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Abstract

Expanded polymeric materials are of great importance in many
engineering applications. Despite this, as of today the development
of models able to describe their macroscopic mechanical behaviour
considering their actual microstructure is still an open challenge.

In the following study different image-based algorithms were de-
veloped, validated and optimized for microstructure characterization
and subsequent three-dimensional numerical mechanical simulations,
both linear and non-linear. Microstructure was investigated through
different algorithms, scalar and tensorial, to identify key parameters
able to describe the internal structure. Finite element simulations
were performed considering the real microstructure obtained from high-
resolution X-Ray computed tomography images through the application
of two different image-based approaches: a classical algorithm based
on Representative Volume Elements, aimed at modelling the linear
elastic behaviour of the material; a second novel approach aimed at
providing an efficient and powerful numerical tool to perform non-linear
simulations.

The application of algorithms for structure analysis and the image-
based approaches for mechanical finite element simulations led to the
identification of general relationships between expanded material mi-
crostructure and relevant macroscopic physical and mechanical prop-
erties, resulting in the formulation of a closed system of analytical
equations. This framework can serve as a tool to optimize foam mor-
phology and product final properties for widely different engineering
applications, simplifying and speeding up all the prototyping phase,
which usually turns out to be, from an industrial point of view, the
most expensive one in terms of time and cost.

Finally, the efficiency of the numerical tool designed for non-linear
mechanical simulations was analysed, opening new paths to simulations
and to the extension of analytical relationships between macroscopic
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mechanical parameters and microstructure quantities in the non-linear
mechanical regime.
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Sommario

I materiali polimerici espansi sono di grande importanza in molte
applicazioni ingegneristiche. Nonostante questo, ad oggi, lo sviluppo
di modelli in grado di descrivere il loro comportamento meccanico
macroscopico, considerando la loro microstruttura reale, è ancora una
sfida aperta.

Nel seguente studio sono stati sviluppati, validati e ottimizzati
diversi algoritmi basati su immagini per la caratterizzazione della mi-
crostruttura e le successive simulazioni meccaniche numeriche tridimen-
sionali, sia lineari che non lineari. La microstruttura è stata studiata at-
traverso diversi algoritmi, scalari e tensoriali, per identificare i parametri
chiave in grado di descrivere la struttura interna. Le simulazioni agli
elementi finiti sono state eseguite considerando la microstruttura reale
ottenuta da immagini di tomografia computerizzata a raggi X ad alta
risoluzione attraverso l’applicazione di due diversi approcci basati sulle
immagini: un algoritmo classico basato sul Volume Rappresentativo,
volto a modellare il comportamento elastico lineare del materiale ed
un secondo nuovo approccio volto a fornire uno strumento numerico
efficiente e potente per eseguire simulazioni non lineari.

L’applicazione di algoritmi per l’analisi della struttura e gli approcci
basati sulle immagini per le simulazioni meccaniche agli elementi finiti
hanno portato all’identificazione di relazioni generali tra la microstrut-
tura del materiale espanso e le relative proprietà fisiche e meccaniche
macroscopiche, portando alla formulazione di un sistema chiuso di
equazioni analitiche. Questa struttura può servire come strumento
per ottimizzare la morfologia della schiuma e le proprietà finali del
prodotto per applicazioni ingegneristiche molto diverse, semplificando e
velocizzando tutta la fase di prototipazione, che di solito risulta essere,
da un punto di vista industriale, la più onerosa in termini di tempo e
costi.

Infine, è stata analizzata l’efficienza dello strumento numerico pro-
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gettato per le simulazioni meccaniche non lineari, aprendo nuove strade
alle simulazioni e all’estensione delle relazioni analitiche tra i parametri
meccanici macroscopici e le quantità della microstruttura nel regime
meccanico non lineare.
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Chapter 1

Structure and aim of the
thesis

The work outlined in the following chapters of the present thesis is
mainly focused on the development, optimization and application of
different image-based algorithms whose main objectives are:

• to analyse the polymeric expanded materials internal microstruc-
ture and quantify different morpho-structural parameters able to
describe the structure in a synthetic form;

• to describe the peculiar macroscopic mechanical behaviour of this
particular category of materials through the application of finite
element analysis, incorporating the real microstructure of the
materials;

• to combine the information coming from both experimental me-
chanical tests and numerical simulations to understand the syn-
ergistic effects between microstructure and constituent material
mechanical behaviour, in both linear and non-linear regimes;

• to formulate simple analytical equations that relate macroscopic
mechanical parameters to microscopic morpho-structural char-
acteristics and constituent material mechanical parameters; to

1



Chapter 1. Structure and aim of the thesis

provide a rapid tool able to predict the mechanical behaviour
of expanded polymeric materials, avoiding large and expensive
experimental campaign.

The thesis is structured as follows:

• Chapter 2 : the state of the art on expanded polymeric materials
is presented; the main topics covered are: production technologies,
experimental characterization techniques employed by different
authors in the past decades and the main approaches adopted
in the literature to model the mechanical behaviour of expanded
polymeric materials in relation to their internal microstructure.

• Chapter 3 : the experimental methods adopted to characterize
the investigated materials are presented. Experimental methods
aim at the characterization of constituent material properties, in-
ternal microstructure of inspected material with the use of X-Ray
computed tomography and macroscopic mechanical behaviour.

• Chapter 4 : the main image-based numerical methods imple-
mented to analyse the set of images obtained through X-Ray
computed tomography are presented and their efficiency and ac-
curacy evaluated. The main results on structure analysis and
quantification of the related parameters are also presented.

• Chapter 5 : the first image-based approach aiming at performing
linear elastic finite element simulations is presented together with
the image pre-processing algorithms and results post-processing
homogenization scheme. Preliminary relationships between macro-
scopic elastic constants and morpho-structural parameters are
presented.

• Chapter 6 : exploiting the optimized procedure outlined in the
previous chapter, a methodology to study the influence of voids
morphology on the macroscopic mechanical response is proposed;

2



an ad-hoc algorithm is also developed to artificially stretch the
set of images along an arbitrary orthogonal direction to intensify
the effects of morphology variation on macroscopic mechanical
properties.

• Chapter 7 : all the results of finite element simulations are com-
bined and correlated to morpho-structural parameters, obtained
from images analysis, to formulate a closed system of analytical
equations useful to estimate the elastic constants necessary to
describe the macroscopic mechanical behaviour according to the
most suitable linear elastic constitutive law. The association be-
tween structural parameters and the most accurate linear elastic
constitutive behaviour is also proposed, exploiting the definition
of a newly proposed index of mechanical anisotropy combined
with structure tensorial information coming from image analysis.
Preliminary application of the formulated equations is also shown,
applied to a completely different commercially available material
with respect to the one used for model formulation.

• Chapter 8 : the second image-based approach is shown; this
method is developed with the main aim of providing a numerical
tool optimized to perform non-linear mechanical simulations con-
sidering the real microstructure of the inspected samples. The
model is validated through linear elastic finite element analy-
sis, performed in the small strain deformation range, providing
evidence of its efficiency and its ability to generate fictitious
structures not experimentally available. In the end preliminary
application to non-linear finite element simulations is shown.

• Chapter 9 : the main results achieved during this PhD thesis are
summarized and ideas for future developments of the work are
proposed.
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Chapter 2

Expanded polymeric
materials

In the following chapter, an overview of the world of expanded
polymeric materials will be given. The main fields of application will
be briefly described. Production processes and technologies together
with experimental characterization protocols will be summarized and
at last the main modelling approaches adopted in the last decades will
be considered and critically reviewed.
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Chapter 2. Expanded polymeric materials

2.1 Introduction

Expanded materials or equivalently called cellular solids acquired in
the last decades more and more importance in many fields of engineer-
ing applications due to their peculiar physical and chemical properties.
These properties arise from a synergic combination of intrinsic proper-
ties specific of the constituent materials and the geometry of the internal
structure [24]. The internal structure is a combination of struts, walls
and voids that is the result of different production processes and tech-
nologies, which may vary for different bulk materials [31]. Thanks to
the development of processing technologies [75], nowadays expanded
materials can be realised with almost all the materials classes available:
metals, ceramics, glasses and polymers.

Polymers are for sure the most used materials employed to realize
expanded systems due to their relatively easy processing conditions, in
terms of temperature and pressure, but also for their relatively high
permeability to gases when they are processed in the molten state.
More details about expanded polymeric materials will be given in the
next section.

The resulting expanded polymeric materials are commonly classified
in two categories according to their internal structure [44]:

• Open-cell system: when the system is constituted by an internal
structure where all the voids are interconnected, and the material
is organized in beam-like structures;

• Closed-cell system: in this case the voids are not interconnected,
and the material is organized in a complex combination of beam-
like and membrane-like structures. In this case, the macroscopic
properties of the system are given by a combination of intrinsic
properties that arise from the constituent material, the internal
structure and a small contribution coming from the gas trapped
inside the voids.

6



2.1. Introduction

Another general accepted classification of these systems is based
on the apparent density that these systems exhibit at the end of the
process:

• High-foaming system: when the foam apparent density is < 100
kg m−3; some examples of the materials belonging to this class
are: high-foamed polyethylene (PE) [70], polypropylene (PP) [11],
polystyrene (PS) [51] and polyurethane (PU) [8];

• Medium-foaming system: in this case the foam apparent density
is between 100 kg m−3 and 400 kg m−3; polyimide (PI) is one
example of the used polymers for this system case;

• Low-foaming system: the foam belongs to this category when
its apparent density is > 400 kg m−3; polystyrene (PS) [51] and
polypropylene (PP) [11] are two examples of polymers usually
foamed at this level of apparent density.

Besides the abovementioned classifications, the result of the foaming
process is in general a lightweight system, if compared to the constitu-
tive bulk polymer, that exhibits peculiar properties, mainly physical
properties, which allow the use of expanded polymeric materials in
many engineering application fields. The most common ones are:

• Acoustical insulation: the complex microstructure resulting from
the expansion phase can be exploited to properly tune the damp-
ing properties of the constituent material and moreover, exploiting
also the gas trapped inside closed cells, it is possible to enhance
the damping properties, resulting in a system suitable to cushion
the acoustic waves [77] [9] [68].

• Thermal insulation: exploiting the intrinsic very low thermal
conductivity of polymers and the low thermal conductivity of
the gas trapped inside the cells of the structure, it is possible to
obtain, as a result, one class of material exhibiting the lowest
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thermal conductivity among all the available classes of materials
[77].

• Structural applications: polymeric foams are widely employed as
a core material for sandwich panels used in structural applications
[30]. The main interest in the applications of such systems is
strictly linked to their lightweight and the mechanical properties at
small deformation which can be suitable provided with a proper
choice of the constituent polymer, such as semi-crystalline or
rigid amorphous polymers, and the optimization of the internal
structure obtained with the expansion process.

• Buoyancy applications: also, in this field the main characteristic
exploited is the lightweight of the expanded polymeric systems
with respect to bulk material and once again the performance of
the buoyance system is enhanced by the gas trapped in the closed
cells.

• Shock absorption applications: polymeric foams possess a peculiar
mechanical compression behaviour, characterized by a prominent
plateau, in which the stress remains almost constant over a wide
range of strain [71]. This characteristic allows them to absorb a
great amount of energy while limiting transferred stress levels to
low values [68]: this behaviour makes polymeric foams particularly
suited for packaging applications and protective devices [69].

• Tissue engineering applications: in recent years expanded poly-
meric systems have proven great efficiency in tissue engineering;
the peculiar morphologies of the obtained structures and the tune-
able mechanical properties [38] are exploited to build a skeleton
for cellular adhesion and proliferation with the aim of construct-
ing a favourable environment for tissue regeneration [49]. The
systems mainly used in this field of application are biodegrad-
able and non-cytotoxic systems, commonly polylactic acid (PLA),
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polyglycolic acid (PGA), polycaprolactone (PCL) and others [22].

Other minor fields of application can be summarized as follows [36]:

• Filtering systems: these kind of systems are realized for both
liquids and gases. In the case of gas filtering the selective perme-
ability of a given polymer to different gases in closed-cell systems
is exploited, while for liquid filtering systems the tortuosity and
the surface tension of open-cell systems are exploited to clear
liquids from different impurities.

• Electrical insulations: in this application, as already pointed out
in the thermal insulation case, the intrinsic electrical insulator
property of the polymer is exploited and enhanced by the very low
electrical conductivity of the gas trapped inside the closed-cells.

• Other applications:

– Flame-retardant systems;

– Water-repellent membranes;

Among the large number of expanded polymeric systems available,
the most commonly used materials can be summarized as follows,
together with their main field of application:

• Expanded polystyrene (ePS): surely is the most commonly used
expanded polymeric system, due to its relatively easy process-
ability and the very low cost of production. It is widely used in
the realization of insulator systems, both acoustic and thermal,
as a core panel in composite systems for structural application,
but, above all, due to its great capability of absorbing energy [50]
[51] [52], it is widely used in packaging applications and in sport
equipment, such as helmets [1]. Minor applications can be found
in buoyancy field.
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• Polyurethane (PU): these systems, both rigid and flexible, are
commonly used in acoustic and thermal insulation, packaging and
sports equipment [8]. In recent years PU systems were produced
also in the form of auxetic structures enhancing more and more
the energy absorption capability of the expanded systems [56]
[79] [13].

• Expanded polypropylene (ePP): since polypropylene is a semi-
crystalline polymer and hence provide suitable mechanical prop-
erties, its expanded form is widely exploited in structural applica-
tions and in energy absorbing ones [1] [30] [58].

• Polyethylene terephthalate (PET): also in this case the semi-
crystalline nature and related mechanical properties are exploited,
in the expanded system, for structural applications [46].

• Polyvinylchloride (PVC): this material, due to its relatively easy
foamability and hence a relatively easy tuneable internal mi-
crostructure, is widely applied in acoustic insulation field [77].

All the above-mentioned applications are made possible thanks to
the development of different production technologies that will be shortly
summarized in the next section. A few innovative technologies will
be presented together with the classic and well-established production
techniques developed in the past decades. These new techniques allow
the development of new expanded polymeric systems, such as auxetic
ones [79], systems presenting gradient morphologies and the so-called
custom-made systems which can potentially further enlarge the range of
applications in which expanded polymeric materials have great success.
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2.2 Production technologies

Among the different available production technologies that may dif-
fer in some practical aspects, including the mechanical process selected
or the blowing agent adopted, the classical foaming process can be
easily divided into three main steps [36]:

1. Nucleation phase (cell formation): in this step a blowing agent
or a gas is added to the polymer in its molten state under a
certain condition of pressure and temperature. The blowing agent
diffuses into the molten polymer, in the case of gas addition, or a
large amount of gas is produced because of a chemical reaction
leading to a polymer/gas solution system. Once the system is
saturated, the gas begins to flow away from the solution starting
the nucleation of the voids [86].

2. Cell growth: thanks to the local pressure gradient between cell
nuclei and the surrounded molten polymer, the cells can expand.
The pressure of the gas inside the nucleus is inversely propor-
tional to the cell diameter. The cells grow independently one
from another until the pressure of neighbouring nuclei interfere.
If two or more cells of equivalent size enter in contact, pressure
equilibrium stabilizes the voids, instead, if smaller cells are over-
whelmed by larger ones, the cells merge generating a larger void.
This phenomenon leads to the generation of a large number of
cells of different sizes and morphologies [15].

3. Cell stabilization: because of cell nucleation and consequent
growth, the surface area and volume of the system continuously
increase stretching the cell walls. The process is stopped before
an unstable level of pressure is reached; at that time the system
is frozen and the gas-polymer system is reversed toward a stable
condition. Lowering the temperature, the gas does not expand
anymore and the polymer returns into a solid state. Stabilization
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in the molten state is usually enhanced with the addition of
surfactants to the molten polymer [74].

Figure 2.1 represents a general scheme of the polymer foaming
process.

Figure 2.1: Generalized scheme representing the main physical steps in-
volved in the foaming process; figure freely adapted from [36].

Apart from the main physical steps that occur during polymeric
foam production processes, the production technologies can be classified
according to the way the blowing agent is added to the system and
the nature of the agent itself. The main categories reported in the
literature can be summarized as follows:

• Mechanical foaming: the blowing agent is incorporated by me-
chanical means (e.g. by stirring) into the liquid or molten state
polymer. This foaming technique exhibits the main advantage of
excluding any chemical reaction inside the polymer, thus avoiding
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the use of potentially toxic agents and excluding the presence of
unreacted polymer in the final product. One of the main disad-
vantages is that large equipment may be required to incorporate
the gas into the system, depending on the final product size.

• Physical foaming: all the systems that require the mixing of a low
boiling point liquid and a polymer belong to this category; this
process requires the mixing of the aforementioned components
and the foaming process is then induced with pressurization and
heating of the system. Figure 2.2 shows a simplified production
scheme of the physical foaming process. Similar advantages with
respect to mechanical foaming can be highlighted, first of all
the use of non-toxic blowing agents (e.g. carbon dioxide and
nitrogen) and the absence of chemical reactions ensuring the
absence of residual blowing agent in the final product and a very
low interaction between the polymeric system and the blowing
agent itself; in most cases the blowing agent does not significantly
modify the polymer chemistry and the final physical properties
of the system. The main disadvantage is once again the need of a
large equipment for the production at an industrial level [13].

• Chemical foaming: two main processes employed to produce
foams belong to this category; the first one implies the use of a
blowing agent that is once again added to the molten or liquid
state polymer and through its chemical decomposition the gas
is released; once the gas is released through the application of
pressure and temperature the foaming process is carried on. The
second system exploits a chemical reaction between two polymers
with the consequent release of gas that acts as the blowing agent.
The main advantages of these systems are that the reactions
occur into specific ranges of temperature and pressure, with a
finer control over processing conditions, and that no particular
equipment is required to complete the foaming process. The main
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Figure 2.2: Schematic representation of physical foaming process; figure
freely adapted from [36].

disadvantage is the use of chemical reactions that could occur in
a non-homogeneous way across the mould, giving as a result a
final product with some unreacted polymer or unfoamed product.
This can compromise the final desired properties of the foam.

From an industrial point of view the previously described foaming
methods can be applied in conjunction to well-established forming
processes; the typically employed ones are:

• Extrusion moulding: generally, a polymer or polymer blend is
introduced in the hopper of the extruder and processed with ade-
quate conditions in terms of temperature, pressure, screw speed
and so on [89]. At a certain position along the barrel a super-
critical fluid, usually carbon dioxide or nitrogen, is introduced
and dissolved into the polymer melt, decreasing its viscosity. The
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control of temperature and external pressure after the superfluid
is dissolved into the polymer melt, makes it possible to obtain
the desired foam [39].

• Injection moulding: a similar process is adopted in this case; a
polymer or polymer blend is processed with specific parameters of
injection temperature, injection pressure, mould temperature and
so on. A supercritical fluid is added and quickly dissolved into the
molten polymer to obtain a gas/polymer solution. The solution is
then injected into the mould experiencing a rapid pressure drop
that causes a homogeneous or heterogeneous cell nucleation and
consequent cell growth [7]. The final expanded system is thus
strongly influenced by the properties of the molten polymer and
the supercritical fluid (including its diffusivity within the molten
polymer), the actual processing conditions and mould design [91].

Using these well-established processing technologies, different poly-
meric systems with a sufficiently homogeneous internal structure can
be foamed at an industrial level with an adequate control of the process
parameters. The main expanded polymeric systems can be classified as
follows:

• Thermosetting resins: these materials are usually foamed through
a chemical process, since they are available in a liquid state as two
separate components that react together [6]. The main systems
used are epoxy or phenolic resins [47], polyester and polyurethane
(PU) [21].

• Thermoplastic polymers: usually foamed with a physical process,
since at a sufficiently high temperature they behave like a vis-
cous fluid [93]. The most used polymers are polyethylene (PE),
polypropylene (PP) [90], polystyrene (PS) [85], polyvinylchloride
(PVC) and poly(methyl methacrylate) (PMMA) [62].
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• Rubbers: these polymers are foamed with physical or mechanical
foaming process [5]. An example of foamed rubber are silicone rub-
ber, natural rubber (NR) [32], ethylene-propylene diene monomer
rubber (EPDM) [53] and styrene-butadiene rubber (SBR) [34].

Besides well-established technologies that allow to obtain expanded
polymeric materials characterized by a homogeneous internal microstruc-
ture, in recent years new technologies were proposed at the research
level to obtain heterogeneous foams, in terms both of cell structure and
constituent materials [95].

Many researchers proposed the use of 3D printing technologies to
produce cellular structures with optimized and regular geometries. This
procedure found a large application in custom-made products in many
fields of applications, from biomedical to aerospace engineering, but
also in rapid prototyping, when the optimized structure under design
needs to be validated experimentally [40].

Other authors recently proposed an enhanced physical foaming
method based on the precise control of the supercritical fluid concen-
tration profile inside the molten polymer; a specific boundary pressure
profile, variable in time, is applied to obtain a controlled heterogeneous
morphology within a single expanded product. This allows to properly
tune the macroscopic properties of the foam by adjusting the distribu-
tion of properties at a local level in accordance with the morphology of
a specific region [88].

Another relatively recent technology, mainly regarding PU systems,
allows the production of auxetic structures [79]. Auxetic structures
have the peculiar characteristic to increase their size in all directions
when stretched along a single one, as opposed to conventional materials
which exhibit a lateral contraction [18] [56]. This kind of structures and
their peculiar characteristics greatly enrich the possible applications of
expanded polymeric materials, in particular for applications in which
energy absorption is essential (i.e. protective devices or packaging) [76].

Last but not least, many authors tried to introduce controlled
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heterogeneities in the produced expanded polymeric materials acting not
only on the structure but also on the constituent material, introducing
a certain degree of anisotropy with the addition of micro-fillers [28] [61]
[95].

Given the variety of available technologies and polymeric systems,
each characterised by its own peculiar physical properties, the exper-
imental characterisation of these systems acts as a fundamental step
between their production and real-life use. In the past decades, strong
efforts have been made by many authors to fill the gap between produc-
tion and applications. The main experimental methods developed all
share the common aim of relating the measured macroscopic physical
properties to the internal structure of the foam [67]. In the next section
the main approaches and related empirical models will be discussed with
a particular focus on the mechanical properties exhibited by expanded
polymeric materials, which is one of the main aspects considered in the
present thesis.
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2.3 Experimental mechanical characteri-
zation

Polymeric expanded materials, as reported in previous paragraphs,
exhibit many peculiar physical properties, whether they be mechanical,
thermal, electrical or others; it is widely reported in the literature
that the exhibited macroscopic properties are always the result of a
synergic combination between the geometrical structure, strictly linked
to the production technology adopted, and the properties related to
the constituent material chosen for the manufacturing of the expanded
material [24]. Many authors developed different experimental methods
in the past decades to demonstrate this synergistic contribution to the
overall macroscopic behaviour.

In the present work the attention will be focused on the macroscopic
mechanical behaviour of expanded polymeric materials. Figure 2.3
qualitatively shows the characteristic uniaxial compressive behaviour of
this class of material [24]. This curve is commonly divided into three
main regions [26] [25] [1]:

I Elastic region: also called low-strain region; in this range the ma-
terial exhibits a linear or quasi-linear mechanical behaviour up to
a certain stress level where the structure begins to collapse. The
extent of this region is strictly related to the constituent material,
but is commonly exhibited in the range within 0 % and 5 % of
compressive strain for the majority of polymeric expanded mate-
rials. This range is exploited in practical applications mainly for
thermal insulation, acoustic damping and structural applications,
where the foam typically acts as a core in composite sandwich
panels. From a mechanical point of view, the tuneable apparent
stiffness of the structure and the almost completely elastic and
thus, recoverable strains and stresses, are exploited [26].

II Collapse region: also called plateau region, in this region expanded
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polymeric materials display their maximum energy absorption ca-
pability, since the strain increases at an almost constant stress
value. This next-to-ideal macroscopic response is strictly related
to an internal progressive collapse of the voids [25]. The micro-
scopic bending of the foam structures, including cell walls in case
of closed-cell systems, are mainly responsible of this peculiar de-
formation behaviour [45]. A proper use of this region allows to
design expanded materials for energy absorption applications, such
as sports equipment and packaging [1].

III Densification region: the third region begins when all the internal
structures are collapsed and cell walls enter in contact with each
other. This region is characterized by a steep increase in the stress
level with small increases in strain. Since the effect of the internal
structure is negligible in this region, many authors assume, as a
first approximation, the compressive behaviour approaching that of
the bulk constituent material. This region is not fully exploited in
practical applications since the original internal structure becomes
not relevant to the macroscopic response and the energy absorption
properties become that of the constituent material [55]. Research
interests lie in the determination of the onset of this region, with
the aim of maximizing the previous high-absorption region [12].

The macroscopic compressive behaviour displayed by polymeric
foams has been widely reported by many authors also in other simple
stress states, above all simple shear tests [59] [63]. Also, in this configu-
ration, the microscopic deformation mechanisms contribute to a similar
macroscopic mechanical response characterized by the above described
regions [51] [52]. One simple stress state in which the overall mechanical
response exhibits a different trend is uniaxial tension; in this case the
stress versus strain curve is characterized by an elastic region, similar
to the one depicted in figure 2.3, followed by a progressive damage and
failure of the material [29]. The plateau region is completely absent,
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Figure 2.3: Qualitative uniaxial compressive behaviour of expanded poly-
meric materials.

except for elastomeric foams, but even if present, it is strictly related
to the intrinsic mechanical behaviour of the constituent material and it
is not caused by a progressive collapse of the internal structure like in
other stress states. This is the main reason why expanded materials
are mainly used and designed in compression rather than tension [58].

Since the structure gives a fundamental contribution to the macro-
scopic mechanical response for this class of materials, a great effort in
the recent scientific literature has been devoted to develop experimental
methods (and the related equipment) capable of inspecting the geometri-
cal structure of the foams and its evolution following deformation. This
second aspect is of great importance to correlate microscopic deforma-
tion mechanisms with the macroscopic mechanical behaviour [16] [17].
The experiments are made possible thanks to the development of new
technologies capable of accurately measure strain distribution in the
tested samples. Many authors proposed the application of digital image
correlation (DIC) [8], bidimensional or three-dimensional correlation
[37], in order to achieve this goal. The technique consists in recording
with one or more cameras the sample that undergoes the mechanical
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test, appropriately covered with a suitable pattern or exploiting the
intrinsic pattern given by the structure of the material when afford-
able, and evaluate the deformations by correlating the evolution of the
recorded images with respect to the reference one, representing the
undeformed state. With this kind of tests, localizations on the strain
field within the sample can be detected to highlight local structure
collapse and structure bending [37].

Other authors proposed the use of in-situ scanning electron mi-
croscopy (SEM) [66], confocal microscopy [2] or X-Ray computed to-
mography (CT) [83] to quantify structure deformation at the microscop-
ical level in a total three-dimensional view, obtaining a more realistic
picture of the internal structure during the test [56] [20]. The methods
consist in compressing at a certain level of strain the specimen under
test and then, keeping the strain level constant, performing a recon-
struction of the structure using one of the aforementioned techniques.
Unfortunately, these methods are very expensive in terms of test dura-
tion and equipment costs and frequently collide with the viscoelastic
nature of the constituent polymers. In fact, the image acquisition time
is usually incompatible with the characteristic time of the material
under test and so the structure continuously modifies during the step of
three-dimensional structure inspection, unless very long resting times
are provided after each compression step [15].

Besides the fundamental contribution of the internal structure to
the macroscopic mechanical response, other physical aspects, intrinsic
of the nature of constituent material, have been considered over the
years. One above all is the viscoelastic nature of polymeric materials,
which plays a fundamental role also in the mechanical response of
expanded material [87]. As an example, many authors reported the
preserved dependence of the mechanical response on the test velocity
and consequently on the strain rate, or stress rate, applied during the
test [92]. This dependence is in any case different from the one measured
on the bulk constituent polymer since during the foaming process the
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polymer is highly oriented in the micro-structure and consequently the
free volume and chain mobility, two of the main factors responsible
for the viscoelastic nature of polymers, are modified. Another aspect
widely studied in the literature is the dependence of the mechanical
response on the temperature, which again strongly influences material
viscoelasticity [45]. Related to these aspects different techniques were
exploited in the past years, such as impact testing, performed to cover a
wide range of test speeds, or the integration of environmental chambers
able to control temperature and humidity. Many authors also combined
these experimental techniques with the imaging techniques previously
described [77].

The last aspect, always related to the viscoelastic nature of poly-
meric materials, faced by many authors in the past decades is the
aforementioned effect of foaming process on the constituent material
properties [10] [94]. This is another fundamental factor that, together
with the foam structure, contributes to the macroscopic mechanical
behaviour [81]. The main experimental approach adopted consists
in studying the effect of the process variables, mainly temperature
and pressure, on the employed polymer and try to apply the modified
behaviour to describe the contribution of the constituent polymer on
the overall mechanical response [96]. This indirect approach is mainly
motivated by the fact that once the polymer is foamed it is practi-
cally impossible to characterize a single structure with conventional
experimental tests, due to the small characteristic dimensions, in the
order of few microns, of the internal structures of the foam. Recently
some author proposed the use of nanoindentation to characterize the
constituent material and through the application of suitable homoge-
nization models obtain the macroscopic constituent material behaviour
[84]. This approach turned out to be suitable for expanded materials
whose constituent material belongs to the family of metals or ceramic,
but in case of polymers many challenges still need to be overcome.
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Empirical models

One of the main outcome of the researches developed in the past
years and described in previous paragraphs, is the development of some
empirical models that correlate structural parameters, suitable for the
description of the internal microstructure, with selected macroscopic
mechanical properties exhibited by polymeric foams; amongst them, the
apparent stiffness, the stress and related strain plateau value, the depen-
dence on the applied strain or stress rate, the densification stress onset
and related strain and many others. The common approach followed in
this category of models consists in the research of correlations between
structural and global parameters suitable to describe the macroscopic
mechanical response. These empirical correlations are always dependent
on a certain number of constants that are usually determined through
a suitable fitting procedure performed on experimental data, coming
from laboratory tests. The determination of these constants for the
specific system under study allows the generalization and application
of the empirical relation to the specific expanded polymeric material.

One of the most famous sets of equations, constituting an empirical
model, is the one proposed by Gibson and Ashby in their masterpiece
“Cellular solid” [24]; in their book the authors summarized a huge
number of experimental data obtained on different expanded polymeric
systems. Their characterization regarded both structure and mechanical
tests. For what concerns the structure they propose a description based
on some concentrated parameters, such as the apparent foam density,
the mean structure thickness, the wall thickness in the case of closed-
cell systems, the internal microstructure of foams. The mechanical
properties are summarized through the usual quantities applied in
the description of bulk material mechanical behaviour, but with the
meaning of apparent quantities. Through the application of dimensional
analysis, they established some empirical relationships that correlate
internal structure and bulk material properties with the macroscopic
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ones. Here a couple of examples are reported:

E∗

ES

= C1 ϕ2
(

ρ∗

ρS

)2

+ C2 (1 − ϕ) ρ∗

ρS

+ C3
p0 (1 − 2ν∗)
Es (1 − ρ∗

ρS
)

(2.1)

in this equation, developed to describe the apparent stiffness (E∗) of
closed-cell foams, its value is normalized to the stiffness of constituent
material (ES) and empirically related to structure parameters such as
the solid volume fraction (ϕ) and the apparent density (ρ∗), once again
normalized to the bulk density (ρS). All the quantities are linked with
three constants (C1, C2 and C3) that have to be determined by fitting
experimental data. Another reported example concerns the plateau
stress value for closed-cell systems:
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) 3
2
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+ D3
p0 − pat
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(2.2)

also, in this example the quantities related to the foam structure
are linked to the mechanical parameters, plateau stress (σ∗

pl) and the
yielding stress of constituent material (σy, S), with three empirical
constants (D1, D2 and D3) that can be determined by data fitting.

Another example of empirical model is the one proposed by Nagy
and co-authors [60] and successfully applied in many experimental
works [80]. The construction procedure is similar to the one employed
by Ashby and it aims at the description of strain rate dependence of
polymeric foams. Also in this case the authors performed an extended
experimental campaign of mechanical characterization at different strain
rates on different polymeric systems and, exploiting all the obtained
data, they identified an empirical relation:

σ (ε) = σ0 (ε)
(

ε̇

ε̇0

)n(ε)
(2.3)

In this case σ0(ε) represents the material stress-strain behaviour in
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a reference strain rate (ε̇0) and the exponent n(ε) determines the
dependence of the overall stress-strain curve on the strain rate. Nagy
and co-authors found that this exponent exhibits a linear dependence
on the actual level of strain. The main drawback also in this case
is the dependence of the model on the specific tested system and its
application requires a large amount of experimental data in order to
perform fitting operations and to compute relevant model parameters.

Other empirical approaches consist in the definition of a single scalar
parameter, also called synthetic parameter, or a curve able to describe
a particular aspect of the mechanical response of expanded polymeric
materials. Some examples are:

• Cushioning factor : a method to visualize in a more direct way
the energy absorption of expanded polymeric materials plotting
the peak stress normalized to the absorbed energy with respect
to the stress level itself [64].

• Janssen factor : relates the impact peak deceleration, measured
during an experimental impact test, to the theoretical value of
an ideal foam that is capable to absorb all the nominal impact
energy at constant deceleration [3]. The factor is usually plotted
as a function of specific absorbed energy (energy absorbed per
unit volume) [72].

• Rusch diagram: these are refined approaches with respect to the
cushion factor that consist in plotting the normalized peak stress,
with respect to foam apparent stiffness, as a function of specific
absorbed energy [72].

• Maiti diagram: is considered the ultimate refinement of Rusch
approach in which the energy per unit volume is plotted against
the actual stress level, both quantities normalized with respect
to foam apparent stiffness. This procedure repeated for different
apparent densities of the same polymeric system, allows the
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construction of an envelope curve, corresponding to the different
densification onset, that can be used to select the proper foam
density for a certain application [55].

Besides the variable level of complexity of empirical models, the
approach with which they are constructed mainly suffer from the large
amount of experimental data necessary to properly tune the parameters
of the model and the high dependency on the specific system under
design. These are some of the many reasons that led many authors in
the past years to look for more general approaches to develop numerical
tools that would more effectively guide the development of expanded
systems and design of new products that incorporate these kind of
materials. The main approaches adopted will be discussed in the next
section.
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2.4 Modelling approaches

Many authors in the past years researched models of general validity,
independent from the specific system under study for what concerns
structure contribution; the ability to suitably describe and predict me-
chanical behaviour of expanded polymeric materials is of great interest
in view of the wide range of engineering applications in which these
systems are employed and also, within a given field of application, the
different working conditions in which they could be exploited. These
numerical models are for sure powerful tools during the design phase
of new expanded polymeric system or the development of new devices
or components that incorporate these systems. They also facilitate the
optimization phase of new devices reducing the mandatory prototyp-
ing step that usually involves extended and expensive experimental
characterization studies [19].

The general approach adopted in these models differs from empirical
ones since few systems are selected and subjected to a thorough study
in order to obtain general laws suitable to describe the largest number
of possible different systems. The main goal of these models is to
fully understand the synergic contribution of microscopic structure and
constituent material behaviour to the macroscopic one.

Among the large number of models proposed by many authors in
the past decades, three main categories can be distinguished based on
the theoretical approach adopted:

• Analytical models

• Voronoi tessellation models

• Image-based models

These three categories will be briefly summarized in the next sections
and the most popular models reported in literature will be described
as examples.
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2.4.1 Analytical models

The main hypothesis underlying this kind of approach is the as-
sumption of a regular internal structure of the expanded material, with
a spatial repetition of a regular solid or of a combination of them.
The regular solid is usually referred to as the unit cell [24]. Figure
2.4 summarizes the main regular solids adopted in the past decades
to describe the internal structure of the foams [27]. Once the proper
polyhedron is selected it is considered like a structure made of beams
or beams and membranes in the case of closed-cell systems. Through
the application of the classic elastic theory or, as an alternative, the
virtual work principle, it is possible to analyse the structure under
simple load conditions and to obtain closed relationships that correlate
the elastic constants that describe the beam linear elastic behaviour
and the characteristic geometrical dimensions of the chosen solid [82].
This turns out to be an advantageous approach since it always gives
closed analytical relationships between geometry and constituent mate-
rial, with constant coefficients that can be computed from geometrical
considerations, strictly related on the characteristic lengths of the solid
chosen, and therefore no extended experimental tests and consequent
fitting is required like in an empirical model. Some authors also exploit
this approach trying to derive some closed relationships also in the
case of non-linear mechanical behaviour of both the structure and its
constituent material [33].

The main disadvantage of this approach is that the real structure of
expanded materials is oversimplified; the regular polyhedrons are not
suitable to reproduce the complexity of real structures and implicitly
neglect many irregularities that occur in real samples, and play an
essential role in determining their properties [96] [99]. This usually
leads to a closed relationship that overestimates the real response of
expanded materials in terms of apparent moduli and strength. Another
drawback of this kind of model lies in the fact that closed analytical
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Figure 2.4: Three-dimensional polyhedral cells commonly used to represent
the internal structure of expanded polymeric materials; in order
a) tetrahedron, b) triangular prism, c) rectangular prism, d)
hexagonal prism, e) octahedron, f) rhombic dodecahedron,
g) pentagonal dodecahedron, h) tetrakaidekahedron and i)
icosahedron. Image freely adapted from [24].

relationships are derivable only in the simple case of loading conditions
linked with properly defined boundary conditions (symmetry or periodic
ones are usually selected); these relationships are obtained almost always
under the strong hypothesis of a homogeneous linear elastic constituent
material. Only few analytical solutions are available for the case of
non-elastic constituent materials [48].

In the following paragraph the two most famous and widely used
models will be briefly summarized. For a complete model derivation
please refer to the referenced works [24] [97].

Ashby hexahedral unit cell

Ashby model [24] assumes a hexahedral structure as a unit cell
suitable to represent the internal structure of expanded materials. Two
cases can be distinguished, as reported in figure 2.5: one represents
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open-cell systems, with beam-like structures, and one for closed-cell
systems, where additionally to beams also membrane elements are
employed to describe the structure. The characteristic lengths of the
unit cell selected are the length of the beam and its thickness, while
in addition for closed-cell systems membrane thickness is added as a
characteristic length.

(a) Ashby hexahedral open cell (b) Ashby hexahedral closed cell

Figure 2.5: Ashby hexahedral unit cell used to skeletonize the internal
structure of expanded polymeric materials; open-cell systems
(right) and closed-cell systems (left). Image freely adapted
from [24].

Through the application of linear elastic beam-membranes theory
and under the hypothesis of homogeneous linear elastic constituent
material, the structure behaviour is analytically computed. The sim-
ple applied load condition is uniaxial compression. The relationships
obtained are outlined in equations 2.4 - 2.5:

Open-cell 
E∗

ES
≈
(

ρ∗

ρS

)2

ρ∗

ρS
≈
(

te

l

)2
(2.4)
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Closed-cell
E∗

ES
≈ ϕ2

(
ρ∗

ρS

)2
+ (1 − ϕ) ρ∗

ρS
+ p0 (1−2ν∗)

ES (1− ρ∗
ρS

)

ρ∗

ρS
≈ 1.2

(
t2
e

l2 + 0.7 tf

l

) (2.5)

where ρ∗ is the apparent density of the foam, ρS is the density of bulk
constituent material, E∗ is the apparent modulus of the foam and ES

is the Young modulus of the constituent material; ϕ is the solid volume
fraction, te is the beam thickness, tf is the wall (membrane) thickness
and l is the beam length. p0 is the pressure of the fluid inside the
closed-cell and ν∗ is the apparent Poisson’s ratio of the foam.

Closed relationships can be obtained only through simplified ge-
ometrical considerations; they uniquely relate microscopic structure
parameters and macroscopic mechanical parameters.

Besides linear elastic solutions, Ashby is one of the authors that
proposed closed solutions also for non-linear mechanical behaviour of
foams; his studies range from elastic buckling to plastic collapse and
densification. The other main aspect faced by the author is the induced
anisotropy in the foam structure and its effect on the macroscopic
mechanical response. This last aspect will be dealt with in later chapters
of this thesis.

Zhu tetrakaidekahedral unit cell

The other main analytical model widely used by many authors in
the past decades is the one proposed by Zhu [97]. The theoretical
background and mathematical approach are the same proposed by
Ashby and all the other authors that follow the road of analytical
models.

In this case, the chosen polyhedron is the tetrakaidekahedron, se-
lected according to lord Kelvin studies and mathematical demonstra-
tions, being the polyhedron that better optimizes the occupation of a
certain prescribed volume in space and the ideal spatial configuration,
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among the approximately 1.5 ∗ 109 possibilities, is the one reported in
figure 2.6.

Figure 2.6: Zhu unit cell, composed of three tetrakaidekahedrons arranged
in space in the configuration that best optimize the occupied
volume. Image freely adapted from [97].

The relationships outlined in equations 2.6 - 2.7 describe the appar-
ent stiffness along the macroscopically uniaxial compression direction
and the apparent shear stiffness in the cross-sectional plane with respect
to the load application direction:

1
EZ

= 1
6
√

2

(
12L2

ESA
+ L4

ESI

)
(2.6)

1
GXY

= 2
√

2L2

ESA
+

√
2L4

6ESI

(8ESI + GSJ

5ESI + GSJ

)
(2.7)

in this relationship the Young modulus (EZ) and shear modulus (GXY )
of the foam are related to the equivalent mechanical constant of the
constituent material (ES and GS) through geometrical parameters such
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as the cell edge length (L), the cross-sectional area of the unit-cell (A),
the second moment of inertia (I) and the polar moment of inertia (J).

Zhu, like Ashby, proposed a refinement of the model including geo-
metrical anisotropy and non-linear aspects of the mechanical behaviour
[82].

2.4.2 Voronoi tessellation

This kind of approach is mainly based on classical voids nucleation
theory of foaming processes; for the sake of brevity the nucleation
theory is not reported, but interested readers are addressed to the
relevant scientific literature [42] [41]. Nucleation theory serves as a
basis to generate a certain number of randomly distributed structures
that occupy a certain volume in three-dimensional models or a certain
area in bidimensional models [78]. Figure 2.7 and 2.8 display a couple of
examples of the structures generated with nucleation theory approach.

(a) Bidimensional example of regular
Voronoi tessellation

(b) Bidimensional example of irregu-
lar Voronoi tessellation

Figure 2.7: Examples of bidimensional Voronoi tessellation. Image freely
adapted from [100].

These random structures serve as a basis for numerical simulations in
order to compute the macroscopic properties exhibited by the inspected
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Figure 2.8: Three-dimensional examples of Voronoi tessellation. Image
freely adapted from [44].

structure [98].
The main advantage of this approach is the possibility to generate a

large number of different structures constituted by an adequate number
of cells in order to perform a statistical analysis on the macroscopic
properties as a function of small variations in the microstructure or on
the properties of the constituent material. This approach also allows
to perform parametric studies changing one variable at a time and
studying the consequent effect on the macroscopic property of interest.
Different studies were performed in the past decades with the aim of
studying the effect of cell geometrical irregularities or the presence of
defects inside the structure [100].

The main drawbacks of this approach can be summarized as follows
[78]:

• A large number of cells has to be generated in order to have a
sample representative of the real behaviour of expanded materials.
Usually this collides with the available numerical resources and
related time request to perform simulations. This is a crucial
aspect that the present approach has in common with image-based
approaches; suitable numerical solutions has to be implemented
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to optimize the available numerical resources and to obtain results
in a reasonable amount of time.

• The structures generated are generally unrelated to the real ones
since they are based on classical nucleation theory; real foaming
process typically divert from this theory in a sensible manner and
hence the synthetic structures do not correspond to the real ones.

• Generally speaking, bidimensional Voronoi tessellation cannot
be used to represent real structures, since it neglects mecha-
nisms and cell interactions that occur in laboratory test on a
three-dimensional sample. They are certainly cheaper from a
computational point of view, in terms of time and numerical
resources, but give an unacceptable overestimation of the me-
chanical properties obtained and so they are not suitable tools to
describe and predict the real behaviour of expanded materials.

2.4.3 Image-based models

The third approach presented became available in recent years
thanks to the development of new experimental techniques able to
inspect the real geometry of expanded polymeric materials with a
sufficiently high resolution [57]. The main step performed in the present
approach is the acquisition of the real geometry, usually as a set of
digital images, and convert this information into numerical tools, such
as finite element mesh, finite volume or voxel volume elements and level
sets elements, to perform numerical simulations considering the real
structure experimentally inspected [54].

Among the different imaging techniques, the most frequently used
are X-Ray computed tomography (CT), synchrotron computed tomog-
raphy or solid state nuclear magnetic resonance (ss-NMR) which are
techniques able to inspect from a three-dimensional perspective the
internal microscopic structure [43]. Figure 2.9 displays an example of
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converted images into a finite element mesh; the preservation of the
real structure is clearly visible in the reconstruction. Many authors
exploit also bidimensional imaging techniques, such as scanning electron
microscopy (SEM), optical or confocal microscopy and transmission
electron microscopy (TEM) performing the imaging procedure on dif-
ferent slices of sample adequately prepared, usually with the use of a
microtome [14].

Figure 2.9: Reconstruction of two open-cell polyurethane foams starting
from a set of images representing the internal structure ob-
tained with high-resolution X-ray computed tomography. Im-
age freely adapted from [12].

The main advantage of this method is the absence of any simplifying
hypothesis made on the structure [12], since the real one is directly
considered without neglecting any possible defect coming from the
foaming process or the necessity to a priori distinguish between open-
cell or closed-cell systems [65].

The main drawbacks are, from an experimental point of view, the
very long time of image acquisition required and the small volume that
could be inspected without decreasing too much the resolution, with
the actually available technologies. From a computational point of view,
the difficulties arise from the large amount of data generated during
the image acquisition phase and the vast numerical resources, in terms
of computational power and time, required to perform analysis on a
reconstructed volume representative of the real samples [73] [54] [4].
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Authors during the past years proposed different solutions to reduce
the physical resources required and simulation time without losing too
much in terms of accuracy and efficiency. Some author proposed the
use of bidimensional images to compute quantities representative of the
three-dimensional inspected structure and to model the macroscopic
mechanical response, but this turned out to be an excessive simplifica-
tion since the deformation mechanisms experienced by the expanded
material in a bidimensional simulation are not representative of the
real three-dimensional ones, as already pointed out in the Voronoi
tessellation section [92]. These simulations give as a result an excessive
overestimation of the mechanical properties with respect to the real
behaviour of the expanded material. Other authors proposed the use
of simplified elements, such as Timoshenko beams, collapsing each
structure into its inertial axis [35]. This solution surely reduces the
simulation time and resources required, but once again gives as a result
an overestimation of the real behaviour, since simplified elements are
characterized by fewer degrees of freedom with respect to standard solid
elements and hence the deformation mechanisms are over constrained.
Another approach proposed in literature is the use of suitable homoge-
nization schemes to obtain the macroscopic properties starting from a
simulated sub-domain, that usually requires a limited computational
effort; this approach is suitable but with many different approximations
since the structures of real foams are characterized by a very limited
degree of geometrical regularity; yet, this is one of the most promising
approaches in this field [23].

Despite the many highlighted drawbacks, this kind of modelling
approach is the most promising one in the field of polymeric foams
properties modelling. Since it is relatively new, many challenges are still
to be overcome and many complementary tools have to be developed
or optimized yet.

In the present thesis the image-based approach has been selected;
numerical tools have been developed and macroscopic constitutive
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relationships been sought to reliably and efficiently describe and predict
expanded polymeric materials behaviour.
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Chapter 3

Experimental
characterization

In the following chapter the materials, the experimental techniques
and related methods selected will be outlined. Basic correlations be-
tween macroscopic mechanical behaviour and morpho-structural char-
acteristics will be presented and will serve as a basis for the analysis
proposed in the next chapters. The results obtained using different ex-
perimental techniques will be used in future chapters to justify various
numerical assumptions and hypothesis, and will be used as a funda-
mental tool to prove the validity and accuracy of the numerical models
developed.

57



Chapter 3. Experimental characterization

3.1 Materials

The expanded polymeric system selected is a commercially available
closed-cell foam, mainly used as a core in sandwich panels for structural
applications. The constituent material is polyethylene terephthalate
(PET), a semi-crystalline thermoplastic polymer, and the foam was
available in four different nominal densities. Samples were produced by
3A Composites through extrusion foaming process and were supplied
in the form of sheets of nominal dimensions 150 x 100 x 10 mm. Table
3.1 lists the four materials together with their nominal densities and
the codes with which they will appear in the present thesis.

Table 3.1: PET foam nominal densities.

Code Nominal apparent density [kg m−3]
PET 80 80
PET 100 100
PET 130 130
PET 320 320

3.2 Experimental methods

A few experimental techniques were selected to characterize the
physical properties of the foams and their constituent material. The
latter was characterized through differential scanning calorimetry (DSC)
to quantify its degree of crystallinity but no mechanical tests could be
performed due to the difficulties, already outlined in chapter 2 section
2.3, to obtain suitable specimens without re-processing the material.
The apparent density of the expanded material was measured using a
gas pycnometer while mechanical tests were performed to sample the
macroscopic mechanical behaviour of the selected materials.
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3.2.1 Density

A gas pycnometer was selected as the most suitable experimental
technique to measure the apparent densities of the material. The
working principle of this technique is based on Boyle law for perfect
gases in isothermal condition. The device consists of two chambers,
the measuring and the reference one, both of known volume. The
sample is introduced in the measurement chamber; the system is closed,
pressurized, thermally equilibrated and consequently the measurement
chamber equilibrates with the reference one. Measuring the difference
in the equilibrium pressure between the two chambers allows to measure
the volume of the sample and consequently the density once the sample
mass is known [3].

The instrument used in this thesis was a Pycnomatic ATC Thermo
Scientific gas pycnometer and the measurements were carried out follow-
ing ASTM D6226 standard as a guideline [1]. Three cubic specimens of
10 mm side length for each foam were prepared with a band saw. The
samples size was reputed adequate since they had a sufficient number of
cells to be representative of the overall material; moreover, the samples
were cut randomly along the extruded sheet to increase the statistical
validity of the results. Measurements were conducted in pure helium
atmosphere (Helium 5.0, purity grade) at 23°C and at an equilibrium
pressure of 2 kPa. The extra-small configuration, available on the
instrument and corresponding to a measurement volume of 4 cm3, was
selected in order to improve accuracy. Three consecutive measurements
were performed on each specimen.

3.2.2 Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) was performed to quan-
tify the degree of crystallinity of the foam constituent polymer. The
measurement was performed on a heat flux technology machine, Met-
tler Toledo – DSC 3. The technique consists in measuring the heat
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difference required to maintain at the same temperature, under specific
environment conditions, the crucible containing the sample and an
empty reference one.

The measurements were performed in accordance with ISO 11357-3
standard, taken as a guideline [2]. Two samples for each material,
weighting between 5 and 10 mg, were heated under pure nitrogen
atmosphere from 30 °C to 300 °C with a constant heating rate of 10
°C min−1. The crystallinity degree was computed by normalizing the
measured melting enthalpy with respect to the theoretical value of a
pure PET crystal (140 J g−1) [4].

3.2.3 Uniaxial compression

The same samples geometry adopted for gas pycnometer measure-
ments was adopted also for mechanical testing. Also in this case the vol-
ume tested is considered representative of the whole foam since enough
cells are included. This hypothesis was confirmed by some preliminary
tests performed on specimens of nominal dimensions 15 x 15 x 10 mm
and 20 x 20 x 10 mm that gave results comparable with those of the
selected geometry. Samples prepared with a band saw (Proxxon 24260 )
had their outer surfaces sanded to maximize surface planarity.

Mechanical tests were performed with an electromechanical dy-
namometer Instron 1185R5800 equipped with a 10 kN load cell, under
crosshead displacement control and parallel plates configuration. Tests
were carried out in a controlled environment at 23 °C and 50 % of
relative humidity. Tests were performed with two main objectives:

• Characterize the macroscopic mechanical response at large strain
of the selected expanded material and identify the three charac-
teristic regions highlighted in chapter 2 section 2.3.

• Once the elastic region had been identified, the apparent stiff-
ness of the foams along the three main orthogonal directions of
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the cubic specimen was measured with the aim of quantifying
mechanical anisotropy.

For what concerns the first objective, tests were conducted up along
the thickness of the sheets to a nominal strain of 50 %. Once the
elastic region was identified subsequent tests were conducted up to
2 % strain, along the three orthogonal directions of each specimen.
Three specimens per density were tested at 50 % of nominal strain and
three more specimens where characterized in the elastic region with
the protocol just described. All the mechanical tests were carried out
at a quasi-static strain rate equal to 0.005 s−1 which corresponds to a
nominal crosshead displacement of 3 mm min−1. Moreover, crosshead
displacement data were corrected according to machine compliance,
independently measured with ad hoc tests performed with the same
setup. In the specific case a stainless-steel bar, 30 x 30 x 80 mm, was
compressed in the same configuration and the machine compliance
computed according to equation 3.1:

CM = sR

F
− LR

(bR dR) ER

(3.1)

CM is the compliance of the machine, sR is the displacement, F is the
force associated to each value of sR, LR is the initial distance between
plates, bR and dR are the cross-section dimensions of the reference
sample and ER is the Young modulus of the reference material (2.1∗105

MPa for stainless steel). It was also verified that compliance was
constant within the whole force range.
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3.3 Results and discussion

3.3.1 Density

Figure 3.1 displays the results obtained from gas pycnometer analy-
sis; the plotted values of apparent measured densities (ρ∗

Measured) are
corrected values according to the procedure suggested in ASTM D6226
standard [1]. To consider the contribution of cells that were opened
during sample preparation, the measured volume was compared with
the apparent external one, measured with a parallel plate micrometre
before gas pycnometer analysis was performed, and consequently the
volume of closed cells that were opened was computed and the volume
consequently corrected. Moreover, specimens were randomly taken
around the sheets of material to increase the validity of the data ob-
tained, since some inhomogeneities could be expected from an industrial
product.

Irrespective of the applied correction, the measured apparent densi-
ties are systematically higher than nominal ones; the straight dashed
line in figure 3.1 represents the ideal correspondence between nominal
apparent density (ρ∗

Nominal) and the measured one. Obtained results
are considered reliable for two main reasons: the first one arises from
the very good reproducibility obtained for each material, displayed by
the error bars which are smaller than the symbols used to plot mean
measured values. The second reason lies in the fact that helium gas was
used to improve the accuracy and sensibility of measurements; thanks
to the very low dimensions of helium atoms (in the order of hundreds
picometers), the smallest molecular atom gas used in this kind of mea-
sures, it is possible to detect any defect that is present in the sample
under test (e.g. not perfectly closed cells which create a percolation
path for the gas or some region that is not completely expanded during
the foaming process). The explanation for the systematic discrepancy
between nominal values of apparent densities and measured ones has
to be researched in the internal microscopic structure that will be the
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topic of next chapters, especially for sample PET 100 on which higher
values than PET 130 were measured. In any case this tests already
prove at this stage that the knowledge of the real internal structure
is a crucial aspect in foam experimental characterization, as already
extensively pointed out in chapter 2.

Figure 3.1: Gas pycnometer analysis results in terms of nominal density
(x-axis) and measured apparent density (y-axis); the dashed
line represents the ideal correspondence between the nominal
value and the measured one.

3.3.2 Differential Scanning Calorimetry (DSC)

Figure 3.2 reports the results obtained through differential scanning
calorimetry (DSC) whose aim was to estimate the degree of crystallinity
of the constituent material (PET) as processed to give the foam samples
under investigation.
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On the left of figure 3.2, the thermogram obtained for the four mate-
rials is reported and an evident melting peak is detectable. The specific
melting enthalpy was obtained from the area of the peak. Even if the
sample mass is comprehensive of constituent material mass and trapped
gas mass, the second term was considered negligible. The specific melt-
ing enthalpy of the four materials was the same proving the identical
nature of the constituent bulk polymer (melting at 240 °C, which is
a reasonable value for pure PET). The values were then converted in
a crystallinity degree through the normalization with respect to the
theoretical value of PET 100% crystallinity (140 J g−1) [4] and the
results are shown on the right of figure 3.2. As can be seen the values
are quite low, around 5%; error bars are not reported in the graph since
the experimental dispersion was negligible. These results will allow in
future chapter to consider, as a first approximation, the constituent ma-
terial as almost completely amorphous. Moreover, the almost identical
values obtained for the four PET materials strengthen the hypothesis
that the characteristics of the foamed constituent material are the same,
irrespective of the density.

Figure 3.2: Differential scanning calorimetry results: a) thermograms mea-
sured for each material and specific melting enthalpy reported
near each curve; b) crystallinity degree computed through the
normalization of the specific enthalpy with respect to the ref-
erence value of 140 J g−1 [4].
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3.3.3 Uniaxial compression

The results described in this paragraph will be presented in the form
of nominal stress (σnominal) versus nominal strain (εnominal) plots. These
two quantities were computed as follows: the stress by dividing the mea-
sured force by the cross-sectional original area of the untested specimen,
while the strain was evaluated by dividing the machine displacement,
corrected according to machine compliance, by the specimens’ initial
height.

The results of the first set of tests, conducted up to a nominal
strain of 50 %, are displayed in figure 3.3 from which error bars are
omitted for the sake of clarity. The stress versus strain plot clearly
exemplifies the peculiar macroscopic compressive mechanical behaviour
of expanded polymeric materials, already discussed in chapter 2 section
2.3. A quasi-linear elastic region is detectable in the range of nominal
strain between 0 % and about 5 − 7 %; this region is then followed by
a plateau up to about 40 % nominal strain and for material PET 320
and PET 130 the onset of the subsequent densification region is also
visible.

Following the identification of the elastic region a second set of tests
was performed, along the three main orthogonal directions of each cubic
specimen; relevant stress versus strain results are depicted in figure 3.4
as average curves, with a shaded area associated with the experimental
semi-dispersion. In the graphs the orthogonal directions are identified
as X, Y (direction orthogonal to the sheet plane) and Z.

From each test the apparent macroscopic stiffness (E∗) was com-
puted by performing a linear fit of the stress versus strain curve in the
range of strain between 0 % and 2 % and the results are summarized
in figure 3.5. The results clearly highlight how the macroscopic me-
chanical response become more and more isotropic with the increase
of apparent density. In particular is evident from figure 3.5 that PET
80 and PET 100 exhibit apparent stiffnesses which are statistically
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Figure 3.3: Nominal stress (σnominal) versus nominal strain (εnominal)
graph representing the macroscopic compressive mechanical
behaviour of the four expanded materials.

different along the three orthogonal directions while PET 130 and PET
320 exhibit apparent stiffnesses which are almost the same along the
three directions. This observed phenomenon could be strictly correlated
to the internal microstructure of the samples: increasing the apparent
density the internal structure also becomes more isotropic and this is
macroscopically exhibited in the mechanical response.

At last a basic correlation between the mean apparent stiffness
(E∗

Mean = E∗
X+E∗

Y +E∗
Z

3 ) and the apparent measured densities (ρ∗
Nominal)

is reported in figure 3.6. A clear expected dependence of the apparent
stiffness on the density is obtained, but not enough points are present
to define a specific trend. The graph simply wants to highlight once
again the importance of microstructure inspection since its contribution,
together with constituent material properties, is unavoidable in the
study of expanded polymeric materials.
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Figure 3.4: Mean nominal stress versus nominal strain for each orthogonal
direction (X, Y and Z) of the tested cubic specimens. Values
are reported for a) PET 80, b) PET 100, c) PET 130 and d)
PET 320. Note that different scales had to be used.

Figure 3.5: Apparent macroscopic stiffness (E∗) along three main orthogo-
nal directions (X, Y and Z). Mean values and associated error
bars are reported.
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Figure 3.6: Apparent mean stiffness versus measured apparent density;
mean values with error bars for both x and y axis are reported.
X-error bars are smaller than the symbol representing mean
values.

3.4 Concluding remarks

Experimental results presented in the present chapter will be ex-
tensively used in the following ones to support and validate numerical
models developed along the research work, both in terms of numerical
predictions and of the relationships between microstructure parameters
and macroscopic mechanical behaviour that will be constructed.

Beside the aforementioned preamble, a preliminary methodological
conclusion can be stated: experimental results, from gas pycnometer to
mechanical tests, clearly prove the importance of inspecting the internal
structure to fully understand the foams macroscopic behaviour, as
widely reported in literature and extensively demonstrated in chapter 2.
It is impossible to pretend to build any model, descriptive or predictive,
on this particular class of material without having an insight on the
structure to fully understand the synergistic effect between constituent
material properties and structure itself which give rise to the measured
macroscopic properties.
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Chapter 4

Structure analysis

In this chapter the main topic of structure investigation and its quan-
titative description is faced. The experimental methods and numerical
algorithms adopted are described. For the sake of clarity, the chapter is
structured in four main parts: in the first a brief overview on the most
commonly used imaging techniques reported in scientific literature is
given together with an extensive description of the physical principles
behind the application of X-Ray computed tomography, the technique
selected for structure analysis in the present thesis. The second part
is focused on the theoretical aspects of the algorithms employed for
structure investigation; images binarization algorithms will be consid-
ered together with the main tensorial algorithms employed for structure
parameter quantification. In the third part, the materials together
with experimental details will be presented and in the last part the
main results on structure analysis, comprehensive of some comparisons
between the different numerical algorithms, will be outlined. Results
presented in this chapter will be widely exploited in the following ones
when macroscopic mechanical properties and microstructure will be
correlated.
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4.1 Introduction

As already briefly pointed out in chapter 3, structure inspection is
a crucial aspect in the field of expanded polymeric materials to fully
understand the synergistic effect between structure itself and constituent
material properties that gives rise to the already described macroscopic
behaviour. Thanks to the development of new experimental techniques
and related laboratory equipment, structure inspection has become
more and more accessible and accurate.

The most commonly used imaging techniques reported in scien-
tific literature can be grouped according to the dimensionality of the
resulting images:

• Bidimensional (2D) imaging techniques: to this group mainly
belong all the microscopical techniques, such as Scanning Elec-
tron Microscopy (SEM), optical microscopy (OM) and confocal
microscopy (CM) [1]. The output is a bidimensional image repro-
ducing a cross-section of the internal structure [42]. A couple of
examples are reported in figures 4.1 and 4.2. The main advantage
of this group of techniques is the relatively short time required
for the acquisition of the images while the main drawbacks re-
side in the complexity of adequate sample preparation and the
nature of the images themselves. Many authors report in their
scientific works that using measurements taken from a bidimen-
sional image to compute quantities representative of an intrinsic
three-dimensional structure leads to a misleading interpretation
of the real complexity of the structure itself and usually results
in an overestimation of the macroscopic properties associated to
a mechanical model, such as the ones reported in chapter 2 [19].

• Three-dimensional (3D) imaging techniques: the complex internal
architecture can be investigated as a whole and reconstructed in
three dimensions through the use of different available techniques,
such as X-Ray computed tomography (CT) [52] [57], synchrotron
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Figure 4.1: High resolution Scanning Electron Microscopy (SEM) image
depicting the cross-section of an expanded polystyrene foam.
Two different levels of the hierarchical internal structure are
clearly detectable in the bidimensional image.

Figure 4.2: Low magnification Scanning Electron Microscopy (SEM) im-
age depicting the cross-section of a sintered bead expanded
polypropylene (PP) system. The complexity of the internal
structure is clearly detectable but quantification of wall thick-
ness would result in a wrong estimation of the real three-
dimensional architecture. Image freely adapted from [36].

radiation tomography, magnetic resonance imaging (MRI) or
solid-state nuclear magnetic resonance (ss-NMR) [13]. The main

73



Chapter 4. Structure analysis

advantages provided with this kind of inspection are the relatively
simple sample preparation, the preservation of the integrity of
the sample during the analysis and above all the possibility to
obtain three-dimensional information representing the real in-
ternal architecture of the investigated samples [46]. The main
drawbacks reside in the very long image acquisition time, the
large amount of data generated at the end of analysis and the
small volume inspected if a very high resolution is selected; for
example, a resolution of a hundred nanometres can be achieved
with conventional detectors on a total volume in the order of a
few hundreds of micrometres using a synchrotron radiation to-
mography. Using this kind of imaging approach, it is mandatory
to always look for a good compromise between desired resolution
and total volume reconstructed, ensuring that the latter is large
enough to represent the real material under test [16]. Figure
4.3 reports an example of the set of images obtained and the
associated volume reconstruction [18].

Figure 4.3: X-Ray computed tomography of an expanded polyvinylchloride
(PVC) system: a) acquisition of the X-Ray projections along
different planes that intersect the inspected volume; b) image
reconstruction of the cross-section; c) three-dimensional volume
reconstruction. Image freely adapted from [18].

Due to the motivations explained in the above paragraph, in this
work a three-dimensional imaging technique was selected for structure
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investigation, in the specific case X-Ray computed tomography as
described in the experimental section. In the following paragraph a
brief description of the physical principles behind this experimental
technique, the most commonly used setup and the materials employed
to realize the different components of a CT instrument will be provided.

4.2 X-Ray computed tomography (CT)

X-Ray computed tomography has been developed long after the
discovery of X-Ray radiation, performed by Röntgen in 1895. The
scientist obtained a picture of his own hand in which soft tissues were
clearly distinguishable by hard tissues (bones). This fact led to the
consequent investigation of material X-Ray attenuation and absorption
properties. The first applications of this newly discovered phenomenon
were all developed in medical field, due to the possibility of inspecting
the inside of a human body without performing an invasive inspection.

New technologies and materials have allowed in the past twenty
years the development of equipment at laboratory scale to perform
the same inspection on material samples and products. Among the
main fields of application in material science certainly belongs inter-
nal damage inspection, such as for defects in metals or in composite
materials generated during production process [48]. Another field is
the analysis of expanded materials: their complex and random inter-
nal three-dimensional structure can be inspected and reconstructed
with very high precision in a non-destructive way [29]. Continuous
improvement of available X-Ray sources and detectors has allowed the
development of more and more accurate systems with increased resolu-
tion, down to a few microns for commercially available devices. Last
generation nano computed tomography provide an even superior resolu-
tion in the order of a few hundred nanometres [58]; this high resolution
was achievable, up to few years ago, only through synchrotron radiation,
equivalent to X-Ray radiation but characterized by a very tiny source,
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essential for minimizing penumbral blurring and maximizing spatial
coherence for phase imaging [49].

4.2.1 Physical principle

The main physical principle on which the experimental technique is
based is, as already written, the attenuation of X-Rays of wavelength,
λ, through a homogeneous material, which is described by equation 4.1:

I

I0
= e−µx (4.1)

where I0 is the intensity of the incoming X-Ray radiation, I is the
intensity of the attenuated beam after crossing a homogeneous material
of thickness x and characterized by a linear attenuation coefficient µ.
Equation 4.1 can be rewritten in terms of material properties, in the
specific case in terms of density, ρ:

I

I0
= e− µ

ρ
ρx (4.2)

Equation 4.2 highlights the importance of specific attenuation coef-
ficient, representative of the number of atoms encountered by the beam
while passing through the material inspected. Moreover, writing the
equation in a differential form:

dI

I
= −µ

ρ
ρ dx (4.3)

is clearly shown that the attenuation phenomenon is a space-dependent
one, occurring progressively in each space interval dx crossed by the
X-Ray beam. The minimum space increment in which the space can be
divided is strictly dependent on the laboratory equipment used and on
the specific material investigated and basically represents the spatial
resolution of the acquired data. Writing the absorption equation in
an integral form and explicitly writing the dependence of the specific
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attenuating coefficient, µsp, on the spatial coordinate s, it is evident
that summing up all the space increments of the attenuation along
the direction of X-Ray propagation the attenuated intensity can be
computed as follows:

I = I0 e−
∫

µsp(s)ds (4.4)

where µsp(s) is the specific linear absorption coefficient at position s

along the projected ray s. The crucial step that allows volume inspection
and reconstruction is to assign the correct value of β to each position
along the X-Ray and along all the other rays crossing the material,
knowing only the values of the line integral for the various orientations
of s.

This reconstruction consists in locating and defining the different
contributions to attenuation by measuring I

I0
for many different X-Rays

directions (s) and many different positions for a given direction (s).
Acquiring a sufficient number of these matrices of values for a sufficient
number of properly chosen directions (s), graphically represented as a
bidimensional image that reproduces an internal cross-section oriented
in direction (s) of the material, allowing the reconstruction of the
volume through which the X-Rays traverse.

The above reported definition is usually summarized with the term
projection. For each projections several samples are acquired and
consequently different images are averaged to increase the signal noise
ratio and obtain high-quality images representing cross-sections of the
inspected material [49].

The number of samples per projection and the number of projections
needed to reconstruct an inspected material or product strictly depend
on the nature and geometry of the inspected sample itself and on the
size of the features that are to be detected and resolved during the
reconstruction [49].

77



Chapter 4. Structure analysis

4.2.2 Experimental apparatus

From a practical point of view the necessary equipment to perform
the analysis can be summarized in the following three essential elements,
also exemplified in figure 4.4 [9]:

• X-Ray source: usually also referred to as X-Ray tube, it contains
a vacuum section wherein a filament is heated up to a specific
temperature, called thermionic emission temperature, at which
electrons are emitted. Through the application of an electrical
potential between the filament, the cathode, and the target mate-
rial, acting as the anode, electrons are accelerated and discharged
on the target. Tungsten is commonly used for the filament due
to its high atomic number. The interaction of the beam electrons
with electrons and nuclei of the anode results in a characteristic
bremsstrahlung emission of X-Rays, giving a continuous energy
spectrum. The main drawback is that most of the energy is
dissipated into thermal energy due to the interaction between
cathode and anode electrons.

The intensity of the X-Ray beam is directly related to the applied
current which controls the number of released electrons. The
applied electrical potential is commonly used as an indicator of
X-Ray quality or, in other words, of the penetration capability of
the electron beam with respect to the sampled material.

New generation sources, for example solid-anode microfocus X-
Ray tubes or metal-jet-anode microfocus X-Ray tubes, provide
enhanced resolution, in the order of 1 µm, thanks to the optimiza-
tion of the X-Ray beam focus [48].

• Sample movement stage: a mechanical platform that, depending
on the system adopted, possesses different degree of freedom,
usually rotation around an axis and translation along one or
two directions orthogonal to the X-Ray direction. It allows an
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accurate movement of the sample to collect different projections
since another main aspect that strongly affects the efficiency
of the measurement is the distance between X-Ray source and
detector since X-Rays intensity is reduced proportionally to the
reciprocal square of the distance travelled. Another crucial degree
of freedom of the movement stage is the one that allows a fine
positioning of the sample with respect to the source and the
detector; this position directly determines the final voxel size
(XS), usually referred to as tomographic system resolution. This
quantity strictly depends on detector pixel size (pS) and on the
desired level of magnification (M) as reported in equation 4.5:

XS = pS

M
(4.5)

• X-Ray detector : it is the component that collect X-Ray attenu-
ated projections; generally, one- or two-dimension detector are
employed, based on different semiconductor technologies: pho-
todiode arrays, charge injection devices, charge coupled devices
(CCD) and the recently introduced complementary metal-oxide
semiconductor (CMOS) transistors technology. In general, the
photons are not detected directly, but the array is coupled with
an X-Ray sensitive media that scintillate when X-Ray photons are
absorbed. Crucial aspects in detector construction are its sensi-
tivity, the noise to signal ratio, its resolution and pixel size, which
strictly determine the maximum resolution of the reconstructed
final image [59].

The three main components can be arranged in many different
experimental setups; the most commonly used in the scientific literature
are depicted in figure 4.5; they can be summarized in four configurations:

• Pencil beam systems: they are usually called first generation
systems; in this kind of setup a pinhole collimator from a point-
like source generates a narrow, pencil-like beam, that scan the
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Figure 4.4: Schematic representation of the main components needed to
perform an X-Ray computed tomography volume inspection
and reconstruction. In the example reported the movement
stage is a rotating stage and the source is a parallel beam
configuration. Picture freely adapted from [9].

object in different projections thanks to the rotation stage that
allows to acquire projections along different angle of the sample.
Due to the zero-dimensional nature of the detector system, the
movement stage also allows a horizontal or vertical translation in
order to reconstruct different section of the inspected sample.

• Fan beam systems: this system only use a rotation movement
apparatus; a flat fan of X-Ray beams is generated by a point-like
source, passes through the object and the scatter shield and is
collected by a one-dimensional detector system. These systems
allow the collection of the entire view simultaneously.

• Parallel beam systems: in this case parallel X-Ray beams are
generated by a bidimensional source and once the sample is
crossed they are collected by a bidimensional detector. The
main advantage of these systems is the possibility to collect
straightforwardly and rapidly data for multiple slices, since the
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projection of a single slice is completely independent from the
other simultaneously acquired, due to the intrinsic nature of
source and detector.

• Cone beam systems: is the equivalent three-dimensional system of
the bidimensional fan beam; in this setup the X-Ray beams diverge
from a point-like source, cross the sample and are collected by an
area detector system. In this case each row of the detector, except
for the central line, during a scan receives information from more
than one projection and due to this overlapping set of information
the reconstruction algorithm provides an approximation of the
real inspected volume.

Figure 4.5: Schematic representation of the most used configurations com-
monly used during X-ray computed tomography acquisition
experiment; a) pencil beam system, b) fan beam system, c)
parallel beam system and d) cone beam system. Image freely
adapted from [49].
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4.3 Theoretical background

In this section the main theoretical background which is behind the
development of the applied algorithms will be outlined starting with
binarization algorithms, going through Hildebrand and Rüegsegger al-
gorithm, applied to quantify the mean volumetric structure thickness of
the inspected samples, and concluding with global and local algorithms
implemented to quantify material spatial distribution in the volumes
inspected as vectorial quantities.

4.3.1 Binarization algorithms

Binarization is a crucial and fundamental step that has to be faced
every time the analogue output of an X-Ray computed tomography
analysis, a set of grey-level images representing the structure, has to
be analysed. It is widely reported in the literature that quantitative
measurements performed on an image give more accurate results if
the image is binarized, in other words converted from grey levels to
an array of Boolean values, where 0 represents the background and 1
represents the solid material [61]. This process prevents uncertainty
in the measurements deleting the so-called grey level transition region
between background and inspected material [21]. Recently some authors
developed algorithms that work directly on grey-level images, but
some open challenges, above all the procedure to weight the measure
performed in the transition region, still have to be overcome [41].

The selection of the proper binarization algorithm is fundamental
since it affects all the subsequent quantitative measurements performed.
The application of the wrong approach could lead to an artificial
alteration of the real structure inspected. For this reason, many authors
in literature proposed some experimental protocols as a guideline that
help in the selection of the proper algorithm depending on the specific
features of the image or set of images that have to be analysed [60] [54].

One of the main aspects that guides the choice of the most suit-
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able binarization algorithm that has to be selected, is the grey-level
histogram that can be computed for a bidimensional image or a set
of images representing a volume. In general, the histograms that are
obtained from set of images coming from X-Ray computed tomography
analysis performed on expanded polymeric materials can be grouped in
two main categories [29]:

• Bimodal distribution: the histogram is characterized by two peaks;
one is centred around low grey-level values, representing back-
ground and noise, and the other is centred around high grey-level
values, representing the material imaged. For this kind of distri-
bution global binarization algorithms are usually preferred since
are very efficient in computing the proper binarization threshold
and are relatively cheap in terms of numerical resources, even
when large amounts of data are analysed [39].

• Monomodal distribution: the histogram is characterized by a single
peak, usually centred around low grey-level values, representing
background and noise, and a large tail distributed around high
grey-level values, representing the presence of material. In this
case the so-called local methods are preferred, since the absence
of a second peak could lead to the selection of an unsuitable
threshold with global methods. Local methods are based on the
evaluation of local gradient of grey-levels and consequently require
longer time and greater numerical resources to be implemented
when large amounts of data are analysed [37].

Figure 4.6 displays a qualitative example of the above-mentioned
histogram classes.

In the following paragraphs the theoretical background of the two
selected binarization algorithms will be outlined. In the specific case
the Otsu algorithm, one of the gold-standard global methods widely
applied in the field of image analysis, and the local Watershed algorithm
method are described.
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Figure 4.6: Qualitative examples of the two main classes of histogram usu-
ally obtained from set of images coming from X-ray computed
tomography inspection of expanded polymeric materials; a)
bimodal distribution and b) monomodal distribution.

Global method: Otsu algorithm

As already pointed out the algorithm is based on the analysis of the
grey-level histogram of the image or set of images under the hypothesis
that the grey-level distribution is represented by a bimodal histogram
[39]. The objective of the algorithm is the research of a proper threshold
that maximizes the separation of the two histogram peaks, as depicted
in figure 4.7. With this analytical approach a clear distinction between
pixels belonging to the solid material and the ones representing the
background is obtained.

Assuming that the pixels of a given image can be represented by a
certain grey-level, L, which is an integer number ranging from 1 to 2n

and n is the image depth in bits, the number of pixels corresponding
to level i can be denoted as ni and the total number of pixels N is
directly computed as the summation of all the classes ni. For the sake
of simplicity, the histogram is considered normalized and regarded as a
probability distribution, expressed with equation 4.6:

pi = ni

N
with pi ≥ 0 and

L∑
i=1

pi = 1 (4.6)
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Figure 4.7: Optimal threshold that maximize the separation between the
two peaks of the grey-level distribution deleting less pixel
representing the object as possible. Image freely adapted from
[23].

The classes of pixels are divided into two groups, called C0 and C1

(representing background and material respectively), by application of
a threshold s: C0 denotes all the pixels with levels [1, . . . , s] while C1

denotes pixels with levels [s + 1, . . . , L]. The probability that a pixel
belongs to one of these groups is:

P0 =
s∑

j=1
p(j) (4.7)

P1 =
L∑

j=s+1
p(j) = 1 − P0 (4.8)

From the two probability distributions mean values (m0 and m1)
can be computed with the associated class variances (σ2

0 and σ2
1):

m0 =
s∑

j=1
j

p(j)
P0

, m1 =
L∑

j=s+1
j

p(j)
P1

(4.9)

σ2
0 =

s∑
j=1

(j − m0)2 p(j)
P0

, σ2
1 =

L∑
j=s+1

(j − m1)2 p(j)
P0

(4.10)

The evaluation of the global mean grey value, wholly considering
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the image, can be computed as follows:

m = P0 m0 + P1 m1 with statistical condition P0 + P1 = 1 (4.11)

Once the two probability distributions are defined, thanks to the
computation of the above described zeroth- and second-order cumulative
moments, three additional variances can be computed:

σ2
W = P0 σ2

0 + P1 σ2
1 (4.12)

σ2
B = P0 P1 (m1 − m0)2 (4.13)

σ2
T =

L∑
j=1

(j − m)2 p(j) (4.14)

which represent the within-class variance, the between-class variance
and the total variance of levels respectively. Once these quantities are
computed, the problem is reduced to an optimization problem, searching
for a threshold s which maximizes a suitable objective function η(s),
for example the one defined in equation 4.15:

η (s) = σ2
B(s)
σ2

T

(4.15)

In this case, the ideal threshold value is the one that maximizes
the between-class variance: as the variance increases the two classes
are better separated thus minimizing the within-class variance, used as
an indication of the homogeneity of a single class alone; the lower this
value gets, the more homogeneous the class is.

Once the optimal threshold is determined, the correct assignment
of each pixel to the correct class can be performed and the actual
binarization process take place. All the pixels belonging to the “Object
class” will be converted in a Boolean value equal to 1 and the others
into a 0 value.
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Local method: Watershed algorithm

The local algorithm selected is based on functional watershed ap-
plied to a continuous function defined by Schmitt in 1994. Up to his
publication the watershed concept was strictly applied only to mor-
phological segmentation, hence in a discrete form, and there was no
theoretical background for continuous functions. His analytical formu-
lation allowed the development of newer and more efficient algorithms
for image analysis. The complete analytical set of equations and re-
lated demonstration is not reported, since it is beyond the scope of the
present work, but references could address interested readers to the
complete works [37].

The general concept on which the algorithm is based relies on
considering an image as a topographical surface; this is achieved by
considering the grey-level of a pixel (pixel intensity) as an altitude.
Once the topographical profile is drawn, places of high variation in the
pixel intensity values are the starting points for contour research, for
example boundaries between background and material or between two
different material phases. The variation is then computed through the
evaluation of local grey-level gradient. The consequent research of the
so-called crest lines of the gradient image could be performed through
the application of watershed transform itself. The basic watershed idea
is to attribute an influence zone to each of the regional minima of an
image, or in other words in finding a connected plateau from which it
is possible to reach a point of lower grey level by an always descending
path. The watershed is consequently defined as the boundaries of these
influence zones. The idea can be easily explained with a one-dimensional
example; the steps that are needed to construct the watershed are as
follows:

1. Regional minima of the imaged surface are detected.

2. Image is imaginarily immersed into a lake and so the water pro-
gressively floods the basins corresponding to the various minima;
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to prevent the merging of two different water zones, coming from
different minima, some virtual dams are constructed.

3. Once the image is virtually totally immersed in water and all the
dams, corresponding to local minima are built, the watershed
transform of the image is built.

In the case of one-dimensional example, the watershed profile is
determined in a straightforward manner, while the situation is more
complicate for bidimensional images, even if the basic idea of water and
dams is preserved. Figure 4.8 provide a visualization of the waterflood
process in the case of a bidimensional example. In 2D some attention
has to be payed to the plateau regions of the image (iso-level curves
in topographical notation); to avoid possible errors coming from these
regions, different solutions are proposed in literature, among which
the most common ones employed and implemented in commercial
algorithms are based on second order partial derivatives or on the
study of local Hessian matrix that discriminate local minima from other
characteristic points, such as saddle points, typical of bidimensional
functions.

Figure 4.8: Graphical qualitative example of watershed construction in
bidimensional case. Image freely adapted from [37].
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The main challenge of bidimensional images is the unique determi-
nation of the watershed image profile, in other words the profile defined
by the virtual constructed basins. Schmitt proved that this problem
“simply” reduces to the solution of the eikonal equation, in which f

is an analytical function that describe the perimeter of the catchment
basin and g is the function that satisfies the research of minima, once
again a continuous function:

finding f such as ∥∇f∥ = g (4.16)

This equation is numerically solved through the application of
different numerical solutions developed in the past 20 years. The main
approaches, widely used in computer graphics, are:

• Watershed by flooding: the above-mentioned main and first ap-
proach developed [3].

• Watershed by topographic distance: it is based on the image of a
drop of water falling on a topographic relief that proceeds towards
the nearest minimum following the steepest descent path.

• Inter-pixel watershed: in which a discrete research of local minima
is proposed implementing the integral concept of Lebesgue [5].

• Topological watershed: based on the analytically demonstrated
theorem that states that a function W is a watershed of another
function F if and only if W ≤ F and W preserves the contrast
between the regional minima of F [4] [11].

• Meyer’s flooding watershed algorithm: suitably developed and
optimized for very large data analysis [3] [2].

• Optimal spanning forest algorithms: also called watershed cuts,
provide an optimization and co-implementation of the ideas at
the basis of watershed by flooding and topographic distance [12].
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Besides the large number of numerical solutions proposed by different
authors to solve the eikonal equation, the main advantage of applying
the local algorithm is its independence on the bimodal nature of the
image histogram. Conversely, due to the large number of calculations
required to numerically solve the eikonal equation on a large set of
images or a very high-resolution single image, it requires longer time
and greater numerical resources with respect to global methods.

4.3.2 Hildebrand and Rüegsegger algorithm

In 1997 Hildebrand and Rüegsegger proposed an algorithm, that
has become in the last 20 years one of the gold-standard methods, to
compute the average volumetric thickness of structures starting from
a three-dimensional set of images. The main advantage and novelty
of the proposed algorithm resides in its complete independence on the
nature of the system or material imaged; it depends only on the image
quality and resolution. In their work the authors also demonstrated
the greater accuracy of measurements performed on three-dimensional
image sets with respect to those performed on lower dimension images
and then extrapolated in 3D space [22].

The system-independent algorithm assumes that for primitive ge-
ometrical objects, such as plates, cylinders and spheres, the mean
volumetric thickness is uniquely defined by geometrical considerations.
For generic structures the fundamental element required is a well-defined
weighting of the mean value, that ensures the existence of a unique
mean value for objects characterized by a varying structure thickness.
To fulfil these requirements the authors proposed a new definition of
local structure thickness; considering Ω ⊂ R3, where Ω is the set of
all points of the spatial structure under investigation, and p ∈ Ω an
arbitrary point of the structure, the local thickness, τ(p), can be defined
as the diameter of the largest sphere which contains the point, p, and
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which is completely inside the structure:

τ(p) = 2 max ({r | p ∈ sph(x, r) ⊆ Ω, x ∈ Ω}) (4.17)

in which sph(x, r) is a set of points inside a sphere with centre x
(position vector) and radius r.

Figure 4.9 displays a graphical representation of the requirement
expressed by equation 4.17.

Figure 4.9: Local thickness of a generic structure, Ω, determined by fitting
maximal spheres to the structure. Picture freely adapted from
[22].

Since the local thickness is defined for each point of the three-
dimensional structure, from here on called volume-based local thickness,
the arithmetic mean value of the local thickness over all the points
belonging to the inspected structure can be defined as:

⟨τ ⟩ = 1
V ol(Ω)

∫∫∫
Ω

τ (x) d3x with V ol (Ω) =
∫∫∫

Ω
d3x (4.18)

and the maximum local thickness can be defined with an equation
similar to 4.18. The same quantities can be computed through a
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different approach that considers local thickness distribution from a
probabilistic distribution point of view, but is not reported here since
beyond the scope of this thesis; interested readers are addressed to the
scientific literature listed in the references section [22] [25].

Besides the continuous formulation, that assumes the presence of
a continuous closed domain Ω, a discrete form was also proposed by
the authors with the aim of converting the continuous formulation
into numerical algorithms, applicable to discrete systems such as the
set of images obtained from X-Ray computed tomography where the
hypothesis of continuity of the structure is not always verified and the
3D volume is described by a set of discrete voxels. The key is the
conversion of the continuous expression given in equation 4.17 into a
different form, as a function of structure distance map, Dmap. Distance
map is calculated by the distance transformation [17], assigning to every
point in the structure the Euclidean distance from that point to the
nearest background point; this is a discrete formulation of the radius of
the sphere described previously. Distance transformations is defined,
with a similar structure and quantities with respect to equation 4.19,
as:

Dmap(q) = max ({r > 0 | sph(q, r) ⊆ Ω, q ∈ Ω}) (4.19)

Consequently, the local thickness can be rewritten as:

τ (p) = 2 max
q∈X(p)

(Dmap (q)) (4.20)

where X(p) represents the centre points of all the spheres with a radius
equal to their corresponding distance value and including the point p:

X (p) = {x ∈ Ω | p ∈ sph (x, Dmap (x))} (4.21)

The calculation of the local thickness is thereby split in two conse-
quent steps:

1. Calculation of the distance map, which can be carried out effi-
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ciently on discrete data since the fitting of spheres in one point is
independent from the neighbouring ones and so the procedure is
suitable for parallel processing.

2. Evaluation of the distance ridge as the set of the centre points of
all nonredundant spheres; this step can be efficiently performed by
numerical methods with local inclusion tests only for neighbouring
voxels.

The efficiency of the proposed algorithm, when applied to discrete
systems, intrinsically depends on image resolution and implicitly has
a sensitivity equal to the voxel side dimension. Poor image quality,
affected by noise, can lead to underestimation of the true imaged local
thickness.

4.3.3 Fabric tensor evaluation algorithms

The general definition of a fabric tensor unifies all the algorithms
developed in the past years that aim at modelling through tensors
both anisotropy and orientation of an inspected material [35]. The
main fields in which these algorithms were developed are biomedical
engineering and medicine, mainly to determine the internal structure
dimensions and orientation of trabecular bone [24]. Fabric tensors are
generally considered as semi-global measurements in the sense that they
are computed in relatively large neighbourhoods, considered as quasi-
homogeneous domains [10] [27]. These algorithms were successfully
applied in the past years also in other fields, such as material science and
geology. In general, also for this fields of application, it has been shown
that microstructural architecture of most materials can be accurately
modelled by means of second-order tensors [28].

These algorithms are generally divided into two main groups:

• Mechanics-based methods: the fabric tensor is indirectly deter-
mined from mechanical properties; in other words, first the tensor
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that describes the mechanical behaviour is determined and then
the fabric tensor is built up from an analytical set of equations
[43]. This approach usually involves different approximations and
numerical challenges [40], since it is not easy to experimentally
identify the constitutive matrix of a material [33].

• Morphology-based methods: the fabric tensor is directly computed
from the morphology of the internal material structure. This ap-
proach is generally less severe from a computational point of view
with respect to the previous one; moreover, the resulting fabric
tensors are not dependent on numerical simulations parameters,
such as boundary conditions or homogenization schemes. Con-
versely, the results of mechanical simulations have to be correlated
in a second step to the generated fabric tensors [6].

In addition, morphology-based methods are generally classified in
sub-groups according to the approach adopted to analyse images in
order to quantify the fabric tensor:

• Boundary-based methods: these algorithms exploit the interface
between phases of the inspected material to estimate fabric ten-
sors. The most famous approaches belonging to this category
are Mean Intercept Length (MIL) [34] [35] and Global Gradient
Structure Tensor (GST) [32] [51]. The main limitation of these
methods consists in the strict dependence of anisotropy on the
interface of material phases and the result is greatly affected by
the regularity of the analysed structure; if the inspected set of
images represent a completely regular structure the algorithm is
not able to identify with great accuracy the principal direction of
material distribution.

• Volume-based methods: this approach aims at overcoming the
main limitation of boundary-based methods. The anisotropy is
computed from measures directly performed inside one of the

94



4.3. Theoretical background

phases. The idea is similar to the Hildebrand and Rüegsegger
algorithm presented in the previous paragraph [38]. The most
commonly used algorithms are Star Volume Distribution (SVD),
Star Length Distribution (SLD) and Sampling Sphere Orientation
Distribution (SSOD) [45].

• Texture-based methods: these methods exploit texture analysis
tools to compute the fabric tensors. Among different algorithms,
for example, Fractal Dimension (FD) [30] models are based on the
hypothesis that the volume investigated is built on a fractal, or
auto similar, structure, and involve directional measurements of
fractal characteristic dimensions to create orientation distributions
which afterwards are approximated through tensors. Another
widely applied algorithm is the spatial Autocorrelation Function
(ACF) [56] that is directly applied on grey-scale level images,
measuring directional texture features (e.g. the voids in expanded
polymeric materials) to build the fabric tensor [32]. The main
assumption in this kind of approach is that the inspected structure
is quasi-regular, from a mathematical point of view.

• Alternative methods: a recently developed group of algorithms
describes from a polar point of view the structure inspected,
evaluating polar moments [44] that describe the structure and
other features present in the inspected samples [26] (e.g. voids
in the case of expanded polymeric materials [47] or short glass
fibres in the case of composite materials [53]) [8].

In the present work two algorithms have been selected: Mean Inter-
cept Length (MIL), which is considered the gold-standard algorithm in
the field of image analysis and fabric tensor computation, and spatial
Autocorrelation Function (ACF). The choice of two algorithms taken
from different groups has the objective of comparing and validating the
results coming from approaches based on different assumptions when
applied to expanded polymeric materials, to provide a more robust
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analysis. Moreover, the validity of the ACF approach is still openly
questioned in the literature and so its use in the present study has also
the aim of investigating its validity in comparison with the reference
MIL algorithm [50].

In the following paragraphs the two selected algorithms will be
described in detail for what concerns their theoretical formulation; for
the MIL algorithm the generalized formulation proposed by Moreno and
co-authors is considered [34], while for spatial autocorrelation function
the formulation proposed by Wald is reported [56]. Readers interested
in other algorithms can refer to the referenced works listed at the end
of this chapter.

Mean Intercept Length (MIL)

As previously mentioned Mean Intercept Length (MIL) belongs to
the sub-group of boundary-based algorithms, in which the interface
between phases of the inspected material is used to estimate the fabric
tensor [34].

Generally speaking MIL is defined with respect to a particular
orientation as the mean distance between a change from one phase to
the other along that direction; this value is inversely proportional to the
number of intercepts between a set of parallel lines and the interfaces
between phases. A bidimensional representation is reported in figure
4.10.

The classical procedure to compute MIL consist of different steps:

1. A family of lines parallel to a specified direction, v, are traced,
with v being a unitary vector;

2. The number of intersections, C(v), between the lines and the
interface between the two phases is counted;
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Figure 4.10: Example of a bidimensional computation of intercepts be-
tween a set of parallel lines and the interface between phases.
Image freely adapted from [34].

3. The MIL with respect to v, MIL(v), can be computed as:

MIL (v) = h

C(v) (4.22)

where h is the summation of the length of all traced lines.

The MIL evaluated along different v can be plotted in a so-called
rose-diagram which usually give an ellipse-like shape for the majority
of materials. It is then possible to estimate with small errors the
characteristic dimensions of such an ellipse with any fitting algorithm,
for example least-squares fitting. In 2D images, thanks to the duality
between ellipses centred at the origin and positive semidefinite second-
order tensors, the MIL tensor, MIL, can be computed as the 2 x 2
matrix that represents the estimated ellipse. The same procedure can
be extended to set of images that represent three-dimensional structures,
with a greater computational effort; in the 3D case the MIL for different
orientations has to be fitted to an ellipsoid and the results can be used
to compute the 3 x 3 matrix that represents such an ellipsoid.

Besides its classical formulation the MIL definition can be extended
to a more general closed one. The generalization is built on 2D images.
Considering the situation reported in figure 4.11, which shows a squared
region of interest where the interface between phases is represented
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by a line, l, with an associated unitary normal, u; the dashed lines
represent a specific direction, v, and are separated from one another
by a certain distance, ϵ. It is possible to show that:

C (v) = l

v
t(v, −u) (4.23)

where t is usually referred to as half-cosine function. In general, C(v) ̸=
C(−v), since only bright to dark interfaces, or vice versa, are considered.

Figure 4.11: Graphical example of MIL computation for a linear interface,
length l and normal u, between phases. Separation between
testing lines parallel to v is denoted with ϵ. Figure freely
adapted from [34].

For sufficiently small values of ϵ, the results reported in equation
4.23 can be generalized to any shape of interface between phases:

C (v) = 1
ϵ

∫
L

t (v, −s) dL (4.24)

in which L is the perimeter of the interface between phases and s is the
normal at every point of the interface. The equation can be rewritten
in a different form:

C (v) = 1
ϵ

∫
L

∫ 2π

0
t (v, −uθ) δ(−uθ, −s) dθdL (4.25)

where δ is the unit impulse function and uθ = (cos θ sin θ)T . The
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integral can be simplified with the application of the Extended Gaussian
Image (EGI). The EGI at a specific direction uθ, G(uθ), is given by:

G (uθ) =
∫

L
δ(uθ, −s) dL (4.26)

and consequently, equation 4.26 can be rewritten, substituting EGI:

C (v) = 1
ϵ

∫ 2π

0
t (v, −uθ) G (−uθ) dθ (4.27)

The last equation shows that C is equivalent to the angular convo-
lution between the mirrored EGI and the smoothing half-cosine kernel
t and so can be used to estimate the MIL tensor:

MIL = ω
∫ 2π

0

vθvT
θ

C(vθ)2 dθ (4.28)

where vθ = (cos θ sin θ)T and ω is a constant. This is an alternative
expression, with respect to classical definition that considers the ellipse
fitting procedure; this alternative is valid since the MIL is proportional
to the covariance matrix. Equation 4.28 proves once again that MIL
is inversely proportional to C(vθ). One important thing to notice is
that MIL can be computed only if C(vθ) > 0, but this is ensured if L

is a set of closed contours.
The generalized closed formulation can be extended to the three-

dimensional case:
C (v) = 1

ϵ2

∫
Ω

t (v, −s) dΩ (4.29)

in which Ω is the interface surface between phases. Applying a similar
procedure to the 2D case, the final expression for MIL computation is:

MIL = ω
∫ π

0

∫ 2π

0

vθ,ϕvT
θ,ϕ

C(vθ,ϕ)2 sin (ϕ) dθdϕ (4.30)

with vθ,ϕ a vector in the unitary sphere given in spherical coordinates
and sin (ϕ) dθdϕ the surface element of the unitary sphere in spherical
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coordinates.
Once the closed formulation is stated, the correspondence between

the covariance matrix and the ellipsoid is also demonstrated; hence
there is a strict correspondence between the axis lengths of the ellipsoid
and the eigenvalues of the covariance matrix, used to determine ellipsoid
orientation. With this correspondence is it possible to compute a scalar
quantity representing the degree of structural anisotropy (DA):

DA = λmax

λmin

(4.31)

or alternatively
DA = 1 − λmin

λmax

(4.32)

so, in this case DA assumes value raging from 0, isotropic material dis-
tribution (isotropic structure), and 1, anisotropic material distribution
(anisotropic structure).

In both equations 4.31 and 4.32 λi represent the eigenvalues of the
covariance matrix.

Autocorrelation function (ACF)

The Autocorrelation function (ACF) method belongs to the so-
called texture-based ones and it exploits a texture pattern, present in
the set of images obtained during material inspection, to determine
spatial material distribution and anisotropy. When applied to expanded
polymeric materials the texture feature selected is the voids distribution.
This can be done under the hypothesis that the inspected sample
possesses a quasi-regular structure that can be described through a
suitable fabric tensor [56].

Given a profile ρθ,φ,c along direction [θ, φ] and centred at the point
c, and a shift length ∆r ∈ R, the spatial autocorrelation function is a
statistical measure of the profile’s reappearance at a distance ∆r along
[θ, φ]. For example, the one-dimensional spatial function is defined as
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the convolution of ρθ,φ,c with its mirrored complex conjugate, ρ∗
θ,φ,c:

ACF (∆r) =
〈
ρθ,φ,c ρθ,φ,c+∆r

〉
=
∫ +∞

−∞
ρ∗

θ,φ,c ρθ,φ,c+∆r dr (4.33)

Since the operation of autocorrelation returns only the power in-
formation it is possible to prove that the operation is nonlinear and
irreversible. Moreover, if ρθ,φ,c is a real function, then ACF (∆r) is
symmetric and also real, which is the case of real intensity images.
An example of computation of 1D spatial autocorrelation function is
reported in figure 4.12.

Figure 4.12: Example of 1D spatial autocorrelation function computation
along a generic test line; a) image slice from an X-Ray com-
puted tomography analysis of trabecular bone with a generic
test line reported in red, b) original intensity function (ρθ,φ,c,
in red) and its shifted counterpart (ρθ,φ,c+∆r, in black), c)
maxima overlap of the two intensity functions at a certain
shift length d1 and d) Autocorrelation function. Figure freely
adapted from [56].

The one-dimensional expression reported in equation 4.33 can be
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extended to any higher dimensions performing the integration over
the entire domain of the input function; area in the case of 2D and
volume for 3D. In the case of a multidimensional function, the shift
direction becomes a vector, ∆r. In the case of three-dimensional
functions, the shift vector ∆r = [∆x, ∆y, ∆z] = iθ,φ ∆r is defined by
the Cartesian vector or the unit vector iθ,φ and magnitude ∆r. The
ACF function can be consequently denoted as ACF (∆x, ∆y, ∆z) in
Cartesian coordinates or ACF (∆r) in spherical coordinates. Usually
the spherical coordinates system is preferred since the texture features
distribution can be represented, like in the MIL algorithm, with a Rose
diagram plot [34].

Integration over the entire sample volume for each ∆r is usually
computationally very expensive, both in terms of time and physical
resources; a solution is to perform calculations in the Fourier domain by
the use of convolution theorem which states that ACF (∆r) is equiva-
lent to the inverse Fourier transform of the Fourier power spectrum:

ACF (∆r) =
∫ +∞

−∞
|S(k)| 2 eik·r d3k (4.34)

in which k is the spatial wave vector and S(k) is the k-space signal
measured.

From a numerical point of view the algorithm can be implemented,
in a three-dimensional space, rewriting the analytical definition:

ACF (x, y, z) = 1
L M N

L∑
l=0

M∑
m=0

N∑
n=0

V ∗ (l, m, n) V (x + l, y + m, z + n)

(4.35)
where V ∗ denotes the complex conjugate of V , which are coincident
since V is real; as shown for the 1D case. The ACF is then computed
applying both convolution integral and Fast Fourier Transform:

ACF = IFFT (S (k)) (4.36)
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in which IFFT represents the inverse of the Fast Fourier Transform
and S(k) represents, as reported in equation 4.35, the power spectrum
in the frequency domain computed as the product between the Fourier
Transform of V and its conjugate:

S (k) = FFT (V ) FFT ∗(V ) (4.37)

At last, similarly to what is performed with the MIL algorithm, the
anisotropy tensor is once again defined as the optimally fitting ellipsoid
to the rose diagram. The ellipsoid principal axes (aACF , bACF and
cACF ) can be easily computed and the relative magnitudes define the
degree of structural anisotropy:

DA =

√√√√1 −
(

|aACF |
|cACF |

)2

(4.38)

in which is assumed that |aACF | ≤ |bACF | ≤ |cACF |, which are the
magnitudes of the principal axes of the ellipsoid.
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4.4 Materials and methods

4.4.1 Materials

The material referred to in the present chapter are the same ones
investigated in chapter 3; moreover, the same cubic specimens, having
10 mm side length, used for gas pycnometer analysis have been used
also for X-Ray computed tomography. This choice was made to have a
direct feedback on the apparent density measured with two different
experimental techniques on the same specimens, given the intrinsic
variability from sample to sample observed for each material. Two
specimens for each foam density were analysed and referred to in the
subsequent paragraphs as specimens A and B.

4.4.2 X-Ray computed tomography (CT)

All the tomographic acquisitions were made in collaboration with
ENEA, Division for Sustainable materials, Research centre of Brindisi.
Acquisitions were performed using a GE Phoenix Nanotom CT system
equipped with a 180 kV /15 W nano focus X-Ray tube and a 12-bit
2300 x 2300 pixel Hamamatsu flat panel detector. A molybdenum target,
suitable for weak absorbing specimen, like the ones investigated in the
present work, was used for all the analyses. The accelerating voltage
and the beam current of the X-Ray tube were set at 50 kV and 180 µA,
respectively. The number of projections was 2400. Voxel size was set
at 3 µm for each sample, corresponding to a geometric magnification
of about 17 times. The exposure time for each projection and the
total scan time were 1 s and 4.5 h, respectively. Volume reconstruction
was carried out with the application Phoenix datos|x 2. The software
enables to transform the series of acquired X-Rays projections, as the
sample revolves 360°, in a resulting stack of slices representing the actual
digital volumetric reconstruction, through the filtering back projection
algorithm whose description is beyond the scope of the present thesis
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work; interested readers are referenced to [7] [31]. The size of the
resulting sets of images was 1300 x 1300 x 1300 voxels, corresponding to
an investigated volume of 3.93 mm3.

4.4.3 Structure analysis

Images sets acquired with X-Ray computed tomography were used
as a basis for structure analysis, performed in terms of solid volume
fraction, structure volumetric mean thickness, pores characteristic
dimensions and volume anisotropy distribution. Each image represents
a virtual slice of the acquired CT volume.

Image analysis is performed through the use of a custom-developed
algorithm, developed with Matlab R2019b, while the 3D visualization
and analysis software Avizo 8 Fire Edition was used for the analysis
of voids. To characterize the cell foam features the following general
processing steps were performed:

• Denoising of grey-scale images by median filter;

• Binarization of the images, through the application of a suitable
algorithm (Otsu or Watershed);

• Mean structure volumetric thickness quantification;

• Pore separation and labelling, subsequent removal of all the pores
touching the borders of the inspected volume and calculation of
cell features.

Ideally, the resulting set of binarized images should represent a
closed-cell system hence the binarization algorithm adopted should
minimize material erosion without artificially introducing a percolation
path between closed adjacent cells. From the resulting binarized set
of images the solid volume fraction, from now uniquely identified as ϕ,
and the strictly related void volume fraction 1−ϕ, commonly addressed
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to as macro porosity, can be easily computed as follows:

ϕ = # V oxelF ull

# V oxelT ot

(4.39)

where # V oxelT ot is the total number of voxels within the analysed
volume and # V oxelF ull is the total number of voxels associated with the
presence of solid material in the binarized image after the binarization
stage (Boolean value equal to 1). From equation 4.40 the apparent
density, ρ∗, of the inspected samples can be computed as follows:

ρ∗ = ρS

(
# V oxelF ull

# V oxelT ot

)
+ ρAir

(
1 − # V oxelF ull

# V oxelT ot

)
(4.40)

in which ρS is the density of the constituent material solid (PET),
assumed equal to 1340 kg m−3 (average density of amorphous PET)
and ρAir is the density of the gas trapped inside the closed cells, in this
case taken as 1.2 kg m−3 (air density for T = 25°C and p = 0.1 MPa).

The choice of the proper binarization algorithm is hence based
on two complementary criteria: mathematical criterion, based on the
shape of the histogram as presented in the theoretical background
section, and on a physical criterion; the apparent density computed
from binarized images is compared with the value obtained from gas
pycnometer analysis and if the value is in the same order of magnitude
of the experimentally measured the binarization algorithm is considered
adequate, otherwise it is changed or adjusted to obtain a more realistic
value of apparent density for each inspected specimen.

Mean volumetric structure thickness and pores size were investigated
to identify foams’ internal cells characteristic dimensions, in a similar
way to what performed by Ashby and Zhu and outlined in chapter
2. The mean volumetric structure thickness was calculated using the
algorithm of Hildebrand and Rüegsegger implemented in the custom-
made Matlab algorithm while the labelling analysis tool of Avizo was
used for cell measurements. Cell measurements was performed in terms

106



4.4. Materials and methods

of:

• Volume of the void;

• Equivalent diameter of the void, defined as the diameter of a
regular sphere with the same volume of the inspected non-regular
solid;

• Sphericity of the void, defined as how closely the shape of an
object resembles that of a perfect sphere; is computed through
the ratio of the surface area of a sphere with the same volume
as the given particle to the surface area of the particle itself, as
defined by Wadell in 1935 [55].

The analysis of anisotropy was accomplished using two custom made
algorithms. The first one was implemented in Matlab to compute MIL
on the set of images, according to the procedure proposed in section
4.3.3. The second one was implemented using the VTK library to com-
pute spatial autocorrelation function according to a procedure widely
reported in the literature: each sphere was divided into triangular
facets defined by recursively subdividing the faces of an octahedron and
then projecting them outward to the sphere surface. Computing the
orientation of all the analysed voids and plotting them in an orthogonal
three-dimensional reference system is possible to visualize voids distri-
bution with the widely used rose diagrams [16]. In both approaches,
MIL and ACF, a least square fitting algorithm was employed to fit the
ellipsoid represented in the rose diagram; the number of orientations
chosen for both analyses was 2049.
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4.5 Results and discussion

In figure 4.13 the grey-level set of images obtained at the end of X-
Ray computed tomography inspection and reconstruction are reported.
Images are reported for each specimen A inspected for any given density;
similar sets were obtained also for samples B.

Figure 4.13: Greyscale set of images obtained from X-ray computed to-
mography analysis; the results are referred to sample A for
each inspected density.
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4.5.1 Image binarization

Each set of images was segmented using both Watershed and Otsu
algorithms in order to compare the two according to analytical and
physical selection criteria. Once the images had been binarized solid
volume fraction ϕ and related apparent density was computed and
relevant results are shown in figure 4.14; plotted against the apparent
densities measured through gas pycnometer analysis, as presented in
chapter 3 section 3.3.1. Results are for each sample A of any material
density, on which these binarization test are performed. Once the
proper algorithm was selected, it has been applied systematically to all
samples.

Figure 4.14: Apparent density computed from image analysis as a function
of that measured with gas pycnometer analysis; dashed grey
line represents the ideal correspondence between the two
values. Results are referred to sample A for each inspected
density.
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Irrespective of the chosen algorithm, the apparent density measured
with X-Ray computed tomography is systematically higher than the
one obtained from gas pycnometry, with the only exception of PET
320. This result can be easily explained because of the presence of a
significantly denser inner region, clearly visible in the set of images
shown in figure 4.13 and not directly detectable with gas pycnometer.
For what concerns material PET 320 the choice of the binarization
algorithm is straightforward from both analytical and physical consid-
erations: the histogram of the set of images representing the inspected
structure has a bimodal shape which obviously leads to the choice of
Otsu binarization algorithm; moreover, as can be seen from the graph,
the watershed algorithm is highly conservative in this case and it adds
artificial material to the binarized images. In addition, Otsu algorithm
is suitable enough to preserve the internal closed structure without
creating an artificial percolation path between adjacent closed cells.
Analogous considerations can be made for the other samples, in these
three cases (PET 80, PET 100 and PET 130) the histogram of the
images is monomodal, leading the preference to Watershed algorithm;
in these cases Otsu’s algorithm is not conservative enough to preserve
the internal structure, it does not preserve the integrity of closed cells,
since the ideal threshold is not uniquely determined, due to the nature
of the histogram, while is preserved through the application of the
Watershed one. Moreover, the discrepancy between the two measures
is justified by the presence of dense regions. For what concerns PET
130 Watershed algorithm is in any case preferred since the thin wall of
the internal structure, in same cases 1 pixel in length, are not detected
by Otsu’s algorithm.

Aside from considerations which are specific to the individual speci-
mens inspected in the present thesis, the results highlight the importance
of the proper choice of the binarization algorithm during image pro-
cessing. The correct choice is a fundamental step that, if not properly
investigated, can introduce significant errors during subsequent phases,
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in addition to the intrinsic errors of the tomographic reconstruction.

4.5.2 Structure analysis

Once the set of images were properly binarized they were used for
an accurate reconstruction and to perform quantitative measurements
on the foam samples. In figure 4.15 the cross sections taken along
the X-Z plane (sheet plane) of the different samples, as cut from the
material sheets, are shown. Two samples (sample A and B) are shown
for each density, typically both sharing a distinctive appearance. Some
qualitative differences are clearly detectable from the observation of the
images. Sample PET 80 A exhibits a densification area, not present
in sample B, which also influences the shape of neighbouring cells; a
similar feature is also present in both samples of PET 100. On the other
hand, sample PET 130 B possesses a slightly coarser structure when
compared with its counterpart. While the peculiar feature observed for
sample PET 80 A is probably fortuitous, variations in structure within
different regions of the same sheet can generally occur on a product
industrially realised on a large scale, as demonstrated by PET 130 A
and PET 130 B.

The repeatability of the tomographic analysis was ascertained
through the evaluation of concentrated structural scalar parameters:
solid volume fraction, ϕ, mean structure volumetric thickness, mean
equivalent pore diameter, Deq, and pore sphericity. The comparison is
graphically reported in figure 4.16 for all the tested samples. For a more
homogeneous comparison among all the samples, the wall thickness
and the volume fraction were measured with the caution to exclude
the densification areas, to prevent an artificial increase of the relevant
quantities: taking the average volumetric thickness as an example, the
values would have been equal to 32.1 µm (instead of 23.6 µm), 33.1 µm
(instead of 25.2 µm) and 25.8 µm (instead of 22.0 µm) for PET 100 A,
PET 100 B and PET 80 A, respectively.
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Figure 4.15: Tomographic cross-sections, related to the X-Z plane of ob-
servation, for all the specimens inspected with the X-Ray
computed tomography; densification regions are highlighted
with red ellipses.
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Figure 4.16: Comparison of structural parameters obtained from CT for
two samples of the four investigated expanded polymeric
materials: a) solid volume fraction, ϕ, b) mean structure
volumetric thickness, c) mean equivalent pores diameter, Deq,
and d) pores sphericity. The dispersions reported come from
the statistical analysis performed on the pores.

All foams gave similar results (about 15%) in terms of ϕ, with the
exception of PET 320 for which a nearly double value was found; the
measurements between samples of the same foam are in any case in very
good agreement for PET 100 and PET 320, while minor differences are
detectable in the case of the two other materials, but they are explained
by the qualitative differences described previously. Besides these dif-
ferences the evaluation of the mean volumetric structure thickness,
performed on really different morphologies with the same algorithm,
from a numerical point of view, supports the main hypothesis at the
basis of Hildebrand and Rüegsegger algorithm: the independence of
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algorithm results on the procedure itself. The results reported in fig-
ure 4.16 are obtained without the selection of any parameter for the
application of the numerical procedure.

Deq and pores sphericity were obtained through the analysis of
individual voids within the reconstructed volume. The number of cells
analysed for each sample is reported in table 4.1; from the analysis of
the cells a statistical distribution can be computed and an example is
reported in figures 4.17 and 4.18 for samples A of each analysed density.
Similar results were obtained on samples B. Continuous distributions
are obtained through a Gaussian fit of the data, since the distribution
had proven to be non-normal.

Table 4.1: Number of cells analysed for each sample inspected with X-Ray
computed tomography.

Sample Number of cells

PET 80 A 1635
PET 80 B 1402
PET 100 A 3087
PET 100 B 2626
PET 130 A 3125
PET 130 B 1928
PET 320 A 16678
PET 320 B 16541

From both graphs, the distributions, from which mean values and
error bars reported in figure 4.16 are computed as the median and the
inter-quartile distance respectively, are clearly visible. It is also possible
to qualitatively observe a progressive horizontal restriction in voids
morphology distributions with respect to an increasing density. This
anticipate the quantitative results presented in the next section, clearly
visible in the rose diagram computed with fabric tensor algorithms: the
morphologies become more and more regular with increasing density,
confirming also the hypothesis built on the mechanical results presented
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Figure 4.17: Statistical distribution of the volumes of the analysed cells; for
each plot continuous distribution (grey line) is superimposed
to the histogram for a clearer visualisation of the distribution
itself: a) PET 80, b) PET 100, c) PET 130 and d) PET 320.

in chapter 3 paragraph 3.3.3. Moreover, given the high ratio between
the size of the analysed volume (about four millimetres) and typical
cell size, in terms of Deq, (a few hundreds of microns), the concentrated
parameters computed from this structural analysis are considered repre-
sentative of the whole structure. This consideration strongly supports
the search for correlations between these structural parameters and
other macroscopic quantities.

As a first step, the solid volume fraction was related to macroscopic
apparent densities, the first quantity compute through X-Ray com-
puted tomography and the second determined through gas pycnometer
analysis. Figure 4.19 shows relevant data in a double logarithmic plot:
despite a relatively large dispersion in solid volume fraction data, ϕ,
a linear relationship can clearly be identified between the apparent
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Figure 4.18: Statistical distribution of the equivalent diameters of the anal-
ysed voids; for each plot continuous distribution (grey line) is
superimposed to the histogram for a clearer visualisation of
the distribution itself: a) PET 80, b) PET 100, c) PET 130
and d) PET 320.

density ρ∗ and ϕ, which leads to the following equation:

ρ∗

ρS

≈ (ϕ)m with m = 1.185 (4.41)

where ρS is the bulk solid density and m is the slope of the dashed line
shown in figure 4.19, obtained with a linear fit.

Another relationship was found between the relative density and
a characteristic dimension of the cells: the ratio between the mean
structure thickness and the equivalent diameter of the pores, as proposed
by Gibson and Ashby [20] (see chapter 2 paragraph 2.4.1). Also, in this
case a linear fit of the data, as shown in figure 4.20, was performed.
A similar relation to the one reported in equation 4.41 can thus be
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Figure 4.19: Double logarithmic plot of the relative density (y-axis) versus
solid volume fraction of the four foams investigated; the
dashed line represents a linear fit of the data.

identified:
ρ∗

ρS

≈
(

Th

Deq

)n

with n = 0.781 (4.42)

where ρ∗ is once again the measured apparent density, ρS is PET solid
density, Th is the average volumetric structure thickness, Deq is the
mean equivalent diameter of the measured pores and n is the slope of
the dashed lines reported in Figure 4.20.

Both linear fits were accomplished with an r2-value greater than
0.99, indicating that the identified relationships can be considered valid
from a statistical point of view. The quite high horizontal dispersion,
computed as the interquartile difference of the Gaussian distribution,
reported in figure 4.18 is strictly related to the statistical analysis
performed on the voids, which descends from the wide difference in
foam morphologies highlighted in the inspected samples.
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Figure 4.20: Double logarithmic plot of the relative density (y-axis) versus
the ratio of mean structure thickness and the equivalent
diameter of the pores; the dashed line represents a linear fit
of the data.

4.5.3 Structure anisotropy

The other main aspect, faced in the present chapter, is the analysis
of global sample anisotropy accomplished through the application of
the MIL and ACF algorithms.

The results of anisotropy analysis for all the examined samples are
summarized in figure 4.21 with the values of the degree of anisotropy
(DA) evaluated with both MIL and ACF algorithms.

Three eigenvalues (λi) and the direction of the corresponding eigen-
vectors, where Θ is the inclination angle and φ the azimuth, are reported
explicitly in table 4.2. The eigenvectors are listed following a descending
order of the corresponding eigenvalue. In general, a strong agreement
between the data computed by ACF and by MIL is evident and also
there is a good repeatability between sample A and sample B. The
results obtained for DA are systematically higher for ACF calculation
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Figure 4.21: Comparison of degree of anisotropy index (DA) evaluated
with both MIL and ACF algorithms for each inspected sample;
two samples for each density.

with respect to MIL values, but this fact is expected and widely re-
ported in literature [14] [15] [50]; it is strictly related to the analytical
approach adopted (research of interface of material interphases for MIL
and spatial autocorrelation of characteristic texture features, supposed
to be quasi-regular, for ACF).

The reported results also show that the degree of anisotropy is
inversely correlated with the nominal density of the expanded polymeric
materials. This finding confirms once again the observations performed
in the previous paragraph on the statistical distribution of voids and
the hypothesis performed in chapter 3 on mechanical results. The
internal structure becomes more and more isotropic with increasing
foam density and consequently the mechanical response of the material
along the three main orthogonal directions of the tested specimens.
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Table 4.2: Anisotropy analysis results: degree of anisotropy, eigenvalues
and eigenvectors are reported for all the investigated specimens;
all the values are computed through mean intercept length and
autocorrelation functions algorithms.

DA I eigenvector II eigenvector III eigenvector
λmax λmed λmin(Θ, φ) (Θ, φ) (Θ, φ)

PET 80 Sample A

MIL 1.487 (88.42°, 0.84°) (63.53°, 91.64°) (153.47°, 87.69°) 425.907 331.573 286.375
ACF 2.225 (88.21°, 1.53°) (67.82°, 92.26°) (157.74°, 87.16°) 72.634 44.205 32.637

PET 80 Sample B

MIL 1.395 (88.41°, 5.75°) (89.70°, 95.76°) (178.38°, 16.51°) 583.664 528.576 418.419
ACF 1.698 (88.07°, 1.45°) (88.40°, 217.40°) (2.51°, 141.81°) 52.269 40.586 30.782

PET 100 Sample A

MIL 1.429 (88.52°, 89.46°) (37.53°, 357.52°) (127.49°, 0.59°) 336.913 248.922 235.791
ACF 2.111 (87.36°, 89.16°) (28.92°, 354.37°) (118.77°, 0.61°) 87.178 47.926 41.293

PET 100 Sample B

MIL 1.412 (89.53°, 91.62°) (148.31°, 2.38°) (58.31°, 1.33°) 348.550 263.480 246.888
ACF 2.102 (89.01°, 92.51°) (158.22°, 5.01°) (68.25°, 2.12°) 94.823 56.394 45.108

PET 130 Sample A

MIL 1.225 (5.06°, 146.28°) (91.03°, 68.00°) (85.04°, 338.09°) 355.922 297.295 290.599
ACF 1.554 (4.66°, 139.76°) (91.78°, 72.16°) (85.69°, 342.30°) 56.256 37.929 36.203

PET 130 Sample B

MIL 1.224 (21.29°, 93.75°) (68.76°, 278.01°) (91.44°, 7.45°) 574.447 524.876 469.473
ACF 1.336 (7.95°, 98.62°) (82.12°, 286.02°) (91.01°, 15.88°) 56.582 46.635 42.352

PET 320 Sample A

MIL 1.073 (81.51°, 1.77°) (171.09°, 19.58°) (87.31°, 92.17°) 174.569 170.255 162.740
ACF 1.148 (88.14°, 1.21°) (177.59°, 40.57°) (88.47°, 91.26°) 57.606 56.033 50.197

PET 320 Sample B

MIL 1.138 (89.67°, 351.31°) (178.60°, 67.69°) (88.64°, 81.31°) 204.650 200.029 179.862
ACF 1.140 (89.54°, 344.61°) (178.08°, 60.93°) (88.13°, 74.63°) 61.329 59.914 53.810

Both PET 320 specimens are in fact characterized by small and more
spherical voids and have a degree of anisotropy close to 1. On the other
hand, PET 80 and PET 100, characterized by elongated cells and a
high variability of voids morphologies, exhibited the most anisotropic
behaviour. Material distribution can be visually summarized with
the Rose diagrams reported in figure 4.22. The eigenvectors are also
reported, drawn in light blue colour, with their length proportional to
the relevant eigenvalues.

At last the MIL algorithm, in the version proposed by Wald [56],
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Figure 4.22: Graphical representation of anisotropy analysis results in
terms of Rose diagrams, which represent the orientation of
the structure in a cartesian 3D coordinate system. Diagrams
are reported for all inspected specimens analysed with both
MIL and ACF.
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was applied to compute the mean structure thickness along different
orientations, Th(v), for PET 320 sample A, whose fabric tensor turned
out to be the most isotropic one among the other inspected foams. The
obtained average value:

T̄ h = 1
N

N∑
v=1

Th (v) = 39.1 µm (4.43)

is in very good agreement with the one computed with Hildebrand and
Rüegsegger algorithm, reported in figure 4.16. This result alone is not
surprising due to the isotropic nature of the inspected structure, but
computing the same quantity with the ACF algorithm, a very similar
result is obtained:

T̄ h = 1
N

N∑
v=1

FWHM (v) = 38.4 µm (4.44)

showing that on isotropic structures the results of the three algorithms,
based on very different hypothesis, are comparable; the equivalence of
ACF and MIL algorithms, which is still today a topic of discussion in
literature, is thus supported by the present research. The same analysis
can not be easily performed on the other inspected samples, due to
the anisotropic nature of the structure and the strong dependence of
the above computed quantities on the nature of inspected structure;
this dependency is not considered in the Hildebrand and Rüegsegger
algorithm. A modified version of MIL and ACF algorithms, objective
that goes behind the aim of the present work, could also demonstrate
the equivalence of the two approaches for less isotropic structures.

4.6 Concluding remarks

In this chapter an image-based approach for expanded polymeric
materials internal structure inspection and quantification has been
proposed. From a general point of view, in the present chapter the good
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accuracy and repeatability of three-dimensional measures, performed
with different and ad-hoc algorithms, is reported, proving, as reported
by many authors in literature, the superiority of three-dimensional mea-
surements with respect to bidimensional ones. 3D approaches offer the
possibility to analyse different aspects of the real inspected structure,
such as material spatial distribution or voids characteristic dimensions;
this would be impossible with a bidimensional approach except with
the application of some algorithms, that extrapolate three-dimensional
geometries from 2D measurements, which always determine an over-
estimation of the dimensions of real structure features or introduce
artefacts that are not representative of the true inspected structure.

The importance of accurately inspecting the internal microstructure
to study the macroscopic properties exhibited by this class of materials
and correlating them with constituent material properties and internal
structure itself has been stressed again. Moreover, the equivalence of two
different algorithms, MIL and ACF, has been demonstrated for the study
of spatial material distribution. The general proposed approach has
also proven to be accurate and repeatable despite inspected structures
having qualitatively different morphologies and the intrinsic variability
between samples exhibiting low macroscopic apparent densities (PET
80 and PET 100).

The results presented in this chapter will be widely exploited in the
following ones where numerical algorithms for mechanical modelling and
structure versus macroscopic mechanical properties will be presented.
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Chapter 5

Statistical approach for finite
element mechanical modelling

In the following chapter the first of two image-based approaches
developed in the present thesis is presented. The aim of both models is
to provide efficient numerical tools which allow to perform numerical
simulations considering the real structure of inspected samples and the
constituent material properties, to study the macroscopic mechanical
behaviour of expanded polymeric materials possessing a wide range
of structures. The first approach presented is targeted at faithfully
describing the linear elastic macroscopic mechanical behaviour in the
range of finite small strains [21]; the approach is based on the Represen-
tative Volume Element (RVE) methodology, already widely employed in
composite simulation [3]. A brief overview of the selected methodology
is presented followed by the theoretical background regarding linear
elastic constitutive laws and homogenization scheme; in the specific case
Gurson model and the marching cube algorithm are outlined. Then
the methodology adopted in this chapter is described and the main
macroscopic mechanical results obtained are presented together with
model validation. At last, a few basic structural-mechanical relation-
ships are provided, strengthened, with respect to previous chapters, by
the increased amount of data obtained through numerical simulations.
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Chapter 5. Statistical approach

5.1 Introduction

As already widely pointed out in chapter 2, image-based approaches,
developed in the past years, are the most promising path to understand
and model macroscopic behaviour of expanded polymeric materials [27].
They present the possibility to include in the model the real structure
of expanded polymeric materials inspected with one of the available
imaging techniques, preferably a three-dimensional imaging analysis,
such as X-ray computed tomography (CT) [23], nuclear resonance imag-
ing (NRI) or others [9]. This advantage is at the same time one of
the most challenging aspects, since considering the real structure and
topology of the inspected samples usually requires a large amount of nu-
merical resources, and in most cases, this prevents straightforward use
of high-resolution images [16]. To overcome this issue, in the past years
different numerical approaches were proposed in literature by many
authors, among which the most commonly used one is a macroscopic
homogenization scheme based on Representative Volume Elements
(RVE) [7] [2]. Homogenization schemes, applied in the mechanics field,
generally employ the continuum mechanics theoretical framework to
describe the global mechanical behaviour of a heterogeneous media [28].
While being microscopically heterogeneous, these heterogeneities are
assumed to be much smaller than some representative characteristic
length at the macro-scale. Hence the heterogeneous material exhibits
a macroscopically homogeneous behaviour within the single RVE; the
global behaviour can then be reconstructed by applying suitable pe-
riodicity conditions [11]. Considering this hypothesis, the problem of
equilibrium of a complex heterogeneous media is redefined at a smaller
scale domain as a boundary value problem, in terms of stress and strain
tensor fields, and then it is transferred back to the macroscopic scale
as an equivalent homogeneous material in which its behaviour can be
described by the related constitutive equations of continuum mechanics
[22]. In general, the application of the RVE approach requires the ap-
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plication of a suitable homogenization scheme to compute macroscopic
stress and strain and the identification of a characteristic size of the
representative element itself [14]; the latter must comply with the Hill
principle, for compatibility of energetic and mechanical equivalence of
the effective properties [12]. Figure 5.1 shows an explicative graphical
sketch of the RVE approach applied in a bidimensional case.

Figure 5.1: Schematic representation of the steps required to apply Repre-
sentative Volume Element approach to heterogeneous solids; a
bidimensional example is reported. Image freely adapted from
[3].

In the present chapter a modified Representative Volume Element
(RVE) approach will be presented with the aim of providing a suitable
numerical tool to perform finite element analysis, starting from image
inspection of expanded polymeric materials, and consequently describe
and predict macroscopic mechanical behaviour. For the sake of clarity
in the next section the theoretical background of different algorithms,
necessary to apply the RVE approach, will be briefly presented: first of
all, a description of linear elastic constitutive laws [28], used to describe
elastic behaviour of solids; then marching cube algorithm [15], adopted
to convert images into finite element mesh; finally, Gurson model, which
is the homogenization scheme selected to compute macroscopic stress
and strain [10]. Generality of the algorithms will be adapted to the
specific case of the macroscopic mechanical behaviour of expanded
polymeric materials in the practical section.
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Chapter 5. Statistical approach

5.2 Theoretical background

5.2.1 Linear elastic constitutive laws

The linear elastic behaviour of a solid can be described in compact
tensorial form as follows [28]:

σij = Cijklεkl (5.1)

in which σij is the stress tensor, εkl is the strain tensor and Cijkl is the
fourth rank tensor that relates the strain to the stress, usually referred
to as stiffness tensor.

In principle, for a generic anisotropic elastic material the relationship
between strain and stress is descripted through 81 elastic constants. It
can be proven that the stiffness tensor in the linear elastic case exhibits
the following properties:

• Bi-univocity

• Linearity, usually referred to as directly proportionality

• Invertibility: the relation can be written also in terms of the
compliance tensor, Sklij;

εkl = Sklijσij with C = S−1 (5.2)

Moreover, the 81 elastic constants are straightforwardly reduced to
36 due to the symmetry of strain and stress tensors (major symmetry).
Another reduction on the number of elastic constants can be performed
based on energetic considerations, computing the work performed by
a field stress for a given strain field, whose validity can be shown also
in the case of independence of the two fields. This theorem reduces
the maximum number of independent elastic constants to 21, necessary
to fully describe the linear elastic behaviour of a generic anisotropic
elastic material, usually referred to as triclinic.
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5.2. Theoretical background

Writing equation 5.1 in an extended tensorial form, using Voigt
notation, is possible to attribute a physical meaning to each term of
the elastic tensor:

σ11

σ22

σ33

τ23

τ13

τ12


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε11

ε22

ε33

γ23

γ13

γ12


(5.3)

in the extended tensorial form σii and εii represent normal stresses and
strains while τij and γij represent shear stresses and the corresponding
strains. Given a generic strain field as an input and a stress field
as output, the components of the elastic tensor can be physically
interpreted as follows:

• C11, C22 and C33 represent the direct effect of normal strains
components on the material response;

• C44, C55 and C66 represent the direct effect of shear strains com-
ponents on the material response;

• C12, C13 and C23 represent the coupled effect of normal strains
and normal stresses on the material response;

• C45, C46 and C56 represent the coupled effect of shear strains and
shear stresses on the material response;

• C14, C15, C16, C24, C25, C26, C34, C35 and C36 represent the
coupled effect of normal strains and shear stresses, or vice versa,
on the material response.

Each elastic component of the stiffness (or compliance) matrix must
be identified with a specific experiment, which means that for a generic
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anisotropic elastic solid 21 experiments have to be performed to fully
characterize the material response.

Additional symmetries allow to further reduce the number of in-
dependent component necessary to fully describe the linear elastic
behaviour. Figure 5.2 graphically exemplifies the different categories of
linear elastic materials and the related constitutive laws identified in
the past decades, according to the number of symmetry planes.

Figure 5.2: Graphical representation of linear elastic constitutive laws
based on the number of minor symmetries identified in the
material; they range from triclinic (no symmetries) up to
isotropic (complete symmetry).

With an increasing number of symmetry planes, the number of inde-
pendent components decreases and so does the number of experiments
necessary to identify the elastic constants of the material.

One of the most common elastic constitutive laws is the orthotropic
one; this class of materials is characterized by two minor symmetries,
as given by three mutually orthogonal planes of symmetry. In this case,
due to the presence of major and minor symmetries, all the components
of the stiffness matrix representing coupled effects are equal to zero
apart from coupled normal strains and stresses. The constitutive law
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in tensorial form can be consequently written as:

σ11

σ22

σ33

τ23

τ13

τ12


=



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε11

ε22

ε33

γ23

γ13

γ12


(5.4)

The independent components are consequently reduced to nine and
these nine elastic constants can be defined:

• Three Young moduli (E1, E2 and E3) representing the stiffness of
the material along the three main orthogonal directions;

• Three Poisson coefficients (ν12, ν13 and ν23);

• Three Shear moduli (G12, G13 and G23).

The constitutive relation can be consequently rewritten as a function
of the aforementioned elastic constants. For the sake of clarity, the
equation is now written in terms of compliance, whose expressions are
simpler:

ε11

ε22

ε33

γ23

γ13

γ12


=



1
E1

−ν21
E2

−ν31
E3

0 0 0
−ν12

E1
1

E2
−ν32

E3
0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0
0 0 0 1

G23
0 0

0 0 0 0 1
G13

0
0 0 0 0 0 1

G12





σ11

σ22

σ33

τ23

τ13

τ12


(5.5)

In the tensorial notation, only for formal reasons three more Poisson
coefficients are introduced, but they are not independent constants due
to the following symmetry relations:

ν12

E1
= ν21

E2
; ν13

E1
= ν31

E3
; ν23

E2
= ν32

E3
(5.6)
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From an experimental point of view the nine elastic constants can
be determined by performing six experimental tests:

• uniaxial compression tests along three main orthogonal directions
(1 − 1, 2 − 2 and 3 − 3) of the tested sample from which Young
moduli and Poisson ratios are measured;

• simple shear tests along the three coordinate planes (1 − 2, 2 − 3
and 1 − 3) from which the shear moduli are measured.

Other simpler elastic models are widely used in literature to describe
the mechanical behaviour of materials; the two most commonly used
are transversely isotropic, widely employed for composite materials,
and fully isotropic, for homogeneous materials.

Transversely isotropic materials are characterized by a complete
in-plane symmetry and hence the independent components of stiffness
matrix are reduced to five (and so the related elastic constants):

• Two Young moduli (Ep and Et) representing the in-plane and out
of plane stiffness;

• Two Poisson ratios (νp and νpt);

• One Shear modulus (Gtp).

The related tensorial relation can be written as follows:


ε11

ε22

ε33

γ23

γ13

γ12


=



1
Ep

− νp

Ep
−νtp

Et
0 0 0

− νp

Ep

1
Ep

−νtp

Et
0 0 0

−νpt

Ep
−νpt

Ep

1
Et

0 0 0
0 0 0 1

Gtp
0 0

0 0 0 0 1
Gtp

0
0 0 0 0 0 1

Gp





σ11

σ22

σ33

τ23

τ13

τ12


(5.7)

in which the subscript p and t refer to the in-plane and out of plane
elastic constants, respectively.
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Also, in this case for the sake of notation consistency it appears
that more constants that the minimum number are introduced, but
once again a symmetry relation can be written:

νpt

Ep

= νtp

Et

(5.8)

Moreover, a further relation can be analytically demonstrated:

Gp = Ep

2 (1 + νp) (5.9)

At last, the simplest linear elastic constitutive law, applied to
materials characterized by an infinite number of symmetry planes, is
the isotropic one. In this case only two components of the stiffness
matrix, or equivalently the compliance matrix, are independent. Two
elastic constants are thus defined:

• Young modulus (E);

• Poisson coefficient (ν).

The tensorial relationship becomes:

ε11

ε22

ε33

γ23

γ13

γ12


=



1
E

− ν
E

− ν
E

0 0 0
− ν

E
1
E

− ν
E

0 0 0
− ν

E
− ν

E
1
E

0 0 0
0 0 0 1

G
0 0

0 0 0 0 1
G

0
0 0 0 0 0 1

G





σ11

σ22

σ33

τ23

τ13

τ12


(5.10)

Once again, an analytical relationship can be demonstrated to hold
between E and G:

G = E

2 (1 + ν) (5.11)

Analogously to what described for orthotropic materials, similar
experiments have to be performed to measure the elastic constants of
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the material under investigation, but the number of experiments is
reduced accordingly to the required number of elastic constants.

5.2.2 Marching cube algorithm

The marching cube algorithm was developed in 1987 in the field
of computer graphics with the aim of providing a tool to build three-
dimensional volume rendering starting from a series of images [15] [26]
[25]; the first application of the algorithm was proposed in the medical
field to visualise in three dimensions the results of medical analyses such
as Nuclear Resonance Imaging (NRI) or Axially Computed Tomography
(CT) [2]. Subsequently it was applied in different engineering fields
in which image analysis and volumetric reconstruction is of crucial
importance [9].

Starting from a set of images it is possible to convert it into a three-
dimensional mesh uniquely identified through labelling of elements and
their corresponding nodes. First of all, in the case of a set of images,
representing a volume, the unitary space subdivision should be defined:
in this case the space is discretized into voxels (volumetric pixels),
graphically represented with a hexahedron uniquely identified by its
eight vertices and centroid, corresponding to the bidimensional pixel
coordinates. Starting from the bidimensional image and considering
each pixel as a centroid of a voxel, it is possible to construct around each
centroid a three-dimensional hexahedral structure whose side length is
equal to the image resolution; a graphical example is reported in figure
5.3.

This procedure can be applied to each pixel of an image or equiva-
lently a set of images obtaining as a result a three-dimensional rendering
of the inspected volume. Considering now a set of images of dimen-
sions I x J x K, the first step to be performed is the discretization of
the space, represented by the set of images, and the definition of an
artificial reference system to uniquely identify the spatial coordinates of
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Figure 5.3: Three-dimensional discretization and representation of a voxel
with a hexahedral element and symmetrically constructed
around the pixel of a bidimensional image considered as the
centroid of the voxel.

the centroids (i, j, k). A graphical representation is depicted in figure
5.4.

The second step consists in the node numbering, considering that
the set of images is comprehensive of a total number of nodes (N)
variable in each direction of the global coordinate system and equal
to: Ni = I + 1 along i direction, Nj = J + 1 along j direction and

Figure 5.4: Bidimensional discretization of an image and unique identifica-
tion of each pixel, through a coordinate system.
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Nk = K + 1 along k direction. The numbering procedure is performed
with a global and systematic approach with respect to the reference
system, starting along i direction, then j and at last k, as depicted in
figure 5.5. The operation of node numbering is performed only around
pixels exhibiting the presence of material in the inspected volume;
“empty” pixels are discarded in the procedure.

Figure 5.5: Graphical example of global nodes numbering around each
pixel representing the presence of material in the inspected
volume.

The numbering procedure is performed through a set of equations
that uniquely identify each node in the global system, with eight nodes
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for each pixel as depicted in figure 5.3:


Node1 = (Ni Nj) (k − 1) + Ni (j − 1) + (i + 1)

Node2 = Node1 + Ni

Node3 = Node2 − 1

Node4 = Node1 − 1

Node5 = Node1 + (Ni Nj)

Node6 = Node2 + (Ni Nj)

Node7 = Node3 + (Ni Nj)

Node8 = Node4 + (Ni Nj)

(5.12)

The third and last step consists in the extraction of nodes coordinates
with respect to the global coordinate system; this is performed in two
sub-steps that consist in the introduction of a local coordinate system,
centred in each pixel and with the axes parallel to the global coordinate
system, and the computation of local coordinates of the nodes, taking
the side length of the hexahedron equal to the image resolution; the
coordinates are then converted according to the global coordinate
system knowing the position of each centroid, to which the node is
associated; in figure 5.6 a representation of the two coordinate systems
is depicted. This last step can be analytically written as follows for a
generic node in position (i, j, k):

i =

∆ (i − 1) + ∆
2 if a > 0

∆ (i − 1) − ∆
2 if a < 0

(5.13)

j =

∆ (j − 1) + ∆
2 if b > 0

∆ (j − 1) − ∆
2 if b < 0

(5.14)

k =

∆ (k − 1) + ∆
2 if c > 0

∆ (k − 1) − ∆
2 if c < 0

(5.15)
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in which ∆ denotes image resolution and a, b and c denote the local
coordinates of the node.

Figure 5.6: Graphical representation of global and local coordinate systems
adopted for nodes coordinates computation.

Thanks to the descripted procedure each set of images can be easily
and uniquely converted into a three-dimensional representation of the
volume inspected. Voxels are uniquely identified through the so-called
incidence and coordinates matrices: the first one is a matrix containing
the number of each pixel associated with the eight nodes number of
the associated voxel while the second is a matrix containing the global
coordinates of each node.

5.2.3 Gurson model

Gurson model was developed in 1975 with the aim of providing
a yielding criterion for porous ductile materials and in the following
years it was adapted and modified also for the description of various
mechanical aspects of cellular materials, since it considers the presence
and the possible voids nucleation in the computation of strain and
stress fields [19] [1]. The formulation proposed in this section is the
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original model derived by Gurson [10]; in the following paragraphs
it will be employed in a discrete and simplified version aimed at its
implementation in finite element modelling post-processing.

The model is based on the main assumption of small strain fields
inside the inspected discrete volume or otherwise called volume of
interest. The material is assumed to be constituted by at least two
phases, matrix and inclusions, in the specific case voids; moreover,
the non-linear behaviour of the matrix is assumed incompressible and
rigid-perfectly plastic. The second phase, referred to as inclusions,
which triggers the nucleation of voids in the matrix, and especially at
its interface with the second phase, is considered completely unbonded
from the surrounding matrix material since the very beginning of the
deformation process. Hence, the second phase can be approximated
as cavities with stress-free boundary and consequently the dilatant
behaviour of the volume, V, is caused by the presence of the cavity
themselves.

The macroscopic strain rate tensor can be expressed by subdividing
the contributions of the matrix volume, called Ω, and of the void volume,
V − Ω, as:

Ėij = 1
V

∫
V

ε̇ij dV = 1
V

[∫
Ω

ε̇ij dV +
∫

V −Ω
ε̇ij dV

]
(5.16)

in which capital letters refer to macroscopic quantities and lowercase
letters refer to microscopic, or local, quantities.

Applying the Green theorem to equation 5.16 the equation can be
expressed as:

Ėij = 1
V

∫
V

ε̇ij dV = 1
V

[∫
Ω

ε̇ij dV + 1
2

∫
∂Ωi

(vin
′

j + vjn
′

i) dS
]

(5.17)

where ∂Ωi is the profile of the interface between matrix and the cavity,
n

′ is the unit outward normal to the void surface and v is the field
velocity; equation 5.17 requires that the velocity field is continuous with
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its first derivative inside the integration volume. The second term at the
right-hand side of the equation highlights the contribution responsible
for the dilatant behaviour of the volume.

The macroscopic plastic dissipation can be defined as:

Ẇ ≡ ⟨ẇ⟩ = 1
V

∫
V

σij ε̇ij dV = 1
V

∫
Ω

σij ε̇ij dV = 1
V

∫
∂V

σijvinj dS

(5.18)
where ⟨□⟩ stands for the volume average operator and the integration
is performed only over the rigid ideally-plastic matrix volume, Ω, due
to the null strength properties of the void. In the equation the plastic
dissipation is defined as the doubly contracted product of the micro-
scopic stress, σij, and microscopic strain rate tensors, ε̇ij. Moreover,
within the incompressible matrix material the hydrostatic part of the
stress tensor does not play a role, hence it can be substituted by its
deviatoric component.

At the microscale, it is assumed that the matrix yield surface is
convex and the requirement is fulfilled by the J2 yield condition. The
maximum work principle thus states that:

ẇ − ẇ∗ ≡
(
σij − σ∗

ij

)
ε̇ij ≥ 0 for ∀ ˙εij ̸= 0 (5.19)

where σij represents a plastic stress state, ε̇ij is the relevant strain rate
as given by the associated flow rules, σ∗

ij is a state of stress which lies
within or upon the yield surface, ẇ and w∗ are the microscopic plastic
dissipation associated with σij and σ∗

ij respectively.
At this point the no-correlation postulate of Bishop and Hill is

introduced: it is assumed that no correlation between the components
of the microscopic stress tensor σij and the components of the velocity
field vi over any plane section, SA, of the volume occurs. The condition
is satisfied if the strain or the stress states are uniform in the volume.
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This statement implies that:

1
SA

∫
SA

σijvi dS = 1
SA

∫
SA

σij dS · 1
SA

∫
SA

vi dS (5.20)

Applying equation 5.19 to equation 5.18 leads to:

Ẇ = 1
V

∫
V

σij ϵ̇ij dV = ΣijĖij (5.21)

in which Σij is the macroscopic resultant stress tensor over the plane
section.

By means of the virtual work principle, for a given stress state σij

which satisfies the equilibrium conditions and a strain rate state ε̇ij

associated to the velocity field vi the following relation holds true:

Ẇ A − Ẇ ∗ ≡
(
ΣA

ij − Σ∗
ij

)
Ėij = 1

V

∫
V

(
σA

ij − σ∗
ij

)
ε̇ij dV ≥ 0 (5.22)

where σ∗
ij is a stress state that does not violate the yield condition in the

volume, while σA
ij and ΣA

ij are the actual microscopic and macroscopic
stress tensors, respectively. This equation represents the macroscopic
maximum work principle deduced from the microscopic maximum work
principle and from the no-correlation postulate. Hence, the macroscopic
yield function inherits the properties of the local one for the matrix
material.

The macroscopic stress at yielding can be obtained by exploiting
the associativity property of the macroscopic flow rules as:

ΣA
ij = ∂Ẇ

∂Ėij

(5.23)

This last equation defines the actual response, ΣA
ij, of the porous

material under the applied loading conditions. When an approximate
velocity field, linear in Ėij, is introduced for the matrix material, the
approximate effective yield function possesses the properties of convexity
and normality as well. Due to the linearity of the velocity field in the
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macroscopic strain rate tensor, the effective dissipation can be expressed
as follow:

Ẇ = Ẇ
(
vi

(
Ėij

))
= ∂Ẇ

∂Ėij

Ėij (5.24)

The approximate macroscopic stress tensor at yielding can be defined
analogously to the actual one:

Σij = ∂Ẇ

∂Ėij

= 1
V

∫
V

[
σkl

∂ε̇kl

∂Ėij

+ ∂σkl

∂Ėij

ε̇kl

]
dV = 1

V

∫
V

σkl
∂ε̇kl

∂Ėij

dV

(5.25)
in the equation the term ∂σkl

∂Ėij
ε̇kl disappears because of the local associ-

ated flow rules.
By analogy with equation 5.23 normality at the macroscopic scale

has been proven and furthermore, the maximum work principle at the
macroscale follows directly from convexity of the matrix constitutive
behaviour and from the linearity of the approximate strain rate tensor
within the volume.

Finally, it can be demonstrated that the approximate yield function
always lies on or outside the actual one. To show this fact, the maximum
plastic work principle is written as:

Ẇ − Ẇ A ≡
(
Σij − ΣA

ij

)
Ėij = 1

V

∫
V

(σij − σA
ij)ε̇ij dV ≥ 0 (5.26)

Since both Σij and ΣA
ij are work conjugate pairs with Ėij , which has

the direction of the outward normal to the yield loci, both approximate
and actual, at, respectively, Σij and ΣA

ij, Σij is consequently an upper
bound for the actual stress tensor at yielding.
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5.3 Materials and methods

5.3.1 Materials

The sets of images representative of the inspected expanded poly-
meric structure already described in chapter 4 will be considered in
the present one; they will be used for structure analysis and also as a
basis for finite element simulations. The general procedure adopted in
the following sections is based on the Representative Volume Element
(RVE) approach previously described.

5.3.2 Representative Volume Element (RVE) ap-
proach

The first step to apply the RVE approach consists in subdividing the
total volume inspected with X-Ray computed tomography into smaller
sub-domains [20]. In the specific case the total volume inspected and
reconstructed with CT analysis is represented by a set of images of
total dimension 1300 x 1300 x 1300 pixel which corresponds, with the
employed resolution of 3 µm, to a volume of 3.93 mm3. The criteria
adopted to select the proper dimension of the RVE are:

• Upper limit is set according to the resources available for numerical
simulations; considering that each pixel representative of the
presence of material will be converted into a hexahedral finite
element the limit in this case is a volume of 400 x 400 x 400 pixel
(1.353 mm3) which in general corresponds to an average value of
“solid” pixels, in the order of 107, which roughly translates into a
similar number of finite elements.

• Lower limit is determined according to two considerations: the
first is a mathematical condition considering that the sub-domain
should not contain only solid material or vice versa it should not
be completely empty; for the inspected sets of images a volume of
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50 x 50 x 50 pixel (0.153 mm3) was enough to prevent this. The
second reason is based on the physical consideration that the
RVE selected should contain a minimum number of cells com-
prised between 5 and 10; according to the literature, this number
ensures that the RVE is representative of the whole inspected
volume. In this case the characteristic length of RVE range from
200 x 200 x 200 pixels (0.63 mm3) for PET 320 to 250 x 250 x 250
pixels (0.753 mm3) for PET 80. The second criterion gives in this
case the resulting minimum dimension of the RVE selected for
numerical simulation.

Table 5.1 summarizes the characteristic dimension of the RVE
selected for each set of images and the corresponding number of subdo-
mains in which the whole set is divided:

Table 5.1: Number of cells analysed for each sample inspected with X-Ray
computed tomography.

Sample RVE [Pixel] RVE [mm] Number of domains

PET 80 A 250 x 250 x 250 0.75 x 0.75 x 0.75 140PET 80 B
PET 100 A 250 x 250 x 250 0.75 x 0.75 x 0.75 140PET 100 B
PET 130 A 200 x 200 x 200 0.60 x 0.60 x 0.60 275PET 130 B
PET 320 A 200 x 200 x 200 0.60 x 0.60 x 0.60 275PET 320 B

5.3.3 Structure analysis

Each subdomain was analysed with the algorithms presented in
chapter 4 to compute microstructure features, such as solid volume
fraction (ϕ), mean volumetric structure thickness, voids equivalent
diameter (Deq) and voids sphericity. For what concerns structural
anisotropy analysis the different approaches presented in the previous
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chapter were adopted. Autocorrelation function (ACF) method was not
applied in the case of small RVE having not enough texture features
since in this case the application of this tensorial algorithm could
give misleading results. Mean Intercept Length (MIL) was in this
case implemented in the version proposed by Moreno and co-authors
[18]: the number of interfaces between material phases was computed
along lines parallel to the three orthogonal directions of the Cartesian
reference system and along lines inclined at ± π

4 in the coordinate
planes x − y, x − z and y − z. The anisotropy index was computed
as:

DA = 1 − λmin

λmax

(5.27)

in which λi are the eigenvalues of the second order tensor representing
spatial material distribution, obtained through the MIL algorithm.

Once the structural analysis was performed on each domain, the
results were combined in a bi-variate statistical distribution to highlight
the frequency distribution of sub-domains having specified morpho-
structural characteristics in terms of two parameters. In the specific
case the two variables selected for the statistical analysis are:

• Solid volume fraction: this quantity is selected since it is the main
physical parameter that influences the macroscopic mechanical
response of expanded polymeric materials as proven by many
authors in the scientific literature and already shown by the
experimental tests in chapter 3 [8].

• Degree of anisotropy: this variable was considered as a scalar
index of the anisotropic macroscopic mechanical response of the
domain selected; as shown in chapter 3, the tested samples exhibit
an increasing degree of mechanical anisotropy with decreasing
apparent density and hence solid volume fraction. It is expected
that this index is strictly correlated to spatial material distribution
and therefore is one of the crucial parameters to select the most
adequate sub-domain to reproduce the macroscopic mechanical
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response of the whole inspected material. It is expected that
structural degree of anisotropy is a good indicator to predict
different mechanical response in different spatial directions of the
inspected sub-domain.

The bin selected for bi-variate statistical analysis was 0.05 for both
adimensional quantities selected (which vary between 0 and 1).

Structure analysis and bi-variate statistical analysis were performed
using a custom-made Matlab R2019b code on a personal computer with
2 cores and 16 GB RAM.

5.3.4 Finite element modelling

From the result of bi-variate statistical distribution, from the most
occurring subdomain with given solid volume fraction and degree of
anisotropy, two sub-domains were selected to validate the RVE ap-
proach, comparing the results with those obtained in chapter 3 from
experimental tests.

The identified sub-domains were processed with a custom-made code,
implemented in Matlab R2019b, and converted into a finite element mesh
with the marching cube algorithm. Effectively a one to one conversion,
each pixel representing the presence of material (Boolean value equal to
1) was converted into a finite element. This operation was performed
after a filtering one that removes all the elements not connected with
the main structure identified in the RVE, to prevent errors during finite
element simulations. Once the incidence and coordinates matrices were
generated they were imported into the commercial software ABAQUS
2018. The elements type selected for all the simulations was C3D8,
a linear cubic finite element with full integration; this choice was
performed with the aim of including all the degree of freedom in the
simulation without any limitation provided by the choice of other finite
elements (e.g. beam elements or shell elements). Full integration was
selected to give the highest accuracy in numerical simulation results.
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Once the sub-domain had been imported into the commercial finite
element code, six linear elastic simulations were performed on each
domain representing elementary loading conditions, with the aim of
computing the stiffness matrix of the system [24]. Figure 5.7 depicts
qualitatively the six simple stress states simulated on each sub domain:

Figure 5.7: Qualitative representation of the six simple stress states simu-
lated on each sub domain.

Simulations were performed imposing a displacement, corresponding
to a macroscopic strain of 1%, on one face of the cubic RVE and
constraining the displacement on the opposite face. For each simulation
the boundary conditions adopted on the faces not directly involved in
the simple stress state simulation were symmetry boundary conditions,
under the hypothesis that the selected RVE is the unit cell of which
the macroscopic expanded material is made of [6] [7]. The adopted
solution scheme was implicit static general and the constituent material
considered linear elastic with the elastic constants reported in table 5.2:

Values were taken from literature data concerning amorphous polyethy-
lene terephthalate (PET); this choice is justified by the crystallinity
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Table 5.2: Linear elastic parameters.

Parameter Value

Young’s modulus (E) 2900 MPa
Poisson’s ratio ν 0.4

degree measurements presented in chapter 3.
The results of each simulation underwent a post-processing analysis

performed with a custom-made Python 2 code in which Gurson model
had been numerically implemented. Since finite element simulations
are performed in small strain linear elastic regime, yielding does not
occur in the material and hence the only quantities that needs to
be homogenized through the application of Gurson model are stress
and elastic strain fields; this is achieved implementing the following
numerical equations, derived from Gurson model [27]:

Σi,j ≡ ⟨σi,j⟩ = 1
V

∫
V

σi,j dV = 1
VT ot

# elements∑
k=1

σk
i,jV

k (5.28)

Ei,j ≡ ⟨εi,j⟩ = 1
V

[∫
V

εi,j dV +
∫

∂V
∇u · n dS

]
=

= 1
VT ot

# elements∑
k=1

εk
i,jV

k +
# elements ext∑

w=1
uw · nwSw

 (5.29)

in which Σi,j and Ei,j are the macroscopic stress and strain while σi,j

and εi,j the correspondent microscopic quantities; ⟨□⟩ indicates the
average volumetric operator. ∇u is the displacement gradient and n is
the unit vector normal to the surface to which the gradient refers to.
In the discrete form, the stress is computed over all the finite element
present in the mesh while the strain is computed once again on all the
finite elements for what concerns the volumetric component and only
on elements representing the interface with voids for what concerns
the surface component. In the discrete case, VT ot is the total volume
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of the RVE (material and voids), V k is the volume of k-th element in
the deformed configuration and Sw is the area of w-th element in the
deformed configuration.

Once the tensors representing macroscopic stresses and strains were
computed the macroscopic stiffness tensor of the RVE was assembled:

Σ11

Σ22

Σ33

Σ23

Σ13

Σ12


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





E11

E22

E33

2E23

2E13

2E12


(5.30)

each column of the tensor filled with the results of one simulation:

• The first three columns represent the result of uniaxial compres-
sion tests along the three main orthogonal directions; in order,
X, Y and Z;

• The fourth column is the simple shear test along the coordinate
plane Y − Z;

• The fifth column is the simple shear test along the coordinate
plane X − Z;

• The sixth column is the simple shear test along the coordinate
plane X − Y .

The computed matrix can be inverted to obtain the compliance
matrix, and elastic constants can be easily extracted with the relations
provided into previous paragraphs. For each domain the elastic con-
stants at the present stage were computed under the hypothesis of an
orthotropic material. The elastic constants obtained (E1, E2 and E3)
were compared against experimental results for the purpose of model
validation.
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The second step after the validation of the approach consisted in
verifying that each sub-domain belonging to one specific bin of the
distribution exhibited the same macroscopic mechanical response; this
check was performed by selecting all the sub-domains belonging to a
bin of the distribution and applying the above descripted procedure.

Once these two steps were performed, a total number of 100 sub-
domains, with different morpho-structural characteristics, were selected;
the same aforementioned procedure was applied to increase the number
of available experimental and numerical data to seek valid relationships
between microstructure parameters and macroscopic elastic constants.

All the pre-processing and post-processing operations were per-
formed on a personal computer with 2 cores and 16 GB RAM, while
finite element simulations were performed on a Linux machine with
24 cores and 49 GB RAM; the total number of finite elements ranged
from a minimum of 9 ∗ 105 up to a maximum of 3.5 ∗ 106 elements and
so the related number of free nodes varied from 2 ∗ 106 up to 6 ∗ 106.
The average CPU time needed for a single simulation varied between 6
and 32 hours depending on the total number of free nodes in the finite
element mesh.
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5.4 Results and discussion

5.4.1 Model validation

Figure 5.8 shows the results obtained from the bi-variate statistical
analysis performed on each inspected sample; the figure refers only to
sample A of each analysed density, but similar results were obtained
for sample B.

Figure 5.8: 3D histograms representing the results of bi-variate statistical
distribution performed on each sample density; figure refers to
sample A of each inspected density: a) PET 80, b) PET 100,
c) PET 130 and d) PET 320.

From the graph a decrease of the dispersion of the distribution with
increasing density is clearly visible, in accordance with the observations
already reported in the previous chapter.

Table 5.3 summarizes the results of bi-variate statistical distribution
in terms of the highest frequency of domains having given morpho-
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structural characteristics:

Table 5.3: Bi-variate statistical distribution results.

Sample Solid Volume Fraction (%) Degree of Anisotropy (-) Percent frequency (%)

PET 80 A 15 − 20 0.90 − 0.95 10
PET 80 B 15 − 20 0.85 − 0.90 10
PET 100 A 20 − 25 0.75 − 0.80 10
PET 100 B 20 − 25 0.85 − 0.90 10
PET 130 A 15 − 20 0.60 − 0.65 10
PET 130 B 15 − 20 0.65 − 0.70 10
PET 320 A 30 − 35 0.15 − 0.20 10
PET 320 B 30 − 35 0.15 − 0.20 10

From the most frequent class of each sample, one sub-domain was
converted into a finite element mesh and figure 5.9 shows an example
of the corresponding reconstructed geometry; the high level of details
that can be reproduced with the marching cube algorithm from a high-
resolution set of images, in this case obtained with X-Ray computed
tomography, is evident.

Figure 5.9: Example of Representative Volume Element (RVE) recon-
structed from the set of images, obtained with X-Ray computed
tomography, applying the marching cube algorithm; the sam-
ple refers to a sub-domain belonging to PET 130 sample B
(ϕ = 16.78% and DA = 0.66).

The results of simulation post-processing, in terms of elastic con-
stants and in the specific case the three apparent Young moduli (E∗

1 , E∗
2
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and E∗
3), are displayed in figure 5.10 and compared with experimental

data already obtained in chapter 3.

Figure 5.10: Comparison between apparent experimental and numerical
stiffness evaluated along the three main orthogonal directions
(X, Y and Z) of the foams. Experimental data shows average
values and dispersion of five samples for each foam density;
for numerical simulations, individual results obtained for each
reconstructed sample are shown.

Experimental and numerical results are in fair agreement, with
the exception of the Y direction for samples PET 100 A and B; this
discrepancy was attributed to the densification region identified in the
set of images obtained from X-Ray computed tomography analysis.
During the reconstruction of the sub-domain including the densification
region a relatively large number of very small voids, that go undetected
in the CT scans, were neglected; this error leads to a significant over-
estimation of the apparent stiffness in Y direction. Nevertheless, the

161



Chapter 5. Statistical approach

apparent stiffnesses obtained from the simulation are systematically
higher than the experimental ones; this fact can be explained with the
choice of symmetry boundary conditions enforced in the finite element
simulations [21]: the repetition in space of the simulated elementary
unit cell leads to the overestimation of the macroscopic mechanical
response. The real structure, as shown by the bi-variate statistical anal-
ysis is made of a great variety of sub-domains, each group characterized
by specific value of solid volume fraction, ϕ, and structural degree of
anisotropy; assuming the internal microstructure made up of a single
sub-domain leads to compute a stiffer macroscopic mechanical response
since all the sub-domains characterized by a lower value of solid volume
fraction are neglected. Another minor reason could be attributed to
the selected Young modulus of the constituent material, taken from
the literature for amorphous PET; this value could be higher than the
actual one of the PET with which the inspected expanded polymeric
material is made of, but the impossibility to mechanically characterize
the constituent material forced the adoption of literature data [17] [13].

Besides these minor differences, the results confirm what was already
observed in chapter 3 with experimental tests.

The last validation step was made with the aim of testing all the
sub-domains belonging to one category of the bi-variate statistical
distribution to verify that they exhibit a similar macroscopic mechanical
response. The results, once again in terms of apparent stiffness along
three orthogonal directions, are displayed in figure 5.11 and refer to all
the sub-domains belonging to a bin category that exhibits the same
values of solid volume fraction, ϕ, and degree of structural anisotropy,
DA.

A small variation of the apparent stiffnesses is reported along the
three main orthogonal directions (X, Y and Z) for all the sub-domains
belonging to the selected bin of the bi-variate statistical distribution.
This result proves that the dimension of the bin selected is adequate to
group the RVE according to their microstructural characteristics and
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Figure 5.11: Apparent stiffness evaluated along three main orthogonal
directions (X, Y and Z) for all the sub-domains belonging to
a specific bin of the bi-variate statistical distribution; a) PET
80 sample A for ϕ bin 15% − 20% and DA bin 0.90 − 0.95,
b) PET 100 sample B for ϕ bin 20% − 25% and DA bin
0.85 − 0.90, c) PET 130 sample B for ϕ bin 15% − 20%
and DA bin 0.65 − 0.70, a) PET 320 sample A for ϕ bin
30% − 35% and DA bin 0.15 − 0.20.

that the two variables selected, solid volume fraction and structural
anisotropy degree are good parameters to characterize the macroscopic
mechanical behaviour of the different sub-domains. The small variations
detected among the different sub-domains can be attributed to small
variations of solid volume fraction inside the bin of the distribution and
the different voids morphology included in the sub-domains.
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5.4.2 Porous solids and Cellular solids

Figure 5.12 displays the correlation between the average apparent
stiffness, computed as the average of the three Young moduli (E∗

Mean =
E∗

1 +E∗
2 +E∗

3
3 , normalized with respect to the constituent material bulk

modulus (ES) used in the finite element simulations, and the void
volume fraction of the samples (1 − ϕ). Experimental data, numerical
data used for model validation and numerical data obtained from
sub-domains representing virtual foam structures outside the available
experimental range are plotted. For the experimental data the void
volume fraction is estimated with equation 4.41 relating normalized
apparent density and solid volume fraction (ϕ). All the available
experimentally tested samples are considered separately since it is clear
from the graph that a variation in the microstructure, in terms of void
volume fraction in this specific case, leads to a more or less significant
variation of the normalized apparent stiffness. In the plot the star-like
point represents the ideal bulk (not foamed) polymer, having 0% void
volume fraction.

Combining the information coming from numerical simulations per-
formed on numerical structures and the ones obtained from experimental
tests and numerical simulations performed on RVE representing real
tested structures, a bilinear trend could be highlighted on the graph,
with a change in slope around 80% of void volume fraction value. This
variation in the sensitivity of the apparent stiffness to the void volume
fraction is consistent with a transition in the deformation mechanism
from an axially dominated to a bending dominated one [5]. The value
of 80% void volume fraction is consistent with scientific literature [4]
[8] and here is proposed as a threshold value that distinguishes two
classes of expanded polymeric material: the so-called porous solids,
subjected to a balanced combination of axial and bending deformation
mechanisms under loading, and the so-called cellular solids, whose main
deformation mechanism is dominated by bending. This distinction is
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clearly not sharp: in the case of the experimentally tested samples, all
the densities clearly belong to the cellular solid group except for PET
320 which is in the transition region. Another aspect of great impor-
tance is that in the cellular solid regions the dependence of the apparent
stiffness on the void volume fraction is very strong: the accurate deter-
mination of the internal microstructure characteristics thus becomes a
crucial aspect in the study of macroscopic mechanical response of these
materials.

Figure 5.12: Normalized mean apparent stiffness (E∗
Mean
ES

) as a function of
void volume fraction (1−ϕ). Filled coloured symbols represent
experimental mechanical tests and empty coloured symbols
are the corresponding numerical simulations; empty grey
symbols are the results obtained from numerical simulation
performed on sub-regions that do not have corresponding
experimental data.

The existence of two distinct regions in the previous graph is further
supported by the results displayed in figure 5.13. In this graph the dif-
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ferent deformation contributions, computed during the post-processing
of simulation results by applying Gurson model, are plotted, once again,
as a function of void volume fraction. In the graph the red dashed line
represents the macroscopic strain, applied through the correspondent
displacement in finite element simulation, while the symbols represent
the two deformation mechanisms separated using Gurson model: vol-
umetric deformation (orange) and surface deformation (green). Also,
in this case, the star symbols represent the bulk material, whose void
volume fraction is equal to 0%, with a purely volumetric deformation
mechanism. A trend of increasing surface component with increasing
void volume fraction is clearly visible, with the volumetric component
vanishing as the void fraction approaches 100%. The main deformation
contribution becomes the surface one around a void volume fraction
value equal to 80%. A similar threshold value, similar to the one found
in figure 5.12, is highlighted and hence this fact justifies the adoption of
this value as a threshold to discriminate between cellular and porous-like
solids.

Figure 5.14 shows the normalized apparent Young moduli as a
function of structural anisotropy degree (DA). It is clearly visible
that for increasing values of DA the values in the three directions
diverge, implying a progressively more anisotropic mechanical behaviour.
Conversely, for low values of DA, it appears that the expanded material
can be described by a simpler model, such as for example transversely
isotropic or even fully isotropic.

This result confirms the validity of the approach based on a linear
elastic constitutive model coupled with the scalar structural anisotropy
parameter, in this chapter evaluated with Mean Intercept Length (MIL)
algorithm, able to relate the macroscopic mechanical behaviour to the
relevant morpho-structural features of the foams. This aspect will be
deeply studied and discussed in chapter 7.
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Figure 5.13: Deformation components of the simulated sub-domains as
a function of void volume fraction; the two contributions
derive from the application of Gurson model. Dashed red
line represents the macroscopic strain applied as a boundary
condition in finite element modelling.

Figure 5.14: Young moduli normalized with respect to their mean values
as a function of structural anisotropy degree (DA).
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5.4.3 Structure – Mechanical behaviour basic rela-
tionships

In this section the correlations between average elastic constants
and void volume fraction are shown and they are compared with the
predictions of two of the most popular analytical models, Ashby and
Zhu, already presented in chapter 2. The attention is focused on data
obtained from sub-domains exhibiting a void volume fraction (1 − ϕ)
greater than 60%, hence considering the transition region between
porous and cellular solids and covering almost all the region assigned
to cellular solids, characterized by void volume fraction values greater
than 80%.

Figure 5.15 displays the average apparent Young modulus (E∗
Mean =

E∗
1 +E∗

2 +E∗
3

3 ), normalized with respect to the Young modulus of bulk
constituent polymer (ES), as a function of 1 − ϕ. The two dashed
lines represent the prediction of Ashby [8] and Zhu [29] analytical
models, already described in chapter 2. It is clearly visible how the
Ashby prediction, built on a simplified hexahedral unit cell, foresees
higher values with respect to the computed one, which accounts for the
geometrical irregularity of the systems under investigation. Conversely
the Zhu model, even if aimed at the description of open cell foams, well
captures the trend of experimental data.

Figure 5.16, analogously to the previous one, displays the average
apparent Poisson coefficient (ν∗

Mean = ν∗
12+ν∗

13+ν∗
23

3 ) as a function of void
volume fraction (1 − ϕ). Also, in this case the predictions of Ashby
and Zhu analytical models are plotted. The experimental Poisson
coefficients are not reported since they were not measured. The results
obtained are apparently independent from the void volume fraction, as
described by Ashby model, even if, once again, the latter overestimates
the average value; Ashby derived a constant Poisson coefficient equal
to 1

3 while the average value found was around 0.25. Zhu model instead
implies a dependence of the Poisson coefficient which decreases from
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Figure 5.15: Normalized mean apparent stiffness (E∗
Mean
ES

) as a function of
void volume fraction (1−ϕ). Filled coloured symbols represent
experimental mechanical tests and empty coloured symbols
are the corresponding numerical simulations; empty grey
symbols are the results obtained from numerical simulation
performed on sub-regions that do not have corresponding
experimental data. Dashed lines represent the analytical
prediction made with Ashby model (orange line) and Zhu
model (brown line).

0.5, for a solid material, to 0, for a void volume fraction equal to 0%.
The classical boundaries of macroscopic Poisson coefficient for a linear
elastic solid must not be considered in the case of cellular materials,
given their heterogeneous, anisotropic nature. The macroscopic linear
elastic regime will be investigated more in depth in chapter 7.

For the sake of completeness, in figure 5.17 average apparent shear
modulus (G∗

Mean = G∗
12+G∗

13+G∗
23

3 ), normalized with respect to the shear
modulus of bulk constituent polymer (GS), as a function of void volume
fraction (1−ϕ) is reported with the prediction of analytical models. Bulk
shear modulus is computed from equation 5.11, since the constituent
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Figure 5.16: Mean apparent Poisson coefficient (ν∗
Mean) as a function of

void volume fraction (1−ϕ). Filled coloured symbols represent
experimental mechanical tests and empty coloured symbols
are the corresponding numerical simulations; empty grey
symbols are the results obtained from numerical simulation
performed on sub-regions that do not have corresponding
experimental data. Dashed lines represent the analytical
prediction made with Ashby model (orange dashed line) and
Zhu model (brown line).

material is assumed linear elastic isotropic, and is taken equal to 1036
MPa. Results are qualitatively similar to those displayed for the Young
modulus.
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Figure 5.17: Normalized mean shear modulus (G∗
Mean
GS

) as a function of void
volume fraction (1 − ϕ). Filled coloured symbols represent
experimental mechanical tests and empty coloured symbols
are the corresponding numerical simulations; empty grey
symbols are the results obtained from numerical simulation
performed on sub-regions that do not have corresponding
experimental data. Dashed lines represent the analytical
prediction made with Ashby model (orange dashed line) and
Zhu model (brown line).

5.5 Concluding remarks

In the present chapter a first image-based numerical approach de-
veloped and optimized along this PhD thesis work was presented. The
well consolidated representative volume element approach was adapted
and optimized to the specific material category inspected in the present
work. The aim of developing an efficient tool to model the macroscopic
mechanical response of expanded polymeric materials, considering the
real complex microstructure and the constitutive material mechani-
cal properties, was reached. The approach is focused on finite strain
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mechanical modelling, with the aim of finding correlations between
elastic constants and suitable scalar parameters used to describe the
complex and irregular microstructure of such class of materials. During
the approach validation a satisfactory agreement between experimental
and numerical results was obtained and hence the model was used to
simulate macroscopic mechanical behaviour of additional geometries
to increase the range of data on which correlations are built. More-
over, an unexpected fair agreement between the results obtained and
Zhu analytical model has been found, proving that the image-based
approach developed is a valid tool to compute macroscopic mechanical
information on expanded polymeric materials, even if the two systems
reported, open-cell systems for Zhu model and closed-cell systems anal-
ysed in the present thesis, are compared. The results also confirm the
fundamental importance of knowing and inspecting the real complexity
of internal microstructure to understand the macroscopic behaviour of
expanded polymeric materials.

Some limitations in the approach are still present, since, as shown
in previous paragraphs, the model overestimates the real macroscopic
mechanical response of the inspected material. A possible improve-
ment could be achieved through the implementation of periodic or
semi-periodic boundary conditions in finite element simulation. This
aspect was not faced in the present work due to the complexity of
the finite element mesh obtained from X-Ray computed tomography
scans and the objective was beyond the scope of the present thesis.
Moreover, from a numerical point of view, the implementation of this
kind of boundary conditions would lead to a greater request of numeri-
cal resources, compromising the efficiency of the developed approach.
Another possible improvement concerns the constituent material of the
inspected foams; in the present approach it is considered linear elastic
isotropic, while it is well known and reported in the literature that
polymeric materials are quite sensitive to process parameters, such as
temperature and pressure. During the foaming process significant ori-
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entation phenomena are expected in the amorphous phase. This could
require the use of a more complex constitutive law, such as transversely
isotropic constitutive law, to describe the mechanical behaviour of the
polymer of which the foams are made of. This change would also lead
to a significant increase of the numerical resources required to perform
simulations starting from high-resolution images.

In the following chapters the presented image-based approach will
be employed to further study other aspects of expanded polymeric mate-
rials; in the next chapter the effect of voids morphology on macroscopic
mechanical response will be investigated, while in chapter 7 a deeper
investigation of elastic constants and structural parameters relation-
ships is presented with the aim of identifying the most suitable linear
elastic constitutive model able to the describe macroscopic mechanical
behaviour exploiting only structure quantities, computed through the
application of different algorithms, such as the ones presented in chapter
4.
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Chapter 6

Morphology influence on
macroscopic mechanical
response

In the following chapter the numerical approach developed and
optimized in the previous chapter will be applied with the aim to study
the effect of microstructure morphology on the macroscopic mechanical
response of expanded polymeric materials. An approach similar to
that proposed by Ashby and Zhu will be adopted and adapted for the
specific randomly distributed structures inspected along the present
thesis work.
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6.1 Introduction

In the scientific literature many works are reported concerning
the effect of microscopic structure morphology on the macroscopic
mechanical response of expanded polymeric materials, following different
approaches [18] [5] [10] [8] [14].

Many authors proposed the application of parametric analysis; they
started from the simulation of regular structures, made up of regular
unit cell [2], such as Ashby hexahedral cell or Kelvin cell [6], and varied
one structural parameter at a time. Among the different considered
parameters are the mean thickness of cell structures (beams and/or
walls), the total length of the unit cell, the volume of the void and
many others [4].

The main limitation of this approach is its inadequacy to deal with
irregular structures, such as the real ones characterizing typical ex-
panded polymeric materials [15] [17]. The main difficult resides in
finding a reasonable number of suitable scalar parameters to describe
such irregular structures [11]. Two different approaches, deterministic
and statistical, are commonly adopted. Another problem consists in
the difficulty to change only one variable at a time: usually changing a
parameter describing the microstructure, for example the mean struc-
ture thickness, also implies the change of other related variables, such
as the apparent density or the related solid volume fraction, which
in turn strongly influences the macroscopic mechanical behaviour of
polymeric foams, as widely demonstrated in previous chapter [9].

In the present chapter an approach similar to the one proposed by
Ashby and Zhu on regular structures is proposed and suitably modified
for its application to irregular and randomly distributed microstructures,
like the one already showed in previous chapters. The analytical
approach proposed by Ashby [3] and Zhu [16] is briefly summarized in
the next section.
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6.1.1 Ashby and Zhu elongated cells

The idea at the basis of both Ashby and Zhu model consists in the
artificial stretching along one direction of the regular unit cell with
which the internal microstructure of expanded polymeric material is
represented. Figure 6.1 shows a qualitative example of Ashby unit
hexahedral cell elongated along one direction.

Figure 6.1: Ashby hexahedral unit cell artificially stretched along one direc-
tion (direction 1) used to study the effect of structural induced
anisotropy in the morphology on macroscopic mechanical re-
sponse. Image freely adapted from [3].

In analogy with the analysis presented in chapter 2, the characteristic
lengths of the unit cell are:

• t: thickness of the beams constituting the unit cell;

• l: the total width and depth of the unit cell, which are the same
since the unstretched cell is cubic;

• h: is the total height of the cell, arbitrarily variable according to
the entity of applied stretch;
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• 1, 2 and 3 are the main orthogonal directions of the reference
coordinate system.

Moreover, Ashby defined a morpho-structural parameter, character-
izing the morphology of the unit cell: the stretch ratio, R = h

l
, also

referred to as anisotropy ratio.
With this modification it is hence expected that the macroscopic

mechanical response of the cell is different along direction 1, with an
apparent stiffness E∗

1 , and directions 2 and 3, along which an identical
apparent stiffness E∗

2 = E∗
3 is expected. The ratio between the apparent

modulus measured along the stretch direction and orthogonal to it(
E∗

1
E∗

2

)
is defined as the anisotropy ratio, R.

By analysing the structure, exploiting the linear elastic beam theory
in the range of finite elastic strains (as already performed in the case
of the unstretched unit cell) an analytical expression for the appar-
ent modulus in the stretch direction, normalized with respect to the
constituent material Young modulus, ES, can be computed:

E∗
1

ES

= C
(

t

l

)4 h

l
(6.1)

in which C is a generic constant that has to be determined through the
fitting of experimental data [3].

Considering a load applied orthogonally to the stretch direction, the
analytical expression for the apparent transverse stiffness, once again
normalized with respect to the constituent material Young modulus,
can be derived:

E∗
2

ES

= E∗
3

ES

= C

2

(
t

l

)4 l

h

1 +
(

l

h

)3
 (6.2)

Figure 6.2 displays the two different loading conditions with which
equation 6.1 and 6.2 are derived.

The ratio between the apparent stiffness computed along the stretch
and its orthogonal direction can be computed as a function of the
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Figure 6.2: Linear elastic deformation of elongated hexahedral unit cell; a)
stretch direction for which E∗

1
ES

is computed and b) transverse
direction for which E∗

2
ES

= E∗
3

ES
is computed. Image freely adapted

from [3].

stretch ratio, as given by:

E∗
1

E∗
2

= E∗
1

E∗
3

= 2R2

1 + 1
R3

(6.3)

From equation 6.3, a link between the apparent modulus ratio and
cell anisotropy is found. Figure 6.3 displays a comparison between
experimental data, collected from different scientific works on open
cell foams, and the prediction obtained with the analytical expression
reported by equation 6.3.

The graph demonstrates that the model gives a fair description of
experimental data.

A similar approach is proposed also by Zhu in his analytical model
[16], leading to the formulation of more complicate relationships due to
the higher geometrical complexity of the tetrakaidekahedral unit cell
considered, as shown in Figure 6.4. The unique geometric parameters
necessary to identify the shape and size of the elongated cell are also
defined: b, L and θ. The unit cell contains eight hexagonal faces, two
horizontal square faces and four vertical diamond faces. The horizontal
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Figure 6.3: Apparent stiffness ratio as a function of stretch ratio for differ-
ent open cell foams. Empty dots represent experimental data
collected from different scientific works while the continuous
black line represents the prediction of Ashby model. Figure
freely adapted from [7] [13].

square faces have sides of length b and the diamond faces have sides
of length L. The hexagonal faces have four sides with length L and
two sides with length b. The angle θ defines the orientation of the
hexagonal faces with respect to the rise direction as well as the obtuse
angle of the vertical diamond faces, 2θ.

In this case, as proposed by Zhu and other authors, it is possible
to derive analytical equations for the elongated unit cell as a function
of three geometrical parameters (b, L and θ in the following example)
instead of the two reported for the previous case.

For this kind of cell, considering H as the total height of the cell
and D the total width and depth of the cell, aspect ratio can be defined
as:

R = H

D
= 4L sinθ

2L cosθ +
√

2b
(6.4)

and, in addition, a transversal aspect ratio factor can be defined as
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Figure 6.4: Unit tetrakaidekahedral cell used to skeletonize the internal
microstructure of expanded polymeric material in Zhu analyti-
cal model; characteristic dimensions: b, L, and θ are reported
in the right part of the figure. Image freely adapted from [13].

well:
Q = b

L cosθ
(6.5)

Solving the structure analytically, exploiting the elastic beam theory,
in a similar way to what performed by Gibson and Ashby in the previous
example, an analytical expression of the apparent stiffnesses ratio can
be computed:

E∗
1

E∗
2

= E∗
1

E∗
3

=

= R2

4 ∗
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(
2Q̄2R2 + 63Q3√
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) 8C2RQ̄3
(

32+4Q
√

16+Q̄2R2
)

(
4Q+2
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16+Q̄2R2

)
(16+Q̄2R2)
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(
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)
8C2R3Q̄5(

4Q+2
√

16+Q̄2R2
)
(16+Q̄2R2)


(6.6)

in which:
Q̄ = 2 +

√
2Q (6.7)

C1 =
√

3 − π

2 (6.8)
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C2 = 20
√

3 − 11π

2
√

3 − π
(6.9)

As anticipated the analytical expression is far more complicated
than the one proposed by Ashby, but it has the advantage to suitably
adapt to a large variety of morphologies due to the possibility to tune
two parameters (R and Q), during fitting of experimental data [13].
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6.2 Materials and methods

6.2.1 Materials

The set of images representative of the internal microstructure of
the expanded polymeric material, already presented in previous chapter,
were considered. Moreover, a new material was added: an expanded
polypropylene, made up of sintered expanded beads, whose nominal
density is 120 kg m−3. This material is added to the thesis work with
the aim of increasing the range of available morphologies. This material
and its internal microstructure had been experimentally characterized
in a previous study through mechanical testing and X-Ray computed
tomography: is will be called, from here on, EPP120 [1]. The numerical
approach of Representative Volume Element (RVE), applied on PET
samples, was validated with the same procedure described in chapter 5
also for EPP120.

6.2.2 Structure analysis

The internal structure was investigated following the same proce-
dures described in chapter 4, but adopting a different formulation of
Mean Intercept Length algorithm, in the version proposed by Moreno
and co-authors [12]. A similar approach to the one adopted by Gib-
son and Ashby was used but since the structures analysed in the
present work are irregular and randomly distributed in space, vari-
ables equivalent to the characteristic lengths proposed by Ashby for
regular structures were adopted in this case. Figure 6.5 displays the
correspondence among the related quantities used to describe regular
and irregular structures. In the case of regular hexahedral cells, Ashby
proposed as characteristic lengths the thickness of cell walls, th, and
the total length of the cell, L; in this case, on random structures, the
average volumetric structure thickness, ⟨th⟩ , and the mean volumetric
equivalent diameter of the voids, ⟨Deq⟩ , are used. The two quanti-
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ties were computed with a custom-developed code, made with Matlab
R2019b, as already explained in chapter 4. The ratio between these
two quantities is considered as the main scalar parameter describing
the morphology of the microstructure.

Figure 6.5: Characteristic dimensions of the microstructure: a) Ashby unit
regular hexahedral cell: thickness of cell walls, th, and total
length of the cell, L; b) randomly distributed structures: mean
volumetric structure thickness, ⟨th⟩ , and mean volumetric
equivalent diameter, ⟨Deq⟩ .

6.2.3 Finite element modelling

Finite element simulations were performed on sub-domains following
the same approach developed and presented in chapter 5. 75 sub-
domains were selected from the available set of images, characterized
by a fixed solid volume fraction, ϕ, varying from 10% up to 40% and
grouped according to their solid volume fraction (in 5% bins) and
variable morphology parameter ratio, ⟨th⟩

⟨Deq⟩ . Constituent materials were
considered linear elastic with the related constants reported in table
6.1.

Again, C3D8 linear cubic finite elements with full integration were
used and the total number of elements varied from a minimum of 6∗105

up to a maximum of 2∗106, which corresponds to a number of free nodes
that varied from 8 ∗ 105 up to 5 ∗ 106. As reported in previous chapters,
all pre-processing and post-processing operations were performed on a
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Table 6.1: Linear elastic parameters.

Material Parameter Value

PET Young’s modulus (E) 2900 MPa
Poisson’s ratio (ν) 0.4

PP Young’s modulus (E) 1300 MPa
Poisson’s ratio (ν) 0.3

personal computer with 2 cores and 16 GB RAM, while the actual finite
element simulations were performed on a Linux machine with 24 cores
and 49 GB RAM. Average CPU time needed for a single simulation
varied between 5 and 28 hours depending on the total number of free
nodes included in the finite element mesh.

6.2.4 Artificial image stretching

A custom-made algorithm, implemented in Matlab R2019b, was
developed to artificially stretch along a single direction the set of images
representing the structure contained in a selected sub-domain. This was
performed while keeping the solid volume fraction of the selected sub-
domain almost constant, to selectively modify the parameter describing
structure morphology. Figure 6.6 displays a bidimensional example of
the transformation of a generic sub-domain by the stretching algorithm.

Three sub-domains were selected, characterized by a solid volume
fraction of 10%, 20% and 30%, respectively, and artificially stretched
along one direction up to a maximum value of 50x.The selected sub-
domains belonged to the previously described PET 130 B, PET 100
A and PET 320 B samples. On each stretched sub-domain, the proce-
dure adopted for finite element analysis, described in chapter 5, was
applied. This step was performed to support observations performed
on numerical results obtained on unstretched sub-domains representing
experimentally available morphologies.
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Figure 6.6: Bidimensional example of artificially stretched set of images
representing a sub-domain; the sub-domain is stretched keeping
the solid volume fraction constant and only modifying the
parameter used to describe structure morphology.

6.3 Results and discussion

The first part of the results section describes the validation of the
Representative Volume Element approach on the newly introduced
sample, EPP120.

6.3.1 EPP120 model validation

Figure 6.7 shows a set of images obtained from X-Ray computed
tomography, representing the internal microstructure of EPP120. In
this case the global set is made of 1000 images with a spatial resolution
of 3.33 µm. EPP 120 has a clearly different structure with respect
to PET; this difference is strictly related to the different production
process adopted (extrusion for PET and beads moulding and sintering
for EPP120).
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Figure 6.7: Set of images representing the internal microstructure of sam-
ple EPP120; from the images the expanded sintered beads
structure is clearly visible, evidenced by the edges of beads
touching each other.

Results, in terms of apparent stiffnesses, of the validation using
the Representative Volume Element (RVE) approach on EPP120 are
reported in figure 6.8.

Also, in this case, for the same reason mentioned in chapter 5,
numerical results are systematically higher than experimental data; the
agreement is still considered good enough to consider the approach valid
also in the case of EPP120. The results of finite element simulations
are able to describe the transversely isotropic macroscopic response
of the expanded material, with one direction (X) along which the
apparent stiffness is higher with respect to the other two (Y and Z).
The dimension of the cubic RVE side adopted for this material is 250
pixel, corresponding to a total reconstructed volume of 0.833 mm3.
The two domains used for model validation belong to the bivariate
distribution bin characterized by a solid volume fraction, ϕ, equal to
10% and a structural anisotropy degree (DA) equal to 0.36.
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Figure 6.8: Comparison between apparent experimental and numerical
stiffness evaluated along the three main orthogonal directions
(X, Y and Z) of the foam EPP120. Average values and dis-
persion of five samples are reported for the experimental data;
for numerical simulations, individual results obtained for each
reconstructed sample are shown.

6.3.2 Morphology

Figure 6.9 shows the relationship found between the solid volume
fraction, ϕ, and the characteristic dimensions used to quantify the
morphology of the cells of the microstructure. A linear fit of the data,
represented by the dashed red line in the plot, was performed and a
power-law relationship similar to the one obtained in chapter 4 was
identified:

ϕ ≈
(

th

Deq

)n

with n = 1.36 (6.10)

The value obtained for the exponent n is very close to the one given
by Gibson and Ashby for a regular closed cell [3], equal to 1.5; the linear
fit is considered valid from a statistical point of view since it has an
r2-value greater than 0.99. The similarity between this relationship and
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the one found in the case of large volume analysis, presented in chapter
4, supports the representativeness of the sub-domains size selected for
each analysed material.

Figure 6.9: Double logarithmic plot of the ratio of mean volumetric struc-
ture thickness, th, and mean volumetric equivalent diameter
of pores, Deq, as a function of solid volume fraction, ϕ; the
red dashed line represents a linear fit of the data and the two
parameters n, line slope, and q, intercept are reported.

The results obtained from mechanical simulations performed on
the sub-domains are shown in figure 6.10 in terms of mean value
elements on the principal diagonal of the stiffness matrix: CMean =
C11+C22+C33

3 . These are the terms directly involved in the response to
uniaxial compression tests along the three main orthogonal directions
of the cubic domain. Results are presented in term of stiffness matrix
terms since no comparison with experimental data is reported and
hence there is not the necessity to compute elastic constants to compare
experimental and numerical results, avoiding the application of a specific
elastic constitutive law (e.g. isotropic, orthotropic).
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The results are grouped according to the relevant void volume
fraction, which means that within a given group the only structural
parameter that is changing is th

Deq
. Data show that, aside from the

dependence (detailed in chapter 5) of the average apparent stiffness
on the solid volume fraction, the investigated morphology variables
have no influence on the average macroscopic mechanical response of
expanded polymeric materials.

Figure 6.10: Average stiffness matrix component CMean = C11+C22+C33
3 as

a function of mean volumetric structure thickness, th, and
mean volumetric equivalent diameter of voids, Deq, ratio;
results obtained on the different sub-domains are grouped as
a function of solid volume fraction, ϕ, and are represented
with different colours.

The independence of the average macroscopic mechanical response
on microstructure morphology is confirmed by the results obtained
on the artificially stretched sub-domains and reported in figure 6.11.
In the graph the open symbols refer to the unstretched sub-domain
while filled symbols represent the artificially stretched domains with
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increasing stretched factor from 2x up to 50x.
In this graph the independence of CMean on the ratio th

Deq
is clearly

visible; small fluctuations in the average values of each stretched sub-
domains are related to small variations in the nominally constant solid
volume fraction, in the order of 1% with respect to the initial value,
introduced through the application of the stretching algorithm.

Figure 6.11: Average stiffness matrix component CMean = C11+C22+C33
3 as

a function of mean volumetric structure thickness, th, and
mean volumetric equivalent diameter of voids, Deq, ratio for
three different sub-domains artificially stretched, keeping solid
volume fraction almost constant. Open symbols refer to the
unstretched sub-domains while full-coloured symbols refer to
the stretched ones.

Moving on to a local analysis, the graphs in figure 6.12 display the
stiffness matrix component, along one of the main orthogonal direction,
Cii, as a function of the ratio th

Deq
computed along the same direction.

It is clearly visible that an effect of morphology variation is appreciable
only along the stretch direction; after an initial significant variation in
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the stiffness matrix value as a function of the morphology ratio, the
value tends to a plateau value even if the morphology parameter is still
increasing. No significant variations can be detected along the other
unstretched orthogonal directions.

This fact can lead to the conclusion that, with respect to the
macroscopic mechanical response of expanded polymeric material, the
information provided by the analysis of morphology can be equivalent
to the one provided by the application of tensorial algorithms, such
as Mean Intercept Length (MIL) and Autocorrelation function (ACF),
already presented in chapter 4. Moreover, due to the small influence
of morphology, even at high level of stretch values, its influence can
be neglected, as a first approximation, in expanded polymeric foams
macroscopic mechanical modelling. As previously said, if a tensorial
algorithm is applied for structure investigation, the information provided
by morphology analysis can be considered already contained in the
eigenvalues and eigenvectors computed from the fabric tensors and
the information can be three-dimensionally visualized, as performed in
chapter 4, with a Rose diagram.

Finally, all the information acquired from morphology analysis,
performed on the artificially stretched sub-domains, is summarized
and plotted in figure 6.13. In this graph the y-axis represents the
stiffness matrix component along the stretched direction, normalized
with respect to the average values corresponding to the orthogonal
unstretched directions. The same procedure was applied to the mor-
phology parameters; the final quantity reported on the x-axis is called
R for the sake of clarity. The dashed red line represents the prediction
made with Ashby simple analytical model presented in the introduction
paragraph [3]. Even if a relatively large scatter is visible, due to the
irregularity of the structures and some numerical noise introduced with
the stretching algorithm, the results are in fair agreement with the
prediction made with the analytical model; this holds true even if the
randomly distributed structure are summarized with simplified scalar
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Figure 6.12: Stiffness matrix components, Cii, as a function of morphology
ratio computed along the same direction (X, Y or Z). Full
coloured symbols represent average values, empty vertical
triangles represent the values computed along the stretch
direction and horizontal triangles represent the quantities
computed along the orthogonal unstretched directions. Three
examples are reported for three different values of solid volume
fraction, ϕ: a) ϕ = 10%, b) ϕ = 20% and c) ϕ = 30%.

quantities. Predictions of the Zhu model are not reported since the
analytical expression contains a parameter strictly dependent on the
hypothesis made to skeletonize the structure; these hypotheses are not
applicable, in the case of random structures, since low structure regu-
larity and related geometrical characteristic lengths are not uniquely
detectable [13].
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Figure 6.13: Normalized stiffness matrix value along the stretch direction
with respect to the average value of stiffness matrix values
along the two orthogonal unstretched directions as function of
morphological parameter, R, computed as the ratio between

th
Deq

computed along the stretch direction and the average
value of the same quantities computed along the orthogonal
unstretched directions. Red dashed line represents the pre-
diction made with Ashby analytical model.

6.4 Concluding remarks

In this chapter the influence of structure morphology on macro-
scopic mechanical properties of expanded polymeric material has been
investigated through the application of numerical methods developed
in previous chapters. A new material was introduced with the aim of
increasing the range of experimentally available morphologies, and a
custom-developed algorithm was employed to artificially generate an
even larger variety of morphologies. An approach similar to the one
proposed by Ashby was adapted to the study of irregular randomly
distributed structures.

198



6.4. Concluding remarks

Morphology was found to yield only a local effect and not to display
a significant correlation with the average global behaviour; hence, it
can be considered a duplicate of the information derived from the
application of tensorial algorithms, presented in chapter 5. Finally, it
has been shown that the results obtained from randomly distributed
structures, follow, as a first approximation, the prediction obtained
from the Ashby analytical model, even if based on the assumptions of
regular simple structures.

A further development of this morphology study could consist in a
wider application of the stretching algorithm to validate the macroscopic
mechanical behaviour observed on the selected and stretched sub-
domains reported in this chapter. Moreover, a rigorous equivalence
between the information obtained through the application of tensorial
algorithms for structure investigation and morphology analysis should
be confirmed.

Since the considered morphology parameter does not seem to be
essential and since the structure was investigated through the applica-
tion of Mean Intercept Length (MIL) algorithm, thus computing the
actual spatial distribution, the morphology parameter will be neglected
in the next chapter, where a unique relationship between structure and
macroscopic linear elastic constitutive laws is presented.

199



Chapter 6. Morphology

6.5 References

[1] L. Andena et al. “Compression of polystyrene and polypropy-
lene foams for energy absorption applications: A combined me-
chanical and microstructural study”. en. In: Journal of Cel-
lular Plastics 55.1 (Jan. 2019), pages 49–72. doi: 10.1177/
0021955X18806794. url: http://journals.sagepub.com/
doi/10.1177/0021955X18806794.

[2] Y. Chen, R. Das, and M. Battley. “Effects of cell size and cell
wall thickness variations on the stiffness of closed-cell foams”.
en. In: International Journal of Solids and Structures 52 (Jan.
2015), pages 150–164. doi: 10.1016/j.ijsolstr.2014.09.022.
url: https://linkinghub.elsevier.com/retrieve/pii/
S0020768314003692.

[3] L.J. Gibson and M.F. Ashby. Cellular Solids. en.

[4] L. Gong and S. Kyriakides. “Compressive response of open
cell foams Part II: Initiation and evolution of crushing”. en. In:
International Journal of Solids and Structures 42.5-6 (Mar. 2005),
pages 1381–1399. doi: 10.1016/j.ijsolstr.2004.07.024.
url: https://linkinghub.elsevier.com/retrieve/pii/
S0020768304004317.

[5] L. Gong, S. Kyriakides, and W.Y. Jang. “Compressive response
of open-cell foams. Part I: Morphology and elastic properties”.
en. In: International Journal of Solids and Structures 42.5-6
(Mar. 2005), pages 1355–1379. doi: 10.1016/j.ijsolstr.2004.
07.023. url: https://linkinghub.elsevier.com/retrieve/
pii/S0020768304004305.

[6] L. Gong, S. Kyriakides, and N. Triantafyllidis. “On the sta-
bility of Kelvin cell foams under compressive loads”. en. In:
Journal of the Mechanics and Physics of Solids 53.4 (Apr.
2005), pages 771–794. doi: 10.1016/j.jmps.2004.10.007.

200

https://doi.org/10.1177/0021955X18806794
https://doi.org/10.1177/0021955X18806794
http://journals.sagepub.com/doi/10.1177/0021955X18806794
http://journals.sagepub.com/doi/10.1177/0021955X18806794
https://doi.org/10.1016/j.ijsolstr.2014.09.022
https://linkinghub.elsevier.com/retrieve/pii/S0020768314003692
https://linkinghub.elsevier.com/retrieve/pii/S0020768314003692
https://doi.org/10.1016/j.ijsolstr.2004.07.024
https://linkinghub.elsevier.com/retrieve/pii/S0020768304004317
https://linkinghub.elsevier.com/retrieve/pii/S0020768304004317
https://doi.org/10.1016/j.ijsolstr.2004.07.023
https://doi.org/10.1016/j.ijsolstr.2004.07.023
https://linkinghub.elsevier.com/retrieve/pii/S0020768304004305
https://linkinghub.elsevier.com/retrieve/pii/S0020768304004305
https://doi.org/10.1016/j.jmps.2004.10.007


6.5. References

url: https://linkinghub.elsevier.com/retrieve/pii/
S0022509604001899.

[7] N. Huber. “Connections Between Topology and Macroscopic Me-
chanical Properties of Three-Dimensional Open-Pore Materials”.
en. In: Frontiers in Materials 5 (Nov. 2018), page 69. doi: 10.
3389/fmats.2018.00069. url: https://www.frontiersin.
org/article/10.3389/fmats.2018.00069/full.

[8] W.Y. Jang, A.M. Kraynik, and S. Kyriakides. “On the mi-
crostructure of open-cell foams and its effect on elastic proper-
ties”. en. In: International Journal of Solids and Structures 45.7-8
(Apr. 2008), pages 1845–1875. doi: 10.1016/j.ijsolstr.2007.
10.008. url: https://linkinghub.elsevier.com/retrieve/
pii/S0020768307004118.

[9] J. Köll and S. Hallström. “Generation of periodic stochastic
foam models for numerical analysis”. en. In: Journal of Cel-
lular Plastics 50.1 (Jan. 2014), pages 37–54. doi: 10.1177/
0021955X13503848. url: http://journals.sagepub.com/
doi/10.1177/0021955X13503848.

[10] J. Köll and S. Hallström. “Influence from polydispersity on the
morphology of Voronoi and equilibrium foams”. en. In: Journal
of Cellular Plastics 53.2 (Mar. 2017), pages 199–214. doi: 10.
1177/0021955X16644892. url: http://journals.sagepub.
com/doi/10.1177/0021955X16644892.

[11] K. Li, X.L. Gao, and G. Subhash. “Effects of cell shape and
cell wall thickness variations on the elastic properties of two-
dimensional cellular solids”. en. In: International Journal of
Solids and Structures 42.5-6 (Mar. 2005), pages 1777–1795.
doi: 10.1016/j.ijsolstr.2004.08.005. url: https://
linkinghub.elsevier.com/retrieve/pii/S0020768304004536.

201

https://linkinghub.elsevier.com/retrieve/pii/S0022509604001899
https://linkinghub.elsevier.com/retrieve/pii/S0022509604001899
https://doi.org/10.3389/fmats.2018.00069
https://doi.org/10.3389/fmats.2018.00069
https://www.frontiersin.org/article/10.3389/fmats.2018.00069/full
https://www.frontiersin.org/article/10.3389/fmats.2018.00069/full
https://doi.org/10.1016/j.ijsolstr.2007.10.008
https://doi.org/10.1016/j.ijsolstr.2007.10.008
https://linkinghub.elsevier.com/retrieve/pii/S0020768307004118
https://linkinghub.elsevier.com/retrieve/pii/S0020768307004118
https://doi.org/10.1177/0021955X13503848
https://doi.org/10.1177/0021955X13503848
http://journals.sagepub.com/doi/10.1177/0021955X13503848
http://journals.sagepub.com/doi/10.1177/0021955X13503848
https://doi.org/10.1177/0021955X16644892
https://doi.org/10.1177/0021955X16644892
http://journals.sagepub.com/doi/10.1177/0021955X16644892
http://journals.sagepub.com/doi/10.1177/0021955X16644892
https://doi.org/10.1016/j.ijsolstr.2004.08.005
https://linkinghub.elsevier.com/retrieve/pii/S0020768304004536
https://linkinghub.elsevier.com/retrieve/pii/S0020768304004536


Chapter 6. Morphology

[12] R. Moreno, M. Borga, and O. Smedby. “Generalizing the mean
intercept length tensor for gray-level images: Generalizing the
mean intercept length tensor”. en. In: Medical Physics 39.7Part2
(July 2012), pages 4599–4612. doi: 10.1118/1.4730502. url:
http://doi.wiley.com/10.1118/1.4730502.

[13] R.M. Sullivan, L.J. Ghosn, and B.A. Lerch. “A general tetrakaidec-
ahedron model for open-celled foams”. en. In: International
Journal of Solids and Structures 45.6 (Mar. 2008), pages 1754–
1765. doi: 10.1016/j.ijsolstr.2007.10.028. url: https://
linkinghub.elsevier.com/retrieve/pii/S0020768307004465.

[14] C. Tekoglu et al. “Size effects in foams: Experiments and model-
ing”. en. In: Progress in Materials Science 56.2 (Feb. 2011),
pages 109–138. doi: 10 . 1016 / j . pmatsci . 2010 . 06 . 001.
url: https://linkinghub.elsevier.com/retrieve/pii/
S0079642510000393.

[15] H.X. Zhu, J.R. Hobdell, and A.H. Windle. “Effects of cell ir-
regularity on the elastic properties of open-cell foams”. en. In:
Acta Materialia 48.20 (Dec. 2000), pages 4893–4900. doi: 10.
1016/S1359-6454(00)00282-2. url: https://linkinghub.
elsevier.com/retrieve/pii/S1359645400002822.

[16] H.X. Zhu, J.F. Knott, and N.J. Mills. “Analysis of the elastic
properties of open-cell foams with tetrakaidecahedral cells”. en.
In: Journal of the Mechanics and Physics of Solids 45.3 (Mar.
1997), pages 319–343. doi: 10.1016/S0022-5096(96)00090-7.
url: https://linkinghub.elsevier.com/retrieve/pii/
S0022509696000907.

[17] H.X. Zhu and A.H. Windle. “Effects of cell irregularity on the
high strain compression of open-cell foams”. en. In: Acta Mate-
rialia 50.5 (Mar. 2002), pages 1041–1052. doi: 10.1016/S1359-
6454(01)00402-5. url: https://linkinghub.elsevier.com/
retrieve/pii/S1359645401004025.

202

https://doi.org/10.1118/1.4730502
http://doi.wiley.com/10.1118/1.4730502
https://doi.org/10.1016/j.ijsolstr.2007.10.028
https://linkinghub.elsevier.com/retrieve/pii/S0020768307004465
https://linkinghub.elsevier.com/retrieve/pii/S0020768307004465
https://doi.org/10.1016/j.pmatsci.2010.06.001
https://linkinghub.elsevier.com/retrieve/pii/S0079642510000393
https://linkinghub.elsevier.com/retrieve/pii/S0079642510000393
https://doi.org/10.1016/S1359-6454(00)00282-2
https://doi.org/10.1016/S1359-6454(00)00282-2
https://linkinghub.elsevier.com/retrieve/pii/S1359645400002822
https://linkinghub.elsevier.com/retrieve/pii/S1359645400002822
https://doi.org/10.1016/S0022-5096(96)00090-7
https://linkinghub.elsevier.com/retrieve/pii/S0022509696000907
https://linkinghub.elsevier.com/retrieve/pii/S0022509696000907
https://doi.org/10.1016/S1359-6454(01)00402-5
https://doi.org/10.1016/S1359-6454(01)00402-5
https://linkinghub.elsevier.com/retrieve/pii/S1359645401004025
https://linkinghub.elsevier.com/retrieve/pii/S1359645401004025


6.5. References

[18] P.K. Zysset. “A review of morphology–elasticity relationships in
human trabecular bone: theories and experiments”. en. In: Jour-
nal of Biomechanics 36.10 (Oct. 2003), pages 1469–1485. doi: 10.
1016/S0021-9290(03)00128-3. url: https://linkinghub.
elsevier.com/retrieve/pii/S0021929003001283.

203

https://doi.org/10.1016/S0021-9290(03)00128-3
https://doi.org/10.1016/S0021-9290(03)00128-3
https://linkinghub.elsevier.com/retrieve/pii/S0021929003001283
https://linkinghub.elsevier.com/retrieve/pii/S0021929003001283


Chapter 6. Morphology

204



Chapter 7

Macroscopic linear elastic
constitutive laws

In the following chapter a quantity to describe macroscopic me-
chanical anisotropy is proposed with the aim of uniquely assigning the
most suitable set of linear elastic parameters to the inspected sample,
considering structural information and mechanical results coming from
finite element analysis. The information about the inspected structures
is combined with the elastic constants, computed through finite element
analysis, to obtain a closed system of equations. In this way elastic
constants, necessary to describe the elastic macroscopic mechanical
behaviour of expanded polymeric materials, can be identified from the
knowledge of limited information about the geometrical structure. In
the last part of the chapter the equations are applied to an example
case, an open-cell polyurethane foam, on which some experimental
tests have been conducted to measure the necessary quantities for the
application of the defined equations.
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7.1 Theoretical background

In the past decades many authors proposed different approaches to
compute a mechanical anisotropy index starting from a generic stiffness
or compliance tensor [14] [13] [5]. In some works, complex relationships
have been developed, which link the elastic constants of a given trans-
versely isotropic tensor to its nearest (in a sense that needs to properly
defined) linear elastic counterpart [6] [12]. Very few works proposed an
analytical approach that relates a generic tensor, representing in the
most general case a triclinic material, to its nearest isotropic elastic
tensor, due to the complexity of finding a closed relationship between
the many elastic constants necessary to describe a triclinic material
(21) and the two which are sufficient in the isotropic case [3] [2] [10].
Morin and collaborators recently proposed a general approach based on
Euclidean distance to simply compute the distance between a generic
tensor and its closest isotropic tensor; the distance is considered as the
mechanical anisotropy index and a closed relationship between the start-
ing tensor and the linear elastic constants, necessary to model a linear
elastic isotropic solid is also provided [8]. The analytical steps necessary
to demonstrate distance existence and uniqueness, are reported in the
following paragraph.

7.1.1 Mechanical anisotropy index

The computation of a generic Euclidean distance for a given material,
whose mechanical behaviour is described by a fourth-order stiffness
tensor (or dually a fourth-order compliance tensor), can be derived
starting from the scalar case, in which the properties of the involved
functions are easier to define and demonstrate; then the distance can
be generalized to the tensorial case [8].

The constitutive relation in one-dimensional linear elasticity is given
by the classical Hooke’s law, which relates the uniaxial stress, σ, and
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strain, ε:
σ = E ε or dually ε = 1

E
σ (7.1)

in which E is the Young modulus and its reciprocal the elastic compli-
ance. The stored elastic energy per unit length, w, is classically given
by

w = 1
2 σ ε or dually w = 1

2
1
E

σ2 (7.2)

The final objective is to derive a distance function between two
generic materials, characterized by stiffnesses that correspond to Young’s
moduli E1 and E2, or dually their compliances that correspond to the
inverses of Young’s moduli, which verifies the following properties:

1. The defining properties of a distance function must be checked
∀E1, E2, E3 ∈ R>0, where R>0 denotes the set of strictly positive
real numbers:

(a) Distance has to be nonnegative:

d(E1, E2) ≥ 0 (7.3)

(b) Distance verifies the identity of indiscernible:

d(E1, E2) = 0 ⇐⇒ E1 = E2 (7.4)

(c) Distance has to be symmetric in the arguments:

d(E1, E2) = d(E2, E1) (7.5)

(d) Distance respects the triangle inequality:

d(E1, E2) ≤ d(E1, E3) + d(E2, E3) (7.6)

2. Then the distance function must be invariant under the operation
of inversion in order not to favour the formulation in terms of
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stiffness or compliance; this assumption leads, in the scalar case,
to the following property:

d(E1, E2) = d
( 1

E1
,

1
E2

)
(7.7)

The simplest distance between elastic moduli is based on the classical
Euclidean metric, which is based on classical energy considerations and
on the virtual working principle. The most commonly variants are:

1. Primal Euclidean Distance: this distance is obtained from
the difference between the elastic energy stored by two different
materials for an imposed loading strain, ε0; in this case the stress
states read:

σ1 = E1 ε0 and σ2 = E2 ε0 (7.8)

and the difference between stored elastic energies is given by

w1 − w2 = 1
2 (σ1 − σ2) ε0 = 1

2 (E1 − E2) ε2
0 (7.9)

The distance between the two elastic behaviours is given by the
primal Euclidean distance, expressed in terms of the stiffnesses
E1 and E2:

dprimal(E1, E2) = |E1 − E2| (7.10)

2. Dual Euclidean Distance: similarly, to the primal Euclidean
distance, this can be constructed from energetic consideration for
an imposed loading stress, σ0; in this case the strain states read:

ε1 = σ0

E1
and ε2 = σ0

E2
(7.11)

and the difference between elastic energies is given by

w1 − w2 = 1
2 (ε1 − ε2) σ0 = 1

2

( 1
E1

− 1
E2

)
σ2

0 (7.12)

208



7.1. Theoretical background

It is thus possible to construct a dual Euclidean distance, ex-
pressed in terms of compliances:

ddual(E1, E2) =
∣∣∣∣ 1
E1

− 1
E2

∣∣∣∣ (7.13)

Obviously, the two metrics do not give the same results since the
values obtained and the units considered are not the same and hence the
classical definition is not suitable to define a unique distance between
two elastic behaviours. It is so of fundamental importance that the
distance between two elastic materials has to be expressed in a non-
dimensional form in order to be invariant under inversion.

To write the equation in a non-dimensional form, a scalar E0 > 0
which has the dimension of a stiffness and acts as a gauge factor, is
considered. A reduced non-dimensional elasticity law, with the gauge
E0, can thus be expressed:

σ

E0
= E

E0
ε (7.14)

Hence, the distance has to be expressed in terms of dimensionless
quantity E

E0
. The distance will consequently depend upon the choice

made for the gauge factor, E0: in particular, a given value of the gauge
factor will generate a reduced elasticity law and will lead to some family
of distances denoted by dE0 .

A generalized-Euclidean distance can be introduced as a function
of the gauge factor:

dE0
f

(
E1

E0
,
E2

E0

)
=
∣∣∣∣f (E1

E0

)
− f

(
E2

E0

)∣∣∣∣ (7.15)

where f is a strictly monotonic function on R>0; this allows dE0
f to verify

the fundamental properties of a distance function previously expressed.
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Finally, to ensure the property of invariance by inversion:

dE0
f

(
E1

E0
,
E2

E0

)
= dE0

f

(
E0

E1
,
E0

E2

)
(7.16)

a sufficient condition for the function f is that it should verify the
property:

f(x) + f
(1

x

)
= α with ∀x ∈ R>0 (7.17)

where α is a constant. In the last equation the sign between the
two function can be only plus; it can be shown that if minus sign is
considered the function f cannot be strictly monotone on R>0.

Having defined the distance and its properties in a mono-dimensional
case, the same concepts can now be generalized to the tensorial n-
dimensional case. Since the tensors investigated are elastic tensors,
the mathematical demonstration concerns mainly fourth-order and
second-order tensors in a three-dimensional Cartesian space. The
tensorial elasticity law relates the second-order stress and strain tensors,
respectively σ and ε, through linear relations:

σ = C : ε and ε = S : σ with C : S = S : C = I (7.18)

where C and S respectively denote the fourth-order stiffness and
compliance tensors, and I is the fourth-order identity tensor. Elasticity
tensors are positive-definite and posses major and minor symmetries:

Cijkl = Cjikl = Cijlk and Cijkl = Cklij (7.19)

and dually

Sijkl = Sjikl = Sijlk and Sijkl = Sklij (7.20)

The inner product for tensors, which is needed to define the norm
of a tensor, reads: 〈

A, B
〉

= AijklBijkl (7.21)
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and from this follows the definition of the norm
∥∥∥A∥∥∥ of a tensor:

∥∥∥A∥∥∥ =
√〈

A, A
〉

=
√

AijklAijkl (7.22)

To facilitate the calculations the tensors can be expressed according
to Kelvin notation in elasticity and in addition fourth-order elasticity
tensors in three dimensions can be equivalently expressed as second-
order tensors in six dimensions while second-order symmetric tensors
in three dimensions are equivalent to vectors of six dimensions. So, the
elasticity tensors of stiffness (dually compliance), strain and stress are
expressed in the following form:

Ĉ =



C1111 C1122 C1133
√

2C1123
√

2C1113
√

2C1112

C1122 C2222 C2233
√

2C2223
√

2C2213
√

2C2212

C1133 C2233 C3333
√

2C3323
√

2C3313
√

2C3312√
2C1123

√
2C2223

√
2C3323 2C2323 2C2313 2C2312√

2C1113
√

2C2213
√

2C3313 2C2313 2C1313 2C1312√
2C1112

√
2C2212

√
2C3312 2C2312 2C1312 2C1212


(7.23)

and

σ̂ =



σ11

σ22

σ33√
2σ23√
2σ13√
2σ12


and ε̂ =



ε11

ε22

ε33√
2ε23√
2ε13√
2ε12


(7.24)

With Kelvin notation, the elasticity law can be rewritten:

σ̂ = Ĉ · ε̂ and ε̂ = Ŝ · σ̂ with Ĉ · Ŝ = Î6 (7.25)

where Î6 is the 6 x 6 identity matrix. The norm of the tensor alterna-
tively reads: ∥∥∥C∥∥∥ =

∥∥∥Ĉ∥∥∥ =
√

Ĉ : Ĉ =
√

CIJCIJ (7.26)

To extend the generalized-Euclidean distance from scalar to tensorial
case, functions with four-order tensor arguments that enjoy major and
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minor symmetries have to be defined. Since the tensors are expressed
through the Kelvin notation, the function f of a positive-definite 6 x 6
matrix needs only to be defined. The function f of a generic symmetric
positive-definite matrix, Â, can be calculated in three steps:

1. Perform a diagonalization of matrix, Â, which provides a rotation
matrix, R̂, and a diagonal matrix D̂ with the eigenvalues of Â

on its diagonal, such that Â = R̂T D̂R̂, where the transpose R̂T

of matrix R̂ is defined by RT
IJ = RIJ ;

2. Write down the new diagonal matrix D̃ by replacing each diagonal
term λi of D̂ with f(λi);

3. Recombine D̃ and R̂ to obtain the function f of matrix Â:

f
(
Â
)

= R̂T D̃R̂ (7.27)

It is hence straightforward to note that the inverse of Â can be
constructed as:

Â−1 = R̂T D̃−1R̂ (7.28)

Thus, if the scalar function f is assumed to satisfy the property
defined in equation 7.17, then the following result holds:

f
(
Â
)

+ f
(
Â−1

)
= αÎ6 (7.29)

where α is a constant.
The generalized-Euclidean distance in the tensorial case can then be

obtained as a direct extension of the distance defined in the scalar case.
The elasticity law is once again expressed in a non-dimensional form
and the gauge factor E0 > 0 is once again introduced; the elasticity law
can so be expressed as follows:

σ̂

E0
= Ĉ

E0
·ε̂ and ε̂ =

(
E0Ŝ

)
· σ̂

E0
with Ĉ

E0
·
(
E0Ŝ

)
= Î6 (7.30)
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The generalized Euclidean distance thus reads:

dE0
f

(
Ĉ1

E0
,
Ĉ2

E0

)
=
∥∥∥∥∥f
(

Ĉ1

E0

)
− f

(
Ĉ2

E0

)∥∥∥∥∥ (7.31)

and, as previously stated, if the function f satisfies the property ex-
pressed by equation 7.17, equation 7.31 holds and hence the distance is
invariant by inversion:

dE0
f

(
Ĉ1

E0
,
Ĉ2

E0

)
= dE0

f

(Ĉ1

E0

)−1

,

(
Ĉ2

E0

)−1 (7.32)

The last step consists in providing closed-form expressions of strictly
monotonic functions that ensure the property reported in equation 7.17.
A subclass of functions can be constructed from arbitrary continuously
differentiable functions g, whose properties need to be defined, such
that:

f(x) = g(x) − g
(1

x

)
+ α

2 with ∀x ∈ R>0 (7.33)

Since the desired function is strictly monotonic, one has necessarily
f ′(x) > 0 or f ′(x) < 0. Since f ′(x) = g′(x) + g′( 1

x)
x2 , the only restriction

upon function g is that it is must be strictly monotonic. The constant α

can then be chosen arbitrarily. Among the different strictly monotonic
available functions, the most suitable candidate selected are:

• Logarithmic function - log-Euclidean distance: considering
the following system

g(x) = 1
2 ln(x)

α = 0
(7.34)

which leads to
f(x) = ln(x) (7.35)

The associated distance for tensors, with the gauge E0, is thus
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given by:

dE0
ln

(
Ĉ1

E0
,
Ĉ2

E0

)
=
∥∥∥∥∥ln

(
Ĉ1

E0

)
− ln

(
Ĉ2

E0

)∥∥∥∥∥ (7.36)

From the definition of the logarithm of a generic symmetric matrix,
Â, with positive eigenvalues, it appears that:

ln
(
βÂ

)
= ln (β) Î6 + ln

(
Â
)

with ∀β > 0 (7.37)

Thus, the distance is independent from the gauge factor and
reduces to:

dln

(
Ĉ1, Ĉ2

)
=
∥∥∥ln (Ĉ1

)
− ln

(
Ĉ2
)∥∥∥ (7.38)

• Arctangent function - arctan-Euclidean distance: the sys-
tem in this case is g(x) = 1

2 arctan(x)

α = π
2

(7.39)

which leads to
f(x) = arctan(x) (7.40)

The associated distance for tensors is called the arctan-Euclidean
distance and reads:

dE0
arctan

(
Ĉ1

E0
,
Ĉ2

E0

)
=
∥∥∥∥∥arctan

(
Ĉ1

E0

)
− arctan

(
Ĉ2

E0

)∥∥∥∥∥ (7.41)

In the scalar case, this kind of distance has a geometrical inter-
pretation since it corresponds to the angle between the lines of
slopes E1

E0
and E2

E0
on stress versus strain curves in the

(
ε , σ

E0

)
plane.

• Power function - power-Euclidean distance: the system
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considered is g(x) = xn

α = 0
(7.42)

where n is a complex number different from 0. This system leads
to

f(x) = xn − x−n (7.43)

The associated family of distances for tensors, with gauge E0,
called power-Euclidean distances result as follows:

dE0
n

(
Ĉ1

E0
,
Ĉ2

E0

)
=

∥∥∥∥∥∥
(

Ĉ1

E0

)n

−
(

Ĉ2

E0

)n

+
(

Ĉ2

E0

)−n

−
(

Ĉ1

E0

)−n
∥∥∥∥∥∥ (7.44)

Once the distance is defined, together with its uniqueness, it can
be applied to the research of the closest isotropic elasticity tensor with
respect to an arbitrary given elastic tensor. This problem reduces to
the minimization of the distance between the given tensor, Ĉ, and
the closest isotropic tensor, Ĉiso. The isotropic tensor solution of the
minimization problem will thus depend on the distance considered.

A general isotropic fourth-order stiffness tensor, Ĉiso, can be written
in the form:

Ĉiso = 3kĴ + 2µK̂ (7.45)

where k and µ are respectively the bulk modulus and shear modulus;
Ĵ and K̂ are linearly independent isotropic tensors defined by:

Ĵ = 1√
3

Î3 ⊗ Î3 (7.46)

K̂ = I − Ĵ (7.47)

in which Î3 is the second-order identity tensor. It can be demonstrated
is not reported for the sake of clarity, that the function f of an isotropic
fourth-order tensor, expressed with Kelvin notation, is given by:

f
(
Ĉiso

)
= f(3k)Ĵ + f(2µ)K̂ (7.48)
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The distance, between some arbitrary elasticity tensor and the
closest isotropic one can be written as follows:

dE0
f

(
Ĉ1

E0
,
Ĉ2

E0

)
=
∥∥∥∥∥f
(

Ĉ

E0

)
− f

(
3k

E0

)
Ĵ − f

(2µ

E0

)
K̂

∥∥∥∥∥ (7.49)

The closest elasticity tensor minimizes this distance; the research
is hence focused on the stationarity of dE0

f , or equivalently expressed(
dE0

f

)2
, as a function of the two elastic constants k and µ:


∂(d

E0
f )2

∂k = 0
∂(d

E0
f )2

∂µ = 0
(7.50)

Substituting the expression previously reported into the system, it
can be rewritten as:

f
(

3k
E0

)
= f

(
Ĉ
E0

)
: Ĵ

f
(

2µ
E0

)
= 1

5 f
(

Ĉ
E0

)
: K̂

(7.51)

Since the scalar function f is supposed to be strictly monotonic, its
inverse function, f−1 exists, at least numerically; the elastic constants
k and µ of the closest isotropic tensor to Ĉ for the distance dE0

f are
thus given by: 

k = E0
3 f−1

(
f
(

Ĉ
E0

)
: Ĵ

)
µ = E0

2 f−1
(

1
5 f

(
Ĉ
E0

)
: K̂

) (7.52)
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7.2 Materials and methods

7.2.1 Materials

The material investigated in this chapter can be divided in two
groups:

• PET 80, PET 100, PET 130, PET 320 and EPP120 : these ma-
terials were already experimentally characterized and used as a
basis for numerical simulations in previous chapters; in the present
chapter the results of structure analysis and mechanical results,
coming from numerical simulations, will be used to implement
the Euclidean distance described in the previous paragraph and
consequently compute a mechanical anisotropy index. Moreover,
these results are used to formalize a system of analytical equa-
tions which can be used to estimate elastic constants, starting
from microstructural parameters, according to the most suitable
linear elastic constitutive law able to describe the macroscopic
mechanical behaviour of inspected samples.

• PPI : this is a newly introduced material, an open cell polyurethane
foam whose nominal apparent density is 30 kg m−3. The material
was produced by Adler Group and supplied in the form of sheets
of nominal dimensions 250 x 150 x 20 mm. No information about
the formulation or production parameters is available.

This last material was introduced to prove the validity of the an-
alytical equations developed based on the data obtained in previous
chapter; hence, this material was also experimentally characterized with
the aim of obtaining the necessary quantities for the present analysis.

7.2.2 Experimental methods

Experimental methods analogous to those reported in chapter 3 are
presented for PPI material. The experimental protocols employed aim
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at measuring the following quantities:

• Constituent material density (ρS): this quantity is measured
through gas pycnometer analysis; the instrument used is once
again Pycnomatic ATC Thermo Scientific gas pycnometer. Five
cubic specimens of 20 mm side length were prepared with an
hot-wire cutting machine; also, in this case, the samples were cut
randomly along the sheet to increase the statistical validity of the
results. Measurements were conducted in pure helium atmosphere
(Helium 5.0, purity grade) at 23 °C and at an equilibrium pressure
of 2 kPa. Small configuration, available on the instrument and
corresponding to a measurement volume of 25 cm3, was selected.
Three consecutive measurements were performed on each speci-
men. Since the material is a completely open-cell foam the density
of the bulk constituent material could be directly measured with
this kind of test.

• Constituent material modulus (ES): due to the relatively large
dimensions of the structure, in the order of hundreds of microme-
tres, it was possible to manually cut, with the aid of a magnifying
glass, single struts of nominal length 3 mm to perform quasi-static
uniaxial tensile tests. Fifteen samples were manually prepared
and the average cross-sections measured with the aid of an Olym-
pus BX-60 microscope in reflectance mode. The cross-section for
experimental tensile test was considered, as a first approximation,
ideally circular; the average cross-section area was subsequently
confirmed with the results coming from structure analysis per-
formed on the set of images obtained from X-Ray computed
tomography. Samples were tested in uniaxial quasi-static tensile
configuration with a dynamic mechanical analyser RSA III TA
Instruments equipped with a 35 N load cell used in transient
mode with crosshead displacement control. Tests were carried
out in a controlled environment at 23 °C and 50% of relative
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humidity. They were conducted up to a nominal strain of 100%
by applying a nominal strain rate of 0.005 s−1, which corresponds
to a nominal crosshead displacement of 1 mm min−1. For what
concerns the topic of the present chapter only information at
small strains, around 1%, was used; the large strain behaviour
will be considered in the next chapter.

• Foam macroscopic apparent stiffness (E∗
i ): foam macroscopic

mechanical behaviour was inspected with a similar procedure
reported in chapter 3. Quasi-static uniaxial compression tests
were performed, in this case, on the same dynamic mechanical
analyser RSA III TA Instruments used for uniaxial tensile test,
with parallel plates configuration and once again under crosshead
displacement control. Tests were carried out in a controlled envi-
ronment at 23 °C and 50% of relative humidity. Cubic specimens,
similar to the ones used for gas pycnometer analysis, were pre-
pared with an hot-wire cutting machine. Three specimens were
tested at 50% of nominal strain applying a nominal strain rate of
0.005 s−1, which corresponds to a nominal crosshead displacement
of 6 mm min−1. Compression was performed along the three
main orthogonal directions of the cubic specimens. Preliminary
quasi-static uniaxial loading-unloading tests were conducted in
the same conditions and no permanent deformation was detected
at the end of the test; hence each specimen was tested along
the three orthogonal directions, up to large strains; five minutes
between each test were allowed to viscoelastic strain recovery.
Also, in this case mechanical results at small strains (1%) will
be used in the present chapter, while large strain results will be
exploited in the next.

• Microstructure inspection: internal microstructure was once again
analysed through X-Ray computed tomography, performed in
collaboration with ENEA, Division for Sustainable materials, Re-
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search centre of Brindisi. Acquisitions were performed using a GE
Phoenix Nanotom CT systems fitted with a molybdenum target
suitable for weakly absorbing materials. The accelerating voltage
and the beam current of the X-Ray tube were set at 50 kV and
185 µA, respectively. The number of projections was 2400. Voxel
size was set at 10 µm. The exposure time for each projection
and the total scan time were 750 ms and 3 h, respectively. Vol-
ume reconstruction was carried out with the application Phoenix
datos|x 2, with the same procedure described in chapter 4. The
size of the resulting set of images was 1300 x 1300 x 1300 voxels,
corresponding to an investigated volume of 133 mm3.

7.2.3 Numerical methods

The internal microstructure of material PPI was characterized with
the methodologies and algorithms described in chapter 4.

Stiffness tensors, obtained from numerical simulations performed
on PET and EPP materials, presented in chapter 5 and 6, were then
analysed with a custom algorithm, developed with Matlab R2019b,
which computes the Euclidean distance, dE0

f , and the corresponding
elastic constants of the closest isotropic tensor.
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7.3 Results and discussion

7.3.1 Structural and mechanical anisotropy

Figure 7.1 displays an example of the elastic constants of the closest
isotropic tensor, with respect to the one obtained from finite element
simulation, computed with the procedure described in the previous
section. The results are shown in terms of Young modulus, Eiso, and
shear modulus, Giso. The example is referred to one sub-domain of PET
130 sample B, but similar results are obtained for all the other stiffness
matrices. The figure reports values computed with the log-Euclidean
distance and power-Euclidean distance, with exponent, n, equal to 1, 1

2

and 2; arctan-Euclidean distance was excluded since for many stiffness
matrices some singularity occurs during the computation of elastic
constants. As stated in the theoretical paragraph, the log-Euclidean is
the only distance independent from the normalization parameter E0

while the other distance formulations strongly depend on this parameter,
but they all converge into a single point. Results that follow, in terms of
mechanical anisotropy index, are computed in a neighbourhood of this
convergence point. Results about the dependence of power-Euclidean
distance on the normalization parameter E0 are not shown since the
physical meaning of E0 is still under investigation.

The Euclidean distance, generically indicated with the single symbol
dE0

f since around the convergence point all the distances give the same
result, was computed and taken as a mechanical anisotropy index.
Figure 7.2 shows the results obtained for all the stiffness matrices
computed in previous chapters; mechanical anisotropy index is plotted
as a function of structural anisotropy index, DA, computed through the
application of Mean Intercept Length (MIL) algorithm. An apparent
bilinear trend is reported in the graph with the change in the slope
around a value for DA equal to 0.6. Again, this threshold corresponds
to the different macroscopic mechanical behaviour and its associated
linear elastic constitutive laws.
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Figure 7.1: Elastic constants of the closest isotropic tensor computed with
different definitions of Euclidean distance: a) Young modulus
and b) shear modulus. The example refers to the stiffness
matrix of a sub-domain of PET 130 sample B.

Figure 7.2: Euclidean distance, or alternatively called mechanical
anisotropy index, dE0

f , as a function of structural anisotropy
index, DA.

The result obtained and displayed in figure 7.2 was combined with
the information coming from structural analysis in terms of eigenvalues
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of the fabric tensor describing the spatial distribution of the material
inside the inspected volume. In figure 7.3 the three eigenvalues of
each analysed sub-domain, normalized with respect to their mean
value, are plotted as a function of the structural anisotropy index of
the corresponding sub-domain itself. It is clear from the graph that
the three eigenvalues progressively diverge with increasing value of
structural anisotropy index, DA. A first range, for DA values between 0
and 0.2, can be identified in which the three eigenvalues are almost equal.
A second range can be identified exploiting the threshold found from
data depicted in figure 7.2. Therefore, for DA values comprised between
0.2 and 0.6, two eigenvalues can be considered, as a first approximation,
almost equal while the third is different from the others. The threshold
at 0.6 is set exploiting the result obtained from mechanical anisotropy
index analysis; without this analysis the threshold could not uniquely
be set due to the dispersion of numerical data. The last range, DA
values between 0.6 and 1, is comprehensive of all the sub-domains
whose fabric tensor is characterized by three different eigenvalues. The
uniquely identification of three different regions, as a function of DA, is
coherent with the works of Cowin and other authors regarding cellular
materials and their fabric tensor [3] [9] [12]. According to their work a
cellular material exhibits a macroscopic mechanical response which can
be analytically modelled as linear elastic as follows:

• Three distinct eigenvalues (λ1 ̸= λ2 ̸= λ3): the material can be
modelled with a linear elastic orthotropic constitutive law.

• Two distinct eigenvalues (λ1 = λ2 ̸= λ3): the material can be
modelled with a linear elastic transversely isotropic constitutive
law.

• Three equal eigenvalues (λ1 = λ2 = λ3): in this case the material
can be modelled with a linear elastic isotropic constitutive law.

The association between the found region, function of structural
anisotropy index, and the corresponding linear elastic constitutive law
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Figure 7.3: Fabric tensor eigenvalues normalized with respect to their mean
value as a function of structural anisotropy index (DA).

is confirmed by inspecting the homogenized stiffness matrices. An
example for each identified region is reported:

• 0 < DA < 0.2 - Isotropic constitutive law:

C =



354.70 147.68 129.45 0.17 4.37 0.25
149.40 361.20 151.48 0.50 0.33 0.43
130.35 150.54 337.61 0.39 0.32 0.24
0.67 0.74 0.50 98.36 1.13 −0.14
1.11 0.56 0.50 0.59 91.07 3.53

−1.23 −0.27 0.17 0.46 2.96 95.61


[MPa]

the associated DA of the matrix is 0.11 and, besides the not
exactly zero value of the non-principal components due to the
numerical procedure and the irregularity of the structure, the
two groups of components on the main diagonal, representing the
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Figure 7.4: Orthogram comparing the components on the main diagonal
of a stiffness matrix, C11, C22 and C33 in the range of DA
associated with macroscopic isotropic constitutive law.

direct effect of normal strains and shear strains, are almost the
same, suggesting a macroscopic linear elastic isotropic behaviour.

• 0.2 < DA < 0.6 - Transversely isotropic constitutive law:

C =



55.13 46.50 43.67 2.15 −1.75 2.37
46.45 66.17 73.79 0.11 2.08 −5.04
43.65 73.71 261.00 −1.10 −2.21 2.16
4.36 0.54 −0.07 27.50 −0.17 −0.51

−5.52 0.00 −1.21 −0.16 27.13 1.01
1.96 −4.70 3.04 3.97 4.98 71.86


[MPa]

the associated DA of the matrix is 0.52 and looking at the two
groups of components on the main diagonal, for each group two
terms are almost the same while the third is different, confirming
the necessity to use a transversely isotropic constitutive law to
describe the macroscopic mechanical behaviour of this kind of
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Figure 7.5: Orthogram comparing the components on the main diagonal
of a stiffness matrix, C11, C22 and C33 in the range of DA
associated with macroscopic transversely isotropic constitutive
law.

structures. As stated in the previous case, similar considerations
on non-principal components can be made.

• 0.6 < DA < 1 - Orthotropic constitutive law:

C =



53.05 40.52 34.75 1.66 14.51 1.00
40.39 381.93 49.96 1.58 15.19 3.53
34.80 49.90 185.91 −5.17 20.49 1.64
−4.88 −0.56 −6.49 52.97 −1.91 16.60
18.19 14.86 25.83 −0.86 22.32 1.38
−4.20 0.09 0.16 13.99 −1.80 69.24


[MPa]

the associated DA of the matrix is 0.91 and in this case the
elements constituting the two groups of main components are all
different from one to another, suggesting the use of an orthotropic
constitutive law. In this case, for DA values really close to 1,
corresponding to the completely anisotropic structure case, some
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Figure 7.6: Orthogram comparing the components on the main diagonal
of a stiffness matrix, C11, C22 and C33 in the range of DA
associated with macroscopic orthotropic constitutive law.

of the non-principal components are much greater than the one
presented in the first two cases and cannot be attributed only
to numerical issues. This fact can suggest that a more complex
constitutive law than the orthotropic should be used for these
extreme cases, but in the present work the highest level of linear
elastic constitutive law complexity considered is the orthotropic
one.

7.3.2 Macroscopic constitutive laws

Once the unique association between geometrical structure and suit-
able macroscopic linear elastic constitutive law was assessed, the elastic
constants, computed from the stiffness matrices obtained from finite
element simulations, were related to the morpho-structural parameters,
coming from the image analysis of the sub-domains, to construct a set
of analytical equations.

Figure 7.7 reports the relationships between the apparent Young
moduli and structure parameters:
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• Figure 7.7-a): relationship between the average of apparent Young
moduli

(
E∗

Mean = E∗
11+E∗

22+E∗
33

3

)
, normalized with respect to the

bulk modulus of foam constituent material (ES), as a function of
solid volume fraction (ϕ).

• Figure 7.7-b): relationship between the ratio of minimum and
maximum apparent Young moduli

(
E∗

Min

E∗
Max

)
as a function of the

ratio between the minimum and maximum eigenvalues of the
fabric tensor

(
λMin

λMax

)
.

• Figure 7.7-c): relationship between the ratio of minimum and
medium apparent Young moduli

(
E∗

Min

E∗
Med

)
as a function of the

ratio between the minimum and medium eigenvalues of the fabric
tensor

(
λMin

λMed

)
.

For all the double-logarithmic plots a linear fitting of the data
was performed. Due to the scatter of the data, the linear fitting was
considered valid with a r2-value greater than 0.9. In all cases the
intercept of the fit turned out to be negligible; this finding leads to the
formulation of power-law relationships of the type:

y = xn (7.53)

The same procedure was applied also to shear moduli and Poisson
ratios and similar results were obtained. Results regarding shear moduli
are reported in figure 7.8. The shear modulus of the constituent material
was computed with the usual linear elastic isotropic relationship from
the relevant Young modulus and Poisson ratio used in finite element
simulation.

Figure 7.9 displays the results obtained for the apparent Poisson
ratios.
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Figure 7.7: Double logarithmic plots of the relationships between apparent
Young moduli, computed through finite element analysis, and
morpho-structural parameters, computed through image analy-
sis; a) mean apparent Young modulus

(
E∗

Mean = E∗
11+E∗

22+E∗
33

3

)
,

normalized with respect to constituent material Young modu-
lus (ES), as a function of solid volume fraction (ϕ); b) ratio of
minimum and maximum apparent Young moduli

(
E∗

Min
E∗

Max

)
as a

function of minimum and maximum fabric tensor eigenvalues(
λMin
λMax

)
; c) ratio of minimum and medium apparent Young

moduli
(

E∗
Min

E∗
Med

)
as a function of minimum and maximum fabric

tensor eigenvalues
(

λMin
λMed

)
. Red dashed lines represent linear

fit results and related parameters obtained are also reported.
Note that different scales had to be used.
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Figure 7.8: Double logarithmic plots of the relationships between apparent
shear moduli, computed through finite element analysis, and
morpho-structural parameters, computed through image analy-
sis; a) mean apparent Shear modulus

(
G∗

Mean = G∗
12+G∗

13+G∗
23

3

)
,

normalized with respect to constituent material shear modulus
(GS), as a function of solid volume fraction (ϕ); b) ratio of
minimum and maximum apparent shear moduli

(
G∗

Min
G∗

Max

)
as

a function of minimum and maximum fabric tensor eigenval-
ues

(
λMin
λMax

)
; c) ratio of minimum and medium apparent shear

moduli
(

G∗
Min

G∗
Med

)
as a function of minimum and maximum fabric

tensor eigenvalues
(

λMin
λMed

)
. Red dashed lines represent linear

fit results and related parameters obtained are also reported.
Note that different scales had to be used.
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Figure 7.9: Double logarithmic plots of the relationships between apparent
Poisson ratios, computed through finite element analysis, and
morpho-structural parameters, computed through image anal-
ysis; a) mean apparent Poisson ratio

(
ν∗

Mean = ν∗
12+ν∗

13+ν∗
23

3

)
as

a function of solid volume fraction (ϕ); b) ratio of minimum
and maximum apparent Poisson ratios

(
ν∗

Min
ν∗

Max

)
as a function of

minimum and maximum fabric tensor eigenvalues
(

λMin
λMax

)
; c)

ratio of minimum and medium apparent Poisson ratios
(

ν∗
Min

ν∗
Med

)
as a function of minimum and maximum fabric tensor eigen-
values

(
λMin
λMed

)
. Red dashed lines represent linear fit results

and related parameters obtained are also reported. Note that
different scales had to be used.
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Combining the results shown in the present and previous sections, a
system of equations can be assembled to estimate the elastic constants:

• 0 < DA < 0.2 - Isotropic homogenized material: only two elastic
constants have to be determined


E∗

Mean

ES
= E∗

ES
= (ϕ)nE∗

1 with nE∗

1 = 1.41
G∗

Mean

GS
= G∗

GS
= (ϕ)nG∗

1 with nG∗

1 = 1.19
(7.54)

• 0.2 < DA < 0.6 - Transversely isotropic homogenized material:
five elastic constants have to be determined



E∗
Mean

ES
=

E∗
Max+2E∗

Min
3

ES
= (ϕ)nE∗

1 with nE∗

1 = 1.41
E∗

Min

E∗
Max

=
(

λMin

λMax

)nE∗
2 with nE∗

2 = 1.34

G∗
Mean

GS
=

G∗
Max+2G∗

Min
3

GS
= (ϕ)nG∗

1 with nG∗

1 = 1.19
G∗

Min

G∗
Max

=
(

λMin

λMax

)nG∗
2 with nG∗

2 = 0.95

ν∗
Mean = ν∗

Max+2ν∗
Min

3 = 0.25 with ν∗
Min = E∗

Min

2G∗
Min

− 1
(7.55)

• 0.6 < DA < 1 - Orthotropic homogenized material: nine elastic
constants have to be determined
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E∗
Mean

ES
=

E∗
Max+E∗

Med+E∗
Min

3
ES

= (ϕ)nE∗
1 with nE∗

1 = 1.41
E∗

Min

E∗
Max

=
(

λMin

λMax

)nE∗
2 with nE∗

2 = 1.34
E∗

Min

E∗
Med

=
(

λMin

λMed

)nE∗
3 with nE∗

3 = 1.95

G∗
Mean

GS
=

G∗
Max+G∗

Med+G∗
Min

3
GS

= (ϕ)nG∗
1 with nG∗

1 = 1.19
G∗

Min

G∗
Max

=
(

λMin

λMax

)nG∗
2 with nG∗

2 = 0.95
G∗

Min

G∗
Med

=
(

λMin

λMed

)nG∗
3 with nG∗

3 = 0.70

ν∗
Mean = ν∗

Max+ν∗
Med+ν∗

Min

3 = 0.25
ν∗

Min

ν∗
Max

=
(

λMin

λMax

)nν∗
1 with nν∗

1 = 1.31
ν∗

Min

ν∗
Med

=
(

λMin

λMed

)nν∗
2 with nν∗

2 = 1.46
(7.56)

Using the proposed set of equations, it is hence possible to estimate
all the elastic constants necessary to describe the macroscopic mechani-
cal behaviour of a given expanded polymeric material, based on partial
information about the internal microstructure and material distribution
in the volume inspected. It is then possible to assemble the stiffness
matrix, or dually the compliance matrix, and consequently predict the
macroscopic mechanical response of the material in a generic stress or
strain state, limited to the linear elastic regime [11].

The exponents identified in the equations are substantially inde-
pendent of the specific morphologies or microstructure inspected; this
statement is supported by the fact that they were obtained by inspect-
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ing expanded materials exhibiting very different internal microstructure
and produced through different technologies.

As a final note, these equations can be used in both ways; by
experimentally measuring some elastic constants it is possible to obtain
information about the internal microstructure of the tested samples, in
terms of scalar quantities, such as the solid volume fraction, but also
on tensorial quantities, such as the eigenvalues of the fabric tensor and
the related information about material distribution inside the tested
volume.

7.3.3 PPI experimental results

In this section the experimental results obtained on PPI material will
be briefly illustrated and they constitute the basis for the application
of the proposed model, shown in the next section.

From gas pycnometer analysis the bulk density of the constituent
material was measured as 1455.1 ± 8.2 kg m−3.

Figure 7.10 displays the average nominal stress, σnominal, versus nom-
inal strain, εnominal, curve computed from mechanical test performed
on single material struts. The shaded area is the semi-dispersion at
each fixed strain level for the fifteen structures tested. From the graph
is possible to see that the mechanical behaviour of the constituent
material is almost linear up to 30% nominal strain; small deviations
from linearity may be caused by the irregular geometry of the samples
tested. From this mechanical test secant Young modulus of constituent
material (ES) was computed as the ratio between the stress associated
to a nominal strain of 0.5% and the strain itself. The resulting value
was 14 ± 0.7 MPa.

Figure 7.11 displays the results obtained through mechanical testing
of the expanded material along the three main orthogonal directions.
It is clear from the graph on the left that the material exhibits a trans-
versely isotropic behaviour: the small-strain response in two directions
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Figure 7.10: Mean nominal stress, σnominal, versus nominal strain, εnominal,
curve of the tested single structures extracted from the ex-
panded material.

is almost the same, while it is stiffer in the third one. Graph on the
right shows the apparent stiffness, computed as before. The depicted
semi-dispersions of the experimental data are once again reported.

Figure 7.12 shows the set of images, obtained through X-ray com-
puted tomography analysis, representing the internal structure of PPI
material. From the images the open-cell structure is clearly detectable;
the cross-section of the foam struts resembles the typical plateau
border geometry, widely adopted in literature to describe open-cell
polyurethane foams [4] [1] [7].

Table 7.1 reports the results obtained from image analysis which
were used in conjunction with the set of equations presented in the
previous section.

The structural anisotropy degree value falls exactly within the range
for which a macroscopic transversely isotropic mechanical behaviour is
expected, confirming the considerations derived from the experimental
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Figure 7.11: Experimental results of mechanical tests performed on the
expanded polymeric samples; a) average nominal stress ver-
sus nominal strain of quasi-static uniaxial compression tests
performed along the three main orthogonal direction of the
cubic specimen; b) average apparent stiffnesses along the
three main orthogonal directions of the tested specimens.

Figure 7.12: Binarized set of images representing the internal microstruc-
ture of PPI material obtained through X-ray computed to-
mography.
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Table 7.1: Morpho-structural parameters computed from image analysis.

Parameter

Solid volume fraction (ϕ) 2.79%
Mean structure thickness 107.46 µm

Structural anisotropy degree (DA) 0.4035
λMin/λMax 0.6072
λMin/λMed 0.6146

mechanical results.

7.3.4 Preliminary model validation

By exploiting the information obtained from structure analysis the
elastic constants, necessary to describe the mechanical behaviour of a
transversely isotropic solid, were computed. The two resulting apparent
Young moduli were compared with the experimentally measured ones;
the comparison is reported in figure 7.13. Error bars reported in
the numerical estimation of the apparent stiffnesses were computed
through error propagation while solving the system of equations. The
agreement between experimental results and model prediction is quite
good, considering that the closed-cell systems on which the equations
were derived are completely different from the open-cell structure of
PPI. This agreement supports the independence of the exponents
identified within the proposed relations from the specific class of material
inspected. Moreover, the prediction is able to clearly distinguish the
apparent stiffnesses in the two directions.
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Figure 7.13: Comparison between apparent Young moduli experimentally
measured with the one predicted using the set of analytical
equations proposed. Error bars reported on the values pre-
dicted with the analytical equations are computed through
error propagation during the resolution of the system.

7.4 Concluding remarks

In the present chapter a mechanical anisotropy index is proposed
and combined with structural information, coming from X-Ray com-
puted tomography, to provide a unique association between structural
parameters and suitable macroscopic linear elastic constitutive models.
Moreover, a system of equations, comprehensive of structural parame-
ters and elastic constants, is proposed and its efficiency is demonstrated
through its application to an open-cell expanded polymeric material,
completely different from the closed-cell systems used to build the ana-
lytical relationships. These equations provide a powerful and efficient
tool to estimate the elastic constants, knowing only limited information
about the internal microstructure, and then allowing the estimation
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of the entire stiffness matrix useful to investigate the linear elastic
mechanical response in a generic stress or strain state. Moreover, from
an industrial point of view, since X-Ray computed tomography is an
expensive technique, both in terms of monetary and time resources, the
proposed relationships can be exploited also in the opposite direction:
by performing mechanical experiments on a given expanded material
some internal microstructure characteristics can be inferred. The pro-
posed relationships shall be further refined by increasing the quantity
of available data and then properly validated by applying the set of
equations to other experimentally available systems; additionally, syn-
thetic structures with specific morpho-structural characteristics could
be created by rapid prototyping techniques and subsequently tested.
Such a reliable model could provide great help to the industry when
designing new materials or optimizing existing ones.
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Chapter 8

Image-based numerical tool
for non-linear mechanical
modelling

In the following chapter an image-based numerical tool designed to
perform non-linear numerical simulations, again considering the real
microstructure of expanded polymeric materials, is presented. The
approach is firstly validated by performing linear finite element analysis
and comparing the numerical results with experimental data presented
in chapter 3. The approach is then applied to generate fictitious
structures with different morpho-structural features to increase the
range of available structures and hence to compare the relationships
obtained with the RVE approach. Lastly, the algorithm is preliminary
applied to non-linear simulations in which the attention is mainly
focused on the efficiency, in terms of time and numerical resources
(RAM and CPU), requested to perform simulations.
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8.1 Introduction

One of the main open issues in the field of numerical modelling
of expanded polymeric materials is the development of an efficient
numerical tool useful to perform numerical simulations true to the
complex real structure of this class. The main limitation is set by the
large numerical resources required to perform finite element analysis
on such a huge number of finite elements. This limitation has to be
considered from two viewpoints: physical resources (e.g. RAM) and
time necessary to conduct the simulation; the latter is typically very
large and incompatible not only with industrial needs, but also with
the academic research activities.

The main approaches usually adopted in the literature consist in
the simplification of the internal microstructure, usually performing
some skeletonization process with regular solids, as presented in chapter
2 [2] [21]; moreover, an additional simplification on the finite element
type, decreasing the degree of freedom in the element deformation
mechanisms, has to be included to shorten the requested simulation time
and to reduce the physical resources necessary to solve the simulation
[1] [18]. In the case of open-cell foams, the most widely used element is
the Timoshenko beam, used by many authors to represents the internal
structures of the simulated foam, and the junction points between
structures are usually simplified with a nodal mass approach, which
consists in artificially attributing the entire mass of the junction point
to a single node at the end of the beam [7] [8] [6]. This approach
is surely efficient from a numerical point of view, but results in an
excessive simplification of the real structure of expanded polymeric
materials, thus producing a very stiff macroscopic mechanical response
compared to the real behaviour [4].

In recent years new approaches have been proposed in the literature,
mainly based on level sets [9] [13] [17] [18] or Voxel finite element
approaches [11] [12]; specific details on the related methods are not
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reported here since they are beyond the scope of the present thesis,
but interested readers can find useful references at the end of this
chapter. These two approaches are numerically very efficient and
moreover they are able to reproduce the real internal structure of
the simulated material, starting from a set of images reproducing the
internal structure. The main issue resides in convergence problems when
non-linear simulations are performed, since these methods require at
least a partial knowledge of internal deformation mechanisms since a so-
called “advancing law” has to be provided to update at each simulation
step the level set map. This issue is usually faced following a trial
and error approach, formulating different “advancing laws” until the
agreement between experimental and numerical data are satisfactory.
This empirical way of setting the model parameters typically limits the
validity of the obtained results to the specific system under investigation,
thus giving a descriptive instead of a predictive model.

The method proposed in the following chapter is an image-based
method, which considers the real geometry of internal microstructure,
but greatly reduces the numerical resources necessary to perform fi-
nite element analysis. The approach works on an optimization of the
high-resolution set of images, artificially reducing their original resolu-
tion, while preserving the essential morpho-structural features detected
through image analysis.
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8.2 Materials and methods

8.2.1 Materials

In this chapter the sets of images already obtained will be referred to,
in particular those representing the internal structure of PET and PPI
samples. PET samples will be used in the first part for the validation
of the newly developed algorithm. In the second part PET and PPI
samples will be used to perform non-linear mechanical simulations.

Experimental curves used in the following sections are also the ones
already presented in previous chapters.

8.2.2 Structure analysis

Since the whole set of images is considered for numerical simulations
the methods for structure analysis, already presented in chapter 4, will
be used and briefly recalled.

Mean volumetric structure thickness and pores size were investigated
to identify foams’ internal cells characteristic dimensions. The mean
volumetric structure thickness was calculated using the algorithm of
Hildebrand and Rüegsegger [5] implemented in the custom-made Matlab
algorithm while the labelling analysis tool of Avizo was used for cell
measurements.

The analysis of anisotropy was accomplished using two custom made
algorithms. The first one was implemented in Matlab to compute MIL
on the set of images, according to the procedure proposed in chapter
4 [16]. The second one was implemented using the VTK library to
compute spatial autocorrelation function [20]. In both approaches,
MIL and ACF, a least square fitting algorithm was employed to fit the
ellipsoid represented in the rose diagram; the number of orientations
chosen for both analyses was 2049.
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8.2.3 Peano’s algorithm

Image conversion into finite element mesh is performed once again
through the application of the marching cube algorithm [14], presented
in chapter 5. As already discussed, straightforward application of the
algorithm to the entire set of high-resolution images would result in
a huge finite element mesh, with a number of elements in the order
of 107 - 108, whose computational cost would not be affordable. A
new algorithm was developed and implemented in a custom code,
implemented in Matlab R2019b, to reduce this cost, while preserving the
essential morpho-structural characteristics of the imaged specimens in
the whole reconstructed volume. This simple two-parameters algorithm
is freely inspired to the Peano’s theory of n-order tensors reduction,
hence referred to as Peano’s algorithm, and is very efficient from a
computational point of view.

The two employed parameters are:

• P: represents the cubic sub-domain side-length in which the 3D
tensor, representing the set of binarized images, is subdivided.
This is called Peano’s number and it assumes positive integer
values major or equal to 1. Obviously for P = 1 the image set
remains exactly the same. All the defined sub-regions will collapse
in a new single voxel with a length size equal to the old resolution
(3 µm, in this work) multiplied by P. This product gives the
characteristic length scale of the representative volume element of
the homogenized medium used to compute the elastic properties.

• Th: is a threshold. The collapsed region will result in a new
voxel representing solid material (Boolean value equal to 1) or its
absence (Boolean value equal to 0) according to this parameter.
If the ratio of “solid” voxels to the total number of voxels within
a given sub-region is greater than Th the new voxel will be solid
(Boolean equal to 1) or vice versa empty (Boolean equal to 0).
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Starting from high-resolution CT data and by properly tuning the
above described parameters the same CT inspected volume can be
converted into a finite element mesh with a manageable size.

8.2.4 Finite element modelling

The combination of Peano’s and marching cubes algorithms was
exploited to generate 20 different finite element meshes of equivalent
total volume, imported in the commercial code ABAQUS 2018 to
perform mechanical finite element simulations. 8 structures represent
the real foam PET samples (2 per density) experimentally tested, whose
results were presented in chapter 3; the other 12 represent fictitious
structures generated with Peano’s algorithm by altering solid fraction,
mean structure thickness and anisotropy of the real ones. The meshes
are made up of a number of cubic linear elements (C3D8) varying from
150000 to 820000. Initially the constitutive material law adopted is
once again linear elastic, with the values reported in table 8.1.

Table 8.1: Linear elastic constants adopted for linear simulation of PET
samples.

Parameter Value

Young’s modulus (E) 2900 MPa
Poisson’s ratio (ν) 0.4

Displacement boundary conditions were applied to simulate a uniax-
ial compression test, up to a nominal strain value of 1%. Constrained
displacements were enforced on one face along the compression direction
while on the opposite face a total displacement, corresponding to the
final aforementioned strain level, was applied.

For all the reconstructed geometries three simulations reproduc-
ing experimental compression tests along the three main orthogonal
directions were conducted and the apparent Young moduli, E∗, were
computed.
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In the second part of the work, non-linear mechanical simulations
were conducted on reconstructed geometries, always optimized with
Peano’s algorithm, representing the tested specimens of PET and PPI
samples. Constitutive law adopted in this case are: perfectly elastic-
plastic behaviour for PET samples, since it is widely reported in the
literature that the non-linear compressive mechanical behaviour of PET
exhibits a shear-yielding mechanism [19] [15]; for PPI, since an almost
linear behaviour up to 30% of nominal strain has been showed for the
constituent material in chapter 7, a linear elastic isotropic constitutive
law is adopted. Parameters used are summarized in table 8.2 and 8.3.

Table 8.2: Mechanical parameters adopted for non-linear simulation of
geometries representing real samples whose constituent material
is PET.

Parameter Value

Young’s modulus (E) 2900 MPa
Poisson’s ratio (ν) 0.4
Plastic strain (εy) 0
Plastic stress (σy) 200 MPa

Table 8.3: Mechanical parameters adopted for non-linear simulation of
geometries representing real samples whose constituent material
is PPI.

Parameter Value

Young’s modulus (E) 14 MPa
Poisson’s ratio (ν) 0.3

The yield threshold for PET was taken from literature data obtained
on PET fibres and is consequently higher than the one reported in
literature for bulk PET (70 MPa); this choice is made on the assumption
that the material within the foam samples is highly oriented [10].

Boundary conditions adopted for non-linear simulations are the
same adopted for the linear case, except for the total displacement,
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which in this case corresponds to a nominal strain of 10%. Only for
real tested specimens, one simulation for each reconstructed mesh was
performed.

Both linear and non-linear simulations were run on a Linux machine
with 24 cores and 49 GB RAM; the average CPU time needed for a
single linear simulation varied between 2 and 4 hours, depending on the
total number of finite elements in the mesh, while the average time for
non-linear simulations ranged between 8 and 16 hours, always according
to the number of finite elements and in this case also according to the
complexity of the constitutive law adopted.
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8.3 Results and discussion

8.3.1 Peano’s algorithm validation

Mesh optimization is a crucial aspect of image-based approaches
which aim to convert the set of images, acquired from X-Ray computed
tomography analysis, into a finite element mesh that represents the real
structure of the sample scanned, as already pointed out many times
in the previous chapters. Figure 8.1 displays the effectiveness of the
new custom-made developed algorithm in greatly reducing the number
of elements needed to reconstruct the entire volume inspected with
the tomography. The number of elements is plotted as a function of
Peano’s number (P) and threshold variation (Th), the two parameters
of the adopted algorithm. Data in the graph refer to PET 320 sample
B, but similar results were obtained for other inspected specimens.

Figure 8.1: Total number of elements required to reconstruct the entire
volume inspected with X-Ray computed tomography as a func-
tion of Peano’s algorithm parameters: threshold (Th) tuning
and Peano’s number (P).
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The reduction of the number of elements required to reconstruct the
geometry must be achieved while preserving at the same time the essen-
tial morpho-structural characteristics of the relevant inspected sample.
Figure 8.2 clearly shows how it is possible, with a proper tuning of the
two aforementioned parameters, to maintain the values of fundamental
morpho-structural characteristics of the specimen reasonably close to
their original values. Considering the reported example (with data
obtained from PET 320 sample B), the choice of values 10 for P and
0.5 for Th ensures that relevant structural parameters are not varied by
more than 5% with a three order of magnitude reduction of the total
element number from 568973091 to 520081. One of the main advantages
of the proposed algorithm resides in the very limited computational
resources required. Its usefulness is strictly related to the quality of the
original set of images: the higher its initial resolution, the higher the use-
fulness of applying the algorithm with the aim of reducing the elements
number without altering too much the morphological characteristics of
the inspected samples. Conversely, starting from a low-resolution set
of images, the usefulness of applying the algorithm decreases since a
lower number of finite elements is necessary to convert the images and
moreover, starting with low accurate information on microstructure
the application of Peano’s algorithm leads to a consequent additional
reduction in the accuracy of structure description.

After the application of Peano’s algorithm the resulting volume is
subsequently processed with the marching cubes one to convert it into
the finite element mesh; this result represents an ideal compromise be-
tween element number and faithfulness to the original morpho-structural
characteristics. The resolution of the marching cube algorithms ob-
viously matched that of the image set reduced using Peano’s. An
example of finite element mesh reconstruction is reported in figure 8.3;
the geometries shown refer to samples B of each density inspected for
PET material.

The optimally tuned parameters of the Peano’s algorithm are re-
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Figure 8.2: Effect of Peano’s algorithm variables on the main morpho-
structural parameters of PET 320 sample B: a) solid volume
fraction (ϕ); b) mean volumetric structure thickness; c) struc-
tural degree of anisotropy (DA).

ported in table 8.4 for each sample, together with the element number
before and after its application; new final resolution used in the march-
ing cubes algorithm is also listed. P was set to 10 in all cases, while
the optimal value of Th was 0.4 for PET 80, and 0.5 for the higher
densities; the very narrow parameter range identified for materials
having significantly different morphological characteristics proves the
robustness of the method.

Figure 8.4 summarizes the comparison of the original and modified
morpho-structural characteristics. It is clear that only minor variations
in terms of solid volume fraction (ϕ) and degree of anisotropy occurred;
the main difference between the original and reduced size structures is in
the mean volumetric structure thickness, but it is considered acceptable
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Figure 8.3: Finite element mesh reconstruction after the application of
Peano’s algorithm to the set of images obtained through to-
mography. All the geometries shown refers to sample B of the
corresponding density for material PET.

since it has been shown in chapter 6 that this structural parameter has
a minor influence on the macroscopic mechanical behaviour of expanded
polymeric materials. Obviously, the reduction of the spatial resolution
is accompanied by a coarser representation of existing structures: the
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Table 8.4: Results of mesh optimization performed by applying Peano’s
algorithm using the listed optimal parameters. The spatial
resolution of the original set of images was 3 µm.

Sample Original number Reduced number P Th Modified resolution
of elements of elements [µm]

PET 80 A 369997393 323934 10 0.4 30
PET 80 B 282556706 318097 10 0.4 30

PET 100 A 456845460 345770 10 0.5 30
PET 100 B 470968553 402227 10 0.5 30
PET 130 A 377427402 297431 10 0.5 30
PET 130 B 308986233 343174 10 0.5 30
PET 320 A 643671877 599183 10 0.5 30
PET 320 B 658234174 629510 10 0.5 30

thinner ones are either deleted or made thicker. Nevertheless, a good
tuning of Peano’s parameters preserves the essential features of the in-
vestigated structure, despite a huge reduction in the total finite element
number and related free nodes (about three orders of magnitude). This
reduction is essential, as already stated, to reduce the computational
burden of the analysis to levels which are compatible with the currently
available numerical resources (in terms of RAM, CPU and CPU time).

Linear numerical simulations of the mechanical testing of the recon-
structed meshes were performed according to the methods described in
previous sections. Relevant results focused on the determination of the
foams’ apparent stiffness (E∗), determined as the slope at the origin of
the nominal stress versus nominal strain plot.

In figure 8.5 a comparison is made between the experimental data
obtained along the three main orthogonal directions on all tested
samples, already presented in chapter 3, and numerical simulations
on the reconstructed geometries representing the originally inspected
samples (two for each inspected density of material PET). It is clear
from the graph that the numerical results generally overestimate the
experimental ones, in a similar way to the Representative Volume
Element (RVE) approach presented in chapter 5, especially for lower
densities. With the present approach, reasons explaining this fact reside
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Figure 8.4: Comparison between morpho-structural characteristics before
and after application of Peano’s algorithm (P); comparison is
done for sample A (a), c) and e)) and B (b), d) and f)) for
each inspected density of material PET. Solid volume fraction
(ϕ) (a) and b)), mean volumetric structure thickness (c) and
d)) and structural degree of anisotropy (DA) (e) and f)) are
reported.

in the great number of variables that affect the final results of numerical
simulation: the structural variability of individual samples (still smaller
than the real macroscopic ones), the application of binarization to the set
of images and also Peano’s algorithm which introduces small but sensible
changes in the structure. All these factors combined with the very
high sensitivity of the apparent stiffness (E∗) to solid volume fraction,
especially for very low values (as already demonstrated in chapter 5),
limit the ability of this approach to closely match experimental data.

Despite the mismatch between experimental and numerical data, for
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the reasons discussed, the results are considered acceptable; the macro-
scopic mechanical response along the three main orthogonal directions
for all the inspected densities is well descripted by the numerical ap-
proach. Absolute values are not in good agreement for all the reported
cases for the variations in structure description reported in the previous
paragraphs.

Figure 8.5: Comparison between experimental apparent stiffness and nu-
merical apparent stiffness evaluated along three main orthogo-
nal directions (X, Y and Z) for a) PET 80 samples A and B, b)
PET 100 samples A and B, c) PET 130 samples A and B and d)
PET 320 samples A and B. Experimental data shows average
values and dispersion of five samples for each foam density; for
the numerical simulations, individual results obtained for each
reconstructed sample are shown.

Peano’s algorithm, besides its ability to generate reduced structures
from the real ones, can also be exploited to generate fictitious structures

257



Chapter 8. Non-linear mechanical modelling

by properly tuning the algorithm’s parameters. In the present chapter
12 fictitious structures were generated starting from the real PET 320
sample B to broaden the range to be analysed beyond the limits enforced
by the currently available foaming techniques. Some examples of these
reconstructed fictitious structures are reported in figure 8.6.

Figure 8.6: Examples of fictitious structures reconstructed with different
set of values of Peano’s algorithm parameters, P and Th.

In real foams, it is very difficult to control individual features,
with changes in the production process typically influencing several
parameters (e.g. wall thickness, cell size) at once. The generation of
fictitious structures allows to single out the individual contribution
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of each individual morphological characteristic to the macroscopic
mechanical properties of the foam. This capability was exploited by
generating structures spanning a much broader range of solid volume
fraction with respect to the real ones and compare the results obtained
with this newly developed approach with respect to the ones obtained
with Representative Volume Element approach already shown and
discussed in chapter 5.

The results, both experimental and numerical, were combined with
those obtained by analysing the fictitious structures generated thanks
to Peano’s algorithm. Taking advantage of a much broader range of
void volume fraction (1 − ϕ) examined, a very clear bilinear trend of
the apparent stiffness can be identified also in this case, as shown in
figure 8.7, confirming and enhancing the results presented in chapter 5.
The mean apparent stiffness

(
E∗

Mean = E∗
X+E∗

Y +E∗
Z

3

)
of each sample was,

also in this case, normalised with respect to the reference amorphous
PET bulk modulus. A marked change in slope is again clearly visible
at about 80% of void volume fraction. The very large variation in the
sensitivity of the stiffness to the void volume fraction, or dually solid
volume fraction, confirmed once again the existence of a transition
in the main foam deformation mechanism, moving from a volumetric,
axially dominated to a surface, bending dominated one.

The change in the deformation mechanisms, for void volume frac-
tions greater than 80%, is once again supported and confirmed by the
different homogenized deformation components, quantified through the
numerical application of Gurson model [3], as explained in chapter
5. In figure 8.8 the two homogenized strain components, volumetric
and surface, are reported as a function of void volume fraction. For
void volume fractions higher than 80% the macroscopic deformation
mechanism is almost completely due to surface deformation, index of a
prevailing global bending deformation mechanism. For smaller values
the two deformation mechanisms coexist, while for void volume fraction
value inferior to 40% the volumetric strain component is predominant
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Figure 8.7: Normalized mean apparent stiffness
(

E∗
Mean
ES

)
as a function of

void volume fraction (1 −ϕ). Filled coloured symbols represent
experimental mechanical tests and empty coloured symbols are
the numerical simulations performed on the structures recon-
structed from the relevant images sets; empty grey symbols are
the results obtained from fictitious structures, while grey star
represents bulk amorphous PET. Red dashed lines highlight
bilinear trend of the data.

with respect to the surface one. This leads to the assimilation of the
expanded material macroscopic mechanical behaviour, with void volume
fractions value lower than 40%, to that of a porous solid and no more
of a cellular solid. For completeness, the graph also reports also the
two points, orange and green stars, which represent the deformation
components of bulk PET. A red dashed line represents the macroscopic
strain imposed in linear finite element simulations.

Figure 8.9 displays a qualitative example of volumetric strain dis-
tribution across the simulated volume of two different samples charac-
terized by a void volume fraction higher and lower than the identified
threshold value of 80%. In both cases the macroscopically imposed com-
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Figure 8.8: Deformation components of the simulated sub-domains as a
function of void volume fraction; the two contributions derive
from the numerical application of Gurson model. Dashed
red line represents macroscopic strain applied as a boundary
condition in finite element modelling.

pressive strain is equal to 1%. It is clear from the depicted contour plot
that volumetric strains are highly localised and inhomogeneous around
voids and the inhomogeneities are more pronounced for the case with
the highest void volume fraction value, where surface strain are predom-
inant, according to the results reported in figure 8.7. Moreover, for the
two geometries reported the total volumetric strain is equal to 0.43%
and 0.95% for the higher and lower void volume fraction, respectively,
proving once again the existence of different deformation mechanisms
for the two identified regimes. Figure 8.9, conversely, clearly shows
the difficulties to visually inspect and interpret the mechanical results
obtained from the simulations performed on such complex geometries
and so justifies the choice of adopting an homogenization model to
extract lumped parameters from simulations.

Finally, the relation between mechanically observed and structurally
determined anisotropy was explored. Despite a certain degree of scatter
visible in figure 8.10, a good correlation, similar to the one reported in
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Figure 8.9: Maximum principal volumetric deformation contour plot for
two different geometries obtained through Peano’s algorithm.
Geometry on the left exhibits a void volume fraction higher
than 80% and the one on the right lower than 80%. Com-
pressive volumetric strain are represented in red, while tensile
volumetric strain are represented in blue.

previous chapters, was found between the ratio of maximum to minimum
apparent stiffness

(
E∗

Max

E∗
Min

)
for the real samples and the corresponding

ratio of the maximum and minimum eigenvalues
(

λMax

λMin

)
, evaluated with

both Mean Intercept Length (MIL) and Autocorrelation function (ACF)
algorithms. The similar result obtained using both algorithms supports
the thesis of some authors, which state that ACF and MIL can give
equivalent results, providing that enough texture features are considered
during the analysis. Since similar results in terms of spatial material
distribution are provided by MIL and ACF algorithms, in terms of fabric
tensor eigenvalues (λi), similar relations, already presented in chapter
7 for MIL algorithm, could be constructed also for ACF algorithm
strengthening the equivalence between the two tensorial algorithm in
describing the macroscopic mechanical behaviour of expanded polymeric
material starting from spatial material distribution.
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Figure 8.10: Ratio of maximum to minimum apparent stiffness
(

E∗
Max

E∗
Min

)
and

computed structural degree of anisotropy (DA) for a) Mean
Intercept Length algorithm and b) autocorrelation function
algorithm. Empty coloured symbols represent numerical
simulations on the structure reconstructed from images sets
optimization and empty grey symbols are the results obtained
from fictitious structures.

8.3.2 Algorithm comparisons

Table 8.5 summarizes a comparison, based on different numerical
aspects, of the two image-based approaches applied along the present
thesis.

The comparison between the two algorithms reported in the table
is performed fixing the volume reconstructed and simulated (0.93 mm3)
and is clearly shown how Peano’s algorithm require less numerical
resources with respect to the Representative Volume Element approach
and, moreover, with the first approach non-linear simulation are not
feasible with the available numerical resources. In a similar way, the
comparison could be performed fixing the maximum numerical resources
available (49 GB RAM and 23 CPUs) and looking at the maximum vol-
ume simulated: 0.93 mm3 for RVE approach and 3.93 mm3 for Peano’s
algorithm approach, showing once again the usefulness of Peano’s algo-
rithm application to reduce the computational cost required to simulate
a large volume, more representative of the real experimentally tested
samples. The maximum volume simulated reported, is specific of the
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Table 8.5: Technical comparison between the image-based algorithms ap-
plied in the present thesis work.

Representative Volume Peano’s algorithmElement (RVE)

Geometry description Tomographic resolution Tomographic resolution
- - -

Accuracy High resolution CT scans Reduced resolution
Geometry reconstruction ≈ 10 minutes ≈ 10 minutes

- Personal Computer Workstation
Pre-processing (8 GB RAM, 1 CPU) (32 GB RAM, 2 CPUs)

Minimum average numerical resources Cluster Cluster
Linear simulation - -
Post-processing (40 GB RAM, 24 CPU) (16 GB RAM, 8 CPUs)

Minimum average numerical resources Not feasible Cluster
Non-linear simulation with available ≈ 24 hours for 100 iterations

Post-processing numerical resources (49 GB RAM, 23 CPUs)
Specific Symmetry / Periodic / Not requiredboundary condition Quasi-Periodic

Homogeneization scheme Required Not required

set of images and related resolution used in the present work, but with
larger inspected volume and through the application of the same pro-
cedure described above for Peano’s algorithm, larger volume could be
reconstructed and simulated. Moreover, through the mesh optimization
process it is possible to reconstruct the mesh with an adequate number
of finite elements that allows to perform non-linear finite element sim-
ulations in a reasonable amount of time and with a relatively limited
request of numerical resources.

Non-linear mechanical simulation results will be shown in the next
section, where the main objective of this result is still mainly focused
on the efficiency of the designed Peano’s algorithm, more than on the
agreement between experimental and numerical results. As just said,
all the following results are obtained in a reasonable amount of time
(less than one day) and with limited numerical resources (high-end
workstation) employed.
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8.3.3 Non-linear simulation results

Figure 8.11 displays a qualitative comparison between the unde-
formed and the deformed reconstructed volume, proving once again the
difficulties to visually inspect the results obtained from simulations on
such complex geometries.

Figure 8.12 displays the results obtained from non-linear mechan-
ical finite element simulations conducted on the finite element mesh
optimized using Peano’s algorithm, compared with experimental data
presented in chapter 3. For both dataset, nominal strain, εnominal, is
computed as the average displacement divided by the initial length of
the tested sample, while nominal stress, σnominal, is computed as the
total force divided by the nominal area of the sample. The shaded area
around experimental data is computed as the semi-dispersion of the
three tested specimens at fixed nominal strain level. Experimental data
for a relatively small range of nominal strains (with respect to the 50%
reached during uniaxial compression) is reported to better compare it
with numerical data.

A basic resolution scheme for finite element (ABAQUS static gen-
eral), with full-integration linear solid elements (C3D8) and a perfectly
elastic-plastic behaviour of constituent bulk material were adopted. It is
clear from the graph that a relatively good agreement is obtained for all
the simulated densities; all the results were obtained in a relatively short
amount of time (16 hours maximum) and with a reasonably limited
amount of numerical resources (see table 8.5), proving the efficiency
and accuracy of Peano’s optimization algorithm.

Similar results are presented in figure 8.13 for PPI. In this case
the finite element mesh was optimized by setting the two parameters
of Peano’s algorithm as follows: P = 5, Th = 0.5. In this case the
material was treated as isotropic linear elastic, in accordance with the
results of experimental tests, conducted on a single structure, presented
in chapter 7. Also, in this case a fair agreement between experimental
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Figure 8.11: Qualitative comparison between undeformed and deformed
volume reported for each simulated volume obtained from
PET set of images. The most deformed regions in the com-
pressed reconstructed volume are highlighted.
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Figure 8.12: Nominal stress versus nominal strain curves obtained from
experimental quasi-static uniaxial compression test and from
finite element simulation reproducing the same mechanical
test conducted on the optimized reconstructed finite element
mesh. Comparison between experimental and numerical re-
sults is presented for all the tested materials: a) PET 80, b)
PET 100, c) PET 130 and d) PET 320.

and numerical results was obtained. A smaller amount of time and
numerical resources were required compared to PET since the solid
volume fraction of PPI material was considerably lower, around 3%:
hence, fewer finite elements were necessary to reconstruct the whole
geometry.

In all the cases simulations are conducted up to 10% of nominal
strain since it is reasonable to assume, also looking at the complete
experimental curves, that in this range of strain no internal contact
between structures occur and hence is not implemented in finite element
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Figure 8.13: Nominal stress versus nominal strain curves obtained from
experimental quasi-static uniaxial compression test and from
finite element simulation reproducing the same mechanical
test conducted on the optimized reconstructed finite element
mesh. Comparison between experimental and numerical re-
sults is presented.

simulations. This fact is supported by the fact that the characteristic
plateau of the macroscopic mechanical response of expanded polymeric
material is just started at the end of the analysed nominal strain range.

Surely, if non-linear finite element simulations has to be conducted
up to a larger value of nominal strain internal contact should be im-
plemented and moreover, as evident from PPI results, also a more
accurate description of constituent material mechanical behaviour has
to be implemented, since in the non-linear macroscopic mechanical
response range, non-linear aspect of constituent material, such as yield-
ing phenomena or viscoelastic nature of polymers, become more and
more predominant, together with internal structure modification, with
respect to finite linear simulations where the main contribution to the
macroscopic mechanical behaviour of foams comes from the structure.
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8.4 Concluding remarks

In this chapter a newly developed image-based approach was pre-
sented. It was validated through linear elastic finite element analy-
sis, performed in the small strain deformation range, and subsequent
comparison with experimental results and with the alternative Repre-
sentative Volume Element approach. The optimization algorithm has
then proven its efficiency in both linear and non-linear finite element
analysis, providing a powerful tool for numerical simulations. This
approach not only allows to reproduce the macroscopic mechanical
behaviour of experimentally tested material including the real structure
into the simulation, but allows, with the proper tuning of algorithm
parameters, to generate fictitious structures to enlarge the range of
morpho-structural properties tested and not experimentally available;
this feature supports the quest for macroscopic general relationships
between structural parameters, bulk constituent material mechanical
behaviour and the macroscopic mechanical response of the expanded
polymeric material.

The approach found a good validation in linear finite element simu-
lations, but much has to be done to improve its effectiveness in the case
of non-linear behaviour. Some preliminary results were reported, with
the aim of demonstrating the numerical efficiency of the developed ap-
proach, but other aspects will have to be considered in the future, such
as internal contact between structures or a more suitable mechanical
behaviour of the constituent material considering other features, above
all the intrinsic viscoelastic nature of polymers. These steps are of
fundamental importance for the development of the research to finally
formulate a macroscopic non-linear constitutive law, describing different
mechanical aspects of expanded polymeric material in a similar way
to what has been performed for linear elastic macroscopic mechanical
behaviour, presented in previous chapters.
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Chapter 9

Conclusions

This PhD thesis presented the development and optimization of dif-
ferent numerical tools. Their main aim was the inspection and accurate
quantification of the internal microstructure parameters and their subse-
quent correlation with the macroscopic mechanical behaviour of relevant
expanded polymeric materials. The final objective was the achievement
of analytical relationships correlating structure and mechanical param-
eters. This goal was fully met in the range of predominantly linear
elastic behaviour, where an analytical set of equations was obtained;
relevant applications include for example acoustical and thermal insu-
lation. Structure parameters were uniquely correlated to the elastic
constants of a macroscopic constitutive law built on structural analysis,
suitable to describe the mechanical behaviour of the inspected sample.
This system of equations can be a useful tool for applications, since it
allows for the optimization of the macroscopic mechanical properties
of an expanded product while designing its internal microstructure
or vice versa it could be used to obtain information on the internal
structure performing simple mechanical tests on the produced samples,
as reported in the previous chapters of this thesis for selected materials.
In both ways, the set of equations can provide significant time and cost
savings during the development of new products.

Another fundamental aspect faced during the present thesis work
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was the development of an efficient numerical tool able to perform non-
linear finite element analysis, also considering the real internal structure
of a large volume of expanded material; in fact, a volume large enough
to be considered representative of the whole material. The potential
implications of this model extend its use to several applications in which
foam properties are typically exploited, including packaging and pro-
tective devices. Simulations, performed in a reasonable amount of time
(within a single day) and limited numerical resources (a typical high-
end workstation) can provide useful information on the macroscopic
behaviour at relatively high strains under different loading conditions
for a newly developed product.

From a research point of view, the developed numerical tools pro-
vide a valuable addition to the approaches already reported in the
scientific literature, and they constitute a step forward towards the full
understanding of the synergistic effect between internal structure and
constituent material mechanical behaviour of this class of materials.
Specifically, these or similar tools are a necessary step for the construc-
tion of homogenized material model, similar to the one presented for
describing linear elastic behaviour, also in the non-linear case. These
models, thanks to the new production technologies available, such as
3D printing technology, could be easily validated realizing purposely
designed structures that can be tested experimentally to validate the
macroscopic relationships formulated in the present work.
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