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1. Nomenclature 

Name Symbol 

Mass of the vehicle 𝑀𝑉𝑒ℎ𝑖𝑐𝑙𝑒 
Mass of the passenger 𝑀𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 

Equivalent Mass Coefficient 𝛽 
Equivalent Mass 𝑚𝑒𝑞 

Rolling Resistance Force 𝐹𝑟𝑟 
Rolling Friction Coefficient 𝑓 

Velocity of the Vehicle 𝑣 
Hill Climbing Force 𝐹ℎ𝑐 

Slope of the Road 𝛼 
Aerodynamic Force 𝐹𝑎𝑑 

Drag Coefficient 𝑐𝑑 
Frontal Area 𝑆 
Air Density 𝜌 
Inertia Force 𝐹𝐼𝑛𝑒𝑟𝑡𝑖𝑎 

Acceleration of the Vehicle 𝑎 
Tractive Effort 𝐹𝑡𝑒 

Instantaneous Power Flow 𝑃𝑡𝑒 
Motor Efficiency 𝜇𝑚 

Transmission Efficiency 𝜇𝑔 

Torque 𝑇 

Angular Speed 𝜔 
Tractive Power 𝑃𝑡𝑒 
Braking Power 𝑃𝑏𝑟𝑎𝑘𝑖𝑛𝑔 

Power required by the motor 𝑃𝑚𝑜𝑡𝑖𝑛 

Power of auxiliaries 𝑃𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑖𝑒𝑠 
Power provided by the battery 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

Instantaneous Energy profile 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

Battery Capacity 𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

2. Introduction 

Climate change and environmental concerns are 

now putting a higher focus than ever on 

sustainability in all aspects of modern life. The 

transition towards green energy and electrification 

must also involve the transportation sector, which 

is one of the major causes of emission all over the 

world. In this sense, great technological 

advancements have been in the road transports in 

modern years, with the development and 

evolution of Electric Vehicles (EV), whose 

popularity is strongly increasing, even if Internal 

Combustion Engine vehicles are still the most 

common vehicles used for road transportation. The 

EV annual sales tipped over the two-million-
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vehicle mark for the first time in 2019, representing 

the 2,5% of the global market share. The reasons of 

the success of EVs can be found in sustainable 

policy support, public spending on subsidies and 

incentives and aggressive car electrification goals. 

This background represents the starting point of 

the work of thesis, in which a methodology for the 

design of an EV model is described and its 

validation on a real-world vehicle system is 

presented, with detailed analysis of the results.  

This work is organized as follows. In section 2, the 

vehicle model is specified, focusing on the most 

important inputs. In section 3, the experimental 

campaign has been explored, with a particular 

consideration at the main parameters which affects 

the energy consumption, such as the definition of 

the route, and so the speed profile, the choice of the 

vehicle and the power of the auxiliary system. 

Finally, results were analyzed and compared. 

3. Vehicle Model 

The approach for designing and developing an EV 

model was firstly described in a previous work [1], 

and now, it is modified and corrected according to 

the literature, [2], [3], in order to give more accurate 

estimations of the outputs. To summarize, the 

model employs telemetry from a real-time speed 

profile acquisition across a fixed route to 

accurately calculate the energy consumption 

required. In order to simplify the explanation, the 

model has been broken into four blocks, which will 

be explored in detail below. 

3.1. Speed Profile Model 

The starting point of the model is the definition of 

the speed and the acceleration profiles. Since the 

goal of the model is to represent a true vehicle 

behavior through a fixed route, it has been decided 

to use a real speed profile acquisition. 

3.2. Dynamic Model 

After obtained speed and acceleration profiles, 

resistance (𝐹𝑟𝑟 , 𝐹𝑎𝑑 , 𝐹ℎ𝑐) and inertia (𝐹𝐼𝑛𝑒𝑟𝑡𝑖𝑎) forces 

had to be calculated (1). 

{
 
 

 
 

𝐹𝑟𝑟 = 𝑓 (𝑀𝑉𝑒ℎ𝑖𝑐𝑙𝑒  + 𝑀𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠)𝑔,

𝐹𝑎𝑑 =
1

2
 𝐶𝑑 𝑆 𝜌 𝑣

2 ,

𝐹ℎ𝑐 = (𝑀𝑉𝑒ℎ𝑖𝑐𝑙𝑒  + 𝑀𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠) 𝑔 sin(𝛼) ,

𝐹𝐼𝑛𝑒𝑟𝑡𝑖𝑎 = 𝑚𝑒𝑞 ∗ 𝑎.

 (1) 

 

It is important to notice that 𝛼 is the slope of the 

road and it has been calculated starting from the 

altitude profile acquired during the tests. 

Afterwards, the tractive effort 𝐹𝑡𝑒 has been 

computed summing all the forces. 

3.3. Efficiency and Power Model 

Once computed the total tractive force, 𝐹𝑡𝑒, the 

instantaneous power flow, 𝑃𝑡𝑒, required by the 

vehicle can be calculated. These values of the 

power profile can be either positive, 𝑃𝑝𝑜𝑠, or 

negative, 𝑃𝑛𝑒𝑔, when the vehicle is reducing its 

velocity. Furthermore, the power required by the 

motor, 𝑃𝑚𝑜𝑡𝑖𝑛, can be calculated (2). 

 

{
 
 

 
 

𝑃𝑡𝑒 =  𝐹𝑡𝑒 ∗ 𝑣,

𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 =
𝑃𝑝𝑜𝑠

𝜂𝑔 ∗ 𝜂𝑚
,

𝑃𝑏𝑟𝑎𝑘𝑖𝑛𝑔 = 𝑃𝑛𝑒𝑔 ∗ 𝜂𝑔 ∗ 𝜂𝑚 ∗ 𝜂𝑟𝑒𝑔.𝑏𝑟𝑎𝑘𝑖𝑛𝑔 ,

𝑃𝑚𝑜𝑡𝑖𝑛 = 𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑃𝑏𝑟𝑎𝑘𝑖𝑛𝑔 .

 (2) 

 

It is important to notice that at this point, the 

efficiencies of transmission, motor and 

regenerative braking, respectively 𝜂𝑔,  𝜂𝑚 , 

 𝜂𝑟𝑒𝑔.𝑏𝑟𝑎𝑘𝑖𝑛𝑔, play an important role.  

As regard gear system efficiency, it is usually very 

high (considering inverter and transmission this 

efficiency can be around 0,95-0,99). 

For the efficiency of the motor, several methods 

could be used: 

▪ Usually the value of this efficiency ranges 

from 0,7 up to 0,95 and thus a typical mean 

value of 0,85 can be accepted, despite the 

fact that the precise number cannot be 

determined. 

▪ The efficiency can be estimated with the 

Losses coefficients, using the dependence 

on motor speed 𝜔 and torque 𝑇 (3). 

𝜂𝑚 =
𝑇 ∗ 𝜔

𝑇 ∗ 𝜔 + 𝑘𝑐 ∗ 𝑇
2 + 𝑘𝑖 ∗ 𝜔 + 𝑘𝜔 ∗ 𝜔

3 + 𝐶
 (3) 

▪ In order to better estimate the efficiency, 

another alternative could be to use the 

Efficiency Map of the specific motor of the 

vehicle used in the validation of the model. 

Finally, the amount of power that the battery, 

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 , must provide to the vehicle during the 

route can be computed summing the contributions 

of the power required by the motor, 𝑃𝑚𝑜𝑡𝑖𝑛, and the 

power of auxiliaries, 𝑃𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑖𝑒𝑠. 
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3.4. Energy Model 

As regards the computation of the energy 

consumption, the aim is to calculate the State Of 

Charge (SOC) of the vehicle needed to travel the 

fixed route. The calculation of the SOC is a complex 

task depending on several conditions. Anyway, 

since battery charge and discharge implicate 

complex physical processes and chemical reactions 

and considering that the instantaneous values of 

current and voltage are not very accurately 

measurable during the experimental tests, in this 

model a “macroscopic” approach has been used, 

considering only the power that the battery must 

provide during the route, and not the contribution 

of the quantities already mentioned above. Once 

obtained an instantaneous power profile of the 

battery, 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 , also the instantaneous energy 

profile, 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦 , can be calculated with an 

integration. Making the cumulative sum of these 

instantaneous values, the energy consumption can 

be calculated, where of course the last value 

represents exactly the energy spent in order to 

travel the route chosen. Finally, knowing also the 

starting SOC of the vehicle and the capacity of the 

battery, 𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦, the SOC can be calculated (4). 

𝑆𝑂𝐶 = 𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡 −
𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦
 (4) 

4. Experimental Campaign 

In order to validate the model, an experimental 

campaign on a fixed route has been executed, 

consisted in fifty experimental tests in a real-drive 

conditions, divided into two groups of twenty-five 

each, depending on the driver’s behavior on the 

road.  

The first driver, D1, represents a slow driver, with 

a maximum speed limited and eco-driving 

behavior, in order to take advantage of the energy 

recovery, helping to reduce unnecessary kilowatt 

consumption and bringing the motor closer to its 

maximum energy efficiency level.  

The characteristics of the second driver, D2, 

instead, are quite the opposite: fast maximum 

speed and not limited by the eco-driving, rapid 

accelerations and slow down. Besides the 

velocities, other differences are the weight (60 kg 

for D1 and 100 kg for D2), and the hour of the tests, 

that is almost always in the morning for D1, and 

variable for D2. 

The speed and the altitude profiles has been 

obtained using “TrackAddict”, a data acquisition 

app which uses GPS to capture and analyze video 

and telemetry data. 

4.1. Route: Speed and Altitude 

Profile 

The analyzed route consisted in an about 31 km 

round trip between the cities of Trepuzzi (Le), from 

via Calvario 58C – A, and Lecce, to Istituto Presta-

Columella - B, as showed in Figure 1. The choice of 

this route was due to simulate a typical journey 

that a worker may travel daily. 

 

 

Figure 1: Google Maps visualization of the route. 

The route can be divided into three zones: 

▪ A 7,2 km urban road, in the small city of 

Trepuzzi, with all the characteristics of a city 

road: limited maximum speed, full of stops and 

fast accelerations due to the congestion and the 

traffic-lights, and with an elevation more or less 

constant (A-B). 

▪ A 2,2 km country-side road, near the Istituto 

Presta-Columella, that is also a slow street due 

to characteristics of the road and the presence of 

pedestrians and other vehicles (C-D). 

▪ An extra-urban road in between them, which 

represents the biggest contribution to the travel 

(about 21,5 km). This is a faster street, with an 

important difference in elevation, but some 

roundabouts or junctions are present, which 

make the vehicle speed slow down (B-C). 

These zones can be seen also looking at the speed 

profile, which is showed in Figure 2 together with 

the altitude profile.  
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From the graph, it can be clearly seen how the 

elevation is quite constant in the urban zone. 

Furthermore, in the first part of the extra-urban 

road, the altitude remains more or less constant, 

with some exceptions: a bridge and a road junction 

to enter the high-speed road are present. In the 

second part of the extra-urban road, a massive 

reduction in elevation can be noted, which will be 

recovered in the last part of the travel, i.e. the 

country-side. The opposite is valid for the return 

journey. Moreover, it can be noted that urban and 

country-side environments are both characterized 

by low or limited speed and common stops and 

fast accelerations, which make them far different 

from the extra-urban road. Thus, in order to 

simplify the analysis, these two zones are 

considered together and combined. 

A critical point of this route is the presence of a 1 

km long tunnel. During the travel of this, a lack of 

GPS signal could happen, giving wrong 

acquisition of data of both speed and altitude. The 

speed profile has been corrected and reconstructed 

considering the real velocity on the street, Figure 3, 

to have the more life-like speed profile.  

 

 
As regards the altitude profile, it has been modified 

and corrected using Google Earth as a reference, 

Figure 4, to avoid or minimize the measurement 

errors, which could give wrong values of the slope 

force. Finally, it is important to notice that this 

problem did not happen in all the tests, or it 

happens only for 32 seconds over the whole 

duration of the travel, thus the mistake given by 

the wrong approximation is quite minimum. 

 

 

4.2. Choice of the Vehicle 

The vehicle chosen for this study a Renault Twingo 

E-Tech Electric. This vehicle represents the perfect 

city car: small but comfortable, useful in urban 

conditions by reason of regenerative braking. 

However, due to its low battery capacity, the range 

is limited at only 160 km, which makes this model 

not to be one of the best-selling EV. The choice of 

vehicle determined numerous parameters, such as: 

▪ The mass of the vehicle was at over 1133 kg. The 

equivalent mass was fixed at 104% to consider 

the inertial effects of the wheels, of the motor 

and of the drivetrain. This equivalent mass is 

essential for the calculation of the inertial forces 

produced during the acceleration and 

deceleration of the car. To have an estimation of 

the equivalent mass coefficient, a preliminary 

calculation on the inertial effects of the wheels 

was performed and it was found to be around 

4%. Hence, this typical value has been used. 

▪ Aerodynamic drag coefficient is 0,32 and the 

frontal area of the vehicle is set to 2,11 m2. 

▪ In order to calculate the rolling resistance force, 

the formula (5) for the rolling coefficient 𝑓 has 

been used. The tires pressure was set at 2,5 bar. 

𝑓 = 0,005 +
1

𝑃𝑇𝑖𝑟𝑒𝑠
(0,01 + 0,0095 (

𝑣

1000
 )
2

) (5) 

▪ The slope force has been computing using the 

altitude profile acquired during the tests. 

▪ Slip condition has been checked, even though 

no slip occurred during the experimental tests. 

▪ As regards the motor efficiency, the loss 

coefficients method has been used for D2 with 

Figure 2: Speed and Altitude Profile with indication of 

the three zones. 

Figure 3: Comparison between the original and the 

corrected speed profiles, with a zoom on the different 

region. 

 

 

Figure 4: Comparison between the acquired altitude 

profile and Google Earth profile. 
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a value of transmission efficiency of 0,97. For 

D1, instead, the typical value of 0,85 has been 

chosen, considering both efficiencies. This is 

due to the fact that D1 travels with eco-driving 

behavior, and so the motor works almost 

always in the optimal point; instead, for D2 

there are some sections in which the vehicle 

travels at its maximum speed available and the 

efficiency will not be optimal. In Table 1, the 

values of the loss coefficients and the quantities 

used for the calculations are reported. 

▪ Regenerative braking efficiency was set at 0,85, 

but it has been allowed only above 12 km/h.  

▪ The battery capacity is 22 kWh, which is a low-

medium value for modern e-cars. However, 

even if this is a brand-new EV and the State Of 

Health (SOH) is 0%, the net available capacity is 

assumed a bit lower at 21,5 kWh. 

Table 1: Parameters for the calculation of the motor 

efficiency with Loss Coefficients Model. 

 Value Unit 

Simple Fixed 

Gear Ratio 𝐺 9,7:1  

Tire Radius 𝑟 0,289 m 

Copper Losses 

Coefficient 
𝑘𝑐 0,12 

s

kg m2
 

Iron Losses 

Coefficient 
𝑘𝑖 0,01 J 

Windage Losses 

Coefficient 
𝑘𝜔 5 ∗ 10−6 kg m2 

Constant Losses 𝐶 600 W 

4.3. Power of Auxiliaries 

The other important parameter in the simulation is 

the power of auxiliaries, which can be significantly 

different from time to time, depending if air 

cooling, lights and other utilities are switched on or 

off. For this reason, there cannot be unique of fixed 

values for this power. To simplify the model, this 

power has been generally classified into three 

classes, which represent the energy consumption 

of the auxiliaries during the tests, Table 2. 

 
Table 2: Auxiliaries Power Conditions used in the model.  

Auxiliary Power 

Condition 

Energy Consumption 

[W] 

Poor 100 

Moderate 500 

High 900 

However, it is important to notice that these values 

are only a starting point, since it can happen that 

some auxiliaries are switched on only for a limited 

period and not for the whole duration of the travel. 

5. Analysis and Discussion of 

the Results 

For every experimental test, two photos of the 

vehicle dashboard have been captured, one before 

and the other after the travel. In this way, it has 

been possible to find out the indication of the SOC 

of the vehicle, and so the value of energy 

consumption for the route. 

The first results showed that in general the model 

accurately estimated the experimental outputs, 

since the average error between the two results is 

quite small, with a maximum error value of 1,16% 

and 0,88% respectively for D1 and D2. However, 

some outbounds were present for both groups: it 

has been noticed how the energy consumption for 

the tests starting with a full charged battery was 

significantly small, far below the average specific 

energy consumptions. It was found in literature [4] 

that when the SOC is higher than 90%, the energy 

discharged by the battery is higher. Hence, the 

model has been modified. 

5.1. D1 results 

After the full-charged-battery correction, all the 

simulations match the output of the test, since the 

error is almost always lower than 1%. In general, 

for D1 group, the model seems to underestimate a 

bit the experimental results, with an acceptable 

value of average error of -0,37%, Table 3: Comparison 

between experimental and model average results for D1 

and D2.Table 3. 

 
Table 3: Comparison between experimental and model 

average results for D1 and D2. 

Average Quantities D1 D2 

Experimental SOC Difference 15,72 21,06 

Model SOC Difference 15,35 21,24 

Error -0,37 0,18 

 

5.2. D2 Results 

In the case of D2 group, the model seems to better 

estimate the experimental result, with a value of 

average error of 0,18%,  
 

Table 4. Anyway, few outbounds are still present. 

This could be due by the SOC sensors of the vehicle 
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that have a sensitivity of 1%, thus, the measured 

values of SOC have a tolerance of ±0,5%. Moreover, 

only for D2 group a correlation between SOC and 

mean speed can be found when the speed is higher, 

so it is the energy consumption. This is not valid 

for D1 tests, for which the power of the auxiliaries 

gives a more significant contribution to the energy 

consumption since the velocities are much lower. 

5.3. Comparison for the same power of 

auxiliary system 

To make a further analysis, a pair of simulations 

with the same auxiliary’s power consumption has 

been compared, in order to find out supplementary 

critical issues of the model. However, also in this 

case, the model better estimates the experimental 

results. Simulations with similar speed profile 

characteristics, if have the same power of 

auxiliaries, will give also similar energy output, 

and vice versa. 

5.4. Comparison between D1 and D2 results 

Lastly, a further comparison has been made. This 

time, the two groups were compared according to 

the sections of route. It has been found that for the 

urban zone, since the speeds are quite similar, 

Figure 5, the energy output are similar too,  

 

Table 4.  

 

 
Figure 5: Comparison between D1 and D2 urban speed 

profiles. 

 

Table 4: Average quantities of urban section for D1 and 

D2. 

Average Quantities D1 D2 

Maximum Speed [km/h] 47,5 57,7 

Mean Speed [km/h] 24,8 32,0 

Specific Energy Consumption 

[kW/100km] 
11,39 12,19 

 

The opposite is valid for the extra-urban zone: the 

difference in mean and maximum speeds makes 

the energy consumption to significantly increase, 

with a mean difference value of about 

4kWh/100km for only 10km/h. This is of course 

also due to the long periods in which the vehicle 

travelled at its maximum speed (around 130 km/h). 

6. Conclusion 

The purpose of this work is the development of an 

EV model and its validation through an 

experimental campaign. To conclude, this model 

seems to accurately estimate the energy 

consumption and so the SOC of a chosen vehicle, 

since the average error between the two results is 

quite small. It has been established how the speed 

profile and the power consumption of the 

auxiliaries are the main parameters, respectively at 

high and low velocities. Thus, future possible 

developments and modifications could be a more 

accurate evaluation of the power of auxiliaries and 

a more appropriate estimation of the efficiency of 

the vehicle, since these two are very significant and 

case-dependent parameters. 
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