment of a real time

recommender system for a large scale website.

44 4. Experiments and Evaluation

4.5 Implicit Single Modal

4.5.1 Introduction and Objective Definition

As mentioned in the previous paragraph, the experiments will be conducted in

increasing order of complexity, in order to test out the different aspects of the proposed

algorithms and evaluate and compare the different approaches.

The experiments began with a classic unimodal input based on the Cloudera

Omniverse Dataset, the proxy for the implicit rating was the only interaction provided

by the dataset, the page view.

The objective of this first experiment is to test out the distributed and real time

capabilities of the algorithm in a traditional recommendation setup, without focusing

too much on possible optimization that can be done in a streaming environment.

4.5.2 Data Preprocessing

The data contained in the dataset, by themselves, are not enough to be made into a

proper input for our recommendation model. The dataset provides is in fact for each

interaction the URL of the item and a string identifier for the user performing the

action, but it lacks the fundamental information of an integer identifier for the users

and items.

This issue can be solved quite easily by enriching the dataset, association a unique id

to each item URL and to each SWID.

The implementation of this ID generator was done as a standard Spark script, the core

of the implementation is this SQL query run within the Spark query engine:

select timestampCast,

 | ip,

 | url,

 | dense_rank() over(partition by 1 order by url) as product_id,

 | swid,

 | dense_rank() over(partition by 1 order by swid) as user_id

 | from ClickStream

 | order by timestampCast

Figure 4.7: Data Preprocessing Spark SQL Query

4. Experiments and Evaluation 45

timestampCast is the converted unix timestamp of the interaction read from the raw

dataset, while the product_id and user_id were built by leveraging the dense_rank

function, which provides an unique index to ordered elements inside a given window

(in our case the windows were the url and swid columns respectively).

Here’s how the dataset looks after this ID generation process:

Figure 4.8: Preprocessed Clickstream Dataframe

Now the data is finally ready to be fed as an input of our Streaming Recommendation

Model.

4.5.3 Experiment Setup

The experimental setup had to be modified with respect to the initial testing

architecture; the main challenge of this new set of experiments is that it’s necessary to

generate a great amount of clickstream data, by simulating in a realistic way a stream

of user interactions generated in real time while at the same time working inside all

the limitations of a small-scale research environment with a limited-time scope.

The approach used to tackle this problem was a simulation script that would act as a

Kafka producer and try to recreate as closely as possible the real time data generation

dynamics that would occur in a real-world clickstream collection system.

The simulation script will load the clickstream data contained in the datasets, order

them by timestamp, and publish them into the Kafka cluster, effectively replacing the

role that would be be taken by a Divolte collector in a real-world deployment.

46 4. Experiments and Evaluation

4.6 Implicit Multimodal

4.6.1 Introduction and Objective Definition

The second experiment will focus on adding the multimodal input management into

the recommendation system model, we still won’t be focusing on applying additional

pattern detection techniques to the processing pipeline, this will be done in the next

paragraph with the association rules mining based approach.

In order to add this complexity layer to our system, it will be necessary to move to the

Retailrocket dataset, since the Cloudera one doesn’t offer information on the user-item

interaction time.

4.6.2 Weighted Importance

The approach to the multimodal input used is the weighed importance method, that

requires a weight definition to be associated to each different interaction type,

according to how meaningful that interaction type is considered to be in the preference

estimation.

A good metric to help define the weights value is the cardinality of the interactions in

the dataset, for the Retailrocket dataset we have:

- View → 97%

- AddToCart → 2-3%

- Transaction → <1%

A very reasonable assumption that can be made is that the rarer an event is, the more

indicative of user preference it is. If we apply this reasoning to our dataset, it can be

understood that a view event is very common and doesn’t carry much significance to

the preference estimation, while an AddToCart or Transaction event carries a very

strong indication that the user likes a certain product.

We can then propose a very simple but reasonable value set for the weight definition,

which is:

4. Experiments and Evaluation 47

Interaction

Type

Event

Frequency

Weight

Importance

View 97.% 0.5

AddToCart 2.3% 2

Transaction 0.7% 3

Table 4.2: Interaction types

 49

4.6 Implicit Multimodal with Association Rules

The next step in the roadmap of the work is trying to apply pattern detection as an

implicit way of measuring user ratings and interests.

The basic idea behind collaborative filtering is that a user who has expressed similar

ratings on certain items to other people will likely also appreciate other content liked

by those similar users. The proposed approach is based on the idea that ratings on

items can not only be estimated by user interactions, but they can also be extracted

from repeated and common user patterns inside a website, by mining clickstream data

Association rules can be a way to discover pattern and common behaviors in

navigation data, we will be using them to extract the sequence of actions that are more

commonly executed before performing an interaction (view, addToCart or

transaction) on an item.

For this experiment, even more than in the previous one, where we tested the weighted

importance approach, it is very significant to use a clickstream dataset offering

multimodal user-item interactions, so the choice landed once again on the Retailrocket

dataset. When mining user patterns in fact, the richer the action set is the more accurate

and precise our behavior estimation will be.

The proposed approach to simulate a real time deployment of this algorithm is the

following:

- Order the Retailrocket dataset by timestamp and split it in two subsets, the first

one will be used to extract the association rules in an offline setting, while the

second one will be used to simulate a real time clickstream ingestion and

recommendation in an ecommerce website

- The computed association rules will be loaded in a Spark Dataframe, and the

incoming interaction streams will be aggregated by user id with a 50 seconds

sliding windows in order to compute the real time patterns and then they will

be joined with the association rules static dataset.

- Each time a new real time pattern is detected by the stream processing engine

(aka a join is found with the association rules dataset) we consider this event as

an implicit rating towards the item u pointed in the matched association rule.

The value of the rating will be proportional to the confidence value of the rule

- As in previous experiments, rating events are batched together in minibatches

and the training streaming UDF function is called to perform matrix

factorization and update our model with stochastic gradient descent

50 4. Experiments and Evaluation

Figure 4.9: Association Rules extracted from the Retailrocket Dataset

The association rules were computed on 80% of the dataset, while the real time

ingestion simulation was performed using a subset of the remaining 20% containing a

fixed number of users and items, in order to cope with the very limited processing

power at our disposal for the model testing.

4. Experiments and Evaluation 51

4.7 Evaluation Methodology

The online setting of the problem makes evaluation more difficult to handle than in a

classical offline machine learning scenario.

The most popular methods used in literature for evaluating machine learning models

in a streaming environment are all based on the prequential evaluation technique [10,

, 11, 12, 13].

Prequential evaluation operates with a test and learn system, each time a new

interaction is collected by the system, the following operations are executed:

- Make a recommendation to the user performing the interaction for the top n

elements

- Score the newly generated recommendations

- Update the model with the current event

This type of evaluation fits well for many stream learning scenarios, since works in a

similar incremental fashion, and it offers many advantages over classical offline

methods such as real time monitoring and metrics computation, while offering the

chance to adjust model parameters online as well.

However, the limited processing power at or disposal makes it difficult to perform

both model training and prequential evaluation (which requires to generate

recommendations each time a new event is registered) on a single machine, and the

key focus of this method is predicting the next action for each user, which isn’t exactly

the scope of this thesis’s research.

Moreover, the online nature of prequential evaluation makes it so that this method can

only really evaluate accurately a recommendation system when it is deployed on the

website at the same time that the evaluation occurs, in order to actually test out the

effect that the recommendations generated in real time have on the users behaviors. In

this particular use case, the model was not deployed in a real system but the real time

interactions were recreated a posteriori using a simulation, so there is no way of seeing

the actual impact of the model on the interactions.

For all these reasons, prequential evaluation was ruled out as an evaluation

methodology for this algorithm, in favor of the other popular methodology for

evaluating stream learning algorithms: holdout evaluation of an independent test set.

This method is more similar to the more traditional batch learning ones [13, 21] (which

is also an advantage since it makes it easier to compare offline recommenders with

their online counterparts, as we will soon see), but it presents a few alterations to make

it suitable to a stream machine learning system.

52 4. Experiments and Evaluation

This method works by splitting the dataset into two independents subsets, each

independent from each other, one used for training the model and the other one used

for testing it. The model is then deployed in the online learning scenario and trained

incrementally on the training set (simulating a real time ingestion of the user-item

interactions as discussed in the previous chapter). Finally, the user and item factors

trained in real time are periodically extracted from the online model and used for

evaluation in an offline environment on the test set.

This method basically treats the stream model as a sequence of batch learning events

and performs the evaluation at different points in time as if it were an offline

environment.

Figure 4.10: ROC curve example [36]

For each evaluation batch we will then have a fixed size rating matrix created with the

ratings collected up to that specific point in time and the matrix factorization factors

extracted from the online model.

4. Experiments and Evaluation 53

A popular procedure used in similar use cases is the dataset mask, in which a

percentage of the ratings dataset gets hidden (usually 20%), then the model generates

recommendations for the users and compares the ranking of the suggested items with

the future purchases/masked ratings of the users.

The chosen metric for the evaluation is the Area Under the ROC curve (AUC), which

is a figure usually used for classifiers, but that can also be very effectively used for

evaluating recommendations [36].

The greater the AUC, the closer our recommendations will be to the actual purchases

or ratings.

Figure 4.11: Masked dataset technique [21]

54 4. Experiments and Evaluation

4.8 Experimental Results

In this section we will go over the results of the experiments and give some more

details on the experimentation procedure.

 The 3 main threads of experiments performed were the ones presented in the previous

sections of this chapter:

- Real time recommendations with implicit ratings and unimodal events

performed on the Cloudera Omniture dataset

- Real time recommendations with implicit ratings and multimodal events (3

categories) using the weighted importance technique over the Retailrocket

clickstream dataset.

- Real time recommendations with implicit ratings and multimodal events (3

categories) using the pattern mining/ association rules technique over the

Retailrocket clickstream dataset.

All these experiments were conducted on a subset of the whole datasets with a focus

on a fixed number of users and items, to cope with the very limited resources available

for testing the system.

Since we are dealing with an incremental machine learning model, the performance

evolution over time is a very significant metric to track, so the results have been

measured at different stages of the simulation execution, with respect to the processed

percentage of the input dataset (25%, 50%, 100%).

Finally, to give more context and get more insights into the model performances, the

results have been compared with simple recommendations generated by an offline

popular item model, which works by simply recommending to each user the most

popular items at any given point in time.

When interpreting the results, it’s important to remember that streaming machine

learning models are meant to sacrifice some accuracy with respect to offline ones in

order to produce such low latency predictions, so it’s expected to obtain a lower AUC

score with respect to offline models and this is accepted because in highly dynamic

context recommendation speed is more important than accuracy.

4. Experiments and Evaluation 55

All the results in the table below refer to values obtained by the best performing model,

obtained after finetuning the matrix factorization hyperparameters and obtaining their

best values, which are:

- Learning rate Gamma: 0.1

- Lambda: 1

- Alpha: 4

Omniverse Dataset

(Unimodal)

Retailtrocket

Dataset

(Multimodal WI)

Retailtrocket Dataset

(Multimodal AS)

AUC 25% 0.684 0.842 0.814

POP AUC 25% 0.952 0.921 0.921

AUC 50% 0.398 0.867 0.890

POP AUC 50% 0.939 0.944 0.944

AUC 100% 0.572 0.808 0.833

POP AUC 100% 0.911 0.853 0.853

Table 4.3: Experimental Results

 57

5. Conclusion and Future

Developments

5.1.1 Results Discussion

Let’s have a few words regarding the outcomes of the experiments presented in the

last chapter:

- The main objective of this thesis was proving the feasibility of real time matrix

factorization models using clickstream data and explore pattern mining as a

way to produce implicit feedback in recommender systems, both of these

objectives have been completely reached in the experiments.

- The outcomes of the experiments were aligned with the expectations: real time

recommendations with clickstream data are possible, it’s possible to obtain

accurate predictions (even though not as precise as their offline counterpart),

and the more detailed and enriched the input data is (i.e. how many types of

user to item interaction are available in the clickstream tracking), the more

effective the recommender system will be, as proven by the fact that our model

performed better on the Retailrocket multimodal dataset with respect to the

Cloudera Omniture single-modal one.

- Multimodal feedback for recommendations is a very promising field of research

and with yet much possible room for improvement, the richer event types set

offers the possibility of improving the recommendations performance by

conducting enrichment analyses on the clickstream sequences, such as

association rules mining in our case.

- The whole rationale behind stream processing and real time machine learning

is to sacrifice a bit of accuracy to have a huge gain in latency time, which could

more than compensate for the loss of performance. Therefore, the results

obtained in the experiments are very significant even if may not seem like it at

first glance, given that they provide a lower accuracy than the offline method.

58 5Conclusion and Future Developments

5.1.2 Large-Scale Testing and Deployment

Every system designed to work with a large user base needs to handle scaling and

guarantee a high level of latency and/or throughput.

While designing the algorithms presented in this thesis and developing the system

architecture, they were tested on making sure that they could scale and work in a real

life was a priority requirement, and all the choices like adopting an horizontally

scalable real time messaging system like Kafka and run the algorithm with a

distributed processing framework were meant to enable deployment in high scale

scenarios.

However, the limited resources at the disposal for this thesis made it impossible to test

the scaling capabilities of the system in a big, distributed cluster with a large number

of nodes, allowing only for a local deployment with a few nodes and testing only on a

subset of the whole datasets and simulating the real time interactions with a stub.

An interesting possibility for future work would be having the chance of deploying

the system in a real-world, large-scale system connecting it with actual users

generating data in real time and testing the actual effect that the online

recommendations have on the website applying techniques such as A/B testing.

5Conclusion and Future Developments 59

5.1.3 Increase the Amount of Interaction Categories

In this thesis’s experiments we have initially tested the recommender systems with a

unimodal interaction dataset, and then we moved on to a multimodal with 3 different

categories of interactions.

When doing this kind of machine learning research work one of the most difficult

challenges is looking for and finding rich and suitable datasets that can be used to

properly exhaust and properly analyze the potential of the algorithm being proposed,

since the necessary kind of data is usually possessed only by large corporations who

don’t grant open access to it.

This case was no exception: even though a great amount of time was spent in

researching and looking for clickstream datasets with multimodal interactions, the

best candidate found was the Retailrocket one, who offers only 3 different kinds of

interaction.

Even though 3 interaction types still enabled us to test and verify the capabilities of the

proposed approach, one of the main purposes of this thesis was to map and match

complex event sequences into user behaviors to find similar navigation pattern to feed

to our recommender systems, and these user behavior representation gets more and

more accurate when increasing the amount and scope of interactions considered [9].

A possible future progression of this work could focus on repeating the experiments

done on a bigger and richer dataset and analyze the impact the number of inputs can

have on the effectiveness of the system.

60 5Conclusion and Future Developments

5.1.4 Real Time navigation pattern mining

In this experiment the focus was on verifying and testing the potential of pattern

matching techniques applied to collaborative filtering systems working with real time

data.

To cope with the limited time and scope of this thesis, during the experiments the

assumption was made that the user behaviors and pattern represented in the system

with the association rules are static and don’t evolve over time.

This assumption allowed to simplify the data architecture and rely on stream (real time

user navigation) to static dataset (precomputed association rules) joins, which still

allowed to reach the objective of testing pattern-based recommendations in a real time

scenario.

A more realistic and effective approach could however focus on handling also the

pattern recognition section of the architecture in a real-time fashion. This would make

sense since not only singular user interests, but also navigational patterns are also

always continuously evolving and should be updated to have the most realistic model

of current website usage.

A simple solution to this problem would be to periodically (at least once a day, more

effectively a few times a day) recompute the association rules with the updated

clickstream data, and then integrate the updated pattern dataset into the data

architecture.

This approach would allow to have updated pattern data while still relying on the

association rules technique for detecting user navigation patterns.

At the moment there aren’t many models for computing association rules or even

performing more general pattern detection with streaming data, if in the future there

will be any development in this sense it could be very promising to integrate real-time

pattern detection in the recommender system architecture proposed in this thesis.

5Conclusion and Future Developments 61

5.1.5 Real Time User-Item List

Another simplification that was necessary to cope with the limited resources allowed

for the project was selecting a fixed subset of user and items to be considered during

the online model training and recommendation generation.

This not only reduced the scale of the data making it possible for all processing to be

executed on a single multi-core machine, but it also simplified the algorithm itself since

the rating matrix could be considered having a fixed size and it wasn’t necessary to

take into account the newly generated users and items that would be continuously

added in a real-word production website.

There are a few different possible approaches to deal with the real-time integration of

new user and items into the system, that could be exploited to make the research

performed in this thesis closer to a real-word ready system:

- Rating Matrix and Factors with Dynamic size: it would be possible to increase

the size of the operational matrixes in real time each time a new user starts

interacting or an item is interacted with for the first time, initializing the new

cells with values at random or derived with local functions from their

neighbors.

This solution would probably be expensive to be done in Spark Streaming, since

RDDs are by nature immutable, so more specific optimization tailored to the

specific use-cases would be necessary (like request micro batching).

- Rolling Feature Matrix Techniques: another very promising research thread

that could provide a great and effective solution to this problem is the rollup

matrix technique [20], which works by keeping a fixed size matrix in main

memory that stores only the most recently requested item inside while the rest

of the data is kept on a slower storage, implementing a sort of caching system

that allows to have a great performance and latency while at the same time

keeping the data size manageable.

These are just a couple of examples of possible techniques that could apply the core

methodology of the proposed algorithms in the thesis to make them compatible with

an ever-growing user and itemset, required for a deployment in a real website.

62 5Conclusion and Future Developments

5.1.6 User Interest Drift

An important aspect in recommender systems that was out of the scope for this thesis

was the user interest drift concept.

User preferences are not static and evolve over time, this concept is already natively

included the system design of the approach proposed in this thesis since interests are

up updated progressively in real time as soon as each user performs a new interaction

with an item, but many existing systems [6, 8, 23] also introduce a rating decay factor,

meaning that older values will get less and less significant in the preference estimation

over times while newer inputs will hold a greater weight.

In recent years many different approaches have been proposed to introduce this

concept in recommender systems, more simple and classical systems leverage a factor

decay functions such as the exponential rating decay function, a classical solution

works by giving each rating a fixed number of days after which that rating no longer

holds any importance in the preference estimation. An implementation of this solution

is the half-life decaying function, which works by defining a parameter h

corresponding to the number of days after which a rating will have half of its original

weight [7] :

𝑤𝑢,𝑖 = exp (
ln 0.5

ℎ
(𝑡n − 𝑡𝑢,𝑖))

Where 𝑤𝑢,𝑖 is the weight of the rating of the user u to the item i, 𝑡n is the current time

and 𝑡𝑢,𝑖 is the production time of the rating.

More recent research threads have focused on integrating time dependency into

collaborative filtering methods, and work by building a time series of rating matrixes

and latent vectors, building in this way effectively a temporal matrix factorization

algorithm.

Integrating this temporal dynamic into our proposed real time matrix factorization

algorithm would indeed be the most relevant and natural progression of the research

performed in this thesis, in this paragraph we have gone over the most recent and

promising approaches for tackling this issue, all of which could possibly be adapted

to a streaming processing scenario. The temporal matrix factorization model in

particular appears to be very closely related to our use case, and integration with the

algorithm proposed in this thesis could possibly be a very promising research thread

for improving the state of real-time distributed systems for recommendations.

5Conclusion and Future Developments 63

5.1.7 Conclusion

The main objective of the thesis was to propose an alternative approach to handle real

time training for distributed collaborative filtering systems and test out innovative

approaches to include multimodal user-item interactions and pattern matching in the

process.

All the innovative processes were deployed in a local environment using datasets

taken from real life data sources and tested using stubs that simulate a realistic data

ingestion environment.

While there are still many limitations and possible improvements to be made that were

explained in this final chapter, the main objective of the thesis has been reached as it

has been proven that these new approaches yield good results and can offer accurate

recommendations with a near real time latency.

The conclusion of this thesis can then set a new improvement in this field of research,

and it can be a good starting point for future advancements in this area.

64 5Conclusion and Future Developments

67

Bibliography

[1] Hu, Yifan & Koren, Yehuda & Volinsky, Chris. (2008). Collaborative Filtering for

Implicit Feedback Datasets. Proceedings - IEEE International Conference on Data

Mining, ICDM. 263-272. 10.1109/ICDM.2008.22.

[2] Liu, Zhuoran, et al. "Monolith: Real Time Recommendation System With

Collisionless Embedding Table." arXiv preprint arXiv:2209.07663 (2022).

[3] Nkandu, Jeff. “Building and Evaluating an Adaptive Real-time Recommender

System.” (2014).

[4] Manuel Pozo, Raja Chiky. An implementation of a Distributed Stochastic Gradient

Descent for Recommender Systems based on Map-Reduce. INTERNATIONAL

WORKSHOP ON COMPUTATIONAL INTELLIGENCE FOR MULTIMEDIA

UNDERSTANDING (IWCIM), Oct 2015, Prague, Czech Republic. pp.1-5,

ff10.1109/IWCIM.2015.7347074ff. ffhal-01314906f.

[5] R. Vieira, A Streaming ALS Implementation, https://ruivieira.dev/a-streaming-als-

implementation.html#27WaEIe-TX:0:U

[6] Y. -Y. Lo, W. Liao, C. -S. Chang and Y. -C. Lee, "Temporal Matrix Factorization for

Tracking Concept Drift in Individual User Preferences," in IEEE Transactions on

Computational Social Systems, vol. 5, no. 1, pp. 156-168, March 2018, doi:

10.1109/TCSS.2017.2772295.

[7] Ardagelou, Panagiotis & Arampatzis, Avi. (2017). A Half-Life Decaying Model for

Recommender Systems with Matrix Factorization. 10.13140/RG.2.2.28296.93449.

[8] Ma, Shanle et al. “A Recommender System with Interest-Drifting.” WISE (2007).

[9] Peska, Ladislav & Vojtáš, Peter. (2012). Evaluating Various Implicit Factors in E-

commerce. CEUR Workshop Proceedings. 910.

[10] Vinagre, João & Jorge, Alípio & Gama, João. (2014). Evaluation of recommender

systems in streaming environments. 10.13140/2.1.4381.5367.

[11] Gama, João & Sebastião, Raquel & Rodrigues, Pedro. (2013). On evaluating stream

learning algorithms. Machine Learning. 90. 317-346. 10.1007/s10994-012-5320-9.

https://ruivieira.dev/a-streaming-als-implementation.html#27WaEIe-TX:0:U
https://ruivieira.dev/a-streaming-als-implementation.html#27WaEIe-TX:0:U

68 0. Bibliography

[12] Shankar, Shreya & Herman, Bernease & Parameswaran, Aditya. (2022).

Rethinking Streaming Machine Learning Evaluation. 10.48550/arXiv.2205.11473.

[13] Gama, João & Sebastian, Raquel & Rodrigues, Pedro. (2009). Issues in evaluation

of stream learning algorithms. Issues in evaluation of stream learnings algorithms.

329-338. 10.1145/1557019.1557060.

[14] Huyen, Chip. Machine Learning is going real-time.

https://huyenchip.com/2020/12/27/real-time-machine-learning.html

[15] Huyen, Chip. Real-time machine learning: challenges and solutions.

https://huyenchip.com/2022/01/02/real-time-machine-learning-challenges-and-

solutions.html

[16] Dang, Tran & Nguyen, Quang & Nguyen, Sinh. (2019). Evaluating Session-Based

Recommendation Approaches on Datasets from Different Domains. 10.1007/978-

3-030-35653-8_37.

[17] Pal, Gautam & Atkinson, Katie & Li, Gangmin. (2021). Real-time user clickstream

behavior analysis based on apache storm streaming. Electronic Commerce

Research. 10.1007/s10660-021-09518-4.

[18] Wang, Shoujin & Cao, Longbing & Wang, Yan. (2019). A Survey on Session-

based Recommender Systems.

[19] Baltrunas, Linas & Amatriain, Xavier. (2009). Towards time-dependant

recommendation based on implicit feedback. Proceedings of the Third ACM

Conference on Recommender Systems.

[20] Gregory Arefyev, Real-time Recommendation System: Rolling Feature Matrix,

https://towardsdatascience.com/real-time-recommendation-system-rolling-

feature-matrix-f5ca701439df

[21] Jesse Steinweg-Woods, A Gentle Introduction to Recommender Systems with

Implicit Feedback,

https://nbviewer.org/github/jmsteinw/Notebooks/blob/master/RecEngine_NB.ip

ynb

[22] Akib, Md. Tanjim-Al-Akib & Ashik, Lutfullahil & Shaiket, Hosne Al Walid &

Chowdhury, Krishanu. (2016). User-modeling and recommendation based on

mouse-tracking for e-commerce websites. 517-523.

10.1109/ICCITECHN.2016.7860252.

[23] C. Wangwatcharakul and S. Wongthanavasu, "Dynamic Collaborative Filtering

Based on User Preference Drift and Topic Evolution," in IEEE Access, vol. 8, pp.

86433-86447, 2020, doi: 10.1109/ACCESS.2020.2993289.

https://huyenchip.com/2022/01/02/real-time-machine-learning-challenges-and-solutions.html
https://huyenchip.com/2022/01/02/real-time-machine-learning-challenges-and-solutions.html
https://huyenchip.com/2022/01/02/real-time-machine-learning-challenges-and-solutions.html
https://towardsdatascience.com/real-time-recommendation-system-rolling-feature-matrix-f5ca701439df
https://towardsdatascience.com/real-time-recommendation-system-rolling-feature-matrix-f5ca701439df
https://nbviewer.org/github/jmsteinw/Notebooks/blob/master/RecEngine_NB.ipynb
https://nbviewer.org/github/jmsteinw/Notebooks/blob/master/RecEngine_NB.ipynb

0. Bibliography 69

[24] Bianchi, Federico & Tagliabue, Jacopo & Yu, Bingqing & Bigon, Luca & Greco,

Ciro. (2020). Fantastic Embeddings and How to Align Them: Zero-Shot Inference in a

Multi-Shop Scenario.

[25] Heidy Hazem, Ahmed Awad, Ahmed Hassan Yousef, A distributed real-time

recommender system for big data streams, Ain Shams Engineering Journal, 2022.

[26] Benczúr, A.A., Kocsis, L., Pálovics, R. (2019). Online Machine Learning

Algorithms over Data Streams. In: Sakr, S., Zomaya, A.Y. (eds) Encyclopedia of Big

Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-77525-8_329

[27] Rawat, Mayank & Goyal, Neha & Singh, Soumya. (2017). Advancement of

recommender system based on clickstream data using gradient boosting and random

forest classifiers. 1-6. 10.1109/ICCCNT.2017.8204029.

[28] Lăpușan, Tudor, Hadoop MapReduce deep diving and tuning,

https://www.todaysoftmag.com/article/1358/hadoop-mapreduce-deep-diving-and-

tuning

[29] ALS Implicit Collaborative Filtering, https://medium.com/radon-dev/als-implicit-

collaborative-filtering-5ed653ba39fe

[30] Sharma, Nikita. (2019). Recommender Systems with Python — Part III:

Collaborative Filtering (Singular Value Decomposition).

https://heartbeat.comet.ml/recommender-systems-with-python-part-iii-collaborative-

filtering-singular-value-decomposition-5b5dcb3f242b

[31] Apache Kafka Architecture and Its Components-The A-Z Guide.

https://www.projectpro.io/article/apache-kafka-architecture-/442

[32] Tzoumas, Kostas. (2016). Counting in streams: A hierarchy of needs.

https://www.ververica.com/blog/counting-in-streams-a-hierarchy-of-needs

[33] Bashar, Shafi. Gilmor, Alex. (2018). Scaling Collaborative Filtering with PySpark.

https://engineeringblog.yelp.com/2018/05/scaling-collaborative-filtering-with-

pyspark.html

[34] Luo, Shuyu. (2010). Introduction to Recommender Systems.

https://towardsdatascience.com/intro-to-recommender-system-collaborative-

filtering-64a238194a26

https://doi.org/10.1007/978-3-319-77525-8_329
https://www.todaysoftmag.com/article/1358/hadoop-mapreduce-deep-diving-and-tuning
https://www.todaysoftmag.com/article/1358/hadoop-mapreduce-deep-diving-and-tuning
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://heartbeat.comet.ml/recommender-systems-with-python-part-iii-collaborative-filtering-singular-value-decomposition-5b5dcb3f242b
https://heartbeat.comet.ml/recommender-systems-with-python-part-iii-collaborative-filtering-singular-value-decomposition-5b5dcb3f242b
https://www.projectpro.io/article/apache-kafka-architecture-/442
https://www.projectpro.io/article/apache-kafka-architecture-/442
https://www.ververica.com/blog/counting-in-streams-a-hierarchy-of-needs
https://engineeringblog.yelp.com/2018/05/scaling-collaborative-filtering-with-pyspark.html
https://engineeringblog.yelp.com/2018/05/scaling-collaborative-filtering-with-pyspark.html
https://towardsdatascience.com/intro-to-recommender-system-collaborative-filtering-64a238194a26
https://towardsdatascience.com/intro-to-recommender-system-collaborative-filtering-64a238194a26

70 0. Bibliography

[35] Terzi, Evimaria. Mining Association Rules in Large Databased.

https://cs-people.bu.edu/evimaria/cs565-11/lect2.pdf

[36] The Beginners’ Guide to the ROC Curve and AUC.

https://towardsai.net/p/machine-learning/the-beginners-guide-to-the-roc-curve-and-

auc

[37] Shahrivari, Saeed. (2014). Beyond Batch Processing: Towards Real-Time and

Streaming Big Data. Computers. 3. 10.3390/computers3040117.

[38] Huang, Y., Cui, B., Zhang, W., Jiang, J., & Xu, Y. (2015). TencentRec: Real-time

Stream Recommendation in Practice. Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data.

[39] Cloudera Omniture Log dataset. https://github.com/iflubber/clickstream-analysis

[40] Retailrocket recommender system dataset.

https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset

[41] Han, J., Pei, J., Yin, Y. et al. Mining Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge

Discovery 8, 53–87 (2004). https://doi.org/10.1023/B:DAMI.0000005258.31418.83

[42] Borgelt, Christian. (2010). An Implementation of the FP-growth Algorithm.

Proceedings of the 1st International Workshop on Open Source Data Mining:

Frequent Pattern Mining Implementations. 10.1145/1133905.1133907.

[43] Sharma, Anuj. How to store and real time analysis of clickstream data? (2010).

https://medium.com/analytics-vidhya/how-to-store-and-real-time-analysis-of-

clickstream-data-e8460467aa88

https://cs-people.bu.edu/evimaria/cs565-11/lect2.pdf
https://towardsai.net/p/machine-learning/the-beginners-guide-to-the-roc-curve-and-auc
https://towardsai.net/p/machine-learning/the-beginners-guide-to-the-roc-curve-and-auc
https://github.com/iflubber/clickstream-analysis
https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
https://medium.com/analytics-vidhya/how-to-store-and-real-time-analysis-of-clickstream-data-e8460467aa88
https://medium.com/analytics-vidhya/how-to-store-and-real-time-analysis-of-clickstream-data-e8460467aa88

71

73

List of Figures

Figure 1.1: MapReduce Example... 5

Figure 1.2: Rating Matrix Example in Collaborative Filtering .. 10

Figure 2.1: Processing Engines performance comparison ... 13

Figure 2.2: Kafka Architecture ... 14

Figure 3.1: Matrix Factorization .. 18

Figure 3.3: Collaborative Filtering .. 27

Figure 3.4: Support and Confidence in Association Rules ... 33

Figure 4.1: Cloudera Clickstream dataset .. 35

Figure 4.2: Retailrocket Dataset ... 37

Figure 4.4: Experimental Architecture ... 41

Figure 4.5: Divolte example data collection architecture .. 42

Figure 4.6: Divolte testing environment .. 43

Figure 4.7: Data Preprocessing Spark SQL Query .. 44

Figure 4.8: Preprocessed Clickstream Dataframe ... 45

Figure 4.9: Association Rules extracted from the Retailrocket Dataset 50

Figure 4.10: ROC curve example .. 52

Figure 4.11: Masked dataset technique .. 53

75

List of Tables

Table 3.1: Streaming Matrix Factorization Variables ... 22

Table 4.1: Interaction types .. 47

Table 4.2: Experimental Results .. 55

76 List of Algorithms

List of Algorithms

Algorithm 1: Streaming Matrix Factorization Unimodal ... 22

Algorithm 2: Streaming Matrix Factorization Multimodal Weight Importance 29

77

2. Acknowledgements

My biggest gratitude goes to all the people who have been on my side during this

thesis and during my study years.

Especially, I would like to thank with all my heart my parents and my sister, who have

always proven themselves to be the best family anyone could ever ask for. I have lost

count of how many times they have gone above and beyond to support me.

I also owe a huge debt of gratitude to my friends Federico and Jian, who have been a

constant presence in my life during these last 5 years and probably have no idea how

much help they have given me in going through the difficult challenges every

university student needs to face in his academic career.

Finally, I would also like to sincerely thank everyone who helped me during the

completion of this thesis with technical advice, especially Professor Della Valle and my

colleagues in JAKALA.

I am infinitely happy and proud to have reached the conclusion of this long growing

and learning path and I couldn’t have made it without you.

Thank you,

Alessandro Messori

79

