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Abstract

Near Earth Objects (NEOs) pose a great threat to our planet not only due to the dir-
ect consequences of a possible impact, but rather because of the long-term climatic
effects it would induce. Many deflection strategies, based on either impacting the
NEO or gently pushing it for a long time, have been proposed to reduce its impact
probability or to avoid its passage into an Earth’s gravitational keyhole that would
lead to a future impact. Among these, the Gravitational Tug (GT) technique is one
of the best options in case of high warning time, contained asteroid mass and small
targeted deflection at Minimum Orbit Intersection Distance (MOID). On the other
hand, it often requires the spacecraft (SC) to non-inertial hover close to the NEO,
which can increase mission risk and reduce linear momentum transfer efficiency
between NEO and SC.

In the dissertation, the simultaneous use of gravitational and magnetic interactions
between a NEO (i.e., target), with natural global magnetisation state, and a SC (i.e.,
chaser), equipped with an onboard magnetic field generator subsystem, is investig-
ated with the goal of improving the achieved deflection at MOID. The analysis is
based on the GT model extended to include the free-free dipoles magnetic interac-
tion under the far-field assumptions. It takes into account the chaser’s propulsive
and power generation subsystems efficiencies, the target and chaser’s heliocentric
motions and the target’s tumbling state. Furthermore, the target-chaser optimal re-
lative configuration is analysed and a control law for the orientation of the chaser’s
magnetic dipole is proposed, considering the limitations associated to its attitude
and orbit control subsystems. Dynamics is formulated using relative motion mod-
els and is integrated numerically in MATLAB® and Simulink® environments. Two
test cases based on a target with known estimated magnetic properties and a vir-
tual target are presented, highlighting the conditions for which the gravitational-
magnetic tug technique can effectively increase the deflection performance com-
pared to simply using GT, according to different metrics.
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Sommario

Gli asteroidi rappresentano una minaccia per il nostro pianeta, non solo per le con-
seguenze dirette di un loro possibile impatto, ma per gli effetti a lungo termine che
questo produrrebbe sul clima. Per scongiurare un tale evento, sono state proposte
numerose strategie che mirano a ridurre la probabilità di un impatto imminente, o
a evitare il passaggio dell’asteroide in una zona di risonanza gravitazionale che port-
erebbe ad un impatto futuro. Le strategie esplorate adottano l’applicazione di una
spinta ridotta sull’asteroide per un periodo di tempo prolungato, oppure optano per
una violenta e rapida collisione con esso.

Ad oggi, la tecnica del trattore gravitazionale risulta essere una delle opzionimigliori
in caso di abbondante preavviso, massa dell’asteroide contenuta e ridotta deflessione
valutata all’istante di minima distanza orbitale tra Terra e asteroide. Tuttavia, tale
metodo, richiede spesso di mantenere un satellite nei pressi dell’asteroide in moto
relativo non-inerziale e di operare a distanze ridotte; queste condizioni operative,
oltre ad aumentare il rischio associato allamissione, riducono l’efficienza del trasfer-
imento di momento lineare tra asteroide e satellite.

Nella tesi viene proposto l’utilizzo simultaneo delle interazioni gravitazionali e mag-
netiche (i.e, trattore gravitazionale-magnetico) tra un asteroide, caratterizzato da
uno stato di magnetizzazione globale naturale, e un satellite, dotato di un sistema
in grado di generare un campo magnetico. L’obiettivo è valutare l’efficacia di tale
cooperazione, misurare l’eventuale incremento in deflessione e stimare i requisiti
che il satellite deve soddisfare per ottenerlo.

L’analisi effettuata amplia ilmodello di trattore gravitazionale includendo l’interazione
tra dipoli magnetici. Il modello proposto considera: l’efficienza dei sottosistemi del
satellite adibiti alla generazione di spinta e alla generazione di energia di bordo, il
moto eliocentrico dell’asteroide e del satellite e lo stato di rotazione dell’asteroide.
Viene analizzata la configurazione ottimale che permette dimassimizzare l’interazione
tra satellite e asteroide, al fine di migliorarne la deflessione. Vengono inoltre pro-
poste due strategie di controllo per il dipolo generato a bordo dal satellite, tenendo in
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considerazione le limitazioni associate al sottosistema di controllo d’assetto orbitale.
La dinamica è formulata utilizzando modelli di moto relativo e integrata numerica-
mente in Matlab® e Simulink®.

Per valutare le condizioni in cui il trattore gravitazionale-magnetico può aumentare
le prestazioni in termini di deflessione rispetto all’utilizzo del trattore gravitazionale,
il modello sviluppato viene applicato un asteroide virtuale ed a uno reale, con pro-
prietà magnetiche note.
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Chapter 1

Introduction

This chapter presents the problem posed byNear EarthObjects (NEOs), and reviews
most of the commonly proposed technique in the literature that aims to diminish the
risk of an actual impact with planet Earth. A brief classification of the NEOs pop-
ulation is given, both in terms of orbital motion and impacting risk measurement,
and an overview their physical and magnetic properties is carried out. The chapter
also reviews past, present and future missions that operated in proximity of a NEO,
focusing on the ones that gathered magnetic information about the object.

1.1 Near Earth Objects and Space Debris
NEOs and Space Debris (SD) pose a high concern to everyday life on planet Earth.
NEOs are ancient objects that have populated the solar system for many millions
of years, mostly reliquiae of an early stage of planetary formation that brought the
material contained into the protoplanetary disk surrounding the newly born sun,
our star, to become the planets and moons we see today. SDs are remanent of man-
made objects, designed to sustain the rush environment of space for decades, whose
original task was to improve our everyday life on planet Earth.

NEOs are natural objects that orbit our Sun, that can reach Earth proximity and
eventually collide with it. They have been and are important sources of information
for the scientific community, for instance, they contain the information related to
the material abundance in the young solar system environment [1], they allow the
study of complex dynamic interactions such as binary systems [2] and desegregation
processes dynamics [3]. Moreover, they have attracted the interest of the private sec-
tor and brought it to invest in research for space resource gathering [4], defining the
path for a possible new space economy that can improve not only space exploration
but also our life and impact on planet Earth.

1
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SDs aremainly composed by abandoned launch vehicle stages,mission related debris,
fragmentations, and non-functional spacecrafts that orbit Earth, creating a sort of
cloud that surrounds our planet. In such environment, a high velocity collision
between two objects can easily degenerate into a cascade effect with devastating con-
sequences on operational spacecrafts (i.e., Kessler syndrome) [5]. Since the begin-
ning of human space exploration, the number of objects orbiting Earth is increased,
reaching a population of 28210 actively tracked objects [6]. To mitigate the SDs gen-
eration, and maintain the usability of space, it is required a strong compliance with
end-of-life disposal guidelines. The main approaches are identified in the active
debris removal, and design-for-demise [7].

Even though NEOs and SD may be considered totally different objects, there are
common techniques that aims to mitigate the very different risk that they pose. In
the thesis, the focus is given on the mitigation of a possible impact between a NEO
and planet Earth, however, the explored concepts may be also applied to SDs mitig-
ation.

1.1.1 Near Earth Objects
According to the International Astronomical Union (IAU), the solar system bodies
population can be partitioned in the commonly accepted classes summarised in fig-
ure 1.1.

Figure 1.1: Euler diagram of the solar system bodies [8].
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The most significant one, in the context of this dissertation, is the Small Solar Sys-
tem Body (SSSB) class composed by objects that are neither planets, dwarf planet
nor natural satellites. Almost any SSSB that can reach Earth proximity during its
heliocentric motion is considered to be a NEO if its perihelion (i.e., closest reach-
able point with respect to the Sun) is within 1.3 Astronomial Units (AU). A refined
classification of such objects is obtained considering different characteristics (e.g.,
nature, extension, orbital motion).

According to definitions commonly adopted in the literature [9, 10, 11], NEOs can
be partitioned in

• Near Earth Asteroids (NEAs)
SSSBs that can reach Earths proximity and have no active visible surface phe-
nomena (e.g., tail, coma)

• Near Earth Comets (NECs)
SSSBs that can reach Earth proximity, have either a tail or a coma and have an
orbital period shorter than 200 years. Typically, they are less dense thanNEAs
and characterised by an higher relative velocity with respect to Earth, at close
approach

Figure 1.2 presents the overall population, as of 15 March 2021, counting 25299 in-
dividuals NEAs and 113 NECs [11].

Figure 1.2: Near Earth objects cumulative number evolution in time [11].
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Orbital based classification

It is common to divide NEOs in groups, or dynamical classes, named upon the first
discovered element of the group itself [12]. These are defined considering the NEO
orbital motion about the Sun and the Earth trajectory as

• Nearly Earth-Crosser
The NEO motion projected on the ecliptic plane (i.e., Earth’s orbital plane) is
not crossing the Earth’s trajectory. Therefore, the object can only perform a
close approach of the planet

– Armor group
Named upon an asteroid discovered in 1932, Armor’s NEOs have a he-
liocentric orbit within 1 − 1.3 𝐴𝑈 and include 37.0% of the entire NEA
population.

– Atira group
Named upon an asteroid discovered in 2003, Atira’s NEOs have a helio-
centric orbit smaller than 1 𝐴𝑈 and include 0.1% of the entire NEA pop-
ulation.

• Earth-Crosser
The NEOmotion projected on the ecliptic plane is crossing the Earth’s traject-
ory. Therefore, the object can perform either a close approach (i.e., flyby) of
or an impact with the planet.

– Apollo group
Named upon an asteroid discovered in 1932, Apollo’s NEOs have a semi-
major axis greater than 1 𝐴𝑈 and a perihelion distance smaller than
1 𝐴𝑈, resulting in an orbital period longer than Earth’s one. They in-
clude 55.3% of the entire NEA population.

– Aten group
Named upon an asteroid discovered in 2003, Aten’s NEOs have a semi-
major axis smaller than 1 𝐴𝑈 and an aphelion (i.e., farthest reachable
point with respect to the Sun) distance greater than 1 𝐴𝑈, resulting in an
orbital period shorter than Earth’s one. They include 7.6% of the entire
NEA population.

Any NEO can evolve from one group to another within short time scales due to the
exposure to different kind of perturbations (e.g., massive planets gravitational attrac-
tion, Yarkovsky effect, solar radiation pressure) and the population can increase due
to different generation mechanisms [13].
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Risk based classification

The outcomes of aNEO impacting planet Earth are connected to its kinetic energy at
close approach conditions, which is proportional to its mass and the second power
of the relative velocity in respect the Earth, and to its impact probability connected
to howwell its trajectory is known in terms of position and velocity vectors (i.e., state
vector of the object and associated uncertainty).

Commonly, two different classifications are adopted to describe the hazard posed by
a NEO

• Torino scale
Primarily designed for public communication of impact risk and adopted by
IAU in 1999, it describes the likelihood of an impact and its severity in terms
of outcomes once the kinetic energy and the impact probability of the object
are known. This approach is designed for public communication of impact
risks.

• Palermo scale
Primarily designed for technical comparison of the impact risk, it describes
the likelihood of an impact and its severity in terms of outcomes comparing
the former to the background risk, an average risk posed by objects of at lest
the same size as the impacting one within the time interval from the object
detection to the potential impact event [14]. This approach is designed prin-
cipally to facilitate communication among astronomers.

Potentially hazardous objects

A NEA can be classified as a potentially hazardous objects if the closest approach
to planet Earth (i.e., minimum orbital intersection distance) is closer than 0.05𝐴𝑈
(i.e., 19.5 times the Earth-Moon distance) and its dimension is larger than 150 [𝑚].
Such object’s impact on Earth surface would have devastating consequences, either
locally or globally. As of 15 March 2021, up to 2173NEAs are identified in this class
[10].

Physical properties

Most of the available properties of asteroids are derived from correlations between
measurements performed either on ground or in orbit. Unless close approaches to
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the asteroid happen, either with an Earth flyby or an encounter during an interplan-
etary mission, these remain the only way to retrieve meaningful information.

The rotational period and the shape can be correlated to the light curve of the object
[15] but poor information upon the actual spin axis persist. The asteroid mass can
be estimated analysing how its gravitational field is interacting with any other close
object (e.g., binary asteroid system, other object flyby) or how it interacts with a
spacecraft close to it [16].

Magnetic Properties

The magnetic characterization of a NEO is associated to the fraction of mineral
constituents, their distribution within the NEO volume and to the presence of in-
ternal/external phenomena that can alter its magnetisation state [17, 18] (e.g., active
convective nucleus, magnetosphere, high external magnetic gradients).

Each constituent can be described by either its magnetic susceptibility (i.e., state
of self-magnetisation upon external magnetic field application) in the case of non-
magnetized materials or by its spontaneous magnetisation state in the case of mag-
netized ones.

The evaluation of such state is a challenging task, and it is usually performed in
different ways

• Close approach, close proximity and in-situ operations
A magneto-sensitive subsystem of the Spaceraft (SC) is used to measure the
NEOmagnetic signature by analysing either its intensity or its interactionwith
the solar wind [19, 20] (i.e., draping, the deformation of the solar wind mag-
netic field lines), typically done during a close approach to the object [21, 22].
This allows to have an overview of the overall magnetisation state of the NEO.
The same subsystem can be used when either close proximity or in-situ op-
erations are performed but, in this case, mainly local information about the
magnetisation state are retrieved.

• Meteorite class correlations
Themeteorites fallen on Earth are analysed in order to find information about
a possible remanent magnetic field present in the main object that generated
them [23]. Typically, the magnetic susceptibility of the samples are correlated
with its metal content [24], but in-situ measurements have demonstrated that
they do not correlate well with such meteoritic studies [25].
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Up to date, limited information about the global-magnetization state of asteroids is
available. A non-comprehensive list of past mission’s findings is here briefly repor-
ted, focusing on the achieved results.

• ROSETTAMISSION
AnESAmissionwith target comet 67P/Churyumov-Gerasimenko, it was com-
posed by a spacecraft (i.e., Rosetta) and a lander (i.e., Philae) and performed
two flybys close to NEOs (21)Lutetia and (2867) Steins. It found no conclus-
ive evidence of a global magnetisation during (21)Lutetia flyby [26] and a very
weak interaction with the solar wind in the case of (2867)Steins one [27]. Re-
garding the comet magnetic properties, no significant magnetisation of the
surface was observed [28].

• HAYABUSA 2MISSION
A JAXA sample and returnmission of asteroid (162173)Ryugu, it found a local
magnetisation state at the centimetre/sub-centimetre level during in-situ op-
erations at the NEO. On the other hand, no sign of a global magnetisation was
detected [29, 30].

• NEARMISSION
A NASA mission to asteroid (433) Eros, the first one ever to go into orbit
around an asteroid. The mission found no global magnetisation state during
in-orbit and on-ground operations [30].

• GALILEOMISSION
A NASA mission with main objective to study planet Jupiter, it performed
a close approach to asteroid (951) Gaspra during its interplanetary travel. It
foundnon trivialmagnetic interaction between the asteroid and the solarwind,
suggesting an overall magnetisation state [21].

• DEEP SPACE 1MISSION
A NASA mission first of its kind, it was the first time that an ion-engine was
used for an interplanetary mission. It performed a close approach to asteroid
(9969) Braille, finding an evident global magnetisation with no stable mag-
netosphere [31].

Table 1.1 summarises all the availablemagnetic information retrieved frompastmis-
sion analysis [31, 25]

1.1.2 Deflection strategies
Even thought civil defense (e.g., evacuation, sheltering) may be a cost-effective mit-
igation measure in the case of small NEOs, a preventive approach would always be
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Body Mean radius Density Spec. magnetic moment

[𝑘𝑚] [𝑘𝑔/𝑚3] [𝐴𝑚2/𝑘𝑔]
Gaspra 7 4000 0.024
Braille 0.8 3900 0.028
Steins 3 3200 10−3

Lutetia 49 3400 10−7

Eros 9 2650 10−6

Vesta 530 3900 0.026
Mathilde 26 1340 0.075
Ida 16 2600 0.038

Table 1.1: Summary of the estimated magnetic properties of an identified group of NEAs

perceived as a better option, and it may be the only valid one for bigger class of NEOs
[32]. Different deflection strategies have been studied and proposed with the aim of
mitigating the risk of collision between a NEO and planet Earth. They all consist
of either an instantaneous or a persistent deviating action which is used to change
theNEOheliocentric orbit, aiming to a higherMOID and a lower impact probability.

Generally, the deflection is achieved by exploiting the action-reactionprinciplewithin
the system formed by the NEO (i.e., the target) and a SC (i.e., the chaser) which is
subjected to an acceleration, direct result of a net external force (i.e., the deflection
action). Referring to the duration of such action, it is possible to identify

• Impulsive strategy
The velocity vector of the target is changed in an instantaneous way at a spe-
cific instant of time (i.e., epoch),

• Low-push strategy
The nominal state of the target is changed in a continuous way starting from
an initial epoch until either the MOID event or a final epoch.

Another possible classification is obtained considering the NEO-SC system and ana-
lysing its momentum variation. In this framework, it is possible to have

• Mass expulsion
The system momentum variation is obtained ejecting mass from either the
NEO or SC,
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• Mass acquisition
The system momentum variation is obtained acquiring mass,

• Mass expulsion/acquisition

In general, impulsive techniques are able to produce higher deflections than the low-
thrust ones, especially when the mass and size of the target is relevant. For smaller
sizes andmasses, low-thrust strategies may become a better option, especially when
the target deflection is limited (e.g., keyhole avoidance [33, 34]), but they all require
a high warning time (i.e., time from the identification of the threat to the actual
deflective action to take place). In both cases, the optimality of the solution shall
be addressed with multi-criteria analysis [35]. An overview of the most common
deflection strategies is here proposed.

Impulsive Strategies

• Kinetic impactor
This is considered the strategy with the highest Technology Readiness Level
(TRL) and consists of impacting the target with a massive spacecraft at the
highest achievable velocity. To do so, the interplanetary transfer of the space-
craft is carefully designed to maximize the relative velocity at target intercep-
tion [36]. The achieved linear momentum variation can also be enhanced by
the ejection of mass or gasses that can happens in such high velocity impacts
[37].

• Nuclear Blast
This strategy is the most efficient one in terms of energy transfer to the target
andmay be considered one of themost effective [38] in case of larger bodies in
course of impact with planet Earth (i.e., diameter greater than 1𝑘𝑚). Several
concepts are proposed and are all based on the idea of detonating a nuclear
device either close, onto, or inside the target. The main drawback of this ap-
proach is the possible generation of a cloud of smaller debris, made from the
original target, without any real control over their post-deflection trajectory
[39]. In addition, the usage of such technology in outer space is technically
banned by space treaties.

Low Thrust Strategies

• Low thrust tug
It consists of a low-thrust generation device carefully placed on the body to
be deflected and exploited to slowly change the latter’s orbit. This method
implies a physical attachment to the body surface and its effects are affected
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by any target rotational state that can misalign the direction of pointing of
the generated thrust. In addition, operating on the surface in a low gravity
environment could create conditions that alter the nominal operations of the
used devices [40].

• Gravity tug
This strategymay be considered themost simple to implement with nowadays
technology (i.e., highTRL) and it consists of a spacecraft, placed in a controlled
hovering position close to the target in such a way that it is able to exploit the
mutual gravitational attraction to pull on it. Different hovering techniques
have been proposed with the aim of reducing the loss in efficiency. These are
are mainly associated with the impingement of the engines’ mass ejecta onto
the target surface [41, 42]. The equivalent low trust action acting on the target
can reach magnitudes close to the 𝑚𝑁 level with deflection in the order of
tens of kilometres when applied to a small target (i.e., diameter smaller than
200𝑚) and for a period of time typically longer than the orbital one. The main
limiting factor is the maximum mass that a single launch vehicle can bring
into orbit which, as of 7th April 2021, is 63800𝑘𝑔 [43].

• Electrostatic tug
The electrostatic interaction between charged spacecraft and a charged tar-
get is exploited to either push or pull the latter and modify its orbit. This
concept has been originally proposed in the context of spacecraft formation-
flying control [44] and involves the generation of a potential to create micro-
newton interaction forces between the formation components. The usage of
electrostatic tug for asteroid deflection may be an option for small asteroids,
in the 100𝑚 range, using voltage levels in the order of 20𝑘𝑉 that shall bemain-
tained continuously between the chaser and the target itself [45]. This shall be
done within the plasma environment of space that is affecting the interaction,
shielding one of the two objects [46].

• Laser ablation
A laser is used to induce either the vaporization or sublimation of a spot on
the target surface, obtaining a mass ejecta that generates thrust [47]. Its ap-
plicability depends upon the target’s composition, its shape and is affected by
any residual rotational state. The results can be improved when the laser is
also used to control the rotation of the target [48].

• Magnetic tug
It consists in the generation of a magnetic field, onboard the spacecraft, cap-
able to induce amagnetic interaction on the target. Themain applications are
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related to themaintenance and control of flight formations [49, 50, 51], the de-
tumbling of a space debris or active satellite [52] and, the debris End-Of-Life
manoeuvring or orbit maintenance [53, 54]. The drawbacks are connected
to the small relative operative distance (i.e., order of meters) with respect to
the target and to the magnitude of the generated magnetic field (i.e., up to a
20000𝐴𝑚2 equivalent magnetic dipole) that can be required.

Gravity tug overview

Given that the dissertation is centred on theGravitational Tug (GT) concept, a deeper
overview is here proposed to better understand the different ways it can be imple-
mented and studied, exploring the work of different authors. McInnes [55] analyses
the GT studying the target-chaser’s centre of mass heliocentric motion as a Kep-
lerian orbit and the relative motion between the two objects as result of a gravita-
tional coupling under either a static equilibrium (e.g., non-inertial hover fixed with
respect to the target, inertial hover fixed for an inertial observer) or displaced orbit
assumption. The latter approach shows a higher coupling efficiency leading to inter-
esting advantages in terms of overall deflecting action and, therefore, a potentially
better deflection at MOID.

Foster et al. [42] discuss the advantages of using multiple SCs to perform a GT de-
flection and propose three possible different operational modes to be adopted after
rendezvous with the NEO. Results show an increment in deflecting efficiency up
to 10%. Wie [56] demonstrated the usefulness of modified Clohessy–Wiltshire–Hill
(i.e., linearised relative motion) equations for the preliminary control analysis and
design of such strategies.

Yeomans et al. [57] study a possible deflection campaign in which a SC operating
close to the NEO is exploited not only to deflect it but also to lower the uncertainties
in its orbital parameters (i.e., improving the orbit determination problem), with fi-
nal goal of defining the gravity tractor phase’s requirements. The deflection action
aims to avoid possible keyholes (i.e., resonant orbits that would bring to a future
collisions with planet Earth) and it may be performed after a kinetic impactor when
not sufficient to avoid an actual impact.

Brown [58] studies the gain factor, in terms of achieved deflecting force, between a
novelmagneto-tug and the gravity tug techniques. TheNEO-SC system’s interaction
force is obtained from both the gravitational attraction and magnetic one resulting
from the free-free magnetic dipole interaction of collocated magnets on both the
NEO (i.e., a magnetic grid of 1.4𝑇 magnets) and on SC (i.e., superconducting mag-
net of 10𝑇). The achieved force can be up to two order of magnitudes higher com-
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pared to the gravity tug technique, allowing higher deflecting Low-Thrust Action
(LTA) (i.e., external net force acting on the system) and resulting into a better over-
all performance. On the other hand, the assumptions done by the author restrict
applications to the case of non-spinning asteroid with aligned and collinear mag-
netic dipole moments, and a relative distance that may be dangerously small (i.e.,
order of 101 𝑚). Moreover, the SC compatibility with such strong static magnetic
field aswell as itsmaintainability, for typical operational times, shall be investigated.

Yamaguchi et al. [59] study the electrostatic-gravitational tug in the context of dis-
placed non-Keplerian orbits, often called ‘artificial halo orbits’. The dynamics is
described using non-homogeneous Clohessy-Wiltshire-Hill equations and numeric-
ally integrated in order to compare the deflection efficiency between the gravity and
electrostatic tug in the context of displaced orbits.

1.2 Asteroid review
It is here presented a non-comprehensive review, as of 7th April 2021, of current
missions that are either concluded, in course or planned, with the main goal to ren-
dezvoused with a NEO.

1. AIDA (Planned)
The Asteroid Impact and Deflection Assessment (AIDA) is a NASA/ESA col-
laboration that consists of a pair of space probes (i.e., Dart,Hera) thatwill study
the effect of a kinetic impact on small moon of a binary asteroid system (i.e.,
(65803)Didymos). Dart is a 500𝑘𝑔 impactor equipped with a single camera for
close target navigation and is expected to impact the target in 2022, leading
to a slight change in the small 160𝑚 moon (i.e., Dimorphos) motion about
the main asteroid. Hera will follow in 2026, performing post impact scientific
measurements (e.g., high-resolution imaging, laser and radio mapping of the
surface).

2. Hayabusa 1 (Concluded)
Launched in 2003, it was a JAXA sample and return mission that rendez-
voused with asteroid (25143) Itokawa in 2005. It performed different studies
on the asteroid shape, spin, topography, composition and density, and found
that it is probably originated from a bigger asteroid.

3. Hayabusa 2 (Concluded)
Launched in 2014, it was a JAXA sample and return mission to an asteroid
called (162173)Ryugu in which the sampling was done after a high velocity
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impact obtained using a projectile. The ejecta from the impact was analysed
and four small rovers and one lander were deployed on the surface of the as-
teroid, performing in-situ investigations.

4. Rosetta Mission (Concluded)
Launched in 2004, it was a mission to comet 67P/Churyumov-Gerasimenko
carried out by ESA. Unique of its kind, it was the first mission to rendezvous
a comet, the first to follow a comet evolution on its orbit about the Sun, and
the first to deploy a lander on a comet’s surface (i.e., Philae).

1.3 Dissertation objective
The thesis aims to asses the possibility of improving the deflection offered by a clas-
sical GT technique exploiting a magnetic interaction in cooperation with the chaser-
target mutual gravitational attraction. The work done in a previous study [58] poin-
ted out the advantages of using a magnetic interaction but assumed the target to be
in a non-rotational state, equipped with a man-made device capable to generate a
magnetic field, and a dangerously small asteroid-spacecraft relative distance. The
thesis primary goal is to study the conditions for which the cooperation between
these two forces are actually possible, considering the actual spacecraft limitation
when a non-inertial hovering about the target is taking place. In addition, the mag-
netic properties of the target are considered as a direct consequence of a natural
global magnetisation state which is no necessarily optimal for the selected tugging
direction.

1.4 Dissertation structure
An introduction to the mathematical tools used in the dissertation is presented in
chapter 2. These are then used in chapter 3 to study the gravitational-magnetic in-
teraction between a target and a chaser, to develop the GMT model used to design
the chaser in such a way that the tug can operate at the target for a given total tug-
ging time, and to assess the GMT performance when the target is characterised by
a tumbling state that alters its magnetic dipole orientation with respect the chaser.

This thesis was part of the COMPASS project: “Control for orbit manoeuvring by
surfing through orbit perturbations”(Grant agreement No 679086). This project is
a European Research Council (ERC) funded project under the European Unions
Horizon 2020 research.
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Chapter 2

Mathematical model

This chapter presents a review of the mathematical background that is later used
in the dissertation. Section 2.1 introduces the reader to used notations and frames
of reference, section 2.3 discusses the force models adopted to describes the accel-
erations acting on the considered objects (i.e., target and chaser), sections 2.5 cov-
ers fundamental concepts about the classical gravitational tug technique that are
later extended to include a magnetic contribution, and section 2.6 develops some
concepts used to model the gravitational-magnetic tug, in convenient non-inertial
frames, that allows to estimate the chaser’s control effort to maintain a selected hov-
ering position with respect to the target.

2.1 Notations
The first instance of a quantity is always defined in an extensive way (i.e., symbol
[dimension]) using International System of units (SI), it is then compacted to the
symbol only. Whenever the dimension is not in SI the extensive notation is restored
and the link between SI and the used dimension is underlined. The list of symbols
(p. xix) summarises all the defined quantities throughout the current dissertation.

A scalar value is always indicated with a letter (e.g., 𝛼, 𝑎), a column vector with an
underlined letter (e.g., 𝑏, 𝛽), a column unit vector with a hatted letter (e.g., ̂𝜉, ̂𝑝) and
a matrix with a bold letter (e.g., 𝐡, 𝜸). Subscripts are used to associate a quantity
to a subject (e.g., 𝑚 𝑆𝐶 is the mass of SC, 𝐹 𝑡ℎ is the force generated by a thruster),
to express a relative quantity (e.g., 𝑣 𝑆𝐶−𝑁𝐸𝑂 is the velocity of the SC relative to the
NEO) and to describe action-reaction generalized forces (e.g., 𝐹 𝑆𝐶→𝑁𝐸𝑂 is a force
acting on the NEO due to the presence of SC). Pre-superscripts are used to indicate
inwhich reference frames a vector is written (e.g.,ℋ𝑥 is a vector whose components
are expressed in the reference frameℋ).

15
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2.2 Frame of reference
All the introduced frames of reference are constructed according to the right-hand
rule and indicated as

ℋ ∶ { ̂𝑒1, ̂𝑒2, ̂𝑒3}𝑂
whereℋ is the frame name, 𝑂 is the point at which the frame is centred and ̂𝑒𝑖 are
mutually orthogonal unit vectors that satisfy ̂𝑒3 = ̂𝑒1 × ̂𝑒2. The latter can be written
using the skew symmetric matrix operator associated to the vectorial product as

⎧⎪⎪
⎨⎪⎪
⎩

̂𝑒3 = ̂𝑒1 × ̂𝑒2 = [ ̂𝑒1]
∧ ̂𝑒2

[ ̂𝑒1]∧ ≜
⎡
⎢
⎢
⎣

0 − ̂𝑒1,𝑧 ̂𝑒1,𝑦
̂𝑒1,𝑧 0 − ̂𝑒1,𝑥

− ̂𝑒1,𝑦 ̂𝑒1,𝑥 0

⎤
⎥
⎥
⎦

This notation is used throughout the entire dissertation and allows, in general, a
cleaner manipulation of vectorial relations.

Considering two frames of referenceℋ and𝒦, the transformationmatrix that brings
a vector written inℋ components to𝒦 ones is defined as

𝒦 ∶ { ̂𝑒4, ̂𝑒5, ̂𝑒6}𝑂′

𝐓𝒦→ℋ = [
| | |

ℋ ̂𝑒 4 ℋ ̂𝑒 5 ℋ ̂𝑒 6
| | |

]

and coincides with the direction cosine matrix of the two frames [60].

In general, a reference frame can be classified as non-inertial or inertial according
to, respectively, the presence or absence of fictitious forces arising from the fact that
the frame itself is moving in space with a non-null linear or angular acceleration. As
a result, the dynamics written in non-inertial frames is usually more complex and
sometime leads to unintuitive results.

The frames of reference used in the dissertation are here briefly presented and con-
sist of typical choices when it comes to describe the motion of an astronomical ob-
ject.
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Sun Centred Ecliptic Inertial Frame

The SunCentredEcliptic Inertial (SCEI) frame is defined according to Earth’s orbital
motion about the Sun and takes as a reference the Vernal direction (i.e., 𝛾 point), a
point in the sky fixed in respect to distant stars. This frame is centred at the Sun’s
Center of Mass (CM) and constructed as

ℐ ∶ { ̂𝛾, ̂ℎ⊕ × ̂𝛾, ̂ℎ⊕}𝐶𝑀☉
(2.1)

where ̂𝛾 is the Vernal direction and ̂ℎ⊕ is the angular momentum unit vector of
planet Earth (i.e., Unit vector orthogonal to Earth’s ecliptic plane).

Local Vertical Local Horizontal Frame

The Local Vertical Local Horizontal (LVLH) frame is a non-inertial frame associated
to an object. It is defined considering the object position vector and its motion in
respect to a reference point as

{
ℒ ∶ { ̂𝑥, ̂ℎ × ̂𝑥, ̂ℎ}𝑃
̂ℎ ≜ ( ̂𝑥 × ̇̂𝑥)/| ̂𝑥 × ̇̂𝑥|

(2.2)

where ̂𝑥 is the position unit vector of the object, ̇̂𝑥 its velocity, ̂ℎ is the unit vector
normal to its orbital plane, and 𝑃 is a generic application point.

Normal Tangential Frame

The Normal Tangential (NTH) frame is a non-inertial frame associated to an object.
It is defined considering the object velocity vector and its motion in respect to a
reference point as

{
𝒩 ∶ { ̇̂𝑥 × ̂ℎ, ̇̂𝑥, ̂ℎ}𝑃
̂ℎ ≜ ( ̂𝑥 × ̇̂𝑥)/| ̂𝑥 × ̇̂𝑥|

(2.3)

Body Fixed Frame

The Body Fixed Frame (BFF) is a non-inertial frame attached to an object that fol-
lows its rotational state. Even though any point of the object is a feasible origin, the
frame is here centred at the body’s CM and particular axes are used to simplify the
angular dynamic equations. It is defined as

ℬ ∶ { ̂𝐼1, ̂𝐼2, ̂𝐼3}𝐶𝑀 (2.4)
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where ̂𝐼𝑖 is the body i-th principal axis of inertia.

2.3 Force models
In this section the forces acting on the chaser and target, referred from now on as
objects when the distinction is not required, are modelled and discussed. Whereas
there may be many contributions, a deeper focus on the gravitational and magnetic
interactions is given, mainly focusing on the latter one.

2.3.1 Gravitational interaction

The most general n-body problem describes the motion of 𝑛 point masses subjec-
ted to merely their mutual gravitational interactions. Their translational motions
can be described in an inertial frame of reference according to Newton’s universal
gravitational law as

⎧
⎪
⎨
⎪
⎩

𝑚𝑖
ℐ ̈𝑥 𝑖 = ∑𝑛

𝑗=1
𝑗≠𝑖

𝐺𝑚𝑖𝑚𝑗

𝑟3𝑖𝑗
(ℐ𝑥 𝑗 − ℐ𝑥 𝑖) , 𝑖 ∈ [1,𝑛]

ℐ ̇𝑥 𝑖(𝑡0) =
ℐ ̇𝑥 𝑖,0

ℐ𝑥 𝑖(𝑡0) = ℐ𝑥 𝑖,0

(2.5)

where 𝐺 [𝑘𝑚2/(𝑠2𝑘𝑔)] is the universal gravitational constant, 𝑚 𝑖 [𝑘𝑔] is the mass of
the i-th object, ℐ𝑥 𝑖 [𝑘𝑚] is its position in the inertial frame, and 𝑟 𝑖𝑗 [𝑘𝑚] is the relat-
ive distance between objects 𝑖 and 𝑗.

It is not possible to find any finite terms close form general solution to problem 2.5
and numerical simulations may be challenging due to the involved non-linearities.
These make the solution to be chaotic (i.e., highly sensitive to initial conditions)
and require the usage of specific mathematical tools to proceed with the dynamic
analysis. On the other hand, such complexity is often reduced and assumptions
are made to proceed with preliminary analysis and tackle the early stage of mis-
sion design. For instance, the simpler Restricted Two-Body Problem (R2BP) assumes
𝑛 = 2, 𝑚2 ≪ 𝑚1 and results into Ordinary Differential Equations (ODEs) that are
integrable in close form, leading to the Keplerian orbit theory.
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Restricted Two-body problem

Considering two objects, the R2BP describes the perturbed motion of 𝑚2 (i.e., sec-
ondary object) relative to 𝑚1 (i.e., primary object or main attractor), written in an
inertial frame centred at𝑚1 CM. It is summarized in the Initial Value Problem (IVP)
defined as

⎧⎪
⎨
⎪
⎩

ℐ ̈𝑟 (𝑡) = −𝜇1
𝑟3

ℐ𝑟 (𝑡) + ℐ𝑎 𝑝 + ℐ𝑎 𝑐

ℐ ̇𝑟 (𝑡0) = ℐ ̇𝑟 0
ℐ𝑟 (𝑡0) = ℐ𝑟 0

(2.6)

where ℐ𝑟 ≡ ℐ𝑟 2−1 [𝑘𝑚] is the relative position vector, 𝜇𝑖 [𝑘𝑚3/𝑠2] with 𝑖 = 1 is the
primary’s gravitational parameter, 𝑡0 [𝑠] is the initial time, and ℐ𝑎 𝑖 [𝑘𝑚/𝑠2], 𝑖 = {𝑝, 𝑐}
are the inertial accelerations induced by, respectively, perturbations to the R2BP dy-
namics and presence of any artificial actuation system that aims to control the sec-
ondary’s motion about the primary.

Equations 2.6 can be used to approximate the motions of N bodies with a common
main attractor (e.g., planets heliocentric motions, SSSBs motions about the Sun or
about another body) as far as the latter induced acceleration is dominant in respect
any other mutual gravitational contributions in the system [60].

2.3.2 Keplerian parameters
The unperturbed R2BP, obtained by setting ℐ𝑎 𝑖 = 0, 𝑖 = {𝑝, 𝑐} in equations 2.6, is
numerically integrable and leads to the well known integral of motion

𝑟 = 𝑟(𝑡) = ℎ2
𝜇1

1
1 + 𝑒 cos(𝜃(𝑡)) (2.7)

where ℎ [𝑘𝑚2/𝑠] is the specific orbital angular moment, 𝑎 [𝑘𝑚] is the semi-major axis
of the orbit, 𝑒 [−] is the orbital eccentricity , and 𝜃 [𝑟𝑎𝑑] is the true anomaly.

Given 𝑚2 initial state vector, its unperturbed motion is bounded to a plane (i.e.,
orbital plane) and uniquely identified as conic section (i.e., ellipse, hyperbola and
parabola) described by different sets of orbital parameters. The Keplerian Elements
(KEP) set is the most straightforward choice, and it is defined as

𝐾𝐸𝑃 = [𝑎, 𝑒, 𝑖,Ω,𝜔, 𝜃]𝑇 (2.8)
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where 𝑖 [𝑟𝑎𝑑] is the orbital plane inclinationwith respect to the ecliptic plane,Ω [𝑟𝑎𝑑]
is the Right Ascension of the Ascending Node (RAAN) and, 𝜔 [𝑟𝑎𝑑] is the argument
of perigee.

Different sets are available in the literature (e.g., equinoctial elements, Euler para-
meters, Dromo elements) and are introduced to address possible singularities, to
simplify algebraic manipulation, and to allow a better representation of particular
phenomena; however, the KEP set is adopted in the dissertation.

Note that equation 2.7 is implicitly dependant upon time through the true anomaly,
the link between them is retrieved as

̇𝜃 = ℎ
𝑟2 (2.9)

which is integrated either numerically, with semi-analytic approaches or analytic-
ally. Proceeding with the analytical integration of equation 2.9, it is possible to ob-
tain the explicit formulation of only 𝑡 = 𝑡(𝜃) whereas, the inverse function (i.e.,
𝜃 = 𝜃(𝑡)) remains implicit.

Such integration leads to the Kepler’s equation for orbital time [60] valid for a gen-
eric Keplerian orbit. The link can be particularized for a close orbit as

⎧⎪
⎨⎪
⎩

𝑀 = 𝜇21
ℎ3
(1 − 𝑒2)3/2𝑡

𝑀 = 𝐸 − 𝑒 sin(𝐸)

tan (𝐸
2
) = √

1−𝑒
1+𝑒

tan (𝜃
2
)

(2.10)

where 𝐸 [𝑟𝑎𝑑] is the eccentric anomaly and, 𝑀 [𝑟𝑎𝑑] is the mean anomaly, and 𝑡 is
the orbital time elapsed since the last pericenter passage.

2.3.3 Perturbation of the two-body problem
The perturbation term ℐ𝑎 𝑝 is associated to the net contributions of different sources:
atmospheric drag, gravitational perturbations due to a primarywithnon-homogeneous
mass distribution, solar radiation pressure, third body perturbations and others. In
general, its magnitude is small compared to the gravitational acceleration induced
by the main attractor, and the net result is visible in the KEP elements as either a
fast (i.e., true anomaly), or slow (i.e., all the remaining elements) variation.
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Third body perturbation

Figure 2.1: Positions of the secondary mass and the third object with respect to the
inertial frame centred at the primary mass.

Referring to figure 2.1, the perturbation that a third body is inducing on a mass in
orbit about a primary is

{
ℐ𝑎 𝑝,3𝑟𝑑 = 𝜇3𝑟𝑑 (

ℐ𝑟 3𝑟𝑑−2
(ℐ𝑟 3𝑟𝑑−2)3

−
ℐ𝑟 3𝑟𝑑

(ℐ𝑟 3𝑟𝑑)3
)

ℐ𝑟 3𝑟𝑑−2 = ℐ𝑟 3𝑟𝑑 − ℐ𝑟 2
(2.11)

where ℐ is a inertial frame of reference centred at the primary’s CM (e.g., SCEI) and
ℐ𝑟 3𝑟𝑑 is the position of the third mass in that frame.

2.3.4 Propulsive subsystem
The chaser’sAttitude andOrbit Control Subsystem (AOCS) is a collection of equipped
actuators that allow the linear and angular momentum variation necessary to main-
tain the desired attitude and motion. Considering that the typical operational time
for a low-thrust deflection mission can easily go beyond one year, the chaser con-
sidered in the dissertation is assumed to be equipped with electric propulsive units
(e.g., ion thrusters)which exploitmass expulsionmechanisms for linearmomentum
management. Using the same approach as in [35], the total thrust that the chaser’s
Propulsive Subsystem (PS) can achieve is written as
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{
𝑇𝑛 = 𝑚𝑝𝑤

𝜉𝑡ℎ
𝜏𝑝𝑤

𝑚𝑝𝑤 = 𝑃𝑂𝐷 𝑚𝑑𝑟𝑦
(2.12)

where𝑚𝑝𝑤 [𝑘𝑔] is the mass dedicated to the on-board Power Generation Subsystem
(PGS), 𝑚𝑑𝑟𝑦 [𝑘𝑔] is the dry mass of the chaser, 𝜉𝑡ℎ [𝑁/𝑊] is the PS’s specific thrust,
𝜏𝑝𝑤 [𝑘𝑔/𝑊] is the PGS’s mass to power ration, and 𝑃𝑂𝐷 [−] is the power mass to
dry mass ratio. The latter is introduced in the formulation to allow the sensitivity
analysis that is later carried out in the dissertation. Moreover, the mass to power
ratio and the specific thrust are referred from now on as PGS and PS performances,
respectively.

Recalling the specific impulse definition [60], the fuel depletion due for 𝑇𝑛 [𝑁] gen-
eration is

𝑚̇𝑓𝑢𝑒𝑙 =
𝑇𝑛

𝐼𝑠𝑝 𝑔0
(2.13)

where 𝐼𝑠𝑝 [𝑠] is the specific impulse of the PS and 𝑔0 [𝑚/𝑠2] is the standard gravita-
tional acceleration on Earth evaluated at sea level (i.e., 𝑔0 = 9.81 [𝑚/𝑠2]).

The chaser’s mass variation in time is then computed using the mass conservation
on the chaser (i.e., 𝑚̇𝐶 = −𝑚̇𝑓𝑢𝑒𝑙) with equations (2.12) and (2.13), obtaining the
following IVP

{
𝑚̇𝐶 = −𝑃𝑂𝐷 𝜉𝑡ℎ

𝜏𝑝𝑤

𝑚𝑑𝑟𝑦

𝐼𝑠𝑝 𝑔0
𝑚𝐶(𝑡0) = 𝑚𝐶0

(2.14)

where𝑚𝐶0 [𝑘𝑔] is the initial chaser’s total mass and 𝑡0 is the time at which the thrust
is applied.

For the purposes of the current preliminary analysis, the angular momentum man-
agement is not directly addressed. Yet, considerations on possible requirements re-
lated to such task are derived from the obtained results.

2.3.5 Magnetic interaction
The magnetic interaction between the considered objects is connected to their mag-
netic properties, their mutual orientation and their relative distance.
Assuming the objects are able to sustain current circulations within their domain,
the obtained infinitesimal magnetic field can be computed recalling Biot and Savart
law
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Figure 2.2: Two domains that can support current circulations, separated by a
known distance and interacting through mutual generalised force.

𝑑𝐵 =
𝑖 𝜇𝜖𝜇0
4𝜋

[𝑑𝑙]∧ ̂𝑟
𝑟2 (2.15)

where 𝑖 [𝐴] is the current flowing in the current-carrying domain, 𝜇𝜖𝜇0 [𝐻/𝑚] is
the magnetic permeability of vacuum, 𝑑𝑙 [𝑚] is the infinitesimal current-carrying
domain length, and 𝑟 [𝑚] is the vector pointing the location at which the field is
evaluated starting from the infinitesimal element.

Considering two current-carrying domains A and B, represented in figure 2.2, the
infinitesimal force acting on A due to the magnetic field of B is computed according
to the Lorentz force developed on the moving charges in A (i.e., Laplace force) as

𝑑𝐹 𝐵→𝐴 = 𝑖𝐴 [𝑑𝑙 𝑎]
∧
𝐵 𝐵 (2.16)

where 𝑖𝐴 is current flowing in domain A, 𝑑𝑙 𝐴 is the infinitesimal element length of
domain A, and 𝐵 𝐵 is the magnetic field generated by domain B.

Close-field and Far-field magnetic interaction for a two coil system

Equations (2.15) and (2.16) can be particularised for current-carrying coils com-
posed by multiple turns, obtaining the close-field formulation of the magnetic in-
teraction
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⎧⎪
⎨⎪
⎩

𝐹 𝐵→𝐴 = 𝜇𝜖𝜇0 𝑖𝐴𝑁𝐴 𝑖𝐵𝑁𝐵

4𝜋
∮[∮𝑑𝐵𝐵]

∧
𝑑𝑙𝐴

𝜏 𝐵→𝐴 = 𝜇𝜖𝜇0 𝑖𝐴𝑁𝐴 𝑖𝐵𝑁𝐵

4𝜋
∮[𝑟𝐴]

∧
([∮ 𝑑𝐵𝐵]

∧
𝑑𝑙𝐴)

(2.17)

where 𝑟 𝐴 is the relative position vector of the infinitesimal element of coil A and
𝑁 𝑖, 𝑖 = {𝐴,𝐵} is the number of turns of coil 𝑖.

It is possible to obtain an analytical expression of equation (2.17) performing aTaylor
expansion and retaining only the first order terms. Such approximation, referred to
as far-field formulation, is proven to be acceptable when the inter-coil distance is
greater than∼ 7 times the maximum coil radii, committing an error lower than 10%
compared to the close-field formulation [61].

In this framework, the interaction between chaser C and the target T is described
using magnetic dipole theory [62, 63, 64, 53] as

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝐹 𝑇→𝐶 = 3𝜇𝜖𝜇0
4𝜋𝑟4

((𝜇 𝜖𝜇,𝑇 ⋅ 𝜇 𝜖𝜇,𝐶) ̂𝑟 + (𝜇 𝜖𝜇,𝑇 ⋅ ̂𝑟)𝜇̂ 𝜖𝜇,𝐶 + (𝜇 𝜖𝜇,𝐶 ⋅ ̂𝑟)𝜇̂ 𝜖𝜇,𝑇

−5(𝜇 𝜖𝜇,𝑇 ⋅ ̂𝑟)(𝜇 𝜖𝜇,𝐶 ⋅ ̂𝑟) ̂𝑟)

𝐹 𝐶→𝑇 = − 𝐹 𝑇→𝐶 ;

𝜏 𝑇→𝐶 = 𝜇𝜖𝜇0
4𝜋𝑟3

[𝜇 𝜖𝜇,𝐶]
∧
(3(𝜇 𝜖𝜇,𝑇 ⋅ ̂𝑟) ̂𝑟 − 𝜇 𝜖𝜇,𝐶)

𝜏 𝐶→𝑇 = − 𝜏 𝑇→𝐶 − [𝑟]∧ 𝐹 𝑇→𝐶

(2.18)

where 𝜇𝜖𝜇0 [𝐻/𝑚] is the vacuummagnetic permeability, 𝜇 𝜖𝜇,𝑖 [𝐴𝑚2] is the magnetic
dipole moment vector associated to object 𝑖 = {𝑇,𝐶}, and 𝑟 = 𝑟 𝑇→𝐶 is the vector
pointing the chaser from the target.

Equations 2.18 can also be rewritten in matrix form obtaining

⎧
⎪
⎨
⎪
⎩

𝐹 𝑇→𝐶 = 3𝜇𝜖𝜇0
4𝜋𝑟4

𝚽(𝜇 𝜖𝜇,𝑇 , 𝑟)𝜇 𝜖𝜇,𝐶

= 3𝜇𝜖𝜇0
4𝜋𝑟4

𝚽(𝜇 𝜖𝜇,𝐶, 𝑟)𝜇 𝜖𝜇,𝑇

𝜏 𝑇→𝐶 = 𝜇𝜖𝜇0
4𝜋𝑟3

[𝜇 𝜖𝜇,𝐶]
∧
(𝚪(𝑟)𝜇 𝜖𝜇,𝑇)

(2.19)
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where 𝚪 is a non-singular matrix (i.e., invertible) dependant upon only the relative
position vector and 𝚽 is a conditionally singular matrix dependant on both target’s
dipole orientation and relative position vector. The definition of these matrices is
here omitted and can be found in appendix A.

It is always possible to impose a certain torque on one of the two objects, but there
are relative configurations of the system for which a subset of forces are not impos-
able. Visually inspecting equations 2.18, it is found that whenever 𝜇̂ 𝜖𝜇,𝑖 ⋅ ̂𝑟 = 0 the
achievable magnetic force can only be contained within the plane defined by the re-
lative position and the i-th magnetic dipole unit vector . Figure 2.3 shows the plane
of achievable force directions for the condition 𝜇̂ 𝜖𝜇,𝐶 ⋅ ̂𝑟 = 0.

Moreover, equations (2.18) show that the torque acting on the chaser is equal to
the one acting on the target only when the magnetic force is directed as the relative
position vector. In general, 𝜏 𝑇→𝐶 ≠ 𝜏 𝐶→𝑇 [65].

Figure 2.3: Blue plane representing the locus of magnetic force directions when
matrix𝚽 is non invertible due to chaser relative orientation.

2.4 Orbital deflection
The selection of a suitable deflection strategy is driven by the target orbital motion,
its geo-physical properties and the available time to take action (i.e., warning time).
Typically, the latter includes the Time Of Flight (TOF) required to reach the target
and, in the case af a LTA strategy, the time to establish the proper relative motion
and attitude for the deflective action to take place. An optimal deflection strategy
is often wanted and found by means of constrained optimization techniques [35] in
which important factors are considered for the mission to be feasible, efficient and



Mathematical model 26

reliable (e.g., power and mass budgets, data uncertainties, targeted deflection). Op-
timization techniques rely on a parametric model of the problem and they are the
heart of today’s design process allowing its analysis within predefined boundaries,
under particular constraints and performance metrics.

Orbital Deflection Model

The orbital deflection model aims to describe how the target’s state vector changes,
at a certain epoch in time, due to the previously applied LTA. Such action is acting
for a finite amount of time that goes from the interception instant (i.e., interception
epoch, 𝑡𝑖 [𝑠]), when the chaser is at the nominal position to operate at the target, to a
final instant (i.e., cut-off epoch, 𝑡𝑐𝑜 [𝑠]), when the chaser ceases to operate. The cut-
off epoch can be either before or at the close-passage/impact epochwith a third body
(e.g., the Earth, an SSSB, another SC), referred fromnowon as ImpactedObject (IO).

Figure 2.4: Representation of a low-thrust orbital deflection showing: the orbit of IO object,
the target interception point, the MOID point, the deflected target orbit, the deflection vector
at MOID, and the nominal target absidial points.
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Figure 2.4 shows the IO, nominal target and deflected target trajectories. The close-
passage/impact with IO can only happen when the target is close/at the MOID,
defined as the minimum geometric distance between IO’s orbit and the target one.
The MOID conditions are obtained propagating in time the considered bodies mo-
tions, searching for such minima. In general, the MOID conditions are evolving in
time due to presence of perturbations, high MOID conditions fidelity is out of the
scope of the current dissertation and thus, the unperturbed R2BP model is used to
compute them.

The state vector of the deflected target can be found proceeding with a direct integ-
ration of equation 2.6 with the applied LTA time profile, from interception up until
MOID epoch and then evaluate its deviation from the nominal state vector. Due
to the LTA expected small magnitude, the perturbed orbit can be considered to be
proximal to the unperturbed one. Under this assumption, it is often adopted either
a semi-analytical or an analytical approach [66, 67, 36], aiming to reduce the com-
putational effort of the propagation.

However, the approach followed in the dissertation is fully numerical, and involves
the propagation of the target’s state using Gauss’ planetary equations. These de-
scribe the evolution of the target’s KEP elements due to a generic perturbation, here
written in NTH components, and are defined as

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

̇𝑎 = 2𝑎2𝑣
𝜇1

𝑎𝑡

̇𝑒 = 1
𝑣
[2(𝑒 + cos(𝜃))𝑎𝑡 −

𝑟
𝑎
sin(𝜃)𝑎𝑛]

̇𝑖 = 𝑟 cos(𝜃+𝜔)
ℎ sin(𝑖)

𝑎ℎ

Ω̇ = 1
𝑒𝑣
[2 sin(𝜃)𝑎𝑡 + (2𝑒 + 𝑟

𝑎
cos(𝜃)𝑎𝑛)] −

𝑟 sin(𝜃+𝜔) cos(𝑖)
ℎ sin(𝑖)

𝑎ℎ

𝑀̇ = 𝑛 − 𝑏
𝑒𝑎𝑣

[2 (1 + 𝑒2𝑟
𝑝
) sin(𝜃)𝑎𝑡 +

𝑟
𝑎
cos(𝜃)𝑎𝑛]

𝐾𝐸𝑃(𝑡0) = 𝐾𝐸𝑃 0

𝒩𝑎 𝑝(𝑡) = [𝑎𝑡(𝑡), 𝑎𝑛(𝑡), 𝑎ℎ(𝑡)]𝑇

(2.20)

where 𝑏 ≜ 𝑎√1 − 𝑒2 [𝑘𝑚] is the orbital semi-minor axis, 𝑝 ≜ ℎ2/𝜇1 is the orbital
semilatus rectum, 𝐾𝐸𝑃 0 is the initial KEP vector of the target, and

𝒩𝑎 𝑝 is the per-
turbing acceleration vector acting on the target, written in NTH components.

Given the LTA time profile acting on the target, equations (2.20) are integrated from
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interception to MOID epoch and the achieved deflection is computed as

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

ℐ𝑑𝑟 𝑇(𝑡𝑚𝑜𝑖𝑑) = ℐ𝑅 𝑇(𝑡𝑚𝑜𝑖𝑑) − ℐ𝑅 𝑛𝑇(𝑡𝑚𝑜𝑖𝑑)

ℐ𝑅 𝑇(𝑡𝑚𝑜𝑖𝑑) = 𝐑𝑇
𝐼→𝑃(𝑡𝑚𝑜𝑖𝑑) (

𝑝
1+𝑒 cos( ̄𝜃)

[cos( ̄𝜃), sin( ̄𝜃), 0]𝑇 )

𝐑𝐼→𝑃(𝑡𝑚𝑜𝑖𝑑) =
⎡
⎢
⎢
⎣

cos(𝜔̄) sin(𝜔̄) 0
− sin(𝜔̄) cos(𝜔̄) 0

0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 0 0
0 cos( ̄𝑖) sin( ̄𝑖)
0 − sin( ̄𝑖) cos( ̄𝑖)

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

cos(Ω̄) sin(Ω̄) 0
− sin(Ω̄) cos(Ω̄) 0

0 0 1

⎤
⎥
⎥
⎦

(2.21)
where ℐ𝑅 𝑛𝑇(𝑡𝑚𝑜𝑖𝑑) is the nominal target’s position vector atMOIDepoch, ℐ𝑅 𝑇(𝑡𝑚𝑜𝑖𝑑)
the deflected target’s position vector atMOIDepoch, and𝐾𝐸𝑃(𝑡𝑚𝑜𝑖𝑑) = [ ̄𝑎, ̄𝑒, ̄𝑖, Ω̄, 𝜔̄, ̄𝜃]
is the result of equations (2.20) integration.

2.5 Gravitational tug
This section presents the key concepts of the gravitational tug technique, and aims to
understand how the achieved LTA, acting on the target, can be described and used
with the deflection model presented in section 2.4. As discussed in section 1.1.2,
there are many ways to implement a GT. In this work, the non-inertial hovering ap-
proach is chosen as a basis for the development of the proposed model, aiming to
answer the dissertation’s questions presented in section 1.3. Nevertheless, the intro-
duced concepts can be extended to other GT approaches.

Figure 2.5: Non-inertial hovering approach scheme
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Considering the target-chaser close system represented in figure 2.5, the GT exploits
the chaser’s AOCS to generate an external action (i.e., thrust, 𝑇𝑛) able to counterbal-
ance the gravitational pull of the target and, thus, creating an artificial equilibrium
point at which the chaser can be maintained (i.e., hovering distance or hovering
point, 𝑑 [𝑚]) for a specific amount of time (i.e., total tugging time, 𝑡𝑡𝑢𝑔 [𝑠]). Being
such action an external force, it is seen as a linear momentum exchange with the
target or, equivalently, as a towing force (i.e., tugging force, 𝐹𝐺𝑇 [𝑁]) acting on the
target itself [56].

Considering the chaser’s AOCS, a GT is feasible only if the following requirements
are met

1. Requirement of Tug Sustainability (RTS)
Thepropulsive subsystem shall be able to generate the proper amount of thrust
capable of maintaining the chaser at a certain hovering distance, for a given
total tugging time.

2. Requirement of Non-Impingement (RNI)
The expelled mass used to generate thrust shall not impact the target’s sur-
face. Otherwise, the result would be the generation of a target-chaser system
internal force, according to action-reaction principle, and thus no net action
on the system’s CM.

Neglecting the heliocentricmotion of the objects andusing equation (2.6) to describe
the chaser’s dynamics in the target’s gravitational field, the required force to main-
tain a generic hovering position (i.e., equilibrium position) is

𝐹𝐺𝑇 ≡ 𝐹ℎ𝑜𝑣𝑒𝑟 ≜ 𝑎 𝑐𝑚𝐶 = 𝜇𝑇 𝑚𝐶
𝑟3 𝑟 = 𝐺 𝑚𝑇 𝑚𝐶

𝑟3 𝑟 (2.22)

where 𝜇𝑇 [𝑘𝑚3/𝑠2] is the gravitational constant of the target, 𝑚𝐶 [𝑘𝑔] is the mass of
the chaser, and𝑚𝑇 [𝑘𝑔] is the mass of the target.

Equation (2.22) shows that the required hovering force is always pointing away from
the target, along the radial direction. As a consequence, the RNI fulfilment is gran-
ted only if 𝐹ℎ𝑜𝑣𝑒𝑟 is obtained as a vectorial sum of multiple thrusting devices. The
most common approach in literature [55, 56, 59, 35] is to adopt multiple ion engines
with canted nozzles in a symmetric configuration.

Referring to figure 2.6, a canted pair of nozzles is defined as a set of two nozzles
inclined in respect to a common direction by an angle 𝛽𝑖 [𝑑𝑒𝑔] (i.e., the cant angle)
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Figure 2.6: Canted pair of nozzles in a symmetric configuration seen by
the NTH frame, centred at the target.

and characterised by exhaust cones (i.e., ejected mass envelopes) of known semi-
amplitudes 𝜙𝑖 [𝑑𝑒𝑔]. The canted pair is symmetric if 𝛽1 = 𝛽2 ≜ 𝛽𝑝 and 𝜙1 = 𝜙2 ≜ 𝜙𝑝

Given a symmetric canted pair of nozzles with fixed geometry, the minimum hover-
ing distance under RNI requirement is

𝑑𝑚𝑖𝑛 =
𝑅𝑇

sin (𝛽𝑝 − 𝜙𝑝)
(2.23)

where 𝑅𝑇 [𝑚] is the target equivalent radius.

The minimum hovering distance [48] is associated to a configuration in which the
exhaust cones are tangent to the sphere of radius 𝑅𝑇 , centred at the target’s CM.

Such condition is referred, from now on, as adapted canted nozzles configuration.

Assuming a priori an adapted canted nozzles configuration, 𝐹 ℎ𝑜𝑣𝑒𝑟 can also be writ-
ten as

{
𝐹 ℎ𝑜𝑣𝑒𝑟 = 𝑇𝑛 𝜂𝑡ℎ (𝑟) ̂𝑟

𝜂𝑡ℎ = cos (arcsin (𝑅𝑇
𝑟
) + 𝜙𝑝)

(2.24)

where 𝑇𝑛 [𝑁] is the total thrust generated by the chaser’s PS, 𝑅𝑇 is the target’s equi-
valent radius, 𝜙𝑝 [𝑑𝑒𝑔] is the exhaust cone’s half angle, and 𝜂𝑡ℎ [−] is the thrust ef-



31 Mathematical model

ficiency that describes the degradation of the generated thrust due to cosine losses
introduced by RNI.

Equation (2.24) shows the existence of a relative hovering distance 𝑑𝑅𝑁𝐼𝐿 [𝑚]where
the thrust efficiency can become zero. This is caused by the RNI satisfaction, and
implies that no thrust can be produced to counteract the local gravitational mutual
attraction. As a result, the GT hovering position shall be

𝑑 > 𝑑𝑅𝑁𝐼𝐿 =
𝑅𝑇

sin (𝜋
2
− 𝜙𝑝)

(2.25)

Assuming to start the hover at a given relative distance 𝑑, the generation of the equi-
librium thrust 𝐹 ℎ𝑜𝑣𝑒𝑟 reduces the chaser mass according to the equation (2.14). As
a consequence, the equilibrium condition is lost and can be re-established either re-
ducing 𝑑 with the same 𝐹𝑡ℎ, or adopting a constant 𝑑 with a reduced 𝐹𝑡ℎ. Keeping
𝑑 constant leads to a smaller thrust level, which implies lower fuel consumption
and higher chaser’s dry mass for a fixed overall mass at interception 𝑚𝐶0. This is
translated into a higher achievable maximum thrust and thus to the possibility of
a smaller 𝑑. Iterating this process, it is possible to find an optimal initial hovering
point [35] that makes the constant option more efficient than the variable one, for a
given𝑚𝐶0.

Assuming to use a PS composed by adapted pair of nozzles with a common specific
impulse, combining equations (2.22) and (2.24), and solving equation (2.14) with a
constant relative hovering distance, the chaser’s mass time variation is

𝑚𝐶 = 𝑚𝐶(𝑡) = 𝑚𝐶(𝑡𝑖) exp (−
𝐺𝑚𝑇

𝑑2 𝜂𝑡ℎ (𝑑)
(𝑡 − 𝑡𝑖)
𝐼𝑠𝑝 𝑔0

) (2.26)

Recalling equation (2.12) and assuming that all the onboard fuel is used to maintain
the GT, the hovering distance that is satisfying both RTS and RNI requirements (i.e.,
𝑑𝐺𝑇) is found to be the solution of

𝐹𝐺𝑇(𝑡𝑖, 𝑑𝐺𝑇) ≡ 𝐺 𝑚𝑇 𝑚𝐶0

(𝑑𝐺𝑇)
2 = 𝑚𝐶(𝑡𝑐𝑜)

2
𝜉𝑡ℎ
𝜏𝑝𝑤

𝜂𝑡ℎ (𝑑𝐺𝑇) ≡ 𝑇𝑛𝜂𝑡ℎ(𝑑𝐺𝑇) (2.27)

which can be rewritten using equation 2.26 and the 𝜂𝑡ℎ definition as

𝐺 𝑚𝑇

(𝑑𝐺𝑇)
2 =

exp (− 𝐺𝑚𝑇
𝑑2 𝜂𝑡ℎ(𝑑)

(𝑡𝑐𝑜−𝑡𝑖)
𝐼𝑠𝑝 𝑔0

)
2

𝜉𝑡ℎ
𝜏𝑝𝑤

cos (arcsin ( 𝑅
𝑑𝐺𝑇

) + 𝜙𝑝) (2.28)

Once equation 2.28 is solved (e.g., using numerical methods), the acceleration felt
by the target can be written in the target’s NTH frame as
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𝒩𝑎 𝑇 = 𝒩𝑎 𝑇(𝑡) =
𝒩𝐹 ℎ𝑜𝑣𝑒𝑟(𝑡)

𝑚𝑇
= 𝐺 𝑚𝐶(𝑡)

(𝑑𝐺𝑇)
2
𝒩 ̂𝑟 (2.29)

where𝒩 ̂𝑟 is the hovering position unit vectorwritten in theNTH frame of the target.

The deflection from nominal target, at MOID epoch, is then computed using equa-
tions (2.21) with the result of (2.20) when (2.29) is considered.

Note that the solution of equation (2.28) is not depending upon the chaser’s mass
at interception, and equation (2.29) is valid for a generic tugging direction (e.g., tan-
gential tug represented in figures 2.6 and 2.5).

2.6 Rigid body dynamics
This section introduces some concepts that are later used to develop the target-chaser
translational and rotational dynamic model, used to asses the performance of the
GMT in case of a target with a generic tumbling state.

2.6.1 Translational and rotational dynamics
Let 𝐺 be the CM of a rigid object located at a given position in the inertial frame ℐ.
The trajectory of 𝐺 is determined by Newton’s law of motion as

⎧⎪⎪
⎨⎪⎪
⎩

ℐ𝑅̈ 𝐺 =
ℐ𝐹 𝐸𝑥𝑡
𝑚

ℐ𝑅̇ 𝐺(0) =
ℐ𝑉 𝐺,0

ℐ𝑅 𝐺(0) =
ℐ𝑅 𝐺,0

(2.30)

where 𝑚 is the mass of the body, ℐ𝐹 𝐸𝑥𝑡 is the resultant of all the external inertial
forces acting on it, and ℐ𝑉 𝐺,0 and

ℐ𝑅 𝐺,0 are the initial conditions in velocity and
position for such second order ODE.

Let 𝐺 be also the centre of a body fixed frame ℬ attached to the object and aligned
with its principal axes of inertia. The relative orientation of ℬ with respect to ℐ
evolves in time according to Euler’s equation as
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⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

𝐉 ℬ𝜔̇ ℬℐ + ̇𝐉 ℬ𝜔 ℬℐ + [ℬ𝜔 ℬℐ]
∧
𝐉 ℬ𝜔 ℬℐ = ℬ𝑇 𝑒𝑥𝑡 + ℬ𝑇 𝑎𝑠

𝐓̇ ℐ→ℬ = − [ℬ𝜔 ℬℐ]
∧
𝐓 ℐ→B

ℬ𝜔 ℬℐ(0) = ℬ𝜔 ℬℐ,0

𝐓 ℐ→B(0) = 𝐓 ℐ→B,0

(2.31)

where 𝐓 ℐ→B is the direction cosine matrix used to express the kinematics, ℬ𝜔 ℬℐ is
the angular velocity of the object, 𝐉 is the diagonalmatrix of principalmoments of in-
ertia, ℬ𝑇 𝑒𝑥𝑡 is the external net torque acting,

ℬ𝑇 𝑎𝑠 is the torque arising from internal
angular momentum storing devices (e.g., reaction wheels, controlled moment gyro)
that may be present when the object has some sort of angular momentum manage-
ment capability, and ℬ𝜔 ℬℐ,0 and 𝐓 ℐ→B,0 are the initial angular velocity and attitude
for such system of ODE.

2.6.2 Relative translational dynamics in non-inertial frames
Let 𝑃 be an object in motion within an inertial frame ℐ. Considering a non-inertial
moving frame ℒ centred at the generic point 𝑂, the relative position vector of 𝑃 in
respect to 𝑂 is

ℐ𝑟 𝑃−𝑂 = ℐ𝑅 𝑃 − ℐ𝑅 𝑂 (2.32)

It is possible to prove [60] that the velocity of 𝑃 with respect to 𝑂 seen by an inertial
observer is linked to the one seen by an observer moving with ℒ as

{
ℐ ̇𝑟 𝑃−𝑂 = ℐ ̇𝑠 + [ℐΩ ℒℐ]

∧ ℐ𝑠

ℐ𝑠 ≜ ℐ𝑟 𝑃−𝑂
(2.33)

where ℐΩ ℒℐ is the angular velocity of frameℒwith respect to ℐ written in the latter’s
components, and ℐ ̇𝑠 and ℐ𝑠 are the relative position and relative velocity seen by ℒ
observer, written in ℐ components.

Being 𝐓ℐ→ℒ the transformation matrix that projects a generic vector from ℐ to ℒ, it
is possible to rewrite equation (2.33) in frame ℒ components as
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ℐ ̇𝑟 𝑃−𝑂 = 𝐓𝑇ℐ→ℒ (ℒ ̇𝑠 + [ℒΩ ℒℐ]
∧ ℒ𝑠 ) →

→ ℒ ̇𝑟 𝑃−𝑂 = 𝐓ℐ→ℒ
ℐ ̇𝑟 𝑃−𝑂 = ℒ ̇𝑠 + [ℒΩ ℒℐ]

∧ ℒ𝑠
(2.34)

Following the same steps, the acceleration of 𝑃 with respect to 𝑂 seen by an inertial
observer is linked to the one seen by an observer moving with ℒ as

ℒ ̈𝑟 𝑃−𝑂 = ℒ ̈𝑠 + 2 [ℒΩ ℒℐ]
∧ ℒ ̇𝑠 + [ℒΩ̇ ℒℐ]

∧
ℒ𝑠 + [ℒΩ ℒℐ]

∧
[ℒΩ ℒℐ]

∧ ℒ𝑠 (2.35)

where ℒ ̈𝑠 is the relative acceleration seen by ℒ observer written in the same frame
components and ℒΩ̇ ℒℐ is the angular acceleration of frame ℒ with respect to ℐ.

2.6.3 Osculating cinematic relations

Figure 2.7: Non Keplerian motion and osculating orbit of an object
about a primary.

Given an objects’ state vector relative to a primary body at a certain epoch, repres-
ented in figure 2.7, the osculating orbit about the primary is defined as the ficti-
tious Keplerian orbit that has the same state vector relative to the primary itself,
at the given epoch. It is possible to construct the osculating frames ̃ℒ and 𝒩̃, and
use them to retrieve the instantaneous angular velocities and accelerations of such
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frames with respect to ℐ.

Recalling equation 2.9, the instantaneous angular velocity vector of ̃ℒ with respect
to ℐ is computed as

⎧⎪⎪
⎨⎪⎪
⎩

̃ℒΩ ̃𝐿𝐼 =
̃ℒΩ ̃𝐿𝐼(𝑡) =

⎡
⎢
⎢
⎣

0
0
̇𝜃(𝑡)

⎤
⎥
⎥
⎦

̇𝜃 = ̇𝜃(𝑡) = (𝑒 cos (𝜃) + 1)2
√
− 𝜇𝑝
𝑎3 (𝑒2−1)3

(2.36)

where the object’s osculating KEP elements are used to compute the rate of change
of the osculating true anomaly, and ̃ℒΩ ̃𝐿𝐼 is conveniently written in ̃ℒ frame com-
ponents.

The instantaneous angular acceleration vector of ̃ℒ with respect to ℐ is computed
performing the time derivative of equation (2.36), and it can be written as

⎧⎪⎪
⎨⎪⎪
⎩

̃ℒΩ̇ ̃𝐿𝐼 =
̃ℒΩ̇ ̃𝐿𝐼(𝑡) =

⎡
⎢
⎢
⎣

0
0
̈𝜃(𝑡)

⎤
⎥
⎥
⎦

̈𝜃 = ̈𝜃(𝑡) = 2 𝑒𝜇𝑝 sin(𝜃) (𝑒 cos(𝜃)+1)
3

𝑎3 (𝑒2−1)3

(2.37)

Considering frame 𝒩̃, it can be linked to ̃ℒ recalling that the former is defined by
the velocity vector angle in respect to the osculating local horizontal direction (i.e.,
osculating flight path angle, 𝛾 [𝑑𝑒𝑔]).

Using theKeplerian orbit theory [60], the osculatingflight path angle 𝛾 canbe defined
as

𝛾 = 𝛾(𝑡) = atan ( 𝑒 sin (𝜃 (𝑡))
𝑒 cos (𝜃 (𝑡)) + 1) (2.38)

Equation (2.38) is derived in time and after some manipulations, using equations
(2.37) and (2.36), the rate of change of the flight path angle can be expressed in
terms of osculating Keplerian parameters as

̇𝛾 = ̇𝛾(𝑡) = 𝑒 ̇𝜃 (𝑡) (𝑒 + cos (𝜃 (𝑡)))
𝑒2 + 2 cos (𝜃 (𝑡)) 𝑒 + 1 (2.39)

Equation (2.39) can further be derived in time to obtain
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̈𝛾 = ̈𝛾(𝑡) =[ ̈𝜃 (𝑡) 𝑒3 + 3 ̈𝜃 (𝑡) 𝑒2 cos (𝜃 (𝑡)) + sin (𝜃 (𝑡)) 𝑒2 ̇𝜃 (𝑡)2

+ 2 ̈𝜃 (𝑡) 𝑒 cos (𝜃 (𝑡))2 + ̈𝜃 (𝑡) 𝑒 + ̈𝜃 (𝑡) cos (𝜃 (𝑡))

− sin (𝜃 (𝑡)) ̇𝜃 (𝑡)2] 𝑒
(𝑒2 + 2 cos (𝜃 (𝑡)) 𝑒 + 1)2

(2.40)

Recalling that 𝒩̃ is obtained performing a clockwise rotation of ̃ℒ about its third
axis, by the 𝛾 angle, the instantaneous angular velocity and acceleration vectors of
𝒩̃ with respect to ℐ are defined as

𝒩̃Ω 𝑁̃𝐼 =
𝒩̃Ω 𝑁̃𝐼(𝑡) = [

0
0

̇𝜃(𝑡) − ̇𝛾(𝑡)
]

𝒩̃Ω̇ 𝑁̃𝐼 =
𝒩̃Ω̇ 𝑁̃𝐼(𝑡) = [

0
0

̈𝜃(𝑡) − ̈𝛾(𝑡)
]

(2.41)

2.7 Summary
This chapter presented all the mathematical tools that are used in chapter 2 to de-
velop the GMTmodel, to design the chaser that performs the GMT, to predict its per-
formance in terms of achieved deflection at MOID, to perform the model sensitivity
analysis, and to study how the target’s tumbling state is affecting the performance
of a chaser designed using the proposed approach.



Chapter 3

Gravitational-magnetic tug

This chapter presents the performed investigations, the dynamic GMT model de-
veloped, and a series of test cases. General assumptions valid throughout the entire
dissertation are stated in section 3.1. Section 3.2 discusses the analysis performed to
identify the conditions for which the gravitational and magnetic contributions can
efficiently cooperate, considering the objects’ relative distance and their dipoles’ ori-
entations, with the aim of increasing the LTA imparted on the target. In section 3.3,
the GMTmodel is developed, the optimal relative hovering position problem is stud-
ied, the achieved deflection at MOID is estimated, and the sensitivity analysis with
respect to a selected group of parameters is carried out. This is done considering a
GMT that operates using three different tuggingmodes, and for a special case that is
not affected by the target’s tumbling state. Section 3.4 presents the target-chaser re-
lative dynamic model that describes the translational and rotational motions of the
objects. This is used to evaluate the chaser’s controllability effort and the achieved
target deflection at MOID conditions, when the target is characterised by a generic
tumbling state, and it is exposed to the gravitational-magnetic interaction of a chaser
designed as proposed in the GMT model.

3.1 General assumptions
To answer the thesis objective presented in section 1.3 the discussion is contextu-
alized for a NEO (i.e., target) orbiting the Sun, in course of impact with the planet
Earth (i.e., IO). It is assumed that

1. The target has a spherical shape equal to the mean radius of the considered
object, a uniform constant density, a uniform global magnetisation state, a
constant volume and a simple tumblingmotion about one inertially fixed axis.
No magnetosphere, nor any other mechanisms that may alter the body mag-
netisation state are present.

37
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2. The chaser is a homogeneous spherical SC with known initial mass at inter-
ception epoch, equipped with a Superconductive Magnets Subsystem (SMS)
capable of generating a magnetic dipole moment in any direction of space, re-
gardless the chaser’s attitude. It is equipped with an AOCS composed by a set
of ion thrusters with known performance and fixed geometry. Furthermore,
the onboard PGS is assumed to have a known and fixed efficiency.

3. The mutual magnetic intraction between the chaser and the target can be ap-
proximated by the far-field equations (2.19).

4. The chaser performs the tugging action from interceptionupuntilMOIDepoch.

5. The target and IO are at their MOID true anomaly at MOID epoch.

6. The transfer from planet Earth to the target is not taken into account. For
instance, the chaser is considered as a payload of an interplanetary transfer
vehicle whose mission design and optimisation is out of scope for the disser-
tation.

7. It is assumed that the reference GT is achieved performing a non-inertial hov-
ering of the target, along its velocity vector and in such a way that its orbital
energy is reduced (i.e., hovering behind the target).

A tangential LTA is often considered the optimal approach to deflect an object with
high warning time [68], and it is here assumed as a reference case only, focusing on
the possible improvement that a magnetic interaction would introduce. The presen-
ted conceptsmay be applied to a generic optimal LTAdirection andmay be extended
to a space debris target, these are not covered in the dissertation. Furthermore, ad-
ditional assumptions and considerations are stated at the beginning of each section.

3.2 Static analysis
The primary goal of the static analysis is to compare the LTA obtained with the grav-
itational and magnetic interactions (i.e., actors), without considering the actual mo-
tion the objects, and identify the conditions forwhich the cooperation between them
is optimal. The object’s motion about the primary is later taken into account in sec-
tion 3.4. Sections 3.2.1, 3.2.2 estimate the order of magnitude of the acceleration felt
by the target, when both actors are considered. Section 3.2.3 compares the LTA of
both actors for a special relative orientation of the objects’ dipoles, identifies themin-
imum magnetic dipole that the chaser would need to generate in order to consider
the actors’ cooperation, and select a test target among the identified one presented
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in table 1.1. Section 3.2.4 studies how the relative orientation of the objects’ dipoles
is affecting the magnetic interaction, and proposes two approaches to maximize the
cooperation between the actors, when the target tumbling state is considered.

3.2.1 Low thrust action relative increment estimation
Figure 3.1 shows the isolated system composed by the target and the chaser inter-
acting with gravitational and magnetic forces.

Figure 3.1: Target-chaser isolated system

Recalling equations (2.29) and (2.19), the net acceleration experienced by the target
is obtained as the vectorial sum of the gravitational and magnetic interaction

𝑎𝑇,𝐺𝑀𝑇 =
𝐹𝐺𝑀𝑇
𝑚𝑇

=
𝐹 𝐶→𝑇,𝐺𝑇 + 𝐹 𝐶→𝑇,𝑀𝑇

𝑚𝑇
(3.1)

where the gravitational contribution is always aligned with the relative position vec-
tor, whereas themagnetic one can act in any direction of space, being highly depend-
ant upon the objects’ dipoles relative orientations and relative position.

Given that the reference GT is acting to induce an acceleration aligned with the ve-
locity vector of the target, the relative increment in induced tangential acceleration
introduced by the GMT is found using equations (2.24) and (2.19) in equation (3.1),
and projecting along the relative position vector.

This is proportional to
𝑎 𝑇,𝐺𝑀𝑇 ⋅ 𝑟 − 𝑎 𝑇,𝐺𝑇 ⋅ 𝑟

𝑎 𝑇,𝐺𝑇 ⋅ 𝑟
∝ 𝐾 (𝜇̂ 𝜖𝜇,𝑇 , 𝜇̂ 𝜖𝜇,𝐶)

𝜇𝜖𝜇,𝑇𝜇𝜖𝜇,𝐶
𝑚𝑇𝑚𝐶

1
𝑑2 (3.2)

where 𝐾 is a coefficient that describes the amount of magnetic acceleration that is
actually acting along the same direction as gravity and depends upon the objects’
magnetic dipoles orientations.
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Equation 3.2 shows that, for a given distance, the increment is proportional to the
specific magnetic moments of both target and chaser, and it is inversely propor-
tional to the square of the hovering distance. The target’s Specific Magnetic Mo-
ment (SMM) (i.e.,𝜇𝜖𝜇𝑇/𝑚𝑇) is a constant estimated throughpreviousmeasurements
and affected by uncertainties, whereas the chaser’s SMM (i.e., 𝜇𝜖𝜇𝐶/𝑚𝐶) can be con-
sidered as a design parameter, together with the hovering distance, and it is a time
varying quantity due to the fuel mass consumption required for the SC to operate.

3.2.2 Order of magnitude of the magnetic interaction

Figure 3.2: Specific magnetic dipole of the identified asteroids
as a function of their mass

Figure 3.2 shows the estimated maximum SMMs of the available set of NEOs identi-
fied in table 1.1. The typical order of magnitude is close to 10−2 [𝐴𝑚2/𝑘𝑔] but it can be
as low as 10−6 [𝐴𝑚2/𝑘𝑔]. Considering a chaser with a net mass of 1.5 [𝑡𝑜𝑛], equipped
with a magnetic torquer subsystem that can create a magnetic dipole with an order
of magnitude of 103 [𝐴𝑚2] [69], the order of magnitude of its specific magnetic dipole
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is 10−1 [𝐴𝑚2/𝑘𝑔]. Taking as a reference the target with minimum equivalent radius
(i.e., Braille, 800 [𝑚]), a unitary𝐾 coefficient, and a hovering distance of 500 [𝑚] above
the target’s surface, the resulting increment in acceleration is estimated using equa-
tion 3.2 to have an order of magnitude of 10−9. On the other hand, imposing the
same hovering distance and a relative increment of 50% in target’s acceleration, the
order of magnitude of the required chaser’s magnetic dipole would be 107 [𝐴𝑚2] (i.e.,
104 [𝐴𝑚2/𝑘𝑔]).

The generation of such large magnetic dipole could be possible using a system that
exploits a superconducting material, cooled below a critical temperature to reduce
the heat generation due to Joule effect [51]. This requires the development of new
technologies, or the adaptation of already existing ones, designed ad-hoc and tested
for space applications. The dissertation aims to drive such need, understanding the
conditions that would need to bemaintained if the magnetic interaction is exploited
in order to effectively improve a traditional GT, and estimating the chaser’s system
requirements (e.g., SMS efficiency, AOCS workload) to do so.

3.2.3 Gravitational-magnetic tug interactionas functionof the
hovering distance

The analysis aims to compare the LTA achieved on the target, when the gravitational
and magnetic contributions are considered, as function of the hovering distance 𝑑.
To proceed, it is assumed a simplified case where the objects dipoles and the relat-
ive position vector are co-aligned, pointing in the same direction. This represents
the optimal relative configuration that allows to maximize the magnetic interaction
force, for a given pair of dipoles, and it is found by inspection of equation (2.19).

Figure 3.3 shows a schematic representation of this configuration. It is worth to
mention that the target’s tumbling state is not included in the current analysis, and
it is later taken into consideration in section 3.2.4.

Referring to the target, the angular momentum conservation is trivially satisfied
being the magnetic torque null for the chosen configuration (see equation (2.17)),
whereas the linearmomentumconservation is reduced to the radial component only
and leads to

{
𝑎𝑇,𝐺𝑀𝑇 =

𝐹𝐺𝑀𝑇
𝑚𝑇

= 𝐺𝑚𝐶
𝑑2

+ 𝐾 𝜇𝜖𝜇𝑇
𝑚𝑇

𝜇𝜖𝜇𝐶
𝑑4

𝐾 ≜ 6
4
𝜇𝜖𝜇0
𝜋

(3.3)
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Figure 3.3: Target-chaser relative dipoles orientation for tug-
ging force sensitivity to hovering distance

where 𝐾 [−] is referred from now on as the relative orientation coefficient.

As discussed in section 2.5, the RNI is introducing a degradation of the total gen-
erated thrust achievable by the chaser PS. The minimum hovering distance 𝑑𝑅𝑁𝐼𝐿
defined by equation (2.25) is the limit for the current analysis, and it is dependant
upon only the target’s equivalent radius 𝑅𝑇 and the exhaust cone’s half angle 𝜙𝑝.

Equation 3.3 shows that the resulting GMT acceleration is asymptotic to the one of a
pureMagnetic Tug (MT) for small hovering distance, whereas it is asymptotic to the
pure GT for high ones. Figure 3.4 underlines such behaviour for the considered test
case presented in table 3.1 and points out the presence of a Break Even Point (BEP)
close to which, the contribution of MT has the same order of magnitude as the GT.
Operating close to the BEP location allows the LTA to be the result of a cooperation
between the gravitational and magnetic contributions, rather than the result of one
surmounting the other.

𝑅𝑇 800 𝑚 𝑚𝐶(𝑡𝑖) 1500 𝑘𝑔
𝜌𝑇 3900 𝑘𝑔 𝐼𝑠𝑝 3100 𝑠
𝜇𝜖𝜇𝑇/𝑚𝑇 0.0251 𝐴𝑚2/𝑘𝑔 𝜙𝑃 20 𝑑𝑒𝑔

𝜇𝜖𝜇𝐶/𝑚𝐶 105 𝐴𝑚2/𝑘𝑔

Table 3.1: Target and chaser reference data for the GMT in-
teraction as function of the hovering distance.
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Figure 3.4: Target’s accelerations due to GT, MT and GMT obtained using the reference data
of table 3.1. The target equivalent radius and the RNI limiting distance are shown as vertical
lines on the Left Hand Side (LHS) of the graph.

The BEP location is

𝑑𝐵𝐸𝑃 =√
𝐾
𝐺
𝜇𝜖𝜇𝐶𝜇𝜖𝜇𝑇
𝑚𝑇𝑚𝐶

(3.4)

and it is simply found looking for the hovering distance at which the GT and MT
interactions are the same.

Recalling the RNI requirements and equation 2.25, the BEP happens at a feasible
tugging distance if

𝑑𝐵𝐸𝑃 > 𝑑𝑅𝑁𝐼𝐿 →
√

𝐾
𝐺
𝜇𝜖𝜇𝑇𝜇𝜖𝜇𝐶
𝑚𝑇𝑚𝐶

> 𝑅𝑇
sin (𝜋

2
− 𝜙𝑝)

(3.5)
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which is an irrational inequality that can be rearranged to extract a condition for the
chaser’s minimum SMM as

𝜇𝜖𝜇𝐶
𝑚𝐶

> 𝑚𝑇
𝜇𝜖𝜇𝑇

𝐺
𝐾

[ 3
4𝜋

𝑚𝑇
𝜌𝑇
]
2/3

[sin (𝜋
2
− 𝜙𝑝)]

2 ≜
𝜇𝜖𝜇𝐶
𝑚𝐶

|𝐵𝐸𝑃@𝑅𝑁𝐼𝐿 (3.6)

where the target equivalent radius is written in terms of the target’s mass and dens-
ity, assuming spherical shape.

Figure 3.5: Different target’s accelerations ratios referred to theBEP condition, obtainedusing
the reference data of table 3.1.

Figure 3.5 presents the ratios of GT,MT andGMT accelerations over the correspond-
ing values achieved at 𝑑𝐵𝐸𝑃 . The break even point is visible and coincides with the
unit ratios condition. The hovering distance at which MT has changed by an order
of magnitude equal to 𝑛 with respect to the value at 𝑑𝐵𝐸𝑃 is
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𝑑𝑀𝑇𝐿 = (10−
𝑛
4 ) 𝑑𝐵𝐸𝑃 (3.7)

where 𝑛 > 0 is associated to an increment of the order, whereas 𝑛 < 0 to a decre-
ment.

The minimum chaser’s SMM that allows such point to be a feasible hovering dis-
tances is computed proceeding in the same way as inequality 3.5, obtaining

𝜇𝜖𝜇𝐶
𝑚𝐶

> (10
𝑛
4 )

𝜇𝜖𝜇𝐶
𝑚𝐶

|𝐵𝐸𝑃@𝑅𝑁𝐼𝐿 (3.8)

The condition 3.6 defines a lower limit for the SMM that a chaser would need to gen-
erate in order to being able to magnetically accelerate the target at least as the grav-
itational field does, from a hovering distance farther than 𝑑𝑅𝑁𝐼𝐿. The smaller the
relative hovering distance is, the closer is the required chaser’s dipole to the value
of equation (3.6), in order to achieve the BEP condition. The RTS satisfaction be-
comes the limiting factor, setting the closest maintainable hovering point according
to the chaser’s thrusting capabilities. Moreover, the limiting conditions described
in equations 3.6 and 3.8 strongly depend upon the target’s physical properties and
its tumbling state, through coefficient 𝐾.

Figure 3.6: Chaser’s SMM for RNI satisfaction at 𝑑𝐵𝐸𝑃 = 𝑑𝑅𝑁𝐼𝐿, computed for all the
identified targets summarized in 1.1.
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Figure 3.6 shows the minimum SMM the test chaser shall be able to generate for
each target identified in table 1.1, the configuration showed in figure 3.3. The target
with the smallest minimum SMM (i.e., Braille) is selected as one of test cases, used
throughout the dissertation.

3.2.4 Gravitational-magnetic tug interactionas functionof the
objects’ dipoles relative orientation

The analysis is based on equations 2.18 and aims to understand how the magnetic
interaction between the considered objects, placed at a fixed hovering distance and
characterised by constant dipole magnitudes, are affected by their dipoles relative
orientation.

𝜇𝜖𝜇𝑇 = 𝑐𝑜𝑛𝑠𝑡
𝜇𝜖𝜇𝐶 = 𝑐𝑜𝑛𝑠𝑡

𝑟 = 𝑐𝑜𝑛𝑠𝑡
(3.9)

Figure 3.7: Target centred NTH frame used in the relative attitude analysis and objects mag-
netic dipoles directions.

Considering the NTH reference frame centred at the target’s CM represented in fig-
ure 3.7, the unit vectors of the magnetic dipoles can be written in spherical coordin-
ates as
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𝜇̂ 𝜖𝜇,𝑇 = 𝜇̂ 𝜖𝜇,𝑇(𝐴𝑧𝑇 ,ℎ𝑇) = [
cos(ℎ𝑇) cos(𝐴𝑧𝑇)
cos(ℎ𝑇) sin(𝐴𝑧𝑇)

sin(ℎ𝑇)
] ≜ [

𝑎
𝑏
𝑐
]

𝜇̂ 𝜖𝜇,𝐶 = 𝜇̂ 𝜖𝜇,𝐶(𝐴𝑧𝐶,ℎ𝐶) = [
cos(ℎ𝐶) cos(𝐴𝑧𝐶)
cos(ℎ𝐶) sin(𝐴𝑧𝐶)

sin(ℎ𝐶)
] ≜ [

𝑒
𝑓
𝑔
]

(3.10)

where 𝐴𝑧𝑖 [𝑟𝑎𝑑] is the dipole’s azimuth of object 𝑖 = 𝑇,𝐶 with respect of the motion
normal unit vector (i.e., ̂𝑛), ℎ𝑖 [𝑟𝑎𝑑] is the dipole’s altitude of object 𝑖 = 𝑇,𝐶 meas-
ured from the orbital plane of the target, and ̄𝑎, ̄𝑏, ̄𝑐 and ̄𝑒, ̄𝑓, ̄𝑔 are the Cartesian
components of, respectively, the dipole of target and chaser in NTH frame.

Equation (2.19) is rewritten using (3.10) as

⎧
⎪
⎨
⎪
⎩

𝐹𝑇→𝐶,𝑀𝑇 = 𝐹𝑇→𝐶,𝑀𝑇( ̂𝑟,𝐴𝑧𝑇 ,ℎ𝑇 ,𝐴𝑧𝐶,ℎ𝐶) =

= 3𝜇𝜖𝜇0
4𝜋

𝜇𝜖𝜇,𝑇𝜇𝜖𝜇,𝐶
𝑟4

𝚽𝑇( ̂𝑟, 𝜇̂ 𝜖𝜇,𝑇(𝐴𝑧𝑇 ,ℎ𝑇))𝜇̂ 𝜖𝜇,𝐶(𝐴𝑧𝐶,ℎ𝐶)

𝐹𝐶→𝑇,𝑀𝑇 = −𝐹𝑇→𝐶,𝑀𝑇

(3.11)

which underlines the six Degrees Of Freedom (DOFS) of the resulting magnetic in-
teraction: four angles that describe the dipoles orientations in the chosen frame (i.e.,
{𝐴𝑧𝑖,ℎ𝑖}, 𝑖 = {𝑇,𝐶}), and two angles that describe the hovering direction relative to
the target (i.e., ̂𝑟).

Recalling that the GMT is performing the non-inertial hovering along the target’s
velocity vector from behind (i.e., ̂𝑟 ⋅ ̂𝑣𝑇 = −1), the DOFS are reduced to the dipoles’
angles only and the hovering position is constrained on the target’s orbital plane to
be

𝑟 = −𝑟 ̂𝑡; (3.12)
As previously stated, the GMT can contribute to the classical GT only if the newly in-
troduced magnetic interaction has a not null component along the relative position
vector which, in this special case, coincides with the target’s velocity vector. Using
the action reaction principle, this condition can be written for the magnetic force
felt by the chaser as

𝐹𝑇→𝐶,𝑀𝑇 ⋅ ̂𝑟 < 0 (3.13)
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and it is achievable by acting upon the only controllable quantity of the system: the
chaser’s magnetic dipole direction.

The analysis considers all the possible orientations of the target’s dipole and searches
for the chaser’s ones that generate amagnetic interaction force pointing towards the
target, thus satisfying condition (3.13). This is referred from now on as target point-
ing DCL.

Target pointing DCL

The chaser’s dipole orientation that leads to a magnetic interaction along a generic
imposed direction is obtained from equation (2.19), dropping the magnitudes and
inverting the relation as

𝜇̂ 𝜖𝜇,𝐶 =
𝚽−1( ̂𝑟, 𝜇̂ 𝜖𝜇,𝑇(𝐴𝑧𝑇 ,ℎ𝑇)) ̂𝑙
|𝚽−1( ̂𝑟, 𝜇̂ 𝜖𝜇,𝑇(𝐴𝑧𝑇 ,ℎ𝑇)) ̂𝑙|

, 𝜇̂ 𝜖𝜇,𝑇 ⋅ ̂𝑟 ≠ 0 (3.14)

where ̂𝑙 is the unit vector of the imposed direction.

Being the hovering position defined by equation (3.12), the target pointing DCL is
achieved if

̂𝑙 = ̂𝑡 ≡ − ̂𝑟 (3.15)
which can be used in equation (3.11), together with equation (3.14), to find the res-
ulting magnetic interaction acting on the chaser

⎧⎪
⎨⎪
⎩

𝐹𝑇→𝐶,𝑀𝑇 = 𝐹𝑇→𝐶,𝑀𝑇(𝐴𝑧𝑇 ,ℎ𝑇) = −3𝜇𝜖𝜇0
4𝜋

𝜇𝜖𝜇,𝑇𝜇𝜖𝜇,𝐶
𝑟4

1
|𝚽−1( ̂𝑟,𝐴𝑧𝑇 ,ℎ𝑇) ̂𝑟|

̂𝑟

|𝚽−1( ̂𝑟,𝐴𝑧𝑇 ,ℎ𝑇) ̂𝑟| = √(cos(Az𝑇 ) cos(ℎ𝑇 ))
2+(sin(ℎ𝑇 ))

2+(sin(Az𝑇 ) cos(ℎ𝑇 ))
2

(−cos(Az𝑇 )2 cos(ℎ𝑇 )
2+cos(ℎ𝑇 )

2+1)

(3.16)

where the original DOFS are reduced to the two angles associated to the target’s di-
pole orientation with respect of the NTH frame.

Note that equation (3.16) is always defined, being ̂𝑟 contained within the achievable
plane associated to the singularity condition for 𝚽 discussed in section 2.3. On the
other hand, equation (3.14) is valid only for a subset of the possible target orienta-
tions in respect to ̂𝑟. In case of 𝜇̂ 𝜖𝜇,𝑇 ⋅ ̂𝑟 = 0, it is still possible to obtain a pure radial
component by imposing the target’s dipole to be contained into the plane defined by
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̂𝑟 itself (i.e., 𝜇̂ 𝜖𝜇,𝐶 ⋅ ̂𝑟 = 0).

The latter condition is found through inspection of equation (2.18) and it is used to
construct the complete target pointing DCL as

{
𝜇̂ 𝜖𝜇,𝐶 = − 𝚽−1( ̂𝑟,𝜇̂ 𝜖𝜇,𝑇(𝐴𝑧𝑇 ,ℎ𝑇)) ̂𝑟

|𝚽−1( ̂𝑟,𝜇̂ 𝜖𝜇,𝑇(𝐴𝑧𝑇 ,ℎ𝑇)) ̂𝑟|
𝜇̂ 𝜖𝜇,𝑇 ⋅ ̂𝑟 ≠ 0

𝜇̂ 𝜖𝜇,𝐶 = −𝜇̂ 𝜖𝜇,𝑇 𝜇̂ 𝜖𝜇,𝑇 ⋅ ̂𝑟 = 0
(3.17)

Equation (3.16) shows that it is always possible to impose a magnetic force on the
target with a pure radial component aligned with the local gravitational contribu-
tion. This force is modulated by the target’s dipole evolution in the NTH frame (i.e.,
𝐴𝑧𝑡(𝑡) and ℎ𝑇(𝑡)) caused by the combined effects of an initial tumbling state of the
target and its orbital motion about the primary.

The same equation can be rewritten proceeding as in equation (3.3) as

{
𝐹𝑇→𝐶,𝑀𝑇 = −𝐾𝑟(𝐴𝑧𝑇 ,ℎ𝑇)

𝜇𝜖𝜇,𝑇𝜇𝜖𝜇,𝐶
𝑟4

̂𝑟

𝐾𝑟(𝐴𝑧𝑇 ,ℎ𝑇) ≜
3𝜇𝜖𝜇0

4𝜋|𝚽−1( ̂𝑟,𝐴𝑧𝑇 ,ℎ𝑇) ̂𝑟|

(3.18)

where 𝐾𝑟 [−] is the radial relative orientation coefficient.

Figure 3.8: Normalised radial relative orientation coefficient using the target point-
ing DCL function of the azimuth and elevation of the target’s dipole in the NTH
frame.
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A quick analysis of the 𝐾𝑟, presented in figure 3.8, shows that it is limited to

𝐾𝑟(𝐴𝑧𝑇 ,ℎ𝑇) ∈ [
3𝜇𝜖𝜇0
4𝜋 ,

6𝜇𝜖𝜇0
4𝜋 ] (3.19)

The closer the chaser’s dipole unit vector is to the hovering position unit vector (i.e.,
̂𝑟), the stronger is the obtained mutual magnetic interaction force between the ob-
jects. The strongest magnetic interaction is achieved when |𝜇̂ 𝜖𝜇,𝑇 ⋅ ̂𝑟| = 1, the weak-
est when 𝜇̂ 𝜖𝜇,𝑇 ⋅ ̂𝑟 = 0.

Figure 3.9 shows the magnetic interaction force and torque for the test case de-
scribed in table 3.1, when the target pointing DCL is applied at a distance of 𝑟 =
𝑑𝐵𝐸𝑃/2 [𝑚]. Given the target’s KEP and a generic tumbling state, its dipole draws a
curve in the {𝐴𝑧𝑇 ,ℎ𝑇} plane that evolves according to the linear and rotational mo-
mentum variation of the target itself. It is assumed that any relative orientation are
reachable with equal probability, this choice is enforced by the uncertainty affecting
the target tumbling state which is often present and challenging to be reduced until
medium-close range operations at the target begin.

Figure 3.9: Magnetic force along the relative position vector and magnitude of the
resulting magnetic torque that act on the chaser, using the target pointing DCL.

As a consequence, the chaser could be exposed to magnetic interaction torques that
can reach high values and last for the entire duration of the deflection (i.e., months if
not years). Thismay lead to the saturation of the devices used tomanage the angular
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momentum of the chaser (e.g., inertial wheels, controlled moment gyro), affecting
its controllability and thus increasing the risk of the entire mission. Considering
the test case, values up to 100 𝑁𝑚 can be reached in the worst relative orientation
possible.

Two solutions are identified to overcome the possible issues introduced by the target
pointing DCL:

• The dipole of the chaser is used for deflection purposes for a limited amount
of time and then exploited to desaturate the AOCS allowing for internal mo-
mentum management. Nevertheless, the tugging duty cycle (i.e., the ratio
between the time spent on deflection over the one spent on a complete desatur-
ation) shall be maintained high enough to allow an appreciable contribution
to the overall induce LTA.

• The DCL is changed in such a way that the magnetic interaction torque is ab-
sent. This is achieved imposing the target’s dipole to be aligned with the local
magnetic field generated by the target itself and it is referred from now on as
B-field DCL. Since equation 3.17 is not used, the resulting magnetic interac-
tion force is not necessarily aligned with the relative position vector and thus,
it may not cooperate with the gravitational interaction in the most efficient
way.

Although the first solution may be viable, it is not further investigated in the dis-
sertation. The second solution is considered instead, assumed to be a reasonable
trade-off between efficiency of the induced LTA and controllability of the system.

B-field DCL

The target’s magnetic field direction at the chaser location is computed using equa-
tion (2.19) as

̂𝐵𝑇 =
𝜷( ̂𝑟) 𝜇̂ 𝜖𝜇,𝑇(𝐴𝑧𝑇 ,ℎ𝑇)
|𝜷( ̂𝑟) 𝜇̂ 𝜖𝜇,𝑇(𝐴𝑧𝑇 ,ℎ𝑇)|

(3.20)

Assuming to align the chaser’s dipole to the field

𝜇̂ 𝜖𝜇,𝐶 = 𝜇𝜖𝜇,𝐶 ̂𝐵𝑇 (3.21)

themagnetic interaction torque acting on the chaser vanishes, whereas the resulting
magnetic force is found using equations (3.12) and (3.21) in (2.19), obtaining
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⎧⎪⎪
⎨
⎪⎪
⎩

𝐹𝑇→𝐶,𝑀𝑇(𝐴𝑧𝑇 ,ℎ𝑇) =
3𝜇𝜖𝜇0
4𝜋

𝜇𝜖𝜇,𝑇𝜇𝜖𝜇,𝐶
𝑟4

𝚽𝑇( ̂𝑟,𝐴𝑧𝑇 ,ℎ𝑇) 𝜷𝑇( ̂𝑟)𝜇̂ 𝜖𝜇,𝑇(𝐴𝑧𝑇 ,ℎ𝑇)
|𝜷𝑇( ̂𝑟) 𝜇̂ 𝜖𝜇,𝑇(𝐴𝑧𝑇 ,ℎ𝑇)|

𝚽𝑇( ̂𝑟,𝐴𝑧𝑇 ,ℎ𝑇) 𝜷𝑇( ̂𝑟)𝜇̂ 𝜖𝜇,𝑇(𝐴𝑧𝑇 ,ℎ𝑇)
|𝜷𝑇( ̂𝑟) 𝜇̂ 𝜖𝜇,𝑇(𝐴𝑧𝑇 ,ℎ𝑇)|

= 1

√|𝑎|2+4 |𝑏|2+|𝑐|2

⎡
⎢
⎢
⎣

− ̄𝑎 ̄𝑏
̄𝑎2 + 4 ̄𝑏2 + ̄𝑐2

− ̄𝑏 ̄𝑐

⎤
⎥
⎥
⎦

(3.22)

where the target’s dipole components in the NTH frame, defined in equation (3.10),
are used for compactness.

Equations (3.22) can also be rewritten dividing the contribution of the radial com-
ponent from the orthogonal one, obtaining

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝐹𝑇→𝐶,𝑀𝑇 = −𝐾𝑟(𝐴𝑧𝑇 ,ℎ𝑇)
𝜇𝜖𝜇,𝑇𝜇𝜖𝜇,𝐶

𝑟4
̂𝑟 + 𝐾𝜎(𝐴𝑧𝑇 ,ℎ𝑇)

𝜇𝜖𝜇,𝑇𝜇𝜖𝜇,𝐶
𝑟4

𝜎̂

𝐾𝑟(𝐴𝑧𝑇 ,ℎ𝑇) ≜ 3𝜇𝜖𝜇0
4𝜋

cos(Az𝑇 )2 cos(ℎ𝑇 )
2+4 sin(Az𝑇 )2 cos(ℎ𝑇 )

2+sin(ℎ𝑇 )
2

√(cos(Az𝑇 ) cos(ℎ𝑇 ))
2+(sin(ℎ𝑇 ))

2+4 (sin(Az𝑇 ) cos(ℎ𝑇 ))
2

𝐾𝜎(𝐴𝑧𝑇 ,ℎ𝑇) ≜ 3𝜇𝜖𝜇0
4𝜋

√(sin(Az𝑇 ) cos(ℎ𝑇 ) sin(ℎ𝑇 ))
2+ (cos(ℎ𝑇 ))

4 (sin(2Az𝑇))
2

4

√(cos(Az𝑇 ) cos(ℎ𝑇 ))
2+(sin(ℎ𝑇 ))

2+4 |sin(Az𝑇 ) cos(ℎ𝑇 )|
2

(3.23)

where ̂𝜎 is the generic direction orthogonal to the relative position vector, and 𝐾𝜎
[−] is the relative orientation coefficient associated to the orthogonal contributions.

Figure 3.10 shows the normalised 𝐾𝑟 and 𝐾𝜎 coefficients for every possible orient-
ation of the target’s dipole. As in the target pointing DCL, the B-field DCL creates
a radial contribution with maxima at {𝐴𝑧𝑇 ,ℎ𝑇} = {±90°, 0°} bounded within the
same interval of the former, defined by equation (3.19).

The out of radial contribution results to be limited to the interval

𝐾𝜎(𝐴𝑧𝑇 ,ℎ𝑇) ∈ [0,
3𝜇𝜖𝜇0
8𝜋 ] (3.24)

The analysis of 𝐾𝑟 obtained with the proposed DCL shows that moving away from
the maxima location, the coefficient decay is slowed down in the B-field aligned
DCL compared to the target pointing DCL. This is evident from the percentage in-
crement in 𝐾𝑟 shown in figure 3.11, where increments up to 6% are identified.
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Figure 3.10: Normalised radial and out of radial relative orientation coefficients function of
the target’s dipole azimuth and elevation in the NTH frame computed for the B-field aligned
DCL

Figure 3.11: 𝐾𝑟 coefficient percentage increment in respect the target pointingDCL,
function of the target’s dipole azimuth and elevation in the NTH frame.

Therefore, aGMTadopting the B-field alignedDCL reduces the chaser’s angularmo-
mentum management workload, being the magnetic torque induced on the chaser
absent. On the other hand, this advantage is translated into a non radially aligned
magnetic force contribution that shall be compensated by the AOCS of the system,
to allow the non-inertial hovering to happen at a fixed location.
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3.3 Gravitational-magnetic tug model
This section presents the GMT model developed in the dissertation. Section 3.3.1
discusses the chaser’s mass allocation and proposes a criterion for the GMT com-
parison with a classical GT. Section 3.3.2 presents three GMT tugging modes, and
derives the relative hovering distance that satisfy both RNI and RTS. Section 3.3.3
discusses the procedure used to retrieve the estimated deflection at MOID epoch
which is then used, in section 3.3.4, to compare the proposed GMT tugging modes.
Section 3.3.5 presents the sensitivity analysis with respect to a selected group of para-
meters.

The GMT model is based on the GT model presented in section 2.5 which is here
extended to consider the presence of a magnetic interaction. Even though all the
hovering positions farther than 𝑑𝑅𝑁𝐼𝐿 are possible, the ones that also satisfy the
RTS are a limited subset and depend on the actual capability of the chaser’s PS to
generate enough thrust in order to maintain the tugging for a given amount of time
𝑡𝑡𝑢𝑔. The chaser shall also be able to generate and maintain a certain magnetic di-
pole using the onboard SMS.

The analysis is performed for special configuration in which the tumbling state of
the target is not affecting the actual performance, and the resulting magnetic inter-
action has a pure radial component. Referring to section 3.2.4, this coincides with
a constant 𝐾𝑟 and null 𝐾𝜎, and it is associated to a target with magnetic dipole and
angular velocity vector orthogonal to the orbital plane. The tumbling state influence
on the performance is analysed in section 3.4.

From an operational point of view, the assumptions could be met performing an
initial target de-tumbling phase, followed by a re-orientation one, prior to the GMT.
The actual feasibilities of such phases are not covered in the dissertation and are left
for future work.

3.3.1 Chaser’s mass repartition
The chaser’s net mass is here distributed according to the specific task it is designed
for. Figure 3.12 shows the considered repartition scheme, identifying the mass as-
sociated to the onboard available fuel (i.e.,𝑚𝑓𝑢𝑒𝑙), the dry mass (i.e.,𝑚𝑑𝑟𝑦), and the
power mass (i.e.,𝑚𝑝𝑤) repartition between SMS and PS.

Recalling the GT static analysis, the chaser’s net mass can be written as
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⎧⎪
⎨
⎪
⎩

𝑚𝐶(𝑡) = 𝑚𝑑𝑟𝑦 +𝑚𝑓𝑢𝑒𝑙(𝑡) =

= 𝑚𝑠 +𝑚𝑝𝑤 +𝑚𝑓𝑢𝑒𝑙(𝑡) =

= (1 − 𝑃𝑂𝐷)𝑚𝑑𝑟𝑦 + 𝑃𝑂𝐷𝑚𝑑𝑟𝑦 +𝑚𝑓𝑢𝑒𝑙(𝑡)

(3.25)

where the dry mass is expanded to identify the fraction associated to the PGS (i.e.,
𝑚𝑝𝑤) using the 𝑃𝑂𝐷 ratio.

Figure 3.12: Chaser mass repartition scheme at interception epoch.

For the GMT case, the PGSmass is further partitioned into the power masses associ-
ated to the thrust generation𝑚𝑝𝑤,𝑡ℎ [𝑘𝑔], and into the one associate to the magnetic
dipole generation𝑚𝑝𝑤,𝜖𝜇 [𝑘𝑔].

The net mass is rewritten as

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑚𝐶(𝑡) = (1 − 𝑃𝑂𝐷)𝑚𝑑𝑟𝑦 + 𝑃𝑂𝐷𝑡ℎ𝑚𝑑𝑟𝑦 + 𝑃𝑂𝐷𝑝𝑤𝑚𝑑𝑟𝑦 +𝑚𝑓𝑢𝑒𝑙(𝑡)

𝛼𝑃𝑂𝐷 ≜ 𝑚𝑝𝑤,𝑡ℎ

𝑚𝑝𝑤

𝑃𝑂𝐷𝑝𝑤,𝑡ℎ ≜ 𝛼𝑃𝑂𝐷𝑃𝑂𝐷

𝑃𝑂𝐷𝑝𝑤,𝜖𝜇 ≜ (1 − 𝛼𝑃𝑂𝐷)𝑃𝑂𝐷

(3.26)
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where 𝛼𝑃𝑂𝐷 [−] is introduced to describe such refined partition and it is defined as
the ratio of PGS’s mass used for PS over PGS’s mass used for SMS.

It is important to understand that for a GT, the entire mass dedicated to the power
generation can be used for propulsive purposes, whereas, for a GMT, it shall be par-
titioned as in equation (3.26) to consider the presence of the new subsystem which
is necessary to operate. Recalling that the available thrust is assumed to be propor-
tional to the power mass (i.e., equation 2.12), the thrusting capability for a chaser
performing a GT is always higher than the one associated to the same chaser per-
forming a GMT.

To effectively compare the two approaches, the net mass at interception 𝑚𝐶0, the
power over dry mass ratio 𝑃𝑂𝐷, the PS performance 𝜏𝑝𝑤, and the PGS performance
𝜉𝑡ℎ are kept constant. This means that the overall gravitational contribution to the
GMT is not improved by the presence of any additional mass associated to SMS nor
by any improvement of the chaser ability to sustain a closer hovering point (i.e.,
higher tugging force).

3.3.2 Tugging modes
Three different approaches are presented and compared. They all aim to define the
chaser’smagnetic dipole to achieve a certain amplification of the tugging force, com-
pared to a pure GT. Table 3.2 presents an overview of the proposed Tugging Modes
(TMs).

Tugging Mode TM1 TM2 TM3
Magnetic fuel mass compensation ✓
Magnetic amplification ✓ ✓ ✓
Constant dipole magnitude ✓

Table 3.2: GMT tugging modes

(TM1) Themagnetic interaction is such that the mass loss due to fuel mass consump-
tion is completely compensated during the entire duration of the tug. This
leads to an interaction force of

𝐹𝐺𝑀𝑇(𝑡) = (1 + 𝜈) 𝐹𝐺𝑇(𝑡𝑖) = 𝑐𝑜𝑛𝑠𝑡 (3.27)
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where the 𝜈 [−] allows to set the ratio between the GMT and GT forces at
interception.

(TM2) The ratio betweenmagnetic and gravitational interactions is constant and equal
to 𝜈, for the entire duration of the tug. This leads to a magnetic interaction
force of

𝐹𝑀𝑇(𝑡) = 𝜈 𝐹𝐺𝑇(𝑡) (3.28)

(TM3) The ratio between magnetic and gravitational interactions is set to be equal to
𝜈 at the interception epoch. This leads to a magnetic interaction force of

𝐹𝑀𝑇(𝑡) = 𝜈 𝐹𝐺𝑇(𝑡𝑖) = 𝑐𝑜𝑛𝑠𝑡 (3.29)

The coefficient 𝜈 is referred, from now on, as magnetic amplification factor 𝜈 ∈ ℝ+.

Tugging mode 1

In this mode the magnetic interaction magnitude is changing in time to allow the
compensation to happen. This leads to a variable chaser’s magnetic dipole strength
of

𝜇𝜖𝜇𝐶(𝑡, 𝑑) =
1
𝐾
𝜈𝐹𝐺𝑇(𝑡𝑖, 𝑑) + Δ𝐹𝐺𝑇(𝑡, 𝑑)

𝜇𝜖𝜇,𝑇
𝑑4 =

= 𝐺
𝐾

𝑚𝑇(𝜈𝑚𝐶0 + (𝑚𝐶0 −𝑚𝐶(𝑡, 𝑑)) )
𝜇𝜖𝜇,𝑇

𝑑2
(3.30)

The chaser’s mass variation in time is computed integrating (2.14) from interception
to a generic tugging time and, being the tugging force constant, it results in

𝑚𝐶(𝑡, 𝑑) = 𝑚𝐶0 − (1 + 𝜈)𝐺 𝑚𝑇𝑚𝐶0
𝑑2 𝐼𝑠𝑝 𝑔0 𝜂𝑡ℎ(𝑑)

(𝑡 − 𝑡𝑖) (3.31)

Equation (3.31) shows that the highest magnetic dipole magnitude is proportional
to the fuel mass stored onboard the chaser.

The equilibrium hovering distance that satisfies both RTS and RNI requirements is
found solving equation (2.27) in which the Right Hand Side (RHS) is written with
the amplified tugging contribution and the relation (3.31) is used to compute the dry
mass of the chaser. The resulting implicit equation is
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(1 + 𝜈) 𝐺 𝑚𝑇 𝑚𝐶0

(𝑑𝐺𝑀𝑇)
2 − 𝑃𝑂𝐷𝑝𝑤

𝑚𝐶(𝑡𝑐𝑜, 𝑑𝐺𝑀𝑇)
2

𝜉𝑡ℎ
𝜏𝑝𝑤

𝜂𝑡ℎ (𝑑𝐺𝑀𝑇) = 0 (3.32)

where 𝑑𝐺𝑀𝑇 is the sustainable hovering distance.

Equation (3.32) is solved using the numerical method based on ”fsolve” algorithm
which is part of the numerical optimization toolbox of Matlab®. Figure 3.13 shows
the LHS of equation (3.32) for the reference data in table 3.1, parametrized over the
total tugging time, as a function of the hovering distance between 𝑑𝑅𝑁𝐼𝐿 (i.e., lower
boundary for hovering position admissibility) and 5𝑑𝑅𝑁𝐼𝐿.

Figure 3.13: TMI implicit function computed with the reference data for a unitary amplific-
ation factor, parametrized over the total tugging time.

For a total given tugging time, it is now possible to use 𝑑𝐺𝑀𝑇 to compute: the force
acting on the target using equation 3.27, the required magnetic dipole that allows
such LTA using equations (3.30) and the mass internal repartition using equations
(3.25) and (3.26).

The resulting acceleration acting on the target is

𝑎 𝐺𝑀𝑇 = −𝐹𝐺𝑀𝑇(𝑡𝑖, 𝑑𝐺𝑀𝑇)
𝑚𝑇

̂𝑟 (3.33)

which is associated to a total transferred impulse of
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𝐼𝑇𝑂𝑇 = ∫
𝑡𝑐𝑜

𝑡𝑖
𝑚𝑇 𝑎 𝐺𝑀𝑇𝑑𝑡 (3.34)

that can be particularised for TM1 as

{
𝐼𝑇𝑂𝑇,𝑟 = 𝐹𝐺𝑀𝑇(𝑡𝑖, 𝑑𝐺𝑀𝑇)(𝑡𝑐𝑜 − 𝑡𝑖) =

= (1 + 𝜈)𝐺𝑚𝑇𝑚𝐶0
𝑑2𝐺𝑀𝑇

𝑡𝑡𝑢𝑔 [𝑠]
(3.35)

Tugging mode 2

In this mode the magnetic interaction magnitude is changing in time such that it
is always 𝜈 times the gravitational contribution. The resulting chaser’s magnetic
dipole strength is changing in time and is equal to

𝜇𝜖𝜇𝐶(𝑡, 𝑑) =
𝜈
𝐾
𝐹𝐺𝑇(𝑡, 𝑑)
𝜇𝜖𝜇,𝑇

𝑑4 =

= 𝜈𝐺𝐾
𝑚𝑇𝑚𝐶(𝑡, 𝑑)

𝜇𝜖𝜇,𝑇
𝑑2

(3.36)

which is leading to a tugging force equal to

𝐹𝐺𝑀𝑇(𝑡, 𝑑) = (1 + 𝜈)𝐹𝐺𝑇(𝑡, 𝑑) (3.37)

Equation (3.36) shows that the highest magnetic dipole magnitude is achieved at
interception epoch.

The chaser’s mass time variation is obtained integrating equation (2.14) with (3.37),
obtaining

{
𝑚𝐶(𝑡, 𝑑) = 𝑚𝐶0 exp−(1+𝜈)𝐴(𝑑)(𝑡−𝑡𝑖)

𝐴(𝑑) ≜ 𝐺𝑚𝑇
𝑑2 𝐼𝑠𝑝 𝑔0 𝜂𝑡ℎ(𝑑)

(3.38)

Note that the resulting chaser’s mass has the same structure of equation 2.26, being
the GT tugging force constantly amplified by the amplification factor.

The equilibrium hovering distance is found solving equation (2.27), rewriting its
LHS using (3.37) and computing the chaser’s dry mass with equation (3.38). The
resulting implicit equation is
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(1 + 𝜈) 𝐺 𝑚𝑇 𝑚𝐶0

(𝑑𝐺𝑀𝑇)
2 = 𝑃𝑂𝐷𝑝𝑤

𝑚𝐶(𝑡𝑐𝑜, 𝑑𝐺𝑀𝑇)
2

𝜉𝑡ℎ
𝜏𝑝𝑤

𝜂𝑡ℎ (𝑑𝐺𝑀𝑇) (3.39)

Equation 3.39 is solved proceeding in the same way as TM1 and the same derived
quantities are computed.

Tugging mode 3

In thismode themagnetic interactionmagnitude is constant in time and it is fixed at
interception epoch to satisfy condition (3.29). The magnetic dipole that the chaser
has to generate is

𝜇𝜖𝜇𝐶(𝑡, 𝑑) =
𝜈
𝐾
𝐹𝐺𝑇(𝑡𝑖, 𝑑)
𝜇𝜖𝜇,𝑇

𝑑4 =

= 𝜈 𝐺𝐾
𝑚𝑇𝑚𝐶0
𝜇𝜖𝜇,𝑇

𝑑2
(3.40)

which is leading to a tugging force equal to

𝐹𝐺𝑀𝑇(𝑡, 𝑑) = (𝜈)𝐹𝐺𝑇(𝑡𝑖, 𝑑) + 𝐹𝐺𝑇(𝑡, 𝑑) (3.41)
The resulting LTA results to be the sum of a constant magnetic contribution and a
decreasing gravitational one. To find the chaser’s mass evolution in time, the IVP
(2.14) shall be written as

⎧
⎪
⎨
⎪
⎩

𝑚̇𝐶 + 𝐴(𝑑)𝑚𝐶 = 𝐵(𝑑)

𝐴(𝑑) = 𝐺𝑚𝑇
𝑑2 𝐼𝑠𝑝 𝑔0 𝜂𝑡ℎ(𝑑)

𝐵(𝑑) ≜ −(𝜈) 𝐺𝑚𝑇𝑚𝐶0
𝑑2 𝐼𝑠𝑝 𝑔0 𝜂𝑡ℎ(𝑑)

(3.42)

Equation 3.42 is then integrated, leading to

𝑚𝐶 = 𝑚𝐶(𝑡) = 𝑚𝐶0 exp−𝐴(𝑑)(𝑡−𝑡𝑖)−
𝐵(𝑑)
𝐴(𝑑) [exp

−𝐴(𝑑)(𝑡−𝑡𝑖)−1] =

= 𝑚𝐶0 [(1 + 𝜈) exp−𝐴(𝑑)(𝑡−𝑡𝑖)−𝜈)]
(3.43)

The equilibrium hovering distance is found solving equation (2.27), rewriting its
LHS with (3.41) and using (3.43) to express the chaser’s dry mass. The resulting
implicit equation is
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(1 + 𝜈) 𝐺 𝑚𝑇 𝑚𝐶0

(𝑑𝐺𝑀𝑇)
2 = 𝑃𝑂𝐷𝑝𝑤

𝑚𝐶(𝑡𝑐𝑜, 𝑑𝐺𝑀𝑇)
2

𝜉𝑡ℎ
𝜏𝑝𝑤

𝜂𝑡ℎ (𝑑𝐺𝑀𝑇) (3.44)

Equation (3.44) is solved proceeding in the same way as TM1 and the same derived
quantities are computed.

3.3.3 Estimated deflection at minimum orbit intersection dis-
tance

The estimation of the deviation is done creating a virtual MOID event in which the
target and the IO are at their MOID true anomalies at theMOID epoch. For this pre-
liminary analysis, the KEP at MOID of these objects is computed using geometric
considerations; the procedure is described in appendix B.

Given the target KEP at MOID, the target state that allows it to be tugged from in-
terception epoch until the MOID epoch itself is

{
𝐾𝐸𝑃𝑇(𝑡𝑖) = [𝑎, 𝑒, 𝑖,Ω,𝜔, 𝜃(𝑡𝑖)]𝑇

𝑀𝑇(𝑡𝑖) = 𝑀𝑇(𝑡𝑚𝑜𝑖𝑑) −
2𝜋
𝑇𝑇
𝑡𝑡𝑢𝑔

(3.45)

where the𝑀𝑇 is the mean anomaly of the nominal target and the map between true
and mean anomalies is given by relation (2.10).

The target’s state variation due to a pure tangential LTA is then computed integrating
Gauss’ equations with the acceleration induced by either GT (i.e., equation (2.29))
or by GMT (i.e., equations (3.27),(3.37),(3.41)). The integration is performed using
ODE113 provided byMatlab®using the tolerances absolute tolerance of 1𝑒−16. The
deviation from nominal target position atMOID is computed using equations (2.21),
for all the proposed TM.
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3.3.4 Tugging modes comparison
In order to compare the presented GMT tugging modes with the traditional GT, two
test targets are considered. Braille, one of the possible identified candidates with
a global magnetisation state that has the highest SMM and the lowest minimum
chaser’s SMM required for RNI, and a virtual asteroid with same physical properties
of Apophis [56] for which an SMM equal to Braille is used.

A summary of the physical properties of the selected targets is presented in table
3.3, while the orbital elements and related derived quantities are summarized in
table 3.4. The analysis covers a tugging period from one week up to 15𝑇𝑇 with a
discretization step of 1week. The upper limit is selected considering that the higher
it is, the greater is the required propellant mass that allows the chaser to sustain the
tug. The adopted value is for comparison purposes only and does not represent any
particular condition.

Test target I: 𝐴𝑝𝑜𝑝ℎ𝑖𝑠 Test target II: 𝐵𝑟𝑎𝑖𝑙𝑙𝑒
𝑅𝑇1 185 𝑚 𝑅𝑇2 800 𝑚
𝜌𝑇1 2300 𝑘𝑔/𝑚3 𝜌𝑇2 3900 𝑘𝑔/𝑚3

𝑚𝑇1 6.1 ⋅ 1010 𝑘𝑔 𝑚𝑇2 8.3642 ⋅ 1012 𝑘𝑔
𝜇𝜖𝜇,𝑇1/𝑚𝑇1 0.0251 𝐴𝑚2/𝑘𝑔 𝜇𝜖𝜇,𝑇2/𝑚𝑇2 0.0251 𝐴𝑚2/𝑘𝑔
𝜇𝜖𝜇,𝑇1 1.5311 ⋅ 109 𝐴𝑚2 𝜇𝜖𝜇,𝑇2 2.0994 ⋅ 1011 𝐴𝑚2

Table 3.3: Selected test targets.

Target 𝑎 [𝐴𝑈] 𝑒 [−] 𝑖 [𝑑𝑒𝑔] Ω [𝑑𝑒𝑔] 𝜔 [𝑑𝑒𝑔] 𝜃𝑀𝑂𝐼𝐷 [𝑑𝑒𝑔] 𝑇 [𝑦]
𝐴𝑝𝑜𝑝ℎ𝑖𝑠 0.9223 0.1911 3.33 204.46 126.36 101.16 0.8857
𝐵𝑟𝑎𝑖𝑙𝑙𝑒 2.3416 0.4332 28.99 241.95 356.19 138.65 3.5832

Table 3.4: Keplerian elements of the selected test targets and derived quantities

All the GMTmodes are compared with the GT under the assumptions of fixed inter-
ception mass, fixed chaser PS geometry and performance, fixed PGS performance
and fixed 𝑃𝑂𝐷 ratio. Table 3.5 reports a summary of the selected test chaser.
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𝑚𝐶0 1500 𝑘𝑔 𝐼𝑠𝑝 3100 𝑠 𝛼𝑃𝑂𝐷 0.5
𝜉𝑡ℎ 3.4 ⋅ 10−5 𝑁/𝑊 𝜏𝑝𝑤 0.025 𝑘𝑔/𝑊 𝜈 1
𝛽𝑝 20 𝑑𝑒𝑔 𝑃𝑂𝐷 0.5

Table 3.5: Selected test chaser physical properties and efficiencies.

Sustainable hovering distance

The hovering distance that satisfies RNI and RTS is found solving equations 3.32,
3.39, 3.44 for the GMT and equation (2.28) for the GT.

Figure 3.14: Hovering distances as a function of the total tugging time for target I
(i.e., 𝑅𝑇 = 185𝑚).

Figure 3.14 shows the sustainable distances for each approach applied to test target
I. As expected from the analysis of the chaser’smass evolution in time (e.g., equation
(3.31)), the higher the total tugging time is, the lower is the resulting dry mass that
allows to store the proper amount of fuel for the tug to take place. As a consequence,
the chaser’s thrusting capability is decreasing as the tugging time increases and thus,
the need of a farther hovering distance.
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Any of the proposed GMT TMs allow the LTA to be applied at a farther distance
with respect of the one associated to a traditional GT. The farther the distance is,
the lower is the cant angle 𝛽𝑝 of the adapted nozzle configuration, and the lower is
the cosine losses introduced by equation (2.24). This results into a more efficient
usage of the PS.

Figure 3.15 shows the obtained relative percentage increment in hovering distance
for test target I, referred to the GT. TM1 leads to the highest relative increment of the
hovering distance, for a constant total tugging time, whereas TM2 to the smallest.

Figure 3.15: GMT hovering distances percentage increase with respect of the GT
one, as a function of the total tugging time.

The results of the test case II are similar to the one presented here and are shown in
Appendix B.

Tugging forces at interception and cut-off epochs

Given the hovering position, the force profile acting on the target is found using
equations (3.27), (3.37),(3.41) for the GMT, and equation (2.22) for the GT. Figure
3.16 shows the tugging force acting on target I evaluated at interception epoch (i.e.,
initial force) and at MOID epoch (i.e., final force), for all the proposed TMs.
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The same figure also shows the tugging force obtained with a traditional GT (i.e.,
black lines). The higher the total tugging time is, the smaller is the tugging force
at interception for both GMT and GT. For low total tugging times, the GMT force
starts higher than the one achieved by the same chaser performing a GT, whereas,
for longer total tugging times the situation is inverted. However, within the propaga-
tion interval, the tugging force at MOID is always higher than the one achieved by
the GT.

The tugging force’s excursion, from interception to MOID epoch, is absent for TM1
(i.e., constant tugging force), it is smaller in TM3with respect to TM2, and it is always
higher for the classical GT, within the propagation interval. Examples of the tugging
force profiles, for all TMs, are proposed in appendix B.

Figure 3.16: Tugging force acting on target I at interception epoch, and at MOID one, as a
function of the total tugging time for all the proposed GMT tugging modes and the GT.

Considering the results obtained on target II, presented in figure 3.17, the situation
is drastically altered. The gravitational interaction that shall be compensated by the
PS is greater, being𝑚𝑇1 >> 𝑚𝑇2, and the bigger equivalent radius of target II shifts
the maintainable hovering position farther away from the target itself.
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The GMT force at interception epoch is always lower than the one of a traditional
GT. However, the force excursion is still smaller for the GMT, leading to a higher
interaction force at interception.

Figure 3.17: Tugging force acting on target II at interception epoch, and at MOID, one as a
function of the total tugging time for all the proposed GMT tugging modes and the GT.

Total impulse imparted to the target

The total impulse imparted on the test targets is found with equation (3.34), applied
to the proposed GMT tuggingmode and to the GT. The results for target I, presented
in figure 3.18, show that the total impulse achieved with any GMT tugging mode is
always higher than the one obtained by a classical GT. The situation is again differ-
ent for target II.

The selectedGMT tuggingmode starts to affect the results, and can lead to a situation
(i.e., TM2) in which the total impulse transferred to the target is mostly lower than
the one of a classical GT. This is visible in figure 3.19, and it is associated to a final
GMT interaction force (i.e., at MOID epoch) that becomes either lower, or closer,
with respect to the one achieved by the GT, at the same epoch.
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Figure 3.18: Total impulse imparted on the test target I with all GMT tugging modes and the
GT.

Figure 3.19: Total impulse imparted on the test target II with all GMT tuggingmodes and the
GT.
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Deflection at MOID

The achieved deflection for target I and II adoptiong GMT and GT are shown, re-
spectively, in figures 3.20 and 3.21. The deflection of target I at any given total tug-
ging time increases in all the GMTmodes. Conversely, the results for target II show
an opposite situation in which the GT is always performing better than any of the
GMT modes, for same total tugging times.

The relative percentage increment in deflection with respect to the GT is shown in
figures 3.22 and 3.23, and it is computed as

Δ(𝑑𝑟) = 100𝑑𝑟𝐺𝑀𝑇 − 𝑑𝑟𝐺𝑇
𝑑𝑟𝐺𝑇

(3.46)

For a given total tugging time, the advantage of using any of the GMTmodes is evid-
ent for target I, whereas is absent in target II. In both cases, the deflection relative
increment reaches a maxima and drops. Such behaviour is not observed in TM2 ap-
plied to target II where, after a certain total tugging time, it is more convenient than
all the other GMT tugging modes.

Figure 3.20: Target I deflection at nominal MOID epoch achieved using the proposed GMT
tugging modes and the traditional GT as a function of the total tugging time.
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Figure 3.21: Target II deflection at nominal MOID epoch achieved using the proposed GMT
tugging modes and the traditional GT, as a function of the total tugging time.

Figure 3.22: Target I deflection percentage increment using GMT with respect GT evaluated
at nominal MOID epoch.
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Figure 3.23: Target II deflection percentage increment using GMT with respect GT evaluated
at nominal MOID epoch.

The relative percentage increment peak is connected to an interception close to the
nominal target pericenter, whereas the oscillations are connected to an interception
that is moving from the pericenter to the apocenter of the nominal target. This is
also explored in the sensitivity analysis, section 3.3.5.

Chaser dry mass fraction

The dry mass fraction of the chaser is shown in figures 3.24 and 3.25. For small total
tugging times, all the proposed GMT modes result into dry mass fractions that are
higher than the ones of a traditional GT. The longer the total tugging time is, the
lower is the dry mass fraction that allows the chaser to store the proper amount of
fuel to sustain the tug (i.e., Π𝑝 = 1 − Π𝑑𝑟𝑦 = 1 − 𝑚𝑑𝑟𝑦/𝑚𝐶0). This eventually leads
to a situation in which the dry mass of GT becomes higher than the one required
for GMT. Comparing the proposed GMT tugging modes, TM1 results to be the most
fuel demanding approach, whereas TM2 the least fuel demanding one.

The aforementioned considerations are valid for both selected targets. Therefore,
for a limited total tugging time interval, a chaser adopting any of the proposed GMT
tugging modes can use the same amount of fuel (i.e., same dry mass fraction) to
sustain a longer tug.
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Figure 3.24: Chaser dry mass fraction, for test target I tug, as a function of the total tugging
time for all the GMT tugging modes and for GT.

Figure 3.25: Chaser dry mass fraction, for test target II tug, as a function of the total tugging
time for all the GMT tugging modes and for GT.
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Figure 3.26: Deflection of target I as a function of the chaser’s propellant mass fraction. The
dots are happening at a total tugging time multiple of 𝑇𝑇/2.

Figure 3.27: Deflection of target II as a function of the chaser’s propellant mass fraction. The
dots are happening at a total tugging time multiple of 𝑇𝑇/2.
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This is more evident looking at the achieved deflection as a function of the chaser’s
propellant mass fraction, shown in figures 3.26 and 3.27. Note that, in these graphs
the information about the total tugging time is lost and it reintroduced using dots
collocated at a propellant mass fraction associated to a multiple of 𝑡𝑡𝑢𝑔 = 0.5𝑇𝑇 . The
complete temporal link shall be retrieved using figures 3.24 and 3.25.

The deflection enhancements, using any of theGMT tuggingmodes, are comparable
for small propellant mass fractions (i.e., for small total tugging times), but start to
be dependant upon the GMT tugging mode for higher ones. In both test cases TM2
leads to the best deflection for a given fuel fraction, whereas TM1 leads to the worst
result.

Chaser’s magnetic dipole

The chaser’s magnetic dipole magnitude that allows the GMT to take place, for tar-
get I and for any tugging modes, is shown in figure 3.28.

It is worth to recall that the magnetic dipole magnitude is assumed a priori, at the
beginning of the analysis, by choosing a GMT tugging mode. The SMS shall be able
to generate such dipole with the available powermass and shall be integratedwithin
the available dry mass of the chaser, given the results of the static analysis.

Ameasure of the SMS efficiency is given by the SMMweighted over the actual power
mass dedicated to its generation

𝜇𝜖𝜇𝑇
𝑚𝑝𝑤,𝜖𝜇

≡
𝜇𝜖𝜇𝑇

(1 − 𝛼𝑃𝑂𝐷)𝑃𝑂𝐷𝑚𝑑𝑟𝑦
(3.47)

and it is shown in figure 3.29.

The higher the total tugging time is, the higher is the required SMS efficiency since
it is connected to a decreasing dry mass and to an increasing magnetic dipole mag-
nitude tomaintain the chosen TM. The SMS efficiency of all theGMT tuggingmodes
is similar when small total tugging times are considered, but it starts to be depend-
ant upon the chosen TM as the total tugging time increases. Comparing all TMs,
TM1 requires the highest SMS efficiency to operate, which is set at MOID epoch
(i.e., when the most demanding mass compensation is required). Conversely, the
SMS efficiency for both TM2 and TM3 is set at interception epoch, and is minimum
for TM2.



Gravitational-magnetic tug 74

Figure 3.28: Initial and final chaser’s magnetic dipole magnitudes for all the proposed GMT
tugging modes on target I.

Figure 3.29: Initial and final chaser’s SMS efficiency for all the proposedGMT tuggingmodes
on target I.
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As of target II, the results are similar and have an order ofmagnitude of themagnetic
dipole that reaches values up to 108 [𝐴𝑚2].

3.3.5 Sensitivity Analysis
The sensitivity analysis aims to understand how the chaser and target properties are
affecting the achieved deflection, the hovering distance, and how the SMS perform-
ance is impacted when the GMT is applied to the test cases presented in tables 3.5,
3.3 and 3.4. These are referred to as nominal values in the following discussion. The
results are generated using the same procedure followed in sections 2.5 and 3.3, us-
ing the third tugging mode only (i.e., TM3). This choice is made in order to obtain
more readable results for the SMS efficiency. The other TMs lead to similar results
and are here omitted.

Sensitivity to the chaser performance parameters

Recalling equation (2.12), the sensitivity to the chaser performance is implemented
considering a variable 𝜉𝑡ℎ/𝜏𝑝𝑤 ratio and a variable power mass repartition between
the thrust and dipole generations (i.e., 𝛼𝑃𝑂𝐷). A variation of ±90% with respect to
the nominal values and a total tugging time of 1.5𝑇𝑇 are considered.

Figure 3.30: Relative percentage increment in deflection as a function of the powermass repartition
and the chaser thrusting performance for target I. The dashed red line is the zero-change result.

Figure 3.30 shows the relative percentage increment in deflection atMOID, achieved
using the GMT on target I. The improvement is increasing as the 𝜉𝑡ℎ/𝜏𝑝𝑤 ratio in-
creases, meaning that either the PS is capable to generate a higher amount of thrust
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per power dedicated to the system or, the PGS requires less mass to generate the re-
quired amount of overall power. The mass repartition between the PS and SMS has
a positive effect in the achieved deflection when it increases, meaning that most of
the power is redirected to propulsive purposes instead of dipole generation.

On the other hand, a high value of 𝛼𝑃𝑂𝐷 means that the SMS needs to generate a
given magnetic dipole using less power mass available to the system and thus, its
efficiency in doing somay increase. This is visible in figures 3.31 and 3.32 where the
required dipole magnitude, the mass dedicated to SMS and, the specific magnetic
dipole associated to the SMS subsystem are shown.

Figure 3.31: Chaser magnetic dipole (on the left) and its power mass dedicated to the dipole gen-
eration (on the right) as function of the power mass repartition and the thrusting performance for
target I.

The chaser dry mass fraction is also affected by the variation of these parameters,
leading to values that may not be achievable due to structural limitations (e.g., the
chaser cannot be only fuel). Figure 3.31 shows that increasing the overall perform-
ance of the system, the dry mass reduction is amplified when the power repartition
is in PS favour.

In addition, the overall performance enhancement allows the operations to happen
at a closer relative distance in respect to the target, being the maximum achievable
thrust higher for a fixed power mass dedicated to PS. Figure 3.34 shows that, the
higher the overall performance is, the closer is the GMT hovering point to the GT
one. Lowering themass dedicated to the PS for a fixed performance restores a farther
hovering position. Considering the target II results presented in figure 3.33, it is
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possible to see how an improvement of the overall system performance can lead to
positive deflection increment, at the considered total tugging time.

Figure 3.32: SMS efficiency as function of the power mass repartition (i.e., 𝛼𝑃𝑂𝐷) and the chaser
thrusting performance for target I.

Note that such increment is negative in the nominal case. For a massive and large
target, this is the only way to improve the deflection, and it may not be achievable
given the currently available performances (i.e., nominal ones) and structural limit-
ations related to the chaser.

Figure 3.33: Relative deflection increment as a function of the power mass repartition and the
chaser thrusting performance for target II
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On the other hand, this is translated into an higher cost in therms of SMS efficiency
that is increased by two order of magnitudes in respect target I results.

Figure 3.34: Drymass fraction (i.e., left graph) and relative hovering distance increment (i.e.,
right graph) as function of the power mass repartition and the chaser thrusting performance
for target I.

Deflection sensitivity to the magnetic amplification factor

The deflection sensitivity to the amplification factor is presented in figure 3.35 for
only target II and focusing on the region in which the relative percentage increment
obtained with the nominal tug is the highest (i.e., close to 𝑡𝑡𝑢𝑔 = 1.6𝑇𝑇). Increasing
the magnetic amplification factor allows to achieve a positive relative increment re-
gion, obtaining a better performance of the GMT with respect to the GT. The cost
in terms of SMS performance is visible in figure 3.36 and indicates that, for a given
fixed performance, lower is the tugging time and higher is the maximum amplifica-
tion factor that can be adopted. At the same time, the hovering distance is increasing
as the magnetic amplification factor increases.

It is important to note that, such increment in deflection performance is achieved im-
posing an initial magnetic interaction which is up to ten times higher than the local
gravitational contribution. This does not actually lead to a cooperation between
gravitational and magnetic forces, but rather to the latter predominance.
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Figure 3.35: Relative percentage deflection increment as a function of the magnetic amplific-
ation factor and the total tugging time.

Figure 3.36: SMSperformance andhovering distance relative percentage increment as a func-
tion of the magnetic amplification factor and the total tugging time.
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Deflection sensitivity to the target semi-major axis and eccentricity

The deflection sensitivity to the target semi-major axis is performed assuming a vari-
ation of 0.1% of the nominal value, whereas the sensitivity to target eccentricity is
considering eccentricities from 0.1 to 0.8. Figure 3.37 shows that the best relative
increments in performance are located at a total tugging time close to a multiple of
the orbital time of MOID. Meaning that, since the tug is assumed to happen from
interception until MOID epoch, the increment is maximized when the GMT starts
close to the nominal target’s pericenter.

Figure 3.37: Relative deflection increment as a function of the target eccentricity and the
total tugging time.

Figure 3.38: Relative deflection increment as a function of the target semimajor axis and
the total tugging time.
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Figures 3.38 also shows that, for different target orbital period (i.e., different MOID
orbital times) the enhancements resulting from the adoption of the GMT are max-
imized if the tug stars at the first or second perigee passage, prior to the time of
MOID.

Deflection sensitivity to the target radius

The deflection sensitivity to the target’s equivalent radius is presented in figure 3.39
for the nominal target I. The results are computed assuming to change the radius at
constant overall mass (i.e., target density changes).

The results show that, fixing the targetmass, the GMTperforms better with large tar-
get’s equivalent radius and long total tugging time. The larger the equivalent radius
is, the farther is the maintainable hovering position with respect to the target. The
results also show that, the GMT is not performing well when the target’s equivalent
radius is lower than a threshold (i.e. dashed red line).

Figure 3.39: Relative deflection increment as a function of the target radius and total tugging
time, assuming a constant target mass.

Letting the mass to change with the radius (i.e., retaining the nominal density), a
more intuitive result is obtained and shown in figure 3.40. The smaller the radius is,
the smaller is the target’s mass, and the higher is the GMT performance. Decreasing
the equivalent radius also shifts the GMThovering distance closer to the one the GT.

Figure 3.41 presents the SMS efficiency for both analyses. For a fixed SMS efficiency,
the smaller the equivalent radius is, the higher is the maximum total tugging time
that the chaser can maintain.
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Figure 3.40: Relative percentage increments in deflection at MOID (i.e., left graph) and hov-
ering position, as a function of the target radius and total tugging time, assuming a constant
target density.

Figure 3.41: SMS efficiency as a function of the target radius and total tugging time, assuming
either constant target density or constant target mass.
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Deflection Sensitivity to the chaser mass at interception epoch

Figure 3.42 shows the achieved deflection and the chaser’s dry mass using GMT
and GT, for increasing chaser’s mass at interception epoch. The analysis is done
considering𝑚𝐶0 ∈ [1500, 10000] 𝑘𝑔.

Figure 3.42: Achieved deflection (i.e., left graph) and chaser’s dry mass (i.e., right graph) as
a function of the total tugging time and chaser’s mass at interception

The higher the chaser’s mass at interception is, the higher is the chaser’s dry mass.
Being the maximum thrust of the chaser proportional to the dry mass, the chaser
can maintain the hover at the same position as the nominal case. This leads to a
greater LTA on the target, due to the higher chaser’smass, and to an higher achieved
deflection at MOID epoch. However, the relative deflection increment of the GMT
with respect to the GT is not affected, and remains the same as the nominal case (i.e.,
3.22). Moreover, the higher the chaser’s mass is, the higher is the required chaser’s
dipole that allows to operate with the selected TM (i.e., TM3 in this case). The SMS
efficiency results to be the same as nominal case (i.e., 3.28).

Deflection sensitivity to the cut-off time

Themodel presented in section 3.3 assumes a thrusting arc that starts at interception
epoch, and ends at MOID epoch. Referring to the nominal case and considering a
given total tugging time 𝑡𝑡𝑢𝑔, the maintainable hovering position 𝑑ℎ𝑜𝑣𝑒𝑟 with respect
to the target is known. This means that, any thrusting arc with the same total tug-
ging time 𝑡𝑡𝑢𝑔 is maintainable if the relative hovering distance is kept at 𝑑ℎ𝑜𝑣𝑒𝑟. This
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also means that the SMS efficiency is common for thrusting arcs with equal 𝑡𝑡𝑢𝑔.

Figure 3.43: Relative deflection increment as a function of the interception epoch and cut-off
epoch (epochs prior to the MOID condition)

Figure 3.43 shows the relative deflection increment at MOID of GMT with respect
to GT, as a function of the interception epoch and the cut-off epoch prior to the
MOID condition. The results are obtained following the same procedure described
in section 3.3, introducing the cut-off epoch 𝑡𝑐𝑜 such that the total tugging time is
𝑡𝑡𝑢𝑔 = 𝑡𝑖 − 𝑡𝑐𝑜 with 𝑡𝑐𝑜 < 𝑡𝑖. The deflection at MOID is computed using (2.20) and
(2.21), considering the reduced thrusting arc.

Referring to theMOID epoch, the farther away in time theGMToperates, the greater
is the advantage in using it with respect to theGT. Themaximum relative percentage
increment is associated to short thrusting arcs close to the interception epoch 𝑡𝑖, with
a 𝑡𝑡𝑢𝑔 comparable with the one associated to the maximum performance identified
in figure 3.22.
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3.4 Relative target-chaser dynamics
The results obtained in section 3.3 are referred to a GMT performing a hover at a
fixed point aligned with the target velocity vector, without considering any other
forces contribution than the gravitational-magnetic one between the objects. The
chaser is designed assuming the worst orientation coefficient identified in sections
3.2, thus imposing to the SMS the generation of the most demanding magnet dipole
to allow the tug to be maintainable for the total tugging time.

The relative dynamicmodel aims to understand the impact of a non-optimal relative
configuration of the magnetic dipoles from a deflection point of view, when the pro-
posed GMT is adopted to hover close to the target. The actual motion of the objects
about the primary is considered and an initial target’s tumbling state is assumed.
The target deflection performance as well as the chaser’s AOCS requirements are
then derived and discussed for the test target I (i.e., Apophis) reported in table 3.4
and 3.3. The analysis is done directly propagating in time the dynamics using a
model implement in Simulink® (figure 3.44).

Figure 3.44: View of the model developed in Simulink®
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The assumptions made in section 3.1 are here extended with

1. The target and the chaser are the only objects orbiting the primary, which is
considered as a central body.

2. The chaser is able to perfectly control the relative position with respect to the
target.

3. The chaser is able to retrieve the target’s dipole azimuth and elevation in the
target’s NTH frame.

4. The chaser’s AOCS can generate thrusts along the axes ofℬ𝒞 frame, using ion
engines with common performance.

5. No perturbations other than the magnetic interaction and the mutual gravita-
tional contributions of the objects and primary are considered.

6. The chaser’s internal mass repartition, the nominal relative hovering distance
and maximum magnetic dipole magnitude are set by the GMT model presen-
ted in section 3.3, adopting TM3.

7. The relative hovering distance from the target can be increased, to satisfy the
RTS, and the chaser’s is capable to maintain the adapted nozzle configuration
condition.

3.4.1 Dynamic models

The translational and rotational dynamic models are constructed starting from the
linear and angular inertial dynamic equations presented in section 2.6, which are
then used to derive the relative translational dynamics of both the deflected target
with respect to the nominal one and the chaser with respect to the deflected target.

Absolute dynamics

Referring to figure 3.45 and using equation (2.30), the objects motion about the cent-
ral body can be written in the ecliptic inertial frame centred at the primary as
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Figure 3.45: Overview of the utilized frames of reference.
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ℐ𝑅̈ 𝑇 = −𝜇𝑠𝑢𝑛
ℐ𝑅 𝑇
ℐ𝑅3𝑇

+ 𝜇𝐶
ℐ𝑟
ℐ𝑟3𝐶

+
ℐ𝐹 𝜖𝜇𝐶→𝑇

𝑚𝑇

ℐ𝑅̈ 𝐶 = −𝜇𝑠𝑢𝑛
ℐ𝑅 𝐶
ℐ𝑅3𝐶

− 𝜇𝑇
ℐ𝑟
ℐ𝑟3𝐶

+
ℐ𝐹 𝜖𝜇𝑇→𝐶

𝑚𝐶
+

ℐ𝐹 𝑡ℎ
𝑚𝐶

ℐ𝑅 𝑖(𝑡0) =
ℐ𝑅 𝑖,0

ℐ𝑅̇ 𝑖(𝑡0) =
ℐ𝑅̇ 𝑖,0

ℐ𝑟 ≜ ℐ𝑅 𝐶 −
ℐ𝑅 𝑇

𝜇𝜖𝜇𝑖 ≜ 𝐺𝑚𝑖

(3.48)

where ℐ is the selected inertial frame, ℐ𝑅 𝑖, 𝑖 = {𝑇,𝐶} is the absolute position vector
of the object 𝑖, ℐ𝑟 is the relative position vector of the chaser with respect to the tar-
get, ℐ𝐹 𝜖𝜇𝑖→𝑗 is the magnetic force felt by object 𝑖 due to object 𝑗 defined in section
2.3, and ℐ𝑇 𝑡ℎ is the control force developed by the PS of the chaser.

The absolute rotational dynamics is retrieved applying equation (2.31) to both target
and chaser in their body fixed frames as
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⎧
⎪
⎪
⎪
⎪
⎨
⎪
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⎪
⎩

𝐉𝑇 ℬ𝒯 𝜔̇ ℬ𝒯ℐ + ̇𝐉𝑇 ℬ𝒯𝜔 ℬ𝒯ℐ + [ℬ𝒯𝜔 ℬ𝒯ℐ]
∧
𝐉𝑇 ℬ𝒯𝜔 ℬ𝒯ℐ =

ℬ𝒯𝑇 𝜖𝜇𝐶→𝑇

𝐉𝐶 ℬ𝒞 𝜔̇ ℬ𝒞ℐ + ̇𝐉𝐶 ℬ𝒞𝜔 ℬ𝒞ℐ + [ℬ𝒞𝜔 ℬ𝒞ℐ]
∧
𝐉𝐶 ℬ𝒞𝜔 ℬ𝒞ℐ =

ℬ𝒞𝑇 𝜖𝜇𝑇→𝐶 +
ℬ𝒞𝑇 𝑎𝑠

𝐑̇ℐ→ℬ𝑖 = − [ℬ𝑖𝜔 ℬ𝑖ℐ]
∧
𝐑 ℐ→ℬ𝑖

ℬ𝑖𝜔 ℬ𝑖ℐ(𝑡0) =
ℬ𝑖𝜔 ℬ𝑖ℐ,0

𝐑ℐ→ℬ𝑖(𝑡0) = 𝐑ℐ→ℬ𝑖,0
(3.49)

where ℬ𝑖, 𝑖 = {𝑇,𝐶} is the principal body fixed frame of object 𝑖 centred at its CM,
ℬ𝒞𝑇 𝜖𝜇𝑖→𝑗 is the magnetic torque felt by object 𝑖 defined in section 2.3, and

ℬ𝒞𝑇 𝑎𝑠 is
the control torque generated by the chaser’s AOCS.

Note that the target cannot control its attitude (i.e., it is non-cooperative) and the
chaser’s control torque can be achieved eitherwith an external action (e.g., thrusters,
magnetic interaction) or by exploiting internal angular momentum storing devices
(e.g., inertial wheels, controlled moment gyro) whose dynamics is here not con-
sidered.

Target relative translational dynamics

The target relative translational dynamics with respect to the nominal one, seen by
the inertial frame, is retrieved using equations (2.30) and (2.29) as

ℐ ̈𝑟 𝑇 ≜
ℐ𝑅̈ 𝑇 −

ℐ𝑅̈ 𝑛𝑇 = −𝜇☉ (
ℐ𝑅 𝑇
ℐ𝑅3𝑇

−
ℐ𝑅 𝑛𝑇
ℐ𝑅3𝑛𝑇

) + 𝜇𝐶
ℐ𝑟
ℐ𝑟3 +

ℐ𝐹 𝜖𝜇𝐶→𝑇
𝑚𝑇

(3.50)

Considering the nominal target LVLH (i.e., ℒ𝑛) frame and using (2.35), the LHS of
equation 3.50 is expanded. This leads to the ODE that describes the deflected target
dynamics with respect to the nominal one, seen by the ℒ𝑛 frame and written in the
same frame components
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Figure 3.46: Chaser (i.e., red) non-inertial hovering about the deflected target (i.e., light grey)
velocity unit vector.
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⎪
⎪
⎪
⎪
⎩

̈𝑠 = −𝜇☉ (
ℒ𝑛𝑅 𝑇
𝑅3𝑇

−
ℒ𝑛𝑅 𝑛𝑇
𝑅3𝑛𝑇

)+

−([ℒ𝑛Ω 𝐿𝑛𝐼]
∧
([ℒ𝑛Ω 𝐿𝑛𝐼]

∧
𝑠) + [ℒ𝑛Ω̇ 𝐿𝑛𝐼]

∧
𝑠 + 2 [ℒ𝑛Ω 𝐿𝑛𝐼]

∧
̇𝑠) +

+𝜇𝐶
ℒ𝑛𝑟
ℒ𝑛𝑟3

+
ℒ𝑛𝐹 𝜖𝜇𝐶→𝑇

𝑚𝑇

ℒ𝑛𝑅 𝑇 = ℒ𝑛𝑅 𝑛𝑇 + 𝑠;

̇𝑠(𝑡𝑖) = [0, 0, 0]𝑇

𝑠(𝑡𝑖) = [0, 0, 0]𝑇

(3.51)

where 𝑠 is the deflected target relative position to the nominal target, ̇𝑠 is its relative
velocity seen inℒ𝑛 frame, ℒ𝑛𝑅 𝑛𝑇 is the absolute position of the nominal target, and
vectors ℒ𝑛Ω 𝐿𝑛𝐼 and

ℒ𝑛Ω̇ 𝐿𝑛𝐼 are the angular velocity and acceleration of ℒ𝑛 with re-
spect to ℐ computed using equations (2.36) and (2.37) applied to the nominal target.
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Note that equation (3.51) initial conditions are obtained considering that the deflec-
ted and nominal targets have the same state vector at interception epoch.

Nominal target trajectory

The nominal target trajectory is reconstructed using equation (2.7) and integrating
equation (2.9) to find the relation between the nominal true anomaly of the target
and the propagation time. The result is then projected as

ℒ𝑛𝑅 𝑛𝑇 = 𝐑ℐ→ℒ𝑛
ℐ𝑅 𝑛𝑇 ≡ 𝑟𝑛𝑇 ̂𝑟𝑛 (3.52)

where ̂𝑟𝑛 is the first unit vector of ℒ𝑛.

Chaser relative translational dynamics

The chaser relative translational dynamics is written with respect to the deflected
target and expressed in its NTH frame (i.e.,𝒩). This is done to ease the application
of the proposed DCL and the adoption of a fixed hovering position collocated along
the deflected target velocity unit vector.

Using again equations (2.30), the dynamics can be written in the inertial frame as

⎧⎪⎪
⎨⎪⎪
⎩

ℐ ̈𝑟 = −𝜇̃
ℐ𝑟
ℐ𝑟3

+ 𝜇☉ (
ℐ𝑅 𝑇
ℐ𝑅3𝑇

−
ℐ𝑅 𝑛𝑇
ℐ𝑅3𝑛𝑇

) +
ℐ𝐹 𝜖𝜇𝑇→𝐶

𝑚𝑟𝑒𝑑
+

ℐ𝐹 𝑡ℎ
𝑚𝐶

𝜇̃ = 𝐺 (𝑚𝑇 +𝑚𝐶)

𝑚𝑟𝑒𝑑 ≜ 𝑚𝑡𝑚𝐶
𝑚𝑇+𝑚𝐶

(3.53)

Equation (3.53) can be expanded in the non-inertial frame𝒩, and projected onto it
through𝐑ℐ→𝒩, obtaining the ODE that describes the chaser translational dynamics
with respect to the deflected target, seen by the latter 𝒩 frame and written in the
same frame components
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̈𝑞 = −𝜇̃ 𝑞
𝑞3
− ([𝒩Ω𝒩ℐ]

∧
([𝒩Ω𝒩ℐ]

∧
𝑞) + [𝒩Ω̇𝒩ℐ]

∧
𝑞 + 2 [𝒩Ω𝒩ℐ]

∧
̇𝑞) +

−𝜇☉ (
𝒩𝑅 𝐶
𝑅3𝐶

−
𝒩𝑅 𝑇
𝑅3𝑇

) +
𝒩𝐹 𝜖𝜇𝑇→𝐶

𝑚𝑅𝐸𝐷
+

𝒩𝐹 𝑡ℎ
𝑚𝐶

𝒩𝑅 𝑇 = 𝐑ℒ𝑛→𝑁
ℒ𝑛𝑅 𝑇

𝒩𝑅 𝐶 = 𝒩𝑅 𝑇 + 𝑞;

𝑞̇(𝑡𝑖) = [0, 0, 0]𝑇

𝑞(𝑡𝑖) = [0,−𝑑ℎ𝑜𝑣𝑒𝑟, 0]𝑇
(3.54)

where 𝑞 is the chaser’s relative position with respect to the deflected target, ̇𝑞 is its
relative velocity seen by the𝒩 frame, and vectors 𝒩Ω̇𝒩ℐ and

𝒩Ω𝒩ℐ are the angular
velocity and acceleration of 𝒩 with respect to ℐ computed using equations (2.41)
applied to the osculating orbit of the deflected target.

Note that equation (3.54) initial conditions are obtained imposing the tangential tug-
ging to take place along the instantaneous velocity vector, behind the target. Note
also that the contribution of (2.11) can be identified in both equations (3.51) and
(3.54), and that the 𝒩̃ notation used to indicate the osculating NTH frame, intro-
duced in section 2.6, is here replaced with𝒩.

Imposing the GMT and DCL

Being the relative dynamics of the chaser written in frame𝒩, the proposed GMT is
obtained imposing ̈𝑞 = 0 and ̇𝑞 = 0 in equation (3.54).

The chaser’s dipole unit vector is defined by equations (3.16) or (3.22), and its mag-
nitude is assumed to be

1. Constant magnetic dipole magnitude
Themagnitude of the chaser’s dipole is kept at themaximum value achievable
by the chaser’s SMS, for the entire duration of the tug. Considering the TM3,
such value is 𝜇 𝜖𝜇,𝑤 and it is set at interception epoch to satisfy equation (3.40),
when the worst relative dipole orientation (i.e., target’s dipole orthogonal to
orbital plane) is chosen as a design condition.
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𝜇𝜖𝜇𝐶 = 𝜇 𝜖𝜇,𝑤 (3.55)

2. Modulated magnetic dipole magnitude
The magnitude of the chaser’s dipole is modulated as

𝜇𝜖𝜇𝐶 =
𝜇 𝜖𝜇,𝑤

̃𝐾𝑟(𝐴𝑧𝑇 ,ℎ𝑇)
(3.56)

where ̃𝐾𝑟(𝐴𝑧𝑇 ,ℎ𝑇) is the normalised radial relative orientation coefficient 𝐾𝑟,
associated to the chosen DCL, defined in equations (3.18) and (3.23).

It is therefore possible to compute the chaser’s control force that allows the non-
inertial hover (i.e.,𝒩𝐹 𝑡ℎ,𝑒𝑞) inverting equation (3.54)with the imposedDCL.Moreover,
the RNI requirement is introduced assuming that the chaser body fixed frame is per-
fectly tracking the deflected target NTH one. Meaning that the ℬ𝒞 can be confused
with𝒩, and that the tangential force component𝒩𝐹 𝑡ℎ,𝑒𝑞 ⋅ ̂𝑡 is amplified by the thrust
efficiency defined in equation (2.24) (i.e., 𝜂𝑡ℎ).

The chaser’s mass evolution in time is found considering independent thrust gener-
ation units, along ℬ𝒞’s axes, as

⎧
⎪
⎨
⎪
⎩

𝐹𝑛 = ||𝒩𝐹 𝑡ℎ,𝑒𝑞 ⋅ ̂𝑛|| + ||(𝒩𝐹 𝑡ℎ,𝑒𝑞 ⋅ ̂𝑡/𝜂𝑡ℎ)|| + ||𝒩𝐹 𝑡ℎ,𝑒𝑞 ⋅ ̂ℎ||

𝑚̇𝐶 = − 𝐹𝑛
𝑔0 𝐼𝑠𝑝

𝑚𝐶(𝑡𝑖) = 𝑚𝐶0

(3.57)

where 𝐹𝑛 is the total thrust that the chaser’s PS shall generate, and the component
along ̂𝑡 is amplified to consider the adapted canted pair of nozzles that allows RNI
satisfaction.

Under the same assumptions, the torque that theAOCSof the chaser shall develop to
maintain the tug is obtained inverting (3.49) after imposing the perfect𝒩 tracking.

RTS satisfaction

The hovering position is assumed to be equal to the one found by application of
the proposed GMT model presented in section 3.3. Being such model performed
without anynon-inertial contribution nor anymagnetic contributions different from
the radial one, the chaser’s PS may be required to generate a total thrust 𝐹𝑛 higher
than its actual capabilities. These latter is set by the GMT model to be
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⎧
⎨
⎩

𝑚𝑎𝑥(𝐹𝑛) = 𝑃𝑂𝐷𝑚𝑑𝑟𝑦
𝜉𝑡ℎ
𝜏𝑝𝑤

(𝐺𝑇)

𝑚𝑎𝑥(𝐹𝑛) = 𝛼𝑃𝑂𝐷 𝑃𝑂𝐷𝑚𝑑𝑟𝑦
𝜉𝑡ℎ
𝜏𝑝𝑤

(𝐺𝑀𝑇)
(3.58)

To re-establish the RTS satisfaction, in case of 𝐹𝑛 > 𝑚𝑎𝑥(𝐹𝑛), the fixed hovering
position is increased.

3.4.2 Numerical propagation and results
Equations (3.50), (3.54), (3.57) and (3.49) are implemented and propagated through
Simulink® using ODE45 solver with an integration tolerance of 1𝑒 − 14, for the tar-
get I only (i.e., Braille), following the same logic behind the deflection evaluation in
section 3.3. The numerical propagation error is checked with ODE113 solver, find-
ing no significant difference in the obtained results.

𝑡𝑡𝑢𝑔 = 1.428𝑇𝑛𝑇
Δ(𝑑𝑟) = 45.7 %
𝑑ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 = 272.15 𝑚

Table 3.6: Nominal GMT tug conditions.

The propagation is performed for a total tugging time associated to the maximum
relative percentage increment in deflection, using TM3, identified in section 3.3, vis-
ible in figure 3.22.

The performance of the deflection is evaluated considering a target characterised
with a magnetic dipole either orthogonal to the target’s orbital plane (i.e., ℎ𝜖𝜇𝑇 =
90𝑜) or always contained in the target’s orbital plane (i.e., ℎ𝜖𝜇𝑇 = 0𝑜), and assuming
a rotational period of 𝑇𝑛𝑇/4. Table 3.6 summarized such conditions.
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Target pointing DCL

The achieved deflection atMOID, visible in figure 3.47, shows that the chaser is able
to maintain the hovering position adopting both modulated and constant magnetic
dipole, and achieve a deflection close to the predicted one by the GMTmodel. How-
ever, in the constant chaser’s dipole case, the total thrust 𝐹𝑛 that the chaser shall
generate is too high for its fixed PS and PGS efficiency. This is happening mainly
due to the radial relative orientation coefficient 𝐾𝑟 that, for the test target, reaches
values up to two times the one used to design the chaser (i.e., nominal hovering po-
sition). As a consequence, the relative hovering distance shall be increased by 25𝑚
from the nominal value, to re-establish the RTS satisfaction.

Figure 3.47: Deflection at MOID using the target pointing DCL (i.e., TPDCL), target’s semi-
major axis and its eccentricity as a function of the simulation time

Modulating the chaser’s dipole in order to maintain the designed radial interaction
magnitude, the chaser is able to maintain the hovering at a position which is ∼ 1𝑚
farther than the nominal one found with the proposed GMT model.

The control force and torque generated by the chaser’s AOCS, and the magnetic
dipole magnitude obtained by its SMS are shown in figure 3.48.
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When the chaser is operating with a constant 𝜇𝜖𝜇,𝐶 magnitude, the farther hovering
distance leads to a better thrust efficiency 𝜂𝑡ℎ, thus to a slightly higher maximum
maintainable LTA on the target. For the considered test case, the torque acting on
the chaser is reaching values up to 2𝑁𝑚 and evolves in time according to the tar-
get’s dipole evolution in𝒩 frame. The chaser’s internal angular momentum man-
agement may not be sufficient to stabilize the chaser, and adequate strategies shall
be considered to re-gain controllability (e.g., scheduled usage of the SMS for tugging
purposes). This is not addressed in the thesis, and it is left to future work.

Figure 3.48: Control force and toqrue profiles and magnetic dipole magnitude as a function
of propagation time, using the target pointing DCL (i.e., TPDCL).

Furthermore, the farther hovering distance obtained adopting a constant 𝜇𝜖𝜇𝐶 leads
to a lower fuel consumption, presented in appendix B. This can be used to increase
the total tugging time of a thrusting arc that ends before the MOID epoch and de-
signed with the nominal total tugging time reported in table 3.6.
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B-field aligned DCL

The performance of the deflection is evaluated with the same condition reported in
table 3.6, using the b-field aligned DCL. The achieved deflection at MOID, visible in
figure 3.49, shows that the chaser is able to maintain the hovering position adopting
both modulated and constant magnetic dipole, and achieve a deflection close to the
predicted one by the GMTmodel. In this case, the magnetic interaction can be char-
acterized by a non null 𝐾𝜎 (i.e., component orthogonal to the chaser’s position unit
vector) and a higher 𝐾𝑟 with respect to the one achieved with the target pointing
DCL.

Figure 3.49: Deflection at MOID using the B-field aligned DCL (i.e., BFADCL), target’s semi-
major axis and its eccentricity as a function of the simulation time

The modulation of the chaser’s dipole magnitude brings to a shift in relative hover-
ing distance of ∼ 3𝑚 whereas, maintaining a constant dipole, the shift increases up
to ∼ 24.5𝑚. Figure 3.50 shows the control force, the control torque, and the mag-
netic dipole magnitude obtained with the considered chaser and test target. Using
the B-field DCL leads to the absence of the magnetic contribution that acts on the
chaser, obtaining a reduction of the workload on its AOCS. The only torque contri-
bution is related to the ℬ𝒞 frame tracking the𝒩 frame.
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Figure 3.50: Control force and torque profiles and magnetic dipole magnitude as a function
of propagation time, using B-field aligned DCL (i.e., TPDCL).

Figure 3.51: Torque acting on the the target as a function of propagation time, using B-field
aligned DCL.
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Note that, when the magnetic force is pointing the target, the control torque on the
chaser and the perturbing magnetic torque on the target are the same. Using the B-
field aligned, themagnetic torque acting on the target is incresed [65]. This is visible
in figure 3.51, and it may be used to control the target’s attitude while tugging it.

Deflection sensitivity to the target’s rotational axis and dipole orientation at
interception epoch

The deflection sensitivity with respect to the initial orientation of the target’s rota-
tional axis ̂𝑙𝜔 and the target’s dipole direction 𝜇 𝜖𝜇,𝑇 evaluated at interception epoch,
is briefly covered. The propagation is applied on the test target (i.e., Apophis), as-
suming 50 randomly selected orientations for both ̂𝑙𝜔 and 𝜇 𝜖𝜇,𝑇 , using the TM3, ad-
opting the B-field aligned DCL and the magnetic dipole magnitude modulation.

Figure 3.52: Relative percentage increment in deflection, with magnetic dipole magnitude
modulation, as a function of the angles between the tugging direction and target’s rotational
axis, and target’s dipole and its rotational axis.

The results, presented in figure 3.52, show that the achieved relative increment in
deflectionwith respect to the classical GT is affected by both ̂𝑙𝜔 and𝜇𝜖𝜇𝑇 . The lowest
observed increment reaches values as low as Δ(𝑑𝑟) = 38.1%. The higher the angle
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between the target’s rotational axis and the tugging direction is, the higher is the re-
lative increment in deflection, when a low angle between the target’s rotational axis
and the target’s dipole direction is considered. The resulting increment in relative
hovering distance is shown in figure 3.53, and it can be as high as 𝑑ℎℎ𝑜𝑣𝑒𝑟 = 5 [𝑚].

Figure 3.53: Relative hoovering distance increment, with magnetic dipole magnitude modu-
lation, as a function of the angles between the tugging direction and target’s rotational axis,
and target’s dipole and its rotational axis.

When a constant chaser’s dipole magnitude is considered, the decrement in GMT
performance can reach higher values (i.e., 𝑚𝑖𝑛(Δ(𝑑𝑟)) =∼ 30%) and the relative
hovering distance increases as high as 𝑑ℎℎ𝑜𝑣𝑒𝑟 = 24.5 [𝑚].

3.5 Summary
The analysis performed in section 3.2.3 allowed to select a test target, among the
identified NEA with a global magnetisation state. The study performed in section
3.2.4 brought to the definition of two DCLs and to the identification of the optimal
target’s dipole orientations, measured in the target’s NTH frame, that allow themax-
imization/minimization of the magnetic force component aligned with the target’s
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velocity vector.

The model developed in section 3.3 allowed to design the chaser’s internal mass
allocation, the hovering position, and the SMS efficiency that allow the chaser to
maintain the GMT tug for a given nominal total tugging time. This is done con-
sidering both chaser’s thrusting capabilities and PS geometry, aiming to satisfy both
RNI and RTS, and considering the target-chaser relative orientation that leads to the
highest required chaser’s dipole. This forces the SMS to achieve the designmagnetic
interaction when the target’s dipole has an orientation that minimize the achievable
magnetic interaction (i.e., target’s magnetic dipole is orthogonal to its orbital plane,
or smallest𝐾𝑟), thus allowing the operations to be carried out at aminimum relative
hovering distance equal to the nominal one.

Three different tugging modes are proposed and compared, identifying the optimal
total tugging time that maximize the relative percentage increment in deflection at
MOID, and the SMS efficiency in terms of generated magnetic dipole weighted over
the power mass allocated to such subsystem. Among them, TM1 results to be the
most performant one, but requires the highest SMS efficiency among the proposed
TMs. The analysis performed in section 3.2 allowed to study the sensitivity of the
achieved deflectionwith respect to a selection of parameters of the GMTmodel. The
results show that, the GMTperformswell with target’s characterised by small radius
and small mass, and with small total tugging times. This suggests the application of
the GMT when the warning time is high and the thrusting arc can be collocated far
from the MOID epoch.

The relative dynamics propagation, presented in section 3.4, allowed to understand
the actual performance achieved by a chaser, designed to operate at the nominal tug-
ging conditions defined in section 3.3, and usedwhen the target’s is characterised by
amagnetic dipole direction that evolves in the target’s NTH frame. The results show
that, the design relative hovering position shall be increased to allow the chaser sat-
isfy RTS, leading to a better thrust efficiency, to a smaller fuel consumption, and
to a higher achievable total tugging time. This hovering distance increment is de-
pendant upon the adopted DCL, the initial tumbling state of the target, the target’s
dipole initial orientation at interception epoch, and upon the non-inertial contri-
butions characterizing the close target operations. The results also show that the
B-field aligned DCL is the best approach to mitigate the workload over the chaser’s
AOCS, and to impart the highest magnetic torque on the target. However, it does
not generate a pure radial magnetic interaction with the target, as the target point
DCL does.
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The relative percentage increment in deflection is reduced with respect to the nom-
inal value achieved in design conditions, however, such decrement is contained and
the GMT performance results to be always greater than the classical GT one.
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Chapter 4

Conclusions

The aims of this dissertation is to understand weather or not the deflection achieved
by a classicGT canbe improved by the introduction of amagnetic interaction between
the target and the chaser, in addition to their mutual gravitational attraction.

The results of the preliminary analysis carried out in the dissertation show that there
are conditions for which the exploitation of a magnetic interaction, with a NEO that
have a residual magnetisation state, may lead to some benefits from both deflection
magnitude at MOID and safety of the proximity operations. Generally, when the
target is suitable for a GT (i.e., small mass and small equivalent radius), the GMT
has an appreciable performance.

Considering the selected targets, the highest relative percentage increment in deflec-
tion at MOID is as high as Δ(𝑑𝑟) ∼ 50%, obtained when the target has a magnetic
dipole orthogonal to its orbital plane. The performance can be further increased if
the GMT is acting on the target for a short amount of tugging time, close to inter-
ception epoch. For the virtual target I (i.e., Apohpis), the optimal total tugging time
is 𝑡𝑡𝑢𝑔 ∼ 1.43 [𝑇𝑛𝑇 ]. However, the SMS required to operate shall be able to gener-
ate a magnetic dipole that can easily reach values that may not be achievable with
nowadays high TRL space technology. This shall also be integrable in the chaser’s
structure and operate with a specific allocated power mass budget. For the virtual
target I, the chaser’s dipole magnitude is in the order of 𝜇𝜖𝜇,𝐶 ∼ 984553 [𝐴𝑚2], gen-
erated by a SMS with an efficiency of 𝜇𝜖𝜇,𝐶/𝑚𝑝𝑤,𝜖𝜇 ∼ 3709 [𝐴𝑚2/𝑘𝑔], and a dedicated
power mass of𝑚𝑝𝑤,𝜖𝜇 ∼ 265 [𝑘𝑔].

The relative percentage increment is highly affected by the target tumbling state at
interception epoch, and it is reduced when the actual non-inertial hover about the
target is considered. Results from the target-chaser dynamic propagation show that,
the design hovering position must shift to farther location, allowing the chaser with
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fixed performance and fixed internal mass allocation to maintain the tug. This also
leads to a higher maintainable total tugging time with respect the nominal one, be-
ing the thrust efficiency of the canted PS higher, thatmay be used to further increase
the achievable deflection if the GMT is operating far from MOID epoch. Never-
theless, such reduction is contained and the relative percentage increment remains
positive, when the GMT is lasting for a total tugging time equal to the nominal one.
Results obtained for target I show that, the reduction of the relative percentage in-
crement in deflection at MOID is dependant upon the chosen DCL, and can be as
low as Δ(𝑑𝑟) ∼ 38%. The hovering position shift can be as high as 𝑑ℎ𝑜𝑣𝑒𝑟 ∼ 25 [𝑚].

4.1 Future work
The analysis developed in the thesis is particularised for non-inertial hovering con-
ditions that allow the tug to happen along the velocity vector of a target with known
globalmagnetization state, considering the ideal control action that the chaserwould
need to implement to maintain the hover. Furthermore, the mutual magnetic inter-
action of the objects is approximated using the far-field formulation and described
using the magnetic dipole theory.

The work developedmay be extended to assess the chaser actual controllability, and
evaluate its internal momentummanagement strategy. The workmay also be exten-
ded to consider non uniformities in the target’s magnetic properties, non-spherical
and uniform mass distributions, and the possibility of magnetic interaction modi-
fied by mechanisms here not considered.

The adoption of differentGT approaches, other than the non-inertial hover along the
velocity vector, shall be considered (e.g., shifted Keplerian orbits, Keplerian arcs) as
well as the utilization of multiple chasers in cooperation close to the target. Further-
more, the actual TRL of the SMS capable to generate the chaser magnetic dipole is
not addressed and shall be investigated.



Appendix A

Free-free dipole model matrices

𝚽𝑖 = 𝚽𝑖( ̂𝑟, 𝜇̂ 𝜖𝜇,𝑖) = [
2𝑎𝑥 𝑎𝑦 + 𝑏𝑥 𝑎𝑧 + 𝑐𝑥

𝑎𝑦 + 𝑏𝑥 2𝑏𝑦 𝑏𝑧 + 𝑐𝑦
𝑎𝑧 + 𝑐𝑥 𝑏𝑧 + 𝑐𝑦 2𝑐𝑧

]+

− (𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧) [
5𝑥2 − 1 5𝑥𝑦 5𝑥𝑧
5𝑥𝑦 5𝑦2 − 1 5𝑦𝑧
5𝑥𝑧 5𝑦𝑧 5𝑧2 − 1

]

𝜷𝑖 = 𝜷𝑖( ̂𝑟) = [
3𝑥2 − 1 3𝑥𝑦 3𝑥𝑧
3𝑥𝑦 3𝑦2 − 1 3𝑦𝑧
3𝑥𝑧 3𝑦𝑧 3𝑧2 − 1

]
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Appendix B

Additional figures

Figure B.1: Flow-chart for geometric MOID computation. 𝒫𝑖 is the perifocal frame
of object 𝑖.

Figure B.2: Relative hovering distance with respect to target II as a function of the
total tugging time.
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Figure B.3: Example of interaction force profile for target I, using TM1

Figure B.4: Example of interaction force profile for target I, using TM2
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Figure B.5: Example of interaction force profile for target I, using TM3

Figure B.6: Chaser mass as a function of the simulation time, using the target
pointing DCL.
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Figure B.7: Chaser mass as a function of the simulation time, using the B-field
aligned DCL.

FigureB.8: Hovering positionwith respect the target, using the B-field alignedDCL.
Dipole evolution in red solid line, rotational axis as a green dot.
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FigureB.9: Hovering positionwith respect the target, using the target pointingDCL.
Dipole evolution in red solid line, rotational axis as a green dot.
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