
POLITECNICO DI MILANO

SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING

Master’s Degree in Electrical Engineering

Real-time motion capturing using inertial measurement

units and applied embedded systems development

Supervisor : Prof. Simona Salicone

Co-supervisor : Prof. Simone Corbellini

Master’s thesis of:

SINA RONAGHI

Student ID 10700297

Matricola 943535

Accademic Year 2021 - 2022

Acknowledgement

Throughout this script, you will find an experience, not necessarily about

academia, but about a wonderful journey. This journey was not possible without

the helps of the followings:

First, I would like to dedicate my deepest appreciation to my thesis supervisor,

Prof. Simona Salicone, for her accurate and sufficient guidance, which made

this process illuminating.

Second, I would like to thank my co-supervisor, Prof. Simone Corbellini, for

providing useful materials and his sincere support during this journey.

Third, my sincere gratitude goes to PhD. Harsha Vardhana Jetti, because of his

constant and honest assistance throughout this work.

Finally, I would like to thank Politecnico di Milano for providing necessary

intellectual and technical resources, which made this journey even more pleasant.

Sina

This thesis is a naive, delicate, and simple example of a real engineering project.

Not only it relates to electrical engineering, but also, to the general mindset of

an engineer.

Therefore, I would like to dedicate this project to all the passionate, motivated,

and original thinking engineers who are trying to make a better future for

human beings. . .

Abstract

Human movement modeling - also referred to as motion capturing - is a rapidly ex-

panding field of interest for medical research, sports training, and entertainment.

During this process, motion capturing devices are used to provide a virtual 3D

reconstruction of human physical activities - employing either computer vision

methods or sensor-based methods. When compared to conventional computer

vision-based solutions, utilizing sensor-based approaches with inertial measure-

ment units and digital signal processing offers a better alternative in terms of

precision, reliability, and computational burden.

Considering the shortcomings of computer vision, this thesis aims to pro-

vide a motion capturing solution using inertial measurement units and applied

embedded systems development. For this purpose, first, the implemented motion-

capturing solutions in the literature that use inertial measurement units are re-

viewed and the design criteria for their development are explained. This re-

view revealed that these devices use angular acceleration and angular velocity of

a rigid body for attitude representation. Next, the working principles of iner-

tial measurement units and the necessary considerations regarding their use are

explained. An account of theories on using rotation angles for attitude repre-

sentation of a rigid body is then provided, followed by a practical attempt to

implement a full-body, sensor-based, and cable-free motion capturing solution

using inertial measurement units. This solution is intended to monitor various

human movements in real-time. The design criteria - both hardware and soft-

ware - and necessary considerations for this solution are thoroughly explained.

Additionally, the experimental segment of the thesis provides an evaluation of

the system’s functionality. Moreover, although the main focus of this work was

on the implementation, attempts to metrologically characterize the measuring

units were performed. Eventually, the future scope of this system is described

and suggestions are made for potential improvements.

Milan, Italy

September 16, 2021

Sina Ronaghi

List Of Abbriviations

Abbreviation Description

AAL Ambient assisted living

IMU Inertial measurement unit

MEMS Micro-electromechanical systems

DOF Degree of freedom

MoCap Motion capturing

DPP Data processing point

BLE Bluetooth Low Energy

CC/CV Constant current / Constant voltage

SoC System on a chip

LiPo Lithium-Polymer

IDE Integrated development environment

SDK Software development kit

API Application programming interface

GAP Generic access profile

GATT Generic attribute profile

Table continued from previous page

Abbreviation Description

L2CAP Logical link control and adaptation layer protocol

ATT Attribute protocol

CCCD Client characteristic configuration descriptor

UUID Universally unique identifier

BT SIG Bluetooth special interest group

GUI Graphical user interface

GD Game development

SEGGER-ES Segger embedded studio

JSGM Joint committee for guides in measurement

Contents

1 Introduction 1

2 Related Works 7

3 Inertial Measurement Units 10

3.1 Definition . 10

3.2 Brief history . 11

3.3 Working principle . 12

3.3.1 Gyroscope . 13

3.3.2 Accelerometer . 16

3.4 Considerations . 17

4 Attitude Representation 20

4.1 Definitions and parametrizations 21

4.1.1 Coordinate systems . 21

4.1.2 Rotation and transformation matrix 22

4.1.3 Coordinate rotation . 23

4.2 Methods of representation . 24

4.2.1 Euler angles . 24

4.2.2 Quaternions . 28

4.3 A careful observation . 31

i

CONTENTS ii

5 Implementation Scenario 33

5.1 Terminology . 34

5.2 Design factors . 34

5.2.1 Contextual factors . 34

5.2.2 Interaction factors and scheme 36

5.2.3 Sensor placement . 39

5.2.4 Body attachment factor 42

6 Hardware Design 45

6.1 Hardware specifications and features 45

6.1.1 Sensor tags . 46

6.1.2 Rechargeable wearable sensors 49

6.1.3 Central receiver . 58

7 Software Design 61

7.1 Embedded software design . 61

7.2 Hardware specific toolchain . 62

7.3 Bluetooth® Low Energy basic concepts 64

7.3.1 BLE Generic access profile (GAP) 64

7.3.2 GAP Advertisement parameters 65

7.3.3 GAP Connection parameters 66

7.3.4 GAP Security parameters 69

7.3.5 BLE Generic attribute profile (GATT) 69

7.4 Peripherals application . 71

7.4.1 Toolchain . 72

7.4.2 Initialization process . 73

7.4.3 Core functionalities . 74

7.4.4 BLE communication . 78

7.5 Central application . 81

CONTENTS iii

7.5.1 Toolchain . 82

7.5.2 Initialization process . 83

7.5.3 Core functionalities . 86

7.5.4 Communication Parameters 88

7.6 Data representation . 90

7.6.1 Data interpretation process 90

7.6.2 Data representation using MATLAB 91

7.6.3 Data representation using LabView 93

7.6.4 Data representation using Unity 96

8 Experiments 100

8.1 Programming the wearable devices 100

8.2 Programming the development kit 104

8.2.1 The first method: SEGGER-ES IDE 105

8.2.2 The second method: Drag-and-Drop 105

8.3 Experimental results . 105

8.3.1 MATLAB data representation application 106

8.3.2 Unity data representation application 112

8.4 Metrological characterization . 117

8.4.1 The theory . 118

8.4.2 The procedure and results 119

9 Conclusion and future scope 124

9.1 Conclusion . 124

9.2 Future scope . 126

Appendices 128

A Code of the central receiver 129

B MATLAB data Representation software 150

CONTENTS iv

C Unity data representation software 158

List of Figures

1.1 Correlation between solution requirements 5

3.1 Coriolis effect in MEMS based gyroscope 14

3.2 Gyroscope oscillations . 15

3.3 Plane movements due to rotations along 3D axes 15

5.1 User interaction schematic . 37

5.2 Sensor tag architecture . 38

5.3 System interaction schematic . 38

5.4 Modified sensor tag architecture 39

5.5 Sensor tags attachment to the human body 40

5.6 Left wrist implemented body attachment solution 44

6.1 Sensor tag module . 47

6.2 Final scheme of the sensor tags 54

6.3 Circuit schematic of the modified wearable devices 55

6.4 Designed PCB for the rechargeable wearable devices 56

6.5 Implemented PCB for the rechargeable sensor tags 56

6.6 Soldered PCB of a wearable device using SMD components 57

6.7 Additional required components for the implementation 58

6.8 nRF52840DK by Nordic SemiconductorTM 60

7.1 SoftDevice stack protocol architecture 64

v

LIST OF FIGURES vi

7.2 Connection establishment procedure 67

7.3 Hierarchical model of the BLE application profile 71

7.4 Command-based interruption algorithm 76

7.5 Measurement procedure flowchart 77

7.6 Structure of the advertisement packets 79

7.7 Data matrix structure . 79

7.8 BLE Application profile of the wearable devices 81

7.9 Initialization statements for the central receiver application 85

7.10 Flowchart of the core functionalities of the central applications . . 87

7.11 Flowchart of the MATLAB data representation application 92

7.12 3D data representation of 2 sensors using the MATLAB application 93

7.13 Flowchart of the LabView data representation application 95

7.14 GUI of the LabView data representation application 96

7.15 Flowchart of the Unity data representation application 98

7.16 GUI of the Unity data representation application 99

8.1 Programming pins of the hardware components 102

8.2 Connection between the hardware components 103

8.3 Environment and the programming steps using the programmer

application . 104

8.4 Upper body experiments - MATLAB - Stand still 107

8.5 Upper body experiments - MATLAB - T-pose 108

8.6 Lower body experiments - MATLAB - Stand still 109

8.7 Lower body experiments - MATLAB - Arbitrary posture 110

8.8 Full body experiments - MATLAB - Stand still 111

8.9 Full body experiments - MATLAB - T-pose 112

8.10 Upper body experiments - Unity 115

8.11 Lower body experiments - Unity 116

8.12 Full body experiments - Unity . 117

LIST OF FIGURES vii

8.13 Variations of the Euler angles during the calibration process . . . 120

8.14 Chord and height of a circle’s segment 123

List of Tables

3.1 IMU applications and fusion methods 18

3.2 IMU specific applications and fusion methods 19

4.1 Rotation Sequences of Euler angles 27

5.1 Contextual factors of the solution 35

5.2 Sensor names and description . 41

5.3 Sizes of the test subject’s body parts 43

6.1 Sensor tags features and specifications 46

6.2 MPU6050 features and specifications 47

6.3 nRF51802 features and specifications 49

6.4 Rechargeable methods comparison 51

6.5 DC/DC buck converter features and specifications 53

6.6 TP4056 features and specifications 53

6.7 nRF52840DK features and specifications 59

7.1 BLE security modes and levels . 69

7.2 Toolchain features and specifications 73

7.3 nRF51802 SoC function description for initialization process . . . 74

7.4 Copyrights of the resources . 75

7.5 Description of the advertisement packets 78

7.6 GAP parameters of the peripherals 79

viii

LIST OF TABLES ix

7.7 Features and specifications of the central embedded application . 82

7.8 SDK Configuration header file . 83

7.9 Communication parameters of the central receiver 89

8.1 Connection between the wearable device and the development kit 101

8.2 Correct direction of the Y-axis indicator 113

8.3 Type A evaluation of standard uncertainty 122

Chapter 1

Introduction

Considering entertainment [1], healthcare [2], and sports training [3], it can be

concluded that human motion reconstruction, also known as motion capturing

systems (MoCap), plays a vital role in the mentioned areas. In the field of enter-

tainment, the use of Mo-caps is necessary for reconstructing human movements

for 3D games development, and animated scenes in the movie industry. In the

field of healthcare, physical therapists use such systems to record patient move-

ments, visualize the movements in real-time, and finally making a comparison

of the recorded movements throughout the treatment cycle for efficacy evalua-

tion of the used method. And in the field of sports training, the use of Mo-caps

is beneficial for reconstructing the players’ movement for further evaluation of

each player individually and as a team, as well as, monitoring each player for

automatic estimation and prediction of possible injuries such as muscle damages

caused by players collision during a period of professional activity [4].

Mo-cap solutions use either sensor-based methods or optical computer vision

methods to reconstruct the physical human movements. As it is currently known,

solutions based on computer vision methods suffer from inaccuracies concerning

environmental conditions such as ambient light (Color and illumination prob-

lems) [5], object proximity (occlusion), and motion detection in cluttered scenes

1

CHAPTER 1. INTRODUCTION 2

[6]. Wearable sensor-based methods using embedded systems architecture, micro-

electromechanical systems (MEMS), and specifically inertial measurement units

(IMUs), although not prone to these inaccuracies, are faced with a different set

of obstacles. The requirements regarding implementation of a wearable sensor-

based MoCap solution are closely related to its application area and the aim of

the system.

In this project, our aim is to present a full-body, sensor-based, and cable

free motion capturing solution which is intended to be used for sports learning

and medical rehabilitation purposes. Due to the defined application areas, the

solution requires various features such as multiple and extendable measurement

nodes, portability, low-power and wireless communication protocol, convenient

application procedure, real-time and multimodal data representation method,

and easy-to-use user interface. In addition, this solution is intended to measure

activities with low angular velocity and for a short period of time, but, the im-

plementation and hardware selection procedure have been done in a way to make

the solution capabilities extendable. Furthermore, in order to accurately address

the mentioned requirements, following items must be taken into consideration:

• Measurement nodes: Since different physical activities involve the move-

ment of different body parts, it is necessary to implement a network of

multiple measurement nodes in order to perform a full-body Motion cap-

turing. In addition, monitoring multiple body parts simultaneously enables

the possibility to diagnose movement disabilities for medical rehabilitation

purposes. This requirement is addressed by studying the most effective

body parts to track [7], choosing the number of sensors to be used during

the measurement procedure, and implementing an embedded solution to

support multiple measurement nodes. Furthermore, the embedded solution

must be flexible with a suitable margin for supporting increased number of

nodes in order to be extendable.

CHAPTER 1. INTRODUCTION 3

• Portability: Due to the application purpose of the project, the solution

must operate within indoor and outdoor spaces. Therefore portability is

one of the important design requirements to consider. This requirement is

addressed by including a rechargeable power supply as well as a suitable

charging circuit into each measurement node. The size, shape, and weight

of the measurement nodes are also necessary considerations to be taken into

account when choosing the power supply.

• Communication protocol: Using totally cable free design for the mea-

surement nodes enables the user to perform an extended range of move-

ments without the limitations imposed by cables. In addition, a low power

communication protocol extends the on-time operating duration of the so-

lution. In order to address this requirement, Bluetooth Low Energy (BLE)

is used for the communication protocol between the measurement nodes

and the data processing point. Although because of the intended applica-

tion purpose of the project, this solution does not require large amount of

data communication with high speed, the choice of BLE makes the solution

flexible to wider range of application purposes.

• Application procedure: Convenience in usage for wearable devices is not

only an important competitive factor regarding the commercial market, but

also studies show that it directly affects the accuracy of the measurement

system [8]. In order to address this requirement, the body attachment

factor of the wearable device must be chosen in a way to be comfortable

for the user, and to prevent unnecessary movements of the sensors during

performing physical activities. In addition, the chosen places to locate the

measurement nodes on human body must not bring inconvenience to the

user, while being able to effectively measure movements.

• Data representation: Measurement data from this solution is used to

CHAPTER 1. INTRODUCTION 4

graphically reconstruct human activities on a personal computer in order

to monitor movement disabilities of a patient, or performed activities of an

athlete. Sensor-based motion capturing solutions either provide real-time

data representation feature, or autonomous representation feature using

storage memories. Although using a real-time representation method re-

quires a more complex hardware, it also provides more convenience regard-

ing the application such as more efficient movement disability diagnosis,

and enhancing sports learning process. In addition, not only 3D graphical

representation is useful for the application purpose, but also having access

to the raw measurement data is beneficial [9]. The raw measurement data

can be represented on graph charts with respect to the time for further

analysis such as measurement accuracy assessment. This requirement is

addressed using applied embedded system development and implementing

multiple data representation softwares, interacting with the measurement

device in order to provide a real-time and multimodal data representation

feature.

• User interface: Similar to the application procedure, user interface is also

an important competitive factor in the market of the wearable solutions.

The user interface must be able to provide necessary options for the differ-

ent user roles of the solution. In addition, by defining interaction scheme

between different user roles, the user interface provides feedback in order

to notify the user about the system status and functionality. In this so-

lution, by defining two distinct types of users namely the actor user and

the professional user, the user interface forms a unidirectional interaction

with the actor user by means of visual feedback, and forms a bidirectional

interaction scheme with the professional user using the data representation

software.

Based on the stated requirements, it is evidently clear that the requirements are

CHAPTER 1. INTRODUCTION 5

correlated with each other as indicated in figure 1.1, and they are also closely

dependent on the application purpose of the solution. For example the choice

of the communication protocol defines the power supply requirements which di-

rectly affects portability of the system as well as convenience of the application

procedure. The correlation between the requirements of the wearable MoCap

solutions resulted these solutions to be developed upon the application demands.

Therefore, it is necessary to clearly indicate application purposes before defining

the requirements.

Figure 1.1: Correlation between solution requirements

In this thesis, the author introduces a portable system of inertial measurement

units followed by a central receiver using applied embedded systems development

to monitor human movements during various activities in real-time. The aim is

to design, and implement a set of wearable sensors communicating to a central

receiver through a low-power and wireless solution called Bluetooth Low Energy

(BLE). After that, the data will be communicated from the central receiver to

a personal computer where the data is stored and visualized graphically in real-

CHAPTER 1. INTRODUCTION 6

time through data representation softwares which is provided with a user-friendly

interface for actor users, as well as professional users.

The remainder of this thesis is organized as follows:

• Chapter 2 explains the related work dedicated to sensor-based mo-cap so-

lutions in the literature.

• Chapter 3 describes historical developments, general working principles,

and necessary considerations regarding inertial measurement units while.

• Chapter 4 demonstrates the theoretical, and mathematical concepts related

to attitude representation using inertial measurement values.

• Chapter 5 introduces the implementation scenario and necessary consider-

ations to be taken into account regarding wearable motion capturing solu-

tions.

• Chapter 6, describes the hardware design and considerations regarding the

implementation process of this solution.

• Chapter 7, represents the software design procedure and considerations re-

garding this solution. This chapter covers the embedded software develop-

ment for data acquisition as well as the windows application development

for data representation.

• Chapter 8, demonstrates the experimental results of this wearable motion

capturing solution.

• Chapter 9, provides a conclusions regarding this project and the possible

future developments.

Chapter 2

Related Works

The literature regarding the development of motion capturing devices is extensive

since it has been a topic of research for many years. For a better understanding

of the design criteria and feature considerations of the system, not only the top-

ics related to wearable sensor-based motion capturing systems, but also topics

related to wearable sensor-based human activity recognition (HAR) concerning

the acquisition system implementation have been reviewed. The result of these

studies reveals many commercially available and research purpose solutions fol-

low the same methodology for system architecture design of data acquisition,

although, have broad differences in terms of acquisition parameter selection and

data processing methods. The inconsistency in parameter selection and data

processing method is mainly caused by the solutions being application-specific,

which propagates the difference further in the physical design of the sensors,

number of the sensors, , placement of the sensors on the human body, and the

user interface features such as data representation methods. The review has been

conducted in a consistent way indicating the application, the used method, the

sensor specifications, and the features for each mentioned solution.

Nguyen et al. [3] introduced a system for human activity recognition to

be used during basketball games, the authors proposed a hardware set called

7

CHAPTER 2. RELATED WORKS 8

BSK which is based on ARM® CortexTM-M4 microcontrollers integrating with

LSM9DS0 sensor offering a combination of magnetometer, gyroscope, and ac-

celerometer, as well as, a barometric pressure sensor for recognition of movements

including changes in altitude. The device uses 200Hz sampling frequency for data

acquisition, and while performing very well for data collection and pattern recog-

nition, the system lacks the feature of wireless communication, which requires

the sensors to be detached after each experiment for data extraction. This flaw

of course cancels out the real-time data representation feature.

Chen et al. [10] implemented a general-purpose, real-time, and wireless hu-

man motion capturing solution accompanied by a software for 3D representation

of the collected data using MPU-9150 the inertial measurement unit as the sensor.

MPU-9150 is a module consisting a combination of accelerometer, magnetometer,

and gyroscope. The authors formed a sensor network containing a set of periph-

erals connecting to a central receiver, and communicating through BLE4.0 using

the NRF51802 module manufactured by Nordic SemiconductorTM. The authors

used a hierarchical model for human body model construction using skeleton

representation. They also implemented different methods of calibration of each

measuring unit such as: zero offset removing for gyroscope, eliminating jitter ef-

fect using two steps of low-pass filtering, and weighted averaging respectively for

accelerometer measured values. Finally the calculated hard offset, and soft offset

for magnetometer by calculating minimum residual value in a large number of

samples for hard offset, and representing the center of the ellipsoidal shell-shaped

plot in the scatter diagram of random rotation magnetometer readings for soft

offset.

Szczesna et al. [11] introduced a full-body scalable custom design solution

for motion capturing. The authors used the low-cost inertial measurement unit

developed by K. Jedrasiak et al. [12] which is a combination of gyroscope, magne-

tometer, and accelerometer based on ARM processors. The authors implemented

two versions of the solution regarding the communication protocol. The first ver-

CHAPTER 2. RELATED WORKS 9

sion uses CANopen protocol. While this version resulted very well concerning

data synchronization, the authors shifted to use a more energy-efficient WiFi

modules for the second version because of the bandwidth limitations imposed by

CAN protocol. The authors used a hierarchical model for human body reconstruc-

tion. Using sensor fusion algorithms such as Kalman [13], and Complementary

[14] filters, the authors estimated sensor orientations. They also used 100Hz of

sampling frequency for their experiments and represented Allan Variance due to

the measurements while providing a useful comparison among sensors used in

various application grades as an evaluation.

Further reviews concerning design methodology for motion capturing wear-

ables have been conducted in Marin et al. [8] article. This article introduces a

broad design methodology called ”the octopus” which includes physical hardware

design methodologies, as well as, the user interface implementation for production

scale wearable devices.

In this project, the aim of the work is to implement a low-cost, wireless, real-

time, and wearable motion capturing device based on inertial measurement units

while providing a consistent step-by-step documentation for the procedure, and

necessary design considerations. By implementing multiple acquisition softwares,

this solution not only provides a graphical 3D representation of the human body,

but also enables the possibility to obtain numerical measurement data for further

analysis during and after the measurement process. The implemented solution

is intended to be used for sports learning, and medical rehabilitation application

areas. The functionality of the solution is studied during the experimental phase,

and the obtained results are compared with a commercially available solution

using a defined comparison method.

Chapter 3

Inertial Measurement Units

3.1 Definition

International Vocabulary of Terms in Legal Metrology is defining Sensor as

”element of a measuring system that is directly affected by a phenomenon, body,

or substance carrying a quantity to be measured” [15]. The same source also

defines Measuring transducer as ”a device, used in measurement, that provides

an output quantity having a specified relation to the input quantity” [16].

Based on the above definitions, it can be evidently stated that in a complete

measuring system for human physical activity reconstruction, inertial measure-

ment units are transducers which convert physical displacements (i.e. relative

axis rotations) to measurable electrical quantities. Such devices, by using ac-

celerometers, gyroscopes, and sometimes magnetometers can indicate angular

rate, specific force, and orientation of an object.

Not only navigation systems, but also orientation estimation and motion cap-

turing devices require an acceptable margin of reliability which led to various

developments in the field of inertial measurements that are discussed in the fol-

lowing sections.

10

CHAPTER 3. INERTIAL MEASUREMENT UNITS 11

3.2 Brief history

Navigation has been playing a vital role in the life of humanity. The context has

been used since many years ago for applications such as sailing, hunting, and ex-

ploring. Therefore, development of reliable and accurate methods of navigation

was an inevitable challenge of human beings. Historically, methods of navigation

required an external reference to estimate direction and position which were ob-

viously prone to disadvantages such as: cloudy skies, stormy seas, and magnetic

disturbances. This problem, made a breakthrough regarding navigational sys-

tems by using inertial navigation which operate independently from an external

source by only relining on measurements of acceleration and angular rates [17].

Since early 19th century (1856) the first gyroscope as an inertial measure-

ment sensor has been invented by Foucault’s pendulum which was demonstrated

from Bohnenberger's machine [18]. While specialized inertial guidance systems

appeared in the 1940s, the usage in the field of navigational systems became prac-

tical later in 1960. The reason for the gap between the invention of the sensor

and the application in the field of navigation was the necessary accuracy needed

in the navigational applications. By the end of 1960s, inertial navigation systems

have been used in many applications such as: missiles guidance systems, military

aircraft, and commercial aircraft.

The role of inertial measurement in navigation systems, provided a path-

way to development of a packed unit called inertial measurement units (IMUs).

The potential application range of IMUs was not only restricted by the bulk

products, but also commercially available consumer products showed a high de-

manding trend of this technology. Therefore, in this situation, consumer market

required development of a low-cost, well-designed, user friendly, and small in size

IMUs. As a result, these demands were responded using micro-electromechanical

systems (MEMS) based IMUs which provided a low-cost, low-power, and com-

pact measurement device. This breakthrough, profoundly effected the market

CHAPTER 3. INERTIAL MEASUREMENT UNITS 12

of commercially available gadgets which use acceleration and angular velocity

measurements to determine various parameters such as gestures, burned calories,

step counts, etc.

Although there are various methods of inertial navigation, and generally in-

ertial measurements such as: strap down, optical (ring laser, and fiber-optic),

Coriolis vibratory, nuclear magnetic, and cold atom gyroscopes, the use of MEMS

based IMUs has been the main acting body in the market of electronic devices

where the sensor size matters. In the next section, the general working principle

and necessary considerations regarding this type of IMUs are explained.

3.3 Working principle

There are basically two major categories of MEMS based low-cost IMUs. The

first is a unit with two types of sensors namely gyroscopes and accelerometers

which are used to measure inertial acceleration and angular rotation. The second

category, adds a magnetometer into the system for measuring the bearing mag-

netic direction which is used to improve gyroscope measurements. While adding

a magnetometer improves the accuracy of the measurement system, it also makes

the unit more prone to magnetic disturbances when used close to ferromagnetic

materials. IMUs with magnetometer require considerations regarding magnetic

isolation for measurement consistency [19].

Typically accelerometers, magnetometers, and gyroscopes have 2 to 3 degrees

of freedom (DOF) for x,y,z axis measurements. Using the three types of sensors

together result a measurement unit with 4 to 6 DOF for the first category, and 6

to 9 DOF for the second one. Readings from accelerometer, and gyroscope can

be used as measurement values independently or calibrated together for a more

accurate reading which result rotation angles (Euler YAW,PITCH,ROLL), and

angular velocity. On the other hand, Values obtained from magnetometer are only

used to measure YAW angle rotation for calibrating gyroscope measurements to

CHAPTER 3. INERTIAL MEASUREMENT UNITS 13

avoid long-term drift issues. Hence, no independent readings of magnetometer are

used as a measurement output in the second category. More detailed explaination

of the working principle of gyroscope, and accelerometer are provided in the

following subsections.

3.3.1 Gyroscope

Material constitution defined two major types of gyroscopes: silicon , and non-

silicon type. Although the non-silicon (mostly quartz based) type offers better

quality factor, it is not widely used in the consumer industries because of the

complex and expensive fabrication process. Therefore, the silicon-based MEMS

are mostly used in the information, communication, astro/aero-nautics, and even

national defense industries. The development process has been through broad

changes through the past century in order to enhance the reliability, improve the

accuracy, reduce the package size, and reduce the power consumption. The main

components of this sensing unit are the proof mass, the drive system, and the

sense element. The sense element, and the drive system are components which

hold the proof mass vertically and horizontally while providing the possibility of

modest movements of the proof mass in each direction like springs (see Figure

3.1). Hence, it is possible to demonstrate the displacement of the proof mass

as variable x from the Eq. 3.1, where ωx is the angular speed related to the

movement, and Ax is the amplitude of the movement [20].

x = Axcos(ωxt) (3.1)

Therefore, considering an angular rate applied in Z direction, Ω as the applied

angular speed, and v as the linear moving speed of the proof mass, The Coriolis

CHAPTER 3. INERTIAL MEASUREMENT UNITS 14

force (Fy) along Y direction is calculated using Eq. 3.2.

Fy = 2mΩ× v

= −2mΩAxωxsin(ωxt)
(3.2)

By obtaining the Coriolis force (Fy), the angular speed is calculated using Eq.

3.3.

Ω =
Fy

−2mAxωxsin(ωxt)
(3.3)

Figure 3.1: Coriolis effect in MEMS based gyroscope

In essence, MEMS gyroscopes contain a proof mass (divided into 4 parts),

which continuously oscillates horizontally inward and outward in order to react

to the Coriolis effect. Due to this effect, Pitch, and Roll angles result vertical

oscillations in two fronting planes of the proof mass, while, Yaw angle rotations

result moving all four planes horizontally, and the two fronting planes move in

CHAPTER 3. INERTIAL MEASUREMENT UNITS 15

opposite direction. Plane movements cause a change in capacitance of the struc-

ture which is sensed using the sensing structure, and eventually,it is converted to

a measurable value of voltage [21]. Figure 3.2 illustrates the proof mass oscilla-

tions, and Figure 3.3 shows the plane movements due to rotations along each 3D

axis.

Figure 3.2: Gyroscope oscillations

(a) YAW angle rotations

(b) PITCH angle rotations

(c) ROLL angle rotations

Figure 3.3: Plane movements due to rotations along 3D axes

CHAPTER 3. INERTIAL MEASUREMENT UNITS 16

3.3.2 Accelerometer

The working principle of MEMS accelerometers, divide these sensors into various

categories such as: Piezoresistive, Capacitive, Tunnel, Resonant [22].

The most used category among all of the mentioned above is the capacitive

method of acceleration measurement. In this method, the sensor contains a sen-

sitive structure and a fixed mechanism which by connecting these two structures,

a variable capacitance dynamic capacitor is formed. By moving the sensor, the

capacitance between the sensitive structure, and the fixed mechanism changes.

This change in capacitance is measurable using a peripheral detection circuit.

The detection circuit needs calibration during the manufacturing process, which

is done using multiple tests at the construction factory. Capacitive accelerometers

benefit from acceptable linearity, low cost, high measurement accuracy, and sta-

ble test process. On the other hand, the signal processing circuit for this category

is usually complex, and they also suffer from poor electromagnetic interference

compatibility.

To model the working principle of a capacitive MEMS accelerometer, it is

useful to imagine a ball inside a cubical environment. Excluding gravity from the

system will cause the ball to simply float in the cubical space. Now, if the cubic

box moves with 1g acceleration in any direction, the ball will hit the opposing

face (equivalent to 3D space axis) of the cube, by measuring the applied force to

the corresponding face, the output force equal to 1g is expected [21].

Capacitive MEMS accelerometers are basically a micro-machined structure

suspended by polysilicon springs located on top of a silicon wafer. The suspended

mass has edges that each edge moves between two fixed bars called the fixed

plates. By applying acceleration, the deflection of the suspended mass due to

polysilicon springs will cause a difference in capacitance between the fixed plates,

and the moving edges of the suspended mass. This phenomenon results a change

in capacitance which is proportional to the applied acceleration. Figure 3.4a

CHAPTER 3. INERTIAL MEASUREMENT UNITS 17

illustrates the working principle of a capacitive MEMS based accelerometer.

(a) Accelerometer capacitance changes

3.4 Considerations

The process of choosing IMUs for a project requires necessary considerations

which tightly depend on the application. Several applications are defined in the

literature, and several parameters are necessary to consider for each application.

The parameters to consider for IMU based applications are: package size

which in consumer industries such as: smart phones, and gadgets, are preferred

to be small in contrast with applications in aircraft. Data accuracy is also

necessary to consider which depends on the application, and natural drift errors

of the accelerometer. Response Rate also varies depending on the applica-

tion, and needs to be taken into account. Consumer end-point applications like

smartphone gesture recognition, and fitness trackers, require response rate around

50Hz, while more accurate applications such as vehicle navigation require up to

200Hz response rate. Degree of freedom defines the number of independently

measured variables in the measurement system. Based on the application, and

the type of the sensor DOF varies from 2 to 9. For applications such as posi-

tion tracking, 6-DOF with 2 sensors (accelerometer, and gyroscope) each having

3-DOF for x,y,z axis are used.

Based on number of the degree of freedom of the each MEMS element in the

IMU, there are independent variables to measure using the sensor.For a more

accurate, consistent, and coherent measurement from independently separated

variables form independent data sources, it is necessary to use various data fusion

CHAPTER 3. INERTIAL MEASUREMENT UNITS 18

methods. Data fusion methods operate by integrating multiple data sources, and

their operation method varies for each application. Table 3.1 describes various

applications and data fusion methods used for inertial measurement solutions.

Table 3.1: IMU applications and fusion methods

Application Fusion Methods Types

• Manufacturing quality

• Medical rehabilitation

• Robotics

• Navigation system

• Sports learning

• Augmented reality

• Separate-bias Kalman filter

(KF)

• KF and expert systems

• Mirror therapy concept

• additional sensor calibration

• Extended KF

• KF-Extended KF & Slip esti-

mation

• Weight average estimation &

PID

• Balance filter (Low-pass,

High-pass)

• Least square method (LSM)

• Ball’s kinematics & VICON

• Compass data calibration

• Type 1

• Type 2

Since the application of the solution explained in this thesis mainly concerns

about the field of sports learning, and medical rehabilitation, Table 3.2 demon-

CHAPTER 3. INERTIAL MEASUREMENT UNITS 19

strates various implemented solutions in the mentioned fields according to Ahmad

et al [19] review where ’SL’ stands for sports learning, and ’MR’ stands for med-

ical rehabilitation.

Table 3.2: IMU specific applications and fusion methods

Field Usage Type Fusion method

MR
Exoskeleton for
rehabilitation Type 2 Mirror therapy concept

MR
Exoskeleton for
rehabilitation Type 2 Calibration with EMG

MR
Arm posture

correction Type 2 Unknown

SL
Measuring sports

equipment trajectory Type 1 None

SL
Measuring golf

swing trajectory Type 1 None

SL
Measuring golf

swing trajectory Type 1 LSM-Based calibration

SL
Measuring bowling

spin dynamics Type 1 None

SL
Measuring bowler’s

hand dynamics Type 1 None

SL
Measuring kinematics

of baseball/softball Type 1 Ball’s kinematics, VICON

Chapter 4

Attitude Representation

According to the basic scheme of a fully functional measurement system, data

representation is one of the vital parts of every measurement device. Generally,

based on the nature of the acquired signals, there are various ways for data rep-

resentation which are highly co-related to the application of the system. Since,

our aim in this thesis is to graphically reconstruct human physical activities us-

ing acquired inertial measurements, understanding the concepts related to the

3D attitude representation of a rigid body is necessary for graphical represen-

tation. This chapter mainly focuses on the theory of attitude representation by

angular rotation, velocity, and acceleration of a rigid body in 3D space based on

measurement readings of inertial measurement units.

The aim of the chapter is to dive into the most used mathematical methods

of 3D attitude representation when dealing with rotation values in order to ex-

plain the working principle and mention the main advantages, and disadvantages

of each method. It is also worth mentioning that the literature regarding this

subject is extensive, therefore, inconsistent in defining the reference frames and

parametrization of the mathematical expressions. Hence, in order to avoid in-

consistency, before going deep into the concept, the first section 4.1 is dedicated

to definition of the parametrization and the reference frames followed by section

20

CHAPTER 4. ATTITUDE REPRESENTATION 21

4.2 explaining the most used methods of attitude representation of a rigid body

in 3D space.

4.1 Definitions and parametrizations

The process of attitude representation has gone through various parametriza-

tions due to practical applications. These methods are preferred over each other

based on demands of each application such as: ease of implementation, formulaic

simplicity, and physical as well as mathematical complications involved in each

[23]. Due to the extensive availability of online literature regarding mathematical

approaches regarding this concept, the work of Diebel et al. [24] which is a con-

sistent, sufficient, and well defined content has been chosen as the main reference

material of this chapter.

4.1.1 Coordinate systems

Movement is a noun describing an act of move which denotes as relative dis-

placement of an object with respect to a real, or hypothetical fixed reference.

Therefore, when dealing with any sort of attribute which describes movement

(rotation angles in this particular case), defining a reference frame for describing

the action is evidently necessary.

The literature for defining coordinate systems in attitude representation, de-

fines world coordinate system, and body-fixed coordinate system as ref-

erence frames. The former is fixed in inertial space (denoted as Xw) while the

latter is rigidly attached to the object whose attitude is described (denoted as

Xb). Accordingly in order to distinguish points that are defined in world, and

body-fixed coordinate systems, the parameters are denoted as X and X ′ respec-

tively. For example, the value of Xw which is a point both located and described

in the world coordinate system is considered zero (Similarly X ′b = 0).

CHAPTER 4. ATTITUDE REPRESENTATION 22

4.1.2 Rotation and transformation matrix

In mathematical expressions, it is very common to represent rotation using a

rotation matrix being applied to a vector which results rotating the vector direc-

tion while maintaining the length of the vector constant. The special orthogonal

group of all rotation matrices is denoted by SO(3) (3 × 3dimension), therefore

if (R ∈ SO(3)), then:

det R = ±1 and R−1 = RT (4.1)

R =
[
r1 r2 r3

]
=


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (4.2)

wehere detR = 1 is denoted as a Proper rotation, and detR = −1 is called an

Improper rotation.

Since two coordinate systems has been introduced formerly, it is convenient

to define a form of transformation operation in order to encode the attitude

represented in world coordinate to fixed-body coordinate, and vice versa. Con-

sidering Z and Z ′ (both ∈ R3) as world coordinates, and fixed-body coordinates

respectively, based on Eq. 4.1 it is possible to write:

z′ = Rz (4.3)

z = RT z′ (4.4)

Now, if the coordinate transformation is required to a point not related to the

origin of the target coordinate system, it is possible to perform the transformation

CHAPTER 4. ATTITUDE REPRESENTATION 23

subtracting the offset of the target origin before starting the operation:

x′ = R(x− xb) = Rx+ x′w = −Rxb (4.5)

x = RT (x′ − x′w) = RTx′ + xb = −RTx′w (4.6)

It is also possible to write (4.6), and (4.5) in form of matrix equations in which

it is denoted as the transformation matrix:x′
1

 =

R −Rxb
0T 1

x
1

 =

R x′w

0T 1

x
1

 (4.7)

x
1

 =

RT xb

0T 1

x′
1

 =

R −RTx′w

0T 1

x′
1

 (4.8)

4.1.3 Coordinate rotation

For the final part of the definiton and parametrization, the matrix representation

format of the coordinate rotations is presented. This form of rotation is a single

rotation operation around a single coordinate axis which is either x, or y, or z

(enumerated as 1, 2, and 3 respectively). The rotation matrix with parametric

angle α along each axis is presented as:

R1(α) =


1 0 0

0 cos(α) sin(α)

0 −sin(α) cos(α)

 (4.9)

R2(α) =


cos(α) 0 −sin(α)

0 1 0

sin(α) 0 cos(α)

 (4.10)

R3(α) =


cos(α) sin(α) 0

−sin(α) cos(α) 0

0 0 1

 (4.11)

CHAPTER 4. ATTITUDE REPRESENTATION 24

4.2 Methods of representation

The most common way of representing attitude of a rigid body is using triple

Euler angles (Formerly mentioned as Yaw/Pitch/Roll angles in navigation sys-

tems). Euler angles which were intruded by Leonhard Euler in 18th century, are

an easy way to demonstrate the orientation of a rigid body in 3-dimensional space.

Although Euler angles are widely used because of their easy-to-use, and easy-to-

understand mathematical expression, using them introduces a major drawback

referred to as singularities in certain important rotation functions, also known

as, Gimbal Lock. The mentioned drawback along with the need of a more

accurate method when applications needed integration of incremental attitude

changes over time, led researchers to parametrize attitude representation using

Unit Quaternions. Quaternions, which were introduced by William Rowan Hamil-

ton in 19th century, are a form of a four-component complex numerical system

which are mostly used in pure mathematics, but indeed, have practical uses in

applied science such as quantum mechanics, and navigation systems, as well as

attitude representation in general.

It is also worth mentioning, other methods of attitude representation such

as Rotation vectors are available, even though they are out of the scope of this

project. Therefore a brief description of Euler angles, Quaternions, and important

transformation functions for each method are provided in this section.

4.2.1 Euler angles

As previously mentioned, Euler angles were initially introduced by Leonhard Eu-

ler. Euler angles represent rotation by performing sequential rotation operation

with respect to a particular sequence and the rotation angle value. By represent-

ing the 3D space with three perpendicular axes denoted as i, j, k, it is possible

to rotate any rigid body object by angles φ, θ, ψ respective to the denoted 3D

CHAPTER 4. ATTITUDE REPRESENTATION 25

axes. Therefore, it is possible to define Euler angles in form of a rotation vector:

u :=
[
φ θ ψ

]T
(4.12)

In which Rijk is the rotation function which applies each angle value to the

corresponding axis:

Rijk := Ri(φ)Rj(θ)Rk(ψ) (4.13)

The coordinate transformation functions previously mentioned in Eq. 4.3 are

valid as well:

z′ = Rijk(u)z (4.14)

z = Rijk(u)T z′ (4.15)

Euler angle rates matrix

Applying a derivation operation with respect to time on the Euler angle vector

provides the Euler angle rates (u̇) which forms the relationship between angular

velocity by Euler angle rates matrix (Eijk(u)). In essence, multiplying Euler angle

rates matrix to the vector of Euler angles rates results the angular velocity of an

object in the world coordinates. Needless to mention the angular acceleration in

this case is obtained by taking the time derivative of the angular velocity. The

operation is indicated as follows:

Eijk(φ, θ, ψ) := [Rk(ψ)TRj(θ)
T êi, Rk(ψ)T êj, êk] (4.16)

ω = Eijk(u)u̇ (4.17)

CHAPTER 4. ATTITUDE REPRESENTATION 26

Considering the conjugate of Euler angle rates matrix, it is also possible to obtain

angular velocity in the body-fixed coordinate system as follows:

E ′ijk(φ, θ, ψ) := [êi, Ri(φ)êj, Ri(φ)Rj(θ)êk] (4.18)

ω′ = E ′ijk(u)u̇ (4.19)

Alternatively, by obtaining angular velocity in one coordinate system, it is pos-

sible to convert the value to the other coordinate system by applying coordinate

transformation (see Eq. 4.5, and 4.6) as follows:

ω′ = Rijk(u)ω (4.20)

ω = Rijk(u)Tω′ (4.21)

Finally, using Euler angle rates matrix, and its conjugate, it is possible to obtain

the Euler angles vector, and its transpose by applying below operation:

Rijk(u) = E ′ijk(u)[Eijk(u)]−1 (4.22)

Rijk(u)T = Eijk(u)[E ′ijk(u)]−1 (4.23)

Valid sequences

As already mentioned, performing rotations based on Euler angles is a sequential

process which means the rotations are applied to one axis at a time. For this

reason, it is necessary to indicate the rotation priority of the process as a property

of the operation. If we consider a enumerating coordinate axes as x = 1, y =

2, z = 3, among all 3 × 3 × 3 = 27 sequences, only 12 of them satisfy the

constraint of not having two consecutively equal numbers (2 rotations in a row

for 1 axis). Among all the 12 valid sequences, the (1,2,3), and (3,1,3) sequences

are mostly used choices in various applications. Table 4.1 describes the sequences

along with their applications and their singularities.

CHAPTER 4. ATTITUDE REPRESENTATION 27

Table 4.1: Rotation Sequences of Euler angles

Sequence Transition Usage Singularities

(3, 1, 3)

ψ : (x→ x′)

θ : (y → y′)
Aerospace engineering
and computer graphics θ = π

2
+ nπ

φ : (z → z′)

(1, 2, 3)

−ψ : (−y → z′)

π
2
− θ : (−x→ −z)

Gyroscopic spinning
motion of a rigid body θ = nπ

φ : (−z → −y′)

It is also worth mentioning, useful transfer functions such as R(u) → E(u),

and R(u)→ Q are slightly different for each sequence. Therefore, in the following

sections only the transfer function of sequence (1,2,3) is provided since it is the

desired sequence of this project.

Transfer function: R(u)→ qw,x,y,z [Seq(1,2,3)]

The following transfer function maps Euler angles vector to the corresponding

unit Quaternion, where Cos(x) is denoted as Cx, and Sin(x) is denoted as Sx:

Q(φ, θ, ψ) =


q0

q1

q2

q3

 :=


Cφ/2Cθ/2Cψ/2 + Sφ/2Sθ/2Sψ/2

−Cφ/2Cθ/2Cψ/2 + Sθ/2Sψ/2Sφ/2

Cφ/2Cψ/2Cθ/2 + Sφ/2Sθ/2Sψ/2

Cφ/2Cθ/2Cψ/2 − Sφ/2Sψ/2Sθ/2

 (4.24)

Transfer function: R(u)→ E(u) [Seq(1,2,3)]

The following transfer function can compute Euler angle rates matrix, its inverse,

and its conjugate which was mentioned in Eq. 4.17 to 4.23 based on Euler angles,

where Cos(x) is denoted as Cx, and Sin(x) is denoted as Sx:

CHAPTER 4. ATTITUDE REPRESENTATION 28

E123(φ, θ, ψ) =


CθCψ −Sψ 0

CθSψ Cψ 0

−Sθ 0 1

 (4.25)

E ′123(φ, θ, ψ) =


1 0 −Sθ
0 Cφ CθSφ

0 −Sφ CθCφ

 (4.26)

[E123(φ, θ, ψ)]T =
1

Cθ


Cψ Sψ 0

−CθSψ CθCψ 0

CψSθ SψSθ Cθ

 (4.27)

[E ′123(φ, θ, ψ)]T =
1

Cθ


Cθ SφSθ CφSθ

0 CφCθ −SφCθ
0 Sφ Cφ

 (4.28)

4.2.2 Quaternions

Quaternions is the name of a four component extended complex numbering sys-

tem which is divided into real and imaginary part, and it is used as a method

of attitude representation. Concept of Quaternion which was firstly introduced

by Olinde Rodriguez (1840), then later independently discovered and further ex-

plained by William Rowan Hamilton (1843), is a proper method to overcome the

problems arising from the singularities of Euler angles which would eventually

lead the system into the state of Gimbal lock and the loss of at least one degree

of freedom. Quaternions are more efficient to implement on embedded system

platforms since triangular functions require more processing steps than complex

numerical multiplications. Nevertheless, from the practical point of view, the

main disadvantages of Quaternions are: the lack of intuitive physical meaning

of a Quaternion vector, and the unity norm constraint, which requires a vector

CHAPTER 4. ATTITUDE REPRESENTATION 29

of Quaternion to have a unity norm in order to be considered as valid a rota-

tion vector. Unity norm constraint is problematic specially when optimization

algorithms are applied to the raw measurement values.

Quaternions are usually represented as vectors in which the first element (q0 :=

w) is the imaginary part, while the following three parameters are the real values

(q1:3 := (x, y, z)) as indicated below:

qw,x,y,z =
[
q0 q1 q2 q3

]T
=

 q0

q1:3

 (4.29)

In some mathematical operations, the inverse of Quaternion matrix (q−1) is

needed which can be calculated using Quaternion adjoint (q), and norm (‖q‖)

as indicated in the following equation:

q =

 q0

−q1:3

 (4.30)

‖q‖ =
√
q20 + q21 + q22 + q23 (4.31)

q−1 =
q

‖q‖
(4.32)

Quaternion rates matrix

The relationship between unit Quaternions, angular velocity, and angular accel-

eration is connected through Quaternion rates matrix similar to the Euler angles.

In case of Quaternions, the angular velocity in the world and body-fixed coordi-

nate system (ωq, and ω′q respectively) is obtained by multiplying time derivative

of the unit Quaternion (q̇) to the Quaternion rates matrix (W (q), and W ′(q)

CHAPTER 4. ATTITUDE REPRESENTATION 30

respectively) as indicated below:

W (q) :=


−q1 q0 −q3 q2

−q2 q3 q0 −q1
−q3 −q2 q1 q0

 (4.33)

W ′(q) :=


−q1 q0 q3 −q2
−q2 −q3 q0 q1

−q3 q2 −q1 q0

 (4.34)

ωq := 2W (q)q̇ (4.35)

ω′q := 2W ′(q)q̇ (4.36)

It is also possible to do the reverse operation of above, and obtain first time

derivative of the unit Quaterinon by taking into account Quaternion rates matrix,

and angular velocity (both world, and body-fixed coordinates are applicable)

simply by performing the following expression.

q̇ =
1

2
W (q)Tω =

1

2
W ′(q)Tω′ (4.37)

Following the above expressions, the angular acceleration in the world and body-

fixed coordinate system (Dotωq, and Dotω′q respectively) can be obtained by

taking into account multiplication of the Quaternion rates matrix, and the second

time derivative of the unit Quaternions (q̈) as indicated below:

ω̇q := 2W (q)q̈ (4.38)

ω̇′q := 2W ′(q)q̈ (4.39)

Similar to the case of angular velocity, it is possible to do the inverse operation and

obtain the second time derivative of the unit Quaternion by taking into account

the Quaternion rates matrix and the angular acceleration (both body-fixed and

CHAPTER 4. ATTITUDE REPRESENTATION 31

world coordinates are applicable) as indicated below:

q̈ =
1

2
W (q)T ω̇ =

1

2
W ′(q)T ω̇′ (4.40)

Transfer function: qw,x,y,z → R(u) [Seq(1,2,3)]

The transfer function that maps Quaternions to their corresponding Euler an-

gles vector in sequence (1,2,3) is indicated below where atan2(x) stands for 2-

parametric inverse tangent function of variable x, and asin(x) is the inverse sine

function of variable x.

R(u)1,2,3 =


atan2(2q2q3 + 2q0q1, q

2
3 − q22 − q21 + q20)

−asin(2q1q3 − 2q0q2)

atan2(2q1q2 + 2q0q3, q
2
1 + q20 − q23 − q22)

 (4.41)

4.3 A careful observation

A careful observation reveals that the case of the rotational movements is similar

to the case of the linear movements, in which, the velocity and the acceleration

values are obtained, respectively, from the first and the second time derivative

of the linear displacement values. The only difference is that the term linear is

replaced by the term angular for the case of rotational movements.

Until now, the expressions for obtaining angular velocity, and angular accel-

eration from rotation values have been described, while on the other hand, the

actual goal is to obtain attitude of a rigid-body object based on its angular veloc-

ity, and angular acceleration. Therefore, it is not possible to directly measure the

rotation values for attitude representation. Hence, it is necessary to obtain an

estimate of the attitude (attitude estimation) by perform integration process

on angular velocity, and angular acceleration values with respect to time.

The mentioned process effectively will give rise to a common issue addressed

CHAPTER 4. ATTITUDE REPRESENTATION 32

as accumulated error, which is the accumulation of the errors of the angular

velocity, and angular acceleration measurements throughout the integration pro-

cess. To overcome the mentioned issue, it is necessary to use methods such as

Kalman, and Complementary filtering. Most of the commercially available iner-

tial measurement units perform these methods on the raw measurement data in

order to reduce the accumulated errors

Chapter 5

Implementation Scenario

Up to now, the general working principle of the inertial measurement units, and

the mathematical expressions regarding attitude representation have been ex-

plained. The main focus of this thesis is the implementation and the development

of a sensor-based motion capturing device. Therefore, this section is dedicated to

the step-by step explanation of a consistent pathway of implementing a MoCap

solution by taking into account necessary considerations.

Implementing wearable devices, in general, requires various design considera-

tions to be taken into account. The design criterion varies due to the application,

Therefore, in a more specific context,this chapter covers the implementation of a

full-body wearable cable-free motion capturing device. It is evidently clear that

commercially available wearable products require more effort in terms of product

design. While, on the other hand, devices with the purpose of being used dur-

ing lab researches require more technical development. In this sense, this thesis

mainly covers the technical development issues rather than the product design

obstacles.

In section 5.1 the used terminology through the rest of this section is ex-

plained, and in section 5.2 the important design factors for a consistent imple-

mentation of a wearable MoCap solution are defined.

33

CHAPTER 5. IMPLEMENTATION SCENARIO 34

5.1 Terminology

Considering a fully functional wearable motion capturing product, the factors to

be considered are accurately indicated by Marin et al. [8] in which by analysing

commercially available products, as well as, research purpose products, they de-

scribed a broad technical, and product design terminology to be used during the

development phase of wearable motion capturing devices.

The terminology describes device as motion capturing elements to be placed

on human body, and data processing points (DPP) as the stationary device which

receives the data, evaluates them, does the necessary processing steps on them,

and represents them in an appropriate way. Since the Bluetooth Low Energy has

been used as the communication protocol of this project, we may address device,

and DPP as Peripheral and Central respectively, which are the technical terms

used in the specifications of the communication protocol.

Furthermore, the literature regarding methods of motion capturing is divided

into optical methods and sensor-based, in which the sensor-based methods are

in forms of wearable devices. Therefore, it is necessary to indicate that not

all the MoCap devices are in forms of wearables, and also not all the wearable

devices containing inertial measurement units are for the application of motion

capturing since some devices use IMUs for gesture, or activity recognition (e.g

fitness trackers). In this sense, to be specific, this project introduces a full-body

motion capturing wearable device.

5.2 Design factors

5.2.1 Contextual factors

Contextual factors describe the characteristics of the solution which eventually

will be introduced as design requirements. These factors include the study of the

user, as well as, the study of the environment where the solution is being applied.

CHAPTER 5. IMPLEMENTATION SCENARIO 35

Based on the terminology, this project, which contains multiple devices and

a DPP, is intended to be used by two distinct types of users. The distinction

between the users defines user roles using the contextual factors as follows: the

actor user, similar to a test subject, who by wearing the device, performs the

desired activities to be measured, while on the other hand, the professional user

who is interested in studying, and analyzing the performed activities by obtaining

the measurement data. It is necessary to mention that the distinction between

user roles does not necessarily mean the requirement of two individuals to operate

simultaneously with the system. Hence, one individual can perform two user roles

as well.

Furthermore, environment of the solution describes the criteria to be taken

into consideration regarding the design. As previously mentioned, a solution

which is intended to be used as a consumer end-point product requires more effort

regarding product design comparing to a solution which is intended to be used

during lab researches. It is also worth mentioning that throughout the pathway

from a concept to production, the required economical resources to address design

obstacles increase, while the the amount of available tools decrease drastically as

pathway goes on. Therefore, the considered environment at the current stage of

this project is to be used during lab researches for study purposes where most of

the resources have been considered for technical development rather than product

design. Table 5.1 summarizes the contextual factors of this solution.

Table 5.1: Contextual factors of the solution

Environment Laboratory

Actor user Test subject

Professional user Researcher

Device Sensor tags (Peripherals)

DPP Central receiver + PC

CHAPTER 5. IMPLEMENTATION SCENARIO 36

5.2.2 Interaction factors and scheme

There are generally two schools of thought for describing interaction factors. The

first is the interaction between the system, and the user which is called user in-

teraction factor by means of user interface. The second is the interaction between

the different parts of the system within the application of the solution. The for-

mer divides the user role schematics into unidirectional scheme, and bidirectional

scheme.

User interaction scheme

Based on the formerly mentioned user type definitions, the scenario for the user

interaction scheme of an actor user is unidirectional from the device to the ac-

tor user by means of feedback. An actor user can be informed about various

parameters for example with visual feedback using light emitting diodes (LEDs)

the actor user can understand the device is on, and calibrated for application.

On the other hand, for the case of a professional user, the interaction scheme

is bidirectional between the user and the system. The bidirectional scheme pro-

vides the possibility of changing measurement parameters, or working modes of

the system by interacting with the DPP. It is also evident that the actor user,

and the professional user also have a bidirectional interaction between themselves

which the experiment procedure. In this project, the actor user is notified by the

blinking green LED on the sensor tags when the device is ready to be used, and

the professional user can monitor and modify representation parameters by in-

teracting with the installed acquisition software on a personal computer. Figure

5.1 indicates the schematic of the interaction between the user and the system.

CHAPTER 5. IMPLEMENTATION SCENARIO 37

Figure 5.1: User interaction schematic

System interaction scheme

As previously described, this system consist of multiple devices and a DPP. The

devices are equivalent to wearable sensors while the DPP is equivalent to combi-

nation of a central receiver, and a personal computer. In a more broad context,

the combination of the wearable sensors, and the central receiver device could

be called the Acquisition group, and the personal computer could be called the

Representation group.

Sensor tags (devices) consist of a 3-axis accelerometer, a 3-axis gyroscope,

and a communication module which enables them to establish a unidirectional

connection to the central receiver using BLE. The role of the central receiver

in this scenario is forming a data matrix after obtaining the data from all the

sensor tags. Finally, the data matrix is communicated from the central receiver

to a personal computer using a unidirectional serial communication. Figure 5.2

illustrates the architecture of the sensor tags, and Figure 5.3 illustrates the basic

system interaction schematic of the solution.

CHAPTER 5. IMPLEMENTATION SCENARIO 38

Figure 5.2: Sensor tag architecture

Figure 5.3: System interaction schematic

Modified scheme of the sensor tags

Regarding the technological factors of a consistent design criteria of wearable

MoCaps, it is required to equip the sensing tags (devices) with rechargeable bat-

teries. Since the commercial sensor tags which were chosen for this project lacked

the possibility to operate with rechargeable batteries, a new modified scheme of

the for the sensor tags has been designed. The scheme also considered a stand

alone charging circuit for every sensor tag which provides the possibility to charge

the sensor tags without the need of removing the batteries. The modified scheme

of the sensor tag is illustrated in Figure 5.4. Detailed information regarding the

CHAPTER 5. IMPLEMENTATION SCENARIO 39

hardware design and specifications are provided in chapter 6.

Figure 5.4: Modified sensor tag architecture

5.2.3 Sensor placement

Due to the working principle of IMUs, it is evidently clear that the acceleration

and angular velocity values of different body parts during an activity are different.

Therefore, in order to reconstruct human activities using inertial measurements,

it is necessary to consider the sensor placement on the human body in a way

to avoid any friction, and displacement of the sensors while performing various

activities as well as choosing areas with the least movement in order to minimize

measurement errors. Considering the mentioned reasons, the places right above

the joints, and flat areas are preferably used since they do not experience extreme

deviation during movements, and the sensor displacement on these areas are

minimum.

CHAPTER 5. IMPLEMENTATION SCENARIO 40

Also, regarding the design criteria of wearable MoCap solutions, sensor loca-

tion on the human body should be chosen in a way to avoid user movements while

performing desired activities. According to Marin et al. [8], it is suggested to use

outermost parts of the body in order to avoid interference during the movements.

Finally, although higher number of sensors may result the reconstruction pro-

cess to be more accurate, it may also increase the cost of the system as well as

limiting the actor user movements.

Considering all of the above, this solution uses 15 wearable sensors for full-

body motion capturing which are attached to the human body as illustrated in

Figure 5.5, where the black dots refer to sensors which are attached in the front

side of the body, while the orange dots refer to sensors which are attached in the

back side. The measured parameters by each sensor are indicated in Table 5.2.

Figure 5.5: Sensor tags attachment to the human body

CHAPTER 5. IMPLEMENTATION SCENARIO 41

Table 5.2: Sensor names and description

Sensor Description

1 Forehead
Measures the rotation and side-bend of forehead with respect to

origin

2 Chest Measures anterior/posterior tilt and Literal tilt to the left/ right.

3 Left Arm Measures Abduction/Adduction, flexion/extension of left arm.

4 Right Arm Measures Abduction/Adduction, flexion/extension of left arm.

5 Left wrist
Measures Abduction/Adduction, flexion/extension of the left

wrist

6 Right Wrist
Measures Abduction/Adduction, flexion/extension of the right

wrist

7 Left Hand
Measures Abduction/Adduction, flexion/extension of the left

hand

8 Right Hand
Measures Abduction/Adduction, flexion/extension of the right

hand

9 Sacral (Back) Measures Rotation and side-bend of back with respect to origin.

10 Left Knee Measures Flexion/Extension

11 Right Knee Measures Flexion/Extension

12 Left Ankle
Measures Plantar-Flextion/Dorsi-Flexion and Supina-

tion/Pronation

13 Right Ankle
Measures Plantar-Flextion/Dorsi-Flexion and Supina-

tion/Pronation

14 Left foot Measures Rotation and side-bend

15 Right foot Measures Rotation and side-bend

CHAPTER 5. IMPLEMENTATION SCENARIO 42

5.2.4 Body attachment factor

One of the vital parts of the design process when dealing with wearable devices

in general is defining a parameter which is referred to as the body attachment

factor or the body attachment method in the literature [8]. The body attachment

factor describes the method of attaching the wearable device to the human body,

and it is strictly related to the application of the solution. To be more specific,

regarding implementation of a wearable device which is intended to be used for

measurement applications, the body attachment factor directly affects the accu-

racy, and reproductibility of the solution, as well as the convenience of usage for

the actor user.

Although there are various methods to address the body attachment factor in

different applications, wearable MoCap solutions typically use methods such as:

fixed fabric support, fixed adhesive support, and semi-rigid fixed support. Among

the mentioned methods, the fixed fabric method has more flexibility for different

body shapes as well as more economical feasibility regarding implementation. In

this method the sensor is placed inside a rigid plastic station, or a placement

pocket which is attached to a fabric elastic band and the band is used to fix the

sensor position on the human body. Due to elasticity of the fabric band and by

using buckle (or similar) structure, it is possible to adjust the band circumference

for different body shapes.

In this project, the fixed fabric method is used by providing fabric elastic

bands with different circumferences according to the body parts which the sensor

tags are intended to be fixed. The circumference of each elastic band is adjustable

by using clips, and a pocket with the capacity of containing a rigid object with

dimension 3cm × 3cm × 1cm has been provided to contain the sensor tags (the

pocket size is 5cm× 5cm).

it is also worth mentioning that the body attachment method is tightly related

to the application of the wearable device, as well as the target subjects. Therefore,

CHAPTER 5. IMPLEMENTATION SCENARIO 43

the implemented body attachment method of this wearable solution is specifically

designed for the test subject of this project. Table 5.3 represents the size of each

body part of the subject corresponding to the sensor location, and Figure 5.6

illustrates the implemented body attachment method for sensor number 5 (Left

wrist).

Table 5.3: Sizes of the test subject’s body parts

Body part # Sensor Circumference (CM) Number needed

Wrist 5 and 6 16 2

Arm 3 and 4 25 2

Hand 7 and 8 18 2

Chest 2 85 1

Forehead 1 55 1

Sacral (Back) 9 82 1

Knee 10 and 11 36 2

Foot 14 and 15 20 2

Ankle 12 and 13 23 2

CHAPTER 5. IMPLEMENTATION SCENARIO 44

(a) solution with a non-rechargeable sensor tag inside

(b) solution with a rechargeable sensor tag inside (see section 6.1.2)

Figure 5.6: Left wrist implemented body attachment solution

Chapter 6

Hardware Design

After explaining the working principle of IMUs, the necessary theoretical concepts

for attitude representation, and the implementation scenario, it is possible to

provide a detailed explanation of the hardware implementation procedure for our

wearable motion capturing solution.

In this chapter, we will introduce the hardware components which are used

to implement our solution in order to clarify the main specifications and features

of each component. The embedded architecture of the sensor tags, as well as the

central receiver, are explained, and eventually, the modified scheme of the sensor

tags in order to be compatible with rechargeable batteries is introduced.

6.1 Hardware specifications and features

As previously indicated, the architecture of this solution requires three main com-

ponents: the sensor tags (Device), the central receiver (DPP), and the personal

computer (DPP). By using all of these components, it is possible to acquire an-

gular velocity and angular acceleration of each sensor tag in order to perform

the attitude representation procedure using the acquired data. In this section,

the features and specifications of the sensor tags, and the central receiver are

45

CHAPTER 6. HARDWARE DESIGN 46

provided respectively.

6.1.1 Sensor tags

Data acquisition in this solution is done using a network of 15 sensor tags. The

tags used in this solution are commercially available modules, also known as,

nRFtag (or Sensor tag). Each tag consists of MPU6050 inertial measurement

unit, BMP180 pressure sensor, AP3216 ambient light sensor, power button, bat-

tery holder, and nRF51802 programmable processing unit.

From each sensor tag, the inertial measurement unit (MPU6050) is used as

the sensor, and the nRF51802 system on a chip (SoC) is used as the processing

unit and the BLE communication module. The sensor tags general features and

specifications are described in Table 6.1.

Table 6.1: Sensor tags features and specifications

Product Name nRFtag (Sensor tag)

Application Wearable devices

Supply voltage 3V Coin cell 2032 package

Embedded modules

nRF51802
MPU6050
BMP280
AP3216

Operating temperature −25 ∼ +75 ºC (Recommended 25 ºC)

Size Circular d = 30mm)

Additional features

nRF51802 on this module is programmable using a connection from 4 vias

CLK, DIO, VCC, GND to nRF52840DK (the central receiver) pins

SWDCLK, SWDIO, VTG, GND DETECT respectively.

CHAPTER 6. HARDWARE DESIGN 47

(a) Top view (b) Bottom view

Figure 6.1: Sensor tag module

MPU6050 which is used as the inertial measurement unit of this solution is

a combination of a 3-axis accelerometer and a 3-axis gyroscope manufactured by

TDK InvenSense. Table 6.2 highlights the main features and specifications of

this IMU, extracted from the manufacturer datasheet [25].

Table 6.2: MPU6050 features and specifications

Product Name MPU6050

Application Inertial Measurement Unit (Sensor)

MEMS
3-axis accelerometer

3-axis gyroscope

Supply voltage 2.375 ∼ 3.46 V

Operating temperature −40 ∼ +85 ºC (Recommended 35 ºC)

Gyroscope specifications

Gyroscope full-scale range ±250, ±500, ±1000, ±2000 º/sec

ADC Integrated 16-bit ADC

CHAPTER 6. HARDWARE DESIGN 48

Table continued from previous page

Operating current 3.6mA

Standby current 5µA

Accelerometer specifications

Accelerometer full-scale range ±2g, ±4g, ±8g, ±16g

ADC Integrated 16-bit ADC

Normal operating current 500µA

Additional features

• Digital motion processing (DMP)

• Overall operating current using DMP: 3.9mA

nRF51802 is the programmable processing unit of the sensor tags. This

chipset is manufactured by Nordic SemiconductorTM. By using this chipset, it

is possible to organize the available peripherals of the sensor tags, acquire mea-

surement data from MPU6050 through I2C protocol, perform measurement data

calibration, and communicate measurement data to the central receiver using

BLE. The main features and specifications of this processing unit are provided

in Table 6.3 which are obtained from the manufacturer datasheet [26].

CHAPTER 6. HARDWARE DESIGN 49

Table 6.3: nRF51802 features and specifications

Product Name nRF51802

Application Processing unit, Wireless
communication

Supply voltage 01.75 ∼ 3.6 V depending
on the working mode

Operating temperature −25 ∼ 75 ºC Recommended (25ºC)

Processing unit electrical specifications

Processor ARM® CortexTM-M0 32bit

LF/HF CLK 16 ∼ 32.768MHz

Current consumption
Run from flash: 4.4mA
Run from RAM: 2.4mA
Startup: 400µA

Radio transceiver specifications

Frequency BLE 4.2: 2.4 ∼ 2.483GHz with 1MHz
channel spacing

Current consumption
TX startup+run @ Pout=4dBm: 23mA
RX startup+run @ 250kbps: 12.6mA

I2C Peripheral specifications

SCL Clock frequency Standard mode: 100kHz
Fast mode: 400kHz

Current consumption
@100kbps: 380µA
@400kbps: 400µA

6.1.2 Rechargeable wearable sensors

Considering the design criteria previously described for wearable MoCap solu-

tions, having wearable devices is more convenient from the perspective of the

actor user. For this matter, a modified design model for wearable devices is

introduced. This modification is done to be able to replace the manufacturer-

recommended non-rechargeable coin-cell power supply (CR2032 200mAh) with a

rechargeable and compatible power supply. In order to proceed with this modi-

CHAPTER 6. HARDWARE DESIGN 50

fication, there are two possible methods. Table 6.4 summarizes the features and

specifications of each method for a more clear comparison.

The first method is to use Li-Al or Li-MnO2 rechargeable coin-cell batteries

with a package size of 20321 (such as ML2032). The advantage of this method is

that this type of battery fits into the factory-provided battery holder of the sensor

tags, and it provides a relatively constant 3V nominal output voltage. Therefore,

no further modification is required by using this method. On the other hand,

the disadvantages are that the nominal capacity of this type of battery is 65mAh

which is considerably lower than the manufacturer recommended power supply,

and throughout the charging period, the charging current must be limited to

2mA which results in a long charging period.

The second method is to use Lithium Polymer (Li-Po) rechargeable batteries.

The advantage of this method is that this type of battery is commercially available

in a variety of shapes and nominal capacities, and the battery can be fully charged

safely using the constant current/constant voltage (CC/CV) method within one

hour. On the other hand, the disadvantages of this method are that, the output

voltage of this type of battery is 3.7V, and that output voltage also decreases

throughout the discharging period. To overcome the former disadvantage, it is

required to use an additional voltage regulator component at battery’s output.

On the other hand, the latter disadvantage requires additional considerations

such that to avoid unnecessary circuit interruptions.

Considering the application purpose of this solution, the required up-time

of each wearable device, and the general portability design criteria regarding

wearable solutions, the second method was chosen for the implementation.

1Package 2032 represents a cylindrical object with 20 mm cross-sectional diameter, and 3.2
mm height

CHAPTER 6. HARDWARE DESIGN 51

Table 6.4: Rechargeable methods comparison

Method Factory Recommended Method 1 Method 2

Name CR2032 ML2032 Li-Po

Output Voltage (V) 3 3 3.7

Nominal Capacity (mAh) 200 65 150

Rechargeable No Yes Yes

Weight (g) 2.8 3 4.5

Dimension (mm) Coin cell d = 20 Coin cell d = 20 25× 20× 2

Additional

Components Needed
No No

Regulator

Capacitors

To proceed with the second method (Using Li-Po batteries), it is necessary to

take into account a few considerations:

• The output voltage of the Li-Po battery is 3.7V, while the input voltage

of the wearable sensor tag is 3V. It is possible to solve this issue using

a DC/DC 2.5 ∼ 6 V to 3V buck converter. The converter used in this

project is based on the CE6208 CMOS regulator. It is important to note

the dropout voltage since the output voltage of the Li-Po batteries tend

to decrease during discharge period. The necessary specifications are high-

lighted in Table 6.5 from the manufacturer datasheet [27].

• Li-Po batteries require a charging circuit compatible with the CC/CV

charging method. This issue is addressed using a TP4056 Li-Po battery

charger module. This module keeps the charging current until the battery

reaches the peak voltage of 4.2V, then, it will maintain the voltage while

reducing the current. The charging current can be calculated using the pa-

rameter C (Charging rate indicated by the manufacturer) from the below

CHAPTER 6. HARDWARE DESIGN 52

expression.

ICharging = C ×Nominal Capacity (6.1)

The considered charging current for this solution is 60mAh (C=0.4). There-

fore, to maintain this charging current, it is necessary to modify the Rprog

resistor on the TP4056 module circuit. According to the datasheet of the

module, the required resistor can be calculated using Eq 6.2.

Rprog(Ω) =
1

Ibat(A)
× 1200 (6.2)

Where Ibat defines the charging current of the battery. Therefore, resistor

Rprog on the TP4056 charging module has been replaced by a 20 kΩ SMD

resistor. Table 6.6 highlights the main features and specifications of the

TP4056 module from the manufacturer datasheet[28].

• To reduce noise interference, and to avoid unnecessary circuit interruptions

of the charging circuit caused by the inrush startup current consumption of

the sensor tags, four capacitors (100nF ∼ 100µF) were added to the final

PCB. These capacitors are placed at the input and output of the DC/DC

buck converter (10µF and 100µF), as well as the input of the battery

charger (10µF || 100nF). All the capacitors considered for this solution are

provided with a 1206 SMD package.

Figure 5.4 illustrates the final scheme of the rechargeable wearable devices, Fig-

ure 6.3 shows the circuit schematic of the modified wearable devices, Figure 6.4

illustrates the designed PCB of the rechargeable sensor tags using Altium De-

signer software, Figure 6.5 shows the final implemented PCB of the wearable

device, Figure 6.6 represents the soldered PCB of a wearable device using SMD

components, and Figure 6.7 demonstrates the additional components added to

the circuit.

CHAPTER 6. HARDWARE DESIGN 53

Table 6.5: DC/DC buck converter features and specifications

Product Name DC/DC Buck Converter module

Components
CE6208 CMOS regulator

2 x 100nF capacitors

Input Voltage (V) 2.5 ∼ 6

Output Voltage (V) 3

Output Current (A) 1.0 (Guaranteed)

Dropout Voltage (V) 0.5 at 1.0A

Accuracy ±2%

Operating Temperature ºC −40 ∼ +125

Soldering Temperature ºC (10 Sec) 260

Dimension (mm) 11.7× 7.7

Table 6.6: TP4056 features and specifications

Product Name TP4056 Charger Li-Po Battery Charger

Input Voltage (V) 4 ∼ 8V (Recommended 5V)

Charging voltage (V) 4.2V ± 1.5%

Charge termination threshold C/10

Trickle charge threshold (V) 2.9V

Operating Temperature ºC -40 ∼+85

Soldering Temperature ºC (10 Sec) 260

Current Input/Output

(@Ta=25 º, Vcc = 5V)

Icc = 150

IBAT = 500 ∼ 1000mA

Module Dimension (mm) 28× 17

CHAPTER 6. HARDWARE DESIGN 54

Figure 6.2: Final scheme of the sensor tags

CHAPTER 6. HARDWARE DESIGN 55

Figure 6.3: Circuit schematic of the modified wearable devices

CHAPTER 6. HARDWARE DESIGN 56

(a) Top layer (b) Bottom layer

Figure 6.4: Designed PCB for the rechargeable wearable devices

(a) PCB top view (b) PCB bottom view

Figure 6.5: Implemented PCB for the rechargeable sensor tags

CHAPTER 6. HARDWARE DESIGN 57

(a) Top view

(b) Bottom view

Figure 6.6: Soldered PCB of a wearable device using SMD components

CHAPTER 6. HARDWARE DESIGN 58

(a) TP4056 module, the red square
highlights the Rprog resistor.

(b) DC/DC buck converter

Figure 6.7: Additional required components for the implementation

6.1.3 Central receiver

The central receiver in this project works as a connection bridge between the

sensor tags and the personal computer. This component performs its purpose

by establishing multiple and concurrent secure connections to the sensor tags,

receiving the measurement data, constructing the data matrix, and transferring

the data matrix to the personal computer.

To perform the mentioned tasks, a nRF52840 development kit (Figure 6.8)

manufactured by Nordic SemiconductorTM has been considered. Software and

hardware specifications of this development kit easily enable the user to form 15

concurrent connections to the sensor tags for real-time measurement. Table 6.7

highlights the important features and product specifications of the development

kit from the manufacturer datasheet[29]. It is also worth mentioning that this

development kit provides a micro-USB output plug to perform a wired connection

to a personal computer. This output port is used also for supplying the develop-

ment kit, therefore power consumption of the central receiver is not a concern of

this solution.

CHAPTER 6. HARDWARE DESIGN 59

Table 6.7: nRF52840DK features and specifications

Product Name nRF52840DK

Application

Processing unit

Wireless communication

Interfacing personal computer

Supply Voltage (V)

(independent of DCDC converter)
1.7∼5.5V

Operating temperature ºC −40 ∼ 85 (Recommended 25)

Processing Unit electrical specifications

Processor ARM® CortexTM-M4 32bit

HFCLK 64MHz

LFCLK 32.768kHz

Memory

Code Size 256kB

Page Size 4096Bytes

Number of pages 256 (4kB each)

RAM Size 256kB

Flash Block Size 1MB

Radio Transceiver

Operating Frequency
BLE 5 2360∼2500MHz

(1MHz channel spacing) 40Channels

CHAPTER 6. HARDWARE DESIGN 60

(a) Top view

(b) Bottom view

Figure 6.8: nRF52840DK by Nordic SemiconductorTM

Chapter 7

Software Design

After setting up the hardware of the solution, it is possible to move on with the

final chapter regarding the implementation of a motion-capturing solution. In

this chapter, the necessary considerations regarding the software design of this

project are discussed. To provide a consistent method for material representa-

tion, this chapter is divided into two main sections namely the embedded software

design (data acquisition) and the personal computer software design (data rep-

resentation). The former will explain the logic, scenario, definitions, and the

implementation procedure of the embedded software for the central receiver and

the wearable devices. The latter will discuss the provided tools regarding data

representation on a personal computer.

7.1 Embedded software design

In this section, a detailed explanation regarding the embedded software design

of the solution is provided. The embedded software, by interacting with the

wearable devices and the central receiver, mainly concerns the data acquisition

part of the system. Therefore, in this section, we will address the combination

of the central receiver and all the wearable devices as the acquisition group.

61

CHAPTER 7. SOFTWARE DESIGN 62

Due to the software design considerations, it is necessary to indicate the desired

features and specifications of the solution. The necessary features regarding the

acquisition group are indicated below:

• 15 concurrent, high-speed, and wireless connection must be established be-

tween the central receiver and the beacons.

• The connection must be stable and reliable throughout the whole experi-

ment by supporting a reasonable range of distance.

• The central receiver must be able to distinguish the wearable devices from

each other to organize the received data to the corresponding body part.

• Central receiver must be able to identify the index of the measurement data

for synchronization.

• A lightweight format for data string communication between the central

receiver and the wearable devices should be constructed. This data format,

which is also referred to as data matrix, should be able to contain the

measurement raw data as well as some attributes from the wearable devices.

To implement the mentioned features, it is required to build an embedded firmware

for the wearable devices as well as the central receiver. Building an application-

specific BLE solution requires introducing the hardware-specific toolchain and

the basic BLE concepts which are introduced as follows.

7.2 Hardware specific toolchain

The Nordic Semiconductor embedded hardware, as the processing unit of the

wearable devices and the central receiver, enable the ability to implement vari-

ous embedded applications as well as establishing a low-power, high-speed and

wireless communication link. In general, to build firmware on any type of em-

bedded hardware, it is necessary to set up the software development toolchain.

CHAPTER 7. SOFTWARE DESIGN 63

The toolchain provides the required tools and the environment to develop, com-

pile, link, build, and debug the embedded solution. To set up the toolchain, the

following items are required:

• IDE: An integrated development environment (IDE) is needed to provide

the programming environment for the development process. In this solu-

tion, Keil µVision was used.

• SDK: A software development kit (SDK) is required to provide the nec-

essary libraries, user guides, examples, application programming interface

(API) references, and data structures for interacting with the hardware.

The SDK v10, which is provided by the hardware manufacturer, was used

in this project.

• SoftDevice: Since this solution uses BLE communication protocol, using

a SoftDevice is necessary. According to the manufacturer documentation,

SoftDevice is a wireless protocol stack that complements an nRF5 series

SoC. While it is possible to build applications without using a SoftDevice,

all nRF5 SDK example applications that use Bluetooth® Low Energy or

ANTTM require a SoftDevice [30]. This protocol stack contains the Physical

and the controller layer of the BLE protocol and allows the BLE applica-

tions to interact with the host using GAP, GATT, and L2CAP (see Sec.

7.3). Figure 7.1 illustrates the SoftDevice stack protocol architecture from

the developer’s documentation.

CHAPTER 7. SOFTWARE DESIGN 64

Figure 7.1: SoftDevice stack protocol architecture

7.3 Bluetooth® Low Energy basic concepts

7.3.1 BLE Generic access profile (GAP)

Before defining the BLE generic access profile (GAP), it is necessary to mention

the BLE application working modes. There are basically two working modes

namely the advertising mode and the connected mode. The former es-

tablishes a unidirectional form of communication for broadcaster-oriented appli-

cation types, and the latter provides a bidirectional communication tunnel for

connection-oriented application types.

For setting a BLE application into the connected mode, it is required to define

one device as the broadcaster. The broadcaster always advertises first, therefore,

to proceed to the connected mode, it is necessary to pass through the advertising

mode first. The frequency bandwidth of the BLE protocol is from 2402MHz

CHAPTER 7. SOFTWARE DESIGN 65

to 2480 MHz with 2MHz of channel spacing which results in 40 channels. The

advertising procedure is done using channels 37, 38, and 39 (primary advertising

channels).

The GAP defines two main aspects namely the device discovery type and the

device connection type. The former describes how devices discover each other

using scanning and advertising; the latter describes how the devices will connect

[31]. To enlarge these aspects, the GAP parameters are defined below:

• Roles: Describe whether the role of application in the advertising mode

(broadcaster/observer) or the connected mode (central/peripheral). The

former does not require establishing a connection while the latter requires

a connection establishment. It is also important to note that a single device

can play different roles simultaneously.

• Modes: Describe the current state of the BLE device. These states are

temporary and they might vary during the working procedure of the ap-

plication. Some examples of these states are Broadcast, discoverability,

connectivity, bonding, etc.

• Advertisement parameters: Describe the parameters and settings of the

advertiser to send out advertising packages from the primary channels (see

Sec. 7.3.2).

• Connection parameters: Describe the parameters for establishing a per-

sistent, synchronized, and bidirectional connection (see Sec. 7.3.3).

• Security: Describe the required security modes and the security levels of

a BLE device for allowing a connection to be established (see Sec. 7.3.4).

7.3.2 GAP Advertisement parameters

Advertisements are the packets that are sent out by the advertiser from the pri-

mary channels repeatedly with a fixed time interval. There are different types

CHAPTER 7. SOFTWARE DESIGN 66

of advertisements in a BLE application namely connectable/non-connectable,

scannable/non-scannable, and directed/undirected advertisements.

The advertisement interval describes how often a device sends out advertise-

ment packages. This parameter can vary from 20ms to 10.24s with an increment

value of 0.625ms. The value of the advertisement interval directly affects the bat-

tery life, therefore, this parameter should be chosen carefully for the peripheral

devices.

The advertisement data contains information such as device name, transmit

power, service UUID, etc. Bluetooth 4.1 supports advertisement packets up to

31Byte length, while Bluetooth 5 supports up to 8 times more than this value.

When the application requires a bigger advertisement data capacity, it is possible

to use the scan request/scan response method, in which the advertisement packets

will be divided into multiple packages on demand of the receiver.

7.3.3 GAP Connection parameters

The connections in a BLE solution are persistent and synchronized links that

allow data exchange bidirectionally. For a connection to establish, two main

components are required namely the central and the peripheral. In BLE applica-

tions, the peripheral acts as a slave and a server simultaneously. The term ’slave’

means that the peripheral accepts one and only one central receiver to establish a

connection, and the term ’server’ means the peripheral updates the central with

advertisement packets. Therefore, due to this terminology, the central becomes

the master and the client.

The peripherals always start the connection establishment procedure by ini-

tially sending advertisement packets from its primary advertisement channels.

The central receiver, on the other end, is listening to the advertisement packets.

When the central receiver receives the desired advertisement package, it will re-

spond using a connection request on the same channel frequency in which the

CHAPTER 7. SOFTWARE DESIGN 67

package was received. The connection is considered created when the periph-

eral receivers the connection request. After an interval, which is also known as

the connection interval, a data packet will be sent from the central to the pe-

ripheral and the peripheral is should respond to this packet as well. After the

response from the peripheral, the connection is successfully established. Figure

7.2 illustrates the connection establishment procedure.

Figure 7.2: Connection establishment procedure

Each connection request contains several parameters, in which some of which

are crucial to the performance and functionality of the solution. These parameters

are mentioned below:

• Connection interval: Determines when a connection event occurs. This

value varies from 7.5ms to 4s with an increment value of 1.25ms. It is

important to note that the slave must always respond to the data packets

that come from the master. In the event of data unavailability, the slave

must respond with an empty packet, otherwise, the connection event will

be closed.

• Slave latency: Defines the number of data packets that the slave can

leave without a response, while the connection remains open. This value

CHAPTER 7. SOFTWARE DESIGN 68

indicates the number of incoming packets from the master which will be

ignored by the slave.

• Supervision timeout: Determines the amount of time since the last data

exchange from two connected devices, in which the connection will remain

open. This parameter varies from 100ms to 32s with a step value of 10ms.

The supervision timeout also has the following relationship with the value

of slave latency.

Supervision >(1 + Slave latency)× Connection interval × 2 (7.1)

The Eq. 7.1 indicates that the maximum value of the slave latency is limited

to 500.

• Channel map: Each connection event is done on a different RF channel.

The channel map provides the list of the best communication channels

among the 37 data transfer channels. The criteria for choosing the best

channel is to select the channels that have minimum interference with the

other broadcasting devices in the area.

• Hop sequence: In the process of selecting the best channel from the

channel map, it is possible to define the Hop parameter to indicate the

number of channels to skip during the selection procedure. For example,

if the starting data transfer channel is ch1 and the Hop parameter is 4,

the next channel to analyze is ch5. If the number of channels exceeds the

maximum amount of channels (40), the process will start over from channel

1.

CHAPTER 7. SOFTWARE DESIGN 69

7.3.4 GAP Security parameters

Security modes and levels are among the other aspects that GAP introduces.

These modes are implemented using the security manager (SM) layer [32]. Table

7.1 defines the security modes and levels in a BLE application obtained from the

Bluetooth® core specifications [33].

Table 7.1: BLE security modes and levels

Mode Level Description

Mode 1

Level 1 No security

Level 2 Unauthenticated with encryption

Level 3 Authenticated with encryption

Level 4 LE secured authentication with encription

Mode 2
Level 1 Unauthenticated with data signing

Level 2 Authenticated with data signing

7.3.5 BLE Generic attribute profile (GATT)

The generic attribute profile relates to the concept of data transfer during the

event of connection. The term ’ATT’ comes from the attribute protocol, which

defines how the server exposes its data to the client and how the data is struc-

tured. The attribute protocol defines two roles for the communication procedure,

namely the server and the client.

The server role is dedicated to the device that exposes its data to inform or

control. This type of role may accept commands from peer devices and it is ca-

pable of reacting using responses and notifications. On the other hand, the client

role is related to the device that interacts with the server to receive the exposed

data or to control the server behavior. This type of role is capable of sending

CHAPTER 7. SOFTWARE DESIGN 70

commands, sending requests, and also listening to the incoming notifications from

the server.

The attribute protocol (ATT) structure contains several parameters, which

are provided below [34]:

• Handle: 16-bit unique identifier for each attribute. This property is used

to address the attributes and it remains constant throughout the whole

operation.

• Type: Defines the type of the available data using a universally unique

identifier (UUID). The UUID size varies from 16-bit to 128-bit, in which

the 16-bit and 32-bit UUIDs are dedicated to the types that are identified

by Bluetooth® Special interest group (BT SIG) and 128-bit UUIDs are for

the custom made types.

• Value: This parameter is the data that the server intends to expose. The

length of this parameter is variable and it depends on the attribute type.

• Permission: Provides information about the executable ATT operations

and their security requirements.

The GATT defines features and service characteristics, as well as the proce-

dure to interfere with the attributes. The services are distinguished by a decla-

ration UUID and they are a combination of one or more attributes to perform a

functionality. These attributes can be characteristics, which are pieces of infor-

mation that the server wants to expose, or non-characteristics.

The characteristics, also similar to the services, are distinguished by a dec-

laration UUID. Furthermore, the characteristics have two additional parameters

namely the properties, and the descriptor. The former describes the operation

that can be performed using this characteristic such as read, write, write without

response, and notify; and the latter provides additional information about the

CHAPTER 7. SOFTWARE DESIGN 71

characteristic. Among all the types of descriptors, the client characteristic con-

figuration descriptor (CCCD) is the most important descriptor for a BLE profile.

The CCCD is a switch that can enable or disable server updates.

By using one or more services together, it is possible to form a BLE application

profile. In essence, an application profile describes the overall functionality of the

solution, while the services define the sub-functionalities and the characteristics

that perform those functionalities. Figure 7.3 illustrates the general hierarchical

model of the BLE application profile.

The h

Figure 7.3: Hierarchical model of the BLE application profile

7.4 Peripherals application

As previously indicated, the processing component of the wearable devices is the

nRF51802 SoC by Nordic SemiconductorTM. This SoC is in charge of service

CHAPTER 7. SOFTWARE DESIGN 72

initialization, measurement readings, calibration, and BLE communication.

Like any other embedded solution, the main functionalities of wearable de-

vices are built by a set of instructions. These instructions are written using the

Embedded C programming language, and they tend to initialize the embedded

device. After the initialization process, the program repeatedly executes the core

functionalities of the application.

Since the embedded application of the wearable devices was done by our col-

league researchers at Politecnico di Torino, we are not allowed to expose the

source codes of the application, hence a general description of the core function-

alities of the application is provided accordingly.

7.4.1 Toolchain

Due to the previously described concept of the hardware-specific toolchain, Table

7.2 describes the development toolchain specifications of the wearable devices. It

is important to note that the toolchain is exclusively defined by the hardware

and the application, therefore, it might not be compatible with another kind of

hardware or other types of applications.

CHAPTER 7. SOFTWARE DESIGN 73

Table 7.2: Toolchain features and specifications

Tool Version Producer Purpose Features

Keil µVision 5
ARM ltd.

ARM germany GmbH

Integrated development

environment

Project management

Run-time environment

Compile and Build

Debug

SDK 10 Nordic Semiconductor Software development kit

Hardware drivers

Libraries

Examples

User Guides

API References

DS documentations

SoftDevice S110 Nordic Semiconductor BLE communication

Bluetooth 4.1 stack

Asynchronous behavior

No RTOS dependency

Multiprotocol operation

support

7.4.2 Initialization process

The initialization process requires activating the necessary services and peripher-

als such as pins, the timer interrupts, radio transceiver, initial calibration service,

etc. Table 7.3 provides brief documentation about the necessary functions during

the initialization process in the order of execution.

CHAPTER 7. SOFTWARE DESIGN 74

Table 7.3: nRF51802 SoC function description for initialization process

Function Type Arguments Description

pin init() Void NULL Initialize the GPIOs of the SoC

APP TIMER INIT() Macro

PRESCALER

OP QUEUE SIZE

scheduler function

Allocates memory for internal queues

and performs the library initialization.

ble stack init() Void NULL
Initialize the SoftDevice Handler and the BLE

stack registers Mesh handler for SoC events.

Buffers init() Void NULL
Clear All Buffer slots, resetting their

buffer pointer

uSerialInterface Init() Void task id Initialize serial interface of the SoC

gap params init()
Static

void
NULL Initialize generic access profile initialization

services init()
Static

void
NULL Initialize application services

advertising init()
Static

void
NULL Initialize advertising functionality

conn params init()
Static

void
NULL Initialize the Connection Parameters module

miuProgram Setup() Void NULL Initialize core application parameters

MPU6050 dmpLoadCalibration Int NULL
Initiate calibration using digital motion

processing (DMP) unit. When ready, !=Null

Start IMU Measurement() Void NULL Reset and enable FIFO, start the measurement

7.4.3 Core functionalities

The core functionalities of the wearable devices are acquiring the measurement

data from the inertial sensors, constructing a data string structure based on the

measurement data, initiating a connection to the central device, and commu-

nicating the data string using the advertisement packets. Therefore, the core

functionalities are divided into three main sections, namely the measurement

part, the advertisement packet construction, and the BLE communication part,

CHAPTER 7. SOFTWARE DESIGN 75

which will be described separately.

The measurement part

As previously mentioned, the attitude estimation process based on the raw mea-

surement data of the inertial measurement units is prone to accumulated er-

rors. Therefore, a calibration procedure for the gyroscope values is needed. The

measurement procedure of the wearable devices is done using an asynchronous

scheme, in which the calibration process is done in parallel with the measure-

ment process. Figure 7.4 demonstrates the parallel command-based interruption

algorithm of the measurement program, Figure 7.5 illustrates the flowchart of the

measurement procedure, and Table 7.4 describes the copyrights of the mentioned

programs.

Table 7.4: Copyrights of the resources

Program Copyright Availability

MPU6050.c Jeff Rowberg (I2C library collection) open source

dmp.c InvenSense ltd. open source

Calibrate.c Simone Corbellini (Polito) All rights reserved

miuProgram.c Simone Corbellini (Polito) All rights reserverd

CHAPTER 7. SOFTWARE DESIGN 76

Figure 7.4: Command-based interruption algorithm

CHAPTER 7. SOFTWARE DESIGN 77

Figure 7.5: Measurement procedure flowchart

CHAPTER 7. SOFTWARE DESIGN 78

Advertisement packet construction

The peripheral communicates data through the advertisement packets to the cen-

tral. Since the attributes and the advertisement packets have large data sizes, it

is necessary to divide the advertisement data into smaller data packets. There-

fore, three types of data packets regarding the payload have been introduced for

specific purposes, which are explained in Table 7.5.

Table 7.5: Description of the advertisement packets

Packet type Data type Description

Type #0 Short int Yaw-Pitch-Roll angles with 0.01º resolution

Type #1 Short Accelerometer X,Y,Z, and magnitude1

Type #2 Short Integral of gyroscope signals (X,Y,Z) with 0.01

Advertisement packets are 31 Byte long data strings that include informa-

tion such as GAP parameters, the peripheral address, the manufacturer-specific

data, and the advertisement value. Figure 7.6 illustrates the advertisement data

package structure.

7.4.4 BLE communication

Due to the previously described concepts about BLE applications, this solution

requires a peripheral/central type of communication. the wearable devices in

this solution are the peripherals that connect to a single central receiver. The

peripherals expose the measurement data to the central receiver, therefore, the

central receiver is the client and the peripherals are the servers. On the other

hand, since multiple peripherals connect to one central, the central receiver is the

master and the peripherals are the slaves.

To use the aforementioned service, it is required to set up a BLE link by

CHAPTER 7. SOFTWARE DESIGN 79

Figure 7.6: Structure of the advertise-
ment packets

Figure 7.7: Data matrix structure

defining the GAP parameters namely the role, advertising parameters, connection

parameters, and the security level. Table 7.6 defines the mentioned parameters.

Table 7.6: GAP parameters of the peripherals

Parameter Value

GAP general parameters

Role Peripheral(Slave/Server)

Device name homeTag

GAP Security parameters

Security mode 1

Security level 1

CHAPTER 7. SOFTWARE DESIGN 80

GAP Connection parameters

Maximum connection interval (ms) 30 (1.25ms step)

Minimum connection interval (ms) 10 (1.25ms step)

Supervision timeout (ms) 5000 (10ms step)

Slave latency 0

Hop sequence 0

GAP Advertisement parameters

Advertise device name true (Full name)

Advertising interval (ms) 64 (0.625ms step)

Advertising timeout (s) 180

Advertise manufacturer data False

Include device address true

Include appearance False

Active advertisement channels 37,38,39

After defining the GAP parameters and establishing the BLE link, it is pos-

sible to form an application profile to define the data structure, data exposure,

functionality, and behavior of the BLE application. To implement a BLE appli-

cation, capable of transferring data bidirectionally, it is possible to use the NUS

service, which is exclusively introduced by Nordic Semiconductor with a 128-bit

UUID. The NUS service stands for Nordic UART Service. This service provides

an asynchronous and bidirectional data transfer link between the peripherals and

the central. The NUS service contains two characteristics which are named af-

CHAPTER 7. SOFTWARE DESIGN 81

ter the wired UART communication, namely BLE NUS TX and BLE NUS RX.

Figure 7.8 illustrates the BLE application profile of the wearable devices.

Figure 7.8: BLE Application profile of the wearable devices

7.5 Central application

The processing component of the central receiver is the nRF52840 SoC by Nordic

SemiconductorTM. The purpose of this component is to receiver the advertise-

ment packages from the wearable devices by establishing 15 concurrent BLE

connections, distinguish the measurement data index, indicate the incoming data

to the corresponding wearable device, form the data matrix based on the data

index and the corresponding sensors, and transfer the data matrix to a personal

computer by establishing a serial communication.

Similar to the case of wearable devices, the main functionalities of the central

receiver are built by a set of instructions, which are written in the Embedded

CHAPTER 7. SOFTWARE DESIGN 82

C programming language. These instructions include the initialization of the

required SoC services, hardware peripherals, and the core application loop that

repeatedly performs the core functionalities.

The current application of the central receiver is implemented on top of the

Nordic UART service over BLE for the central example. This example provides

a bidirectional connection link between the central receiver and one peripheral.

The example has been modified to support 15 concurrent connections.

7.5.1 Toolchain

It is important to note that the toolchain which was previously described for the

wearable devices is not used for the central receiver. This difference is because

the SDK and SoftDevice are hardware-specific resources that may differ based on

the SoC type. In addition, the SoftDevice version is also optimized for the role

that the device is intended to work on. The full SoftDevice compatibility list is

available by the manufacturer’s manual [35].

Table 7.7 describes the toolchain for the development of the central receiver

embedded application.

Table 7.7: Features and specifications of the central embedded application

Tool Version Producer Purpose Features

SEGGER Embedded studio 5.60
SEGGER Microcontroller GmbH

Rowley Associates ltd.

Integrated development

environment

Project management

Run-time environment

Compile and Build

Debug

SDK 15.2 Nordic Semiconductor Software development kit

Hardware drivers

Libraries

Examples

User Guides

API References

DS documentations

SoftDevice S140 Nordic Semiconductor BLE communication

Bluetooth 5.1 stack

High-throughput 2 Mbps

Concurrent multiprotocol

support

CHAPTER 7. SOFTWARE DESIGN 83

7.5.2 Initialization process

The initialization process of the central application consists of two steps. The

first is the service definition, and the second is the function initialization. In

essence, the service definition is done by defining the required services and hard-

ware components that are required during the application. For this purpose, the

SDK configuration header file needs to be modified. This file describes the static

configurations of an application that is built on top of an SDK. These configura-

tions include the service definitions, general configurations, library dependencies,

and required embedded peripherals. The modification can be done manually by a

simple text editor or graphically using the CMSIS Configuration wizard graphical

user interface (GUI). Table 7.8 describes the list of the services that are defined

for the central application.

Table 7.8: SDK Configuration header file

Service Description

nRF BLE

BLE DB DISCOVERY UUID database discovery module

NRF BLE SCAN ENABLED Scanning module

nRF BLE Services

BLE NUS C ENABLED Nordic UART service for central

nRF Drivers

NRFX PRS ENABLED Peripheral resource sharing module

APP UART FIFO INIT Application UART FIFO functionality

nRF Libraries

APP TIMER ENABLED Application timer functionality

CHAPTER 7. SOFTWARE DESIGN 84

Table 7.8 continued from previous page

Service Description

NRF BALLOC ENABLED Block allocator module

NRF FPRINTF ENABLED fprintf function enabled

NRF MEMOBJ ENABLED Linked memory allocator module

NRF PWR MGMT ENABLED Power management module

NRF STRERROR ENABLED Convert error codes to strings

nRF Log

NRF LOG BACKEND RTT ENABLED Backend log real-time transfer

NRF LOG ENABLED Logger module

nRF SoftDevice

NRF SDH BLE SoftDevice handler

NRF SDH BLE ENABLED SoftDevice BLE event handler

NRF SDH SOC ENABLED SoftDevice SoC event handler

After defining the service definitions, it is necessary to initialize some of the

service functionalities. It is important to note that not all of the services require

initialization. Hence, only those services that require configuration parameters

for operation require initialization. In addition, not all of the initialization state-

ments are corresponding to the services, ultimately, they are corresponding to

the core functionality of the application. Figure 7.9 illustrates the initialization

statements as well as their corresponding configuration program file.

CHAPTER 7. SOFTWARE DESIGN 85

Figure 7.9: Initialization statements for the central receiver application

CHAPTER 7. SOFTWARE DESIGN 86

7.5.3 Core functionalities

The core functionality of the central receiver application includes scanning for a

BLE device with an activated NUS service, receiving the advertisement package

from the corresponding device, store the measurement data as well as the unique

peer address of the sender into the data matrix, and transfer the data matrix

to the personal computer for further processing. Since these functionalities need

to be executed continuously, they are implemented using the main loop of the

embedded program.

When a connection link is established with a peripheral, initially, the BLE

event handler function checks the total number of active links. If this number is

less than the maximum number of links (15), the central will continue scanning

for new devices, otherwise, the scanning process will be terminated. In parallel,

the BLE event handler listens to the incoming advertisement packets from the

active links. By comparing the peer address of the incoming packet with the

pre-defined list of peer addresses corresponding to the sensors, the central will

manage to form the data matrix.

The data matrix is a n×55 2-dimensional matrix that the parameter ′n′ corre-

sponds to the number of sensors (see Table 5.2). Therefore, each row is dedicated

to one sensor which is distinguished by its peer address. On the other hand, the

columns are measurement data that are received from wearable devices. It is

important to mention that each row of the data matrix contains 27 Bytes of data

which are divided into 2 columns and the 55th column is the termination charac-

ter (ASCII 10). Flowchart of the core functionality of the central application is

provided in Figure 7.10, and the data matrix structure is illustrated in Figure 7.7

(The figure is intentionally placed next to Figure 7.6 for a better comparison).

In addition, The source codes of the application are provided in the appendix.

CHAPTER 7. SOFTWARE DESIGN 87

Figure 7.10: Flowchart of the core functionalities of the central applications

CHAPTER 7. SOFTWARE DESIGN 88

7.5.4 Communication Parameters

The central receiver establishes two forms of communication tunnels which a

BLE connection links with peripherals and a serial communication a personal

computer. These connections are specified in Table 7.9.

CHAPTER 7. SOFTWARE DESIGN 89

Table 7.9: Communication parameters of the central receiver

BLE link

Parameter Value

Scan interval 160 (Unit 0.625ms)

Scan session duration 0

Scan window 80 (Unit 0.625ms)

Minimum scan connection interval 7.5ms

Maximum scan connection interval 30ms

Scan buffer 31 Bytes

Total link count 20 (Available by SoftDevice)

Central link count 15 (Peripherals)

Serial communication

Parameter Value

UART TX Buffer size 8192

UART RX Buffer size 256 (default)

IRQ priority Lowest

Baud rate 230400

Hardware flow control Disabled

Parity Disabled

CHAPTER 7. SOFTWARE DESIGN 90

7.6 Data representation

As formerly mentioned, in order to represent the measurement data (rotation

angles), data representation softwares were created by means of windows appli-

cations. These applications use various techniques to interpret the incoming data

from the central receiver. Due to the data interpretation process, the incoming

data packets are decoded and the measurement values are extracted for attitude

representation. Each windows application is provided with a GUI for the user and

they are created using three different software environments namely MATLAB,

NI LabView, and Unity game engine.

The general principle for the data interpretation process in all of the three

software environments is to decode the incoming hexadecimal data matrix from

the serial interface. The decoded data will be converted into Yaw-Pitch-Role

and Quaternion angles. After that, the converted angles will be represented

numerically and graphically using the implemented applications. The principle

of data representation followed by a more detailed explanation for each software

environment are provided in this section

7.6.1 Data interpretation process

Using the data matrix architecture explained in the previous section, it is pos-

sible to extract information such as sensor number, new data availability, data

packet type, and measurement values. It is important to note that the raw data

matrix contains hexadecimal values and the measurement angles are floating-

point numbers, therefore, type conversion is needed to obtain the measurement

values. Type conversion is done using the IEEE 754-2019 Standard [36] for single-

precision floating-point arithmetic which converts hexadecimal strings to 32-bit

single-precision floating-point numbers.

Due to the previously mentioned Euler angle singularities (see Sec 4.2), the

section corresponding to Quaternion data from the data matrix is considered for

CHAPTER 7. SOFTWARE DESIGN 91

the attitude representation process (see Figure 7.7). Since the Euler angles are

easier to understand compared to the Quaternions, the Quaternions are eventu-

ally converted to the Euler angles using Eq. 4.41. In this way the represented

numerical data are more understandable and the singularities due to the Euler

angles are avoided.

7.6.2 Data representation using MATLAB

Description

The purpose of this application is a simple graphical representation of the sensor

data on a disk-shaped object. After defining the serial communication parame-

ters, the program decodes rows and columns of the incoming data matrix. The

sensor number is extracted using the first pair of matrix columns. Then, the

next pair columns indicate the sensor’s status (ON/OFF) and the data packet

availability.

Furthermore, the Quaternion values, which are placed from the 5th to 36th

columns of the data matrix by the central receiver, are extracted. Moreover,

these values are converted to single-precision floating-point numbers using the

hexsingle2num function [22]. Later, the numerical Quaternion values are con-

verted to Euler angles using the quat2angle built-in function of the MATLAB

program.

Eventually, the Quaternion values and the calculated Euler angles are repre-

sented in the debug terminal of the MATLAB program. Finally, these values are

also used to rotate a circular surface (with the shape of the peripherals) in the

3D space based on the incoming measurement data.

Figure 7.11 indicates the flowchart of the MATLAB application, Listing 1

shows the terminal output during a measurement process, and Figure 7.12 illus-

trates the 3D data representation. In addition, the codes of this application are

available in the Appendix as well as the Github repository of this project [37].

CHAPTER 7. SOFTWARE DESIGN 92

Figure 7.11: Flowchart of the MATLAB data representation application

CHAPTER 7. SOFTWARE DESIGN 93

Figure 7.12: 3D data representation of 2 sensors using the MATLAB application

quatW_s1 : 0.996276 quatW_s2 : 0.967565

quatX_s1 : 0.078654 quatX_s2 : 0.015171

quatY_s1 : 0.007692 quatY_s2 : -0.011132

quatZ_s1 : 0.034479 quatZ_s2 : 0.251919

Yaw_s1 : 4.009102 Yaw_s2 : 29.167585

Pitch_s1 : 0.567438 Pitch_s2: -1.672434

Roll_s1 : 9.047937 Roll_s2: 1.361458

Listing 1: Output terminal of the MATLAB application

7.6.3 Data representation using LabView

This software aims to provide a GUI that represents the serial communication

parameters, the incoming data, and the data representation with respect to the

CHAPTER 7. SOFTWARE DESIGN 94

elapsed time on a waveform chart for each sensor. The application also provides

the ability to store measurement data in a text-plain format for later analysis.

In addition, The serial communication parameters can be modified by the user

during various applications.

This application GUI consists of two main pallets:

• The serial communication pallet, which uses VISA functions and VIs

to perform a continuous serial read operation with the defined serial pa-

rameters.

• The representation pallet, which is used to represent processed data ma-

trix values numerically on text boxes and graphically on waveform charts.

The user, by changing the state of the ′Y PR/Quat′ switch in Figure 7.14a,

can choose to view either Quaternions or Euler angles from the waveform

chart. The former consist four separate lines for each of the Quaternion

components and the latter consist three separate lines for rotations around

the Yaw, Pitch, and Roll axes. In addition, there is also a file name in-

put that assigns a .txt file name to store the measurement data during the

experiments separately for each sensor.

Figure 7.13 indicates the flowchart of the LabView windows application, Fig-

ure 7.14 illustrates the GUI of the application, where In Figure 7.14a, white line:

W, red line: X, green line: Y, blue line: Z. This application is also available on

the Github repository of the project [37].

CHAPTER 7. SOFTWARE DESIGN 95

Figure 7.13: Flowchart of the LabView data representation application

CHAPTER 7. SOFTWARE DESIGN 96

(a) Representation pallet of the appli-
cation - White line: W, Red line: X,
Green line: Y, Blue line: Z

(b) Communication pallet of the appli-
cation

Figure 7.14: GUI of the LabView data representation application

7.6.4 Data representation using Unity

The goal of this application is to do a 3D representation of the measurement

values using a 3D humanoid model. To implement this application on the Win-

dows operating system, it is necessary to use a graphical engine such as Unity or

other similar applications. Unity is a cross-platform engine that is used for video

game development and allows the developer to interact with graphical objects,

also known as, game objects. Using the C# or Visual Basic programming lan-

guages, it is possible to interact with these objects, to make a rigid body attitude

representation.

To accomplish this task, it is necessary to build a 3D human model including

the body parts which are attached by joints and bones. In the game development

community, Rigging is the process of assigning connection points to the 3D model

CHAPTER 7. SOFTWARE DESIGN 97

of a rigid body. A rigged 3D model is a hierarchical scheme of interconnected

nodes (joints) using connectors (Bones) that can be rotated and transformed

in the 3D space relatively. The rigging process is done using various 3rd party

applications, and alternatively, it is possible to use pre-maid rigged humanoid

characters from various GD communities such as Mixamo [38]. Mixamo is a part

of the Adobe family, and it is a freely accessible 3D character and 3D animation

repository.

The logical procedure of application regarding the serial communication, and

the data matrix interpretation is similar to the previous cases, in which the data

matrix is obtained using the serial interface. By splitting the incoming data

matrix, it is possible to extract the information related to sensor number, sensor

data availability, attributes, and measurement data.

Furthermore, the rigged joints need to be referred to in the application as

game objects with the order previously mentioned in Table 5.2. Then, the initial

rotation angles values of the character need to be stored. The initial position is

set by the 3D model and in this case, it is called T-position. The initial rotation

angle of the body parts will be used later for relative rotation with respect to the

current rotation angle value.

To use this application, it is required to place the wearable devices on the

subject’s body. The sensor number should correspond to Table 5.2. The subject

should remain in T-position for 15 seconds so the initial gyroscope calibration

process finishes. Once the calibration process is done, the LED2 one of the wear-

able devices will blink, which indicates the device is ready for the measurement

process.

Figure 7.15 illustrates the logical flowchart of the Unity application, and Fig-

ure 7.16 shows the GUI of the Unity data representation application. In addition,

the source codes of this windows application are available in the Github repository

of the project [37].

CHAPTER 7. SOFTWARE DESIGN 98

Figure 7.15: Flowchart of the Unity data representation application

CHAPTER 7. SOFTWARE DESIGN 99

(a) T-position figure

(b) Measurements using sensor #3, #4, and #5

Figure 7.16: GUI of the Unity data representation application

Chapter 8

Experiments

In this chapter, the necessary guides and considerations regarding the test pro-

cedure of the implemented solution are provided. The implemented solution is

subjected to various experiments in order to verify the functionality of the system.

These experiments have been conducted separately for each of the representation

applications and the results are presented accordingly.

8.1 Programming the wearable devices

After setting up the firmware of the wearable devices, it is required to program

the executable on the SoC. The sensor tags provide dedicated I/O pins exclusively

for this purpose. In section, the step-by-step process and necessary requirements

for programming the wearable devices are explained.

Requirements and setup

To program the executable file on the nRF51802 SoC, the first step is installing

nRF Connect on a personal computer. This cross-platform application provides

the necessary tools for developing, programming, and testing Nordic Semicon-

ductor’s Bluetooth and cellular IoT products. The application is freely available

100

CHAPTER 8. EXPERIMENTS 101

by the manufacturer.

In addition, a Nordic semiconductor development kit such as nRF52840 is also

required. This development kit is connected between the SoC and the personal

computer and it performs the programming process through its I/O pins. In

essence, the nRF51802 SoC needs to be connected to the development kit (using

the I/O pins on both ends), and the development kit needs to be connected to the

personal computer (using a male mini-USB/male USB cable). Table 8.1 indicates

the connection between the development kit and the sensor tag, and Figure 8.1

illustrates the programming pins on each hardware component.

Table 8.1: Connection between the wearable device and the development kit

nRF51802 SoC (Sensor tag) nRF52840DK (Development kit)

CLK SWD CLK

DIO SWD I/O

VCC VTG

GND GND DETECT

CHAPTER 8. EXPERIMENTS 102

(a) Dashed red square highlights the programming pins of the sensor tag

(b) Dashed red square shows the programming pins of the development kit

Figure 8.1: Programming pins of the hardware components

Since both of the hardware components must be turned on during the pro-

gramming process, the final concern is providing the power source. The develop-

ment kit is supplied using the personal computer during the process, therefore,

no further considerations are required for this component. On the other hand,

the sensor tag requires a dedicated power supply. This requirement is due to the

fact that both hardware components require dedicated ground references. It is

CHAPTER 8. EXPERIMENTS 103

Figure 8.2: Connection between the hardware components

possible to power up the sensor tag using a 3V coin cell battery or other types

of dedicated power supply with 3V output. Figure 8.2 illustrates the supplied

devices and the connection between them.

Uploading the executable files

After setting up the hardware components, it is possible to upload the executable

(.hex) file onto the sensor tag. For this purpose, the nRF Connect application is

required. By navigating to the Programmer section of nRF Connect application,

it is possible to choose the connected J-Link1 devices to the COM ports of the

personal computer. The name of the device corresponds to the on-board J-Link

chip-set of the nRF52840DK (dashed yellow square in Figure).

After selecting the corresponding development kit from list of the devices, the

programmer application should connect to the SoC of the wearable device. If the

1SEGGER J-Link is a USB powered JTAG debug probe.

CHAPTER 8. EXPERIMENTS 104

Figure 8.3: Environment and the programming steps using the programmer ap-
plication

hardware components are properly connected, the debug terminal should indicate

the SoC model as NRF51802 xxAA REV3. If the model number is verified, it is

possible to upload the executable files by addressing them into the file memory

layout section and clicking on the Erase & write button. It is important to note

that the executable files consist the .hex file which was resulted from compiling

the peripheral program and the .hex file of the SoftDevice S110. Figure 8.3

illustrates environment of the programmer application.

8.2 Programming the development kit

The programming process of the development kit is a simple and robust task.

There are generally two possible solutions to program the development kit. The

first solution is by using the SEGGER Embedded studio (SEGGER-ES) IDE,

and the second solution is to Drag-and-Drop the programming files into the flash

space simply using the plug and play driver of the J-Link chip-set. The first

method offers better features such as real-time debugging using the SEGGER-

ES IDE, while the second method is easier to perform. These two methods are

CHAPTER 8. EXPERIMENTS 105

explained in this section.

8.2.1 The first method: SEGGER-ES IDE

After compiling the code instructions of the solution, it is possible to simply

upload the executable application using the SEGGER-ES IDE. This action can

be performed done by navigating to the Build menu and selecting the Build and

Run option (or press Ctrl+F5, Ctrl+T subsequently). Since this project requires

uploading the SoftDevice S140 as well, solely uploading the executable file of

the code instructions is not sufficient. Therefore, it is required to indicate the

SoftDevice settings. The step-by-step guide for indicating the SoftDevice S140

settings are provided in the Nordic Semiconductor’s info center [39].

8.2.2 The second method: Drag-and-Drop

By connecting the development kit to a personal computer using a Male micro-

USB/Male USB cable, it is possible to drag-and-drop the executable file of the

application as well as the executable file of the SoftDevice S140 into the available

removable drive of the flash space. It is important to note that by using this

method, the real-time debugging feature is not available. Therefore, although

this method is sufficiently robust during the production phase, it is not suitable

during the development process.

8.3 Experimental results

In this section, several experimental modules are performed in order to demon-

strate the functionality and compatibility of this solution using the implemented

windows applications. For MATLAB and Unity applications, three modules of

experiment are performed and the graphical results are presented. The numerical

CHAPTER 8. EXPERIMENTS 106

results from the LabView software have been used for metrological characteriza-

tion of the system.

The aim of this solution is 3D reconstruction of human’s physical activities,

therefore, the results are visual and a better representation can be done in form of

a video. Hence, a publicly available YouTube playlist is created for this solution,

where the experiments are represented in form of videos [40]. Before proceeding

to tests, the experimental modules followed by a brief description are provided

below (For the list of sensors and their placement see Table 5.2).

• Upper body experiment: These experiments are aimed to capture the

upper body activities by tracking sensor numbers #1 to #8.

• Lower body experiment: These experiments are aimed to capture lower

body activities by tracking sensor numbers #9 to #15.

• Full body experiment: These experiments perform the full-body motion

capturing process by employing all the 15 sensors.

8.3.1 MATLAB data representation application

Considerations

By connecting the central receiver to a personal computer, it is possible to repre-

sent the incoming data from the wearable devices in MATLAB application using

dedicated disk shaped objects. Each disk represents the orientation of one sensor

during the measurement process in real-time. In order to correctly represent the

orientation of the body, it is necessary to take into account the calibration phase

of the sensors. The sensors should be calibrated before being used by placing

them on horizontally on a flat surface. The sensor is calibrated and ready to use

when the LED of the wearable device blinks with the color green. In addition,

the direction of the Y-axis (green square in Figure 6.1) should point towards the

personal computer’s monitor.

CHAPTER 8. EXPERIMENTS 107

Representation

Figure 8.4 to 8.9 illustrates the test results from the MATLAB application in 3

experimental modules, and each module contains 2 postures.

(a) test subject’s posture (stand still)

(b) Representation using MATLAB (stand still)

Figure 8.4: Upper body experiments - MATLAB - Stand still

CHAPTER 8. EXPERIMENTS 108

(a) test subject’s posture (T-pose)

(b) Representation using MATLAB (T-pose)

Figure 8.5: Upper body experiments - MATLAB - T-pose

CHAPTER 8. EXPERIMENTS 109

(a) test subject’s posture (stand still)

(b) Representation using MATLAB (stand still)

Figure 8.6: Lower body experiments - MATLAB - Stand still

CHAPTER 8. EXPERIMENTS 110

(a) test subject’s posture (arbitrary posture)

(b) Representation using MATLAB (arbitrary posture)

Figure 8.7: Lower body experiments - MATLAB - Arbitrary posture

CHAPTER 8. EXPERIMENTS 111

(a) test subject’s posture (stand still)

(b) Representation using MATLAB (stand still)

Figure 8.8: Full body experiments - MATLAB - Stand still

CHAPTER 8. EXPERIMENTS 112

(a) test subject’s posture (T-pose)

(b) Representation using MATLAB (T-pose)

Figure 8.9: Full body experiments - MATLAB - T-pose

8.3.2 Unity data representation application

The Unity application is used to graphically represent the incoming data from

the sensors on a humanoid 3D model. Figure 8.10 to 8.12 represent the upper

experiments using Unity application.

CHAPTER 8. EXPERIMENTS 113

Considerations

In order to proceed with the experiments using Unity software, it is necessary to

take into account few points. The sensor placement on the body must be done

in a certain way, otherwise, the 3D reconstruction of the physical activity might

not corresponds to the actual physical activity.

On the sensor tags, a visual sign indicates the direction of the Y-axis(green

square in Figure 6.1), this sign has been considered as an indicator to place the

sensors. Table 8.2 summarises the correct direction of each sensor with respect

to the Y-axis indicator.

Table 8.2: Correct direction of the Y-axis indicator

Sensor number Direction of the indicator

1 - Forehead Facing up

2 - Chest Facing up, pointing to sensor 1

3 - Left arm Facing towards the left hand’s fingers

4 - Right arm Facing towards the right hand’s fingers

5- Left wrist Facing towards the left hand’s fingers

6 - Right wrist Facing towards the right hand’s fingers

7 - Left hand Facing towards the left hand’s fingers

8 - Right hand Facing towards the right hand’s fingers

9 - Sacral Facing up, pointing to sensor 2

10 - Left knee Facing towards the left foot’s fingers

11 - Right knee Facing towards the right foot’s fingers

12 - Left ankle Facing towards the left foot’s fingers

CHAPTER 8. EXPERIMENTS 114

Table continued from previous page

Sensor number Direction of the indicator

13 - Right ankle Facing towards the right foot’s fingers

14 - Left foot Facing towards the left foot’s fingers

15 - Right foot Facing towards the right foot’s fingers

In addition, it is important to remain in T-Pose posture (Straight standing

legs and T-shaped arms) for the whole calibration process, otherwise, visual drift

errors due to incomplete calibration of the inertial sensors might be witnessed.

Representation

Figure 8.10 to 8.12 demonstrate the experimental results using Unity software in

3 experimental modules.

It is important to note that the model’s initial posture is the T-Pose posture.

During the experiments, all body parts of the humanoid model are visible, but

only those parts which are subjected to the experiment will move. Let us con-

sider the upper body experimental module, during this experiment, a complete

humanoid model is represented, but only the body parts corresponding to sensor

numbers #1 to #8 will move (left and right hands, left and right wrists, left and

right arms, chest, and head).

CHAPTER 8. EXPERIMENTS 115

(a) Test subject’s posture

(b) Representation using Unity

Figure 8.10: Upper body experiments - Unity

CHAPTER 8. EXPERIMENTS 116

(a) Test subject’s posture

(b) Representation using Unity

Figure 8.11: Lower body experiments - Unity

CHAPTER 8. EXPERIMENTS 117

(a) Test subject’s posture

(b) Representation using Unity

Figure 8.12: Full body experiments - Unity

8.4 Metrological characterization

Reporting measurement values of a physical quantity requires quantitative im-

plications in order to describe the quality of the measurement procedure. This

concept is necessary for reliability assessment of a given piece of data. There-

fore, defining a generally accepted parameter for evaluating and characterizing

the measurement quality is essential. In many applications, this parameter, also

known as measurement uncertainty, is expected to provide an interval with a con-

CHAPTER 8. EXPERIMENTS 118

fidence level, in which a large fraction of the measurement values are encompassed

by it.

The method for expressing measurement uncertainty should be universal (ap-

plicable to all types of data), internally consistent (derivable from the contributing

components and unrestrained from the composition or decomposition of expres-

sions), and transferable (the results should be useful for uncertainty evaluation

of other measurements).

The basic terminology of measurement systems and related parameters are

provided by joint committee for guides in metrology (JCGM) [41]. In this section,

based on the cited document, a preliminary attempt has been done to metrolog-

ically characterize the measuring units (Wearable devices).

8.4.1 The theory

The measurement uncertainty, which describes the dispersion of the measured

values attributed to a measurand, is composed from several components. Some

of these components are calculated using statistical methods based on series of

measurements, while, the other can be calculated using other presumed probabil-

ity distribution based on a pool of data (Manufacturer specifications, historical

knowledge, experience, etc.). Regardless of the used method, in both cases, these

components are characterized by standard deviation.

The uncertainty that is represented as a standard deviation is denoted as stan-

dard uncertainty. Generally, there are two main ways to evaluate the standard

uncertainty which are provided below:

• Type A evaluation: An evaluation method using statistical analysis of

observed values.

• Type B evaluation: An evaluation method based on methods other than

statistical analysis (historical data, experience, etc).

CHAPTER 8. EXPERIMENTS 119

When the measureand is affected from several input quantities, the combined

standard uncertainty method is used to combine the evaluations. If there is

no correlation between the input quantities, the combined standard uncertainty is

equal to square root of sum of all variances (or covariances) of the effective input

quantities. Furthermore, it is possible to represent the obtained uncertainty by

means of the expanded uncertainty . This parameter defines an interval that

a large fraction of the measured values (estimated measurements) are covered

during the measurement procedure.

8.4.2 The procedure and results

In this section, by performing an experiment, an attempt to evaluate the Type A

standard uncertainty has been done. This preliminary evaluation has been done

in order to roughly estimate the standard uncertainty of a single sensor (Sensor

#2 corresponding to chest) throughout the whole measurement process. This is

a first simple metrological characterization. The future aim is to metrologically

characterize the system by comparing it with the Gold Standard, which is present

at Politecnico di Milano at Divieti laboratory.

The experiment has been performed by connecting a single sensor tag to the

central receiver via BLE, and connecting the central receiver to a personal com-

puter using serial communication. After setting up the devices, the sensor tag was

located in a fixed position (On a piece of sponge in order to damp environmen-

tal vibrations). Then, the sensor tag was turned on and the calibration process

started, which took approximately about 10 seconds. Moreover, the NI LabView

application have been used in order to record the incoming data in a text-plain

file. Finally, the text-plain file has been converted into an Excel worksheet in

order to perform the statistical analysis. Figure 8.13 illustrates the variations of

the Euler angles during the calibration phase.

CHAPTER 8. EXPERIMENTS 120

(a) Rotation around Yaw axis during calibration

(b) Rotation around Pitch axis during calibration

(c) Rotation around Roll axis during calibration

Figure 8.13: Variations of the Euler angles during the calibration process

The experiment was done for about 9 minutes, at room temperature (23 ºC)

in order to avoid clock frequency variations (See sec 5.5 of [25]), and the PCB

Mounting and Cross-Axis sensitivity has been neglected (See sec 11.4.5 of [25]).

The first 5000 samples were considered for the analysis (500 seconds of data

CHAPTER 8. EXPERIMENTS 121

acquisition), in which the first 197 samples were before finishing the calibration

process, therefore, there were only subjected to visual representation and the

uncertainty assessment. The next 100 samples were also discarded to take into

account the warm-up time of the measuring unit. Hence, the samples between

297 to 5000 has been used for this analysis.

According to JCGM, the best estimated expected value of a quantity ′q′ that

varies randomly can be obtained by calculating the arithmetic mean of the vari-

able throughout n observations using Eq. 8.1

q =
1

n

n∑
k=1

qk (8.1)

Where q is the arithmetic mean and qk is the kth observation of quantity q.

Since the measured values differ randomly due to the variations of the in-

fluence quantities, it is possible to calculate the experimental variance of the

observation. This parameter indicates the variance value for the probability dis-

tribution of quantity q using Eq. 8.2.

s2(qk) =
1

n− 1

n∑
j=1

(qj − q)2 (8.2)

The positive square root of the experimental variance indicates the experimental

standard deviation. This parameter defines the dispersion of the measurement

values with respect to their arithmetic mean.

It is also possible to obtain the variance of the mean s2(q), by dividing the

experimental variance of the observations with number of samples.

s2(q) =
s2(qk)

n
(8.3)

CHAPTER 8. EXPERIMENTS 122

By calculating the positive square root of the s2(q), it is possible to obtain the

experimental standard deviation of the mean s(q), which indicates the quality of q

estimating the expected value of q. This value evaluates whether if the arithmetic

mean is the best estimator of the expected value of q.

Performing the mentioned during the experiment resulted the following values

in Table 8.3 for our solution:

Table 8.3: Type A evaluation of standard uncertainty

Induced rotationº

Y 0
Experimental SD

s(qk)

Y 0.05983

P 0 P 0.03077

R 0 R 0.02622

Best estimate

q

Y 0.18821 Experimental

variance of the mean

s2(q)

Y 7.6145e(-7)

P -0.09228 P 2.0145e(-7)

R -0.06463 R 1.4622e(-7)

Experimental variance

s2(qk)

Y 0.00358
Experimental SD

of the mean s(q)

Y 0.00087

P 0.00094 P 0.00044

R 0.00068 R 0.00038

It is also worth mentioning that the errors due to the measurement equip-

ment, may propagate throughout the whole process. Let us consider Figure 8.14,

which represents the sensor and a possible rotation on an angle theta. Assuming

the distance between sensor #6 and #8, the R represents the length of the right

forearm. Therefore, for rotations on the angle theta, chord C represents the hori-

zontal displacement of the right hand’s finger tips; and height h demonstrates the

vertical displacement of the finger tips. According to Figure 8.14, the following

equations can be written:

CHAPTER 8. EXPERIMENTS 123

c = 2R sin
θ

2
(8.4)

h = R(1− cos
θ

2
) (8.5)

where R is the radius of the circle (in this case, length of the subject’s forearm),

and θ is the rotation angle).

Considering Eq. 8.4 and 8.5, and assuming the length of the test subject’s

arm as 32cm, one degree error in measurement of the angle θ might result in

0.558cm horizontal, and 8.726 × 10−3cm vertical displacement during the 3D

reconstruction process. The significance of this error depends on the application

of the solution. As for entertainment purposes, such as game development, the

results of the Type A evaluation indicate that the solution requires improvement.

While, for sports training purposes the indicated results might be within the

acceptable margin.

Figure 8.14: Chord and height of a circle’s segment

Chapter 9

Conclusion and future scope

9.1 Conclusion

Considering the limitations of machine vision technologies in motion capturing,

this project aimed to implement a wireless, real-time and wearable motion cap-

turing solution using inertial measurement units. For this purpose, first, investi-

gations were carried out to demonstrate the spectrum of motion-capture devices.

Studies showed that sensor-based motion capture offers a broad range of ap-

plications and could be utilized in ambient environments that are not ideal for

machine vision motion capturing. These studies also demonstrated that the de-

sign requirements of motion capturing systems are correlated with each other and

are highly dependent on the application area. Therefore, it is crucial to precisely

specify the required features and specifications of the system before implementing

these solutions.

To achieve this objective, the working principle of inertial measurement units

and the theoretical concepts regarding attitude representation based on the an-

gular acceleration and angular velocity were explained. Two possible methods

of attitude representation namely Euler angles, and Quaternions; and the chal-

lenges of employing them were discussed. Additionally, the problem of absolute

124

CHAPTER 9. CONCLUSION AND FUTURE SCOPE 125

attitude representation solely based on rotation angles was mentioned. This prob-

lem resulted in implementing attitude estimation procedures instead of attitude

representation by using Kalman and Complementary filtering.

Moreover, to emphasize the importance of the design factors, a chapter was

dedicated to the scientific terminology and the implementation scenario of wear-

able motion capturing devices. Various design parameters that directly affect the

system performance were mentioned and the design specifications of the suggested

solution were discussed.

Regarding hardware design as the first step of the implementation process, the

procedure for choosing hardware materials and the specifications of each hardware

component have been provided. Due to the requirements of the project, a sensor

module, named Sensor tag, was selected. This component provided us with an

MPU6050 3-axis accelerometer, a 3-axis gyroscope IMU and an nRF51802 SoC

as the processing unit. The SoC enabled us to use the Bluetooth® Low Energy

wireless communication protocol which fully satisfied the design requirements. In

addition, the necessity of employing rechargeable batteries along with wearable

devices was highlighted and a new design scheme in the form of a printed cir-

cuit board was implemented to provide this feature. As for the software design,

the terminology of the BLE communication protocol has been described. This

description provided the basic working principles and necessary considerations

for implementing an application using BLE. Also, we collaborated with the elec-

tronics and telecommunication department of Politecnico di Torino for building

the central receiver and the embedded firmware of the wearable devices. The

working roles and the detailed application of each component throughout this

system is demonstrated using flowcharts and parameter specifications. Then the

considerations for data interpretation and the working principle of each software

was mentioned. Eventually, multiple software applications for representing data

were described and implemented for personal computers.

Finally, the experimental results have demonstrated the functionality of the

CHAPTER 9. CONCLUSION AND FUTURE SCOPE 126

system. These experiments were done to represent the measurement data of each

software application. The final assessment of the data revealed that although the

system performs sufficiently for a single sensor, using a network of multiple sensors

may present obstacles that are worth investigating. These obstacles became more

challenging as the number of sensors in the network increased. This problem

was diagnosed to be due to the communication protocol and the requirement

for fast data transmission. In addition, this study attempted to metrologically

characterize the measuring units in order to describe the standard uncertainty of

the measurement systems.

9.2 Future scope

Consistent product design is a major step in the future development of this so-

lution. The introduced solution is currently at the development stage, and it

is considered as a prototype. The functionality and performance of this system

can be further improved by employing professional product design methods. The

graphical user interface of the representation software applications can also be

enhanced to improve user experience.

Moreover, the implementation scenario of the system can be further developed

by discarding the central receiver development kit and using a device that is

already equipped with a BLE receiver. Removing a hardware component from

the whole system could result in bypassing the hardware and software errors of

that particular component and the errors of the communication protocol. This

adjustment could in turn enhance the functionality, stability, and performance

of the measurement system. However, these modifications require a thorough

software development process on the desired representation platform.

Additionally, the accuracy and reliability of the system can be further im-

proved by employing a magnetometer along with the 3-axis gyroscope. Although

the gyroscope drift errors were sufficiently bypassed using software-level digital

CHAPTER 9. CONCLUSION AND FUTURE SCOPE 127

motion processing methods, using a magnetometer can be effectively beneficial

for gyroscope measurement corrections. Of course, this component introduces

more challenges regarding magnetic isolation of the system when it is used next

to ferromagnetic materials.

As previously mentioned, the implemented solution is a real-time measure-

ment system that represents rotation angles based on angular acceleration and

angular velocity. The rotation angles can be further analyzed using data process-

ing methods for human activity recognition (HAR). This application is widely

used for medical research and diagnostic procedures such as gait analysis and core

stability assessment. It is therefore possible to implement HAR by using suitable

data analysis methods such as Bayesian classifiers and deep neural networks.

Finally, the metrological characterization of the whole system can be further

researched. This process requires modeling and evaluating the uncertainty that

is introduced by the multiple measuring units, the acquisition process, the math-

ematical operations, the communication protocol, and the noise interference at

each stage of the measurement operation. Additionally, the implemented solu-

tion can be subjected to further evaluation by comparing the measurement results

with the gold standard.

Appendices

128

Appendix A

Code of the central receiver

This is the main code of the central receiver’s embedded application (main.c).

The full program is available in the GitHub repository of the project [37].

1 #include "app_timer.h"

2 #include "ble.h"

3 #include "ble_conn_params.h"

4 #include "ble_conn_state.h"

5 #include "ble_db_discovery.h"

6 #include "ble_nus_c_cust.h"

7 #include "boards.h"

8 #include "nordic_common.h"

9 #include "nrf.h"

10 #include "nrf_ble_scan.h"

11 #include "nrf_delay.h"

12 #include "nrf_log.h"

13 #include "nrf_log_ctrl.h"

14 #include "nrf_log_default_backends.h"

15 #include "nrf_pwr_mgmt.h"

16 #include "nrf_sdh.h"

129

APPENDIX A. CODE OF THE CENTRAL RECEIVER 130

17 #include "nrf_sdh_ble.h"

18 #include <stdint.h>

19 #include <stdio.h>

20 #include <string.h>

21 #define APP_BLE_CONN_CFG_TAG 1

22 #define APP_BLE_OBSERVER_PRIO 3

23 #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN

24 #define MAX_SENSORS NRF_SDH_BLE_CENTRAL_LINK_COUNT

25 #define MAX_DATA_LEN 60

26 #define UUID16_SIZE 2

27 #define UUID32_SIZE 4

28 #define UUID128_SIZE 16

29 #define DELTAT (3276 * 1 + 5)

30 BLE_NUS_C_ARRAY_DEF(m_nus_c,

31 NRF_SDH_BLE_CENTRAL_LINK_COUNT);

32 BLE_DB_DISCOVERY_ARRAY_DEF(m_db_disc,

33 NRF_SDH_BLE_CENTRAL_LINK_COUNT);

34 NRF_BLE_SCAN_DEF(m_scan);

35

36 char CursorLine[MAX_DATA_LEN];

37 char DataMatrix[MAX_SENSORS][MAX_DATA_LEN];

38 char LastDataCounter[MAX_SENSORS];

39

40 static char const m_target_periph_name[] = "homeTag";

41 static uint8_t m_scan_buffer_data[BLE_GAP_SCAN_BUFFER_MIN];

42 static ble_data_t m_scan_buffer =

43 {

44 m_scan_buffer_data,

45 BLE_GAP_SCAN_BUFFER_MIN};

APPENDIX A. CODE OF THE CENTRAL RECEIVER 131

46

47 static const ble_uuid_t m_nus_uuid =

48 {

49 .uuid = BLE_UUID_NUS_SERVICE,

50 .type = NUS_SERVICE_UUID_TYPE};

51

52 static const ble_gap_conn_params_t m_connection_param =

53 {

54 NRF_BLE_SCAN_MIN_CONNECTION_INTERVAL, // Minimum connection

55 NRF_BLE_SCAN_MAX_CONNECTION_INTERVAL, // Maximum connection

56 0, // Slave latency

57 NRF_BLE_SCAN_SUPERVISION_TIMEOUT // Supervision time-out

58 };

59 static bool is_uuid_present(const ble_uuid_t *p_target_uuid,

60 const ble_gap_evt_adv_report_t *p_adv_report) {

61 uint32_t err_code;

62 uint32_t index = 0;

63 uint8_t *p_data = (uint8_t *)p_adv_report->data.p_data;

64 ble_uuid_t extracted_uuid;

65

66 while (index < p_adv_report->data.len) {

67 uint8_t field_length = p_data[index];

68 uint8_t field_type = p_data[index + 1];

69

70 if ((field_type ==

71 BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_MORE_AVAILABLE) ||

72 (field_type == BLE_GAP_AD_TYPE_16BIT_SERVICE_UUID_COMPLETE)) {

73 for (uint32_t u_index = 0; u_index <

74 (field_length / UUID16_SIZE); u_index++) {

APPENDIX A. CODE OF THE CENTRAL RECEIVER 132

75 err_code = sd_ble_uuid_decode(UUID16_SIZE,

76 &p_data[u_index * UUID16_SIZE + index + 2],

77 &extracted_uuid);

78 if (err_code == NRF_SUCCESS) {

79 if ((extracted_uuid.uuid == p_target_uuid->uuid) &&

80 (extracted_uuid.type == p_target_uuid->type)) {

81 return true;

82 }

83 }

84 }

85 }

86

87 else if ((field_type ==

88 BLE_GAP_AD_TYPE_32BIT_SERVICE_UUID_MORE_AVAILABLE) ||

89 (field_type == BLE_GAP_AD_TYPE_32BIT_SERVICE_UUID_COMPLETE)) {

90 for (uint32_t u_index = 0; u_index <

91 (field_length / UUID32_SIZE); u_index++) {

92 err_code = sd_ble_uuid_decode(UUID16_SIZE,

93 &p_data[u_index * UUID32_SIZE + index + 2],

94 &extracted_uuid);

95 if (err_code == NRF_SUCCESS) {

96 if ((extracted_uuid.uuid == p_target_uuid->uuid) &&

97 (extracted_uuid.type == p_target_uuid->type)) {

98 return true;

99 }

100 }

101 }

102 }

103

APPENDIX A. CODE OF THE CENTRAL RECEIVER 133

104 else if ((field_type ==

105 BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_MORE_AVAILABLE) ||

106 (field_type == BLE_GAP_AD_TYPE_128BIT_SERVICE_UUID_COMPLETE)) {

107 err_code = sd_ble_uuid_decode(UUID128_SIZE,

108 &p_data[index + 2],

109 &extracted_uuid);

110 if (err_code == NRF_SUCCESS) {

111 if ((extracted_uuid.uuid == p_target_uuid->uuid) &&

112 (extracted_uuid.type == p_target_uuid->type)) {

113 return true;

114 }

115 }

116 }

117 index += field_length + 1;

118 }

119 return false;

120 }

121 void assert_nrf_callback(uint16_t line_num,

122 const uint8_t *p_file_name) {

123 app_error_handler(0xDEADBEEF, line_num, p_file_name);

124 }

125 static ble_gap_scan_params_t const m_scan_param =

126 {

127 .active = 0x01,

128 .interval = NRF_BLE_SCAN_SCAN_INTERVAL,

129 .window = NRF_BLE_SCAN_SCAN_WINDOW,

130 .timeout = 0x00,

131 };

132 ///

APPENDIX A. CODE OF THE CENTRAL RECEIVER 134

133 /////////////////APPLICATION FUNCTIONS/////////////////////

134 ///

135 void InsertNewSensorDataIntoMatrix(int m, char *p, int L) {

136

137 int IDX = m;

138 if ((IDX < 1) || (IDX > 20))

139 return;

140

141 IDX--;

142

143 for (int n = 1; n < L; n++)

144 DataMatrix[IDX][n] = p[n];

145 DataMatrix[IDX][0]++;

146 if (!DataMatrix[IDX][0])

147 DataMatrix[IDX][0]++; // Avoid value zero

148 }

149

150 void Init_Sensor_Data(void) {

151 // First byte represents the counter. This is incremented each

152 //time a new packet is received. Is used at main level to

153 //check read coherence and verify fresh packets

154 // Zero value is skipped since zero mean no packet at all

155 for (int n = 0; n < MAX_SENSORS; n++) {

156 DataMatrix[n][0] = 0;

157 LastDataCounter[n] = 0;

158

159 for (int m = 1; m < MAX_DATA_LEN; m++)

160 DataMatrix[n][m] = 0;

161 }

APPENDIX A. CODE OF THE CENTRAL RECEIVER 135

162 }

163

164 void CoherentReading(int n) {

165

166 do {

167 for (int m = 0; m < MAX_DATA_LEN; m++)

168 CursorLine[m] = DataMatrix[n][m];

169 } while (CursorLine[0] != DataMatrix[n][0]);

170 }

171 ///

172 /////////////////END OF APPLICATION FUNCTIONS//////////////

173 ///

174

175 ////////////////////////DEBUG SECTION//////////////////////

176 ///////////////Active/Deactive from SDK_CONFIG/////////////

177 ///

178 #ifndef DEBUG_application

179 #include "app_uart.h"

180 #if defined(UART_PRESENT)

181 #include "nrf_uart.h"

182 #endif

183 #if defined(UARTE_PRESENT)

184 #include "nrf_uarte.h"

185 #endif

186 //#define UART_TX_BUF_SIZE 128 /**< UART TX buffer size. */

187 //#define UART_RX_BUF_SIZE 128 /**< UART RX buffer size. */

188 #define UART_TX_BUF_SIZE 16384 /**< UART TX buffer size. */

189 #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */

190 void uart_error_handle(app_uart_evt_t *p_event) {

APPENDIX A. CODE OF THE CENTRAL RECEIVER 136

191 if (p_event->evt_type == APP_UART_COMMUNICATION_ERROR) {

192 APP_ERROR_HANDLER(p_event->data.error_communication);

193 } else if (p_event->evt_type == APP_UART_FIFO_ERROR) {

194 APP_ERROR_HANDLER(p_event->data.error_code);

195 }

196 }

197 #define UART_HWFC APP_UART_FLOW_CONTROL_DISABLED

198 void Uart_define() {

199 uint32_t err_code;

200 const app_uart_comm_params_t comm_params =

201 {

202 RX_PIN_NUMBER,

203 TX_PIN_NUMBER,

204 RTS_PIN_NUMBER,

205 CTS_PIN_NUMBER,

206 UART_HWFC,

207 false,

208 NRF_UARTE_BAUDRATE_230400};

209 APP_UART_FIFO_INIT(&comm_params,

210 UART_RX_BUF_SIZE,

211 UART_TX_BUF_SIZE,

212 uart_error_handle,

213 APP_IRQ_PRIORITY_LOWEST,

214 err_code);

215 }

216 #endif

217 /////////////////////END OF DEBUG SECTION//////////////////

218 ///

219 ///

APPENDIX A. CODE OF THE CENTRAL RECEIVER 137

220 static void scan_evt_handler(scan_evt_t const *p_scan_evt) {

221 }

222 /**@brief Function for initializing the

223 scanning and setting the filters.

224 */

225 static void scan_init(void) {

226 if (ble_conn_state_central_conn_count() !=

227 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

228 ret_code_t err_code;

229 nrf_ble_scan_init_t init_scan;

230 memset(&init_scan, 0, sizeof(init_scan));

231 init_scan.connect_if_match = true;

232 init_scan.conn_cfg_tag = APP_BLE_CONN_CFG_TAG;

233 err_code = nrf_ble_scan_init(&m_scan,

234 &init_scan, scan_evt_handler);

235 APP_ERROR_CHECK(err_code);

236 err_code = nrf_ble_scan_filter_set(&m_scan,

237 SCAN_NAME_FILTER, m_target_periph_name);

238 APP_ERROR_CHECK(err_code);

239 err_code = nrf_ble_scan_filters_enable(&m_scan,

240 NRF_BLE_SCAN_NAME_FILTER, false);

241 APP_ERROR_CHECK(err_code);

242 } else {

243 return;

244 }

245 }

246

247 /**@brief Function for starting scanning. */

248 static void scan_start(void) {

APPENDIX A. CODE OF THE CENTRAL RECEIVER 138

249 if (ble_conn_state_central_conn_count() !=

250 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

251 ret_code_t ret;

252 ret = nrf_ble_scan_start(&m_scan);

253 APP_ERROR_CHECK(ret);

254

255 } else {

256 return;

257 }

258 }

259

260 /**@brief Handles events coming from the

261 LED Button central module.

262 *

263 * @param[in] p_lbs_c The instance of LBS_C

264 that triggered the event.

265 * @param[in] p_lbs_c_evt The LBS_C event.

266 */

267 static void ble_nus_c_evt_handler(ble_nus_c_t *p_ble_nus_c,

268 ble_nus_c_evt_t const *p_ble_nus_evt) {

269 switch (p_ble_nus_evt->evt_type) {

270 case BLE_NUS_C_EVT_DISCOVERY_COMPLETE: {

271 ret_code_t err_code;

272 //err_code = app_button_enable();

273 APP_ERROR_CHECK(err_code);

274 err_code = ble_nus_c_handles_assign(p_ble_nus_c,

275 p_ble_nus_evt->conn_handle, &p_ble_nus_evt->handles);

276 APP_ERROR_CHECK(err_code);

277 // LED Button Service discovered. Enable

APPENDIX A. CODE OF THE CENTRAL RECEIVER 139

278 //notification of Button.

279 err_code = ble_nus_c_tx_notif_enable(p_ble_nus_c);

280 APP_ERROR_CHECK(err_code);

281 } break; // BLE_LBS_C_EVT_DISCOVERY_COMPLETE

282 default:

283 // No implementation needed.

284 break;

285 }

286 }

287 static void ble_evt_handler(ble_evt_t const *p_ble_evt,

288 void *p_context) {

289 ret_code_t err_code;

290 // For readability.

291 ble_gap_evt_t const *p_gap_evt = &p_ble_evt->evt.gap_evt;

292 ble_gap_evt_adv_report_t const *p_adv_report =

293 &p_ble_evt->evt.gap_evt.params.adv_report;

294 switch (p_ble_evt->header.evt_id) {

295

296 case BLE_GAP_EVT_ADV_REPORT: {

297 if (ble_conn_state_central_conn_count() !=

298 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

299 scan_start();

300 }

301 if (p_gap_evt->

302 params.adv_report.peer_addr.addr[0] == 0xbd) {

303 InsertNewSensorDataIntoMatrix(1,

304 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

305 if (ble_conn_state_central_conn_count() !=

306 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

APPENDIX A. CODE OF THE CENTRAL RECEIVER 140

307 scan_start();

308 }

309 } else if (p_gap_evt->

310 params.adv_report.peer_addr.addr[0] == 0x3a) {

311 InsertNewSensorDataIntoMatrix(2,

312 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

313 if (ble_conn_state_central_conn_count() !=

314 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

315 scan_start();

316 }

317 } else if (p_gap_evt->

318 params.adv_report.peer_addr.addr[0] == 0xe5) {

319 InsertNewSensorDataIntoMatrix(3,

320 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

321 if (ble_conn_state_central_conn_count() !=

322 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

323 scan_start();

324 }

325 }

326 else if (p_gap_evt->

327 params.adv_report.peer_addr.addr[0] == 0x3d) {

328 InsertNewSensorDataIntoMatrix(4,

329 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

330 if (ble_conn_state_central_conn_count() !=

331 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

332 scan_start();

333 }

334 }

335 else if (p_gap_evt->

APPENDIX A. CODE OF THE CENTRAL RECEIVER 141

336 params.adv_report.peer_addr.addr[0] == 0x8a) {

337 InsertNewSensorDataIntoMatrix(5,

338 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

339 if (ble_conn_state_central_conn_count() !=

340 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

341 scan_start();

342 }

343 }

344 else if (p_gap_evt->

345 params.adv_report.peer_addr.addr[0] == 0x57) {

346 InsertNewSensorDataIntoMatrix(6,

347 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

348 if (ble_conn_state_central_conn_count() !=

349 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

350 scan_start();

351 }

352 }

353 else if (p_gap_evt->

354 params.adv_report.peer_addr.addr[0] == 0xc2) {

355 InsertNewSensorDataIntoMatrix(7,

356 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

357 if (ble_conn_state_central_conn_count() !=

358 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

359 scan_start();

360 }

361 }

362 else if (p_gap_evt->

363 params.adv_report.peer_addr.addr[0] == 0x6b) {

364 InsertNewSensorDataIntoMatrix(8,

APPENDIX A. CODE OF THE CENTRAL RECEIVER 142

365 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

366 if (ble_conn_state_central_conn_count() !=

367 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

368 scan_start();

369 }

370 }

371 else if (p_gap_evt->

372 params.adv_report.peer_addr.addr[0] == 0x9c) {

373 InsertNewSensorDataIntoMatrix(9,

374 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

375 if (ble_conn_state_central_conn_count() !=

376 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

377 scan_start();

378 }

379 }

380 else if (p_gap_evt->

381 params.adv_report.peer_addr.addr[0] == 0x1b) {

382 InsertNewSensorDataIntoMatrix(10,

383 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

384 if (ble_conn_state_central_conn_count() !=

385 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

386 scan_start();

387 }

388 }

389 else if (p_gap_evt->

390 params.adv_report.peer_addr.addr[0] == 0x66) {

391 InsertNewSensorDataIntoMatrix(11,

392 (char *)p_gap_evt->

393 params.adv_report.data.p_data + 5, 26);

APPENDIX A. CODE OF THE CENTRAL RECEIVER 143

394 if (ble_conn_state_central_conn_count() !=

395 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

396 scan_start();

397 }

398 } else if (p_gap_evt->

399 params.adv_report.peer_addr.addr[0] == 0xca) {

400 InsertNewSensorDataIntoMatrix(12,

401 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

402 if (ble_conn_state_central_conn_count() !=

403 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

404 scan_start();

405 }

406 } else if (p_gap_evt->

407 params.adv_report.peer_addr.addr[0] == 0xef) {

408 InsertNewSensorDataIntoMatrix(13,

409 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

410 if (ble_conn_state_central_conn_count() !=

411 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

412 scan_start();

413 }

414 } else if (p_gap_evt->

415 params.adv_report.peer_addr.addr[0] == 0x8c) {

416 InsertNewSensorDataIntoMatrix(14,

417 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

418 if (ble_conn_state_central_conn_count() !=

419 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

420 scan_start();

421 }

422 } else if (p_gap_evt->

APPENDIX A. CODE OF THE CENTRAL RECEIVER 144

423 params.adv_report.peer_addr.addr[0] == 0xe4) {

424 InsertNewSensorDataIntoMatrix(15,

425 (char *)p_gap_evt->params.adv_report.data.p_data + 5, 26);

426 if (ble_conn_state_central_conn_count() !=

427 NRF_SDH_BLE_CENTRAL_LINK_COUNT) {

428 scan_start();

429 }

430 }

431 } break;

432

433 case BLE_GAP_EVT_CONNECTED: {

434 //sd_nvic_SystemReset();

435 //Init_Sensor_Data();

436 //scan_start();

437 } break; // BLE_GAP_EVT_CONNECTED

438

439 case BLE_GAP_EVT_DISCONNECTED: {

440 //sd_nvic_SystemReset();

441 //Init_Sensor_Data();

442 //scan_start();

443 } break; // BLE_GAP_EVT_DISCONNECTED

444

445 case BLE_GAP_EVT_TIMEOUT: {

446 } break; //BLE_GAP_EVT_TIMEOUT

447

448 case BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST: {

449 } break; //BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST

450

451 case BLE_GAP_EVT_PHY_UPDATE_REQUEST: {

APPENDIX A. CODE OF THE CENTRAL RECEIVER 145

452 } break; //BLE_GAP_EVT_PHY_UPDATE_REQUEST

453 default:

454 break;

455 }

456 }

457 /**@brief LED Button collector initialization. */

458 static void nus_c_init(void) {

459 ret_code_t err_code;

460 ble_nus_c_init_t nus_c_init_obj;

461 nus_c_init_obj.evt_handler = ble_nus_c_evt_handler;

462 for (uint32_t i = 0; i <

463 NRF_SDH_BLE_CENTRAL_LINK_COUNT; i++) {

464 err_code = ble_nus_c_init(&m_nus_c[i],

465 &nus_c_init_obj);

466 APP_ERROR_CHECK(err_code);

467 }

468 }

469 /**@brief Function for initializing the BLE stack.

470 *

471 * @details Initializes the SoftDevice and the BLE event interrupts.

472 */

473 static void ble_stack_init(void) {

474 ret_code_t err_code;

475 err_code = nrf_sdh_enable_request();

476 APP_ERROR_CHECK(err_code);

477 // Configure the BLE stack using the default settings.

478 // Fetch the start address of the application RAM.

479 uint32_t ram_start = 0;

480 err_code = nrf_sdh_ble_default_cfg_set(

APPENDIX A. CODE OF THE CENTRAL RECEIVER 146

481 APP_BLE_CONN_CFG_TAG, &ram_start);

482 APP_ERROR_CHECK(err_code);

483 // Enable BLE stack.

484 err_code = nrf_sdh_ble_enable(&ram_start);

485 APP_ERROR_CHECK(err_code);

486 // Register a handler for BLE events.

487 NRF_SDH_BLE_OBSERVER(m_ble_observer,

488 APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);

489 }

490 static void db_disc_handler(

491 ble_db_discovery_evt_t *p_evt) {

492

493 ble_nus_c_on_db_disc_evt(

494 &m_nus_c[p_evt->conn_handle], p_evt);

495 }

496

497 /** @brief Database discovery initialization.

498 */

499 static void db_discovery_init(void) {

500 ret_code_t err_code =

501 ble_db_discovery_init(db_disc_handler);

502 APP_ERROR_CHECK(err_code);

503 }

504

505 /**@brief Function for initializing power management.

506 */

507 static void power_management_init(void) {

508 ret_code_t err_code;

509 err_code = nrf_pwr_mgmt_init();

APPENDIX A. CODE OF THE CENTRAL RECEIVER 147

510 APP_ERROR_CHECK(err_code);

511 }

512

513 /**@brief Function for handling the idle state (main loop).

514 *

515 * @details This function handles any pending

516 log operations, then sleeps until the next event occurs.

517 */

518 static void idle_state_handle(void) {

519 }

520

521 /** @brief Function for initializing the log module.

522 */

523 static void log_init(void) {

524 ret_code_t err_code = NRF_LOG_INIT(NULL);

525 APP_ERROR_CHECK(err_code);

526

527 NRF_LOG_DEFAULT_BACKENDS_INIT();

528 }

529

530 /** @brief Function for initializing the timer.

531 */

532 static void timer_init(void) {

533 ret_code_t err_code = app_timer_init();

534 APP_ERROR_CHECK(err_code);

535 }

536 int main(void) {

537 // Initialize.

538 //////////////////DEBUG////////////////////

APPENDIX A. CODE OF THE CENTRAL RECEIVER 148

539 #ifndef DEBUG_application

540 Uart_define();

541 #endif

542 ///////////REFER TO SDK_CONFIG/////////////

543 Init_Sensor_Data();

544 log_init();

545 timer_init();

546 db_discovery_init();

547 ble_stack_init();

548 nus_c_init();

549 ble_conn_state_init();

550 uint32_t lastt = 0;

551 lastt = NRF_RTC0->COUNTER;

552 for (;;) {

553 scan_init();

554 scan_start();

555 uint32_t ticks = NRF_RTC0->COUNTER;

556 if (ticks >= lastt + DELTAT) {

557 lastt += DELTAT;

558 char NewData;

559 char LineCounter;

560 for (int n = 0; n < MAX_SENSORS; n++) {

561 NewData = 0;

562 CoherentReading(n);

563 LineCounter = CursorLine[0];

564 if (LastDataCounter[n] != LineCounter)

565 NewData = 1;

566 if (LineCounter == 0)

567 NewData = 255;

APPENDIX A. CODE OF THE CENTRAL RECEIVER 149

568 LastDataCounter[n] = LineCounter;

569 printf("%02x%02x", n + 1, NewData);

570 for (int m = 1; m < 26; m++)

571 printf("%02x", CursorLine[m]);

572 printf("\n");

573 }

574 //printf("\n");

575 }

576 if (NRF_LOG_PROCESS() == false) {

577 nrf_pwr_mgmt_run();

578 }

579 }

580 }

Appendix B

MATLAB data Representation

software

This is the code of the MATLAB data representation program. This program

requires the file hex2singlenum.m which is available in the GitHub repository of

the project [37].

1 %Initialize

2 clear all

3 close all

4 clc

5 %Global variable definitions for numerical representation

6 global q1 q2 q3 q4;

7 q1 = zeros(1,15);

8 q2 = zeros(1,15);

9 q3 = zeros(1,15);

10 q4 = zeros(1,15);

11 global r1 r2 r3;

12 r1 = zeros(1,15);

13 r2 = zeros(1,15);

150

APPENDIX B. MATLAB DATA REPRESENTATION SOFTWARE 151

14 r3 = zeros(1,15);

15 %% Opening serial port

16 if exist('PORT','var')

17 flushinput(PORT);

18 fclose(PORT);

19 end

20 % Serial port parameters

21 PORT = serial('COM6');

22 PORT.BaudRate = 230400;

23 PORT.InputBufferSize = 54*16;

24 % PORT.InputBufferSize = 1024*50;

25 fopen(PORT);

26

27 %Main cycle

28 while(1)

29 %Obtain serial incoming packets

30 s = fgetl(PORT);

31 %Analyze incoming data for every matrix row 54 columns

32 %(exclude termination character)

33 if (length(s) == 54)

34 %COL 3 and 4, declaring the sensor state (ON/OFF)

35 STATE=s(3:4);

36 %Check sensor state

37 if (STATE == '01')

38 %COL 1 and 2, indicating the sensor number

39 inp = s(1:2);

40 %Split the task for every sensor data

41 switch inp

42 case '01'

APPENDIX B. MATLAB DATA REPRESENTATION SOFTWARE 152

43 ProcessSensorData(1,s);

44 case '02'

45 ProcessSensorData(2,s);

46 case '03'

47 ProcessSensorData(3,s);

48 case '04'

49 ProcessSensorData(4,s);

50 case '05'

51 ProcessSensorData(5,s);

52 case '06'

53 ProcessSensorData(6,s);

54 case '07'

55 ProcessSensorData(7,s);

56 case '08'

57 ProcessSensorData(8,s);

58 case '09'

59 ProcessSensorData(9,s);

60 case '0a'

61 ProcessSensorData(10,s);

62 case '0b'

63 ProcessSensorData(11,s);

64 case '0c'

65 ProcessSensorData(12,s);

66 case '0d'

67 ProcessSensorData(13,s);

68 case '0e'

69 ProcessSensorData(14,s);

70 case '0f'

71 ProcessSensorData(15,s);

APPENDIX B. MATLAB DATA REPRESENTATION SOFTWARE 153

72 end

73 end

74 end

75 end

76

77 %Function for processing the data matrix

78 function ProcessSensorData(ns, s)

79

80 %Declare global variables to be

81 %used inside the function

82 global q1 q2 q3 q4;

83 global r1 r2 r3;

84

85 %Split the to obtain quaternions

86 q1(ns) = hexsingle2num([s(11:12) s(9:10)

87 s(7:8) s(5:6)]);

88 q2(ns) = hexsingle2num([s(19:20) s(17:18)

89 s(15:16) s(13:14)]);

90 q3(ns) = hexsingle2num([s(27:28) s(25:26)

91 s(23:24) s(21:22)]);

92 q4(ns) = hexsingle2num([s(35:36) s(33:34)

93 s(31:32) s(29:30)]);

94

95 %Obtain Euler angles based on Quaternion values

96 [r1(ns) r2(ns) r3(ns)] = quat2angle([q1(ns)

97 q2(ns) q3(ns) q4(ns)]);

98

99 %Figure for 3D representation

100 figure(1)

APPENDIX B. MATLAB DATA REPRESENTATION SOFTWARE 154

101 subplot(4,4,ns)

102

103 %Make the disk object

104 [x,y,z] = sphere;

105 z = z / 20;

106 h = surf(x,y,z);

107 axis('square');

108 title('SENSOR ' + string(ns));

109 xlabel('x'); ylabel('y'); zlabel('z');

110 xlim([-1 1]);

111 ylim([-1 1]);

112 zlim([-1 1]);

113

114 %Rotate the disk object based on Euler angles

115 rotate(h,[1,0,0],(r3(ns))*180/pi)

116 rotate(h,[0,1,0],(r2(ns))*180/pi)

117 rotate(h,[0,0,1],(r1(ns))*180/pi+90)

118

119 %Represent the disk object

120 view(80,10);

121 drawnow

122

123 %Call the function for terminal

124 %representation of the numerical data

125 represent(ns)

126

127 end

128

129 %Function for terminal representation of

APPENDIX B. MATLAB DATA REPRESENTATION SOFTWARE 155

130 %the numerical data

131 function represent(num)

132

133 %Declare the global variables which have the

134 %previously processed numerical values

135 ns = num;

136 global q1 q2 q3 q4;

137 global r1 r2 r3;

138

139 %Represent on the terminal output

140 clc

141 disp(sprintf('quatW_s1 : %f quatW_s2 : %f quatW_s3 :

142 %f quatW_s4 : %f quatW_s5 : %f',q1(1),

143 q1(2),q1(3),q1(4),q1(5)));

144 disp(sprintf('quatX_s1 : %f quatX_s2 : %f quatX_s3 :

145 %f quatX_s4 : %f quatX_s5 : %f',q2(1),

146 q2(2),q2(3),q2(4),q2(5)));

147 disp(sprintf('quatY_s1 : %f quatY_s2 : %f quatY_s3 :

148 %f quatY_s4 : %f quatY_s5 : %f',q3(1),

149 q3(2),q3(3),q3(4),q3(5)));

150 disp(sprintf('quatZ_s1 : %f quatZ_s2 : %f quatZ_s3 :

151 %f quatZ_s4 : %f quatZ_s5 : %f',q4(1),

152 q4(2),q4(3),q4(4),q4(5)));

153 disp (' ')

154 disp(sprintf('quatW_s6 : %f quatW_s7 : %f quatW_s8 :

155 %f quatW_s9 : %f quatW_s10 : %f',q1(6),

156 q1(7),q1(8),q1(9),q1(10)));

157 disp(sprintf('quatX_s6 : %f quatX_s7 : %f quatX_s8 :

158 %f quatX_s9 : %f quatX_s10 : %f',q2(6),

APPENDIX B. MATLAB DATA REPRESENTATION SOFTWARE 156

159 q2(7),q2(8),q2(9),q2(10)));

160 disp(sprintf('quatY_s6 : %f quatY_s7 : %f quatY_s8 :

161 %f quatY_s9 : %f quatY_s10 : %f',q3(6),

162 q3(7),q3(8),q3(9),q3(10)));

163 disp(sprintf('quatZ_s6 : %f quatZ_s7 : %f quatZ_s8 :

164 %f quatZ_s9 : %f quatZ_s10 : %f',q4(6),

165 q4(7),q4(8),q4(9),q4(10)));

166 disp (' ')

167 disp(sprintf('quatW_s11 : %f quatW_s12 : %f quatW_s13 :

168 %f quatW_s14 : %f quatW_s15 : %f',q1(11),

169 q1(12),q1(13),q1(14),q1(15)));

170 disp(sprintf('quatX_s11 : %f quatX_s12 : %f quatX_s13 :

171 %f quatX_s14 : %f quatX_s15 : %f',q2(11),

172 q2(12),q2(13),q2(14),q2(15)));

173 disp(sprintf('quatY_s11 : %f quatY_s12 : %f quatY_s13 :

174 %f quatY_s14 : %f quatY_s15 : %f',q3(11),

175 q3(12),q3(13),q3(14),q3(15)));

176 disp(sprintf('quatZ_s11 : %f quatZ_s12 : %f quatZ_s13 :

177 %f quatZ_s14 : %f quatZ_s15 : %f',q4(11),

178 q4(12),q4(13),q4(14),q4(15)));

179 disp (' ')

180 disp (' ')

181 r1(ns) = r1(ns) * pi*180; %Yaw deg

182 r2(ns) = r2(ns) * pi*180; %Pitch deg

183 r3(ns) = r3(ns) * pi*180; %Roll deg

184 disp(sprintf('Yaw_s1 : %f ~AÂ° Yaw_s2 : %f ~AÂ° Yaw_s3 :

185 %f ~AÂ° Yaw_s4 : %f ~AÂ° Yaw_s5 : %f ~AÂ°',

186 r1(1),r1(2),r1(3),r1(4),r1(5)));

187 disp(sprintf('Pitch_s1 : %f ~AÂ° Pitch_s2 : %f ~AÂ° Pitch_s3 :

APPENDIX B. MATLAB DATA REPRESENTATION SOFTWARE 157

188 %f ~AÂ° Pitch_s4 : %f ~AÂ° Pitch_s5 : %f ~AÂ°',

189 r2(1),r2(2),r2(3),r2(4),r2(5)));

190 disp(sprintf('Roll_s1 : %f ~AÂ° Roll_s2 : %f ~AÂ° Roll_s3 :

191 %f ~AÂ° Roll_s4 : %f ~AÂ° Roll_s5 : %f ~AÂ°',

192 r3(1),r3(2),r3(3),r3(4),r3(5)));

193 disp (' ')

194 disp(sprintf('Yaw_s6 : %f ~AÂ° Yaw_s7 : %f ~AÂ° Yaw_s8 :

195 %f ~AÂ° Yaw_s9 : %f ~AÂ° Yaw_s10 : %f ~AÂ°',

196 r1(6),r1(7),r1(8),r1(9),r1(10)));

197 disp(sprintf('Pitch_s6 : %f ~AÂ° Pitch_s7 : %f ~AÂ° Pitch_s8 :

198 %f ~AÂ° Pitch_s9 : %f ~AÂ° Pitch_s10: %f ~AÂ°',

199 r2(6),r2(7),r2(8),r2(9),r2(10)));

200 disp(sprintf('Roll_s6 : %f ~AÂ° Roll_s7 : %f ~AÂ° Roll_s8 :

201 %f ~AÂ° Roll_s9 : %f ~AÂ° Roll_s10 : %f ~AÂ°',

202 r3(6),r3(7),r3(8),r3(9),r3(10)));

203 disp (' ')

204 disp(sprintf('Yaw_s11 : %f ~AÂ° Yaw_s12 : %f ~AÂ° Yaw_s13 :

205 %f ~AÂ° Yaw_s14 : %f ~AÂ° Yaw_s15 : %f ~AÂ°',

206 r1(11),r1(12),r1(13),r1(14),r1(15)));

207 disp(sprintf('Pitch_s11: %f ~AÂ° Pitch_s12: %f ~AÂ° Pitch_s13:

208 %f ~AÂ° Pitch_s14: %f ~AÂ° Pitch_s15: %f ~AÂ°',

209 r2(11),r2(12),r2(13),r2(14),r2(15)));

210 disp(sprintf('Roll_s11 : %f ~AÂ° Roll_s12 : %f ~AÂ° Roll_s13 :

211 %f ~AÂ° Roll_s14 : %f ~AÂ° Roll_s15 : %f ~AÂ°',

212 r3(11),r3(12),r3(13),r3(14),r3(15)));

213

214 end

Appendix C

Unity data representation

software

This is the code of the Unity data representation program. This code handles the

incoming data from the central receiver as events and applies the rotation angles

to the corresponding body part (game object).

1 using UnityEngine;

2 using UnityEngine.UI;

3 using System.Collections;

4 using System.IO.Ports;

5 using System;

6 using System.Linq;

7 using TMPro;

8 //using System.index;

9

10

11

12 public class portsConn : MonoBehaviour

13

158

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 159

14 {

15

16

17 //Body Parts as game objects //OBJ Number

18 public GameObject forehead; //1

19 public GameObject chest; //2

20 public GameObject leftArm; //3

21 public GameObject rightArm; //4

22 public GameObject leftWrist; //5

23 public GameObject rightWrist; //6

24 public GameObject leftHand; //7

25 public GameObject rightHand; //8

26 public GameObject scaral; //9

27 public GameObject leftKnee; //10

28 public GameObject rightKnee; //11

29 public GameObject leftAnkle; //12

30 public GameObject rightAnkle; //13

31 public GameObject leftFoot; //14

32 public GameObject rightFoot; //15

33 //==================================

34 public Quaternion initialForehead;

35 public Quaternion initialChest;

36 public Quaternion initialLeftArm;

37 public Quaternion initialRightArm;

38 public Quaternion initialLeftWrist;

39 public Quaternion initialRightWrist;

40 public Quaternion initialLeftHand;

41 public Quaternion initialRightHand;

42 public Quaternion initialScaral;

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 160

43 public Quaternion initialLeftKnee;

44 public Quaternion initialRightKnee;

45 public Quaternion initialLeftAnkle;

46 public Quaternion initialRightAnkle;

47 public Quaternion initialLeftFoot;

48 public Quaternion initialRightFoot;

49 //==================================

50 public Quaternion inverseQuaternion;

51

52 public Button closeButton;

53 public Button connetButton;

54 public bool connectionstate = false;

55 public Dropdown DropdownPORTS;

56 SerialPort sp;

57 // Start is called before the first frame update

58

59 //Obtain initial rotation from body parts in quaternion

60 private Quaternion initial(GameObject bodypart)

61 {

62 Quaternion initialValue = new Quaternion();

63 initialValue = bodypart.transform.rotation;

64 return initialValue;

65 }

66 void applyRotation(GameObject bodypart,

67 Quaternion rotations,

68 Quaternion initialRotations)

69 {

70 bodypart.transform.rotation =

71 initialRotations

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 161

72 * inverseQuaternion

73 * rotations;

74 }

75

76 void Start()

77 {

78 inverseQuaternion = Quaternion.identity;

79 string[] ports = SerialPort.GetPortNames();

80 DropdownPORTS.AddOptions(ports.ToList());

81 Button btn = connetButton.GetComponent<Button>();

82 Button btnClose = closeButton.GetComponent<Button>();

83 btn.onClick.AddListener(Connect);

84 btnClose.onClick.AddListener(Close);

85 //obtaining initial rotations

86 initialForehead = initial(forehead)

87 * Quaternion.Euler(0, 180, 0);

88 initialChest = initial(chest)

89 * Quaternion.Euler(0, 180, 0);

90 initialLeftArm = initial(leftArm)

91 * Quaternion.Euler(0, 180, 0);

92 initialRightArm = initial(rightArm)

93 * Quaternion.Euler(0, 180, 0);

94 initialLeftWrist = initial(leftWrist)

95 * Quaternion.Euler(0, 180, 0);

96 initialRightWrist = initial(rightWrist)

97 * Quaternion.Euler(0, 180, 0);

98 initialLeftHand = initial(leftHand)

99 * Quaternion.Euler(0, 180, 0);

100 initialRightHand = initial(rightHand)

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 162

101 * Quaternion.Euler(0, 180, 0);

102 initialScaral = initial(scaral)

103 * Quaternion.Euler(0, 180, 0);

104 initialLeftKnee = initial(leftKnee)

105 * Quaternion.Euler(0, 180, 0);

106 initialRightKnee = initial(rightKnee)

107 * Quaternion.Euler(0, 180, 0);

108 initialLeftAnkle = initial(leftAnkle)

109 * Quaternion.Euler(0, 180, 0);

110 initialRightAnkle = initial(rightAnkle)

111 * Quaternion.Euler(0, 180, 0);

112 initialLeftFoot = initial(leftFoot)

113 * Quaternion.Euler(0, 180, 0);;

114 initialRightFoot = initial(rightFoot)

115 * Quaternion.Euler(0, 180, 0);

116 //sp.Close();

117 }

118 public float hexstring2quaternion(string hexString)

119 {

120 byte[] raw = new byte[hexString.Length / 2];

121 for (int i = 0; i < raw.Length; i++)

122 {

123 // THEN DEPENDING ON ENDIANNESS

124 raw[i] = Convert.ToByte(

125 hexString.Substring(i * 2, 2), 16);

126 // OR

127 // raw[raw.Length - i - 1] =

128 //Convert.ToByte(q1.Substring(i * 2, 2), 16);

129 }

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 163

130 float f = BitConverter.ToSingle(raw, 0);

131 return f;

132 }

133

134 public float[] hex2angleQT(string datas)

135 {

136 char[] x = new char[8];

137 for (int i = 0; i < 8; i++)

138 {

139 x[i] = datas[5 + i];

140 }

141 string q1 = new string(x).ToUpper();

142 float angleQ1 = hexstring2quaternion(q1);

143 for (int i = 0; i < 8; i++)

144 {

145 x[i] = datas[13 + i];

146 }

147 string q2 = new string(x).ToUpper();

148 float angleQ2 = hexstring2quaternion(q2);

149 for (int i = 0; i < 8; i++)

150 {

151 x[i] = datas[21 + i];

152 }

153 string q3 = new string(x).ToUpper();

154 float angleQ3 = hexstring2quaternion(q3);

155 for (int i = 0; i < 8; i++)

156 {

157 x[i] = datas[29 + i];

158 }

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 164

159 string q4 = new string(x).ToUpper();

160 float angleQ4 = hexstring2quaternion(q4);

161

162 float[] angles = { angleQ1, angleQ2, angleQ3, angleQ4 };

163 return angles;

164

165 }

166 public float[] quaternion2YPWradian(float Q1, float Q2,

167 float Q3, float Q4)

168 {

169 float roll = Mathf.Atan2(2 * Q2 * Q4 - 2 * Q1 * Q3,

170 1 - 2 * Q2 * Q2 - 2 * Q3 * Q3);

171 float pitch = Mathf.Atan2(2 * Q1 * Q4 - 2 * Q2 * Q3,

172 1 - 2 * Q1 * Q1 - 2 * Q3 * Q3);

173 float yaw = Mathf.Asin(2 * Q1 * Q2 + 2 * Q3 * Q4);

174 float[] YPW = { yaw, pitch, roll };

175 return YPW;

176 }

177 // Update is called once per frame

178 void Update()

179 {

180 if (connectionstate == true)

181 {

182 string datas = sp.ReadLine();

183 if (datas[2].ToString() == "1" &&

184 datas[4].ToString() == "1")

185 {

186 float[] anglesQt;

187 anglesQt = hex2angleQT(datas);

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 165

188 var rotations = new Quaternion(anglesQt[3],

189 anglesQt[0], anglesQt[1], anglesQt[2]);

190 applyRotation(forehead, rotations,

191 initialForehead);

192

193 }

194 else if (datas[2].ToString() == "2" &&

195 datas[4].ToString() == "1")

196 {

197 float[] anglesQt;

198 anglesQt = hex2angleQT(datas);

199 var rotations = new Quaternion(anglesQt[3],

200 anglesQt[0], anglesQt[1], anglesQt[2]);

201 applyRotation(chest, rotations,

202 initialChest);

203

204 }

205 else if (datas[2].ToString() == "3" &&

206 datas[4].ToString() == "1")

207 {

208 float[] anglesQt;

209 anglesQt = hex2angleQT(datas);

210 var rotations = new Quaternion(anglesQt[3],

211 anglesQt[0], anglesQt[1], anglesQt[2]);

212 applyRotation(leftArm, rotations,

213 initialLeftArm);

214

215 }

216 else if (datas[2].ToString() == "4" &&

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 166

217 datas[4].ToString() == "1")

218 {

219 float[] anglesQt;

220 anglesQt = hex2angleQT(datas);

221 var rotations = new Quaternion(anglesQt[3],

222 anglesQt[0],

223 anglesQt[1],anglesQt[2]);

224 applyRotation(rightArm, rotations,

225 initialRightArm);

226

227 }

228 else if (datas[2].ToString() == "5" &&

229 datas[4].ToString() == "1")

230 {

231 float[] anglesQt;

232 anglesQt = hex2angleQT(datas);

233 var rotations = new Quaternion(anglesQt[3],

234 anglesQt[0],

235 anglesQt[1],anglesQt[2]);

236 applyRotation(leftWrist, rotations,

237 initialLeftWrist);

238

239 }

240 else if (datas[2].ToString() == "6" &&

241 datas[4].ToString() == "1")

242 {

243 float[] anglesQt;

244 anglesQt = hex2angleQT(datas);

245 var rotations = new Quaternion(anglesQt[3],

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 167

246 anglesQt[0],

247 anglesQt[1],anglesQt[2]);

248 applyRotation(rightWrist, rotations,

249 initialRightWrist);

250

251 }

252 else if (datas[2].ToString() == "7" &&

253 datas[4].ToString() == "1")

254 {

255 float[] anglesQt;

256 anglesQt = hex2angleQT(datas);

257 var rotations = new Quaternion(anglesQt[3],

258 anglesQt[0],

259 anglesQt[1],anglesQt[2]);

260 applyRotation(leftHand, rotations,

261 initialLeftHand);

262

263 }

264 else if (datas[2].ToString() == "8" &&

265 datas[4].ToString() == "1")

266 {

267 float[] anglesQt;

268 anglesQt = hex2angleQT(datas);

269 var rotations = new Quaternion(anglesQt[3],

270 anglesQt[0],

271 anglesQt[1],anglesQt[2]);

272 applyRotation(rightHand, rotations,

273 initialRightHand);

274

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 168

275 }

276 else if (datas[2].ToString() == "9" &&

277 datas[4].ToString() == "1")

278 {

279 float[] anglesQt;

280 anglesQt = hex2angleQT(datas);

281 var rotations = new Quaternion(anglesQt[3],

282 anglesQt[0],

283 anglesQt[1],anglesQt[2]);

284 applyRotation(scaral, rotations,

285 initialScaral);

286

287 }

288 else if (datas[2].ToString() == "a" &&

289 datas[4].ToString() == "1")

290 {

291 float[] anglesQt;

292 anglesQt = hex2angleQT(datas);

293 var rotations = new Quaternion(anglesQt[3],

294 anglesQt[0],

295 anglesQt[1],anglesQt[2]);

296 applyRotation(leftKnee, rotations,

297 initialLeftKnee);

298

299 }

300 else if (datas[2].ToString() == "b" &&

301 datas[4].ToString() == "1")

302 {

303 float[] anglesQt;

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 169

304 anglesQt = hex2angleQT(datas);

305 var rotations = new Quaternion(anglesQt[3],

306 anglesQt[0],

307 anglesQt[1],anglesQt[2]);

308 applyRotation(rightKnee, rotations,

309 initialRightKnee);

310

311 }

312 else if (datas[2].ToString() == "c" &&

313 datas[4].ToString() == "1")

314 {

315 float[] anglesQt;

316 anglesQt = hex2angleQT(datas);

317 var rotations = new Quaternion(anglesQt[3],

318 anglesQt[0],

319 anglesQt[1],anglesQt[2]);

320 applyRotation(rightAnkle, rotations,

321 initialRightAnkle);

322

323 }

324 else if (datas[2].ToString() == "d" &&

325 datas[4].ToString() == "1")

326 {

327 float[] anglesQt;

328 anglesQt = hex2angleQT(datas);

329 var rotations = new Quaternion(anglesQt[3],

330 anglesQt[0],

331 anglesQt[1],anglesQt[2]);

332 applyRotation(leftFoot, rotations,

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 170

333 initialLeftFoot);

334

335 }

336 else if (datas[2].ToString() == "e" &&

337 datas[4].ToString() == "1")

338 {

339 float[] anglesQt;

340 anglesQt = hex2angleQT(datas);

341 var rotations = new Quaternion(anglesQt[3],

342 anglesQt[0],

343 anglesQt[1],anglesQt[2]);

344 applyRotation(rightFoot, rotations,

345 initialRightFoot);

346

347 }

348 }

349 }

350

351 //Serial communication initialization

352 public void Connect()

353 {

354 string port =

355 DropdownPORTS.options[DropdownPORTS.value].text;

356 sp = new SerialPort(port, 230400)

357 {

358 ReadBufferSize = 8192,

359 ReadTimeout = 2000

360 };

361 if (!sp.IsOpen)

APPENDIX C. UNITY DATA REPRESENTATION SOFTWARE 171

362 {

363 sp.Open();

364 connectionstate = true;

365 }

366 }

367 public void Close()

368 {

369 sp.Close();

370 connectionstate = false;

371 }

372 }

Bibliography

[1] Wei-Hua Tan et al. “ePet: A Physical Game Based on Wireless Sensor

Networks”. In: International Journal of Distributed Sensor Networks 5.1

(2009), pp. 68–68. doi: 10.1080/15501320802555262. eprint: https://

doi.org/10.1080/15501320802555262. url: https://doi.org/10.

1080/15501320802555262.

[2] Filippo Casamassima et al. “A Wearable System for Gait Training in Sub-

jects with Parkinsonâs Disease”. In: Sensors 14.4 (2014), pp. 6229–6246.

issn: 1424-8220. doi: 10.3390/s140406229. url: https://www.mdpi.

com/1424-8220/14/4/6229.

[3] Le Nguyen Ngu Nguyen et al. “Basketball Activity Recognition Using

Wearable Inertial Measurement Units”. In: Proceedings of the XVI Inter-

national Conference on Human Computer Interaction. Interacción ’15. Vi-

lanova i la Geltru, Spain: Association for Computing Machinery, 2015. isbn:

9781450334631. doi: 10.1145/2829875.2829930. url: https://doi.org/

10.1145/2829875.2829930.

[4] D. Kelly et al. “Automatic detection of collisions in elite level rugby union

using a wearable sensing device”. In: Sports Engineering 15 (2012), pp. 81–

92. doi: 10.1007/S12283-012-0088-5. url: https://doi.org/10.1007/

s12283-012-0088-5.

[5] Graham D. Finlayson. “Colour and illumination in computer vision”. In:

Interface Focus 8.4 (2018), p. 20180008. doi: 10.1098/rsfs.2018.0008.

172

https://doi.org/10.1080/15501320802555262
https://doi.org/10.1080/15501320802555262
https://doi.org/10.1080/15501320802555262
https://doi.org/10.1080/15501320802555262
https://doi.org/10.1080/15501320802555262
https://doi.org/10.3390/s140406229
https://www.mdpi.com/1424-8220/14/4/6229
https://www.mdpi.com/1424-8220/14/4/6229
https://doi.org/10.1145/2829875.2829930
https://doi.org/10.1145/2829875.2829930
https://doi.org/10.1145/2829875.2829930
https://doi.org/10.1007/S12283-012-0088-5
https://doi.org/10.1007/s12283-012-0088-5
https://doi.org/10.1007/s12283-012-0088-5
https://doi.org/10.1098/rsfs.2018.0008

BIBLIOGRAPHY 173

eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/

rsfs.2018.0008. url: https://royalsocietypublishing.org/doi/

abs/10.1098/rsfs.2018.0008.

[6] Cheong, Yun Zhe and Chew, Wei Jen. “The Application of Image Pro-

cessing to Solve Occlusion Issue in Object Tracking”. In: MATEC Web

Conf. 152 (2018), p. 03001. doi: 10.1051/matecconf/201815203001. url:

https://doi.org/10.1051/matecconf/201815203001.

[7] Igor Khokhlov et al. “Design of activity recognition systems with wear-

able sensors”. In: 2018 IEEE Sensors Applications Symposium (SAS). 2018,

pp. 1–6. doi: 10.1109/SAS.2018.8336752.

[8] Javier Marin, Teresa Blanco, and Jose J. Marin. “Octopus: A Design Method-

ology for Motion Capture Wearables”. In: Sensors 17.8 (2017). issn: 1424-

8220. doi: 10.3390/s17081875. url: https://www.mdpi.com/1424-

8220/17/8/1875.

[9] Stefano Canali. “Towards a Contextual Approach to Data Quality”. In:

Data 5.4 (2020). issn: 2306-5729. doi: 10.3390/data5040090. url: https:

//www.mdpi.com/2306-5729/5/4/90.

[10] Peng-zhan Chen et al. “Real-Time Human Motion Capture Driven by a

Wireless Sensor Network”. In: International Journal of Computer Games

Technology 2015 (Feb. 2015), p. 695874. doi: 10.1155/2015/695874. url:

https://doi.org/10.1155/2015/695874.

[11] Agnieszka SzczÄsna et al. “Inertial Motion Capture Costume Design Study”.

In: Sensors 17.3 (2017). issn: 1424-8220. doi: 10.3390/s17030612. url:

https://www.mdpi.com/1424-8220/17/3/612.

[12] Karol JÄdrasiak, Krzysztof Daniec, and Aleksander Nawrat. “The low cost

micro inertial measurement unit”. In: 2013 IEEE 8th Conference on In-

https://royalsocietypublishing.org/doi/pdf/10.1098/rsfs.2018.0008
https://royalsocietypublishing.org/doi/pdf/10.1098/rsfs.2018.0008
https://royalsocietypublishing.org/doi/abs/10.1098/rsfs.2018.0008
https://royalsocietypublishing.org/doi/abs/10.1098/rsfs.2018.0008
https://doi.org/10.1051/matecconf/201815203001
https://doi.org/10.1051/matecconf/201815203001
https://doi.org/10.1109/SAS.2018.8336752
https://doi.org/10.3390/s17081875
https://www.mdpi.com/1424-8220/17/8/1875
https://www.mdpi.com/1424-8220/17/8/1875
https://doi.org/10.3390/data5040090
https://www.mdpi.com/2306-5729/5/4/90
https://www.mdpi.com/2306-5729/5/4/90
https://doi.org/10.1155/2015/695874
https://doi.org/10.1155/2015/695874
https://doi.org/10.3390/s17030612
https://www.mdpi.com/1424-8220/17/3/612

BIBLIOGRAPHY 174

dustrial Electronics and Applications (ICIEA). 2013, pp. 403–408. doi:

10.1109/ICIEA.2013.6566403.

[13] A.M. Sabatini. “Quaternion-based extended Kalman filter for determining

orientation by inertial and magnetic sensing”. In: IEEE Transactions on

Biomedical Engineering 53.7 (2006), pp. 1346–1356. doi: 10.1109/TBME.

2006.875664.

[14] Robert Mahony, Tarek Hamel, and Jean-Michel Pflimlin. “Nonlinear Com-

plementary Filters on the Special Orthogonal Group”. In: IEEE Transac-

tions on Automatic Control 53.5 (2008), pp. 1203–1218. doi: 10.1109/

TAC.2008.923738.

[15] url: https://jcgm.bipm.org/vim/en/3.8.html.

[16] url: http://viml.oiml.info/en/0.11.html.

[17] Daniel Tazartes. “An historical perspective on inertial navigation systems”.

In: 2014 International Symposium on Inertial Sensors and Systems (ISISS).

2014, pp. 1–5. doi: 10.1109/ISISS.2014.6782505.

[18] Jorg F. Wagner and Andor Trierenberg. “The Machine of Bohnenberger: Bi-

centennial of the Gyro with Cardanic Suspension”. In: PAMM 10.1 (2010),

pp. 659–660. doi: https://doi.org/10.1002/pamm.201010322. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.201010322.

url: https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.

201010322.

[19] Norhafizan Ahmad et al. “Reviews on Various Inertial Measurement Unit

(IMU) Sensor Applications”. In: International Journal of Signal Processing

Systems 1 (Jan. 2013), pp. 256–262. doi: 10.12720/ijsps.1.2.256-262.

[20] Guo Zhanshe et al. “Research development of silicon MEMS gyroscopes:

a review”. In: Microsystem Technologies 21.10 (Oct. 2015), pp. 2053–2066.

https://doi.org/10.1109/ICIEA.2013.6566403
https://doi.org/10.1109/TBME.2006.875664
https://doi.org/10.1109/TBME.2006.875664
https://doi.org/10.1109/TAC.2008.923738
https://doi.org/10.1109/TAC.2008.923738
https://jcgm.bipm.org/vim/en/3.8.html
http://viml.oiml.info/en/0.11.html
https://doi.org/10.1109/ISISS.2014.6782505
https://doi.org/https://doi.org/10.1002/pamm.201010322
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.201010322
https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201010322
https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201010322
https://doi.org/10.12720/ijsps.1.2.256-262

BIBLIOGRAPHY 175

issn: 1432-1858. doi: 10.1007/s00542-015-2645-x. url: https://doi.

org/10.1007/s00542-015-2645-x.

[21] Last Minute Engineers. In-Depth: Interface MPU6050 accelerometer amp;

Gyroscope sensor with Arduino. Dec. 2020. url: https://lastminuteengineers.

com/mpu6050-accel-gyro-arduino-tutorial/.

[22] Weimeng Niu et al. “Summary of Research Status and Application of

MEMS Accelerometers”. In: Journal of Computer and Communications 06

(Jan. 2018), pp. 215–221. doi: 10.4236/jcc.2018.612021.

[23] Hardik Parwana and Mangal Kothari. “Quaternions and Attitude Repre-

sentation”. In: (Aug. 2017).

[24] James Diebel. “Representing Attitude: Euler Angles, Unit Quaternions, and

Rotation Vectors”. In: Matrix 58 (Jan. 2006).

[25] MPU-6000 and MPU-6050 Product Specification. PS-MPU-6000A-00. Rev.

3.4. InvenSense. Aug. 2013.

[26] nRF51802 Multiprotocol Bluetooth low energy/2.4 GHz RF System on Chip

Product Specification. Ver. 1.2. Nordic Semiconductor. May 2016.

[27] CE6208 SERIES Ultra-Fast High PSRR 1A CMOS Voltage Regulator. Ver.

1.1. Nanjing Chipower Electronics Inc.

[28] TP4056 1A Standalone Linear Li-lon Battery Charger with Thermal Reg-

ulation in SOP-8. NanJing Top Power ASIC Corp.

[29] nRF52840 Development kit PCA10056 V1.0.0 user guide. Ver. 1.3. Nordic

Semiconductor. Feb. 2019.

[30] S110 nRF51 Bluetooth low energy Peripheral SoftDevice specifications. Ver.

2. Nordic Semiconductor. Feb. 2015.

https://doi.org/10.1007/s00542-015-2645-x
https://doi.org/10.1007/s00542-015-2645-x
https://doi.org/10.1007/s00542-015-2645-x
https://lastminuteengineers.com/mpu6050-accel-gyro-arduino-tutorial/
https://lastminuteengineers.com/mpu6050-accel-gyro-arduino-tutorial/
https://doi.org/10.4236/jcc.2018.612021

BIBLIOGRAPHY 176

[31] Understanding the generic access Profile (GAP). url: https://developer.

qualcomm . com / hardware / qca4020 - qca4024 / learning - resources /

understanding-generic-access-profile.

[32] Developer help. url: https://microchipdeveloper.com/wireless:ble-

gap-security.

[33] Bluetooth core specifications. Ver. 5.3. Bluetooth SIG Proprietary. July

2021.

[34] Kevin Townsend et al. Getting started with Bluetooth low energy. url:

https://www.oreilly.com/library/view/getting-started-with/

9781491900550/ch04.html.

[35] Getting started with nRF5 SDK and SES (nRF51 nRF52 Series). Ver. 1.4.

Nordic Semiconductor. Apr. 2020.

[36] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2019

(Revision of IEEE 754-2008) (2019), pp. 1–84. doi: 10.1109/IEEESTD.

2019.8766229.

[37] SINA RONAGHI. PC software for attitude representation. June 2021. url:

https://github.com/SinaRonaghi/PoliTesi-BLE-MoCap-applications.

[38] url: https://www.mixamo.com/#/.

[39] Nordic semiconductor. Configuring placement of the SoftDevice. url: https:

//infocenter.nordicsemi.com/topic/ug_gsg_ses/UG/gsg/program_

sd_ses.html.

[40] Sina Ronaghi. PoliTesi - BLE MoCap experiments. Youtube. 2021. url:

https://youtube.com/playlist?list=PLEQDgukQzWZFPCwNrCT3x3Xi42EmWvrvs.

[41] GUM: Guide to the Expression of Uncertainty in Measurement. Sept. 2008.

url: https://www.bipm.org/documents/20126/2071204/JCGM_100_

2008_E.pdf.

https://developer.qualcomm.com/hardware/qca4020-qca4024/learning-resources/understanding-generic-access-profile
https://developer.qualcomm.com/hardware/qca4020-qca4024/learning-resources/understanding-generic-access-profile
https://developer.qualcomm.com/hardware/qca4020-qca4024/learning-resources/understanding-generic-access-profile
https://microchipdeveloper.com/wireless:ble-gap-security
https://microchipdeveloper.com/wireless:ble-gap-security
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch04.html
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch04.html
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://github.com/SinaRonaghi/PoliTesi-BLE-MoCap-applications
https://www.mixamo.com/#/
https://infocenter.nordicsemi.com/topic/ug_gsg_ses/UG/gsg/program_sd_ses.html
https://infocenter.nordicsemi.com/topic/ug_gsg_ses/UG/gsg/program_sd_ses.html
https://infocenter.nordicsemi.com/topic/ug_gsg_ses/UG/gsg/program_sd_ses.html
https://youtube.com/playlist?list=PLEQDgukQzWZFPCwNrCT3x3Xi42EmWvrvs
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf

	Introduction
	Related Works
	Inertial Measurement Units
	Definition
	Brief history
	Working principle
	Gyroscope
	Accelerometer

	Considerations

	Attitude Representation
	Definitions and parametrizations
	Coordinate systems
	Rotation and transformation matrix
	Coordinate rotation

	Methods of representation
	Euler angles
	Quaternions

	A careful observation

	Implementation Scenario
	Terminology
	Design factors
	Contextual factors
	Interaction factors and scheme
	Sensor placement
	Body attachment factor

	Hardware Design
	Hardware specifications and features
	Sensor tags
	Rechargeable wearable sensors
	Central receiver

	Software Design
	Embedded software design
	Hardware specific toolchain
	Bluetooth® Low Energy basic concepts
	BLE Generic access profile (GAP)
	GAP Advertisement parameters
	GAP Connection parameters
	GAP Security parameters
	BLE Generic attribute profile (GATT)

	Peripherals application
	Toolchain
	Initialization process
	Core functionalities
	BLE communication

	Central application
	Toolchain
	Initialization process
	Core functionalities
	Communication Parameters

	Data representation
	Data interpretation process
	Data representation using MATLAB
	Data representation using LabView
	Data representation using Unity

	Experiments
	Programming the wearable devices
	Programming the development kit
	The first method: SEGGER-ES IDE
	The second method: Drag-and-Drop

	Experimental results
	MATLAB data representation application
	Unity data representation application

	Metrological characterization
	The theory
	The procedure and results

	Conclusion and future scope
	Conclusion
	Future scope

	Appendices
	Code of the central receiver
	MATLAB data Representation software
	Unity data representation software

