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Chapter 1: Introduction to Lasers 

    LASER stands for Light Amplification by Stimulated Emission of Radiation. The lasers are devices 

that produce light of a specific color (wavelength) that depends on the parameters of design. Their 

output can be as small as a pencil-thin beam that conserves its concentration as it travels through long 

distances. Lasers play a key role in a lot of technologies. This chapter will understand the quality 

parameters of the laser and get an overview of the methods used to measure their quality parameters. 

1.1 Laser Beam Profile Quality Parameters 

   Lasers have proven their importance in many technologies of modern life. The further the quality of 

the laser beam improves the more accurate will the devices perform. There are many parameters of a 

laser beam such as:-  

-Beam Quality  

    For the Gaussian beams, this is one of the most important parameters of concern. It is the 

illumination pattern. It is independent of the wavelength. Its quantitative factor is called 𝑀2. It 

indicates how close the beam is to the fundamental mode 𝑇𝐸𝑀00, Gaussian beam. It determines how 

small the beam spot size can be as well as beam divergence. Figure 1.1 shows the different transverse 

modes that can be present in a laser beam. 

- Beam Width  

     There are over five definitions for the beamwidth. The definition of particular interest for this 

study is the 1/e2. It defines the beam width as the distance between two points at which the measured 

power is 0.135 of the maximum value. For a Gaussian beam, the relationship between the FWHM and 

the 1/e2 is 2w=1.699*FWHM, where 2w is the full width of the beam at 1/e2 of peak intensity. 

-Beam Profile 

    The 2-dimensional plot of the intensity profile at a given location on the beam flight path. There 

many different ideal beam profiles. The profile mainly depends on the purpose. The most two 

common ones are the Gaussian beam profile and the flat top profiles, which are shown in figures 1.2 

and 1.3 respectively. The beam profile importance is that it impacts the energy density, its 

concentration, and the collimation of the light. Moreover, the propagation of the beam through space 

is greatly influenced by the beam profile. However, due to imperfections in the devices, some 

deformations may occur to the output beam. Figures 1.4-a, b, and c show several deformed laser beam 

profiles showing the varieties that can exist.  

-Beam Divergence 

     In electro-optics, the beam divergence is defined as the angular measure of the spreading of the 

beam as it travels away from the source. It is particularly relevant in the far-field. The output light of a 

laser is confined in the shape of a narrow cone; however, at long distances, it slowly spreads. The 

divergence is the angular measure of the increase in the diameter at distance from the optical device. 

There will be further explanations on beam divergence in this study and how to measure it 

quantitatively.   
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Figure 1.1 Different profiles of the transverse electromagnetic modes. The  

one of concern is the𝑻𝑬𝑴𝟎𝟎, which is the Gaussian fundamental beam 

 

 
Figure 1.2 Profile of the ideal Gaussian beam, 𝑻𝑬𝑴𝟎𝟎.  The intensity is at zenith at the center 

and decreases as the point of measurement fades away from the center 
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Figure 1.3 Flat-top laser beam profile for uniform laser illumination, 

 in which the power level is constant across the propagation plan and decreases  

steeply on the edges 

 

 
Figure 1.4-A Deformed Gaussian beam, where the power is  

imperfectly distributed along the axis of propagation 
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Figure 1.4-B Deformed Gaussian beam. This deformation is known as structured beam, where 

the energy distribution is out of order and keeps fluctuating along the propagation plan. Much 

of the energy fades away from the central lobe 

 
Figure 1.4-C Tilted flat-top beam. In this deformation, the energy is focused on one edge and 

this doesn't give uniform illumination as intended and will impair the process for which it is 

being applied 

 

 

 



5 
 

   Due to the presence of such a variety of laser beams quality parameters, it is necessary to find a way 

to measure the laser profiles to make sure the distortion is within the acceptable limits and doesn’t 

impact the performance of the device for which it is designed. It is important to highlight that the type 

of beam Profiles of interest in this study is the Gaussian Beam demonstrated in figure 1.2. 

1.2 Applications of Lasers  

     Lasers are used in a wide range of applications, including yet not limited to industrial and medical, 

and military applications. They are even used in the applications that we use on our home daily, such 

as compute laser mouse and printers.   

- Medical Applications There is an amble of medical applications of lasers; one of them is the 

Photorefractive Keratotomy, in which a flat-top beam is used to make vision modifications to the iris 

to correct the vision. If the laser devices are not perfectly aligned and there is a 50% tilt in the flat top, 

the correction to the eye may be 4 dioptres on one side of an iris, with only 2 dioptres on the opposite 

side. Only a perfectly flat top laser can deliver the expected results, whereas the tilted beam in figure 

1.4-D  can cause the patient to have an irreversible vision impairment after the operation. Moreover, 

the flatness of the beam is critical in numerous types of surgeries, such as the removal of port wine 

stains as well as Tissue cutting and welding. Many medical applications use fiber optics systems and 

the efficiency of these systems strongly depends on the alignment of the laser beam into the fiber. 

 

- Communication Applications    As the information age advances, the need for a high bit rate 

communication methods gained particular importance. Lasers allow the transmissions with high 

speed. They are used as carriers in optical communications and there is a wide range of modulation 

techniques that allow the engineers to maximize the bitrate. The four main modulation techniques are 

based on amplitude, phase, frequency, and polarization modulations. Only perfect lasers can be used 

to sustain its properties through long distances. It is necessary to highlight that the long distances 

particularly impact the beam divergence parameter as the laser beam starts to spread away as it 

travels.  

 

- Military Applications Most modern weapons rely on lasers to improve aiming accuracy. As an 

example, the very basic technique is based on a laser telemeter that measures the distance to the target 

and adjusts the sight based on the distance measured to compensate for the long distance movement of 

the projectile. The military applications of laser include target designation for guided ballistics. 

1.3 Beam Measurement Techniques  

    As mentioned earlier, the uniformity, stability, and mode pattern of a typical laser used in 

instruments greatly impact the performance of the devices. A slight misalignment of the collimating 

optics, for example, will deteriorate the instrument performance. Much of the energy fades away from 

the central lobe in leaky lasers. As a result, several techniques have been developed to measure the 

quality of the emitted beam. These techniques are classified into several classes, of which we will 

encounter the non-electronic methods, electronic methods, and the scanning aperture techniques. This 

study is dedicated to the scanning aperture technique known as the knife-edge technique, yet we will 

have an overview of the other methods first. 
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1.3.1 Non-Electronic Methods 

   There are several non-electronic methods to measure the laser beam profile. They have been used as 

early as the lasers were invented. The first of these is the observance of a laser beam reflected or 

diffused from a wall or other object. It is the simplest and most economic method to measure and 

observe a laser beam profile. The advantage of this method is that the human eye is logarithmic and 

can detect vast orders of magnitude difference in light irradiance. However, the human eye can only 

distinguish 8-12 shades of grey. Consequently, it is almost impossible for visual inspection of a laser 

beam to provide a quantitative measurement of the beam size and shape. As a result, the beam width 

measurement by eye may have as much as 100% error. 

 
Figure 1.4 He-Ne Laser spot reflected off the wall 

    Burn paper and Polaroid film are also used for making beam profile measurements. The burn 

papers typically have a dynamic range of 3, which are unburned paper, blackened paper, and paper 

turned to ash. Even the most skilled operators can differentiate among more levels, and give a 

dynamic range of 5. The main disadvantage is that the spot size is highly subjective to the time of 

exposure of the laser. With longer exposures, the center may not change, but the width of the 

darkened area will change ±50% or more. Sometimes the depth and the shape of the burn give 

additional insights into the beam profile. However, this measurement system is obsolete, non-

quantitative, and subjective to the capability and experience of the operator. Consequently, this 

technique is quite unreliable.  
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Figure 1.5 Laser beam burns spots on a paper 

    A more realistic way to image the laser beam on its path is the acrylic burn. It burns a replica of the 

laser beam profile into an acrylic cube. The shape of the burns demonstrates the profile of the beam. It 

is even possible to see the mode structure. However, the acrylic mode burns are not real-time. This 

does not enable us to see to check the time-dependent fluctuations in the laser beam. These time-

dependent fluctuations are quite common in the CO2 laser particularly. Moreover, the resulting fumes 

from the burning acrylic block the incoming laser beam and prevent it from shaping the cube as 

shown in figure 1.6, where we can see a notch at the top of the beam. It is necessary to place a fan 

close to the cube to ventilate and clear a path for the laser and avoid the effect of the fumes blocking 

the laser and forming a non-realistic shape of the beam. Furthermore, the fumes from burning acrylic 

are toxic to humans.  
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Figure 1.6 Laser Beam burns into an acrylic cube.  

the groove on the top is the result of the fumes blocking the beam 

 

1.3.2 Electronic Measurement Methods  

    In these methods, there is a receiving device used to measure the power of the incident laser beam 

using electronic analysis. It is necessary, in almost all methods, to attenuate the laser beam to a 

tolerable level before exposing the measuring device to the beam; otherwise, the device will 

breakdown thermally. This degree of attenuation depends on two main factors:-     - The irradiance of 

the measured laser beam.  

  - The sensitivity of the beam profile sensor.  

 
Figure 1.7 Typical setup where a minimum  

attenuation is required before the sensor measures the beam 
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     It is necessary to mention that some beam profiling sensors can be placed directly into the path of 

high power beams in the order of 10kW and even greater. For most mechanical scanning devices, the 

beam sampling assembly is sufficient to reduce the power of the signal to the safe levels. If the 

original laser beam is already in the safe range, then the scanning device can intercept the beam 

directly without power reduction. The mechanical scanning instruments can be placed directly in the 

path of medium power beams because they consist of a single element detector with a rotating drum 

reflecting or absorbing the light from the sensor during most of the duty cycle; consequently, low 

power clears its way to the sensing element. In some cases, the beam power is still too high even after 

the reflection from one sampling surface and it would burn the sensor. In this case, a second reflective 

surface is implemented to further reduce the beam power before the imaging process.  

1.3.3 Mechanical Scanning Instruments  

      One of the most effective methods used to measure the laser beam profile electronically is a 

mechanical scanning device. It usually consists of a rotating drum containing a knife-edge, slit, or 

pinhole that moves in front of a single element detector. This method provides excellent resolution, as 

small as1 μm. The limit of resolution is set by diffraction from the edge of the knife-edge or slit, and 

roughly 1 μm is the lower limit set by this diffraction. These devices can be used directly in the beam 

of medium power lasers with little or no attenuation because only a small part of the beam is hitting 

the detector element at a given amount of time. The mechanical scanning methods work only on 

continuous-wave lasers and not on pulsed lasers to avoid the dilemma of synchronizing the movement 

of the edge and the pulses of the laser. These beam profile instruments can function properly for the 

visible, UV, and infrared wavelengths by using the suitable type of detectors for the sensor. 

Additionally, software has been developed to provide illuminating beam profile displays as well as 

detailed quantitative measurements from the scanning system. This software now exists in the PC-

based Windows operating system for easy use. Figure 1.8 demonstrates a commercial version of the 

knife-edge scanning slit beam profiling instrument while Figure 1.9 shows a typical Windows 

computer readout. Figure 1.10 illustrates a commercial version of the knife-edge scanning slit beam 

profiling. Figure 1.10 illustrates a typical mechanical diagram of a scanning slit beam profiler. 

 
Figure 1.8 A commercial scanning edge device 
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Figure 1.9 Windows of the software used for the scanning edge 

 

 
Figure 1.10 Schematic description of the scanning slit technique 

 

1.3.4 Camera-Based Systems 

    The beam imaging techniques technique is quite simple. It is based on attenuating and shining the 

laser onto a Charged Couple Device (CCD) camera and measuring the beam profile directly. Due to 

their simplicity, the beam imaging techniques are the most popular for beam profiling. It can be done 

using a silicon CCD camera, which has a pixel size of up to a few micrometers and is sensitive to a 
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wide range of wavelengths from the deep UV (200 nm) to the near-infrared (1100 nm). This range of 

wavelength corresponds to a broad range of laser gain media. The advantages of beam imaging 

techniques are:- 

• High dynamic range, the CCD chip of a webcam has a dynamic range of around 2⁸ to 210. 

• High Resolution down to 4 μm, depending on the pixel size 

• CCD cameras with trigger inputs can capture beam profiles of low-duty-cycle pulsed lasers 

The disadvantages of the CCD camera technique are:- 

• Attenuation is necessary in case of high-power lasers 

• The sensor size is limited to about 1 inch. 

• CCDs are vulnerable to blooming when used near the edge of their sensitivity. 

1.4 Scanning Aperture devices  

   The most common scanning aperture techniques are the pinhole analysis, the scanning-slit profiler, 

and the knife-edge technique. The pinhole analysis technique is used to recover the power profile of 

the laser beam without beam perturbing optics. It is based on an electromechanically actuated 

translational pinhole mounted on a profiler. This technique requires very narrow steps in both 

directions of the electro-mechanic translator to achieve a high resolution in the profiling process. This 

however will shorten the lifetime of the profiling instrument. Several techniques have been suggested 

to overcome this obstacle. One of them is using digital spatial light modulator based beam profilers, 

which is done by a Digital Mirror Device (DMD) and a Liquid Crystal Display (LCD). This device is 

advantageous as the DMD is polarization indifferent and operates fast and the LCD based profiler can 

profile large beams in addition to its longer reliable lifetime thanks to the non-moving parts 

technology. As shown in figure 1.11, the DMD is exploited to create virtual pinholes on selected 

zones while the photodiodes 1 and 2 are set symmetrically along the optical axis. The software-

controlled virtual pinhole can move along the zone, sampling the power profile of the incident laser 

beam and forming the pinhole profiler. It is important to use two photodiodes to normalize the 

detected power in case if laser power fluctuates during profiling operations. The DMD can provide 

nearly one million pinholes for beam profiling.  
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Figure 1.11 DMD-based pinhole laser beam  

profiling system with an arbitrary beam generator 

. L1/L2: Lasers. P1/P2: Polarizers.  MO1/MO2: Microobjective  

lenses. PH1/PH2: Pinholes. S1/S2/S3/S4: Spherical lenses.  

BS: Beam splitter.  PD1/PD2: Photodetectors. PC: Personal computer. 

    The knife-edge technique is based on a blade that intercepts the laser beam and is followed by a 

photodiode used to measure the incident power corresponding to the blade position. The Scanning-slit 

profiler uses a thin wire rather than a single knife edge. In which case, the intensity is integrated over 

the slit width and the resulting measurement is equivalent to the original cross-section convolved with 

the profile of the slit. These techniques depend on power measurement and it allows the high-

resolution measurements down to the submicron regime as well as large beams in the order of few 

tens of centimeters. However, they do not function for pulsed laser sources as a result of the 

complexity of synchronization between the aperture motion and the laser pulses. 

 

    We can conclude this chapter by that there is an amble of techniques used to perform the laser 

beams measurements. The most effective as well as the least complex ones are the ones of the 

scanning apertures and particularly the knife-edge technique. This thesis focuses mainly on 

demonstrating the knife-edge scanning technique to measure the Gaussian Beams. It will start with a 

brief review of the Gaussian beam propagation and mathematics, and continue to the rigid statistical 

analysis of the added noise figures to the samples and end up with the conclusion of a numerous 

group of experiments.   
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Chapter 2: Mathematics of the Knife Edge Technique and 

Gaussian Beams 

    In this chapter, we will review the mathematics of a Gaussian laser beam. Then explain the physics 

behind the knife-edge experiment and its settings and demonstrate the data analysis adopted. 

2.1 Gaussian Beam Calculations  

    The Gaussian beam is known as the fundamental mode TEM00. It is the solution of the 

electromagnetic field in the optical resonator. For a Gaussian laser beam propagating along the z-axis, 

the transverse profile in the x-y plane of the optical intensity distribution is described by the 2-

dimensional Gaussian function 

                      𝐼(𝑥, 𝑦) = 𝐼𝑜 exp [ −
2(𝑥 − 𝑥0)2

𝑤𝑥
2 −

2(𝑦 − 𝑦0)2

𝑤𝑦
2 ]                 [

𝑤

𝑚2]                   2.1 

Where we have that 𝐼0  is the maximum intensity amplitude (watt/m2),  

                    𝑤𝑥 and 𝑤𝑦 are the 1/e2 half widths in the directions of x and y respectively. It can be also 

                                            defined as the points at which the intensity is decreased to 13.53% of the 

                                            peak intensity,  

               and 𝑥0 and 𝑦0 are the coordinates of the center of the beam where there is the peak intensity.  

 

   For an ideal Gaussian beam, there exists symmetry among all directions of the beam and its sections 

are considered circular. Thus, it is a valid assumption to consider a standard beam width as 𝑤 = 𝑤𝑥 =

𝑤𝑦 

                                       

 

                              Figure 2.1.a                                                           Figure 2.1.b 

Figures 2.1.a and 2.1.b side and top views of the Gaussian beam, where  

the intensity is at the climax at the center and decreases exponentially to reach zero while 

moving away from the center 
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Figure 2.2 A Gaussian beam with the basic parameters Ao and w,  

which correspond to the maximum amplitude and the beam width respectively 

   The intensity of the optical laser power received depends directly on the total power P and inversely 

on the area of the laser beam as   

                                                                    𝐴𝑜 =
𝑃

𝐴
=

𝑃

0.5𝜋𝑤2
                 [ 

𝑤

𝑚2
 ]                                            2.2 

, where A is the area of the beam. As shown in figure 2.3, the radius of the beam varies during the 

propagation process. There are two radii of particular interest that are:- 

 - The beam waist, which is located at the position where we have the smallest radius, 𝑤𝑜 .   

 - The Rayleigh’s range, which is located where the beam area is twice as big as the beam waist and it 

is commonly referred to as 𝑍𝑅.  

 

   The beam waist and the Rayleigh distance are related as  

                                                   𝑤 = 𝑤𝑜√1 + ( 
𝑧 − 𝑧1

𝑧𝑜
)

2

                                                       2.3 
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Figure 2.3 Laser beam radius changes as a function of the propagation distance z 

During the process of propagation, there are the following invariants:- 

                                            𝑤0𝜃0 =
𝑤0

2

𝑧0
=  𝜃0

2 𝑧0
2 = 𝑀2

𝞴

𝝅
                                                       2.4 

Where we have that θ0  is the beam divergence 

                                 𝞴    is the propagation wavelength, and 

                                𝑀2  is a parameter that measures the laser radiation quality.   

   The term 𝑤0𝜃0 is called Beam Product Parameter (BPP) and its minimum value is given by 

diffraction limit. For the ideal case, 𝑀2 equals 1 and it means that we have an ideal Gaussian beam. 

Usually, lasers have the 𝑀2 parameter greater than 1 and this corresponds to low laser quality and 

more deviation from the ideal Gaussian beam. This usually occurs due to non-homogeneity, 

diffraction losses, the laser type, laser power, or a combination of all.  

2.2 Knife Edge Method 

   This type of measurement technique is based on placing a blade in front of the laser beam and 

measuring the power transmitted after the blade using a photodiode. In this paragraph we will discuss 

this technique in detail, mentioning the conditions of the experiment and its conclusions.  

2.2.1 Experimental Settings 

   The beam quality plays a key role in many laser applications. It determines the smallest possible 

area of the beam at the focal point. The parameter M2, as mentioned earlier, determines the quality of 

the output beam and how close it is to the ideal Gaussian beam. The knife-edge method aims to 

measure w and M2. The knife-edge technique is advantageous in terms of simplicity, its validity for a 

wide range of wavelengths, and the ability to obtain high resolution. The K-E method experiment on 

the  TEM00 mode is performed by placing a sharp rectangular object on the path of the laser beam and 

placing a photodiode after the blade to measure the incident optical power. The blade will be moved 

through one direction perpendicular to the direction of propagation on predefined steps. The blade 

must move parallel to the X-Y plane, which is perpendicular to the direction of propagation Z.  
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Figure 2.4 Knife-Edge method demonstration 

2.2.2 The Mathematics of the Experiment  

   The power received is at the climax as long as the beam is not covered by the blade and is at 

minimal when the blade blocks the beam entirely. We measure the full optical power of the laser 

beam (without intercepting the ray). The measured power at the output of the photodiode is a 

complementary error function based on the position of the blade as equation 2.5, bearing in mind that 

the curve of that ERFC is centered around the position ℎ = ℎ0, which corresponds to the position at 

which the optical power received is at 50% of the expected maximum value.  

                                                    𝑃(ℎ) =  ∫ ∫ 𝐼(𝑥, 𝑦) 
+∞

−∞

𝑑𝑥 𝑑𝑦
+∞

ℎ

                                            2.5 

𝑃(ℎ)  = 𝑃
1

2
 [1 − erf (

ℎ − ℎ0
𝑤

√2

 )] 

𝑃(ℎ) =  𝑃
1

2
 erfc (

ℎ − ℎ0
𝑤

√2

 )         

    The position of ℎ0 corresponds to standard width of 70.7% of the 1/e2 width of the laser beam. 

More formally, it is defined as ℎ0 =
𝑤

√2
= 0.707𝑤 .  

   It is important to have a blade long enough to cover the entire horizontal profile of the beam. 

Having a blade width of 3.3w is enough as the typical photodiode resolution can not be as good as 
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one-thousandth of the transmitted optical power. It is also important to use a photodiode of matched 

size in the sense of using a photodiode of radius equal to or greater than the beamwidth. If this 

solution is not viable, we can use a large numerical aperture lens to collect the optical rays in a small 

spot matched to the size of the photodiode. 

Figure 2.5 Experimental setting in case of using a  

photodiode with an unmatched size to the laser beam 

   During the experiment, the blade should be moved carefully on predefined discrete positions and 

record the optical power received by the photodiode. These minute movements should be performed 

by the aid of a graded micrometer or a micrometric stepper motor. Then, we record a reasonable 

number of measurements, ranging from 20 to 100 points, of the received power versus the blade 

displacement. At that moment, we can plot the data and observing if the two curves of the measured 

data and the theoretical calculations are matched as shown in figure 2.6.   
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Figure 2.6 Example of the collective graph combining 

 the theoretically calculated received power (solid  

line) and the actually received optical power by  

the photodiode during this type of experiment 

2.2.3 Plotting the Curve of the Actual Received Power  

   After collecting the data as shown in figure 2.6, it is necessary to use an algorithm to extract the 

measured power versus the knife-edge position h, which indicates the spot size of the measured laser 

beam at the X-Y plane at a particular distance on the axis of Z. the proposed method of data inversion 

depends on a fitting algorithm that is implemented in MATLAB, Origin R, and MS-excel. This yields 

an equation involving four parameters as 

                                     𝑃𝑖(ℎ𝑖) = 𝑃𝑜𝑓𝑓𝑠𝑒𝑡 +
𝑃

2
 𝑒𝑟𝑓𝑐 [

ℎ𝑖 − ℎ0

𝑤/√2
 ]                                   2.6 

 

where we have 𝑃𝑜𝑓𝑓𝑠𝑒𝑡 as the background power and it corresponds to the offset power 

                                               that exists even when the receiver is fully covered by the blade. 

                                               This offset power exists due to the ambient light or due to the 

                                               presence of imperfections of the photodiode.  

                                   P as the maximum transmitted laser power, 

                                  w as the beam radius that is obtained by calculations 

                                 ℎ0 as a position of the blade at which the received power is halved   

                                 ℎ𝑖  as the position of the blade  
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2.2.4 Curves Fitting  

   Several fitting algorithms can be used to match the curve of measured data to the curve of the 

theoretical data. This fitting process aims to match equations 2.5 and 2.6 to obtain the parameters P, 

𝑃𝑜𝑓𝑓𝑠𝑒𝑡, ℎ0, and w. From now on these four parameters will be called Amplitude, offset, center, and 

width, respectively. The purpose of the entire process is to obtain the uncertainty of the width 

parameter, which is the laser beam spot size.     The fitting process can be easily performed with a 

simple excel spreadsheet to evaluate the least-squares values of the four parameters by summing the 

squared differences among the actually measured data and the theoretical model. The excel solver 

add-on allows getting values closely comparable to the ones obtained by the non-linear fitting on 

MATLAB. However, it is preferred to use the MATLAB as it can contain powerful mathematical 

functions as well as its ability to nest several for-loops, which will allow the fine evaluation of the 

uncertainty sensitivities. The function of the MATLAB used to fit the data was the 

NonlinearLeastSquare. It resolved the direct data numerical inversion of the measured results situated 

on the calculated theoretical data of equation 2.6. These powerful tools facilitated the calculations of 

the four parameters we were targeting in this research, which are Amplitude, offset, center, and width. 

2.2.5 The Experiment Tools 

   To perform the knife-edge experiment, the researchers used Gaussian lasers sources of the Er: Glass 

type of wavelength 1.54 μm. It is an infrared laser (invisible to human eyes) and highly absorbed by 

water particles. During the experiment, the layout demonstrated in figure 2.7 was implemented to 

measure the spot size. The knife-edge was placed at different positions on the beam direction, using a 

blade tightly attached to the micrometer translator. The resolution of the micrometer is as precise as 

hM=10 m. However, to facilitate the measurements and maintain fast performance the researchers 

used an experimental resolution of hE = 50 m. In the next few lines, there will be a brief 

explanation of the components of the experiment.  

 

   - The laser pump is used to enlarge the optical power generated in the laser beam. It converts the 

electrical power to optical power through a process known as population inversion, in which more 

electrons exist in a high state than those in the lower unexcited energy levels. This concept very 

important in the science of laser due to its importance  

 

   - The collimation lens (C)is used to unify the direction of light rays and make them parallel to each 

other. The collimation improves the quality of the laser by minimizing the divergence angle, 

minimizing the energy loss, and increasing the spatial resolution. In this experiment, the collimation 

lens is followed by the knife-edge with a spacing of dP=2 mm.  

   - The focal lens (F) is used to concentrate the laser rays on the Yb-Er-glass Active Medium (AM), 

which is used to generate the second laser beam.  

   - An optical power meter is a photodiode. In this experiment, the researchers used a large-aperture 

integrating sphere InGaAs calibrated photodetector to measure the laser optical power passing the 

blade. It has been placed after the output coupler (OC) at a distance of dE = 131 mm 
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Fig. 2.7 Experimental setup of the pump laser 

 

2.3 Results Acquired and Numerical Analysis 

    The researchers record the 3-digit numerical value at the power meter output. During the first set of 

measurements, the researchers measured the laser spot size for a 976 nm fiber-coupled laser diode 

pumped into  Yb, Er:glass laser [erbium]. The laser pump was of commercial source (THORLABS, 

BL-976PAG) fiber-coupled into a single-mode optical fiber. The output beam passed to a 

short-focal-length, fiber-coupled, optical collimator (THORLABS, F230APC-980). The output beam 

of the pump is a pure fundamental Gaussian mode TEM00. This means that its beam quality 

parameter, M2 , is almost equal to 1 and its transverse profile is described by equation 2.1. This beam 

has been analyzed using the knife-edge method in the free space after the collimator as shown in 

figure 2.7. The researchers performed the measurements of the laser pump without mounting the 

subsequent erbium laser cavity and the results of the measurements are shown in figure 2.8, where the 

researchers measured the laser pump power at a distance of 2 mm from the collimator for 61 

experimental points and all points are displaced by 50 m from one another.  

    The measurements are expected to fit with the theoretical curve given in figure 2.8 and demonstrate 

a complementary error function as mentioned after properly putting into account the amplitude, offset, 

center, and width of this curve. The measured data were fit to the theoretical data using MATLAB and 

particularly the fit function with NonlinearLeastSquares option. Figure 2.8 shows the analytical data 

on the solid curved line and the measured data on the circles. This data fitting process revealed the 

parameters shown in table 2.1,  where column A  demonstrates the data fitting obtained by the 

MatLab nonlinear least-square option while column B demonstrates the results obtained by the solver 

function in the Excel spreadsheet. 
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table 2.1 

 
Figure 2.8 Received pump power 2 mm after the  

collimator using the Knife-Edge method. It indicates the  

measurements for 61 points spaced by 50 m from one another 

     The excel solver doesn’t specifically include the uncertainty for the wP parameter. On the other 

hand, the Matlab fit function yields a 95% confidence interval of the wP parameter, as for  

400.8, 410.5 m.  

To facilitate the analysis, we can assume expanded uncertainty values for the excel and the MatLab 

fitting as for U(wP,Excel)U(wP, MATLAB)5 m, using k=2 as the expanded uncertainty factor and 

consequently putting into account the 95 % confidence intervals for normal distributions. This makes 

the two measurements compatible. The similar uncertainty assumption for different algorithms end 

programs is still unjustified. 

   The Knife-edge method and the numerical inversion on the obtained data from the pump laser beam 

have allowed us to obtain an indirectly measured spot size of approximately 0.4 mm, which is a value 

with a good match with the calculated beam spot size at the collimator output (SM fiber at 980 nm 

Fujikura SM98-PS-U25A-H and collimator THORLABS F230APC-980 with focal length 4.55 mm). 

 

 A B 

P0,P 76.36 mW 75.95 mW 

Poffset 0.253 mW 0.606 mW 

h0,P 0.6815 mm 0.6815 mm 

wP  405.6 m 401.1 m 
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   The standard uncertainty u(wP) of the measurements is calculated using direct data inversion based 

on equation 2.6, which was achieved by a MATLAB fit function. The next paragraphs are dedicated 

to discussing this process in detail. 

    In the second group of experiments, the researchers used the Yb,Er:glass laser previously 

developed in the laboratory. It is end-pumped by the pump laser diode as shown in Figure 2.7. the 

researchers performed different spot-size measurements at different distances from the laser output 

mirror. The erbium laser wavelength is around 1.54 m. The laser beam of the air-coupled erbium-

laser is a pure fundamental Gaussian mode TEM00 (M2
E1) and so its transverse profile is well 

described by equation 2.1. when the distance between the laser spherical output mirror and the knife-

edge was dE=131 mm, we obtained the experimental data shown in figure 2.9, in which the power 

level of the pump is around 350 mW. To avoid exhaustive over-sampling, it was more effective to 

divide the 57 sample point as follows 

   - The first 2 points close to the maximum power are spaced by 500 m 

   - The following 46 points are equally spaced by 50 m- The last nine subsequent points of the 

measurement are spaced by 200 m 

   The numerical fitting of the measured data to the theoretical curve provided by equation 2.6 was 

done the same way as in the case of the pump laser. It gives the results shown in Figure 2.9. The 

fitting is again good and the fit parameters are shown in Table 2.2   

 
Figure 2.9 Measurements obtained using Yb,Er:glass  

spaced by dE=131 mm from the knife-edge on 57 points.  

Notice the different spacing of the samples depending  

on the sample position 
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P0,E 49.01  mW 

POFF,E 0.4732 mW 

h0,E 2.236   mm 

wE 1.7777 mm 

Table 2.2 

   The fit function of MATLAB returned a confidence interval of 95 % [1.7678, 1.7862] mm for wE. 

As a result, the erbium laser spot size after the collimator is 1.7777 mm. this size, jointly with the two 

recorded measurements at distances of dE-=125 mm (wE-=1.6916 mm) and dE+=137 mm 

(wE+=1.8639 mm), is shown in figure 2.10. It evaluates the beam waist for the erbium laser as 

w0,E=34.3 m within the laser cavity, which is a parameter that is impossible to measure inside the 

laser cavity since it is located inside the solid active medium, erbium. For the standard uncertainty of 

our measurement, u(wE), which the researchers achieved through direct data inversion based on 

equation 2.6 and performed with a MATLAB fit, we will discuss it in more detail in the next chapter.  

 
Figure 2.10 Indirectly measured erbium-laser spot  

sizes as a function of the displacement from the laser  

output mirror. These points are obtained by a K-E  

measurement, and the corresponding non-linear fit  

in the x-y plane, at distance dE from the laser mirror.  

Values within the box represent the linear fit of the 3  

experimental points in the divergence region (far-field) 

  

References 



25 
 

W. Koechner, Solid-State Laser Engineering. New York, NY, USA: Springer, 2006. ISBN 0-387-

29094-X.G. 

P. J. Shayler, “Laser beam distribution in the focal region,” Appl. Opt., vol. 17, no. 17, Sept. 1978. 

T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. 

Sci. Instrum., vol. 57, no. 11, Dec. 1986. 

K. D. Kirkham and C. B. Roundy, “Current Technology of Beam Profile Measurement,” in Fred M. 

Dickey, Laser Beam Shaping: Theory and Techniques, 2nd Ed., Boca Raton, FL, USA: CRC Press, 

2017. ISBN 9781138076303 

J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavière, E. A. Franke, and J. M. Franke, 

“Technique for Fast Measurement of Gaussian Laser Beam Parameters,” Appl. Opt., vol. 10, no. 12, 

Dec. 1971. 

Y. Suzaki and A. Tachibana, “Measurement of the μm sized radius of Gaussian laser beam using the 

scanning knife-edge,” Appl. Opt., vol. 14, no. 12, Dec. 1975. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

Chapter 3: Statistical processing and Reduction of the 

Uncertainty Sensitivities  

    In this chapter, we will understand the statistical analysis and the model adopted in this experiment 

with a particular focus on the data inversion method. Then we will understand how using this method 

reduces the uncertainty in the knife-edge experiment and the parameter that influences the error 

uncertainty. 

3.1 Statistical Analysis  

    The process of the non-linear fitting of the data to the equation 2.6 makes it possible to analytically 

evaluate the sensitivities of the measured laser spot size uncertainty u(w) to the uncertainties of the 

input parameters by repeating the fitting process on several random values of added noise to the input 

data. The uncertainties that affect the input parameters are:- 

    - the relative uncertainty of the measured optical power, ur(P),  

    - the relative uncertainty of the measured knife-edge position, u(h).  

The relative and absolute uncertainties of the two input variables are used due to the influence of the 

uncertainty that is proportional to the value of the power in the laboratory conditions. On the other 

hand, the knife-edge position uncertainty is measured with an absolute uncertainty independent from 

the position value. As a result, it was necessary for the researchers to evaluate Sw,P=(∂w)/(∂P) and 

Sw,h=(∂w)/(∂h) and then, assuming that P and h can be measured independently, it is possible to 

calculate the uncertainty u(w) as given by equation 3.1 

                                                          𝑢(𝑤) = √(
𝜕𝑤

𝜕𝑃
 )

2
𝑢2(𝑃)  +  (

𝜕𝑤

𝜕ℎ
 )

2
𝑢2(ℎ)                                             3.1 

                                                                      = √𝑠𝑤,𝑃
2 𝑢2(𝑃) + 𝑠𝑤,ℎ

2 𝑢2(ℎ)                                                

     It is valid to assume that there is no dependence among the measurement of optical power and the 

measurement of micrometer blade positions since there is no common influencing term. In other 

words, the pump laser temperature and power are independently stabilized from the ambient 

temperature and there is no way to affect the power meter precision.  In case of uncertainty or noise 

on the position of the knife-edge, is it possible to calculate it as a constant or absolute uncertainty 𝜎ℎ 

at each position step. However, when considering the uncertainty or the noise on the optical power, it 

is necessary to assume a dominant relative uncertainty𝜎𝑟,𝑃. This actually is due to that the optical 

power is proportional to the measured level of power.  

    To estimate 𝑆𝑤,𝑃 =
∂𝑤

∂𝑃
 and 𝑆𝑤,ℎ =

∂𝑤

∂ℎ
, the researchers executed repetitive calculations of adding 

WGN to each of the measurement points for i running from 1 to n for the nonlinear fitting of the 

equation 2.6, where i is the experimental point. In the first group of calculations, the researchers add 

noise on the power values (Pi), with a relative standard deviation𝜎𝑟,𝑃, and in the second group of 

calculations, the researchers add noise on the position, values (hi), with a standard deviation σh. This 

simulation has been repeated for R times and then statistical analysis is carried out on the vector of R 

estimated beam widths, w of elements wj, with j going from 1 to R. Typically R=5000 in these 

simulations, providing for repeatable results. The obtained vector w allows evaluating the average w 

and the standard deviation σw of the estimated beam width w, for the specific value of added WGN. 

This procedure has been repeated for several different amplitudes of the input noise (standard 
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deviation of the added WGN) ranging from 0 to a maximum value of interest, which is up to 5 mW 

for the power noise and up to 10 m for the position noise.  

3.1.1 The Statistical Analysis of the Pump Laser Measurements 

     Now we will understand the effects of noise and uncertainty on the optical power of the pump laser 

(referred to with subscript "P" from now on) for the same experimental 57 points of the knife-edge 

measurement on the pump laser of Figure 2.8. To do this the researchers have changed the values of 

σr,P,P, which is the relative standard deviation of WGN added to the  experimental power values of the 

pump laser Pi. This allowed them to obtain the spot-size average value, w,P, and its standard deviation 

σw,P as shown in Figure 3.1, in which the average width w,P of the spot-size is estimated incorrectly 

(with a bias) depending on the noise level 𝜎𝑟,𝑃,P added to the optical power and having an increasing 

dispersion 𝜎𝑤,P as the value of the deviation increases. Figure 3.2 shows that the standard deviation of 

the average estimated spot-size, the uncertainty u(wP)= 𝜎𝑤,𝑃, increases linearly by increasing values of 

𝜎𝑟,𝑃,P in this noise input range. The sensitivity of the measurement uncertainty u(wP) of the pump laser 

spot-size wP, to the pump power relative uncertainty σr,P,P in percentage value (Sw,P ) indicated 

in equation 3.1, is evaluated as the slope of Fig. 3.2 and in this case, it is Sw,P,P=4.2 m/%. 

             . 

Figure 3.1 Estimated average beam radius in micrometers plotted to the power 

uncertainty of percentage of the laser beam power of standard deviation σ 
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        . 

Figure 3.2 Pump laser spot-size uncertainty as a function of noise σr, P,P on the pump 

power 

     The researchers then studied the effects of noise and uncertainty on the knife-edge position for the 

pump laser, again, for the same points in Figure 2.8. To do this, they have changed the values of σh,P, 

which is the standard deviation of added WGN on experimental K-E position values (hi), and obtained 

the spot-size average value, w,P, and its standard deviation, σw,P, as shown in Figure 3.3. It shows that 

the average width w,P of the pump spot-size is evaluated incorrectly (with a bias) depending on the 

noise level σh on the knife-edge position and repeatedly having larger and larger dispersion σ(wP) for 

increasing values of σh,P. On the other hand, Figure3.4 shows that the standard deviation of the 

average estimated spot-size (the uncertainty u(wP)) increasing directly with the values of σh,P in the 

mentioned level of noise range. The sensitivity of the measurement uncertainty of the pump laser spot 

size u(wP), to the K-E position uncertainty σh, Sw,P mentioned in equation 3.1 and evaluated as the 

slope of Figure 3.4 , is, in this case, Sw,h,P=0.74 m/m, which previously was equal to 0.52 m/m. It 

is necessary to understand that the presence of noise on the position values of the K-E makes the laser 

spot size overestimated, which means that the measurement is biased by an amount increasing directly 

with the level of position noise. We can observe this clearly if we compare figure 3.3 to figure 3.1 

where this error in the estimation is absent. By these calculations performed on the pump spot-size 

that were measured by the knife-edge technique in the experimental conditions, it is possible to 

observe 3 important conclusions that: 

   1P) The spot-size is increasingly overestimated due to the increases in the relative noise on laser 

         power and that the uncertainty increases directly with the input noise. 

   2P) The spot-size is increasingly overestimated due to the noise on the knife-edge position with  

         increases of uncertainty for an increasing input noise. . 

   3P) The sensitivities of spot-size uncertainty to the relative noise on power and the absolute noise on 

         position are different. In the experiment, they are Sw,P,P=4.2 m / % and Sw,h,P=0.74 m/m,  

         respectively. 



29 
 

   The conclusions 1P and 2P are surprising and consequently interesting. The presence of noise on the 

inputs experimental values Pi and hi lead to a bias error of Δwp in the measured beam radius wp. of less 

than 1 micrometer for a pump laser of spot size 400μm as shown in figures 3.1 to 3.4. Such bias 

comes from a combination of the input noise and the nonlinear behavior of equation 2.6, in which w is 

a function of P and h. the conclusion 3p is relevant when evaluating the combined standard uncertainty 

of the spot size w and in this case, u(w) is described by equation 3.1. such calculation can be 

performed after estimating the input position noise u(h) and the input relative power noise ur(P). 

 
Figure 3.3 Pump laser spot-size average value as a function of noise σh,P on the Knife position 

 

.               

Figure 3.4 Pump laser width uncertainty as a function of noise σh,P on the Knife Edge position 
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3.1.2 The Statistical Analysis of the Erbium Laser Measurements 

      Later, the researchers studied the effects of noise and uncertainty on the optical power profile of 

the erbium laser for the same experimental points of the knife-edge measurement on the pump laser of 

figure 2.9. For this reason, we will use the subscript ”E” from now on. For this purpose, it was 

necessary to alter the values of 𝜎𝑟,𝑃,𝐸, which is the relative standard deviation of WGN added on 

experimental power values of the erbium laser. Then, we will understand how to obtain the spot-size 

average value, w,E, as well as its standard deviation, σw,E, as demonstrated in figures 3.5 and 3.6.  

    As shown in figure 3.5, the average width w,E of the spot-size is estimated incorrectly due to the 

presence noise. For a relative noise level 𝜎𝑟,𝑃,𝐸 added to the optical power, there is a positive bias in 

the measured spot size. There is an evidently increasing dispersion 𝜎𝑤,𝐸 for increasing values of 

𝜎𝑟,𝑃,𝐸. In fact, figure 3.6 shows that the standard deviation of the average estimated spot-size, the 

uncertainty u(wE), increases linearly with increasing values of 𝜎𝑟,𝑃,𝐸for this range of noise. The 

sensitivity of the measurement uncertainty of the erbium laser spot size u(wE) to the erbium laser 

power uncertainty 𝜎𝑟,𝑃,𝐸, Sw,P indicated in equation 3.1 and evaluated as the slope shown in figure 3.6, 

is Sw,P,E=18 m/%.  

     After then, the researchers studied the effects of noise and uncertainty on the knife-edge position 

for the erbium laser using the 57 experimental points shown in figure 2.9. Thus, , it was necessary to 

modify the values of σh,E  and σw,E which are the standard deviation of WGN added to experimental 

height values and its standard deviation. The spot-size average value, w,E, was obtained as shown in 

Figures 3.7 and 3.8.  

    Figure 3.7 shows that the average width w,E of the spot-size is estimated incorrectly, biased, 

depending on the noise level σh added to the knife-edge position and, again, having and increasing 

dispersion σ(wE) directly with the values of σh,E. Figure 3.8 shows that the standard deviation of the 

average estimated spot-size, the uncertainty u(wE), increments linearly along with increasing values of 

σh,E when only this contribution is considered. The sensitivity of the measurement uncertainty of the 

erbium laser spot size u(wW) to the knife-edge position uncertainty σh , Sw,P indicated in equation 3.1 

and evaluated as the slope of Figure 3.8, is, in this case, Sw,h,E=0.67 m/m previously equals 

0.47 m/m.  

    The presence of noise over the blade position causes an over-estimation of the laser spot size by an 

amount increasing with the value of the added noise. It can be observed if we compare figure 3.5 to 

figure 3.7, where this error in estimation is absent and also to figures 3.1 and 3.2 

    The calculations performed on the erbium laser spot-size measured by the knife-edge technique, in 

the experimental conditions we notice that: 

       1E) The spot-size is overestimated (biased) due to increasing the relative noise on the laser 

             power and with larger uncertainty when the input noise increases.  

       2E) The spot-size is overestimated tremendously when the noise on the knife-edge position is 

             increased, once again with more uncertainty when the input noise is increasing. 

3E) The sensitivities of spot-size uncertainty to the noise on power and position are different. 

       In this experimental case, they are respectively Sw,P,E=18 m/% and Sw,h,E=0.67 m/m. 
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Figure 3.5 Erbium laser spot-size average value as a function of relative noise σr,P,E on the 

erbium laser power    

 

Figure 3.6 Erbium laser spot-size uncertainty as a function of relative noise σr,P,E on the erbium 

laser power     
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Figure 3.7 Erbium laser spot-size average value as a function of noise σh,E on the K-E position 

 
Figure 3.8 Erbium laser spot-size uncertainty as a function of noise σh,E on the K-E position 

    The results 1E and 2E are similar to the ones of the pump laser. In the case of the erbium laser, bias 

errors in the measured beam radius wE can reach a maximum of 8 μm for a laser-spot size of 1780 μm 

and relative noise on the laser optical power of 10%. Moreover, the result 3E is useful when evaluating 

the combined standard uncertainty of the spot size w.  
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3.2 Comparative Analysis and Influential parameter 

    It has been proved that the sensitivities of the spot-size uncertainty depend on the specific 

experimental conditions when measured by the knife-edge technique. This has been demonstrated by 

the different sensitivities calculated in independent spot-size measurements with the knife-edge 

method on two different experiments, using laser beams with different beam widths as well as optical 

powers. In particular, from some preliminary calculations upon changing the span of the position axis 

(hSPAN=hMAX-hMIN) relative to the beam spot size w, both sensitivities of u(w) to noise in the laser 

power, u(P), and to noise in the blade position, u(h), do change, also depending on the adopted 

experimental spatial resolution hEXP=hi+1-hi. The detailed mathematical analysis of these aspects is 

beyond the scope of this study. 

   The uncertainty sensitivities depend specifically on the experimental conditions. Particularly, 

various sensitivities are affecting the input uncertainties of the laser optical power and the knife-edge 

position. Moreover, the values of those two sensitivities do depend basically on the width of the 

positions data range with respect to the laser beam standard width, spot size. Once the spot size 

uncertainty and the measured spot-size sensitivities are known, the measurement uncertainty can be 

calculated. In this case, the main input variables are two:  

   1) The laser optical power P, which can be obtained by the laser output and measured by the 

        power meter     

   2) The knife-edge position h, which can be obtained and measured by the micrometer translator.  

   To estimate these input variables uncertainties, we have to know the statistical behavior of the two 

measurable quantities and the expected values of the standard deviation of their means. Rapid and 

simplified analyses have to be performed to find out justifiable practical values of u(P) and u(h). For 

the pump laser, we have to put into consideration power instability along with time and the power 

meter instability, which are evaluated as 2 % and 1% respectively. Consequently, it is necessary to 

compensate by estimating ur(PP)2.2 % that we can translate in a constant overall power uncertainty 

u(PP)0.9 mW1 mW (for an average power value of 40 mW).  

   On the other hand, it is necessary to compensate for the observed erbium laser temporal instability, 

in the order of 5 % during the measurement times. Considering the power meter uncertainty of 1 % 

can be estimated as ur(PE)5.1 % that can be translated in a constant overall power uncertainty 

u(PE)1.3 mW (for an average power value of 25 mW). As mentioned earlier, a micrometer is used to 

adjust the Knife Edge displacements and its resolution is h=10 m. However, it is necessary to 

assume uncertainty in position in the order of u(hP)=u(hE)2 m for both measurements, on pump 

laser and erbium laser. Substituting for these values in equation 3.1, we get the resulting uncertainty 

budgets and spot-size uncertainty values as shown in Table 3.1. 



34 
 

 
Table 3.1 

Which indicates that for this kind of experiments, the two main uncertainties affecting the spot size 

uncertainty u(w) are: 

     - The power uncertainties, in the order of a few milliwatts (mW)  

     - The blade position uncertainty of a few micrometers (m)  

   The uncertainty is influenced mainly by the power uncertainty, which has a higher impact. This is 

for the significantly higher sensitivity coefficient Sw,P (m/mW) with respect to Sw,h (m/m) when 

expressed in these units. Based on this result, greater uncertainty improvement is expected when 

working on reducing the laser amplitude noise and power meter inaccuracy, instead of working on the 

much less useful reduction in the Knife Edge position uncertainty, Particularly, when the two 

sensitivity values are calculated using the method proposed to obtain the values as the ones given in 

points 3P and 3E for our lasers. Any other more detailed and comprehensive analysis to evaluate u(P) 

and u(h) can be carried out so that their estimated values can be inserted into equation 3.1, including 

the sensitivity values and input variables uncertainties, to get the laser spot-size measurement 

uncertainty which is greatly dominated by the laser power measurement uncertainty. 

3.3 Reducing Uncertainty for the laser beam size measurements using a 

scanning edge approach 

    A slight modification in the process of analyzing the measurement of the Gaussian laser beam spot 

size method has been developed. The novel analysis greatly reduces the uncertainty in the estimation 

of the beam-spot size. Using the beam scanning approach in the measurement and fitting the data to 

an analytical approximation to the complementary error function, the obtained fitted parameters were 

consistent with the standard differentiation approach but with much smaller uncertainty. For a 

Gaussian laser beam, the intensity peaks at the center of the beam and it is described by 

                           𝐼(𝑥, 𝑦) = 𝐼0 exp [ −
2(𝑥 − 𝑥0)2

𝑤𝑥
2 −

2(𝑦 − 𝑦0)2

𝑤𝑦
2 ]                                    3.2 

, Where we have that wx and wy as the 1/e2 half widths in x and y directions and x0 and y0 as the 

values of x and y at the center of the beam. The maximum incident optical power on the power meter 

is 𝐼0 = 2𝑃 / 𝜋𝑤𝑥𝑤𝑦 , assuming a perfectly rounded laser. The knife-edge technique is based on 

scanning the laser beam with a blade attached to a micrometer while measuring the power incident on 

the power meter and plotting the measured power based on the position of the blade. For such a 

structure, the laser power incident on the power meter is governed by 
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                                         𝑠(𝑥) =  ∫ ∫ 𝐼(𝑥′, 𝑦′)𝑑𝑦′𝑑𝑥′
∞

−∞

∞

𝑥

                                                            3.3 

                                                   = 𝐼0𝑤𝑦√
𝜋

2
∫ exp[ −2 

(𝑥′ − 𝑥0)2

𝑤𝑥
2  ]𝑑𝑥′

∞

𝑥

 

  =
𝐼0𝜋𝑤𝑥𝑤𝑦

2
erfc[

2(𝑥 − 𝑥0)

𝑤𝑥
 ]               

  = 𝑃 erfc  [
2(𝑥 − 𝑥0)

𝑤𝑥
 ]                           

The integral on the right of the second line is a complementary error function defined as  

                                      𝑒𝑟𝑓𝑐(𝑥) =
1

√2𝜋
 ∫ exp(−

𝑢2

2
) 𝑑𝑢 

∞

𝑥

                                                            3.4 

, and it is related to the error function as  

                                                  erf(x) = 1 − 2 𝑒𝑟𝑓𝑐(√2 𝑥)                                                              3.5 

    It is not possible to integrate equation 3.4 analytically. However, it is possible to extract 𝑤𝑥 from 

s(x) by numerically differentiating the measured value of s to the blade position x, where s has a 

Gaussian dependence on x. Then the one-dimensional Gaussian function of equation 3.2 is fitted to 

the derivative of s to give the desired 𝑤𝑥.  

    Now for Gaussian noise R(x) added to the ideal s(x) due to the measurement process, it is possible 

to express the probability distribution of R(x) as 

                                                    𝑃(𝑅) =
1

𝜎√2𝜋
exp(−

𝑅2

2𝜎2
 )                                                                3.6 

Where σ represents the standard deviation of R from its mean value. If the mean is zero, the measured 

signal will then be  

                                                        𝑆(𝑥) = 𝑠(𝑥) + 𝑅(𝑥)                                                                         3.7 

By differentiating equation 3.7, we will obtain  

                                         
𝑑𝑆(𝑥)

𝑑𝑥
=

𝑑𝑠(𝑥)

𝑑𝑥
+

𝑑𝑅(𝑥)

𝑑𝑥
= 𝑔(𝑥) + 𝐷(𝑥)                                                      3.8 

where g(x) is the one-dimensional Gaussian  function resulted by differentiating s(x) while D(x) is the 

derivative of R(x). The probability distribution of D(x) can be calculated by the following argument. 

By subdividing x into discrete values xi spaced by 𝟄 and denoting the corresponding R(xi) by Ri and 

using the equation 3.6, the probability Pr of having the values of Ri and Ri+1 such that R ≤  Ri  ≤  R + 

dR and R’ ≤ Ri+1  ≤ R’ + dR can be written as  

                                        Pr[𝑅’ ≤  𝑅𝑖 + 1 ≤  𝑅’ +  d𝑅,   𝑅 ≤  𝑅𝑖  ≤  𝑅 +  d𝑅  ] 

                                                   = 𝑃(𝑅′)𝑑𝑅𝑃(𝑅)𝑑𝑅 

                                                   =
1

2𝜋𝜎2
exp (−

𝑅2+𝑅′2

2𝜎2
  ) 𝑑𝑅2                                                   3.9 
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This is equivalent to the probability of R  ≤  Ri  ≤  R + dR and D ≤ Di ≤ D + dD. In this case 

 𝐷 = 𝑅′ −
𝑅

𝟄
 . consequently, Equation 3.9 guides us to 

                                                   Pr[ 𝐷 ≤  𝐷𝑖  ≤  𝐷 +  d𝐷, 𝑅 ≤  𝑅𝑖  ≤  𝑅 +  d𝑅] 

                                                   =
𝜖

2𝜋𝜎2
exp (−

𝑅2+(𝐷𝜖)2

2𝜎2
  ) 𝑑𝑅𝑑𝐷                                                   3.9 

And by integrating over R, the probability 𝐷 ≤  𝐷𝑖  ≤  𝐷 becomes  

                                                           Pr[𝐷 ≤  𝐷𝑖  ≤  𝐷] = 𝑃(𝐷)𝑑𝐷 

                                                           = ∫
𝜖

2𝜋𝜎2
exp [−

𝑅2+(𝐷𝜖)2

2𝜎2
]

∞

−∞

𝑑𝑅𝑑𝐷 

                                                           =
1

𝜎′√2𝜋
exp(−

𝐷2

2𝜎′2) 𝑑𝐷                                                                  3.10     

given that σ’ = √2𝜎/𝜖. It is now obvious that the probability distribution of D(x) is also Gaussian yet 

the width becomes larger as 𝟄 is decreased. This is a result of the well-known fact that high-frequency 

noise in data gives elevates the scatter in the derivative of the data. Generally, while fitting a function 

to measured data, the greater the number of data points, the greater the confidence in the fit. However, 

for the conventional spot size measurements with a constant noise level, more data points yield less 

spacing in the independent variable x and thus an increase in σ’, which is the effective scatter in the 

derivative of the data. Typically, one can try to neutralize this problem by applying a smoothing 

algorithm to the original data or the derivative of the data. However, there will be the side effect of 

broadening the curve of the profile, which is the width that we want to measure. For instance, figure 

3.9- a and b show the data obtained by typical beam profile measurements using the scanning knife-

edge technique. In figure 3.9 a there are  51 data points of the beam spot size measurements while 

figure 3.9 b contains only 26 data points. The corresponding numerical derivatives of these two data 

curves are demonstrated in figures 3.9-c and d respectively. There is an evident increase in the 

derivative noise.  
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Figure 3.9 Points in (a) and (b) are the measurement of the laser beam spot size by the knife-

edge technique. The dashed curves are fits to the complementary error function. The points 

in(c) and (d) are the derivatives of the data in (a) and (b), respectively. The dashed curves are 

fits to the Gaussians. (a) and (c) are for data containing 51 points, and (b) and (d) are for data 

containing 26points over the same range. 

    The proposed solution to fix the problem here is to not derive the data and instead fit them directly 

to the complementary error function in equation 3.3 and 3.5 when combined together to give  

                                                   𝑠(𝑥) =
𝑃

2
{1 − erf [

√2(𝑥 − 𝑥0)

𝑤𝑥
]}                                                              3.11 

Where x is the position of the knife-edge, x0 is the center of the beam, P is the total optical power 

contained in the beam, and wx is the desired 1/e2 half-width. As mentioned earlier, the error functions 

cannot be integrated analytically yet there exist several approximations to the error function and are 

effectively accurate for the fit required. As an example the researchers used  

                                               erf(𝑥) = 1 − (𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3) exp(−𝑥2) + 𝜖(𝑥)  ,                           3.12 

Where we have that 𝑡 = (1 + 𝑝𝑥)−1 , 

                                 p =   0.47047 , 

                                a1 
 =  0.3480242 , 

                                a2  = -0.0958798 , 

                                a 3 = - 0.7478556 , 

                                |𝟄=(x)≤2.5 * 10-5 | 

    The dashed lines in figures 3.9-a and 3.9-b represent the best fits of complementary error functions, 

using equations 3.11 and 3.12 to the data. The fitted parameters are the total power, Gaussian centers, 
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and widths. The values for the fitted widths, including the fitting uncertainties, are indicated in figure 

3.9. The dashed curves in 3.9-c and 3.9-d are the fits of Gaussians in equation 2.1 to the derivatives of 

the data. The values for the fitted widths along with their uncertainties are indicated in the graphs. No 

pre-smoothing of the data was carried out. We note that while the widths for both fitting techniques 

came out virtually identical, the estimates of uncertainty in these widths are an order of magnitude 

greater for the conventional Gaussian fits than for the error function fits, due to the derivative induced 

scatter in the latter cases. To further demonstrate the advantage of fitting a complementary error 

function to the raw data rather than fitting a smoothed Gaussian to the derivative of the data, values of 

a complementary error function were generated by numerical integration of the Gaussian of equation 

3.3 with width w = 2, to which the noise of Gaussian distribution had been added. This was done for 

two sets of data having the same interval in x, but having different numbers of points over that 

interval. Derivatives were computed for both sets of data. Table 3.2, summarizing the results of fitting 

the two types of functions to the corresponding data, shows good agreement with the expected 

behavior of fitting errors.  

 
Table 3.2 summary of the results 

 

 

3.4 Conclusion  

    Through this study, the importance of Lasers has been highlighted and its parameters of quality 

have been explained as well as the methods used to measure them. Among these methods, the 

simplest and the most effective one is the scanning Knife-Edge, which has been explained in details 

through this study. During the experiments, the numerical nonlinear fitting of experimental data was 

introduced in order to aid the calculations of uncertainty sensitivities. In order to evaluate the different 

sensitivities of the estimated beam radius uncertainty to the dominant uncertainty sources in the 

typical experimental conditions, it is possible to using estimated values for the uncertainties of the 

variables of the experiment (optical power and beam cutting position) and weighting them by their 

corresponding calculated sensitivities. Then it is possible to retrieve the combined uncertainty of the 

indirect measurement of laser beam spot-size. By the method introduced in the paper, it is possible to 

calculate the two sensitivities (Sw,P and Sw,h) of the measured beam radius uncertainty, u(w), to the 

optical power relative uncertainty, ur(P), and to the Knife-Edge position uncertainty, u(h). Starting 

from the experimental data, it is possible to find sensitivities as the ones obtained in points 3P and 3E 

for the case of these specific types of lasers and their measured beam radii. Calculated sensitivities 

can be inserted into equation 3.1 with the estimates of the input uncertainties (optical power and the 

knife-edge positions), to get the measurement uncertainty of the laser Gaussian beam radius. These 

two sensitivities depend on the experimental conditions and most importantly they change with the 

specific width of the knife-edge positions data range and with the knife-edge position steps for a 

specific laser beam radius. These behaviours of uncertainty sensitivities can addressed in a future 

work. It has also been clarified during the process of analysing the data obtained by the Knife-Edge 

technique that it is more advantageous to directly fit the data to a numerical approximation of the 



39 
 

complementary error function instead of fitting the derivative of the data to a Gaussian. The main 

advantage is that by taking the derivative, scatter is introduced in the data and this will decrease the 

confidence in fitted width. Despite that it was is demonstrated in this work, smoothing operations to 

the data, either before or after taking the derivative, runs the risk of artificially increasing the apparent 

spot width. 
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