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Abstract:
This work presents the progress carried out in the coupled CAA-CFD optimization
framework inside the open-source multi-physics solver SU2 for cases with axial sym-
metry like propellers. In this framework the RANS equations are used to solve the
flow around the body and the FW-H formulation propagates the pressure fluctua-
tions to the farfield, then an AD-based discrete adjoint computes the sensitivities.
The RANS equations are solved using a rotating reference frame (RRF), replac-
ing the unsteady simulation with a steady simulation and a set of rigid rotations,
lowering the computational cost. The successful application of periodic boundary
conditions along the half-planes of radial symmetry in the CFD simulation opens
the possibility of studying multi-blade propellers by just analyzing a single blade.
These techniques are applied to an optimization case in which the shape of a pro-
peller blade is modified to reduce the noise signature at a single observer location
while keeping the thrust constant. The proposed framework strongly reduces the
average sound pressure level (SPL) for a microphone positioned at a distance of
ten times the radius.
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1. Introduction

Urban air mobility (UAM) is expected to become a reality in the coming years. Multi-propeller vehicles
powered by electric motors will become an alternative transportation method to commute or travel in between
nearby cities [5]. These vehicles will fly over residential areas, thus the noise level they produce must meet the
requirements posed by the authorities and be low enough to improve their public acceptance.
Obtaining an accurate prediction of the noise is challenging due to its three-dimensional, unsteady and turbulent
nature. This problem was first addressed in 1952 by Lighthill [15] to study the noise produced by turbulent
jets. Ffowcs-Williams and Hawkings expanded Lighthill’s work in 1969 to account for the noise produced by
aerodynamic surfaces in arbitrary motion [13] in what is called the FW-H formulation. Di Francescantonio [8]
combined the benefits of the FW-H and the Kirchoff formulations to develop a permeable surface aeroacoustic
model, it is nowadays known as the permeable FW-H formulation to distinguish it from the original one.
Once the baseline shape of the propeller blade is obtained, the acoustic noise reduction seems to require mod-
ifications that are antagonistic with the requested aerodynamic performances [2]. Local blade modifications
based on a trial-and-error approach are inefficient and time-consuming. Due to the large number of parameters
involved in aerospace design, gradient-based optimization methods using a discrete adjoint formulation are a
suitable choice because the computational cost of evaluating the sensitivities is independent of the number of
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design variables [18]. Using automatic differentiation (AD) to compute the sensitivities instead of hand dif-
ferentiation reduces the implementation effort. Moreover, the assumption of frozen turbulence is not required
anymore as the turbulence equations can be differentiated algorithmically.
Inside the aeroacoustic community, it is usual to employ scale-resolving simulations such as large-eddy simu-
lation (LES) or variants of the detached-eddy simulation (DES). These types of simulations require a lot of
computational power, so they are not practical for optimization purposes, as several direct and adjoint runs are
conducted during each optimization simulation. Over the past few years, a lot of interest has been dedicated to
assess whether lower fidelity alternatives such as the URANS equations are feasible for optimization [22]. More
recently, Guardone et al [17] validated a steady RANS solver with a rotating reference frame (RRF) to study
the noise emitted in cases with axial symmetry.
This work presents the progress carried out on the AD-based discrete adjoint framework inside the open source
multi-physics suite SU2 for applications to aeroacoustic problems with axial symmetry, continuing the work done
by Guardone et al [17]. Section 2 presents the coupled CFD-CAA optimization framework and the computational
cost reduction techniques. Section 3 deals with the grid convergence of the reference case. Section 4 presents the
verification of the computational cost reduction techniques and the validation of the aeroacoustic sensitivities
using the discrete adjoint. The results of the optimization cases are presented in Section 5 while the conclusions
are outlined in Section 6.

2. Coupled CFD-CAA Optimization Framework

2.1. CFD Solver: Unsteady Multi-Physics Solver SU2

The open-source software SU2 has been developed to solve multi-physics problems governed by partial differential
equations (PDEs) [11]. It is able to simulate compressible and turbulent flows, which are typical in aeronautical
problems solving the RANS equations. The governing equations are spatially discretized using the finite volume
method on unstructured meshes. Several convective fluxes schemes, such as the Jameson-Schimdt-Turkel (JST)
and the second order Roe scheme are implemented. In order to model turbulence the Spalart-Allmaras(S-A) or
the Menter Shear Stress Transport (SST) models are available. Moreover, a dual time-stepping method is used
to accurately solve unsteady flows. SU2 was specifically developed to deal with PDE constrained optimization
problems, its is compatible with the external library CodiPack for differentiating the code [21].

2.2. CAA Acoustic Solver

The acoustic solver implemented in SU2 is based on the Di Francescantonio formulation [8]. It is an extension of
the Formulation 1A developed by Farassat [6], which is a solution of the FWH equation [13] for subsonic cases
that can be numerically integrated. Both the permeable surface and the solid surface models are implemented.

2.2.1 FWH Equation: Impermeable and Permeable Surface Models

To obtain the FWH equation, the aerodynamic bodies in arbitrary motion are represented by a discontinuity
surface defined by the function fb = 0, such that the flow inside the surface is at rest and has the same
properties as the undisturbed medium (p′ = 0, ρ′ = 0,u′ = 0). This creates a discontinuity on the flow which
must be addressed as the derivatives of the flow parameters are needed for the noise computation. The theory
of generalized derivatives is used to reach an inhomogeneous wave equation following Lighthill’s derivation, but
it also includes monopole and dipole source terms which represent the thickness and loading noise contribution
as shown in equation (1). A schematic of the solid FWH model is sketched on Figure 1a.

□2[c2(ρ− ρ0)] =
∂

∂t
[ρ0unδ(fb)]−

∂

∂xi
[P ′

ijnjδ(fb)] +
∂2TijH(fb)

∂xixj
(1)

where P ′
ij is the perturbation stress tensor defined in equation 2.

P ′
ij = Pij − p0δij (2)

The main drawback of the FWH equation is the computational cost required to assess the effect of the quadrupole
source term. Moreover, the discontinuity surface must coincide with the wet surface of the aerodynamic body,
which may not be easy to discretize.
Di Francescantonio [8] proposed a formulation which joined the benefits of the Kirchoff [12] and the FWH
formulations. The discontinuity surface is chosen arbitrarily outside of the aerodynamic body, it is a permeable
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surface instead of a solid one. Therefore, the non penetration condition does not hold along this fictitious
surface, so the local fluid velocity normal to the surface is not null (un ̸= 0) and the local normal velocity of the
source surface is not null either (vn ̸= 0), so it cannot be assumed that (un − vn) is null anymore, it is shown
in equation (3). A schematic of the permeable FWH model is sketched on Figure 1b.

□2[c2(ρ− ρ0)] =
∂

∂t
[ρ0Unδ(f)]−

∂

∂xi
[L′

ijnjδ(f)] +
∂2TijH(f)

∂xixj
(3)

The parameters Ui and Lij are defined in equation (4) and can be interpreted as a modified velocity and stress
tensor respectively. If the discontinuity surface is chosen to be surface of the aerodynamic, the equation (3)
turns into the classical FWH equation shown in (1).

Ui = ui + [(ρ/ρ0)− 1](ui − vi)

Lij = P ′
ij + ρui(uj − vj)

(4a)
(4b)

The Di Francescantonio formulation has the advantage that if the turbulent structures are properly resolved
inside the permeable discontinuity surface, the effect of the quadrupole term can be neglected, so it does not
need to be computed.
To obtain an integral formulation of the problem is presented in equation (5), a Green function was used following
the approach of Farassat [6] to obtain a permeable version of the Formulation 1A. This formulation assumes that
the contribution quadrupole terms outside the discontinuity surface is negligible, hence the pressure fluctuations
at an observer location are the sum of the thickness and loading noise. If the impermeable surface model is
used, this hypothesis is only reasonable for low Mach problems, in cases with transonic phenomena such as
shocks this assumption is not valid anymore. It is also assumed that the disturbances at the observer location
are small. Therefore, the quantity affected by the wave operator can be substituted by the pressure fluctuation
at the observer location (c2(ρ− ρ0) = p′).

4πp′ =

∫
S

[
ρ0(U̇ini + Uiṅi)

r|1−Mr|2

]
ret

dS +

∫
S

[
ρ0UiniK

r2|1−Mr|3
]
ret

dS

+
1

c

∫
S

[
Ḟir̂i

r|1−Mr|2

]
ret

dS +

∫
S

[
Fir̂i − FiMi

r2|1−Mr|2
]
ret

+
1

c

∫
S

[
Ḟir̂iK

r2|1−Mr|3

]
ret

dS (5)

K = Ṁir̂ir +Mrc−M2c

Fi = Lijnj

(6a)
(6b)

(a) Impermeable Surface Model

direct the attention of the readers to a new coupled CFD-CAA far-field noise prediction framework developed for the
current work.

II.B. Coupled CFD-CAA Noise Prediction using a Permeable Surface Ffowcs Williams-Hawkings Approach

It is known for turbulent flows at low Mach numbers, direct computations of far-field noise is computationally pro-
hibitive.16 A common way to perform far-field noise prediction is then to adopt a hybrid CFD-CAA approach in
which the near-field noise source region is computed using a high-fidelity CFD model and then propagated to the
far-field using a computationally cheaper wave equation like CAA model. To that end, integral methods based on the
Kirchhoff or Ffowcs Williams-Hawkings (FW-H) formulations offer a more efficient approach for calculating acoustic
pressure at arbitrary observer locations by performing boundary integrals once the appropriate field data is known. In
this manner, the radiated noise from a complex system can be calculated given the near-field flow data supplied by a
CFD solution. In this work, we develop a coupled CFD-CAA far-field noise prediction framework using a permeable
surface Ffowcs Williams-Hawkings approach.

Observer

x

y

Γp, f=0

Ω1 (CFD), f<0

Ω2 (CAA), f>0

Figure 1. Permeable control surface Γp separating the CFD and CAA domains

The permeable FW-H formulation distinguishes it-
self from its original formulation in that it allows fluid
to flow through the discontinuity surface. Consequently,
one can define any arbitrary smooth surrounding surface
Γp around the aerodynamic body S where details of the
flow field are extracted and the noise source can be prop-
agated to the far-field. A schematic of such permeable
surface is shown on Figure 1. The fluid domain is there-
fore divided into two regions – the near-field CFD region
Ω1 and far-field CAA region Ω2. Further, we define the
shape of Γp by a function, f = 0, such that f < 0 inside
the control surface and f > 0 outside the control surface.

A key difference between this work and an ear-
lier work by Economon et al.9 is that in that
work the permeable FW-H formulation in the wave
equation form is solved directly in time using a
finite element method (FEM). In this work we
follow the boundary integral formulation presented
by Di Francescantonio,18 which rewrites the origi-
nal FW-H into the permeable surface form as fol-
lows:

�2[c2(ρ−ρo)] =
∂
∂ t

[ρoUnδ ( f )]− ∂
∂xi

[L′i jn jδ ( f )]+
∂ 2Ti j

∂xi∂x j
. (1)

where

Ui = ui +[(ρ/ρo)−1](ui− vi) (2)
Li j = Pi j− poδi j +ρui(u j− v j), (3)

Ti j = P′i j +ρuiu j− c2(ρ−ρo)δi j. (4)

Note that ρ is the density, ui, j,k is the flow velocity, νi, j,k is the velocity of the control surface Γp. The subscript o
denotes ambient conditions while the superscript ′ denotes perturbation values. Pi j is the compressive stress tensor.

By convoluting with a free space Green’s function, a boundary integral form can be obtained. Following the
derivation of Farassat’s formulation 1A,19 time derivatives with respect to observer time can be moved inside of the
integrals and adjusted to be with respect to source time. This manipulation can offer some benefits during numerical
implementation. Lastly, by assuming a non-deforming surface which is far enough away from the source to contain
all non-linearities, the quadrupole volume terms can be removed, and the following boundary integral expression is
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(b) Permeable Surface Model

Figure 1: FWH Formulation Schematic [22]
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2.3. Computational Cost Reduction Techniques

2.3.1 Rotating Reference Frame (RRF)

In cases which have axial symmetry, like a rotor in hover or a propeller in forward flight, a rotating reference
frame moving with the body can be used to reduce the computational cost of both the CFD and the acoustic
simulation [9]. First, a steady flow simulation which accounts for the movement of the body with respect to the
freestream is conducted. Then, a rotation is applied to the steady solution to obtain the state variables at each
time step [17]. This results in a significant reduction of the computational cost because the unsteady simulation
is replaced by a steady simulation and a set of rigid rotations.

dθdϕ
dψ

 = Ω · dt (7)

Ω is the constant angular velocity and dθ, dϕ, dψ are the incremental angles for each axis. The rotated surface
coordinates, grid velocity and normals at each time step are indicated by the hat superscript (ˆ). R is the
rotation matrix described in (9).

x̂ = R · x
ûgrid = R · ugrid

n̂ = R · n

(8a)
(8b)
(8c)

R =

cϕcψ sθsϕcψ − cθsψ cθsϕcψ + sθsψ
cϕcψ sθsϕcψ + cθsψ cθsϕcψ − sθsψ
−sϕ sθcϕ cθcϕ

 (9)

2.3.2 Multi-blade Aeroacoustic Analysis using Periodic Boundary Conditions

Conducting the CFD simulation of a multi-blade propeller usually results in a grid with several million elements.
This grid may not be feasible for optimization due to the computational cost required for the direct simulation
at each step. Since propellers have axial symmetry, the domain can be divided in sectors limited by the planes
of radial symmetry. If periodic boundary conditions are applied along them, it is possible to analyze one blade
and to account for the effect that the other blades have on the flow. Analyzing this new grid requires a fraction
of the cost of the original one. Figure 2 shows an example in which periodic boundary conditions are applied
to a two-bladed propeller. In SU2 the solution of the cells located at the Periodic BC #1 boundary are copied
and rotated 180◦ to placed them at the Periodic BC #2 boundary in each iteration of the flow simulation.

Farfield BC

Periodic BC #1 Periodic BC #2

Farfield BC

Periodic BC #1 Periodic BC #2

Farfield BC

Figure 2: Application of Periodic BC’s to a two-bladed propeller
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Nevertheless, this approach presents an issue when considering the aeroacoustic analysis. The input for the
acoustic solver is the flow at either the immersed body surface (impermeable surface model) or the imaginary
surface (permeable surface model). If periodic boundary conditions are used for the CFD simulation, only a
fraction of the input data is available. However, the original surface can be reconstructed by placing a copy
of the periodic solution in the correct position. Figure 3 shows an example applied to a two-bladed propeller
which was analyzed using periodic boundary conditions. Since the impermeable surface model is used, a copy
of the surface flow solution is rotated 180◦ with respect to the origin to recreate the missing blade.This feature works as long as there is no overlap

Figure 3: Propeller Reconstruction

2.4. Sensitivity Analysis

The sensitivity analysis consists on computing the derivatives of one or more quantities (outputs) with respect
to one or several independent variables (inputs). These derivatives are used in gradient-based optimization to
improve the system’s performance.
In the case of automatic shape optimization using CFD, the target is to improve a performance parameter called
the objective function J by modifying the shape of the immersed body. The shape of the body is parametrized
using design variables, a set of parameters stored in a vector α which are under control of the optimizer. They
are used to represent the wet surface of the immersed body and its value is changed to modify it and improve
the objective function. The aerodynamic domain is discretized by using a grid X = Xsurf + Xvol where
Xvol = Xvol(Xsurf (α)) [16], meaning that the volume grid depends on the surface mesh, which depends itself
on the shape of the body. The state variables of the flow field U(α) are analyzed by the solver to assess the
convergence criterion using a steady state constraint in pseudo-time. Therefore, it can be noted that both the
grid and the flow field state variables depend on the shape of the immersed body.
Consequently, the optimization problem can be written as:

minimize
α

J(U(α), X(α)),

subject to R(U(α), X(α)) = 0,

(10a)

(10b)

2.4.1 Discrete Adjoint Formulation

The process to reach the expression for the sensitivities follows the approach outlined by Albring et al [4]. As a
first step, equation 10b is transformed into a fixed point iteration in pseudo-time such that Un+1 =: G(Un). To
handle the surface and mesh deformation, the following constraint is added X =M(α), where M is assumed to
be differentiable but no assumptions about its structure are made. Therefore, the optimization problem takes
the form:

minimize
α

J(U(α), X(α)),

subject to U(α) = G(U(α), X(α)),

X(α) =M(α),

(11a)

(11b)
(11c)

To introduce the adjoint formulation, the Lagrangian associated to the optimization problem is used to condense
the objective function and the constraints in a single expression. Ū contains the adjoint variables associated to
the flow field and X̄ contains the adjoint variables associated to the grid geometry.

L(α,U,X, Ū , X̄) = J(U,X) + [G(U(α), X(α))− U(α)]T Ū + [M(α)−X(α)]T X̄ (12)
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Differentiating equation (12) with respect to α it is possible to obtain the sensitivities. The value of the Lagrange
multipliers is tailored to avoid computing the jacobians ∂U

∂α and ∂X
∂α . This leads to the following expressions for

the computation of Ū and X̄.

Ū =
∂

∂U
JT (U,X) +

∂

∂U
GT (U,X)Ū (13)

X̄ =
∂

∂X
JT (U,X) +

∂

∂X
GT (U,X)Ū (14)

The equation (13) can be solved by using a fixed-point iteration. By applying the previous steps, the sensitivities
of the objective function J take the form.

dLT

dα
=
dJT

dα
=

d

dα
MT (α)X̄ (15)

The jacobians present in equations (13) and (14) along with the one present in equation 15 are computed through
automatic differentiation (AD) using the reverse mode. Automatic differentiation (AD) applies recursively the
chain-rule through the software code to obtain the derivatives. By construction, AD-based adjoints are accurate
to machine precision because they do not incur in neither round-off nor truncation error.
Figure 4 shows the chart of the sensitivity computation for the CFD-CAA optimization framework presented
in this section. Starting from a specific design variable vector αk=0 which corresponds to the baseline propeller
shape, during the direct phase, the converged steady state flow U∗ is obtained using a rotating reference frame
by the CFD solver. Then, the state variables at the solid surface nodes Γs are rotated as explained in section
2.3.1 to obtain the flow solution at each time step U∗(t). The, the conservative variables are passed to the
FW-H solver to compute the pressure fluctuation p′(t) at a fixed observer position via equation (5) which is
used to compute the objective function J .

𝑈𝑛=0

α𝑘=0
CFD Solver FW-H Solver 𝐽 = 𝑆𝑃𝐿

𝑑𝐽

𝑑α

Adjoint CFD Adjoint FW-H ҧ𝐽 = 1

𝑈(𝑡)𝑠𝑢𝑟𝑓 𝑝′(𝑡)

𝑈(𝑡)𝑠𝑢𝑟𝑓𝑈∗

𝜕𝐽

𝜕𝑈𝑠𝑢𝑟𝑓

𝜕𝐽

𝜕𝑋𝑠𝑢𝑟𝑓

ത𝑋𝑛

𝑅𝑅𝐹
𝑈∗

Adjoint Grid

ഥ𝑈𝑛

Figure 4: CFD-CAA Sensitivity Computation Chart

During the adjoint phase, the FW-H adjoint solver computes the jacobians associated to the objective function
( ∂J
∂U ,

∂J
∂X ) and the adjoint CFD solves equation (13) to obtain the flow adjoint variables (Ū), the adjoint grid

solves equation (14) to obtain the grid adjoint variables (X̄). In the end, the geometrical parametrization M(α)
is also differentiated to obtain the sensitivies ( dJdα ) as in equation (15). The optimizer uses the information given
by the sensitivities to update the design variable vector to αk=1. Then, the volume grid is updated and a new
iteration is started.
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3. Baseline Propeller Configuration

The reference case used in this work is a two-bladed propeller. Each blade has a NACA4412 section and a radius
R = 0.114m. The propeller is investigated in a forward flight condition in which it rotates around the x-axis at
ω = −523.598 rad/s. In standard conditions for pressure and temperature the propeller has a tip Mach number
of M = 0.15740, the free-stream has a velocity of U = 5m/s.

Figure 5: Baseline Propeller Blade

Since the problem has axial symmetry the computational cost reduction techniques explained in section 2.3 are
implemented. The unsteady RANS simulation is replaced by a steady RANS simulation and a rotating reference
frame (RRF) in solidarity with the blades to reduce the computational cost [10]. Moreover, periodic boundary
conditions are implemented on the radial symmetry plane to analyze only one blade and further decrease the
computational cost.
The numerical method used to solve the convective fluxes is ROE 1st order, implicit Euler is used to advance
the simulation in pseudo-time with a CFL=1. The RANS equations are solved in their dimensional form. The
turbulence model used is Spalart-Allmaras (SA), it is solved with a scalar upwind method of first order.

3.1. Grid Convergence

A grid convergence process is conducted to verify that the results are independent from the spatial discretization
and to choose a mesh for the subsequent analyses that balances accuracy and computational cost. To carry out
the grid convergence analysis, the Index Method [20], [7] has been used. This method provides guidelines both
to create the meshes involved in the analysis and to interpret the results. Starting from a baseline mesh, both
a finer and a coarser mesh are needed which must satisfy a constraint over the refinement factor rij given on
equation 16 in which hi is the average cell size of i-th mesh.

rij =
hi
hj

>
√
2 (16)

It is not straight forward to compute the average cell size of each mesh, so the following estimation is used
hi =

3
√
V ol/Ni to obtain equation 17.

rij =
hi
hj

≈ 3

√
Nj

Ni
(17)

Three different grids are used in the grid convergence process, they share some common features, the grid is
cylindrical with a radius R = 12m and a length L = 48m. They are all hybrid grids, so most of the mesh is
unstructured except for a structured part around the blade obtained by extruding the surface mesh along the
external normal direction in order to capture the boundary layer correctly. The general characteristics of the
structure region along with the number of elements of each grid is summarized in Table 1.
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Table 1: Grid Characteristics

Coarse Medium Fine

Nelements 1.21 M 1.95 M 4.68 M

Growth Rate 1.25 1.2 1.15

NLayers 25 30 40

Figure 6 shows the convergence of the thrust and moment coefficients, CFx
and CMx

respectively, along with
the Richardson extrapolation as hmean → 0. It can be observed that both coefficients converge as the average
element size decreases.
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0.026

0.0265

0.027

0.0275
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0.0285
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0.03
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x

(a) CFx Convergence
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M

x

10
-3

(b) CMx Convergence

Figure 6: Grid Convergence Criteria

4. Verification & Validation

According to the AIAA guidelines [1], verification is defined as the process of determining that a model im-
plementation accurately represents the developer’s conceptual description of the model and the solution to the
model. In general, verification aims at identifying, quantifying and reducing the errors of the computational
model. This done by using either analytical or very accurate numerical solutions as the basis for the comparison
process [19]. Verification is very useful in the early development of a software and as a review procedure for
modifications in later stages.
Validation is the process of determining the degree to which a model is an accurate representation of the real
world from the perspective of the intended uses of the model [19]. Therefore, the validation process measures
numerical accuracy with respect to experimental data, generally with an increasing degree of complexity with
each experiment.

4.1. Verification of the Periodic BC’s for Aeroacoustic Analysis of Propellers

In order to verify the use of periodic boundary conditions for multi-blade aeroacoustic analysis, the results
obtained with the periodic one-blade simulation are compared to the solution obtained using the original two-
blade baseline propeller. The periodic case uses a fixed CFL=1 whereas the baseline case uses an adaptive
CFL.
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Table 2 shows the thrust and moment coefficients (CFx
, CMx

) for each case along with the relative error of the
periodic case. It can be noted that the error is smaller than 3% in both cases, so there is a good agreement
between both simulations. The source of this error will have to be studied.

Table 2: Coefficients Verification

Parameter Baseline Periodic Rel. Error %

CFx 2.7914× 10−2 2.7105× 10−2 2.898

CMx 3.2211× 10−3 3.1503× 10−3 2.198

Figure 7 shows the pressure coefficient (CP ) at the 90% span of the blade for the periodic and baseline cases.
It can be observed that there is almost a perfect overlap among the points. By zooming into the points with
the smallest CP it can be noted that there is a slight difference between the two distributions, which gives rise
to the small difference in the CFx

, CMx
coefficients. Therefore, it can be concluded that the simulation with

periodic conditions solves the flow-field successfully.

Figure 7: 90% Span CP Comparison: Baseline Blade vs Blade with Periodic BC’s

Regarding the acoustic simulation, the impermeable Di Francescantonio formulation is used, so the acoustic
discontinuity surface coincides with the propeller blade surface. The propeller reconstruction technique explained
in section 2.3 must be analyzed to verify that it gives the correct results. For that purpose, an array of 10
microphones is placed at a distance d = 10R, with R being the radius of the propeller at an incidence angle
from 45◦ to 135◦ as it is shown in Figure 8.
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Fig. 4 Original and optimized geometry Fig. 5 Acoustic fluctuation at the reference observer

Fig. 6 Mics array position

Fig. 7 Original and optimized 𝑝′𝑟𝑠𝑚 for an array of 10 mics

7

U

d

Figure 8: Mic array position with respect to the propeller

The pressure fluctuation and the FFT of the baseline and the periodic cases are analyzed for the observer
location at 45◦ and shown in Figure 9. It can be observed that the signal received in very similar for both
cases, being slightly more attenuated in the periodic case. This can be clearly seen in the FFT because the low
frequency points in the periodic case have a smaller magnitude.
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Figure 9: Acoustic Signature at 45◦ Observer

The sound pressure level (SPL) and the relative error of the root mean square pressure (prms) are compared
at each observer location. In equation (18), p′n,m is the pressure fluctuation at the observer location, N is the
total number of samples and N∗ is the number of samples which are not used for the computation of the prms

to avoid errors in the F1A formulation presented in section 2.2 as it uses a retarded-time algorithm [22].

prms =

√√√√ 1

N −N∗

N∑
n=N∗+1

(p′n,m)2 (18)

SPL = 20 log10

(
prms

p0

)
, p0 = 20 µPa (19)
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Figure 10a shows the SPL for both the baseline case and the one with periodic boundary conditions. Figure
10b shows the relative error of the prms at each observer location. It can be observed that the error of the
prms is around 2% at every observer which is of the same order as the relative errors for the thrust and torque
coefficients (CFx , CMx) shown in Table 2. Therefore, it can be concluded that the propeller reconstruction
technique presented in Section 2.3 works as intended.

(a) SPL [dB] at 10R (b) prms Relative Error %

Figure 10: Propeller Acoustic Signature 45◦ − 135◦ Observers

4.2. Validation of the Adjoint Sensitivities

The sensitivities in the coupled CFD-CAA framework are computed using the discrete adjoint formulation
explained in section 2.4.1. They are validated by comparing them to the sensitivities obtained using finite
differences. The test-case used for the validation is the baseline case presented in section 2.3. The geometry
is parametrized using one FFD box with 24 design variables that can move only along the freestream flow
direction (x-axis). Figure 11 shows the comparison of the noise sensitivity for each design variable using the
discrete adjoint formulation and finite differences employing the forward mode with two different steps of
h = 10−6 and h = 10−7. It can be observed that there is a very good agreement among the three methods, so
the discrete adjoint formulation is validated.

Figure 11: Noise Sensitivity for each Design Variable
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5. Results

5.1. Noise Minimization

In this section the baseline two-bladed propeller presented in section 3 is optimized to reduce the emitted noise
while keeping the thrust constant. The propeller is investigated in a forward flight condition, it rotates around
the x-axis at ω = −523.598 rad/s and the free-stream has a velocity of U = 34.3m/s. The computational
mesh used in this section is the Medium grid used during the mesh convergence analysis in section 3. It uses
periodic boundary conditions to account for the effect of the other propeller blade in the CFD simulation. The
impermeable Di Francescantonio formulation is used to compute the noise signature of the blade. Moreover, the
propeller reconstruction technique presented in section 2.3 is used to account for the noise of the other blade.
The objective function J shown in equation (21) is the sound pressure level (SPL). Only one observer is used
to analyze the pressure fluctuation, it is located at a distance d = 10R, with R being the radius of the propeller
at an incidence angle of 45◦.

prms,avg
=

1

Nobs

Nobs∑
i=1

prms,i (20)

J = 20 log10

(
prms,avg

p0

)
, p0 = 20 µPa (21)

The geometry is parametrized using one FFD box with 56 design variables that can move only along the
freestream flow direction (x-axis). The mesh is deformed using a radial basis function (RBF) technique with
10% of the surface nodes as control points and Wendland C2 functions as the basis function following the work
of Guardone et al [3]. By using this mesh deformation technique the connectivity is maintained.
The optimization is carried out for 18 design updates. Figure 12 shows the difference between the baseline
and the optimized designs. In order to observe correctly the propeller deformation, the change of the blade
section is reported for six stations at 35%, 50%, 65%, 80%, 90%, and 98% of the radius in Figure 14, their
span-wise position is indicated in red in Figure 13. It can be observed that in every case the optimizer reduces
the incidence angle of the section while increasing the camber. The thickness of the sections is not changed
significantly even though no thickness constraints were imposed.

Figure 12: Blade Deformation

Figure 13: Monitored Sections Positions
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Figure 14: Propeller Sections Change

The results of the optimization are summarized in Table 3. The optimization achieves a 55% reduction in the
objective function because the prms is reduced by 96%. Moreover, the CFx

and CMx
modulus are reduced by

3% and 72% respectively. During the problem definition the thrust coefficient (CFx
) was constrained to remain

constant but it can be observed that it has decreased, this happens because the constraint is enforced in a weak
manner by using a penalty function method [14].

Table 3: Optimization Results

Parameter Baseline Optimized Change %

SPL [dB] 52.42 23.18 -55.67

prms 8.352× 10−3 2.883× 10−4 -96.55

CFx 2.573× 10−2 2.494× 10−2 -3.07

CMx 2.354× 10−3 6.553× 10−4 -72.16

Figure 15 shows the comparison of the CP curves between the baseline and the optimized designs at the 65%
and 98% span sections. It can be observed that the space between the upper and the lower curves does not vary
significantly, which explains why the thrust coefficient (CFx

) stays almost constant, but the values of the CP

change, specially on the rear of the airfoil which may be the cause of the moment coefficient (CMx
) decrease.
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Figure 15: CP at different span locations

The pressure fluctuation and the FFT of the baseline and the optimized cases are analyzed at the observer
location and shown in Figure 16. It can be observed that there is a dramatic change in amplitude for the
pressure fluctuation signal, this is the reason why the prms has decreased so much. It can be noted in the
FFT that the amplitude has been reduced at every frequency but the biggest change has been at the lower
frequencies, which had the biggest amplitude. Moreover, the low frequency of the signal characteristics have
been altered.
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Figure 16: Acoustic Signature at 45◦ Observer

Figure 17 shows the SPL for both the baseline case and the optimized one at for two arrays of 10 microphones
each placed at a distance of d1 = 10R and d2 = 30R, with R being the radius of the propeller at an incidence
angle from 45◦ to 135◦. It can be observed that the SPL has been decreased at every observer location but
since the microphone used for the optimization was placed at 45◦, this is the position where the noise signature
has been reduced the most. Moreover, it can be noted that as the distance increased the SPL is attenuated.
At a distance d1 = 10R the average SPL was reduced by an 18.6% (10.9 dB) whereas at a distance d2 = 30R
the average SPL was reduced by a 21.6% (10.5 dB). Therefore, the optimization works properly but it must be
noted that the microphone position affects greatly the noise distribution of the optimized blade.
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(a) SPL [dB] at 10R (b) SPL [dB] at 30R

Figure 17: Propeller Acoustic Signature Comparison 45◦ − 135◦ Observers

6. Conclusions

This work presented the progress carried out in the coupled CAA-CFD optimization framework inside the
open-source multi-physics solver SU2 for cases with axial symmetry like propellers. In this framework the
RANS equations are used to solve the flow around the body and the FW-H formulation propagates the pres-
sure fluctuations to the farfield, then an AD-based discrete adjoint computes the sensitivities. The body was
parametrized using a Free Form Deformation box, chosen for its capability to handle arbitrary shapes. The
RANS equations are solved in a rotating reference frame (RRF), replacing the unsteady simulation by a steady
simulation and a set of rigid rotations, lowering the computational cost. The successful application of peri-
odic boundary conditions along the half-planes of radial symmetry in the CFD simulation opens the possibility
of studying multi-blade propellers by just analyzing a single blade. Since the full propeller is needed for the
acoustic simulation, a propeller reconstruction technique was implemented to account for the missing blades
with successful results. The verification of the use of periodic boundary conditions in aeroacoustic analyses
was carried out along with the validation of the aeroacoustic sensitivities using the AD-based discrete adjoint
framework. An optimization case was conducted in which the shape of a propeller blade was modified to reduce
the noise signature at a single observer location while keeping the thrust constant. The proposed framework
reduced the average SPL by an 18.6% (10.9 dB) for a microphone array positioned at a distance of ten times
the radius at an incidence angle from 45◦ to 135◦. It has also been noted that the position of the observer
location used in the optimization affects significantly the noise directivity of the design.
In future work, concerning the CFD module, the results and the sensitivities obtained with the RANS simulations
could be compared to the ones obtained using scale-resolving simulations such as DES to assess whether the
lower fidelity alternatives reach an optimal configuration. Regarding the CAA module, the impermeable FW-H
formulation could be replaced by the permeable FW-H formulation to be able to successfully study transonic
cases.
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Abstract in lingua italiana

Questo lavoro presenta il progresso compiuto nel framework di ottimizzazione CAA-CFD accoppiato dal riso-
lutore multifisico open source SU2 per casi con simmetria assiale come le pale eliche. In questo framework
le equazioni RANS vengono utilizzate per risolvere il flusso attorno al corpo, la formulazione FW-H propaga
le fluttuazioni di pressione al campo lontano, quindi un adjoint discreto basato su AD calcola le sensibilità.
Le equazioni RANS vengono risolte utilizzando un sistema di riferimento rotante (RRF), sostituendo la simu-
lazione instabile con una simulazione stabile e un insieme di rotazioni rigide, riducendo il costo computazionale.
L’applicazione riuscita delle condizioni al contorno periodiche lungo semipiani di simmetria radiale nella simu-
lazione CFD apre la possibilità di studiare eliche multipala analizzando solo una singola pala. Queste tecniche
vengono applicate a un caso di ottimizzazione in cui la forma di una pala dell’elica viene modificata per ridurre
la firma del rumore in una singola posizione dell’osservatore mantenendo costante la spinta. Il framework pro-
posto riduce fortemente il livello medio di pressione sonora (SPL) per un microfono posizionato a una distanza
di dieci volte il raggi

Parole chiave: aeroacoustica, ottimizzazione, adjoint discreto, rumore di eliche
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