
Executive Summary of the Thesis

Supporting the Development of Infrastructure as Code Using Ansible:
a Smart IDE Integrating External Sources

Laurea Magistrale in Computer Science and Engineering - Ingegneria Industriale E
Dell’Informazione

Author: Michail Bachras

Advisor: Prof. Elisabetta Di Nitto

Academic year: 2020-2021

1. Introduction
Nowadays, the IT market is dominated by the
need to release software quickly and frequently
in order to meet the constantly changing needs
of customers and users. Consequently, IT or-
ganizations were scrambling to find new ways
to meet their customers’ expectations while re-
maining competitive and viable. In this dynamic
environment, IT enterprises focused on reduc-
ing development time and increasing responsive-
ness by implementing agile and lean methodolo-
gies throughout the software development cycle.
These methodologies, however, were primarily
focused on the development side, ignoring the
operations side, resulting in bottlenecks in the
development process and delaying software de-
livery. A new paradigm known as DevOps [1]
emerges to bridge this gap and overcome barri-
ers to effective communication between software
development and operations teams.
The primary goal of DevOps is to shorten the re-
lease cycle and deliver high-quality software on a
continuous basis. Therefore, one major require-
ment is to automate the entire process of config-
uring infrastructure components in a repeatable
manner. Infrastructure as Code (IaC), a funda-
mental principle of DevOps, is used to imple-

ment such an automated process. Furthermore,
IaC considers IT infrastructure as software, al-
lowing it to use software principles, methodolo-
gies, and tools to speed up software operations.
However, several impediments to IaC adoption
exist, including a dispersed field of technologies
and a lack of support within existing tools. SO-
DALITE [2], a European project, aims to ad-
dress these issues by creating a development en-
vironment that provides the necessary support
in deploying and operating complex applica-
tions. SODALITE focuses on assisting users in
creating TOSCA artifacts that define the overall
structure of an application from a deployment
standpoint. This approach, however, is insuf-
ficient to automate the deployment tasks from
start to finish entirely. The reason is the as-
sumption that the implementation scripts used
to realize the defined components were written
outside of the SODALITE framework. Our con-
tribution aims to fill this gap by complementing
the work done in [3]. We enhance the existed
development environment with features that as-
sists users in writing Ansible scripts and guides
them in relating such scripts to other parts of the
deployment specification, such as resource pro-
visioning, thereby facilitating end-to-end model-

1



Executive summary Michail Bachras

ing of a cloud application from the definition of
each deployment topology characteristic to the
implementation scripts that realize its manage-
ment and deployment operations.
This paper is structured as follows: Section 2
presents the tools and technologies that have
been used and the related state of the art; Sec-
tion 3 presents the innovative characteristics and
the architecture of the system; Section 4 pro-
vides the evaluation procedure that we followed
and briefly describes the collected results; Fi-
nally, Section 5 summarizes the main conclu-
sions of our work.

2. Background
Our work lies in the context of SODALITE and
is related to two popular IaC tools, TOSCA [4]
and Ansible [5]. Thus, in order to give the reader
a clear view of our contribution, we present the
main concepts of TOSCA and Ansible, some
cutting-edge research projects aimed at facilitat-
ing IaC adoption as well as a brief overview of
the SODALITE project.

2.1. TOSCA and Ansible
The Topology and Orchestration Specification
for Cloud Applications(TOSCA) is an official
OASIS standard modeling language whose pri-
mary goal is to standardize cloud applications’
structure description and automate their deploy-
ment and management. TOSCA enables the de-
scription of a cloud service’s topology along with
its operational aspects in a typed topology graph
that represents the structure of a cloud applica-
tion and captures the relationships and depen-
dencies between the application components.
The operational aspects of each node of the ap-
plication topology are defined within the specifi-
cation of the related node type and allow for the
deployment and management of the respective
component. These operations are implemented
using artifacts that can be written in a variety of
languages, including Python and Chef, but An-
sible is used as the implementation language in
SODALITE.
Ansible is a free and open-source configuration
management tool for provisioning and configur-
ing infrastructure components as well as deploy-
ing applications. It employs a Python-based
YAML syntax in which the developer specifies
the exact step-by-step procedure for bringing the

infrastructure to the desired state. Ansible has a
significant advantage over other implementation
languages in terms of community support, as ev-
idenced by Ansible Galaxy, one of the largest
repositories of reusable cloud infrastructure li-
braries implemented in Ansible.

2.2. Related work
Several research projects have been proposed to
support the deployment procedure of an appli-
cation end-to-end in different programming set-
tings. RADON [6] proposes a DevOps frame-
work that allows developers to effectively man-
age the entire lifecycle of a complex application
that adheres to the serverless and microservices
paradigms. ARGON [7] provides a Domain Spe-
cific Language that allows users to abstractly
represent the needed infrastructure without re-
lying on a specific IaC language. DICE [8] is an-
other model-driven approach that enables users
to create language-independent models that are
then translated into concrete IaC scripts in the
context of Data-Intensive Applications(DIA).
Finally, PIACERE [9] is an ongoing project that
provides a framework that DevSecOps profes-
sionals can use as an end-to-end solution, from
modeling the required infrastructure and speci-
fying the functional and non-functional require-
ments to deploying the application on the de-
fined infrastructure, monitoring it during run-
time.

2.3. SODALITE
SODALITE [2] is a research project aimed
at simplifying application deployment model-
ing and execution across multiple, heterogeneous
infrastructure resources. It provides a robust
toolkit that aids in deploying an application
throughout all stages of its modeling procedure.
TOSCA and Ansible are key components of this
toolset, but not in their pure form. SODALITE
provides Domain-Specific Languages that ad-
here to the principles of TOSCA and Ansible
but differ in critical ways to simplify deployment
models and increase modularity.
DevOps engineers can define deployment models
by using an abstraction of TOSCA that is then
translated into TOSCA. Two Domain-Specific
Languages (DSLs) have been implemented to
accomplish this: Resource Model DSL and Ab-
stract Application Deployment Model DSL. The

2



Executive summary Michail Bachras

provided DSLs decouple the definition of an ap-
plication model from the resources that it will
use. When developing a TOSCA-based model,
these concepts are bound together, whereas SO-
DALITE creates two different development en-
vironments to support each development proce-
dure separately and more efficiently.
SODALITE also supports the creation of An-
sible scripts integrated with the Resource Mod-
els. SODALITE provides an Ansible abstraction
called Ansible DSL [3], through which develop-
ers can define abstract Ansible Models. Ansible
DSL adheres to and supports the same concep-
tual attributes as Ansible, but it groups several
attributes that are ’included’ in the same seman-
tic category to simplify user interaction and bet-
ter organize the code. The Ansible Models are
transformed into concrete Ansible scripts, which
can be associated then with operations of an
RM, integrating Ansible with TOSCA.
To support the development of abstract Ansible
models, the authors in [3] introduced an inno-
vative user interface called Ansible editor that
provides a rich toolset of features, facilitating
the development of Ansible scripts.
SODALITE modeling capabilities are delivered
to end-users through a user interface known
as SODALITE IDE. Users can use textual ed-
itors,such as Ansible editor, offered through the
SODALITE IDE, which provide a wide range
of advanced features that aid in developing the
cited models,such as content assistance and val-
idation mechanisms.

3. Ansible support in SO-
DALITE IDE

3.1. Innovation
Having the initial version of the Ansible edi-
tor as a starting point, we have expanded the
Ansible editor’s capabilities and focused on pro-
viding valuable features that streamline the de-
velopment workflow. For example, autocom-
pletion, error messages, and code suggestions
are extremely useful for the user and signifi-
cantly speed up the development process be-
cause he/she has all of the necessary informa-
tion in a single location without having to search
through lengthy documentation. This is espe-
cially important in the case of Ansible, where
Ansible collections, modules, and roles are dis-

persed across multiple repositories, requiring the
user to strain for the desired information. As a
result, our primary focus has been to connect
the SODALITE IDE with information sources
that bring the Ansible content closer to the user
and provide him/her with valuable suggestions
and constant feedback.
Having this in mind, we created a database con-
taining Ansible content from Ansible Galaxy
that can be utilized directly from the Ansible
editor, providing a wide range of features. More
specifically, the Ansible editor assists the end-
user in selecting Ansible collections and mod-
ules to import into the model without having to
search Ansible Galaxy for them. In addition, the
Ansible editor provides content assistance for
each Ansible module’s parameters, emphasizing
the required ones. It also informs the user about
inserting values for each parameter by display-
ing the value type that each parameter expects
and presenting the acceptable values and the of-
ficial description that helps the user understand
its purpose. Moreover, the Ansible editor’s con-
tent assistance offers suggestions for standalone
roles uploaded on Ansible Galaxy and Ansible
roles included in Ansible collections.
A significant extension we have introduced based
on the content of the database is the set of mul-
tiple validation mechanisms that check Ansible
models for validity issues and provide clear and
meaningful recommendations to the end-user on
how to fix them. For example, the Ansible editor
notifies the users if an Ansible collection name
has the incorrect format and instructs them how
to correct it. Such errors cause issues during
the deployment and management of the cloud
application and necessitate a significant amount
of time to identify the mistakes in the source
code, avoiding the repetitive execution of the
Ansible script before fixing all the defined errors.
As a result, accurate error messages, accompa-
nied by quick fixes whenever possible, can save
the end-users time, increase their productivity,
and boost users’ satisfaction. The Ansible editor
provides the following validation mechanisms:
• Check for missing required parameters of a

module
• Inform the end-user about collection and

module names that have the wrong format
• Check for acceptable values for each param-

eter

3



Executive summary Michail Bachras

• Inform the user about collections and roles
that are not supported by SODALITE

• Perform type checking for the inserted val-
ues of each parameter

• Identify Ansible code smells and informs
user for potential solutions

Another key feature of our work is the set of
mechanisms that help the user define an Ansi-
ble model and import the generated scripts into
the corresponding Resource Model. Following
the definition of a Resource Model, the Ansible
scripts that implement its TOSCA operations
must be imported into the RM. As a result, we
developed a standardized procedure that guides
the user through the definition of the appro-
priate Ansible model, followed by the genera-
tion and integration of the corresponding Ansi-
ble script into the RM. In this manner, the user
is not lost among the various DSLs that SO-
DALITE IDE provides but instead remains in
a specific chain of activities. One critical point
to highlight here is that our work does not alter
the transparency property of the Ansible script’s
origin. This property enables the user to select
an Ansible script written with an external edi-
tor for a TOSCA operation rather than firstly
defining an abstract Ansible model (i.e., .ans
file) and then generating the concrete Ansible
script. Thus, the only requirement for import-
ing an Ansible script is to specify the script’s
local path in the RM without restricting devel-
opment to our Ansible editor.
However, if a user decides to develop the related
Ansible scripts of a Resource Model using SO-
DALITE IDE rather than an external editor, we
have enhanced the Resource Model editor to pro-
vide users with clear guidelines on which Ansible
files should be created. The user can generate
the abstract Ansible model and the correspond-
ing Ansible script for each specified operation
within the Resource model for further develop-
ment. As a result, the user has a clear idea of
which Ansible models should be created and for
which operations, which is critical when dealing
with a complex Resource Model with many in-
terfaces and operations.
Finally, The Ansible editor has been extended to
support the communication and information ex-
change between the provided user interface and
Knowledge Base [10], an ontology database that
captures TOSCA models’ structural and seman-

tics relationships, where developers can upload
their work. The user now has access to the con-
tents of the Knowledge Base and can retrieve
information for stored Resource Models. This
information includes node types, TOSCA inter-
faces, TOSCA operations, and inputs. In this
manner, the user can develop an Ansible model
in the context of a resource type stored in the
Knowledge Base. Furthermore, the inputs that
have been defined in the stored Resource Model
can be used as variables in the developing Ansi-
ble Model.
Compared to state-of-the-art, the SODALITE
Ansible editor is the only one we are aware of
that supports an integrated usage of Ansible
as the language to define TOSCA operations.
Moreover, it is the only one that guides the user
in using the modules made available on Ansible
Galaxy. These features enable the end-users to
reduce their development effort, thus allowing
them to use their time and resources in other
activities and saving costs.

3.2. Architecture
Figure 1 highlights the elements of the Ansible
editor and its interaction with the neighbor com-
ponents of the SODALITE ecosystem. The An-
sible editor is integrated into the SODALITE
IDE as an Eclipse Plugin built with Xtext and
uses an Ansible abstraction known as Ansible
DSL, which allows the users to create abstract
Ansible playbooks that are then translated into
concrete Ansible scripts. This Ansible Eclipse
Plugin is based on the Resource Model Eclipse
Plugin, which includes a DSL and a user inter-
face for defining TOSCA reusable entities. An-
sible editor provides various services by inter-
acting with three different software components:
Semantic Reasoner, Knowledge Base, and the
MongoDB database, either implicitly or explic-
itly.
The semantic Knowledge Base (KB) is a se-
mantic repository containing structured data
from SODALITE various domain aspects. SO-
DALITE users can store and retrieve domain
models from the KB, which are internally repre-
sented as RDF-based knowledge graphs. The Se-
mantic Reasoner, an intermediary between the
Knowledge Base and the SODALITE IDE, pro-
vides access to this knowledge. In addition, the
Ansible editor communicates with the Seman-

4



Executive summary Michail Bachras

tic Reasoner through a REST API called Se-
mantic Reasoner API, which allows the editor
to retrieve information about Resource Models
stored in the Knowledge Base. This information
can be the various Resource Models stored in
KB, the TOSCA interfaces and operations de-
fined within a specific Resource model, and the
data that each interface and operation inputs to
the appropriate implementation script to per-
form the necessary tasks. The Ansible editor
presents such information to the end-user to al-
low for the coherent and consistent development
of Ansible models within the context of the cho-
sen resource type and TOSCA operation. More-
over, the Ansible editor communicates with the
Defect Predictor via the Defect_Predictor API
to detect and present to the user potential code
smells induced within the Ansible script.

The MongoDB database delivers Ansible con-
tent to Ansible editor end-users, including Ansi-
ble collections, modules, and roles gathered from
various repositories in the Ansible Galaxy. To
facilitate the development of an Ansible model,
the Ansible editor communicates with the Mon-
goDB database endpoint and serves the col-
lected Ansible content to the end-user. Fig-
ure 2 depicts a detailed schema of the MongoDB
database. There are two MongoDB collections
in the database: Ansible_Galaxy_Collections
and Standalone_Ansible_Galaxy_Roles. An-
sible_Galaxy_Collections contains information
about Ansible collections uploaded to Ansi-
ble Galaxy, including modules and roles. The
database includes the taking parameters and
their details for each module, such as type, de-
scription, available value choices, and default

Figure 1: Architecture

Figure 2: Database schema

5



Executive summary Michail Bachras

value. Standalone_Ansible_Galaxy_Roles is a
MongoDB collection that contains information
about the standalone roles that have been up-
loaded to Ansible Galaxy. For each role, the
database includes details such as the number of
downloads, the user satisfaction score, the role
description, and how a user can refer to each role
(role name, role namespace). The collected An-
sible content was chosen based on specific crite-
ria such as the quality of the documentation pro-
vided by the developers, the popularity of each
project, and the satisfaction among the users as
it is reported on Ansible Galaxy.

4. Evaluation
We evaluated our contribution by conducting
controlled experiments in which users were asked
to create four Ansible playbooks with vary-
ing characteristics using our Ansible editor and
an external text editor that supports Ansible,
named Atom. Our goal was to gather feedback
and empirically measure user satisfaction in four
different factors [11] that evaluate different as-
pects of each editor and the provided language.
The responses revealed that, when compared
to Atom, our Ansible editor required 20% less
time to develop the requested Ansible play-
books. Furthermore, when compared to Atom,
the testers gave very positive satisfaction scores
in the features that improve the editor’s usabil-
ity and assist users in avoiding code errors, and
they found the integration of our Ansible edi-
tor with TOSCA to be extremely valuable, as
it enables the direct exchange information with
the related TOSCA models. As a weak point,
the testers stated that installing the Ansible ed-
itor and the corresponding MongoDB was quite
time-consuming when compared to the Atom ed-
itor, which only requires the installation of a
software package.

5. Conclusions
In this paper, we presented the contributions
we made to augment the Ansible support pro-
vided from the SODALITE framework. We
overviewed the knowledge sources that we ex-
ploited to offer a palette of advanced features
that facilitate users in developing quality An-
sible playbooks via the Ansible editor. More-
over, we conducted an empirical evaluation to
examine how our extensions affected develop-

ers of Ansible and concluded that our work has
a positive influence on the development efforts
compared to an external text editor with Ansi-
ble support.

References
[1] “What is devops?,” 2021.

[2] E. Di Nitto, J. Gorroñogoitia, I. Kumara,
et al., “An approach to support auto-
mated deployment of applications on het-
erogeneous cloud-hpc infrastructures,” in
SYNASC, pp. 133–140, 2020.

[3] E. Imperiali, “Providing high-quality sup-
port for ansible development,” Master’s
thesis, Politecnico di Milano, 2020.

[4] OASIS, “Tosca simple profile in yaml ver-
sion 1.3,” 2020.

[5] R. H. Inc., “Ansible documentation,” 2020.

[6] G. Casale, M. Artač, W.-J. Van
Den Heuvel, et al., “Radon: rational
decomposition and orchestration for server-
less computing,” SICS Software-Intensive
Cyber-Physical Systems, vol. 35, no. 1,
pp. 77–87, 2020.

[7] J. Sandobalin, E. Insfran, and S. Abrahao,
“An infrastructure modeling approach for
multi-cloud provisioning,” 2018.

[8] M. Artac, T. Borovšak, et al.,
“Infrastructure-as-code for data-intensive
architectures: A model-driven develop-
ment approach,” in 2018 IEEE ICSA,
pp. 156–15609, IEEE, 2018.

[9] J. Alonso, C. Joubert, et al., “Piacere:
Programming trustworthy infrastructure as
code in a secure framework,” CEUR-WS,
2021.

[10] G. Meditskos, Z. Vasileiou, et al., “A
pattern-based semantic lifting of cloud
and hpc applications using owl 2 meta-
modelling,” 10 2020.

[11] F. Hermans, M. Pinzger, and A. Deursen,
“Domain-specific languages in practice: A
user study on the success factors,” MOD-
ELS ’09, (Berlin, Heidelberg), p. 423–437,
Springer-Verlag, 2009.

6


	Introduction
	Background
	TOSCA and Ansible
	Related work
	SODALITE

	Ansible support in SODALITE IDE
	Innovation
	Architecture

	Evaluation
	Conclusions

