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Abstract 

For people with motor disabilities or amputations, natural control of assistive devices 
or prostheses have significant importance. Over the past several years, 
Electromyography (EMG) signals have been used as a natural interface to control 
artificial limbs. While decoding the subject's movement intention from EMG signals 
using traditional machine learning methods have shown promising results. Recently, 
deep learning algorithms such as Convolutional Neural Networks (CNNs) have 
gained interest as decoding strategies and have shown superior performance and 
robustness in comparison with traditional machine learning methods. However, 
CNNs require a big dataset to train properly. Creating such a database for a single 
subject could be very time consuming. Hence, researchers have proposed Transfer 
Learning as a solution for this challenge.   
In this thesis, we introduce multiple CNN-based architectures for hand movement 
intention detection and compare their performance with classical machine learning 
algorithms such as support vector machines, multi-layer perceptron, linear 
discriminant analysis and k-nearest neighbor. Classifiers are tested on Nearlab 
dataset which is a sEMG hand/wrist movement dataset created in this research 
work, and also on publicly available sEMG dataset “NinaPro”. Moreover, we propose 
two transfer learning approaches namely “Freeze & fine-tune” and “Parallel 
networks“, to eliminate the need to acquire large datasets from a single subject, 
leveraging available data from other subjects. Finally the results obtained over 
Nearlab dataset, indicated that deep learning algorithms can produce higher 
classification accuracy comparing to classical machine learning algorithms, with the 
maximum accuracy of 93.24% achieved by one of the proposed CNNs. In addition, 
transfer learning algorithm referred to as “Parallel networks“ was able to improve 
the average accuracy of the best performing deep learning network, by obtaining an 
average classification accuracy of 93.48%. 
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Astratto 

Per le persone con disabilità motorie o amputazioni, il controllo naturale dei 
dispositivi di assistenza o delle protesi ha un'importanza significativa. Negli ultimi 
anni, i segnali dell'elettromiografia (EMG) sono stati utilizzati come interfaccia 
naturale per controllare gli arti artificiali. Mentre decodifica l'intenzione di movimento 
del soggetto dai segnali EMG usando i metodi tradizionali di apprendimento 
automatico hanno mostrato risultati promettenti. Recentemente, algoritmi di deep 
learning come Convolutional Neural Networks (CNNs) hanno guadagnato interesse 
come strategie di decodifica e hanno mostrato prestazioni e robustezza superiori 
rispetto ai metodi di apprendimento automatico tradizionali. Tuttavia, le CNN 
richiedono un grande set di dati per allenarsi correttamente. La creazione di un 
database di questo tipo per un singolo argomento potrebbe richiedere molto tempo. 
Pertanto, i ricercatori hanno proposto l'apprendimento del trasferimento come 
soluzione per questa sfida. 
In questo tesi, introduciamo più architetture basate sulla CNN per il rilevamento 
dell'intenzione di movimento della mano e confrontiamo le loro prestazioni con gli 
algoritmi di apprendimento automatico classici come macchine vettoriali di 
supporto, percettrone multistrato, analisi discriminante lineare e vicino k-più vicino. 
I classificatori sono testati sul set di dati Nearlab che è un set di dati di movimento 
mano / polso sEMG creato in questo lavoro di ricerca, e anche sul set di dati sEMG 
"NinaPro" disponibile pubblicamente. Inoltre, proponiamo due approcci per 
l'apprendimento del trasferimento, vale a dire "Congela e perfeziona" e "Reti 
parallele", per eliminare la necessità di acquisire grandi set di dati da una singola 
materia, sfruttando i dati disponibili da altre materie. Infine, i risultati ottenuti sul set 
di dati Nearlab, hanno indicato che gli algoritmi di deep learning possono produrre 
una maggiore precisione di classificazione rispetto agli algoritmi di machine learning 
classici, con una precisione massima del 93,24% raggiunta da una delle CNN 
proposte. Inoltre, l'algoritmo di apprendimento di trasferimento denominato "Reti 
parallele" è stato in grado di migliorare la precisione media della rete di 
apprendimento profondo con le migliori prestazioni, ottenendo una precisione di 
classificazione media del 93,48%. 
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Summary 

Aim - The aim of this thesis is to work towards an accurate and robust hand gesture 
recognition algorithm for myo-controlled upper limb assistive devices. In addition, 
the proposed algorithm should be practical and feasible for real life applications.  
To this aim, the contribution of this work is twofold: I) develop novel deep network 
architectures specific for target application and II) use different transfer learning 
approaches with limited amount of data available for each participant. Transfer 
learning is employed as a possible solution to the problem of large databases 
necessary for training deep networks. 
In this thesis, 4 deep learning networks and 2 transfer learning methods are 
introduced. The proposed approaches are tested on a hand/wrist movement surface 
electromyography (sEMG) database created by authors of this work (referred to as 
Nearlab dataset) and on a publicly available EMG dataset (Ninapro database 2) to 
provide results comparable with the state of art. A comparison has also been carried 
out with well-known classical hand gesture recognition algorithms. 
In the end, a program simulating online classification has been designed to display 
the real-time implementation of a hand gesture recognition algorithm in a myo-
controlled prosthesis. 

 
Background - For people with upper limb disabilities, independently performing 
daily tasks that require hand function such as holding objects, opening/closing doors 
and eating meals is a major challenge. For this population, the use of an assistive 
device targeting in particular the hand could be beneficial. According to the type of 
disability, this device can be a prosthesis (in the case of replacing a missing limb) 
or an orthosis (in the case of supporting an existing limb). Among different kinds of 
hand prosthesis, myo-controlled hand prosthesis has gained rising interest among 
researchers. Myo-controlled technique uses signals acquired from residual limb 
muscles to control the assistive device [1]. In myo-controlled hand prostheses, the 
signals acquired from users’ muscles is classified to predict hand movement 
intention. Then the predicted movement will be used to control the artificial hand. 
Although myo-controlled devices have been introduced for many years, due to their 
insufficient classification accuracy and robustness, they have not yet been widely 
accepted by a considerable portion of the targeted population [2]. The number and 
variety of hand gestures as well as the complex anatomical configuration of muscles 
in the forearm are the elements that make the classification task particularly 
challenging. 
Traditionally, EMG signals picked up by electrodes placed on the surface of the skin 
(sEMG) were used for pattern recognition of myo-controlled hand prostheses. 
SEMG signals were pre-processed and segmented into windows and signal 
features were calculated over each window. Signal features would then be fed to a 
classifier to be classified [3]. One significant challenge in this approach is choosing 
the right combination of features. Many researchers have tackled this issue by 
analyzing different feature combinations and evaluating their performance in terms 
of accuracy, time efficiency and robustness [3].  
Recently, a rising attention has been given to deep learning approaches, originally 
applied to image recognition. For hand gesture recognition using EMG signals, 
shifting the methodology from feature engineering to feature learning [4, 5]. Although 
the approach is different, the goals remain the same: improving accuracy, time 
efficiency and robustness of classification. An important factor when using deep 
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learning algorithms is that obtaining accurate results is highly dependent on the size 
of the training database [5].  
One of the major problems in deep learning which this thesis is trying to address is 
the fact that, creating a sufficiently large and reliable EMG dataset for each 
individual is not practical. Moreover, considering a single subject, due to high inter-
session variability (due to e.g. skin-electrode impedance time variability, and 
changes of the position of the electrodes), it may be, in principle, necessary to create 
a training database at the start of each session. The mentioned problems could 
introduce a serious challenge to the real-life translation of deep learning algorithms 
in myo-controlled hand prostheses. 
To compare the performance of different techniques proposed by researchers 
around the world, the need for a publicly available benchmark dataset was always 
evident. Hence, Atzori in 2014 [6] published a dataset including several hand and 
wrist movements from 78 subjects, called “Ninapro”, which was divided into three 
different subsets based on acquisition system and characteristics of subjects. 
DataBase 2 (DB2), includes three sets of different exercises, one of these, exercise 
B, consists of basic wrist movements and isotonic hand configuration. In this work, 
this dataset (DB2) is targeted for evaluation, and for the comparison of our results 
with classical machine learning [7] and deep learning methods [8, 9] that have been 
tested on the same exercise from Ninapro DB2.  

 

sEMG DATASETS: 
Nearlab Dataset: 
This database includes electrical activities of hand muscles picked up by surface 
electrodes during a series of predefined hand movements. The Nearlab dataset 
includes 11 healthy subjects including 6 male and 5 female participants (age 25±3 
years). The only inclusion criteria were the absence of history of neuro-muscular 
disorders. The data acquisition protocol was approved by the research ethical 
committee of Politecnico di Milano, on October 16th, 2019. All participants had been 
briefed about the experiments and gave informed consent. 
 
A. Acquisition setup 

The experimental setup is composed by a screen for visual cue display, an EMG 
acquisition system, a laptop that receives the acquired signal via USB cable, 
disposable gel-based electrodes and synchronization circuitry. The EMG acquisition 
system used in this project was high-density EMG acquisition system “Porti” from 
TMSi company [10]. The cables used to connect electrodes to the device were 
equipped with active shielding which significantly increased signal to noise ratio. 
The electrodes were passive EMG Ag/AgCl electrodes with conductive gel inside 
them. 10 differential channels were employed in this study (Figure 0-1). The signal 
was sampled at the rate of 2048 Hz.  
A Matlab interface was used both to visualize the acquired signals in real-time and 
to store the data in the PC. The synchronization code was also coded in Matlab. 
The general purpose of electrode placement was to both consider muscle 
anatomies and achieve simplicity in placement. The exact positions of electrodes 
were determined according to SENIAM (Surface EMG for non-invasive assessment 
of muscles) [11]: 6 electrode pairs (corresponding to 6 channels) are placed around 
the upper forearm equally-spaced along the forearm circumference. Each 
differential pair is arranged along the length of the arm with 2cm distance from each 
other. The first electrode pair is placed 3 cm distal to the elbow (medial epicondyle), 
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other 5 are arranged to have same distance with respect to each other using the 
measured forearm circumference. The 4 remaining electrodes pairs are placed 3 
cm distal to the previous electrodes. All these electrodes were placed on the 
dominant hand of the participant. Reference electrode is placed on the back of the 
wrist as suggested by SENIAM directions [11]. Position of electrodes was set by 
simple geometrical directions and not complicated anatomical considerations. 
 

 

Figure 0-1 Electrode positioning 

 
Skin preparation and electrode placement procedures took 20-25 minutes. 
 
B. Acquisition protocol 

Subjects were instructed to perform 8 classes of movement through a video cue 
with random order, having 3 second rest and 2 seconds preparation between 
movements. Figure 0-2 displays classes of movement. Each movement was 
repeated 5 times starting from a specific hand posture. 3 different hand posture were 
defined as following: 
- Round 1: upward starting position, where the palm is faced upward; 
- Round 2: sideway starting position, where the palm is faced medially; 
- Round 3: downward starting position, where the hand palm is faced to ground. 
With these 3 hand positions (upwards, downwards and sideways) each movement 
is repeated for total number of 15 (5x3) times by each subject.  

 

Figure 0-2 Movement classes 

 
 

Flexion Extension Supination Pronation

Hand open Pinch Lateral pinch Grip
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Synchronization: One of the most important aspects of the experiment is the 
synchronization of the acquired signal and the time tags of the movement execution 
cues. This synchronization is crucial to the process of labeling the input signals. In 
order to do so, a trigger input of the acquisition system is utilized. A micro-controller 
board (Arduino board) is used to send a pulse to the trigger channel upon receiving 
the instruction from PC through serial connection. The computer will start the video 
and send the serial command at the same time. Thus, the time of starting the video 
is tagged in the acquired signal by a pulse in the trigger channel.  
 
Observation process: an observer was always monitoring the experiments. His/her 
role was to check the correctness of the movements (according to video cue) and 
record it for future steps of preparing the database with a correct movements 
labelling. Incorrect movements are discarded based on these reports from 
observations at the end of each experimental session, prior to any processing. 
 
Ninapro Dataset: 
In this study, DataBase2 (DB2) [6] consisting of 40 able-body participants from 
Ninapro datasets is used. DB2 is collected using 12 active double–differential 
wireless electrodes with a Delsys Trigno Wireless EMG system [12], which has 2k 
sample/second sample rate. This database includes 3 sets of exercises. The first 
exercise (called exercise B) which includes 17 basic movements of fingers and wrist 
is targeted in this thesis, due to its similarity to movement classes in Nearlab dataset. 
Each movement, which lasts for 5 seconds and is followed by a rest period of 3 
seconds, is repeated 6 times. 
 
PRE-PROCESSING AND DATA SEGMENTATION: 
Filtering and movement onset-detection: 
Raw data collected in Nearlab dataset are filtered using a 10-500Hz band pass filter 
(Butterworth order 4th) and a 50 Hz Notch filter (Butterworth order 2nd) in order to 
remove unwanted signals and power line interference [13]. Filtered data are then 
divided in labeled movement windows using the video cue time markers. Moreover, 
windows are further trimmed using a threshold-based onset detection algorithm. 
Three times of the rest activity obtained by electrodes was used as a threshold to 
determine beginning of movement execution. Furthermore, since the steady-state 
signal of muscles is targeted, a small part (100ms) from the beginning and end of 
windows are removed to eliminate the transient part of the movement signal [1].  
 
Data Segmentation: 
The labeled trimmed windows (after onset detection and transient removal) should 
be further segmented to be fed to network. Considering that for online applications 
window length plus processing time to generate classified control commands should 
be less than 300ms [1], window size of 250ms (512 samples) was selected for this 
project.  

Data augmentation is a necessary step towards increasing the database size in 
order to be used in deep learning methods. As suggested by Côté-Allard et al. [5], 
sliding window approach is the most effective augmentation technique for sEMG 
classification. As a result, windows of 250ms (512 samples) are shifted 62.5ms (128 
samples), creating 187.5ms (384 samples) overlap. 
Thus in the case of traditional classifiers, the features are calculated on windows of 
250ms (512 samples) over 10 channels resulting the input shape of classifier to be: 
number of features x number of channels (e.g. in the case of full feature set 15 x 
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10). And in the case of deep learning methods which uses the raw signal the input 
sample is in the shape of number of data points x number of channels (512 x 10). 

 
TRADITIONAL CLASSIFIERS:  
Feature Selection: 
Based on the recent literature available on feature selection for sEMG classification 
[14, 15, 16] and datasets exploration, 15 features of time and frequency domains 
are used to create 4 feature sets as inputs of classifiers. Features were calculated 
for each movement considering the same preprocessing and segmentation of signal 
presented above. Feature sets are listed in table 0-1: 

Table 0-1 Selected feature sets 
Name FEATURES Number of features 

Time Domain (TD) MAV, ZC, SSC, WL 4 

Improved Time Domain 
(ITD) 

MAV, ZC, SSC, WL, RMS, 
IEMG, HP_A, HP_M, HP_C 

9 

Correlation Based (CB) 
CC1, ZC, SSC, WL , HP_M, 

HP_C and SampEn 
7 

Full dataset (Full) 
MAV, ZC, SSC, WL, HP_A, 

HP_M, HP_C, SampEn, CC1-
4, RMS, IEMG, SKEW 

15 

MAV=Mean Absolute Value, ZC= Zero Crossing, SSC= Slope Sign Change, WL= Waveform Length, 
HP_A/HP_M/HP_C=Hjorth Parameters, SampEn=Sample Entropy, CC1-4=Cepstral Coefficient 
order 4, RMS= Root Mean Square, IEMG=Integrated EMG, SKEW= Skewness 
 
 
Train and test set: 
At this stage, the training data and the testing data should be separated. In each 
hand orientation (upward, downward, sideway) subjects were requested to repeat 
each movement for 5 times. In each round, 2/3 of repetitions of each movement is 
added to training set, while the remaining part is included in testing set. 
Consequently, both training and testing datasets include all hand orientations for 
each movement.  
Outlier removal and scaling (using mean and standard deviation) are the measures 
taken to improve the classifier performance in this study [17]. Testing dataset 
remains intact during outlier removal, while during scaling, it will scale with the 
parameters fitted on the training data. 
 
Classifiers: 
Among most common classifiers, K-Nearest Neighbors (KNN), Support Vector 
Machine (SVM), Multilayer Perceptron (MLP) and Linear Discriminant Analysis 
(LDA) are chosen for this work. In addition to being well-known, these classifiers 
have shown promising results in majority of the research in sEMG classification, 
such as Zhai et al. [7] who used SVM on sEMG spectrograms. 
To optimize the classifiers’ hyper parameters, a grid search was performed. 
Selected hyper-parameters for each classifier are listed in table 0-2. 

Table 0-2 Classifiers and thier selected hyper-parameters 

Classifier Parameter 1 Parameter 2 Parameter 3 Parameter 4 

KNN K: 40 weights: uniform   

MLP 
hidden layers:  

(100) 
Learning rate:  

0.0001 
activation 

function: tanh 
solver: sgd 

SVM Regularization: 1 kernel: linear None gamma: auto 
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LDA solver: svd    

 
DEEP LEARNING METHODS:  
There are 4 deep learning architectures proposed in this thesis, 3 of which are based 
on typical CNN and one is inspired by Residual CNN. All architectures can be 
divided into 2 stages. First stage is an inter-connected network of convolutional 
blocks working as a “feature extractor” and the second stage is consisted of few fully 
connected layers serving as the “classifier”. 
The activation function used in this study is randomized rectified linear (RReLU), 
which was introduced in a recent Kaggle National Data Science Bowl (NDSB) 
competition [18]. To prevent over-fitting, the following 3 pre-cautions have been 
taken: 
Drop out: Srivastava et al. [19] presented dropout technique, in which some random 
neurons with probability of p (e.g., 0.3) are eliminated from hidden layers. As a 
result, complex coadaptation of features between neurons can be prevented during 
training, leading to reduction of over-fitting. 
Batch normalization: Introduced by Ioffe et al. [20], Batch Normalization (BN) was 
targeted to solve the need of low learning rate and careful parameter initialization in 
training of deep neural networks. It is a type of regularization technique, which 
performs input normalization in each training mini-batch. 
Early stopping:  The validation error in each update is monitored. When it reaches 
a minimum, the learner would continue training only for a certain number of 
iterations and then stops the training. Meanwhile, if a new minimum is observed, it 
will restart counting iterations before stopped. This mentioned number of iterations 
is referred to as Patience and is set by user. 
  
1. Cnet2D: This architecture includes 3 convolution blocks (Conv) connected after 
each other constructing the feature extractor stage, followed by 2 fully connected 
blocks (FC) as classifier stage. Each convolutional block consists of a convolution 
layer with 2D filter shape (e.g., first layer’s filter size is (3,13)), BN, RReLU activation 
layer, max pooling and dropout. First fully connected block includes dense layer, 
BN, RReLU and dropout, while the second fully connected block does not include 
dropout. At the end, a Softmax layer has been included to create the output of 
classifier. Adam optimizer [21] is used as optimization method. During training, the 
model with minimum validation (20% of training data is randomly selected as 
validation set) loss is saved and used for testing; this technique is called Model 
Check Point and is used in this and all following networks. Figure 0-3 demonstrates 
the sequence of the layers in Cnet2D. The final output shape in this and other deep 
networks is 8, representing probabilities of the sample belonging to each of the 8 
movement class.  
Cnet2D’s performance is dependent on electrode positioning due to its 2 
dimensional filter shapes. This fact, should be considered when applying this 
network to other databases.  
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Figure 0-3 Architecture of Cnet2D 

 
2. Cnet1D: The architecture of Cnet1D, is similar to that of Cnet2D. However, the 
shape of filter is such that it does not exploit the relations between channels in the 
feature extraction stage (e.g., filter size of first layer is (1,11)). Similar to Cnet2D 
Adam optimizer with same learning rate is used. The architecture of this network is 
the same as Cnet2D depicted in figure 0-3. 
 
3. CnetComb: In this architecture, feature extractor stages of Cnet1D and Cnet2D 
extract the 1D and 2D features then the features would be concatenated and fed to 
one classifier stage similar to the ones used before. The architecture can be seen 
in figure 0-4. 
 

 
 

 

Figure 0-4 Architecture of CnetComb 

 
 

Classifier Softmax: input shape(50)

FC Block 2: input shape(300)

FC Block 1: input shape(5120)

Conv Block 3: input shape(10,32,48)

Conv Block 2: input shape(10,128,32)

Conv Block 1: input shape(10,512,1)

Conv Block 3 input shape(10,32,48)

Conv Block 2 input shape(10,128,32)

Conv Block 1 input shape(10,512,1)

Cnet2D

Conv Block 3 input shape(10,32,48)

Conv Block 2 input shape(10,128,32)

Conv Block 1 input shape(10,512,1)

Cnet1D

Classifier Softmax input(50)

FC Block 2 input shape(300)

FC Block 1 input shape(10240)

Concatenate
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4. RESnet: 
This architecture is inspired by Residual Neural Network [22]. It includes skip 
connections to transfer the influence of deeper layers into shallower ones. The 
feature extractor stage of this proposed network has two branches. The left branch 
is consisted of 2 convolutional blocks, followed by a single convolutional layer. Right 
branch includes one convolutional block followed by a single convolutional layer. 
The output of the two single convolutional layers of two branches are summed 
together and the result is given to a batch normalization (BN) layer, RRelu, average 
pooling layer and dropout (“referred to as β block”). A flatten layer is used to 
conclude the feature extractor stage. At the end, classifier stage is added. The 
classifier stage is 2 fully connected blocks followed by a Softmax layer, similar to 
previous networks. Figure 0-5 demonstrates the architecture of this network. 
 

 
 

 

Figure 0-5 Architecture of RESnet 
 
 
TRANSFER LEARNING: 
In this study, TL is used to leverage the shared information among different subjects 
to obtain bigger training dataset to train deep neural networks. There are two 
transfer learning schemes designed in this study. 
 
Method I: Freeze & fine-tune 
The idea is to use a pre-trained network (trained in the source domain), remove the 
classifier stage and attach a new adapted (according to target domain) classifier 
stage. Finally, the network should be re-trained in the target domain. The process 

Conv layer input shape(10,32,48)

Conv Block 2 input shape(10,128,32)

Conv Block 1 input shape(10,512,1)

Input

Conv layer input shape(10,32,48)

Conv Block 3 input shape(10,512,32)

Input

Classifier Softmax input(50)

FC Block 2 input(150)

FC Block 1 input(5120)

β  block, input shape(10,32,64)

+
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of re-training is done by freezing the deeper layers’ weights and fine-tuning the 
shallower layers. Fine-tuning can be achieved by initializing with previous weights 
and choosing very low learning rates. 
This technique is employed on the deep learning network with highest average 
accuracy. First, network is pre-trained with the data of 5 selected subjects with the 
highest single subject accuracy except the target subject. Afterwards, the first 2 
convolutional blocks (except for Batch Normalization layer) are frozen and other 
layers (including the last convolutional block plus all the fully connected blocks) are 
fine-tuned for targeted subject using the subject’s database. Figure 0-6 displays the 
architecture of network. 
 

 

Figure 0-6 Architecture of Freeze & fine-tune method 

 
Method II: Parallel networks 
In this method, two networks are used in parallel. One is trained on the 5 selected 
subjects with the highest single subject accuracy except the target subject (referred 
to as “Source Network”), while the other is trained on the target subject’s database 
(referred to as “Target Network”). The features extracted by the mentioned networks 
would be concatenated, while their classifier stages would be disregarded and a 
new classifier stage is added after feature layer. Finally, the two parallel feature 
extractors would be frozen and the classifier stage would be trained using the target 
subject’s database (with random initialization). Figure 0-7 illustrates the final model. 
 

 

Figure 0-7 Architecture of Parallel networks method 

 
EXPERIMENTAL RESULTS: 
Training and testing databases: 

In order to separate database into training and testing datasets, 3 out of 5 repetitions 
(~2/3 of repetitions) in the case of Nearlab dataset and 4 out of 6 in the case of 
Ninapro DB2 are considered for training and the remaining for test. 
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Runtime analysis: 
An estimation of processing time is needed when approaching an online 
classification problem. Utilizing a 64-bit Windows based computer, with a 6 GB RAM 
and an Intel® Core™ i5 CPU, the required time for extracting each individual feature 
and also proposed feature sets is reported in table 0-3. 

Table 0-3 Extraction time (ms) of each feature over all channels 
Feature MAV ZC SSC WL HP_A HP_M 

Time (ms) 7.925x10-2 8.927 x10-2 6.776 x10-2 9.979 x10-2 8.788 x10-2 1.833 x10-1 

 
Feature HP_C SampEn CCs RMS IEMG Skew 

Time (ms) 2.558 x10-1 147.9 125.3 
9.5456 
x10-2 

3.1459 x 
10-2 

1.3 

 
Feature sets TD ITD CB Full 

Time (ms) ~0.5 ~1 ~270 ~270 

 
According to table 0-3, extracting Full feature set requires almost 270ms (sum of all 
calculation times) while Improved Time Domain (ITD) feature set takes only 1ms. 
Hence, comparing to Full, ITD feature set can be regarded as fast calculating feature 
set. 
In table 0-4 prediction time of each classification method (using Full feature set) for 
one sample is listed. These delays should be summed up with feature set calculation 
times. Table 0-5 reports the prediction time for deep learning methods. Prediction 
time was acquired by averaging the time needed for predicting 1000 samples. This 
process for traditional classifiers was performed on the mentioned CPU. However, 
for deep learning methods a Tesla P100-PCIE-16GB GPU was used. 

Table 0-4 Prediction time (ms) of each traditional classifier using Full feature set (should 
be added to feature set calculation time) 

Classifier KNN LDA MLP SVM 

Time (ms) 3.554 0.801 1.021 0.879 

Table 0-5 Prediction time (ms) of all deep learning networks 
Classifier Cnet1D Cnet2D CnetComb RESnet 

Time (ms) 4.81 4.97 6.34 5.16 

 
Performance analysis: 

The results of all the traditional, proposed deep learning and transfer learning 
approaches, tested on Nearlab dataset are reported in the table 0-6. Moreover, 
results of traditional and deep learning methods on Ninapro DB2 dataset is listed in 
table 0-7. The results are average accuracy over all subjects included in each 
dataset (11 subjects in Nearlab dataset and 40 in Ninapro DB2). The highest 
average accuracy in each classification family is shown in bold format. It should be 
considered that the number of movement classes in Nearlab database is 8 and in 
Ninapro DB2 exercise B is 17. The transfer learning approaches applied on Nearlab 
dataset used Cnet1D architecture as base model since Cnet1D obtained the highest 
accuracy (without transfer learning) when testes on Nearlab dataset.  
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Table 0-6 Classification results on Nearlab dataset 

Classification family Classifier(feature set) 
Average accuracy 

(%) 
Standard deviation 

(%) 

Traditional machine 
learning 

KNN (ITD) 89.20 4.35 

LDA (Full) 92.55 4.23 

MLP (ITD) 91.45 2.97 

SVM (ITD) 91.72 3.60 

Deep learning 

Cnet1D 93.23 2.77 

Cnet2D 92.81 3.22 

CnetComb 92.41 3.26 

RESnet 93.20 3.42 

Transfer learning 
(using Cnet1D) 

Freeze & fine-tune 93.27 3.69 

Parallel networks 93.48 2.86 

Table 0-7 Classification results on Ninapro DB2 dataset 

Classification family Classifier(feature set) 
Average accuracy 

(%) 
Standard deviation 

(%) 

Traditional machine 
learning 

KNN (Full) 75.71 6.52 

LDA (Full) 79.95 5.73 

MLP (Full) 80.97 5.44 

SVM (Full) 79.50 6.25 

Deep learning 

Cnet1D 77.69 6.54 

Cnet2D 80.34 6.30 

CnetComb 79.93 5.98 

 RESnet 77.03 7.09 

 
According to table 0-6, comparing average accuracy of traditional classifiers and 
deep learning methods shows that Cnet1D has highest average accuracy 
specifically comparing to classifiers using time-domain features which are fast in 
calculation (KNN, MLP and SVM). In order to compare Cnet1D with LDA, in addition 
to table 0-6, prediction times listed in table 0-3 to 0-5 must be considered. As table 
0-6 points out, Cnet1D has higher average accuracy than LDA. Also, LDA with Full 
feature set needs almost 270ms for producing a single prediction, which is much 
slower than Cnet1D that produces single prediction in almost 5ms. Hence, both in 
terms of calculation time and average accuracy Cnet1D outperforms LDA. It is worth 
to mention that LDA with ITD feature set (much faster than LDA with Full feature 
set) has average accuracy of 91.62%. Also from table 0-6 it can be seen that 
applying transfer learning on Cnet1D has improved the classification accuracy to 
93.48%, at the cost of increased training time.  
Analyzing accuracy/loss curves obtained during training of Ninapro DB2 (table 0-7) 
reveals that the proposed deep networks are possibly over-fitting on the available 
data and thus reducing the performance comparing to machine learning methods. 
The mentioned accuracy/loss curves demonstrated very low correlation between 
training accuracy/loss and testing accuracy/loss (high offset between the two plus 
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high fluctuations in testing accuracy when there is low fluctuations on training 
accuracy). This could be due to the fact that deep learning methods are designed 
for Nearlab database with much higher samples per movement class ratio.  
Table 0-7 indicates that Cnet2D obtained the highest average accuracy comparing 
to other networks on Ninapro DB2 dataset. The success of 2D filter shapes here, 
may be related to the electrode positions in Ninapro database which differs from 
Nearlab dataset. 
 
Conclusion and feature work: 
In this thesis, multiple pattern recognition techniques have been designed, 
implemented and tested in order to classify 8 hand movements using Surface EMG 
signals. Classical machine learning methods along with deep learning techniques 
are employed for this task. To tackle the problem of training deep networks with 
limited databases, transfer learning approach has been applied.  
A comprehensive comparison between classical machine learning methods and 
deep learning methods has been conducted. In addition, the feasibility of employing 
such methods is investigated using runtime analysis. It has been shown that when 
considering fast algorithms (using time domain features), deep learning algorithms 
outperform classical machine learning algorithms with no significant increase of cost 
in terms of time consumption.  
Transfer learning approach has been also deployed to answer the following 
question: could knowledge learned from other subjects’ datasets be useful to train 
a classifier for a given subject? To this aim, two methods have been designed and 
implemented to integrate previous subjects’ knowledge into the classifier for the 
targeted subject. It has been demonstrated that the proposed transfer learning 
algorithms are able to improve performance in terms of accuracy. 
To compare the results, the results published by studies on Ninapro DB2 exercise 
B for classifying hand movement gestures are reported in table 0-8. Table 0-8 
compares the related research works with the obtained accuracies with best 
methods used in this study. MLP with Full feature set and Cnet2D are reported, 
since these two algorithms displayed the highest accuracy among the proposed 
classical machine learning and deep learning algorithms respectively. According to 
this table, simple classical approaches (MLP) used in this study shows comparable 
results with respect to state of the art studies. Zhai et al. [7] classified spectrograms 
of DB2 sEMG signals combined with PCA for dimension reduction. They used SVM 
as classifier and obtained 75.74% accuracy on exercise B. Later, they improved 
their work [8] by proposing a self-recalibrating CNN to eliminate the need of user 
training over time. The classification accuracy of their new method on Ninapro DB2 
was 82.22%, when tested on exercise B. Moreover, in 2019 Huang et al. [9] used a 
CNN-LSTM network in order to fully capture the spatial and temporal features of 
sEMG spectrograms, the resulting accuracy on DB2 exercise B was 80.93%. 

Table 0-8 Classification accuracy (%) comparison with related work over Ninapro DB2 
 Classification method Accuracy (%) 

Related work Spectrogram with SVM [7] 75.74 

Spectrogram with CNN [8] 82.22 

Spectrogram with CNN and LSTM [9] 80.93 

This study MLP with Full feature set 80.97 
Cnet2D 80.34 

 
In future studies, probabilities provided by output of Softmax layer can be used to 
assign each sample with two movement classes instead of one. For example, a 
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classifier trained for pinch and wrist rotation target classes could assign pinch + wrist 
rotation (similar to holding a key and rotating it in the lock) along with single classes. 
One other aspect that could be investigated in future is to test the proposed networks 
in an online classification setting while providing visual feedback representing the 
output of the classifier to the user. 
Other transfer learning algorithms could be explored in future work. An image 
representation of sEMG signal such as Spectrograms could be used as input of 
classifiers. In this way, in a transfer learning framework the strong pre-trained image 
classifiers could be leveraged. Another example can be creating several classifiers 
trained on other subjects EMG data and use a voting procedure to classify data from 
the target subject. 
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1 Introduction 

1.1 Thesis outline 

This thesis is arranged in 6 chapters. The first chapter starts with defining the 
problem addressed in this work and the goals of the thesis. Next, it provides the 
necessary scientific background relevant to the context of this project. The 
background includes the origin of EMG signal, signal acquisition methods, a review 
of myoelectric prostheses, well-known classification algorithms, transfer learning 
technique and other relevant theoretical concepts. First chapter ends by presenting 
state of the art and recent advances in hand gesture recognition using sEMG 
signals. 
The second chapter thoroughly discusses the methods and algorithms used in this 
study. To start, all the technical details of how the custom EMG database was 
created is reported. Here, the participant population, experimental protocol, 
electrode positioning, hardware and software used in the experiments are covered. 
Moving on, it introduces all the pattern recognition algorithms used in this study, 
covering traditional machine learning, deep learning and transfer learning 
approaches. Chapters 3 and 4 are dedicated to evaluation of all the methods that 
were introduced in second chapter. Chapter 3 evaluates classical machine learning 
algorithms, chapter 4 covers deep learning and transfer learning approaches. 
Chapter 5, introduces the graphical user interface designed in this thesis for 
simulating online classification schemes. Chapter 6 discusses the obtained results 
throughout this work, conclusions and suggestions for possible future work in the 
continuation of this thesis work. 
 

1.2 Problem statement 

For people with upper limb disabilities, independently performing daily tasks that 
require hand function such as holding objects, opening/closing doors and eating 
meals is a major challenge. For this population, the use of an assistive device 
targeting in particular the hand could be beneficial. According to the type of 
disability, this device can be a prosthesis (in the case of replacing a missing limb) 
or an orthosis (in the case of supporting an existing limb). Among different kinds of 
hand prosthesis, myo-controlled hand prosthesis has gained rising interest among 
researchers. Myo-controlled technique uses signals acquired from limb muscles to 
control the assistive device [1]. In myo-controlled hand prostheses, the signals 
acquired from users’ muscles is classified to predict hand movement intention. Then 
the predicted movement will be used to control the artificial hand. Although myo-
controlled devices have been introduced for many years, due to their insufficient 
classification accuracy and robustness, they have not yet been accepted by a 
considerable portion of the targeted population [2]. 
Traditionally, EMG signals were pre-processed to remove unwanted signals. Then 
signal is segmented into windows and signal features were calculated over each 
window. Signal features would then be fed to a classifier to be classified [3]. One 
significant challenge, which is present to this day, is choosing the right combination 
of features. Many researchers have tackled this issue by analyzing different feature 
combinations and evaluating their performance in terms of accuracy, time efficiency 
and robustness [3].  
Recently, a rising attention has been given to deep learning approaches for hand 
gesture recognition using EMG signals, shifting the methodology from feature 
engineering to feature learning [4, 5]. Although the approach is different, the goals 
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remain the same: improving accuracy, time efficiency and robustness. An important 
factor when using deep learning algorithms is that obtaining accurate results is 
highly dependent on the size of the training database [5].  
One of the major problems in deep learning which this thesis is trying to address is 
the fact that, creating a sufficiently large EMG dataset for each individual is not 
practical. Moreover, considering a single subject, due to high inter-session 
variability, it may be necessary to create a training database at the start of each 
session. The mentioned problems could introduce a serious challenge to the real 
life application of deep learning algorithms in myo-controlled hand prostheses. 
 

1.3 Aim of the thesis 

The aim of this thesis is to work towards an accurate and robust hand gesture 
recognition algorithm for myo-controlled upper limb assistive devices. In addition, 
the proposed algorithm should be practical and feasible for real life applications.  
Finally, in order to get as close as possible to real-life applications, we aim to 
implement an online classification software to be used by myo-controlled prostheses 
in real-time. 
To this aim, the contribution of this work is twofold: I) develop novel deep network 
architectures specific for target application and II) use different transfer learning 
approaches with limited amount of data available for each participant. Transfer 
learning is employed as a possible solution to the problem of large databases 
necessary for training deep networks. 
Additionally, an upper limb EMG database has been created through a series of 
experimental sessions. This database includes electrical activities of hand muscles 
picked up by surface electrodes during a series of predefined hand movements. The 
proposed approaches are tested on this custom database and also on a publicly 
available EMG dataset (Ninapro database 2) to provide results comparable with the 
state of art. A comparison has also been carried out with well-known classical hand 
gesture recognition algorithms. 
In the end, a program simulating online classification has been designed to display 
the real-time implementation of a hand gesture recognition algorithm in a myo-
controlled prosthesis. 
 

1.4 Theoretical foundation 

In order to fully understand hand gesture classification, necessary topics are 
covered in this section. Along with electromyogram signal and myo-controlled hand 
prosthesis, the definition and terminology of methods utilized in this work are 
discussed in order to familiarize the reader with essential concepts. 

1.4.1 Electromyogram signal 

Motor neurons are neuronal cells located in the central nervous system (CNS) 
controlling a variety of downstream targets. According to their location, motor 
neurons are classified as (i) upper motor neurons, that originate from the cerebral 
cortex and (ii) lower motor neurons, that are located in the brainstem and spinal 
cord. Alpha (α) motor neuron is a type of lower motor neuron that innervate skeletal 
muscles responsible for movements, and which is the key of muscle contraction 
[23]. 
The human motor control system is organized in a hierarchical way and its smallest 
functional unit is the motor unit. A motor unit consists of an α-motor neuron in the 
spinal cord and the muscle fibers it innervates, as indicated in Figure 1-1 [24].  
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Figure 1-1 Motor unit and its components [24] 

 
Muscle contraction is initiated by activation of the lower motor neuron. When an 
action potential is generated in motor neuron and is propagated through its axon, it  
produces an action potential in muscle fiber that is connected to it. Repeated 
activation of lower motor neuron, produces trains of action potentials that 
propagates along the muscle fiber membrane and then contracts the muscle [13, 
25]. This electrical activity of the muscle during contraction and force production is 
called electromyographic (EMG) signal. 
EMG could be collected by either I) surface electrodes or II) needle electrodes [26]. 
Figure 1-2 illustrates the two categories.  
 

 

Figure 1-2 Needle electrode (right) (https://www.ambu.com/neurology/emg-
electrodes/product/ambu-neuroline-concentric) and surface electrode (left) (https://bio-
medical.com/covidien-kendall-disposable-surface-emg-ecg-ekg-electrodes-1-3-8-35mm-

50pkg.html) 

 
Surface electrodes are applied on the surface of the skin; hence, they can’t target 
the activity of a single muscle fiber. On the other hand, needle electrodes, penetrate 
the skin. Since they are inserted into the contracting muscle, they are able to record 
MUAPs. However, since surface electrodes are non-invasive, they are the most 
common method of EMG recording [26,24].  
A sample surface EMG signal is shown in Figure 1-3. The amplitude of sEMG signal 
ranges from µV to low mV (0-10 mV peak to peak) depending on the muscle types 
and conditions during the recording [27]. The factors causing sEMG signal changes 
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are electrode re-positioning, changes in skin electrode impedance (e.g. sweating), 
changes in relative position of electrode with respect to muscle fibers [2]. The most 
used frequency band of EMG signal is between 0 to 500 Hz, considering that lower 
frequencies (0-20 Hz) are often disturbed by noises [11]. The main sources of this 
noise are motion artifacts, electrical noises from electrical components inside the 
circuitry and quasi-random nature of the firing rate of MUs [13]. 
 

 

Figure 1-3 A sample of surface EMG signal 

 

1.4.2 Myoelectric prosthesis 

Considering the application of EMG signals in improving the quality of life of people 
with hand amputation, the focus of this part is on hand prosthetic. These assistive 
devices are categorized in passive and active prostheses. In passive prosthesis, the 
force to control the grasping mechanism is applied externally, for example, by the 
functional hand, in Figure 1-4 an example is shown. In active prostheses, this force 
is applied internally, for example, by an electric actuator or a body-powered cable 
[33]. Active prostheses themselves are divided in two groups, depending on the 
means of generating movement in the joints: body-powered and electrically 
powered. In the body-powered prostheses, voluntary movements of shoulders 
and/or limb stump, controls the movement of prosthetic hand attachment using a 
body harness and a cable system [28], an example is demonstrated in Figure 1-5. 
On the other hand, electrically powered hand prosthesis employs electrical 
actuators inside each joint to create motion, a sample of this prosthesis is shown in 
Figure 1-6.  
 

 

Figure 1-4 An example of passive prosthetic hand (http://rehabindy0.tripod.com/be-
passive.html) 

http://rehabindy0.tripod.com/be-passive.html
http://rehabindy0.tripod.com/be-passive.html
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Figure 1-5 An example of body-powered ahnd prosthesis (www.trsprosthetics.com/) 

 

 

Figure 1-6 An example of how the electonic powere hand prosthesis is actuated 
(https://www.rehab.research.va.gov) 

 
The EMG signal acquired from the muscle of the functional part of the user’s hand 
is used to detect the subject’s intention and control the electrical actuators. The 
prostheses which use such control mechanism are called myoelectric prostheses. 
Myoelectric prostheses offer advantages in many aspects but the most important 
one is that they operate based on user’s intention providing a natural interface 
between user and assistive device.  For this reason, myoelectric prosthesis are 
targeted in this study. 
Controlling schemes of myoelectric hand prostheses can be split into two 
categories: pattern recognition- and non-pattern recognition-based. In pattern 
recognition group, the pattern produced in EMG signals during muscle contraction 
or limb movement is used to detect the user’s intention and control the prosthetic 
hand. A classification module classifies specific patterns into specific movement 
categories. Based on classification performance, this method could offer several 
function classes. In contrast, non-pattern recognition methods (e.g. on/off 
controllers and/or finite state machines) provide as output limited and predefined 
control commands based on a sequence of muscle contractions [1].  
Figure 1-7 illustrates a typical pattern recognition based control system. The process 
starts with picking up electrical activity from the skin of the user. Then the signal is 
prepared before digitalization. A typical analog preparation includes amplification, 
filtering and sampling. At this point, the signal to noise ratio is increased as much as 
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possible in the analog signal. The prepared signal is then digitalized to be processed 
by the pattern recognition algorithm whether its applied by a computer or an 
embedded system. Pattern recognition algorithms generally start by windowing the 
input signal, then the features are calculated for each window and the classier 
categorizes the input in predefined groups. Using the result of classifier, a controller 
activates the relevant physical (e.g. prosthesis) or virtual (in the case of computer 
interfaces) actuator. Adaptive systems also include a feedback that uses the 
outcome of the system to modify the controller. 
 

 

Figure 1-7 Diagram of typical pattern recognition-based hand prosthesis [1] 

 

1.4.3 Traditional classifiers 

Generally, pattern recognition can be divided into two steps: finding distinct 
characteristics of signal (feature extraction) and categorize signals into different 
groups (classification) [29]. 
To construct the feature vector, n unique characteristics of the signal must be 
identified, that fully conveys the information included in the signal [30], some 
examples will be investigated in section 2.2.3. 
Classifiers fall into the supervised category of machine learning algorithms. As 
opposed to non-supervised techniques, supervised methods use labeled datasets 
to learn in order to solve the problem. In order to do so, researchers divide the 
available labeled datasets in the format of {(input, label)} into training and testing 
datasets. The training set will be used by the classifier to learn to improve its 
performance and the unseen test datasets is used to evaluate the final classification 
performance. The learning procedure starts with calculating a loss function (error) 
which represents the error between the output of the classifier and the desired 
output (label). The loss value calculated over each sample is then used to modify 
the parameters of classifier in order to decrease the total error value in the training 
dataset. 
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In past years, various machine learning classification techniques have been 
proposed for the hand gesture recognition based on sEMG signal. The most 
promising approaches are hereby introduced to the reader. 
 
K-nearest neighbor: One of the simplest classification procedures is k-nearest-
neighbor (K-NN). For this network no training procedure is required. This supervised 
method assigns the class of a new sample based on its K-th nearest samples. The 
most repeated class among its neighbors would be the predicted class for that new 
sample [31]. The whole algorithm is shown in Figure 1-8. 
 

 

Figure 1-8 K-NN classification algorithm for samples with 2 features and K=3 

 
The hyper-parameters in this method can be number of considered neighbors (K) 
and the distance measure. These parameters are not learnable and are chosen by 
the researcher by testing the algorithm performance on unseen labeled data. In the 
case of choosing a small number of neighbors, the noise will have a higher influence 
on the result, and a large number of neighbors make it computationally expensive. 
As for distance measures, Euclidean, Manhattan and Minkowski are the most 
popular ones.  
 
Linear discriminant analysis: Discriminant analysis (DA) is a classification technique 
that uses the features of the new sample to calculate the joint probabilities of that 
sample with the training groups (posterior probability). Then it will assign the new 
sample to the group with maximum joint probability. In the linear discriminant 
analysis (LDA) each category is assumed to have a multivariate normal density 
(prior probability) with a shared covariance matrix. 
Consider sample x with d number of features (𝒙 = [𝑥1, 𝑥2,..., 𝑥𝑑]), using Bayes’ rule 

for each class k (total numbers of classes is C) we have prior probability (𝑃(𝒙|𝑦 = 𝑘)) 
and posterior probability (𝑃(𝑦 = 𝑘|𝒙)) as: 
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𝑃(𝒙|𝑦 = 𝑘) =  
1

(2𝜋)𝑑/2|𝑆𝑘|1/2 exp (−(𝒙 − 𝝁𝑘)𝑇𝑆𝑘
−1(𝒙 − 𝝁𝑘))    (1.2) 

𝑃(𝑦 = 𝑘|𝒙) =  
𝑃(𝒙|𝑦 = 𝑘) 𝑃(𝑦=𝑘)

∑ 𝑃(𝒙|𝑦 = 𝑗)𝑃(𝑦=𝑗)𝐶
𝑗

                     (1.3) 

 
Where 𝑆𝑘 is the covariance matrix and 𝝁𝑘 = [𝜇1𝑑, 𝜇2𝑑,..., 𝜇𝑘𝑑] is the mean values of 

𝒙 within k-th class. As mentioned before, covariance matrices of all groups are equal 
to 𝑆𝑘 = 𝑆. Using log function and replacing (1.2) in (1.3), we obtain a linear function 
as in (1.4): 
 

𝑙𝑜𝑔𝑃(𝑦 = 𝑘|𝒙) =  −(𝒙 − 𝝁𝑘)𝑇𝑆𝑘
−1(𝒙 − 𝝁𝑘) + 𝑙𝑜𝑔𝑃(𝑦 = 𝑘) + 𝐶𝑠𝑡       (1.4) 

 

Where the constant term 𝐶𝑠𝑡 corresponds to the denominator of 𝑃(𝑦 = 𝑘|𝒙), in 
addition to other constant terms from normal distribution. The predicted class is the 
one with maximum log-posterior [32].  
 
Support Vector Machine: The original support vector machine (SVM) is a binary 
classifier able to define a hyperplane in a high-dimensional space to separate two 
classes and assign the new sample to one of them. 

Let d-dimensional training sample 𝒙𝑖 (i = 1, 2, 3, ... n, where n is the number of 
samples) belong to one of the two classes 1 or 2 and the associated labels be 1 

(𝑦𝑖 = +1) and -1 (𝑦𝑖 = −1), respectively. For linearly separable data, a linear 
separating hyperplane (f(x)) can be defined as: 
 

𝑓(𝒙) = 𝒘 ∙ 𝒙 + 𝑏 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏 = 0𝑑
𝑖=1             (1.5) 

 

Where the weight vector (𝒘) has the same dimension as the sample (𝒙) and b is an 
additional scalar parameter. Considering the 𝑠𝑔𝑛(𝑓(𝒙)) as decision function, the 
following constraints must be met by hyperplane: 
 

𝑦𝑖(𝒙𝑖 ∙ 𝒘 + 𝑏) − 1 ≥ 0 ⟺  {
𝑓(𝒙𝑖) = 𝒘 ∙ 𝒙𝑖 + 𝑏 ≥ 1              𝑦𝑖 = +1

𝑓(𝒙𝑖) = 𝒘 ∙ 𝒙𝑖 + 𝑏 ≤  −1          𝑦𝑖 = −1
         (1.6) 

 
The optimal hyperplane must be defined in a way to maximize the margin of 

separation (𝛿). The margin is equal to minimum distance between training points 
and the separating hyperplane. The optimal separating line for a 2-D space is shown 
in Figure 1-9.  

 

Figure 1-9 The optimal seperating line and maximum margin in a 2-D input space [17] 

 



 

31/111  

Only a number of training data are at the minimum distance from the hyperplane 
and thus define the hyperplane; they are called support vectors (SV). The number 
of SVs are lower than number of training data which makes this method 
considerably fast.  
For non-separable cases (few points placed on the wrong sides), taking into account 

the noise with slack variables 𝜉𝑖 and error penalty 𝜆, optimal hyperplane must 
minimize the following optimization problem: 
 

𝜙(𝒘. 𝜉) =
1

2
(𝒘 ∙ 𝒘) + 𝜆(∑ 𝜉𝑖

𝑛
𝑖=1 )     (1.7) 

 
Subject to: 
 

𝑦𝑖(𝒙𝑖 ∙ 𝒘 + 𝑏) − 1 ≥  𝜉𝑖.            𝑖 = 1.2. ⋯ . 𝑛        (1.8) 
 

Where 𝜉𝑖 is measuring the distance between the margin and the sample 𝒙𝑖 placed 
on the wrong side of the margin. 
An advantage of this method is that the input space can be mapped into a higher 
dimensional space (called feature space) using a kernel function. The function of 
kernel is to take data as input and transform it into the required form. It means that 
with a kernel function this method can produce features from input data. In cases 
that data in their original space is not linearly separable this transformation can 
result in linear separation in feature space. 
In a multi-class problem, multiple binary classifiers are used to categorize one class 
from another, ignoring all others (one versus one), then each input is classified by 
all the binary classifiers and the final classification result is driven from approaches 
like majority voting [34]. 
 

1.4.4 Artificial neural network 

Artificial neural networks (ANN) were designed to simulate human central nervous 
system. The basic component of nervous system is neuron. A neuron is mainly 
consisted of cell body (processor), dendrite (input) and axon (output). Neurons are 
connected to each other through dendrites and axons, the junctions of dendrites 
and axons are called synapses. A dendrite can be connected to multiple axons of 
different neurons which makes the interconnections between neurons very complex. 
When the sum of signals received from other neurons reaches a certain threshold, 
a pulse will be generated as output and propagates through axon in a given neuron 
[30]. 
In ANN, nodes and arcs resemble cell bodies and their connections through dendrite 
and axons, respectively. Each arc links two nodes and is associated with a weight. 
A node produces an output by applying an activation function on the received input 
from other nodes. Inputs from other nodes are adjusted by the weight of the arc that 
linked these two nodes [17]. 
The first artificial neuron model was proposed by McCulloch and Pitts in 1943 [35], 
who used a sign function as activation function, resulting in a binary output. In 1957, 
Rosenbaltt [36] developed a neural network with only one neuron, called perceptron 
which is depicted in Figure 1-10 and can be used for linearly separable problems. 
Output value of this network is the predicted class for the input sample. The 
parameters of this network are the weights associated to each input feature and the 
bias ϑ. These parameters should be learned during training [17]. The training 
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procedure again takes place using the training set and optimizing the parameters to 
reduce loss function. 
 

 

Figure 1-10 Operating model of perceptron network [17] 

 

Assuming the parameters (w1,…, wn and 𝜗) are known, the predicted output of each 
n-dimensional sample is calculated by applying activation function on weighted 
summation of input features subtracting the bias (threshold): 
 

𝑓(𝒙) = 𝑠𝑔𝑛(𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 − 𝜗) = 𝑔(𝒘′𝒙 − 𝜗 )         (1.9) 
 
In this binary classification case, the prediction error which is the difference between 
desired value (target) and the predicted value, can be obtained by [17]: 
 

휀 = 𝑦 − 𝑓(𝒙)                          (1.10) 
 
For an incorrect output, this error is non-zero. Network should be able to learn from 
these mistakes. The training procedure is an iterative algorithm based on the 
prediction error, trying to minimize the error by modifying weights after each training 
sample following the so-called perceptron rule. 
While perceptron rule is only applicable with sign activation functions, delta rule is 
applicable for perceptron network with generic activation functions like sigmoid. 
Delta rule performs minimization of the mean squared error between the target and 
predicted value. The error function, also called loss/cost function, can be seen in 
equation (1.11): 
 

𝐸(𝒘) =  
1

2
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑡 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
𝑡 )2𝑙

𝑡=1                    (1.11) 

 
Where l is the number of training samples and t is a training cycle (epoch) index. 
Weights are adjusted in the opposite direction of the gradient of error function after 
each iteration (gradient descent method) [30]: 
 

𝒘𝑡+1 =  𝒘𝑡 − 𝜂
𝜕𝐸(𝒘)

𝜕𝒘
                (1.12) 

 

The updated value of the weight is 𝑤𝑡+1, the current value is 𝑤𝑡 and 𝜂 is the gain 
which controlls convergance rate (learning rate) and it’s common range is between 
0.1 to 1.0 [30]. 
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Multilayer perceptron (MLP): As mentioned before, the single perceptron was only 
applicable for linearly separable populations. However, a multilayer perceptron with 
a nonlinear activation function can be employed to solve the nonlinearly separable 
problems [30]. The most common non-linear activation functions are sigmoid (also 
called logistic function), hyperbolic tangent, Softmax (only for output layer) and 
rectified linear unit (ReLU). A multilayer perceptron consists of an input layer, an 
output layer and one or more layers in between, called hidden layers. In Figure 1-
11 a three-layer network with one hidden layer can be seen. 
 

 

Figure 1-11 Multilayer network [30] 

 
The learning rule for MLP network is called backpropagation which permits to train 
networks with more than one hidden layers. As always, the goal of learning is to 
minimize the total loss function. Calculating the error in output nodes is feasible 
since the target value is given. However, in the case of hidden nodes, there is no 
defined desired value, hence the error cannot be calculated [30]. 
Backpropagation has two steps at each iteration. First, given an input sample, the 
error between target value and output value is calculated. Second, layer by layer 
error is back-propagated working backwards from output layer through hidden 
layers, and to input layer following the backpropagation rule. At this point, the back-
propagated errors can be used to adjust the weights in hidden and output layers. 
This process is repeated until the network learns to produce the correct output. 
 
Softmax loss function: In case of multi-class problems (only one class can be 
chosen between all classes), the activation function of output nodes is usually 
Softmax. Softmax produces a number in range of (0,1) for each node’s output, in a 
way that outputs of all nodes add up to 1. In these cases, instead of mean squared 
error, other types of loss functions are employed such as cross-entropy. Categorical 
cross-entropy (also called Softmax loss) is a cross-entropy loss function applied to 
the output of Softmax activation, as shown in Figure 1-12. [37]. 
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Figure 1-12 categorical cross-entropy is Softmax plus cross-entropy [37] 

 
Considering having C number of classes (equal to number of output nodes), s is a 
vector with C dimensions and is the output of network. The target vector is presented 
as t. If only one class is supposed to be chosen between C classes, target vector 

will only have one non-zero element for 𝑖 = 𝑝. In this way, the cross-entropy (CE) 
can be re-written as in (1.13) [37]:  
 

𝐶𝐸 =  − log(
𝑒𝑠𝑝

∑ 𝑒
𝑠𝑗𝐶

𝑗

)                   (1.13) 

 
Optimization: In order to minimize the total loss function, an optimizer must define 
how to update the network’s parameters. Usually with Softmax loss, some type of 
stochastic gradient descent (SGD) is employed [38]. SGD uses the gradient of loss 
function to update the weights, inspired by perceptron rule. Adam is similar to SGD 
in the sense that it has stochastic nature, but it can automatically update parameters 
based on adaptive estimates of lower-order moments [21, 38]. Other recently 
introduced optimizers are RMSprop and AdaGrad, the details of which does not fit 
in the context of this work. 
 

1.4.5 Convolutional neural network 

Convolutional neural networks (CNNs) are a type of ANNs but in contrast to fully 
connected networks, they are sparsely connected. CNNs are specially interesting 
for researchers because they don’t require prior feature engineering due to the fact 
that they have feature learning capability embedded in their architecture [39].  
The architecture of CNN was inspired by biological knowledge of human’s visual 
system. Specifically, findings about alternating layers of simple and complex cells 
by Hubel and Wiesel [40] motivated CNN’s architecture. Visual system’s structure 
is evolved in a way that they encode the visual pattern layer by layer. The extracted 
features gradually become more specific layer by layer. The same happens in a 
CNN. 
In general, CNN architecture consist of blocks of convolutional and pooling layers, 
followed by one or more fully connected layers [38]. In Figure 1-13 a general CNN 
architecture with one convolutional block and 3 fully connected layers can be seen. 
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Figure 1-13 General CNN architecture [38] 

 
Convolutional layer: The convolutional layers can be regarded as feature extractors. 
The goal is to calculate a convolution between a set of filters and input data. One 
convolutional layer has multiple learnable filters (n) (All the weights in a single filter 
are regarded as parameters to be learned). Every filter has limited extend in width 
and height but extends through full depth of input. For example, if the size of input 
data is 218×218×3 (3 is red, green and blue colors in images) one filter size could 
be 5×5×3. The width and height size of filter is also called receptive field which in 
this example is 5x5. As shown in Figure 1-14, a filter scans the whole input by sliding 
in width and height dimensions according to a predefined stride [39].  
 

 

Figure 1-14 Convolution of a 2-D input data with a (3×3) filter [39] 

 
The results of convolution between filter and input data will be given to a nonlinear 
activation function to form the non-linear feature map. This procedure is formulated 
as in (1.14) [38]: 
 

𝑌𝑘 = 𝑓(𝑊𝑘 ∗ 𝑥)                       (1.14) 
 

Output classes Convolutional blocks Inputs Fully connected layers 
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Input is shown as x, 𝑌𝑘 is the kth feature map, 𝑊𝑘 is the weights of the kth filter and 
𝑓(∙) is the non-linear activation function. The operator ∗ denotes the convolution 
operation.  
Filter weights remain the same when sliding the kernel on the input image; however, 
different filters in a convolutional layer assume different weights [38]. The generated 
feature maps from n filters will be appended to produce the output of that 
convolutional layer [39]. 
 
Pooling layer: In order to reduce sensitivity to input distortions and translations, and 
to reduce spatial resolution of feature maps, a pooling layer can be employed after 
each convolution layer. This can be considered as a subsampling in the number of 
neurons and is performed by averaging or taking the maximum of adjacent neurons. 
The latter is called max pooling and outputs the largest element in each receptive 
field, such that [38]: 
 

𝑌𝑘𝑖𝑗 = max
(𝑝.𝑞)∈𝑅𝑖𝑗

𝑥𝑘𝑝𝑞                       (1.15) 

 
Where region 𝑅𝑖𝑗 is the receptive field in the kth feature map, (𝑝. 𝑞) is a location 

contained in that region and 𝑥𝑘𝑝𝑞 denotes the element at that location. 𝑌𝑘𝑖𝑗 would be 

the output of max pooling of kth feature map. 
 
Fully connected layers: After multiple blocks of convolution and pooling, fully 
connected layers interpret the extracted features and perform high-level reasoning. 
At the final layer, typically a Softmax activation function is used [38]. Only when 
using Softmax layer number of neurons should match the number of output classes. 
 

1.4.6 Transfer learning 

Researchers often face a common challenge when using deep learning. Training a 
deep network with insufficient training data could produce very poor results, even 
lower than classical classification methods with handcrafted features [41]. This 
problem becomes more severe in the cases that acquiring more samples is costly 
in terms of both time and money. Transfer learning (TL) techniques that apply 
knowledge learnt from one task to other related tasks have been proven helpful in 
these situations [42]. As humans have the ability to transfer knowledge from one 
domain to another (e.g. learning violin from the knowledge gained while learning 
piano), TL aims to leverage knowledge from a related domain (called source 
domain) to improve the training performance or minimize the number of training 
samples required in a target domain [43]. 
 

1.4.7 Overfitting 

Overfitting is one of the common problems in deep networks which occurs when the 
network is trained by small training set. In this situation, network can’t generalize its 
performance on unseen data and the resulting accuracy on test dataset decreases 
radically [38]. This issue is addressed by employing regularization techniques such 
as adding drop out layer, batch normalization layer and early stopping which will be 
explained in chapter 2.  
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1.5 State of the art 

SEMG-based hand gesture recognition was first introduced by Hudgins [14]. 
Hudgins used time domain (TD) features such as Mean Absolute Value (MAV), 
Mean Absolute Value Slope (MAVS), Zero Crossing (ZC), Slope Sign Change 
(SSC) and Waveform Length (WL) as input to an ANN classifier. In an attempt to 
find more effective features, Englehart [15] compared the performance of Hudgins’ 
TD features, and those derived from short-time Fourier transform (STFT), wavelet 
transform (WT), and wavelet packet transform (WPT). He came to the conclusion 
that the combination of WPT and PCA dimension reduction, given to LDA classifier 
outperforms other combinations of feature sets and classifiers. Phinyomark et al. 
[16] investigated the classification result of LDA, using single or multiple time-
domain and frequency-domain features. When comparing single features, sample 
entropy (SampEn) was chosen as the best feature among all 50 considered 
features. Further features and further classifiers such as Random Forest (RF), K-
Nearest Neighbors (k-NN), LDA and SVMs were studied by Atzori et al. [6] who 
announced that random forest displays the best performance when fed with all the 
features used in his study. Discovering the best feature set remains an open 
problem and researchers have tackled this issue evaluating diverse combination of 
features [4, 16, 44]. 
With the outburst of deep learning studies in image classification and speech 
recognition, scientists became interested to apply such networks in sEMG 
classification. The first time that raw EMG signals (for hand movement recognition) 
were classified by a deep convolutional neural network (CNN) can be considered 
when Park and Lee [45] tried to resolve inter-subject variability on Ninapro database 
with CNN in 2016 and concluded it outperformed SVM by 12%–18%. Indeed, a 
survey on deep learning techniques for sEMG-based hand gesture classification 
published in 2019 (considering the papers from 2014) [46], states that the most 
widely used methods were CNN [4], Auto-encoder (AE) [47], Recurrent Neural 
Network (RNN) [48] and Deep Belief Network (DBN) [49], respectively. It was also 
shown in [50] that in terms of robustness over time, CNN shows better performance 
comparing LDA with handcrafted features. 
Over the last few years, many novel deep network architectures were designed 
based on CNN, aiming to improve its performance.  Residual Neural Network 
(ResNet) [22] is a variation of ANN in which skip connections are used to amplify 
the effects of deeper layers. The main contribution of such model was to resolve the 
vanishing gradient problem in very deep networks. The idea of using skip 
connections can also be applied to CNNs to create a Residual Convolutional Neural 
Network. To the best of our knowledge this kind of network is rarely employed in 
sEMG classification. ResNet could potentially pave the way to explore deeper 
networks in this field. 
In the context of bio-signal classification, deep learning is certainly not the only 
technique borrowed from image classification. Transfer learning has gained 
increasing interest as an approach to solve a common issue in bio-signal 
classification. In contrast to image classifiers, bio-signal classifiers are confined to 
single session recordings as training data, due to high session variability which limits 
the size of dataset. Recently, TL has been employed to leverage recordings from 
other sessions or even other subjects to train the deep network for the targeted 
subject [51, 52, 5]. Du et al. [51] proposed an unsupervised deep domain adaptation 
(adaptive batch normalization) for inter-session and inter-subject gesture 
recognition using high-density EMG recordings. Furthermore, to target inter-subject 
continues gesture recognition [52] employed a RNN with adversarial domain 
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adaptation. In another study, [5] used an element-wise summation methodology on 
a CNN architecture to combine source network (trained on all participants) and a 
second network to generate the target network for each subject. Inspired by the 
mentioned studies, two TL approaches are introduced in this work. 
To compare the performance of different techniques proposed by researchers 
around the world, the need for a publicly available benchmark dataset was always 
evident. Hence, Atzori in 2014 published a dataset including several hand and wrist 
movements from 78 subjects, called “Ninapro”, which was divided into three different 
subsets based on acquisition system and characteristics of subjects [6]. DataBase 
2 (DB2) acquired by 12 Delsys electrodes, includes three sets of different exercises, 
from which exercise B consists of basic wrist movements and isotonic hand 
configuration. From that point on, this database has been used by many researchers 
as a benchmark. Zhai proposed a self-recalibrating CNN to eliminate the need of 
user training over time. The classification accuracy of his method on Ninapro DB2 
was 82.22% when tested on exercise B [8]. Moreover, in 2019 Huang used a CNN-
LSTM network in order to fully capture the spatial and temporal features of sEMG 
spectrograms, the resulting accuracy on DB2 exercise B was 81% [9]. To the 
knowledge of authors this is the best accuracy obtained on this database. The same 
database is targeted as a benchmark in this work. 
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2 Materials and methods 

2.1 Nearlab Dataset 

As mentioned in section 1.2, a custom hand gesture EMG dataset was acquired to 
test the proposed methods. 

2.1.1 Participants 

The dataset includes 11 healthy subjects including 6 male participants and 5 female 
participants (age 25±3 years). The only inclusion criteria were the absence of history 
of neuro-muscular disorders. The data acquisition protocol was approved by the 
research ethical committee of Politecnico di Milano, on October 16th, 2019. All 
participants had been briefed about the experiments and gave informed consent.  
Subjects were asked to answer the questions of a questionnaire. The questionnaire 
contained questions about medical history of the participants that could affect the 
outcome of the experiments. 

2.1.2 Protocol definition 

Eight movement classes have been targeted in this thesis work. Movement classes 
have been selected to include the most frequent upper limb movements performed 
in daily life. According to Vergara et al. [53] pinch, cylindrical and lateral pinch are 
among the most frequent handgrips in daily life. Therefore, “pinch” and “lateral 
pinch” were included as two movement classes. Whereas, cylindrical grip was 
replaced with closed palm or “fist”. The fourth hand movement was “hand open”. 
“Hand open” is characterized by separated extended fingers as opposed to rest, 
where the hand is relaxed. Moreover, wrist flexion, extension, pronation and 
supination have been included. The 8 movement classes have been depicted in 
Figure 2-1 and listed below: 
1) hand flexion, 2) hand extension, 3) wrist supination, 4) wrist pronation, 5) hand 
open, 6) pinch, 7) lateral pinch and 8) fist. 
 

 

Figure 2-1 Movement classes selected for experimental protocol 

 
In order to create a more general dataset leading to a robust pattern recognizer, 
subjects were required to repeat selected hand movements three times (i.e., three 
round), characterized by three different hand starting positions (Figure 2-2): 

 Round 1: upward starting position, where the palm is faced upward; 

 Round 2: sideway starting position, where the palm is faced sideway; 

Flexion Extension Supination Pronation

Hand open Pinch Lateral pinch Grip
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 Round 3: downward starting position, where the hand palm is faced to 
ground. 

 
 

 

Figure 2-2 Hand open movement in 3 predefined hand orientations 

 
A video was created and displayed to the participants as a video cue to instruct them 
to perform the expected tasks in the correct time. No audio cues were used in this 
process. 
As mentioned before, the dataset is composed of 8 basic movements. In a single 
experimental session, the 8 basic movements are repeated 5 times in each starting 
hand orientation (8 movements*5 repetitions*3 hand starting positions=120 total 
movements). Subjects are instructed to hold each movement for 5 seconds. The 
movements’ order in the experiment is randomized and unknown to the participants. 
Before each movement instruction, participants have 3 second of rest, followed by 
the preparation time (2 seconds) where the subject is informed about the next 
movement, but is instructed to stay relaxed until the execution cue is shown.  
The 5 second rest periods followed by 5 second movements are called “movement 
blocks” (Figure 2-3). 
 

 

Figure 2-3 One movement block (10 seconds in total) 

 
8 movement blocks form a “trial”. A “round” consists of 5 “trials”, separated by 15 
second free periods. The 3 aforementioned “rounds” are separated by 100 seconds 
periods. The protocol related to basic movements is demonstrated in Figure 2-4. 
 

 

Figure 2-4 Construction of whole protocol for basic movements: Basic movement protocol 
is divided in 3 rounds and each round consists of 5 trial 

Palm sideway Palm upward Palm downward
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In order to prevent muscle fatigue as much as possible, rest and free periods are 
carefully arranged in between movements. In the free periods, subjects are free to 
do anything and their signals will not be used for offline analysis. In contrast, in rest 
periods that are crucial for the data analysis steps, the participants are instructed to 
relax their muscle. Furthermore, subjects were asked to use a normal and constant 
speed to reach to the final pose of the movement to their best of ability.  
The whole video shown to participants lasts 34 minutes. 
 
The total arrangement of the experiment is illustrated in Figure 2-5. 
 

 

Figure 2-5 Trial time organization 

 
Synchronization: One of the most important aspects of the experiment is the 
synchronization of the acquired signal and the time tags of the movement execution 
cues. This synchronization is crucial to the process of labeling the input signals. In 
order to do so, a trigger input of the acquisition system is utilized. A micro controller 
board (Arduino board) is used to send a pulse to the trigger channel upon receiving 
the instruction from PC through serial connection. The computer will start the video 
and send the serial command at the same time. Thus, the time of starting the video 
is tagged in the acquired signal by a pulse in the trigger channel.  
 
Observation process: an observer was always monitoring the experiments. His/her 
role was to check the correctness of the movements (according to video cue) and 
record it for future steps of preparing the database. The main reason for such an 
observation is that, in some cases, the participants confused the movements. The 
most frequent example is executing pronation as opposed to supination or vice 
versa. In these cases, the actual executed movement is detected by the observer 
and recorded. Incorrect movements are discarded based on these reports from 
observations at the end of each experimental session, prior to any processing. 
 

2.1.3 Hardware and software 

The experimental setup was composed by a screen for visual cue display, an EMG 
acquisition system, a laptop that receives the acquired signal via USB cable, 
disposable gel-based electrodes and synchronization circuitry. The EMG acquisition 
system used in this project was Porti from TMSi company [10]. The device had 32 
input channels, 16 of which were bipolar inputs. In addition to the 32 channels it had 
a trigger input, which is used in this project for synchronization. The cables used to 

Palm upward 
trials

8 
movements

5 repetition 
(5s) each

Palm downward 
trials

8 
movements

5 rep(5s) 
each 

Palm sideways 
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connect electrodes to the device were equipped with active shielding which 
significantly increased signal to noise ratio.  
The electrodes were passive EMG Ag/AgCl electrodes with conductive gel inside 
them. 10 differential channels were employed in this study. The signal was sampled 
at the rate of 2048 Hz.  
A Matlab interface was used both to visualize the acquired signals in real-time and 
to store the data in the PC. The synchronization code was also coded in Matlab. 
 

2.1.4 Electrode placement  

10 bipolar channels are used for signal acquisition. The general purpose of 
electrode placement was both to consider muscle anatomies and achieve simplicity 
in placement. Regarding muscle anatomy, the aim was to record from highest 
number of muscles while avoiding places with highest probability of cross-talk. The 
exact positions of electrodes were determined according to SENIAM (Surface EMG 
for non-invasive assessment of muscles) [11]. The final configuration of electrodes 
is as follows: 6 electrode pairs (corresponding to 6 channels) are placed around the 
upper forearm equally-spaced along the forearm circumference. Each differential 
pair is arranged along the length of the arm with 2cm distance from each other. The 
first electrode pair is placed 3 cm distal to the elbow (medial epicondyle), other 5 
are arranged to have same distance with respect to each other using the measured 
forearm circumference. The 4 remaining electrode pairs are placed 3 cm distal to 
the previous electrodes. All these electrodes were placed on the dominant hand of 
the participant. Electrodes’ spatial distribution on the forearm is displayed in Figure 
2-6. Reference electrode is placed on the back of the wrist as suggested by SENIAM 
directions [11]. Figure 2-7 depicts the hand stance prepared for the experiments.  
 
 

 

Figure 2-6 Electrode positions  
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Figure 2-7 Hand stance 

 
In order to properly prepare for signal acquisition, the relevant areas of the skin are 
cleaned twice with alcohol and cotton before placing the electrodes on the skin.  
Skin preparation and electrode placement procedures took 20-25 minutes. 
 

2.1.5 Database creation 

Recorded signals contain 10 channel of EMG data sampled at 2048 Hz and 1 trigger 
channel which marks the start of the video cue movie. The recorded data, video cue 
movie and the report filled by the observer form the custom-made dataset referred 
to as “Nearlab dataset”. 

2.2 Ninapro Dataset 

Moreover, to have comparable results with state of the art, a well-known publicly 
available dataset (Ninapro) is also be employed. Ninapro dataset is one of the 
largest and most well-known publicly available sEMG datasets covering hand and 
finger movements and it is used in many studies as a common benchmark [6]. In 
this thesis work, DataBase2 (DB2) consisting of 40 able-body participants from 
Ninapro datasets is used. DB2 is collected using 12 active double–differential 
wireless electrodes with a Delsys Trigno Wireless EMG system [12], which has 2kHz 
sample rate. This database includes 3 sets of exercises. The first exercise, which 
includes 17 basic movements of fingers and wrist, is targeted in this thesis, due to 
its similarity to movement classes in Nearlab dataset. Each movement, which lasts 
for 5 seconds and is followed by a rest period of 3 seconds, is repeated 6 times. 
 

2.3 Data analysis 

This part of the document is dedicated to the data processing technics used in the 
project.  

2.3.1 Data pre-processing 

Up to this point the raw EMG signal is obtained and is ready for processing. Figure 
2-8 displays an example of raw EMG signal of one of the channels for the entire 
duration of experiment (~35 minutes). 
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Figure 2-8 Raw EMG signal acquired by one channel during the entire experiment session 

 
It can be noticed from the Figure 2-8 that signal acquired with Porti system is highly 
attenuated by noise. Therefore, the raw signal is filtered using a band pass filter and 
a notch filter, in order to remove unwanted signals and power line interference [13]. 
The specifications of the filters are shown in table 2-1.  

Table 2-1 Preprocessing filter specifications 

 Band-pass filter Notch filter 

Filter type Butterworth Butterworth 

Filter order 4 2 

Cut-off frequency 1 10 49 

Cut-off frequency 2 500 51 

 
Figure 2-9 illustrates the raw and filtered data in the same graph. The three main 
activity periods in the experiment (movements with upward, sideways and down 
ward starting orientations) can be distinguished in the Figure 2-9 filtered data. 
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Figure 2-9 Filtered data vs raw data 

 
Figure 2-10 demonstrates the frequency content of the signal before (top) and after 
(down) filtering. It can be seen that the large low-frequency and 50 Hz component 
is removed. 

 

 

Figure 2-10 Frequency content of the signal before (top) and after (down) filtering 

 
Next step is related to synchronization. Channel 13 which is the trigger input of the 
Porti is used to extract the time of the start of the video cue movie. The acquired 
data before the trigger pulse is removed in all 10 channels. The new signal 
completely coincides with the timings of the video cues in the movie. Thus, the 
signals could be labeled with their associated class of movements. One approach 
for labeling the data is to use to the video cue timings to label movement and rest 
periods. However, this algorithm will take for granted that movement execution is 
done immediately after the video cue, which is not realistic. Thus, a different 
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approach has been considered. As the first step, based on the video cues indicating 
start of each movement, windows with length of 7 seconds are extracted. The 
window will include roughly 5 seconds of movement and 2 seconds of rest. Then 
the window is further trimmed using a threshold-based on-set detection algorithm to 
extract the actual movement (around 5 seconds) from the 7 second window. This 
algorithm is depicted in figure 2-11. The on-set detection algorithms requires a 
threshold. This threshold is calculated from a rest period in the signal. The signal of 
all the channels are rectified in this period. Then a moving average is used to make 
the signals smoother. Next, the signal is averaged in time within the window and 
also among all channels in order to reach a single value referred to as the “Rest 
value”.  

 
 
 
 

 
 
 
 
 
 

 
With the rest value available, the on-set and ending detection algorithm use a 
threshold (3 times the rest value) to extract the actual movement from the 7 second 
window. This stage is necessary since the subject movement delay varies from each 
task to the next. Figure 2-12 displays the first channel’s 7 second windows 
throughout an entire round, super imposed on each other. Figure 2-13 displays the 
on-set and end detection process on the signals. Start and finish points are indicated 
with green triangles. The red envelope is the smoothed signal. 
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video cue

Rectify all channels
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Mean over all 
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> X 3 
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Movement detected 

Figure 2-11 Diagram of on-set or ending detedction algorithm 
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Figure 2-12 7 second windows super imposed from one channel in different movements 

 

 

Figure 2-13 The process of on-set and ending detection 

 
The last preprocessing step is to remove the first and the last 100ms of the 
movement to eliminate the transient part of the signal; since the main focus of the 
data analysis in this thesis is the stationary characteristics of the signal. This 
decision is derived from conclusions Englehart et al. made in [54] showing that 
steady-state data is classified more accurately than transient data. Figure 2-14 
shows the final step. The red signal is removed due to on-set and ending detection 
while the orange part is removed to eliminate the transient part of the signal. 
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Figure 2-14 the process of on-set and ending detection and removing the transiant signal 

 
This remaining window can be now labeled with its true movement class according 
to the video cues. 
 

2.3.2 Data segmentation 

Since one of the goals of this project is online classification, windows should become 
very small to allow for fast classification in real-time application. Considering that for 
online applications window length plus processing time to generate classified control 
commands should be less than 300ms [1], window size of 250ms (512 samples) 
was selected for this project.  
Data augmentation is a necessary step towards increasing the database size in 
order to be used in deep learning methods. As suggested by authors of [5], sliding 
window approach is the most effective augmentation technique for sEMG 
classification. Moreover, in order to allow for majority voting method, it was decided 
that the sliding windows method should be used in this study as well. Majority voting 
could assist in achieving a smooth online classification system by eliminating scarce 
errors. In this method, instead of dividing the movements in to small windows (in our 
case with the size of 250ms), we produce overlapping windows with strides smaller 
than the window size (in this case 62.5ms). Having 250ms window and 62.5ms 
strides will result in 187.5ms overlap between two consecutive windows. 
In an online classification system, utilizing this method means that instead of 
classifying 250ms windows of movements we are classifying each 62.5ms of 
movement, which will cause more frequent predictions resulting in a smoother 
control. The predicted class of each 62.5ms will be calculated using majority voting 
on 4 predicted values for 250ms windows which include that specific 62.5ms 
interval. Figure 2-15 displays an instance of majority voting to determine the 
prediction of the 62.6ms window.  
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Figure 2-15 An example of majority voting method for online classification 

 
At the end of data segmentation, the database will consist of labeled signal windows 
with 512 samples per channel for 10 channels representing 250ms of EMG signals. 
 

2.3.3 Classical machine learning 

In this section, the following traditional classification methods will be used to classify 
the EMG signal: Support Vector Machine (SVM), Linear Discriminant Analysis 
(LDA), K-Nearest Neighbors (KNN) and Multi-Layer Perceptron (MLP). These 
classifiers require features extracted from the raw signal (250ms windows). 
Based on the recent literature available on feature selection for sEMG classification 
[14, 15, 16] and datasets exploration, 15 features of time and frequency domains 
are used to create 4 feature sets as inputs of classifiers. Each feature should be 
calculated for all the channels separately. 
 

 Mean Absolute Value: This feature is the average of the rectified signal. 

 Zero Crossing: number of times the signal crosses the zero line.  

 Slope Sign change: number of times that the signal slope changes, detected 

in signal derivative 

 Waveform Length (WL): This is a feature that offers a simple characterization 

of the signal’s waveform. It is calculated as in equation (2-1), where xi,k is kth 

data point in the ith channel and L is the number of data points. 

  

𝑊𝐿(𝑥𝑖) =  ∑ |𝑥𝑖.𝑘 − 𝑥𝑖.𝑘−1|𝐿
𝑘=1    (2-1) 

 

 Hjorth Parameters (HP_m, HP_M, HP_C): Hjorth Parameters are indicators 

of statistical properties used in signal processing in the time domain, 

introduced by Bo Hjorth in 1970 [55]. They are commonly used in the analysis 

of electroencephalography signals for feature extraction, improving dataset 

quality. These parameters are Activity, Mobility and Complexity and are 

calculated as in equations (2-2), (2-3) and (2-4). 

 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑥𝑖) =  
1

𝐿
∑ (𝑥𝑖.𝑘 − 𝑥𝑖)

2𝐿
𝑘=1    (2-2) 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥𝑖) =  √
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑥�̇�)

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑥𝑖)
   (2-3) 
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𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥𝑖) =  
𝑀𝑜𝑏𝑖𝑙𝑡𝑦(𝑥�̇�)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥𝑖)
   (2-4) 

 
Where xi,k is kth data point in the ith channel and L is the number of data 
points. 

 Sample Entropy (SampEn): This feature is a measure of 

orderliness/randomness of the signal. SampEn is a method which estimates 

entropy of the signal and is calculated as in equation (2-5). 

 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑥𝑖. 𝑚. 𝑟) =  − ln (
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
)   (2-5) 

 
Where xi is the ith channel signal, m is the embedding dimension and r is the 
tolerance. 

 

 Cepstral Coefficient (CC): The Cepstrum of a signal is the inverse Fourier 

transform of the log power spectrum magnitude of the signal. The coefficients 

of the Cepstral Coefficients are employed as features. In our case we used 

the forth order CC features. They can be directly derived from Auto-

Regression (AR) coefficients as in equations (2-6) and (2-7). 

 

𝐶1 =  −𝑎1      (2-6) 

𝐶𝑖 =  𝑎𝑖 − ∑ (1 −
𝑛

𝑖
) 𝑎𝑛𝐶𝑖−𝑛

𝑖−1
𝑛=1  . 𝑤𝑖𝑡ℎ 1 < 𝑖 ≤ 𝑃 (2-7) 

 
Where Ci is the ith Cepstral coefficient, ai is the ith auto-regression coefficient 
and P is the order. 

 

 Root Mean Square (RMS): This feature, also known as the quadratic mean, 

is calculated as in equation (2-8). 

𝑅𝑀𝑆(𝑥𝑖) =  √
1

𝐿
∑ 𝑥𝑖.𝑘

2𝐿
𝑘=1     (2-8) 

 
Where xi,k is kth data point in the ith channel and L is the number of data 
points. 

 Integrated EMG (IEMG): This feature will represent the sum of fully rectified 

signal and is calculated as in equation (2-9). 

 

𝐼𝐸𝑀𝐺(𝑥𝑖) =  ∑ |𝑥𝑖.𝑘|𝐿
𝑘=1     (2-9) 

 
Where xi,k is kth data point in the ith channel and L is the number of data 
points. 

 Skewness (SKEW): The Skewness is the third central moment of a 

distribution, which measures the overall asymmetry of a distribution. It is 

calculated as in equation (2-10). 

 

𝑆𝐾𝐸𝑊(𝑥𝑖) =
1

𝐿
 ∑ (

𝑥𝑖.𝑘−𝑥𝑖

𝜎
)3𝐿

𝑘=1    (2-10) 
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Where xi,k is kth data point in the ith channel and L is the number of data 
points. 
 

In order to visualize the effectiveness of the features as a mean to distinguish 

different classes, MAV feature is depicted for 3 movements, as a way of example. 

Figures 2-17, 2-18 and 2-19 present the MAV feature calculated for all 10 channels 

in the 250ms windows extracted from pronation, supination and hand open 

movement, respectively. For each 250ms window, MAV feature of all 10 channels 

are calculated and connected in this plot, hence each curve belongs to one 250ms 

window.  All the features of 250ms windows from a movement are super imposed 

in a single plot, making several curves in one Figure. From these graphs, the 

patterns could be distinguished from one another in different movements. The x axis 

represents the channel, while the y axis represents the value of the features. 

 

Figure 2-16 MAV features for 10 channels calculated for the multiple windows belonging 
to pronation movement 
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Figure 2-17 MAV features for 10 channels calculated for the multiple windows belonging 
to supination movement 

 

 

Figure 2-18 MAV features for 10 channels calculated for the multiple windows belonging 
to hand open movement 

 
The 4 features sets designed for this study are introduced in table 2-2 and further 
explained bellow: 
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Table 2-2 Feature sets 
Name FEATURES Number of features 

Time Domain (TD) MAV, ZC, SSC, WL 4 

Improved Time Domain 
(ITD) 

MAV, ZC, SSC, WL, RMS, 
IEMG, HP_A, HP_M, HP_C 

9 

Correlation Based (CB) 
CC1, ZC, SSC, WL , HP_M, 

HP_C and SampEn 
7 

Full dataset (Full) 
MAV, ZC, SSC, WL, HP_A, 

HP_M, HP_C, SampEn, CC1-
4, RMS, IEMG, SKEW 

15 

MAV=Mean Absolute Value, ZC= Zero Crossing, SSC= Slope Sign Change, WL= Waveform 
Length, HP_A/HP_M/HP_C=Hjorth Parameters, SampEn=Sample Entropy, CC1-4=Cepstral 

Coefficient order 4, RMS= Root Mean Square, IEMG=Integrated EMG, SKEW= Skewness 

 

 Time Domain (TD): This feature set consists of 4 well-known and often used time 
domain features.  

 Improved Time Domain (ITD): This feature set consists of 9 features including 
previously mentioned TD features and 5 additional time domain features. These 
are particularly fast in calculation, making this feature set a good candidate for 
online classification. 

 Correlation Based (CB): A set of 7 features is handpicked after investigating the 
cross-correlation of all features. In case of high correlation between two features, 
it was inferred that they are mostly explaining same information. Hence, the 
feature with more computation cost is removed, in order to decrease the total 
computation time. Figure 2-19 illustrates the cross-correlation of different 
features for channel 5.  

 Full feature set (Full): This feature set includes all the 15 mentioned features, 
representing time and frequency domain characteristics. 

 

 

Figure 2-19 Cross correlation between features 
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All the steps up to this point including feature extraction has been coded in Matlab.  
From this point forward, all steps are implemented using Python including the 
designing of classifiers which was implemented with “sklearn” (v 0.21.2) library [56]. 
After extracting the features from the raw EMG signal we have a new database that 
has features as inputs and labels as outputs. The final shape of the input feature 
vector is (1xN), where N is 10 times the number of selected features. For example, 
for full feature set, a vector of 150 elements is given to the classifier and represents 
a 250ms window.  
At this stage, the training data and the testing data should be separated. In each 
hand orientation (upward, downward, sideway) subjects were requested to repeat 
each movement for 5 times. It is important to mention, sometimes not all 5 
repetitions were included in the database. The repetitions could decrease to 4 or 
even 3, depending on the number of correct movements executed by subject. As 
previously mentioned in section 2.1.2, some movements were discarded prior to 
signal processing by the observer. In each round, 2/3 of repetitions of each 
movement is added to training set, while the remaining part is included in testing 
set. Consequently, both training and testing datasets include all hand orientations 
for each movement. 
Outlier removal and scaling are the measures taken to improve the classifier 
performance in majority of related studies. In what follows, a brief elaboration on 
these methods which were also deployed in this work is presented:  

 Outlier removal: While the testing database is intact, the training performance is 
boosted by removing outliers from training set. Removing too much of outliers 
would endanger the robustness of model, hence it’s important to find the right 
threshold for determining outliers. The outliers were determined based on the 
values of their MAV and WL features. Samples outside of the bounds defined by 
2.5 times of standard deviation around mean are labeled as outliers.  

 Scaling: Almost all classifiers are sensitive to highly different ranges among their 
inputs. Each feature of training set is scaled to have zero mean and standard 
deviation equal to one. A significant consideration here, is that for online 
classification we do not have access to testing dataset and it is produced in time 
as the experiment goes on. As a result, the same scaling parameters which is 
created and fitted on the training set is used to scale testing set. This scaling 
strategy can be directly applied in an online classification scheme. Figure 2-20 
shows the range of a group of features before and after scaling. 

 

 

Figure 2-20 the effect of scaling on the ranges of the features 
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The improved data set is ready to be trained and tested. In regards to the classifiers, 
the hyper-parameters should be optimized to improve the results. A grid search has 
been done on the hyper-parameters for each classifier to find the best performing 
classifiers using the training set of a randomly chosen subject with 3 fold cross-
validation. The ranges of the hyper-parameter search and selected hyper-
parameters are displayed in tables 2-3 and 2-4, respectively. 

Table 2-3 Range of hyper-parameter for classifiers 

Classifier Parameter 1 Parameter 2 Parameter 3 Parameter 4 

KNN K: 10, 20, 30, 40, 50 
weights: uniform, 

distance 
  

MLP 

hidden layers: 
(100,50,20), (50,20), 
(10,8), (100), (200), 

(100,20) 

Alpha: 
0.001,0.0001,0.0000

1 

activation 
function: tanh, 
identity, relu, 

logistic 

solver: sgd, 
adam 

SVM 
Regularization: 

0.1,1,10,100 
kernel: linear, poly, 

rbf, sigmoid 
degree for 

poly:1,2,3,4 

gamma: 
auto, 0.1 to 

10e-7 

LDA 
solver: svd, lsqr, 

eigen 
   

 

Table 2-4 Selected hyper-parameters 

Classifier Parameter 1 Parameter 2 Parameter 3 Parameter 4 

KNN K: 40 weights: uniform   

MLP 
hidden layers:  

(100) 
Alpha:  0.0001 

activation 
function: tanh 

solver: sgd 

SVM Regularization: 1 kernel: linear None gamma: auto 

LDA solver: svd    

 

2.3.4 Deep learning 

The deep learning algorithms are completely implemented in Python. “TensorFlow” 
[57] and “Keras” [58] libraries are employed for developing networks. These libraries 
are well-known, powerful and open-source software libraries for developing neural 
networks and machine learning methods. 
Train and test separation is performed exactly as explained in section 2.2.3 for 
traditional classifiers. However, as opposed to traditional classifiers, deep learning 
algorithms don’t require features. The raw EMG signal or a representation of it (e. 
g. spectrogram of the EMG signal) can be used as input of the network. 
There are 4 deep learning architectures proposed in this thesis. 3 of which are based 
on typical CNN and one is inspired by Residual CNN. All architectures can be 
divided into 2 stages. First stage is an inter-connected network of convolutional 
blocks working as a “feature extractor” and the second stage is consisted of few fully 
connected layers serving as the “classifier”.  
Activation function: Deep neural networks take advantage of non-linear activation 
functions to extract non-linear features from input data. Traditionally, saturated 
functions such as sigmoid and tanh were used. However, recently, non-saturated 
activation functions such as Rectified Linear Units (ReLU) have gained popularity in 
order to solve exploding/vanishing gradient problem and increase the speed of 
convergence [59]. There are several modifications of ReLU such as leaky rectified 
linear (Leaky ReLU), parametric rectified linear (PReLU) and randomized rectified 
linear (RReLU). RReLU, which was introduced in a recent Kaggle National Data 
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Figure 2-21 An example of Cnet2D/Cnet1D architectures 

Science Bowl (NDSB) competition [18], has proven to reduce the problem of 
overfitting of ReLU due to its randomized nature. According to the comparison 
published by [59] on an image classification task, RReLU displayed better results 
among other ReLUs mentioned above, which motivated the choice of RReLU for 
the classification problem in this project. 
Overfitting: Due to their high number of parameters, deep neural networks 
particularly tend to over-fit. In order to overcome this issue, many techniques have 
been suggested by literature, among which the following 3 pre-cautions have been 
employed: 
1) Drop out: Srivastava and colleagues [19] presented dropout technique, in which 
some random neurons with probability of p (e.g. 0.3) are eliminated from hidden 
layers. As a result, complex coadaptation of features between neurons can be 
prevented during training, leading to reduction of over-fitting. 
2) Batch normalization: Introduced by Ioffe et al. [20], Batch Normalization (BN) was 
targeted to solve the need of low learning rate and careful parameter initialization in 
training of deep neural networks. It is a type of regularization technique, which 
performs input normalization in each training mini-batch. Ioffe et al. [20] showed that 
utilizing BN in classification of ImageNet can improve the results comparing to the 
state-of-art. 
3) Early stopping: In iterative learning methods, after each iteration, the network is 
more fitted to training data. However, if the number of iterations exceeds a point, 
although the model will perfectly fit the training data, it would no longer be able to 
classify the unseen data correctly, thus the generalization error will increase. Early 
stopping provides a rule to limit the number of iterations in order to avoid this 
overfitting problem. In this work, the validation error in each update is monitored. 
When it reaches a minimum, the learner would continue training only for a certain 
number of iterations and then stops the training. Meanwhile, if a new minimum is 
observed, it will restart counting iterations before stopped. The mentioned number 
of iterations is referred to as “patience” and is set by user. 
 
In recent years, many architectures of CNN for hand movement recognition based 
on sEMG have been proposed, among which [4, 5] are the main source of inspiration 
for the following network. Multiple modifications have been made by trial and error 
to boost the accuracy of the classifier. The main modifications are the size of filters 
and using RReLU activation function among others. Three approaches have been 
tested. One is 2-dimensional filter shape (Cnet2D), another is 1-dimensional filter 
(Cnet1D) and the last one is a combination of previous networks (CnetComb). 
 
1. Cnet2D: Figure 2-21 displays an example of the proposed network for Cnet2D. 
3 convolution blocks (Conv) are connected after each other, followed by 3 fully 
connected blocks (FC). However, the number of blocks can be regarded as a hyper-
parameter to be optimized.  
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In this study exploration of different number of layers resulted in choosing 3 
convolution blocks and 2 fully connected blocks. After 3 convolutional blocks, a 
flatten layer turns the 3-dimensional output of previous layer into a feature vector. 
The feature extractor stage concludes with the flatten layer. Then, 2 fully connected 
blocks are followed. Each Conv block consists of a convolution layer with 2D filter 
shape (e.g. (3,3)), BN, RReLU activation layer, max pooling and dropout. First fully 
connected block includes dense layer, BN, RReLU and dropout, while the last fully 
connected block does not include dropout. At the end, a Softmax layer has been 
included to create the 8 output of classifier. Softmax layer produces 8 outputs 
ranging from 0 to 1, indicating the probability of sample belonging to each class. The 
highest probability corresponds to predicted class for the input sample. 
Adam optimizer [21] is used as optimization method for this and all the deep 
networks. During training, the model with minimum validation (20% of training data 
is randomly selected as validation set) loss is saved and used for testing; this 
technique is called Model Check Point and is used in this and all following networks. 
In order to find the hyper-parameters of this network, different combinations of 
hyper-parameters were tested on validation set of Nearlab database. In table 2-5 
the hyper-parameters related to this architecture found by trial and error, is shown. 
The hyper-parameters can be divided into 3 groups. The ones related only to feature 
extractor stage, the ones only related to classifier stage and the ones that can be 
associated to the general design of the network. 

Table 2-5 Hyper-parameters of architecture Cnet2D on Nearlab dataset 
 Hyper-parameter Block number: Value 

Feature extractor stage 

Filter numbers of 3 Conv blocks 1: 32, 2: 48, 3: 64 

Filter kernel sizes of 3 Conv blocks 1: (3,13), 2: (3,9), 3: (3,5) 

Filter stride sizes of 3 Conv blocks 1: (1,1), 2: (1,1), 3: (1,1) 

Max pooling sizes of 3 Conv blocks 1: (1,4), 2: (1,4), 3: (1,4) 

Classifier stage Dense layer sizes of 2 FC blocks 1: 300, 2: 50 

General hyper-parameters 
RRelu parameter range All: 1/8 to 1/7 

Dropout rate All: 0.5 

 
In figure 2-22 a schematic of the network is shown. The sequence of the blocks from 
top to bottom shows the layers from deep to shallow. In this figure the input shape 
of each block is also mentioned. The input shape of the network is 10 x 512 x 1 
which is channel x data points along the sub-window x number of feature maps. In 
the case of image classification, feature maps coincide with red, green and blue 
maps in an rgb input picture, however as here raw EMG signal is used, this number 
is equal to one. In the subsequent blocks, this number is equal to the number of 
filters used in the convolution blocks. 
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Figure 2-22 Schematic of Cnet2D architecture for Nearlab dataset 

 
2. Cnet1D: The architecture of Cnet1D, is similar to that of Cnet2D. However, the 
shape of filter is such that it does not exploit the relations between channels in the 
feature extraction stage (e.g., (1,3)). Focusing on features extracted from the 
information of individual channels, it could potentially increase the accuracy of 
classifier. 
In order to find the hyper-parameters of this network, different combinations of 
hyper-parameters were tested on validation set of Nearlab database (20 percent of 
training set). In table 2-6 the hyper-parameters related to this architecture are 
shown. Besides the filter shape, the dropout of this network is different from Cnet2D. 
Similar to Cnet2D, the hyper-parameters are divided into 3 groups: feature extractor 
stage, classifier stage and general hyper-parameters. 

Table 2-6 Hyper-parameters of architecture Cnet1D for Nearlab dataset 
 Hyper-parameter Block number: Value 

Feature extractor stage 

Filter numbers of 3 Conv blocks 1: 32, 2: 48, 3: 64 

Filter kernel sizes of 3 Conv blocks 1: (1,13), 2: (1,9), 3: (1,5) 

Filter stride sizes of 3 Conv blocks 1: (1,1), 2: (1,1), 3: (1,1) 

Max pooling sizes of 3 Conv blocks 1: (1,4), 2: (1,4), 3: (1,4) 

Classifier stage Dense layer sizes of 2 FC blocks 1: 300, 2: 50 

General hyper-parameters 
  RRelu parameter range All: 1/8 to 1/7 

Dropout rate All: 0.3 

 
In figure 2-23 a schematic of the network is shown. The sequence of the blocks from 
top to bottom shows the sequence from deep layers to shallow ones. The 
construction of the blocks is as previously explained for architecture Cnet2D. Here 
again the output is produced by Softmax layer. 
 

Classifier Softmax: input shape(50)

FC Block 2: input shape(300)

Dense(50)=>BN=>RReLU

FC Block 1: input shape(5120)

Dense(300)=>BN=>RReLU=>Dropout

Conv Block 3: input shape(10,32,48)

64@Conv2D(3x5) ,s(1,1)=>BN=>RReLU=>MaxPool(1,4)=>Dropout=>Flatten

Conv Block 2: input shape(10,128,32)

48@Conv2D(3x9) ,s(1,1)=>BN=>RReLU=>MaxPool(1,4)=>Dropout

Conv Block 1: input shape(10,512,1)

32@Conv2D(3x13),s(1,1)=>BN=>RReLU=>MaxPool(1,4)=>Dropout
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Figure 2-23 Schematic of Cnet1D architecture for Nearlab dataset 

 
3. CnetComb: Provided that Cnet1D extracts features related to individual channels 
and Cnet2D exploits the relationship between channels, it seems reasonable to 
introduce an architecture leveraging both strategies for features extraction. In this 
architecture, feature extractor stages of Cnet1D and Cnet2D extract the 1D and 2D 
features. Afterwards, the features would be concatenated, flattened and fed to one 
classifier stage similar to the ones used before. An example of this network can be 
seen in Figure 2-24. 

 

Figure 2-24 CnetComb general architecture 

 
In order to find the hyper-parameters of this network, different combinations of 
hyper-parameters were tested on validation setoff Nearlab database. In table 2-7 
the hyper-parameters related to this architecture are shown. Similar to Cnet2D, the 
hyper-parameters are divided into 3 groups: feature extractor stage, classifier stage 
and general hyper-parameters. Feature extractor stage itself is consisted of 1D 
feature extractor and 2D feature extractor. 

Table 2-7 Hyper-parameters of architecture CnetComb on Nearlab dataset 
  Hyper-parameter Block number: Value 

Filter numbers of 3 Conv blocks 1: 32, 2: 48, 3: 64 
Filter kernel sizes of 3 Conv blocks 1: (3,13), 2: (3,9), 3: (3,5) 

Classifier Softmax input(50)

FC Block 2: input shape(300)

Dense(50)=>BN=>RReLU

FC Block 1: input shape(5120)

Dense(300)=>BN=>RReLU=>Dropout

Conv Block 3: input shape(10,32,48)

64@Conv2D(1x5) ,s(1,1)=>BN=>RReLU=>MaxPool(1,4)=>Dropout=>Flatten

Conv Block 2: input shape(10,128,32)

48@Conv2D(1x9) ,s(1,1)=>BN=>RReLU=>MaxPool(1,4)=>Dropout

Conv Block 1: input shape(10,512,1)

32@Conv2D(1x13),s(1,1)=>BN=>RReLU=>MaxPool(1,4)=>Dropout
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Feature 
extractor 

stage 

Cnet2D 
feature 

extractor 

Filter stride sizes of 3 Conv blocks 1: (1,1), 2: (1,1), 3: (1,1) 

Max pooling sizes of 3 Conv blocks 1: (1,4), 2: (1,4), 3: (1,4) 

Cnet1D 
feature 

extractor 

Filter numbers of 3 Conv blocks 1: 32, 2: 48, 3: 64 
Filter kernel sizes of 3 Conv blocks 1: (1,13), 2: (1,9), 3: (1,5) 
Filter stride sizes of 3 Conv blocks 1: (1,1), 2: (1,1), 3: (1,1) 
Max pooling sizes of 3 Conv blocks 1: (1,4), 2: (1,4), 3: (1,4) 

Classifier 
stage 

 Dense layer sizes of 2 FC blocks 1: 300, 2: 50 

General 
hyper-

parameters 

   RRelu parameter range All: 1/8 to 1/7 
 

Dropout rate All: 0.3 

 
In figure 2-25 a schematic of the network is shown. The construction of the 
convolutional blocks and fully connected blocks are similar to the architecture 
Cnet2D. 
 
 

  
 

 

Figure 2-25 Schematic of CnetComb architecture on Nearlab dataset 

Conv Block 3 input shape(10,32,48)

64@Conv2D(3x5),s(1,1)-=>BN=>RReLU 
=>MaxPool(1,4)=>Dropout=>Flatten

Conv Block 2 input shape(10,128,32)

48@Conv2D(3x9) , s(1,1)=>BN=>RReLU 
=>MaxPool(1,4)=>Dropout

Conv Block 1 input shape(10,512,1)

32@Conv2D(3x13), s(1,1)=>BN=>RReLU 
=>MaxPool(1,4)=>Dropout

Cnet2D

Conv Block 3 input shape(10,32,48)

64@Conv2D(1x5),s(1,1)=>BN=>RReLU 
=>MaxPool(1,4)=>Dropout=>Flatten

Conv Block 2 input shape(10,128,32)

48@Conv2D(1x9) , s(1,1)=>BN=>RReLU 
=>MaxPool(1,4)=>Dropout

Conv Block 1 input shape(10,512,1)

32@Conv2D(1x13) , s(1,1)=>BN=>RReLU 
=>MaxPool(1,4)=>Dropout

Cnet1D

Classifier Softmax input(50)

Fully Connected Block 2 input shape(300)

Dense(50)=>BN=>RReLU

Fully Connected Block 1 input shape(10240)

Dense(300)=>BN=>RReLU=>Dropout

Concatenate
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4. RESnet: This architecture is inspired by the Residual Neural Networks [22] as a 
solution for vanishing gradients in deep neural networks. In residual neural 
networks, skip identity connections are utilized around convolutional blocks in order 
to transfer the influence of shallower layers into deeper layers. The skip identity 
connections allow for training deeper layers, which enables having more 
convolutional blocks in this proposed architecture. Figure 2-26 is illustrating an 
example of a general residual neural network.  
 

 
However, in this study a modification has been applied to the original proposed 
residual neural network. The modification is including convolutional layers in the skip 
connection from input. Figure 2-27 shows the structure of the proposed network. In 
contrast to Cnet1D and Cnet2D, which had 3 convolutional blocks as feature 
extractor stage, this architecture uses two branches for extracting features. The left 
branch is consisted of 2 convolutional blocks, followed by a single convolutional 
layer (referred to as “Conv layer α”), as shown in figure 2-27. Right branch includes 
one convolutional block followed by the same single convolutional layer (Conv layer 
α). The output of the two single convolutional layers of two branches are summed 
together and the result is given to a batch normalization (BN) layer, RRelu, average 
pooling layer and dropout (referred to as “β block”). A flatten layer is used to 
conclude the feature extractor stage. At the end, classifier stage is added. The 
classifier stage is 2 fully connected blocks followed by a Softmax layer, similar to 
previous networks. 
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Figure 2-26 A general residual neural network architecture 
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In order to find the hyper-parameters of this network, different combinations of 
hyper-parameters were tested on validation set (20 percent of training set) and the 
best setting is reported in table 2-8. 
 

Table 2-8 Hyper-parameters of architecture RESnet on Nearlab dataset 
  Hyper-parameter Block number: Value 

Feature 
extractor 

stage 

Conv 
blocks 

Filter numbers of Conv blocks 1,2 and 3 1: 32, 2: 48, 3: 48 

Filter kernel sizes of Conv blocks 1,2 and 3 1: (1,13), 2: (1,9), 3: (1,13) 

Filter stride sizes of Conv blocks 1,2 and 3 1: (1,4), 2: (1,1), 3: (1,4) 

Max pooling sizes of Conv blocks 1,2 and 3 1: None, 2: (1,4), 3: (1,4) 

Conv 
layer 

α 

Filter number 64 
Filter kernel size (1,5) 
Filter stride size (1,1) 

β 
block 

Average pooling size (1,4) 

Classifier 
stage 

 Dense layer sizes of 2 FC blocks 1: 150, 2: 50 

General 
hyper-

parameters 

   RRelu parameter range All: 1/10 to 1/9 
 

Dropout rate All: 0.3 

 
In figure 2-28 a schematic of the network is shown.  

Input layer 

+ 

β block  

Classifier stage 

Conv block 3

Conv layer α 

Conv block 1

Conv block 2

Conv layer α 

Figure 2-27 General schematic of proposed RESnet structure 
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Figure 2-28 Schematic of RESnet architecture on Nearlab dataset 

2.3.5 Transfer learning 

In some studies, transfer learning (TL) is used to transfer the knowledge of pre-
trained image classifiers (VGG16 and AlexNet) into sEMG-based physical action 
recognition [60]. In other research works such as [51], the knowledge learned in one 
session of recording was transferred to another session. In this study, TL is used to 
leverage the shared information among different subjects to obtain bigger training 
dataset to train deep neural networks. There are two transfer learning schemes 
designed in this study. 

 
Method I: Freeze & fine-tune 
The idea is to use a pre-trained network (trained in the source domain), remove the 
last layer (classifier stage) and attach the new adapted (according to target domain) 
classifier stage. Finally, the network should be re-trained in the target domain. The 
process of re-training is done by freezing the deeper layers’ weights and fine-tuning 

Conv layer α input shape(10,32,48)

64@Conv2D(1x5),s(1,1)

Conv Block 2 input shape(10,128,32)

48@Conv2D(1x9) ,s(1,1)=>BN=>RReLU=> 
MaxPool(1,4)=>Dropout

Conv Block 1 input shape(10,512,1)

32@Conv2D(1x13),s(1,4)=>BN=>RReLU=> 
=>Dropout

Input

Conv layer α input shape(10,32,48)

64@Conv2D(1x5),s(1,1)

Conv Block 3 input shape(10,512,32)

48@Conv2D(1x13),s(1,4)=>BN=>RReLU=> 
MaxPool(1,4)=>Dropout

Input

Classifier Softmax input(50)

Fully connected Block 2 input(150)

Dense(50)=>BN=>RReLU

Fully connected Block 1 input(5120)

Dense(150)=>BN=>RReLU=>Dropout

β  block, input shape(10,32,64)

BN=>RRelu=>AveragePool(1,4)=>dropout=>flatten

+
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the shallower layers. Fine-tuning can be achieved by initializing with previous 
weights and choosing very low learning rates [43]. 
 

 

 
First, the selected network (e.g. Cnet1D) is pre-trained with the data of 5 selected 
subjects with the highest single subject accuracy not including the target subject. 
Afterwards, the first 2 convolutional blocks (except for Batch Normalization layers) 
are frozen and other layers (including the last Conv block plus all the FC blocks) are 
fine-tuned for targeted subject using the subject’s database. Figure 2-29 displays 
the architecture of network. Since the aim of this thesis is to only apply transfer 
learning to the best deep learning network, the exact architecture should be chosen 
after observing the results of deep learning models. Hence, the hyper-parameters 
of this network will be discussed in chapter 4. 
 
Method II: Parallel networks 
In this method, two networks are used in parallel. One is trained on the data of 5 
selected subjects with the highest single subject accuracy not including the target 
subject (referred to as “Source Network”), while the other is trained on the target 
subject’s database (referred to as “Target Network”). The features extracted by the 
mentioned networks would be concatenated, while their classifier stages would be 
disregarded and a new classifier stage with 2 fully connected blocks is added after 
feature layer making the final model referred to as “Final Network”. Finally, in order 
to preserve the learned features from the two pre-trained networks, the weights of 
their feature extractor stage would be frozen (not learnable) and the classifier stage 
would be trained using the target subject’s database (with random initialization). 
Figure 2-30 demonstrates an example of the final model with 3 fully connected 
blocks. Similar to method I the exact architecture of this network will be discussed 
in chapter 4. 
 

Figure 2-29 Freeze & fine-tune architecture 
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2.3.6 Summary of explored methods 

Table 2-9 summarizes all the methods introduced in this chapter which are going 
to be used in this study. 

Table 2-9 Summary of explored methods 
Classification 

family 
Input shape Input 

Classifier 

Traditional machine 
learning 

Number of channels x 
number of selected 

features 

(e.g. 15 x 10) 

One of the 4 defined 
feature sets (TD, ITD, CB, 

Full) 

KNN 

LDA 

MLP 

SVM 

Deep learning 

Number of channels x 
number of data points 

(10 x 512) 

Raw EMG signal 

Cnet1D 

Cnet2D 

CnetComb 

RESnet 

Transfer learning 

Number of channels x 
number of data points 

(10 x 512) 

 Parallel 
networks 

Raw EMG signal Freeze & 
fine-tune 

 
 

2.4 Performance measures 

2.4.1 Basic metrics 

The most common performance measure in a classification problem is “accuracy”, 
which is the ratio of correct classification over the total number of classifications. 
Though this measure is very common, it has its own draw backs. As an example, if 
the classifiers is testing an unbalanced dataset, accuracy could create misleading 
results. In other cases, accuracy might not indicate the essential information a 
researcher is looking for. For example, in some problems, false negative predictions 
are highly costly (e.g., incorrectly labeling an ill patient as healthy). Thus, two 
classification algorithms with same accuracy but different false positive rate could 

Figure 2-30 Parallel networks architecture 
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differ radically in such cases. Therefore, to solve the mentioned problems other 
performance measures are introduced, such as “Recall”, “Precision” and “F1 score”. 
 

2.4.2 Multiclass metrics 

Multi-class performance measurement, could also be done using accuracy metric. 
However, in order to have a more descriptive measure and have class specific 
analysis, confusion matrix has also been used in this project. Figure 2-31 is an 
example of a confusion matrix. Using this metric, the performance of the classifier 
could be analyzed in each class. Vertical axis indicates the true classes of the 
samples while the horizontal axis indicates the output of classifier. The total number 
of samples truly belonging to a certain class can be obtained by summing all the 
elements in the row of the mentioned class. Similarly, the total number of samples 
which are predicted to belong to the same class can be obtained by summing all the 
elements in the column of the mentioned movement.  

 

Figure 2-31 Example of confusion matrix 

 

2.4.3 Variance analysis 

In order to compare the performance of two methods tested on a population of 
subjects and draw conclusions about their differences, a scientific metric should be 
defined. In this thesis, Wilcoxon signed-rank test is used as a metric to determine if 
two methods have significant statistical difference in their performance. Wilcoxon 
signed-rank test is a non-parametric statistical hypothesis test which is very 
appropriate for a repeated measure design where the same subjects are evaluated 
under two different conditions [61]. It is also very useful when normality in data 
cannot be assumed [62]. 
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3 Classical machine learning results 

3.1 Classification performance analysis 

3.1.1 Nearlab dataset 

All 4 feature sets are classified by the 4 classifiers on all 11 subjects included in 
Nearlab dataset and their accuracy result is reported in table 3-1. Since the output 
of multilayer perceptron (MLP) depends on the initial weights and the order of 
training samples, accuracy results were averaged over 20 runs of training and 
testing. 

Table 3-1 Classification accuracy over all 11 subjects of Nearlab dataset 
Model KNN LDA 

Feature Set TD ITD CB Full TD ITD CB Full 

S 1 95.24 96.54 96.54 96.27 94.96 96.09 97.88 96.39 
S 2 92.29 93.50 92.44 93.27 93.03 94.12 94.15 94.77 
S 3 80.52 83.45 83.48 84.60 84.94 88.20 84.85 88.69 
S 4 84.58 84.22 87.63 84.41 89.46 90.27 91.44 90.89 
S 5 88.93 90.37 90.85 90.13 88.96 90.97 92.54 92.12 
S 6 88.21 88.69 87.00 86.31 88.21 88.39 90.87 88.63 
S 7 82.03 83.56 79.99 79.93 83.20 83.20 83.13 83.93 
S 8 88.56 88.29 86.00 86.02 89.08 95.46 93.49 95.59 
S 9 89.60 91.87 90.39 92.25 88.66 92.88 92.50 94.71 
S 10 91.62 93.10 93.26 93.32 95.17 97.63 96.90 98.60 
S 11 85.16 87.62 88.05 88.81 87.65 90.66 92.90 93.76 

 
Model MLP SVM 

Feature Set TD ITD CB Full TD ITD CB Full 

S 1 93.94 95.32 96.34 96.06 92.14 93.78 96.36 95.72 
S 2 93.14 93.53 89.01 91.13 96.16 96.35 92.29 94.77 
S 3 86.94 87.97 87.05 88.81 86.52 86.89 86.89 86.89 
S 4 88.88 89.55 91.47 90.44 87.17 88.06 91.08 89.23 
S 5 89.12 90.17 91.43 90.65 87.88 89.23 89.17 89.89 
S 6 91.51 91.24 89.95 90.65 90.33 90.75 90.27 91.48 
S 7 85.96 85.92 82.71 84.56 88.88 88.33 83.81 85.46 
S 8 94.20 93.84 90.98 91.91 95.17 95.96 91.09 92.86 
S 9 91.34 92.00 90.54 91.23 93.23 93.38 91.18 92.00 
S 10 93.57 95.32 94.15 94.98 97.06 96.57 94.87 96.02 
S 11 89.47 91.10 93.09 92.56 89.43 89.64 92.22 91.86 

 
In this table, considering all the combinations of classifiers and features, the result 
of the best performing combination is shown in bold format for each subject. It can 
be seen that there is no single combination of classifier and feature set that works 
best for all subjects (no column has elements all in bold format). This shows the high 
variety between sEMG signals of different subjects, also referred to as inter-subject 
variability.  
In order to better compare the classifiers and feature sets, average accuracy over 
all subjects should be considered. Figure 3-1 visualizes the average accuracy of all 
the combinations.  
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Figure 3-1 Comparison between average classification accuracies of Nearlab dataset 

 
Table 3-2 illustrates average accuracy, standard deviation (std), median, 
interquartile range (IQR) (over 11 subjects) and result of non-parametric statistical 
significance analysis. Pairwise Wilcoxon Signed-Rank Test is applied to compare 
performance of features sets with the best performing feature set in each classifier. 
For example, for LDA classifier, the considered pairs are (Full vs. TD), (Full vs. ITD) 
and (Full vs. CB). (Null hypothesis is rejected when H0 = 0 (p < 0.05)). 

Table 3-2 Comparison between classifiers and feature sets on Nearlab dataset  
(Pairwise Wilcoxon Signed-Rank Test is applied to compare performance of features sets 

with the best performing feature set in each classifier)  
(Null hypothesis is rejected when H0 = 0 (p < 0.05)) 

Classifier KNN LDA 

Feature set TD ITD CB Full TD ITD CB Full 

Average(%) 87.88 89.20 88.69 88.68 89.39 91.62 91.88 92.55 
Std(%) 4.46 4.35 4.67 4.89 3.75 4.18 4.45 4.23 

Median(%) 88.56 88.69 88.05 88.81 88.96 90.97 92.54 93.76 
IQR(%) 5.74 6.57 5.15 7.45 3.32 5.46 2.66 5.39 

H0 (P-value) 0(0.008) - 1 1 0(0.003) 0(0.003) 1 - 

  
Classifier MLP SVM 

Feature set TD ITD CB Full TD ITD CB Full 

Average(%) 90.73 91.45 90.61 91.18 91.27 91.72 90.84 91.47 
Std(%) 2.86 2.97 3.62 3.02 3.72 3.60 3.45 3.42 

Median(%) 91.34 91.24 90.98 91.13 90.33 90.75 91.09 91.86 
IQR(%) 4.35 3.83 2.80 1.69 5.82 6.09 2.54 4.26 

H0 (P-value) 0(0.016) - 1 1 1 - 1 1 

 
In table 3-2, the feature set which gives the highest average accuracy for each 
classifier is shown in bold format. This table demonstrates that ITD feature set gives 
the best average accuracy among other feature sets for SVM, MLP and KNN. 
However, for LDA it seems that as the number of features in a feature set increases, 
so does the classification accuracy. The statistical analysis performed within each 
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classification method indicates that there is no significant difference between top 
two feature sets in each classification method. 
Table 3-3 provides a comparison between classifiers with their best performing 
feature sets. Although the LDA shows the best performance in average, the 
statistical analysis indicates that there is no significant difference between LDA 
using Full feature set and MLP and SVM using ITD feature set. he considered pairs 
are (LDA vs. KNN), (LDA vs. MLP) and (LDA vs. SVM). 

Table 3-3 Comparison of classifiers with their best performing feature sets 
(Pairwise Wilcoxon Signed-Rank Test is applied to compare performance of LDA with 

other classifiers)  
(Null hypothesis is rejected when H0 = 0 (p < 0.05)) 

Classifier KNN LDA MLP SVM 

Feature set ITD Full ITD ITD 

Average(%) 89.20 92.55 91.45 91.72 
Std(%) 4.35 4.23 2.97 3.60 

Median(%) 88.69 93.76 91.24 90.75 
IQR(%) 6.57 5.39 3.83 6.09 

H0 (P-value) 0(0.008) - 1 1 

 
In Figure 3-2 the classification accuracy of each subject using LDA classifier (as the 
best classifier) and the 4 feature sets is compared. It can be seen that in almost all 
subjects, combining time domain features with frequency domain features as in CB 
and Full feature sets, improve the classification accuracy for LDA classifier. This 
result is in line with statistical data presented in table 3-2 which indicates that there 
is significant difference in Full feature set comparing to TD and ITD feature sets. 
 

 

Figure 3-2 Comparison between feature sets for each subject of Nearlab dataset, using 
LDA classifier 

 

3.1.2 Ninapro DB2 

In order to be able to compare the performance of proposed methods with other 
studies, same classifier and feature set combinations were tested on Ninapro DB2 
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(explained in section 2.1.5). The results are averaged over all 40 subjects of this 
database. In Figure 3-3 the average accuracy of each combination is visualized.  
 

 

Figure 3-3 Comparison between average classification accuracies of Ninapro DB2 
database 

 
In table 3-4 the average accuracy, standard deviation (std), median, IQR and 
statistical analysis of all classifiers with all feature sets can be seen. Pairwise 
Wilcoxon Signed-Rank Test is applied to compare performance of features sets with 
the best performing feature set in each classifier. For example, for LDA classifier, 
the considered pairs are (Full vs. TD), (Full vs. ITD) and (Full vs. CB). (Null 
hypothesis is rejected when H0 = 0 (p < 0.05)). 

Table 3-4 Comparison between classifiers and feature sets on Ninapro DB2 
(Pairwise Wilcoxon Signed-Rank Test is applied to compare performance of features sets 

with the best performing feature set in each classifier)  
(Null hypothesis is rejected when H0 = 0 (p < 0.05)) 

Classifier KNN LDA 

Feature set TD ITD CB Full TD ITD CB Full 

Average(%) 70.62 73.34 74.53 75.17 69.83 75.93 75.99 79.95 
Std(%) 6.13 6.27 6.34 6.52 6.25 6.00 6.28 5.73 

Median(%) 71.44 73.72 74.53 75.29 70.83 76.01 76.68 80.62 
IQR(%) 7.87 9.72 8.36 9.48 8.69 7.89 7.81 7.45 

H0 (P-value) 0(0.000) 0(0.000) 0(0.010) - 0(0.000) 0(0.000) 0(0.000) - 

  
Classifier MLP SVM 

Feature set TD ITD CB Full TD ITD CB Full 

Average(%) 75.91 79.14 79.68 80.97 74.38 77.29 78.09 79.50 
Std(%) 5.39 5.59 5.54 5.44 6.39 6.17 6.14 6.25 

Median(%) 75.98 79.09 79.65 80.92 73.42 77.29 77.94 79.98 
IQR(%) 8.17 7.81 7.21 6.79 9.00 9.72 9.18 9.55 

H0 (P-value) 0(0.000) 0(0.000) 0(0.000) - 0(0.000) 0(0.000) 0(0.000) - 
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According to this table, in Ninapro database the best feature set for all classifiers is 
Full and the best classifier is MLP with 80.97% average accuracy. The statistical 
analysis indicates that, there are significant differences between full feature set and 
other feature sets in all classification methods. 
Table 3-5 provides a comparison between classifiers with their best performing 
feature sets. MLP shows the best performance in average and the statistical 
analysis indicates that there is significant difference between MLP and other 
classifiers using Full feature set. 

Table 3-5 Comparison of classifiers with their best performing feature sets 
(Pairwise Wilcoxon Signed-Rank Test is applied to compare performance of MLP with 

other classifiers) (Null hypothesis is rejected when H0 = 0 (p < 0.05)) 
Classifier KNN LDA MLP SVM 

Feature set Full Full Full Full 

Average(%) 75.17 79.95 80.97 79.50 
Std(%) 6.52 5.73 5.44 6.25 

H0 (P-value) 0(0.000) 0(0.001) - 0(0.000) 

 
In Figure 3-4 (a-d) classification result of all 40 subjects with MLP classifier and all 
feature sets is depicted. It is important to keep in mind that, the reported results for 
each subject is the average over 20 repetitions of training and testing. 
 

 

Figure 3-4-a Classification accuracy (%) of Ninapro DB2 subjects 1-10 with MLP 

 

0

10

20

30

40

50

60

70

80

90

100

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10

A
cc

u
ra

cy
 (

%
)

Subjects 1-10

TD ITD CB Full



 

72/111  

 

Figure 3-4-b Classification accuracy (%) of Ninapro DB2 subjects 11-20 with MLP 

 

 

Figure 3-4-c Classification accuracy (%) of Ninapro DB2 subjects 21-30 with MLP 
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Figure 3-4-d Classification accuracy (%) of Ninapro DB2 subjects 31-40 with MLP 

 
From the Figure 3-4 it can be inferred that Full feature set is generally the best 
feature set among most of the subjects. Again, the inter-subject variability is evident 
from different ranges of accuracy considering Full feature classification (from 
69.25% till 90.31%). 
 

3.2 Class specific analysis 

In Figure 3-5, confusion matrix is used to demonstrate the ability of the best classifier 
(LDA with Full feature set) to classify individual movements. In order to generalize 
the performance measure over all subjects of Nearlab database, the confusion 
matrix is drawn in Figure 3-5 based on the average result over all subjects. In other 
words, each element of the confusion matrix is the average of corresponding 
elements of all subjects’ confusion matrix. 

 

 

Figure 3-5 Confusion matrix averaged over all 11 subjects of Nearlab dataset 
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In Figure 3-5, class labels 0 to 7 correspond to hand flexion, extension, supination, 
pronation, open, pinch, lateral pinch and fist, respectively. Based on this Figure, the 
most frequent misclassifications happened between classes labeled with 5 and 6, 
i.e., pinch and lateral pinch. The possible reason behind this misclassification is the 
similarity of muscle activation patterns involved in the execution of the mentioned 
movements. In addition to intrinsic similarities between these two movements, in the 
subjects that did not execute these two movements in accordance with the 
instructions of video cue, similarity increases. In other words, they perform these 
two movements very similar to each other. 
In Figure 3-6, the confusion matrix of subject 10 and 7 as best (98.60%) and worst 
(83.93%) performing subjects, respectively, are displayed based on LDA 
classification with Full feature set. The right graph represents the classification of 
subject 7 and the left is for subject 10. In accordance with the right graph, the most 
misclassifications in subject 7 are between the two pinch classes (labels 5 and 6). 
However, subject 10 does not have this problem. Since there is no significant 
misclassification in subject 10, there should be another reason apart from similarities 
in the movement classes for misclassification of classes 5 and 6 in other subjects. 
 

  

Figure 3-6 confusion matrixes for subject 10 (left) and subject 7 (right) 

 
As mentioned before, an observer was responsible to monitor the movements of 
each subject. According to observer, if a subject performed incorrect movements 
according to video cue, the movement would be discarded from the database. This 
case happened often when the subject incorrectly performed the wrong pinch 
movement (e.g. lateral pinch instead of pinch). The effect of discarding movements 
is decreasing the number of available samples for training of that specific class. 
Figure 3-7 shows the number of available samples for each class (only round 1 
dataset) of subjects 10 (left) and 7 (right). 
According to protocol, each movement execution lasted almost 5 seconds (5x2048 
samples) and the movements were segmented in 512 samples sub-windows with 
stride of 128 samples, hence each movement must include about 77 sub-windows. 
In each round, each movement class was repeated 5 times, therefore in total each 
movement class must have maximum 385 sub-windows. However, some 
movements were discarded in the case of incorrectness of execution, thus 
decreasing the number of available repetitions for each movement. From Figure 3-
7 left associated to subject 10, it can be concluded that almost all movements were 
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executed correctly. On the contrary, in Figure 3-7 right related to subject 7, it is 
obvious that classes labeled 2, 5, and 6 have less than 5 repetitions. 
 

  

Figure 3-7 Round 1 class distributions of subject 10 (left) and subject 7 (right) 

  
The less the number of available samples of one class, the less the network is able 
to train to discriminate that class from others. Hence, we can infer that network for 
subject 7 was not able to train well enough on classes labeled 2, 5 and 6. This can 
be the reason of misclassification between classes 5 and 6, and also class labeled 
2 with others. 

3.2.1 Modification on movement classes 

Based on the idea that the pinch and lateral pinch classes are very similar and can 
be confused with each other, a modification of movement classes has been 
proposed and investigated in this section. These two classes were combined to 
create a general pinch class. Therefore, the database in this section has 7 classes 
instead of 8. In Figure 3-8 classification result on this modified database is 
demonstrated. The classification is performed using LDA with Full feature set. 
 

 

Figure 3-8 Classification accuarcy of LDA with Full feature set, using modified dataset 
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Figure 3-8 illustrates that after this modification, average accuracy of all subjects 
with LDA and Full feature set, has improved from 92.55% (table 3-2) to 96.00%. 
 
In Figure 3-9 the new confusion matrix averaged on all subjects is displayed. 

 

 

Figure 3-9 Confusion matrix over all subjects of modified Nearlab dataset 

 
According to Figure 3-9, the misclassification of classes does not include any special 
classes and classifier was able to distinguish all classes almost equally. It is worth 
mentioning that, since the samples of two classes were combined, the number of 
samples for this new class labeled as 5 is more than others. 
 

3.3 Run time analysis 

An estimation of processing time is needed when approaching an online 
classification problem. One of the steps that might require high amount of time is 
feature extraction, which is addressed here. One random subject is chosen and the 
time needed for extracting each feature of all channels for one sub-window is 
reported in table 3-6. The reported time is averaged over 1000 repetitions of the 
procedure. The system used for these measurements was a 64-bit Windows based 
computer, with a 6 GB RAM and an Intel® Core™ i5 CPU. 

Table 3-6 Extraction time (ms) of each feature over all channels 
Feature MAV ZC SSC WL HP_A HP_M 

Time (ms) 7.925x10-2 8.927 x10-2 6.776 x10-2 9.979 x10-2 8.788 x10-2 1.833 x10-1 

 
Feature HP_C SampEn CCs RMS IEMG Skew 

Time (ms) 2.558 x10-1 147.9 125.3 9.5456e-02 3.1459e-02 1.3 

 
Table 3-6 shows that, extracting time-domain features are orders of magnitude 
faster than extracting frequency-domain features (e.g. CCs). This fact, proves the 
superior performance of time-domain features in an online classification application. 
Regarding the feature sets considered in this project, TD and ITD present the fastest 
solutions since they only contain time-domain features. 
In online classification, it is also necessary to limit the required time for producing a 
prediction over one input sample. Hence, the prediction time of one sample of a 
random subject over different classifiers has been calculated. The time is averaged 
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over predicting 1000 samples. The Full feature set was chosen for this comparison 
since it has all 15 features included. The result is shown in table 3-7.  

Table 3-7 Prediction time (ms) of each classifier using Full feature set 
Classifier KNN LDA MLP SVM 

Time (ms) 3.554 0.801 1.021 0.879 

 
According to table 3-7, KNN is the slowest classifier. This can be explained by the 
fact that in KNN classifier, for each prediction it is necessary to calculate the 
distance of new sample with all training samples, hence making the prediction time 
dependent to number of training samples and calculating the distances. LDA, MLP 
and SVM have similar performance regarding predicted time consumption. 
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4 Deep learning results 

4.1 Classification performance analysis 

4.1.1 Nearlab dataset 

Cnet2D:  
The hyper-parameters of this network optimized on Nearlab database was 
introduced in section 2.3.4. The learning parameters used for training this network 
on Nearlab dataset are listed in table 4-1. Adam optimizer was used for this and 
other proposed deep networks. As it can be seen in this network, reduced learning 
rate has been used. Learning rate decreases with a factor of 0.5, if after 30 epochs 
the validation loss does not decrease. The minimum of learning rate is set to 0.0005. 

Table 4-1 Learning parameters for Cnet2D on Nearlab dataset 
Parameter Value 

Learning rate From 0.003 to 0.0005, factor = 0.5, patience = 30 
Epoch 400, early stopping patience = 100 

Batch size 128 

 
For each possible combination of learning parameters, the curves for loss and 
accuracy was investigated and the parameters were modified accordingly. In figure 
4-1 loss and accuracy curve of subject number 4 is shown as an example. The loss 
curve (left) is comparing the loss (total error) of network on training and validation 
sets through the training epochs. Accuracy curve (right) similarly compares the 
accuracy of training and validation sets through the training epochs. It is desired to 
have a decrease in loss and increase in accuracy as the number of epochs 
increases until both converge to a plateau. Not reaching plateau in the curves could 
mean the need for more epochs in training procedure. Moreover, the absence of 
correlation between training and validation curves could indicate presence of over-
fitting or under-fitting. A significant bias between two curves or high oscillation in 
validation curve when the training curve has no considerable oscillations, are two 
examples of absence of correlation. 

 

Figure 4-1 Loss (left) and accuracy (right) curves during training of Cnet2D for subject 4 of 
Nearlab dataset. 

 
In figure 4-2 the classification accuracy over all 11 subjects of Nearlab dataset using 
the proposed Cnet2D is shown. Since training deep networks have stochastic 
nature, the classification accuracy of each subject is different every time network is 
trained. In order to decrease this effect, the network has been trained and tested for 



 

79/111  

5 times, and the reported values is the average of these 5 repetitions for each 
subject. 
 

 

Figure 4-2 Classification accuracy (%) of Cnet2D over Nearlab dataset subjects 

 
Cnet1D: 
The learning parameters used for training this network are listed in table 4-2. In this 
network, a fixed learning rate is used. These parameters have been obtained by trial 
and error and investigating loss and accuracy, following the same procedure 
previously illustrated for parameters of Cnet2D. 

Table 4-2 Learning parameters for Cnet1D on Nearlab dataset 
Parameters Values 

Learning rate 0.001 
Epoch 400, early stopping patience = 100 

Batch size 128 

 
In figure 4-3 the classification accuracy over all 11 subjects of Nearlab dataset using 
the proposed Cnet1D is shown. The reported results are the average of 5 repetitions 
of training and testing the model for each subject in order to decrease the effect of 
stochastic nature of the model. 
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Figure 4-3 Classification accuracy (%) of Cnet1D over Nearlab dataset subjects 

 
CnetComb:  
This architecture is a combination of two previous networks, in order to combine the 
features extracted from 1-dimaensional filters and 2-dimensional filters. The 
parameters used for training this network are listed in table 4-3. Reducing learning 
rate approach is used for this network. The parameters search was performed as 
previous networks. 

Table 4-3 Learning parameters for CnetComb on Nearlab dataset 
Parameters Values 

Learning rate From 0.003 to 0.0005, factor = 0.5, patience = 30 
Epoch 400, early stopping patience = 100 

Batch size 128 

 
In figure 4-4 the classification accuracy over all 11 subjects of Nearlab dataset using 
the proposed CnetComb is shown. Here again the reported results are the average 
of 5 repetitions of training and testing. 
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Figure 4-4 Classification accuracy (%) of CnetComb over Nearlab dataset subjects 

 
RESnet: 
The parameters used for training this network are listed in table 4-4. 

Table 4-4 Learning parameters for RESnet on Nearlab dataset 
Parameters Values 

Learning rate From 0.003 to 0.0005, factor = 0.5, patience = 30 
Epoch 400, early stopping patience = 150 

Batch size 32 

 
In figure 4-5, the classification accuracy over all 11 subjects of Nearlab dataset using 
the proposed RESnet is shown. The reported results are the average of 5 repetitions 
of training and testing of the model for each subject. 
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Figure 4-5 Classification accuracy (%) of RESnet over Nearlab dataset subjects 

 
In the following, the 4 proposed networks are compared. Figure 4-6 demonstrates 
the classification accuracy of the proposed methods on all subjects.  
 

 

Figure 4-6 Comparison between classifiers via classification accuracy (%) on Nearlab 
dataset subjects 

 
Table 4-5 compares the average accuracy, standard deviation (std), median and 
interquartile range (IQR) over all 11 subjects and the statistical significance of these 
methods. The Pairwise Wilcoxon Signed-Rank Test is applied to compare statistical 
significance of the classifier with highest average accuracy (Cnet1D) and others. 
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Hence, the pairs considered for this test are: (Cnet2D, Cnet1D), (RESnet, Cnet1D) 
and (CnetComb, Cnet1D). (Null hypothesis is rejected when H0 = 0 (p < 0.05)). 

Table 4-5 Comparison of proposed deep networks on Nearlab database subjects 
Classifier Cnet1D Cnet2D CnetComb RESnet 

Average(%) 93.23 92.81 92.41 93.20 
Std(%) 2.91 3.22 3.26 3.42 

Median (%) 92.88 91.68 92.41 91.98 
IQR(%) 2.87 4.21 4.42 4.85 

H0 (P-value) - 1 0(0.014) 1 

 
It can be inferred form table 4-6 that although Cnet1D has the highest average 
accuracy, there is no significant difference between Cnet1D, Cnet2D and RESnet. 
 
A comparison based on average accuracy and Pairwise Wilcoxon Signed-Rank 
Test, has been also conducted between Cnet1D as the method with highest average 
accuracy and all machine learning methods with their best feature set (section 3.1.1) 
in table 4-6. The considered pairs for Wilcoxon tests are: (Cnet1D vs LDA), (Cnet1D 
vs MLP), (Cnet1D vs SVM) and (Cnet1D vs KNN) 

Table 4-6 Comprison of best models of classical machine learning and Cnet1D on Nearlab 
database 

Classifier Cnet1D LDA with Full MLP with ITD SVM with ITD KNN with ITD 

Average(%) 93.23 92.55 91.45 91.72 89.20 
Std(%) 2.91 4.23 2.97 3.60 4.35 

Median(%) 92.88 93.76 91.24 90.75 88.69 
IQR(%) 2.87 5.39 3.83 6.09 6.57 

H0 (P-value) - 1 0(0.007) 0(0.014) 0(0.005) 

 
According to table 4-6 the Cnet1D, has the highest average when comparing with 
all the traditional classifiers. The variance analysis indicates that, the Cnet1D has 
significant difference (improvement) when comparing to MLP, SVM and KNN 
methods while there is no significance when comparing to LDA method. A 
noteworthy point is that, deep learning method is extracting features from raw signal, 
which is in time-domain, while LDA is using frequency-domain features. 
 

4.1.2 Ninapro DB2 dataset 

On this database, Cnet1D, Cnet2D, CnetComb and RESnet has been applied. 
However, since electrodes placement, acquisition protocol and movement classes 
are different, some minor modifications should be considered to fit the models on 
DB2 database. The most important difference between Ninapro DB2 and Nearlab 
dataset is that the number of samples per class, is significantly higher in the Nearlab 
dataset comparing to DB2. Therefore, even in the case of minor modifications, 
sometimes the proposed networks show overfitting on Ninapro DB2, since the 
hyper-parameters of base models were designed according to Nearlab dataset 
characteristics (e.g., number of samples per target class). Another important 
difference is the total number of movement classes (8 in Nearlab vs. 17 in Ninapro).  
The hyper-parameter modifications of Cnet2D, Cnet1D, CnetComb and RESnet 
networks are reported in table 4-7 to 4-10, respectively. The modifications in hyper-
parameters on Ninapro DB2 were performed with the goal of decreasing the number 
of trainable parameters in order to prevent overfitting. As a result, the size of stride 
and maxpool was changed by trial and error.  
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Moreover, learning parameters of all the networks are listed in tables 4-11. 

Table 4-7 Hyper-parameters of Cnet2D for Ninapro DB2 dataset 
 Hyper-parameter Block number: Value 

Feature extractor stage 

Filter numbers of 3 Conv blocks 1: 32, 2: 48, 3: 64 

Filter kernel sizes of 3 Conv blocks 1: (3,13), 2: (3,9), 3: (3,5) 

Filter stride sizes of 3 Conv blocks 1: (1,3), 2: (1,1), 3: (1,1) 

Max pooling sizes of 3 Conv blocks 1: (1,3), 2: (1,3), 3: (1,3) 

Classifier stage Dense layer sizes of 2 FC blocks 1: 300, 2: 50 

General hyper-parameters 
RRelu parameter range All: 1/8 to 1/7 

Dropout rate All: 0.3 

Table 4-8 Hyper-parameters of network Cnet1D for Ninapro DB2 dataset 
 Hyper-parameter Block number: Value 

Feature extractor stage 

Filter numbers of 3 Conv blocks 1: 32, 2: 48, 3: 64 

Filter kernel sizes of 3 Conv blocks 1: (1,13), 2: (1,9), 3: (1,5) 

Filter stride sizes of 3 Conv blocks 1: (1,3), 2: (1,1), 3: (1,1) 

Max pooling sizes of 3 Conv blocks 1: (1,3), 2: (1,3), 3: (1,3) 

Classifier stage Dense layer sizes of 2 FC blocks 1: 300, 2: 50 

General hyper-parameters 
  RRelu parameter range All: 1/8 to 1/7 

Dropout rate All: 0.3 

Table 4-9 Hyper-parameters of network CnetComb for Ninapro DB2 dataset 
  Hyper-parameter Block number: Value 

Feature 
extractor 

stage 

Cnet2D 
feature 

extractor 

Filter numbers of 3 Conv blocks 1: 32, 2: 48, 3: 64 
Filter kernel sizes of 3 Conv blocks 1: (3,13), 2: (3,9), 3: (3,5) 
Filter stride sizes of 3 Conv blocks 1: (1,3), 2: (1,1), 3: (1,1) 
Max pooling sizes of 3 Conv blocks 1: (1,3), 2: (1,3), 3: (1,3) 

Cnet1D 
feature 

extractor 

Filter numbers of 3 Conv blocks 1: 32, 2: 48, 3: 64 
Filter kernel sizes of 3 Conv blocks 1: (1,13), 2: (1,9), 3: (1,5) 
Filter stride sizes of 3 Conv blocks 1: (1,3), 2: (1,1), 3: (1,1) 
Max pooling sizes of 3 Conv blocks 1: (1,3), 2: (1,3), 3: (1,3) 

Classifier 
stage 

 Dense layer sizes of 2 FC blocks 1: 300, 2: 50 

General 
hyper-

parameters 

   RRelu parameter range All: 1/8 to 1/7 
 

Dropout rate All: 0.3 

Table 4-10 Hyper-parameters of network RESnet for Ninapro DB2 dataset 
  Hyper-parameter Block number: Value 

Feature 
extractor 

stage 

Conv 
blocks 

Filter numbers of Conv blocks 1,2 and 3 1: 24, 2: 32, 3: 24 

Filter kernel sizes of Conv blocks 1,2 and 3 1: (1,7), 2: (1,5), 3: (1,5) 

Filter stride sizes of Conv blocks 1,2 and 3 1: (1,5), 2: (1,1), 3: (1,5) 

Max pooling sizes of Conv blocks 1,2 and 3 1: None, 2: (1,4), 3: (1,4) 

Conv 
layer 

α 

Filter number 48 
Filter kernel size (1,3) 
Filter stride size (1,1) 

β 
block 

Average pooling size (1,3) 

Classifier 
stage 

 Dense layer sizes of 2 FC blocks 1: 300, 2: 50 

General 
hyper-

parameters 

   RRelu parameter range All: 1/10 to 1/9 
 

Dropout rate All: 0.3 
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Table 4-11 Learning parameters for deep networks on Ninapro DB2 dataset 
Parameter Value 

Learning rate 0.0001 (for Cnet1D, Cnet2D, CnetComb) / 0.00005 (for RESnet) 
Epoch 400, early stopping patience = 100 (for all) 

Batch size 128 (for all) 

 
As mentioned before, the curves for loss and accuracy were investigated, in order 
to modify learning parameters accordingly. In figure 4-7 loss (left) and accuracy 
(right) curves of subject 2 during training Cnet2D is shown. According to figure 4-7 
there is very low correlation between training and validation accuracy/loss. The 
absence of correlation could be an indicator of overfitting. Overfitting effect was 
predictable due to the fact that the number of samples per class is much lower in 
Ninapro database comparing to Nearlab database while the model complexity is the 
same in both cases. It is important to mention that other subjects also displayed 
similar patterns in their accuracy/loss curves. 
 

  

Figure 4-7 Loss (left) and accuracy (right) curves during training of Cnet2D on random 
subject of Ninapro DB2 

 
In table 4-12 the classification accuracy of Ninapro DB2 subjects on the 4 networks 
is reported. For each subject, the best classification accuracy is shown in bold. 

Table 4-12 Classification accuracy (%) of all Ninapro DB@ subjects 
 Cnet1D Cnet2D CnetComb RESnet  Cnet1D Cnet2D CnetComb RESnet 

S1 84.16 87.50 83.94 82.10 S21 70.29 69.21 74.46 70.14 
S2 82.61 83.35 79.15 79.20 S22 77.39 79.21 77.8 79.90 
S3 90.28 88.98 84.82 86.37 S23 75.18 77.99 77.77 76.48 
S4 76.67 76.52 73.62 70.98 S24 67.81 67.32 67.12 65.20 
S5 82.64 86.36 82.42 81.98 S25 76.98 79.42 79.66 76.44 
S6 79.5 81.71 79.88 74.97 S26 79.96 84.48 85.94 80.44 
S7 72.06 77.84 74.83 68.25 S27 81.64 79.85 79.77 75.75 
S8 89.76 90.84 89.36 91.64 S28 65.07 66.85 66.72 67.11 
S9 86.4 87.79 85.14 84.87 S29 78.1 79.99 79.41 77.00 
S10 83.43 86.56 84.68 84.47 S30 71.71 76.93 74.18 69.83 
S11 70.51 73.36 71.44 71.35 S31 64.88 72.83 73.93 63.05 
S12 78.2 81.32 79.99 78.24 S32 74.62 79.17 80.46 76.52 
S13 78.83 80.92 78.55 76.66 S33 84.93 89.44 90.36 89.09 
S14 71.99 74.75 71.09 69.24 S34 81.31 83.82 85.37 84.24 
S15 83.46 86.75 84.27 82.90 S35 67.55 73.92 78.58 64.34 
S16 80.82 80.00 81.89 81.28 S36 69.41 73.59 74.53 68.36 
S17 80.48 83.77 83.63 81.41 S37 80.32 84.38 85.53 79.35 
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S18 73.37 75.46 76 73.90 S38 74.46 82.49 85.9 78.53 
S19 80.17 81.15 82.63 79.86 S39 74.26 81.95 83.87 76.70 
S20 76.31 73.41 75.24 73.06 S40 90.04 92.68 93.18 90.17 

 
Moreover, table 4-13 compares the average accuracy and standard deviation over 
all subjects and the statistical significance of these methods. The Pairwise Wilcoxon 
Signed-Rank Test is applied to compare performance of Cnet2D vs. Cnet1D and 
Cnet2D vs. CnetComb and Cnet2D vs. RESnet. Cnet2D was chosen as the base 
for comparison since it has the highest average accuracy. (Null hypothesis is 
rejected when H0 = 0 (p < 0.05)). 

Table 4-13 Comparison of deep networks over Ninapro DB2 subjects 
Classifier Cnet1D Cnet2D CnetComb RESnet 

Average(%) 77.69 80.34 79.93 77.03 
Std(%) 6.54 6.30 5.98 7.09 

Median(%) 78.15 80.46 79.82 76.85 
IQR(%) 8.84 8.15 9.23 10.29 

H0 (P-value) 0(0.000) - 0(0.001) 0(0.000) 

 
From table 4-12 it can be inferred that, Cnet2D has the highest average accuracy 
and has significant statistical difference comparing to others. Moreover, a 
comparison based on classification accuracy and statistical test (Pairwise Wilcoxon 
Signed-Rank Test), has been also conducted between the best classical machine 
learning methods (section 3.1.2) and the best deep learning method (Cnet2D) in 
table 4-14. The pairs considered for Wilcoxon test are: (Cnet2D vs LDA), (Cnet2D 
vs MLP), (Cnet2D vs SVM) and (Cnet2D vs KNN). According to table 4-13, although 
MLP has highest average accuracy, MLP, LDA and Cnet2D have no significant 
statistical difference in their performance. The lower average accuracy of Cnet2D 
comparing MLP could be due to overfitting problem of Ninapro DB2 database using 
a deep learning method. 

Table 4-14 Comprison of best models of classical machine learning and Cnet2D on 
Ninapro DB2 database 

Classifier Cnet2D LDA with Full MLP with Full SVM with Full KNN with Full 

Average(%) 80.34 79.95 80.97 79.50 75.17 
Std(%) 6.30 5.73 5.44 6.25 6.52 

Median(%) 80.46 80.62 80.92 79.98 75.29 
IQR(%) 8.15 7.45 6.79 9.55 9.48 

H0 (P-value) - 1 1 0(0.015) 0(0.000) 

 

4.2 Class specific analysis 

Similar to section 3.2 the classification performance should also be investigated by 
the means of confusion matrix on Nearlab dataset. In order to do so, the confusion 
matrix of all subjects of Nearlab dataset has been obtained using Cnet1D classifier 
and averaged. In the figure 4-8, the averaged confusion matrix over all 11 subjects, 
can be seen. According to this figure, the misclassification between the two pinch 
classes labeled 5 and 6 remains a problem in deep learning as well. 
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Figure 4-8 Confusion matrix of Cnet2D averaged over Nearlab database subjects 

 
Hence, the suggested modification in section 3.2.1 will be repeated here on Nearlab 
dataset. The two classes of pinch will be treated as one single class in training and 
prediction and the averaged confusion matrix of new results over all 11 subjects is 
shown in figure 4-9. 
 

 

Figure 4-9 Confusion matrix of Cnet1D averaged over modified database 

 
The corresponding classification accuracy of this modified database using Cnet1D 
over all Nearlab dataset subjects is presented in figure 4-10. The average accuracy 
over all subjects is increased to 96.5% using this modified movement classes. 
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Figure 4-10 Classification accuracy (%) over all subjects using modified databse 

 
 
The classification result on this modified database over Nearlab dataset subjects, 
using Cnet1D and LDA with Full feature set is compared in table 4-15. The pairwise 
Wilcoxon test between these two methods have also been conducted. From this 
table it can be inferred that although Cnet1D has higher accuracy, it does not have 
significant statistical difference comparing LDA with Full feature set. The same 
conclusion was made before modifying the database. 
 
 

Table 4-15 Comparing Cnet1D and LDA on modified Nearlab dataset 
Classifier Cnet1D LDA with Full 

Average(%) 96.50 96.00 
Std(%) 1.57 2.09 

Median(%) 96.68 95.73 
IQR(%) 2.61 3.33 

H0 (P-value) - 1 

 

4.3 Run time analysis 

In online classification, it is necessary to limit the required time for producing a 
prediction over one input sample. Hence, the prediction time of one sample of a 
random subject over different classifiers has been calculated. The time is averaged 
over predicting 1000 samples. In table 4-16, the prediction time of each classifier is 
presented. Moreover, since the prediction time depends on the number of the total 
parameters of the model, this number is also reported. Deep learning training and 
testing were executed on google Colaboratory Jupyter notebook service [63]. The 
allocated GPU from google Colaboratory to this project while running the code for 
time calculation was a Tesla P100-PCIE-16GB. 
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Table 4-16 Prediction time (ms) comparison over all deep networks 
Classifier Cnet1D Cnet2D CnetComb RESnet 

Time (ms) 4.81 4.97 6.34 5.16 
Number of total parameters 1,583,022 1,642,222 3,208,086 822,908 

 
From table 4-16 it can be inferred that all networks produce sample predictions fast 
enough to meet the time limitations of online classification, provided that a GPU 
similar to the one in this test (Tesla P100-PCIE-16GB) is utilized. 
 

4.4 Transfer learning 

In this study, transfer learning (TL) has been employed as an approach to solve the 
challenge of limited available data to train deep neural networks. TL is used to 
leverage the shared information among different subjects to obtain bigger training 
dataset. 

4.4.1 Nearlab dataset 

The two TL methods introduced in section 2.2.5 will be trained and tested on Nearlab 
database and the result will be reported in this section. The base architecture for 
both of the methods are Cnet1D, which exhibits the best average accuracy on 
Nearlab dataset. 
 
Freeze & fine-tune: In this study, the source domain is the data of 5 selected 
subjects with the highest single subject accuracy (acquired by Cnet1D) except the 
target subject. While, target domain is corresponding data to target subject. (For 
more detail about training procedure please refer to section 2.2.5). The architecture 
of the feature extractor and classifier stage is based on Cnet1D, which was 
concluded to be the best deep network in this project. Hence, the hyper-parameters 
and the architecture of the network remains the same, table 2-6 and figure 2-23, 
respectively. However, the training parameters change according to the problem. 
Table 4-17 refers to learning parameters of this network. 

Table 4-17 Learning parameter of Freeze & fine-tune network for Nearlab database 
 Parameters Values 

Source 
Network 

Learning rate 0.001 
Epoch 100, early stopping patience = 50 

Batch size 128 

Target Network 
Learning rate From 0.001 to 0.0001, factor = 0.5, patience = 30 

Epoch 300, early stopping patience = 150 
Batch size 128 

 
In figure 4-11 the classification accuracy of the source network (Cnet1D) and its 
comparison when applying freeze & fine-tune (target network) over all subjects can 
be seen. 
 



 

90/111  

 

Figure 4-11 Classification accuracy (%) of Freeze & fine-tune method on Nearlab database 
subjects 

 
Parallel networks: This network utilizes combinations of features learned by two 
separate networks. The target network uses the architecture of Cnet1D which was 
chosen as the best deep network for Nearlab dataset subjects, hence the hyper-
parameters are equal to Cnet1D (table 2-6). On the other hand, the source network 
has 4 convolutional blocks as feature extractor stage. The feature extractor stage of 
final architecture is based on two previous networks, while the classifier stage is 2 
fully connected blocks with random initial values. In table 4-18 and table 4-19 the 
hyper-parameters of source and final network can be found, respectively. 

Table 4-18 Hyper-parameters of source network of Parallel method 
 Hyper-parameter Block number: Value 

Feature 
extractor stage 

Filter numbers of 4 Conv blocks 1: 32, 2: 48, 3: 56, 4: 64 

Filter kernel sizes of 4 Conv blocks 1: (1,11), 2: (1,9), 3: (1,7), 4: (1,5) 

Filter stride sizes of 4 Conv blocks 1: (1,1), 2: (1,1), 3: (1,1), 4: (1,1) 

Max pooling sizes of 4 Conv blocks 1: (1,4), 2: (1,4), 3: (1,2), 4: (1,2) 

Classifier stage Dense layer sizes of 2 FC blocks 1: 300, 2: 50 

General hyper-
parameters 

RRelu parameter range All: 1/8 to 1/7 
Dropout rate All: 0.5 

 

Table 4-19 Hyper-parameters of subject network of Parallel method 
  Hyper-parameter Value 

Feature 
extractor 

stage 

Source network Feature extractor stage of table 4-21 
 
 

Target network Feature extractor stage of table 4-3 
 
 

Classifier 
stage 

 Dense layer sizes of 2 FC blocks 1: 150, 2: 50 

General 
hyper-

parameters 

 RRelu parameter range All: 1/8 to 1/7 

Dropout rate All: 0.5 
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In figure 4-12 a schematic of the final network including the hyper-parameters is 
shown. 
 

  
 

 

Figure 4-12 Schematic of target network architecture of Parallel method 

 
The learning parameters of target network is same as Cnet1D listed in table 4-2. 
The learning parameters of source and final networks are reported in tables 4-20 
and 4-21, respectively.  

Table 4-20 Learning parameters of source network from Parallel method 
Parameters Values 

Learning rate 0.003 
Epoch 100, early stopping patience = 50 

Batch size 128 

Conv Block 3: input shape(10,32,48)

64@Conv2D(1x5) ,s(1,1)=>BN=>RReLU=> 
MaxPool(1,4)=>Dropout=>Flatten

Conv Block 2: input shape(10,128,32)

48@Conv2D(1x9) ,s(1,1)=>BN=>RReLU=> 
MaxPool(1,4)=>Dropout

Conv Block 1: input shape(10,512,1)

32@Conv2D(1x13),s(1,1)=>BN=>RReLU=>
MaxPool(1,4)=>Dropout

Target network

Conv Block 4: input shape(10,16,56)

64@Conv2D(1x5) ,s(1,1)=>BN=>RReLU=> 
MaxPool(1,2)=>Dropout=>Flatten

Conv Block 3: input shape(10,32,48)

56@Conv2D(1x7) ,s(1,1)=>BN=>RReLU=> 
MaxPool(1,2)=>Dropout=>Flatten

Conv Block 2: input shape(10,128,32)

48@Conv2D(1x9) ,s(1,1)=>BN=>RReLU=> 
MaxPool(1,4)=>Dropout

Conv Block 1: input shape(10,512,1)

32@Conv2D(1x11),s(1,1)=>BN=>RReLU=>
MaxPool(1,4)=>Dropout

Source network

Classifier Softmax input(50)

FC Block 2 input shape:(150)

Dense(50)=>BN=>RReLU

FC Block 1 input shape:(10240)

Dense(150)=>BN=>RReLU=>Dropout

Concatenate
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Table 4-21 Learning parameters of target network from Parallel method 
Parameters Values 

Learning rate 0.001 
Epoch 200, early stopping patience = 80 

Batch size 128 

 
The result of classification accuracy of target network (Cnet1D) and its improvement 
thorough applying parallel networks method over Nearlab database subjects is 
demonstrated in figure 4-13. 
 

 

Figure 4-13 Classification accuracy (%) of Parallel networks method over all Nearlab 
dataset subjects 

 

4.4.2 With and without transfer learning 

Figure 4-14 displays classification accuracy of all subjects using the two proposed 
TL methods. Since the same Cnet1D model was used for further applying the two 
TL methods, a direct comparison can be considered to conclude which method 
improved the subjects’ classification accuracy. 
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Figure 4-14 Comparison of classification accuracy (%) on Cnet1D and two TL methods 

 
In table 4-22 this comparison was made with the average accuracy and statistical 
analysis. The pairwise Wilcoxon statistical analysis has been applied to investigate 
the significance of the two methods comparing to the Cnet1D without employing 
transfer learning. The considered pairs are (Cnet1D vs. Freeze & fine-tune), 
(Cnet1D vs. Parallel networks). 

Table 4-22 Comparison of Freeze & fine-tune and Parallel networks 
Classifier Cnet1D  Freeze & fine-tune Parallel networks 

Average(%) 92.70 93.27 93.48 
Std(%) 3.38 3.69 2.86 

Median (%) 92.32 92.87 93.16 
IQR (%) 4.53 4.76 4.15 

H0 (P-value) - 1(0.083) 0(0.019) 

 
According to table 4-22, parallel networks method has improved the average 
accuracy from 92.70% to 93.48% and it has significant statistical difference 
comparing Cnet1D. 
 

4.4.3 Run time analysis 

It is necessary to make sure these methods can satisfy the time limitation condition 
for online applications. One random subject is chosen and the time needed for 
producing prediction along with total number of parameters related to each network 
is reported in table 4-23. The reported time is averaged over 1000 repetitions of the 
procedure. The GUI appointed by google colab for this procedure was Tesla P100-
PCIE-16GB. 

Table 4-23 Time performance comparison of TL methods and Cnet1D 
Classifier Cnet1D Freeze & fine-tune Parallel networks 

Time (ms) 4.81 2.15 4.21 
Number of total parameters 1,583,022 1,597,342 1,626,044 
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From table 4-23 it can be inferred that both two transfer learning methods provide 
the sample prediction fast enough to meet the time requirements of online 
applications. 
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5 Simulating online classification 

The initial goal of the thesis was to perform online classification experiments. 
Unfortunately, due to the outbreak of the Coronavirus disease (COVID-19) the 
possibility of executing of such experiments was limited. Thus, this section of the 
thesis has changed to simulating online classification. We have used the raw 
recordings from Nearlab dataset and went through the signal with a real time speed, 
reading samples at their correct time and classifying them in real time. Every 
62.5ms, the program should read its last 250ms available data and classify the 
window. It is important to mention the recordings used in online classifications are 
the primary raw EMG data acquired from the Porti device without any filtering or 
manipulation.  
The graphical interface has been coded in Python. PyQtGraph library [64] has been 
used for fast plotting in order to achieve real-time plotting and classification.  
 

5.1 Control panel 

In what follows, options available in the control panel will be discussed. 
 

 Start: This button will start the program to go through the recording. 

 Subject: This button is for choosing the recordings among the 11 available 
subjects’ datasets. 

 Filters: This section is for controlling the filters applied to the signal. 

 Channels: This section offers the option to visulize or hide each channel. 

 Speed: This section controls the speed of going through the recording. The 
users can choose between normal speed, 1/2, 1/4 and 1/8 normal speed. 

 Exit: Exit button is for quiting the application. 
 

5.2 Plots 

Several plots have been implemented in this program. All these plots are completely 
synchronized in time and are as follows: 
 

 Live 10-channel data: This plot is dedicated to displaying the EMG data. It 
can show all the selected channles. The yellow line in the middle indicates 
the exact time of that point in the recording. While this plot also shows 1 
second after the yellow line (just for visualiztion purposes), the classification 
algorithm is only using the data before yellow line. This plot has also 
interactive mouse functions with which users can change the visualization of 
the data. 

 Live video cue: This plot shows the protocol and instructions shown to the 
subject in time. Blue rectangles represent free periods. Green rectangles 
represent rest periods. Yellow rectangles are representing the movements 
and the instructed class of movement is written inside the yellow rectangles. 

 Live classifiction results: This plot is dedicated to display the classification 
results. The classifier has access only to the data shown before the yellow 
line. The green rectangles show rest class, while white rectangle with 
numbers inside them show movement classes. 
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Figure 5-1 A picture of the user interface program 

 

 

Figure 5-2 A picture of user interface, showing movement classification 

 

5.3 Real-time classification 

The classifier used in this program is LDA, since it outperformed other traditional 
classification methods and also is one of the fast ones to execute. The classification 
algorithm does not use any knowledge about the video cues and their timings in the 
classification. Each 512 samples window (250ms) is regarded as a window to 
classify. A threshold is defined as 3 times of the mean absolute values in a rest 
period. Each window is checked with this threshold, if it is higher than the threshold, 
it will be classified as one of the movements using LDA. If not, it will be classified as 
rest. That is why it may happen that, in a period of 5 seconds rest, the classifier 
detects a movement class from one or more of the 125ms windows included in that 
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period or it detects rest class windows in the middle of a movement period. The 
protocol plot is for the user to see which movement was shown to the subject at 
each moment in time. 
It can be seen in the Figures 5-1 and 5-2 that the last classification result has a 
certain distance from the yellow line (marked with a two headed red arrow in Figure 
5-2). The reason for this delay, is that the classifier is using the majority voting 
method over 62.5ms slots of time. Thus in order to acquire all the votes from different 
250ms windows that include the targeted 62.5ms slot, 187.5ms should pass after 
that slot. Therefore, this algorithm introduces a 187.5ms delay in classification of a 
62.5ms slot. Figure 2-15 in section 2.3.3 represents an example of the delay 
imposed by majority voting. 
Moreover, it can be seen from the Figures 5-1 that there is a delay between the 
video cue and start of the actual movement indicated by increased activity in EMG 
signals (marked with a two headed red arrow in Figure 5-1). This delay can be 
associated with subjects’ decision making time and electro-mechanical delay after 
receiving the visual cue. 
Furthermore, the classifier produces wrong results more frequently in the start and 
ending of a movement. The red rectangle in Figure 5-2 is an indication of this 
statement, since first classification results are class 8 while video cue was class 4. 
This phenomenon can be related to the fact that the stationary characteristics of 
EMG signal was the main focus of this study. Thus the start and ending of the 
movements are more prone to be classified incorrectly due to their transient 
characteristics which the classifiers are not trained for. 
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6 Conclusion 

In this thesis work, multiple pattern recognition techniques have been 
designed, implemented and tested in order to classify 8 hand movement classes 
using surface EMG signals. Classical machine learning methods along with deep 
learning techniques are employed for this task. To tackle the problem of training 
deep networks with limited databases, transfer learning approach has been applied. 
Moreover, a graphical user interface has been designed to classify acquired signal 
in real-time.  
A comprehensive comparison between classical machine learning methods and 
deep learning methods is conducted. In addition, the feasibility of employing such 
methods is investigated using run-time analysis. It has been shown that when 
considering fast algorithms (using time domain features), deep learning algorithm 
out performs classical machine learning algorithms with no significant increase of 
cost in terms of time consumption.  
Transfer learning approach has been also deployed to answer the following 
question: Could knowledge learned from other subjects’ EMG data be useful to train 
a classifier for target subject? In order to answer, 2 methods are designed and 
implemented to integrate other subjects’ knowledge into the classifier for the 
targeted subject. It has been demonstrated by this study that the proposed transfer 
learning algorithms are able to improved performance in terms of accuracy. 
Another conclusion drawn from this thesis work is the importance of choosing the 
correct movement classes to classify. In this study, it has been shown that by 
combining two very similar movement classes (pinch and lateral pinch) the accuracy 
of the classifier is increased by 3-4%, which is significant improvement when 
considering accuracies above 90%. 
 
Discussion: 
Looking at results from classical machine learning algorithms, the classification 
performance of 4 proposed classifiers combined with 4 feature sets on all Near 
dataset subjects, demonstrated that LDA with full feature set obtains the best 
average accuracy of 92.55%. However, pairwise Wilcoxon Signed-Rank Test 
proved that there is no statistical significance between LDA combined with Full 
feature set and MLP or SVM combined with ITD feature set. From the time 
consumption point of view, calculation of ITD features are orders of magnitude faster 
than Full. Therefore, in an online application using MLP or SVM with ITD feature set 
might have higher priority over LDA with Full feature set. 
Comparing the classification results of same classifiers and feature sets on Ninapro 
DB2 revealed that, the best combination was MLP with 80.97% using Full feature 
set. This demonstrates the high potential of MLP classifier as reliable classifier. 
When comparing the results of the Ninapro DB2 and Near database, the number of 
movement classes, which is much higher in Ninapro DB2 (17 as opposed to 8) 
should also be considered. 
It is important to mention, in an online classification scheme, all the processing steps 
needed for classifying a new sample should be performed in a limited amount of 
time, defined by the requirements of the problem. In the case of hand movement 
online classification which was targeted in this study, the time limitation is 62.5 ms 
(already mentioned in section 2.3.2). According to run time analysis, section (3.3) 
using time-domain features will easily meet this limitation. However, frequency-
domain features exceed the time limitation. A noteworthy point is that the system 
used in this study is a regular laptop with medium performance. A high performance 



 

99/111  

system or using accelerated algorithms in feature extraction, could potentially solve 
this problem. 
Moving forward to deep learning algorithms, the results from section 4 reveal that 
out of 4 proposed networks, Cnet1D and RESnet both show high accuracy, 93.23% 
and 93.20% respectively. The results obtained by Cnet1D is compared with results 
obtained with traditional machine learning algorithms. Although the average 
accuracy is improved comparing to all 4 traditional classifiers, statistical analysis 
only provides evidence of performance improvement when comparing to MLP, SVM 
and KNN. An important point to mention is that the best performing LDA algorithm 
was using Full feature (frequency and rime domain) set while other classifiers 
performed best when using ITD feature set (only time domain). 
Looking at runtime analysis of deep learning algorithms we can conclude that the 
time consumption of all proposed deep learning algorithms falls well within the time 
limitations of online classification, if a similar GPU to the one used in this study 
(mentioned in chapter 4) is employed.  
When comparing the performance of all the developed classifiers considering both 
accuracy and time consumption, the proposed deep convolutional neural network 
referred to as “Cnet1D” outperforms all other algorithms having 93.23% accuracy 
and a runtime equal to 4.81ms in average per sample, while LDA needs about 
270ms only to calculate its 15 features.  
The same networks were also tested on publicly available sEMG dataset for hand 
and wrist movements “Ninapro DB2”. Cnet2D architecture achieved highest 
accuracy of 80.34%. Statistical analysis indicated no significant statistical difference 
between best deep learning method and best classical approach in the case of 
Ninapro dataset. However, probing the loss/accuracy curves obtained from training 
procedure of the convolutional neural networks, revealed that the proposed methods 
are probably over-fitting on Ninapro DB2 dataset. Ninapro DB2 has 17 different hand 
movements and 6 repetitions per movement class. This means comparing to Near 
dataset, Ninapro has more than twice the number of movement classes and less 
than half the repetitions per movement available. Thus, it’s logical to conclude that 
networks designed for Near dataset are over-fitting on the Ninapro dataset. 
Class specific analysis was repeated for deep learning algorithms on Near dataset. 
the same modification proposed before (combining the two pinch classes) was 
applied and an increase of more than 3% was achieved. Cnet1D architecture was 
able to obtain 96.5% accuracy on the modified Near dataset with 7 movements. 
Finally, two transfer learning methods were proposed to take advantage of 
knowledge learned from other subjects’ EMG data in order to improve performance 
in the target subject classification problem. Variance analysis revealed that the 
performance of Cnet1D classifier has significant statistical improvement when used 
with transfer learning algorithm proposed in this study named “Parallel networks”.  
The other method introduced as “Freeze & fine-tune” also improved the average 
accuracy of Cnet1D classifier however there was no significant statistical difference 
between the performance of augmented and not-augmented Cnet1D network. 
Looking at run-time analysis of transfer learning methods, both algorithms meet the 
specifications required for online classification implementation, having a runtime of 
under 5ms per sample. 
 
Comparison with related work: 
SEMG hand movement database, Ninapro DB2, introduced by Atzori et al. [6] has 
been used by many researchers as a benchmark. Zhai et al. [7] classified 
spectrograms of DB2 sEMG signals combined with PCA for dimension reduction. 
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They used SVM as classifier and obtained 75.74% accuracy on exercise B (same 
exercise used in this study). Later, they improved their work [8] by proposing a self-
recalibrating CNN to eliminate the need of user training over time. The classification 
accuracy of their new method on Ninapro DB2 was 82.22%, when tested on 
exercise B. Moreover, in 2019 Huang et al. [9] used a CNN-LSTM network in order 
to fully capture the spatial and temporal features of sEMG spectrograms, the 
resulting accuracy on DB2 exercise B was 80.93%.  
Table 3-8 compares these related research works with the best obtained 
classification accuracies obtained in this study. Specifically, MLP with Full feature 
set from classical machine learning techniques and Cnet2D from deep learning 
techniques. All the reported results are on 17 movements of exercise B and on 40 
subjects. According to this table, although Zhai et al [8] has the nest average 
accuracy, proposed MLP with Full feature set shows comparable results with 
respect to other state of the art studies. This approach has the advantage of faster 
execution time while utilizing simpler algorithms. The deep network applied on 
Ninapro DB2 did not improve the results due to possible over-fitting over data. 

Table 6-1 Classification accuracy (%) comparison with related work over Ninapro DB2 
exeB 

 Classification method Accuracy (%) 

Related work 

Spectrogram with SVM [7] 75.74 

Spectrogram with CNN [8] 82.22 

Spectrogram with CNN and LSTM [9] 80.93 

This study 
MLP with Full feature set 80.97 

Cnet2D 80.34 

 
 
Côté-Allard et al. [5] have also used transfer learning as an approach to solve the 
issue of training deep networks for databases with limited amount of data in sEMG 
hand movement classification. Their defined database includes 7 movement 
classes: neutral, hand close, hand open, wrist extension, wrist flexion, ulnar 
deviation, radial deviation. They proposed a transfer learning approach called 
progressive neural network which after pre-training the network on source domain, 
trains another network for the new task with random initialization and then connects 
these two networks laterally to each layer. When applying this method on raw EMG 
data, their classification accuracy increased from 97.08% to 97.39%. In this study, 
the proposed parallel networks method applied on the Nearlab dataset increased 
the accuracy of a Cnet1D model from 92.70% to 93.48%. The reason that the overall 
accuracy of Nearlab dataset is lower than their proposed database could be the 
presence of two pinch movement classes. This was evident when the two pinch 
classes combined and the accuracy of Cnet1D improved to 96.5%. 
 
Future work: 

 One of the advantages of using neural networks, as a pattern recognition 
algorithm, is that in addition to assigning a class to each input sample, it can 
provide a series of probabilities of the sample belonging to each target class. 
This advantage can prove very beneficial in the case of classifying hand 
movements based on sEMG data. As an example, consider the classification 
problem in this thesis. The original movement class groups were 8 commonly 
used hand/wrist movements including pinch and wrist rotation. However, the 
combination of pairs of the original movements could be also very useful. For 
example, the combination of pinch and wrist rotation could mimic holding a 



 

101/111  

key and locking/unlocking a door. Of course adding all the combinations of 8 
movements to the problem would increase the number of target classes 
leading to a significantly harder classification problem. However, by making 
use of the probabilities provided by the neural networks output Softmax layer, 
we could try to classify combination of movements using a network that is 
only trained on the original movement classes. Using a threshold on the 
output probabilities (e. g., 0.3), we can declare 2 output classes for one input 
sample and thus creating combination movement outputs based on a given 
dataset of original movement for training.  
In the future studies the proposed method could be used to cover a broader 
range of hand/wrist movements using limited databases for training neural 
networks. 
 

 As mentioned before, the graphical user interface designed in this thesis was 
not tested in an actual real-time classification scheme. Thus, a natural path 
to continue this thesis work is to recruit subjects to test the classification 
algorithms developed in this thesis in real-time. The performance of the 
classifier can be improved in an online setting, due to user adaptation derived 
by visual feedback. In an offline classification algorithm, the user is not 
informed about the output of the classifier while in an online classification 
setting the user could use the visual feedback to adopt the muscle activation 
patterns to increase the classifier accuracy and reliability. 
 

 The transfer learning algorithms developed in this thesis work are just 2 
examples of methods trying to integrate the knowledge learned in another 
domain into the target domain. There are several other transfer learning 
algorithms proposed by the literature. In the following paragraph, 2 of the 
most promising ones from the view point of authors of this thesis are 
proposed for future work. 

 
1- Deep learning algorithms are intensively explored in the field of image 

classification. As oppose to sEMG signal classification, creating large 
databases to train very deep networks is not a significant challenge in 
majority of image classification problems. Having this fact in mind, it 
seems logical to use transfer learning to transfer the knowledge from an 
image classifier to our problem of sEMG classification. However, one 
problem remains, which is the intrinsic difference between images and 1D 
sEMG time series data. This problem could be solved using a 
representation of the EMG data other than the raw signals, such as 
spectrograms. Spectrograms represent the time and frequency content of 
a time series signal in the form of an image. With the new image 
representation of the sEMG data available, the very deep networks for 
image classification problems trained on millions of images can be used 
to extract detailed features from sEMG data and improve classification 
accuracy. In [60] authors employed short-time Fourier transform to 
represent EMG signals as a time-frequency image. Then pre-trained 
convolutional neural networks (popular pre-trained image classifiers) are 
used to extract features from the time-frequency image. 
 

2- Another interesting transfer learning approach is to use classifiers trained 
on other subjects directly on the data acquired from the target subject, 
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without further modifications on target subject. Without doubt, these 
classifiers will have poor results since they are tuned on the training data 
from other subjects. However, the accumulation of multiple weak learners 
could create a very strong learner. One approach to test this theory is to 
use majority voting on the outputs of all the weak networks. Authors of 
[65] proposed a similar approach. In this paper multiple supportive 
convolutional neural networks are pre-trained on EMG data of multiple 
subjects and fine-tuned on the targeted subject. The final output is 
obtained by voting the supportive networks’ predictions. 
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