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1. Introduction
The goal of this thesis is two-fold. The first
is more application-oriented and aims to plan
a motion that follows a path under constraints.
The main idea is that the robot needs to follow
a geometric path with no assigned speed opti-
mally. This is a widely studied problem and is
most commonly applied to robot manipulators
in literature. Basically, since the timing of the
path is unspecified, there is an additional degree
of freedom in time which may be exploited di-
rectly within motion planning to control the rate
of progression along the path.
The second goal is more research oriented and
it aims to achieve whole-body motion planning
of the robot such that shadows cast by obsta-
cles occluding the line of sight between the end-
effector and the target are avoided. More specifi-
cally, the problem setup is one where the robot’s
end-effector is supposed to interact with a tar-
get of interest in an environment, be it manip-
ulation, tracking, detection, or any other task.
The environment is cluttered with objects that
occlude the line of sight between the end-effector
and the target prohibiting as a result the com-
pletion of any meaningful task. If the target is

considered to be a light source, one may require
the end-effector to avoid the shadows cast by
the occluding obstacles, and to remain instead
in positions where there exists a line of sight.
One typical way of achieving the second goal
in optimal control literature is to use visibility
constraints. Visibility constraints, also known
as two-dimensional constraints, are often used
in Model Predictive Control (MPC) schemes
to keep the image-plane coordinates of interest
within the camera’s Field of View (FOV) [2].
Such constraints can also represent forbidden re-
gions in the image. Using this type of constraint
has some limits. For example, control, in this
case, is typically interrupted if the target goes
out of FOV. Mezouar and Chaumette [6] use a
softened visibility constraint which is reformu-
lated as a repulsive potential field, but such a
constraint highly increases the chance of having
local minima in the overall potential field. This
type of solutions is also limited to working in a
visual servoing framework.
Otherwise, one would have to resort to meth-
ods which tackle occlusion avoidance on a higher
level separately than motion planning itself.
Those methods include active vision techniques.
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Active vision methods try to optimize the po-
sitioning of the sensor so as to maximize the
amount of useful sensory data. Examples of
those methods are next-best view (NBV) plan-
ning techniques which select the next pose based
on some criteria and then pass the pose to the
motion planner. Most NBV planning methods
are still immature in terms of efficiency and effi-
cacy and are nowhere near real-time. Wu et al.
[8] perform NBV planning by evaluating the vis-
ibility as well as the likelihood of feature match-
ing, achieving around 1.5s per step. On the
other hand, [5] plans the NBV by utilizing on-
line aspect graphs to account for occlusions and
feature visibility, requiring more than a minute
of planning per movement.

2. Problem Formulation
The second goal is to achieve a holistic motion
planning formulation for whole-body control of
the robot while maximizing the probability of
target visibility. Due to the multi-objective na-
ture of the problem at hand, it is suitable to
adopt a finite horizon optimal control formula-
tion, which is solved in an MPC fashion. The
optimal control problem is formulated in the
continuous-time domain as

minimize
u(·)

ϕ(x(tf )) +

∫ tf

ts

l(x(t),u(t))dt

(1a)

subject to: x(ts) = xs (1b)
ẋ = f(x,u, t) (1c)
g(x,u, t) = 0 (1d)
h(x,u, t) ≥ 0, (1e)

where x, u are the state and control input re-
spectively. MPC finds the minimum-cost (1a)
trajectory under the system dynamics f , the
equality constraints g, and the inequality con-
straints h. In practice, u(ts) is then applied to
control the robot in the receding horizon fash-
ion to allow re-planning with a new measured
state, xs. The problem is solved using Sequen-
tial Linear-Quadratic (SLQ) solver [3] provided
by the OCS2 toolbox [1]. The visibility and ori-
entation costs discussed ahead are considered to
be acting on the robot end-effector, but they
can generally act on any other frame. It is as-
sumed that the camera that drives potential ob-
ject detection and tracking is mounted on the

end-effector. The first goal may also be derived
using the same formulation, obtaining as a result
constrained SLQ MPC path following.

2.1. Path Following SLQ MPC
This formulation is specific to a 7DOF mobile
manipulator. The path to be followed by the
end-effector is arc-length parametrized, with θ
being the arc-length parameter. The path starts
at θ = 0 and ends in θ = 1. This parameter is
augmented within the system state vector, x,
forming the augmented system state vector

xa =
[
bx by bψ q1 . . . q7 θ

]
, (2)

having a size nxa = 3 + nj + 1 = 11, where bx,
by, and bpsi are the x, y, and yaw degrees of free-
dom of the mobile manipulator base (differential
drive platform) and nj = 7 refers to the degrees
of freedom of the manipulator.
Setting the dynamics of our arclength parameter
as

θ̇ = ω(t), (3)

allows us to augment ω in the input vector as

u =
[
vb ψ̇ q̇1 . . . q̇7 ω

]
(4)

resulting in nu = 10 which gives us full con-
trol over the rate of progression of the arclength
parameter. As such, the progression along the
path can be commanded by constraining it to
a desired value, ωdes, in a soft input constraint
that penalizes the deviation as

∫ tf

ts

∥ωdes − ω(t)∥22 dt. (5)

If ωdes is set to 1, one would be asking for a be-
haviour that resembles the behaviour of a Tra-
jectory Optimization (TO). Otherwise, one can
dynamically set a faster, wdes > 1, a slower,
0 < wdes < 1, or even a negative, wdes < 0
path progression relative to TO.
The soft input constraint (5) controls the ar-
clength parameter, but the end-effector still
needs to follow the path at the emerging ar-
clength value. That can be done by adding a
soft state cost that penalizes the difference be-
tween the current end-effector pose and the de-
sired end-effector pose, the latter being specified
by the arclength parametrization. At every step,
a θ emerges based on the (3) and the pose along
the path at the emerging θ will be the desired
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one. The current pose is directly extracted from
the fed back measurements. That is, the error
below is penalized

x(t)− xdes(θ). (6)

2.2. Whole-Body MPC and Dynamic
Occlusion Avoidance

As mentioned earlier, visibility constraints
in control problems are typically enforced
by restricting the pixel coordinates of the
tracked/detected object of interest within up-
per and lower bounds inside the current FOV as
shown in (7)

[
umin
vmin

]
≤

[
uact
vact

]
≤

[
umax
vmax

]
. (7)

We reformulate those constraints as a maximiza-
tion of the likelihood that the end-effector has a
line of sight to the target. The likelihood func-
tion, however, is not time-separable, making it
unsuitable for trajectory optimization methods.
As such, rather than maximizing the likelihood
of visibility, we maximize the log-likelihood

∫ tf

ts

logF(xee(t))dt, (8)

where F in (8) is the shadow field containing
information about visibility and occlusion and
xee is the 3D position of the end-effector frame
of interest within that field. Since we formulated
our problem as a minimization, we may augment
(8) within (1a) as

laug(x,u) = l(x,u)− logF(xee), (9)

where the first term in (9) represents motion
planning and system costs, and the second term
represents the visibility cost. The gradient of
such a cost can be obtained since the gradi-
ent of xee is the Jacobian of the end-effector,
and the probabilistic shadow field is continuous
and smooth, allowing for efficient on-demand
trilinear gradient computation at every step.
Since the values returned by F(xee) can be zero,
(8) is susceptible to extreme values due to the
log function, making it unsuitable for shooting
methods. Therefore, we use the relaxed log bar-
rier penalty introduced in [4].
The proposed reformulated visibility constraint
acts only on the end-effector position, leaving
the end-effector orientation unconstrained. As

Figure 1: Photo showing ALMA, a robot com-
posed of a custom-made, torque-controllable
4 degrees of freedom robotic arm, DynaArm,
mounted on a quadrupedal platform, ANYmal
C. We highlight the position of the Velodyne sen-
sor and the robot end-effector in ALMA’s stand-
ing position.

a soft constraint, we add a cost that locks the
end-effector onto the target, ensuring that the
target remains within the camera’s FOV, fur-
ther enhancing the tracker’s confidence about
the target. Such a constraint is a function of
the emerging solution from the planner along
every step of the horizon. By properly scaling
this constraint’s penalty, we safeguard against
sudden tracker updates and faults. In this man-
ner, the end-effector gradually and progressively
locks onto the target. We add the corresponding
cost to laug, constituting the second term of the
resulting total cost function as

ltotal(x,u) = laug(x,u) + lo(xee). (10)

3. Shadow Field
The likelihood of visibility represented by F is
obscure and not readily available, so we pro-
pose a novel efficient dynamic-programming al-
gorithm called shadow field that returns a field
containing visibility likelihood values at every
position in our scene. Such a field is constructed
using LIDAR or RGB-D data and provides soft
shadow approximations of hard shadows.

4. Results
In this section, simulation results validating the
SLQ MPC path following formulation are pre-
sented for the case of a mobile 7DOF manipu-
lator, namely Kinova 7DOF mounted on a dif-
ferential drive platform. Moreover, the pro-
posed shadow field algorithm is validated on real
data from hardware and the performance of the
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complete whole-body MPC and dynamic occlu-
sion avoidance control pipeline is demonstrated
in simulation on ALMA (Fig. 1). ALMA is
equipped with four Realsense D435 cameras that
provide 360◦ vision as well as a VLP16 Puck
LITE Velodyne sensor mounted on the robot’s
rear. It has two on-board computers, one run-
ning locomotion and planning modules, and the
other running mapping modules. The adopted
planning framework in our physics-based exper-
iments is based on the whole-body motion plan-
ner formulation introduced in [7]. We then aug-
ment our visibility and orientation costs as dis-
cussed in Section 2.

4.1. Path Following SLQ MPC
The result for the case of collision avoidance is
presented. Further case studies are available in
the main manuscript. In this scenario, we place
an obstacle along the path. We can detect this
obstacle’s location and infer if there will be a col-
lision with it or not along the path, and if yes,
infer the value of θ at which there will be col-
lision. We show the evolution of the behaviour
of the robot in Fig. 2 where the robot pauses its
progression right before collision, i.e., achieving
collision avoidance. In Fig. 2, the progression is
visibly killed. The solver tries to proceed at dif-
ferent times along the path but since progression
is unfavorable, the robot’s end-effector success-
fully avoids collision.

4.2. Shadow Field Mapping
Two real-time mapping experiments are consid-
ered. In each of them, ALMA is placed in a dif-
ferent cluttered environment, and data from the
Veldoyne sensor are used to construct a 3D prob-
abilistic occupancy grid. The occupancy grid is
then used to compute and publish a 3D shadow
field spanning 16 × 16 × 2m3 at a resolution
of 1000 voxels per cubed meter. The onboard
mapping computer runs the whole pipeline at
rates exceeding 100Hz, far beyond the Velodyne
pointcloud update rate (∼15Hz). Since it is not
possible to visualize the whole 3D shadow field
in a meaningful manner, we visualize only a hor-
izontal slice of it at a defined height in the form
of a pointcloud having gray-scale intensities pro-
portional to the values of the shadow field. At
that slice level, brighter areas represent visible
regions while darker areas represent occluded re-

Figure 2: Multiplicity illustration showing the
evolution of the robot end-effector along the
path throughout a nominal path following set-
ting with collision avoidance. Plots of arclength
θ in blue and ω in red for the case of collision
avoidance. Progression freezes indefinitely right
before collision.

Figure 3: Top view of the occupied voxels (col-
ored), the Velodyne pointcloud (small white
dots), and the resulting shadow field pointcloud
slice (gray-scale). The light source and the end-
effector are at the center of each image. The um-
bras produced by the occluding voxels are dark
while their penumbras are the shades of gray.

gions. We publish this slice at the robot’s end-
effector level. In both experiments, we coincide
the light position with the end-effector position
at the center of the field, i.e., we are evaluat-
ing the end-effector’s sight of the surrounding
scene. We also visualize the occupied voxels,
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Figure 4: Values of our soft shadow field approx-
imation against hard shadow values produced by
an obstacle.

Figure 5: Simulation scenes containing obstacles
shown in violet, ALMA shown as the top frame,
and the light source shown as the bottom frame.

which have different colors correlated to their oc-
cupation probability. We show the top view of
the slice, the occupied voxels, and the Velodyne
pointcloud in Fig. 3. Asides from noise arising
at the stage of building the occupancy grid, the
resulting shadows retain the same smoothness
and continuity characteristics as the soft shadow
presented in Fig. 4.

4.3. Motion Planning and Control
Pipeline

Two experiments running in a physics-based
simulation environment, Gazebo, that validate
our motion planning and control pipeline are
presented. The MPC is solved at a 1.0s hori-
zon, and the relevant penalties arise from the
actuator inputs, the visibility and orientation
costs, height tracking, and the actuator speed,
position, and torque limits. Other regulariza-
tion costs and gait-related constraints are active
during this process. We also provide the simu-
lation with a given occupancy grid built based
on simulated obstacles in the environment. The
grid resolution we adopt is 1000 voxels per cubed
meter. In Fig. 5, we illustrate the top view of
each of the two scenes in which we carry out the
simulation. In both illustrations, a slice of the
shadow field at the end-effector level is shown
in gray-scale with the same intensity scale as

Figure 6: Multiplicity illustrations of our
physics-based simulations in the two scenes in-
troduced in Fig. 5. The solver solution in each
simulation is reflected through 4 different snap-
shots of the robot. The target is tagged. Violet
corresponds to obstacles at end-effector level.

previously introduced for Fig. 3. Umbras and
penumbras described there can also be noted
here. As shown in Fig. 5, we make sure that
the end-effector starts in an occluded position.
The robot must then plan a least-shadowy path
for the end-effector position that leads it to es-
tablish line-of-sight with the light position.
In Fig. 6, we illustrate the robot’s motion and its
end-effector frame pose in a top view. In the first
simulation, snapshot 1 shows the robot in its
starting occluded position. The second snapshot
shows the end-effector sliding along the surface
of an occluding obstacle so as to circumnavigate
it. The third snapshot shows the end-effector be-
ing extended ahead of the robot, trying to reach
locations with higher visibility. The last snap-
shot shows the robot in a steady state. Having
reached full visibility, the end-effector is free to
lock onto the target. We achieve an orientation
error complement of 0.995. The second scene
is similar to the first one, except that we block
the path of the previous solution by extending
the first obstacle facing the light frame. We also
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move one of the obstacles and place it right next
to the light position. The robot directly extends
the end-effector into the visible region in snap-
shot 1, then traverses the slightly shadowed re-
gion and peaks its end-effector through the tight
passage by the fourth snapshot to achieve full
visibility. As an interesting emergent behavior,
the end-effector avoids collisions with obstacles
since their shadow field values are zero. This be-
havior may be extended to other robot frames.

5. Conclusions
In this thesis, we formulated a constrained path
following SLQ MPC problem for a mobile ma-
nipulator. We embedded the arclength vari-
able with which the desired path is parametrized
within the system states, giving the solver full
control over the rate of progression as it deems
fit to accommodate for arising costs and path
constraints. We implemented this formulation
for a 7DOF manipulator and we studied its be-
haviour for three cases. For the nominal case, we
provided a qualitative and quantitative descrip-
tion of the manipulator’s path following perfor-
mance. For the case of a wrong initialization, we
highlighted the solver’s ability to correct the ini-
tial error by backtracking the solution of the ar-
clength and proceeding nominally once the end-
effector is back on track. For the last case, we
show the solver’s ability to avoid collisions by
placing a relaxed-log barrier at the arclength
value where a collision is expected to happen.
In this work, we also proposed an MPC formu-
lation based on visibility constraints. We aug-
mented our motion planning cost function with a
penalty maximizing relaxed log-likelihood of vis-
ibility probability. We introduced a probabilistic
shadow field that quantifies visibility probability
based on the occupancy map of the scene. We
validated the quality of this map in simulation
and hardware. We further discussed the compu-
tational and storage complexities of our shadow
field mapping and showcased its computational
efficiency for onboard applications by real-time
mapping on ALMA hardware. A comparison be-
tween hard and soft shadows for one 2D imple-
mentation shows the extent and accuracy of our
approximation. Last but not least, we demon-
strated the validity of our proposed MPC for-
mulation for motion planning and dynamic oc-
clusion avoidance in simulation for ALMA.
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Abstract

This work formulates a constrained path following sequential-linear quadratic model
predictive control (MPC) problem for floating base manipulators. By augmenting
the path’s arclength parameter within the system states, we can exercise direct con-
trol over the path’s rate of progression. We exploit this added degree of freedom
to regulate progression along a path so as to accommodate for the various dynamic
costs and constraints. Through simulations on a Kinova seven degrees of freedom
mobile manipulator, we validate our formulation and demonstrate the solver’s plas-
ticity in different scenarios. Several settings are studied and presented, namely a
nominal case, the case of avoiding collisions, and the case of recovery from wrong
initialization. A brief qualitative and quantitative study on the nominal case results
is provided.

This work also introduces a novel approach for whole-body motion planning and
dynamic occlusion avoidance. The proposed approach reformulates the visibility
constraint as a likelihood maximization of visibility probability. In this formula-
tion, we augment the primary cost function of a whole-body MPC scheme through
a relaxed log barrier function yielding a relaxed log-likelihood maximization for-
mulation of visibility probability. The visibility probability is computed through
a probabilistic shadow field that quantifies point light source occlusions. We pro-
vide the necessary algorithms to obtain such a field for both 2D and 3D cases. We
demonstrate 2D implementations of this field in simulation and 3D implementations
through real-time hardware experiments. We show that due to the linear complex-
ity of our shadow field algorithm to the map size, we can achieve high update rates,
which facilitates onboard execution on mobile platforms with limited computational
power. Lastly, we evaluate the performance of the proposed MPC reformulation in
simulation for a quadrupedal mobile manipulator, ALMA.

Keywords: Whole-Body Motion Planning and Control; Sensor-based Control;
Legged Robots; Model Predictive Path Following Control, Mobile Manipulators.
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Sommario

Questo lavoro formula un problema per la pianificazion di traiettorie con controllo
a predizione del modello (MPC) di tipo sequenziale lineare quadratico (SLQ) per
manipolatori a base fluttuante. Aggiungendo il parametro della curva agli stati
del sistema, possiamo esercitare un controllo diretto sulla velocita’ di progressione
lungo la traiettoria. Sfruttiamo questo grado di libertà aggiuntivo per regolare la
progressione lungo un percorso in modo da rispettare i vari costi e vincoli dinamici.
Attraverso simulazioni su un manipolatore mobile Kinova a sette gradi di libertà,
validiamo la nostra formulazione e dimostriamo la plasticità del risolutore in diversi
scenari. Diverse situazioni sono studiate e presentate: una situazione nominale, una
situazione per evitare collisioni e una situazione di recupero da un’inizializzazione
errata. Viene inoltre fornito un breve studio qualitativo e quantitativo relativo ai
risultati del caso nominale.

Questo lavoro introduce anche un nuovo approccio per la pianificazione del moto
dell’intero corpo (whole-body motion) e la prevenzione di occlusioni dinamiche.
L’approccio proposto riformula il vincolo di visibilità come una massimizzazione
della probabilità di visibilità. In questa formulazione, aumentiamo la funzione di
costo primaria di uno schema MPC per tutto il corpo attraverso una funzione barri-
era logaritmica rilassata (relaxed log-barrier) che produce una formulazione di mas-
simizzazione di una probabilità logaritmica rilassata della probabilità di visibilità.
La probabilità di visibilità è calcolata attraverso un campo d’ombra probabilistico
che quantifica le occlusioni di sorgenti luminose puntuali. Forniamo inoltre gli algo-
ritmi necessari per ottenere tale campo per entrambi i casi 2D e 3D. La tesi reporta
implementazioni 2D di questo campo con simulazioni, e implementazioni 3D at-
traverso esperimenti hardware in tempo reale. Mostriamo che grazie al fatto che il
nostro algoritmo di campo d’ombra ha una complessita’ lineare rispetto alla dimen-
sione della mappa, possiamo raggiungere una elevata frequenza di aggiornamento,
il che facilita l’esecuzione a bordo di piattaforme mobili con potenza di calcolo
limitata. Infine, valutiamo le prestazioni della riformulazione MPC proposta nella
simulazione per un manipolatore mobile quadrupede, ALMA.

Parole chiave: Pianificazione e controllo del movimento dell’intero corpo (whole-
body motion control); controllo basato sui sensori; robot su gambe; controllo per la
pianificazione di traiettorie a predizione del modello, manipolatori mobili.

vii





Notations

Nomenclature

ε machine precision

η central finite difference step size

nl number of links

nj number of joints

∇ gradient

nq number of actuated joints

nb number of base parameters

nb0 minimum parameter number of nb

q generalized coordinates vector

qi ith generalized coordinate

qb unactuated base coordinates

qnj nj actuated joint coordinates

qbP translational base coordinates

qbR rotational base coordinates

u generalized coordinates speed

u̇ generalized coordinates acceleration

Tphi mapping similar to TA

Je spatial Jacobian with respect to inertial frame

J geometric Jacobian

JA analytical Jacobian

vB generalized base translational velocity

xe end-effector

re end-effector position

φe end-effector orientation

φme minimal representation of end-effector orientation

φ̇i ith angular velocity

φ̈i ith angular acceleration

ẋe end-effector velocity in task space

q̇ end-effector velocity in joint space

TA mapping used between minimal and non-minimal orientation representations of angular velocity

r, p, y roll, pitch and yaw angle

ṙ, ṗ, ẏ roll, pitch, yaw time-derivatives

T Ie transformation matrix between frames e, end-effector, and I, inertial frame
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RIk rotation matrix between frames k and inertial frame I

rIk vector between frames k and I

Acronyms and Abbreviations

AD Automatic Differentiation

ALMA Articulated Locomotion and MAnipulation

BFGS Broyden, Fletcher, Goldfarb, Shanno

CAD Computer Aided Design

DOF Degree of Freedom

DP Dynamic Programming

FHOCP Finite Horizon Optimal Control Problem

FOV Field of View

GN Gauss Newton

KKT Karush-Kuhn Tucker triplet

LIDAR Light Detection and Ranging

LP Linear Program

LQ Linear Quadratic

MPC Model Predictive Control

MPFC Model Predictive Path Following Control

NBV Next-Best View

NMPC Nonlinear Model Predictive Control

OCP Optimal Control Problem

OCS2 Optimal Control for Switched Systems

PDQ Probability-based Detection Quality

QP Quadratic Program

ROS Robot Operating System

SLQ Sequential-Linear Quadratic

SQP Sequential Quadratic Programming

UR Universal Robot

URDF Unified Robotic Description Format

WBC Wholy-Body Controller

Operators

|x| =
n∑

i=1

|xi| l1 norm

‖x‖ =
√
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√
x21 + · · ·+ x2n l2 (Euclidean) norm
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Chapter 1

Introduction

A mobile manipulator has a dual advantage of mobility offered by a mobile platform
and agility provided by the manipulator. By extending the workspace of fixed-based
robotic arms, mobile manipulation systems can access areas far from the reach of
the ground-bolted counterparts. However, this mobility comes at the cost of more
complex motion planning and navigation problems. Among these challenges, motion
planning and visual tracking of a target point under inter-object occlusion remain
partially unsolved.

Active vision methods have been a resort in the face of this challenge. Those
methods often employ sampling in search of the next-best-view (NBV) or in order to
perform view planning to maximize the quantity and quality of useful sensory data.
However, active vision methods are still immature in terms of efficiency and efficacy
and are still employed separately from motion planning itself, further increasing the
complexity of the workflow.

On the other hand, implementing visual servoing in motion planning applications
has limited success in preventing occlusions. In this setting, occlusions are avoided
by constraining the camera pixel coordinates of the detected or tracked object of
interest. This, in turn, restricts robot operation and control to the camera’s Field
of View (FOV).

At the core of occlusion avoidance lies the visibility problem. Geometrically,
visibility is the existence of an unobstructed line of sight between the viewer and
the object of interest, and it constitutes a necessary condition for any vision-based
task such as detection, tracking, and manipulation. Currently, notions of visibility
and obstruction are usually defined deterministically by utilizing ray-casting to
simulate the line of sight. However, this approach only evaluates the visibility or
lack of it in the scene, which is inadequate for gradient-based techniques and does
not reflect reality with all of its uncertainties and sensory noise.

To this end, we propose a reformulation of the visibility constraint in an opti-
mal control setting such that the likelihood of visibility is maximized. As such, we
are solving the visibility problem within motion planning itself rather than doing
it separately. To complement the reformulated visibility constraint, we also pro-
pose a novel method to evaluate notions of visibility and obstruction by building
a probabilistic shadow field using a Dynamic Programming (DP) approach. This
field is constructed using a probabilistic occupancy grid computed from RGB-D or
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LIDAR data and centered around a point light source representing the target of
interest that has to be tracked, detected, or manipulated. This field provides soft
shadows, i.e., its values range from 0, representing cold regions, to 1, representing
hot regions. Colder regions are regions lying in the shadow of the light source, i.e.,
it is less likely that a line of sight exists between those regions and the light source.
On the contrary, hotter regions are regions where a line of sight to the light is more
likely to exist. The light source itself can be either dynamic or static.

Even though constrained predictive path following has been investigated mostly
for fixed base manipulators, it has also been studied for mobile robots ranging from
applications to Unmanned Aerial Vehicles (UAV), to legged, bipedal, and humanoid
robots and even autonomous underwater vehicles. The idea behind constrained path
following in robotics is that we have a geometric path with no assigned speed, and we
need to follow it optimally. Basically, since the timing of the path is unspecified, we
have an additional degree of freedom in time, which we may exploit directly within
motion planning like for example to halt progression along the path. This type of
problems is most interesting for cases where a high precision in following the path
is more important than the timing of the path, for example high precision welding
or high precision machining. Constrained path following has been addressed in the
literature using several solvers and formulations. We pose our own Sequential-Linear
Quadratic (SLQ) Model Predictive Control (MPC) formulation in this work.

1.1 Outline and Contribution

The key contributions of this work are:

1. A path following SLQ-MPC problem formulation that exercises direct control
over the rate of arclength progression along a path, therefore adding a degree
of freedom in time.

2. Simulations on a Kinova 7 Degrees of Freedom (DOF) mobile manipulator
validating our path following formulation in different scenarios.

3. A redefinition of the visibility constraint for optimal control that maximizes
the likelihood of visibility in a manner suitable for whole-body motion plan-
ning methods.

4. A novel DP-based approach to describe the notions of visibility and obstruc-
tion, called shadow field, which is inherently probabilistic and efficient to cal-
culate.

5. Hardware mapping tests validating our shadow field ’s capability in capturing
visibility and obstructions.

6. Physics-based simulations verifying our holistic occlusion avoidance imple-
mentation within motion planning of a mobile legged manipulator.

This thesis is structured as follows:

• Chapter 1 introduces the major challenges tackled in this thesis and pro-
vides an overview of related work in the literature. It also provides a general
description of the thesis structure and states explicitly the contributions of
this work.

• Chapter 2 provides a brief overview of the robot kinematics and dynamics
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for both fixed base and floating base systems, thus laying down the foundation
for defining physically consistent kinematic and dynamic models for motion
planning. In this chapter, the systems at hand are also introduced, the first
of which is a mobile 7DOF Kinova manipulator that can be position, speed,
or torque controlled, and the other is ALMA which is a DynaArm, a custom-
made torque-controlled manipulator, mounted on a ANYmal, a quadrupedal
legged robot. The latter platform will be addressed hereafter as ALMA.
Lastly, this chapter briefly covers constrained numerical optimization for for
optimal control problems (OCPs). The two main routines of interest are se-
quential quadratic programming (SQP) and sequential-linear quadratic (SLQ)
control.

• Chapter 3 poses the formulation of the OCPs that we are trying to solve.
The problems are formulated as Finite Horizon Optimal Control Problems
(FHOCPs) which are solved in an MPC fashion. Path following SLQ MPC
is first proposed where we highlight the costs, equalities, and inequalities for
the nominal case and for the case of collision avoidance. The formulation
for dynamic occlusion avoidance within whole-body motion planning is then
studied where we also pose our reformulation of the visibility constraint and
discuss the additional system costs and constraints.

• In Chapter 4, shadow field, the field providing differentiable information
about visibility and obstruction for the entire scene of interest, will be intro-
duced. The visibility problem will be formally posed as well as our approach
to solving it. 1D, 2D, and 3D simulations of shadow field will be presented
and discussed. Moreover, the algorithms used to compute the shadow field be
will be formally discussed, and a study on their computational and storage
complexities will be presented.

• In Chapter 5, experimental and physics-based simulation results are pre-
sented. For the path following SLQ-MPC, we first provide a brief discus-
sion on trajectory generation and obtaining a path as well as its arclength
parametrization. We then put forward simulation results in three main cases;
the nominal case, the case with wrong initialization, and the case with colli-
sion avoidance. For dynamic occlusion avoidance within whole-body motion
planning, we first introduce the motion planning and control pipeline then
we present the real-time hardware shadow field mapping results. Lastly, we
conclude with physics-based simulations on ALMA.

• Chapter 6 reiterates some weaknesses and missing links in both formulations
and proposes potential future work directions as a continuation of the work
in this thesis.

• In conclusion, Chapter 7 summarizes the work presented in this thesis.
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1.2 Literature Review

Path following NMPC, also known as Model Predictive Path Following Control,
has been widely studied in the literature, most commonly applied to fixed base
manipulators.

Figure 1.1: Architecture illustrated by [1] showing the mid-level MPC between the
low-level joint controller and the higher level path generator. MPC plans a motion
to follow the path provided by the generator and handles rudimentary runt-time
constraints not considered by the generator, and passes commands to the low-level
joint controller which provides feedback measurements to the MPC.

In [2], Arbo et al. show the MPFC’s ability to stop at obstructions in a way that
model predictive trajectory tracking cannot do. They adopt CasADi framework to
define the symbolic expression of their MPC formulation and use a primal-dual in-
terior point optimizer to solve their nonlinear program in a near real-time manner.
In [1], Arbo et al. extend their previous work to a 6DOF manipulator where they
implement their MPC as a mid-level controller between the low-level joint controller
and the high-level path generator as depicted in Fig. 1.1. The mid-level controller
handles rudimentary run-time constraints that are not considered by the path gen-
erator. They also compare their path following approach to a trajectory tracking
one through experiments with UR5 and UR3 robots.

Figure 1.2: Orthonormal tangent, normal, and binormal unit vectors, T , N , and
B, respectively, describing the local Frenet-Serret frame as illustrated by [3]. s∗

represents the optimal arclength value that minimizes the distance r between the
end-effector and the path.
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Duijkeren et al. [3] showcase their path following implementation in simulation
for a 6DOF industrial robot that has to execute a writing task. They reformulate
their problem from an unconstrained optimization routine that returns the optimal
arclength along the path, which minimizes the distance between current end-effector
position in inertial world frame and the path, to a highly nonlinear spatial adap-
tation. On the other hand, in this reformulation, knowledge about the temporal
evolution of vectors describing the local Frenet-Serret frame, Fig. 1.2, at time t is
explicitly available in the integration scheme for derivative computation, and geo-
metric constraints transform into simple linear or norm bound constraints. Their
approach is more suitable for static constraints than time-varying ones.

Figure 1.3: Path following MPC architecture based on a side slip disturbance ob-
server for wheeled robots as illustrated by [4]. Error in coordinates is obtained from
the feedback loop and fed to the NMPC together with the observed disturbance.
Optimal control input is then applied with disturbance to the wheeled robot.

Path following has been also investigated for wheeled mobile robots. In [5], it
is shown that path following problems of wheeled mobile robots to a given path
may be reduced to an error regulation problem. A robust model predictive control
based on disturbance observer is proposed as a solution against the the potential
significant degradation of path following performance arising due to side slip, which
may even cause instability, and is depicted in Fig. 1.3.

Faulwasser et al. [6] perform a path following task, depicted on the left in
Fig. 1.4, for both problems with no speed assignment and problems with speed
assignment. Trajectory tracking and speed-assigned path following are differenti-
ated where in trajectory tracking there is only speed path to be followed but in
the speed-assigned path following the problem admits several reference trajectories
differing with respect to the path parameter. In the latter, the approach is similar
to scaling the timing law on the go within motion planning, whereas it is more
challenging to do in standard trajectory-tracking formulations.

Even though path following is most commonly applied to mobile and fixed-base
manipulators, there exist recent investigations for underactuated ballbots, one of
which is depicted on the right in Fig. 1.4. Jespersen et al. [4] prove that highly
nonlinear underactuated ballbot system can be controlled as a linear system which
does not even include the underactuated properties. Deviations in time from the
desired trajectories are allowed, hence the underactuated deviations are allowed
without penalties.



Chapter 1. Introduction 6

Figure 1.4: Generic writing task performed by a fixed-base manipulator as illus-
trated by [6] on the left and the ballbot path following MPC system architecture as
illustrated by [4] on the right. For the latter, perceptive and navigation data are fed
to the MPC which commands the balancing controller. The balancing controller
itself is in a high-bandwidth loop with the sensors, and commands the motor drives.

Visibility constraints, also known as two-dimensional constraints, are often used
in MPC schemes to keep the image-plane coordinates of interest within the camera’s
FOV [7, 8, 9] as can be seen in Fig. 1.5. Such constraints can also represent forbidden
regions in the image.

Figure 1.5: 2D Visibility constraints in optimal control methods work on limiting
the camera pixel coordinates u and v of the target of interest within bounds as can
be seen on the left. On the right, a relaxation of this hard constraint is visualized
where pixel coordinates are repelled from extremities of the camera field of view
and attracted towards its center. Illustrated by [10].

Using this type of constraint has some limits. For example, control, in this case,
is typically interrupted if the target goes out of FOV [9]. Mezouar and Chaumette
[10] use a softened visibility constraint which is reformulated as a repulsive potential
field, but such a constraint highly increases the chance of having local minima in the
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overall potential field [11]. One further limitation of adopting visibility constraints,
asides from the fact that control needs to be halted once vision of the target is lost,
is the need to work within a visual-servoing framework as the ones illustrated in
Fig. 1.6 and Fig. 1.7, and the need for a camera sensor.

Figure 1.6: Typical control scheme for robot manipulator image-based visual ser-
voing. Camera model is linearized and either an NMPC or a classical PI controller
may be used. Illustrated by [8].

Figure 1.7: Well-known internal model control structure adopted and illustrated
by [9]. E represents all modelling errors and disturbances between current image
features and predicted ones from the model. The classical controller is replaced by
a predictive optimization algorithm minimizing the image feature errors.

In [12], Zhang et al. perform dynamic self-occlusion avoidance optimally, but
indirectly, based on the depth image sequence of moving objects. Objects are first
reconstructed then their motion is estimated by matching two Gaussian curvature
feature matrices. An optimal planner then decides the camera motion that will
lead to avoiding self-occlusion. Self-occlusions, as well as mutual occlusions for the
case of a multi-arm robotic cell equipped with several cameras, are predicted in [13]
where the geometric model of the objects is assumed to be known. Recovery of a
UAV target tracker from detection discontinuities caused by occlusion in a dynamic
environment is addressed in [14] without tackling occlusion in itself.

Nageli et al. [15] implement occlusion minimization within an MPC scheme.
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This method, however, is limited to evaluating a single point against an ellipsoidal
approximation of obstacles using a fast visibility check1.

Figure 1.8: Fast and simple geometric visibility check based on ellipsoidal approx-
imation of occluding. Illustrated by [16]. Based on horizon culling, this method
tests if the projection of point of interest lies beyond the horizon Ho or not.

Most NBV planning methods are still immature in terms of efficiency and are
nowhere near real-time. Wu et al. [17] perform NBV planning by evaluating the
visibility as well as the likelihood of feature matching, achieving around 1.5s per
step with the framework depicted in Fig. 1.9.

Figure 1.9: The sampling process in search of the view that maximizes object
recognition [17]. The optimal position is fed to the planner in a separate step.

1Check Appendix A for details
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On the other hand, [16] plans the NBV by utilizing online aspect graphs to ac-
count for occlusions and feature visibility, requiring more than a minute of planning
per movement. This framework can be seen in Fig. 1.10.

Figure 1.10: NBV Planning aims to optimize the positioning of the camera sensor
so as to maximize some criteria, including visibility (or occlusion avoidance). The
resulting position is then fed to the motion planner in a separate step. Illustrated
by [16].

NBV methods often utilize ray-casting [17, 16, 18]. Ray-casting is widely used
in robotic planning applications, for example, in autonomous scene exploration [19]
where a dual OcTree structure is used to encode regions which are occupied, free,
and unknown, that are then explored via an NBV planning approach. Typically
used methods to simulate ray-casting are voxel traversal algorithms such as [20].
There exist learning-based methods to evaluate uncertainties arising from image-
based detection [21, 22]. Such methods, like the one represented Fig. 1.11, are
a-posteriori and are incapable of providing meaningful predictive power for optimal
control methods.

The notions of visibility and obstruction are of great interest in multi-agent
hide-and-seek or pursuit-evasion applications. In [23], a vision cone is constructed
for each agent using a LIDAR-like array of 30 rays, as seen in Fig. 1.12, and any
agent not within the line of sight is masked. Tandon and Karlapalem [24] represent
the notion of visibility in simulation as an associated visibility region for each agent,
which itself is also constructed by tracing uniformly spaced rays emitted from the
agent. Moreover, the visibility problem is a basic problem in computational geom-
etry [25, 26, 27] and has applications in computer graphics [28].
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Figure 1.11: A-posteriori qualification measure of detection, pPDQ, in [22], of a
person and a horse based on criteria including visibility and occlusion.

Figure 1.12: OpenAI’s multi-agent hide and seek. Each seeking agent has a sim-
ulated LIDAR which casts 30 rays in all directions. Those rays are used to define
visibility field of view and whether hiding agents are within that field of view or
not.

Figure 1.13: Notions of visibility and obstruction are most commonly defined using
visibility polygons. Rays are cast in all directions, defining regions of visibility based
on collisions of rays with objects. From left to right: light source and resulting
shadows cast by the obstacles, art gallery (place guards to achieve full visibility of
the art gallery), visibility polygons in a 2D environment2.

2The first illustration in Fig. 1.13 is provided by https://www.redblobgames.com/articles/visibility/,
the other two illustrations are provided by Wikipedia user Claudio Rocchini.



Chapter 2

Preliminaries and System
Overview

In this chapter, kinematic and dynamic models are briefly introduced, based on
[29], [30], [31], and [32], for two different types of robotic systems, namely fixed
base and floating base systems, so as to setup the context of the formulations to
be put forward in Chapter 3. Fixed base systems are systems where the root link
frame is static, often fixed to the world inertial frame. This is the case with most
industrial manipulators for example. On the other hand, floating base robots like
mobile manipulators, quadrupeds, or humanoids, can move freely, unconstrained
to the world frame. As such, we will be laying down the foundations for defining
physically consistent kinematic and dynamic models in motion planning. More
specifically, we briefly cover the necessary background on robot forward kinematics
and the Jacobian as we will be performing kinematic MPC for path following. We
also briefly derive the well-known robot dynamic model which will be necessary for
performing whole-body motion planning.

Moreover, we introduce our platforms, the mobile Kinova 7DOF and ALMA,
both of which being floating base systems, and present the centroidal dynamics
formulation for ALMA. At the end of each robot’s section, the respective state and
input vectors are presented.

Lastly, we provide an overview about constrained numerical optimization for
continuous-time OCPs based on [33]. Even though we do not use SQP to solve
our formulations, we provide SQP’s main concepts for the reader to get the gist of
using numerical optimization in optimal control methods. This paves the way to
put forward SLQ control and consequently SLQ MPC, which is the main routine of
interest in this work.

2.1 Kinematics

Kinematics is the study of motion, i.e., positions, speeds, and accelerations, of a
point or an object, or a system of points of objects, irrespective of forces causing of
the motion. For points in 3D, a description in terms of position ∈ R3 is sufficient.
On the other hand, 3D bodies require additional description of their orientations φ
∈ SO(3) with respect to a reference frame.
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Typically, robotic systems are modeled as an open chain of bodies composed of
nl = nj + 1 links where nj is the number of joints connecting them, which may be
either prismatic or revolute. Revolute joints provide a rotational degree of freedom
qi, whereas for a prismatic joint qi represents a linear displacement.

Fixed Base Kinematics

Classical fixed based kinematics are reported in Appendix A based on the sources
cited in this chapter’s introduction.

Floating Base Kinematics

Figure 2.1: Floating base quadrupedal robot, ANYmal, climbing stairs. Source:
ANYbotics.

Now for a floating base robot, like the quadruped ANYmal robot depicted in
Fig. 2.1 or humanoid robots, generalized coordinates are composed of nb un-actuated
base coordinates qb and nj actuated joint coordinates qj

q =


 qb

qnj


 , (2.1)

where the base itself is in free translation and rotation,

qb =


qbP

qbR


 ∈ R3 × SO(3), (2.2)

noting that qbP and qbR may not necessarily be parametrized as in (2.2), whereby
the minimum parameter number nb0 is 6.

Furthermore, the generalized velocity and acceleration vectors are introduced
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since differentiation in SO(3) is different from R3,

u =




vB

ωB

φ̇1
...

φ̇nj




∈ R6+nj = Rnu , u̇ =




vB

ψB

φ̈1
...

φ̈nj




, (2.3)

where u may be obtained as,

u = Tφ · q̇, with Tφ =




I3×3 0 0

0 TxR 0

0 0 Inj×nj


 , (2.4)

whereby TxR depends on the chosen representation/parametrization of rotation.

The end-effector xe of a floating base robot has the position vector

rIe(q) = rIB(q) +RIB(q) · rBe (q), (2.5)

with respect to the inertial frame where rIB is the position of the base frame with
respect to the inertial frame and, RIB(q) is the rotation of the base frame in the
inertial frame, and rBe (q) is the position of the end-effector with respect to the base
frame.

In order to obtain the differential forward kinematics, we differentiate (2.5) with
respect to time, allowing us to obtain the spatial Jacobian with respect to the
inertial frame

Je(q) =


JP
JR


 =


I3×3 −RIB · [rBe ]× RIB · JPqj (qj)

03×3 RIB RIB · JRqj (qj)


 , (2.6)

which realizes the mapping from generalized velocities u to operational space twist
of the end-effector frame with respect to inertial frame

[
vTe ωTe

]T
. (2.7)

Kinematic Redundancy

A robot is said to be kinematically redundant if it has more degrees of freedom than
those strictly necessary to perform a task, i.e., if nj > m where m is the dimension
of our task space. As such, redundancy is task-dependent where m may actually
be less than the dimension of the operational space. For example, controlling the
position and orientation of a manipulator end-effector xe ∈ R3 × SO(3) with a
7DOF manipulator is said to be redundant task, as nj = 7 > m = 6.

Kinematic redundancy is typically exploited to:

• increase dexterity and manipulability
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• avoid obstacles

• avoid kinematic singularities

• minimize energy consumption

• increase safety

2.2 Dynamics

Dynamic robot models allow us to describe how and why will forces alter a system
and its motion, providing us with a powerful tool to predict, simulate, and control
the behaviour of the robot. There are several approaches to obtain the equations
of motion governing the dynamics of a robot, but they are all mainly based on
classical Newtonian and Lagrangian mechanics and they all result in equivalent
models. The first of those methods is the recursive Newton-Euler method. It per-
forms two sweeps of computations, one forward sweep propagating the velocities and
accelerations starting from the base frame to the end effector, and one backward
sweep propagating forces and moments from end-effector to base frame. Its itera-
tive nature makes it computationally efficient and suitable for online applications.
The second technique is Euler-Lagrange. Even though it is analytical and requires
more computations, it is possible to obtain explicit expressions of the matrices of
the equations of motion as a function of the generalized coordinates, generalized
velocities, and generalized accelerations, allowing very efficient evaluations of the
equations of motion in real-time. In this thesis, Euler-Lagrange will be first briefly
described assuming a fixed base system with nq joints and dynamic bodies. Floating
base dynamics will then be presented in a separate section.

Euler-Lagrange Dynamics

Derivation of Euler-Lagrange dynamics for a fixed base system is reported in Ap-
pendix A.

Dynamics of Floating Base Systems

Deriving the dynamics for a floating base system is fairly similar to fixed base sys-
tems, wit the exception of using the generalized coordinates in (2.1) and respectively
the generalized velocities and accelerations in (2.3). Moreover, we add the selection
matrix S which specifies which of our joints are actuated according to

uj = Su = S


ub

uj


 =

[
06×6 I6×nj

]

ub

uj


 (2.8)

where uj = q̇j ∈ Rnj and ub ∈ R6.

Unacuated base coordinates qb, however, are controlled using external forces
Fext arising for example from contacts for land robots or aerodynamics for flying
robots.

Omitting the explicit friction terms from (A.28), and taking into consideration
the aforementioned comments, we may write the equation of motion for our floating
base system as

B(q)u̇ +C(q,u) + g(q) = ST τ + JTextFext (2.9)
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with its components being:

B(q) ∈ Rnq×nq Generalized mass matrix (orthogonal).

q,u, u̇ ∈ Rnq Generalized coordinates, velocity, and acceleration.

C(q,u) ∈ Rnq Coriolis and centrifugal terms.

g(q) ∈ Rnq Gravitational terms.

S ∈ Rnτ×nq Selection matrix of actuated joints.

τ ∈ Rnq Generalized torques acting in direction of generalized coordinates.

Fext ∈ Rnc External acting forces (e.g. from contacts).

Jext ∈ Rnc×nq Geometric Jacobian of location where external forces apply.

2.3 Kinova 7DOF Mobile Manipulator

Figure 2.2: Kinova Gen3 7DOF with the vision module attached to the end-effector
as provided by Kinova Robotics.

Kinova Gen3 7DOF is the system with which we carried out simulations to val-
idate our path following formulation. What makes this manipulator special is the
open-source nature of its documentation. Unlike traditional practices by companies
like ABB, Kinova provides the complete robot specifications including all the nec-
essary kinematic and dynamic parameters to build precise models of the arm. This
makes this robot particularly more oriented for research and educational purposes.
As a matter of fact, the Kinova Gen3 is a lightweight, adaptable, and modular arm
that allows easy integration within ROS and MATLAB and Simulink thanks to the
Kortex API software provided with it. Moreover, Kinova offers a few end-effector
interface modules like a vision module and a gripper module. More details about
this manipulator are present in the technical sheet in Appendix C.

All frame and joint placements, Denavit-Hartenberg parameters, physical quan-
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Figure 2.3: Kinova Gen3 7DOF frame definitions.

tities (mass and center of mass (CoM)), and inertia tensors are displayed in Fig. 2.3
and Tables 2.1, 2.2, and 2.3 respectively.

Moreover, Kinova also provides Computer Aided Design (CAD) models of each
body in the manipulator. Using the provided kinematic and dynamic parameters
and the CAD models, we are able to construct a detailed description of the robot in
form of a Unified Robotic Description Format (URDF), allowing us to use the robot
in Robot Operating System (ROS) and in physics-based simulation environments
such as Gazebo. This format also allows us to use Pinocchio, a state-of-the-art
rigid body dynamics solver for poly-articulated systems [34]. Pinocchio is an open-
source project that is tailored for robotic applications and is built using Eigen, an
efficient linear algebra library. Pinocchio performs forward kinematics, forward and
inverse dynamics, centroidal dynamics, as well as all of their analytical derivatives
in a multi-thread friendly way. Pinocchio also supports automatic differentiation
frameworks, which is important for MPC implementations.

Kinova Gen3 robot control can be easily integrated with ROS and MATLAB
and Simulink due to the Kortex API software that Kinova provides. The arm may
be servo-controlled in position, speed, acceleration, or torque modes at either the
high level or the low level, as illustrated in Fig. 2.4.

In simulation, we mount this manipulator on a mobile base that has 3 degrees of
freedom in xy plane, being movement along x direction, movement along y direction,
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Table 2.1: Kinova Gen3 7DOF Denavit-Hartenberg parameters.

i αi (radians) ai(m) di(m) θi (radians)

0 (from base) π 0.0 0.0 0

1 π
2

0.0 −(0.1564 + 0.1284) q1

2 π
2

0.0 −(0.0054 + 0.0064) q2 + π

3 π
2

0.0 −(0.2104 + 0.2104) q3 + π

4 π
2

0.0 −(0.0064 + 0.0064) q4 + π

5 π
2

0.0 −(0.2084 + 0.1059) q5 + π

6 π
2

0.0 0.0 q6 + π

7 (to interface) π 0.0 −(0.1059 + 0.0615) q7 + π

Table 2.2: Kinova Gen3 7DOF physical quantities.

Link Segment mass (kg) CoM coordinates (m)

Base 1.697 [-0.000648, -0.000166, 0.084487]

1 1.377 [-0.000023, -0.010364, -0.073360]

2 1.1636 [-0.000044, -0.099580, -0.013278]

3 1.1636 [-0.000044, -0.006641, -0.117892]

4 0.930 [-0.000018, -0.075478, -0.015006]

5 0.678 [0.000001, -0.009432, -0.063883]

6 0.678 [0.000001, -0.045483, -0.009650]

7 (without vision module) 0.364 [-0.000093, 0.000132, -0.022905]

7 (with vision module) 0.500 [-0.000281, -0.011402, -0.029798]

Table 2.3: Kinova Gen3 7DOF inertial parameters (kg · mm2).

Link Segment Ixx Ixy Ixz Iyy Iyz Izz

Base 4622 9 60 4495 9 2079

1 4570 1 2 4831 448 1409

2 11088 5 0 1072 -691 11255

3 10932 0 -7 11127 606 1043

4 8147 -1 0 631 -500 8316

5 1596 0 0 1607 256 399

6 1641 0 0 410 -278 1641

7 (without vision module) 214 0 1 223 02 240

7 (with vision module) 587 587 3 369 118 609
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and yaw orientation of the base about the z-axis representing the robot base heading.
This results in a state space dimension of nx = 3 + nj = 3 + 7 = 10, where nj is
the number of degrees of freedom enabled by the manipulator joints. Setting the
derivatives of those degrees of freedom as our control input means an input of
dimension nu = 10, but we may exercise control over the norm of the velocity of
the robot base directly, allowing us to reduce that number from 10 to 9. As such,
our state and input vectors can be respectively written as

x =
[
bx by bψ q1 q2 q3 q4 q5 q6 q7

]
, (2.10)

u =
[
vb ψ̇ q̇1 q̇2 q̇3 q̇4 q̇5 q̇6 q̇7

]
. (2.11)

Figure 2.4: Kinova-provided high-level and low-level servoing control architecture
schemes. In the high-level servoing mode allows the user to send position or velocity
commands to the robot via an API at low frequency. The control library handles
direct and inverse kinematics as well as applies safety limits. At the low level, the
user has to handle those manually, then pass the command directly to the actuators.
The base control loop runs at 1kHz communication.

Since we do not perform torque control in path following, the dynamic model is
not of relevance for Kinova, but it can nonetheless be adopted directly using (A.28).

2.4 Articulated Locomotion and MAnipulation -
ALMA

ALMA is a robot composed of a custom-made, torque-controllable 4 degrees of
freedom robotic arm, DynaArm, mounted on a quadrupedal platform, ANYmal C.
The version of ALMA we study is the one first introduced in [35]. We highlight
the position of the Velodyne sensor and the robot end-effector in ALMA’s standing
position in Fig. 2.5. ALMA is equipped with four Realsense D435 cameras that
provide 360◦ vision as well as a VLP16 Puck LITE Velodyne sensor mounted on the
robot’s rear. It has two on-board computers, one running locomotion and planning
modules, and the other running mapping modules.
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Figure 2.5: Photo showing ALMA, a robot composed of a custom-made, torque-
controllable 4 degrees of freedom robotic arm, DynaArm, mounted on a quadrupedal
platform, ANYmal C. We highlight the position of the Velodyne sensor and the
robot end-effector in ALMA’s standing position.

We adopt the system dynamic modelling provided in [35]. Basically, in reference
to the dynamic model for floating base systems (2.9), we may describe ALMA with
the system of equations

Bu(q)u̇ +Cu(q,u) = JTextuFext, (2.12a)

Ba(q)u̇ +Ca(q,u) = τ a + JTextaFext, (2.12b)

where we split the dynamic model to unactuated and actuated dynamics respec-
tively corresponded to by the subscripts u and a (previously b and nj respectively
in Section 2.1). We also collapsed the gravitational terms together with the Coriolis
and centrifugal terms. Moreover, we are adopting a ZYX-Euler angle parametriza-
tion to represent the base’s orientation. The external forces acting on the robot’s
limbs are are depicted in Fig. 2.6. Sleiman et al. [35] assume that the subsystem
(2.12a) may be independently studied, from which one could equivalently retrieve
the Newton-Euler equations applied to the robot’s CoM, or the centroidal dynamics,
by a proper transformation, yielding

ḣcom =




∑nc
i=1 fci +mg

∑nc
i=1 rcom,ci × fci + τ ci


 , (2.13)

where ḣcom = (pcom, lcom) ∈ R6 represents the centroidal momentum composed of
linear and angular momentum about the centroidal frame G which is aligned with
the world frame but attached to the robot’s CoM. nc is the number of contact
forces and torques applied by the environment on the robot at contact points ci
with positions rcom,ci with respect to the CoM.

The generalized coordinates’ rate of change affects the centroidal momentum
based on the centroidal momentum matrix mapping A(q) ∈ R6×(6+na). This map-
ping may be obtained as a function of the full kinematic configuration and the
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Figure 2.6: Wireframe illustration of the adopted multi-limbed floating-base system
showing the main reference frames: the inertial I, the base B, and the centroidal G
frames as well as the external contact forces.

multi-body inertias of our system

hcom =
[
Ab(q) Aj(q)

]

q̇b
q̇j


 . (2.14)

Rearranging (2.14), we obtain

q̇b = Ab
−1(hcom −Ajq̇j

)
, (2.15)

where qb =
(
rIB , Φ

zyx
IB

)
∈ R6 is the pose of the robot base with respect to the

inertial frame.

As such, the robot dynamics are defined for motion planning purposes, with the
state and input vectors being respectively

xr =
(
hcom, qb, qj

)
∈ R12+na , (2.16)

u =
(
fc1 , . . . , fcnc , vj

)
∈ R3nc+na , (2.17)

where q̇j = vj . Contact torques in this formulation are neglected, with the as-
sumption that the contacts are formed at points rather than patches. The resulting
system, as depicted in Fig. 2.6, has 3 joints per leg, and 4 joints for the arm. It also
has 5 potential contact points, resulting in 28 state variables at 31 inputs.

For whole-body manipulation applications, we may augment the state of the
object of interest that we want to manipulate within our system state, thus achieving
a description of the robot-object dynamic coupling. For an object state xo =
(q0, v0) ∈ R2no , we obtain the augmented state x = (xr, x0) for the full system
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flow-map ẋ = f(x, u). The object dynamics are defined similarly to (2.12a),

ẋ0 =


 v0

B−10

(
− JTcofc5 − b0

)


 , (2.18)

where the term b0 captures generalized forces depending on position and velocity.
This sort of formulation requires knowledge of the object model and parameters,
and requires that the state of the object is observable so as to be fed back to the
MPC solver.

2.5 Constrained Numerical Optimization for Continuous-
Time OCPs

In the following two sections, we will be addressing problems of the form

min
x
f(x) (2.19a)

subject to

g(x) = 0 (2.19b)

h(x) ≥ 0, (2.19c)

where f(x) is our cost function of interest to be optimized, x is the state vector at
hand, and g(x) and h(x) are the equality and equality constraints respectively.

Optimization routines, such as SQPs, solve such a class of problems iteratively,
as depicted by Fig. 2.7, whereby necessary and sufficient optimality conditions of
the first order and second order for constrained problems are ensured.

Figure 2.7: Qualitative example of iterative numerical optimization approach. The
dashed lines represent the level curves of function f(x) [33].
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Sequential-Quadratic Programming

The first class of algorithms we will address is SQP, whereby a sequence of pri-
mal, x, and dual, Lagrange multipliers, variables is generated that converges to
a Karush-Kuhn-Tucker (KKT) triplet corresponding to a local minimizer. This
method performs a quadratic approximation of the optimization program at each
iteration k, and returns a solution in the space of search directions pk, and Lagrange

multipliers λ̃k and µ̃k. The approximated quadratic program (QP) around point

(pk,λ̃k,µ̃k) will read:

min
pk
∇xf

(
xk
)T
pk +

1

2
pk

T

Hkpk (2.20a)

subject to

∇xg
(
xk
)T
pk + g

(
xk
)

= 0 (2.20b)

∇xh
(
xk
)T
pk + h

(
xk
)
≥ 0 (2.20c)

Efficient solvers exist that tackle the solution of the resultant QP, each of them
tailored to the specific characteristics of the problem at hand, two main encom-
passing families being interior-point methods and active set methods. The interior
point method generates a sequence x∗k in the interior of the feasibility region of the
QP, and corresponds to the family of barrier methods. More specifically, interior-
point strategies replace the non-smooth complimentarity conditions arising in the
QP with a smooth nonlinear equation which gradually changes until the original
conditions are recovered.

The QP approximation also requires the definition of a suitable Hessian matrix
Hk, which approximates in a reasonable way the actual Hessian of the Lagrangian
∇2
xL(pk, λk, µk), which may be too expensive to compute. Several methods can

perform this approximation, including Broyden, Fletcher, Goldfarb, Shanno, more
commonly known as BFGS, and Gauss Newton (GN). The latter is most useful
when the cost function has the structure of a sum of squares. In this approach,
the cost function is represented as the multiplication F (x)TF (x), with a suitably
built function F (x) that gathers the errors in state and input. The approximation

then becomes Hk = 2∇xF
(
xk
)
∇xF

(
xk
)T

, which is semi-positive definite. This
fact contributes to the global convergence of the full algorithm. If needed, a small
diagonal σI can be added to the resultant Hessian Hk to force positive definiteness
in case numerical issues arise.

Another element that the QP requires is a suitable derivative computation
method due to all the gradients involved in the approximation. Derivatives are
typically computed analytically, using forward or central finite differences, or using
automatic differentiation. Central finite differences typically provides a nice trade
off between accuracy and computational speed.

After solving the QP, the following update rules are performed by the routine:

xk+1 = xk + tkpk

λk+1 = λk + tk∆λk

µk+1 = µk + tk∆µk

(2.21)

In order to define the step tk taken by the algorithm, an auxiliary unconstrained
back-tracking line search procedure is performed on the merit function of the original
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program. An l1-norm merit function minimization of the form

min
x∈Rn

T1(x) = f(x) +

p∑

i=1

σi |gi(x)|+
q∑

i=1

τi max (0,−hi(x)) (2.22)

is often adopted, where σi and τi are tunable parameters that are automatically ad-
justed during the SQP routine. This method starts with a search line of length t̄, and
gradually decreases that value by a factor β until the condition T1

(
xk + tkpk∗

)
≤

T1
(
xk
)

+ tkcD
(
T1
(
xk
)
,pk∗

)
holds, which is called Armijo Stopping Condition.

Other stopping conditions exist. Factor c represents the fraction of the desired im-
provement on the merit function over a linear approximation on the current point.
D represents here the directional derivative. Even if that condition is never met, the
algorithm considers a maximum number of backtracking iterations Nmax

t . Other
important parameters of the algorithm are the maximum number of overall SQP
iterations Nmax, the initial guess x0, and the tolerances required to stop the algo-
rithm: the gradient tolerance TOL∇, the parameter advancement tolerance TOLx,
the cost function decrease tolerance TOLf and the constraint satisfaction tolerance
TOLconstr.

Using SQP, we can solve FHOCPs in continuous-time domain. FHOCPs have a
similar but a more detailed description of the generic formulation in (2.19), as

minimize
u(·)

φ(x(tf )) +

∫ tf

ts

l(x(t),u(t))dt (2.23a)

subject to: x(ts) = xs (2.23b)

ẋ = f(x,u, t) (2.23c)

g(x,u, t) = 0 (2.23d)

h(x,u, t) ≥ 0, (2.23e)

where x, u are the state and control input respectively. SQP finds the minimum-
cost (2.23a) trajectory under the system dynamics f , the equality constraints g,
and the inequality constraints h. In order to achieve MPC, we apply u(ts), in
practice, to the system in a receding horizon fashion to allow re-planning with a
new measured state, xs.
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Figure 2.8: Sketch of receding horizon strategy for MPC [33]. At every time instance
t, FHOCP is solved and only the first step of the emerging input solution at t+1
is commanded. New measurements are taken then FHOCP is solved all over again.
yref is the reference trajectory, y(0|t) and y(0|t+1) are measurements at times t
and t+1, u(i|t) and u(i|t+1) represent how the optimal solution changed from time
t to t+1 at step i along the horizon.
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Sequential-Linear Quadratic Programming

SLQ MPC is introduced in [36] as a receding horizon implementation of SLQ in
a similar way as SQP MPC is a receding horizon implementation of SQP. It aims
to solve a FHOCP in an unconstrained NMPC manner. Starting with the general
nonlinear system

ẋ(t) = f(x(t),u(t)), (2.24)

where f(x(t),u(t)) is assumed to be differentiable with respect to state and control
input. The goal is to find a linear, time-varying feedback and feedforward controller
of the form

u(x, t) = uff (t) +K(t)x(t), (2.25)

with K(t) being the control gain matrix, and uff (t) being the feedforward control
action. By iteratively solving the FHOCP that minimizes the cost function

J = h(x(tf )) +

∫ tf

t=0

l(x(t),u(t))dt, (2.26)

we may be able to obtained the time-varying controller, where l(x,u) are the inter-
mediate and terminal costs.

SLQ itself is described in [37]. Essentially, given the discrete system dynamics

x(t+ 1) = f(x(t),u(t)), (2.27)

a cost function

J = h(x(tf )) +

tf−1∑

t=0

l(x(t),u(t)), (2.28)

and an initially stable control law u(x, t), SLQ first simulates the system dynamics
with the control law from t(0) to tf − 1, obtaining the trajectories of state and
input τ : xn(0), un(0), xn(1), un(1), . . . , xn(tf − 1), un(tf − 1), xn(tf − 1). It then
linearizes the system dynamics along the obtained trajectory τ ,

δx(t+ 1) = A(t)δx(t) + B(t)δu(t), (2.29)

where A(t) = ∂f
∂x |x(t),u(t) and B(t) = ∂f

∂u |x(t),u(t) at every step along the obtained
trajectory.

Next, it quadratizes the cost function along the trajectory τ as such

J̃ ≈ p(t) + δxT (tf )p(tf ) +
1

2
δxT (tf )P(tf )δx(tf ) +

tf−1∑

t=0

q(t) + δxTq(t)

+ δuT r(t) +
1

2
δxTQ(t)δx +

1

2
δuTR(t)δu, (2.30)

and backwards solves Riccati-like difference equations,

P(t) = Q(t) + AT (t)P(t+ 1)A(t) + KT (t)HK(t) + KT (t)G + GTK(t)

p(t) = q + AT (t)p(t+ 1) + KT (t)Hl(t) + lT (t)g + GT l(t)

H = R(t) + BTP(t+ 1)B(t)

G = BT (t)P(t+ 1)A(t)

g = r(t) + BT (t)p(t+ 1)

K(t) = −H−1G
l(t) = −H−1g,

(2.31)
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where K(t) is the feedback update and l(t) is the feedforward increment.

Finally, SLQ performs a line search to find the lower cost. Line search stops
after a number of maximum line search steps is reached. Starting with an initial
α = 1, the line search first updates the control law as

u(x, t) = un(t) + αl(t) + K(t)(x(t)− xn(t)), (2.32)

then it forward simulates the system dynamics to obtain τ : xn(0), un(0), xn(1),
un(1), . . . , xn(tf − 1), un(tf − 1), xn(tf − 1). A new cost is then computed as

J = h(x(tf )) +
∑tf−1
t=0 l(x(t),u(t)) dt before scaling α by a constant factor αd,

α = α
αd

.

This procedure is repeated until either of the stopping criteria:

1. maximum number of iterations is reached.

2. the procedure converged l(t) < lt

SLQ MPC entails running SLQ in an infinite loop, each iteration being triggered
by a new state measurement and running until convergence. More technical details
are covered in [36]. A cost function is chosen to have a quadratic shape since SLQ
itself already computes a quadratic approximation, and it takes the form

J = x̄(tf )THx̄(tf ) +

∫ tf

t=0

x̄(t)TQx̄(t) + ū(t)TRū(t) +W (x, t)dt, (2.33)

where x̄(t) and ū(t) represent state and input deviations from the desired trajectory.
H, Q, and R are the weighting matrices for the final, intermediate, and input costs.
W(x,t) represents an intermediate way-point cost. One SLQ iteration has a linear
complexity with the time horizon, allowing for efficient real-time applications.

Unconstrained-SLQ MPC has been reformulated for quadruped robots in [38]
and extended to handle state-input and state-only equality constraints as well as
inequality path constraints [39], through projections, penalty functions and barrier
functions, respectively.
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Problem Formulation

This chapter poses the formulation of the OCPs we are trying to solve. Our goal is
twofold:

1. A path following SLQ-MPC problem formulation that exercises direct control
over the rate of arclength progression along a path, therefore adding a degree
of freedom in time.

2. A holistic motion planning formulation for whole-body control of the robot
while maximizing the probability of target visibility.

Due to the multi-objective nature of our problems, we opt for FHOCP formula-
tions, which we solve in an MPC fashion. The optimal control problem is formulated
in the continuous-time domain as seen before in (2.23), which we recall below,

minimize
u(·)

φ(x(tf )) +

∫ tf

ts

l(x(t),u(t))dt (2.23a)

subject to: x(ts) = xs (2.23b)

ẋ = f(x,u, t) (2.23c)

g(x,u, t) = 0 (2.23d)

h(x,u, t) ≥ 0, (2.23e)

We solve both problems using SLQ solver [38] provided by the Optimal Control
for Switched Systems (OCS2) toolbox [40]. We will consider that the visibility and
orientation costs discussed in Sections 3.2.1 and 3.2.2 act on the robot end-effector,
but they can generally act on any other frame. We assume that the camera that
drives object detection and tracking is mounted on the end-effector.

27
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3.1 Path Following SLQ MPC

As mentioned before, the main idea behind constrained path following in robotics
is that we have a geometric path with no assigned speed, and we need to follow it
optimally. In Fig. 3.1, we provide a sample path to be followed that is parametrized
by the arclength

Figure 3.1: Example of a geometric 2D path to be followed [33]. The path is arc-
length parametrized, θ being the arc length parameter. The path starts at θ = 0
and ends in θ = 1, with ξ1 and ξ2 being the two dimensions of interest.

For our 3D mobile manipulator, we augment such an arclength parameter θ that
parametrizes our 3D path within (2.10) to obtain the augmented state vector xa
with a size nxa = 3 + nj + 1 = 11

xa =
[
bx by bψ q1 q2 q3 q4 q5 q6 q7 θ

]
. (3.2)

Setting the dynamics of our arclength parameter as

θ̇ = ω(t), (3.3)

allows us to augment ω in the input vector (2.11) as

u =
[
vb ψ̇ q̇1 q̇2 q̇3 q̇4 q̇5 q̇6 q̇7 ω

]
, (3.4)

resulting in nu = 10 a which gives us full control over the rate of progression of the
arclength parameter.
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As such, we can command the progression along the path by constraining it to
a desired value, ωdes, in a soft input constraint that penalizes the deviation as

∫ tf

ts

‖ωdes − ω(t)‖22 dt. (3.5)

If we set ωdes to 1, we would be asking for a behaviour that resembles the
behaviour of a trajectory tracking optimization. Otherwise, we can either ask for
a faster, wdes > 1, a slower, 0 < wdes < 1, or even a negative, wdes < 0 path
progression. This value can be dynamically controlled.

The soft input constraint (3.5) controls the arclength parameter, but we still
need to enforce the end-effector to follow the path at the emerging arclength value.
We do that by adding a soft state cost that penalizes the difference between the
current end-effector pose and the desired end-effector pose, the latter being specified
by the arclength parametrization. At every step, a θ emerges based on the (3.3)
and the pose along the path at the emerging θ will be the desired one. The current
pose is directly extracted from the fed back measurements. That is, we penalize the
error

x(t)− xdes(θ). (3.6)

The gradient of the error above can be easily computed on-demand. The deriva-
tive with respect to the state required for the linear approximation discussed in the
Section 2.5 can be obtained as

∂f

∂x
= −∂xdes(θ)

∂θ
= −∇xdesθ , (3.7)

which we compute using central finite differences as

−∇xdesθ =

(
xdes(θ + η)− xdes(θ − η)

)

2η
, (3.8)

where η =
√
ε with ε being the machine precision.

It is common in literature to also specify constraints on the speeds ẋe so as to
minimize oscillations as in [2]. This can be easily added to our implementation.
Moreover, in many applications, θ is constrained to be positive, so as to prevent
backward progression along the path. In our case we do not specify that as we are
not interested in only forward movements. We also only constrain the position of the
end-effector, leaving its orientation unconstrained. One may keep the orientation
fixed throughout the path, or may add an orientation parametrization. One may
also constrain the orientation to stay locked onto a dynamically moving target, like
for example the case of a videography application where the mobile manipulator
moves along a certain path while keeping the target at the center of the video. We
may achieve the latter for example by solving the following constrained problem,

min
q0,q1,q2,q3

f(q0, q1, q2, q3) =




udes

vdes

1


−




uact

vact

1


 (3.9a)

subject to

q20 + q21 + q22 + q23 = 0 (3.9b)
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where we are minimizing the difference between desired and actual camera pixel
coordinates of the target. For example, if the camera has a 1920 × 1080 pixel
resolution, one can set the desired coordinates to 960 and 540 respectively. The
variables at play here are the components which need to be normalized. As such
we are trying to find the quaternion that minimizes the error in pixel coordinates.

The relationship between the actual pixel coordinates and the quaternion can
be obtained using the distortion-free projective transformation given by the pinhole
camera model [41] as

sp = K[R | t]Pw, (3.10)

where p represents the camera pixel coordinates, s is a scaling factor, Pw being the
position of the target of interest, K is the matrix containing the camera intrinsic
parameters, namely the focal lengths fx and fy, which are expressed in pixel units,
and the principal point (cx, cy), that is usually close to the image center

K =




fx 0 cx

0 fy cy

0 0 1


 , (3.11)

and R and t are the rotation matrix, as a function of the quaternion, and the
translation that describe the the transformation from world to camera frame, also
known as camera extrinsic parameters,

[R | t] =




2
(
q20 + q21

)
− 1 2 (q1q2 − q0q3) 2 (q1q3 + q0q2) Xcam

2 (q1q2 + q0q3) 2
(
q20 + q22

)
− 1 2 (q2q3 − q0q1) Ycam

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) 2
(
q20 + q23

)
− 1 Zcam


 . (3.12)

Assuming the camera is mounted on the end-effector, the minimization (3.9)
depends on the emerging position of the camera along the horizon. At every step,
we solve the optimization and dynamically set the orientation constraint using the
resulting quaternion solution.

Collision Avoidance

In Fig. 3.2, we place an obstacle along the path, therefore expecting a collision while
following the path. From perception, we can detect the position of the target, and
therefore infer at which θ along the path our robot will collide with the obstacle.
We can then place a relaxed log barrier at that theta value.

The relaxed log barrier, as the name suggests, is a relaxation of the typical
logarithmic barrier function that is used in interior-point optimization routines to
implement inequality constraints within the cost function and takes the form

τ

nineq∑

i=1

lnCix + di, (3.13)

where Cix+di = 0 represents one of the KKT conditions that represent an inequality
condition Cix+di in inequality-constrained QPs. As τ −→ 0, the optimal solution is
approached over successive iterations. On the other hand, the logarithmic barrier
function always tends to +∞ as Cix+di −→ 0 and gets sharper as τ −→ 0 as depicted
in Fig. 3.3. Moreover,such a barrier is undefined outside the feasible space. This
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Figure 3.2: Same sketch as in Fig. 3.1 but with an obstacle (red box) blocking the
path, anticipating a collision along the path.

makes it unsuitable for shooting methods as it causes ill-conditioned QP and LQ
approximations.

The relaxed log barrier addresses those issues, making it more suitable for SLQ
MPC. It switches between two different functions at the constraint boundary as

B(h) =

{
− lnh, if h ≥ δ
β(h; δ), otherwise

(3.14)

where h represents the inequality and δ represents the distance from the constraint
boundary.

In the adopted SLQ MPC for this work, a quadratic extension for β is used

β(h; δ) =
1

2

((h− 2δ

δ

2

− 1
))
− ln δ. (3.15)

As such, a continuity of the barrier function is guaranteed, and the resulting
function is depicted in Fig 3.4. As δ −→ 0, the standard logarithmic barrier is
retrieved.

Therefore, the inequality based on Cix+di = 0 that we wrap with a relaxed log
barrier that ensures collision avoidance has the shape

θ(t)− θlimit = 0, (3.16)

whose gradient with respect to the state ∂f
∂x is simply -1.
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Figure 3.3: Logarithmic barrier function for the ith inequality constraint for different
values of τ [33].

Figure 3.4: Relaxed log barrier Brel comparison with the logarithmic barrier func-
tion Blog for δ = 5 [39].

Input Costs, Joint Velocity Limits, Self-Collision Avoidance,
and Final Cost

The main costs and constraints for achieving path following SLQ MPC formulation
are now complete. The remaining costs and constraints are rather generic for almost
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every optimal control problem.

We penalize the quadratically form of the input costs as uTRu, while each joint
velocity ui nearing its operational limits is penalized with a relaxed barrier function
similar to the previous subsection as seen in (3.17a). Distances between any pair
of links/bodies in a defined set of pairs P of the robot can be extracted easily with
Pinocchio, and self-collision avoidance can be achieved by wrapping those distances
with relaxed log barriers to keep them larger than a minimum distance dmin as seen
in (3.17b). Lastly, the final cost is simply a penalty to the error with respect to the
final state. {− uimax ≤ ui ≤ uimax ∀i ∈ {1, . . . , nu}

di ≥ dmin ∀i ∈ P
(3.17a)

(3.17b)

3.2 Dynamic Occlusion Avoidance within Whole-
Body Motion Planning

The material in this section is covered in a similar way to the previous one. We
use the same FHOCP formulation (2.23), keeping in mind the dynamic modelling
for ALMA presented . We will be introducing the two main costs, the visibility
cost and the orientation cost, one at a time, then briefly discussing the remaining
equality and inequality constraints.

3.2.1 The Reformulated Visibility Constraint

Typically, visibility constraints in control problems are enforced by restricting the
pixel coordinates of the tracked/ detected object of interest within upper and lower
bounds inside the current FOV as shown in (3.18)


 umin

vmin


 ≤


 uact

vact


 ≤


 umax

vmax


 . (3.18)

The dynamics of the camera pixel coordinates can be described using the fol-
lowing equation, 

 uk+1

vk+1


 =


 uk

vk


+ TsIJAq̇. (3.19)

where Ts represents the sampling period, JAq̇ represents the camera twist, and I is
the interaction matrix,

I =


−

1
Z 0 u

Z uv −
(
1 + u2

)
v

0 − 1
Z

v
Z 1 + v2 −uv −u


 , (3.20)

Z is the depth of the tracked object of interest, and IJA forms the Image Jacobian
JI . As such, this allows defining a cost over the function

f =


udes
vdes


−


ua
va


 . (3.21)

We reformulate those constraints as a maximization of the likelihood that the
end-effector has a line of sight to the target. The likelihood function, however, is not
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time-separable, making it unsuitable for trajectory optimization methods. As such,
rather than maximizing the likelihood of visibility, we maximize the log-likelihood.

∫ tf

ts

logF(xee(t))dt, (3.22)

where F in (3.22) is the shadow field containing information about visibility and
occlusion and xee is the 3D position of the end-effector frame of interest within that
field. Since we formulated our problem as a minimization, we may augment (3.22)
within (2.23a) as

laug(x,u) = l(x,u)− logF(xee), (3.23)

where the first term in (3.23) represents motion planning and system costs, and
the second term represents the visibility cost. The gradient of such a cost can
be obtained since the gradient of xee is the Jacobian of the end-effector, and the
probabilistic shadow field is continuous and smooth, allowing for efficient on-demand
trilinear gradient computation at every step. This gradient may also be computed
using a Sobel filter approximation. Since the values returned by F(xee) can be zero,
(3.22) is susceptible to extreme values due to the log function, making it unsuitable
for shooting methods. Therefore, we use the relaxed log barrier penalty introduced
in [39] and described in the previous section, as depicted in Fig. 3.5.

Figure 3.5: Relaxed log barrier wrapping of the shadow field cost.

3.2.2 The Orientation Constraint

The reformulated visibility constraint proposed in the previous subsection acts only
on the end-effector position, leaving the end-effector orientation unconstrained. As
a soft constraint, we add a cost that locks the end-effector onto the target, ensuring
that the target remains within the camera’s FOV, further enhancing the tracker’s
confidence about the target. Such a constraint is a function of the emerging solu-
tion from the planner along every step of the horizon. V in (3.24) represents the
normalized directional vector from the emerging end-effector position PEE to the
light position (the target) PL. Using V, we may extract the yaw and pitch angles in
(3.25) and (3.26) respectively that orient the end-effector towards the target. The
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roll angle ψ remains free to choose.

V = PL − PEE (3.24)

φ = atan2 (V1,V0) (3.25)

θ = − atan2
(
V2,
√
V2
0 + V2

1

)
. (3.26)

We get the quaternion from those angles, which allows us to compute the normal-
ized quaternion error between the desired orientation and the current end-effector
orientation. This transformation allows us to safeguard against sudden tracker up-
dates and faults by scaling the constraint’s penalty by the factor

γ =
max

(
α, log

(
ι∗errorc
1−errorc

))

β
, (3.27)

where 0 < α < 1, β 6= 0, and ι > 0 are tuning parameters and errorc is the
complement of the normalized quaternion error. In this manner, the end-effector
gradually and progressively locks onto the target as the quaternion error decreases.
We add the cost corresponding to this error minimization to laug, constituting the
second term of the resulting total cost function as shown in (3.28)

ltotal(x,u) = laug(x,u) + lo(xee). (3.28)

Figure 3.6: Logit scaling of the orientation penalty µ as a function of the complement
of the normalized quaternion error. In simpler words, the desired behaviour is low
penalty when the orientation error is large, and large penalty when the orientation
error is low. This results in the end-effector slowly and progressively locking its
orientation towards the target of interest. This safeguards the end-effector against
cases of sudden tracker updates or any unforeseen change in the orientation.
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3.2.3 Equality and Inequality Constraints

This subsection includes a brief overview of the equality and inequality constraints
applied to ALMA. For more details, the reader is referred to [35].

Equality constraints for ALMA are defined for potential contact points, which
may be either open or closed. Contacts are split in sets. They can be either
closed, C, at the feet, F , or at the arm, A, the latter being a singleton in this case.
Since the robot is performing gaits during its motion, the contacts at the limbs
are dynamically changing according to a predefined mode-schedule consisting of a
mode-sequence and a set of switching times. We refer by Cj to a fixed mode in-

stance starting at time s0j and ending at sfj . The corresponding state-input equality

constraints (2.23d) gj(x, u, t) ∀t ∈ [s0j , s
f
j ] and ∀i ∈ {1, . . . , nc}





vci = 0 if ci ∈ Cj ∧ ci ∈ F
vci · n̂ = v∗(t) if ci ∈ C̄j ∧ ci ∈ F
vci − Jcovo = 0 if ci ∈ Cj ∧ ci ∈ A
fci = 0 if ci ∈ C̄j

(3.29a)

(3.29b)

(3.29c)

(3.29d)

where ci is the i=th contact point, vci is the absolute linear velocity at that point
expressed in inertial frame, n̂ is the surface normal, v∗(t) is a reference trajectory
along n̂, Jco , and fci is the force at ci.

Equality (3.29a) is a no-slip condition between ground and a stance leg at the
point of contact, equality (3.29b) requires that swinging legs should track a reference
trajectory along the surface normal, (3.29c) specifies the grasping condition of the
grasped object at the gripping point, and the last equality (3.29d) assigns no force
at the open contacts.

Inequality constraints, on the other hand, are used to ensure a that the generated
motions and forces respect the system’s operational limits as described below,





− vjmax ≤ varmj ≤ vjmax
− τmax ≤ Ja

T

ci fci + ga ≤ τmax if ci ∈ Cj ∧ ci ∈ A

− µsfzci −
√
fx2

ci + fy
2

ci + ε2 ≥ 0 if ci ∈ Cj ∧ ci ∈ F

(3.30a)

(3.30b)

(3.30c)

where Ja and Jg are the arm Jacobian and generalized gravitational torques, re-
spectively, µs is a friction coefficient.

The inequality constraints ground the arm joint velocities and torques within
limits, ground the feet contact forces within the friction cone with a coefficient µs,
while ε 6= 0 is a parameter to smoothen the constraint.
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Shadow Field

In Section 3.2.1, we assumed to have a field F that contains knowledge about
likelihood of visibility across the space of interest as a function of the end-effector
logF(xee(t)). We also assumed it to be differentiable, continuous, and smooth
enough to be used in our gradient-based optimal control formulation. In Section
1.2, we stated that commonly used methods to represent the notion of visibility
and obstruction in the literature are quiet limited. Those methods are also not
applicable for our formulation, due to being inefficient and/or non-differentiable or
non-smooth. Moreover, most methods provide hard discrete shadows, meaning 1
for when the target is visible, 0 when it’s invisible. As such, we propose our own
DP-based probabilistic algorithm that returns the likelihood of point light visibility
from any position in the space of interest. It then can be used along the MPC
horizon to provide predictive power as can be seen in Fig. 4.1.

Figure 4.1: Shadow field mapping control and architecture. The shadow field is
constructed using a probabilistic occupancy grid, which itself is constructed using
LIDAR or RGB-D data. The field itself require a precomputation of weights also.

37
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4.1 The Visibility Problem

Figure 4.2: The visibility problem showing an obstacle occluding a point light
source. The hard shadow cast by the obstacle is defined by the blue lines.

The visibility problem at hand is illustrated in Fig. 4.2. The tracked target
of interest is considered to be a point light source. The setting is a discrete grid
with a defined resolution. We update the shadow field corresponding to the grid
using information contained in the occupancy grid. The basic idea is to propagate
information about visibility as probabilities starting from the light position, moving
outward in every direction one layer at a time, and updating the next layer of voxels
based on the previous layer. The result is a smooth and differentiable field contain-
ing information about visibility for every voxel. This is equivalent to performing
ray-casting from the light source to every voxel, but in a probabilistic DP manner.

4.2 Shadow Field Algorithms

2D Shadow Field

We first introduce the 2D case, which is a collapsed simpler version of the 3D case,
then extend the reasoning to the 3D one. In a 2D grid, pixels of the prior layer
Li−1 attenuate light based on their own probability of being occupied, consequently
affecting neighboring pixels of the upcoming layer Li. Each pixel in Li is affected by
exactly 2 neighbouring pixels in Li−1. The contribution of each of those 2 pixels to
light attenuation depends on the position of the queried pixel relative to the light
source. The resulting mappings between the queried pixel and the contributions
of the two neighboring pixels are constant due to the fact that they only depend
on query point and grid resolution. This allows computing them only once during
initialization to be cached and used at a later stage.

In the Fig. 4.3, the first quadrant of an XY plane is centered at the light position
where three samples queried black pixels and their corresponding neighboring red,
and blue pixels are displayed. For each black pixel, two black vectors passing
through (i+1, j) and (i, j+1) and a green one passing through (i, j) are highlighted,

referred to as ~vx, ~vy, ~vm respectively. The two angles ~̂vm~vx and ~̂vy~vm, and their

sum ~̂vy~vx, are computed using trigonometry.



39 4.2. Shadow Field Algorithms

Figure 4.3: First quadrant of the XY plane showing the queried black pixel of
interest in layer Li and its two neighbouring red and blue pixels in layer Li−1. vm,
vx, and vy are also visualized passing through points (i, j), (i + 1, j) and (i, j + 1)
respectively.

More specifically, angles ~̂vx~x, ~̂vm~x, and ~̂vy~x, where ~x is the x-axis, are computed
using 




~̂vx~x = arctan
( j

i+ 1

)

~̂vm~x = arctan
(j
i

)

~̂vy~x = arctan
(j + 1

i

)

(4.1a)

(4.1b)

(4.1c)

from which we calculate 



~̂vm~vx = ~̂vm~x− ~̂vx~x
~̂vy~vm = ~̂vy~x− ~̂vm~x
~̂vy~vx = ~̂vy~x− ~̂vx~x.

(4.2a)

(4.2b)

(4.2c)

The contributions of every red and blue pixel are set equal to the ratios of

~̂vm~vx to ~̂vy~vx and ~̂vy~vm to ~̂vy~vx respectively. Referring to Fig. 4.4, one may notice
that as the black pixel moves further along x relative to y or vice versa, one angle
progressively dominates the other. More intuitively, this means that as the black
pixel moves downwards towards the x-axis, the light coming from the source will
be progressively affected by the blue pixel and regressively affected by the red one.
This justifies the assignment of weights to the red and blue pixels, or in other words,
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the mathematical equations (4.2) and (4.2) provide an accurate description of the
observed behaviour.

Figure 4.4: Illustration depicting the evolution of the contribution of red and blue
pixels to blocking the black pixel’s line of sight with the light source.

After updating the weights of the neighbouring red and blue pixels for every
black pixel in the space of interest, the resulting distributions can be seen in Fig. 4.5.

Figure 4.5: Shadow field 2D weights distributions as a tangent and its complement.
Starting from the x-axis, the blue has maximum weights while the red has a weight
of zero. As we sweep towards the diagonal, the two weights tend to be equal.
Beyond that point, red will tend to 1 as we near the y-axis and vice versa for blue,
which goes to zero. The two red and blue distributions are stored in matrices Wr

and Wb.
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In Fig. 4.6, we compare hard shadow versus our soft shadow values for Fig. 4.2
scene on the vertical line X = 70. The comparison of these two techniques highlights
the extent and accuracy of our soft shadow approach. Owing to its probabilistic
nature and in contrast to a hard shadow technique, our shadow field provides a
smooth representation of visibility. This smoothness plays an essential role for
applications where the field’s gradient is required, such as our MPC formulation.

Figure 4.6: Values of our soft shadow field approximation against hard shadow
values produced by the obstacle in Fig. 4.2 along X = 70.

Algorithm 1 Shadow Field Update Routine in 2D

Inputs: L ← grid sized (x, y) valued 1.0
O ← probabilistic occupancy grid of the map
(lx, ly)← light indices
(xp, yp)← # of indices till upper boundary of L
(xn, yn)← # of indices till lower boundary of L
POthresh ← confidence level for occupancy
Wr,Wb ← cached weights

Output: F ← 2D probabilistic field

1: procedure updateShadowField() . for first quadrant only
2: Initialize F to L
3: for xi = 0 to xp , yi = 0 to yp, do
4: xk = lx + xi
5: yk = ly + yi
6: PO ← O(xk, yk)
7: if PO > POthresh then
8: F(xk, yk)← (1− PO)
9: else

10: Cr ←Wr(xi, yi) ∗ F(xk−1, yk)
Cb ←Wb(xi, yi) ∗ F(xk, yk−1)
F(xk, yk)← Cr + Cb

11: return F

We summarize the procedure for updating a 2D shadow field in 1. The update
procedure is centered around the light position, and iterates in 4 quadrants around
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it. For brevity, we only discuss the first quadrant update formula, since the other
three quadrants differ only in sign changes to iterate accordingly around the light
position. The weights are always relative to the light position, while all other opera-
tions are relative to the center (0,0). Alg. 1 takes as input a probabilistic occupancy
grid O, the indices corresponding to the light positions lx and ly, the cached weights
Wr and Wb, and a tunable confidence level for the probability of being occupied
POthresh . Alg. 1 outputs the shadow field. Alg. 1 updates all pixels in the field
one quadrant at a time, starting from the light source position. For every pixel
in level, Li, if its occupancy probability PO is higher than the threshold POthresh ,
then assign to it a value of 1 - PO, otherwise update it based on contributions of
neighbouring red and blue pixels from Li−1: Cr and Cb.

We display in Fig. 4.7 three sample meshes representing the shadow field of a
2D environment grid of size 100 × 100 at two different views as we vary the light
position dynamically. The generated wavy shadow field meshes in the side-views
are characterized by the same smoothness as the soft shadow curvature shown in
Fig. 4.6, meaning both umbras and penumbras are produced for each occluding
obstacle. The umbras are characterized by the flat shadow gradient, or by the
pitch-black regions, where the likelihood of having a line of sight there with the
target is slim-to-none. The penumbras are the shades of gray at the outer regions
of the shadows and these are the smooth and curvy regions in the mesh. The
algorithm’s DP nature allows us to run it at more than 10kHz for a 2D scenario in
C++.

Figure 4.7: Three pairs of one top-view and its corresponding side-view of a 2D
shadow field that results from obstacles (yellow face color) occluding a point light
source. The environment is identical in all illustrations, the only difference being
the light position.
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3D Shadow Field

Since the 3D scenario is an extension of the 2D case, where in addition to the
XY plane one needs to consider the XZ and YZ planes, the same reasoning can
be extended from 2D to 3D. Each queried voxel (3D pixel) in Li is affected by
exactly 3 neighbouring ones in Li−1. An example of a queried 3D voxel with its
three neighbours is shown in the first illustration in Fig. 4.8 as black, red, blue,
and gold respectively, whereas the light position is the yellow one. Also, four black
vectors are shown to be extending from the light position to locations (xi, yi, zi),
(xi+1, yi, zi), (xi, yi+1, zi), and (xi, yi, zi+1), which represent the queried voxel and
its three relevant neighbours, as seen on the left in Fig. 4.10. Those vectors are
referred to ~vm, ~vx, ~vy, and ~vz in Alg. 2. The normals to the planes formed by vectors
~vx and ~vy, ~vx and ~vz, and ~vy and ~vz are then computed. The planes themselves can
be seen on the right in Fig. 4.10. Using those normals, the angles between vector
~vm and the three aforementioned planes as well as their sum may be obtained. In
the final step, the respective weights distributions for every voxel are calculated and
stored in the mappings Wr, Wb, and Wg.

Figure 4.8: Illustration depicting the queried black voxel of interest and its three
red, blue, and gold neighbours. Voxel corresponding to light position is yellow.

Figure 4.9: XY, XZ, and YZ views of Fig. 4.8.
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Weights Algorithm

Figure 4.10: A queried 3D cube and its relevant vectors and planes formed by those
vectors.

As mentioned in the previous subsection, for the 3D case we no longer consider
only angles between two vectors, but rather the angles between the central black
vector ~vm shown on the left in Fig. 4.10 and the three planes formed by vectors ~vx,
~vy, and ~vz. Those angles may be computed by first inferring the normals of the
aforementioned planes, ~nxy, ~nxz, ~nyz. Then as in the case of 2D, we update the
three weights distributions accordingly. This procedure is summarized in 2.

Algorithm 2 Shadow Field Weights Routine in 3D

1: procedure initShadowFieldWeights()
2: T ← empty volume of size(x, y, z)
3: Initialize Wr, Wb, and Wg to T
4: for xi in x, yi in y, zi in z, (x, y, z) ∈ T , do
5: ~vm ← (xi, yi, zi)

~vx ← (xi+1, yi, zi)
~vy ← (xi, yi+1, zi)
~vz ← (xi, yi, zi+1)

6: ~nxy ← ~vy × ~vx
nxz ← ~vx × ~vz
nyz ← ~vz × ~vy

7: axy ← arcsin
(

~vm·~nxy
‖~vm‖·‖~nxy‖

)

axz ← arcsin
(

~vm·~nxz
‖~vm‖·‖~nxz‖

)

ayz ← arcsin
(

~vm·~nyz
‖~vm‖·‖~nyz‖

)

asum ← (axy + axz + ayz)
8: Wr(xi, yi, zi)← ayz

asumWb(xi, yi, zi)← axz
asum

Wg(xi, yi, zi)← axy
asum

9: return Wr, Wb, Wg
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Main Update Routine

Shadow field constitutes a local subset of the global map and is centered around the
light source, with a maximum number of indices separating between the light source
index and upper and lower bounds of the shadow field, (xp, yp, zp) and (xn, yn, zn)
respectively, as can be seen in Fig. 4.11. The logic for updating the 3D shadow
field is very similar to that of the 2D case. Alg. 3 takes those numbers as input, as
well as the probabilistic occupancy grid O, the indices corresponding to the global
and local light positions (llx , lly , llz ) and (lgx , lgy , lgz ), the cached weights Wr, Wb,
Wg, and a tunable confidence level for the probability of being occupied POthresh .
Alg. 3 outputs the shadow field. Alg. 3 updates all cells in the field one quadrant
at a time, starting from the light source position. For every voxel in level, Li, if its
occupancy probability PO is higher than the threshold POthresh , then assign to it
a value of 1 - PO, otherwise update it based on contributions of neighbouring red,
blue, and golden voxels from Li−1: Cr, Cb, and Cg. For brevity, we also only discuss
the first quadrant update formula, since each of the other quadrants requires only
few sign changes in the iteration logic.

Algorithm 3 Shadow Field Update Routine in 3D

Inputs: L ← volume (xlocal, ylocal, zlocal) valued 1.0
O ← probabilistic occupancy grid of the global map
(lgx , lgy , lgz )← light indices in global map
(llx , lly , llz )← light indices in local map
(xp, yp, zp)← # of indices till upper boundary of L
(xn, yn, zn)← # of indices till lower boundary of L
POthresh ← confidence level for occupancy
Wr,Wb,Wg ← cached weights

Output: F ← 3D probabilistic field

1: procedure updateShadowField()
2: Initialize F to L
3: for zi = 0 to zp , xi = 0 to xp , yi = 0 to yp, do
4: (xli , yli , zli) = (llx , lly , llz ) + (xi, yi, zi)
5: (xgi , ygi , zgi) = (lgx , lgy , lgz ) + (xi, yi, zi)
6: PO ← O(xgi , ygi , zgi)
7: if PO > POthresh then
8: F(xli , yli , zli)← (1− PO)
9: else

10: Cr ←Wr(xi, yi, zi) ∗ F(xli−1
, yli , zli)

Cb ←Wb(xi, yi, zi) ∗ F(xli , yli−1
, zli)

Cg ←Wg(xi, yi, zi) ∗ F(xli , yli , zli−1)
F(xli , yli , zli)← Cr + Cb + Cg

11: return F

Computational and Storage Complexities

Referring to Alg. 3, the upper bound of our run-time computational complexity is
2 additions and 3 multiplications per voxel, which scales linearly with the number
of voxels and cubically with the grid resolution. This is very useful, especially when
running other demanding computational processes. Since our method requires no
special hardware, it may run on a separate CPU. This offloads computation from
the main processor allowing it to perform demanding motion planning for a complex
system with high degrees of freedom which is the case for our experiments, as shall
be discussed in the hardware tests section. The storage complexity for the 3D case,
excluding the occupancy grid, is that of the shadow field and the three weights
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Figure 4.11: Illustration depicting the shadow field being a subset of the global
map, the light source, and the maximum number of voxels separating the light
center from the lower boundary of the shadow field.

distributions Wr, Wb, Wg, which is exactly 4nxnynz, assuming that the map has
a volume of (nx × ny × nz).

We provide 3D simulations as we did in the 2D case. We pass the light dynam-
ically in a 3D environment. The environment is shown without a light and without
shadows in the first illustration in Fig. 4.12. Since the mesh for a 3D field is in
4D, we use a trick to visualize the field by project it onto an occupancy map. We
specify that cells having a shadow field value ≤ 0.72 are occupied. In the second
illustration in Fig. 4.12, the light is positioned at (19, 10, 10), and we show the cells
having less than 72% visibility as occupied. This specific threshold may be varied.
In the third illustration, the light position is near the center and higher than most
of the occluding objects at (60, 65, 80), so the shadows are cast downwards. In
the final illustration, the light is actually occluded from the viewing point, being
behind one of the occluding obstacles at (70, 90, 17).

Lastly, we provide a 2D deterministic sample application of shadow field as well
as a solution obtained using a naive-gradient descent algorithm in Appendix B.
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Figure 4.12: Representing shadow field cells that have a visibility ≤ 0.72 as occupied
cells in an occupancy map since the shadow field mesh for a 3D field is in 4D.
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Chapter 5

Experimental and
Physics-Based Simulation
Results

In this chapter, we present the experimental and physics-based simulation results
that validate the formulations presented in previous chapters. All of the code re-
quired to implement the simulations and perform the experiments was done in C++
on ROS. Gazebo is the chosen physics-based simulation environment, and Pinocchio
is the main tool used in kinematic and dynamic modelling.

We start off by showing the Kinova 7DOF path following simulation results for
three cases; the nominal case, the case with a wrong initialization, and the case with
collision avoidance. Then we present experimental results from real-time shadow
field mapping using hardware. Lastly, we conclude with occlusion avoidance whole-
body motion planning simulations for both the mobile manipulator and ALMA.

OCS2 Toolbox

The main toolbox used to implement the formulations is OCS2 [40]. It allows for
efficient implementation of SLQ-MPC, among other algorithms. It provides all
the necessary tools to setup the whole problem starting with system dynamics to
defining costs and constraints from a URDF model due to its support of Pinocchio.
It performs an automatic differentiation tool to evaluate the necessary derivatives
concerning the system dynamics, constraints and costs. Lastly, it provides user-
friendly tools to establish an interface with ROS.

49
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5.1 Path Following

The first step in path following is obtaining a parametrized path. For demonstrative
reasons, we use a simple numerical computation of the arclength parameter to obtain
our path parametrization whereby the main goal is the formulation discussed in
Section 3.1 rather than ways on how to parametrize the path. For more details
about path parametrization, refer to [31]. In the C++ code written for this project,
a separate module is provided that takes a parametrized path as input irrespective
of the way it was parametrized. As discussed in Section 3.1, we do not parametrize
the orientation, but simply constrain it to a fixed value along each path.

5.1.1 Path Generation & Numerical Arclength Parametriza-
tion

We start with the definition of the arclength

θ =

∫ b

a

√
dx

dt

2

+
dy

dt

2

+
dz

dt

2

dt =

∫ b

a

|| v(t) || dt, (5.1)

where θ is our arclength parameter as detailed in 3.1, and x, y, and z are the
components of the differentiable vector valued function on [a,b], r(t) = x(t)i+y(t)j+
z(t)k. The gradients required for (5.1) can be obtained numerically using central or
forward finite differences. Integration itself may be performed using the cumulative
trapezoidal method. The last step in obtaining the arclength parametrization is
generating a linearly spaced vector parametrized by the resultant θ.

Vector r(t) itself may be obtained by generating a sample reference trajectory
using harmonic trajectories [31]. Harmonic trajectory result in a position profile
that is continuously differentiable, i.e., ∈ C∞. We provide in Fig. 5.1 example x(t),
y(t), and z(t) constituting r(t). The resulting arclength parametrized path is shown
in Fig. 5.2.

Figure 5.1: Sample reference trajectory that serves as a basis, r(t), to obtain the
arclength parameterization in (5.1). Position, speed, and acceleration curves for
the three dimensions are continuous and smooth due to the fact that harmonic
trajectories ∈ C∞.
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Figure 5.2: Sample reference path to be followed. The paths along the three direc-
tions, x(θ), y(θ), and z(θ) are also smooth and continuous.

To recap, our path generation module takes in as input the path resolution,
which we set at 0.0025, a final time tf , % of the trajectory where we have accelera-
tion and % of the trajectory where we have deceleration, rise and fall respectively,
the distance covered in x, y, and z, and the offset from origin/initial condition of
the end effector. It then generates a trajectory, from which we extract the arclength
parametrization θ. Finally, the geometric path is then arclength parametrized and
passed as the desired path to be followed.
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5.1.2 Nominal case

We first investigate the nominal case whereby the robot’s end-effector has to follow a
simple and easy path that starts from the end-effector’s initial condition. In Fig. 5.3,
we show the evolution of the robot end-effector from starting to ending positions
along the path which is highlighted. We also show the end-effector’s frame. In
Fig. 5.4, we show ROS’s rqt multiplots of θ in blue on the left, and ω in red on the
right, both against time. Reminder that θ is the arclength parameter and ω is the
rate of progression of θ with time. Nominally, those values reach their respective
setpoints with no issues as the robot nominally follows the path.

Figure 5.3: Multiplicity illustration showing the evolution of the robot end-effector
along the path throughout a nominal path following setting. The target path and
the end-effector frame are highlighted.

Figure 5.4: Plots of arclength θ in blue and ω in red for the nominal case.
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5.1.3 Wrong Initialization Case

The second case of interest is the case where the path has an offset from the end-
effector initial position, i.e., we have a wrong initialization. In Fig. 5.5, we show
the robot initially moving to the path starting point, and then continuing along the
path towards the ending position of the end-effector. We also show the end-effector’s
frame. In Fig. 5.6, the behaviour of solver can be seen where path progression ω
is killed initially as progression was not favorable. ω even went negative to correct
for the initial θ progression. Once the end-effector is back on track along the path,
progression proceeds normally and nominally.

Figure 5.5: Multiplicity illustration showing the evolution of the robot end-effector
along the path throughout a path following setting with a wrong initialization.

Figure 5.6: Plots of arclength θ in blue and ω in red for the case of wrong initial-
ization. Progression freezes till end-effector is back on track.
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5.1.4 Collision Avoidance Case

In the third case, we place an obstacle along the path. We can detect this obstacle’s
location and infer if there will be a collision with it or not along the path, and if
yes, infer the value of θ at which there will be collision. We show the evolution of
the behaviour of the robot in Fig. 5.7 where the robot pauses its progression right
before collision, i.e., achieving collision avoidance. In Fig. 5.8, the progression is
visibly killed. The solver tries to proceed at different times along the path but since
progression is unfavorable, the robot’s end-effector successfully avoids collision.

Figure 5.7: Multiplicity illustration showing the evolution of the robot end-effector
along the path throughout a nominal path following setting with collision avoidance.

Figure 5.8: Plots of arclength θ in blue and ω in red for the case of collision avoid-
ance. Progression freezes indefinitely right before collision.
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5.1.5 Qualitative and Quantitative Discussion for the Nom-
inal Case

In this subsection, we evaluate the qualitative and quantitative performance of our
path following for the nominal case. In Fig. 5.9, we compare the three components
for the desired path, x(θ)des, y(θ)des, and z(θ)des, with the actual path components
obtained in simulation, x(θ)actual, y(θ)actual, and z(θ)actual respectively. The RMSE
for each of the components is 6.4mm, 6.5mm, and 5.2mm respectively. Even though
our main goal is not to follow the desired path as closely as possible, we obtained
sufficiently low RMSE values. The penalty assigned to following the path was high,
and much lower RMSEs may be obtained if one was to tune the solver for that
purpose. We add the time as a third dimension in Figs. 5.10, 5.11, and 5.12.

Figure 5.9: Comparison between the desired path components and the actual path
components for the nominal case.

Figure 5.10: Comparison between the x(θ)des and x(θ)actual for the nominal case
showing the time trade-off.
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Figure 5.11: Comparison between the y(θ)des and y(θ)actual for the nominal case
showing the time trade-off.

Figure 5.12: Comparison between the z(θ)des and z(θ)actual for the nominal case
showing the time trade-off.

The RMSE with respect to time is around 0.98s, where the solver prefers to
take more time for the sake of better following the path under the constraints,
therefore exploiting the DOF in time. This degree of freedom is also tunable in our
formulation as we can increase the penalty on following a desired path progression
ω = 1.
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5.2 Dynamic Occlusion Avoidance Within Whole-
Body Motion Planning

5.2.1 Motion Planning and Control Pipeline

In Chapter 2, Section 2.4, we introduced ALMA’s equations of motion and back-
ground on SLQ-MPC and in Chatper 3, Section 3.2 we formulated the cost function
at hand and presented the necessary equality and inequality constraints. Those are
fundamental for whole-body motion planning, but in terms of execution and con-
trol, we need to briefly introduce the whole-body controller (WBC) that performs
the actual tracking of the planned motion while prioritizing some tasks as presented
in Fig. 5.13.

Figure 5.13: The high-level controller in ALMA’s control architecture consists of a
whole-body planner that interacts with a whole-body controller that prioritizes the
tasks indicated in red [35].

Those tasks are solved as a hierarchical QP problem that optimizes for gener-
alized accelerations and contact forces. The torques may then be obtained from
those accelerations and forces using inverse dynamics. The WBC tracks reference
motion induced on the base by said forces rather than tracking the forces them-
selves. Moreover, it relies on a more realistic model than the planner, so it imposes
stricter conditions on physical correctness. It is also noteworthy that MPC planner
solutions for the arm contact forces are treated differently than the rest of the forces
since the dynamic model adopted by WBC does not include the object dynamics
(2.18).
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Lastly, Fig. 5.13 includes a MPC-WBC conversions step, where MPC solutions
are coupled with the WBC tracking tasks. Actuated joint accelerations q̈j are com-
puted using finite differences while the DynaArm’s joint positions and velocities as
well as contact forces are obtained directly from the MPC state and input solutions.
Trajectories for feet swings are obtained using basic kinematic transformations and
using the following expression for accelerations

r̈ci = Jci q̈j + J̇ci q̇j . (5.2)

The unactuated base pose is part of the MPC state solution, whereas the base’s
linear and angular velocities are extracted from (2.15) with a mapping equivalent
to (A.10), 

vIB
ωIB


 =


 I 03×3

03×3 T (ΦzyxIB )


 q̇b, (5.3)

where T (ΦzyxIB ) play a similar role as (A.12) but for a ZYX-Euler representation
rather than a roll, pitch, and yaw one.

The base feedforward accelerations are obtained by time-differentiating (2.15),
obtaining

q̈b = A−1b

(
ḣcom − Ȧq̇ −Aj q̈j

)
, (5.4)

where ḣcom is obtained in (2.13), and Ȧq̇ is computed by zeroing the joint accel-
erations within a recursive Newton-Euler algorithm and transforming the resulting
twist from a base one to centroidal one. The accelerations v̇IB and ω̇IB are com-
puted as 

v̇IB
ω̇IB


 =


 I 03×3

03×3 T


 q̈b +


 I 03×3

03×3 Ṫ


 q̇b. (5.5)

The MPC runs on one of the two onboard computers having an Intel Core i7-
8850H CPU @4 GHz hexacore processor at a rate of 70Hz in free motion for a time
horizon of 1 second. The planner and the WBC receive feedback from encoder and
IMU sensor fusion estimator to estimate the base pose. The feedback loop between
the state estimator and the WBC runs at 400Hz, whereas the low-level module
interacts with the joint controller at 2.5kHz, whereby the torque commands are
generated as

τa = τ∗j +Kp(q
∗
j − qj) +Kd(q̇

∗
j − q̇j). (5.6)

5.2.2 Realtime Shadow Field Mapping

To validate our shadow field, two real-time mapping experiments are considered. In
each of them, ALMA is placed in a different cluttered environment, and data from
the Veldoyne sensor are used to construct a 3D probabilistic occupancy grid. The
occupancy grid is then used to compute and publish a 3D shadow field spanning
16×16×2m3 at a resolution of 1000 voxels per cubed meter. The onboard mapping
computer runs the whole pipeline at rates exceeding 100Hz, far beyond the Velodyne
pointcloud update rate (∼15Hz). Since it is not possible to visualize the whole 3D
shadow field in a meaningful manner, we visualize only a horizontal slice of it at a
defined height in the form of a pointcloud having gray-scale intensities proportional
to the values of the shadow field. At that slice level, brighter areas represent visible
regions while darker areas represent occluded regions. We publish this slice at the
robot’s end-effector level. In both experiments, we coincide the light position with
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the end-effector position at the center of the field, i.e., we are evaluating the end-
effector’s sight of the surrounding scene. We also visualize the occupied voxels,
which have different colors correlated to their occupation probability. We show
the top view of the slice, the occupied voxels, and the Velodyne pointcloud in
Fig. 5.14. Asides from noise arising at the stage of building the occupancy grid, the
resulting shadows retain the same smoothness and continuity characteristics as the
soft shadow presented in Fig. 4.6.

Figure 5.14: Top view of the occupied voxels (colored), the Velodyne pointcloud
(small white dots), and the resulting shadow field pointcloud slice (gray-scale). The
light source and the end-effector are at the center of each image. The umbras
produced by the occluding voxels are dark while their penumbras are the shades of
gray.
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5.2.3 Physics-based Simulations

The final contribution of this paper is experiments running in a physics-based simu-
lation environment, Gazebo, that validate our ALMA motion planning and control
pipeline. The MPC is solved at a 1.0s horizon, and the relevant penalties arise from
the actuator inputs, the visibility and orientation costs, height tracking, and the
actuator speed, position, and torque limits. Other regularization costs and gait-
related constraints are active during this process. We also provide the simulation
with a given occupancy grid built based on simulated obstacles in the environment.
The grid resolution we adopt is 1000 voxels per cubed meter.

Figure 5.15: Top view of two sample scenes where we run our simulations. The robot
end-effector, ALMA’s in this case, has to establish line-of-sight with the target
frame, hidden behind obstacles (violet). Shadows cast here have been generated
using our proposed algorithms, so we note umbras and penumbras here too.
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In Fig. 5.15, we illustrate the top view of each of the two scenes in which we
carry out the simulation. In both illustrations, a slice of the shadow field at the
end-effector level is shown in gray-scale with the same intensity scale as previously
introduced for Fig. 5.14. Umbras and penumbras described there can also be noted
here. As shown in Fig. 5.15, we make sure that the end-effector starts in an oc-
cluded position. The robot must then plan a least-shadowy path for the end-effector
position that leads it to establish line-of-sight with the light position.

Figure 5.16: Multiplicity illustrations of our physics-based simulations in the two
scenes introduced in Fig. 5.15. The solver solution in each simulation is reflected
through 4 different snapshots of the robot. The target is tagged. Violet points
correspond to obstacles at the level of the end-effector..

In Fig. 5.16, we illustrate the robot’s motion and its end-effector frame pose in a
top view. In the first simulation, snapshot 1 shows the robot in its starting occluded
position. The second snapshot shows the end-effector sliding along the surface of an
occluding obstacle so as to circumnavigate it. The third snapshot shows the end-
effector being extended ahead of the robot, trying to reach locations with higher
visibility. The last snapshot shows the robot in a steady state. Having reached full
visibility, the end-effector is free to lock onto the target. We achieve an orientation
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error complement of 0.995. In the second illustration, we also begin in an occluded
position. The differences in this scene are minor relative to the first one, where we
block the path of the previous solution by extending the first obstacle facing the
light frame. We also move one of the obstacles and place it right next to the light
position. The robot, as a result, directly extends the end-effector into the visible
region in snapshot 1, then traverses the slightly shadowed region and peaks its end-
effector through the tight passage by the fourth snapshot to achieve full visibility.
As an interesting emergent behavior, the end-effector avoids collisions with obstacles
since their shadow field values are zero. This behavior may be extended to other
robot frames.

In a game of hide and seek, our robot manages to establish 100% visibility with
the target frame while locking completely to it after we hide our target of interest
behind several simulated occluding obstacles. Note that those scenarios are extreme.
We will generally not face a problem where the robot starts in complete invisibility or
where the line-of-sight between the target and the end-effector is suddenly hindered
by several obstacles that completely block visibility. More realistic scenarios include
partial occlusion, where the robot end-effector has to adjust a bit so as to maintain
sight, as is the case with humans and animals when their line-of-sight to a target is
blocked. After all, this was the goal all along, to mimic human intelligent behaviour
in such scenarios.

It is also noteworthy that the proposed dynamic occlusion avoidance scheme
is a gradient-based technique, and such planning techniques cannot return a viable
solution in case the local gradient that is reachable along the horizon is flat. In such
a case, a higher level planner is required where the robot enters a frontier-based
exploration phase or backtracks to the last position where there was visibility or
even change the task completely. Moreover, the behaviour of the robot end-effector
in this scheme directly depends on the quality of the probabilistic occupancy map,
which itself is bottlenecked by the LIDAR’s or the RGB-D’s update rate. Lastly, the
behaviour of the robot also depends on the mapping resolution, which itself increases
the complexity of the scheme the lower it gets, otherwise trilinear interpolation
might not return high fidelity shadow field values and gradients, causing as a result
a jittery end-effector movement.

We provide more simulations results for both Kinova 7DOF mobile manipulator
and ALMA in Appendix B.



Chapter 6

Future Work

As mentioned at the end of Section 5.2.3, our proposed dynamic occlusion avoidance
formulation will not work for extreme scenarios where the end-effector is initialized
in complete darkness deep within an occluding obstacle’s umbra, nor will it work
in the extreme case where sudden complete occlusion takes place. A higher level
control is required to take over in that case. Moreover, what is still missing is
hardware experiment having the same setup as the physics-based simulations to
validate occlusion avoidance in real life. Lastly, further tests and tuning is required
to obtain robustness in real life. The occupancy map provided for the simulation
was noise-free, making it unrealistic.

Regarding our path following formulation, we are missing hardware tests the
Kinova 7DOF mobile manipulator. One may formulate the same SLQ-MPC path
following problem for ALMA then test it in simulation and on hardware as a sec-
ond step. The formulation itself is also missing a minimal parametrization of the
orientation. One may add speed related constraints so as to ensure stability of the
end-effector, and one may also experiment with a speed-assigned as [6] did. We
reiterate that in this context, a speed assigned path following problem differs from
a trajectory tracking one where the prior is similar to scaling the timing law on the
go within motion planning.
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Chapter 7

Conclusion

In this thesis, we formulated a constrained path following SLQ MPC problem for
a mobile manipulator. We embedded the arclength variable with which the desired
path is parametrized within the system states, giving the solver full control over
the rate of progression as it deems fit to accommodate for arising costs and path
constraints. We implemented this formulation for a 7DOF manipulator and we
studied its behaviour for three cases. For the nominal case, we provided a qualitative
and quantitative description of the manipulator’s path following performance. For
the case of a wrong initialization, we highlighted the solver’s ability to correct the
initial error by backtracking the solution of the arclength and proceeding nominally
once the end-effector is back on track. For the last case, we show the solver’s ability
to avoid collisions by placing a relaxed-log barrier at the arclength value where a
collision is expected to happen.

In this work, we also proposed an MPC formulation based on visibility con-
straints. We augmented our motion planning cost function with a penalty maxi-
mizing relaxed log-likelihood of visibility probability. We introduced a probabilistic
shadow field that quantifies visibility probability based on the occupancy map of the
scene. We validated the quality of this map in simulation and hardware. We further
discussed the computational and storage complexities of our shadow field mapping
and showcased its computational efficiency for onboard applications by real-time
mapping on ALMA hardware. A comparison between hard and soft shadows for
one 2D implementation shows the extent and accuracy of our approximation. Last
but not least, we demonstrated the validity of our proposed MPC formulation for
motion planning and dynamic occlusion avoidance in simulation for ALMA.
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Appendix A

Text Appendix

A.1 Fixed Base Kinematics

Figure A.1: 6DOF industrial fixed base manipulator, the ABB IRB 6400. Source:
ABB.

For a fixed base system, like an industrial manipulator depicted in Fig. A.1,
setting our robot generalized coordinate vector as the chosen degrees of freedom
provided by our joints, we would obtain the minimal set of generalized coordinates

71
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that fully describe the configuration of our system,

q =




q1
...

qnj


 . (A.1)

For every value of this set, our robot end-effector assumes a certain pose in
task-space,

xe =


re
φe


 ∈ R3 × SO(3), (A.2)

where re is the end-effector position and φe is the end-effector orientation, the latter
being an abstraction that may be represented using different schemes (ex: Euler
angles, angle-axis, unit quaternions).

The mapping from the generalized coordinates q to the end-effector pose xe

xe = xe(q), (A.3)

is described by forward kinematics and can be obtained for the chain of bodies
constituting our robot as:

T Ie (q) = T I0 ·
nj∏

k=1

T k−1k (qk) · Tnje , (A.4)

where T Ie (q) represents the homogeneous transformation matrix between inertial
frame and the end-effector frame, T I0 and T

nj
e are static transformation matrices

from inertial frame to the robot base frame and from last robot frame to the end-
effector frame respectively.

Using the relationship above, one may obtain the position and rotation matrix
at any frame of interest with respect to the inertial frame as

T Ik =


R

I
k rIk

0T 1


 , (A.5)

where T Ik is a 4×4 matrix, RIk is a rotation matrix that would orient frame k to the
inertial frame I, rIk is the vector between frames k and I, and 0T is a 1x3 vector.

In order to obtain velocity of the end effector pose

xe =


 re

φme


 , (A.6)

where φme is the minimal representation of the orientation, we use differential for-
ward kinematics,

ẋe = JA(q)q̇, (A.7)

where JA represents the m× nj analytical end-effector Jacobian where m depends
on our parameterization, being 6 in case of a parametrization ∈ R3 × SO(3),

JA(q) =




∂x1

∂q1
. . . ∂x1

∂qnj
...

. . . . . .

∂xm
∂q1

. . . ∂xm
∂qnj



. (A.8)
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The analytical Jacobian relates joint space and operational space by reflecting
the contribution of each joint on end-effector pose. Clearly, the Jacobian depends on
the parametrization. Moreover, the analytical Jacobian maps to velocities having a
minimal representation of the orientation, and is actually composed of a positional
Jacobian and an angular one

JA =


JAP
JAR


 , (A.9)

The geometric Jacobian J which maps a pose with non-minimal orientation
representation is related to the analytical Jacobian in the case of a roll, pitch, and
yaw representation of orientation and a m× nj ≡ 6× 6 as follows,

JA =


13×3 03×3

03×3 T−1A


 J, (A.10)

where TA is a matrix mapping between minimal and non-minimal orientation rep-
resentations of the angular velocity as

φ̇e = TA(r, p, y)φ̇me = TA(r, p, y)




ṙ

ṗ

ẏ


 , (A.11)

ṙ, ṗ, and ẏ being the time-derivatives of the roll, pitch, and yaw respectively, and
TA being

TA(r, p, y) =




1 0 sin(p)

0 cos(r) −cos(p)sin(r)

0 sin(r) cos(p)cos(r)


 . (A.12)

A.2 Fixed Base Dynamics

The Lagrangian L of a mechanical system is defined as the difference of between its
kinetic energy T and its potential energy U

L = T − U . (A.13)

Using our defined set of generalized coordinates q, we may write the Euler-
Lagrange equation of the second kind as

d

dt

∂L
∂q̇i
− ∂L
∂qi

= fi, ∀i = {1, ..., nq}, (A.14)

where fi represents the forces along the components of the generalized coordinates
which are not explained by conservative effects.

Kinetic Energy Computation

In order to compute the kinetic energy of the system, it is enough to add the con-
tributions of each of the rigid bodies of the system. By applying Konig’s Theorem,
the contribution of each rigid body can be obtained by adding its translational
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and rotational energies. Kinetic energy, in basic mechanics, for each body can be
expressed as

Ti =
1

2
miṗi

T ṗi +
1

2
ωi

TRiI
i
iR

T
i ωi, ∀i = {1, ..., nq}, (A.15)

where ṗi is the velocity of the center of mass of each body with respect to a global
reference frame, mi is the mass of each body, ωi is the angular velocity of each
body with respect to the same global reference frame, Ri are appropriate rotation
matrices aligning the global to the local frames and Iii is the inertia tensor of the
rigid body.

We need to express the previous equations in terms of the coordinates q, so we
apply the chain rule on the vectors ṗi and ωi

ṗi = J
(i)
P1q̇1 + · · ·+ J (i)

Piq̇i = J
(i)
P q̇, ∀i = {1, ..., nq}, (A.16)

ωi = J
(i)
O1q̇1 + · · ·+ J (i)

Oiq̇i = J
(i)
O q̇, ∀i = {1, ..., nq}, (A.17)

where J
(i)
Pi corresponds to the i-th column of the positional Jacobian ∂p

∂q and J
(i)
Oi

corresponds to the i-th column of the orientation Jacobian ∂α
∂q . Plugging in equa-

tions A.16 and A.17 in A.15, we get

Ti =
1

2
miq̇

TJ iTP J
i
P q̇ +

1

2
q̇TJ iTO RiIiR

T
i J

i
Oq̇, ∀i = {1, ..., nq}, (A.18)

Summing up over the nq dynamic rigid bodies of the system, we get

T =
1

2

nj∑

i=1

nj∑

j=1

bij(q)q̇iq̇j =
1

2
q̇TB(q)q̇, (A.19)

where the matrix B(q) is the inertia matrix that can be written as

B(q) =

nj∑

i=1

(
miJ

(i)T
P J

(i)
P + J

(i)T
O RiI

i
iR

T
i J

(i)
O

)
. (A.20)

Potential Energy Computation

Potential energy may be computed by summing up the contributions of each body.
Assuming that the only conservative force that the manipulator is subjected to
is the gravitational field of the Earth, thus neglecting possible elastic effects, the
contribution of each body can be expressed as

Ui = −mig
Tpi ∀i = {1, ..., nq}, (A.21)

where g represents the gravity acceleration in vector form expressed in the global
reference frame. Therefore, by simply summing up the contributions of each body,
we obtain

U = −
nj∑

i=1

mig
Tpi. (A.22)
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Equations of Motion

Having calculated the potential and kinetic energies, we can write the Lagrangian
of the system as

L = T − U =
1

2

nj∑

i=1

nj∑

j=1

bij(q)q̇iq̇j +

nj∑

i=1

(
mig

Tpi(q)
)

(A.23)

Then, we can plug in equation A.23 into A.14 and obtain:

d

dt

(
∂L
∂q̇i

)
+
∂L
∂qi

=

nj∑

j=1

bij(q)q̈j +

nj∑

j=1

dbij(q)

dt
q̇j +

nj∑

j=1

bij(q)q̈j +

nj∑

j=1

nj∑

k=1

∂bij(q)

∂qk
q̇kq̇j

+
1

2

nj∑

j=1

nj∑

k=1

∂bjk(q)

∂qi
q̇kq̇j −

nj∑

j=1

(
mjg

TJ
(j)
Pi (q)

)
(A.24)

As such, we may define the last term of equation A.24 as a special function that
only depends on the position of the coordinates q and not on their velocity, called
the gravitational term

gi(q) = −
nj∑

j=1

(
mjg

TJ
(j)
Pi (q)

)
(A.25)

Also, we can define a convenient operator hijk over the elements of the Inertia
Matrix bij to further simplify the equations. The resulting coefficients can be written
as

hijk =
∂bij
∂qk
− 1

2

∂bjk
∂qi

(A.26)

Using equations A.25 and A.26 in combination with A.24, we obtain the general
equations of motion

nj∑

j=1

bij(q)q̈j +

nj∑

j=1

nj∑

k=1

hijk(q)q̇kq̇j + gi(q) = fi ∀i = {1, ..., nq} (A.27)

These equations can be further simplified by expressing them in vector form as

B(q)q̈ +C(q, q̇) + F vq̇ + F s sgn(q̇) + g(q) = τ − JTh (A.28)

In the previous equations, we introduced the term F vq̇, which accounts for
viscous friction by a simple proportional relationship with the velocity of the co-
ordinates. Note that F v is a constant diagonal matrix. We also introduced the
static friction term F s sgn(q̇), which also considers a diagonal matrix F s to model
a decoupled effect. Another added term is the torque disturbance JTh, which ac-
counts for the effect of a payload on the final joint through the geometrical Jacobian[
JP Jω

]T
and external disturbance h. Finally, the matrix C(q, q̇) accounts for
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the Coriolis and centrifugal effects, and its choice is not unique. Elements of this
matrix, cij , can be constructed as

cij =

nj∑

k=1

cijkq̇k (A.29)

where the coefficients cijk are called the Christoffel Symbols of the first kind

cijk =
1

2

(
∂bij
∂qk

+
∂bik
∂qj
− ∂bjk

∂qi

)
(A.30)

In this way, the matrix Ḃ(q)− 2C(q, q̇) is be skew symmetric, a property that
proves useful while designing a model-based control strategies. In summary, the
components of (A.28):

B(q) ∈ Rnq×nq Generalized mass matrix (orthogonal).

q, q̇, q̈ ∈ Rnq Generalized position, velocity, and acceleration vectors.

C(q, q̇) ∈ Rnq Coriolis and centrifugal terms.

Fv ∈ Rnq×nq Viscous friction.

Fs ∈ Rnq×nq Static friction.

g(q) ∈ Rnq Gravitational terms.

τ ∈ Rnq External generalized forces.

h ∈ Rnc External Cartesian forces (e.g. from contacts).

J ∈ Rnc×nq Geometric Jacobian corresponding to the external forces.

A.3 Estimators

Estimators try to estimate unmeasured variables (often internal system states) by
exploiting knowledge about the dynamics of the system at hand together with the
input and output signals as can be seen in Fig. A.2.

An LTI systems Luenberger observer of the form

ξ̂(t+ 1) = Aξ̂(t) +Bũ(t) + L
(
ỹ(t)− Cξ̂(t)

)
, (A.31a)

ŷ(t) = Cξ̂(t) +Dũ(t), (A.31b)

is often used where ξ is the system state estimate, ŷ is the output estimate, ũ is
the measured system input, ỹ is the measured output, A, B, C, D are the model
matrices, and L is the gain of the observer that causes the estimation error ξ(t) −
ξ̂(t) −→ 0 asymptotically assuming measurement noise has a zero mean and no model
mismatch as well as matrices A, C satisfy observability condition.

This kind of observers is limited to LTI systems and cannot deal with nonlinear
dynamics and constraints.

A.3.1 Kalman Filter

Kalman Filter (KF) is another widely used filter. It tries to minimize the variance
of error estimation in a stochastic framework [33]. Implementing an EKF allows
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Figure A.2: Sample filtering scheme where the observer exploits knowledge about
the system dynamics S to estimate output measurements ŷ, state variables ξ̂, and
perhaps unknown parameters θ. The system takes measured input ũ and is subject
to noise d. System outputs commands y to a transducer T, which get noised by
process disturbance v, producing ỹ.

estimation for nonlinear systems, still without the possibility of easily including
constraints. A sample linear KF for position tracking1 has state vector

x = (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈)T , (A.32)

containing positional data and the accompanying first and second derivatives. It
has a process model (dynamics) of the form

xk = Axk−1 +Buk + wk−1, (A.33)

where A is the state transition matrix, Bu is control input, and w is the process
noise with covariance Q.

For a simple process model with no input, A has the form




1 0 0 ∆t 0 0 1
2 (∆t)2 0 0

0 1 0 0 ∆t 0 0 1
2 (∆t)2 0

0 0 1 0 0 ∆t 0 0 1
2 (∆t)2

0 0 0 1 0 0 ∆t 0 0

0 0 0 0 1 0 0 ∆t 0

0 0 0 0 0 1 0 0 ∆t

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1




. (A.34)

Lastly, the measurement model as a function of the state has the form zk =

1http://campar.in.tum.de/Chair/KalmanFilter
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Hxk + vk below




xk

yk

zk


 =




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0







xk

yk

zk

ẋ

ẏ

ż

ẍ

ÿ

z̈




+ vk. (A.35)

where vk is the measurement noise with covariance R.

The KF update cycle has two steps. Step 1 is the prediction step where we
use (A.33) to get a a-priori estimate x̂−k = Ax̂k−1 +Buk and a covariance estimate
P−k = APk−1A

T +Q. The second step is a measurement update step that corrects

our estimate. We compute the Kalman gain first Kk = P−k H
T
(
HP−k H

T + R
)−1

,

then we update the estimate x̂k = x̂−k +Kk

(
zk −Hx̂−k

)
, and finally we update the

covariance Pk =
(
I −KkH

)
P−k .

In is noteworthy that Q and R are tunable. Larger Q means that the KF gives
more attention to changes in data. Larger R means that the KF considers the
measurements as very noisy ad follows them less closely.

A.3.2 Moving Horizon Estimator

MHE solves the problems that LTI estimators face that we stated previously. An
MHE is a semi-brute-force numerical optimization technique that tries to estimate
variables that would produce, using the knowledge about the system, the nearest
results to the measured ones. It solves a problem in real-time of the following form

min
ξ̂(−M |t),d̂(−M |t),...,d̂(0|t)

M∑

i=0

‖W (ỹ(t− i)− ŷ(−i | t)‖22 (A.36a)

subject to

ξ̂(i+ 1 | t) = fξ

(
ξ̂(i | t), ũ(t+ i), d̂(i | t), θ

)
, i = −M, . . . ,−1 (A.36b)

ŷ(i | t) = gξ

(
ξ̂(i | t), ũ(t+ i), d̂(i | t), 0, θ

)
, i = −M, . . . , 0 (A.36c)

hξ

(
ξ̂(i | t)

)
≥ 0, i = −M, . . . , 0, (A.36d)

where W ∈ Rny×ny = diag(w1, . . . , wny ) is a weighting matrix, and the 0 argument
in (A.36c) stands for an assumed measurements noise of 0.

Basically, it estimates variables for step t-M, meaning M steps in the past, then
propagates the solution via numerical integration of the model. This results in an
estimate for the variables at current time. At the next step, an MHE repeats the
same process all over.
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A.4 A Fast Visibility Check Using Horizon Culling

Based on Fig. 1.8, the following equations are used to obtain the visibility score
which is used to handle occlusions in [15],

rchi = phi − pc, (A.37)

rctj = ptj − pc, (A.38)

pproj = rTchirctj , (A.39)

where rchi is the vector to the target, rctj , rctj is the vector to the center of ellipsoid
Sσs and pproj is the component of rchi in direction of rctj .

Basically, if pproj > rTctjrctj − 1 and angle α < angle β, then the point being
checked is occluded.

A visibility score is directly evaluated in order to avoid trigonometric functions,

dv =
pproj
rTchirchi

> rTctjrctj . (A.40)

The visibility cost is defined as cvis(x):

cvis(x) =

{
‖dv‖Qv if dv > 0 and pproj > rTctjrctj − 1

0 otherwise.
(A.41)

Figure A.3: Occlusion cones produced by occluding obstacles are estimated using a
fast visibility check based on horizon culling [15].
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Appendix B

Graph Appendix

B.1 Deterministic Hard Shadows and a Gradient-
Based Solution

Figure B.1: Topview of a 2D environment containing obstacles with yellow face
color. Yellow ball is the light position, green ball is the robot position.

81
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Figure B.2: Sideview of the environment in Fig. B.1 showing the deterministic
shadow field mesh in blue, a Gaussian filter convolution of shadow field in red, and
the gradient of the Gaussian filter convolution in black.

Figure B.3: Quiver plot of the resulting shadow field from Fig. B.2 as well as a
highlighted path resulting from gradient-base planner, specifically a planner using
a naive gradient-descent algorithm.

B.2 More Kinova and ALMA Simulations
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Figure B.4: Sideview of Kinova 7DOF mobile manipulator evolution in simulation.
The end-effector finds its way from its invisible initial position to position with
100% visibility. We show the shadow field slice at end-effector level.
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Figure B.5: Topview of Kinova 7DOF mobile manipulator evolution in simulation.
The end-effector finds its way from its invisible initial position to position with
100% visibility. We show the shadow field slice at end-effector level.
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Figure B.6: Frontview of Kinova 7DOF mobile manipulator evolution in simulation.
The end-effector finds its way from its invisible initial position to position with 100%
visibility. We show the shadow field slice at end-effector level.
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Figure B.7: Sideview of ALMA evolution in simulation. The end-effector finds its
way from its invisible initial position to position with 100% visibility. We show the
shadow field slice at end-effector level.
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Figure B.8: Topview of ALMA evolution in simulation. The end-effector finds its
way from its invisible initial position to position with 100% visibility. We show the
shadow field slice at end-effector level.
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Figure B.9: Frontview of ALMA evolution in simulation. The end-effector finds its
way from its invisible initial position to position with 100% visibility. We show the
shadow field slice at end-effector level.
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KINOVA® Gen3 Ultra lightweight robot 
7 DoF Spherical

Technical 
Specifications 
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Total Weight 8.2 kg (no gripper)

Payload 4 kg (mid-range continuous; no gripper)

Actuator joint range after start-up Infinite1 
(software limitation)

Maximum Cartesian translation speed Low-level:  40 cm/s (recommended)

High-level: 30 cm/s

Power supply voltage 18 to 30 VDC, 24 VDC nominal

Average power 36 W (25 W in standby)

Peak power 155 W

Water resistance Base / controller: IP33

Operating temperature -30 °C to 35 °C

Materials Carbon fiber

Aluminum

Maximum reach 902  mm

Degrees of freedom 7 DoF

Actuator sensors Torque, position, current (motor), voltage,  
temperature (motor)

Actuators Large: joints #1, 2, 3, 4

Small: joints #5, 6, 7

KINOVA® Gen3 Ultra lightweight robot 
7 DoF Spherical

Technical Specifications

GENERAL

Dimensions in mm
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Software KINOVA® KORTEX™

Internal communications 2 x Fast Ethernet (100 Mbps)

API compatibility  Windows 10, Linux Ubuntu 16.04, ROS Kinetic

Programming languages  C++, Python, MATLAB2

Supported web browser Google Chrome 64+

Controller interfaces USB Gamepad

Ethernet (Web App + API) 1 Gbps 

HDMI 1.4a3

Wi-Fi  (Web App + API) IEEE 802.11a/b/g/n                                

Bluetooth 4.0 + LE3

Digital I/O3

Control system frequency 1 kHz

Servoing modes High-level, low-level

Low-level control Position, velocity, current3, torque3

High-level control Cartesian position/velocity, joint position/velocity, 
force3,  torque3

Controller sensors Voltage, current, accelerometer, temperature and 
gyroscope

BASE CONTROLLER

KINOVA® Gen3 Ultra lightweight robot 
7 DoF Spherical

Technical Specifications

front view rear view

Quick
connect
mating 

interface

Quick
connect

Connector
 panel 

USB 2.0
Type A

Ethernet

HDMI

Micro USB

Power ON/OFF
button

Expansion

Power

Red / green / 
amber 

status LED 

Blue power
LED

Clamp

  21°   39°  

83 B.C.  

4X M6X1.0  16

Mounting 
holes

Mounting hole
with inset
locking screw

bottom view
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kinovarobotics.com

® KINOVA is a registered trademark of Kinova inc. 
™ KORTEX is a trademark of Kinova inc. 
© Kinova inc 2018. All rights reserved.

Interfaces RS-4853                                                      

 Ethernet  100 Mbps

 GPIO3

 I2C 3                                                                

 UART3                                                          

 Power  24 V

Vision module  
 
Color sensor Resolution, frame rates (fps), and fields of view (FOV):
 1920 x 1080 (16:9) @ 30, 15 fps; FOV 47 ± 3° (diagonal)
 1280 x 720 (16:9) @ 30, 15 fps; FOV 60 ± 3° (diagonal)
 640 x 480 (4:3) @ 30, 15 fps; FOV 65 ± 3° (diagonal)
 320 x 240 (4:3) @ 30, 15 fps; FOV 65 ± 3° (diagonal)
  
 Focal length (range)   30 cm to ∞
 
Depth sensor (Intel® RealSense™) Resolution, frame rates (fps), and fields of view (FOV):
 480 x 270 (16:9) @ 30, 15, 6 fps; FOV 72 ± 3° (diagonal)
 424 x 240 (16:9) @ 30, 15, 6 fps; FOV 72 ± 3° (diagonal)

 Focal length (range)   18 cm to ∞

Interface sensors Accelerometer and gyroscope, voltage, temperature

INTERFACE MODULE

1 Physical and software limits on joints 2, 4, 6 to avoid shell self-collisions.
2 Minimal API coverage; to be expanded in future release.
3 Supported in future KINOVA® KORTEXTM  release.

KINOVA® Gen3 Ultra lightweight robot 
7 DoF Spherical

Technical Specifications

TS
-0
14
_R
02

20-pin
user expansion
connector

10-pin spring-loaded connector

Interface module with Vision module

2D sensor

3D sensors
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www.velodynelidar.com

Our Lightest Sensor Ever 
Velodyne LiDAR’s Puck LITE is a lighter version of the VLP-16 Puck for applications that 
demand a lower weight to meet their requirements.  Aside from the weight, the Puck LITE 
has identical performance to the VLP-16. The sensor retains Velodyne’s patented 360° 
surround view to capture real-time 3D LiDAR data that includes distance and calibrated 
reflectivity measurements.

Unprecedented Field of View and Point Density

The Puck LITE has a range of 100 m with dual return mode to capture greater detail in the 
3D image with a low power consumption.  A compact footprint and an industry leading 
weight for a LiDAR sensor with high resolution makes it ideal for UAV/drone and mobile 
applications in the areas of 3D mapping/imaging, inspection and navigation.

The Puck LITE supports 16 channels and generates approximately 300,000 points/second 
from a 360° horizontal field of view and a 30° vertical field of view  (±15° from the horizon)  
The Puck LITE has no visible rotating parts and is encapsulated in a package that allows it 
to operate over a wide temperature range and environmental conditions.

Puck LITE

DIMENSIONS

2X    .16 FEATURES
FOR 5/32in. PINS

7/32in.   5.5mm

88.9mm
3.50in. 0°

90°

1/4-20 MOUNT       
9/32in.  7.1mm

12.7mm MAX
0.50in. MAX

12.7mm MAX
0.50in. MAX

103.3mm
   4.07in.

∅

∅  

OPTICAL 
CENTER

37.8mm
1.49in.

18.8mm
0.74in.

12.7mm MAX
0.50in. MAX

71.7mm
2.82in. 

38.1mm
1.50in. 

ACTIVE AREA
FULL 360°

www.velodynelidar.com

Security Industrial MappingUAV Robotics Automotive

M12 CONNECTOR OPTION

(Subject to change)

Puck LITETM

LIGHT WEIGHT REAL-TIME 3D LiDAR SENSOR

PHOENIX CONTACT P/N: SACC-M12FS-8CON-PG 9-SH

ca. 56

M
12

ø2
0

18

For other connector options contact 
Velodyne Sales (sales@velodyne.com)  
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|    www.velodynelidar.com

Light Weight Real-Time 3D LiDAR Sensor
The Puck LITE provides high definition 3-dimensional information about the surrounding environment.

Puck LITE

Velodyne LiDAR, Inc.  345 Digital Drive, Morgan Hill, CA 95037   /   lidar@velodyne.com   /   408.465.2800

Copyright ©2018 Velodyne LiDAR, Inc. Specifications are subject to change. Other trademarks or registered trademarks are property of their respective owners. 

Sensor:

Laser:

Mechanical/
Electrical/
Operational

Output:

 
   
• 16 Channels
• Measurement Range: 100 m
• Range Accuracy: Up to ±3 cm (Typical)1

• Field of View (Vertical): +15.0° to -15.0° (30°)
• Angular Resolution (Vertical): 2.0°
• Field of View (Horizontal): 360°
• Angular Resolution (Horizontal/Azimuth): 0.1° – 0.4°    
• Rotation Rate: 5 Hz – 20 Hz
• Integrated Web Server for Easy Monitoring and Configuration

• Laser Product Classification: Class 1 Eye-safe per IEC 60825-1:2007 & 2014
• Wavelength: 903 nm

• Power Consumption: 8 W (Typical)2

• Operating Voltage: 9 V – 18 V (with Interface Box and Regulated Power Supply)
• Weight: ~590 g (without Cabling and Interface Box)
• Dimensions: See diagram on previous page
• Environmental Protection: IP67
• Operating Temperature: -10°C to +60°C3

• Storage Temperature: -40°C to +105°C

• 3D LiDAR Data Points Generated:
 -    Single Return Mode:     ~300,000 points per second
 -    Dual Return Mode:       ~600,000 points per second

• 100 Mbps Ethernet Connection
• UDP Packets Contain:
 - Time of Flight Distance Measurement
 - Calibrated Reflectivity Measurement
 - Rotation Angles
 - Synchronized Time Stamps (µs resolution)
• GPS: $GPRMC and $GPGGA NMEA Sentences from GPS Receiver (GPS not included)

Specifications:

CLASS 1 LASER PRODUCT

63-9286 Rev-H

For more details and ordering information, contact Velodyne Sales (sales@velodyne.com)

1. Typical accuracy refers to ambient wall test performance across most channels and may vary based on factors including but not limited to range, temperature and target reflectivity.
2. Operating power may be affected by factors including but not limited to range, reflectivity and environmental conditions.
3. Operating temperature may be affected by factors including but not limited to air flow and sun load.
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