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Sommario

Poiché la domanda di servizi dallo Spazio è sempre più importante per la vita
sulla Terra, l’interesse internazionale per le costellazioni satellitari è sempre più in
crescita. Ad esempio, negli ultimi anni, molte grandi costellazioni, che sono com-
poste da centinaia a migliaia di satelliti, sono state o verranno schierate in orbita
terrestre bassa (LEO), per fornire servizi di telecomunicazioni ad alta velocità alla
Terra con copertura globale. L’ondata di costellazioni porta varie sfide agli studi
sulle costellazioni, come il costo elevato, la minaccia alla sicurezza per lo spazio e
il considerevole sforzo di calcolo per progettare missioni di costellazioni contenenti
molti satelliti. Per rispondere a queste sfide, questa dissertazione esegue l’analisi
della missione e la progettazione delle quattro fasi chiave del ciclo di vita della
costellazione.

Una prima fase è la fase pre-missione della costellazione - progettazione della
costellazione. Non esistono regole generali per la progettazione delle costellazio-
ni; invece, i progettisti di costellazioni devono considerare i vari fattori di costo.
Viene eseguito un progetto di costellazione multicriterio, in cui vengono valutate
quantitativamente sette proprietà della costellazione, ciascuna delle quali rappre-
senta una prestazione o un costo critico della costellazione. Il presente progetto
fornisce un approccio sistematico per trovare costellazioni ottimali a livello globale
per determinate missioni.

Una seconda fase è il dispiegamento a bassa spinta della costellazione attraverso
le perturbazioni J2 della Terra, dove si concentra lo spiegamento di più piani
orbitali con un solo lancio. Basato sul metodo di distribuzione tradizionale che
sfrutta solo l’effetto J2, viene aggiunta una fase di spinta fuori dal piano per
accelerare la separazione in Ascensione retta del nodo ascendente (RAAN). Viene
eseguita una progettazione di distribuzione analitica, in cui le soluzioni analitiche
vengono prima derivate per il trasferimento circolare a bassa spinta soggetto a leggi
di controllo predefinite, quindi vengono sviluppati metodi analitici per determinare
i tempi assegnati alle fasi di distribuzione separate, consentendo il tempo totale e
il consumo di carburante per separazione RAAN da ridurre al minimo allo stesso
tempo. Il presente progetto fornisce un approccio computazionalmente efficiente
per ridurre i costi scambiando i ricavi di una distribuzione più rapida e il costo di
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un maggiore consumo di carburante.
Una terza fase è il deorbitamento di una costellazione LEO a bassa spinta

attraverso perturbazioni naturali, dove vengono studiate due diverse strategie di
deorbitazione: una usa la spinta per abbassare l’altitudine del perigeo, l’altra usa
la spinta per raggiungere una condizione specifica che può portare al decadimen-
to orbitale sotto l’effetto accoppiato dell’oblazione della Terra e della pressione
di radiazione solare. Per ogni strategia, viene sviluppata una legge di controllo a
circuito chiuso, che si è dimostrata stabile, basata sul metodo del controllo di feed-
back di Lyapunov. Successivamente, il movimento medio a bassa spinta governato
dalle leggi di controllo proposte viene derivato con una tecnica di media orbitale.
Propagando il movimento medio a bassa spinta per la deorbitazione dall’intera
regione LEO, le mappe che mostrano il budget ∆v, il tempo di deorbitazione e le
condizioni di applicazione delle due strategie sono ottenute. Leggendo le mappe, i
progettisti della missione possono scegliere la loro strategia preferibile in base alle
condizioni e ai requisiti della missione.

Oltre alle tre fasi indipendenti di cui sopra, viene studiato anche il trasferimento
planare a bassa spinta (cioè innalzamento dell’orbita e deorbitazione planare) per i
satelliti complanari, prendendo la collisione autoindotta, cioè la collisione causata
dai satelliti dalla stessa costellazione, in considerazione. Come primo passo dello
studio, viene sviluppata una legge di controllo Blended Error-Correction a circuito
chiuso mescolando leggi di controllo che possono modificare in modo efficiente
gli elementi orbitali planari e compensando l’errore dell’orbita osculante rispetto
all’orbita target. Quindi il problema di evitare la collisione autoindotta viene
convertito nel problema di massimizzare la distanza relativa minima tra i satelliti,
che a sua volta viene affrontata programmando correttamente i tempi per avviare
il trasferimento per ogni satellite.
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Abstract

As the demand for services from Space is more and more important to life on the
Earth, the international interest in satellite constellations is increasingly growing.
For example, in the recent years, many large constellations, which are composed
of hundreds to thousands of satellites, are being or to be deployed in Low Earth
Orbit (LEO), to provide high-speed telecommunications services to the global
Earth. The surge in constellations brings various challenges to constellation stud-
ies, such as the expensive cost, the safety threat to space, and the considerable
computational effort to design constellation missions containing many satellites.
In order to respond to these challenges, this dissertation performs mission analysis
and design for four key phases of constellation life cycle.

A first phase is the constellation pre-mission phase – constellation design. No
general rules exist for constellation design; instead, constellation designers have
to consider various cost drivers in a trade-off way. A multi-criteria constellation
design is performed, in which seven constellation properties are quantitatively
assessed, each property representing a critical constellation performance or cost.
The present design provides a systematic approach to find globally optimal con-
stellations for given missions.

A second phase is constellation low-thrust deployment through the Earth J2

perturbations, where the deployment of multiple orbital planes by one launch is
focused. Based on the traditional deployment method which exploits the J2 effect
only, an out-of-plane thrusting phase is added to accelerate the separation in Right
Ascension of the Ascending Node (RAAN). An analytical deployment design is
performed, in which analytical solutions are first derived for circular low-thrust
transfer subject to predefined control laws, and then analytical methods are de-
veloped to determine the times allocated to separate deployment phases, allowing
the total time and fuel consumption for RAAN separation to be minimised at the
same time. The present design provides a computationally efficient approach to
reduce cost by trading off the revenue of a quicker deployment and the cost of
higher fuel consumption.

A third phase is LEO constellation low-thrust de-orbiting through natural per-
turbations, where two different de-orbiting strategies are investigated: one is using
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thrust to lower the perigee altitude, the other is using thrust to reach a specific
condition that can lead to orbital decay under the coupled effect of the Earth
oblateness and Solar Radiation Pressure. For each strategy, a closed-loop control
law, which is proved to be stable, is developed based on the method of Lyapunov
feedback control. Subsequently, the averaged low-thrust motion governed by the
proposed control laws are derived with an orbital averaging technique. By propa-
gating the averaged low-thrust motion for de-orbiting from the entire LEO region,
maps that show the ∆v-budget, de-orbiting time, and application conditions of the
two strategies are obtained. By reading the maps, mission designers can choose
their preferable strategy according to mission conditions and requirements.

In addition to the above three independent phases, the planar low-thrust trans-
fer (i.e. orbit raising and planar de-orbiting) for co-planar satellites is also stud-
ied, by taking the self-induced collision, that is, the collision caused by satellites
from the same constellation, into consideration. As the first step of the study, a
closed-loop Blended Error-Correction control law is developed by blending control
laws which can efficiently change the planar orbital elements, and by offsetting
the error of the osculating orbit relative to the target orbit. Then the problem
of avoiding the self-induced collision is converted to the problem of maximising
the minimum relative distance between satellites, which in turn is addressed by
properly scheduling the timing to start transfer for every satellite.
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CHAPTER1
Introduction

In the recent years, the surge in constellations brings the fore various challenges
to constellation studies. This thesis will respond to the challenges by performing
mission analysis and design for several key phases of constellation life cycle.

This chapter is organised as follows. Sec. 1.1 introduces the term “satellite
constellation” and gives the study scope of the thesis. Sec. 1.2 presents the mo-
tivations and objectives of the research. Sec. 1.3 reviews the previous work that
was undertaken to achieve the objectives. Sec. 1.5 provides a summary of the
methodologies developed and implemented. Sec. 1.5 explains the structure of the
dissertation. Finally, the contributions of this work in the form of publications
are listed in Sec. 1.6.

1.1 Satellite Constellations and Problem Definition

The satellite constellation, as defined by Wood [1], is “composed by a certain
number of similar satellites, of a similar type and function, designed to be in sim-
ilar complementary orbits for a shared purpose, under shared control.” It is well
known that the characteristics of different constellations vary dramatically, and
constellations can fall into various categories depending on the type of coverage
(continuous/intermittent), the type of coverage region (global/zonal), the type of
orbit (circular/elliptical/hybrid), the altitude of implementation (low/medium/-
geosynchronous Earth orbit), etc. In this thesis we are focused on global coverage
constellations, which are often used for telecommunications, positioning and navi-
gation, and other similar functions [2, pp. 671], and particularly, we are interested
in circular-orbit and continuous coverage constellations in which all satellites are
placed at common altitude and inclination.

1
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Chapter 1. Introduction

An Earth-orbiting constellation can be used for surveillance and reconnais-
sance, telecommunications, positioning and navigation, military defence, etc. For
continuous global coverage constellations, depending on the service to be offered,
the required coverage fold can be from one to four, where the coverage fold refers
to the minimum number of satellites continuously visible to every point on the
Earth’s surface. In general, most of the missions in Low Earth Orbit (LEO) re-
quire 1-fold continuous global coverage to offer surveillance and reconnaissance,
and telecommunications services, whereas the missions in Medium Earth Orbit
(MEO) usually require 4-fold continuous global coverage to offer positioning and
navigation services. A coverage fold higher than required can enhance the constel-
lation’s robustness to satellite failures, however on the other hand, it also implies
a higher redundancy of satellite utility, which in turn increase the system cost;
this concept will be demonstrated in Sec. 3.3.2.

A constellation in its life cycle will experience the following phases: launch, de-
ployment, station-keeping, replacement (or replenishment), and End-of-Life (EoL)
disposal [3]. Prior to these phases, the constellation’s size and structure, which
strongly affect the system cost and performance, must be carefully designed [2,
pp. 673].

Over the past decades, the major trends in the development of constellations
are the increase in the number of satellites and consequently, the more and more
complicated constellation configuration. For example, many large constellations,
which are composed of hundreds to thousands of satellites are being or to be de-
ployed in LEO, to provide high-speed telecommunications services to the global
Earth, even the most rural areas. Moreover, the low-thrust technologies have be-
come more and more popular with constellations due to the high specific impulse.

The aforementioned trends bring various challenges to constellation studies,
including but not limited to:

• the reduction of cost, which is one of the most crucial problems for constel-
lation builders;

• the safety threat to the space environment, especially to the already con-
gested LEO region;

• the great computational effort involved in the mission analysis and design for
constellations containing a large number of satellites.

As a result, constellation studies have become considerable current work and will
continue to grow in importance, both as constellations become more achievable
and as the challenges become more critical.

In order to respond to the challenges, the major goal of this dissertation is
to study methodologies and techniques for mission analysis and design of the
following four key phases of constellation life cycle:

• constellation design (the pre-mission phase)
• constellation deployment
• constellation de-orbiting
• constellation planar transfer considering self-induced collision avoidance

where the self-induced collision is the collision caused by satellites from the same
constellation. Note that, different than the first three topics, the last topic is not
an independent phase but focused on tackling the self-induced collision problem
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when multiple co-planar satellites in the constellation perform planar manoeuvres
together during the deployment and de-orbiting phases. Moreover, it has to be
noted that, although the other phases, such as launch and station-keeping, are
not specifically studied as independent topics, they are encompassed in the first
topic – constellation design.

For the last three phases, the low-thrust propulsion is used. As a preliminary
study, we assume that the thrust can be continuously applied. However, it has to
be noted that in real missions, a low-thrust propulsion system cannot thrust in
eclipse, and most cannot thrust continuously due to heating and power.

1.2 Research Motivations and Objectives

This research is motivated by the need to respond to the challenges to constellation
studies.

Because constellations are inherently very expensive, the prime objective of
the research is to reduce cost and meanwhile, to increase revenue. No general
rules exist for constellation design [2, Chap. 13]. Instead, it is a complicated
trade-off process during which various cost drivers that dominate constellation
performances and costs have to be taken into account. Therefore, this research
aims to study methodologies for the design of constellations, which allows max-
imising constellation performances and minimising costs. Moreover, the design
is desired to be done in a systematic way such that it can be generalised to any
missions with different requirements. In parallel, to start revenue flow as early as
possible, this research is focused on the study of rapid deployment techniques.

As the surge in constellations is posing a severe safety threat to Space, the
second objective of the research is to reduce the negative impact of constellations
on the space environment since the early stage of constellation mission design.
Within the scope of the four phases concerned, this objective indicates the need to
reduce collision hazards in the constellation operational phase and to fast remove
constellations after their end of life. For these reasons, the inter-satellite collision
probability should be considered during the constellation design process; also, a
proper de-orbiting strategy, which can lead to quick re-entry, should be selected,
and the low-thrust de-orbiting is desired to be time-optimal. In addition, due to
the fact that the co-planar satellites usually perform planar manoeuvres, such as
orbit raising and de-orbiting, at the same time, while a low-thrust transfer may
consist of hundreds to thousands of revolutions, it is also necessary to minimise
the collision risk between co-planar satellites during planar transfer.

For constellations, the low-thrust trajectory design is not a stand-alone prob-
lem, but it is integrated with the optimisation of one or more mission performance
indexes. For example, the performance of a deployment mission is evaluated not
only by the ∆v-budget of low-thrust transfer but also by the total deployment
time. Therefore, the last objective of the research is to study techniques that can
be rapidly implemented for the integrated design of constellation mission using
low-thrust propulsion. In this context, it is desired to develop an analytical closed-
loop control law, which is computationally efficient and can be directly applied to
every satellite in the constellation for potential real-time autonomous guidance.
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Chapter 1. Introduction

Moreover, to further reduce the computational load of propagating low-thrust
motion, this research aims to study techniques for analytical and semi-analytical
solutions of low-thrust transfer.

To sum up, each of the four phases is involved in separate objectives, viz.,
• objective 1: to reduce cost and to increase revenue;
• objective 2: to reduce the negative impact on space environment, especially
the LEO region;

• objective 3: to study techniques that can be rapidly implemented for the
integrated design of constellation missions using low-thrust propulsion.

For clarity, Table 1.1 summarises the research objectives for the four phases, where
the symbol × means the objective is contained. It has to be noted that the blank
table cell does not mean the objective is not considered at all. For example, in
the design of de-orbiting phase, in addition to the de-orbiting time, the candidate
de-orbiting strategies are also assessed from the aspect of ∆v-budget so as to find
an economic solution, which to some extent, is related to the reduction of cost,
i.e. the first objective.

Table 1.1: Summary of the research objectives for the four phases

Phase Objective 1 Objective 2 Objective 3
Constellation design × ×

Constellation deployment × ×
Constellation de-orbiting × ×

Constellation planar transfer × ×considering self-induced collision avoidance

1.3 Literature Review

In this section, Sec. 1.3.1 reviews the previous work undertaken to address the four
constellation mission phases, and Sec. 1.3.5 reviews the technologies of low-thrust
trajectory design.

1.3.1 Constellation Design

Over the past decades, different types of circular-orbit constellations have been
proposed, such as Walker, Street-of-Coverage, and Flower.

The Walker constellation was first published by Walker [4–7] in 1970s. It is
also reported in Ref. [8] that Mozhaev [9, 10] had independently proposed the
similar constellation in 1968. The Walker constellation is characterised by a glob-
ally symmetrical structure, in which all satellites and orbital planes are uniformly
distributed. Then researchers such as Ballard, Lang, and Adams [11–14] con-
ducted fruitful work, finding the optimal Walker constellations providing contin-
uous global coverage with a minimum number of satellites.

The Street-of-Coverage (SoC) constellation was developed based on a SoC con-
cept, where the term SoC refers to a swath on the ground with continuous cover-
age. At the early stage of SoC constellation design, the orbits were evenly spaced
along the equatorial plane, and some work [15–17] was devoted to finding the op-
timal number of orbits and inclinations required to cover the zone of interest [14].
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In 1978, Beste [18] proposed the polar SoC constellation in which polar orbits
were unevenly spaced; compared to an early work by Lüders [15], Beste reduced
the number of satellites by 15% for 1-fold continuous global coverage [18]. Then
Rider [19] carried out a further study to find the optimal polar SoC constellations
providing continuous global coverage with a minimum number of satellites. How-
ever, the polar SoC constellation does not suit practical applications because all
orbits cross at the poles, thus may leading to high collision hazards. In order to
address this problem, Ulybyshev [8] proposed the near-polar SoC constellation by
transforming the original polar constellations to a new class of inclined ones.

The Flower constellation was proposed by Mortari et al. [20] in 2004. It is a
theoretical framework that allows the design of symmetrical constellations whose
satellites all move on the same trajectory with respect to a rotating reference
frame. Based on the original Flower constellation, the 2D and 3D Lattice Flower
constellations were developed [21,22], encompassing the Walker constellation and
some other symmetrical constellations with elliptical orbits.

Traditionally, the prime design criterion for continuous global coverage constel-
lations is the coverage performance. A good coverage performance can guarantee
the quality of communications between ground and constellation, and it usually
indicates fewer satellites required, thus reducing the system cost. However, the
mono-criterion design may not suit practical applications, because the design of
constellations is a complicated trade-off process during which various cost drivers
have to be taken into account.

Draim and Kacena [23] discussed the impacts on constellation design from var-
ious aspects: launch vehicle, orbit maintenance, debris, etc. Lang and Adams [14]
compared the Walker, polar SoC, and Draim constellations in terms of coverage,
launch vehicle capability, spare strategy, crosslinking, and space debris mitigation
and collision avoidance. Lansard and Palmade [24] proposed a multi-criteria ap-
proach, highlighting and handling three driving criteria: coverage performance,
operational availability, and life-cycle costs of the system. Lansard et al. [25] in-
corporated the robustness consideration and some additional coverage constraints,
and designed a new type of constellation which was resistant to satellite failures
by using an optimisation tool based on genetic algorithms. Keller et al. [26] ex-
amined the polar and near-polar constellations for the use of intersatellite links.
Ferringer and Spencer [27] studied two pairs of trade-offs – sparse-coverage trade-
off and resolution trade-off – using multi-objective evolutionary computation. Li
et al. [28] proposed a general evaluation criterion for the coverage of LEO con-
stellations, which was applicable to different constellation configurations. Shtark
and Gurfil [29] developed a LEO constellation optimisation method for regional
positioning, and examined the figures of merit of total coverage time, revisit time,
and geometric dilution of precision percentiles. Buzzi et al. [30] described the
process of constellation and orbit design for the TROPICS mission, in which the
following figures of merit were assessed: coverage, cost, constellation robustness,
lifetime, and deployment.

It has to be noted that the aforementioned work is not limited to the study
scope of this paper, viz. circular-orbit continuous global coverage constellations,
but they are reviewed for the purpose of identifying the critical criteria for con-
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stellation design along with the approaches of modelling the criteria.

1.3.2 Constellation Deployment

The traditional deployment method, which requires a dedicated launch for one
orbital plane, may not suit constellations consisting of many orbital planes.

King and Beidleman [31] patented a method of exploiting the Earth J2 pertur-
bations to deploy a set of satellites into one or more desired orbital planes. In this
method, satellites are sequentially raised from the initial orbit to their respective
final orbits at predetermined time intervals to achieve the desired separation in
the Right Ascension of the Ascending Node (RAAN). In 2006, the FORMOSAT-
3/COSMIC mission [32] demonstrated the J2 method by deploying six satellites
into six orbital planes with one launch vehicle. An obvious advantage of the J2

method is the low fuel consumption.
Some studies of constellation low-thrust deployment using the J2 method were

performed. Jenkins et al. [33] investigated a 180 deg separation in the RAAN
between two CubeSats, where the RAAN separation was obtained by increasing
the semi-major axis of one satellite, drifting in a higher orbit, and returning to
the original semi-major axis; in the meanwhile, the other satellite stayed in its
original orbit. A simulation of hybrid transfer was performed, in which the RAAN
was actively changed in the drift orbit by thrust. It was concluded that the active
RAAN change was far less efficient than J2, due to the limited capability of the
low-thrust technology considered for this study, in which each thruster produced
a thrust of 150 µA and a specific impulse of 760 s. McGrath and Macdonald [34]
also investigated the RAAN separation between a manoeuvring satellite and a
non-manoeuvring satellite through the similar three-phase manoeuvre as the one
by Jenkins et al. [33], but the drift orbit in this study was lower than the original
one so as to achieve a more efficient deployment. Moreover, this study consid-
ered another strategy by simultaneously manoeuvring two satellites, achieving a
minimum-time deployment by optimising the propellant distribution between the
two manoeuvring satellites. Cerf [35] solved a minimum-fuel transfer between cir-
cular orbits based on the Edelbaum averaged dynamics equations. In this work,
the transfer was composed of three phases: a thrusting phase to lower the orbit, a
coasting phase to passively change the RAAN by J2, and another thrusting phase
to reach the final semi-major axis and inclination. The results obtained by this
work have potentiality for constellation deployment.

Chow et al. [36] proposed an alternative method for LEO constellation deploy-
ment by taking advantage of the complex dynamical behaviour near the Earth-
Moon L1 Lagrange point. In this method, several carrier vehicles, each carrying
a set of satellites to be deployed into a single orbital plane, are sent to L1 and
inserted to a Lissajous or Halo orbit by a single large launch vehicle. At L1, the
carrier vehicles wait as long as necessary to access separate Earth return trajecto-
ries leading to different orbital planes. When approaching the Earth, the carrier
vehicles perform an aerocapture manoeuvre with the aid of ballutes to slow and
enter into the final orbit. Chase et al. [37] performed a preliminary analysis in
terms of the launch cost, demonstrating that compared to the traditional method
(one launch per orbital plane), the L1 method could realise a significant cost sav-
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ing by 42% – 74%. Following the previous studies, Nadoushan et al. [38] designed
more accurate trajectories based on the three-body model using the stable and
unstable manifolds of the Halo orbit around L1 and the multiple shooting method.
This work confirmed the results by Chow et al. [36] in terms of the required ∆v

and demonstrated that the L1 method would take only 20 days to deploy a constel-
lation of six orbital planes spaced along the equatorial plane at intervals of 60 deg,
while the J2 method would take 1.5 years. However, the use of multiple carrier
vehicles and ballutes would require additional system development and lead to
an increase in mass by a factor of 2.1 for each satellite weighting 100 kg [39],
thus limiting the application of the L1 method to constellations containing many
satellites.

Nowadays, the high uncertainty of the actual demand (e.g. the expected num-
ber and activity level of users) may need constellations to be deployed in a staged
manner, such that the constellation configuration can dynamically adapt to the
evolution of the market [40]. For this reason, a technique that can rapidly provide
optimal solutions for deployment without great computational effort would be de-
sired. Appel et al. [41] proposed a combined algorithm based on the neighbouring-
extremal algorithm and the first-order gradient algorithm to solve a minimum-fuel
low-thrust transfer problem, where all satellites were required to reach the desired
positions at the same time. de Weck et al. [42] developed an auction algorithm to
assign multiple satellites into designated slots with a minimum total ∆v. However,
both work used numerical methods such might not be computationally efficient
enough for constellations containing many satellites. In pursuit of rapid computa-
tion, analytical solutions for the low-thrust transfers involved in the deployment
would be preferred. Kechichian [43] derived analytical solutions for near-circular
low-thrust transfer. McGrath and Macdonald [34,44] used a general perturbation
method, which took into account the conversion between mean and osculating or-
bital elements, to obtain analytical solutions for circular low-thrust transfer with
high accuracy. However, both work assumed a constant thrust acceleration, thus
limiting the accuracy of the analytical solutions, and they were focused on the
tangential thrusting (the thrust direction tangent to the trajectory) only. As a
matter of fact, Burt [45] had considered the variation in thrust acceleration for
the tangential thrusting and for the yaw thrusting (the thrust direction normal to
the orbital plane) in 1967, but the analytical solutions derived here were for the
semi-major axis and inclination only.

1.3.3 Low Earth Orbit Constellation De-Orbiting

A pioneering work on low-thrust de-orbiting from LEO was done by Pollard [46],
where two strategies were investigated. One is to lower the perigee altitude to
the drag dominated region and then the drag will lower the apogee altitude until
re-entry happens. The other is to move spacecraft to graveyard altitudes between
2, 000 and 2, 500 km that are rarely used because of the intense radiation, however
not guaranteeing the complete removal of spacecraft from orbit. By comparing the
∆v-budgets of the two strategies (assuming that the perigee altitude was lowered
to 250 km), Pollard recommended to use the perigee decrease strategy for initial
altitudes lower than 1, 250 km and the graveyard strategy for initial altitudes
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higher than 1, 250 km.
With the development of materials and manufacturing technology, more and

more passive de-orbiting devices (e.g. drag and solar sail, drag balloon, and
electrodynamic tether) have been considered for passive de-orbiting. Over the
past years, considerable feasibility studies on passive de-orbiting devices have
been performed, demonstrating that such devices can enhance the passive de-
orbiting from high-altitude LEO, by exploiting the orbital resonances due to the
coupled effect of the Earth oblateness and Solar Radiation Pressure (SRP) [47–
52]. However, a feasible technology for passive de-orbiting device can be achieved
only if the conditions of orbital resonances, which can be described by a certain
combination of orbital elements, are satisfied. Natural de-orbiting can take place
along resonance lines, but this will take a longer time than a direct manoeuvre,
since manifold dynamics is exploited [47,49]. In order to better exploit the orbital
resonances, a strategy to move spacecraft to the conditions of orbital resonances
with impulsive thrust were investigated in Refs. [53,54].

1.3.4 Low Earth Orbit Constellation Self-Induced Collision Avoidance

With more and more constellations injected to the already congested LEO region,
a lot of attention have been drawn to the constellation relevant collision problem.
To the author’s knowledge, most of the work was focused on modelling, computing,
and analysing the impact of constellations on the space environment [55–57].

Concerning the problem of self-induced collision, i.e., the collision between
satellites from the same constellation, Lang [14] took it as a criterion for con-
stellation design. In this work, the self-induced collision risk was quantitatively
evaluated by an angular miss distance, which is the minimum angular separa-
tion between satellites. For circular-orbit constellations in which all satellites are
placed at a common altitude, the angular separation is linked to the linear dis-
tance but independent of the orbit radius, thus simplifying the problem. For the
self-induced collision during low-thrust transfer, Lee et al. [58] addressed the colli-
sion problem by conducting sub-optimal control for the cooperative collision-free
transfer of multiple satellites using continuous thrust.

1.3.5 Low-Thrust Trajectory Design

Indirect and Direct Methods

In general, methods for low-thrust trajectory optimisation are classified into indi-
rect and direct approaches [59,60].

Indirect methods solve a Two-Point Boundary Value Problem by means of the
shooting method. However, for long-duration transfer, the optimal solutions are
usually difficult to obtain because of the small convergence domain. In order to
address this problem, the homotopic approach was studied by Refs. [61–63], to
search for initial costates for fixed-time minimum-fuel transfers, and the results
indicated that the homotopic approach would still take few hours to obtain the
optimal solutions.

Direct methods, on the other side, convert the optimal control problem into
a parameter optimisation problem, which is then solved by nonlinear program-
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ming. Compared to indirect methods, direct methods have a larger convergence
domain and thus are feasible to handle long-duration transfer. Scheel and Con-
way [64] solved a planar transfer with 1, 027 variables through a Runge-Kutta
parallel-shooting transcription approach. Betts [65] proposed a direct sequential
quadratic programming method to solve a 578 revolutions’ transfer with 416, 123

variables. As seen from the previous work, direct methods are usually computa-
tionally expensive due to the large number of optimisation variables.

Heuristic Methods

Heuristic methods, which can be orders of magnitude faster than indirect and di-
rect methods [66], have also received some attention. Heuristic methods generally
fall into two categories [66].

One category is involved in blending the control laws which can instantaneously
optimise the time rates of change of orbital elements. Spencer and Culp [67]
developed three optimal control laws for the semi-major axis, inclination, and
perigee radius, separately, and sequentially employed these control laws in a LEO
to Geosynchronous Earth Orbit (GEO) transfer. Kluever and Oleson [68] blended
the optimal control laws for the semi-major axis, eccentricity, and inclination, and
optimised the weights allocated to these control laws with direct methods. Then
taking the results in Ref. [68] as reference trajectories and based on those optimal
control laws, Kluever [69,70] proposed two guidance schemes suitable for on-board
implementation. Gao [71] employed three control laws over different orbital arcs,
two optimal for the semi-major axis and inclination and one near-optimal for the
eccentricity, and then optimised the starting and ending points of orbital arcs with
direct methods.

The other category is based on the Lyapunov stationary theory, where a candi-
date Lyapunov function must be properly defined to ensure convergence. Petropou-
los [66,72] proposed a Q-Law algorithm based on a Lyapunov candidate function Q,
which was a proximity quotient to quantify the proximity of the osculating orbit to
the target orbit. Then the divergence problem exhibited in Ref. [72] was addressed
in Ref. [66] by introducing penalty functions. Hernandez and Akella [73] used the
Lyapunov method to solve planar transfer and rendezvous problems, where the
proposed candidate Lyapunov functions were able to give rise to asymptotically
stabilising control laws. However, one problem for the Lyapunov method is that
there does not exist a well-defined method to select controller gains [74], and some
researchers have to resort to stochastic methods, such as genetic algorithm [75,76],
which in turn increase the computational load.

In a constellation low-thrust transfer problem, the low-thrust trajectory is re-
quired for every satellite. So it would be preferable to develop an analytical
closed-loop control law that can be directly applied to every satellite for poten-
tial real-time autonomous guidance. Ruggiero et al. [77] proposed closed-loop
guidance laws by simultaneously offsetting the instantaneous errors in orbital el-
ements. Zhang et al. [78] managed to derive the analytical near-time-optimal
and near-fuel-optimal control laws for GEO transfers by optimising two objective
functions, which were properly constructed based on the instantaneous variations
of orbit elements and the cumulative effects of thrust, separately.
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The techniques for solar sail trajectory design can also be applied to low-thrust
because both of them are characterised by small thrust. Ceriotti and McInnes [79]
generated the optimal trajectories for Earth hybrid pole sitters by firstly obtaining
the local-optimal control law with a semi-analytical inverse method and then using
them as a first guess in the subsequent indirect method. Mengali and Quarta [80]
solved an orbit raising problem from LEO with solar sail, in which an analytical
control law that maximised the time rate of change of the semi-major axis at
any instant of the trajectory was found; such control law depended on the ratio
between local aerodynamic pressure and SRP on the sail.

Orbital Averaging Technique for Low-Thrust Trajectory Design

Because of the low thrust-to-mass ratio, a low-thrust transfer usually consists of
many revolutions and may take several months or even up to few years. The
computational load of precisely integrating a long-duration transfer is quite high,
let alone in constellation mission design we are dealing with many satellites. To
reduce the computational load, an orbital averaging technique is often used, with
which the short-term oscillations can be filtered out. Kechichian [43] investigated
the low-thrust orbit raising problem due to tangential thrusting, where the ana-
lytical expressions of the incremental changes in orbital elements were obtained
with the aid of Taylor series expansion; however, the results were only valid for
eccentricity up to 0.2. Gao and Kluever [81] worked on the same subject but in
a different way by introducing an approximation to the elliptic integrals, and the
results were also valid for large eccentricity.

1.4 Methodologies Developed and Implemented

For each of the four constellation mission phases, the methodologies developed
and implemented are devoted to the major objectives as described in Sec. 1.2.

1.4.1 Constellation Design

A first phase addressed in this thesis is the design of circular-orbit continuous
global coverage constellations, with the major objective to develop a systematic
constellation design method to maximise constellation performances and to min-
imise costs. The development of this method is generally divided into three steps.

First, we choose two classical types of circular-orbit constellations: Walker
and SoC, and perform a thorough review of their characteristics; this choice is
justified by the fact that many practical applications (e.g. the Galileo [82] and
Iridium [83, 84] constellations) are of these types. Based on the review, a set of
characteristic parameters, which can determine the configuration of a Walker or
SoC constellation, are identified. A contribution of this work to the literature
is deriving the necessary condition for continuous global coverage for the SoC
constellation.

Then by widely reviewing the previous work on constellation design, we select
seven constellation properties as design criteria, each of them representing a par-
ticular constellation performance or cost, reported in Table 1.2. Because these
performances and costs are constellation’s inherent qualities, they are collectively
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called here as constellation properties. For each property, one or two indexes
are proposed with valid reasons, and the indexes are modelled as functions of
the characteristic parameters that having been identified. In this way, we can
quantitatively establish the relationship between constellation configuration and
properties through mathematical formulae, and furthermore, analyse the trade-
offs between properties; recall that the constellation configuration is represented
by the characteristic parameters.

Table 1.2: Constellation properties.

Property Description
Coverage Performance to offer required coverage
Robustness Performance to offer required coverage if satellite fails

Self-induced collision avoidance Performance to avoid self-induced collision
Launch Cost to deliver constellation to mission orbit
Build-up Period to build up constellation

Station-keeping Cost to maintain constellation structure
EoL disposal Cost to remove constellation from mission orbit

Finally, taking the constellation properties as objectives and taking the char-
acteristic parameters as design variables, a multi-objective optimisation problem
is formulated, in which the mission-related parameters can be replaced according
to given mission requirements. As a multi-objective optimisation problem is set,
the solution is found in terms of a set of non-dominated solutions belonging to
the Pareto-front, and further, the globally optimal constellations can be found.
The multi-objective optimisation implemented for this work uses the formulation
proposed by Vasile [85].

1.4.2 Constellation Deployment

A second phase addressed in this thesis is the constellation deployment, with
the objectives of rapid deployment to start revenue flow as early as possible and
of reducing the computational effort for the integrated design of a deployment
mission with low-thrust control. In this thesis, the deployment of multiple orbital
planes by one launch is focused.

In light of the strengths and drawbacks of the J2 and L1 methods, it is decided
to investigate the use of the J2 method due to the saving in cost. In order to
accelerate the deployment, on the basis of the traditional J2 method which ex-
ploits the J2 effect only for RAAN separation, this research adds an out-of-plane
thrusting phase to actively change the RAAN by thrust.

Two simple but efficient control laws are used for the deployment: an in-plane
tangential thrusting to change the semi-major axis and an out-of-plane yaw thrust-
ing to change the RAAN. Under a reasonable assumption that all satellites remain
in circular orbits throughout the deployment, the analytical solutions for circular
low-thrust transfer due to the tangential and yaw thrusting are derived. A diffi-
culty for deriving the analytical solutions is that the motion of orbital elements is
coupled by short-term oscillations. In order to decouple the motion, we employ
the orbital averaging technique to filter out the short-term oscillations and keep
the long-term and secular motion.
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Because the out-of-plane thrusting is inherently expensive, two parameters are
introduced to control the fuel consumption: one to adjust the contributions of J2

and thrust effects to the RAAN separation, and the other to adjust the length
of burning arcs per revolution in the out-of-plane thrusting phase. With the
analytical solutions having been derived, the time and fuel consumption for RAAN
separation can be analytically expressed in terms of the parameters. Then a multi-
objective optimisation problem is formulated, in which the design variables are
the two parameters and the objectives to be minimised are the time and fuel
consumption for RAAN separation. Through a mapping from the design variable
space to the objective space, the optimal design variables are found to be the
solution of singular transformation, and they can be analytically described by
setting the determinant of the transformation matrix to zero. With these optimal
design variables, we can further determine the optimal times to be allocated to
separate phases of the RAAN separation in an analytical way.

In general, the proposed method provides an analytical-optimal solution for
low-thrust deployment exploiting the J2 effect, enabling a rapid deployment with
low fuel consumption.

1.4.3 Low Earth Orbit Constellation De-Orbiting

A third phase addressed in this thesis is the de-orbiting of LEO constellations,
with the objectives of rapid de-orbiting to minimise the negative impact on the
LEO environment and of reducing the computational effort for the integrated
design of de-orbiting mission using low-thrust propulsion.

To this end, two strategies, which are applicable to de-orbiting from LEO,
are investigated. The first strategy is the traditional perigee decrease strategy
that have been widely used in practical applications. It consists of a low-thrust
phase to lower the perigee altitude to the drag-dominated region and a passive de-
orbing phase in which the drag effect will lower the apogee altitude until re-entry
happens. The second strategy exploits the natural coupled effect of the Earth
oblateness and SRP, named here as the de-orbiting corridor strategy. It contains
a low-thrust phase to move the spacecraft to the condition of orbital resonances
due to the coupled effect and a passive de-orbiting phase in which the coupled
effect will provoke orbital decay, provided a passive de-orbiting device with large
enough area-to-mass ratio.

In light of the strengths and drawbacks of different low-thrust trajectory design
methods, it is decided to use the Lyapunov method to develop closed-loop control
laws. For each strategy, a candidate Lyapunov function, which is zero at the final
state and positive elsewhere, is built based on the terminal condition of the low-
thrust phase as described. Given the objective of rapid de-orbiting, the control law
is designed to send the candidate Lyapunov function to zero at the fastest rate by
minimising the time derivative of the candidate Lyapunov function. Subsequently,
the stability analysis is performed to prove that the proposed control law is robust
to any initial conditions such that it can be directly applied to every satellite in
the constellation without need for off-line design.

In order to assess the strategy performance, maps are drawn to show the ∆v-
budget and de-orbiting time for de-orbiting from any near-circular LEO using
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the two strategies, based on which, maps that indicate the application conditions
of the two strategies are obtained. Besides, to reduce the computational load
of propagating a series of initial conditions for the entire LEO region, the aver-
aged low-thrust dynamics models, i.e. the semi-analytical solutions of low-thrust
transfer, governed by the proposed control laws are firstly derived with the orbital
averaging technique.

1.4.4 Low Earth Orbit Co-Planar Satellites Planar Transfer Consid-
ering Self-Induced Collision Avoidance

A last problem tackled in this thesis is the self-induced collision avoidance during
the planar orbit raising and de-orbiting transfers for co-planar satellites in LEO
constellations. The objectives are to reduce collision risk for the purpose of min-
imising negative impact on LEO environment and to reduce computational effort
for the integrated design of multi-satellite planar transfer mission using low-thrust
propulsion.

Inspired by the previous work of Refs. [68,71,77], it is decided to investigate the
use of heuristic methods to develop a closed-loop control law. A Blended Error-
Correction (BEC) control law is proposed, in which two types of control laws
are blended: a tangential thrusting to change the semi-major axis in the optimal
way [86] and an inertial thrusting to change the eccentricity in the near-optimal
way [87]. A weighting parameter, which offsets the error of the osculating orbit
to the target orbit, is assigned to each control law. Then to ensure the thrust
direction following the desired one, a normalisation procedure is performed.

This work quantitatively models the self-induced collision risk as the miss dis-
tance between satellites. In this way, the problem of self-induced collision avoid-
ance is converted to the maximisation of miss distance, which in turn can be solved
by properly scheduling the timing to start transfer for every satellite. Because in
every trial to find the transfer starting time we need to propagate low-thrust mo-
tion for all satellites. To reduce the computational load, the averaged low-thrust
dynamics model, i.e. the semi-analytical solutions of low-thrust transfer, is firstly
derived.

For the orbit raising mission, it is found that the close proximity is caused by
a phenomenon of latitude resonance. Based on this discover, we identify the safe
transfer starting time difference between two successive transfer, such that the
miss distance can be ensured larger than a given threshold. For the de-orbiting
mission in which the orbit is more elliptical, we resort to multi-objective optimi-
sation techniques and get the optimal transfer starting times that can maximise
the miss distance while minimise the total mission time.

1.5 Dissertation Organisation

This dissertation is, after the introduction chapter, divided into six chapters.
Chap. 3 to Chap. 6 are dedicated to the design of the four phases concerned,
while Chap. 2 and Chap. 7 are dedicated to the introduction of the fundamentals
and conclusion, respectively.
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Chapter 1. Introduction

Chap. 2 explains the fundamentals of orbital dynamics and low-thrust trajec-
tory design that will be used in Chap. 3 to Chap. 6. Sec. 2.1, Sec. 2.2, and Sec. 2.3
show the coordinate systems, orbital elements, and dynamics model, respectively.
Sec. 2.4 introduces some simple and efficient control laws. Finally, an introduction
to the orbital averaging technique is presented in Sec. 2.5.

Chap. 3 performs a multi-criteria design for continuous global coverage constel-
lations through quantitative assessments of seven important constellation prop-
erties. Sec. 3.1 presents a thorough review of continuous global coverage Walker
and SoC constellations. Sec. 3.2 quantitatively assesses the constellation proper-
ties and analyses the trade-offs between properties. A multi-objective optimisation
problem to find globally optimal constellations for given missions is formulated in
Sec. 3.3. Finally, the optimisation results are presented and discussed in Sec. 3.4.

Chap. 4 proposes an analytical approach for constellation low-thrust deploy-
ment through J2 perturbations. Sec. 4.1 introduces the deployment scheme.
Sec. 4.2 derives the analytical solutions for circular low-thrust transfer. Then
in Sec. 4.3 and Sec. 4.4, analytical methods are developed to determine the times
allocated to different phases for the separation in RAAN and Argument of Lat-
itude, respectively. Finally in Sec. 4.5, two case studies of large constellation
deployment are presented to show how the proposed approach is used.

Chap. 5 investigates the low-thrust de-orbiting through natural perturbations
for LEO constellations, where two strategies are considered: the perigee decrease
strategy and the de-orbiting corridor strategy. Sec. 5.1 introduces the two strate-
gies and gives the terminal conditions of low-thrust transfer. Sec. 5.2 develops the
closed-loop control laws and performs the stability analyses, following which, the
averaged low-thrust dynamics models are derived in Sec. 5.3. Finally in Sec. 5.4,
numerical simulations are performed to validate the control laws and averaged
dynamics models, and to obtain the de-orbiting maps.

Chap. 6 analyses the low-thrust planar transfer problems, i.e. orbit raising and
planar de-orbiting, while taking the self-induced collision avoidance into consider-
ation. Sec. 6.1 develops the closed-loop control law, following which, the averaged
low-thrust dynamics models are derived in Sec. 6.2. The self-induced collision
avoidance problem is addressed in Sec. 6.3, where the transfer starting times are
scheduled for the orbit raising and de-orbiting missions, separately.

Finally, Chap. 7 concludes this dissertation with a summary of the findings,
the limitations of the method and potential future work.

1.6 Contributions

The contents of this dissertation have been published in one journal paper and in
four stand-alone but highly related conference papers, and have been submitted
to journals.

The results of Chap. 3 were presented in 2017 at the 68th International As-
tronautical Congress in Adelaide, Australia [88], and were submitted to Acta
Astronautica in August 2020 (the revision was submitted in January 2021).

The results of Chap. 4 were submitted to Journal of Guidance, Control, and
Dynamics in January 2021.
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1.6. Contributions

The results of Chap. 5 were presented at two conferences and were submitted
to Acta Astronautica in January 2021. The preliminary results of near-polar or-
bits de-orbiting were presented in January 2019 at the 29th AAS/AIAA Space
Flight Mechanics Meeting in Ka’anapali, Hawaii, United States of America [89].
The complete results were presented in July 2019 at the 10th International Work-
shop on Satellite Constellations and Formation Flying in Glasgow, United King-
dom [90]. In particular, the results of Sec. 5.4.2 are the outcome of a joined work
with Dr. Elisa Maria Alessi, who performed the numerical simulations for passive
de-orbiting.

The results of Chap. 6 were presented in 2018 at the 4th IAA Conference
on Dynamics and Control of Space Systems in Changsha, China [91], and were
published in November 2020 in Aerospace Science and Technology [92].

Journal Publications

• Huang S., Colombo C., and Bernelli-Zazzera F., “Low-Thrust Planar Transfer
for Co-Planar Low Earth Orbit Satellites Considering Self-Induced Collision
Avoidance”, Aerospace Science and Technology, Vol. 106, November 2020, doi:
10.1016/j.ast.2020.106198.

• Huang S., Colombo C., and Bernelli-Zazzera F., “Multi-Criteria Design of Con-
tinuous Global Coverage Walker and Street-of-Coverage Constellations Through
Property Assessment”. Submitted to Acta Astronautica in August 2020 (revi-
sion submitted in January 2021).

• Huang S. and Colombo C., “An Analytical Approach for Circular-Orbit Con-
stellation Low-Thrust Deployment Exploiting Earth Oblateness”. Submitted to
Journal of Guidance, Control, and Dynamics in January 2021.

• Huang S., Colombo C., Alessi E. M., and Wang Y., “Low Earth Orbit Constel-
lation Low-Thrust De-Orbiting Through Natural Perturbations”. Submitted to
Acta Astronautica in January 2021.

Conference Publications

• Huang S., Colombo C., and Bernelli-Zazzera F., “Comparative Assessment of
Different Constellation Geometries for Space-Based Application”, 68th Inter-
national Astronautical Congress, 25-29 September 2017, Adelaide, Australia,
IAC-17, C1, IP, 31, x41252.

• Huang S., Colombo C., and Bernelli-Zazzera F., “Orbit Raising and De-Orbit for
Coplanar Satellite Constellations with Low-Thrust Propulsion”, 4th IAA Con-
ference on Dynamics and Control of Space Systems, 21-23 May 2018, Changsha,
China, IAA-AAS-DyCoSS4-1-15, AAS 18-508.

• Huang S., Colombo C., Alessi E. M., and Hou Z., “Large Constellation De-
Orbiting with Low-Thrust Propulsion”, 29th AAS/AIAA Space Flight Mechan-
ics Meeting, 13-17 January 2019, Ka’anapali, Hawaii, United States of America,
AAS 19-480.

• Huang S., Colombo C., and Alessi E. M., “Trade-Off Study on Large Constella-
tion De-Orbiting Using Low-Thrust and De-Orbiting Balloons”, 10th Interna-
tional Workshop on Satellite Constellations and Formation Flying, 16-19 July
2019, Glasgow, United Kingdom, IWSCFF 19-1953.
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CHAPTER2
Fundamentals of Orbital Dynamics and

Low-Thrust Trajectory Design

This chapter explains the fundamentals of orbital dynamics and low-thrust trajec-
tory design that will be used in the subsequent chapters for the four constellation
mission phases.

2.1 Coordinate Systems

2.1.1 Earth Centred Inertial Coordinate System

The Earth Centred Inertial (ECI) coordinate system is an Earth-based system,
originating at the centre of the Earth [93, Sec. 3.3]. It will be used in Sec. 3.1 to
show the configuration of a constellation in space. Fig. 2.1 shows this coordinate
system, where the three axes are defined as follows [93, Sec. 3.3]:

• the Î axis points towards the vernal equinox;
• the Ĵ axis is 90 deg easterly (measured from the Î axis) in the equatorial
plane;

• the K̂ axis extends through the North Pole, completing the right-handed
coordinate system.

2.1.2 Gauss Coordinate System

The Gauss coordinate system is a satellite-based system that moves with the
satellite [93, Sec. 3.3]. It is used in this thesis to study spacecraft motion due to
the low-thrust effect. Fig. 2.2 shows this coordinate system, where the three axes
are defined as follows [93, Sec. 3.3].
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Chapter 2. Fundamentals of Orbital Dynamics and Low-Thrust Trajectory Design

Figure 2.1: Earth Centred Inertial coordinate system.

• the r̂ axis points out from the satellite along the Earth’s radius vector to the
satellite;

• the θ̂ axis lies in the orbital plane, perpendicular to the r̂ axis and in the
direction of, but not necessarily parallel to, the velocity vector;

• the ĥ axis is normal to the orbital plane, completing the right-handed coor-
dinate system.

Figure 2.2: Gauss coordinate system.

2.2 Classical Orbital Element

In principle, the state of a satellite can be defined by six classical orbital ele-
ments [93, Sec. 2.4.1]:

• the semi-major axis a
• the eccentricity e
• the inclination i

• the Right Ascension of the Ascending Node (RAAN) Ω

• the argument of perigee ω
• the true anomaly ν

18
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2.3. Dynamics Model

As a matter of fact, the semi-major axis and eccentricity determine the size and
shape of the orbit [93, Sec. 2.4.1]; the inclination, RAAN, and argument of perigee
determine the orientation of the orbit in space; the true anomaly determines the
satellite’s in-plane position relative to the orbital perigee [93, Sec. 2.4.1], and it
can be replaced by the eccentric anomaly E or the mean anomaly M . ν, E, and
M are related by by [93, pp. 51-56]

sin ν =
sinE

√
1− e2

1− e cosE
, cos ν =

cosE − e
1− e cosE

(2.1)

M = E − e sinE (2.2)

For orbits of zero inclination, the RAAN is not defined. However, as the scope
of this thesis is continuous global coverage constellations whose inclinations are
usually is not zero, the use of classical orbital elements is reasonable. For orbits
with zero eccentricity, the argument of perigee is also not defined. In this case,
we make use of the Argument of Latitude (AoL) u, an in-plane angle measured
from the ascending node to the satellite’s position in the direction of satellite’s
motion [93, Sec. 2.4.1].

2.3 Dynamics Model

The Gauss form of the variational equations is a convenient technique to address
low-thrust problems because it allows the time rates of change of orbital elements
to be explicitly expressed in terms of perturbing accelerations [93, Sec. 9.3.2]. If
we only consider the low-thrust perturbing acceleration, the equations of motion
can be stated in Gauss form as [94, Sec. 10.3]:

ȧ =
2a2

ham

(
e sin νfr +

p

r
fθ

)
(2.3a)

ė =
1

ham
{p sin νfr + [(p+ r) cos ν + re] fθ} (2.3b)

i̇ =
r cos (ω + ν)

ham
fh (2.3c)

Ω̇ =
r sin (ω + ν)

ham sin i
fh (2.3d)

ω̇ =
1

hame
[−p cos νfr + (p+ r) sin νfθ]−

r sin (ω + ν)

ham tan i
fh (2.3e)

ν̇ =
ham

r2
+

1

hame
[p cos νfr − (p+ r) sin νfθ] (2.3f)

or

Ė =
na

r
+

1

nae

[
(cos ν − e) fr −

(
1 +

r

a

)
sin νfθ

]
(2.3g)

Ṁ = n+
1

na2e
[(p cos ν − 2re) fr − (p+ r) sin νfθ] (2.3h)

where ◦̇ represents the time derivative of the generic variable ◦, fr fθ, and fh
are the radial, transversal, and out-of-plane components, respectively, of the low-
thrust acceleration vector. In the preceding equations, n is the osculating mean
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Chapter 2. Fundamentals of Orbital Dynamics and Low-Thrust Trajectory Design

motion, p is the semilatus rectum, ham is the angular momentum, and r is the
orbit radius; they are given by

n =
√
µ/a3, p = a(1− e2), ham =

√
µp, r =

p

1 + e cos ν
(2.4)

where µ ≈ 3.9860× 105 km3/s2 is the Earth gravitational parameter.
In this thesis, for the convenience of employing the orbital averaging technique,

we would prefer to express the equations of motion in terms of the eccentric
anomaly E:

ȧ =

√
a3

µ

2

1− e cosE

(
e sinEfr +

√
1− e2fθ

)
(2.5a)

ė =

√
a
(
1− e2

)
µ

1

1− e cosE

[√
1− e2 sinEfr +

(
2 cosE − e− e cos2E

)
fθ

]
(2.5b)

i̇ =

√
a

µ

(
cosE − e√

1− e2
cosω − sinE sinω

)
fh (2.5c)

Ω̇ =

√
a

µ

(
cosE − e√

1− e2
sinω + sinE cosω

)
fh

sin i
(2.5d)

ω̇ =

√
a

µ

1

e (1− e cosE)

[√
1− e2 (e− cosE) fr +

(
2− e2 − e cosE

)
sinEfθ

]
− cos iΩ̇

(2.5e)

Ė ≈
√
µ

a3

1

1− e cosE
(2.5f)

where Ė is approximated as a two-body problem, because the low-thrust acceler-
ation is very small compared to the gravitational acceleration [95].

In addition to the low-thrust effect, the secular effects due to the second zonal
harmonics, J2 ≈ 1.0826× 10−3, are also considered, given by [93, Sec. 9.6.1]:

ȧJ2 = ėJ2 = i̇J2 = 0 (2.6a)

Ω̇J2 = −
3nR2

⊕J2

2p2
cos i (2.6b)

ω̇J2 =
3nR2

⊕J2

4p2
(4− 5 sin2 i) (2.6c)

ṀJ2 = −
3nR2

⊕J2

√
1− e2

4p2
(3− 2 sin2 i) (2.6d)

where R⊕ ≈ 6378.16 km is the Earth mean equatorial radius.

2.4 Control Law

A control law can describe the time history of the magnitude and direction of the
low-thrust acceleration vector.

In this thesis, we consider a constant ejection velocity propulsion model [96,
Sec. 1.1], where the low-thrust engine input power Peng, the low-thrust engine
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2.4. Control Law

efficiency ηeng, and the specific impulse Isp are assumed constant. Under this
assumption, the thrust F and the mass flow rate ṁ are also constant, given by [96]

F =
2ηengPeng

g0Isp
, ṁ = −2ηengPeng

g2
0I

2
sp

(2.7)

where g0 = 9.8066 m/s2 is the standard gravity. Accordingly, the magnitude of
the thrust acceleration is

f =
F

m
=

2ηengPeng

mg0Isp
(2.8)

where m is the spacecraft mass.
Generally speaking, the thrust direction can be determined by two steering

angles: an in-plane steering angle α and an out-of-plane steering angle β, which
are called pitch angle and yaw angle, respectively. Here we define the pitch and
yaw angles in the Gauss coordinate system, as shown in Fig. 2.3. The thrust
components are therefore

fr = f cosβ sinα

fθ = f cosβ cosα

fh = f sinβ

(2.9)

Figure 2.3: Definition of the pitch and yaw angles in the Gauss coordinate system for low-thrust
control.

An objective of this research is to develop closed-loop control laws to directly
apply to every satellite in the constellation. Thus, it is necessary to review some
commonly used closed-loop control laws which can efficiently change orbital ele-
ments.

2.4.1 Tangential Thrusting

The tangential thrusting is the optimal in-plane control law to the change semi-
major axis [86]; the thrust direction is tangent to the trajectory, i.e. parallel to
the velocity vector. This control law is obtained by solving ∂ȧ/∂α = 0 and can be
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Chapter 2. Fundamentals of Orbital Dynamics and Low-Thrust Trajectory Design

expressed in terms of E as [81]

fr = ±f e sinE√
1− e2 cos2E

fθ = ±f
√

1− e2

√
1− e2 cos2E

fh = ±0

(2.10)

where the sign + and − represent the cases of semi-major increase and decrease,
respectively.

2.4.2 Transversal Thrusting

The transversal thrusting is another commonly used in-plane control law to change
the semi-major axis; the thrust direction is perpendicular to the orbit radius
vector; that is to say, only the transversal thrust component fθ exists. This
control law is given in the form of

fr = ±0

fθ = ±f
fh = ±0

(2.11)

where the sign + and − represent the cases of semi-major increase and decrease,
respectively.

The transversal thrusting is efficient when the eccentricity is small, because in
this case the thrust direction is close to the one of the tangential thrusting.

2.4.3 Inertial Thrusting

The inertial thrusting, according to Ref. [87], is a near-optimal in-plane control
law to change the eccentricity [71]; the thrust direction is perpendicular to the
line of apsides. This control law can be expressed in terms of the true anomaly ν
as [71]

fr = ± sin ν

fθ = ± cos ν

fh = ±0

(2.12)

and from the relation between the true and eccentric anomalies in Eq. (2.1), it
can also expressed in terms of E as

fr = ±f sinE
√

1− e2

1− e cosE

fθ = ±f cosE − e
1− e cosE

fh = ±0

(2.13)

where the sign + and − represent the cases of eccentricity increase and decrease,
respectively.
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2.5. Orbital Averaging

2.4.4 Yaw Thrusting

The yaw thrusting sets the yaw angle to 90 deg such that only the out-of-plane
thrust component fh exists. This control law is given in the form of

fr = ±0

fθ = ±0

fh = ±f
(2.14)

where the sign + and − indicate that the thrust direction is along and opposite,
respectively, to the ĥ axis.

The yaw thrusting is the optimal way to change the inclination and RAAN,
because i̇ and Ω̇ are governed by fh only. It has to be noted that the thrust
direction must invert at ω+ ν = ±π/2 for i and at ω+ ν = 0 for Ω, otherwise there
will be a nearly null change in each of them [45].

2.5 Orbital Averaging

An orbital averaging technique is often used in low-thrust trajectory design to
reduce the high computational load for the integration of the exact dynamics
model. By using this technique, we can derive the averaged dynamics model in
which the short-term oscillations are filtered out while the long-term and secular
motion are kept.

Let x denote any of the orbital elements to be averaged. Due to the fact that
the thrust acceleration is small, typically on the order of 10−4g0 or less [43], all
orbital elements except A can be assumed constant within a single revolution,
where A is a proxy of ν, E, M , and u. Under this assumption, the incremental
change in x over one revolution can be obtained by integrating dx/dA in A:

∆x =

∫ Aoff

Aon

dx

dA
dA (2.15)

where Aon and Aoff are the starting and ending points of the burning arc in a
single revolution.

This incremental change occurs during a time period of 2π/Ȧ. The averaged
time rate of change of x is therefore

˙̃x =
Ȧ

2π
∆x (2.16)

where ˙̃◦ represents the average time derivative of the generic variable ◦. Because
the major perturbing effects, such as low-thrust and J2, are every small compared
to the Earth gravitational effect, Ȧ can be approximated as

Ȧ ≈ n (2.17)

recalling that n = (µ/a3)1/2 is the osculating mean motion.
Note that the implementation of the orbital averaging technique requires the

control law explicitly expressed in terms of orbital elements, i.e. the closed-loop
control law, otherwise it will be impossible to carry out the analytical integration
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Chapter 2. Fundamentals of Orbital Dynamics and Low-Thrust Trajectory Design

for ∆x. In some previous work (e.g. Refs. [97,98]), the averaged dynamics model
is also referred to as the semi-analytical solutions because the expression of ∆x is
analytical, and then it is inserted into a numerical Ordinary Differential Equation
(ODE) solver to be numerically integrated.

2.6 Summary

This chapter explained the fundamentals of the ECI and Gauss coordinate sys-
tems, of the classical orbital elements, and of the Gauss equations of motion.
Several control laws were introduced. Particularly,

• the tangential thrusting will be used in Chap. 4 and Chap. 6;
• the transversal thrusting will be used in Chap. 5;
• the inertial thrusting will be used in Chap. 6;
• the yaw thrusting will be used in Chap. 4.

An introduction to the orbital averaging technique was presented. It will be
employed in Chap. 4 to derive the analytical solutions and in Chap. 5 and Chap. 6
to derive the semi-analytical solutions, i.e. averaged dynamics model, of low-
thrust transfer.
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CHAPTER3
Multi-Criteria Constellation Design Through

Property Assessment

This chapter presents a systematic method for the design of continuous global
coverage Walker and SoC constellations, by taking seven critical constellation
properties (coverage, robustness, self-induced collision avoidance, launch, build-
up, station-keeping, and end-of-life disposal) as design criteria. In this method,
a set of characteristic parameters, which can determine the constellation configu-
ration, are first identified based on the review of Walker and SoC constellations.
Then a series of indexes are proposed and modelled as functions of the characteris-
tic parameters, to quantitatively assess the constellation properties. Through the
quantitative assessment, the influence of constellation configuration on constella-
tion properties are revealed, and the trade-offs between constellation properties are
analysed. Finally, taking the characteristic parameters and constellation proper-
ties as the design variables and objectives, a multi-objective optimisation problem
is formulated to find the globally optimal constellations for given missions.

Note that this study analyses the prograde-orbit constellations containing no
more than 200 satellites. However, for large constellations with more than 200

satellites, the properties considered here may not be priorities for constellation
design, e.g. coverage and robustness. Besides, due to space limitations, in this
chapter we only present the results for 1- and 4-fold coverage LEO and MEO
constellations. However, the systematic constellation design method developed
can also be applied to 2- or 3-fold coverage and to geosynchronous constellations.
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Chapter 3. Multi-Criteria Constellation Design Through Property Assessment

3.1 Review of Walker and Street-of-Coverage Constellations for Con-
tinuous Global Coverage

The Walker and SoC constellations are two typical types of constellations that
have been widely studied. The common characteristics of these two types of
constellations are:

• the constellation, containing a total of N satellites, is composed of S satellites
evenly spaced on each of P orbital planes;

• all satellites are placed in circular orbits at the same altitude h and at the
same inclination i.

On the other hand, the essential difference between these two types of constel-
lations is the distribution of orbital planes, which will be shown in the following
sections.

3.1.1 Walker Constellations

The Walker constellation is globally symmetrical in terms of the geometrical con-
figuration. When describing a Walker constellation, a Pattern Unit (PU) is used
to measure angular distances within the constellation, with 1 PU = 2π/N rad [5].

The characteristics of a Walker constellation are defined as follows [5].
• All the P orbital planes are evenly spaced along the equatorial plane at
intervals of S PUs (i.e. of 2π/P rad).

• In each orbital plane, the S satellites are evenly spaced at intervals of P PUs
(i.e. of 2π/S rad).

• When a satellite is at its ascending node, some satellite in the adjacent orbital
plane towards east has an AoL of F PUs (i.e. of 2πF/N rad), where F is an
integer which may have any value from 0 to (P − 1)1.

To summarise, the distribution of orbital planes and satellites for a Walker con-
stellation can be described by

δΩ = S, δuintra = P, δuinter = F (3.1)

where the symbol δ◦ represents the difference in the generic variable ◦ between
two orbits or between two satellites, δΩ is the RAAN spacing between adjacent
orbital planes, δuintra is the intra-plane AoL spacing between adjacent satellites
in a single orbital plane, and δuinter is the inter-plane AoL spacing between suc-
cessive satellites in adjacent orbital planes, with the term “successive” referring
to satellites successively passing their respective ascending nodes. Fig. 3.1 gives
the illustration of δΩ, δuintra, and δuinter, assuming S = 8, P = 3, and F = 1. In
the plots, the x- and y-axis indicate the RAAN and AoL, respectively, of satel-
lite. Fig. 3.1 (a) shows the satellite distribution in PUs and Fig. 3.1 (b) shows in
degrees; in the present example 1 PU = 360/ (8× 3) = 15 deg.

A Walker constellation can be designated in shorthand notation as i: N/P/F
[5], and there is S = N/P . Two typical Walker constellations are the 55 deg: 24/6/2

Global Positioning System (GPS) constellation [99] and the 56 deg: 24/3/1 Galileo
constellation [82].

1F can also be equal to or larger than P , but then the configuration of the constellation will be the same as
F = F − P .
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(a) RAAN versus AoL in PUs. (b) RAAN versus AoL in degrees.

Figure 3.1: Illustration of δΩ, δuintra, and δuinter, assuming S = 8, P = 3, and F = 1.

3.1.2 Street-of-Coverage Constellations

The SoC constellation is a class of asymmetrical constellations in terms of the
geometrical configuration, in which orbital planes are unevenly spaced either along
the equatorial plane or along half of the equatorial plane [8, 18, 19]. It has been
demonstrated by Ulybyshev [8] that the former configuration generally consists of
more orbital planes with fewer satellites per orbital plane than the latter one. In
this study we focus on the latter configuration, i.e., orbital planes unevenly spaced
along half of the equatorial plane, for the reason that we will take into account the
build-up property for the present constellation design, and this property degrades
with the number of orbital planes (see Sec. 3.3.5).

Geometrical Configuration

The SoC constellation was developed based on a Street-of-Coverage (SoC) con-
cept. Fig. 3.2 illustrates the coverage geometry of SoC for a single orbital plane
containing S evenly spaced satellites, where the circles with an angular radius of θ
are the footprints projected onto the Earth’s surface. As shown in Fig. 3.2 (a), if
θ ≥ jπ/S, the coverage will be j-fold continuous along the swath with a half-width
of Cθj (in Fig. 3.2 (a) j = 1), and such swath is called the Street-of-Coverage,
indicated by the shadow area. θ and Cθj are related by [19]

cos θ = cosCθj cos (jπ/S) (3.2)

Fig. 3.2 (b) shows that the higher the coverage fold, the narrower the SoC will
be.

There exist two types of interfaces between orbital planes in the SoC constella-
tion: the co-rotating interface and the counter-rotating interface. The co-rotating
interface is such that satellites in adjacent orbital planes move in the same di-
rection. The counter-rotating interface is such that satellites in adjacent orbital
planes move in the opposite directions [8]. Fig. 3.3 shows an illustrative example
of a polar SoC constellation (i.e. i = 90 deg) consisting of four orbital planes,
where the arrows indicate the direction of satellite motion and ∆Ωco, ∆Ωcounter
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2-fold

4-fold

3-fold

(a) Single-fold continuous coverage. (b) Multiple-fold continuous coverage.

Figure 3.2: Coverage geometry of SoC.

are the RAAN spacings between adjacent orbital planes with co- and counter-
rotating interfaces, respectively. As shown in the figure, the co-rotating interfaces
exist between plane 1 and 2, plane 2 and 3, and plane 3 and 4, whereas the
counter-rotating interface exists between plane 4 and 1. Having the concept of
co- and counter-rotating interfaces, the superiority of the SoC constellation can
be described as follows: the coverage overlap on the co-rotating interface is min-
imised at the maximum perpendicular distance between adjacent orbital planes,
where the maximum perpendicular distance occurs at 90 deg on either side of the
intersection of two orbits [2, Sec. 13.1].

δΩco

δΩcounter

plane 1

plane 2

plane 3

plane 4

Figure 3.3: Illustration of the co- and counter-rotating interfaces from polar view, assuming a
polar SoC constellation consisting of four orbital planes.

Fig. 3.4 illustrates the coverage geometry of the co- and counter-rotating in-
terfaces for j-fold continuous coverage, where the arrows along the dashed lines
indicate the direction of satellite motion and the shadow areas indicate the co- and
counter-rotating interfaces. In the figures, the circles with an angular radius of ϑ
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are the smallest footprints required for j-fold continuous global coverage, called
here as the central angle of coverage, and Cϑj is the corresponding minimum half-
width of SoC. ϑ and Cϑj are related by

cosϑ = cosCϑj cos (jπ/S) (3.3)

As a matter of fact, the central angle of coverage is a shared concept for both
Walker and SoC constellations, and it will be discussed in detail in Sec. 3.1.3.

(a) Co-rotating interface. (b) Counter-rotating interface.

Figure 3.4: Coverage geometry of the co- and counter-rotating interfaces.

For the co-rotating interface, as shown in Fig. 3.4 (a), the relative positions
of satellites do not change over time, and thus the coverage dips can always be
offset by the coverage bulges if the perpendicular angular separation between or-
bital planes are set to (ϑ + Cϑj ). For the counter-rotating interface, as shown in
Fig. 3.4 (b), the relative positions of satellites change over time, and thus to en-
sure the coverage being continuous along the interface, the perpendicular angular
separation between orbital planes has to be narrowed to (Cϑ1 +Cϑj ), although lead-
ing to large coverage overlaps. Here the perpendicular angular separation is not
the RAAN spacing but is an arc on the great circle 90 deg from the intersection
of two orbits [2, Sec. 13.1]; the RAAN spacing δΩ and the perpendicular angular
separation D are related by [2, Sec. 13.1]

sin δΩ
2 = sin D

2 / sin i (3.4)

It is of note that Cθj given in Eq. (3.2) is the real half-width of SoC, while Cϑj
represents the minimum half-width of SoC required for j-fold continuous coverage.
Fig. 3.5 shows the difference between the real and minimum half-width of SoC.

The characteristics of a SoC constellation are defined as follows.
• The RAAN spacings between adjacent orbital planes with co- and counter-
rotating interfaces, denoted by δΩco and δΩcounter, are given by [8] [2, Sec. 13.1]
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Figure 3.5: Difference between the real and minimum half-widths of SoC.

δΩco = 2 sin−1

(
sin

ϑ+Cϑ
j

2 / sin i

)
(3.5a)

δΩcounter = 2 sin−1

(
sin

π−Cϑ
1−C

ϑ
j

2 / sin i

)
(3.5b)

In addition, there is a geometrical constraint for δΩco and δΩcounter [8]:

δΩcounter = (P − 1) δΩco ≤ π (3.6)

because all orbital planes have to be placed within half of the equatorial
plane; if δΩcounter = π, then the two orbital planes with counter-rotating
interface will intersect at the equatorial plane [8].

• In each orbital plane, the S satellites are evenly spaced at intervals of 2π/S rad,
i.e.:

δuintra = 2π/S (3.7)

• When a satellite is at its ascending node, some satellite in the adjacent orbital
plane towards east has an AoL of [8]

u = δuinter = jπ/S − 2 cos−1

(
cos δΩco

2 / cos
ϑ+Cϑ

j

2

)
(3.8)

such that the coverage dips on the co-rotating interface can always be offset
by the coverage bulges.

A SoC constellation in this study is designated in shorthand notation as i: N/P ,
and there is S = N/P . A typical SoC constellation is the 86.4 deg: 66/6 Iridium
constellation [83,84].

Necessary Condition for Continuous Global Coverage

One significant advantage of the SoC constellation is the superiority in terms
of the coverage overlap, which however, imposes a constraint on the number of
orbital planes. In the following a demonstration of this concept will be given.
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Supposing that a polar SoC constellation with N satellites and P orbital planes
is able to offer j-fold continuous global coverage, there must be

Sϑ ≥ jπ (3.9)

(P − 1)(ϑ+ Cϑj ) ≤ π (3.10)
where the first inequality implies that the coverage is continuous along the SoC for
every orbital plane, and the second inequality is derived by substituting Eq. (3.5a)
into Eq. (3.6) (assuming i = 90 deg), indicating that all orbital planes are placed
within half of the equatorial plane. From Eq. (3.9) and Eq. (3.10), the following
inequality holds:

Sϑ ≥ j(P − 1)(ϑ+ Cϑj ) (3.11)
Replacing S with N/P , after some manipulations, Eq. (3.11) becomes

[N − jP (P − 1)]ϑ ≥ jP (P − 1)Cϑj (3.12)

Observing from Eq. (3.12) that the right-hand side is non-negative, so the left-
hand side must be non-negative too. Thus, we have

jP (P − 1) ≤ N (3.13)

Eq. (3.13) is a necessary condition for a polar SoC constellation able to offer
j-fold continuous global coverage; that is to say, if a polar SoC constellation does
not satisfy Eq. (3.13), then it cannot offer the required coverage2. Since a polar
SoC constellation is always more efficient in terms of the coverage performance
than the inclined ones with the same number of satellites and orbital planes [8],
if a polar SoC constellation cannot offer the required coverage, neither can the
similar inclined ones. To conclude, the SoC constellation that does not satisfy
Eq. (3.13) should be removed during the preliminary design.

3.1.3 Central Angle of Coverage

Fig. 3.6 illustrates the coverage geometry of a single satellite, where θ is the angular
radius of the footprint, ϑ is the minimum angular radius of the footprint required
for a specified fold of continuous global coverage, called here as the central angle
of coverage, and ε is the elevation angle measured at the edge of the footprint,
representing the worst communication condition from the ground. h, θ, and ε are
related by

cos (θ + ε)

cos ε
=

R⊕
h+R⊕

(3.14)

Note that θ must be less than 90 deg otherwise h will be infinite.
Different than θ which is relevant to h, ϑ is independent of h but can be

uniquely determined for a Walker constellation with given N , P , F , i, or for a
SoC constellation with given N , P , and i. Once ϑ is determined, from Eq. (3.14),
the lower bound for h required for a specified fold of continuous global coverage
can be obtained, if ε is given:

h ≥ hlb =

[
cos ε

cos (ϑ+ ε)
− 1

]
R⊕ (3.15)

2If a proposition is true, then its converse-negative proposition must be true.
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Figure 3.6: Coverage geometry of a single satellite.

Traditionally, the efficiency of a constellation can be evaluated by the central
angle of coverage. As indicated in Fig. 3.6: for a fixed elevation angle, a small
central angle of coverage will allow a low altitude, saving the costs such as launch
and de-orbiting; for a fixed altitude, a small central angle of coverage will allow
a large elevation angle, improving the observation performance [14]. Thus, the
smaller the central angle of coverage, the more efficient the constellation will be.

In the following we will introduce the approaches to determining ϑ for Walker
and SoC constellations.

Walker Constellations

For the Walker constellation, there are two typical approaches to determining ϑ:
the “circumcircle” approach [4–6,11] and the “test point” approach [13].

In the “circumcircle” approach, the Earth’s surface is divided into a series of
non-overlapping triangles, each triangle formed by three sub-satellite points, and
the combination of non-overlapping triangles changes over time. At each time
interval, the angular radii of the circumcircles of non-overlapping triangles can be
computed. Then the size of the central angle of coverage can be determined by
the largest circumcircle over all time intervals in one orbit period. However, the
work of finding non-overlapping triangles for every time interval is computation-
ally expensive, and thus the “circumcircle” approach does not suit constellations
containing large numbers of satellites.

Compared to the “circumcircle” approach, the “test point” approach is more
computationally efficient. In the “test point” approach, a virtual Earth3, which
rotates at the same rate as the constellation, is introduced, and any Walker con-
stellation can be regarded as “geosynchronous” with respect to the virtual Earth.
Due to the symmetry of the Walker constellation, the surface of the virtual Earth
can be divided into several regions by the groundtracks of the “geosynchronous”
constellation, all regions having the same coverage pattern. Thus, only one of
the regions needs to be considered. Then generating a set of test points in any
of the regions and within that region, computing the angular distances between

3If the global Earth can be continuously covered by a constellation, then it will be continuously covered
independent of the Earth’s rotational rate [13].
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the test points and sub-satellite points for all time intervals in one orbit period,
the central angle of coverage can be determined by the minimum angular distance
that ensures all test points visible at any instant.

Fig. 3.7 shows the evolution of the central angle of coverage required for 4-
fold continuous global coverage with the inclination for the GPS-like constellation
(N = 24, P = 6, F = 2) and for the Galileo-like constellation (N = 24, P = 3,
F = 1), indicated by the dashed and solid lines, respectively. It can be seen that
ϑ does not monotonically change with i. Instead, the minimum ϑ for given N

and P is provided by a medium i, that is, 59 deg for the GPS-like constellation
and 55.5 deg for the Galileo-like constellation, and these numbers are close to the
real inclination of the GPS and Galileo constellations, implying good efficiency of
these two constellations.
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Figure 3.7: Evolution of the central angle of coverage required for 4-fold continuous global
coverage with the inclination for the GPS- and Galileo-like Walker constellations.

Fig. 3.8 shows the minimum central angles of coverage required for 1- and 4-fold
continuous global coverage for given numbers of satellites and orbital planes, for
the Walker constellation. Here the minimum ϑ for given N and P is obtained by
varying F from 0 to P and by varying i from 0 deg to 90 deg. In other words, each
point of the plots represents a particular i: N/P/F Walker constellation, whose
ϑ is the smallest among the constellations with the same N and P . As shown in
the figures, the minimum central angle of coverage, or the lower bound for the
altitude (see Eq. (3.15)), generally decreases with the number of satellites and
orbital planes.

Street-of-Coverage Constellations

For the SoC constellation, ϑ can be determined by solving the following equation

(P − 1) sin−1

(
sin

ϑ+Cϑ
j

2 /sin i

)
= sin−1

(
sin

π−Cϑ
1−C

ϑ
j

2 /sin i

)
(3.16)

which is derived by substituting Eq. (3.5) into Eq. (3.6). Cϑj is a function of ϑ,
j, and S (see Eq. (3.3)). If N , P , i, and j are given, Eq. (3.16)’s only unknown
parameter will be ϑ, and it can be rapidly solved with the support of numer-
ical optimisers such as the MATLAB nonlinear solver fsolve [100]. Note that
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(a) 1-fold continuous global coverage. (b) 4-fold continuous global coverage.

Figure 3.8: Minimum central angles of coverage for given numbers of satellites and orbital
planes, for the Walker constellation (the number of orbital planes increasing as the colour
from dark to light).

Eq. (3.16) will not have solution if Eq. (3.13), the necessary condition for the SoC
constellation able to offer a specified fold of continuous global coverage, is not
satisfied.

Fig. 3.9 shows the evolution of the central angle of coverage required for 1-fold
continuous global coverage with the inclination for the Iridium-like SoC constel-
lation (N = 66). It can be seen that:

• the more the orbital planes, the smaller the central angle of coverage will be;
• when P > 2, ϑ monotonically decreases with i, and this is the reason why the
polar SoC constellation is always more efficient than the inclined ones with
the same number of satellites and orbital planes;

• when P = 2, ϑ is independent of i, because in this case, from Eq. (3.16), ϑ is
determined by

ϑ+ Cϑ1 + 2Cϑj = π (3.17)

recalling from Eq. (3.3) that Cϑj is not relevant to i.
Besides, Fig. 3.9 also implies that the Iridium constellation has good efficiency
because it contains six orbital planes with high inclination, which can lead to a
small central angle of coverage.

Figs. 3.10 shows the minimum central angles of coverage required for 1- and 4-
fold continuous global coverage for given numbers of satellites and orbital planes,
for the SoC constellation. Here the minimum ϑ for given N and P is always
provided by the polar SoC constellation, because the central angle of coverage of
a polar SoC constellation is always smaller than those of the inclined ones with the
same number of satellites and orbital planes [8] (see also Fig. 3.9). In other words,
each point of the plots represents a particular 90 deg: N/P SoC constellation. As
shown in the figures, the minimum central angle of coverage, or the lower bound
for the altitude (see Eq. (3.15)), generally decreases with the number of satellites
and orbital planes.
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Figure 3.9: Evolution of the central angle of coverage required for 1-fold continuous global
coverage with the inclination for the Iridium-like SoC constellation.
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(a) 1-fold continuous global coverage. (b) 4-fold continuous global coverage.

Figure 3.10: Minimum central angles of coverage for given numbers of satellites and orbital
planes, for the SoC constellation (the number of orbital planes increasing as the colour from
dark to light).

3.2 Characteristic Parameters of Walker and Street-of-Coverage Con-
stellations

Based on the review in Sec. 3.1, a set of characteristic parameters, which can de-
termine the configuration of a Walker or SoC constellation, are identified, reported
in Table 3.1; they are: the number of satellites N , the number of orbital planes P ,
the phasing parameter F (for the Walker constellation only), the inclination i, and
the altitude h. With these parameters, all geometrical information, such as the
distribution of orbital planes, the relative positions of satellites, and the central
angle of coverage, can be obtained. Note that in this study the elevation angle
is assumed constant; this assumption defines a lower bound for communication
quality between ground and constellation. As indicated the in table, compared to
the Walker constellation, the SoC constellation lacks of a design parameter F , due
to the design logic to minimise the coverage overlap on the co-rotating interface
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at the maximum perpendicular distance between adjacent orbital planes. In the
followings we will show how to obtain the depended geometrical parameters from
the characteristic parameters, taking as example the GPS, Galileo, and Iridium
constellations.

Table 3.1: Characteristic parameters.

Parameter Symbol Constellation
Number of satellites N Walker, SoC

Number of orbital planes P Walker, SoC
Phasing parameter F Walker

Inclination i Walker, SoC
Altitude h Walker, SoC

Table 3.2 gives the geometrical information of the GPS and Galileo constella-
tions offering 4-fold continuous global coverage. In the table:

• the characteristic parameters are taken from Ref. [99] and Ref. [82];
• δΩ, δuintra, and δuinter are derived from Eq. (3.1);
• ϑ is determined using the “test point” approach presented in Sec. 3.1.3;
• θ is derived from Eq. (3.14), assuming ε = 5 deg.

Table 3.2: Geometrical information of the GPS and Galileo constellations.

Value
Parameter Symbol GPS Galileo

Number of satellites N 24 24
Number of orbital planes P 6 3

Number of satellites per plane S 4 8
Phasing parameter F 2 1

Inclination i 55 deg 56 deg
Altitude h 20, 200 km 23, 222 km

RAAN spacing δΩ 4 PU (60 deg) 8 PU (120 deg)
Intra-plane AoL spacing δuintra 6 PU (90 deg) 3 PU (045 deg)
Inter-plane AoL spacing δuinter 2 PU (30 deg) 1 PU (015 deg)
Central angle of coverage ϑ 57.6 deg 55.7 deg

Angular radius of the footprint θ 71.2 deg 72.6 deg

Fig. 3.11 (a) and (b) show the configurations of the GPS and Galileo constel-
lations, respectively, in the ECI coordinate system, where the round markers and
lines indicate the satellites and orbital planes, respectively.

Table 3.3 gives the geometrical information of the Iridium constellation offering
1-fold continuous global coverage. In the table:

• the characteristic parameters are taken from Ref. [83] and Ref. [84];
• δΩco, δΩcounter, δuintra, and δuinter are derived from Eqs. (3.5) – (3.8), and
they are consistent with the data in Ref. [83] and Ref. [84];

• ϑ is determined by solving Eq. (3.16);
• θ is derived from Eq. (3.14), assuming ε = 5 deg.
Fig. 3.12 shows the configuration of the Iridium constellation in the ECI co-

ordinate system, where the round markers and lines indicate the satellites and
orbital planes, respectively.
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(a) GPS constellation. (b) Galileo constellation.

Figure 3.11: Configurations of the GPS and Galileo constellations.

Table 3.3: Geometrical information of the Iridium constellation.

Parameter Symbol Value
Number of satellites N 66

Number of orbital planes P 6
Number of satellites per plane S 11

Inclination i 086.4 deg
Altitude h 781 km

RAAN spacing for co-rotating interface δΩco 031.6 deg
RAAN spacing for counter-rotating interface δΩcounter 158.0 deg

Intra-plane AoL spacing δuintra 032.7 deg
Inter-plane AoL spacing δuinter 014.3 deg
Central angle of coverage ϑ 020.0 deg

Angular radius of the footprint θ 022.4 deg
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Figure 3.12: Configuration of the Iridium constellation.

3.3 Constellation Property Assessment and Trade-off Analysis

In this section, seven constellation properties reported in Table 1.2 will be quan-
titatively assessed using the characteristic parameters identified in Sec. 3.2, and
the trade-offs between properties will be analysed.
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3.3.1 Coverage

Traditionally, the coverage performance is the prime criterion for constellation
design since coverage is the original motive that constellations were created [2,
pp. 674]. Here the coverage performance refers to whether the required coverage
is provided and how efficient it is. For continuous global coverage Walker and SoC
constellations, the required coverage can be guaranteed if the altitude is higher
than the lower bound given in Eq. (3.15). So the coverage property to be discussed
in the followings is the coverage efficiency.

A common approach to assessing the coverage efficiency for continuous global
coverage constellations is the excess coverage, cov, which evaluates the total cov-
erage available as a percentage of the total coverage required [2, pp. 726]. Here,
the total coverage required is the area of the Earth’s surface multiplied by the
required coverage fold, and for a circular-orbit constellation in which all satellites
are placed at the same altitude, the total coverage available is the area of a single
footprint multiplied by the number of satellites. cov is given by [2, pp. 726]

cov =
N × 2πR2

⊕ (1− cos θ)

4πR2
⊕ × j

=
N (1− cos θ)

2j
(3.18)

where θ can be derived from h using Eq. (3.14) and a given ε.
A small excess coverage indicates small coverage overlaps and low redundancy

of satellite utility, hence high coverage efficiency. Thus, the lower the value of
cov, the higher the coverage efficiency will be. From Eq. (3.18), the coverage
efficiency can be improved by decreasing the number of satellites and altitude, as
θ is directly linked to h, if ε is fixed.

For a particular i: N/P/F Walker or i: N/P SoC constellation, the highest
coverage efficiency achievable is represented by the minimum value of cov, denoted
by covmin. covmin is obtained by setting θ = ϑ, i.e.:

covmin = min
θ
cov =

N (1− cosϑ)

2j
(3.19)

recalling that the central angle of coverage is the minimum angular radius of the
footprint required for a specified fold of continuous global coverage. In other
words, one can always link covmin to ϑ, and analogous to ϑ, covmin is independent
of h but can be determined if N , P , F (Walker only), and i are known. Moreover,
covmin also sets the lower bound for cov, i.e.:

cov ≥ covlb := covmin (3.20)

If a constellation’s covlb is too high, then the constellation can already be excluded
from the optimal design because it will not be able to achieve a good enough
coverage efficiency.

Fig. 3.13 shows the highest coverage efficiency achievable by Walker and SoC
constellations for given numbers of satellites, for 1- and 4-fold continuous global
coverage. In the plots, each point represents a class of coverage-optimal constel-
lations sharing a particular set of N , P , F (Walker only), and i, whose covmin is
smaller than all other similar constellations with the same N , and accordingly,
the y-axis represents the smallest covmin for a given N .
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(a) 1-fold continuous global coverage. (b) 4-fold continuous global coverage.

Figure 3.13: Highest coverage efficiency achievable by Walker and SoC constellations for given
numbers of satellites (dot: Walker, circle: SoC).

As shown in Fig. 3.13, for a given N , the highest coverage efficiency achievable
by the Walker constellation is always better than that by the SoC constellation,
apart from some cases when N ≥ 20 for 1-fold continuous global coverage. One
possible reason is that for the SoC constellation, as demonstrated by Eq. (3.13),
there exists a constraint on the number of orbital planes. Taking as example
a constellation with 66 satellites, the Walker constellation can have 66 orbital
planes, while the SoC constellation can have at most six orbital planes. If we
fix the number of orbital planes as a relatively small value, e.g. P = 6, the SoC
constellation will be able to achieve better highest coverage efficiency than the
Walker constellation, as shown in Fig. 3.14, which is consistent with the SoC
constellation’s advantage in terms of the coverage overlap. In the plots, each
point represents a class of coverage-optimal constellations sharing a particular set
of N , P (here P = 6), F (Walker only), and i, whose covmin is smaller than all
other similar constellations with the same N and P , and accordingly, the y-axis
represents the smallest covmin for given N and P .

It is of note that, although the coverage performance is a principle design
criterion, the coverage-optimal constellations may not suit practical applications.
Here are the reasons.

• Most of the coverage-optimal Walker constellations in Fig. 3.13 are charac-
terised by P = N , whose central angles of coverage are smaller than those
of the similar constellations with the same numbers of satellites, as shown
in Fig. 3.8. However, such constellations may lead to a high self-induced
collision risk and a long build-up period; a demonstration of this concept will
be given in Sec. 3.3.3 and Sec. 3.3.5.

• All the coverage-optimal SoC constellations in Fig. 3.13 and Fig. 3.14 are
characterised by i = 90 deg, whose central angles of coverage are smaller
than those of the similar inclined constellations with the same numbers of
satellites and orbital planes [8]. However, such constellations will lead to a
high self-induced collision risk and a high launch cost; a demonstration of
this concept will be given in Sec. 3.3.3 and Sec. 3.3.4.
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(a) 1-fold continuous global coverage. (b) 4-fold continuous global coverage.

Figure 3.14: Highest coverage efficiency achievable by Walker and SoC constellations consisting
of six orbital planes for given numbers of satellites (dot: Walker, circle: SoC).

In the following sections we will show the other properties for the coverage-optimal
constellations, to demonstrate the need of performing trade-off during constella-
tion design.

3.3.2 Robustness

In this study, the robustness property is defined as the constellation performance
to offer normal services, should one satellite fails. It is assessed by the average
percentage of the Earth’s surface visible to (j+ 1) satellites over one orbit period,
denoted by pct, where j is the required coverage fold. The physical meaning
of pct is that once a satellite fails and no matter which one it is, there will be
pct-percent of the Earth’s surface visible to at least j satellites, i.e., the required
j-fold continuous global coverage can be maintained over pct-percent of the Earth’s
surface. Thus, the higher the value of pct, the stronger the robustness will be.

Here is the logic flow to compute pct.
• Generating a set of test points on the Earth’s surface.
• Computing the locations of sub-satellite points at small time steps in one
orbit period.

• Computing the number of test points enclosed by at least (j + 1) footprint
circles as the percentage of the total number of test points at each time step.

• Averaging the percentages over all time steps in one orbit period.
pct is a function of the characteristic parameters, the number of test points,

and the size of time step; the more the test points and the shorter the time step,
the more accurate pct will be.

Fig. 3.15 shows the robustness of the coverage-optimal Walker and SoC con-
stellations for given numbers of satellites at their lowest allowable altitudes, for
1- and 4-fold continuous global coverage, with the y-axis representing the value
of pct. Here the lowest allowable altitude is the altitude’s lower bound given by
Eq. (3.15), assuming ε = 5 deg. In the computation, the test points are selected
along latitudes and longitudes at intervals of 1 deg, and the time step is set to
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T/103, where

T = 2π

√
(h+R⊕)

3

µ
(3.21)

is the unperturbed orbit period.
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(a) 1-fold continuous global coverage. (b) 4-fold continuous global coverage.

Figure 3.15: Robustness of the coverage-optimal Walker and SoC constellations for given
numbers of satellites at lowest allowable altitudes (dot: Walker, circle: SoC).

Intuitively, the robustness property, which would benefit from large coverage
overlaps and high redundancy of satellite utility, should be in contrast with the
coverage property. However, comparing Fig. 3.15 with Fig. 3.13, it is observed that
these two properties are not completely contrary with each other. Particularly,
for 4-fold continuous global coverage, the coverage-optimal SoC constellations do
not always show a stronger robustness than the coverage-optimal Walker constel-
lations at their lowest allowable altitudes. One possible reason is due to the SoC
constellation’s design logic; the minimised coverage overlap on the co-rotating
interface will lead to a larger area of outage.

By widely checking different combinations of characteristic parameters, we find
that the robustness can be enhanced by increasing the number of satellites and
orbital planes, increasing the altitude, using a medium inclination for the Walker
constellation, and increasing the inclination for the SoC constellation.

3.3.3 Self-Induced Collision Avoidance

As the outer space is becoming more and more densely populated by satellites,
collision avoidance is a critical issue that must be taken into consideration at the
design stage. In this study we focus on the self-induced collision caused by satel-
lites from the same constellation. If one collision happens within a constellation,
it will be of high possibility to trigger a chain reaction, not only destroying the
constellation itself but also posing severe safety hazards to the other operational
spacecraft. In this study, the self-induced collision avoidance property is defined
as the constellation performance to avoid collision without performing any ma-
noeuvre. It is assessed from two aspects: the collision opportunity and the angular
miss distance.
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Collision Opportunity

In Ref. [2, pp. 709], the collision opportunity was defined as an incident where
two satellites may approach each other within a distance lower than the sum of
the radii of these two satellites. Supposing satellite A and satellite B in different
orbital planes, satellite A passes through the plane of satellite B twice per revolu-
tion, and so does satellite B. Thus, each satellite in a constellation consisting of P
orbital planes passes through the other planes 2 (P − 1) times per revolution. For a
constellation with N satellites and P orbital planes, it will have 2N (P − 1) collision
opportunities per revolution. Take as example the Iridium constellation having 66

satellites and 6 orbital planes with approximately 14.3 revolutions per day. In a
10-year-lifetime, the Iridium constellation has 3.5× 107 collision opportunities. If
a less than 1% collision probability in 10 years is desired, then the probability of
a collision in any single opportunity should be less than 10−9, and even less than
10−11, considering the catastrophic consequence of a collision [2, pp. 710].

In this study we introduce an unit collision opportunity, opp, to evaluate the
collision opportunities per unit time. It is defined by

opp =
2N (P − 1)

T
=

√
µ

π

N (P − 1)

(h+R⊕)
3/2

(3.22)

Apparently, the lower the value of opp, the better the constellation performance
to avoid self-induced collision. From Eq. (3.22), the unit collision opportunity
can be reduced by decreasing the number of satellites and orbital planes, and by
increasing the altitude.

Angular Miss Distance

In Ref. [14], the angular miss distance, κ, was defined as the minimum angular
separation between a pair of satellites. Speckman et al. [101] derived the analytical
solution of κ for circular-orbit constellations in which all satellites are placed at
the same altitude and inclination:

cosκ = cos2 κ1 − κ2 sin2 κ1 (3.23)

where
κ1 = δupair/2 + tan−1 [tan (δΩpair/2) cos i]

κ2 = cos2 i+ sin2 i cos δΩpair

(3.24)

with δΩpair and δupair being the relative RAAN and AoL, respectively, between a
pair of satellites.

In this study we introduce the constellation angular miss distance, K, to assess
the constellation as a whole. It is the minimum value of κ for all pairs of satellites
of a constellation, given by

K = min
A, B

κAB (3.25)

where κAB is the angular miss distance between the Ath and Bth satellites, with
1 ≤ A ≤ N , 1 ≤ B ≤ N , and A 6= B. Apparently, the larger the constellation angu-
lar miss distance, the better the constellation performance to avoid self-induced
collision.
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Fig. 3.16 and Fig. 3.17 show the constellation angular miss distances of the
coverage-optimal Walker and SoC constellations, respectively, for given numbers
of satellites and orbital planes, for 1- and 4-fold coverage. In the plots, the con-
stellations having a zero K are highlighted with red dots.
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(a) 1-fold continuous global coverage. (b) 4-fold continuous global coverage.

Figure 3.16: Constellation angular miss distances of the coverage-optimal Walker constellations
for given numbers of satellites and orbital planes (the number of orbital planes increasing as
the colour from dark to light).
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(a) 1-fold continuous global coverage. (b) 4-fold continuous global coverage.

Figure 3.17: Constellation angular miss distances of the coverage-optimal SoC constellations
for given numbers of satellites and orbital planes (the number of orbital planes increasing as
the colour from dark to light).

As shown in the figures, the constellation angular miss distance generally
decreases with the number of satellites and orbital planes. Especially, for the
coverage-optimal SoC constellations, i.e., the polar ones, that have more than two
orbital planes, collision will definitely happen at the poles because the satellite
distribution will repeat itself every other orbital plane. This is the reason why the
polar SoC constellation cannot be used for practical applications.
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3.3.4 Launch

In this study, the launch property is defined as the launch cost to deliver the
constellation into the mission orbit by an arbitrary launcher. Generally speaking,
there are two approaches to delivering a spacecraft to the mission orbit: the direct
injection and the indirect injection [102, Sec. 18.2]. The direct injection is such
that the spacecraft is directly injected into the mission orbit by the launcher. The
indirect injection is such that the spacecraft is first injected into a parking orbit
by the launcher and then sent to the mission orbit either by the launcher’s upper
stage or by the spacecraft on-board propulsion system.

As summarised in Ref. [2, Table 13-2], the launch cost is determined by three
factors: altitude, inclination, and spacecraft mass. For a general study of constel-
lation design, the spacecraft mass can be replaced by the number of satellites of
a constellation, the latter representing the total payload weight to launch. In the
following we will present two indexes to assess the launch cost.

For direct injection, the launch cost can be assessed by the total ∆v-budget
of all satellites of a constellation, because it represents the total amount of fuel
required. For indirect injection, the ∆v-budget is affected by the parking orbit, and
thus there does not exist a general formula to evaluate the ∆v-budget. As a study
focused on the design of constellation configuration, the selection of parking orbit
will not be specifically discussed because it depends on the mission requirement
and the system design of launcher and satellite. Nonetheless, due to the fact that
the ∆v-budget is proportional, although not strictly, to the number of satellites
and altitude, here we propose

lchh = Nh (3.26)

as one index to assess the launch cost. lchh is consistent with the principle option
for constellation design reported in Ref. [2, Table 13-2], in terms of reducing the
launch cost.

For the purpose of employing the Earth’s rotation effects, the inclination of a
prograde-orbit (i.e. i ≤ 90 deg) constellation must not be lower than the latitude
of the launch site φsite [102, Sec. 6.4], where the launch site has to be located
in the northern hemisphere. Moreover, the higher the inclination, the less the
launch benefits from the Earth’s rotation effects, because the velocity gained by
the Earth’s rotation effects is v = v⊕ cos i, where v⊕ ≈ 464.5 m/s is the velocity
of the Earth’s rotation at the equator [102, Sec. 6.4]. From the aforementioned
reasons, Ref. [14] inferred that the launcher’s payload capability decreases as the
inclination increases above the latitude of the launch site, where the launcher’s
payload capability refers to the launcher’s capability to boost a necessary amount
of payloads to the mission orbit [102, Sec. 18.2]; a low difference between i and
φsite will allow a large margin for the amount of payloads. Therefore, we propose

lchi = i− φsite (3.27)

as another index to assess the launch cost. lchi is a monotonically decreasing
function of the velocity gained by the Earth’s rotation effect.

Fig. 3.18 shows the inclinations of the coverage-optimal Walker constellations
for given numbers of satellites, for 1- and 4-fold continuous global coverage. It is
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observed that in most cases the inclinations of the coverage-optimal Walker con-
stellations is relatively high, indicating that if the launch site is at a low latitude,
a good coverage property will lead to a bad launch property. This implies the need
to perform a trade-off between the coverage and launch properties when selecting
the inclination. For the SoC constellation, such trade-off is also necessary because
the coverage-optimal SoC constellations are always the polar ones.
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Figure 3.18: Inclinations of the coverage-optimal Walker constellations for given numbers of
satellites, for 1- and 4-fold continuous global coverage (asterisk: 1-fold, dot: 4-fold).

From Eq. (3.26) and Eq. (3.27), the launch cost can be reduced by decreasing
the number of satellites, altitude, and inclination. Note that, although in this
section some simplifications are introduced, they would be necessary and useful
by providing a simplified version of a complicated topic.

3.3.5 Build-Up

Due to the long duration from the testing of the early-launched satellites to the
launching of all satellites, a constellation may spend a great part of its lifetime in
an incomplete configuration [2, pp. 718]. If the build-up process is very slow, the
early-launched satellites may become non-operational in orbit before the expected
performances are achieved. In this case, the spares will have to be launched to take
over the non-operational satellites, increasing the system cost and the difficulty of
orbit operation. Thus, the period of building up a full constellation is an important
cost driver. In this study, the build-up property is defined as the build-up period.

In real missions, the detailed process of building up a full constellation is unique
and strongly related to the launch system, i.e., the choice of launcher, the number
of satellites that can be placed in orbit by a single launch, etc. [2, pp. 719] Recalling
that this is a general study focused on the design of constellation configuration,
the launch system will not be specifically discussed. If irrespective of the launch
system, the build-up period can be considered an increasing function of the number
of orbital planes.

So far, the technology of injecting multiple satellites into a single orbital plane
is mature. For example, India has successfully launched 104 satellites at once in
February 2017 [103]. Without loss of generality, suppose that the orbital planes
are built up one by one and there is no limit on the number of satellites by a single
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launch nor the time interval of launch. Then the number of orbital planes can be
used to evaluate the build-up period; the less the orbital planes, the better the
build-up property will be. The following index is proposed:

bld = P (3.28)

3.3.6 Station-Keeping

In this study, the station-keeping property is defined as the cost to maintain
the overall constellation configuration. The major purpose of station-keeping for
constellations is to allow normal services provided and to avoid self-induced col-
lision [2, Sec. 13.4]. Generally speaking, there are two alternative approaches to
station-keeping [2, Sec. 13.4]. One is the absolute station-keeping by maintaining
the absolute position of a satellite within a predefined station-keeping box. The
other is the relative station-keeping by maintaining the relative positions of satel-
lites with respect to each other. The station-keeping for constellations belongs
to the latter approach [2, Sec. 13.4]. In this study we consider the J2 and drag
effects only. Because all satellites of a Walker or SoC constellation are placed in
circular orbits at the common altitude and inclination, the secular rates of nodal
regression and apsidal procession due to J2 are the same for every satellite. In this
case the only parameter that needs to be maintained is the altitude, which will
decay under the drag effect. Thus, the station-keeping cost can be quantitatively
assessed by the cost of altitude maintenance, which in turn can be evaluated in
terms of the total ∆v-budget of all satellites of the constellation. It is important
to multiply the ∆v-budget of a single satellite by the total number of satellites,
because the total ∆v-budget is proportional to the total amount of fuel carried
by all satellites, which is proportional to the mass carried by the launcher and, as
a result, affects the launch cost. Note that the altitude maintenance is required
only by the constellations in LEO, where the drag effect cannot be neglected.

Supposing the altitude maintenance can be achieved via a 2-burn Hohmann
transfer, the total ∆v-budget is given by

∆vkeep = N

[(√
2µ

af
− 2µ

an + af
−

√
µ

af

)
+

(√
µ

an
−

√
2µ

an
− 2µ

an + af

)]
(3.29)

where an is the semi-major axis of the nominal orbit, af is the final semi-major axis
after altitude decay. af can be obtained by integrating the differential equation [93,
pp. 525–529]

da

dt
= −CDA

m
ρ
√
µa (3.30)

where m/CDA is the ballistic coefficient, ρ is the atmospheric density, given by
the exponential model

ρ = ρ∗ exp

(
−a− a

∗

hs

)
(3.31)

with ρ∗ being the reference atmospheric density, a∗ being the reference semi-major
axis, and hs being the scale height.
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For a fixed frequency of altitude maintenance operation, the lower the value of
∆vkeep, the lower the station-keeping cost will be. From Eq. (3.29), the station-
keeping cost can be reduced by decreasing the number of satellites and by increas-
ing the altitude, because the drag effect is weak at high altitudes.

3.3.7 End-of-Life Disposal

In this study, the EoL disposal property is defined as the cost to remove the
constellation from the nominal orbit. According to the international regulation,
non-operational spacecraft must be removed from the nominal orbit after end of
life. Specifically, spacecraft in LEO should be de-orbited to a disposal orbit with
low enough perigee so as to quickly re-enter under the drag effect, while spacecraft
in MEO should be raised to a graveyard orbit higher than the nominal one so as
not to interfere with other operational spacecraft [2, pp. 723]. As a matter of
fact, a MEO constellation can also re-enter to the Earth if all satellites of the
constellation are equipped with passive de-orbiting devices (e.g. solar/drag sail)
and moved to the condition of orbital resonances that can provoke rapid orbital
decay [47, 49]. However, we consider here the graveyard orbit strategy for the
purpose of carrying out a general study of constellation design. Analogous to
station-keeping, the EoL disposal cost is also quantitatively evaluated in terms of
the total ∆v-budget of all satellites of the constellation.

For LEO constellations, supposing the de-orbiting can be achieved via a tan-
gential burn, the total ∆v-budget is given by

(∆veol)LEO = N

(√
µ

an
−

√
2µ

an
− 2µ

an + rpd

)
(3.32)

where rpd = hpd+R⊕ is the perigee radius of the disposal orbit, with hpd being the
perigee altitude; lower than hpd the drag will be strong enough to quickly lower
the apogee and lead to re-entry.

For MEO constellations, supposing the orbit raising can be achieved via a
2-burn Hohmann transfer, the total ∆v-budget is given by

(∆veol)MEO = N

[(√
2µ

ag
− 2µ

an + ag
−

√
µ

ag

)
+

(√
µ

an
−

√
2µ

an
− 2µ

an + ag

)]
(3.33)

where ag is the semi-major axis of the graveyard orbit.
Apparently, the smaller the total ∆v-budget, the lower the EoL disposal cost

will be. From Eq. (3.32), for a given disposal perigee altitude, the EoL disposal
cost for LEO constellations can be reduced by decreasing the number of satellites
and altitude. From Eq. (3.33), for a given semi-major axis increment, the EoL
disposal cost for MEO constellations can be reduced by decreasing the number of
satellites and by increasing the altitude.

3.3.8 Trade-off Analysis

Table 3.4 summarises the influence of the characteristic parameters on the con-
stellation properties. In the table, the up and down arrows indicate that the
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properties benefit from increasing and decreasing, respectively, the characteristic
parameters, whereas the symbol “–” indicates that the characteristic parameters
do not show explicit impacts on the properties, if using the assessment methods
proposed. Note that for the Walker constellation, the robustness property can be
enhanced by using medium inclination, and for the SoC constellation, the incli-
nation must not be 90 deg if there are more than two orbital planes, otherwise
collision will happen.

Table 3.4: Influence of the characteristic parameters on the constellation properties.

i
Property Index N P h Walker SoC
Coverage cov ↓ – ↓ – –
Robustness pct ↑ ↑ ↑ Medium ↑

Self-induced collision avoidance opp ↓ ↓ ↑ – –
Self-induced collision avoidance K ↓ ↓ – – 6= 90 deg (P > 2)

Launch lchh ↓ – ↓ – –
Launch lchi – – – ↓ ↓
Build-up bld – ↓ – – –

Station-keeping ∆vkeep ↓ – ↑ – –
EoL disposal for LEO constellations (∆veol)LEO ↓ – ↓ – –
EoL disposal for MEO constellations (∆veol)MEO ↓ – ↑ – –

Some conclusions can be drawn from the table.
• There are trade-offs between the robustness property and the other proper-
ties in terms of the number of satellites and orbital planes, i.e., the other
properties benefit from small N and P while the robustness property benefit
from large N and P .

• There are trade-offs between properties in terms of the altitude, e.g., between
coverage and robustness properties, between robustness and launch property,
between launch and station-keeping properties, etc.

• There is a trade-off between the robustness and launch properties in terms
of the inclination.

3.4 Multi-Objective Optimisation for Constellation Design

In the next two sections we will find the globally optimal constellations for given
missions by taking the seven constellation properties investigated in Sec. 3.3 as
design criteria. A multi-objective global optimiser will be used to search for the
Pareto-front solutions through a multi-agent-based search approach hybridised
with a domain decomposition technique [85].

3.4.1 Mission Scenarios

Two different missions are considered: a 1-fold LEO mission and a 4-fold MEO
mission; the former is usually used for Earth’s observation or telecommunica-
tions (e.g. the Iridium constellation), and the latter can be applied to navigation
and positioning (e.g. the GPS and Galileo constellations). For both missions,
the elevation angle is fixed as ε = 10 deg, and the latitude of the launch site
is set to φsite = 6 deg. It is assumed that the altitude maintenance for the
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3.4. Multi-Objective Optimisation for Constellation Design

LEO mission is performed once per year, and the ballistic coefficient is set to
m/CDA = 83.33 kg/m2 for all satellites. Concerning the EoL disposal, the LEO
mission will be de-orbited to a disposal perigee altitude of hpd = 250 km, lower
than which satellites can quickly re-enter due to the drag effect, whereas the MEO
mission will be moved to a graveyard altitude which is 500 km higher than the
nominal one.

3.4.2 Design Variables

In this study, the design variables are simply the characteristic parameters given
by Table 3.1, and the design variable vectors for Walker and SoC constellations
are therefore

xWalker = {N, P, F, h, i}> (3.34a)
xSoC = {N, P, h, i}> (3.34b)

Table 3.5 gives the bounds for the design variables, where the lower bound for
N indicates the minimum number of satellites that can offer the required fold of
continuous global coverage within the given altitude range. Besides, there are also
some other constraints on the design variables.

• P should be an integer divisor of N . For the SoC constellation, P should also
satisfy Eq. (3.13).

• For the Walker constellation, F should be an integer between 0 and (P − 1).
• h should be higher than the lower bound given by Eq. (3.15), where the
central angle of coverage ϑ, which is determined by the design variables,
must be less than 90 deg.

• The design variables that lead to a zero constellation angular miss distance
should be excluded.

Table 3.5: Bounds for the design variables.

Bound
1-fold LEO mission 4-fold MEO mission

Constellation Parameter Symbol Lower Upper Lower Upper
Walker Number of satellites N 30 200 15 200
SoC Number of satellites N 28 200 22 200

Walker, SoC Inclination i φsite π/2 rad φsite π/2 rad
Walker, SoC Altitude h 600 km 2000 km 2000 km 35786 km

3.4.3 Objective Functions

In this multi-objective optimisation problem, each of the seven constellation prop-
erties is to be modelled as an objective function and then minimised. The objective
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functions are defined as follows.

J1 = cov (3.35a)

J2 = −pct
10

(3.35b)

J3 =
log
(
π√
µoppub

)
− log

(
π√
µopplb

)
log
(
π√
µoppub

)
− log

(
π√
µopplb

) +
π
2 −K
π
2

(3.35c)

J4 =
log ( lchh )ub − log (lchh)lb

log (lchh)ub − log (lchh)lb

+
i− φsite
π
2 − φsite

(3.35d)

J5 = bld (3.35e)
J6 = log ∆vkeep (3.35f)

(J7)LEO = log (∆veol)LEO , (J7)MEO = log (∆veol)MEO (3.35g)

where J1, J2, J3, J4, J5, and J6 are the objective functions of the coverage, robust-
ness, self-induced collision avoidance, launch, build-up, and station-keeping prop-
erties, respectively, (J7)LEO and (J7)MEO are the objective functions of the EoL
disposal property for the LEO and MEO missions, respectively. In Eq. (3.35c)
and Eq. (3.35d), the subscripts lb and ub represent the lower and upper bounds,
respectively, for opp and lchh, which are given by the means of

opplb =

√
µ

π

min [N (P − 1)]

(2000 +R⊕)
3/2

, oppub =

√
µ

π

max [N (P − 1)]

(600 +R⊕)
3/2

(lchh)lb = (minN)× 600, (lchh)ub = (maxN)× 2000

(3.36)

for the 1-fold LEO mission, and

opplb =
min [N (P − 1)]

(35786 +R⊕)
3/2

, oppub =
max [N (P − 1)]

(2000 +R⊕)
3/2

(lchh)lb = (minN)× 2000, (lchh)ub = (maxN)× 35786

(3.37)

for the 4-fold MEO mission; the minimum and maximum values of N (P − 1) and
N can be obtained based on the bounds for the design variables given in Sec. 3.4.2.

The rationale behind the definitions of the objective functions is explained as
follows.

• All the properties are optimised by minimising their respective objective
functions. Recall that the properties refer to performances or costs, where the
performances are to be maximised and the costs are to be minimised. For the
performances which are improved by increasing the corresponding indexes,
a minus sign should be accordingly added. In Eq. (3.35b) and Eq. (3.35c),
the robustness and self-induced collision avoidance properties are improved
by increasing the indexes pct and K, so a minus sign is added to these two
indexes.

• For the self-induced collision avoidance and launch properties, each of them
is assessed by two different indexes, and the two indexes should be properly
scaled according to their respective lower and upper bounds such that they
can be formulated together as a single objective. To be specific:
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3.5. Optimisation Results and Discussion

− the upper and lower bounds for opp and lchh are given by Eq. (3.36) and
Eq. (3.37);

− the upper and lower bounds for i are given in Table 3.5;
− the upper and lower bounds for K are 0 and π/2 rad, respectively.

• For the indexes related to h, i.e., opp, lchh, ∆vkeep, (∆veol)LEO, and (∆veol)MEO,
their values may vary from 10−4 to 106. In order to reduce the impact by
h and to enhance the convergence of the optimisation process, the base 10

logarithm is therefore used.
Finally, the objective vectors for the LEO and MEO missions are

JLEO = {J1, J2, J3, J4, J5, J6, (J7)LEO }
> (3.38a)

JMEO = {J1, J2, J3, J4, J5, (J7)MEO}
> (3.38b)

Note that JMEO does not include J6 because the altitude maintenance is required
only by LEO constellations.

3.5 Optimisation Results and Discussion

3.5.1 1-Fold LEO Mission

Fig. 3.19 shows the Pareto-front solutions for the 1-fold LEO mission, each point
representing an optimal constellation. In the plots, the three axes indicate the
number of satellites, the inclination, and the altitude, and the colour bar indicates
the number of orbital planes.
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(a) Optimal Walker constellations. (b) Optimal SoC constellations.

Figure 3.19: Pareto-front solutions for the 1-fold LEO mission (the number of orbital planes
increasing as the colour from dark to light).

As presented in Sec. 3.3.8, there exist various trade-offs between properties,
and these trade-offs are also demonstrated here by the multi-objective optimisa-
tion results. Fig. 3.20 shows as example two pairs of objectives: J1 versus J2 and
J6 versus (J7)LEO, corresponding to the trade-off between the coverage and robust-
ness properties and the trade-off between the station-keeping and EoL disposal
properties. It can be seen that the different objectives do weigh against each other
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depending on their dimensions and scaling, and a small increase in one objective
will lead to an increase in the other objective, and vice-versa.
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(a) J1 versus J2. (b) J6 versus (J7)LEO.

Figure 3.20: Sensitivity analysis of objectives for the 1-fold LEO mission (dot: Walker, circle:
SoC).

Among the optimal constellations, we select two constellations at the similar
altitudes of the Iridium constellation as the alternatives to Iridium, and another
two new constellations at the altitudes between 1, 200 and 1, 400 km, where the
space debris density is relatively low. In addition to the altitude constraints, the
following issues should also be considered during the selection.

• The selected constellations should have relatively fewer satellites, as the num-
ber of satellites is traditionally the prime cost driver for small- and middle-
sized constellations [2, Tabel 13-2];

• The selected constellations should have relatively larger constellation angular
miss distance, considering the snowball effect which not only destroying the
constellation itself but also posing severe safety threat to the other opera-
tional spacecraft in the already congested LEO region.

Table 3.6 presents the results of the Iridium constellation and of the selected
optimal constellations. Here are some discussion about the results.

• Compared to the alternatives, the Iridium constellation shows excellent per-
formances in terms of most of the properties apart from the robustness. For
the Iridium constellation, once a satellite fails, on average only 57.72% of
the Earth’s surface can be offered with normal services. Considering that a
replenishment operation will take some time, such an outage may cause a
huge profit loss for both the ground users and the telecom operators. This
represents a business trade-off that might not have been taken into account
in the design of the Iridium constellation.

• Comparing the two new constellations, the SoC constellation is better than
the Walker one in terms of most of the properties apart from the robustness.
This is because the SoC constellation has fewer satellites and orbital planes,
which, according to Table 3.4, benefits to all properties except the robustness.

Fig. 3.21 and Fig. 3.22 show the configurations of the selected optimal constel-
lations for the 1-fold LEO mission in the ECI coordinate system, where the round
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3.5. Optimisation Results and Discussion

Table 3.6: Results of the Iridium constellation and of the selected optimal constellations for
the 1-fold LEO mission.

Alternative Iridium New
Symbol Iridium Walker SoC Walker SoC
N 66 126 126 72 48
P 6 7 7 24 6
F 3 8

i, deg 86.4 87.0 79.6 77.2 82.4
h, km 780 776 773 1, 321 1, 286
J1 1.74 3.29 3.27 3.46 2.24
J2 −5.77 −9.57 −9.39 −10.00 −7.70
J3 1.48 1.44 1.72 1.55 1.35
J4 1.31 1.51 1.43 1.38 1.32
J5 6 7 7 24 6
J6 −2.00 −1.69 −1.67 −3.19 −3.31

(J7)LEO 0.50 0.77 0.76 1.11 0.91
cov 1.74 3.29 3.27 3.46 2.24

pct, % 57.72 95.69 93.91 99.95 77.05
opp, s-1 0.11 0.25 0.25 0.49 0.07
K, deg 0.30 1.89 0.58 0.29 0.76

lchh, ×104 km 5.15 9.78 9.73 9.51 6.17
lchi, deg 80.40 80.98 73.64 71.21 76.43
bld 6 7 7 24 6

∆vkeep, km/s 0.01 0.02 0.02 6.43× 10−4 4.91× 10−4

(∆veol)LEO, km/s 3.16 5.89 5.76 12.89 8.20

markers and lines indicate the satellites and orbital planes, respectively.
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(a) Walker. (b) SoC.

Figure 3.21: Alternatives to the Iridium constellation.

3.5.2 4-Fold MEO Mission

Fig. 3.23 shows the Pareto-front solutions for the 4-fold MEO mission, each point
representing an optimal constellation. In the plots, the three axes indicate the
number of satellites, the inclination, and the altitude, and the colour bar indicates
the number of orbital planes. An interesting result is that all the optimal SoC
constellations have only two orbital planes. One possible reason is that a high-
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Figure 3.22: New constellations for the 1-fold LEO mission.

altitude mission in MEO usually requires fewer satellites, while a 4-fold MEO
mission with small number of satellites can lead to a high-demanding constraint
on the number of orbital planes, as demonstrated by Eq. (3.13).
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(a) Optimal Walker constellations. (b) Optimal SoC constellations (P = 2).

Figure 3.23: Pareto-front solutions for the 4-fold MEO mission (the number of orbital planes
increasing as the colour from dark to light).

Fig. 3.24 shows as example two pairs of objectives: J1 versus J2 and J1 ver-
sus (J7)MEO, corresponding to the trade-off between the coverage and robustness
properties and the trade-off between the coverage and EoL disposal properties. It
can be seen that the different objectives do weigh against each other depending
on their dimensions and scaling, and a small increase in one objective will lead to
an increase in the other objective, and vice-versa.

Among the optimal constellations, we select four constellations at the similar
altitudes of the GPS and Galileo constellations as the alternatives to GPS and
Galileo, two for each, and another two new constellations at the altitudes above
25, 000 km so as not to interfere with the GPS and Galileo constellations. Apart
from the altitude constraints, the following issues should also be considered during
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Figure 3.24: Sensitivity analysis of objectives for the 4-fold MEO mission (dot: Walker, circle:
SoC).

the selection.
• The selected constellations should have relatively fewer satellites, as the num-
ber of satellites is traditionally the prime cost driver for small- and middle-
sized constellations [2, Table 13-2].

• The selected Walker constellations should have relatively fewer numbers of
orbital planes, in order to speed up the build-up process to start the revenue
flow as early as possible.

Table 3.7 presents the results of the GPS and Galileo constellations and of the
selected optimal constellations. These results show that the selected constellations
have advantages and disadvantages from different aspects, demonstrating again
the need of trade-off for constellation design.

Figs. 3.25 – 3.27 show the configurations of the selected optimal constellations
for the 4-fold MEOmission in the ECI coordinate system, where the round markers
and lines indicate the satellites and orbital planes, respectively.
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Figure 3.25: Alternatives to the GPS constellation.
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Table 3.7: Results of the GPS and Galileo constellations and of the selected optimal constella-
tions for the 4-fold MEO mission.

Alternative GPS Alternative Galileo New
Symbol GPS Walker SoC Galileo Walker SoC Walker SoC
N 24 27 24 24 27 24 18 24
P 6 3 2 3 3 2 3 2
F 2 1 1 1 2

i, deg 55 64.6 49.8 56 62.4 78.5 61.3 76.4
h, km 20, 200 20, 065 20, 379 23, 222 23, 122 23, 588 27, 903 26, 177
J1 1.80 2.02 1.80 1.86 2.09 1.87 1.46 1.92
J2 −9.98 −10 −9.11 −10 −10 −9.48 −9.19 −9.59
J3 1.27 1.15 1.01 1.06 1.10 0.98 1.11 0.96
J4 1.09 1.23 0.99 1.13 1.23 1.36 1.17 1.36
J5 6 3 2 3 3 2 3 2

(J7)MEO −0.06 −0.01 −0.07 −0.13 −0.08 −0.14 −0.35 −0.20
cov 1.80 2.02 1.80 1.86 2.09 1.87 1.46 1.92

pct, % 99.83 100 91.08 100 100 94.79 91.86 95.88
opp, ×10−3 s-1 5.57 2.52 1.10 1.89 2.14 0.93 1.14 0.82

K, deg 0 4.02 10.54 9.16 6.96 10.54 0.29 10.54
lchh, ×105 km 4.85 5.42 4.89 5.57 6.24 5.66 5.02 6.28

lchi, deg 49 58.65 43.79 50 56.38 72.48 55.27 70.43
bld 6 3 2 3 3 2 3 2

(∆veol)MEO, km/s 0.86 0.98 0.85 0.73 0.83 0.72 0.44 0.64
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Figure 3.26: Alternatives to the Galileo constellation.

3.6 Summary

This chapter presented the multi-criteria constellation design, by taking seven
critical constellation properties as design criteria. In the subsequent chapters, we
will perform detailed analyses and design for the phases related to some of the
constellation properties investigated by this chapter, that are:

• deployment, which is related to the launch and build-up properties;
• de-orbiting, which is related to the EoL disposal property of LEO constella-
tions;

• planar transfer considering self-induced collision avoidance, which is related
to the self-induced collision avoidance property.
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Figure 3.27: New constellations for the 4-fold MEO mission.

It has to be noted that in Sec. 3.3.6 and Sec. 3.3.7 when evaluating the ∆v-
budget for the station-keeping and EoL disposal properties, we assume an impul-
sive manoeuvre, but in the following chapters we focus on low-thrust. Actually
they are not conflicting because the ∆v-budget is an approach to estimate the
propellant usage, while the relationship between the propellant usage and the
characteristic parameters is not affected by the type of thrusting; that is to say, if
using the low-thrust propulsion, the influence of the characteristic parameters on
the ∆v-budget will still be the one presented in Table 3.4. Besides, although the
study scope of this chapter is Walker and SoC types, the following chapters are
focused on general circular-orbit constellations and not limited to constellation
types.
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CHAPTER4
Constellation Low-Thrust Deployment Through

Earth Oblateness

This chapter proposes a four-phase scheme for low-thrust deployment of circular-
orbit constellations through the Earth J2 perturbations, in which an out-of-plane
thrusting phase is introduced to accelerate the deployment. With the objective to
reduce the computational effort for the integrated design of a deployment mission
under low-thrust control, an analytical method is developed to allocate the times
taken for the four phases. In this method, two design parameters, which are used
to adjust the fuel consumption for the inherently expensive out-of-plane thrusting
phase, are optimised, allowing the total time and fuel consumption for RAAN
separation to be minimised at the same time. In order to carry out the analytical
time-allocation, two sets of analytical solutions are first derived for low-thrust
circular transfer subject to an in-plane tangential thrusting and an out-of-plane
yaw thrusting. Finally, two case studies of large constellation deployment are
presented to show how the proposed approach is used.

4.1 Description of Deployment Scheme

In this thesis, the goal of the deployment is to distribute a set of satellites from
the same parking orbit into multiple desired operational orbits through the RAAN
separation and within each operational orbit, to distribute the satellites into their
desired positions through the AoL separation. As a preliminary study, it is as-
sumed that the inclinations of the parking and operational orbits are the same,
and all satellites remain in circular orbits during the deployment; the justification
for circular assumption is presented in Sec. 7.2. The deployment includes the
following four phases:
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• phase 1: waiting
• phase 2: orbit raising
• phase 3: out-of-plane phasing
• phase 4: in-plane phasing
In phase 1, satellites will pause at the parking orbit to wait for raising the

orbit at predetermined time intervals. For satellites to be deployed into separate
planes, the times of phase 1 are different. That is to say, when some satellites are
still pausing at the parking orbit, the others are being or have been raised to the
operational altitude. As indicated by the RAAN drift rate due to J2 [93, Sec. 9.6.1]:

Ω̇ = −
3
√
µJ2R⊕ cos i

2a7/2
(4.1)

different semi-major axes can induce different RAAN drift rates, thus further
separating the RAANs of satellites.

In phase 2, satellites will be raised to the operational altitude with a continu-
ously applied tangential thrusting (see Sec. 2.4.1).

In phase 3, satellites will perform an out-of-plane phasing manoeuvre to actively
change the RAAN with an intermittently applied yaw thrusting (see Sec. 2.4.4),
for predetermined time intervals, until the desired RAAN separation is achieved.
From the RAAN change rate due to the yaw thrusting [43]:

Ω̇ =

√
a

µ

sinu

sin i
fh (4.2)

it is clear that satellites in a higher orbit will experience a faster RAAN change
rate, and this is the reason why phase 3 is performed after raising the orbit.

In phase 4, satellites will perform an in-plane phasing manoeuvre to reach
their desired in-plane positions. For circular orbits, the satellite’s in-plane po-
sition can be described by the AoL. Analogous to some previous work such as
Refs. [34,44,104,105], the AoL separation in this study will be achieved through a
three-subphase manoeuvre: a thrusting phase to raise or lower the orbit, a coast-
ing phase, and another thrusting phase to return to the original orbit; the two
thrusting phases will use the continuous tangential thrusting. As indicated by the
AoL change rate due to the Earth gravitational and J2 effects [93, Sec. 9.6.1]:

u̇ =

√
µ

a3/2
+

3
√
µJ2R⊕(3− 4 sin2 i)

2a7/2
(4.3)

different semi-major axes can induce different AoL change rates, thus further
separating the AoLs of satellites. Note that, although the change in semi-major
axis is for the AoL separation only, the RAAN will be accordingly changed and
thus will deviate a bit from the desired value; such inevitable change in the RAAN
is called by Ref. [34] as the “parasitic RAAN drift”. Ref. [34] examined the parasitic
RAAN drift by assessing a worst-case scenario in which a 360 deg AoL separation
at the altitude of 200 km and the inclination of 10 deg was considered, obtaining
a maximum parasitic RAAN drift of 1.261 deg.

For clarity, Table 4.1 summarises the aims and perturbing forces (i.e. J2 or
thrust) for the four phases. Basically, the RAAN separation will be fulfilled in
the first three phases, and the AoL separation will be fulfilled in the last phase.
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Table 4.1: Summary of the aims and perturbing forces for phase 1 to phase 4.

Phase Description Aim Perturbing force
1 Waiting RAAN separation J2

2 Orbit raising Orbit raising and RAAN separation J2 and thrust (tangential)
3 Out-of-plane phasing RAAN separation J2 and thrust (yaw)
4 In-plane phasing AoL separation J2 and thrust (tangential)

In this study, the separation in the RAANs and AoLs of satellites is measured
relative to a reference satellite, which is the first one to be raised to the final
orbit and does not perform the out-of-plane or in-plane phasing manoeuvre. For
satellites to be deployed into the same plane as the reference satellite, only phase 2

and phase 4 are required. For clarity, Table 4.2 summarises the phases required
by different satellites, where the phrase “yes” and “no” indicate that if the specific
phase is required or not.

Table 4.2: Summary of the required phases for different satellites.

Satellite Phase 1 Phase 2 Phase 3 Phase 4
Reference satellite No Yes No No

Satellites to be deployed into reference satellite’s plane No Yes No Yes
Other satellites Yes Yes Yes Yes

4.2 Analytical Solutions for Circular Low-Thrust Transfer

In this section, analytical solutions will be derived for circular low-thrust transfer
subject to two different types of thrusting: the continuous tangential thrusting
and the intermittent yaw thrusting; the former will be used in phase 2 and phase 4,
and the latter will be used in phase 3. The validation of these analytical solutions
will be presented in Sec. 4.5 by two case studies.

Due to the fact that the influence on eccentricity by these two types of thrusting
is so small that can be neglected, all satellites can therefore be assumed to remain
in circular orbits throughout the deployment, as long as the initial orbit, i.e.,
the parking orbit, is circular. The validation of this circular assumption will be
presented in Sec. 7.2. For constantly circular transfer, the dynamics system can
be described in terms of four orbital elements: a, i, Ω, and u, and the equations
of motion due to low-thrust and J2 can be stated as [43]

ȧ =
2fθ
n

(4.4a)

i̇ =
fh
na

cosu (4.4b)

Ω̇ =
fh
na

sinu

sin i
−

3nJ2R
2
⊕

2a2
cos i (4.4c)

u̇ = n+
2fr
na
− fh
na

sinu

tan i
+

3nJ2R
2
⊕

2a2
(3− 4 sin2 i) (4.4d)

Besides, as presented in Sec. 2.4, the loss of the spacecraft mass m is governed
by ṁ given in Eq. (2.7), and recall that in this thesis, the thrust F , the specific
impulse Isp, and the mass flow rate ṁ are assumed constant.
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4.2.1 Continuous Tangential Thrusting

When applying the tangential thrusting to circular transfer, only the transversal
thrust component

fθ = sgn∆a (F/m) (4.5)

which in this case is tangent to the trajectory, is applied, where ∆a represents
the desired change in a, and sgn∆a returns the sign of ∆a, with which a will be
increased if ∆a > 0 and will be decreased if ∆a < 0. Thus, Eqs. (4.4) can be
reduced to

ȧ =
2fθ
n

(4.6a)

Ω̇ = −
3nJ2R

2
⊕

2a2
cos i (4.6b)

u̇ = n+
3nJ2R

2
⊕

2a2
(3− 4 sin2 i) (4.6c)

where i is constant.
As the thrust is continuously applied, the solution to m is

m = m0 + ṁ (t− t0) (4.7)

With n = (µ/a3)1/2, Eq. (4.6a) can be rewritten into the form

a−3/2da =
2fθ√
µ

dt (4.8)

Then using fθ from Eq. (4.5) and replacing m with Eq. (4.7), Eq. (4.8) for a can
be integrated by the means of∫ a

a0

a−3/2da =
2sgn∆a√

µ

∫ t

t0

F

m0 + ṁ (t− t0)
dt (4.9)

which yields

a =

[
1
√
a0
− sgn∆aF√

µṁ
ln
m0 + ṁ (t− t0)

m0

]−2

(4.10)

For convenience of expression, a can also be written as a function of m:

a =

(
1
√
a0
− sgn∆aF√

µṁ
ln
m0

m0

)−2

(4.11)

With n = (µ/a3)1/2, Eq. (4.6b) and Eq. (4.6c) become

Ω̇ = −
3
√
µJ2R

2
⊕ cos i

2
a−7/2 (4.12a)

u̇ =
√
µa−3/2 +

3
√
µJ2R

2
⊕(3− 4 sin2 i)

2
a−7/2 (4.12b)

Then using a from Eq. (4.10), the preceding equations can be integrated as

Ω = Ω0 −
3
√
µJ2R

2
⊕ cos i

2

∫ t

t0

[
1
√
a0
− sgn∆aF√

µṁ
ln
m0 + ṁ (t− t0)

m0

]7

dt (4.13)
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u = u0 +
√
µ

∫ t

t0

[
1
√
a0
− sgn∆aF√

µṁ
ln
m0 + ṁ (t− t0)

m0

]3

dt

+
3
√
µJ2R

2
⊕(3− 4 sin2 i)

2

∫ t

t0

[
1
√
a0
− sgn∆aF√

µṁ
ln
m0 + ṁ (t− t0)

m0

]7

dt

(4.14)

For convenience of expression, the solution to Ω is written as a function of m and
a, and the solution to u is written as a function of m, a, and Ω:

Ω = Ω0 −
3
√
µJ2R

2
⊕ cos i

2ṁ

7∑
k=0

7!

(7− k)!

(
sgn∆aF√

µṁ

)k [
ma

(k−7)/2
0 −m(

0a
(k−7)/2
0

]
(4.15)

u = u0+

√
µ

ṁ

3∑
k=0

3!

(3− k)!

(
sgn∆aF√

µṁ

)k [
ma

(k−3)/2
0 −m(

0a
(k−3)/2
0

]
− 3− 4 sin2 i

cos i
(Ω− Ω0)

(4.16)
where ◦! returns the factorial of the generic variable ◦.

4.2.2 Intermittent Yaw Thrusting

When using the yaw thrusting, only the out-of-plane thrust component fh is ap-
plied. Here we introduce a parameter 0 < η ≤ π/2 and let

fh =


−sgncos i (F/m) , if +π/2− η ≤ u ≤ +π/2 + η

+sgncos i (F/m) , if −π/2− η ≤ u ≤ −π/2 + η

+0, otherwise
(4.17)

where sgncos i returns the sign of cos i, with which the thrust effect on Ω is the
same as J2; that is to say, Ω will be decreased for prograde orbits with i < 90 deg
and will be increased for retrograde orbits with i > 90 deg. Fig. 4.1 illustrates
the intermittent yaw thrusting, where the y-axis is sinu because Ω̇ is a function
of sinu.

Figure 4.1: Illustration of the intermittent yaw thrusting.

As shown in Fig. 4.1, η defines the length of burning arcs per revolution as 4η.
The reason why we introduce this parameter is because the out-of-plane thrusting
is usually very expensive in terms of changing i or Ω, and η allows us to adjust the
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time and fuel consumption of the out-of-plane thrusting phase. Later in Sec. 4.3,
we will show how η can be used to minimise the time and fuel consumption for
the RAAN separation. Moreover, because applying the yaw thrusting over the
orbital arcs around u = ±π/2 can efficiently change Ω while results in a nearly
null change in i, Eqs. (4.4) can be reduced to

Ω̇ =
fh
na

sinu

sin i
−

3nJ2R
2
⊕

2a2
cos i (4.18a)

u̇ = n− fh
na

sinu

tan i
+

3nJ2R
2
⊕

2a2
(3− 4 sin2 i) (4.18b)

where a and i are constant.
Eqs. (4.18) includes the thrust, J2, and gravitational effects. Let ◦T denote the

thrust effect on the generic variable ◦, with the subscript T representing thrust.
From Eqs. (4.18), the thrust effects on Ω and u are

Ω̇T = +
fh
na

sinu

sin i
(4.19a)

u̇T = − fh
na

sinu

tan i
(4.19b)

Eqs. (4.19) involve the short-term oscillations associated with u, making it difficult
to carry out the analytical integration for ΩT and uT . In order to address this
problem, we employ the orbital averaging technique on ΩT to obtain the averaged
time rate of change of ΩT .

As presented in Sec. 2.5, the incremental change in ΩT over one revolution due
to a small thrust can be computed by integrating dΩT /du in u, taking the thrust
acceleration and all orbital elements except u as constant. Because the perturbing
effects (i.e. thrust and J2) are very small compared to the gravitational effect,
Eq. (4.18b) can be approximated as

u̇ ≈ n (4.20)

Dividing Eq. (4.19a) by Eq. (4.20), dΩT /du is accordingly approximated as
dΩT
du
≈ fh
n2a

sinu

sin i
(4.21)

Using fh from Eq. (4.17), the incremental change in ΩT after every revolution can
be computed by the means of

(∆ΩT )rev =
sgncos iF

mn2a sin i

(
−
∫ π

2 +η

π
2−η

sinudu+

∫ −π2 +η

−π2−η
sinudu

)
= −4sgncos iF sin η

mn2a sin i

(4.22)
The above change occur during a time period of 2π/u̇ ≈ 2π/n. The averaged time
rate of change of ΩT is therefore

˙̃ΩT =
n

2π
(∆ΩT )rev = −2sgncos iF sin η

πmna sin i
(4.23)

Similarly, we can also employ the orbital averaging technique on m, and the av-
eraged time rate of change of m can be obtained by the means of

˙̃m =
n

2π

ṁ

n

(∫ π
2 +η

π
2−η

du+

∫ −π2 +η

−π2−η
du

)
=

2ṁη

π
(4.24)

64



i
i

“main” — 2021/1/25 — 19:07 — page 65 — #91 i
i

i
i

i
i
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Note that the approximation for u̇ is used to obtain ˙̃m and ˙̃ΩT only.
Observing from Eq. (4.24) that ˙̃m is independent of t, so the solution to m is

m = m0 + ˙̃m (t− t0) = m0 +
2ṁη

π
(t− t0) (4.25)

Substituting Eq. (4.25) into Eq. (4.23), the integration for ΩT can be carried
out as

ΩT = Ω0 −
2sgncos i sin η

πna sin i

∫ t

t0

F

m0 + 2ṁη
π (t− t0)

dt

= Ω0 −
sgncos iF

ṁna sin i

sin η

η
ln
m0 + 2ṁη

π (t− t0)

m0

(4.26)

For convenience of expression, ΩT can also be written as a function of m:

ΩT = Ω0 −
sgncos iF

ṁna sin i

sin η

η
ln
m

m0
(4.27)

Observing from Eqs. (4.19) that

u̇T = − cos iΩ̇T (4.28)

where i is constant, so uT can be solved as

uT = u0 − cos i (ΩT − Ω0) = u0 +
sgncos iF

ṁna tan i

sin η

η
ln
m

m0
(4.29)

Adding the J2 and gravitational effects, the complete solutions to Ω and u are
given by

Ω = Ω0 −
sgncos iF

ṁna sin i

sin η

η
ln
m

m0
−

3nJ2R
2
⊕

2a2
cos i (t− t0) (4.30)

u = u0 + n (t− t0) +
sgncos iF

ṁna tan i

sin η

η
ln
m

m0
+

3nJ2R
2
⊕

2a2
(3− 4 sin2 i) (t− t0) (4.31)

4.3 Right Ascension of the Ascending Node Separation

In this section, an analytical method will be developed to optimise the times
allocated to the first three phases, such that the time and fuel consumption for
the RAAN separation can be minimised at the same time. Note that the RAAN
separation analysed here is for a single manoeuvring satellite, but the analytical
method proposed can be readily applied to the others.

4.3.1 Description of Right Ascension of the Ascending Node Separa-
tion

As reported in Table 4.1, the RAAN separation consists of three phases, viz.,
phase 1 – waiting in the parking orbit, phase 2 – orbit raising to the operational
altitude with the continuous tangential thrusting, and phase 3 – out-of-plane phas-
ing with the intermittent yaw thrusting to make the RAAN separation completed.

Fig. 4.2 and Fig. 4.3 illustrate the time histories of a and Ω̇, respectively, for the
reference and manoeuvring satellites during the RAAN separation, recalling that
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the reference satellite is the first one to be raised and for it, there is no phase 1

or phase 3. In the figures, ∆t1, ∆t2, and ∆t3 are the times of the three phases;
a0 and af are the initial and final semi-major axes, respectively, that correspond
to the parking and operational orbits; Ω̇T is the time rate of change of Ω due to
thrust; Ω̇J2(a0) and Ω̇J2(af ) are the time rates of change of Ω due to J2 at a = a0

and a = af .

Δt1

phase 1 phase 3phase 2

Δt2 Δt3

a

af

a0

t

Figure 4.2: Illustration of the time history of a for the reference satellite (solid line) and for
the manoeuvring satellite (dash-dotted line) during the RAAN separation.

(a) Prograde orbit, i < 90 deg. (b) Retrograde orbit, i > 90 deg.

Figure 4.3: Illustration of the time history of Ω̇ for the reference satellite (solid line) and for
the manoeuvring satellite (dash-dotted line) during the RAAN separation.

From the figures, it can be seen that the J2 effect on Ω̇ varies with a. In Fig. 4.3,
the sudden change in Ω̇ is caused by the use of the intermittent yaw thrusting,
and the two shadowed areas indicate the contributions of J2 and thrust effects to
the RAAN separation, which will be optimised in the remainder of this section.

4.3.2 Analytical Expressions for Times of Three Phases

In order to optimise the time allocation through an analytical approach, the first
step is to derive the analytical expressions of the times taken for the three phases.

For phase 2, given the initial spacecraft mass m0, using Eq. (4.10), af can be
written as

af =

(
1
√
a0
− F
√
µṁ

ln
m0 + ṁ∆t2

m0

)−2

(4.32)
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from which, ∆t2 can be solved as

∆t2 =
m0

ṁ0

{
exp

[
ṁ

F

(√
µ

a0
−
√

µ

af

)]
− 1

}
(4.33)

For phase 1 and phase 3, the analytical expressions of ∆t1 and ∆t3 are to be
derived by analysing the total RAAN separation between the manoeuvring and
reference satellites over the three phases.

By using the analytical solutions derived in Sec. 4.2, the total RAAN change
of the manoeuvring satellite can be written as

∆Ωman =−
3n0J2R

2
⊕ cos i

2a2
0

∆t1

−
3
√
µJ2R

2
⊕ cos i

2ṁ

7∑
k=0

7!

(7− k)!

(
F
√
µṁ

)k [
(m2)

(
fa

(k−7)/2
f −m(

0a
(k−7)/2
0

]
− sgncos iF

ṁnfaf sin i

sin η

η
ln

(m3)f
(m2)f

−
3nfJ2R

2
⊕ cos i

2a2
f

∆t3

(4.34)
where n0 = (µ/a3

0)1/2 and nf = (µ/a3
f )1/2; (m2)f and (m3)f are the spacecraft

masses at the ends of phase 2 and phase 3, respectively, with (m2)f given by

(m2)f = m0 + ṁ∆t2 = m0 exp

[
ṁ

F

(√
µ

a0
−
√

µ

af

)]
(4.35)

In Eq. (4.34), the first term indicates the RAAN change of phase 1, the second
term indicates the RAAN change of phase 2, obtained from Eq. (4.15), and the
last two terms indicate the RAAN change of phase 3, obtained from Eq. (4.30).

If the mission parameters, i.e., a0, af , i, m0, F , and ṁ, are identical for all
satellites, the time and final spacecraft mass of phase 2, i.e., ∆t2 and (m2)f , for
the reference satellite will be the same as the manoeuvring satellite. So the total
RAAN change of the reference satellite is

∆Ωref =−
3
√
µJ2R

2
⊕ cos i

2ṁ

7∑
k=0

7!

(7− k)!

(
F
√
µṁ

)k [
(m2)

(
fa

(k−7)/2
f −m(

0a
(k−7)/2
0

]
−

3nfJ2R
2
⊕ cos i

2a2
f

(∆t1 + ∆t3)

(4.36)
where the first term is the RAAN change over the orbit raising which lasts ∆t2,
and the second term is the RAAN change after reaching the operational orbit for
an interval of (∆t1 + ∆t3).

Thus, the total RAAN separation between the manoeuvring and reference satel-
lites can be described by

δΩ = ∆Ωman −∆Ωref

= −3

2
J2R

2
⊕ cos i

(
n0

a2
0

− nf
a2
f

)
∆t1 −

sgncos iF

ṁnfaf sin i

sin η

η
ln

(m3)f
(m2)f

(4.37)
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where the two separate terms respectively represent the J2 and thrust contri-
butions to the RAAN separation, corresponding to the two shadowed areas in
Fig. 4.3. Here we introduce a parameter 0 ≤ γ ≤ 1 and let

−3

2
J2R

2
⊕ cos i

(
n0

a2
0

− nf
a2
f

)
∆t1 = (1− γ) δΩdes, − sgncos iF

ṁnfaf sin i

sin η

η
ln

(m3)f
(m2)f

= γδΩdes

(4.38)
where δΩdes is the desired RAAN separation, such that (1− γ) of the RAAN
separation will be achieved by J2 and γ of the RAAN separation will be achieved
by thrust.

From Eq. (4.38), ∆t1 and (m3)f can be analytically expressed as

∆t1 =
(1− γ) δΩdes

−3

2
J2R2

⊕ cos i

(
n0

a2
0

− nf
a2
f

) (4.39)

(m3)f = (m2)f exp

(
−sgncos infaf sin i

ṁ

F

η

sin η
γδΩdes

)
(4.40)

Then substituting Eq. (4.40) into Eq. (4.25), ∆t3 can be solved:

∆t3 =
(m3)f − (m2)f

˙̃m
=
π (m2)f

2ṁη

[
exp

(
−sgncos infaf sin i

ṁ

F

η

sin η
γδΩdes

)
− 1

]
(4.41)

where (m2)f is given by Eq. (4.35).
As indicated in Eqs. (4.33), (4.39), and (4.41), ∆t2 can be directly determined

if the mission parameters ai, af , i, mi, F , and ṁ are given, while ∆t1 and ∆t3
cannot; instead, ∆t1 and ∆t3 are functions two variables: γ and η. γ evaluates
the J2 and thrust contributions to the RAAN separation; the higher the value of
γ, the greater the thrust contribution, and thus the higher the fuel consumption.
η, which defines the length of burning arcs per revolution, can be used to adjust
the time and fuel consumption of phase 3; the higher the value of η, the shorter
the time, while the higher the fuel consumption.

4.3.3 Time and Fuel Consumption Minimisation

Using Eqs. (4.39) – (4.41), the total time and fuel consumption of the three phases
for the RAAN separation, denoted by ∆t and ∆mp, can be analytically expressed
in the form of

∆t = ∆t1 + ∆t2 + ∆t3

= c1δΩdes (1− γ) + ∆t2 +
c2 (m2)f

η

[
exp

(
c3δΩdes

γη

sin η

)
− 1

] (4.42)

∆mp = m0 − (m3)f = m0 − (m2)f exp

(
c3δΩdes

γη

sin η

)
(4.43)

where

c1 =

[
−3

2
J2R

2
⊕ cos i

(
n0

a2
0

− nf
a2
f

)]−1

, c2 =
π

2ṁ
, c3 = −sgncos infaf sin i

ṁ

F

(4.44)
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In the preceding equations, ∆t2, (m2)f , c1, c2, and c3 are constant parameters for
a given mission, while γ and η are unknown variables. Now the optimal time-
allocation problem can be converted to a multi-objective optimisation problem,
that is, to find the optimal design variables γ and η such that the objectives ∆t

and ∆mp can be minimised. Table 4.3 gives the lower and upper bounds for the
design variables, where the lower bound for η is set to 5 deg to avoid phase 3 being
too long, and the upper bound for η is 90 deg because η equals a quarter of the
length of burning arcs per revolution in phase 3.

Table 4.3: Bounds for the design variables.

Parameter Lower bound Upper bound
γ 0 1
η 5 deg 90 deg

Fig. 4.4 shows the evolution of ∆t and ∆mp with η for different values of
γ, taking as example the FORMOSAT-3/COSMIC mission to achieve a 30 deg
RAAN separation. All the parameters involved in the computation are presented
in Table 4.4, where the first seven are the original data of the FORMOSAT-
3/COSMIC mission [32] and the last six are computed based on the original one1.
Note that the real thrust and specific impulse of the FORMOSAT-3/COSMIC
mission vary from 1.1 N to 0.2 N and from 217 s to 194 s, respectively [32]; however,
this thesis assumes constant thrust and specific impulse, so we use their average
values for the computation.

Figure 4.4: Evolution of ∆t and ∆mp with η for different γ, for the FORMOSAT-3/COSMIC
mission to achieve a 30 deg RAAN separation (the value of η increasing as the colour from
dark to light).

It can be seen from Fig. 4.4 that: as γ increases, i.e., as the thrust contribution
increases, the fuel consumption increases while the time decreases; for a given γ, as
η increases, i.e., as the length of burning arcs per revolution in phase 3 increases,
the fuel consumption increases while the time decreases. In other words, there
exists a trade-off between the time and fuel consumption. Particularly, if γ = 0,
the thrust effect will have a null contribution to the RAAN separation, and phase 3

1The mass flow rate ṁ is computed using Eq. (2.7)
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Table 4.4: Parameters involved in the computation for the FORMOSAT-3/COSMIC mission.

Parameter Symbol Value Unit
Desired RAAN separation δΩdes −30 deg
Initial semi-major axis a0 6893 km
Final semi-major axis af 7178 km

Inclination i 71.992 deg
Initial spacecraft mass m0 61.05 kg

Thrust F 0.65 N
Specific impulse Isp 205.5 s
Mass flow rate ṁ −3.2254× 10−4 kg/s
Time of phase 2 ∆t2 0.16 days

Spacecraft mass at the end of phase 2 (m2)f 56.601 kg
Mission-related parameter c1 −1.5951× 107 s
Mission-related parameter c2 −4.8701× 103 s/kg
Mission-related parameter c3 3.5166

will vanish; in this case, the proposed three-phase RAAN separation will reduce
to the traditional two-phase RAAN separation that exploits J2 only.

In order to identify the optimal design variables, a mapping from the design
variable space to the objective space is performed, as shown in Fig. 4.5.

(a) Design variable space. (b) Objective space.

Figure 4.5: Mapping from the design variable space to the objective space, for the FORMOSAT-
3/COSMIC mission to achieve a 30 deg RAAN separation.

As shown in Fig. 4.5 (b), the edge of the objective space is composed of the
following boundaries.

• γ = 0:
the thrust effect has a null contribution to the RAAN separation, and thus
∆t3 = 0.

• γ = 1, 5 deg ≤ η ≤ 90 deg:
the J2 effect has a null contribution to the RAAN separation, and thus ∆t1 =

0.
• η = 05 deg, 0 ≤ γ ≤ 1:
the length of burning arcs per revolution in phase 3 is 4× 05 = 020 deg.

• η = 90 deg, 0 ≤ γ ≤ 1:
the length of burning arcs per revolution in phase 3 is 4× 90 = 360 deg.
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4.3. Right Ascension of the Ascending Node Separation

• det (A) = 0:
the determinant of the transformation matrix

A =

{
∂∆t/∂γ ∂∆mp/∂γ

∂∆t/∂η ∂∆mp/∂η

}
(4.45)

is zero, implying a singular transformation from the design variables to the
objectives; that is to say, the objectives do not change with the design vari-
ables. Thanks to the analytical expressions of ∆t and ∆mp, we can derive
the analytical expressions of the partial derivatives in A, and further, derive
the analytical expression of det (A):

det (A) =− c2c3 (m2)
2
f δΩdes

exp

(
c3δΩdes

γη

sin η

)
η sin η[

exp

(
c3δΩdes

γη

sin η

)
− 1− c1δΩdes

c2 (m2)f
γη

(
1− η

tan η

)] (4.46)

As indicated in Fig. 4.5 (b), the Pareto-front solutions of this multi-objective
optimisation problem lie on the left edge of the objective space, corresponding to

• γ = 0

• γ = 1

• det (A) = 0

Due to the fact that the out-of-plane manoeuvre is inherently expensive, the
boundary γ = 1, which indicates that the RAAN separation is fully achieved by
thrust, is therefore excluded. This decision is justified through two case studies in
Fig. 4.7 and Fig. 4.12, which show that if γ = 1, a small decrease in ∆t will be at
the price of a large increase in ∆mp. Finally, the optimal design variables (γ∗, η∗)

are analytically described by det (A) = 0, since γ = 0 is a solution of det (A) = 0.
From Eq. (4.46), det (A) = 0 can be further reduced to

exp

(
c3δΩdes

γ∗η∗

sin η∗

)
− 1− c1δΩdes

c2 (m2)f
γ∗η∗

(
1− η∗

tan η∗

)
= 0 (4.47)

4.3.4 Optimal Time Allocation with Time and Fuel Consumption Re-
quirements

Having the analytical expressions of the time and fuel consumption and the ana-
lytical description of the optimal design variables, the optimal times allocated to
phase 1 and phase 3 can now be determined for the mission either with a given
time requirement or with a fuel consumption requirement.

If a time requirement ∆treq is given, by combining Eq. (4.42) and Eq. (4.47),
the optimal design variables that minimise the fuel consumption can be derived:

exp

[
c3δΩdes

cos η∗

(
1− ∆treq −∆t2

c1δΩdes

)]
− 1− c1δΩdes

c2 (m2)f

(
1− ∆treq −∆t2

c1δΩdes

)
(tan η∗ − η∗) = 0

(4.48a)

γ∗ =

(
1− ∆treq −∆t2

c1δΩdes

)
tan η∗

η∗
(4.48b)
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If a fuel consumption requirement (∆mp)req is given, by combining Eq. (4.43)
and Eq. (4.47), the optimal design variables that minimise the time can be derived:

exp

c2c3
[
m0 − (∆mp)req − (m2)f

]
c1 cos η∗ (tan η∗ − η∗)

− m0 − (∆mp)req

(m2)f
= 0 (4.49a)

γ∗ =
c2

[
m0 − (∆mp)req − (m2)f

]
c1δΩdes

tan η∗

η∗ (tan η∗ − η∗)
(4.49b)

Eq. (4.48a) and Eq. (4.49a) for η∗ can be rapidly solved with the support of
numerical optimisers such as the MATLAB nonlinear equation solver fsolve [100].
Then from Eq. (4.48b) and Eq. (4.49b), γ∗ can be obtained. Finally, substituting
γ∗ and η∗ into Eq. (4.39) and Eq. (4.41), the optimal times allocated to phase 1

and phase 3 can be determined.

4.4 Argument of Latitude Separation

In this section, an analytical method will be presented to determine the times
allocated to the three subphases of the AoL separation. Note that the AoL sep-
aration analysed here is for a single manoeuvring satellite, but the analytical
method proposed can be readily applied to the others.

4.4.1 Description of Argument of Latitude Separation

Analogous to the previous work [34,44,104,105], the AoL separation in this study
is composed of three subphases:

• a thrusting phase, beginning in the final orbit, to either raise or lower the
orbit;

• a coasting phase during which the thrust is not applied;
• another thrusting phase to return to the final orbit.

Note that only the manoeuvring satellite performs the manoeuvres, while the
reference satellite stays in its final orbit.

To achieve the desired AoL separation, the AoL changes of the reference and
manoeuvring satellites in phase 4 must satisfy

∆uref −∆uman = δu (4.50)

where
δu = (δu4)0 − δudes (4.51)

is the phase angle to be made up, with the positive sense in the direction of satellite
motion. In the preceding equation, (δu4)0 is the AoL difference of the manoeuvring
satellite relative to the reference satellite at the beginning of phase 4, which can
be known once phase 1 to phase 3 have been solved, and δudes is the desired AoL
separation between the manoeuvring and reference satellites.
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4.4. Argument of Latitude Separation

To make up the phase angle, the manoeuvring satellite can move into a higher
coasting orbit with a longer period if 0 < δu ≤ π, or move into a lower coasting
orbit with a shorter period if −π ≤ δu < 0 [93, pp. 345-352].

4.4.2 Time Allocation for Three Subphases

Let (∆tthrust)1, (∆tthrust)2, and ∆tcoast be the times taken for the two thrusting
phases and the coasting phase.

For the two thrusting phases, because the thrust is continuously applied, we
have

(∆tthrust)1 =
mcoast − (m4)0

ṁ
, (∆tthrust)2 =

(m4)f −mcoast

ṁ
(4.52)

where mcoast is the spacecraft mass in the coasting phase, (m4)0 and (m4)f are the
spacecraft masses at the beginning and end of phase 4; (m4)0 can be known once
phase 1 to phase 3 have been solved.

For the coasting phase, it is assumed in this study that the manoeuvring satel-
lite revolves χ revolutions in the coasting orbit, where χ is a non-negative integer.
Then we have

∆tcoast =
2χπ

u̇coast
(4.53)

where
u̇coast = ncoast +

3ncoastJ2R
2
⊕

2a2
coast

(3− 4 sin2 i) (4.54)

with acoast being the semi-major axis of the coasting orbit, and ncoast = (µ/a3
coast)

1/2.
As shown in Eqs. (4.52) – (4.54), to determine the times of the three subphases,

it is necessary to solve for the unknown parameters acoast, mcoast, and (m4)f , which
in turn can be done by solving Eq. (4.50).

In Eq. (4.50), the AoL change of the reference satellite is

∆uref = u̇f [(∆tthrust)1 + (∆tthrust)2 + ∆tcoast] = u̇f

[
(m4)f − (m4)0

ṁ
+

2χπ

u̇coast

]
(4.55)

where
u̇f = nf +

3nfJ2R
2
⊕

2a2
f

(3− 4 sin2 i) (4.56)

and the AoL change of the manoeuvring satellite is

∆uman = 2χπ + ∆uthrust (4.57)

where 2χπ is the AoL change of the coasting phase, and ∆uthrust is the sum of the
AoL changes of the two thrusting phases. Using u from Eq. (4.16), ∆uthrust can
be written as

∆uthrust =
3
√
µJ2R

2
⊕

2ṁ
(3− 4 sin2 i)

7∑
k=0

[
7!

(7− k)!

(
F
√
µṁ

)k
w1

]

+

√
µ

ṁ

3∑
k=0

[
3!

(3− k)!

(
F
√
µṁ

)k
w2

] (4.58)
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where
w1 = (+sgnδu)

k
[
m

(/
coasta

(k−7)/2
coast − (m4)0 a

(k−7)/2
f

]
+ (−sgnδu)

k
[
(m4)f a

(k−7)/2
f −m(/

coasta
(k−7)/2
coast

]
w2 = (+sgnδu)

k
[
m

(/
coasta

(k−3)/2
coast − (m4)0 a

(k−3)/2
f

]
+ (−sgnδu)

k
[
(m4)f a

(k−3)/2
f −m(/

coasta
(k−3)/2
coast

]
(4.59)

with sgnδu returning the sign of δu.
Replacing ∆uref and ∆uman with Eq. (4.55) and Eq. (4.57), Eq. (4.50) can now

be written as a function of acoast, mcoast, and (m4)f . Let us then use a from
Eq. (4.11), which gives

acoast =

[
1
√
af

− sgnδuF√
µṁ

ln
mcoast

(m4)0

]−2

(4.60a)

af =

[
1

√
acoast

+
sgnδuF√
µṁ

ln
(m4)f
mcoast

]−2

(4.60b)

and substitute af into acoast, which yields

(m4)f =
m2

coast

(m4)0

(4.61)

Both acoast and (m4)f can now be expressed in terms of mcoast. Consequently,
Eq. (4.50)’s only unknown parameter is mcoast. This equation can be rapidly
solved with the support of numerical optimisers such as the MATLAB nonlinear
system solver fsolve [100].

Once mcoast is obtained, acoast and (m4)f can then be known from Eq. (4.60a)
and Eq. (4.61). Finally, substituting mcoast, acoast, and (m4)f into Eq. (4.52) and
Eq. (4.53), the times allocated to the three subphases can be determined.

4.5 Case Studies and Discussion

This section will investigate the deployment of two large constellations – a OneWeb-
like constellation and a sun-synchronous constellation – to demonstrate how the
proposed analytical methods can be fast implemented. For these two case studies,
a Hall Effect thruster, which produces a thrust of 154 mN and a specific impulse
of 2035 s, is used [106].

For convenience of description, in the following sections, the RAAN separation
method that exploits the J2 effect only is called the J2-only strategy, and the
method that also exploits the thrust effect is called the J2-thrust strategy.

4.5.1 OneWeb-Like Constellation

Mission Scenario

Table 4.5 gives the geometrical information of the OneWeb-like constellation. Note
that the OneWeb-like constellation is not a typical Walker or SoC constellation
investigated in Sec. 3, because the orbital planes are not evenly space over the
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4.5. Case Studies and Discussion

equator or unevenly spaced over half of the equator, although they are equally
separated by 10.2 deg.

Table 4.5: Geometrical information of the OneWeb-like constellation.

Parameter Symbol Value Unit
Number of satellites N 720

Number of orbital planes P 18
Number of satellites per orbital plane S 40

Inclination i 87.9 deg
Altitude h 1200 km

RAAN spacing δΩ 10.2 deg
Intra-plane AoL spacing δuintra 9 deg
Inter-plane AoL spacing δuinter 4.5 deg

According to the letter of intent [107], the real OneWeb constellation will use 18

Soyuz launchers, one for each plane. In this case study we assume a large launcher
(e.g. Falcon 9 [108]) to deploy 80 satellites into two planes by each launch, as the
study scope of this thesis is multi-plane deployment. Fig. 4.6 shows the desired
separation in the RAAN and AoL, where the reference satellite is the first one in
the first plane.
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Plane 1

Plane 2

Reference Satellite

Figure 4.6: Desired separation in the RAAN and AoL for 80 OneWeb-like satellites deployed
into two planes.

Table 4.6 presents the simulation parameters for the case study of the OneWeb-
like constellation, where it is assumed that all the 80 satellites, with an initial
spacecraft mass of 150 kg, are launched into a 500-km-high parking orbit and are
initially separated from each other by an along-track distance of 200 km, which is
equivalent to an initial AoL separation of 1.666 deg.

Minimum-Time RAAN Separation with Fuel Consumption Requirement

In this case study we will present a minimum-time RAAN separation given a
fuel consumption requirement, for the purpose of starting revenue flow as early
as possible with a limited propellant budget. Note that satellites in the first
plane will directly reach the final orbit together with the reference satellite, so the
following analysis of the RAAN separation is performed for the second plane only.
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Table 4.6: Simulation parameters for the OneWeb-like constellation.

Parameter Symbol Value Unit
Initial semi-major axis a0 R⊕ + 0500 km
Final semi-major axis af R⊕ + 1200 km

Inclination i 87.9 deg
Initial AoL separation between adjacent satellites δu0 1.666 deg

Desired separation in the RAAN and AoL δΩdes, δudes Fig. 4.6 deg
Initial spacecraft mass m0 150 kg

Thrust F 154 mN
Specific impulse Isp 2035 s
Mass flow rate ṁ −7.7168× 10−6 kg

Number of revolutions in the coasting orbit χ 100

Table 4.7 presents the constant parameters that will be used in the subsequent
computation, where ∆t2 and (m2)f are obtained from Eq. (4.33) and Eq. (4.35),
c1, c2, and c3 are obtained from Eq. (4.44).

Table 4.7: Constant parameters for the OneWeb-like constellation.

Parameter Symbol Value Unit
Time of phase 2 ∆t2 4.02 days

Spacecraft mass at the end of phase 2 (m2)f 147.318 kg
Mission-related parameter c1 −6.1380× 107 s
Mission-related parameter c2 −2.0356× 105 s/kg
Mission-related parameter c3 0.3632

With Eq. (4.42) and Eq. (4.43), the mapping from the design variable space
to the objective space can be performed. Fig. 4.7 shows the time and fuel con-
sumption for the RAAN separation of a single satellite, considering 0 ≤ γ ≤ 1

and 5 deg ≤ η ≤ 90 deg, where the shadowed area indicates the objective space
of the second plane. In the figure, the Pareto-optimal time and fuel consumption
are highlighted by the solid line, and the triangle indicates the time and fuel con-
sumption corresponding to the J2-only strategy, that are, 130.49 days and 3.628 kg.

Figure 4.7: Time and fuel consumption for the RAAN separation of a single OneWeb-like
satellite, considering 0 ≤ γ ≤ 1 and 5 deg ≤ η ≤ 90 deg.
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Let us suppose that 5% of the initial spacecraft mass is reserved for the RAAN
separation of a single satellite, i.e. (∆mp)req = 7.5 kg. Given such a fuel consump-
tion requirement, the optimal design variables that minimise the time for RAAN
separation can be obtained from Eq. (4.49). Then the optimal times allocated to
phase 1 and phase 3 can be determined using Eq. (4.39) and Eq. (4.41). These
optimal results are reported in Table 4.8.

Table 4.8: Optimal results for the minimum-time RAAN separation of a single OneWeb-like
satellite.

Plane γ∗ η∗, rad ∆t1, days ∆t3, days ∆t, days
2 0.4579 0.8246 68.56 13.76 86.34

Compared to the J2-only strategy, the fuel consumption using the J2-thrust
strategy is increased by 3.872 kg per satellite, but the RAAN separation can be
completed 44.15 days earlier, which means that the revenue flow can start earlier
by approximately 1.5 months. This implies the need of a trade-off between the
revenue of a quicker deployment and the cost of higher fuel consumption.

Figs. 4.8 (a) – (c) show the time histories of Ω̇, u̇, and h for the entire deploy-
ment, including also the AoL separation, where h = a−R⊕. For clarity, only three
satellites are presented: the reference satellite, the 25th satellite in the first plane
and the 23rd satellite in the second plane. As shown in the figures, both Ω̇ and u̇
vary with a, and the sudden change in Ω̇ is caused by the use of the intermittent
yaw thrusting. In Fig. 4.8 (c), the semi-major axis is modified after reaching the
final orbit to induce the AoL separation, where the semi-major axis of the coasting
orbit and the times allocated to the three subphases of the AoL separation can
be rapidly determined using the analytical method presented in Sec. 4.4.

Figs. 4.9 (a) and (b) show the errors of the final separation in the RAAN
and AoL relative to the desired values for all the 80 satellites. As indicated in the
figures, the AoL separation can be accurately fulfilled, while due to the interaction
between RAAN and AoL [34] in phase 4, the final separation in the RAAN deviates
a bit from the desired values.

Finally, comparisons with the numerical results by integrating the exact dy-
namics model Eqs. (4.4) are performed to validate the accuracy of the analytical
solutions derived in Sec. 4.2. Figs. 4.10 (a) – (e) show the time histories of a,
i, Ω, u, and m, taking as example the 23rd satellite in the second plane. Good
agreement can be seen between the analytical and numerical results. Note that
the variation in i of the numerical results is due to the short-term oscillations
when applying the intermittent yaw thrusting, but the net effect on i is nearly
null.

4.5.2 Sun-Synchronous Constellation Deployment

Mission Scenario

A sun-synchronous constellation with retrograde orbits is considered. It has the
same configuration as the OneWeb-like constellation but at different altitude and
inclination of 959.889 km and 99.3 deg, respectively. Table 4.9 gives the geometrical
information of the sun-synchronous constellation.
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Figure 4.8: Deployment profiles (red: reference satellite, blue: satellite 25 in plane 1, orange:
satellite 23 in plane 2), with magnification indicating the profiles of phase 4.
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Figure 4.9: Final errors for the deployment of 80 OneWeb-like satellite (blue: plane 1, orange:
plane 2).

In this case study we assume that the initial spacecraft mass of the sun-
synchronous satellite is 50 kg, that is, one third of the OneWeb-like satellite,
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Figure 4.10: Validation of the analytical solutions (dashed line) versus the numerical results
(solid line), for satellite 23 in plane 2.

such that 240 satellites can be deployed into six planes by each launch, if using
the same launcher as the OneWeb-like constellation. Fig. 4.11 shows the desired
separation in the RAAN and AoL, where the reference satellite is the first one in
the first plane.

Table 4.10 presents the simulation parameters for the case study of the sun-
synchronous constellation, where it is assumed that all the 240 satellites are
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Table 4.9: Geometrical information of the sun-synchronous constellation.

Parameter Symbol Value Unit
Number of satellites N 720

Number of orbital planes P 18
Number of satellites per orbital plane S 40

Inclination i 99.3 deg
Altitude h 959.889 km

RAAN spacing δΩ 10.2 deg
Intra-plane AoL spacing δuintra 9 deg
Inter-plane AoL spacing δuinter 4.5 deg
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Figure 4.11: Desired separation in the RAAN and AoL for 240 sun-synchronous satellites
deployed into six planes (blue: plane 1, orange: plane 2, light blue: plane 3, yellow: plane 4,
purple: plane 5, green: plane 6).

launched into a 759.889-km-high parking orbit and are initially separated from
each other by an along-track distance of 200 km, which is equivalent to an initial
AoL separation of 1.605 deg.

Table 4.10: Simulation parameters for the sun-synchronous constellation.

Parameter Symbol Value Unit
Initial semi-major axis a0 R⊕ + 759.889 km
Final semi-major axis af R⊕ + 959.889 km

Inclination i 99.3 deg
Initial AoL separation between adjacent satellites δu0 1.605 deg

Desired separation in the RAAN and AoL δΩdes, δudes Fig. 4.11 deg
Initial spacecraft mass m0 50 kg

Thrust F 154 mN
Specific impulse Isp 2035 s
Mass flow rate ṁ −7.7168× 10−06 kg/s

Number of revolutions in the coasting orbit χ 100

Minimum-Fuel RAAN Separation with Time Requirement

In this case study we will present a minimum-fuel RAAN separation given a time
requirement, for the purpose of reducing the propellant budget as much as possible
with a limited time budget. Note that satellites in the first plane will directly reach
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the final orbit together with the reference satellite, so the following analysis of the
RAAN separation is performed for the second to sixth planes.

Table 4.11 presents the constant parameters that will be used in the subsequent
computation, where ∆t2 and (m2)f are obtained from Eq. (4.33) and Eq. (4.35),
c1, c2, and c3 are obtained from Eq. (4.44).

Table 4.11: Constant parameters for the sun-synchronous constellation.

Parameter Symbol Value Unit
Time of phase 2 ∆t2 0.38 days

Spacecraft mass at the end of phase 2 (m2)f 49.744 kg
Mission related parameter c1 4.9451× 107 s
Mission related parameter c2 −2.0356e× 105 s/kg
Mission related parameter c3 −0.3645

With Eq. (4.42) and Eq. (4.43), the mapping from the design variable space
to the objective space can be performed. Fig. 4.12 shows the time and fuel con-
sumption for the RAAN separation of a single satellite, considering 0 ≤ γ ≤ 1 and
5 deg ≤ η ≤ 90 deg, where the shadowed areas with different colours indicate the
objective spaces of separate planes. In the figure, the Pareto-optimal time and
fuel consumption are highlighted by the solid lines, and the triangles indicate the
time and fuel consumption corresponding to the J2-only strategy. For the J2-only
strategy, the fuel consumption is at a very low level of 0.256 kg, but the total time
to separate all the six planes is 1.4 years, which is a significant period of time for
small satellites whose lifetime is around five years.

Figure 4.12: Time and fuel consumption for the RAAN separation of a single sun-synchronous
satellite, considering 0 ≤ γ ≤ 1 and 5 deg ≤ η ≤ 90 deg.

Let us suppose that the RAAN separation must be completed in 0.5 years,
i.e., ∆treq = 0.5 years. From Fig. 4.12, the second plane can still use the J2-only
strategy, while the third to sixth planes will have to use the J2-thrust strategy.
Given such a time requirement, the optimal design variables that can minimise the
fuel consumption for RAAN separation can be obtained from Eq. (4.48). Then the
optimal times allocated to phase 1 and phase 3 can be determined using Eq. (4.39)
and Eq. (4.41). These optimal results are reported in Table 4.12.

Compared to the J2-only strategy, the fuel consumption using the J2-thrust
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Table 4.12: Optimal results for the minimum-fuel RAAN separation of a single sun-
synchronous satellite.

Plane γ∗ η∗, rad ∆t1, days ∆t3, days ∆mp, kg
3 0.1213 0.6132 179.06 3.18 01.084
4 0.4616 0.6051 164.59 17.65 04.790
5 0.6296 0.5972 150.98 31.26 08.180
6 0.7288 0.5897 138.17 44.07 11.287

strategy is increased by 1.084 kg, 4.534 kg, 7.924 kg, and 11.287 kg for a single
satellite in the third, fourth, fifth, and sixth planes, respectively; although a bit
high, they are the optimal solutions yet for such a high-demanding time require-
ment.

Figs. 4.13 (a) – (c) show the time histories of Ω̇, ω̇, and h for the entire de-
ployment, including also the AoL separation, where h = a−R⊕. For clarity, only
five satellites are presented: the reference satellite, the second satellite in the first
plane, the 34th satellite in the fourth plane, the 10th satellite in the fifth plane,
and the first satellite in the sixth plane. As shown in the figures, both Ω̇ and u̇

vary with a, and the sudden change in Ω̇ is caused by the use of the intermittent
yaw thrusting. In Fig. 4.13 (c), the semi-major axis is modified after reaching
the final orbit in order to induce the AoL separation, where the semi-major axis
of the coasting orbit and the times allocated to the three subphases of the AoL
separation can be rapidly determined using the analytical method presented in
Sec. 4.4.

Figs. 4.14 (a) and (b) show the errors of the final separation in the RAAN
and AoL relative to the desired values for all the 240 satellites. As indicated
in the figures, the AoL separation can be accurately fulfilled, while due to the
interaction between RAAN and AoL [34] in phase 4, the final separation in the
RAAN deviates a bit from the desired values.

Finally, comparisons with the numerical results by integrating the exact dy-
namics model Eqs. (4.4) are performed to validate the accuracy of the analytical
solutions derived in Sec. 4.2. Figs. 4.15 (a) – (e) show the time histories of a, i, Ω,
u, and m, taking as example the first satellite in the sixth plane. Good agreement
can be seen between the analytical and numerical results. Note that the variation
in i of the numerical results is due to the short-term oscillations when applying
the intermittent yaw thrusting, but the net effect on i is nearly null.
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Figure 4.13: Deployment profiles (red: reference satellite, blue: satellite 2 in plane 1, yellow:
satellite 34 in plane 4, purple: satellite 10 in plane 5, green: satellite 1 in plane 6), with
magnification indicating the profiles of phase 4.
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Figure 4.14: Final errors for the deployment of 240 sun-synchronous satellites (blue: plane 1,
orange: plane 2, yellow: plane 3, light blue: plane 4, purple: plane 5, green: plane 6).
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Figure 4.15: Validation of the analytical solutions (dashed line) versus the numerical results
(solid line), satellite 1 plane 6.
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CHAPTER5
Low Earth Orbit Constellation Low-Thrust

De-Orbiting Through Natural Perturbations

This chapter investigates the low-thrust de-orbiting through natural perturbations
for LEO constellations. Two strategies that would be applicable to de-orbiting
from LEO are considered. The first strategy uses the control thrust to lower the
perigee altitude to achieve drag-induced re-entry. The second strategy uses the
control thrust to reach a specific condition to then provoke natural orbital decay
due to the coupled effect of the Earth oblateness and SRP. Two closed-loop control
laws, one for each strategy, are developed by using the Lyapunov method. Given
the control laws, maps that represent the ∆v-budget and de-orbiting time for de-
orbiting from any near-circular LEO using the two strategies can be obtained,
based on which, the application conditions of the two strategies can be identified.
In order to reduce the computational load of propagating the initial conditions
over the entire LEO region, the averaged low-thrust dynamics models are firstly
derived. Note that, as the scope of this chapter is LEO constellation, the eccen-
tricity is therefore less than 0.2, and the inclination ranges between 30 deg and
120 deg, because most LEO constellations are located in this region.

5.1 Description of De-Orbiting Strategies

In this section, the two de-orbiting strategies, which are named as the perigee
decrease strategy and the de-orbiting corridor strategy, will be introduced, and the
terminal conditions of low-thrust transfer for these two strategies will be presented.

Briefly speaking, both strategies are aiming to lower the perigee altitude to
achieve the drag-induced re-entry. However, in the perigee decrease strategy,
the perigee altitude is actively lowered by the thrust, whereas in the de-orbiting
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corridor strategy, the perigee altitude is passively lowered by the coupled effect of
natural perturbations with the aid of passive de-orbiting device, and the thrust is
used to reach the de-orbiting corridor that can provoke a natural decrease in the
perigee altitude. Fig. 5.1 gives the illustration of these two strategies.

Re-entry

Low-thrust

Drag

Drag-dominated region Drag-dominated region

Re-entry

Low-thrust

Drag

De-orbiting corridor

Coupled effect of

Earth’s oblateness and SRP

(a) Perigee decrease strategy. (b) De-orbiting corridor strategy.

Figure 5.1: Illustration of the de-orbiting strategies.

5.1.1 Perigee Decrease Strategy

In the perigee decrease strategy, low-thrust manoeuvres will be performed to lower
the perigee altitude to the drag-dominated region, after which the drag effect will
be strong enough to lower the apogee altitude until re-entry happens [46]. Thus,
the terminal condition of the low-thrust transfer for the perigee decrease strategy
is given by

ψstr1
∣∣
t=tf

= rp
∣∣
t=tf
− (hpf +R⊕) = 0 (5.1)

where rp is the perigee radius and hpf is the target perigee altitude. Generally
speaking, the selection of hpf depends on the area-to-mass ratio and required re-
entry time; the smaller the area-to-mass ratio and the shorter the required re-entry
time, the lower the target perigee altitude will be.

Considering the expression for rp:

rp = a (1− e) (5.2)

the terminal condition can be expressed in terms of the semi-major axis and
eccentricity as

ψstr1
∣∣
t=tf

= a (1− e)
∣∣
t=tf
− (hpf +R⊕) = 0 (5.3)

5.1.2 De-Orbiting Corridor Strategy

A mapping of the LEO region was obtained in Ref. [109], revealing the existence of
specific initial conditions in semi-major axis, eccentricity, and inclination that can
lead to orbital decay beyond the drag-dominated region. As a matter of fact, the
decay, which lowers the perigee altitude, is caused by an increase in eccentricity.
Such behaviour in the LEO region is mainly due to the coupled effect of the Earth
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oblateness and SRP, provided a large enough area-to-mass ratio. In principle, if
the initial conditions for the decay are satisfied, then driven by the coupled effect,
the natural decrease in the perigee altitude will either follow the libration curves or
the hyperbolic curves associated with the hyperbolic equilibrium points [51,110].
Hereinafter, the initial conditions that can provoke the natural decrease in the
perigee altitude are referred to as the de-orbiting corridors [54].

As presented in Ref. [51], the location of the de-orbiting corridors can be ap-
proximated as a resonant condition which has six different forms

Ω̇J2 ± ω̇J2 ± nS = 0, ω̇J2 ± nS = 0 (5.4)

where Ω̇J2 and ω̇J2 are the time rates of change of Ω and ω, respectively, due to
the secular effects of J2, and nS ≈ 2π/365.25 rad/day is the apparent mean motion
of the Sun measured on the ecliptic plane.

Replacing Ω̇J2 and ω̇J2 with Eq. (2.6b) and Eq. (2.6c), Eq. (5.4) can be expressed
in terms of the semi-major axis, eccentricity, and inclination as

3
√
µJ2R

2
⊕

4a7/2 (1− e2)
2

(
5n2 cos2 i− 2n1 cos i− n2

)
+ n3nS = 0 (5.5)

where n1 = (0, 1), n2 = ±1, and n3 = ±1 are the coefficients in front of Ω̇J2 , ω̇J2 ,
and nS, respectively, that correspond to the six de-orbiting corridors. Fig. 5.2
shows the location of the six de-orbiting corridors as a function of a and i, assuming
e = 0.001.
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Figure 5.2: Location of the six de-orbiting corridors, assuming e = 0.001 (blue: Ω̇J2 + ω̇J2−nS
= 0, orange: Ω̇J2 − ω̇J2 − nS = 0, yellow: ω̇J2 − nS = 0, purple: ω̇J2 + nS = 0, green:
Ω̇J2 + ω̇J2 + nS = 0, light blue: Ω̇J2 − ω̇J2 + nS = 0).

In the de-orbiting corridor strategy, low-thrust manoeuvres will be performed
to move the spacecraft towards the closest de-orbiting corridor, and then the pas-
sive de-orbiting device, such as solar sail or de-orbiting balloon, will be deployed
to artificially increase the area-to-mass ratio to enhance the subsequent natural
decrease in the perigee altitude. Thus, the terminal condition of the low-thrust
transfer for the de-orbiting corridor strategy is given by

ψstr2
∣∣
t=tf

=
3
√
µJ2R

2
⊕

4a7/2 (1− e2)
2

(
5n2 cos2 i− 2n1 cos i− n2

) ∣∣
t=tf

+ n3nS = 0 (5.6)
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5.2 Control Law Design

In this section, two closed-loop control laws will be developed for the two de-
orbiting strategies by using the Lyapunov method, and the stability analyses of
the control laws will be presented.

5.2.1 Perigee Decrease Strategy

For the perigee decrease strategy aiming to decrease the perigee altitude, the
candidate Lyapunov function is defined as

V str1 = ψstr1

= a (1− e)− (hpf +R⊕)
(5.7)

The time rate of change of V str1 is

dV str1

dt
= (1− e) da

dt
− ade

dt
(5.8)

Because ȧ and ė are governed by the in-plane thrust components fr and fθ, only
the in-plane control law for the pitch angle α is to be developed, while the yaw
angle β is zero; the definition of the pitch and yaw angles are shown in Fig. 2.3.
Thus, the thrust components of the perigee decrease strategy are given in the form
of

f str1
r = f sinα

f str1
θ = f cosα

f str1
h = 0

(5.9)

Then substituting Eq. (2.5a) and Eq. (2.5b) into Eq. (5.8) and replacing the thrust
components with Eq. (5.9), V̇ str1 becomes

V̇ str1 = f

√
µ

a3

1

1− e cosE
(pα sinα+ qα cosα) (5.10)

where
pα = − (1− e)2

sinE

qα =
√

1− e2
[
2 (1− cosE)− e sin2E

] (5.11)

It is clear from the definition of the candidate Lyapunov function in Eq. (5.7)
that for an initially near-circular orbit whose initial altitude is higher than the
target perigee altitude, V str1 is zero at the final state and positive elsewhere. Thus,
the goal of low-thrust transfer is to drive V str1 to zero. In this study we choose
the pitch angle that minimises V str1 at the fastest rate to make V str1 being sent
to zero as quickly as possible at any instant. By solving{

∂1V̇ str1/∂α1 = 0

∂2V̇ str1/∂α2 ≥ 0
(5.12)

the in-plane control law that minimises V̇ str1 can be obtained:

sinα = − pα√
p2
α + q2

α

, cosα = − qα√
p2
α + q2

α

(5.13)
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where pα and qα are given in Eq. (5.11). Fig. 5.3 shows α as a function of e and
E. As indicated in the figure, the influence of low values of eccentricities on the
pitch angle is small.
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Figure 5.3: Pitch angle in Eq. (5.13).

Based on the sensitivity analysis, let us modify Eq. (5.13) by setting e = 0, and
there is

sinα =
sinE√

sin2E + 4 (1− cosE)
2
, cosα = − 2 (1− cosE)√

sin2E + 4 (1− cosE)
2

(5.14)

With this control law, the rates of change of orbital elements with E can be ana-
lytically integrated, as presented in Sec. 5.3.1, thus making it possible to derived
the averaged dynamics model. Substituting Eq. (5.14) into Eq. (5.9), the thrust
components of the perigee decrease strategy are finally given as

f str1
r = +f

sinE√
sin2E + 4 (1− cosE)

2

f str1
θ = −f 2 (1− cosE)√

sin2E + 4 (1− cosE)
2

f str1
h = +0

(5.15)

Proposition 1: Let a satellite be in the LEO region where 30 deg ≤ i ≤ 120 deg
and e ≤ 0.2. Using the control law Eq. (5.15), all solutions governed by the
dynamics model Eq. (2.5) converge to any predefined target perigee altitude hpf .

Proof: Substituting Eq. (5.14) into Eq. (5.10) yields

V̇ str1 = −f
√
µ

a3

1

1− e cosE

−pα sinE + 2qα (1− cosE)√
sin2E + 4 (1− cosE)

2

In the preceding equation, the low-thrust acceleration f > 0, and there are√
µ

a3

1

1− e cosE
> 0,

√
sin2E + 4 (1− cosE)

2 ≥ 0
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Replacing pα and qα with Eq. (5.11) gives

−pα sinE + 2qα (1− cosE) =

(1− e)2
sin2E + 2

√
1− e2 (1− cosE)

[
2 (1− e cosE)− e sin2E

]
≥ 0

because
2 (1− e cosE)− e sin2E = 2 (1− e) + e (1− cosE)

2
> 0

Thus, ˙V str1 ≤ 0, where the equal sign does not hold indefinitely as E changes
over time. So V str1 always converges to zero. 2

5.2.2 De-orbiting Corridor Strategy

For the de-orbiting corridor strategy aiming to reach the target de-orbiting corri-
dor, the candidate Lyapunov function is defined as

V str2 =
(
ψstr2

)2
=

[
3
√
µJ2R

2
⊕

4a7/2 (1− e2)
2

(
5n2 cos2 i− 2n1 cos i− n2

)
+ n3nS

]2 (5.16)

The time rate of change of V str2 is

dV str2

dt
= ψstr2 3

√
µJ2R

2
⊕

4a9/2 (1− e2)
3

[(
1− e2

)
ca

da

dt
+ 2aece

de

dt
+ 2a

(
1− e2

)
ci

di

dt

]
(5.17)

where ca, ce, and ci are functions of i:

ca = −7
(
5n2 cos2 i− 2n1 cos i− n2

)
ce = +4

(
5n2 cos2 i− 2n1 cos i− n2

)
ci = +2n1 sin i− 5n2 sin 2i

(5.18)

The control law design is conducted via two steps. The first step is selecting
a proper in-plane control law which can efficiently change a. The second step is
developing an out-of-plane control law to drive i, together with a and e, to reach
the terminal condition as quickly as possible.

As presented in Sec. 2.4, two types of control laws can efficiently change a: the
tangential thrusting and the transversal thrusting. Substituting Eq. (2.10) and
Eq. (2.11) into Eq. (2.5a), the time rates of change of a due to the tangential and
transversal thrusting are respectively given by

ȧtan = ±2f

√
a3

µ

1

1− e cosE

√
1− e2 cos2E (5.19a)

ȧtra = ±2f

√
a3

µ

1

1− e cosE

√
1− e2 (5.19b)

where the sign + and − represent the cases of semi-major increase and decrease,
respectively.

In this study we adopt the transversal thrusting for the following reasons.
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• If irrespective of the out-of-plane control law, the efficiency to change a with
these two types of thrusting is almost the same for small e. From Eq. (5.19),
the ratio of ȧ

ȧtra/ȧtan =
√

(1− e2) / (1− e2 cos2E) (5.20)

is greater than 0.9798 for e ≤ 0.2.
• Compared to the tangential thrusting, the dynamics model governed by the
transversal thrusting is in a simpler fashion, making it easier to carry out
the analytical integration for orbital elements when employing the orbital
averaging technique in Sec. 5.3.

When the transversal thrusting serves as the in-plane control law, the thrust
direction projected on the orbital plane is perpendicular to the orbital radius
vector, and there is

sinα = 0, cosα = 1 (5.21)

So the thrust components of the de-orbiting corridor strategy can be written in
the form of

f str2
r = 0

f str2
θ = f cosβ

f str2
h = f sinβ

(5.22)

By substituting Eqs. (2.5a), (2.5b), and (2.5c) into Eq. (5.17) and replacing
the thrust components with Eq. (5.22), V̇ str2 becomes

V̇ str2 = ψstr2f
3J2R

2
⊕

2a3 (1− e2)
5/2

(qβ cosβ + pβ sinβ) (5.23)

where

qβ =
ca
(
1− e2

)
+ cee

(
2 cosE − e− e cos2E

)
1− e cosE

pβ = ci

[
(cosE − e) cosω −

√
1− e2 sinE sinω

] (5.24)

It is clear from the definition of the candidate Lyapunov function in Eq. (5.16)
that V str2 is zero at the final state and positive elsewhere. Thus, the goal of low-
thrust transfer is to drive V str2 to zero. In this study we choose the yaw angle
that minimises V str2 at the fastest rate to make V str2 being sent to zero as quickly
as possible at any instant. By solving{

∂1V̇ str2/∂β1 = 0

∂2V̇ str2/∂β2 ≥ 0
(5.25)

the out-of-plane control law that minimises V̇ str2 can be obtained:

cosβ = −
sgnψstr2qβ√
q2
β + p2

β

, sinβ = −
sgnψstr2pβ√
q2
β + p2

β

(5.26)

where qβ and pβ are given in Eq. (5.24), and sgnψstr2 returns the sign of ψstr2, with
ψstr2 given in Eq. (5.6). Fig. 5.4 shows β as a function of e and (ω + E) (i.e. the
latitude of eccentric anomaly) for different values of ω, assuming i = 87.9 deg. As
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(a) ω = 0 deg. (b) ω = 90 deg.

0 90 180 270 360

Latitude of Eccentric Anomaly, deg

-15

-10

-5

0

5

10

15

20

Y
a

w
 A

n
g

le
, 

d
e

g

0

0.05

0.1

0.15

0.2
E

c
c
e

n
tr

ic
it
y

0 90 180 270 360

Latitude of Eccentric Anomaly, deg

-15

-10

-5

0

5

10

15

Y
a

w
 A

n
g

le
, 

d
e

g

0

0.05

0.1

0.15

0.2

E
c
c
e

n
tr

ic
it
y

(c) ω = 180 deg. (d) ω = 270 deg.

Figure 5.4: Yaw angle in Eq. (5.26), assuming i = 87.9 deg.

indicated in the figure, the influence of low values of eccentricities on the yaw angle
is small; the similar phenomenon can be observed if changing the inclination.

Based on the sensitivity analysis, let us modify Eq. (5.26) by setting e = 0, and
there is

cosβ = −
sgnψstr2ca√

c2a + c2i cos2 (ω + E)
, sinβ = −

sgnψstr2ci cos (ω + E)√
c2a + c2i cos2 (ω + E)

(5.27)

Substituting Eq. (5.27) into Eq. (5.22), the thrust components of the de-orbiting
corridor strategy are finally given as

f str2
r = +0

f str2
θ = −sgnψstr2f

ca√
c2a + c2i cos2 (ω + E)

f str2
h = −sgnψstr2f

ci cos (ω + E)√
c2a + c2i cos2 (ω + E)

(5.28)

Proposition 2: Let a satellite be in the LEO region where 30 deg ≤ i ≤ 120 deg
and e ≤ 0.2. Using the control law Eq. (5.28), all solutions governed by the
dynamics model Eq. (2.5) converge to any predefined target de-orbiting corridor.
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5.2. Control Law Design

Proof: Substituting Eq. (5.27) into Eq. (5.23) yields

V̇ str2 = −sgnψstr2ψstr2f
3J2R

2
⊕

2a3 (1− e2)
5/2

qβca + pβci cos (ω + E)√
c2a + c2i cos2 (ω + E)

In the preceding equation, sgnstr2ψ
str2 is zero at the final state and positive else-

where, the low-thrust acceleration f > 0, and there are

3J2R
2
⊕

2a3 (1− e2)
5/2

> 0,
√
c2a + c2i cos2 (ω + E) ≥ 0

where the equal sign in the latter term holds only if both ca and cos (ω + E) are
zero; however, cos (ω + E) does not stay at zero indefinitely as E changes over
time.

It is observed from Eq. (5.18) that ce = −(4/7)ca. Then using this relationship
and replacing qβ and pβ with Eq. (5.24), after some manipulations, gives

qβca + pβci cos (ω + E) = c2aσ + c2i ς

where

σ =
3
(
1− e2

)
+ 4 (1− e cosE)

2

7 (1− e cosE)

ς =
[
(cosE − e) cosω −

√
1− e2 sinE sinω

]
cos (ω + E)

Thus, to show that V str2 always converges to zero, it is necessary to show thatσ +
c2i
c2a
ς ≥ 0 for e ≤ 0.2, if ca 6= 0

c2i ς ≥ 0 for e ≤ 0.2, if ca = 0

where the equal sign does not hold indefinitely.
For σ, there are the following partial derivatives:

∂σ

∂E
=
e

7

[
4−

3
(
1− e2

)
(1− e cosE)

2

]
sinE

∂2σ

∂E2
=
e

7

[
4 cosE −

3
(
1− e2

)
cosE

(1− e cosE)
2 +

6e
(
1− e2

)
sin2E

(1− e cosE)
3

]
By solving {

∂1σ/∂E1 = 0

∂2σ/∂E2 ≥ 0

we can get E that minimises σ for any e, given in the form of

cosE =
2−

√
3 (1− e2)

2e

Substituting the preceding equation into the expression of σ yields

min
E

σ =
4
√

3(1− e2)

7
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which monotonically decreases with e, and therefore

σmin = min
e, E

σ = 0.9697 for e ≤ 0.2

For ς, there are the following partial derivatives:
∂ς

∂ω
=

1

2

[
(
√

1− e2 − 1) sin 2ω − (
√

1− e2 + 1) sin(2ω + 2E) + 2e sin(2ω + E)
]

∂ς

∂E
=
[
(e− cosE) cosω +

√
1− e2 sinω sinE

]
sin(ω + E)

−(cosω sinE +
√

1− e2 sinω cosE) cos(ω + E)

∂2ς

∂ω∂E
= e cos(2ω + E)− (1 +

√
1− e2) cos(2ω + 2E)

By solving 
∂1ς/∂ω = 0

∂1ς/∂E = 0

∂2ς/∂ω∂E ≥ 0

we can get ω and E that minimise ς for any e:

ω =
1

2
tan−1

√
1− e2

e
+

3π

4
, E =

π

2

Substituting the preceding equation into the expression of ς yields

min
ω, E

ς =

√
1− e2 − 1

2

which monotonically decreases with e, and therefore

ςmin = min
e, ω, E

ς = −0.0101 for e ≤ 0.2

For the case ca 6= 0, because ca and ci are functions of i, we can compute the
minimum value of c2i /c2a for the six de-orbiting corridors, considering 30 deg ≤ i ≤
120 deg, as presented in Table 5.1. For all the de-orbiting corridors, there is

σmin +

(
c2i
c2a

)
min

ςmin > 0 for e ≤ 0.2

Thus, V str2 always converges to zero if ca 6= 0.

Table 5.1: Minimum value of c2i /c2a for 30 deg ≤ i ≤ 120 deg.

De-orbiting corridor (c2i /c
2
a)min

Ω̇J2 + ω̇J2 − nS = 0 0.1492

Ω̇J2 − ω̇J2 − nS = 0 0.0601
ω̇J2 − nS = 0 0.0980
ω̇J2 + nS = 0 0.0980

Ω̇J2 + ω̇J2 + nS = 0 0.1492

Ω̇J2 − ω̇J2 + nS = 0 0.0601

For the case ca = 0, because ςmin < 0, there is

(c2i )minςmin ≤ 0
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5.3. Averaged Low-Thrust Dynamics Model

Thus, V str2 cannot converge to zero if ca = 0. For the six de-orbiting corridors,
the values of i that result in a zero ca are (in degrees): 46.378, 63.435, 73.148,
106.852, and 116.565. Therefore, to ensure that V str2 converges to zero, the initial
inclination must be always specified to be outside of a small region surrounding
these values. 2

5.3 Averaged Low-Thrust Dynamics Model

In this section, the averaged low-thrust dynamics models governed by the proposed
control laws will be derived by using the orbital averaging technique. It is of note
that the application of orbital averaging is motivated by the need to reduce the
computational load in Sec. 5.4.2, where a series of initial conditions over the whole
LEO region, with a total number of 6, 946, will be propagated.

Let x denote any of the orbital elements to be averaged, i.e. x ∈ (a, e, i, Ω, ω).
Recalling the orbital averaging technique presented in Sec. 2.5, the averaged time
rate of change of x can be derived by dividing the incremental change in x over
one revolution by the orbit period T = 2π/n, i.e.:

dx̃

dt
=

n

2π
∆xrev (5.29)

Supposing a burning arc from Eon to Eoff , ∆xrev can be obtained by the means of

∆xrev =

∫ Eoff

Eon

dx

dE
dE = funx (Eoff)− funx (Eon) (5.30)

where funx is the primitive function of dx/dE and will be presented later in
Sec. 5.3.1 and Sec. 5.3.2 for the perigee decrease and de-orbiting-corridor strate-
gies, respectively.

Analogously, the time rate of change of the spacecraft mass can also be aver-
aged, given by [71]

dm̃

dt
= −ṁEoff − e sinEoff − Eon + e sinEon

2π
(5.31)

recalling that ṁ is the constant mass flow rate.

5.3.1 Perigee-Decrease Strategy

Substituting the control law Eq. (5.15) into the equations of motion Eqs. (2.5a)
– (2.5e) and divided by Ė Eq. (2.5f), the rates of change of orbital elements with
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E for the perigee decrease strategy are given by{(
da

dE

)str1

,

(
de

dE

)str1

,

(
dω

dE

)str1
}>

=
f√

sin2E + 4 (1− cosE)
2

2a3

µ

[
e sin2E − 2

√
1− e2 (1− cosE)

]
a2
√

1− e2

µ

[√
1− e2 sin2E − 2

(
2 cosE − e− e cos2E

)
(1− cosE)

]
a2

µe

[√
1− e2 (e− cosE) sinE − 2

(
2− e2 − e cosE

)
sinE (1− cosE)

]



(5.32)

Note that (di/dE)
str1

= (dΩ/dE)
str1

= 0 because f str1
h = 0.

Carrying out the integration of Eq. (5.32), after some manipulations, the prim-
itive functions for the perigee decrease strategy can be obtained:

funstr1
a =

2fa3

µ

[√
2

3
e cos

E

2

√
5− 3 cosE − 4

√
3

9

(
3
√

1− e2 − 2e
)

tan−1

√
5− 3 cosE
√

6 cos
E

2

]

funstr1
e =

fa2
√

1− e2

µ

[√
2

3

(√
1− e2 + e− 4 + e cosE

)
cos

E

2

√
5− 3 cosE

+
8
√

3

9

(√
1− e2 + 3e− 1

)
tan−1

√
5− 3 cosE
√

6 cos
E

2

]

funstr1
ω =

fa2

µe

[√
2

3

(√
1− e2 + 2e2 + 2e− 4 + e cosE

)
sin

E

2

√
5− 3 cosE

− 2
√

3

9

(√
1− e2 (4− 3e) + 2e2 + 3e− 4

)
tanh−1

√
6 sin

E

2√
5− 3 cosE

]
(5.33)

where tan−1 ◦ and tanh−1 ◦ return the four-quadrant inverse tangent and the in-
verse hyperbolic tangent, respectively, of the generic variable ◦.

Eq. (5.33) is derived with the support of Wolfram Mathematica 11.2, the results
given by which contain a complex term, making the primitive functions impossible
to be evaluated in the field of real number. To address this problem, we perform an
analysis for the complex term, as presented in Appendix A.1, and finally rewrite
it as

i ln

(√
6 cos

E

2
+ i

√
5− 3 cosE

)
= − tan−1

√
5− 3 cosE
√

6 cos
E

2

+ i ln
√

8 (5.34)

where i is the imaginary unit, and the imaginary part i ln
√

8 is the integration
constant that can be removed.
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5.3. Averaged Low-Thrust Dynamics Model

In the case of continuous thrusting, the burning arc in every revolution is from
0 to 2π, and the expressions of the incremental changes in orbital elements over
one revolution for the perigee decrease strategy can be further reduced to

∆a str1
rev = −8fa3

µ

[
1

3
e+

√
3

9

(
3
√

1− e2 − 2e
)(

π − 2 tan−1 1√
3

)]

∆e str1
rev = +

4fa2
√

1− e2

µ

[
1

3

(
4−

√
1− e2 − 2e

)
+

2
√

3

9

(√
1− e2 + 3e− 1

)(
π − 2 tan−1 1√

3

)]
∆ωstr1

rev = +0

(5.35)

5.3.2 De-orbiting Corridor Strategy

Substituting the control law Eq. (5.28) into the equations of motion Eqs. (2.5a)
– (2.5e) and divided by Ė Eq. (2.5f), the rates of change of orbital elements with
E for the de-orbiting corridor strategy are{(

da

dE

)str2

,

(
de

dE

)str2

,

(
di

dE

)str2

,

(
dΩ

dE

)str2

,

(
dω

dE

)str2
}>

=
−sgnψstr2f√

c2a + c2i cos2 (ω + E)

2caa
3
√

1− e2

µ

caa
2
√

1− e2

µ

(
2 cosE − e− e cos2E

)
cia

2

µ

(
cosE − e√

1− e2
cosω − sinE sinω

)
(1− e cosE) cos (ω + E)

cia
2

µ

(
cosE − e√

1− e2
sinω + sinE cosω

)
(1− e cosE)

sin i
cos (ω + E)

caa
2

µe

(
2− e2 − e cosE

)
sinE


+

{
0, 0, 0, 0, −

(
dΩ

dE

)str2

cos i

}>

(5.36)

Unfortunately, Eq. (5.36) can not be integrated analytically. Observing that
the term cos (ω + E) is periodic, let us expand the following term in Fourier series
up to 8th-order before carrying out the integration:

1√
c2a + c2i cos2 (ω + E)

≈ 2

π
√
c2a + c2i

4∑
k=0

bk cos [2k (ω + E)] (5.37)

where bk (k = 0 to 4) are the Fourier series coefficients, given in the form of

bk = bFk ellipticF (ρ) + bEk ellipticE (ρ) (5.38)
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with bFk and bEk dependent on ca and ci, given in Appendix A.2. Note that the
reason to choose the 8th-order Fourier series expansion is for the sake of achieving
good accuracy with a reasonable computational effort. For an 8th-order Fourier
series expansion, there should have been 17 coefficients, among which only five
coefficients, i.e. b0 to b4, are non-zero in the current problem.

In Eq. (5.37), the complete elliptic integrals of the first and second kinds [94,
Sec. 1.5]

ellipticF (ρ) =

∫ π/2

0

(
1− ρ sin2 ϕ

)−1/2
dϕ

ellipticE (ρ) =

∫ π/2

0

(
1− ρ sin2 ϕ

)+1/2
dϕ

(5.39)

are to be evaluated, where the modulus ρ is

ρ =
c2i

c2a + c2i
(5.40)

Then substituting Eq. (5.37) into Eq. (5.36) and carrying out the integration,
after considerable manipulations, the primitive functions for the de-orbiting cor-
ridor strategy can be obtained:

{
funstr2

a , funstr2
e , funstr2

i , funstr2
Ω , funstr2

ω

}>

=
−sgnψstr2f

πµ
√
c2a + c2i



[
4∑
k=0

bk (funk)a

]
caa

3
√

1− e2

[
4∑
k=0

bk (funk)e

]
caa

2
√

1− e2

[
4∑
k=0

bk (funk)i

]
cia

2

[
4∑
k=0

bk (funk)Ω

]
cia

2

sin i[
4∑
k=0

bk (funk)ω

]
caa

2

e



+
{

0, 0, 0, 0, − funstr2
Ω cos i

}>

(5.41)
where (funk)x (k = 0 to 4 and x = a, e, i, Ω, ω) are dependent on e, ω, and E,
given in Appendix A.3.

In the case of continuous thrusting, the burning arc in every revolution is from
0 to 2π, and the expressions of the incremental changes in orbital elements over
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one revolution for the de-orbiting corridor strategy can be further reduced to{
∆astr2

rev , ∆estr2
rev , ∆istr2rev , ∆Ωstr2

rev , ∆ωstr2
rev

}>

=
−sgnψstr2f

µ
√
c2a + c2i



8caa
3
√

1− e2b0

−caa2e
√

1− e2 (6b0 + b1 cos 2ω)

cia
2

(
b0 +

1

2
b1

)[
1 + e2

√
1− e2

+ 1 +

(
1 + e2

√
1− e2

− 1

)
cos 2ω

]
cia

2

sin i

(
b0 +

1

2
b1

)(
1 + e2

√
1− e2

− 1

)
sin 2ω

caa
2b1 sin 2ω


+
{

0, 0, 0, 0, −∆Ωstr2
rev cos i

}>

(5.42)

5.4 Simulation Results and Discussion

In this section, numerical simulations will be performed to validate the perfor-
mance of the control laws and averaged low-thrust dynamics models, and several
maps that depict the de-orbiting cost for the whole LEO region will be obtained,
based on which, the application conditions of the two de-orbiting strategies will be
identified. Table 5.2 presents the parameters that are fixed for all the simulations.

Table 5.2: Simulation parameters.

Parameter Symbol Value Unit
Initial eccentricity e0 0.001
Initial RAAN Ω0 0 rad
Initial argument of perigee ω0 1 rad
Initial eccentric anomaly E0 2 rad
Initial spacecraft mass m0 150 kg
Low-thrust engine input power Peng 200 W
Low-thrust engine efficiency ηeng 50 %
Low-thrust engine specific impulse Isp 1500 s

5.4.1 Numerical Validations

In this part, a test transfer for the OneWeb satellite is presented to demonstrate
the optimality of the proposed control laws and the accuracy of the averaged low-
thrust dynamics models. The following simulation parameters and force model
are considered:

• the initial semi-major axis and inclination are a0 = R⊕ + 1200 km and i0 =

87.9 deg, respectively [111];
• the target perigee altitude for the perigee decrease strategy is 250 km, fol-
lowing the study in Ref. [46], such that the satellite can quickly re-enter;

• the secular effects of J2 Eq. (2.6) are considered.
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Validation for Control Laws

The optimality of the proposed closed-loop control laws is validated by comparing
with the time-minimum open-loop control laws in terms of the Time of Flight
(ToF). Here the time-minimum open-loop control laws are obtained by using the
indirect method, as presented in Appendix A.4. Table 5.3 gives the initial costates
of the open-loop control laws for the two strategies.

Table 5.3: Initial costates.

Strategy (λa)0, s/km (λe)0, s (λi)0, s/rad (λΩ)0, s/rad
Perigee decrease 4.2662× 103 −3.6820× 107 0 0

De-orbiting corridor 4.7356× 103 −9.6343× 104 2.7379× 107 0
(λω)0, s/rad (λE)0, s/rad (λm)0, s/kg

Perigee decrease 0 303.86 3.0798× 104

De-orbiting corridor 17.342 015.063 6.1801× 104

Comparisons of ToFs for the closed- and open-loop control laws are presented
in Table 5.4 for the two strategies. As indicated in the table, for both strategies,
the ToFs of the closed-loop control laws are very close to the optimal solutions.

Table 5.4: Comparison of ToFs for the closed- and open-loop control laws.

Strategy ToF of closed-loop control law, days ToF of open-loop control law, days
Perigee decrease 056.392 056.105

De-orbiting corridor 108.577 108.576

Validation for Averaged Low-Thrust Dynamics Model

The accuracy of the averaged dynamics models is validated by comparing with
the exact dynamics model in terms of the numerical integration results. In this
study, the numerical integration is carried out using MATLAB R2020b running
on a computer with Intel Core i7-8550U and 8GB RAM; the ODE solver is ode45,
where the absolute and relative error tolerances are specified as 10−13.

Comparisons of the exact and averaged results in terms of the final state vari-
ables, ToF, and CPU time are presented in Table 5.5 and Table 5.6 for the perigee
decrease and de-orbiting corridor strategies, respectively. As indicated in the ta-
bles, the averaged dynamics models can significantly reduce the computational
load while maintain good accuracy.

Table 5.5: Comparison of the exact and averaged results for the perigee decrease strategy.

Model af , km ef , ×10−2 ωf , rad mf , kg ToF, days CPU time, s
Exact 6910.432 4.0847 −2.1275 145.496 56.4011 6.237

Averaged 6910.399 4.0843 −2.1515 145.496 56.4030 0.007

Table 5.6: Comparison of the exact and averaged results for the de-orbiting corridor strategy.

Model af , km ef , ×10−4 if , deg Ωf , rad ωf , rad mf , kg ToF, days CPU time, s
Exact 9705.773 7.6915 86.515 0.3242 −2.4849 141.329 108.5776 5.770

Averaged 9705.759 8.3046 86.515 0.3242 −2.4589 141.329 108.5773 0.039
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5.4. Simulation Results and Discussion

5.4.2 De-Orbiting Mapping

In this part, several maps of the LEO region that show the ∆v-budget and de-
orbiting time are obtained for the two strategies, by propagating a series of initial
conditions. Here, the ∆v-budget refers to the change in velocity of low-thrust
transfer, and the de-orbiting time refers to the total time to de-orbit, including
the time of active de-orbiting with low-thrust propulsion and the time of passive
de-orbiting due to natural perturbations. Particularly the numerical simulations
for passive de-orbiting are performed by Dr. Elisa Maria Alessi.

Here are the force models considered for the active and passive de-orbiting. In
the simulations for active de-orbiting, the averaged low-thrust dynamics models
are used, and the secular effects of J2 are considered. In the simulations for
passive de-orbiting, the orbital propagator developed for the ReDSHIFT software
tool [53, 112,113] is applied. It considers

• Earth zonal harmonics up to degree 5
• SRP with the cannonball model
• lunisolar perturbations
• atmospheric drag with the Jacchia-Roberts atmospheric density model, as-
suming an exospheric temperature of 1000 K and a variable solar flux at
2800 MHz

For the perigee decrease strategy, the area-to-mass ratio is A/m = 0.012 m2/kg,
which is the average value of the orbiting intact population [114]. For the de-
orbiting corridor strategy, the area-to-mass ratios are A/m = 1 m2/kg and 3 m2/kg;
the former is a feasible value achievable for small satellites [109], whereas the lat-
ter has a potential application for quick re-entry. For both strategies, the drag
and reflectivity coefficients are set to CD = 2.1 and CR = 1, respectively, and the
re-entry is assumed to happen whenever the perigee altitude is decreased to a
demise value of 78 km.

Table 5.7 defines the grids of initial altitude h0 for both strategies, of initial
inclination i0 for the de-orbiting corridor strategy, and of target perigee altitude
hpf for the perigee decrease strategy. In the following simulations, the initial
inclination for the perigee decrease strategy, which has ignorable influence on the
simulation results compared to h0 and hpf , is fixed as 63.435 deg.

Table 5.7: Initial grids.

h0, km ∆h0, km i0, deg ∆i0, deg hpf , km ∆hpf , km
[500, 2000] 10 [30, 120] 2 [200, 600] 10

Perigee Decrease Strategy

Fig. 5.5 shows the ∆v-budget for the perigee decrease strategy as a function of
h0 and hpf , where the white area means h0 < hpf . Here the ∆v-budget is the
change in velocity required to move a spacecraft from given h0 to hpf . As shown
Fig. 5.5, the lower the initial altitude and the higher the target perigee altitude,
the less the ∆v-budget will be. Fig. 5.6 shows the ToF of low-thrust transfer; it
is proportional to ∆v because the thrust is continuously applied.
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Figure 5.5: ∆v-budget for the perigee decrease strategy as a function of h0 and hpf .
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Figure 5.6: ToF of low-thrust transfer for the perigee decrease strategy as a function of h0 and
hpf .

Figs. 5.7 (a) and (b) show the de-orbiting time for the perigee decrease strategy
as a function of h0 and hpf , given the requirements to de-orbit within 25 years and
5 years, respectively. Here the de-orbiting time is the total time to de-orbit that
accounts for the active de-orbiting from given h0 to hpf and the passive de-orbiting
from that hpf . In the maps, the coloured areas denote the conditions in (h0, hpf )

that can lead to re-entry within the required de-orbiting times. Note that the re-
quirement of 25 years is the guidance from the International-Agency Space Debris
Coordination Committee (IADC) for satellites in LEO, and the requirement of
5 years is a guideline that has been considered by some large constellations, such
as the Starlink constellation [115] and the OneWeb constellation [111], to reduce
the negative impact on the space environment as much as possible.

As shown in Fig. 5.7, generally, the lower the initial altitude and the lower the
target perigee altitude, the faster the de-orbiting will be. If there is no limit on
∆v-budget, the perigee decrease strategy can achieve re-entry within 5 years from
any initial altitudes up to 2, 000 km.
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5.4. Simulation Results and Discussion
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(a) De-orbiting within 25 years. (b) De-orbiting within 5 years.

Figure 5.7: De-orbiting time for the perigee decrease strategy as a function of h0 and hpf .

De-Orbiting Corridor Strategy

Fig. 5.8 shows the ∆v-budget for the de-orbiting corridor strategy as a function
of h0 and i0, where the black curves indicate the location of de-orbiting corridors,
assuming e = 0.001. Here the ∆v-budget is the change in velocity required to move
a spacecraft from a given (h0, i0) to the closest de-orbiting corridor. As shown
in Fig. 5.8, the closer the initial state to the corresponding target de-orbiting
corridor, the less the ∆v-budget will be. Fig. 5.9 shows the ToF of low-thrust
transfer; it is proportional to ∆v because the thrust is continuously applied.
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Figure 5.8: ∆v-budget for the de-orbiting corridor strategy as a function of h0 and i0.

Fig. 5.10 and Fig. 5.11 show the de-orbiting time for the de-orbiting corridor
strategy as a function of h0 and i0, for A/m = 1 m2/kg and 3 m2/kg, respectively.
Here the de-orbiting time is the total time to de-orbit that accounts for the active
de-orbiting from a given (h0, i0) to the closest de-orbiting corridor and the passive
de-orbiting from that de-orbiting corridor. In the maps, the coloured areas denote
the conditions in (h0, i0) that can lead to re-entry within 25 years and 5 years.

As indicated in Fig. 5.10 and Fig. 5.11, the de-orbiting corridor located in the
inclination between 30 and 45 deg is more effective than the others in terms of the
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Figure 5.9: ToF for the de-orbiting corridor strategy as a function of h0 and i0.
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(a) De-orbiting within 25 years. (b) De-orbiting within 5 years.

Figure 5.10: De-orbiting time for the de-orbiting corridor strategy as a function of h0 and i0,
for A/m = 1 m2/kg.

30 45 60 75 90 105 120

Initial Inclination, deg

500

750

1000

1250

1500

1750

2000

In
it
ia

l 
A

lt
it
u

d
e

, 
k
m

5 

10

15

20

25

D
e

-O
rb

it
in

g
 T

im
e

, 
y
e

a
rs

30 45 60 75 90 105 120

Initial Inclination, deg

500

750

1000

1250

1500

1750

2000

In
it
ia

l 
A

lt
it
u

d
e

, 
k
m

1

2

3

4

5

D
e

-O
rb

it
in

g
 T

im
e

, 
y
e

a
rs

(a) De-orbiting within 25 years. (b) De-orbiting within 5 years.

Figure 5.11: De-orbiting time for the de-orbiting corridor strategy as a function of h0 and i0,
for A/m = 3 m2/kg.
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5.4. Simulation Results and Discussion

passive de-orbiting. Besides, the low and middle LEO altitudes show a relatively
wider region for exploitable initial conditions. This is due to the fact the passive
de-orbiting device with an augmentation area can also act as a drag sail [54]. Also,
the ability of the de-orbiting corridor strategy depends on the area-to-mass ratio
of the passive de-orbiting device; the larger the area-to-mass ratio, the faster the
de-orbiting will be.

De-orbiting Strategy Comparison

Finally, the two strategies are compared in terms of the ∆v-budget to identify the
feasible regions for the two strategies with given de-orbiting time requirements
(i.e. 25 years and 5 years), as shown in Fig. 5.12 and Fig. 5.13, where the area-to-
mass ratios considered for the de-orbiting corridor strategy are A/m = 1 m2/kg
and 3 m2/kg, respectively. In the maps, the green areas denote the regions where
the ∆v-budgets by the de-orbiting corridor strategy are smaller than those by
the perigee decrease strategy, and thus for these regions, the de-orbiting corridor
strategy is superior. Accordingly, the remaining blue areas denote the feasible
regions for the perigee decrease strategy. Note that for the perigee decrease strat-
egy, the ∆v-budget used in the comparison is the minimum value to de-orbit from
a given h0 within a given de-orbiting time requirement (i.e. 25 years or 5 years),
and this value is assumed identical for all the initial inclination, recalling that the
initial inclination has ignorable influence on the simulation results for the perigee
decrease strategy.
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(a) De-orbiting within 25 years. (b) De-orbiting within 5 years.

Figure 5.12: Feasible regions for the perigee decrease strategy (blue) and for the de-orbiting
corridor strategy (green), for A/m = 1 m2/kg.

As indicated in Fig. 5.12 and Fig. 5.13, the de-orbiting corridor strategy spends
more ∆v-budget than the perigee decrease strategy in most of the LEO region
because of the expensive inclination change. However, there still exist many cases,
especially in the high-altitude LEO region, where the de-orbiting corridor strategy
is more attractive. By reading the maps, the mission operators can choose their
preferable strategy according to mission conditions and requirements.
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(a) De-orbiting within 25 years. (b) De-orbiting within 5 years.

Figure 5.13: Feasible regions for the perigee decrease strategy (blue) and for the de-orbiting
corridor strategy (green), for A/m = 3 m2/kg.
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CHAPTER6
Low Earth Orbit Co-Planar Satellites

Low-Thrust Planar Transfer Considering

Self-Induced Collision Avoidance

This chapter deals with the planar transfer problem (orbit raising and de-orbiting)
for co-planar satellites with low-thrust propulsion, taking the self-induced colli-
sion avoidance into consideration at the mission design stage. A Blended Error-
Correction (BEC) control law, with which the thrust direction changes in a self-
adaptive way, is developed by blending two types of efficient control laws and
offsetting the errors of the osculating orbit with respect to the target orbit. The
semi-analytical solutions for orbital elements, which reduce the computational
load of propagating long-duration trajectories, are derived by computing the an-
alytical incremental changes in orbital elements after every revolution with an
orbital averaging technique. Based on the analytical BEC control law and semi-
analytical solutions, transfers can be computed quickly for any starting times.
Finally, the self-induced collision, which is modelled by miss distance, is avoided
by properly scheduling the timing to start transfer for every satellite.

Note that the scope of this study is only the propulsive phase. For orbit raising,
it is the phase from the parking orbit to the final orbit at the nominal altitude,
while excluding the final phasing angle adjustment. For de-orbiting, it is the
active disposal phase, from the initial orbit to the re-entry perigee under which
the atmospheric drag will lead the spacecraft to natural re-entry. Within this
scope, the atmospheric drag can be neglected compared with the effects of low-
thrust and Earth’s gravity, and the self-induced collision is discussed between the
active satellites.
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Chapter 6. Low Earth Orbit Co-Planar Satellites Low-Thrust Planar Transfer
Considering Self-Induced Collision Avoidance

6.1 Control Law Design

In this study, two control laws are used for planar transfer: the tangential thrusting
and the inertial thrusting. Here are the reasons for this choice:

• the tangential and inertial thrusting are the local- and near-optimal control
laws to change a and e, respectively, as introduced in Sec. 2.4;

• the dynamics model governed by these two control laws is in a simple fashion,
making it possible to carry out the analytical integration for variations in
orbital elements, as will be presented in Sec. 6.2.

It has to be noted that the idea of “error-correction” was proposed by Ruggiero
et. al [77], where the authors used a local-optimal control law to change e. Here
are the pitch angles for inertial thrusting and local-optimal control law:

αi = ±ν (6.1a)

αlocal = ± tan−1

(
sin ν

cos ν + cosE

)
(6.1b)

where the sign + and − represents the cases of eccentricity increase and decrease,
respectively. Apparently, the expression of αi is more concise than that of αlocal,
thus leading to a simpler dynamics model. Fig. 6.1 shows the efficiency of inertial
thrusting as a function of E and e, where the y-axis is the ratio between ė governed
by inertial thrusting and local-optimal control law. As shown in the figure, the
ratio is higher than 0.92 for LEO transfer where e ≤ 0.2, implying high efficiency
of inertial thrusting.
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Figure 6.1: Efficiency of inertial thrusting (the eccentricity increasing as the colour from dark
to light).

Using the expression of tangential thrusting in Eq. (2.10), the rates of change
of planar orbital elements with E subject to tangential thrusting are given by

da

dE
= ±f 2a3

µ

√
1− e2cos2E (6.2a)

de

dE
= ±f

2a2
(
1− e2

)
µ

√
1− e cosE

1 + e cosE
cosE (6.2b)

dω

dE
= ±f 2a2

√
1− e2

µe

√
1− e cosE

1 + e cosE
sinE (6.2c)
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6.1. Control Law Design

where the sign + and − represents the cases of semi-major axis increase and
decrease, respectively.

Using the expression of inertial thrusting in Eq. (2.13), the rates of change of
planar orbital elements with E subject to inertial thrusting are given by

da

dE
= ±f 2a3

√
1− e2

µ
cosE (6.3a)

de

dE
= ±f a

2
√

1− e2

µ

(
cos2E − 2e cosE + 1

)
(6.3b)

dω

dE
= ±f a

2

µe
(cosE − e) sinE (6.3c)

where the sign + and − represents the cases of eccentricity increase and decrease,
respectively.

In order to change a and e at the same time, the thrust acceleration vector is
defined as

f = ctft + cifi = f(ctf̂t + cif̂i) (6.4)

where ft and fi are the thrust acceleration vectors of tangential and inertial
thrusting, respectively, with a magnitude of f , ct and ci are the weighting factors
allocated to tangential and inertial thrusting, respectively, and ◦̂ represents the
unit vector of the generic variable ◦.

Recalling that the tangential and inertial thrusting are the local- and near-
optimal control laws to change a and e, respectively, ct and ci are therefore set
to be proportional to the instantaneous errors of a and e, respectively, towards
the desired target values, such that thrust direction can change in a self-adaptive
way. The instantaneous errors in a and e, denoted by ka and ke, respectively, are
defined by the means of [77]

ka =
|ad − a0|
|ad − a0|

, ke =
|ed − e0|
|ed − e0|

(6.5)

where ◦0 and ◦d represent the initial and desired target values, respectively, of the
generic variable ◦, and |◦| represents the absolute value of ◦. Note that Eq. (6.5)
can eliminate the dimensional difference between a and e, where a is on the order
of 103–105 km and e is less than 1.

For orbit raising mission, ad and ed are the orbital elements of the final orbit,
while for de-orbiting mission, ad and ed are set to satisfy

hpf = ad (1− ed)−R⊕ (6.6)

where hpf is the final perigee altitude below which the atmospheric drag will lead
the spacecraft to natural re-entry. To lower the perigee as fast as possible, ad and
ed in de-orbiting mission are chosen as

ad = hpf +R⊕, ed = 1 (6.7)

After defining the instantaneous errors, ct and ci can be stated as

ct = ska, ci = ske (6.8)
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where s is a scale factor that ensures

‖ctf̂t + cif̂r‖ = ‖f̂‖ = 1 (6.9)

with ‖◦‖ representing the magnitude of the generic vector ◦. By using the cosine
law, the left-hand side of Eq. (6.9) becomes

‖ctf̂t + cif̂r‖ = c2t‖f̂t‖2 + c2i ‖f̂i‖2 − 2|ct||ci|‖f̂t‖‖f̂i‖ cos ζ (6.10)

where ζ is the angle between f̂t and f̂i. Because f̂t and f̂i are unit vectors, there
is

‖f̂t‖ = ‖f̂i‖ = 1 (6.11)

Thus, Eq. (6.10) becomes

‖ctf̂t + cif̂r‖ = c2t + c2i − 2|ct||ci| cos ζ (6.12)

Then substituting Eq. (6.12) into Eq. (6.9) and replacing ct, ci with Eq. (6.8), s
can be solved:

s =
1√

k2
a + k2

e − 2|ka||ke| cos ζ
(6.13)

and accordingly,

ct =
ka√

k2
a + k2

e − 2|ka||ke| cos ζ
, ci =

ke√
k2
a + k2

e − 2|ka||ke| cos ζ
(6.14)

From the definitions of tangential and inertial thrusting in Sec. 2.4, there is

ζ = αi − αt (6.15)

where αt and αi are the pitch angles for tangential and inertial thrusting, respec-
tively, given by

αt =

{
φfpa, if ka ≥ 0

φfpa + π, if ka < 0
(6.16a)

αi =

{
ν, if ke ≥ 0

ν − π, if ke < 0
(6.16b)

with φfpa being the flight path angle, a satellite-based angle from the direction of
the θ̂-axis of the Gauss coordinate system to the direction of velocity vector [93,
pp. 18]; φfpa and E are related by

sinφfpa =
e sinE√

1− e2 cos2E
, cosφfpa =

√
1− e2

√
1− e2 cos2E

(6.17)

From Eq. (6.16), there is

cos ζ = sgnkasgnke cos (ν − φfpa) = sgnkasgnke

√
1− e2 cosE√
1− e2 cos2E

(6.18)

where sgnka and sgnke return the signs of ka and ke, respectively.
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6.2. Averaged Low-Thrust Dynamics Model

Finally, substituting Eq. (6.18) into Eq. (6.14), ct and ci are written as functions
of the instantaneous errors ka, ke and the eccentric anomaly E:

ct =
ka√

k2
a + k2

e + 2kake

√
1− e2 cosE√
1− e2cos2E

, ci =
ke√

k2
a + k2

e + 2kake

√
1− e2 cosE√
1− e2cos2E

(6.19)
The proposed control law is named here as the Blended Error-Correction (BEC)

control law, the blend of tangential thrusting and inertial thrusting, based on the
offsets in the instantaneous errors in semi-major axis and eccentricity, and hence
enabling the thrust direction to self-adaptively adjust according to the deviation
of the instantaneous orbit towards the desired target orbit.

By using the BEC control law, the rates of change of planar orbital elements
with E are given by

dx

dE
= ct

(
+

dx

dE

)
t

+ci

(
+

dx

dE

)
i

(6.20)

where x = {a, e, ω}>, (+dx/dE)t and (+dx/dE)i are given by Eq. (6.2) and
Eq. (6.3), respectively, with the sign + representing that the signs of sub-equations
are positive, because the increase and decrease of a and e depend on ct and ci.

6.2 Averaged Low-Thrust Dynamics Model

It is of high importance in the present study to further speed up the computation
process of low-thrust trajectories because in the next section, in every trial to find
the transfer starting times, we need to propagate the orbit motion for all satellites.
To reduce the computational load, in this section, the orbital averaging technique
will be used to derive two sets of averaged dynamics models for orbit raising and
de-orbiting missions, and the numerical validations will be conducted to prove the
accuracy of the averaged dynamics models.

Recalling the use of the orbital averaging technique presented in Sec. 2.5, the
variations in the orbital elements (semi-major axis, eccentricity, and argument
of perigee) over one revolution can be evaluated by integrating Eq. (6.20) in the
eccentric anomaly from 0 to 2π:∫ 2π

0

dx

dE
dE =

∫ 2π

0

[
ct

(
+

dx

dE

)
t

+ ci

(
+

dx

dE

)
i

]
dE (6.21)

Being this a preliminary study, the Earth’s shadow effect is not considered. No
analytical solutions exist for Eq. (6.21). Noting that the eccentricity of LEO
orbits is small (≤ 0.2), in this study we compute a Taylor expansion in power of
the eccentricity for the inverse of the denominator of ct and ci up to O(e2).

6.2.1 Orbit Raising

The orbit raising mission in this study is assumed to raise the satellites from the
parking orbits to the final circular orbits at the nominal altitude, i.e., ef = 0; the
final phasing angle adjustment is excluded from this preliminary study. According
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to Eq. (6.5), the errors in semi-major axis and eccentricity are given by

ka =
∆a

af − a0
, ke = −e0

e0
(6.22)

where ∆a = af − a.
Then substituting Eq. (6.22) into Eq. (6.19) and carrying out the expansion,

ct and ci can be approximated as

ct ≈ R, ci ≈ −
af − a0

∆ae0
eR (6.23)

where R is a binomial in the eccentricity, given by

R = 1 +
af − a0

∆ae0
cosEe+

(
af − a0

∆ae0

)2
3cos2E − 1

2
e2 (6.24)

Substituting Eq. (6.23) into Eq. (6.20), and then carrying out the integration
in E from 0 to 2π, after some manipulations, the variations in the orbital elements
over one revolution can be derived:

∆arev =
4πa3

µ

[
1− (af − a0)

2
+ ∆a2e2

0

4∆a2e2
0

e2

]
f (6.25a)

∆erev = −πa
2

µ

af − a0 + 2∆ae0

∆ae0
ef (6.25b)

∆ωrev = −πa
2

µ

af − a0

∆ae0
ef (6.25c)

6.2.2 De-Orbiting

According to Eqs. (6.5) – (6.7), the errors in semi-major axis and eccentricity are
given by

ka =
∆a

a0 − apf
, ke = ∆e (6.26)

where, apf = hpf +R⊕, ∆a = apf − a, and ∆e = 1− e.
Similar to orbit raising, substituting Eq. (6.26) into Eq. (6.19) and carrying

out the expansion, ct and ci can be approximated as

ct ≈ ∆aD, ci ≈ (a0 − apf ) ∆eD (6.27)

where D is a binomial in the eccentricity, given by

D =
D0[

(a0 − apf )
2

+ ∆a2 + 2 (a0 − apf ) ∆a cosE
]1/2

+
D1[

(a0 − apf )
2

+ ∆a2 + 2 (a0 − apf ) ∆a cosE
]3/2

e

+
D2[

(a0 − apf )
2

+ ∆a2 + 2 (a0 − apf ) ∆a cosE
]5/2

e2

(6.28)
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6.2. Averaged Low-Thrust Dynamics Model

with D0, D1 and D2 being

D0 = 1

D1 = (a0 − apf ) [(a0 − apf ) + ∆a cosE]

D2 =
a0 − apf

4
{(a0 − apf )

[
4(a0 − apf )

2
+ 3∆a2

]
+ 2

[
5(a0 − apf )

2
+ ∆a2

]
∆a cosE + 3 (a0 − apf ) ∆a2 cos 2E

− 2
[
(a0 − apf )

2
+ ∆a2

]
)∆a cos 3E − 2 (a0 − apf ) ∆a2 cos 4E}

(6.29)

Substituting Eq. (6.27) into Eq. (6.20), and then carrying out the integration
in E from 0 to 2π, after some manipulations, the variations in the orbital elements
over one revolution can be derived:

∆arev =
2a3

µ
[

1

a0 − a
(
aelliFt ∆a+ aelliFi

√
1− e2∆e

)
elliF

+ (a0 − a)
(
aelliEt ∆a+ aelliFt

√
1− e2∆e

)
elliE]f

(6.30)

∆erev = f

[
1

a0 − a
+ (a0 − a)

]
a2
√

1− e2

µ
[eelliFt

√
1− e2∆a

+ eelliFi (a0 − apf ) ∆e]elliF

(6.31)

∆ωrev =
3πR2

EJ2

2a2(1− e2)
2

(
5cos2i− 1

)
(6.32)

where aelliFt , aelliFi , aelliEt , eelliFt , eelliFi , eelliEt , eelliEi and are the binomials in the
eccentricity, reported in Appendix B.1.

Eqs. (6.30) and (6.31) contain some elliptic integrals to be evaluated once per
revolution:

elliF = ellipticF

(
π,

4 (a0 − apf ) ∆a

[(a0 − apf ) + ∆a]
2

)
(6.33)

where

ellipticF (φ, ρ) =

φ∫
0

1√
1− ρsin2ϕ

dϕ (6.34)

is the first kind of incomplete elliptic integral [94, Sec. 1.5], and

elliE = ellipticE

(
π,

4 (a0 − apf ) ∆a

[(a0 − apf ) + ∆a]
2

)
(6.35)

where

ellipticE (φ, ρ) =

φ∫
0

√
1− ρsin2ϕdϕ (6.36)

is the second kind of incomplete elliptic integral [94, Sec. 1.5].
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6.2.3 Numerical Validation

To verify the accuracy of the semi-analytical solutions, a comparison is conducted
between the full dynamics integration and the semi-analytical solutions. Table 6.1
gives the characteristics of a stationary plasma thruster [116]. The mission param-
eters are presented in Table 6.2. Note that, for the full dynamics integration, the
lower boundary for the eccentricity is set to 10−4 in order to avoid the singularity
during the integration of the argument of perigee. In this study, the numerical
integration is carried out using MATLAB R2020b running on a computer with
Intel Core i7-8550U and 8GB RAM; the ODE solver is ode45, where the absolute
and relative error tolerances are specified as 10−13.

Table 6.1: Thruster characteristics.

Peng, W ηeng, % Isp,s
150 39.23 1500

Table 6.2: Mission parameters.

Initial conditions
m0, a0, e0 i0, ω0, ν0,

Mission kg km Full Semi deg deg deg Final conditions
Orbit raising 120 R⊕ + 0500 10−2 10−2 87.9 0 30 af = (R⊕ + 1200) km, ef ≤ 10−4

De-orbiting 120 R⊕ + 1200 10−4 0 87.9 0 30 hpf = 300 km

Fig. 6.2 to Fig. 6.4 present the time histories of the orbital elements obtained by
the full dynamics integration and the semi-analytical solutions for both missions.

(a) Orbit raising (b) De-orbiting

Figure 6.2: Time history of the semi-major axis.

It can be seen from the figures that the semi-analytical solutions can eliminate
the short period effects and give the averaged orbital elements. Fig. 6.2 – Fig. 6.4
show good agreement between the full dynamics integration and semi-analytical
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6.2. Averaged Low-Thrust Dynamics Model

(a) Orbit raising (b) De-orbiting

Figure 6.3: Time history of the eccentricity.

(a) Orbit raising (b) De-orbiting

Figure 6.4: Time history of the argument of perigee.

solutions. Although there exists a maximum error of less than 10−3 for the eccen-
tricity in the orbit raising mission, which is introduced by the Taylor expansion,
the semi-analytical results gradually convergence to the numerical integration and
the final travel time is the same.

The results at the final time are presented in Table 6.3, again, showing good
agreement.

Table 6.3: Results at the final time.

Full dynamics integration Semi-analytical solutions
Mission af , km ef tf , days ∆mf , kg af , km ef tf , days ∆mf , kg

Orbit raising 7578.16 1.00× 10−8 65.20 3.06 7578.12 3.95× 10−10 65.55 3.08
De-orbiting 7187.32 7.08× 10−2 76.01 3.57 7186.82 7.10× 10−2 76.12 3.58

The computation time of the full dynamics integration and the semi-analytical
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Table 6.4: Computation time.

Mission Full dynamic integration Semi-analytical solutions
Orbit raising 2.9739 s 0.0072 s
De-orbiting 3.1563 s 0.1706 s

solutions are compared in Table 6.4, in which the relative and absolute tolerance
for the full dynamics integration are 10−6 and 10−9, respectively. It can be seen
that the computation load can be drastically reduced by using the semi-analytical
solutions.

6.3 Self-Induced Collision Avoidance

With the analytical BEC control law and semi-analytical solutions, the orbital
transfers from any starting times can be computed in short time. The next step
is to deal with the transfer problem for multiple satellites, in which the problem
of self-induced collision arises. In this section, the self-induced collision risk is
quantitatively evaluated by miss distance, and then the problem of self-induced
collision is solved by scheduling properly the timing to start transfer for every
satellite for orbit raising and de-orbiting missions.

6.3.1 Miss Distance

The notion of miss distance in this study is redefined on two levels.
The first level is the miss distance between two satellites, the minimum relative

distance between two satellites over the entire transfer, referred to as the satellite-
pair miss distance, and denoted by dmiss. The satellite-pair miss distance between
satellites Ath and Bth is given by

dABmiss = min δrAB (t) , t ∈
[
tAB0 , tABf

]
(6.37)

where,
[
tAB0 , tABf

]
is the time interval within which both the Ath and Bth satellite

are in the propulsive transfer phase, tAB0 and tABf are given by

tAB0 = max
{
tA0 , t

B
0

}
, tABf = min

{
tAf , t

B
f

}
(6.38)

with tA0 and tAf being the transfer starting and ending time of the Ath satellite,
respectively,tB0 and tBf being the transfer starting and ending time of the Bth
satellite, respectively.

The second level is the miss distance of the constellation, the minimum satellite-
pair miss distance of all satellite pairs from the constellation, referred to as the
constellation miss distance, and denoted by Dmiss. Supposing a constellation of
N satellites, the constellation miss distance is given by

Dmiss = min
1≤A<B≤N

dABmiss (6.39)

Through this assessment approach, the problem of avoiding the self-induced
collision can be quantitatively transformed into increasing the constellation miss
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distance, which is equivalent to increasing the satellite-pair miss distance, whereas
the satellite-pair miss distance is dependent on the relative motions of the satel-
lites. Reminding that we are discussing planar transfer for co-planar satellites,
the relative distance can be written as

δrAB =
√
r2
A + r2

B − 2rArB cos (φA − φB) (6.40)

where φ = ω + ν, referred to in this study as the true latitude.
Observing from Eq. (6.40), for given rA and rB, δrAB will reach its minimum,

i.e., δrAB = |rA − rB|, when φA − φB = 2kπ, where k is an integer. This implies
that the satellite-pair miss distance is associated to the orbit radius difference
when the latitude difference is a multiple of 2π. In this study, such an event is
referred to as latitude resonance.

Since the transfer trajectories have been predefined for every satellite, the pos-
sible way to increase the miss distance is by properly scheduling the timing to
start transfer for every satellite in the constellation. For no doubts the optimal
solution for timing scheduling is to let all satellites start to transfer at the same
timing, such that all satellites follow the same orbital path, and hence no collision
will happen. However, in practical applications, the satellites may not be allowed
to transfer at the same time; for example, the command for manoeuvring cannot
be delivered to all satellites at the same time due to the distribution of ground
stations. So, in this study, the transfer starting time is scheduled within the scope
that the satellites do not start to transfer at the same time.

6.3.2 Transfer Starting Time Scheduling for Orbit Raising Mission

This section will schedule the transfer starting times for orbit raising mission.
Fig. 6.5 shows the satellite-pair miss distance as a function of the transfer

starting time difference for two satellites with the initial true anomaly difference
of 2π/20 rad. The mission conditions are given by Table 6.1 and Table 6.2. The
red crosses indicate that the latitude resonance does not happen, i.e., the latitude
difference never reaches 2π. The blue dots and black circles indicate that the
latitude resonance happens for one or multiple times. The difference is that,
for the blue dots, the miss distance equals to the relative distance at one of the
latitude resonances, while for the black circles, the miss distance equals to the
relative distance at the first latitude resonance. The detailed interpretation on
these three cases is reported in Appendix B.2. Note that for the case that the
latitude resonance does not happen, a small increase in the transfer starting time
difference will lead to a sharp decline in the miss distance.

Fig. 6.6 shows in detail for the blue dots and black circles of Fig. 6.5. In
Fig. 6.6, all blue dots and black circles from Fig. 6.5 are replaced with black dots,
and the x coordinates for the blue cross and red asterisk are equal to the critical
transfer starting time differences δtsafe

0 and δtsafest
0 . δtsafe

0 denotes the safe time
interval between two successive transfers. If the transfer starting time difference
between two satellites is equal to or larger than δtsafe

0 , then the satellite-pair miss
distance of these two satellites can be ensured higher than a given threshold (10

km for the present problem), and thus the transfers can be ensured safely enough.
δtsafest

0 stands for the safest time interval between two successive transfers. If the
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Figure 6.5: Satellite-pair miss distance versus transfer starting time difference (δν0 = 2π/20
rad).

transfer starting time difference between two satellites is equal to or larger than
δtsafest

0 , then the satellite-pair miss distance of these two satellites will increase to
a constant number (70.5 km for the present problem), in which case the transfers
can be ensured safest.

Figure 6.6: Critical transfer starting time differences (cross: safe transfer starting time differ-
ence, asterisk: safest transfer starting time difference).

By checking the satellite-pair miss distance for the satellite pairs with different
initial relative phases and identifying the critical transfer starting time difference,
the mission designers can preliminary estimate the self-induced collision risk and
can have an idea about the safe time interval to do the next transfer.

Take as example 20 evenly spaced co-planar satellites. The mission conditions
are given in Table 6.1 and Table 6.2. The critical transfer starting time difference
is identified for the satellite pairs with different initial relative phases, presented
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Table 6.5: Critical transfer starting time difference for different satellite pairs (dmiss ≥ 10 km).

Critical transfer starting time
δν0, rad δtsafe

0 , days δtsafest
0 , days

2π/20 0.92 10.13
4π/20 0.92 12.42
6π/20 1.13 9.71
8π/20 1.04 11.58
10π/20 0.96 7.58
12π/20 0.96 10.13
14π/20 1.13 10.46
16π/20 1.25 7.58
18π/20 1.17 6.71
20π/20 1.21 9.42
22π/20 1.08 8.96
24π/20 1.25 8.54
26π/20 1.25 6.13
28π/20 1.29 7.38
30π/20 1.33 5.50
32π/20 1.54 5.46
34π/20 1.75 4.08
36π/20 1.83 3.83
38π/20 1.62 2.38

in Table 6.5. The figures of the satellite-pair miss distance versus the transfer
starting time difference are presented in Appendix B.3.

6.3.3 Transfer Starting Time Scheduling for De-Orbiting Mission

This section will schedule the transfer starting times for de-orbiting mission.
Fig. 6.7 (a) shows the satellite-pair miss distance as a function of the transfer

starting time difference for two satellites with the initial true anomaly difference
of 2π/8 rad; the red crosses and black dots indicate the cases that the latitude
resonance does not happen and does happen, respectively. Fig. 6.7 (b) is the
magnification for Fig. 6.7 (a) in terms of the cases that the latitude resonance
happens. The mission conditions are given in Table 6.1 and Table 6.2. Similarly
to Fig. 6.5, for the case that the latitude resonance does not happen, a small
increase in the transfer starting time difference will lead to a sharp decline in the
miss distance.

As shown in Fig. 6.7, for de-orbiting missions, the influence of the transfer
starting time difference on the satellite-pair miss distance is not as clear as orbit
raising missions (shown in Fig. 6.5 and Fig. 6.6). This is due to the fact that
the de-orbiting trajectories are elliptical and hence the relative geometry of two
de-orbiting trajectories are more complicated than the near-circular orbit raising
trajectories. Therefore, we are not able to identify the critical transfer starting
time difference for the de-orbiting missions in this preliminary study. Instead, the
timing scheduling is done with the aid of multi-objective optimisation.

The first objective is maximising the constellation miss distance, i.e. minimis-
ing the self-induced collision risk. The second objective is minimising the total
transfer time, from the first satellite starting the transfer to the last satellite
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(a) All cases. (b) Cases that the latitude resonance happens.

Figure 6.7: Satellite-pair miss distance versus transfer starting time difference (δν0 = 2π/8
rad).

finishing the transfer. This multi-objective optimisation problem is modelled as

J1 = −Dmiss (6.41a)
J2 = +ttotal (6.41b)

where the objective functions J1 and J2 are to be minimised, and ttotal is the total
transfer time, given by

ttotal = max
1≤B≤N

{
tBf
}
− min

1≤A≤N

{
tA0
}

(6.42)

with N being the number of satellites in the constellation, tA0 and tBf being the
transfer starting and ending time of the Ath and Bth satellite, respectively.

Take as an example of 8 evenly spaced co-planar satellites. The mission condi-
tions are given in Table 6.1 and Table 6.2. A de-orbiting strategy is also considered
to remove the satellites in four groups, two satellites in each group, as shown in
Fig. 6.8. In this figure, the satellites from different groups are represented by dif-
ferent colours; t00 − t03 indicate the transfer starting time of each group, and the
satellites from the same group start to de-orbit at the same timing. The reason to
propose such a strategy is because the satellite-pair miss distance of the satellites
in opposite positions is maximum if they start to de-orbit at the same time. A
multi-objective global optimiser is used to search for the Pareto-front solutions
through a multi-agent-based search approach hybridized with a domain decom-
position technique [85]. The lower and upper bounds for the design variables,
i.e. transfer starting time, are given in Table 6.6. Here, t00 is set to 0 and the
minimum acceptable constellation miss distance is set to 5 km.

The optimisation results are presented in Fig. 6.9 and Table 6.7, implying that
a trade-off consideration for the constellation miss distance and the total transfer
time is needed. Note that the constellation miss distance considering the RAAN
shift due to J2 perturbation is also verified a posteriori and presented in Table 6.7.
In general, the constellation miss distance considering the RAAN shift satisfies
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Figure 6.8: De-orbiting strategy.

Table 6.6: Lower and upper bounds for the transfer starting time.

Lower bounds, days Upper bounds, days
t00 0 0
t01 15 60
t02 30 60
t03 45 60

the lower bound for Dmiss (≥ 5 km) and it is larger than the constellation miss
distance that does not consider the RAAN shift, except for few cases.

(a) Transfer starting time. (b) Pareto-front solutions – constellation miss distance
versus total transfer time.

Figure 6.9: Optimization results (Dmiss ≥ 5 km).
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Table 6.7: Optimization results (Dmiss ≥ 5 km).

t01, days t02, days t03, days ttotal, days Dmiss, km A posteriori Dmiss, km
36.46 42.30 45 121.12 5.11 9.65
38.92 33.28 45.90 122.01 5.41 5.51
25.34 43.00 46.10 122.22 5.96 9.65
48.57 33.50 46.47 124.69 6.14 3.16
34.19 44.99 50.90 127.02 7.04 9.65
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CHAPTER7
Conclusions

As constellations with large numbers of satellites become more achievable and
appealing, critical challenges in terms of cost, safety threat, computational effort,
etc., have been posed to constellation studies. This thesis responds to the chal-
lenges brought by the surge in constellations by performing mission analysis and
design for four key phases of constellation life cycle.

In this chapter the main results of this thesis are summarised and commented.
On the base of the findings of this study, the limitations and future work are
given.

7.1 Summary and Findings

In the following the major findings and advancements are discussed separately
along with a summary of the methods and applications developed.

7.1.1 Constellation Design

A part of the main contents of this thesis is constellation design, as presented in
Chap. 3. It is an imperative pre-mission phase that strongly affects the system
cost and performance [2, pp. 673]. Given the objective to reduce cost, a system-
atic method was developed for multi-criteria design of continuous global coverage
Walker and SoC constellations, allowing seven critical constellation properties to
be optimised in a traded off way, where the constellation properties refer to con-
stellation performances or costs. Particularly, the self-induced collision property
was considered as a design criterion to respond to the challenge of safety threat.
In this method, the quantitative relationship between constellation configuration
and properties was established. To be specific:
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• the constellation configuration was represented by a set of characteristic pa-
rameters, with which all the configuration-related parameters of a Walker or
SoC constellation can be determined;

• the constellation properties were quantitatively assessed by a series of in-
dexes, where the indexes were modelled as functions of the characteristic
parameters.

Moreover, this quantitative relationship also revealed the influence of constella-
tion configuration on properties and thus helped analyse the trade-offs between
properties. Based on the quantitative relationship, a multi-objective optimisation
problem was formulated and then solved with the support of a multi-objective
global optimiser [85]. By replacing the mission-related parameters of the multi-
objective optimisation problem with required values, the proposed method can be
promptly applied to the multi-criteria design for any mission. As an implemen-
tation of the proposed method, some globally optimal constellations were found
for a 1-fold LEO mission and for a 4-fold MEO mission; compared to the exist-
ing constellations (Iridium, GPS, and Galileo), the new designed constellations
showed advantages and disadvantages from different aspects, demonstrating the
need of trade-off for constellation design.

7.1.2 Constellation Deployment

The second topic of this thesis is constellation low-thrust deployment through
J2 perturbations, as presented in Chap. 4, which corresponds to the launch and
build-up properties in constellation design. Given a first objective to increase
revenue, a four-phase deployment scheme was proposed, in which an out-of-plane
thrusting phase was introduced to accelerate the deployment. Given a second
objective to reduce computational effort for the integrated design of a deployment
mission using low-thrust propulsion, analytical time-allocation methods were de-
veloped to determine the times taken for separate phases, allowing the RAAN
and AoL separation completed at the ends of phase 3 and phase 4, respectively.
Especially, the times of the first three phases were optimised, allowing the time
and fuel consumption for RAAN minimised at the same time. Finally, two case
studies of large constellation deployment – a OneWeb-like constellation and a sun-
synchronous constellation – were presented, showing how the proposed approach
was implemented for missions with time and fuel consumption requirements. In
general, the fuel consumption of the proposed J2-thrust strategy is higher than
the traditional J2-only strategy, due to the out-of-plane thrusting, but the time is
shorter and thus the revenue flow can start earlier. This provides mission designers
a fresh thinking to reduce cost by trading off the revenue of a faster deployment
and the cost of higher fuel consumption.

7.1.3 Low Earth Orbit Constellation De-Orbiting

The third topic of this thesis is LEO constellation low-thrust de-orbiting through
natural perturbations, as presented in Chap. 5, which corresponds to the EoL
disposal property in constellation design. Given the objective to reduce negative
impact on LEO environment, two de-orbiting strategies for EoL disposal from
LEO were investigated: the perigee decrease strategy and the de-orbiting corridor
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strategy. With the closed-loop control laws and semi-analytical solutions derived,
a series of initial conditions over the entire LEO region were rapidly propagated,
and subsequently, a set of maps were obtained, showing the ∆v-budget and de-
orbiting time for de-orbiting from LEO with the two strategies. From the maps,
it was observed that if there was no limit on ∆v-budget, the perigee decrease
strategy was able to achieve re-entry within 5 years from any initial altitudes up
to 2000 km, while the ability of the de-orbiting corridor strategy depended on
the initial altitude and inclination, as well as the area-to-mass ratio of passive de-
orbiting device. By comparing the ∆v-budget, another set of maps were obtained,
showing the application conditions of the two strategies to de-orbit within given
time requirements. From the maps, it was concluded that mostly the perigee
decrease strategy was superior, because the de-orbiting corridor strategy was in-
volved in an expensive inclination change; however, there still existed many cases,
especially in high-altitude LEO region, where the de-orbiting corridor strategy
was more attractive.

7.1.4 Low Earth Orbit Co-Planar Satellites Planar Transfer Phases
Considering Self-Induced Collision Avoidance

The last key phase is the planar low-thrust orbit raising and de-orbiting for LEO
coplanar satellites, by taking into account the self-induced collision avoidance
which is crucial to the safety operation of a constellation, as presented in Chap. 6.
The design was conducted via two layers: the first layer was the low-thrust trajec-
tory design for a single satellite; the second layer was the transfer starting time de-
sign for all satellites. In the first layer a closed-loop Blended Error-Correction Con-
trol law and the corresponding semi-analytical solutions were derived in Sec. 6.1
and Sec. 6.2, respectively. In the second layer, the problem of reducing the self-
induced collision risk was quantitatively converted to increasing the miss distance,
and it was solved by designing the transfer starting time for each satellite. For
the orbit raising mission, thanks to the near-circular transfer trajectories, we were
able to identify the safe time interval between two successive transfers, and the
miss distance could be ensured larger than a given safety threshold. For the de-
orbiting mission, with the help of a multi-objective optimiser [85], we obtained
the optimal transfer starting times of all satellites, which corresponded to a set
of Pareto-front solutions of miss distance maximisation and total transfer time
minimisation. Although the test transfers were solved for 20 satellites for orbit
raising and 8 satellites for de-orbiting, the same approach could be followed to
address a similar problem.

7.1.5 Closed-Loop Control Law Design

Given the objective to reduce computational effort for the integrated design of
constellation missions using low-thrust propulsion, throughout the research we
were pursuing closed-loop control laws to directly apply to every satellite in the
constellation. In order to achieve this goal, we resorted to heuristic methods.

In Sec. 5.2, two closed-loop control laws were developed by using the Lyapunov
method. Given the objective to reduce negative impact on LEO environment as
much as possible, constellations were desired to be fast removed, and thus the
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control laws were selected to send the candidate Lyapunov functions to zero at
the fastest rate. Subsequently, stability analyses were performed, proving that
the proposed control laws were stable and thus robust to any initial conditions.
By comparing against the minimum-time open-loop control laws obtained with
indirect methods, the proposed control laws were demonstrated to be sub-optimal.
It has to be noted that for the perigee decrease strategy, although it was proposed
many years ago and have been widely used in real missions, we did not find any
similar work on this topic; in this context, our work filled the gap in the study of
this strategy.

In Sec. 6.1, a Blended Error-Correction control law was developed. Two simple
but efficient in-plane control laws were considered and blended: the tangential
thrusting to change the semi-major axis and the inertial thrusting to change the
eccentricity. A weighting parameter was assigned to each control law in order to
offset the error of the osculating orbit towards the target orbit. A normalisation
procedure was then performed to make the thrust direction along the desired one.
Although not optimal, the proposed control law had a clear physical meaning,
able to adjust the thrust direction in a self-adaptive way.

7.1.6 Analytical and Semi-Analytical Solutions of Low-Thrust Motion

In parallel, a considerable effort was devoted to the reduction of the computational
load required to propagate the orbital motion under the effect of a low-thrust
acceleration.

In Sec. 4.2, two sets of analytical solutions were derived for circular low-thrust
transfer subject to the continuous tangential thrusting and the intermittent yaw
thrusting. Comparing with the other analytical techniques by previous authors,
the scope of application of the formulae presented here was not restricted to
constant thrust acceleration. Especially, to make the analytical integration for
orbital elements achievable, we made use of the orbital averaging technique to
filter out the short-term oscillations related to AoL.

In Sec. 5.3 and Sec. 6.2, the semi-analytical solutions for low-thrust transfer,
i.e. the averaged low-thrust dynamics models, were derived by using the orbital
averaging technique. In particular, to make the analytical integration for varia-
tions in orbital elements achievable, some approximations were introduced to the
exact dynamics model by means of the Fourier series expansion and the Taylor
expansion.

The numerical tests, presented in this dissertation (see Sec. 4.5, Sec. 5.4 and
Sec. 6.2), have shown that the combination of accuracy and computational cost
of these analytical and semi-analytical solutions renders them advantageous com-
pared to numerical integration schemes.

7.2 Limitations and Future Work

Despite the achievements of the research presented in this thesis, some limitations
remain. They are discussed here including possible future work to address them.

In Chap. 3, the proposed constellation design method has shown its ability to
optimise multiple constellation performances and costs. However, it has to be
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noted that this study is focused on circular Walker and SoC constellations, which
have been widely applied in practical applications (e.g. GPS [99], Galileo [82],
and Iridium [83, 84]); in the meanwhile, there still exists other beautiful design,
such as elliptical Draim [117], Flower [20], etc. Moreover, the Flower constellation
has been proved able to encompass many symmetric constellations, apart from
SoC because it is asymmetric. So in future research the Flower constellation can
be used as a more general case. Another limitation is that the proposed constella-
tion design method is not suitable for large constellations, but only for small- and
middle-sized constellations, because the constellation properties considered here
may not be priority for large constellations. For example, the coverage and ro-
bustness properties are no more important design criteria for large constellations
containing hundreds to thousands of satellites. So in future research other design
criteria for large constellations can be investigated and added.

In Chap. 4, the proposed deployment scheme has shown its advantage of accel-
erating the RAAN separation. However, it has to be noted that the prerequisite
of applying this deployment scheme is that the low-thrust engine has to be pow-
erful enough; that is to say, the thrust force and specific impulse require to be
large enough, otherwise the it will be meaningless to add the out-of-plane thrust-
ing phase. For example in the FORMOSAT-3/COSMIC mission [32], the thrust
acceleration is on the order of 10−5 km/s2, which is relatively large compared to
those very low thrust missions. If we reduce the thrust acceleration to 10−7 km/s2,
the optimal solution will always be γ∗ = 0, i.e. the traditional J2-based method,
as shown in Fig 7.1. Another limitation of the proposed deployment scheme is

Figure 7.1: Objective space, for the FORMOSAT-3/COSMIC mission to achieve a 30 deg
RAAN separation with a thrust acceleration of 10−7 km/s2.

that the final separation in RAAN slightly deviates from the desired value, as
shown in Fig. 4.9 and Fig. 4.14, due to the interaction between RAAN and AoL
in phase 4. Such error is inevitable as long as the separation in RAAN and AoL
is performed separately [34]. For future research, it would be of interest to ad-
dress a coupled control problem to simultaneously separate the RAAN and AoL.
A third limitation is that in this study, all satellites are assumed to remain in
circular orbits throughout the deployment, and the analytical solutions are valid
for circular low-thrust transfer. To examine this circular assumption, here we per-
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form a comparison between analytical and numerical solutions for different initial
eccentricities, taking as example the fifth satellite in the sixth plane of the sun-
synchronous constellation, given 1 year time requirement for RAAN separation.
Note that the analytical solutions assume constantly zero eccentricity. Table 7.1
presents the final errors of the analytical solutions relative to the numerical so-
lutions in terms of the semi-major axis, inclination, RAAN, AoL, and spacecraft
mass. As indicated in the table, the errors remain very small until e0 = 10−2,
higher than which the analytical solution to AoL cannot keep enough accuracy.

Table 7.1: Final errors for different initial eccentricity, for satellite 5 in plane 6, sun-
synchronous constellation.

e0 εa, km εi, deg εΩ, deg εu, deg εm, kg
0 −0.0799 −0.0005 +0.0087 +0.4806 −0.0008

10−4 −0.0793 −0.0005 +0.0087 +0.4546 −0.0008
10−3 −0.0738 −0.0005 +0.0079 +0.2217 −0.0008
10−2 −0.0179 −0.0004 −0.0718 −2.0000 −0.0007

In Chap. 5, the application conditions of the two de-orbiting strategies have
been identified and clearly described with maps. However, it has to be noted that
the control laws in this study are designed to be minimum-time in order to reduce
negative impact on LEO environment as much as possible. For future research,
to better compare the two strategies in terms of the ∆v-budget, a minimum-fuel
de-orbiting can also be investigated, and in this case, the averaged low-thrust
dynamics model derived would be helpful to reduce the computational load if
using numerical optimisation methods. In addition to LEO constellations, one
possible research topic is the EoL disposal design for MEO and geosynchronous
constellations; the possible de-orbiting strategies could be removing to graveyard
orbit or exploiting the de-orbiting corridors with the aid of passive de-orbiting
devices. Zuiani [118] has performed a preliminary study on the combined use
of low-thrust and SRP for EoL disposal from MEO. The results showed that
the contribution of SRP consistently helped in reducing thrust and propellant
requirements. Another idea for future research is that the deployment and control
of a passive de-orbiting device with large enough area-to-mass ratio (that for a
150 kg spacecraft would translate into 450 m2 of reflective surface with A/m =

3 m2/kg) implies a higher level of complexity and mass of the mechanisms on-
board. Such increase in the complexity and spacecraft mass is not considered
in this study although one could argue that the saving in propellant mass or de-
orbiting time. But the point which can be ensured is that such passive de-orbiting
device will not cause additional negative impact on space environment due to the
material it uses, in the sense that no fragment will generate if an object penetrates
the augmentation area.

Concerning the work of Chap. 6, two open points remain for future research.
The first one is the RAAN drifting due to J2. In order to focus on analysing the
planar behaviour only, this study did not consider the RAAN drifting. However,
by checking a posteriori, in some cases the RAAN drifting did have negative
influence on self-induced collision. The second problem to address is the transfer
of non-planar satellites, i.e. multi-satellite and multi-plane. The two-layer-study
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7.2. Limitations and Future Work

methodology proposed in this study, i.e. first designing trajectory and then solving
collision avoidance, can be used to address a more general problem.

In addition to the open points above mentioned, some other possible topics
are the studies of elliptical-orbit constellations providing intermittent or local
coverage, as they are out of the scope of this thesis.
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APPENDIXA
Appendix for Chapter 5

The appendix for Chapter 5 is shown here.

A.1 Derivation of Eq. (5.34)

The derivation of Eq. (5.34) is presented as follows.
Let x =

√
6 cos (E/2) and y =

√
5− 3 cosE. We do not know yet if the term

i ln (x+ iy) is real or complex.
Let us start by assuming i ln (x+ iy) equal to a real number z. Then there will

be
x+ iy = exp (−iz) = cos z − i sin z (A.1)

Thus, the following equalities hold

x = cos z, y = − sin z (A.2)

However, because cos2 z + sin2 z = 1, while

x2 + y2 = 6 cos2 E

2
+ 5− 3 cosE = 3 + 3 cosE + 5− 3 cosE = 8 6= 1 (A.3)

the term i ln (x+ iy) is complex.
Let i ln (x+ iy) = σ + iς, where σ and iς are the real and imaginary parts,

respectively. Then there will be

x+ iy = exp (ς − iσ) = exp ς (cosσ − i sinσ) (A.4)

Thus, the following equalities hold

x = exp ς cosσ, y = − exp ς sinσ (A.5)
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Appendix A. Appendix for Chapter 5

from which, σ and ς can be solved in terms of x and y as

σ = − tan−1 y

x
, ς = ln

√
x2 + y2 (A.6)

Recalling from Eq. (A.3) that x2 + y2 = 8, so we have

i ln (x+ iy) = − tan−1 y

x
+ i ln

√
8 (A.7)

namely,

i ln

(√
6 cos

E

2
+ i

√
5− 3 cosE

)
= − sin

E

2
tan−1

√
6 cos

E

2√
5− 3 cosE

+ i ln
√

8 (A.8)

A.2 Expressions in Eq. (5.38)

The expressions of bFk and bEk (with k = 0 to 4) in Eq. (5.38) are given as follows.

bF0 = 1 (A.9a)

bF1 = − 2

c2i

(
2c2a + c2i

)
(A.9b)

bF2 =
2

3c4i

(
16c4a + 16c2ac

2
i + 3c4i

)
(A.9c)

bF3 = − 2

15c6i

(
256c6a + 384c4ac

2
i + 158c2ac

4
i + 15c6i

)
(A.9d)

bF4 =
2

105c8i

(
6144c8a + 12288c6ac

2
i + 8000c4ac

4
i + 1856c2ac

6
i + 105c8i

)
(A.9e)

bE0 = 0 (A.10a)

bE1 =
4

c2i

(
c2a + c2i

)
(A.10b)

bE2 = − 16

3c4i

(
2c4a + 3c2ac

2
i + c4i

)
(A.10c)

bE3 =
4

15c6i

(
128c6a + 256c4ac

2
i + 151c2ac

4
i + 23c6i

)
(A.10d)

bE4 = − 64

105c8i

(
192c8a + 480c6ac

2
i + 406c4ac

4
i + 129c2ac

6
i + 11c8i

)
(A.10e)

132



i
i

“main” — 2021/1/25 — 19:07 — page 133 — #159 i
i

i
i

i
i

A.3. Expressions in Eq. (5.38)

A.3 Expressions in Eq. (5.38)

The expressions of (funk)x (k = 0 to 4 and x = a, e, i, Ω, ω) that appear in
Eq. (5.38) are given as follows.

(fun0)a = 4E (A.11a)

(fun1)a = 2 sin (2ω + 2E) (A.11b)

(fun2)a = sin (4ω + 4E) (A.11c)

(fun3)a =
2

3
sin (6ω + 6E) (A.11d)

(fun4)a =
1

2
sin (8ω + 8E) (A.11e)

(fun0)e =
1

2
(8 sinE − e sin 2E − 6eE) (A.12a)

(fun1)e =
1

24
[+48 sin (2ω + E)− 36e sin (2ω + 2E)

+16 sin (2ω + 3E)− 3e sin (2ω + 4E)− 12eE cos 2ω]
(A.12b)

(fun2)e =
1

60
[− 15e sin (4ω + 2E) + 40 sin (4ω + 3E)

− 45e sin (4ω + 4E) + 24 sin (4ω + 5E)− 5e sin (4ω + 6E)]
(A.12c)

(fun3)e =
1

560
[− 070e sin (6ω + 4E) + 224 sin (6ω + 5E)

− 280e sin (6ω + 6E) + 160 sin (6ω + 7E)− 35e sin (6ω + 8E)]

(A.12d)

(fun4)e =
1

2520
[− 210e sin (8ω + 6E) + 720 sin (8ω + 7E)

− 945e sin (8ω + 8E) + 560 sin (8ω + 9E)− 126e sin (8ω + 10E)]

(A.12e)

(fun0)i =
1

12
[ −3e

(
7√

1− e2
+ 1

)
sinE + 3

(
1 + e2

√
1− e2

− 1

)
sin 2E

− e
(

1√
1− e2

− 1

)
sin 3E + 3e

(
1√

1− e2
− 1

)
sin (2ω − E)

− 18e√
1− e2

sin (2ω + E) + 3

(
1 + e2

√
1− e2

+ 1

)
sin (2ω + 2E)

− e
(

1√
1− e2

+ 1

)
sin (2ω + 3E) + 6

(
1 + e2

√
1− e2

+ 1

)
E

+ 6

(
1 + e2

√
1− e2

− 1

)
E cos 2ω ]

(A.13a)
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(fun1)i =
1

120
{[−30e cos (ω − E) + 30 cos (ω + 2E)

− 10e cos (ω + 3E) + 30e cos (3ω + E)

− 30 cos (3ω + 2E) + 15 cos (3ω + 4E)

− 6e cos (3ω + 5E)] sinω + [30e sin (ω − E)

+ 30
(
1 + e2

)
sin (ω + 2E)− 10e sin (ω + 3E)

− 30e sin (3ω + E) + 30
(
1 + e2

)
sin (3ω + 2E)

+ 15
(
1 + e2

)
sin (3ω + 4E)− 6e sin (3ω + 5E)

− 180e sin (ω + E)− 60e sin (3ω + 3E)]
cosω√
1− e2

+ 30

(
1 + e2

√
1− e2

+ 1

)
E + 30

(
1 + e2

√
1− e2

− 1

)
E cos 2ω}

(A.13b)

(fun2)i =
1

840
{[210e cos (3ω + E)− 210 cos (3ω + 2E)

+ 105 cos (3ω + 4E)− 42e cos (3ω + 5E)

+ 70e cos (5ω + 3E)− 105 cos (5ω + 4E)

+ 70 cos (5ω + 6E)− 30e cos (5ω + 7E)] sinω

+ [−210e sin (3ω + E) + 210
(
1 + e2

)
sin (3ω + 2E)

+ 105
(
1 + e2

)
sin (3ω + 4E)− 42e sin (3ω + 5E)

− 70e sin (5ω + 3E) + 105
(
1 + e2

)
sin (5ω + 4E)

+ 70
(
1 + e2

)
sin (5ω + 6E)− 30e sin (5ω + 7E)

− 420e sin (3ω + 3E)− 252e sin (5ω + 5E)]
cosω√
1− e2

}

(A.13c)

134



i
i

“main” — 2021/1/25 — 19:07 — page 135 — #161 i
i

i
i

i
i

A.3. Expressions in Eq. (5.38)

(fun3)i =
1

5040
{[420e cos (5ω + 3E)− 630 cos (5ω + 4E)

+ 420 cos (5ω + 6E)− 180e cos (5ω + 7E)

+ 252e cos (7ω + 5E)− 420 cos (7ω + 6E)

+ 315 cos (7ω + 8E)− 140e cos (7ω + 9E)] sinω

+ [−420e sin (5ω + 3E) + 630
(
1 + e2

)
sin (5ω + 4E)

+ 420
(
1 + e2

)
sin (5ω + 6E)− 180e sin (5ω + 7E)

− 252e sin (7ω + 5E) + 420
(
1 + e2

)
sin (7ω + 6E)

+ 315
(
1 + e2

)
sin (7ω + 8E)− 140e sin (7ω + 9E)

− 1512e sin (5ω + 5E)− 1080e sin (7ω + 7E)]
cosω√
1− e2

}

(A.13d)

(fun4)i =
1

55440
{[2772e cos (7ω + 5E)− 4620 cos (7ω + 6E)

+ 3465 cos (7ω + 8E)− 1540e cos (7ω + 9E)

+ 1980e cos (9ω + 7E)− 3465 cos (9ω + 8E)

+ 2772 cos (9ω + 10E)− 1260e cos (9ω + 11E)] sinω

+ [−2772e sin (7ω + 5E) + 4620
(
1 + e2

)
sin (7ω + 6E)

+ 3465
(
1 + e2

)
sin (7ω + 8E)− 1540e sin (7ω + 9E)

− 1980e sin (9ω + 7E) + 3465
(
1 + e2

)
sin (9ω + 8E)

+ 2772
(
1 + e2

)
sin (9ω + 10E)− 1260e sin (9ω + 11E)

− 11880e sin (7ω + 7E)− 9240e sin (9ω + 9E)]
cosω√
1− e2

}

(A.13e)

(fun0)Ω =
1

12
[ −3e

(
5√

1− e2
− 1

)
cosE + 3

(
1 + e2

√
1− e2

− 1

)
cos 2E

− e
(

1√
1− e2

− 1

)
cos 3E − 3e

(
1√

1− e2
− 1

)
cos (2ω − E)

+
18e√
1− e2

cos (2ω + E)− 3

(
1 + e2

√
1− e2

+ 1

)
cos (2ω + 2E)

+ e

(
1√

1− e2
+ 1

)
cos (2ω + 3E) + 6

(
1 + e2

√
1− e2

− 1

)
E sin 2ω ]

(A.14a)
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(fun1)Ω =
1

120
{[30e cos (ω − E)− 30 cos (ω + 2E) + 10e cos (ω + 3E)

− 30e cos (3ω + E) + 30 cos (3ω + 2E)− 15 cos (3ω + 4E)

+ 6e cos (3ω + 5E)] cosω + [30e sin (ω − E)

+ 30
(
1 + e2

)
sin (ω + 2E)− 10e sin (ω + 3E)

− 30e sin (3ω + E) + 30
(
1 + e2

)
sin (3ω + 2E)

+ 15
(
1 + e2

)
sin (3ω + 4E)− 6e sin (3ω + 5E)

− 180e sin (ω + E)− 60e sin (3ω + 3E)]
sinω√
1− e2

+ 30

(
1 + e2

√
1− e2

− 1

)
E sin 2ω}

(A.14b)

(fun2)Ω =
1

840
{[−210e cos (3ω + E) + 210 cos (3ω + 2E)

− 105 cos (3ω + 4E) + 42e cos (3ω + 5E)

− 70e cos (5ω + 3E) + 105 cos (5ω + 4E)

− 70 cos (5ω + 6E) + 30e cos (5ω + 7E)] cosω

+ [−210e sin (3ω + E) + 210
(
1 + e2

)
sin (3ω + 2E)

+ 105
(
1 + e2

)
sin (3ω + 4E)− 42e sin (3ω + 5E)

− 70e sin (5ω + 3E) + 105
(
1 + e2

)
sin (5ω + 4E)

+ 70
(
1 + e2

)
sin (5ω + 6E)− 30e sin (5ω + 7E)

− 420e sin (3ω + 3E)− 252e sin (5ω + 5E)]
sinω√
1− e2

}

(A.14c)
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(fun3)Ω =
1

5040
{[−420e cos (5ω + 3E) + 630 cos (5ω + 4E)

− 420 cos (5ω + 6E) + 180e cos (5ω + 7E)

− 252e cos (7ω + 5E) + 420 cos (7ω + 6E)

− 315 cos (7ω + 8E) + 140e cos (7ω + 9E)] cosω

+ [−420e sin (5ω + 3E) + 630
(
1 + e2

)
sin (5ω + 4E)

+ 420
(
1 + e2

)
sin (5ω + 6E)− 180e sin (5ω + 7E)

− 252e sin (7ω + 5E) + 420
(
1 + e2

)
sin (7ω + 6E)

+ 315
(
1 + e2

)
sin (7ω + 8E)− 140e sin (7ω + 9E)

− 1512e sin (5ω + 5E)− 1080e sin (7ω + 7E)]
sinω√
1− e2

}

(A.14d)

(fun4)Ω =
1

55440
{[−2772e cos (7ω + 5E) + 4620 cos (7ω + 6E)

− 3465 cos (7ω + 8E) + 1540e cos (7ω + 9E)

− 1980e cos (9ω + 7E) + 3465 cos (9ω + 8E)

− 2772 cos (9ω + 10E) + 1260e cos (9ω + 11E)] cosω

+ [−2772e sin (7ω + 5E) + 4620
(
1 + e2

)
sin (7ω + 6E)

+ 3465
(
1 + e2

)
sin (7ω + 8E)− 1540e sin (7ω + 9E)

− 1980e sin (9ω + 7E) + 3465
(
1 + e2

)
sin (9ω + 8E)

+ 2772
(
1 + e2

)
sin (9ω + 10E)− 1260e sin (9ω + 11E)

− 11880e sin (7ω + 7E)− 9240e sin (9ω + 9E)]
sinω√
1− e2

}

(A.14e)

(fun0)ω = [ −2
(
2− e2

)
cosE + ecos2E ] (A.15a)

(fun1)ω =
1

24
[ 24

(
2− e2

)
cos (2ω + E)− 8

(
2− e2

)
cos (2ω + 3E)

+ 3e cos (2ω + 4E) + 12eE sin 2ω ]

(A.15b)

(fun2)ω =
1

60
[ −15e cos (4ω + 2E) + 20

(
2− e2

)
cos (4ω + 3E)

− 12
(
2− e2

)
cos (4ω + 5E) + 5e cos (4ω + 6E) ]

(A.15c)
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(fun3)ω =
1

560
[−70e cos (6ω + 4E) + 112

(
2− e2

)
cos (6ω + 5E)

− 80
(
2− e2

)
cos (6ω + 7E) + 35e cos (6ω + 8E)]

(A.15d)

(fun4)ω =
1

1260
[−105e cos (8ω + 6E) + 180

(
2− e2

)
cos (8ω + 7E)

− 140
(
2− e2

)
cos (8ω + 9E) + 63e cos (8ω + 10E)]

(A.15e)

A.4 Minimum-Time Open-Loop Control Law Design

The minimum-time open-loop control law design is presented as follows.
The equations of motion due to low-thrust and J2-effect are stated as

ẋ = g(x, f̂) = A (x) f̂ + b (x) (A.16)

where x = {a, e, i, Ω, ω, E, m}> is the vector of state variables; f̂ = {f̂r, f̂θ, f̂h}>
is the vector of control variables, which in the current problem is the unit vector of
the low-thrust acceleration, i.e. the thrust direction; the matrix A and the vector
b are functions of x.

The minimum-time low-thrust transfer problem is formulated as follows. Find
the optimal control f̂∗ that minimises

J =

∫ tf

t0

dt (A.17)

with the initial condition
x
∣∣
t=t0

= x0 (A.18)

and the terminal condition
ψ (x)

∣∣
t=tf

= 0 (A.19)

where the terminal conditions for the two strategies have been given in Eq. (5.3)
and Eq. (5.6).

The Hamiltonian function for a minimum-time problem reads [119]

H = 1 + λ>ẋ = 1 + λ>(Af̂ + b) (A.20)

where λ = {λa, λe, λi, λΩ, λω, λE , λm}> is the vector of costates.
The optimal solutions (x∗, λ∗, f̂∗) satisfy the Euler-Lagrange equations [119]

ẋ = +Hλ

λ̇ = −Hx
(A.21)

along with the transversality conditions [119]

Ψ (y)
∣∣
t=tf

=


H

λ− υψx
ψ


t=tf

= 0 (A.22)
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where y denotes the vector consisting of the states and costates, and υ is the
terminal multiplier, which can be eliminated by hand in the current problem. For
the two strategies, Ψ (y) can be reduced to

Ψstr1 (y) =



1 + λaȧ+ λeė

λaa+ λe (1− e)
λi

λΩ

λω

λE

λm

a (1− e)− (hpf +R⊕)



Ψstr2 (y) =



1 + λaȧ+ λeė+ λii̇

8λaae+ 7λe
(
1− e2

)
2λaa (2n1 sin i− 5n2 sin 2i) + 7λi

(
5n2 cos2 i− 2n1 cos i− n2

)
λΩ

λω

λE

λm

3
√
µJ2R

2
⊕

4a7/2 (1− e2)
2

(
5n2 cos2 i− 2n1 cos i− n2

)
+ n3nS


According to the Pontryagin Minimum Principle [120], the optimal thrust di-

rection that minimises H is anti-parallel to A>λ:

f̂∗ = − A>λ

‖A>λ‖
(A.23)

with which, the dynamics including both the states and costates becomes

ẏ = G (y) ⇒

{
ẋ

λ̇

}
=


−AA

>λ

‖A>λ‖
+ b

∂

(
λ>AA>λ

‖A>λ‖
− λ>b

)
∂x

 (A.24)

Now the minimum-time problem has been converted to a Two-Point Boundary
Value Problem (TPBVP), stated as follows. Find (λ0, tf ) such that y (t), which
is subject to Eq. (A.24), satisfies Eq. (A.22) at t = tf . This TPBVP can be solved
by means of the shooting method.

In order to increase the accuracy and robustness of the shooting procedure, the
state transition matrix

Φ (t0, t) = ∂y (t)/∂y (t0), Φ (t0, t0) = I14×14 (A.25)

which maps the variations in states δy (t) with respect to the variations in initial
conditions δy (t0) over t0 → t, i.e., δy (t) = Φ (t0, t) δy (t0), is provided [121]. The
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time derivative of Φ (t0, t) is given by

Φ̇ (t0, t) = JΦ (t0, t) (A.26)

where J is the Jacobian of G (y).
Eq. (A.26) contains 196 differential equations which are required to be evaluated

along y (t). Let z denotes the vector consisting of the elements in y and Φ. The
integrated dynamics is

ż = G (z) ⇒

{
ẏ

vec(Φ̇)

}
=

{
G (y)

vec(JΦ)

}
(A.27)

Besides, to eliminate dependence on a specific central attracting body and to
allow global mapping of solutions [93, pp. 363], the time and distance units are
scaled as

1 TU =
√
R3
⊕/µ, 1 DU = R⊕ (A.28)
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APPENDIXB
Appendix for Chapter 6

The appendix for Chapter 6 is shown here.

B.1 Expressions in Eq. (6.30) and Eq. (6.31)

The expressions of the coefficients that appear in Eq. (6.30) and Eq. (6.31) are as
follows.

aelliFt = 2 + e− 3(a0 − apf )
4

+ 3(a0 − apf )
2
∆a2 + 3∆a4

2(a0 − apf )
2
∆a2

e2 (B.1)

aelliFi = −(a0 − apf )
2

+ ∆a2

∆a
−∆ae

+
4(a0 − apf )

6
+ 6(a0 − apf )

4
∆a2 + (a0 − apf )

2
∆a4 + 4∆a6

5(a0 − apf )
2
∆a3

e2

(B.2)

aelliEt =
1

(a0 − apf )
2 −∆a2

e+
3(a0 − apf )

6 − 4(a0 − apf )
2
∆a4 + 3∆a6

2(a0 − apf )
2
∆a2

(
(a0 − apf )

2 −∆a2
)2 e

2 (B.3)
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aelliEi =
1

∆a
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2 −∆a2

e
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6
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(
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B.2 Interpretation of Fig. 6.5

This appendix provides the interpretation on the three cases shown in Fig. 6.5 (lat-
itude resonance does not happen; latitude resonance happens; satellite-pair miss
distance is always given by the relative distance at the first latitude resonance).

If the transfer starting time difference is small, then the latitude difference will
be accordingly small over the entire transfer, as the satellites follow an orbital
path with the same geometry, such that the latitude resonance will not happen.
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Fig. B.1 presents the time histories of the latitude difference and relative distance
for the transfer starting time difference of 2 hours. It can be seen that the latitude
resonance does not happen.

Figure B.1: Time histories of the latitude difference and relative distance for the transfer
starting time difference of 2 hours (dmiss = 2096.9 km).

Once the transfer starting time difference increases to a minimum threshold,
the latitude difference will accumulate to be larger than 2π – the latitude resonance
happens. Fig. B.2 presents the time histories of the latitude difference and relative
distance for the transfer starting time difference of 12 hours. It can be seen that the
satellite-pair miss distance equals to the relative distance at the latitude resonance.

Figure B.2: Time histories of the latitude difference and relative distance for the transfer
starting time difference of 12 hours (dmiss = 5.2 km).

As the transfer starting time difference increases, the latitude difference accu-
mulates faster and faster, and the frequency of the latitude difference accordingly
increases. Figs. B.3 (a) and (b) present the time histories of the latitude difference
and relative distance for the transfer starting time difference of 3 days and 6 days,
respectively. The satellite-pair miss distance equals to the relative distance at the
first and the second latitude resonance, respectively.
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B.3. Satellite-Pair Miss Distance versus Transfer Starting Time Difference

(a) Transfer starting time difference of 3 days (dmiss

= 23.6 km).
(b) Transfer starting time difference of 6 days (dmiss

= 53.4 km).

Figure B.3: Time histories of the relative distance and latitude difference.

Once the transfer starting time difference increases to a high enough value, the
satellite-pair miss distance will always be the orbital radius difference at the first
fly-by, or the first latitude resonance. Fig. B.4 presents the time histories of the
latitude difference and relative distance for the transfer starting time difference of
20 days.

Figure B.4: Time histories of the latitude difference and relative distance for the transfer
starting time difference of 20 days (dmiss = 70.5 km).

B.3 Satellite-Pair Miss Distance versus Transfer Starting Time Dif-
ference

Fig. B.5, Fig. B.6 and Fig. B.7 show the satellite-pair miss distance versus the
transfer starting time difference for the satellite pairs with different initial rel-
ative phases. The critical transfer starting time difference δtsafe

0 and δtsafest
0 are

highlighted by the blue cross and red asterisk, respectively.
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(a) δν0 = 4π/20 rad. (b) δν0 = 6π/20 rad.

(c) δν0 = 8π/20 rad. (d) δν0 = 10π/20 rad.

(e) δν0 = 12π/20 rad. (f) δν0 = 14π/20 rad.

Figure B.5: Satellite-pair miss distance versus transfer starting time differ-
ence for different satellite pairs with initial true anomaly differences of δν0 =
4π/20, 6π/20, 8π/20, 10π/20, 12π/20, 14π/20 .
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B.3. Satellite-Pair Miss Distance versus Transfer Starting Time Difference

(g) δν0 = 16π/20 rad. (h) δν0 = 18π/20 rad.

(i) δν0 = 20π/20 rad. (j) δν0 = 22π/20 rad.

(k) δν0 = 24π/20 rad. (l) δν0 = 26π/20 rad.

Figure B.6: Satellite-pair miss distance versus transfer starting time differ-
ence for different satellite pairs with initial true anomaly differences of δν0 =
16π/20, 18π/20, 20π/20, 22π/20, 24π/20, 26π/20 .
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(m) δν0 = 28π/20 rad. (n) δν0 = 30π/20 rad.

(o) δν0 = 32π/20 rad. (p) δν0 = 34π/20 rad.

(q) δν0 = 36π/20 rad. (r) δν0 = 38π/20 rad.

Figure B.7: Satellite-pair miss distance versus transfer starting time differ-
ence for different satellite pairs with initial true anomaly differences of δν0 =
28π/20, 30π/20, 32π/20, 34π/20, 36π/20, 38π/20.
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