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Abstract 

 

 

 

 

 

 

The need of robotic systems capable of interacting with Resident Space Objects (RSO), 

providing on-orbit servicing, is always increasing. However, before any kind of 

maintenance work can take place, the servicing spacecraft must grab its target. In 

particular, the most challenging tasks comes when approaching a tumbling target. 

Various approaching methodologies have already been proposed for the capture 

maneuver of a non-stabilized target by a Spacecraft-Manipulator System (SMS). Despite 

of that, a really suitable and efficient solution that overcomes the guidance complexity of 

this problem, is still not present nowadays. Standard on-line optimization algorithms 

seem to be a good solution, but their high computational cost make them quite inaccurate 

for space applications. For this reason, alternative methods like convex programming or 

mapping have been applied with the hope of better results. 

In this thesis it is proposed a new approach for the construction of a stable and robust 

guidance algorithm. The adopted method relies on the choice of writing the Dynamical 

System (DS), describing the chaser motion, as a Linear Parameter Varying (LPV) 

system, whose parameters are approximated using Gaussian Mixture Models (GMM). A 

learning algorithm, based on Gaussian Mixture Regression (GMR) techniques, is 

constructed starting from a set of kinematically feasible trajectories composing the 

dataset. The chaser’s trajectories are in turn generated off-line by an optimal-control 

framework. It will be shown, thanks to Lyapunov stability theory, that the resulting DS is 

stable to the target and leads the mounted end-effector to the desired grasping location 

with the desired orientation and velocity.  



 
II 

 

Index 

 

List of Figures……………………………………………………………………….………..III 

List of Tables…………………………………………………………………………….……III 

 

1. Introduction…………………………………………………………………………………1 

 1.2 System Architecture……………………………………………………………….3 

 1.3 Outline of the Thesis………………………………………………………………4 

 

2. System Dynamics…………………………………………………………………………..5 

 2.1 SMS Set-up………………………………………………………………………...5 

 2.2 DS described as LPV system…………………………………………………….6 

 2.3 Stability Analysis…………………………………………………………………..8 

 

3. Trajectory Generation: Dataset……………………………..………………………….10 

 3.1 Newton-Euler Equations in Body Coordinates………………………………..10 

 3.2 Optimal-Control Problem using Multiple Shooting…………………………….11 

 3.3 Dataset……………………………………………………………………………13 

 

4. Multivariate Regression………………………………………………………..……..…16 

 4.1 Gaussian Mixture Models…………………………………………………….…16 

 4.2 LPV Systems through GMM…………………………………………….………17 

 4.3 Stability Analysis……………………………………………………………..…..19 

 

5. Learning Algorithm…………………………………………………………….…….…..21 

 5.1 MSE-based Approach……………………………………………………..…….21 

 5.2 Alternative Optimization Method………………………………………..………22 

 

6. Results………………………………...……………………………..…………………….24 

 

7. Conclusions……………………………………………………………………………….31 

 7.1 Future Works……………………………………………………………………..31 

 

 



 
III 

 

List of Figures 

 

Figure 1……………………………………..……………………………………………….…..4 

Figure 2……………………………………………………………………….…………………6 

Figure 3……………………………………………………………………………..………….11 

Figure 4…………………………………………………………………………………..….…14 

Figure 5………………………………………………………………………………...………25 

Figure 6………………………………………………………………………………………...27 

Figure 7………………………………………………………………………………………...28 

Figure 8………………………………………………………………………………………...29 

 

 

 

List of Tables 

 

Table 1……….……………………………………………………………………………….…5 

Table 2…………………………………………………………………………………………24 



 
1 

 

 

 

 

 

 

 

 

1. Introduction 

 

 

 

 

 

 

On-orbit servicing holds the promise to refuel, maintain, upgrade, and repair existing 

spacecraft as well as to actively remove orbital debris. Before the servicing operations 

can take place, the servicing spacecraft must capture its target. Among the various 

methods that have been proposed to capture a space object, a chaser spacecraft 

equipped with a robotic manipulator is widely seen as a promising and versatile 

approach. 

The robotic capture of cooperative and attitude-stabilized spacecraft has already been 

demonstrated; e.g. the Space Shuttle’s Remote Manipulator System [9] has been used, 

under human control, to successfully catch an attitude-stabilized target.  

Considering instead a tumbling target, the capturing maneuver is significantly more 

challenging. The greatest difficulty facing such kind of approach maneuver can probably 

be attributed to its guidance complexity. The trajectory generated by the guidance 

algorithm must be computed in a timely manner, the control constraints satisfied, the 

nonlinear multibody dynamics solved, and the propellant usage minimized.  With respect 

to the capture maneuver, previous works considered mainly two distinct approaches. 
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The first one relies on the assumption that the chaser can initiate the capture maneuver 

at a close-enough distance, where the target’s grapple fixture is within the chaser’s 

manipulator grasping range. Simply actuating the robotic arm, while leaving the base-

spacecraft uncontrolled, is enough to capture the target in this scenario. However, in 

presence of a tumbling target with large appendages, large time-varying keep-out zone 

constraints exclude the existence of a safe position in its proximity. Examples of this 

approach can be found in [10] or [11]. 

For this reason, the second method considers a chaser that starts its approaching 

maneuver at a sufficiently faraway hold position. Beginning from a “folded” configuration, 

where the studied system can be considered as a whole rigid body, the robotic arm 

deploys, and the chaser moves to the grasping position. This type of maneuver has been 

extensively studied with a wide variety of guidance and control approaches, such as 

optimal control [7] or optimization-based [12]. However, the usage of common on-line 

optimization problems may be inadequate for real-time space applications. The reasons 

for this can be found again in the complexity of the system nonlinear dynamics and, 

consequently, in the high computational costs that the on-board computer must sustain. 

Furthermore, since perfect control can never be satisfied in practice, control strategies 

that offer high robustness in the face of uncertainties, e.g. slight variations on the 

boundary conditions due to imprecise sensing or actuation, must be taken into account. 

Probably, the most efficient solution developed nowadays has been introduced in [1] and 

[2], where a sequential convex optimization procedure is employed. The nonlinear 

dynamics and the non-convex constraints are linearized with the consequent increment 

of the computational efficiency. Moreover, algorithms used to solve convex programming 

problems guarantee convergence in polynomial time.  

The new approach presented in this work is aimed to construct a robust guidance 

algorithm rewriting the nonlinear DS, describing the reach and follow motion, as an LPV 

system. The motivation behind this originates from at least two sources. Thinking of LPV 

systems as a weighted combination of Linear Time Invariant (LTI) systems, the first 

reason relies on the possibility of using many concepts (e.g. invariant subspaces or 

bases) and tools (e.g. linear algebra tools) valid only for the linear case. Another 

motivation can be found in the fact that the solution of an optimal control problem, 

described trough a nonlinear DS, requires a solution to an associated Hamilton Jacobi 

Bellman partial differential equation. A procedure often complicated and applicable only 

under certain precise conditions. For LPV system instead, this goal can be addressed 

via the solution of a set of Linear Matrix Inequality (LMI) problems, i.e. essentially a set 
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of convex constraints. Many optimization problems with convex objective functions and 

LMI constraints can easily be solved efficiently using many existing software. The 

parameters of the LPV system may thus be estimated using arbitrary regressive 

techniques. Here, a probabilistic approach through Gaussian Mixture Regression (GMR) 

is employed. To train the system, a set of kinematically feasible demonstrations, 

generated off-line by an optimal control problem built on the minimization of the control 

forces, is needed. It will be shown, thanks to Lyapunov stability theory, that the resulting 

DS is stable and converges to the desired intercept location with the appropriate velocity 

direction. In particular, focusing on the end-effector, the goal for it was to reach the 

grasping fixture with zero relative velocity with respect to the target, while avoiding 

dangerous impacts. The use of LPV systems, whose parameters are computed off-line 

through regression techniques, should overcome the problems deriving from the 

dynamic’s nonlinearity and guarantee robustness properties in front of small changes on 

the boundary conditions, thus permitting a fast computation of the chaser motion. This 

kind of procedure has been already adopted successfully on fixed-based robotic 

manipulators for on-ground applications [3], [4]. The challenging task of the thesis is then 

to replicate the same method with the increased complexity of the DS. 

 

 

1.2 System Architecture 

 

The chaser system is composed by a free-floating base-spacecraft equipped with a 𝑛 

degree of freedom robotic arm manipulator. Throughout the thesis the motion is 

represented in Cartesian coordinates system. 

Fig. 1 shows a schematic of the control flow. The key point is the training of a DS, 

described as an LPV system, with the aim to reproduce the ideal motion of the 

Spacecraft-Manipulator System (SMS) and to generalize it outside the design conditions. 

With this purpose, an on-line block containing the LPV system, parametrized through 

GMMs, and an off-line learning block, that generates the training dataset, are needed. 

Referring to the learning blocks, first 𝑁 kinematically feasible demonstrations are 

founded solving an optimal-control problem based on the minimization of the control 

forces. Here 𝜉 = (𝒓𝑏 , 𝒓𝑒.𝑒) is the vector representing the positions and orientations of the 

spacecraft base and of the end-effector, 𝜉̇ and 𝜉̈ are its first and second derivatives 

respectively. Secondly, a learning algorithm is employed in order to obtain the vector of 

parameters 𝜽 whereby the DS 𝜉̈ = 𝑓(𝜉, 𝜉̇) is approximated through GMM.  
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Regarding the on-line blocks, it consists of a controller generating the required 

commands to follow the desired motion and a system block that uses the solution of the 

learning process to model the dynamics of the spacecraft-manipulator system: 

 �̈� = 𝑓(𝜉, �̇�) + 𝑢(𝜉, �̇�)  

The convergence of the dynamic system to the desired target location is guaranteed by 

Lyapunov stability theory.  

 

 

1.3 Outline of the thesis 

 

The following work is organized as follows: in Chapter 2 the properties of the SMS and 

the reformulation of the DS through LPV system are analyzed; in Chapter 3 the steps 

required to achieve the dataset are reported, while the learning algorithm is explained in 

Chapter 5; Chapter 4 describes both how to approximate the LPV system using GMM 

and its asymptotic stability; finally, in Chapters 6 and 7 the results obtained are presented 

and discussed, respectively.  

 

Figure 1: A typical system’s architecture illustrating the control flow of the system considered in this 

thesis. An off-line learning block is used to create a dataset of feasible trajectories. An on-line block 

describes the parametrized dynamics of the chaser system. 
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2. System Dynamics 

 

 

In this chapter the properties of the SMS are first introduced; then the LPV formulation 

of the DS and the prove of its stability are provided.  

 

 

 

2.1 SMS set-up 

 

A 2D squared-base spacecraft equipped with a three-link robotic arm has been 

considered. In order to simplify the problem, the end-effector was made to coincide with 

the end point of the last link. Dimensions and inertia parameters of the SMS are 

supposed to be known and are reported in tab.1. 

Regarding the target satellite, a reliable estimate of the states and of its dynamic 

parameters are obtained from vision data thanks to cameras mounted on the chaser. A 

Kalman-Filter can be employed to promptly predict the target motion as soon as the filter 

converges [7].  As a consequence, the configuration, position and velocity that the SMS 

has to attain at grasping time 𝑡𝑓 are known by applying an inverse-kinematic algorithm:  

{
 
 

 
 𝜉(𝑡𝑓) = 𝜉

∗ = [𝒓𝑏(𝑡𝑓), 𝒓𝑒.𝑒(𝑡𝑓)]
𝑇
= [𝑥𝑏(𝑡𝑓), 𝑦𝑏(𝑡𝑓), 𝛼𝑏(𝑡𝑓), 𝑥𝑒.𝑒(𝑡𝑓), 𝑦𝑒.𝑒(𝑡𝑓), 𝛼𝑒.𝑒(𝑡𝑓)]

𝑇

�̇�(𝑡𝑓) = �̇�
∗ = [�̇�𝑏(𝑡𝑓), �̇�𝑒.𝑒(𝑡𝑓)]

𝑇
= [�̇�𝑏(𝑡𝑓), �̇�𝑏(𝑡𝑓), �̇�𝑏(𝑡𝑓), �̇�𝑒.𝑒(𝑡𝑓), �̇�𝑒.𝑒(𝑡𝑓), �̇�𝑒.𝑒(𝑡𝑓)]

𝑇

�̈�(𝑡𝑓) = �̈�
∗ = [�̈�𝑏(𝑡𝑓), �̈�𝑒.𝑒(𝑡𝑓)]

𝑇
= [�̈�𝑏(𝑡𝑓), �̈�𝑏(𝑡𝑓), �̈�𝑏(𝑡𝑓), �̈�𝑒.𝑒(𝑡𝑓), �̈�𝑒.𝑒(𝑡𝑓), �̈�𝑒.𝑒(𝑡𝑓)]

𝑇

 

 

Spacecraft Base Robotic Manipulator 

Parameter Value Parameter Value 

Mass 13 Kg Mass x link 2.9 Kg 

Inertia 0.28 Kgm2 Inertia x link 0.0364 Kgm2 

Dimensions (𝐿 ×𝑊) 0.27 x 0.27 m Link length 0.38 m 

Table 1: in the table the chosen values of the mass, inertia and dimension for the spacecraft base and 

robotic manipulator are reported.  
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In figure 2 a possible initial “folded” configuration 𝜉(𝑡0) (left-side) and the final one 𝜉(𝑡𝑓) 

when docking with the target (right-side) are depicted. 

Additionally, the following assumptions are made: 

1. The chaser multibody system and the target RSO are composed of rigid bodies. 

2. The relative velocity between the two systems is set to zero at the beginning of 

phase two. 

3. Environmental forces (gravity gradient, solar radiation pressure, etc.) as well as 

the relative orbital dynamics are neglected. This can be justified by the short 

duration of the studied maneuver and the close proximity of the two vehicles. 

4. The target RSO has a designated grapple fixture. 

5. The chaser mass remains constant during the maneuver. 

 

 

2.2 DS described as LPV system 

 

Dynamical systems are popular and powerful methods for autonomously generating 

stable motions according to training data-points. Formulating DSs as LPV systems 

allows modeling a wide class of nonlinear systems and the use of many tools from the 

linear systems theory for analysis and control. An LPV system can be thought as a 

Figure 2: on the left side a possible initial configuration 𝜉(𝑡0) of the chaser system is depicted, while on 

the right side it is reported its final configuration 𝜉(𝑡𝑓). 
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weighted combination of linear models, each valid at a specific operating point, whose 

state-space descriptions are known functions of time-varying parameters. The time 

variation of each of the parameters is not known in advance but is assumed to be 

measurable in real-time. The chosen continuous-time LPV system is given by the 

following model [3]: 

 �̈�(𝑡) = 𝐴1(𝜃𝐴1(𝑡))𝜉(𝑡) + 𝐴
2(𝜃𝐴2(𝑡))�̇�(𝑡) + 𝑢(𝑡) (1) 

Here 𝜉(𝑡) = [𝒓𝑏 , 𝒓𝑒.𝑒] ∈ ℝ
4; 𝜃𝐴𝑖(𝑡) ∈ ℝ

𝐾1×1 ∀𝑖 ∈ {1,2} are the time-dependent vectors of 

scheduling parameters, not known a priori but measurable in real time: 

 𝜃𝐴𝑖 = [𝜃𝐴1𝑖
…𝜃𝐴𝐾1

𝑖 ]𝑇       ∀𝑖 ∈ {1,2} (2) 

These parameters can be a function of time (𝑡), state of the system 𝜉(𝑡) or external 

signal 𝑑(𝑡), i.e. 𝜃𝐴𝑖(𝑡, 𝜉(𝑡), 𝑑(𝑡)). 𝐴𝑖(. ) ∶  ℝ𝐾𝑖 → ℝ𝐷×𝐷 ∀𝑖 ∈ {1,2} are the affine 

dependences of the state-space matrices on the scheduling parameters and the state 

vectors: 

 

𝐴1(𝜃𝐴1(𝑡)) = ∑𝜃𝐴𝑘
1𝐴𝑘

1

𝐾1

𝑘=1

     𝐴𝑘
1 ∈ ℝ𝐷×𝐷     𝜃𝐴𝑘

1 ∈ ℝ1×1 

𝐴2(𝜃𝐴2(𝑡)) = ∑𝜃𝐴𝑘
2𝐴𝑘

2

𝐾2

𝑘=1

     𝐴𝑘
2 ∈ ℝ𝐷×𝐷     𝜃𝐴𝑘

2 ∈ ℝ1×1 

(3) 

To achieve convergence to the desired final state [𝜉∗ , �̇�∗], the following control input 

vector 𝑢(𝑡) is proposed: 

 𝑢(𝑡) = �̈�∗ − 𝐴1(𝜃𝐴1(𝑡))𝜉
∗ − 𝐴2(𝜃𝐴2(𝑡))�̇�

∗ (4) 

By introducing (3) and (4) in (1) it is obtained: 

 �̈�(𝑡) − �̈�∗ =∑𝜃𝐴𝑘
1𝐴𝑘

1

𝐾1

𝑘=1

(𝜉(𝑡) − 𝜉∗) +∑𝜃𝐴𝑘
2𝐴𝑘

2

𝐾2

𝑘=1

(�̇�(𝑡) − �̇�∗) (5) 

It has then been obtained the LPV formulation of the DS in consideration.  
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2.3 Stability analysis 

 

In general, it can be said that a DS is stable if the solution that start out near an 

equilibrium point 𝜉∗ stay near 𝜉∗ forever, i.e. the generated trajectories do not change 

too much under small perturbations. The kinds of stability that a DS can exploit are 

defined as follows: 

1. An equilibrium state 𝜉∗ is stable if there exists an arbitrary small number 휀0 > 0 

with the following property: for all 휀1, 0 < 휀1 < 휀0 there is an 휀 > 0 such that if 

‖𝜉∗ − 𝜉0‖ < 휀, then ‖𝜉∗ − 𝜉(𝑡)‖ < 휀1 for all 𝑡 > 𝑡0. 

2. An equilibrium state 𝜉∗ is asymptotically stable if it is stable and there is an 휀 > 0 

such that whenever ‖𝜉∗ − 𝜉0‖ < 휀, then 𝜉(𝑡) → 𝜉∗ as 𝑡 → ∞. 

3. An equilibrium state 𝜉∗ is globally asymptotically stable if it is stable and with 

arbitrary initial state 𝜉0 ∈ 𝑋, 𝜉(𝑡) → 𝜉∗ as 𝑡 → ∞. 

Given this, it is wanted that the LPV system (5) is asymptotically stable to the target 

[𝜉∗  �̇�∗]
𝑇
 , or equally, that (5) asymptotically converges to the equilibrium point [𝜉∗  �̇�∗]

𝑇
; 

i.e. 

 lim
𝑡→∞

‖𝜉 − 𝜉∗‖ = 0 (6) 

 lim
𝑡→∞

‖�̇� − �̇�∗‖ = 0 (7) 

To obtain this kind of behavior, (5) must meets the following constraints: 

 

{
 

 𝐴𝑘1
1 + (𝐴𝑘1

1 )
𝑇
≺ 0       𝐴𝑘2

2 + (𝐴𝑘2
2 )

𝑇
≺ 0                       

𝐴𝑘1
1 = (𝐴𝑘1

1 )
𝑇
       ∀𝑘1 ∈ {1…𝐾1}      ∀𝑘2 ∈ {1…𝐾2}

0 ≤ 𝜃𝐴
𝑘1
1 ≤ 1        0 ≤ 𝜃𝐴

𝑘2
2 ≤ 1                                       

 (8) 

The resulting LPV system is composed by equations (5) among with the constraints in 

(8). To prove the stability of the system, Lyapunov’s second stability theorem has been 

utilized: 

 

Lyapunov’s second stability theorem: A DS determined by �̈� = 𝑓(𝜉, �̇�) is 

asymptotically stable at the target [𝜉∗ , �̇�∗] if there exists a continuous and continuously 

differentiable Lyapunov function 𝑉(𝜉, �̇�) ∶  ℝ𝐷 → ℝ such that: 
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 {
𝑉(𝜉, �̇�) > 0     𝑎𝑛𝑑     𝑉(𝜉∗, �̇�∗) = 0

�̇�(𝜉, �̇�) < 0     𝑎𝑛𝑑     �̇�(𝜉∗, �̇�∗) = 0
  

Considering a Lyapunov function of the form  

 𝑉(𝜉, �̇�) =
1

2
(�̇� − �̇�∗)

𝑇
(�̇� − �̇�∗) −

1

2
(𝜉 − 𝜉∗)𝑇∑𝜃𝐴𝑘

1𝐴𝑘
1(𝜉 − 𝜉∗)

𝐾1

𝑘=1

 (9) 

it can be noted that it is radially unbounded, continuous and continuously differentiable. 

The first term is a quadratic form and so positive, while the second part is again a 

quadratic form multiplied by a negative definite matrix (𝐴𝑘
1); consequently, 𝑉 > 0. 

Additionally, 𝑉(𝜉∗, �̇�∗) = 0. The first derivative results: 

 �̇� =
𝑑𝑉

𝑑𝑡
= (�̇� − �̇�∗)

𝑇
(�̈� − �̈�∗) − (𝜉 − 𝜉∗)𝑇∑𝜃𝐴𝑘

1𝐴𝑘
1(�̇� − �̇�∗)

𝐾1

𝑘=1

 (10) 

inserting (5) it results: 

 �̇� = (�̇� − �̇�∗)
𝑇
∑𝜃𝐴𝑘

2𝐴𝑘
2(�̇� − �̇�∗)

𝐾2

𝑘=1

 (11) 

Applying the same reasoning as for eq. (9), �̇� < 0 and �̇�(𝜉∗, �̇�∗) = 0. This proves the 

global stability of the DS; i.e. 𝜉 and �̇� are bounded as 𝜉∗ and �̇�∗ are bounded.  
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3. Trajectory generation: dataset 

 

 

The underlying idea of the thesis is to approximate the parameters of the LPV system 

composed by equations (5) and (8) using GMM. To this aim, an appropriate set of 

kinematically feasible demonstrations generated off-line are needed. Due to the high 

complexity of the system and the impossibility to employ methods based on kinesthetic 

procedures (as done for fixed-base robotic manipulator in [3] and [4]), it has been chosen 

to construct the dataset through the resolution of an optimal-control problem. Through 

this chapter the procedure adopted to find the points composing the dataset is treated. 

 

 

 

3.1 Newton-Euler equation in body coordinates 

 

When open mechanic chains are considered, as in the case of a floating-base robotic 

manipulator, the Denavit-Hartenberg convention is a convenient way to express the 

kinematics. For this reason, the reference frames attached to each rigid body composing 

the system has been taken as depicted in fig. 3. The equations of motion are solved with 

respect to the inertial reference frame {𝑋0, 𝑌0}.  

To obtain the Newton-Euler equation describing the overall motion of the SMS, the same 

procedure adopted in [5] has been employed. Neglecting the perturbation term, the 

resulting dynamic equation is: 

 𝑴(𝒒)�̈�(𝒕) + 𝑪(𝒒, �̇�)�̇�(𝒕) = 𝝉 (12) 

Where 𝒒 is a vector containing the minimal set of coordinates used to identify the 

configuration of the chaser system. In this case 𝒒 is composed by the position and 

orientation of the base and the angles representing the inclinations of each link: 

𝒒 = [𝑥𝑠/𝑐  , 𝑦𝑠/𝑐  , 𝛼𝑠/𝑐  , 𝑞1 , 𝑞2 , 𝑞3]
𝑻
 

𝝉 is the control input vector, 𝑴(𝒒) and 𝑪(𝒒, �̇�) are respectively the inertia matrix and the 

matrix containing the centrifugal and Coriolis forces/torques: 
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 𝑴(𝒒) =∑𝑱𝑘
𝑇𝚲𝑘𝑱𝑘

𝑘

 (13) 

 𝑪(𝒒, �̇�) =∑𝑱𝑘
𝑇

𝑘

[(𝚲𝑘𝑎𝑑𝑗0,𝑘 − 𝑎𝑑𝑗0,𝑘
𝑇 𝚲𝑘)𝑱𝑘 +𝚲𝑘 �̇�𝑘] 

(14) 

Here, 𝚲𝑘 is the constant body inertia matrix and 𝑎𝑑𝑗0,𝑘 is the Lie bracket matrix which 

uses the body twist of the Lie algebra as a linear mapping onto the Lie algebra itself. 𝑱𝑘 

and �̇�𝑘 are the Jacobian matrix and its first derivative and are computed iteratively. The 

procedure to obtain 𝑴 and 𝑪 starting from 𝒒 and �̇� is described in [5]. 

Equation (12) can be rewritten in state-space form as: 

 �̇� = {
�̇�
�̈�
} = [

𝟎 𝑰
𝟎 −𝑴−1𝑪

] {
𝒒
�̇�} + [

𝟎
𝑴−1] 𝝉 = 𝑨𝒙 + 𝑩𝝉 (15) 

 

 

3.2 Optimal-control problem using multiple shooting  

 

To generate the chaser’s trajectories, modeling of point-to-point motion has been 

considered. In such kind of motion, the final configuration 𝒒(𝑡𝑓) of the system in 

consideration is designated, but the path used to reach it is irrelevant. Since also the 

initial configuration 𝒒(𝑡0) is known, the problem to be solved becomes then a differential 

Two-Point Boundary Value Problem (TPBVP). Thus, each feasible trajectory that wants 

to be generated can be traced back to an optimal-control problem for which a TPBVP 

has to be solved using numerical techniques. In particular, the optimization procedure 

Figure 3: schematic representation of the spacecraft-manipulator system. The coordinate systems 

attached to the robotic links are depicted following Denavit-Hartenberg convention. 
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that has been chosen is based on the minimization of the control forces required to lead 

the system to the final desired position and configuration. To this aim a quadratic cost 

function is employed: 

 𝐽 =∑𝝉𝑇𝑾𝜏𝝉 (16) 

Where 𝑾𝜏 is a weighting matrix. Moreover, to assure kinematically feasible trajectories, 

suitable constraints must be added to equation (12). As the attitude of the chaser is 

unknown during this optimization steps, an L2 norm is used to constraint the control 

forces: 

 ‖𝝉(𝑡)‖2 ≤ 𝝉𝑚𝑎𝑥 (17) 

The desired system configuration to be reached at grasping is set as: 

 𝒒(𝑡𝑓) = 𝒒𝑓 = [𝑥𝑠/𝑐
𝑓
 , 𝑦𝑠/𝑐

𝑓
 , 𝛼𝑠/𝑐

𝑓
 , 𝑞1

𝑓
 , 𝑞2

𝑓
 , 𝑞3

𝑓
]𝑇 (18) 

Finally, to avoid impacts between the chaser and the target systems, their relative 

velocity has to go to zero at 𝑡𝑓. Accordingly:  

 �̇�(𝑡𝑓) = �̇�𝑓 = [0 , 0 , 0 , 0 , 0 , 0]
𝑇 (19) 

The resulting TPBVP is: 

minimize: min
𝝉
𝐽 = min

𝝉
∑𝝉𝑇𝑾𝜏𝝉 (20a) 

 

subjected to: 𝑴(𝒒)�̈�(𝒕) + 𝑪(𝒒, �̇�)�̇�(𝒕) = 𝝉 (20b) 

 ‖𝝉(𝑡)‖2 ≤ 𝝉𝑚𝑎𝑥 (20c) 

 𝒒(𝑡𝑓) = [𝑥𝑠/𝑐
𝑓
 , 𝑦𝑠/𝑐

𝑓
 , 𝛼𝑠/𝑐

𝑓
 , 𝑞1

𝑓
 , 𝑞2

𝑓
 , 𝑞3

𝑓
]𝑇 (20d) 

 �̇�(𝑡𝑓) = [0 , 0 , 0 , 0 , 0 , 0]
𝑇 (20e) 

Among the possible numerical approaches applicable to solve the TPBVP composed by 

equations (20), a multiple-shooting method is here used. In the direct multiple-shooting 
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method, the interval from 𝑡0 = 0 to 𝑡𝑓 is split into 𝑇 equal subintervals by adding additional 

grid points: 

𝑡0 < 𝑡1 < ⋯ < 𝑡𝑇−1 < 𝑡𝑇 = 𝑡𝑓 

The method starts by guessing the values of 𝒙 at all grid points 𝑡𝑖 with 0 ≤ 𝑖 ≤ 𝑇 − 1. 

Denoting these guesses as 𝒙𝑖, the problem is transformed to an Initial Value Problem 

(IVP) of the form 

 {
�̇� = 𝑓(𝑡, 𝒙(𝑡))

𝒙(𝑡𝑖) = 𝒙𝑖       
 (21) 

that must be resolved for each subinterval. All the solutions 𝒙(𝑡; 𝑡𝑖, 𝒙𝑖)  can then be pieced 

together to form a continuous trajectory if the values of 𝒙 match at the grid points. Thus, 

solutions of the original TPBVP correspond to solutions of the following system 

of 𝑇 equations: 

 {

𝒙(𝑡1; 𝑡0, 𝒙0) = 𝒙1                   
⋮

𝒙(𝑡𝑇−1; 𝑡𝑇−2, 𝒙𝑇−2) = 𝒙𝑇−1
𝒙(𝑡𝑇; 𝑡𝑇−1, 𝒙𝑇−1) = 𝒙𝑇           

 (22) 

The central 𝑇 − 1 equations are the matching conditions, while the first and last equations 

are the boundary conditions 𝒙(𝑡0) = 𝒙0 and 𝒙(𝑡𝑓) = 𝒙𝑓 of the original problem. The 

Runge-Kutta direct method is been chosen as numerical method to solve the system of 

IVP. 

Once solved, the problem returns the state of the system 𝒒𝑡 = [𝒒0…𝒒𝑇]
𝑇 in the boundary 

points of each subinterval. Here 𝑡𝑓 = 15𝑠 and 𝑇 = 36 has been chosen, meaning that the 

state vector is known every 0.417𝑠. 

 

 

3.3 Dataset 

 

It is now possible to construct the dataset from the solution of the system of equations 

(20). As mentioned in chapter 2, the state 𝜉(𝑡) of the LPV system composed by equations 

(5) and (8) considers the position and the orientation of the spacecraft base and of the 

end-effector.  
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For the base, 𝒓𝑏 = [𝑥𝑠/𝑐 , 𝑦𝑠/𝑐 , 𝛼𝑠/𝑐] is already known, while 𝒓𝑒.𝑒 = [𝑥𝑒.𝑒 , 𝑦𝑒.𝑒 , 𝛼𝑒.𝑒] can be 

obtained directly from 𝒒: 

 𝒓𝑒.𝑒 = 𝒓𝑏 + [𝑅]𝛼𝑠/𝑐𝒓0
(𝒙𝑠/𝑐) + [𝑅]𝛽𝒓1

(𝒙0) + [𝑅]𝛾𝒓2
(𝒙1) + [𝑅]𝛿𝒓3

(𝒙2) (23) 

Where in 𝒓𝑗
𝑖 the apex 𝑖 refers to the reference system that is considered. [𝑅]𝑖 is the 

transformation matrix between reference frames: 

 [𝑅]𝑖 = [
cos (𝑖) −sin (𝑖)
sin (𝑖) cos (𝑖)

] (24) 

and 

 {

𝛽 = 𝛼𝑠/𝑐+𝑞1
𝛾 = 𝛽+𝑞2       
𝛿 = 𝛾+𝑞3     

 (25) 

The velocity and acceleration of the end effector �̇�𝑒.𝑒 and �̈�𝑒.𝑒 are the first and second 

derivatives of equation (23) respectively.  

With the goal of creating a dataset as complete as possible, the TPBVP (20) has been 

solved for 𝑁 = 27 different initial configurations. Fig. 4 shows the different positions of 

the spacecraft center of mass, for each of which three different inclinations has been 

Figure 4: scheme of the various c.o.m. positions chosen as initial points to initiate the TPBVP. 



 
15 

 

considered (𝛼𝑠/𝑐 = 0°, 𝛼𝑠/𝑐 = −45° and 𝛼𝑠/𝑐 = 45°). This results in 𝑁 = 27 different 

feasible trajectories, each divided into 𝑇 = 36 intervals for a total of 𝑀 = 𝑁 × 𝑇 = 972 

points in which the state of the system is known. The dataset can then be written as: 

 {𝜉𝑡,𝑛, �̇�𝑡,𝑛, �̈�𝑡,𝑛}
𝑡=0,𝑛=1

𝑇,𝑁
= {𝜉𝑚, �̇�𝑚, �̈�𝑚}

𝑚=1

𝑀
 (26) 
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4. Multivariate regression 

 

 

This chapter first introduces the concept of GMM, then describes how the parameters of 

the LPV system composed by equations (5) and (8) can be approximated via a GMM 

from the training dataset (26), maintaining the stability properties described in section 

2.3.  

 

 

 

4.1 Gaussian Mixture Models 

 

Before defining what a GMM is, lets introduce the concept of Gaussian distribution. In 

probability theory, a Gaussian (or normal) distribution is a type of continuous probability 

distribution for real-valued random variable. The general form of its Probability Density 

Function (PDF) is: 

 𝒩(𝑥; 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒
−
1
2
(
𝑥−𝜇
𝜎
)
2

 (27) 

Here 𝜇 is the mean while 𝜎 is the standard deviation, i.e. the square root of the variance 

𝜎2. A random variable 𝑥 with a Gaussian distribution is said to be normally distributed, 

and is called a normal deviate. The normal distribution generalizes to ℝ𝑛, in which case 

it is known as multivariate Gaussian distribution and it has the form: 

 𝒩(𝒙;𝝁, 𝚺) = √
1

(2𝜋)𝑑det (𝚺)
exp (−

1

2
(𝒙 − 𝝁)𝑇𝚺−1(𝒙 − 𝝁)) (28) 

Where 𝚺  is the covariance matrix and 𝝁 represent still the mean, thought now it is vector-

valued. The importance of normal distributions in statistics is mainly due to the central 

limit theorem. This last states that, under some conditions, the average of many 

observations of a random variable with finite mean and variance is itself a random 

variable, whose distribution converges to a normal distribution as the number of samples 

increases. Therefore, physical quantities that are expected to be the sum of many 

https://en.wikipedia.org/wiki/Probability_density
https://en.wikipedia.org/wiki/Probability_density
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Convergence_in_distribution
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independent processes, as in the studied case, often have distributions that are nearly 

normal.  

Thus, a GMM is a probabilistic model that assumes all the data points are generated 

from a mixture of a finite number of Gaussian distributions with unknown parameters. 

One hint that the data might follow a mixture model is that the data looks multimodal, i.e. 

there is more than one "peak" in the distribution of data. Trying to fit a multimodal 

distribution with a unimodal (one "peak") model will generally give a poor fit. For this 

reason, using a mixture of Gaussian distributions makes intuitive sense for the studied 

case. Furthermore, GMMs maintain many of the theoretical and computational benefits 

of Gaussian models, making them practical for efficiently modeling large datasets. 

A GMM with 𝐾 Gaussians in the multivariate case is parametrized by two types of values, 

the mixture components weights 𝜋𝑘 and a mean 𝝁𝑘 and covariance matrix 𝚺𝑘 for each 

Gaussian component. The mixture component weights satisfy the relation ∑ 𝜋𝑘𝐾
𝑘=1 = 1, 

so that the total probability distribution normalizes to 1. The multi-dimensional GMM can 

then be written as: 

 𝑃(𝒙; 𝜽) = ∑𝜋𝑘
𝐾

𝑘=1

𝒩(𝒙; 𝝁𝑘 , 𝚺𝑘) (29) 

The procedure to obtain the parameters 𝜃𝑘 = {𝜋1
𝑘, 𝜋2

𝑘 , 𝜇𝑘 , Σ𝑘} is introduced and explained 

in the following chapters. 

 

 

4.2 LPV system through GMM 

 

To estimate the new DS, the parameters of the LPV system becomes the priors 𝜋𝑗
𝑘  ∀𝑗 ∈

{1,2}, the means 𝝁𝑘 and the covariance matrices 𝚺𝑘 of the 𝑘 ∈ {1…𝐾} Gaussian 

functions. 𝝁𝑘 and 𝚺𝑘 for a Gaussian 𝑘 are defined by: 

 𝝁𝑘 =

(

 

𝜇𝜉
𝑘

𝜇
�̇�
𝑘

𝜇
�̈�
𝑘
)

                𝚺𝑘 =

(

 
 
Σ𝜉
𝑘 Σ

𝜉�̇�
𝑘 Σ

𝜉�̈�
𝑘

Σ
�̇�𝜉
𝑘 Σ

�̇�
𝑘 Σ

�̇��̈�
𝑘

Σ
�̈�𝜉
𝑘 Σ

�̈��̇�
𝑘 Σ

�̈�
𝑘

)

 
 

 (30) 

The parameters are collected into a matrix 𝜽 = {𝜃1…𝜃𝐾} where 𝜃𝑘 = {𝜋1
𝑘, 𝜋2

𝑘 , 𝜇𝑘 , Σ𝑘}. 

https://brilliant.org/wiki/data-mode/
https://brilliant.org/wiki/data-mode/
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Given a set of 𝑁 demonstrations {𝜉𝑡,𝑛, �̇�𝑡,𝑛, �̈�𝑡,𝑛}
𝑡=0,𝑛=1

𝑇,𝑁
, each recorded point in the 

trajectories [𝜉𝑚, �̇�𝑚, �̈�𝑚] is associated with two Probability Density Functions (PDF) 

𝑃𝑗(𝑥; 𝜽), one related to 𝜉 and the other one to �̇�:   

 𝑃𝑗(𝑥; 𝜽) = ∑𝜋𝑗
𝑘

𝐾𝑗

𝑘=1

𝑃𝑗(𝑥|𝑘)          ∀(𝑗, 𝑥) ∈ {(1, 𝜉), (2, �̇�)} (31) 

Here 𝑃𝑗(𝑥|𝑘) is the normal or Gaussian conditional PDF (28) corresponding to the 𝑘𝑡ℎ 

Gaussian function: 

 
𝑃𝑗(𝑥|𝑘) = 𝒩(𝑥|𝜇𝑥

𝑘 , Σ𝑥
𝑘) =

1

√(2𝜋)6|Σ𝑥
𝑘|

exp [−
1

2
([𝑥] − 𝜇𝑥

𝑘)𝑇(Σ𝑥
𝑘)−1([𝑥] − 𝜇𝑥

𝑘)] 
(32) 

∀𝑥 ∈ ℝ4. Taking the posterior mean estimate of 𝑃(�̈�|𝜉, �̇�) yields (as done in [6]): 

 

�̈� = ∑
𝜋1
𝑘𝑃1(𝜉|𝑘)

∑ 𝜋1
𝑖𝑃1(𝜉|𝑖)

𝐾1
𝑖=1

(μ
�̈�
𝑘 + Σ

�̈�𝜉
𝑘 (Σ𝜉

𝑘)
−1
(𝜉 − 𝜇𝜉

𝑘)) +

𝐾1

𝑘=1

+∑
𝜋2
𝑘𝑃2(�̇�|𝑘)

∑ 𝜋2
𝑖𝑃2(�̇�|𝑖)

𝐾2
𝑖=1

(μ
�̈�
𝑘 + Σ

�̈��̇�
𝑘 (Σ

�̇�
𝑘)

−1
(�̇� − 𝜇

�̇�
𝑘))

𝐾2

𝑘=1

 

(33) 

To simplify eq. (33) the following change of notation is used: 

 

{
 
 

 
 𝐴𝑘

1 = Σ
�̈�𝜉
𝑘 (Σ𝜉

𝑘)
−1
              𝐴𝑘

2 = Σ
�̈��̇�
𝑘 (Σ

�̇�
𝑘)

−1
                    

𝑏𝑘
1 = μ

�̈�
𝑘 − 𝐴𝑘

1𝜇𝜉
𝑘               𝑏𝑘

2 = μ
�̈�
𝑘 − 𝐴𝑘

2𝜇
�̇�
𝑘                       

ℎ𝑘
𝑗 (𝑥) =

𝜋𝑗
𝑘𝑃𝑗(𝑥|𝑘)

∑ 𝜋𝑗
𝑖𝑃𝑗(𝑥|𝑖)

𝐾𝑗
𝑖=1

        ∀(𝑗, 𝑥) ∈ {(1, 𝜉), (2, �̇�)} 

 (34) 

0 ≤ ℎ𝑘
𝑗 (𝑥) ≤ 1 here is a continuous and continuously differentiable function that gives a 

measure of the relative influence of each Gaussian locally. Substituting eq. (34) into (33) 

it is obtained: 

 �̈� = 𝑓(𝜉, �̇�) = ∑ℎ𝑘
1(𝜉)(𝐴𝑘

1𝜉 + 𝑏𝑘
1) +

𝐾1

𝑘=1

∑ℎ𝑘
2(�̇�)(𝐴𝑘

2 �̇� + 𝑏𝑘
2)

𝐾2

𝑘=1

     ∀𝜉, 𝜉,̇ �̈� ∈ ℝ𝐷 (35) 
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That is the representation of the unforced DS (1) with GMM. 𝑓(𝜉, �̇�) is now expressed as 

a nonlinear sum of linear dynamical systems. To achieve convergence, the control input 

vector (4) becomes simply: 

 𝑢(𝜉, �̇�) = �̈�∗ (36) 

Adding eq. (36) to eq. (35) it is obtained the GMM formulation of the LPV system (5): 

 �̈� − �̈�∗ =∑ℎ𝑘
1(𝜉)(𝐴𝑘

1𝜉 + 𝑏𝑘
1) +

𝐾1

𝑘=1

∑ℎ𝑘
2(�̇�)(𝐴𝑘

2

𝐾2

𝑘=1

�̇� + 𝑏𝑘
2) (37) 

 

 

4.3 Stability analysis 

 

The DS (37) asymptotically converges to [𝜉∗  �̇�∗]
𝑇
 if it meets the following constraints: 

 

{
 

 𝐴𝑘
𝑗
+ (𝐴𝑘

𝑗
)
𝑇
≺ 0      ∀𝑗 ∈ {1,2}        

𝐴𝑘
1 = (𝐴𝑘

1)
𝑇
              ∀𝑘 ∈ {1…𝐾1}

𝑏𝑘
1 = −𝐴𝑘

1𝜉∗      ;        𝑏𝑘
2 = −𝐴𝑘

2 �̇�∗   

 (38) 

The above system is the equivalent GMM’s formulation of (8). As done in section 2.3, 

Lyapunov stability theorem is utilized to prove convergence of the system of equations 

composed by (37) and (38). Consider the following Lyapunov function: 

 𝑉(𝜉, �̇�) =
1

2
(�̇� − �̇�∗)

𝑇
(�̇� − �̇�∗) −

1

2
(𝜉 − 𝜉∗)𝑇∑ℎ𝑘

1(𝜉)𝐴𝑘
1(𝜉 − 𝜉∗)

𝐾1

𝑘=1

 (39) 

Thanks to the first constraint of (38), 𝑉 results positive 𝑉 > 0. In addition, 𝑉(𝜉∗, �̇�∗) = 0. 

The first derivative of the Lyapunov function results: 

 

�̇� =
𝑑𝑉

𝑑𝑡
= (�̇� − �̇�∗)

𝑇
(�̈� − �̈�∗) −∑ℎ𝑘

1(𝜉)(𝜉 − 𝜉∗)𝑇𝐴𝑘
1(�̇� − �̇�∗)

𝐾1

𝑘=1

 

= (�̇� − �̇�∗)
𝑇
∑𝜃𝐴𝑘

2𝐴𝑘
2(�̇� − �̇�∗)

𝐾2

𝑘=1

 

(40) 
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Where equation (37) and the constraints in the last row of (38) has been substituted. 

Again, a quadratic form multiplied a negative definite matrix is obtained. Consequently, 

�̇� < 0. Furthermore �̇�(𝜉∗, �̇�∗) = 0. The conditions of Lyapunov stability theorem are 

therefore satisfied. The DS 

 

{
 
 
 
 

 
 
 
 
�̈� = ∑ℎ𝑘

1(𝜉)(𝐴𝑘
1𝜉 + 𝑏𝑘

1) +

𝐾1

𝑘=1

∑ℎ𝑘
2(�̇�)(𝐴𝑘

2 �̇� + 𝑏𝑘
2)

𝐾2

𝑘=1

+ 𝑢      

𝑢 = �̈�∗                                                                                              

{
 

 𝐴𝑘
𝑗
+ (𝐴𝑘

𝑗
)
𝑇
≺ 0      ∀𝑗 ∈ {1,2}        

𝐴𝑘
1 = (𝐴𝑘

1)
𝑇
              ∀𝑘 ∈ {1…𝐾1}

𝑏𝑘
1 = −𝐴𝑘

1𝜉∗      ;       𝑏𝑘
2 = −𝐴𝑘

2 �̇�∗    

 (41) 

ss stable and exhibits convergence behavior to [𝜉∗  �̇�∗]
𝑇
.  
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5. Learning algorithm 

 

In this chapter, a learning algorithm needed to estimate the parameters 𝜽 of the DS given 

in (41) is presented. As training procedure, an optimization approach based on the 

minimization of a Mean Square Error (MSE) has been chosen. Moreover, an alternative 

simplified solution for this last is given. 
 

 

 

 

5.1 MSE-based approach 

 

This method uses the Mean Square Error (MSE) as a means to quantify the accuracy of 

the estimation. The system to be optimized is the following: 

minimize: min
𝜽
𝐶(𝜽) = min

𝜽
∑ (�̈� − �̈�𝑚)

𝑇
(�̈� − �̈�𝑚)

𝑀

𝑚=1

 (42) 

subjected to: 

 

{
 
 
 
 
 

 
 
 
 
 

𝐴𝑘𝑖
𝑖 + (𝐴𝑘𝑖

𝑖 )
𝑇
≺ 0

𝐴𝑘𝑖
1 = (𝐴𝑘𝑖

1 )
𝑇
        

𝑏𝑘𝑖
1 = −𝐴𝑘𝑖

1 𝜉∗       

𝑏𝑘𝑖
2 = −𝐴𝑘𝑖

2 �̇�∗       

          

{
 
 
 
 
 

 
 
 
 
 
0 ≺ (

Σ
�̇�

𝑘𝑖 Σ
�̇��̈�

𝑘𝑖

Σ
�̈��̇�

𝑘𝑖 Σ
�̈�

𝑘𝑖
)

0 ≺ (
Σ𝜉
𝑘𝑖 Σ

𝜉�̈�

𝑘𝑖

Σ
�̈�𝜉

𝑘𝑖 Σ
�̈�

𝑘𝑖
)

0 ≤ 𝜋𝑖
𝑘𝑖 ≤ 1         

∑𝜋𝑖
𝑘𝑖 = 1          

𝐾𝑖

𝑘𝑖

 (43) 

for ∀𝑘𝑖 ∈ {1…𝐾𝑖} and ∀𝑖 ∈ {1,2}. 𝐶(𝜽) is the cost function, 𝜽 is the vector of unknown 

parameters and 𝑀 is the number of training data-points. �̈� is computed directly from (35) 

and �̈�𝑚 is taken from the training-set (24). The left-side constraints in (43) assure 

asymptotical stability, while those on the right follows from the definition of positiveness 

and bounded integrality for the GMM density; see [4]. The number of optimization 

parameters required is 𝐾(2 + 3𝑑 + 4𝑑2), i.e. the sum of priors, means and covariance 

matrices, respectively. Considering a number 𝐾 = 4 of Gaussians, the total number of 

parameters results 𝑃 = 656. It can be noted that the learning grows linearly with the 

number of Gaussians and quadratically with the dimension.  
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5.2 Alternative optimization methods 

 

To simplify the optimization procedure and increase its performances, a change of 

optimization parameters can be performed [8]. Defining: 

 {

�̃�𝑗
𝑘 = ln(𝜋𝑗

𝑘)    

𝐿𝜉
𝑘 = 𝐶ℎ𝑜𝑙(Σ𝜉

𝑘)

𝐿
�̇�
𝑘 = 𝐶ℎ𝑜𝑙(Σ

�̇�
𝑘)

 (44) 

where 𝐿𝑥
𝑘  are the Cholesky decomposition of Σ𝑥

𝑘. 𝐿𝑥
𝑘  always exist since Σ𝑥

𝑘 are positive 

definite matrices. Furthermore, substituting the last two constraints on the left-side of 

(43) into (35), the equation describing the evolution of the motion becomes: 

 �̈� = 𝑓(𝜉, �̇�) = ∑ℎ𝑘
1(𝜉)𝐴𝑘

1(𝜉 − 𝜉∗) +

𝐾1

𝑘=1

∑ℎ𝑘
2(�̇�)𝐴𝑘

2(�̇� −

𝐾2

𝑘=1

�̇�∗) (45) 

Considering equations (44) and (45) and defining the new optimization parameters as: 

𝜃𝑘 = {�̃�1
𝑘 , �̃�2

𝑘, 𝜇𝑘 , 𝐿𝜉
𝑘 , 𝐿

�̇�
𝑘 , 𝐴1

𝑘 , 𝐴2
𝑘} 

the alternative MSE optimization can be expressed as: 

minimize: min
𝜽
𝐶(𝜽) = min

𝜽
∑ (�̈�𝑚 − �̈�)

𝑇
(�̈�𝑚 − �̈�)

𝑀

𝑚=1

 (46) 

subjected to: {
𝐴𝑘𝑖
𝑖 + (𝐴𝑘𝑖

𝑖 )
𝑇
≺ 0

𝐴𝑘𝑖
1 = (𝐴𝑘𝑖

1 )
𝑇
        

 (47) 

�̈� are computed directly from (45). The proposed change permits to automatically satisfy 

the right-hand side constraints of (43) and the last two of the left-side are already 

embedded into the LPV equation of motion. The number of optimization parameters in 

this case is reduced to 𝑃 = 𝐾(2 + 2𝑑 + 4𝑑2 − 30) = 512. In fact, in this case 𝜇
�̈�
𝑘 might be 

not considered and the presence of two lower triangular matrices eliminate others 

2𝐾 (𝑑
2

2⁄ − 𝑑 2⁄ ) variables. 
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 A Sequential Quadratic Programming (SQP) approach has been used to solve the 

optimization problem algorithm.  In addition, since the Non-Linear Programming (NLP) 

problem (46) is non-convex, the initial guess 𝜃0
𝑘 for the optimization problem affects the 

quality of the solutions. The following procedure provides a simple and efficient way to 

obtain a feasible initial guess: 

1. Given the dataset {𝜉𝑡,𝑛, �̇�𝑡,𝑛, �̈�𝑡,𝑛}
𝑡=0,𝑛=1

𝑇,𝑁
, separate the trajectories into a number 

of subsets equal to the chosen number of gaussians 𝐾; i.e., for each trajectory 

create: 

{
 
 

 
 {𝜉

𝑡,𝑛 , �̇�𝑡,𝑛}
𝑡=0,𝑛=1

𝑇/𝐾,𝑁
= 𝑘1              

{𝜉𝑡,𝑛 , �̇�𝑡,𝑛}
𝑡=𝑇/𝐾,𝑛=1

2𝑇/𝐾,𝑁
= 𝑘2          

⋮

{𝜉𝑡,𝑛 , �̇�𝑡,𝑛}
𝑡=(𝐾−1)𝑇/𝐾,𝑛=1

𝑇,𝑁
= 𝑘𝐾

 

2. Calculate the mean and covariance matrix for the 𝐾 subsets: 

{
�̌�𝑘 = 𝑚𝑒𝑎𝑛(𝑘𝑘)

Σ̌𝑘 = 𝑐𝑜𝑣(𝑘𝑘)    
 

Here the accent denotes that the parameters are the initial guesses. 

3. Take the priors as: 

�̌�𝑗
𝑘 =

1

𝐾
 

However, the proposed initialization method cannot ensure to find the globally optimal 

solution due to the non-convexity of the NLP problem. Solvers are usually very sensitive 

to initialization of the parameters and will often converge to some local minima of the 

objective function. 

Once the optimization process is completed, the GMM’s parameters can be 

reconstructed as: 

 

{
 
 
 
 

 
 
 
 𝜋𝑗

𝑘 = 𝑒�̃�𝑗
𝑘

/ (∑ 𝑒�̃�𝑗
𝑘𝐾1

𝑘=1
)

Σ𝜉
𝑘 = 𝐿𝜉

𝑘(𝐿𝜉
𝑘)
𝑇
                   

Σ
�̇�
𝑘 = 𝐿

�̇�
𝑘 (𝐿

�̇�
𝑘)

𝑇
                  

Σ
�̈�𝜉
𝑘 = 𝐴1

𝑘(Σ𝜉
𝑘)
𝑇
                

Σ
�̈��̇�
𝑘 = 𝐴2

𝑘 (Σ
�̇�
𝑘)

𝑇
               

 (48) 
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6. Results 

 

 

 

Given the presented framework, the DS 

 �̈� = 𝑓(𝜉, �̇�) + 𝑢 = ∑ℎ𝑘
1(𝜉)𝐴𝑘

1(𝜉 − 𝜉∗) +

𝐾1

𝑘=1

∑ℎ𝑘
2(�̇�)𝐴𝑘

2(�̇� −

𝐾2

𝑘=1

�̇�∗) + �̈�∗ (49) 

has been constructed utilizing the parameters in table 2. Additionally, the final 

configuration, velocity, and acceleration of the chaser system, used also inside (45) to 

run the training algorithm, has been chosen as: 

 

{
 

 𝜉
∗ = [−0.89 ; −0.89 ; 

π

4
 ;  0 ;  0 ;  

𝜋

30
]

�̇�∗ = [0 ; 0 ; 0 ; 0 ; 0 ; 0]                           

�̈�∗ = [0 ; 0 ; 0 ; 0 ; 0 ; 0]                           

 (50) 

The values are taken with respect to a Cartesian coordinate system centered on the 

target grasping fixture, so that the final position of the end-effector, in both the x and y 

coordinates, has always to converge to zero, i.e. [𝑥𝑒.𝑒 ;  𝑦𝑒.𝑒] = [0 ; 0]. Positions are 

measured in meters, while the unit measure chosen for the angles are the radians.  The 

positions and orientations in (50) correspond to the configuration depicted on the right-

side of figure 2, while velocity and acceleration vectors are null to have zero relative 

velocity of the end-effector with respect to the target. However, the choice for the final 

configuration is arbitrary within the physical constraints of the system.  

Parameter Value 

Number of dimensions 

Number of training data-points 

Number of Gaussians 

𝑑 = 6 

𝑀 = 972 

𝐾 = 4 
 

Table 2: parameters used to create the DS (49). 
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The schematic of the control flow employed to test stability and robustness behaviors of 

the DS (49) is reported in figure 1.The tests have been carried on considering four 

scenarios, characterized by different initial (𝜉(𝑡0) = 𝜉
0) and final (𝜉(𝑡𝑓) = 𝜉

∗) positions of 

the chaser system. Velocity and acceleration vectors, for both initial and final states, are 

instead always taken as vectors of zeros for the reasons discussed in the previous 

chapters.  

 

 

 

 

 

Figures 5a, 5b: time evolution of DS (49). In the first figure positions and orientations are depicted, while on 

the second one the velocity vector is considered. The initial and final state are respectively: 

• 𝜉0 = [−2.89 ; −2.89 ;  0 ; −3.19 ; −2.89 ; 
𝜋

2
]. 

• 𝜉∗ = [−0.89 ;  0.−89 ; 
𝜋

4
 ;  0 ;  0 ; 

𝜋

30
]. 
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1st case: initially both 𝜉0 and 𝜉∗ have been chosen to coincide with vectors belonging to 

the dataset used to create the model. Figures 5a and 5b shows the time evolution of the 

vector containing positions and orientations, and the vector containing the velocities, 

respectively. Since, in this case, the values that the state has to reach are represented 

by the system (50), it can be seen that the system converges to it.  

A remark has to be done on both the amplitude of the initial oscillations of the state and 

the velocity of convergence. The presented work has been carried on with the aim of 

constructing a DS stable and robust in face of uncertainties on the boundary conditions. 

No type of assumptions was made to limit the amplitude of the state vector components 

or to fastener the convergence. Conversely, the dataset has been created minimizing 

the vector of control forces. In any case, with a proper tuning of the control vector both 

the aspects can be modified depending on the final needs of the user. 

All the 27 different initial configurations used to create the dataset (figure 4) have been 

tested. The time evolution showed convergence to the desired state, similar to the case 

reported in figure 5a and 5b, in all the scenarios. 

2nd case: for the second case it has been chosen to keep the final configuration as in 

(50), while vary the initial configuration, considering, this time, points out of the dataset. 

The results in terms of position, orientation, and velocity for the case  

𝜉0 = [−2.49 ; −2.49 ; 
π

6
 ;  −2.79 ; −2.49 ; 

π

2
] 

are reported in figures 6a and 6b. Again, the system shows good stability and converges 

to the desired state. For the amplitudes of the state’s variations and for the convergence 

time hold the same considerations done for the previous case. 

20 different out-of-dataset initial configurations has been tried; in all the cases the state 

vector converged to the wanted values. The results obtained prove that the system is 

robust in front of changes in the initial boundary conditions. However, to achieve good 

convergence behavior, the chosen 𝜉0 must be close to a vector belonging to the dataset. 

In particular, the variation range of the initial state vector 𝜉0 to stay within, in order to 

maintain good asymptotic stability of the DS, has been proven to be: 

• For the positions:  

ξ0 = [−2.89 ± 1.0 ;  −2.89 ± 1.0 ;  −3.19 ± 1.0 ; −2.89 ± 1.0 ]m 

• For the orientations:  

ξ0 = [0 ± 
𝜋

2
 ;  
𝜋

2
± 0 ] rad 
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Figure 6a, 6b: 𝜉∗ is taken from (50), while the initial configuration is: 

• 𝜉0 = [−2.49 ; −2.49 ; 
𝜋

6
 ;  −2.79 ; −2.49 ; 

𝜋

2
]. 

 

 

3rd case: this case is conceptually the opposite of the previous case. In fact, the initial 

configuration is fixed and belongs to the dataset meanwhile ξ∗ has been made to change. 

In figures 7a and 7b the time evolution for the case  

𝜉∗ = [−1.27 ; 0 ; 0 ; 0 ; 0 ; 0] 

is depicted. The showed behavior is similar to the one demonstrated for the previous 

cases, the states reach convergence and stabilize to the desired values. 20 different 𝜉∗ 
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has been considered also for this scenario. The test proved that, if the variation limits are 

inside the range 

𝜉∗ = [−0.89 ± 1.0 ;  −0.89 ± 1.0 ;  
π

4
±
π

2
 ;  0 ;  0 ; 

𝜋

30
±
π

4
] 

, the solutions always converge to the new desired state. The results obtained prove that 

the created DS is robust in front of changes in the final boundary conditions.  

 

 

 

 

 

Figure 7a, 7b: the initial and final configurations are respectively: 

• 𝜉0 = [−2.89 ; −2.89 ;  0 ; −3.19 ; −2.89 ; 
𝜋

2
]. 

• 𝜉∗ = [−1.27 ;  0 ;  0 ;  0 ;  0 ;  0]. 



 
29 

 

 

 

 

Figure 8a, 8b: the state vector has been chosen as: 

• 𝜉0 = [−2.89 ; −2.89 ;  0 ; −3.19 ; −2.89 ; 
𝜋

2
]; 

• 𝜉∗(𝑡 < 4000) = [−0.89 ; −0.89 ; 
𝜋

4
 ;  0 ;  0 ; 

𝜋

30
]; 

• 𝜉∗(𝑡 ≥ 4000) = [−1.27 ;  0 ;  0 ;  0 ;  0 ;  0]. 

 

 

4th case: as introduced in Chapter 2, a control algorithm based on a visual system 

mounted on the chaser spacecraft, continuously upgrades the final configuration 𝜉∗ 

depending on the target unknown dynamics. For this reason, in this last case, starting 

from any initial configuration taken in the range described for case 2, the final position is 

made to change multiple times during the system motion.  

Figures 8a and 8b shows the time evolution of the DS if 𝜉∗ changes at 𝑡 = 4000𝑠, in 

particular: 
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{
𝜉∗(𝑡 < 4000) = [−0.89 ; −0.89 ; 

π

4
 ;  0 ;  0 ;  

𝜋

30
]

𝜉∗(𝑡 ≥ 4000) = [−1.27 ;  0 ;  0 ;  0 ;  0 ;  0]             
 

It can be seen that, in correspondence of the upgrade, the states describe an oscillation, 

traceable to a re-set of the trajectory, to then converge to the desired solution. 

The tests have been carried on upgrading 𝜉∗ up to 5 times for each trajectory. The results 

are comforting since in all the proves the DS showed asymptotical stability and 

robustness in face of uncertainties in both the final and initial boundary conditions.  
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7. Conclusions 

 

 

The capture of a tumbling Resident Space Object (RSO) by a spacecraft equipped with 

a robotic manipulator is expected to be a key maneuver in many future space missions. 

Given the increased number of degrees-of-freedom and the presence of non-convex 

constraints, successfully guiding such maneuver is a challenge.  

The proposed approach is able to find a solution to the guidance problem by solving a 

DS in the form of an LPV system, whose parameters are approximated using GMMs. 

The successful demonstrations of this given guidance algorithm, during the proposed set 

of numerical simulations, open to the possibility of applying the proposed approach for 

onboard and real-time use. However, it has to be remembered that these results 

represent an “ideal” environment because of the multiple initial assumptions introduced 

in paragraph 2.1. For this reason, the numerical simulations provided may 

underestimates the amount of impulse required to complete the capture maneuver as 

well as modelling errors may make the chaser deviate from the nominal trajectory during 

real applications. Moreover, the control vector must be tuned to satisfies, apart from 

convergence and robustness properties, other important aspects such as the 

convergence velocity or additional constraints on the generated trajectory.  

Despite these considerations the tests show consistent results and appear to indicate a 

certain degree of robustness of the created framework. 

 

 

7.1 Future Works 

 

In this paragraph are presented possible implementations for future works. In order to 

apply the given framework to real scenarios, the following points should be satisfied or, 

at least, considered: 

• Surely, the procedure has to be extended to the 3D case. This implies the 

increment of the state vector dimension among with the increased complexity of 

the algorithms presented to construct the final DS. However, this extension 

should not involve too much the quality of the solutions since the main changes 

are related to the off-line procedure. 
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• The robotic arm may be composed by more links with the consequence of 

augmenting the redundancy of the system. The considerations related to this are 

similar to those done for the previous point. 

• As previously mentioned, the control may be tuned to consider the proper velocity 

of convergence as well as to feasibly limit the components of the state vector. 

• Additional constraints, like the keep-out-zones related to tumbling targets, should 

be considered during the dataset creation.  

• If the variation range of the initial and final state vector wants to be increased, a 

possible solution is to increment the number of demonstrations to insert inside 

the dataset. This point coincide with an increased degree of robustness of the 

created DS. 
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