
 

 

 

Real Time Recommendations 

with Clickstream Data 

TESI DI LAUREA MAGISTRALE IN 

COMPUTER SCIENCE AND ENGINEERING -

INGEGNERIA INFORMATICA 

Author: Alessandro Messori 

Student ID: 

Advisor: 

Academic Year: 

962606 

Emanuele Della Valle 

2021-2022 



 

  

 

 

 

 

 

 

 

 

 

 

 



 i 

 

 

Abstract 

One of the most popular research threads and challenges of modern machine learning 

scientists and engineers is how to build models that can update themselves in real time 

as soon as new data is generated, without the need for periodically retraining the 

system from scratch. Streaming machine learning is the term used to describe models 

that work with real time data streams instead of traditional batch processes.  

Recommender Systems greatly benefit from the use of stream processing, for many 

reasons: real time machine learning offers a very low latency in the update of 

recommendations, which can be extremely useful in highly dynamic context such as 

media consumption or e-commerce where users may change or update their tastes 

very frequently or perform sessions with a specific navigation target in mind. Thanks 

to real time recommendations, systems can immediately adapt to the sudden change 

in behavior and tastes of users and offer them exactly what they need as soon as they 

express a new interest. 

This thesis has the objective of experimenting with different techniques and 

architectures for building real time recommender systems. This work focuses on a 

matrix factorization implementation of the popular collaborative filtering approach 

and proposes a way to integrate it with data stream inputs of user navigation events, 

called clickstreams, containing implicit item ratings. A model architecture and 

algorithm implementation will be proposed and explained, by using the distributed 

processing engine Spark and the message broker Kafka. 

The proposed algorithms focus on working with many different categories of user to 

item interactions and integrate them in a single model, while also proposing a novel 

way of extracting common user behavioral patterns from clickstream sequences and 

exploiting them as a form of implicit item rating.  

The potential and capabilities of the proposed approaches have then been proven by 

various experiments conducted in a local setting over multiple clickstream datasets.  
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Abstract in lingua italiana 

Uno dei campi di ricerca più diffusi e maggiore sfida dei moderni scienziati e ingegneri 

del machine learning è quelli di costruire modelli in grado di aggiornarsi in tempo 

reale non appena vengono generati nuovi dati, senza la necessità di allenare 

periodicamente il sistema da zero. Streaming machine learning è il termine utilizzato 

per descrivere i modelli che funzionano con stream di dati in tempo reale. 

I sistemi di raccomandazione, in particolare, traggono grandi vantaggi dall'uso 

dell'elaborazione degli stream, per molte ragioni: il machine learning in tempo reale 

offre una latenza molto bassa nell'aggiornamento delle raccomandazioni, che può 

essere estremamente utile in contesti altamente dinamici come il consumo di media o 

l'e-commerce dove gli utenti possono cambiare i propri gusti molto frequentemente o 

eseguire sessioni con uno specifico target di navigazione in mente. Grazie alle 

raccomandazioni in tempo reale, i sistemi possono adattarsi immediatamente al 

cambiamento improvviso di comportamento e gusti degli utenti e offrire loro 

esattamente ciò di cui hanno bisogno non appena manifestano un nuovo interesse. 

Questa tesi ha l'obiettivo di sperimentare diverse tecniche per la costruzione di sistemi 

di raccomandazione in tempo reale. Questo lavoro si concentra su 

un'implementazione dell’approccio collaborative filtering con fattorizzazione di 

matrice e propone un modo per integrarlo con gli input di stream di dati degli eventi 

di navigazione dell'utente, chiamati clickstream. Verrà proposta e spiegata 

un'architettura di modello e l'implementazione di un algoritmo, utilizzando Spark per  

l’ elaborazione distribuita e Kafka come broker di messaggi. 

Gli algoritmi proposti funzionano con diverse categorie di interazioni utente-elemento 

e le integrano in un unico modello, proponendo anche un nuovo modo di estrarre 

pattern comportamentali degli utenti dalle sequenze di clickstream e sfruttarli come 

una forma di valutazione implicita degli elementi. 

Il potenziale e le capacità degli approcci proposti sono stati poi dimostrati da vari 

esperimenti condotti in un contesto locale su più set di dati clickstream. 

Parole chiave: Stream Processing, Spark, Kafka, Collaborative Filtering, Incremental 

Learning 
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1. Problem Settings 

1.1 Problem Definition 

Traditional Recommendation algorithms work in an offline and non-distributed 

setting, meaning that all the processing is executed on a single machine and that the 

model is executed periodically.  

This kind of approach works very well for use cases that don’t require big amounts of 

data to process or in cases in which user interest doesn’t evolve too frequently.  

However, as applications and systems grow in size, there comes a point where one 

single machine can’t hold all the data in memory anymore and doesn’t have enough 

processing power to train the machine learning model in a reasonable time.  

To overcome these limitations, machine learning models can be trained and deployed 

in distributed systems, that split the storage and processing of the big amounts of data 

needed for training.  

Writing distributed counterpart of any algorithm can be quite difficult, it’s necessary 

to consider how to distribute data evenly between all the nodes of the system, while 

keeping the amount of data shuffling to a minimum.  

Apache Spark is currently the most popular and widespread project offering libraries 

enabling parallel computing and offering distributed implementation of the most 

popular machine learning algorithms. 

The second big limitation of classical ml algorithms is that they typically work in an 

offline setting, this means that they are trained on a fixed dataset that was gathered at 

a certain point in time (usually extracted by a database), but in order to take into 

account the new data that is being continuously generated they need to be trained 

again from scratch, which introduces a lot of delay in recommendations context when 

users change their interests very quickly. 
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It is becoming more and more apparent the huge impact of real time prediction in data 

heavy apps and websites [14].  

For example, being able to learn about the user’s interest while he is navigating an app 

or website and update the next recommended item while the user is browsing content 

can have a huge impact on the success of a product.  

Many prominent analysts attribute the recent Tik Tok success to their excellent real 

time recommendation algorithm [2], who keeps users engaged by suggesting videos 

who will be next in the viewing queue of the spectator.  

Implementing a machine learning algorithm that works with data in real time (called 

streaming data) comes with many more challenges and hardships with respect to their 

offline version, and the streaming machine learning landscape is lagging a lot [15, 26]. 

Apache Spark for example, as of this moment only offers a working streaming 

implementation of a fraction of the models they have available offline. 

Netflix has been famously struggling with implementing a real time version of their 

recommender engine and is still looking for an optimal way to discover what would 

be the best content by analyzing its real time behavior on their website.  

This thesis proposes and explores a possible implementation of a distributed and real 

time version of famous algorithm for user-item recommendations (Collaborative 

Filtering with Matrix Factorization) and experiments with new ways of handling the 

input signal typically used in clickstream data analysis for recommendation. 

Chapter 1 goes over the state of the art for all the main technologies and techniques 

used in the experiments presented in this thesis.  

Chapter 2 analyzes the technological choices and libraries used for the experiments 

presented in this document, by comparing different tools and highlighting the tradeoff 

that came with each alternative.  

Chapter 3 presents our approaches to tackling the problem defined in the first chapter 

and goes over the pseudocode of the developed algorithms. 

Chapter 4 goes over the different experiments and dataset that were used to evaluate 

the approaches proposed in chapter 3. 

Finally, chapter 5 comments on the results obtained in the previous chapter and talks 

about the limitations and possible future improvements of the work. 
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1.2 State of the Art 

1.2.1 Distributed Computing 

The basic idea behind distributed computing is simple: increase the time and space 

capabilities of a computer system by having the computations performed not by a 

single machine but by a cluster of nodes, by splitting the task into many subtasks that 

can be executed in parallel.  

Every computing system that aspires to handle big amounts of data eventually needs 

to split the load of its traffic and divide processing into multiple machines (this 

technique is called horizontal scaling). 

The paradigm that popularized the distributed model was MapReduce [28, 29] 

(alongside the Hadoop framework that offered all the tools to make it work on a 

cluster).  

 

Figure 1.1: MapReduce Example [29] 

MapReduce works by splitting the computation into steps that can be computed in 

parallel: 

- Mapping, the input records get translated into a set of key-value pairs 

- Shuffling, each pair generated in the mapping stage gets assigned and transmitted 

to a node in the cluster by following a partitioning policy (that should ideally keep 

the size of the partitions balanced)  

- Reducing, all the data associated to the same key gets processed and transformed 

into a final output. 
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Hadoop and MapReduce in their original connotation have been replaced in the 

industry by more efficient and flexible distributed processing frameworks for a long 

time.  

Apache Spark is one of these, it is based on the same concepts of Hadoop but offers 

10x increases in performance thanks to its memory-based processing, compared to the 

disk-based system of Hadoop [37].  

 

 

Figure 1.2: Hadoop vs Spark [37] 

 

Spark offers a much more flexible and easier to use interface, based on the concept of 

RDDs (Resilient Distributed Datasets), immutable and distributed collections that can 

be treated in a similar way to an array.  

RDDs are the basis for more complex data structures such as Block Matrixes and 

DataFrames, which are core aspects of Spark MlLib, a library which contains all the 
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necessary tools and models to implement machine learning at scale in a distributed 

setting.  

Among the models offered by MlLib we have a distributed implementation of the 

Collaborative Filtering algorithm with ALS, which will be a great point of reference 

for our work.  

1.2.2 Stream Processing 

Stream processing allows for computation on data as soon as it’s generated (or with 

minimal latencies), this allows to have a huge reduction in response time and can 

deliver a great impact on businesses that can benefit from delivering analysis as soon 

as possible to their customers.  

Data streaming, even though it has been experiencing a big growth in popularity in 

recent years, remain somewhat of a niche field in the data analysis landscape, and the 

great majority of data scientists and engineers still uses offline/batch computations for 

all their needs [14].  

This phenomenon happens mainly for 2 different reasons, first many still have the 

perception of online processing as a technology that is only needed for very specific 

tasks and don’t fully realize the huge impact that very low latency analyses can have 

on a business.  

The other reason is that writing streaming algorithms is generally much more 

complicated than writing offline ones. Streaming introduces in fact a lot of 

complexities and limitations into the computational model: 

- Streaming data has unbound size, since it represents an ever-growing sequence 

of events 

- Working with data coming in real time means that the system also needs to 

have a mechanism to handle record coming in late 

Different processing engines tackle these challenges in different ways, Spark 

Structured Streaming for example adopts a microbatching approach, adjuvated by 

techniques like windowing, stateful processing and watermarking [32]. 

Windows are ways of grouping streaming data and perform computations on related 

data, the tree most used types of windows are: 

- Tumbling Windows: fixed size, there is no overlapping among the events of 

each window 

- Sliding Windows: fixed size, a new window is created each time a new event is 

generated 
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- Session Windows: dynamic size, a window is built around the concept of 

session 

 

Figure 1.3: Windowing in Spark 

 

Stream processing is typically used for computing small statistics or KPIs in real time, 

but it’s also possible to use it for more complex analyses, such as training machine 

learning models and using them to make predictions.  

As of right now there has been a lot of experimentation with streaming machine 

learning [12, 25], but online models represent only a tiny fraction of their offline 

counterpart:   Apache Spark for example, allows to make predictions on streaming 

data with all their offline ml models, but only offers online training (which is the most 

effective form of real-time machine learning, and the one this thesis is focusing on) for 

a very small subset of them (currently k-means, linear regression and logistic 

regression). 

One of the main objectives of this thesis is to propose and test an implementation of a 

streaming version of the collaborative filtering algorithm for recommendations with 

online training.  
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1.2.3 Collaborative Filtering  

Collaborative filtering is probably the most popular and effective machine learning 

algorithm used for generating items to user recommendations in content-based 

applications [30, 34].  

Unlike the content-based approaches, that work by analyzing the content of the item 

liked in the past by the users and finding similar products to recommend, collaborative 

filtering leverages only user past interactions and preferences and suggests items that 

were liked by other users who have had similar patterns in the past.  

It works by storing the interactions of user to item inside an M by N rating matrix 

(where M represents the number of users and N the number of items) and the cell m,n 

contains the preferences  of the user m for the item n. 

The values inside the rating matrix are the user to item ratings, which can either be 

explicit or implicit [1, 19, 21].  

Explicit recommendations have traditionally been used in collaborative filtering 

systems, and they are integer values (usually ranging from 1 to 5) that represent a 

preference a used has expressed over an item (websites often ask their users to leave 

these kinds of ratings after interacting with a certain item, for example reproducing a 

video on YouTube or purchasing a product on Amazon). 

Explicit ratings guarantee a high degree of accuracy and reliability on the user 

preference, they are however often not enough for building an effective recommender 

system since they are not always available, and even if they are they usually on a 

smaller amount than their implicit counterpart (users typically interact with many 

more items than they leave a review for).  

That’s why the use of implicit rating has gained a lot of popularity in recent years; an 

implicit rating is derived from an interaction between a user and an item from which 

we can derive with some level of confidence how a user feels about an item.  

Examples of implicit interactions could be the amount of time a user has spent 

watching a reel on TikTok, or how many times a customer has purchased a certain 

product on Amazon. 
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Figure 1.2: Rating Matrix Example in Collaborative Filtering [30] 

 

The great majority of recommender systems only consider one single type of implicit 

interaction at the same time to estimate the ratings.  

While there has been some research around it [9, 17, 18, 22], the use of multimodal 

inputs as implicit ratings is still for the most part an uncharted territory, and in this 

thesis, there will be an attempt of exploiting this kind of data to increase the 

recommender system accuracy.  

1.2.4 Real time recommendations 

As for any other machine learning models, recommender systems still work only with 

batch predictions in almost all their implementations, and for a good reason, since 

many websites/applications don’t have this kind of low latency needs. 

Usually, recommender systems get updated once a day, so users will start to receive 

recommendations with the updated preferences discovered during their navigation 

one day after displaying them, which is fine for most use cases. 

There are also many situations however, in which user preferences gets updated very 

frequently, think for example about the eCommerce / Video sharing users that log-in 

to the website one day and starts looking for a new topic/product they have just hear 

about.  

That’s why in recent years a new thread of research was born, focusing on bringing 

user recommendations updated with the preferences they had displayed in that very 

same session [5, 16, 17, 18, 25]. 
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Many real time recommendation systems are based on the concept of user similarity 

(often computed with cosine similarity) combined with clustering techniques such as 

k-nearest neighbors. 

These kinds of approaches can offer good predictions (even though not as accurate as 

the one produced by collaborative filtering) and work well in an online setting given 

the limited computation time required to compute similarities. 

More recent approaches leverage LHS blocking and Hamming Distance to compute in 

real time topic recommendations [3], these methods are quite flexible as they allow us 

to work with both explicit and implicit user preferences. 

Finally, there are also proofs of real time recommender systems developed by Tencent 

based on item similarity and pair count and implicit collaborative filtering 

implemented in Apache Storm, that have the very interesting aspect of handling the 

processing of the data stream in a pipelined manner [38]. 

This thesis approach on the other hand will focus on an couple of key aspects that are 

often overlooked in the field, which are the sequence of user interactions inside a single 

website rather than a single user-item interaction, and an attempt to try to include 

many different kinds of actions into the implicit preference computation, instead of 

choosing a single kind of action as a proxy for explicit ratings (single-modal vs multi-

modal approach). 

The proposed collaborative filtering method is based on a lightweight variant of ALS 

matrix factorization, that can map our interaction sequences into preferences well. 
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2.  Technology Choices 

2.1 Stream Processing Engine 

2.1.1 Alternatives  

There is currently a plethora of possible choices when it comes to stream processing 

engines. The options were evaluated based on how well they could satisfy the project 

requirements, which are: 

- High throughput distributed processing, with latency in the range of tens of 

seconds 

- Low level algebraic distributed operations (mainly basic matrix operations, 

such as dot product, inverse and transpose) 

- Support for running machine learning models at scale, both in a streaming and 

batch environment 

- Some kind of stateful processing over streams 

The three candidates that covered most of these aspects were Apache Spark, Apache 

Storm and Flink. 

2.1.2 Apache Spark over Flink 

Apache Spark and Flink have 2 fundamentally different execution models [32]:  

The former simulates real time processing with a micro batching execution model 

while the latter offers an actual streaming engine.  

This means that for some use cases, where the application requires millisecond levels 

of latency, Spark can’t offer the same guarantees as Flink. On the other hand, Spark 

compensates with an increased throughput. 
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Figure 2.1: Processing Engines performance comparison [32] 

While having such a millisecond level latency can seem very attractive for any real 

time use case, in our specific project the time scope of the recommendations is to the 

concept of user sessions, which on average operate on the scale of minutes 

(requirement that can be easily fulfilled by Spark Structured Streaming). 

On the other hand, implementing a real time Matrix Factorization algorithm can be 

very demanding on the throughput side, so Spark has an edge over Flink on this 

aspect. 

Moreover, both frameworks contain a machine learning library and toolset offering 

many of the most common models, but only Spark offers access to low level distributed 

matrixes, which are crucial for our implementation. 

Due to all these reasons, Spark appeared as a better fit for the thesis needs.    

2.1.3 Apache Spark over Apache Storm 

The comparison among Spark and Storm is similar to the previous one with Flink [32]: 

Storm too offers a real streaming processing model with milliseconds levels of latency 

at the cost of a reduced throughput and lacks in support with respect to distributed 

data structures for low level algebraic operations and high-level machine learning 

models. 
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Furthermore, Storm’s community is less extended and established than Spark’s, 

which, even though it doesn’t really constitute a technical limitation, can make 

development more difficult. 

Considering all the aforementioned points, Apache Spark was chosen as the most 

fitting tool for implementing our distribute, real time model.  

2.2 Message Broker 

To make our system more efficient and reliable, it’s necessary to add a mediator 

component that will receive all the streaming data from our data sources, store it safely 

for a limited time, and then deliver each message exactly once to our stream processing 

cluster with the lowest possible latency. 

The 2 technologies that were considered for this task were Apache Kafka and 

RabbitMQ, as they both satisfied the requirements. 

While both these message brokers could provide good performances for this use case, 

the final choice landed on Kafka, that can offer higher horizontal scalability and 

guarantees a higher throughput for analytical applications such as this, while 

RabbitMQ performs better with low latency transactional systems.  

 

 

Figure 2.2: Kafka Architecture [31] 

What makes Kafka so fast and efficient is its architecture: messages are published to a 

topic by one or more producers, and the data is stored in the Kafka brokers, which are 

multiple nodes that form a cluster and allow for partitioning and replication of the 
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data [31]. When the system needs to increase its speed or data processing capabilities, 

new brokers can be added to the cluster, allowing for horizontal scaling.  

The streaming data can then be read in parallel by consumers (in our case the Spark 

clusters), which can be grouped into consumers groups to further increase throughput. 

2.3 Programming Language 

Having chosen Spark as our distributed streaming processing engine, the possible 

alternatives for programming languages were the ones officially supported by the 

Spark API: Scala, Java and Python.  

The first option to be ruled out was Java, since it offers the same functionalities of the 

Scala API, while having an older interface and limited support to functional 

programming.  

Python, on the other hand, while not offering support to some of the latest features of 

the Spark library, was a much more compelling option, mainly thanks to its ease of use 

compared to Scala and the wide community support and native compatibility with 

most of the tools and libraries used in the data and machine learning field.  

Ultimately, the language chosen for implementing the model and conducting the 

experiments was Scala, for the following reasons:  

- A good chunk of the work consists in building a recommender algorithm from 

scratch, which involves performing mathematical operations with complex 

data structures such as distributed matrixes, in this context having a strongly 

typed language can make it easier to structure the code in a modular, well 

defined style and can speed up development by allowing to find many errors 

at compile time rather than run time 

- The Scala API offers more functionalities with respect to the Python one, 

particularly the Dataset interface and the stateful processing capabilities. 

- The core apache Spark and MlLib frameworks are open source and built with 

Scala, and it can be easier to replicate patterns and best practices from the 

original library when working with the same language. 

- This thesis will make heavy use of the User Defined Functions in Spark (UDF), 

which can be quite inefficient if not programmed properly, using a native JVM 

language with access to low level operations can help write more optimized 

UDFs. 
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3. Proposed Approach 

3.1 Distributed Collaborative Filtering 

3.1.1 Theory Overview 

In this chapter we will dive deeper into the latent factor models for recommendations, 

and propose a version of this algorithm that could work in our distributed, real-time 

environment. 

As we mentioned in chapter 1, collaborative filtering algorithms work by storing the 

user-product preferences in a m x n matrix called rating matrix. 

Since on almost every big website each user interacts with a very small fraction of the 

products/items, the rating matrix will be very sparse, which means that most of the 

preferences will be unknown.   

In this context, generating recommendations comes down to solving 2 fundamental 

issues: 

- How do we deal with a matrix that can potentially have millions of rows and 

millions of columns? Is there any way to reduce its dimensionality? 

- How do we find the items that will most likely be appreciated by a user inside 

this huge problem space? 

Latent factor models are a solution that has proven to be very effective for solving this 

complex challenge.  

This class of algorithms works by trying to factorize the rating matrix by using much 

expressing it as a dot product of user and item factors. 

The matrix R, of dimension m x n, will then be estimated as the dot product of the item 

factors, of size m x k, and of the transposed of the item factors, of size n x k, where k 

<< m,n. This operation not only allows us to work with data structures with a greatly 
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reduced dimensionality, but can also be used for estimating the rating of unknown 

user-item pairs, and thus matrix factorization becomes a great way to compute user 

recommendations.  

How can this work? The idea behind every factorization method is that dimensionality 

gets reduced by expressing each product and each user as a linear combination of k 

fundamental tastes. To express it in a human readable way we could say that for 

example Harry Potter is composed of 40% adventure, 30% fantasy, 20% drama and  

10% comedy. 

The main objective of the latent factor algorithm is then to minimize the estimation 

error, which is the difference between the actual rating matrix and the estimated 

matrix obtained from the factor multiplication: 

 

ℓ𝐴𝐿𝑆 = ∑

𝑥,𝑦∈𝒯

(R𝑥,𝑦 − R̂𝑥,𝑦)
2
+ 𝜆(∥ U ∥2 +∥ P ∥2) 

Where the rating matrixes are expressed as R and 𝑈 and P are respectively the user 

and item factors, while 𝜆 is a regularization parameter.   

It’s possible to find the factor values that minimize the loss by computing the partial 

derivatives and setting them to zero: 

 

{
 

 
𝜕𝑙

𝜕𝑈𝑥
= 0

𝜕𝑙

𝜕𝑃𝑦
= 0

 

 

This implementation is very efficient and works very well in an offline setting but 

doesn’t respect the latency requirements of a real time application. 
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Figure 3.1: Matrix Factorization [29] 

The objective of this thesis is to apply this approach in a distributed and real-time 

setting, let’s focus on each problem at a time and then we’ll see how to integrate them.  

3.1.2 Spark Implementation 

Apache Spark will be our main tool to tackle the distributed portion of this problem; 

MLlib implements a distributed offline version of the ALS algorithms itself, our 

approach will be an alternative implementation, adapted to our streaming use-case. 

In order to implement a distributed matrix factorization algorithm, we need a data 

structure that represents a distributed matrix, supporting basic algebraic operations 

such as dot product, matrix inverse and transpose and efficient selection of specific 

rows and cells [33].  

Apache Spark represents this concept with its abstract interface DistributedMatrix, 

implemented by two data structures that are very fitting for this use case:  

- BlockMatrix, which represents a simple matrix divided into partitions and 

stored in distributed worker nodes. It offers interfaces to all the matrix 

operations we need (matrix sum, dot product, matrix transpose). The dot 

product implementation is particularly efficient, as it breaks down the matrix 

multiplication into blocks, minimizing the data shuffling among nodes. One big 

limitation of this data structure is that it doesn’t allow for efficient selection of 

a specific row or cell. 

- IndexedRowMatrix, an alternate implementation in which each Row as an 

index associated with it, which can be exploited to efficiently select a single row 

or cell. This class doesn’t support basic algebraic operations but it’s possible to 

efficiently convert it to a BlockMatrix to handle these kinds of operations. 
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By leveraging these 2 interfaces alongside the standard Spark RDDs we have 

everything we need to start working on our distributed Matrix Factorization 

implementation efficiently. 

 

 
Figure 3.2: Distributed Matrix Multiplication [33] 

 

Let’s focus now on the challenges introduced by the real time requirement of the 

algorithm: 

Having to process the data in real time gives a lot of limitations to our processing times, 

this means that we can’t rely on the standard training processes since it would take too 

much time to factorize the whole rating matrix each time a new interaction (or a new 

minibatch of interactions) is generated.  

The solution to this problem is not factorizing the whole matrix each time but using 

Stochastic Gradient Descent to update the factors with only one observation at the 

same time. [4 ,5]  

This technique will come with a slight decrease in the factorization accuracy, but this 

is a necessary tradeoff for gaining the huge advantages of near real time latency we 

have already discussed about. 

We will also introduce the concept of biases into the learning algorithm to represent 

how much different users rate the same products (this helps compensate for the 

sparser factorization method). 

The estimated ratings formula with biases becomes: 
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R̂𝑥,𝑦 = 𝑏𝑥,𝑦 + 𝑈𝑥
𝑇 × 𝑃𝛾  

 

 

Therefore, the loss function for B-SGD (Bias Stochastic Gradient Descent) is: 

 

ℓ𝑆𝐺𝐷 = ∑

𝑥,𝑦∈𝒯

(R𝑥,𝑦 − R̂𝑥,𝑦)
2
+ 𝜆(∥ U ∥2 +∥ P ∥2+ 𝑏𝑥

2 + 𝑏𝑦
2) 

 

As mentioned before, we won’t be computing the full gradient for this loss function as 

it’s unfeasible in an online scenario, but from this formula we can derive the B-SDG 

terms update equations, if we define the estimation error as: 

 

 𝜀𝑥,𝑦 = R𝑥,𝑦 − R̂𝑥,𝑦 

 

Then the update equations become: 

 

𝑏𝑥 ← 𝑏𝑥 + 𝛾(𝜖𝑥,𝑦 − 𝜆𝑥𝑏𝑥)

𝑏𝑦 ← 𝑏𝑦 + 𝛾(𝜖𝑥,𝑦 − 𝜆𝑦𝑏𝑦)

U𝑥 ← U𝑥 + 𝛾(𝜖𝑥,𝑦P𝑦 − 𝜆𝑥
′ U𝑥)

P𝑦 ← P𝑦 + 𝛾(𝜖𝑥,𝑦U𝑥 − 𝜆𝑦
′ P𝑦)

 

 

Where 𝛾 is the learning rate hyperparameter. 

The algorithm is implemented using Spark Structured Streaming, all the necessary 

processing (data cleaning, wrong record eliminations, weighted multimodal 

interaction computation) will be executed using the Stream Dataframes API, and the 

model updates will be performed on minibatches of data aggregated by user id, 

implemented with a User Defined Function. 

 

 

 



3. Proposed Approach 21 

 

 

 

 

 

 

3.1.3 Pseudocode 

Let’s now dive deeper into the code implementation of the algorithm, the main 

variables involved are: 

 

Variable Name 
Variable 

Type  
Description 

userProductMatrix BlockMatrix[Double] 

Matrix containing the 

ratings currently processed 

by the real time model 

userFactors BlockMatrix[Double] 
Matrix with the user 

factors 

productFactors BlockMatrix[Double] 
Matrix with the product 

factors 

userBiases BlockMatrix[Double] 
Matrix with the current 

user biases 

productBiases BlockMatrix[Double] 
Matrix with the current 

product biases 

userProductUpdateMa

trix 
BlockMatrix[Double] 

Matrix containing the 

implicit ratings updates 

from the current mini 

batch, all the other values 

in the matrix are set to 0 

estimatedUserProduct

Matrix 
BlockMatrix[Double] 

Matrix representing the 

estimate of the rating 

matrix obtained by 
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performing dot product 

among user and product 

factors 

estimationError Double 

Difference between the 

current factor estimation 

and the actual rating 

ratingBatch Array[Ratings] 
Array containing the 

current ratings mini batch 

currentUserRow Array[Double] 

Row of the actual rating 

matrix with the data of the 

current user 

estimatedUserRow Array[Double] 

Row of the estimated 

rating matrix with the data 

of the current user 

currentUserFactors Array[Double] 

Array with the factor row 

of the user being currently 

updated 

currentProductFactors Array[Double] 

Array with the factor row 

of the item being currently 

updated 

currentUserBiases Array[Double] 

Array with the bias row of 

the user being currently 

updated 

currentProductBiases Array[Double] 

Array with the bias row of 

the item being currently 

updated 

 

Table 3.1: Streaming Matrix Factorization Variables 
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While the models hyperparameters are:  

 

Hyperparam Name 
Hyperparam 

Type  
Description 

N_FACTORS Integer 

number of of factors used 

in the matrix factorization 

algorithm 

N_USERS Integer 
Current number of users 

considered by the model 

N_PRODUCTS Integer 
current number of items 

considered by the model 

GAMMA Double Learning Rate 

ALPHA Double SGD Hyperparameter 

LAMBDA Double SGD Hyperparameter 

Table 3.2: Streaming Matrix Factorization Hyperparameters 
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Here’s the pseudocode for our streaming, distributed Matrix Factorization 

implementation in Spark.  

 

Some clarifications: 

- The BlockMatrix type is the Spark data type discussed in the previous chapter, 

all the matrix operations cited in the pseudocode are part of its API and can be 

executed efficiently and in parallel 

- The toBlockMatrix() function is a helper tool that I wrote to efficiently convert 

standard Scala arrays in BlockMatrixes 

- The toIndexedRowMatrix() function converts a Spark Block Matrix to a Spark 

IndexedRowMatrix, that are needed to extract specific rows from the matrixes 

 

 

Algorithm 1 Distributed Streaming Matrix Factorization, Model Minibatch 

Update 

1:    userProductUpdateMatrix  ratingBatch.toBlockMatrix() 

 

      // updates the rating matrix with the new events 

2:    userProductMatrix  userProductMatrix + userProductUpdateMatrix 

 

       // computes the new estimatedProductMatrix 

3:    estimatedUserProductMatrix   

           userFactors.multiply(productFactors.transpose) 

 

4:    for rating in ratingBatch  do  

 

5:        estimatedUserRow                         // extracts estimated user row from 

               estimatedUserProductMatrix       // estimated rating matrix  
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              .toIndexedRowMatrix() 

              .filter( rowId == rating.userId )   

 

6:        currentUserRow                                // extracts actual user row from  

               userProductMatrix                           // actual rating matrix  

               .toIndexedRowMatrix() 

               .filter( rowId == rating.userId )   

 

    7:        estimationError    currentUserRow – estimatedUserRow 

  

    8:        currentUserFactors                         // extracts current user factor row   

                   userFactors                                       

                   .toIndexedRowMatrix() 

                   .filter( rowId == rating.userId )   

 

   9:        currentProductFactors             // extracts current product factor row   

                   productFactors                                       

                   .toIndexedRowMatrix() 

                   .filter( rowId == rating.productId )   

 

10:         userFactorsUpdate              // computes the factors update with SGD 

                  currentUserFactors zip currentProductFactors 

                  .map( x, y  =>  GAMMA * (estimationError * y - LAMBDA * x)) 

 

11:          productFactorsUpdate        // computes the factors update with SGD 

                  currentUserFactors zip currentProductFactors 

                  .map( x, y  =>  GAMMA * (estimationError * x - LAMBDA * y)) 

     

 12:        // adds update increment to user factors 

              userFactors  userFactors + userFactorsUpdate.toBlockMatrix() 

 

              // adds update increment to product factors 

 13:        productFactors   

                  productFactors + productFactorsUpdate.toBlockMatrix() 
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14:         currentUserBias                             // extracts current user bias row   

                  userBias                                      

                  .toIndexedRowMatrix() 

                  .filter( rowId == rating.userId )   

  

 

 15:         currentProductBias                      // extracts current product bias row   

                   productBias                                

                   .toIndexedRowMatrix() 

                  .filter( rowId == rating.productId )   

 

              // computes the user bias update with SGD 

   16:      userBiasUpdate   

                  GAMMA* (estimationError - LAMBDA * currentUserBias) 

 

              // computes the product bias update with SGD 

    17:     productBiasUpdate  

                  GAMMA * (estimationError - LAMBDA * currentProductBias) 

     

              // adds update increment to user biases 

   18:      userBiases  userFactors + userBiasUpdate.toBlockMatrix() 

 

             // adds update increment to product biases 

    19:     productBiases  

                  productFactors + productBiasUpdate.toBlockMatrix() 

 

    20:  endfor  
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3.2 Implicit Multimodal Collaborative Filtering 

3.2.1 Theory Overview 

The approaches we have explored up until now were conducted in the classical setting 

of a recommender systems with explicit rating. As we mentioned before, the majority 

of real-life systems don’t have access to explicit rating but have to estimate user 

preferences by using many different types of user-item interactions. 

The use of implicit ratings for generating recommendations has been around for many 

years now [1, 9, 19, 21, 29], and it’s become a popular solution for building 

recommender systems when explicit ratings are unavailable or not enough (which is 

by far the more common scenario). 

 

  

Figure 3.3: Collaborative Filtering [34] 

This can be obtained by introducing the concept of preference (which is set to 1 if 

there’s been any interaction among the user and the item) and confidence, derived 

from the implicit user-item interactions and representing how much we are sure of the 

rating we have estimated from the user interactions. 
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𝑝𝑢𝑖 = {
1    𝑟𝑢𝑖 > 0
0    𝑟𝑢𝑖 = 0

 

 

 

There are many ways for computing confidence from the implicit rating, this formula 

is very simple yet effective: 

𝑐𝑢𝑖 =  1 +  α𝑟𝑢𝑖 

 

With these new concepts introduced into our recommendations systems, we can 

update the loss function as follows: 

 

l =  ∑  

𝑢,𝑖

𝑐𝑢𝑖(𝑝𝑢𝑖 − 𝑥𝑢
𝑇𝑦𝑖)

2 + 𝜆(∑  

𝑢

∥∥𝑥𝑢∥∥
2 +∑  

𝑖

∥∥𝑦𝑖∥∥
2) 

 

This approach allows the system to function with implicit ratings, but we still don’t 

have a way to take into account different types of interaction in the same 

recommendation model.  

A very basic solution that incorporates this concept into the preference estimation is 

the weighted importance of interactions: each event will be used as an indicator of 

preference between the user performing the action and the item receiving it, and the 

amount of confidence increase will depend on the type of interaction.  

For this approach to work, it’s necessary to manually define the value of each 

interaction kind, in an e-commerce website a possible interaction-weight mapping 

could be: 

- Item Search → 1 

- Item Page View → 2 

- Item Added to Favorites → 3 

- Item Added to Cart → 4 

- Item Purchase → 5 

This method has the disadvantage of introducing more hyperparameters in the model 

that will have to be fine-tuned, but it allows for more accurate recommendations 

thanks to the more complete and diverse interaction set. 
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3.2.2 Pseudocode 

Here’s the pseudocode for our streaming, distributed Matrix Factorization 

implementation in Spark.  

The pseudocode is similar to algorithm 1, with a couple of differences used to integrate 

implicit ratings and weighted importance: 

- The weightedImportanceRatings is a function that given in input a batch of 

implicit ratings computes the updateMatrix taking into account the weights of 

each interaction kind 

- The estimation error is computed using the implicit ratings methodology, using 

rating preference and confidence 

 

 

Algorithm 2: Distributed Streaming Matrix Factorization, Model Minibatch 

Update with Multimodal Implicit Ratings 

1:    userProductUpdateMatrix  weightedImportanceRatings(ratingBatch) 

 

      // updates the rating matrix with the new events 

2:    userProductMatrix  userProductMatrix + userProductUpdateMatrix 

 

       // computes the new estimatedProductMatrix 

3:    estimatedUserProductMatrix   

           userFactors.multiply(productFactors.transpose) 

 

4:    for rating in ratingBatch  do  

 

5:        estimatedUserRow                         // extracts estimated user row from 

               estimatedUserProductMatrix       // estimated rating matrix  

              .toIndexedRowMatrix() 

              .filter( rowId == rating.userId )   
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6:        currentUserRow                                // extracts actual user row from  

               userProductMatrix                           // actual rating matrix  

               .toIndexedRowMatrix() 

               .filter( rowId == rating.userId )   

 

    7:        estimationError    c( p(currentUserRow) – estimatedUserRow) 

  

    8:        currentUserFactors                         // extracts current user factor row   

                   userFactors                                       

                   .toIndexedRowMatrix() 

                   .filter( rowId == rating.userId )   

 

   9:        currentProductFactors             // extracts current product factor row   

                   productFactors                                       

                   .toIndexedRowMatrix() 

                   .filter( rowId == rating.productId )   

 

10:         userFactorsUpdate              // computes the factors update with SGD 

                  currentUserFactors zip currentProductFactors 

                  .map( x, y  =>  GAMMA * (estimationError * y - LAMBDA * x)) 

 

11:          productFactorsUpdate        // computes the factors update with SGD 

                  currentUserFactors zip currentProductFactors 

                  .map( x, y  =>  GAMMA * (estimationError * x - LAMBDA * y)) 

     

 12:        // adds update increment to user factors 

              userFactors  userFactors + userFactorsUpdate.toBlockMatrix() 

 

              // adds update increment to product factors 

 13:        productFactors   

                  productFactors + productFactorsUpdate.toBlockMatrix() 

 

14:         currentUserBias                             // extracts current user bias row   

                  userBias                                      
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                  .toIndexedRowMatrix() 

                  .filter( rowId == rating.userId )   

  

 

 15:         currentProductBias                      // extracts current product bias row   

                   productBias                                

                   .toIndexedRowMatrix() 

                  .filter( rowId == rating.productId )   

 

              // computes the user bias update with SGD 

   16:      userBiasUpdate   

                  GAMMA* (estimationError - LAMBDA * currentUserBias) 

 

              // computes the product bias update with SGD 

    17:     productBiasUpdate  

                  GAMMA * (estimationError - LAMBDA * currentProductBias) 

     

              // adds update increment to user biases 

   18:      userBiases  userFactors + userBiasUpdate.toBlockMatrix() 

 

             // adds update increment to product biases 

    19:     productBiases  

                  productFactors + productBiasUpdate.toBlockMatrix() 

 

    20:  endfor  
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3.3 Association Rule Matching 

3.3.1 Theory Overview 

The weighted importance approach to multimodal, while being a viable and 

functioning solution, comes with many limitations and inefficiencies:  

- The weight of each type of interaction must be defined manually, and there’s 

no guarantee that the decided value will be the optimal ones 

- Whenever a new kind of interaction gets added to the system, the weight 

configuration needs to be updated  

- Each action is still considered as a standalone event, we never consider the 

meaning of action sequences when computing user preferences 

A better way to handle multimodal interaction would be focusing more on the patterns 

and sequences of interaction that each user performs on the website and try to derive 

some information about their future behavior given this information. 

A very common and effective way to discover common patterns inside sequences of 

events is the data mining technique called association rules mining [35].  

Association Rules mining takes all possible itemsets in a list of transactions (an itemset 

is a subset of all the possible sequences of transactions) and computes 2 key metrics: 

- Support: number of times an itemset appears in a transaction with respect to 

the total number of transactions. 

 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐼𝑡𝑒𝑚𝑠𝑒𝑡) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐼𝑡𝑒𝑚𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 

 

- Confidence: likeliness of an association rules, meaning how probable is that a 

pattern X in the user navigation will lead to a pattern Y in the future. 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) =  
𝑆𝑢𝑝𝑝𝑜𝑟𝑡( 𝑋 ∪  𝑌) 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
 

 

There are many different algorithms for finding association rules from a transaction 

set and for computing support and confidence of the itemset, one of the most recent 

and efficient approaches is the FPGrowh algorithm [40, 41].  
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3.3.2 Spark Implementation 

Spark offers an efficient distributed implementation of the FPGrowth algorithm for 

Association Rules mining, that can be used to compute all the transaction sets that 

display a support or confidence exceeding a certain threshold.  

In our specific use case, we could use transactions to compute with how much 

confidence we can say that a user will perform an action after displaying a certain 

interaction pattern. We could for example discover that in our ecommerce website, 

after a user view an item A for 10 seconds, clicks on an item B and scrolls through the 

item B description we could say with 80% confidence that he will purchase item A. 

The concept of confidence in association rules is similar to the one used in collaborative 

filtering with implicit preferences, so it seems reasonable that there could be a way to 

integrate these 2 approaches.  

 

 

Figure 3.4:  Support and Confidence in Association Rules [35] 
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3.3.3 Spark Implementation 

 

A good approach could be to perform association rules mining with the FPGrowth 

algorithm on a subset of the clickstream dataset, and then use them to compute the 

ratings value on the remaining clickstream real time events. 

The basic idea is that people that share similar behavioral patterns would also share 

similar tastes, so whenever the stream processing engine finds a match between the 

dataset of popular patterns and the sequence of live events of a certain user, we can 

increase the confidence for the rating of the item that pattern leads to, in a proportional 

manner with the confidence value of the association rule.  

Pattern matching on live clickstream can be performed with the Spark Streaming SQL 

engine and using a 2-minute sliding window function, which will concatenate all the 

events descriptors (view_on_item_x, addToCart_on_item_y…) and aggregate the by 

user id.  

This Stream will then be joined with the static Association Rules dataset and for every 

match found the rule confidence will be extracted and added to the next model update 

UDF minibatch.  

3.3.4 Pattern Matching Spark SQL Implementation 

Here’s the Spark code used for generating the pattern detection and matching on live 

clickstream data:  

 

 

Figure 3.5: Pattern Matching on Clickstream Spark SQL Query 
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4. Experiments and Evaluation 

4.1 Datasets  

4.1.1 Cloudera Clickstream 

The objective of this thesis is to explore the potential of distributed, real time 

recommender systems under different scenarios.  

This means that the structure of the conducted experiments will be hierarchical, 

starting with simple datasets and algorithms and then moving on with more and more 

sophisticated simulations as we move one.  

The requirements for the first experiments are just to test our recommender system in 

a distributed and streaming scenario, so the first iteration will be performed on a very 

basic clickstream dataset representing user navigation [39], taken from Cloudera 

Omniture   

Here’s an extract of the dataset loaded as a Spark Dataframe, after being preprocessed 

and selecting only the relevant columns for this experiment: 

 

 

Figure 4.1: Cloudera Clickstream dataset 
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- Timestamp, used to build the event order in our real time interaction simulator 

- The ip address, necessary to differentiate between different user session and 

build the stream aggregation windows 

- User and Item identifiers, essential to the Matrix Factorization algorithm.  

- User and Item name, helpful during the testing and evaluation phases 

 

The preference rating proxy will be unimodal and represented by the user to item url 

navigation. 
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4.1.2 Retailrocket Recommender System Dataset 

In order to progress with the more complex experiments and leverage multimodal 

clickstream input, it is necessary to exploit a richer dataset, offering more details into 

the user navigation patterns. 

The Retailrocket dataset, used also in a 2017 Kaggle challenge [40], is a very good fit 

for these requirements. 

 

 

Figure 4.2: Retailrocket Dataset 

As before, we have all the necessary features to perform real time recommendations 

on clickstream data (timestamp, userID and productID), with the additional 

information of the type of interaction, which can be: 

- View 

- AddToCart 

- Transaction 
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Having a richer set of information on the clickstream action makes it possible to apply 

the weighted importance and association rules-based approaches to this dataset, we 

will have then a chance to compare these 2 methods with the unimodal one. 
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4.2 Simulating the Real Time Interactions 

Since we are dealing with streaming data, the data ingestion phase assumes critical 

importance in the overall functioning of the system. 

In an offline setting it would be enough to just collect all the most recent user 

preferences/ratings and feed them to our recommendation model for the training 

phase, without paying too much attention to the generation time of each record. 

In our case, having realistic ingestion times is necessary for simulating what the 

behavior of the model would be in a real-life setting. 

The next best thing is writing a Kafka Producer that would produce a semi-realistic 

simulation of the interaction streams generated by the user navigation. 

Of course, to make the simulation feasible with our limited resources and in our 

limited time scope, it was necessary to make a few simplifications and assumptions 

while designing the producer, that would allow our experiment to function but at the 

same time not impact the overall model behavior: 

- One single producer acting as multiple users conducting clickstream events on 

a website 

- Simple loop going through the clickstream datasets periodically and publishing 

event data in a Kafka topic 

- Data is published in Avro format with the following schema: 

 

Column Name Type Description 

Timestamp Unix Timestamp 

Unix Timestamp of 

the record time of 

the clickstream 

RemoteHost String  Client device info 

User String 

Name of the user 

producing the 

event 

UserId String 

Id of the user 

producing the 

event 
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Product String 

Name of the item 

involved in the 

interaction 

ProductId String 

Id of the item 

involved in the 

interaction 

EventType String 
Category of the 

interaction event 

Table4.1: Clickstream message schema 

 

And this is a diagram explaining the application logic of the simulation: 

 
Figure 4.3: Simulation Architecture



 41 

 

 

 

4.3 Architecture 

The architecture of the system will remain substantially the same among all 

experiments, with 3 main processing components, 1 data source and 1 data sink: 

- Input Datasets with Clickstream data  and Association Rules 

- Scala Interaction Simulator 

- Kafka Cluster and Brokers + Zookeeper 

- Spark Streaming processing cluster 

- Ouput File Sink 

All the experiments will be run on a single laptop with an octa-core Intel i5 processor, 

8 GB of RAM and SSD storage inside a standard Ubuntu Docker container. 

The system will have 2 Kafka brokers deployed, 1 core will be occupied by the 

interaction simulator and another 1 by the Zookeeper server, while the Spark cluster 

will have 3 nodes with 1 core each. 

 

Figure 4.4: Experimental Architecture 
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4.4 Testing the Architecture 

 

The very first experiment that was conducted was meant to test out the processing 

capabilities of the system and simulate realistic real-time clickstream data generation, 

ingestion, and processing.  

The basic idea of this initial experiment is to simulate in order to have a general-

purpose testing environment to familiarize and perform the first real time 

transformations on clickstream data, as a starting point to conduct progressively more 

complex analyses. 

The idea is to run a local e-commerce website from an open-source frontend 

application, write customized clickstream tracking scripts in Javascript to collect 

different kind of user to item interactions, record them all in a clickstream collector 

and then feed them as an input to our analytical architecture to test out its functioning 

capabilities. 

 

 

Figure 4.5: Divolte example data collection architecture [43] 

An additional component that was introduced during the architecture in this step was 

the clickstream collector Divolte: this component allows to easily collect and customize 

and kind of user interaction and behavior in a website through asynchronous browser 

event tracking, collect all this data in a scalable way and then channel all this data a 

variety of sinks, in our case a Kafka cluster, where it can be used for analytical 

purposes. 
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Figure 4.6: Divolte testing environment 

This local environment was used to test the basic data flow of the system and 

experiment with spark queries and real time model capabilities, before moving on to 

more complex and extensive experiments. 

This kind of architecture is also very descriptive because it can be a pretty good 

approximation of an architecture for a real-world deployment of a real time 

recommender system for a large scale website. 
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4.5 Implicit Single Modal 

4.5.1 Introduction and Objective Definition 

As mentioned in the previous paragraph, the experiments will be conducted in 

increasing order of complexity, in order to test out the different aspects of the proposed 

algorithms and evaluate and compare the different approaches.  

The experiments began with a classic unimodal input based on the Cloudera 

Omniverse Dataset, the proxy for the implicit rating was the only interaction provided 

by the dataset, the page view. 

The objective of this first experiment is to test out the distributed and real time 

capabilities of the algorithm in a traditional recommendation setup, without focusing 

too much on possible optimization that can be done in a streaming environment. 

4.5.2 Data Preprocessing 

The data contained in the dataset, by themselves, are not enough to be made into a 

proper input for our recommendation model. The dataset provides is in fact for each 

interaction the URL of the item and a string identifier for the user performing the 

action, but it lacks the fundamental information of an integer identifier for the users 

and items.    

This issue can be solved quite easily by enriching the dataset, association a unique id 

to each item URL and to each SWID. 

The implementation of this ID generator was done as a standard Spark script, the core 

of the implementation is this SQL query run within the Spark query engine: 

 

select timestampCast, 

          |       ip, 

          |       url, 

          |       dense_rank() over(partition by 1 order by url) as product_id, 

          |       swid, 

          |       dense_rank() over(partition by 1 order by swid) as user_id 

          |   from ClickStream 

          |   order by timestampCast 

 
 

Figure 4.7: Data Preprocessing Spark SQL Query 
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timestampCast is the converted unix timestamp of the interaction read from the raw 

dataset, while the product_id and user_id were built by leveraging the dense_rank 

function, which provides an unique index to ordered elements inside a given window 

(in our case the windows were the url and swid columns respectively). 

 

Here’s how the dataset looks after this ID generation process: 

 

Figure 4.8: Preprocessed Clickstream Dataframe 

Now the data is finally ready to be fed as an input of our Streaming Recommendation 

Model. 

4.5.3 Experiment Setup 

The experimental setup had to be modified with respect to the initial testing 

architecture; the main challenge of this new set of experiments is that it’s necessary to 

generate a great amount of clickstream data, by simulating in a realistic way a stream 

of user interactions generated in real time while at the same time working inside all 

the limitations of a small-scale research environment with a limited-time scope. 

The approach used to tackle this problem was a simulation script that would act as a 

Kafka producer and try to recreate as closely as possible the real time data generation 

dynamics that would occur in a real-world clickstream collection system. 

The simulation script will load the clickstream data contained in the datasets, order 

them by timestamp, and publish them into the Kafka cluster, effectively replacing the 

role that would be be taken by a Divolte collector in a real-world deployment. 
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4.6 Implicit Multimodal 

4.6.1 Introduction and Objective Definition 

The second experiment will focus on adding the multimodal input management into 

the recommendation system model, we still won’t be focusing on applying additional 

pattern detection techniques to the processing pipeline, this will be done in the next 

paragraph with the association rules mining based approach.  

In order to add this complexity layer to our system, it will be necessary to move to the 

Retailrocket dataset, since the Cloudera one doesn’t offer information on the user-item 

interaction time. 

4.6.2 Weighted Importance 

The approach to the multimodal input used is the weighed importance method, that 

requires a weight definition to be associated to each different interaction type, 

according to how meaningful that interaction type is considered to be in the preference 

estimation.  

A good metric to help define the weights value is the cardinality of the interactions in 

the dataset, for the Retailrocket dataset we have: 

- View → 97% 

- AddToCart → 2-3% 

- Transaction → <1% 

A very reasonable assumption that can be made is that the rarer an event is, the more 

indicative of user preference it is. If we apply this reasoning to our dataset, it can be 

understood that a view event is very common and doesn’t carry much significance to 

the preference estimation, while an AddToCart or Transaction event carries a very 

strong indication that the user likes a certain product. 

We can then propose a very simple but reasonable value set for the weight definition, 

which is: 
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Interaction 

Type 

Event 

Frequency 

Weight 

Importance 

View 97.% 0.5 

AddToCart 2.3% 2 

Transaction 0.7% 3 

Table 4.2: Interaction types  
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4.6 Implicit Multimodal with Association Rules 

The next step in the roadmap of the work is trying to apply pattern detection as an 

implicit way of measuring user ratings and interests.  

The basic idea behind collaborative filtering is that a user who has expressed similar 

ratings on certain items to other people will likely also appreciate other content liked 

by those similar users.  The proposed approach is based on the idea that ratings on 

items can not only be estimated by user interactions, but they can also be extracted 

from repeated and common user patterns inside a website, by mining clickstream data   

Association rules can be a way to discover pattern and common behaviors in 

navigation data, we will be using them to extract the sequence of actions that are more 

commonly executed before performing an interaction (view, addToCart or 

transaction) on an item.  

For this experiment, even more than in the previous one, where we tested the weighted 

importance approach, it is very significant to use a clickstream dataset offering 

multimodal user-item interactions, so the choice landed once again on the Retailrocket 

dataset. When mining user patterns in fact, the richer the action set is the more accurate 

and precise our behavior estimation will be.  

The proposed approach to simulate a real time deployment of this algorithm is the 

following: 

- Order the Retailrocket dataset by timestamp and split it in two subsets, the first 

one will be used to extract the association rules in an offline setting, while the 

second one will be used to simulate a real time clickstream ingestion and 

recommendation in an ecommerce website 

- The computed association rules will be loaded in a Spark Dataframe, and the 

incoming interaction streams will be aggregated by user id with a 50 seconds 

sliding windows in order to compute the real time patterns and then they will 

be joined with the association rules static dataset. 

- Each time a new real time pattern is detected by the stream processing engine 

(aka a join is found with the association rules dataset) we consider this event as 

an implicit rating towards the item u pointed in the matched association rule.  

The value of the rating will be proportional to the confidence value of the rule 

- As in previous experiments, rating events are batched together in minibatches 

and the training streaming UDF function is called to perform matrix 

factorization and update our model with stochastic gradient descent 
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Figure 4.9: Association Rules extracted from the Retailrocket Dataset 

 

The association rules were computed on 80% of the dataset, while the real time 

ingestion simulation was performed using a subset of the remaining 20% containing a 

fixed number of users and items, in order to cope with the very limited processing 

power at our disposal for the model testing.  
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4.7 Evaluation Methodology 

The online setting of the problem makes evaluation more difficult to handle than in a 

classical offline machine learning scenario. 

The most popular methods used in literature for evaluating machine learning models 

in a streaming environment are all based on the prequential evaluation technique [10, 

, 11, 12, 13].   

Prequential evaluation operates with a test and learn system, each time a new 

interaction is collected by the system, the following operations are executed: 

- Make a recommendation to the user performing the interaction for the top n 

elements 

- Score the newly generated recommendations 

- Update the model with the current event  

This type of evaluation fits well for many stream learning scenarios, since works in a 

similar incremental fashion, and it offers many advantages over classical offline 

methods such as real time monitoring and metrics computation, while offering the 

chance to adjust model parameters online as well. 

However, the limited processing power at or disposal makes it difficult to perform 

both model training and prequential evaluation (which requires to generate 

recommendations each time a new event is registered) on a single machine, and the 

key focus of this method is predicting the next action for each user, which isn’t exactly 

the scope of this thesis’s research.  

Moreover, the online nature of prequential evaluation makes it so that this method can 

only really evaluate accurately a recommendation system when it is deployed on the 

website at the same time that the evaluation occurs, in order to actually test out the 

effect that the recommendations generated in real time have on the users behaviors. In 

this particular use case, the model was not deployed in a real system but the real time 

interactions were recreated a posteriori using a simulation, so there is no way of seeing 

the actual impact of the model on the interactions.  

For all these reasons, prequential evaluation was ruled out as an evaluation 

methodology for this algorithm, in favor of the other popular methodology for 

evaluating stream learning algorithms: holdout evaluation of an independent test set.  

This method is more similar to the more traditional batch learning ones [13, 21] (which 

is also an advantage since it makes it easier to compare offline recommenders with 

their online counterparts, as we will soon see), but it presents a few alterations to make 

it suitable to a stream machine learning system.  
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This method works by splitting the dataset into two independents subsets, each 

independent from each other, one used for training the model and the other one used 

for testing it. The model is then deployed in the online learning scenario and trained 

incrementally on the training set (simulating a real time ingestion of the user-item 

interactions as discussed in the previous chapter). Finally, the user and item factors 

trained in real time are periodically extracted from the online model and used for 

evaluation in an offline environment on the test set.  

This method basically treats the stream model as a sequence of batch learning events 

and performs the evaluation at different points in time as if it were an offline 

environment. 

 

 

Figure 4.10: ROC curve example  [36] 

For each evaluation batch we will then have a fixed size rating matrix created with the 

ratings collected up to that specific point in time and the matrix factorization factors 

extracted from the online model.  
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A popular procedure used in similar use cases is the dataset mask, in which a 

percentage of the ratings dataset gets hidden (usually 20%), then the model generates 

recommendations for the users and compares the ranking of the suggested items with 

the future purchases/masked ratings of the users.  

The chosen metric for the evaluation is the Area Under the ROC curve (AUC), which 

is a figure usually used for classifiers, but that can also be very effectively used for 

evaluating recommendations [36].  

The greater the AUC, the closer our recommendations will be to the actual purchases 

or ratings.  

 

 

 

Figure 4.11: Masked dataset technique [21] 
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4.8 Experimental Results  

In this section we will go over the results of the experiments and give some more 

details on the experimentation procedure. 

 The 3 main threads of experiments performed were the ones presented in the previous 

sections of this chapter:  

- Real time recommendations with implicit ratings and unimodal events 

performed on the Cloudera Omniture dataset 

- Real time recommendations with implicit ratings and multimodal events (3 

categories) using the weighted importance technique over the Retailrocket 

clickstream dataset.  

- Real time recommendations with implicit ratings and multimodal events (3 

categories) using the pattern mining/ association rules technique over the 

Retailrocket clickstream dataset.  

All these experiments were conducted on a subset of the whole datasets with a focus 

on a fixed number of users and items, to cope with the very limited resources available 

for testing the system.  

Since we are dealing with an incremental machine learning model, the performance 

evolution over time is a very significant metric to track, so the results have been 

measured at different stages of the simulation execution, with respect to the processed 

percentage of the input dataset (25%, 50%, 100%). 

Finally, to give more context and get more insights into the model performances, the 

results have been compared with simple recommendations generated by an offline 

popular item model, which works by simply recommending to each user the most 

popular items at any given point in time. 

When interpreting the results, it’s important to remember that streaming machine 

learning models are meant to sacrifice some accuracy with respect to offline ones in 

order to produce such low latency predictions, so it’s expected to obtain a lower AUC 

score with respect to offline models and this is accepted because in highly dynamic 

context recommendation speed is more important than accuracy. 
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All the results in the table below refer to values obtained by the best performing model, 

obtained after finetuning the matrix factorization hyperparameters and obtaining their 

best values, which are: 

- Learning rate Gamma:  0.1 

- Lambda: 1 

- Alpha: 4  

 

 
Omniverse Dataset 

(Unimodal) 

Retailtrocket 

Dataset 

(Multimodal WI) 

Retailtrocket Dataset 

(Multimodal AS) 

AUC 25% 0.684 0.842 0.814 

POP AUC 25% 0.952 0.921 0.921 

AUC 50% 0.398 0.867 0.890 

POP AUC 50% 0.939 0.944 0.944 

AUC 100% 0.572 0.808 0.833 

POP AUC 100% 0.911              0.853 0.853 

Table 4.3: Experimental Results 
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5. Conclusion and Future 

Developments  

5.1.1 Results Discussion 

Let’s have a few words regarding the outcomes of the experiments presented in the 

last chapter:  

- The main objective of this thesis was proving the feasibility of real time matrix 

factorization models using clickstream data and explore pattern mining as a 

way to produce implicit feedback in recommender systems, both of these 

objectives have been completely reached in the experiments. 

- The outcomes of the experiments were aligned with the expectations: real time 

recommendations with clickstream data are possible, it’s possible to obtain 

accurate predictions (even though not as precise as their offline counterpart), 

and the more detailed and enriched the input data is (i.e. how many types of 

user to item interaction are available in the clickstream tracking), the more 

effective the recommender system will be, as proven by the fact that our model 

performed better on the Retailrocket multimodal dataset with respect to the 

Cloudera Omniture single-modal one. 

- Multimodal feedback for recommendations is a very promising field of research 

and with yet much possible room for improvement, the richer event types set 

offers the possibility of improving the recommendations performance by 

conducting enrichment analyses on the clickstream sequences, such as 

association rules mining in our case. 

- The whole rationale behind stream processing and real time machine learning 

is to sacrifice a bit of accuracy to have a huge gain in latency time, which could 

more than compensate for the loss of performance. Therefore, the results 

obtained in the experiments are very significant even if may not seem like it at 

first glance, given that they provide a lower accuracy than the offline method.  
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5.1.2 Large-Scale Testing and Deployment 

Every system designed to work with a large user base needs to handle scaling and 

guarantee a high level of latency and/or throughput. 

While designing the algorithms presented in this thesis and developing the system 

architecture, they were tested on making sure that they could scale and work in a real 

life was a priority requirement, and all the choices like adopting an horizontally 

scalable real time messaging system like Kafka and run the algorithm with a 

distributed processing framework were meant to enable deployment in high scale 

scenarios. 

However, the limited resources at the disposal for this thesis made it impossible to test 

the scaling capabilities of the system in a big, distributed cluster with a large number 

of nodes, allowing only for a local deployment with a few nodes and testing only on a 

subset of the whole datasets and simulating the real time interactions with a stub. 

An interesting possibility for future work would be having the chance of deploying 

the system in a real-world, large-scale system connecting it with actual users 

generating data in real time and testing the actual effect that the online 

recommendations have on the website applying techniques such as A/B testing. 
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5.1.3 Increase the Amount of Interaction Categories 

In this thesis’s experiments we have initially tested the recommender systems with a 

unimodal interaction dataset, and then we moved on to a multimodal with 3 different 

categories of interactions. 

When doing this kind of machine learning research work one of the most difficult 

challenges is looking for and finding rich and suitable datasets that can be used to 

properly exhaust and properly analyze the potential of the algorithm being proposed, 

since the necessary kind of data is usually possessed only by large corporations who 

don’t grant open access to it.  

This case was no exception: even though a great amount of time was spent in 

researching and looking for clickstream datasets with multimodal interactions, the 

best candidate found was the Retailrocket one, who offers only 3 different kinds of 

interaction. 

Even though 3 interaction types still enabled us to test and verify the capabilities of the 

proposed approach, one of the main purposes of this thesis was to map and match 

complex event sequences into user behaviors to find similar navigation pattern to feed 

to our recommender systems, and these user behavior representation gets more and 

more accurate when increasing the amount and scope of interactions considered [9].  

A possible future progression of this work could focus on repeating the experiments 

done on a bigger and richer dataset and analyze the impact the number of inputs can 

have on the effectiveness of the system. 
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5.1.4 Real Time navigation pattern mining 

In this experiment the focus was on verifying and testing the potential of pattern 

matching techniques applied to collaborative filtering systems working with real time 

data.  

To cope with the limited time and scope of this thesis, during the experiments the 

assumption was made that the user behaviors and pattern represented in the system 

with the association rules are static and don’t evolve over time. 

This assumption allowed to simplify the data architecture and rely on stream (real time 

user navigation) to static dataset (precomputed association rules) joins, which still 

allowed to reach the objective of testing pattern-based recommendations in a real time 

scenario. 

A more realistic and effective approach could however focus on handling also the 

pattern recognition section of the architecture in a real-time fashion. This would make 

sense since not only singular user interests, but also navigational patterns are also 

always continuously evolving and should be updated to have the most realistic model 

of current website usage. 

A simple solution to this problem would be to periodically (at least once a day, more 

effectively a few times a day) recompute the association rules with the updated 

clickstream data, and then integrate the updated pattern dataset into the data 

architecture.  

This approach would allow to have updated pattern data while still relying on the 

association rules technique for detecting user navigation patterns. 

At the moment there aren’t many models for computing association rules or even 

performing more general pattern detection with streaming data, if in the future there 

will be any development in this sense it could be very promising to integrate real-time 

pattern detection in the recommender system architecture proposed in this thesis. 
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5.1.5 Real Time User-Item List 

Another simplification that was necessary to cope with the limited resources allowed 

for the project was selecting a fixed subset of user and items to be considered during 

the online model training and recommendation generation. 

This not only reduced the scale of the data making it possible for all processing to be 

executed on a single multi-core machine, but it also simplified the algorithm itself since 

the rating matrix could be considered having a fixed size and it wasn’t necessary to 

take into account the newly generated users and items that would be continuously 

added in a real-word production website.  

There are a few different possible approaches to deal with the real-time integration of 

new user and items into the system, that could be exploited to make the research 

performed in this thesis closer to a real-word ready system: 

- Rating Matrix and Factors with Dynamic size: it would be possible to increase 

the size of the operational matrixes in real time each time a new user starts 

interacting or an item is interacted with for the first time, initializing the new 

cells with values at random or derived with local functions from their 

neighbors.  

This solution would probably be expensive to be done in Spark Streaming, since 

RDDs are by nature immutable, so more specific optimization tailored to the 

specific use-cases would be necessary (like request micro batching).  

 

- Rolling Feature Matrix Techniques: another very promising research thread 

that could provide a great and effective solution to this problem is the rollup 

matrix technique [20], which works by keeping a fixed size matrix in main 

memory that stores only the most recently requested item inside while the rest 

of the data is kept on a slower storage, implementing a sort of caching system 

that allows to have a great performance and latency while at the same time 

keeping the data size manageable. 

These are just a couple of examples of possible techniques that could apply the core 

methodology of the proposed algorithms in the thesis to make them compatible with 

an ever-growing user and itemset, required for a deployment in a real website.  
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5.1.6 User Interest Drift 

An important aspect in recommender systems that was out of the scope for this thesis 

was the user interest drift concept.  

User preferences are not static and evolve over time, this concept is already natively 

included the system design of the approach proposed in this thesis since interests are 

up updated progressively in real time as soon as each user performs a new interaction 

with an item, but many existing systems [6, 8, 23] also introduce a rating decay factor, 

meaning that older values will get less and less significant in the preference estimation 

over times while newer inputs will hold a greater weight. 

In recent years many different approaches have been proposed to introduce this 

concept in recommender systems, more simple and classical systems leverage a factor 

decay functions such as the exponential rating decay function, a classical solution 

works by giving each rating a fixed number of days after which that rating no longer 

holds any importance in the preference estimation. An implementation of this solution 

is the half-life decaying function, which works by defining a parameter h 

corresponding to the number of days after which a rating will have half of its original 

weight [7] :  

 

𝑤𝑢,𝑖 = exp (
ln 0.5

ℎ
(𝑡n − 𝑡𝑢,𝑖)) 

 

Where 𝑤𝑢,𝑖 is the weight of the rating of the user u to the item i, 𝑡n is the current time 

and 𝑡𝑢,𝑖 is the production time of the rating. 

More recent research threads have focused on integrating time dependency into 

collaborative filtering methods, and work by building a time series of rating matrixes 

and latent vectors, building in this way effectively a temporal matrix factorization 

algorithm.  

Integrating this temporal dynamic into our proposed real time matrix factorization 

algorithm would indeed be the most relevant and natural progression of the research 

performed in this thesis, in this paragraph we have gone over the most recent and 

promising approaches for tackling this issue, all of which could possibly be adapted 

to a streaming processing scenario. The temporal matrix factorization model in 

particular appears to be very closely related to our use case, and integration with the 

algorithm proposed in this thesis could possibly be a very promising research thread 

for improving the state of real-time distributed systems for recommendations. 
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5.1.7 Conclusion 

The main objective of the thesis was to propose an alternative approach to handle real 

time training for distributed collaborative filtering systems and test out innovative 

approaches to include   multimodal user-item interactions and pattern matching in the 

process. 

All the innovative processes were deployed in a local environment using datasets 

taken from real life data sources and tested using stubs that simulate a realistic data 

ingestion environment. 

While there are still many limitations and possible improvements to be made that were 

explained in this final chapter, the main objective of the thesis has been reached as it 

has been proven that these new approaches yield good results and can offer accurate 

recommendations with a near real time latency.  

The conclusion of this thesis can then set a new improvement in this field of research, 

and it can be a good starting point for future advancements in this area. 
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