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Abstract

In this thesis, we introduce a new class of pure jump additive processes for modeling equity
implied volatility surfaces: the additive normal tempered stable process (ATS). We derive its
short-time-to-maturity asymptotics. We show that ATS accurately calibrate the volatility level
and skew on different days (nine-year dataset). This framework allows pricing European options
with classical closed-form methods (e.g., Lewis formula) , on the one hand, and exotic derivatives
with fast Monte Carlo schemes , on the other hand.

The ATS is a simple additive process for equity index derivatives. A process is said to be an
additive process if it presents independent (but not-stationary) increments. In particular, we
present in detail the application of Normal Tempered Stable processes (e.g., NIG and VG) with
time-dependent parameters. It accurately fits the equity index volatility surfaces in the whole
time range of quoted instruments, including options with small time-horizon (days) and long
time-horizon (years).

We introduce the model via its characteristic function; this allows using Fourier pricing tech-
niques. We show that even if the model loses the classical stationarity property of Lévy processes,
it presents interesting scaling properties for the calibrated parameters. The two power-law scal-
ing parameters are β, related to the variance of jumps, and δ, related to the smile asymmetry.
In option market data, we observe that β = 1 and δ = −1/2; we build a statistical test that
confirms this power-law scaling result.

We examine the short-time-to-maturity behavior of the ATS. As emphasized by empirical
studies, a negative skew inversely proportional to the square root of the time-to-maturity char-
acterizes the equity implied volatility. We prove that the implied volatility of these additive
processes is consistent, in the short time, with the equity market observed characteristics if and
only if β = 1 and δ = −1/2.

We design a new fast Monte Carlo scheme also for ATS. The scheme leverages on the indepen-
dence of the increments for additive processes and is based on the ATS characteristic function.
We prove some bounds on the method biases and we test its performances against a classic
Gaussian approximation method (based on the ATS Lévy measure).

Finally, we test the quality of the calibration on historical S&P 500 and EURO STOXX 50
options prices on a large dataset composed by nine years of closing prices. To calibrate the
process on equity market data, we introduce a new technique to recover the implicit discount
factor (and forward prices) in the derivative market using only European put and call prices: this
discount is grounded in actual transactions in active markets. The (unique) forward contract
-built using the put-call parity relation- contains information about the market discount factor:
by no-arbitrage conditions, we identify the implicit interest rate such that the forward contract
value does not depend on the strike.
Key Words: Additive process, volatility surface, calibration, skew, small-time, forward price,
put-call parity, implied interest rate, cost-of-funding, synthetic forward, Monte Carlo
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Chapter 0

Introduction

A derivative product is a security whose value depends on another security. Derivative products
are now actively traded in most exchanges and their trading volume is often above the volume of
the underlying securities. A major branch of quantitative finance is dedicated to options pricing
and hedging (see e.g., Hull 2003). A European call (put) option gives the right to buy (sell) for
a certain price the underlying security at a certain maturity date. Hence, the call option has
discounted pay-off Bt

(
F0(t) eXt − F0(t) ex

)+ (and Bt
(
F0(t) ex − F0(t) eXt

)+ is the discounted
payoff for the corresponding put) where F0(t) is the underlying forward price1 with maturity t
at time 0, F0(t)eXt is the underlying forward price at time t, t is the option time-to-maturity, K
is the option strike price, x := ln K

F0(t) the asset log-moneyness and Bt the deterministic discount
factor between 0 and t. Notice that the price, at time t = 0, of an European option depends
directly from the law of the forward exponent Xt.

One of the first models that link option prices with the underlying forward dynamic is the
world-renowned Black (1976) model. In this framework, the forward exponent Xt is modeled as
follows

Xt = −I
2t

2 + I Wt ,

where Wt is a Brownian motion with drift and I the volatility parameter. A simple close formula
is available for European call option prices:

Bt F0(t)E
[(
eXt − ex

)+] = Bt (F0(t)N(d1)− exN(d2)) ,

where N is the Gaussian cumulative distribution function and

d1,2 = log(−x)
I
√
t
± I
√
t

2 .

Market prices are available for European options, thus it is possible to invert the formula above
to get the market-implied I, the so-called implied volatility. In the simple Black (1976) model
implied volatility, obtained from options on the same underlying, should be constant over time-
to-maturity t and strike price K. However, this is not the case. In figure 0.1, as an example, we
plot the S&P 500 implied volatility surface (i.e. the implied volatility at different log-moneyness
and maturities) at the 30th of May 2013.

1For the sake of simplicity we define the options directly w.r.t. the forward price and not w.r.t. the spot price.
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Figure 0.1: Implied volatility surface of S&P 500 at the 30th of May 2013 for time-to-maturities
that goes from three weeks to two years.

Typically, volatility surfaces of underlying in the same asset class are similar. We use the
S&P 500, which is one of the most liquid equity indexes worldwide, to present the three main
characteristics of equity implied volatility.

First, the level of volatility, i.e. the volatility around the at-the-money (ATM), is not constant
in time. Second, the skew, i.e. the derivative ATM of the implied volatility w.r.t. the strike,
is negative and increasing w.r.t. the time to maturity. Third, around the ATM the implied
volatility is convex. Numerous model specifications for the forward exponents have been proposed
to explain European options market prices; hereinafter we focus on pure jump processes.

Pure jump Lévy processes are a powerful modeling solution that provides parsimonious models
consistent with option prices and underlying prices. Mantegna and Stanley (1995) explore the
possibility that a pure jump Lévy process explains the power-law scaling phenomena observed
in the S&P 500 returns.

Lévy process standard definition follows.

Definition 0.0.1. (Sato (1999a), Def.1.6, p.3)
A cadlag stochastic process {Xt}t≥0 is a Lévy process if and only if

1. For any choice of n ≥ 1 and 0 ≤ t0 < t1... < tn, the random variables Xt1 − Xt0 ,
Xt2 −Xt1 ,...,Xtn −Xtn−1 are independent.

2. X0 = 0.

3. The law of the random variable Xt+s −Xs does not depend on s.

4. {Xt}t≥0 is stochastically continuous:

∀ε > 0, lim
h→0

P [|Xt+h −Xt| > ε] = 0 .

One of the first applications to option pricing dates back to the seminal work of Madan and
Seneta (1990). Lévy processes parsimoniously describe some key features of the market volatility
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surface. Moreover, this model class admits a simple closed formula for European derivatives
(Carr and Madan 1999, Lewis 2001). The class of Lévy normal tempered stable processes (LTS)
appears to be relatively flexible and parsimonious. LTS are pure jump processes, obtained via
the well-established Lévy subordination technique (see, e.g., Cont and Tankov 2003, Schoutens
2003). Most of the applications involve two processes in the LTS family: Normal Inverse Gaussian
(NIG) (Barndorff-Nielsen 1997) and Variance Gamma (VG) (Madan et al. 1998).

The Lévy normal tempered stable processes ft are usually introduced time-changing a Brow-
nian motion with drift Wt with a Lévy tempered stable subordinator Zt (e.g. Inverse Gaussian
or Gamma process) independent from Wt.

ft = −
(
η + 1

2

)
σ2 Zt + σ WZt + ϕt ∀t ∈ [0, T ] ,

where where η, σ are two real parameters (η ∈ R, σ ∈ R+), while the ϕ is obtained by imposing
the martingale condition on the forward price. LTS are characterized by three parameters: σ,
which controls the level of the volatility; k, which is related to the convexity of the surface; and
η, which is linked to the skew.

Pure jump processes generally describe underlying dynamics more parsimoniously than stan-
dard jump-diffusion processes. Both the infinitesimal jumps and the diffusion term contribute
to the process quadratic variation (see, e.g., Asmussen and Rosiński 2001). The effects of the
two components are qualitatively similar: when calibrating the model to the plain vanilla option
market, it is rather difficult to disentangle the two components and several sets of parameters
achieve similar results (this could cause over-fitting).

Unfortunately, pure jump Lévy models fail to calibrate accurately the entire volatility sur-
face, i.e. they do not reproduce the implied volatilities that are observed in the market data
at different time horizons with sufficient precision (see, e.g., Cont and Tankov 2003, Ch.14).
Lévy normal tempered stable processes are pure jump models with independent and stationary
increments. Why should we consider stationary increments when modeling implied volatility?
Model’s stationarity is a feature that significantly simplifies the model’s tractability, however, it
is rather difficult to justify from a financial point of view.

One can select additive processes to overcome this problem. They are an extension of Lévy
processes characterized by independent but not stationary increments.

The standard definition of additive process follows.

Definition 0.0.2. (Cont and Tankov (2003), Def.14.1, p.455)
A cadlag stochastic process on R {Xt}t≥0 is an additive process if and only if:

1. For any choice of n ≥ 1 and 0 ≤ t0 < t1... < tn, the random variables Xt1 − Xt0 ,
Xt2 −Xt1 ,...,Xtn −Xtn−1 are independent.

2. X0=0.

3. {Xt}t≥0 is stochastically continuous:

∀ε > 0, lim
h→0

P [|Xt+h −Xt| > ε] = 0 .

Notice that Lévy processes are additive processes by definition: a Lévy process is an addi-
tive process that also has stationary increments, i.e. a Lévy process satisfies all conditions of
Definition 0.0.2 but it also satisfies condition (3) of Definition 0.0.1.

The following holds for every additive process: for every fixed time t, it is always possible to
define a Lévy process that at time t has the same law as the additive process. Thanks to this
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feature additive processes preserve several properties (both analytical and numerical) of Lévy
processes.

The theory behind additive processes is well-established (Sato 1999a) but relatively few appli-
cations in quantitative finance are available. A first application of additive processes to option
pricing is proposed by Carr et al. (2007), who apply Sato processes (Sato 1991) to derivative
modeling (see also Eberlein and Madan 2009, for an application to structured products). Benth
and Sgarra (2012) consider additive processes, which they call time-inhomogeneous Lévy pro-
cesses, in the electricity market. In their paper, the electricity spot price is characterized by
Ornstein-Uhlenbeck processes, driven by additive processes. More recently, Li et al. (2016) have
introduced a larger class of additive processes. Their work focuses on additive subordination,
which (they show) is a useful technique for constructing time inhomogeneous Markov processes
with an analytically tractable characteristic function. This technique is a natural generalization
of Lévy subordination.

As shown in figure 0.1 the equity implied volatility surface (e.g., S&P 500 surface) is not flat.
Specifically, the short-time, or short-time-to-maturity, negative skew is proportionally inverse
to the square root of the time-to-maturity. The empirical study of the term structure of the
equity skew dates back to the seminal paper of Carr and Wu (2003): they find that the S&P
500 short-time skew is, on average, asymptotic to −0.25/

√
t. Fouque et al. (2004) arrive at a

similar conclusion considering only options with short-time-to-maturity (i.e. up to three months).
Finding a model with this characteristic has been the holy grail of short-time literature in recent
years. We show that the ATS, a pure jump additive process, reproduces the market power scaling
skew.

Most of the models used in options pricing admit no close formula for the implied volatility. For
this reason, the literature on short-time implied volatility and skew of jump-diffusion processes
is quite vast. Both the ATM behavior (see, e.g., Alòs et al. 2007, Roper 2009, Muhle-Karbe and
Nutz 2011, Andersen and Lipton 2013, Figueroa-López et al. 2016) and the out-of-the-money
(OTM) behavior of implied volatility (see, e.g., Tankov 2011, Figueroa-López and Forde 2012,
Mijatović and Tankov 2016, Figueroa-López et al. 2018) are discussed in detail. For a Lévy
process, the ATM implied volatility is determined uniquely by the diffusion term; it goes to zero
as the time-to-maturity goes to zero if there is no diffusion term, i.e., for a pure-jump process.
For this reason, pure jumps Lévy processes fail to reproduce the market short-time smile: the
short-time implied volatility is strictly positive in all financial markets.

Muhle-Karbe and Nutz (2011) have discussed how, for a relatively broad class of additive
models, the ATM behavior at small-time is the same as the corresponding Lévy. We analyze
the ATM implied volatility and skew for a class of pure jump additive processes (the ATS) that,
differently from the Lévy case, is consistent with the equity market smile.

We introduce a new (pure-jump) class of additive processes through their characteristic func-
tion. We call them additive normal tempered stable (ATS) processes. ATS processes (in general)
cannot be built via a time-change of a Lévy process as in the additive subordination of Li et al.
(2016) and are not Sato processes. However, there is a subclass of ATS obtained via additive
subordination and a subclass of Sato ATS process. This class of additive process can “exactly”
calibrate the term structure of observed implied volatility surfaces while maintaining the parsi-
mony of LTS.

The ATS calibration is excellent, on average, two orders of magnitude better than the corre-
sponding LTS in terms of mean squared error. We discuss in detail how the calibrated time-
dependent parameters present an interesting and statistically relevant self-similar behavior com-
patible with a power-law scaling subcase of ATS. Specifically, among all allowed power laws, the
power scaling parameters β -related to the variance of jumps- is close to one, while the power
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scaling δ -related to the skew- is statistically consistent with minus one half. Moreover, we have
verified that these results are robust over time. We study the behavior of the ATM implied
volatility and skew for the ATS process, deriving an extension of the Hull and White (1987,
Eq.(7), p.4) formula. Thanks to this pricing formula, on the one hand, we build some relevant
bounds for ATM volatility; on the other hand, we obtain an expression for the skew via the
implicit function theorem. We prove that only the scaling parameters estimated from market
data (β = 1 and δ = −1/2) admit a finite short-time implied volatility and a short-time skew
proportionally inverse to the square root of the time-to-maturity.

The calibration results and the short-time property of the ATS are remarkable. It is easy to
price European payoff via Fourier-based methods, but we need a Monte Carlo scheme for more
complex derivatives. Monte Carlo simulation of pure jumps Lévy processes is not straightforward
because, as in the case of the ATS, there is no closed formula for the cumulative distribution
function (CDF) of the process increments.

Eberlein and Madan (2009) implemented a simulation method for a specific class of additive
processes, Sato processes. The method they adapt to this class of additive processes, builds upon
a well-known jump simulation technique developed for Lévy processes, that can be found in many
excellent textbooks (see e.g., Cont and Tankov 2003, Asmussen and Glynn 2007). To the best of
our knowledge, this is the unique Monte Carlo scheme developed for additive processes.

The jump simulation algorithms can be divided into two steps. First, one should truncate
small jumps below a certain threshold, and second, simulate the finite number of independent
jumps; finally, it is possible to apply the Asmussen and Rosiński (2001) Gaussian approximation
to substitute small jumps with a Brownian component: we use this method as a benchmark
technique to compare numerical results.
We introduce a fast Monte Carlo technique for additive processes, in general, and for the ATS,
in particular. This scheme is based on the numerical inversion of the cumulative distribution
function. To simulate an additive process, as in the Lévy case, is not straightforward because,
in general, the CDF of process and of the process increments is not known explicitly.

Different methods have been proposed for sampling from a generic characteristic function (see
e.g., the seminal paper of Bohman 1970).

In the financial literature, these techniques have been considered in the Lévy case, where it is
possible to leverage on the stationary of increments (see e.g., Glasserman and Liu 2010, Chen
et al. 2012, Ballotta and Kyriakou 2014). These techniques are stable and efficient: they employ
different specifications of characteristic function numerical inversion to obtain an estimation of
the CDF. We use the fast Fourier transform method for the numerical inversion as proposed
by Lee (2004) and then applied to MC option pricing in the studies of Chen et al. (2012) and
Ballotta and Kyriakou (2014). Relative to this literature, our main contribution lies in a detailed
discussion of the three sources of error in the derivative price expectations and showing how to
improve the two most significant ones.

We desire to calibrate our model via a ”calibration cascade”: first on the most liquid derivatives
contracts and then on the less liquid ones. For this reason, we first focus and interest rates and
forward prices (by far more liquid than options) and then on options.

The Overnight Index Swap (OIS) curve has emerged as a possible candidate for the risk-free
curve for discounting after the great financial crisis. The OIS is a swap derived from the unsecured
interbank overnight rate (OR), for example, the Euro Short Term Rate (STR) rate for Euros
and the Effective Federal Fund Rate (EFFR) for US dollars. This OR is the best estimation of a
risk-free rate, and it is the interest rate most commonly paid on collateral. Moreover, there are
numerous points in favor of the OIS curve: it is a curve based on liquid swaps and bootstrap of
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the discounting curve is as simple as the well-established 3M-Libor or 6M-Libor bootstrap (see,
e.g., Ron 2000).

We focus on market makers who operate in a given exchange-traded derivative market. Proba-
bly they will use the OIS curve for discounting derivatives, and will add a spread that summarizes
other risks or costs not included in the “risk-free” rate. We call this spread “cost-of-funding”
because it is the additional implicit cost in operating in this specific market.

We can pose our research question from the perspective of the market maker: which cost-of-
funding (if any) will I pay when operating in a liquid exchange-traded derivatives market? An-
swering this question can provide both operational and management insights. First, for their
daily activity, the dealers should monitor an indicator on this spread: they need a discounting
curve in line with other market participants; second, this spread has important consequences on
the management of a financial firm. To understand the “market” cost-of-funding for each busi-
ness unit is a piece of relevant information for management within a financial firm. We propose
an elementary indicator that can monitor this funding cost in real-time and point out possible
stress in funding liquidity. We use the market implicit interest rate (composed of the “risk-free”
OIS rate plus the cost-of-funding) to discount option prices and to build forward prices in our
dataset.

To test the robustness of the ATS performances on a comprehensive dataset -nine years of
closing prices- we need forward prices and discount factors synchronized with option prices. In
general, interest rates used in derivative pricing are not ”risk-free” because contingent claim
evaluation should depend on the risks of the investment and, in particular, on the funding risk
and the risk of default of one of the two counterparties in the derivative contract. When dealing
with exchange-traded derivatives, the situation should be more straightforward: the presence of
a clearinghouse with margin calls allows neglecting the market participants’ default risk. For
this reason, we can use this market-implied discount factor (built via the funding indicator) to
calibrate the ATS.

This new family of additive processes aims to solve two key open problems in the equity market
literature.
First, it is a pure jump additive process that calibrates the term structure and skew of the
volatility surface parsimoniously. On a comprehensive dataset, we will show that it significantly
outperforms pure jumps Lévy processes (LTS) and pure jump additive processes (self-similar).
The ATS parsimony is due to a power-law scaling characteristic that arises in calibrated parame-
ters. Surprisingly, it holds both for short and long maturities (substantially different participants
characterize option markets on short and long maturities). As we have already mentioned, mar-
ket data are consistent with β = 1 and δ = −1/2. By considering a power-law scaling ATS with
fixed β and δ, after the volatility term structure is taken into account, the surface is calibrated
with just two free parameters.
Second, differently from the other pure jump models introduced in the literature, the short-time
implied volatility and skew of the ATS are consistent with empirical studies. We will prove that
ATS has a finite and constant ATM implied volatility and a skew that is inversely proportional
to the square root of the time-to-maturity if and only if β = 1 and δ = −1/2. We can explain
the goodness of the ATS calibration under this light. Our educated guess is that market data are
consistent with β = 1 and δ = −1/2 because these are the unique parameters such that the ATS
implied volatility is coherent at short-time. Moreover, we emphasize that ATS is numerically
tractable. The characteristic function is explicit and European options are priced with Fourier
methods. This allows a fast calibration of the volatility surface. We will also introduce a fast
simulation method for the ATS that is based on the independence of increments. Finally, we
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spend a few words on the cost-of-funding indicator. The indicator was devised for calibrating
a large dataset of equity volatility surfaces with synchronized interest rates and forward prices.
However, we think that this methodology can provide interesting insights into different option
markets. It is an elementary indicator that can monitor in real-time the funding cost and point
out possible stress in funding liquidity. We will show that the S&P 500 market has, on average,
a cost-of-funding of 33bps. while EURO STOXX 50, on average, has no cost-of-funding.
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The thesis is divided into four chapters and a conclusion chapter; an introduction opens each
chapter. The results in chapter 1 and part of the results in chapter 4 have already been published
respectively, in Azzone and Baviera (2021a) and Azzone and Baviera (2021d). The structure of
the chapters follows.

Chapter 1 introduces the ATS and analyzes the power-law scaling arising from market data.
Section 1.2 introduces the model: we prove that there exists a new family of additive processes
as the natural extension of the corresponding Lévy processes. Section 1.3, describes the dataset
used in the calibration, the calibration results for ATS, LTS, and Sato processes. Furthermore, it
introduces an interesting scaling property of the calibrated parameters. Section 1.4, shows that
LTS and Sato processes fail to reproduce some stylized facts observed in market data, which
are adequately described by ATS processes and presents a robustness analysis. Section 1.5 con-
cludes. Moreover, appendix .1 contains the proofs for this chapter, appendix .2 describes the
ATS parameter estimations, and appendix .3 proves that it is not possible to build the ATS via
additive subordination.

Chapter 2 analyzes the ATS short-time asymptotics. Section 2.2 presents the ATS power scal-
ing process and the extension of the Hull and White formula. Section 2.3 defines the implied
volatility problem and analyzes the short-time ATM implied volatility σ̂t. Section 2.4 computes
the short-time limit of the skew term ξ̂t. Section 2.5 presents the major result: the ATS process
is consistent with the equity market if and only if β = 1 and δ = −1/2. Section 2.6 concludes. In
the appendices, we report some technical lemmas that we use in this chapter: on basic properties
in appendix .4 and on short-time limits in appendix .5.

Chapter 3 introduces a fast Monte Carlo scheme for additive processes. Section 3.2 overviews
the method and recalls both Lewis (2001) formula for CDF and the error source in the numerical
approximation: we discuss the optimal selection of the integration path. Section 3.3 describes the
proposed simulation method and presents the other main error source in MC option pricing: the
interpolation method in numerical inversion. We also discuss how to generalize the GA method
for additives in an efficient way. Section 3.4 presents numerical results for a large class of pure-
jump additive processes in the case of both European options (where analytical pricing methods
are available), and some discretely monitoring path-dependent options. Section 3.5 concludes.
The proofs of this chapter are in appendix .6.

Chapter 4 is dedicated to the market implicit interest rate and the results of the ATS cali-
bration on a nine-year dataset. Section 4.2 shows the methodology to find the implicit interest
rates using only option prices and describes the dataset. Section 4.3 infers the S&P 500 and the
EURO STOXX 50 implicit discount factor and the corresponding cost-of-funding. Section 4.4
reports the calibration results: on the nine-year dataset and on both implied volatility surfaces
ATS has significantly better performances than alternatives. Section 4.5 concludes. An analysis
of the ATS performances on a commodity volatility surface is available in appendix .7.

Finally, chapter 5 concludes by summarizing the key finding and contributions of the thesis.
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Chapter 1

Additive normal tempered stable processes
for equity derivatives and power law scaling

In this chapter, we introduce the additive normal tempered stable process (ATS): a simple
additive process for equity index derivatives. The model generalizes Lévy Normal Tempered
Stable processes (e.g., NIG and VG) with time-dependent parameters. It accurately fits the
equity index volatility surfaces in the whole time range of quoted instruments, including options
with small time-horizon (days) and long time-horizon (years).

We introduce the model via its characteristic function. This allows using classical Fourier pric-
ing techniques. We discuss the calibration issues in detail and we show that, in terms of mean
squared error, calibration is on average two orders of magnitude better than both Lévy and Sato
processes alternatives. We show that even if the model loses the classical stationarity property
of Lévy processes, it presents interesting scaling properties for the calibrated parameters.

The results in this chapter have already been published in Azzone and Baviera (2021a).

1.1 Introduction

As already discussed in the thesis introduction, Lévy processes are a powerful modeling solution
that provides parsimonious models consistent with option prices and with underlying asset prices.
LTS are pure jump1 processes, obtained via the well-established Lévy subordination technique
(see, e.g., Cont and Tankov 2003, Schoutens 2003). Specifically, the LTS are characterized by
three parameters: σ, which controls the average level of the volatility surface; k, which is related
to the convexity of the implied volatility surface; and η, which is linked to the volatility skew.

Unfortunately, the recent literature has shown that these models do not reproduce the implied
volatilities that are observed in the market data at different time horizons with sufficient preci-
sion (see, e.g., Cont and Tankov 2003, Ch.14). Lévy normal tempered stable processes are pure
jump models with independent and stationary increments. The key question is as follows: is it
reasonable to consider stationary increments when modeling implied volatility? Jump station-
arity is a feature that significantly simplifies the model’s characteristics but it is rather difficult
to justify a priori from a financial point of view. For example, a market maker in the option
market does not consider the consequences of a jump to be equivalent on options with different
maturities. He cares about the amount of trading in the underlying required to replicate the

1The relevance of pure jump dynamics in the equity and commodity asset classes has been discussed in the
recent literature, see, e.g., Ornthanalai (2014), Li and Linetsky (2014), Ballotta and Rayée (2018).
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option after a jump arrival. The impact of such a jump on the hedging policy is inhomogeneous
with option maturity.2 Hence, a priori, it is not probable that a stationary model can adequately
describe implied volatilities.

Additive processes have been proposed to overcome this problem. Additive processes are an
extension of Lévy processes that consider independent but not stationary increments. Given an
additive process, for every fixed time t, it is always possible to define a Lévy process that at time
t has the same law as the additive process. This feature allows us to maintain several properties
(both analytical and numerical) of the Lévy processes. In the introduction of the thesis we have
already mentioned the few additive process applications in quantitative finance.

In this chapter, introduce a new class of (pure-jump) additive processes through their char-
acteristic function which are named additive normal tempered stable (ATS) processes. ATS
processes (in general) cannot be obtained via a time-change as in the additive subordination of
Li et al. (2016) and are not Sato processes. There is a subclass of ATS obtained via additive
subordination and a subclass of Sato ATS process. In appendix .3 we prove that it is not possible
to introduce the ATS by additive subordination. The main advantage of this new class of models
is the possibility to “exactly” calibrate the term structure of observed implied volatility surfaces,
while maintaining the parsimony of LTS.

We provide a calibration example of the ATS on the S&P 500 and EURO STOXX 50 implied
volatility surfaces of the 30th of May 2013. The ATS calibration is on average two orders of
magnitude better than the corresponding LTS in terms of mean squared error. We show that the
calibrated time-dependent parameters present an interesting and statistically relevant self-similar
behavior compatible with a power-law scaling subcase of ATS. Moreover, we have verified that
these results are robust over time.

The main contributions of this chapter are threefold. First, we introduce a new broad family
of additive processes, which we call additive normal tempered stable (ATS) processes.
Second, we calibrate the ATS processes on S&P 500 and EURO STOXX 50 volatility surfaces.
We show that ATS have better calibration features (in terms of both the Mean Squared Error
and the Mean Absolute Percentage Error) than LTS and Sato processes.
Finally, we consider a re-scaled ATS process via a time-change based on the implied volatility
term structure. We show that the calibrated parameters exhibit a self-similar behavior w.r.t.
the new time. The statistical relevance of these scaling properties is verified.

The rest of the chapter is organized as follows. In section 1.2, we introduce the model: we prove
that there exists a new family of additive processes as the natural extension of the corresponding
Lévy processes. In section 1.3, we describe the dataset used in the calibration, the calibration
results for ATS, LTS, and Sato processes and an interesting scaling property of the calibrated
parameters. In section 1.4, we show that LTS and Sato processes fail to reproduce some stylized
facts observed in market data, which are adequately described by ATS processes and we present
a robustness analysis. Finally, section 1.5 concludes.

1.2 The model

In this section, we introduce the ATS process, as a natural extension of the LTS process, that,
on the one hand, maintains the increments’ independence as in the corresponding Lévy process,
and, on the other hand, allows for time-inhomogeneous parameters. First, we prove a sufficient

2Gamma is the Greek measure that quantifies the amount of this hedging and, generally, it decreases with
time-to-maturity.
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condition for the existence of ATS processes (Theorem 1.2.1) and the martingale property
for the corresponding forward process (Proposition 1.2.2). Then, we introduce the power-law
scaling ATS as a subcase of a generic ATS (Theorem 1.2.3): we show in the next section that
this model accurately describes the implied volatility surface. Finally, we prove a key model
feature: the model allows to reproduce a generic volatility term structure (Proposition 1.2.4).

Lévy normal tempered stable processes (LTS) are commonly used in the financial industry
for derivative pricing. According to this modeling approach, the forward with expiry T is an
exponential Lévy; i.e.

Ft(T ) := F0(T ) exp(ft) , (1.2.1)

with ft a LTS

ft = −
(

1
2 + η

)
σ2 Zt + σ WZt + ϕ t ∀t ∈ [0, T ] ,

where η, σ are two real parameters (η ∈ R, σ ∈ R
+), while ϕ is obtained by imposing the

martingale condition on Ft(T ).3 Wt is a Brownian motion and Zt is a Lévy tempered stable
subordinator independent from the Brownian motion with variance per unit of time k. Examples
of LTS subordinators are the Inverse Gaussian process for NIG or the Gamma process for VG.

It is possible to write the characteristic function of ft as

E
[
eiuft

]
= Lt

(
iu

(
1
2 + η

)
σ2 + u2σ2

2 ; k, α
)
eiuϕ t , (1.2.2)

where α ∈ [0, 1) is the LTS index of stability and Lt is the Laplace transform of Zt

lnLt (u; k, α) :=


t

k

1− α
α

{
1−

(
1 + u k

1− α

)α}
if 0 < α < 1

− t
k

ln (1 + u k) if α = 0
. (1.2.3)

This theory is well known and can be found in many excellent textbooks (see, e.g., Cont and
Tankov 2003, Schoutens 2003).

As already discussed in the Introduction, LTS processes do not properly describe short and
long maturities at the same time, while they allow an excellent calibration for a fixed maturity.
For this reason, we would like to select a process that allows independent but non-stationary
increments: i.e. an additive process. The simplest way to obtain this modeling feature is to
consider an additive process with a characteristic function of the same form of (1.2.2) but with
time-dependent parameters

E
[
eiuft

]
= Lt

(
iu

(
1
2 + ηt

)
σ2
t + u2σ2

t

2 ; kt, α
)
eiuϕtt , (1.2.4)

where σt, kt are continuous on [0,∞) and ηt, ϕt are continuous on (0,∞) with σt > 0, kt ≥ 0
and ϕt t goes to zero as t goes to zero. α ∈ [0, 1) as in the LTS case.

In Theorem 1.2.1, we prove that this process exists if some conditions on σt, ηt and kt are
satisfied.

3A parametrization scheme of the drift in terms of η can be suitable for some applications: η controls the
volatility skew. In particular, it can be proven that for η = 0 the smile is symmetric, i.e. the implied volatility
skew is zero (see, e.g., Baviera 2007, Prop. p.21).
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By Definition 0.0.2, an additive process is a càdlàg stochastic process on R {Xt}t≥0, with
X0 = 0 a.s. and characterized by independent increments and stochastic continuity. It can be
proved that the distribution of an additive process at time t is infinitely divisible. (At, νt, γt) is
the generating triplet that characterizes the additive process {Xt}t≥0. At, νt and γt are called
respectively the diffusion term, the Lévy measure and the drift term (see Sato 1999a, pp.38-39).4

Sato (1999a, Th.9.8, p.52) proves a powerful link between a system of infinitely divisible
probability distributions and the existence of an additive process. In particular, Sato requires
two main classes of conditions on the generating triplet: i) some conditions of monotonicity,
necessary to avoid meaningless negative diffusion term or negative Lévy measure for the process
increments and ii) some continuity conditions, in order to obtain the stochastic continuity.

We use Sato (1999a, Th.9.8, p.52) to prove the main theoretical results in this chapter: there
exists a family of additive processes with characteristic function (1.2.4).

Theorem 1.2.1. Sufficient conditions for existence of ATS
There exists an additive process {ft}t≥0 with the characteristic function (1.2.4) if the following
two conditions hold.

1. g1(t), g2(t), and g3(t) are non decreasing, where

g1(t) := (1/2 + ηt)−
√

(1/2 + ηt)2 + 2(1− α)/(σ2
t kt)

g2(t) := −(1/2 + ηt)−
√

(1/2 + ηt)2 + 2(1− α)/(σ2
t kt)

g3(t) := t1/ασ2
t

k
(1−α)/α
t

√
(1/2 + ηt)2 + 2(1− α)/(σ2

t kt) ;

2. Both t σ2
t ηt and t σ2α

t ηαt /k
1−α
t go to zero as t goes to zero.

Proof. See appendix .1

Let us emphasize that the conditions of Theorem 1.2.1 are quite general. Condition 1 ensures
the monotonicity of the ATS jump measure while condition 2 that jump measure and drift term
go to zero at short time. In the market, we observe only a limited number of maturities, and thus,
there is a large set of functions of time that reproduce market data and satisfy the conditions
of the theorem. Furthermore, we prove in Theorem 1.2.3, that the conditions of Theorem
1.2.1 are satisfied by a simple sub-case of ATS with power-law scaling ηt and kt and constant
sigma. Finally, we also prove in Proposition 1.2.4 that ATS models allow a generic volatility
term structure σt.

In a similar way to the LTS case, it is possible to consider a forward price Ft(T ) (1.2.1) as the
exponential of the ATS process {ft}t≥0 with the characteristic function (1.2.4). The deterministic
function of time ϕt can be chosen s.t. the process Ft(T ) satisfies the martingale property, as
shown in the next proposition.

Proposition 1.2.2. Martingale property
The forward {Ft(T )}t≥0, modeled via an exponential additive process characterized by an ATS
process {ft}t≥0 is a martingale if and only if

ϕt t = − lnLt
(
σ2
t ηt; kt, α

)
, (1.2.5)

where Lt is the Laplace transform in (1.2.3).
4In this thesis, the notation follows closely the one in Sato (1999a).
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Proof. See appendix .1

We introduce a sub-case of ATS, determined by self-similar functions of time. In subsection
1.3.3, we show that this family of processes accurately describes market implied volatility surfaces.
Power-law scaling functions of time allow us to rewrite Theorem 1.2.1 conditions as simple
inequalities on the scaling parameters.

Theorem 1.2.3. Power-law scaling ATS
There exists an ATS with

kt = k̄ tβ , ηt = η̄ tδ, σt = σ̄ ,

where α ∈ [0, 1), σ̄, k̄, η̄ ∈ R+, and β, δ ∈ R that satisfy the following conditions:

1. 0 ≤ β ≤ 1
1− α/2 ;

2. −min
(
β,

1− β (1− α)
α

)
< δ ≤ 0 ;

where the second condition reduces to −β < δ ≤ 0 for α = 0.

Proof. See appendix .1

The admissible region for ATS power law scaling parameters is plotted in Figure 1.1.

Figure 1.1: Admissible region for ATS power law scaling parameters

It is interesting to observe that the LTS case falls in the subcase described by this theorem. This
corresponds to the case with both kt and ηt time independent; that is, β and δ equal to zero.

The following result allows us to obtain a new additive process from a known one with a
deterministic time change.

Proposition 1.2.4. Deterministic time change of additive process
Given an additive process {Xt}t≥0 and a real continuous increasing function of time rt s.t.
r0 = 0, then {Xrt}t≥0 is an additive process.
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Proof. See appendix .1

Thanks to Proposition 1.2.4, it is possible to extend the ATS power-law scaling sub-case to
a case with time-dependent σt. Indeed, if σ2

t t is non decreasing, we can use it to time-change
a power-law scaling ATS without losing the property of independent increments: being able to
reproduce the volatility term structure is an important feature from a practitioner perspective.

In the next section, we show that the ATS model introduced in this section accurately describes
volatility surfaces observed in the equity derivative market.

1.3 Model calibration and power law scaling

In this section, we show that the ATS processes achieve excellent calibration results on the
S&P 500 and EURO STOXX 50 volatility surfaces; moreover, we show that power-law scaling
parameters are observed in market data.

First, after having described the dataset, we illustrate the model calibration procedure and
compare the performance of ATS processes with some benchmarks (LTS processes and Sato
processes in Carr et al. (2007)). Then, we outline some statistical evidence that the market-
implied volatility surface is compatible with a power-law scaling of ATS parameters.

1.3.1 Dataset

We analyze all quoted S&P 500 and EURO STOXX 50 option prices observed at 11:00 am
NT on the 30th of May 2013. The dataset is composed of real market quotes (no smoothing or
interpolation5). Let us recall that the options on these two indices are the most liquid options
in the equity market at the world level. For both indices, options expire on the third Friday of
March, June, September, and December in the front year and June and December in the next
year. In the EURO STOXX 50 case also December contracts for the following three years are
available. The dataset includes the risk-free interest rate curves bootstrapped from (USD and
EUR) OIS curves. Financial data are provided by Bloomberg. The dataset contains all bid/ask
prices for both call and put. The strikes are in a regular grid for each available maturity. We
exclude options that do not satisfy two simple liquidity thresholds. We discard options whose
price is less than 10% the minimum difference in the grid of market strikes (the so-called penny
options) and options with bid-ask over bid bigger than 60%. The last condition filters out strikes
for which either a bid or an ask price is missing.

We use the synthetic forward, as forward price, because this allows a perfect synchronization
with option prices and, for several maturities, it identifies the most liquid forward in the market.
The synthetic forward price is obtained for every maturity, from very liquid options as the
(algebraic) mean of the lowest forward ask and the highest forward bid.

We implement a simple iterated algorithm that identifies the synthetic forward price at a given
maturity T : let us briefly describe it. We start selecting the call and put options with strike
price nearest to the spot price for the shortest maturity or to the previous maturity forward
price for the next maturities. We compute forward bid, ask, and mid prices for that strike price.
We consider the options with the nearest superior strike. If the forward mid-price computed
previously falls within the new bid-ask interval, then the updated forward bid is the highest
value among the two forward bids, while the updated ask is the lowest value among the two
ask prices. The updated forward mid-price corresponds to the mean of the updated bid and

5The practice of some market-data providers is to smooth or interpolate market data with proprietary tools.
By using real market data we eliminate the risk of fitting our model on the provider’s model.
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ask. Then, we consider the nearest inferior strike and iterate the same procedure comparing
the updated forward mid-price with the new bid/ask prices relative to this new strike. This
procedure is iterated with the next superior strike and then with the next inferior strike, and so
on for all the options present at that maturity T .

In Figure 1.2, we show, for a given underlying and a given maturity, the values considered in
the forward price construction and the value selected by the procedure.

Figure 1.2: EURO STOXX 50 synthetic forward prices on the 30th of May 2013 at 11 am NT for
the JUN14 maturity: bid, ask, and mid forward prices. Only prices not discarded by the two liquidity
criteria are shown in the figure. According to the algorithm described in the text also the price related
to the strike 1700 is discarded from the forward price computation. We show in red the corresponding
forward bid-ask prices and with a diamond, the selected forward price F0(T ) relative to this expiry.

In Figure 1.3, we plot the bid, ask, and mid synthetic forward prices for the different maturities
available for the S&P 500 and the EURO STOXX 50.
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Figure 1.3: Term structure of the synthetic forward prices (dots) on the 30th of May
2013: we report also the observed bid and ask prices (respectively down and up bars)
for every maturity. On the left hand side, we plot the S&P 500 index case and, on the
right hand side, the EURO STOXX 50 index case.

1.3.2 Calibration

We calibrate the ATS following the procedure discussed by Cont and Tankov (2003, Ch.14,
pp.464-465). We cut the volatility surface into slices, each one containing options with the same
maturity, and calibrate each slice separately. Hereinafter, we focus on α = 1/2 (NIG) and α = 0
(VG), which are the two (ATS and Sato) generalizations of the two most frequently used LTS
processes. For every fixed maturity T , it is possible to define a new Lévy normal tempered stable
process such that, at time T , its marginal distribution is equal to the marginal distribution of
an ATS. A different Lévy NIG and VG is calibrated for every different maturity and the three
time-dependent parameters kT , ηT , σT are obtained. The calibration is performed imposing the
conditions of monotonicity of Theorem 1.2.1.

Beneath the ATS processes, we consider the calibration of the standard Lévy processes and of
the (four parameters) Sato processes proposed by Carr et al. (2007).6 We remind that the latter
are additive and self-similar processes (see, e.g., Sato 1991). Call option prices, with strike K
and maturity T , are computed using the Lewis (2001) formula

CT (x) = BT F0(T )
{

1− ex/2
∫ ∞
−∞

dz

2π e
iz xφc

(
−z − i

2

)
1

z2 + 1
4

}
, (1.3.1)

where φc(u) is the characteristic function of fT , x := lnK/F0(T ) is the moneyness, and BT is
the discount factor between value date and T .

The calibration is performed by minimizing the Euclidean distance between model and market
prices. The simplex method is used to calibrate every maturity of the ATS process. For Lévy
processes and Sato processes, because standard routines for global minimum algorithms are not
satisfactory7, we consider a differential evolution algorithm together with a multi-start simplex
method.

6We underline that, in both cases (LTS and Sato), model parameters are obtained through a global calibration
of the whole volatility surface.

7For these processes, we observe multiple local minimums.
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The calibration performance is reported in Table 1.1 in terms of Mean Squared Error (MSE)
and Mean Absolute Percentage Error (MAPE).8 It is possible to observe that Sato processes
slightly improve Lévy performance, as reported in the literature (see, e.g Carr et al. 2007), while
the ATS processes improvement is, on average, above two orders of magnitude. Although we
present the results for VG and NIG, similar results can be obtained for all ATS processes with
α ∈ [0, 1). The worst results are observed in the VG case.

MSE MAPE
Index Model Lévy Sato ATS Lévy Sato ATS

S&P 500 NIG 4.56 1.92 0.02 3.13% 1.47% 0.23%
S&P 500 VG 8.49 2.20 0.24 4.31% 1.62% 0.79%

Euro Stoxx 50 NIG 22.15 9.87 0.10 1.75% 0.75% 0.09%
Euro Stoxx 50 VG 55.81 9.22 0.35 2.85% 0.73% 0.21%

Table 1.1: Calibration performance for the S&P 500 and EURO STOXX 50 in terms of MSE and
MAPE. In the NIG (α = 1/2) and VG (α = 0) cases, we consider the standard Lévy process, the Sato
process, and the corresponding ATS process. Sato processes perform better than Lévy processes but
ATS improvement is far more significant: two orders of magnitude for MSE and one order of magnitude
for MAPE.

Figure 1.4 shows the differences of MSE w.r.t. the different times-to-maturity for S&P 500
volatility surface calibrated with a NIG process. Sato and Lévy LTS have a MSE of the same
order of magnitude, while the improvement of ATS is of two orders of magnitude and particu-
larly significant at short-time. The short time improvement in implied volatility calibration is
particularly evident, as shown in Figure 1.5.

Figure 1.4: MSE w.r.t. the different times-to-maturity (in years) for S&P 500 volatility surface cal-
ibrated with a NIG process. Sato (circles) and Lévy (triangles) have a MSE of the same order of
magnitude, while the improvement of ATS (squares) is of two orders of magnitude and particularly sig-
nificant at short-time.

In Figure 1.5, we plot the market implied volatility and the volatility replicated via ATS,
LTS, and Sato processes at the 22 days (on the left) and 9 months and 21 days (on the right)

8Calibrated model parameters are available upon request.
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maturities. We observe that the ATS implied volatility is the closest to the market implied
volatility in any case and it significantly improves both LTS and Sato processes, particularly for
small maturities. Similar results hold for all other ATS.

Figure 1.5: Implied volatility smile for S&P 500 for a given time-to-maturity: 22 days (on the left) and
9 months and 21 days (on the right). The NIG ATS process, Sato process, and LTS process implied
volatilities are plotted together with the market-implied volatility. ATS reproduces the smile significantly
better than the alternatives, the improvement is particularly evident for small maturities.

In Figure 1.6, we plot the market and the ATS implied volatility skew for EURO STOXX 50
w.r.t. the times-to-maturity. We observe that the calibrated ATS replicates accurately the
market implied volatility skew. In chapter, 2, we show that ATS can replicate market skew
exactly in the short time.

Figure 1.6: The market and the NIG ATS implied volatility skew for EURO STOXX 50 w.r.t. the
times-to-maturity. ATS replicates the market implied volatility skew behavior.

The calibration results of ATS are startling. In particular, we have a model that reproduces
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“exactly” the volatility term structure observed in the market.

It is useful to stop and comment. The ATS model allows us to calibrate the surface slice-
by-slice; we have only to impose the monotonicity conditions of Theorem 1.2.1. With the
slice-by-slice approach, we use 3 parameters for every expiry (e.g., 18 parameters in the S&P
case). We have observed that ATS outperforms Lévy and Sato processes, the benchmark pure-
jump processes in the literature. It could seem unfair to compare the calibration results of ATS
with a Lévy (3 parameters) and a Sato (4 parameters).

In the next subsection, we show that this family of additive processes combines parsimony
with the desired property of a perfect fit of the volatility term structure: we show that, once the
term structure has been taken into account, only 2 free parameters allow a detailed calibration
of the whole volatility surface.

1.3.3 Scaling properties

In this subsection, we show that power-law scaling parameters are observed in market data.
This stylized fact is extremely relevant: we observe statistical evidence that the market-implied
volatility surface is compatible with a power-law scaling ATS of Theorem 1.2.3.

We introduce a new ATS process, w.r.t. the time θ := Tσ2
T .

We define k̂θ := kTσ
2
T and η̂θ := ηT . We call f̂θ the ATS with parameters k̂θ, η̂θ and σθ := 1.

Notice that for every maturity f̂θ has the same characteristic function of the calibrated ATS fT .
We analyze the re-scaled parameters, in both S&P 500 and EURO STOXX 50 cases. We observe
a self-similar behavior of k̂θ and η̂θ; that is,{

k̂θ = k̄θβ

η̂θ = η̄θδ
, (1.3.2)

where k̄, η̄ are positive constants and β, δ are real constant parameters. To investigate this
behavior and to infer the value of the scaling parameters we consider equations (1.3.2) in the
log-log scale.

In Figures 1.7 and 1.8 we plot the weighted regression lines and the observed time-dependent
parameters ln k̂θ and ln η̂θ with their confidence intervals for S&P 500 and EURO STOXX 50.
The confidence intervals are two times the standard deviations of ln k̂θ, of ln η̂θ and of ln θ.
In appendix .2, we discuss the estimation of the standard deviations via a confidence interval
propagation technique and the selection of the weights.
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Figure 1.7: Weighted regression line and the observed time-dependent parameters ln k̂θ and ln η̂θ w.r.t.
ln θ for the NIG calibrated model for S&P 500. We plot a confidence interval equal to two times the
corresponding standard deviation. Notice that confidence intervals on ln k̂θ and ln η̂θ are one order of
magnitude wider than confidence intervals on ln θ. The scalings of k̂θ and η̂θ in (1.3.2) are statistically
consistent with β = 1 and δ = −1/2. The values of θ correspond to times-to-maturity that go from 22
days to two years.

Figure 1.8: Weighted regression line and the observed time-dependent parameters ln k̂θ and ln η̂θ w.r.t.
ln θ for the VG model calibrated on EURO STOXX 50. We plot a confidence interval equal to two times
the corresponding standard deviation. Notice that confidence intervals on ln k̂θ and ln η̂θ are one order
of magnitude wider than confidence intervals on ln θ. The scalings of k̂θ and η̂θ in (1.3.2) are statistically
consistent with β = 1 and δ = −1/2. The values of θ correspond to times-to-maturity that go from 22
days to five years.

We have observed what seems to be a stylized fact of this model class: both η̂θ and k̂θ scale
with power-law. The same scaling laws are observed both for short time-horizon (days) and long
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time-horizon (few years) options. The fitted regression lines provide us with an estimation of β
and δ. Moreover, let us emphasize that the scaling parameters appear qualitatively compatible
to β = 1 and δ = − 1

2 in all observed cases.
We can build a test on the regression coefficient to determine whether there is statistical

evidence that our hypotheses are consistent with market data. The estimated scaling parameters
together with the p-value of these statistical tests are reported in Table 1.2.

Surface Model Parameter Parameter’s Value p-value
S&P 500 NIG β 1.10 0.228
S&P 500 NIG δ −0.47 0.705
S&P 500 VG β 1.01 0.758
S&P 500 VG δ −0.43 0.057

EURO STOXX 50 NIG β 1.02 0.816
EURO STOXX 50 NIG δ −0.44 0.472
EURO STOXX 50 VG β 0.99 0.690
EURO STOXX 50 VG δ −0.45 0.195

Table 1.2: Scaling parameters calibrated from S&P 500 and EURO STOXX 50 volatility surfaces for
NIG (α = 1/2) and VG (α = 0). Parameter estimates are provided together with the p-values of the
statistical tests that verify whether it is possible to accept the null hypotheses β = 1 and δ = − 1

2 .

In all cases, we accept the null hypotheses (β = 1 and δ = − 1
2 ) with a 5% confidence level.

Notice that all p-values, except the S&P 500 VG δ, are above 19%. It is remarkable to observe
that β = 1 and δ = − 1

2 are the scaling parameters that, as we prove in chapter 2 are consistent
with market implied volatility and skew. That is a constant and finite short-time ATM volatility
and a skew that is proportional to the inverse of the square root of the time-to-maturity.

In Table 1.3 we report an estimation of the parameter k̄ and η̄.

Surface Model Parameter Parameter’s Value p-value
S&P 500 NIG k̄ 1.50 0.022
S&P 500 NIG η̄ 0.98 0.015
S&P 500 VG k̄ 1.01 0.001
S&P 500 VG η̄ 0.91 0.000

EURO STOXX 50 NIG k̄ 0.68 0.023
EURO STOXX 50 NIG η̄ 1.21 0.021
EURO STOXX 50 VG k̄ 0.98 0.000
EURO STOXX 50 VG η̄ 0.72 0.000

Table 1.3: k̄ and η̄ calibrated from S&P 500 and EURO STOXX 50 volatility surfaces. Parameter
estimates are provided together with the p-values of the statistical tests that verify whether it is possible
to accept the null hypothesis k̄ = 0 and η̄ = 0.

We have statistical evidence that in all cases k̄ and η̄ are positive (we reject the null hypotheses
of k̄ = 0 and η̄ = 0 with a 5% confidence level). From these results and from Figure 1.6 it is
possible to infer a connection between a positive η̄ and the observed negative skew.

It is interesting to observe that these estimated parameters satisfy the inequalities of Theorem
1.2.3 for the existence of a power-law scaling ATS f̂θ. Moreover, the re-scaled process is additive
w.r.t. the “real” time T . This fact is a consequence of the properties of the volatility term
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structure σT (it is always observed on real data that σ2
TT is non-decreasing) and of Proposition

1.2.4. This proposition states that if
{
f̂θ

}
θ≥0

is an additive process then
{
f̂Tσ2

T

}
T≥0

is an

additive process w.r.t. T .9

1.4 Model selection and robustness tests

In this section, we show two additional results for the proposed process class. First, we
compare the ATS with two other additive processes already present in the financial literature
and propose some statistical tests able to select the most adequate modeling description of the
implied volatility surface. Then, we show that the results, described in detail in the previous
section, appear robust over time.

1.4.1 Model selection via statistical tests

In this subsection, we compare ATS with two classes of additive processes already present in
the financial literature, the Sato processes (see, e.g., Carr et al. 2007) and the additive processes
constructed via additive subordination (see, e.g., Li et al. 2016). The comparison is among
processes that have the marginal distribution of normal tempered stable type: i.e. with the Sato
processes NIGSSD and VGSSD and with the sub-class of ATS constructed through additive
subordination. An ATS process can be obtained as a Brownian motion subordinated with an
additive subordinator, as in Li et al. (2016), if and only if ηT is constant.10 We discuss two
features: one related to the ηT parameter and another to the skewness and to the excess kurtosis
of the calibrated exponential forward.

A first test is built to verify the adequacy of Sato processes. Given the index of stability for the
model (e.g., chosen α in the Normal Tempered Stable model), it is possible to compute skewness
and kurtosis (see, e.g., Cont and Tankov 2003, p.129). For example the ATS NIG skewness is

E

[
(fT − E [fT ])3

]
(V ar(fT ))

3
2

= −
3σ4

T

(
ηT + 1

2
)
kTT + 2σT 6 (ηT + 1

2
)3
k2
TT(

σT 2T + kTTσT 4
(
ηT + 1

2
)2) 3

2
.

A Sato process has skewness and kurtosis constant over time, as it can be deduced by definition
(see, e.g., Carr et al. 2007).

We analyze the term structure of these higher-order moments observed in our dataset adopting
the same procedure of Konikov and Madan (2002). For both indices, we observe a linear behavior
of skewness and kurtosis w.r.t. the squared root of the maturity as shown in Figure 1.9 in the
NIG case. In the Figure, we have plotted also the confidence interval chosen equal to two times
the standard deviation, respectively, of the skewness and the kurtosis (cf. appendix .2 for the
methodology adopted to obtain these standard deviations).

The statistical test is simple. We perform a linear regression statistical analysis of the higher
moments behavior w.r.t. the square root of the time-to-maturity

√
T : we reject the null hy-

pothesis of no slope in all of the cases that we analyze (both indices and both tempered stable
models; that is, NIG and VG) with p-values of the order of 10−16. Similar results hold in all
ATS cases.

9We have also considered a global calibration of the implied volatility surfaces considering the power-law scaling
parameters in (1.3.2) with β = 1 and δ = −0.5. The results are of the same order of magnitude of Table 1.1.

10Proof available in appendix .3.
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Figure 1.9: Observed time-dependent skewness (kurtosis) w.r.t.
√
T for the NIG calibrated model on

S&P 500 volatility surfaces. We plot a confidence interval equal to two times the standard deviation.
The behavior is not consistent with a Sato process.

The other statistical test aims to verify the adequacy of additive processes obtained through
additive subordination (Li et al. 2016) in volatility surface calibration. As already mentioned
the ATS process, when η̂θ is equal to a constant η̄, falls within this class.

In Figure 1.7 and 1.8 we have already shown the time scaling η̂θ. We can statistically test the
null hypothesis of constant η̂θ. For both volatility surfaces and for both tested tempered stable
models (NIG and VG) we reject the null hypothesis of a constant η̂θ with p-values below 10−7.
As already observed, ATS processes are characterized by a power-law scaling in η̂θ.

1.4.2 Robustness tests

In this subsection, we perform a robustness analysis of the results in section 1.3. We repeat
the analysis on four other days, both on the S&P 500 and EURO STOXX 50 volatility surfaces.
We show that the excellent calibration features of the ATS and the power-law scaling properties,
observed on the 30th of May 2013, arise also in these other dates.

In these robustness tests, we use bid and ask close prices for the S&P 500 and EURO STOXX
50 options on the 29th of November 2012 (6 months before the date of the analysis of section
1.3, the 30th of May 2013), the 27th of February 2013 (3 months before), the 30th of August
2013 (3 months after), and the 29th November 2013 (6 months after).11 The dataset includes the
bootstrapped risk-free rate curve. The data is provided by Reuters Datastream (option data)
and Reuters Eikons (rate data). Let us observe that close prices are, in general, less accurate
than open market prices (the ones used for the analysis in section 1.3).

In Table 1.4, we report calibration performances for the S&P 500 and EURO STOXX 50 in
terms of MSE and MAPE on the four dates considered. In the NIG and VG cases, we consider

11These are the penultimate business days of November 2012, February 2013, August 2013, and November 2013.
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the standard Lévy process, the Sato process, and the corresponding ATS process. In all con-
sidered cases, Sato processes perform better than Lévy processes but ATS improvement is far
more significant: on average, two orders of magnitude for MSE and one order of magnitude for
MAPE. These results appear coherent with the ones reported in Table 1.1.

MSE MAPE MSE MAPE
Index Model Lévy Sato ATS Lévy Sato ATS Lévy Sato ATS Lévy Sato ATS

29th of November 2012 (-6 months) 27th of February 2013 (-3 months)
S&P 500 NIG 4.78 1.15 0.38 2.93% 1.36% 0.60% 10.77 4.31 0.52 3.65% 3.30% 0.66%
S&P 500 VG 11.04 1.00 0.38 4.46% 1.36% 0.71% 18.28 3.74 0.48 4.81% 2.16% 0.69%

Euro Stoxx 50 NIG 20.64 19.73 0.26 2.39% 2.29% 0.18% 54.54 19.99 0.15 3.79% 2.47% 0.15%
Euro Stoxx 50 VG 34.51 20.65 0.41 3.05% 2.38% 0.31% 90.81 19.25 0.38 4.91% 2.47% 0.24%

30th of August 2013 (+3 months) 29th November 2013 (+6 months)
S&P 500 NIG 8.27 1.08 0.18 3.29% 1.21% 0.12% 10.23 1.42 0.01 3.50% 1.32% 0.09%
S&P 500 VG 18.37 0.98 0.37 4.95% 1.16% 0.20% 16.80 1.36 0.09 4.52% 1.30% 0.35%

Euro Stoxx 50 NIG 40.98 5.03 1.53 2.68% 0.93% 0.44% 24.22 12.03 0.50 2.38% 1.73% 0.27%
Euro Stoxx 50 VG 59.23 4.81 0.64 3.26% 0.94% 0.32% 57.25 12.66 0.91 3.75% 1.77% 0.45%

Table 1.4: Calibration performance for the S&P 500 and EURO STOXX 50 in terms of MSE and MAPE
on the 29th of November 2012 (6 months before the date of the analysis), the 27th of February 2013
(3 months before), the 30th of August 2013 (3 months after), and the 29th November 2013 (6 months
after). In the NIG and VG cases, we consider the standard Lévy process, the Sato process, and the
corresponding ATS process, as in Table 1.1. In all considered cases, Sato processes perform better than
Lévy processes but ATS improvement is far more significant: two orders of magnitude for MSE and one
order of magnitude for MAPE.

In Figure 1.10, we plot the MSE w.r.t. the different times-to-maturity (in years) for S&P 500
volatility surface calibrated with a NIG process on the four considered dates. We observe that
Sato (circles) and Lévy (triangles) have a MSE of the same order of magnitude, while the im-
provement of ATS (squares) is, on average, of two orders of magnitude and particularly significant
at short-time.
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Figure 1.10: MSE w.r.t. the different times-to-maturity (in years) for S&P 500 volatility surface
calibrated with a NIG process on the 29th of November 2012 (6 months before), the 27th of February
2013 (3 months before), the 30th of August 2013 (3 months after), and the 29th November 2013 (6
months after). Sato (circles) and Lévy (triangles) have a MSE of the same order of magnitude, while the
improvement of ATS (squares) is, on average, of two orders of magnitude and particularly significant at
short-time.

In Figures 1.11 and 1.12, we plot the implied volatility smile for S&P 500 on the 29th of November
2012 (time-to-maturity of 22 days on the left and of 9 months and 22 days on the right) and on
the 29th of November 2013 (time-to-maturity of 21 days on the left and of 9 months and 21 days
on the right). The NIG ATS process, Sato process, and LTS process implied volatility are plotted
together with the market-implied volatility. As in the case of the 30th of May 2013 (cf. Figure
1.5) the ATS reproduces the smiles significantly better than the alternatives, the improvement
is particularly evident for small maturities.
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Figure 1.11: Implied volatility smile for S&P 500 at the 29th of November 2012 (6 months before) for
a given time-to-maturity: 22 days (on the left) and 9 months and 22 days (on the right). The NIG
ATS process, Sato process, and LTS process implied volatility are plotted together with the market-
implied volatility. ATS reproduces the smile significantly better than the alternatives, the improvement
is particularly evident for small maturities.

Figure 1.12: Implied volatility smile for S&P 500 at the 29th of November 2013 (6 months after) for
a given time-to-maturity: 21 days (on the left) and 9 months and 21 days (on the right). The NIG
ATS process, Sato process, and LTS process implied volatility are plotted together with the market-
implied volatility. ATS reproduces the smile significantly better than the alternatives, the improvement
is particularly evident for small maturities.

In Figure 1.13, we plot the market and the ATS NIG implied volatility skew for EURO STOXX
50 w.r.t. the times-to-maturity on the 27th of February and on the 30th of August 2013. In both
cases, the calibrated ATS replicates accurately the market implied volatility skew, as already
observed in section 1.3 for the 30th of May 2013. Similar results hold for the other two dates
and in the S&P 500 case.
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Figure 1.13: The market and the ATS NIG implied volatility skew for EURO STOXX 50 w.r.t. the
times-to-maturity on the 27th of February and on the 30th of August 2013. Again, ATS replicates the
market implied implied volatility skew.

In Figures 1.14 and 1.15, we plot the weighted regression lines and the observed time-dependent
parameters ln k̂θ and ln η̂θ with their confidence intervals for S&P 500 and EURO STOXX 50 on
the 29th of November 2012 (on the top) and on the 29th of November 2013 (on the bottom).12 The
confidence intervals are two times the standard deviations of ln k̂θ, of ln η̂θ and of ln θ. In both
days, the observed scalings of k̂θ and η̂θ are equivalent to the ones observed in Figures 1.7 and 1.8.

12Results for the 27th of February 2013 and the 30th of August 2013 are available upon request.
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Figure 1.14: Weighted regression line and the observed time-dependent parameters ln k̂θ and ln η̂θ w.r.t.
ln θ for the NIG calibrated model for S&P 500 on the 29th of November 2012 (on the top) and on the 29th
of November 2013 (on the bottom). We plot a confidence interval equal to two times the corresponding
standard deviation. Notice that, also in this case, confidence intervals on ln k̂θ and ln η̂θ are one order of
magnitude wider than confidence intervals on ln θ. The observed scalings of k̂θ and η̂θ are equivalents to
the ones observed in Figures 1.7 and 1.8. The values of θ correspond to times-to-maturity that go from
tree weeks to two years and a half (all available maturities on Reuters Datastream dataset).
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Figure 1.15: Weighted regression line and the observed time-dependent parameters ln k̂θ and ln η̂θ w.r.t.
ln θ for the VG calibrated model for EURO STOXX 50 on the 29th of November 2012 (on the top) and
on the 30th of November 2013 (on the bottom). We plot a confidence interval equal to two times the
corresponding standard deviation. Notice that, also in this case, confidence intervals on ln k̂θ and ln η̂θ
are one order of magnitude wider than confidence intervals on ln θ. The observed scalings of k̂θ and η̂θ are
equivalents to the ones observed in Figures 1.7 and 1.8. The values of θ correspond to times-to-maturity
that go from tree weeks to five years (all available maturities on Reuters Datastream dataset).

The results presented in Table 1.4 and in Figures 9-14 are equivalent to the one of section 1.3.
This analysis confirms the robustness, over a one-year time interval, of the excellent calibration
performances and the power scaling behavior of the ATS.

1.5 Conclusions

In this chapter, we introduce a new broad family of stochastic processes that we call additive
normal tempered stable processes (ATS). An interesting subcase of ATS presents a power-law
scaling of the time-dependent parameters.

We have considered all quoted options on S&P 500 and EURO STOXX 50 at 11:00 am NT on
the 30th of May 2013. The dataset considers options with a time-to-maturity starting from three
weeks and up to several years. We calibrate the ATS processes on the options of both indices,
showing that ATS processes present better calibration features than LTS and Sato processes.
The observed improvement of ATS is even of two orders of magnitude in terms of MSE, as
reported in Table 1.1. ATS replicates accurately market implied volatility term structure and
skew as observed in Figures 1.5 and 1.6.
The quality of ATS calibration results looks quite incredible. In subsection 1.3.3, we have shown
that once the volatility term structure has been taken into account, the whole implied volatility
surface is calibrated accurately with only two free parameters.
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We also construct a re-scaled ATS process via a time-change based on the implied volatility
term structure. We show that the re-scaled process calibrated parameters exhibit a power-law
behavior. The statistical relevance of the scaling properties is discussed in detail.

We have compared some model characteristics with the two alternative additive processes
present in the financial literature. These two classes fail to reproduce some stylized facts
observed in market data, which are adequately described by ATS processes.
Finally, we have verified the robustness, over a one-year time interval, of the excellent calibration
performances and the power scaling behavior of the ATS. In section 4.4, we discuss the ATS
calibration performances on a nine-year dataset.

For future research, two main promising directions appear evident. First, it can be interesting to
extend ATS processes to the commodity asset class, in general, and to the oil (Shiraya and Taka-
hashi 2011, Kyriakou et al. 2016) and freight markets (Prokopczuk 2011, Nomikos et al. 2013),
in particular; this model extension should allow for mean-reversion and seasonality patterns in
prices, which are typically found in empirical studies (see, e.g., Benth et al. 2014, and references
therein). We include a preliminary analysis in appendix .7. Second, it would be worthy to devel-
ope a fast and reliable Monte Carlo scheme for ATS processes and to study pricing techniques for
exotic derivatives (e.g., generalizing the techniques for path-dependent exotics products, as Asian
options, in Fusai and Meucci 2008, Černỳ and Kyriakou 2011, Fusai and Kyriakou 2016, through
the characteristic function of the ATS increments). We develop two Monte Carlo schemes in
chapter 3.
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Chapter 2

Short-time implied volatility of
additive normal tempered stable processes

Empirical studies have emphasized that the equity implied volatility is characterized by a
negative skew inversely proportional to the square root of the time-to-maturity.

We examine the short-time-to-maturity behavior of the implied volatility smile for pure jump
exponential additive processes introduced in the previous chapter. An excellent calibration of
the equity volatility surfaces is achieved by the power-law scaling ATS. The two power-law
scaling parameters are β, related to the variance of jumps, and δ, related to the smile asymmetry.
It has been observed, in option market data (cf. chapter 1), that β = 1 and δ = −1/2.
In this chapter, we prove that the implied volatility of these additive processes is consistent, in
the short-time, with the equity market empirical characteristics if and only if β = 1 and δ = −1/2.

These results have already been presented in Azzone and Baviera (2021c).

2.1 Introduction

Which characteristics of the implied volatility surface should be reproduced by an option pricing
model? A stylized fact that characterizes the equity market is a downward slope in terms of strike,
i.e. a negative skew, we recall that the skew is the at-the-money (ATM) derivative of the implied
volatility w.r.t. the moneyness.1 Specifically, the short-time2 negative skew is proportionally
inverse to the square root of the time-to-maturity. The first empirical study of the equity skew
dates back to Carr and Wu (2003): they find that the S&P 500 short-time skew is, on average,
asymptotic to −0.25/

√
t. Fouque et al. (2004) arrive at a similar conclusion considering only

options with short-time-to-maturity (i.e. up to three months). In this chapter, we show that
the power law scaling ATS, which also calibrates accurately the whole equity volatility surface,
reproduces the power scaling market skew.

A vast literature on short-time implied volatility and skew is available for jump-diffusion pro-
cesses. Both the ATM (see, e.g., Alòs et al. 2007, Roper 2009, Muhle-Karbe and Nutz 2011,
Andersen and Lipton 2013, Figueroa-López et al. 2016) and the OTM implied volatility (see,
e.g., Tankov 2011, Figueroa-López and Forde 2012, Mijatović and Tankov 2016, Figueroa-López

1The moneyness is the logarithm of the strike price over the forward price. For a description of the equity
volatility surface and a definition of skew, see, e.g., Gatheral (2011).

2We refer to short-time-to-maturity.
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et al. 2018) are analyzed. For a jump-diffusion Lévy process, the ATM implied volatility is deter-
mined uniquely by the diffusion term; it goes to zero as the time-to-maturity goes to zero if there
is no diffusion term, i.e. for a pure-jump process. For this reason, pure jumps Lévy processes are
not suitable to reproduce the market short-time smile, because the short-time implied volatility
is strictly positive in all financial markets.
Muhle-Karbe and Nutz (2011) have shown that, for a relatively broad class of additive models,
the ATM behavior at small-time is the same as the corresponding Lévy. In this chapter, we
analyze the ATM implied volatility and skew for a class of pure jump additive processes that
is consistent with the equity market smile, differently from the Lévy case: this is the main
theoretical contribution of this study.

In chapter 1, we have introduced the ATS, a pure jump additive extension of the well-known Lévy
normal tempered stable process (for a comprehensive description of this set of Lévy processes,
see, e.g., Cont and Tankov 2003, Ch.4). In the following, we will focus on the short time behavior
of this process.
Pure jump processes present a main advantage w.r.t. jump-diffusion models: they generally
describe underlying dynamics more parsimoniously. In a jump-diffusion, both small jumps and
the diffusion term describe little changes in the process (see, e.g., Asmussen and Rosiński
2001). Because both components of the jump-diffusion process are qualitatively similar, when
calibrating the model to the plain vanilla option market, it is rather difficult to disentangle the
two components and several sets of parameters achieve similar results.
The power-law scaling ATS which is characterized by two key time-dependent parameters –the
variance of jumps per unit of time, kt, and the asymmetry parameter, ηt– that present a power
scaling w.r.t. the time-to-maturity t. The excellent calibrating performances of this class of
processes has been shown in chapter 1 and will be discussed also in chapter 2 and appendix
.7. On the one hand, this class of pure jump additive processes allows calibrating the S&P 500
and EURO STOXX 50 implied volatility surfaces with great accuracy, reproducing “exactly” the
term structure of the equity market implied volatility surfaces. On the other hand, the observed
reproduction of the skew term structure appears remarkable.
Moreover, an interesting self-similar characteristic w.r.t. the time-to-maturity, in the form of
(1.3.2), arises. Specifically, among all allowed power laws , the power scaling index of kt, β, is
close to one, while the power scaling index of ηt, δ, is statistically consistent with minus one half
(see, e.g., Azzone and Baviera 2021a).

Consider an option price with strike K and time-to-maturity t. We define It(x) the model implied
volatility, where x := log K

F0(t) is the moneyness and F0(t) is the underlying forward price with
time-to-maturity t. In particular, we consider the moneyness degree y, s.t. x =: y

√
t, introduced

by Medvedev and Scaillet (2006). It has been observed that the moneyness degree y can be
interpreted as the distance of the option moneyness from the forward price in terms of the Black
Brownian motion standard deviation (see, e.g., Carr and Wu 2003, Medvedev and Scaillet 2006).
The implied volatility w.r.t y is

It(y) := It(y
√
t) ,

and its first order Taylor expansion w.r.t. y in y = 0 is

It(y) = It(0) + y
dIt(y)
dy

∣∣∣∣
y=0

+ o(y) =: σ̂t + y ξ̂t + o(y) .

We call ξ̂t the skew term. We define σ̂0 and ξ̂0 as the the limits for t that goes to zero of σ̂t
and ξ̂t. Their financial interpretation is straightforward: σ̂0 corresponds to the short-time ATM
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implied volatility, while ξ̂0 is related to the short-time skew, because it is possible to write the
skew as

dIt(x)
dx

∣∣∣∣
x=0

= ξ̂t√
t
.

In Figure 2.1, we present an example of the short-time implied volatility and the skew for the
S&P 500 at a given date, the 22nd of June 2020 (the business day after a quadruple witching
Friday3). On the left, we plot the one month (blue circles), two months (red squares), three
months (orange stars), and four months (purple triangles) market implied volatility w.r.t. the
moneyness degree y: we observe a positive and finite short-time σ̂t. On the right, we plot the
market skew w.r.t. the time t: it appears to be well described by a fit O

(√
1
t

)
.
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Figure 2.1: Example of the S&P 500 short-time implied volatility and skew on the 22nd of June 2020.
On the left, we plot the one month (blue circles), two months (red squares), three months (orange stars),
and four months (purple triangles) market implied volatility w.r.t. the moneyness degree y. We observe a
positive short-time σ̂t. On the right, we plot the market skew w.r.t. the time t and the fitted ≈ (−)

√
1
t
.

As already observed in some empirical studies (see, e.g., Carr and Wu 2003, Fouque et al. 2004),
equity market data are compatible with a positive and finite σ̂0 and a negative and finite ξ̂0,
that leads to a skew proportionally inverse to the square root of the time-to-maturity. We aim
to present a pure-jump model with these features.
We study the behavior of σ̂t and ξ̂t for the ATS process, deriving, in (2.2.4, 2.2.5), an extension
of the Hull and White (1987, Eq.(7), p.4) formula (see, e.g., Alòs et al. 2007, for another
application of this formula to the short-time case). This formula leads to two results: on the
one hand, we build some relevant bounds for σ̂t; on the other hand, we obtain an expression for
ξ̂t in (2.4.1) via the Dini’s implicit function theorem (Dini 1907, pp.197-241).

3A quadruple witching Friday is the third Friday of the months of March, June, September and December: in
this quarterly date, stock options, stock futures, equity index futures, and equity index options all expire on the
same day.

33



There are three main contributions in this chapter. First, we deduce for a family of pure-jump
additive processes, the ATS, the behavior of the short-time ATM implied volatility σ̂t and skew
term ξ̂t over the region of admissible parameters (see Theorem 1.2.3). Second, we prove that
only the scaling parameters observed in market data (β = 1 and δ = −1/2) are compatible with
a finite short-time implied volatility and a short-time skew proportionally inverse to the square
root of the time-to-maturity. Third, we prove that there exists a pure-jump additive process (an
exponential ATS) that presents the two features observed in market data: not only a finite and
positive short-time implied volatility but also a power scaling skew.

The rest of the chapter is organized as follows. Section 2.2 presents the ATS power scaling process
and the extension of the Hull and White formula. Section 2.3 defines the implied volatility
problem and analyzes the short-time ATM implied volatility σ̂t. Section 2.4 computes the short-
time limit of the skew term ξ̂t. Section 2.5 presents the major result: the ATS process is consistent
with the equity market if and only if β = 1 and δ = −1/2. Finally, section 2.6 concludes. In the
appendices, we report some technical lemmas that we use in this chapter: on basic properties in
appendix .4 on short-time limits in appendix .5.

2.2 The ATS implied volatility

In this section, we recall the characteristic function of the power-law scaling additive normal tem-
pered stable process (ATS), introduced in chapter 1, and we introduce the notation employed in
the chapter. We also introduce a sequence of random variables (2.2.3) with the same distribution
of the ATS for any fixed time t; we use these random variables to study the short-time implied
volatility.
We discuss the volatility smile at small-maturity produced by this forward model and determine
the power laws of the ATS parameters that are consistent with the market data i.e. which
choices of β and δ reproduce the market short-time features mentioned above.

We define a sequence of positive random variables St via its Laplace transform. The random
variable St appears in the definition of the random variable ft, that is used to model a forward
contract of the underlying of interest.
Definition 2.2.1. Definition of {St}t≥0
Let {St}t≥0 be a sequence of positive random variables s.t. the logarithm of the Laplace transform

of tSt is

lnLt (u; kt, α) := lnE
[
e−utSt

]
=


t

kt

1− α
α

{
1−

(
1 + u kt

(1− α)

)α}
if 0 < α < 1

− t

kt
ln (1 + u kt) if α = 0

, t ≥ 0

where kt := k̄tβ and k̄, β ∈ R+.
Notice that, by the Laplace transform, we can compute any moment of St. The first two are

1. E [St] = 1;

2. V ar [St] = kt/t.
Definition 2.2.2. Definition of {ft}t≥0
Let {ft}t≥0 be a sequence of random variables with characteristic function s.t.

E
[
eiuft

]
:= Lt

(
iut

(
1
2 + ηt

)
σ̄2 + t

u2σ̄2

2 ; kt, α
)
ei u ϕt t , t ≥ 0 (2.2.1)
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where
ηt := η̄tδ and ϕt t := − lnLt

(
tσ̄2ηt; kt, α

)
. (2.2.2)

σ̄, η̄ ∈ R+ and δ ∈ R.

Notice that the characteristic function is the same as the power-law scaling additive normal
tempered stable process (ATS) in chapter 1. We also define F0(t), the forward contract at time
0 with maturity t, and model the same forward contract at maturity as

Ft(t) := F0(t) eft .

We report the result on the existence of an additive process with characteristic function (2.2.1),
cf. Theorem 1.2.3.

Theorem 2.2.3. Power-law scaling ATS
There exists an additive process with the same characteristic function of (2.2.1), where α ∈ [0, 1)
and β, δ ∈ R with either β = δ = 0 or

1. 0 ≤ β ≤ 1
1− α/2 ;

2. −min
(
β,

1− β (1− α)
α

)
< δ ≤ 0 ;

where the second condition reduces to −β < δ ≤ 0 for α = 0

The region of admissible values for the scaling parameters β and δ is shown in Figure 2.2.
In particular, we mention that, ∀α ∈ [0, 1), the scaling parameters observed in the market,
{δ = −1/2, β = 1}, are always inside the ATS admissible region. In Figure 2.2, we plot the
admissible region for the scaling parameters β and δ. In this chapter, we prove that the ATS
implied volatility at short-time is qualitatively different for different sets of scaling parameters.
We separate the admissible region into five Cases:
Case 1 (grey area): {

β < 1, −min
(

1
2 , β

)
< δ ≤ 0

}
∪ {δ = β = 0} .

Case 2 (orange area):{
−min

(
β,

1− β(1− α)
α

)
< δ < −1

2 max (β, 1)
}

.

Case 3 (light green area):{
β ≥ 1, −β2 ≤ δ ≤ 0

}
\
{
β = 1, δ = −1

2

}
.

Case 4 (continuous dark green line): {
β < 1, δ = −1

2

}
.

Case 5 (red dot): {
β = 1, δ = −1

2

}
.
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Notice that Case 3 includes all its boundaries, identified by the green circles, with the exception
of the point {β = 1, δ = −1/2} (red); Case 1 includes just its upper boundary (but it does not
include its lower boundary), identified by the grey squares.
The main objective of this chapter is to prove that the 5 Cases correspond to different behaviors
of the implied volatility in the short-time. A summary of the ATS short-time behavior, and in
particular of the ATM value σ̂0 and of the skew term ξ̂0, w.r.t. the different Cases is available
in Table 2.1.

Case 1 σ̂0 = 0
Case 2 σ̂0 =∞
Case 3 σ̂0 > 0 and ξ̂0 = 0
Case 4 σ̂0 > 0 and ξ̂0 = −

√
π
2

Case 5 σ̂0 > 0 and ξ̂0 < 0

Table 2.1: Summary of ATS short-time implied volatility behavior in the five Cases. We observe that
only the last 3 Cases admit a positive (and finite) implied volatility.

Figure 2.2: ATS admissible region for the scaling parameters. We separate the region in five Cases.
i) Case 1 (grey area) with σ̂0 = 0. ii) Case 2 (orange area) with σ̂0 = ∞. iii) Case 3 (light green area)
with finite σ̂0 and ξ̂0 = 0. iv) Case 4 (continuous dark green line) with finite σ̂0 and ξ̂0 = −

√
π
2 . v)

Case 5 (red dot) with finite σ̂0 and negative and finite ξ̂0.
Notice that Case 3 includes all its boundaries, identified by the green circles, with the exception of the
point {β = 1, δ = −1/2} (red), that corresponds to Case 5. Moreover, Case 1 includes just its upper
bound, identified by the grey squares. We emphasize that for all α in [0, 1) the point {β = 1, δ = −1/2}
is inside the admissible region.

It is also useful to provide the same result dividing the region for the admissible values of
Theorem 1.2.3, in terms of β and δ. A summary of the ATS short-time behavior, w.r.t. the
scaling parameters β and δ in the additive process admissible region is reported in Table 2.2.
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0 < β < 1 β = 1 β > 1
δ > − 1

2 σ̂0 = 0 ξ̂0 = 0 ξ̂0 = 0
δ = − 1

2 ξ̂0 = −
√

π
2 ξ̂0 < 0 ξ̂0 = 0

δ < − 1
2 σ̂0 =∞ σ̂0 =∞ σ̂0 =∞ or ξ̂0 = 0

Table 2.2: Summary of ATS short-time implied volatility behavior, w.r.t. the scaling parameters β and
δ in the additive process admissible region. The ATM implied volatility σ0 is positive (and finite) when
we report the value for ξ̂0.

It can be proven that, for every time t, the random variable

ft = −
(
ηt + 1

2

)
σ̄2 St t+ σ̄

√
Stt g + ϕtt (2.2.3)

has the characteristic function in (2.2.1), where g is a standard normal random variable indepen-
dent from St. The proof is the same as in the Lévy case, but with time dependent parameters,
and it is obtained by direct computation of E[ei u ft ], conditioning w.r.t. St. The ft in (2.2.3) is
then equivalent in law to the ATS process at maturity t; thus, we can use this expression of ft
to compute the price of European options.
Consider a European call option discounted payoff Bt

(
F0(t) eft − F0(t) ex

)+
(and Bt

(
F0(t) ex − F0(t) eft

)+ is the discounted payoff for the corresponding put) where t is
option time-to-maturity, K option strike price, x := ln K

F0(t) the asset moneyness and Bt the
deterministic discount factor between 0 and t. We can write the expected European call and put
option price at time zero conditioning on St

Ct(x) = Bt F0(t)E
[(
eft − ex

)+]
= Bt F0(t)E

[
eϕtt−tσ̄

2ηtStN

(
−x

σ̄
√
Stt

+ lStt + σ̄
√
Stt

2

)
− exN

(
−x

σ̄
√
Stt

+ lStt −
σ̄
√
Stt

2

)]
(2.2.4)

Pt(x) = Bt F0(t)E
[(
ex − eft

)+]
= Bt F0(t)E

[
exN

(
x

σ̄
√
Stt
− lStt + σ̄

√
Stt

2

)
− eϕtt−tσ̄

2ηtStN

(
x

σ̄
√
Stt
− lStt −

σ̄
√
Stt

2

)]
,

(2.2.5)

where
lzt := −σ̄ηt

√
z t+ ϕt

√
t

σ̄
√
z

(2.2.6)

and N is the standard normal cumulative distribution.
Equations (2.2.4) and (2.2.5) are crucial in the deduction of chapter’s key results: let us stop
and comment. First, let us notice that we can consider option prices with F0(t) = 1 and Bt = 1
without any loss of generality: we are interested in the implied volatility and these two quantities
cancel out from both sides of the implied volatility equation. Second, let us emphasize that the
quantity inside the expected values are, in both equations (2.2.4) and (2.2.5), positive. Finally,
it can be useful to mention that a similar result has been obtained by Hull and White (1987) for
options on an asset with stochastic volatility.
We can re-write equations (2.2.4) and (2.2.5) w.r.t to the moneyness degree y (cf. Introduction)

Ct(y
√
t) = E

[
eϕtt−tσ̄

2ηtStN

(
− y

σ̄
√
St

+ lStt + σ̄

√
Stt

2

)
− ey

√
tN

(
− y

σ̄
√
St

+ lStt − σ̄
√
Stt

2

)]
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Pt(y
√
t) = E

[
ey
√
tN

(
y

σ̄
√
St
− lStt + σ̄

√
Stt

2

)
− eϕtt−tσ̄

2ηtStN

(
y

σ̄
√
St
− lStt − σ̄

√
Stt

2

)]
,

and we can define ct(St, y) and pt(St, y) such that

E[ct (St, y)] := Ct(y
√
t)

E[pt (St, y)] := Pt(y
√
t) .

Black (1976) option prices w.r.t. y are

cBt (It(y), y) = N

(
− y

It(y) + It(y)
√
t

2

)
− ey

√
tN

(
− y

It(y) −
It(y)

√
t

2

)
pBt (It(y), y) = ey

√
tN

(
y

It(y) + It(y)
√
t

2

)
−N

(
y

It(y) −
It(y)

√
t

2

)
,

where It(y) is the implied volatility w.r.t. the moneyness degree.
The implied volatility equation for the call options is

E[ct (St, y)] = cBt (It(y), y) (2.2.7)

and the one for the put option is

E[pt (St, y)] = pBt (It(y), y) . (2.2.8)

In the following lemma, we prove that σ̂t
√
t goes to zero at short-time following an approach

similar to Alòs et al. (2007, Lemma 6.1, p.580), who considered a generalization of the Bates
model.

Lemma 2.2.4.
For the ATS, at short-time,

σ̂t
√
t = o(1) .

Proof. For an ATM put (i.e. when y = 0), the left-hand side of equation (2.2.8) is equal to
E

[(
1− eft

)+]. In the region of admissible scaling parameters, ft goes to zero in distribution
because its characteristic function in (2.2.1) goes to one. Hence, by the dominated convergence
theorem, E

[(
1− eft

)+] goes to zero at short time. For y = 0, the right-hand side of equation
(2.2.8) becomes

pBt (σ̂t, 0) = N

(
σ̂t
√
t

2

)
−N

(
− σ̂t
√
t

2

)
,

that goes to zero if and only if σ̂t
√
t goes to zero.

Thanks to this lemma, ATM and at short-time, we can rewrite the right hand side of (2.2.7) and
(2.2.8) as

cBt (σ̂t, 0) = pBt (σ̂t, 0) = σ̂t

√
t

2π + o
(
σ̂t
√
t
)

, (2.2.9)

where the asymptotic expansion holds because N ′(0) =
√

1
2π , with N ′ the standard normal

probability density function.
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2.3 Short-time ATM implied volatility

In this section, we study the behavior of σ̂t at short-time for the ATS. The idea of the proofs is
simple. Equation (2.2.9) is the short-time asymptotic expansion of the ATM Black call and put
prices. We can study the short-time behavior of the ATS model price in (2.2.7) and (2.2.8).

1. If the model price (left hand side in (2.2.7) and (2.2.8)) goes to zero faster than
√
t , then

σ̂0 = 0 (Case 1).

2. If the model price goes to zero slower than
√
t, then σ̂0 =∞ (Case 2).

3. If the model price goes to zero as
√
t, then σ̂0 is finite (Cases 3, 4, 5).

The idea of the proofs is the following. In Case 1 we bound the model price from above and
we prove that it is o

(√
t
)
. In Case 2 we bound the model price from below and we show that

it converges to zero slower than
√
t. Finally in the remaining Cases we build upper and lower

bounds for the model price and prove that both bounds are O
(√
t
)
. Furthermore, the proofs are

divided into some sub-cases that correspond to particular ranges of the parameters β and δ : we
indicate with bold characters the range at the beginning of each sub-case.

Proposition 2.3.1.

For Case 1:
{
β < 1 & −min

( 1
2 , β
)
< δ ≤ 0 or

β = δ = 0
,

the implied volatility is s.t.
σ̂0 = 0 .

Proof.

β < 1 & − min
(1

2 , β
)
< δ ≤ 0 or β = δ = 0

We bound ct (St, 0) from above as follows.

ct (St, 0) =N
(
lStt + σ̄

√
Stt

2

)
−N

(
lStt − σ̄

√
Stt

2

)
−
(
eϕtt−tσ̄

2ηtSt − 1
)
N

(
lStt + σ̄

√
Stt

2

)
≤
√

t

2π σ̄
√
St + eϕtt − 1 . (2.3.1)

In the equality we have just added and subtracted the quantity N
(
lStt + σ̄

√
Stt
2

)
. The inequality

holds because, by definition of standard normal cumulative distribution function,

N

(
lStt + σ̄

√
Stt

2

)
−N

(
lStt − σ̄

√
Stt

2

)
= 1√

2π

∫ l
St
t +σ̄

√
Stt

2

l
St
t −σ̄

√
Stt

2

dz e−z
2/2 ≤

√
t

2π σ̄
√
St , (2.3.2)

and because we bound from above the product
(
eϕtt−tσ̄

2ηtSt − 1
)
N
(
lStt + σ̄

√
Stt
2

)
with the

(positive) maxima of both factors.
We bound the expected value of ct (St, 0) as

E[ct (St, 0)] ≤ E

[√
t

2π σ̄
√
St

]
+ eϕtt − 1 =

√
t

2π σ̄ E[
√
St] + o

(√
t
)

= o
(√

t
)

.
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The first equality holds because eϕtt−1 = O (ϕtt) = o
(√
t
)

and the last equality because E[
√
St]

converges to zero at short-time (see Lemma .4.5).

Summarizing, the upper bound to the ATS ATM price in (2.2.7) is o
(√
t
)
. From (2.2.9) we have

that the Black price is O
(
σ̂t
√
t
)
. Thus,

σ̂0 = 0

Proposition 2.3.2.
For Case 2: −min

(
β, 1−β(1−α)

α

)
< δ < − 1

2 max (β, 1),

σ̂0 =∞ .

Proof.
We divide the proof in two sub-cases.

β ≤ 1 & −β < δ < − 1
2

Consider the left hand side of equation (2.2.7). We compute the derivative of ct(z, y) w.r.t. z in
y = 0.

∂ct(z, 0)
∂z

=− tσ̄2ηte
ϕtt−tσ̄2ηtzN

(
lzt + σ̄

√
zt

2

)
−
(
ϕt
√
t

2σ̄z3/2 +
√
tσ̄ηt

2
√
z

)(
eϕtt−tσ̄

2ηtzN ′
(
lzt + σ̄

√
zt

2

)
−N ′

(
lzt − σ̄

√
zt

2

))
+
√
tσ̄

4
√
z

(
eϕtt−tσ̄

2ηtzN ′
(
lzt + σ̄

√
zt

2

)
+N ′

(
lzt − σ̄

√
zt

2

))
. (2.3.3)

At short-time, for a given z ∈
(

0, ϕt
σ̄2ηt

)
, lzt =

√
tσ̄ηt√
z

(
−z + ϕt

σ̄2ηt

)
> 0. We observe that

eϕtt−tσ̄
2ηtz = 1 + o(1) and limt→0 l

z
t = ∞ due to Lemma .4.6 point 1; then, N

(
lzt + σ̄

√
zt
2

)
=

1 + o(1). Thus,
∂ct(z, 0)
∂z

= −tσ̄2ηt + o(tηt) ,

because the first term goes to zero as tηt, while the second and the third terms go to zero as
N ′(
√
t ηt) (i.e. as a negative exponential). Thus, for sufficiently small t, ct(z, 0) is decreasing

w.r.t. z in (0, ϕt
σ̄2ηt

). We emphasize that the right extreme of the interval is increasing to one for
sufficiently small t, see Lemma .4.6 points 2 and 3.
Fix τ > 0 and S∗ ∈ (0, ϕτ

σ̄2ητ
); for any t < τ

E [ct(St, 0)]
≥ ct(S∗, 0)P (St ≤ S∗)

≥

{
N

(
lS
∗

t + σ̄

√
S∗t

2

)
−N

(
lS
∗

t − σ̄
√
S∗t

2

)
+
(
ϕtt− tσ̄2ηtS

∗)N (lS∗t + σ̄

√
S∗t

2

)}
P (St ≤ S∗)

≥
(
ϕtt− tσ̄2ηtS

∗)N (lS∗t + σ̄

√
S∗t

2

)
P (St ≤ S∗) = O(tηt) .

The first inequality holds because ct(z, 0) is positive for any z ≥ 0 and because we bound from
below the expected value with its minimum in the interval (0, S∗) multiplied by the probability
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of the interval, P (St ≤ S∗). The second inequality is due to the fact that ex ≥ x + 1. Finally,
the last inequality holds because, by definition of the standard normal cumulative distribution
function,

N

(
lzt + σ̄

√
zt

2

)
−N

(
lzt − σ̄

√
zt

2

)
≥ 0 , z ∈ R+ . (2.3.4)

Recall that N
(
lS
∗

t + σ̄
√
S∗t
2

)
= 1 + o(1); notice that P (St ≤ S∗) is constant for β = 1 and goes

to one, by Lemma .4.4 point 1, for β < 1. This proves the last equality.
Notice that t ηt goes to zero slower than

√
t (δ < −0.5), then the ATM call price goes to zero

slower than
√
t.

β > 1 & − 1−β(1−α)
α

< δ < − β
2

There exists q such that (β − 1)/2 < q < −δ − 1/2. We bound the ATM put price (2.2.5) from
below for a sufficiently small t

E[pt (St, 0)]

≥ E

[
1St≥1+tq

(
N

(
−lStt + σ̄

√
Stt

2

)
−N

(
−lStt − σ̄

√
Stt

2

)
+N

(
−lStt − σ̄

√
Stt

2

)(
1− eϕtt−tσ̄

2ηtSt
))]

≥ E

[
1St≥1+tqN

(
−lStt − σ̄

√
Stt

2

)(
1− eϕtt−tσ̄

2ηtSt
)]

≥ P(St ≥ 1 + tq)1
3

(
1− eϕtt−tσ̄

2ηt(1+tq)
)

=: Mt

(
t1+qσ̄2ηt + tσ̄4η2

t kt/2
)

(2.3.5)

≥Mt t
1+qσ̄2ηt .

The first inequality holds because pt (St, 0) is non negative and because we have added and
subtracted the term N

(
−lStt − σ̄

√
Stt
2

)
. The second because the difference between the standard

normal cumulative distribution functions is non negative, analogously to (2.3.4). The third
because, for St ∈ [1,∞), 1 − eϕtt−tσ̄2ηtSt is positive and non decreasing in St; moreover, for a
sufficiently small t, N

(
−lStt − σ̄

√
Stt
2

)
> 1/3 because

lim
t→0

N

(
−lzt − σ̄

√
zt

2

)
≥ 1/2 , z ∈ [1,∞) .

The quantity Mt is defined in (2.3.5). At short-time Mt = 1/6 + o(1) because i) by Lemma
.5.3, P(St ≥ 1 + tq) goes to 1/2 as t goes to zero, and ii) by Lemma .4.6 point 1,

1− eϕtt−tσ̄
2ηt(1+tq) =

(
t1+qσ̄2ηt + tσ̄4η2

t kt/2
)

(1 + o(1)) .

Notice that t1+qηt goes to zero slower than
√
t, then ATM put price goes to zero slower than

√
t.

Case 2: − min
(
β, 1−β(1−α)

α

)
< δ < − max

(
β
2 ,

1
2

)
Summing up, for both sub-cases, β ≤ 1 & −β < δ < −1/2 and β > 1 & − 1−β(1−α)

α < δ < −β/2,
the lower bounds on the ATM option prices in (2.2.7) and (2.2.8) go to zero slower than

√
t.

Moreover, from (2.2.9) we have that the Black price is O
(
σ̂t
√
t
)
. Then,

σ̂0 =∞
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Proposition 2.3.3.
For Case 3: β ≥ 1 & δ ≥ −β/2, with the exception of the point {β = 1, δ = −1/2} ,

σ̂0 is finite .

Proof.
We split the proof in three sub-cases. For each sub-case we build an upper and a lower bound, on
the model price, and we demonstrate that both bounds are O

(√
t
)

and then, that σ̂0 is finite.

β > 1 &− β
2 <= δ < − 1

2

Upper bound.

Let us split the expected value of the ATS call in two parts

E[ct (St, 0)]

= E

[
N

(
lStt + σ̄

√
Stt

2

)
−N

(
lStt − σ̄

√
Stt

2

)]
+ E

[
N

(
lStt + σ̄

√
Stt

2

)(
eϕtt−tσ̄

2ηtSt − 1
)]

=: A1(t) +A2(t) .

We prove that both parts are bounded from above by quantities O
(√
t
)
. The first expected value

is s.t.

A1(t) ≤
√

t

2π σ̄ E[
√
St] = O

(√
t
)

, (2.3.6)

where the inequality holds true because of (2.3.2) and
√
t E[
√
St] = O

(√
t
)

because, by Lemma
.4.5 point 1, E[

√
St] goes to one as t goes to zero.

Let us study the term A2(t).

A2(t) < E

[(
eϕtt−tσ̄

2ηtSt − 1
)
1St<ϕt/(σ̄2ηt)

]
=
√

t

2πkt

∫ ϕt/(σ̄2ηt)

0
dze−

t(z−1)2
2kt

(
eϕtt−tσ̄

2ηtz − 1
)

(2.3.7)

+
∫ ϕt/(σ̄2ηt)

0
dz

(
PSt(z)−

√
t

2πkt
e−

t(z−1)2
2kt

)(
eϕtt−tσ̄

2ηtz − 1
)

(2.3.8)

≤ O
(
tδ+(β+1)/2

)
,

where PSt is the law of St. The first inequality is true because the quantity inside the expected
value is positive on

(
0, ϕt

σ̄2ηt

)
and negative elsewhere. The equality is obtained by adding and

subtrancting the same expected value for a Gaussian random variable. We prove the second
inequality in two steps, showing that both (2.3.7) and (2.3.8) are bounded by O

(
tδ+(β+1)/2).

First, we consider (2.3.7)√
t

2πkt

∫ ϕt/(σ̄2ηt)

0
dz e−

t(z−1)2
2kt

(
eϕtt−tσ̄

2ηtz − 1
)

= 1√
2π

∫
At
dw e−

w2
2

(
eϕtt−tσ̄

2ηt(1+w
√
kt/t) − 1

)
(2.3.9)

≤ 1√
2π

∫
At
dw e−

w2
2 e−

√
tσ̄2ηt

√
ktw − 1√

2π

∫
At
dw e−

w2
2 (2.3.10)
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=etσ̄
4η2
t kt/2N

(√
tσ̄2ηt

√
kt +

(
ϕt
σ̄2ηt

− 1
)√

t

kt

)
−N

((
ϕt
σ̄2ηt

− 1
)√

t

kt

)
+ o

(
tδ+(β+1)/2

)
(2.3.11)

=
√

t

2π σ̄
2ηt
√
kt + tσ̄4η2

t kt
4 + o

(
tδ+(β+1)/2

)
= O

(
tδ+(β+1)/2

)
, (2.3.12)

where At ≡
{
w ∈ R : −

√
t
kt
< w <

(
ϕt/(σ̄2ηt)− 1

)√
t
kt

}
. Equality (2.3.9) is due to a change

of the integration variable w := (z − 1)/
√
kt/t, equality (2.3.10) to the fact that, by Lemma

.4.6, eϕtt−tσ̄2ηt < 1. Equality (2.3.11) to a change of variable m := w +
√
tσ̄2ηt

√
kt and to the

fact that both N
(
−
√

t
kt

)
and N

(√
tσ̄2ηt

√
kt −

√
t
kt

)
go to zero faster that any power of t.

Finally, (2.3.12) holds true because of the Taylor expansion of N in zero.

Second, we consider (2.3.8)∣∣∣∣∣
∫ ϕt/(σ̄2ηt)

0
dz

(
PSt(z)−

√
t

2πkt
e−

t(z−1)2
2kt

)(
eϕtt−tσ̄

2ηtz − 1
)∣∣∣∣∣

≤
∣∣∣∣−(P(St < 0)−N

(
−
√

t

kt

))(
eϕtt − 1

)∣∣∣∣
+

∣∣∣∣∣
∫ ϕt/(σ̄2ηt)

0
dz

(
P(St < z)−N

(
(z − 1)

√
t

kt

))
σ̄2 ηt t e

ϕtt−tσ̄2ηtz

∣∣∣∣∣
≤22− α

1− α

√
kt
t

(
eϕtt − 1

)
= O

(
tδ+(β+1)/2

)
.

The first inequality is due to integration by part and to the triangular inequality. The second
inequality is a consequence of Jensen inequality and of Lemma .5.3.

Lower bound.

As discussed in the proof of Proposition 2.3.2, for a sufficiently small t, ct (St, 0) is decreasing
for St ∈

(
0, ϕt

σ̄2ηt

)
hence,

E [ct(St, 0)] ≥ E
[
ct(St, 0)1St≤ϕt/(σ̄2ηt)

]
≥ ct

(
ϕt
σ̄2ηt

, 0
)
P

(
St ≤

ϕt
σ̄2ηt

)
=
√

ϕtt

8πηt
+ o

(√
t
)

= O
(√

t
)

.

The first inequality is because ct (St, 0) is non negative and the second is because we bound the
expected value from below with the minimum of ct (St, 0) multiplied by the probability of the
interval

(
0, ϕt

σ̄2ηt

)
. The equality holds because, by Lemma .5.3,

lim
t→0

P

(
St ≤

ϕt
σ̄2ηt

)
= 1

2 ,

and

ct

(
ϕt
σ̄2ηt

, 0
)

= N

(√
ϕt t

4σ̄ηt

)
−N

(
−
√

ϕt t

4σ̄ηt

)
=
√

ϕt t

2πσ̄ηt
+ o

(√
t
)

,
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with
√

ϕt t
8πσ̄ηt = O

(√
t
)
.

β > 1 & δ = − 1
2

Upper bound.

The upper bound on the ATS call price is the same to the one of the previous sub-case
−β/2 ≤ δ < −1/2, β > 1.

Lower bound.

We bound the put price from below. It exist H > 1 such that for a sufficiently small t

E [pt (St, 0)] ≥ E
[
pt (St, 0)1St∈[1,H]

]
≥ E

[(
N

(
−lStt + σ̄

√
Stt

2

)
−N

(
−lStt − σ̄

√
Stt

2

))
1St∈[1,H]

]
≥ E

[
N ′
(
−lStt + σ̄

√
Stt

2

)
σ̄
√
Stt 1St∈[1,H]

]
≥ N ′

(
σ̄η̄ − ϕt

√
t

σ̄
+ σ̄
√
t

2

)
σ̄
√
t P(St ∈ [1, H]) =

√
t

8π σ̄ + o
(√

t
)

.

The first inequality holds because pt(St, 0) is non negative. The second because eϕtt−tσ̄2ηtSt < 1
in [1, H]. The third inequality is due to the fact that we bound from above the difference

N

(
−lStt + σ̄

√
Stt

2

)
−N

(
−lStt − σ̄

√
Stt

2

)
with the standard normal law evaluated in the maximum between the two (positive) arguments
multiplied by the difference of the two arguments. Notice that σ̄

√
Stt is a positive quantity

almost surely. The last inequality holds because, by Lemma .5.4, it exists H > 1 s.t. the
quantity inside the expected value is increasing in [1, H] for a sufficiently small t. The equality
is because, by Lemma .5.3, P(St ∈ [1, H]) goes to 1/2 as t goes to zero and

lim
t→0

N ′
(
σ̄η̄ − ϕt

√
t

σ̄
+ σ̄
√
t

2

)
= 1√

2π
.

β ≥ 1 & − 1
2 < δ ≤ 0

Upper bound.

We can bound ct(St, 0) from above as in (2.3.1).
We bound the ATS option price as

E[ct(St, 0)] ≤ E

[
1√
2π
σ̄
√
Stt

]
+ eϕtt − 1 ≤ O

(√
t
)

.

The last inequality holds because, by Jensen inequality with concave function
√
∗,

E[
√
St] ≤

√
E[St] = 1 and because, by Lemma .4.6 point 1, eϕtt − 1 = o

(√
t
)
.

Lower bound.
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To bound ct (z, 0) from below we have to study its derivative in (2.3.3). Notice that, at short-
time, lzt = O

(√
tηt
)

= o(1), due to Lemma .4.6 point 1, and to the fact that δ > −1/2.
Moreover, again due to Lemma .4.6 point 1, eϕtt−tσ̄2ηtz = 1 +O (tηt). Then, we have
i) The negative first term at short-time is o

(√
t
)

−tσ̄2ηte
ϕtt−tσ̄2ηtzN

(
lzt + σ̄

√
zt

2

)
= O (tηt) = o

(√
t
)

.

ii) The second term at short-time is o
(√
t
)

(
ϕt
√
t

2σ̄z3/2 +
√
tσ̄ηt

2
√
z

)(
eϕtt−tσ̄

2ηtzN ′
(
lzt + σ̄

√
zt

2

)
−N ′

(
lzt − σ̄

√
zt

2

))
=O

(√
tηt

) e−(lzt )2/2−σ̄2zt/8
√

2π

(
(1 +O(tηt))

(
1− lzt σ̄

√
zt

2 + o(tηt)
)
−
(

1 + lzt σ̄
√
zt

2 + o(tηt)
))

=O(η2
t t

3/2) = o
(√

t
)

,

because
N ′
(
lzt ± σ̄

√
zt

2

)
= e−(lzt )2/2−σ̄2zt/8

(
1 +± l

z
t σ̄
√
zt

2 + o(tηt)
)

.

iii) The positive third term at short-time is O
(√
t
)

√
tσ̄

4
√
z

(
eϕtt−tσ̄

2ηtzN ′
(
lzt + σ̄

√
zt

2

)
+N ′

(
lzt − σ̄

√
zt

2

))
=
√

t

8π z σ̄ + o
(√

t
)

.

Summarizing, the leading term in (2.3.3), at short-time, is the third one, which is positive.
Hence, for a fixed z > 0 and for sufficiently small t, ct(z, 0) is increasing; thus, we can bound the
expected value from below

E [ct (St, 0)] ≥ E
[
ct (St, 0)1St∈[1/2,3/2]

]
> ct

(
1
2 , 0
)
P

(
St ∈

[
1
2 ,

3
2

])
>

{
N

(
l
1/2
t + σ̄

√
t

8

)
−N

(
l
1/2
t − σ̄

√
t

8

)}
P

(
St ∈

[
1
2 ,

3
2

])

> N ′

(
l
1/2
t + σ̄

√
t

8

)
σ̄

√
t

2P
(
St ∈

[
1
2 ,

3
2

])

=
(
σ̄

√
t

4π + o
(√

t
))

P

(
St ∈

[
1
2 ,

3
2

])
= O

(√
t
)

.

The first inequality holds because ct(St, 0) is non negative. The second because, for a sufficiently
small t, ct(St, 0) is increasing. The third is true because, for sufficiently small t, eϕtt−tσ̄2ηt/2 > 1,
by Lemma .4.6 point 3. The forth is due to the fact that the difference of the standard normal
cumulative distribution functions can be bounded from below by the (positive) maximum of the
two arguments multiplied by the (positive) difference of the two arguments. The equality is due
to the fact that P

(
St ∈

[ 1
2 ,

3
2
])

is constant if β = 1 and goes to 1 at short-time if β > 1 because,
by Lemma .4.4 point 2, St goes to one in distribution at short-time.

Case 3: β ≥ 1 & − β
2 ≤ δ ≤ 0 \ β = 1,

{
δ = − 1

2

}
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Summing up, in all sub-cases the upper bound and the lower bounds of the ATS option prices in
(2.2.7) and (2.2.8) are O(

√
t). Moreover, from (2.2.9) we have that the Black price is O

(
σ̂t
√
t
)
.

Thus,
σ̂0 is finite

Proposition 2.3.4.
For Cases 4 and 5: β ≤ 1 & δ = − 1

2 ,

σ̂0 is finite .

Proof.

β ≤ 1 & δ = − 1
2

Upper bound.

We can bound ct(St, 0) from above as in (2.3.1).
We bound the ATS option price as

E[ct(St, 0)] ≤ E

[
1√
2π
σ̄
√
Stt

]
+ eϕtt − 1 = O

(√
t
)

.

The equality holds because, by Jensen inequality with concave function
√
∗, E[
√
St] ≤

√
E[St] = 1

and because, by Lemma .4.6 point 1, eϕtt − 1 = O
(√
t
)
.

Lower bound.

We bound ct (St, 0) from below as:

ct (St, 0) ≥ 1St<ϕt/(σ̄2ηt)

(
N

(
lStt + σ̄

√
Stt

2

)
−N

(
lStt − σ̄

√
Stt

2

)
+
(
ϕtt− tσ̄2ηtSt

)
/2
)

≥ 1St<ϕt/(σ̄2ηt)
(
ϕtt− tσ̄2ηtSt

)
/2 .

The first inequality is because ct (St, 0) is non negative, because ex ≥ x + 1, and because the
normal cumulative distribution function evaluated in a positive quantity is above 1/2. The
second holds because the difference between the two normal cumulative function is non negative.

E[ct (St, 0)] ≥ E
[
1St<ϕt/(σ̄2ηt)(ϕtt− tσ̄

2ηtSt)/2
]

=
√
t σ̄2 η̄/2 E

[
1St<ϕt/(σ̄2ηt)(−St + ϕt/(σ̄2ηt))

]
= O

(√
t
)
.

The last equality is due to the fact that

E
[
1St<ϕt/(σ̄2ηt)(−St + ϕt/(σ̄2ηt))

]
= ϕt/(σ̄2ηt)P(St < ϕt/(σ̄2ηt))− E[St1St<ϕt/(σ̄2ηt)] (2.3.13)

can be bounded from below with a positive constant for sufficiently small t. This fact can be
deduced for β ≤ 1. We prove it separately for the two cases β < 1 and β = 1.
For β < 1, let us observe that, at short-time,

0 ≤ E[St1St<ϕt/(σ̄2ηt)] ≤ E[St1St<1] = o(1) ,
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because, by point 2 of Lemma .4.6, ϕt/(σ̄2ηt) < 1 and, by definition of convergence in dis-
tribution, at short-time E[St1St<1] = o(1), because, by Lemma .4.4 point 1, St converges in
distribution to 0. Moreover, at short-time, ϕt/(σ̄2ηt)P(St < ϕt/(σ̄2ηt)) = 1 + o(1), by point 1 of
Lemma .4.6 and by point 1 of Lemma .4.4.
For β = 1, we remind that the law of St does not depend from t and we observe that the limit
of (2.3.13) for t that goes to zero is positive

lim
t→0

{
ϕt/(σ̄2ηt)P(St < ϕt/(σ̄2ηt))− E[St1St<ϕt/(σ̄2ηt)]

}
= P(St < 1)− E[St1St<1] > 0 ,

where the last inequality is due to the fact that St has unitary mean and finite variance k̄.

Summarizing, as in Proposition 2.3.3 the upper and lower bounds of the ATM prices in (2.2.7)
are O

(√
t
)
. From (2.2.9), we have that the Black price is O

(
σ̂t
√
t
)
. Thus,

σ̂0 is finite

In the propositions above, we have proven that σ̂0 is finite only in Cases 3, 4 and 5. Only for
these Cases we study the short-time skew in the next section.

2.4 Short-time skew

In this section, we focus on the skew term ξ̂t for the ATS when σ̂0 is finite. We obtain an
expression of ξ̂t in Lemma 2.4.1 and study its short-time limit.
In the introduction, we have mentioned that the implied volatility skew observed in the equity
market is negative and it goes to zero as one over the square root of t. This behavior is equivalent
to a negative and finite ξ̂0. In this section, we prove that ξ̂0 is zero in Case 3 (Proposition 2.4.2)
and is negative and finite in Cases 4 and 5 (Proposition 2.4.3). Moreover, Case 5 identifies
the unique parameters’ set where ξ̂0 can be a generic value that it is possible to calibrate from
market data.

Lemma 2.4.1. The skew term ξ̂t is

ξ̂t =
N
(
− σ̂t

√
t

2

)
− E

[
N
(
lStt − σ̄

√
Stt
2

)]
N ′
(
− σ̂t

√
t

2

) . (2.4.1)

Proof. Applying the implicit function theorem to the implied volatility equation for the call
option (2.2.7) we obtain the derivative of the implied volatility w.r.t y

∂It(y)
∂y

=
∂E[ct(St,y)]

∂y − ∂cBt (It(y),y)
∂y

∂cBt (It(y),y)
∂It(y)

.

We prove the thesis by computing the three partial derivatives separately.

∂E [ct (St, y)]
∂y

= −
√
te
√
t y
E

[
N

(
− y

σ̄
√
St

+ lStt − σ̄
√
Stt

2

)]
∂cBt (It(y), y)

∂y
= −
√
te
√
t yN

(
− y

It(y) −
It(y)

√
t

2

)
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∂cBt (It(y), y)
∂It(y) =

√
te
√
t yN ′

(
− y

It(y) −
It(y)

√
t

2

)
.

Notice that it is possible to exchange the expected value w.r.t. St and the derivative w.r.t. y
using the Leibniz rule because the law of St does not depend from y. By substituting y = 0 and
reminding that It(0) = σ̂t, we get (2.4.1)

Notice that, because of Lemma 2.2.4, the denominator of ξ̂t in (2.4.1), N ′
(
− σ̂t

√
t

2

)
, goes to

1√
2π at short-time. To study the short-time behavior of ξ̂t it is sufficient to consider only the

numerator of equation (2.4.1)

N

(
− σ̂t
√
t

2

)
− E

[
N

(
lStt − σ̄

√
Stt

2

)]
.

Proposition 2.4.2.
For Case 3: β ≥ 1 & −β/2 ≤ δ ≤ 0, with the exception of the point {β = 1, δ = −1/2}, the

skew term is
ξ̂0 = 0 .

Proof.
We divide the proof in two sub-cases.

β = 1 & − 1
2 < δ ≤ 0

We study the numerator of ξ̂t in (2.4.1).

lim
t→0

{
N

(
− σ̂t
√
t

2

)
− E

[
N

(
lStt − σ̄

√
Stt

2

)]
= 0
}

.

We compute the limit thanks to the dominated convergence theorem because the law of St does
not depend on t and lzt = o(1) in this sub-case.

β > 1 & − β
2 ≤ δ ≤ 0

We want to prove that

E

[
N

(
lStt − σ̄

√
Stt

2

)]
= 1

2 + o (1) . (2.4.2)

The equality holds because

E

[
N

(
lStt − σ̄

√
Stt

2

)]
=
√

t

2πkt

∫ ∞
0

dz e−t
(z−1)2

2kt N

(
lzt − σ̄

√
zt

2

)
(2.4.3)

+
∫ ∞

0
dz

(
PSt(z)−

√
t

2πkt
e−t

(z−1)2
2kt

)
N

(
lzt − σ̄

√
zt

2

)
, (2.4.4)

where PSt is the distribution of St. We study the quantities in (2.4.3) and (2.4.4) separately.
First, we consider (2.4.3)
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lim
t→0

√
t

2πkt

∫ ∞
0

dz e−t
(z−1)2

2kt N

(
lzt − σ̄

√
zt

2

)

= lim
t→0

1√
2π

∫ ∞
−
√

kt
t

dw e−
w2
2 N

 ϕt
√
t

σ̄
√

1 + w
√
kt/t

− σ̄ηt
√
t
(

1 + w
√
kt/t

)
− σ̄

√
t
(

1 + w
√
kt/t

)
2


= lim
t→0

1√
2π

∫ ∞
−
√

kt
t

dw e−
w2
2 N

(
σ̄ηt
√
t
(

1− w
√
kt/t/2

)
− σ̄ηt

√
t
(

1 + w
√
kt/t/2

)
+O

(√
t
))

= 1√
2π

lim
t→0

∫
R

dw e−
w2
2

{
N
(
−σ̄η̄

√
k̄tδ+β/2w

)
− 1

2 + 1
2

}
= 1

2 .

The first equality is obtained via a change of the integration variable (w :=
√
t(z − 1)/

√
kt).

The second equality is due to the asymptotic of ϕtt in Lemma .4.6 point 1. The third
equality holds because of the dominated convergence theorem. The last is trivial because[
N
(
−η̄
√
k̄tδ+β/2w

)
− 1/2

]
is odd w.r.t. w.

Second, we consider (2.4.4)∫ ∞
0

dz

(
PSt(z)−

√
t

2πkt
e−t

(z−1)2
2kt

)
N

(
lzt − σ̄

√
zt

2

)
=
(
P(St < 0))−N

(
−
√

t

kt

))
+
∫ ∞

0
dz

(
P(St < z)−N

(
(z − 1)

√
t

kt

))
N ′
(
lzt − σ̄

√
zt

2

)(
ϕt
√
t

2σ̄ z3/2 + σ̄
√
tηt + σ̄

√
t/2

2
√
z

)
= o(1) .

The first equality is due to integration by part. The second to the fact that i) P(St < 0) = 0,
ii) N

(
−
√

t
kt

)
go to zero as t goes to zero, and iii)∣∣∣∣∫ ∞

0
dz

(
N

(
(z − 1)

√
t

kt

)
− P(St < z)

)
N ′
(
lzt − σ̄

√
zt

2

)(
ϕt
√
t

2σ̄ z3/2 + σ̄
√
tηt + σ̄

√
t/2

2
√
z

)∣∣∣∣
≤2− α

1− α

√
kt
t

∫ ∞
0

dzN ′
(
lzt − σ̄

√
zt

2

)(
ϕt
√
t

2σ̄ z3/2 + σ̄
√
tηt + σ̄

√
t/2

2
√
z

)
=2− α

1− α

√
kt
t

= O

(√
kt
t

)
,

where the inequality is due to Lemma .5.3 and the first equality is due the fact that

∫ ∞
0

dzN ′
(
lzt − σ̄

√
zt

2

)(
ϕt
√
t

2σ̄ z3/2 + σ̄
√
tηt + σ̄

√
t/2

2
√
z

)
= − N

(
lzt − σ̄

√
zt

2

)∣∣∣∣∞
0

= 1 .

This proves (2.4.2).
It is now possible to compute the short-time limit of the skew term

lim
t→0

{(
N

(
− σ̂t
√
t

2

)
− E

[
N

(
lStt − σ̄

√
Stt

2

))]}
= 0
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Proposition 2.4.3.
For Case 4: β < 1 and δ = −1/2, the skew term is

ξ̂0 = −
√
π

2 .

For Case 5: β = 1 and δ = −1/2 the skew term is

ξ̂0 = −
√
π

2 E [erf (σ̄η̄ r(St))] , (2.4.5)

where r(St) :=
√

2(1/
√
St −

√
St).

Proof.
We prove separately the two Cases.

δ = − 1
2 & β < 1

Thanks to Lemma .5.2, the limit of the numerator of ξ̂t in (2.4.1) can be computed simply,

lim
t→0

(
N

(
− σ̂t
√
t

2

)
− E

[
N

(
lStt − σ̄

√
Stt

2

)])
= −1

2 .

Thus,

ξ̂0 = lim
t→0

N
(
− σ̂t

√
t

2

)
− E

[
N
(
lStt − σ̄

√
Stt
2

)]
N ′
(
− σ̂t

√
t

2

) = −
√
π

2 .

δ = − 1
2 & β = 1

We compute the limit in t = 0 of the numerator of ξ̂t in (2.4.1)

lim
t→0

(
N

(
− σ̂t
√
t

2

)
− E

[
N

(
lStt − σ̄

√
Stt

2

)])
= E

[
1/2−N

(
σ̄η̄
(

1/
√
St −

√
St

))]
.

We obtain the equality thanks to the dominated convergence theorem, because the law of St
is constant in time. We recall that erf(z) = 2N(z/

√
2) − 1, substituting in (2.4.1), we obtain

(2.4.5)

Equation (2.4.5) is one of the major results of the thesis. Let us stop and comment.
First, let us notice that ξ̂0 in (2.4.5), is a generic function of the couple of positive parameters
σ̄η̄ and k̄; in particular the erf function is odd in its argument and r : R+ → R. Moreover ξ̂0
depends on the parameter α ∈ [0, 1) that selects the truncated additive process of interest.
Second,

−
√
π

2 ≤ ξ̂0 ≤ 0

i.e. the minimum value for the skew term is −
√
π/2, its value in Case 4.

To show the upper bound, we can rewrite

E [erf (σ̄η̄ d(St))] =
∫ ∞

0
dz PSt(z) erf (σ̄η̄ r(z)) =

∫ 1

0
dz

(
PSt(z)−

PSt(z)
z2

)
erf (σ̄η̄ r(z)) ,

50



where the second equality is due to the change of variable w = 1/z, and second to r(1/w) = −r(w)
and to the fact that erf(z) is odd. We also observe that erf (σ̄η̄ r(z)) > 0 in (0, 1).
For the two cases where the distribution of St is known analytically α = 0 (VG) and α = 1/2
(NIG), we can prove that the skew term ξ̂0 in (2.4.5) is negative for non zero σ̄η̄ and k̄ (for
the expression of the Gamma and Inverse Gaussian laws see, e.g., Cont and Tankov 2003, Ch.4,
p.128). In both cases we can prove that

(
PSt(z)−

PSt (1/z)
z2

)
> 0 in (0, 1); recall that PSt(z)

does not depend from time because β = 1.
In the α = 0 case, St has the law of a Gamma random variable

PSt(z)−
PSt(1/z)

z2 = 1
k̄1/k̄Γ(1/k̄)

z1/k̄e−z/k̄

(
1− e−1/k̄ (1/z−z)

z2/k̄

)
> 0 ,

where the inequality is true in (0, 1) because 1− e−1/k̄ (1/z−z)

z2/k̄ > 0 or equivalently 1/z−z+2 ln z > 0.
The last inequality is trivial ∀z ∈ (0, 1), because it is equal to zero for z = 1 and its derivative is
negative.
In the α = 1/2 case, St has the law of an Inverse Gaussian random variable

PSt(z)−
PSt(1/z)

z2 = 1√
2πk̄

e−r(z)
2/(2k̄)

(
1
z3/2 −

1√
z

)
> 0 ,

where the inequality is true because 1
z3/2 − 1√

z
> 0,∀z ∈ (0, 1).

In all other cases, we compute numerically the skew term ξ̂0 for different admissible values of
k̄, σ̄η̄ ∈ R

+ and α ∈ [0, 1), by means of inversion of the characteristic function of St, showing
that it is either negative or equal to zero. In Figure 2.3, we plot the numerical estimation of
the skew term for σ̄η̄ and k̄ below 3 (an interval in line with the situation generally observed in
market data) and for a grid of four values of α (α = 0, 1/4, 1/2, 3/4); in all cases the skew term
ξ̂0 looks rather similar: equal to zero on the boundaries (k̄ = 0 and σ̄η̄ = 0), a negative quantity
in all other cases and a decreasing function w.r.t. both k̄ and σ̄η̄. In Figure 2.4, we plot also the
skew term for the same four values of α, varying k̄ with σ̄η̄ = 1 (on the left) and varying σ̄η̄ for
k̄ = 1 (on the right): all plots look rather similar with a decreasing ξ̂0.
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Figure 2.3: ATS skew term ξ̂0 for {β = 1, δ = −1/2}. We report ξ̂0 for four values of α: α = 0 in the
upper left corner, α = 1/4 in the upper right corner, α = 1/2 in the lower left corner and α = 3/4 in the
lower right corner. We plot the skew for k̄, σ̄η̄ ∈ [0, 3]. In all cases the skew is negative and decreasing
w.r.t. k̄ and σ̄η̄.
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Figure 2.4: ATS skew term ξ̂0 for β = 1 and δ = −1/2 for α = 0 (dashed blue line), α = 1/4 (red
triangles), α = 1/2 (orange circles) and, α = 3/4 (continuous violet line). We plot the skew for k̄ ∈ [0, 3]
with σ̄η̄ = 1 (on the left) and for σ̄η̄ ∈ [0, 3] for k̄ = 1 (on the right). In all cases the skew is decreasing
w.r.t. k̄ and σ̄η̄.

Finally, let us emphasize that the limits of ξ̂0 are zero for σ̄η̄ and k̄ that go to zero.
On the one hand, recall that the law of St, PSt , does not depend of σ̄η̄. By the dominated
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convergence theorem with bound PSt , we have that

lim
σ̄η̄→0

E [erf (σ̄η̄ r(St))] = 0 .

On the other hand, by Kijima (1997, Th.B.9, p.308), we have that St converges in distribution
to 1 as k̄ goes to zero because

lim
k̄→0
Lt(u; kt, α) = lim

t→0
e

1
k̄

1−α
α

{
1−
(

1+ u k̄
(1−α)

)α}
= e−u .

We are computing the expected value of a bounded function of St that does not depend of k̄.
Thus, by definition of convergence in distribution,

lim
k̄→0

E

[
erf

(
σ̄η̄
√

2
(

1/
√
St −

√
St

))]
= 0 .

2.5 Main Result

In the following theorem, we present the main results of this chapter and one of the main results
of the thesis. We prove that if and only if β = 1 and δ = − 1

2 the ATS has a positive and
constant short-time implied volatility σ̂0 and a negative and constant short-time skew ξ̂0. We
point out that a finite skew w.r.t. y correspond to a skew that goes as 1√

t
at short-time w.r.t.

the moneyness x. The proof is based on the propositions of sections 2.3 and 2.4.

Theorem 2.5.1. The ATS short-time implied volatility behaves as described in Table 2.1.

Proof. We prove that, for Case 1, σ̂0 = 0 in Proposition 2.3.1. We prove that, for Case 2,
σ̂0 =∞ in Proposition 2.3.2. We prove that, for Cases 3, 4 and 5, σ̂0 is finite in Proposition
2.3.3 and Proposition 2.3.4.
Moreover, in Proposition 2.4.2 we show that, for Case 3, ξ̂0 = 0 and in Proposition 2.4.3
we demonstrate that, for Case 4, ξ̂0 = −

√
π
2 and that, for Case 5, ξ̂0 is negative and finite.

2.6 Conclusions

An excellent calibration of the equity implied volatility surface has been achieved by the ATS, a
class of power-law scaling additive processes, cf. chapter 1 and 4. This class of processes builds
upon the power-law scaling parameters β, related to the variance of jumps, and δ related to the
smile asymmetry.

First, for this family of pure-jump additive processes we have obtained the behavior of the short-
time ATM implied volatility σ̂t and the skew term ξ̂t over the region of admissible parameters (cf.
Theorem 1.2.3). We get this result by constructing some relevant bounds for σ̂t and obtaining
the expression of ξ̂t, cf. equation (2.4.1), via the implicit function theorem.
Second, we have proven that only the scaling parameters observed in empirical analysis (β = 1
and δ = −1/2) are compatible with the implied volatility observed in the equity market (cf.
Theorem 2.5.1). Hence, we have demonstrated that it exists a pure-jump additive process
(an exponential ATS) that, differently from the Lévy case, presents the two features observed
in market data: not only a finite and positive short-time implied volatility but also a short-time
skew proportionally inverse to the square root of the time-to-maturity.
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Chapter 3

A fast Monte Carlo scheme for additive processes
and option pricing

In this chapter, we present a fast Monte Carlo scheme for additive processes.

We analyze in detail error sources and propose a technique that reduces the two major sources
of error. We compare our result with a benchmark method: the jump simulation with Gaussian
approximation.
We show an application to additive normal tempered stable processes, to the class of additive
processes introduced in chapters 1 and 2. Numerical results are relevant. The algorithm is
an accurate tool for pricing path-dependent discretely-monitoring options with errors of one
basis point or below. The scheme is also fast: the computational time is of the same order of
magnitude of standard algorithms for Brownian motions.

These results have already been presented in Azzone and Baviera (2021b).

3.1 Introduction

In this chapter, we introduce a fast Monte Carlo simulation technique for additive processes. In
option pricing, Monte Carlo methods are attractive because they do not require significant mod-
ifications when the payoff structure of the derivative changes. Additive processes are becoming
the new frontier in equity derivatives for their ability, on the one hand, to reproduce accurately
market data in model calibration, and on the other hand, to keep the process rather elementary
(see e.g., chapter 1 and Li et al. 2016, Carr and Torricelli 2021). A process X = {X(t)}t≥0 is
said to be an additive process, if it presents independent (but not-stationary) increments and
satisfies X(0) = 0 a.s.; stationarity is the main difference with Lévy processes.
For most additive processes, the law of increments is not known explicitly, but analytic expres-
sions exist for the characteristic functions thanks to the celebrated Lévy–Khintchine formula
(Sato 1999a). Given any such characteristic function for increments, this chapter aims to de-
scribe an efficient and accurate algorithm for Monte Carlo simulations of the increments and to
compute the prices of a class of discretely monitoring path-dependent options.
Up to our knowledge, the unique Monte Carlo (MC) scheme developed for a specific class of
additive processes, Sato processes, has been introduced by Eberlein and Madan (2009). They
generalize to this class of additive processes, a well-known jump simulation technique developed
for Lévy processes, that can be found in many excellent textbooks (see e.g., Cont and Tankov
2003, Asmussen and Glynn 2007). It entails truncating small jumps below a certain threshold
and then simulating the finite number of independent jumps; finally, the Asmussen and Rosiński
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(2001) Gaussian approximation (hereinafter GA) can be applied to substitute small jumps with
a diffusive term: this has become a benchmark technique to compare numerical results.
In this chapter, we propose a MC technique for additive processes based on a numerical inversion
of the cumulative distribution function (CDF). Monte Carlo simulation of additive processes is
not straightforward because, in general, the CDF of process increments is not known explicitly.
Since the seminal paper of Bohman (1970) general methods have been developed for sampling
from Fourier transforms and even some specific methods for some distributions (e.g. stable
distributions) that do not require numerical inversion (Samorodnitsky and Taqqu 1994, Sec.1.7,
p.41).
In the financial literature, these techniques have been considered when the transition probability
density of the underlying asset dynamics is not known explicitly; they have been developed
specifically in the Lévy case, where it is possible to leverage on the stationary increments (see
e.g., Glasserman and Liu 2010, Chen et al. 2012, Ballotta and Kyriakou 2014). These techniques
are reliable and efficient: they build upon the characteristic function numerical inversion to
obtain an estimation of the CDF. Specifically, we use the fast Fourier transform (FFT) method
for the numerical inversion as proposed by Lee (2004) and then applied to MC option pricing in
the studies of Chen et al. (2012) and Ballotta and Kyriakou (2014). Relative to this literature,
our contribution lies in analyzing the three sources of error that arise in estimating derivative
price expectations and showing how to improve the two largest ones.
The main contributions of this chapter are three. First, we propose a Monte Carlo simulation
technique for additive processes based on FFT. Second, we improve the two main sources of nu-
merical error in existing techniques to accelerate convergence, using both an analytic property of
Fourier inversion in the complex plane and a spline method for CDF numerical inversion. Finally,
we point out that the proposed technique is accurate and fast: i) we compare with traditional
GA simulations showing that it is at least one and a half orders of magnitude faster whatever
time horizon we consider and ii) we observe that, when pricing some discretely monitoring path-
dependent options, the computing time has the same order of magnitude as standard algorithms
for Brownian motions.
The rest of the chapter is organized as follows. In section 3.2, we overview the method and recall
both Lewis (2001) formula for CDF and the error source in the numerical approximation: we
discuss the optimal selection of the integration path. In section 3.3, we describe the proposed
simulation method and present the other main error source in MC option pricing: the inter-
polation method in numerical inversion. We also discuss how to generalize the GA method for
additives in an efficient way. Section 3.4 presents numerical results for a large class of pure-jump
additive processes in the case of both European options (where analytic pricing methods are
available), and some discretely monitoring path-dependent options. Section 3.5 concludes. We
report the proofs in appendix .6.

3.2 Overview of the MC method for additive process

Pure jump asset pricing models based on additive processes have enjoyed remarkable popularity
in recent years. At least for two main reasons. First, they allow a highly tractable closed-form
approach with simple analytic expression for European options following Lewis (2001). This
formula is computable as fast as the standard Black-Scholes one. Second, additive processes
provide an adequate calibration to the implied volatility surface of equity derivatives, as well as
they reproduce stylized facts as the time scaling of skew in volatility smile, see chapters 1 and 2.
In this section, we describe a third reason in favor of these models: they allow a simple, accurate,
and fast numerical scheme for path-dependent option valuation. We extend to additive processes
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the preceding literature on Lévy processes’ simulation techniques and we discover that, thanks
to this Monte Carlo scheme, it is not a challenge to price exotic derivatives as Asian contracts
or barrier options with discretely monitored barriers.
The simulation of a discrete sample path of an additive process reduces to simulating from the
distribution of the process increment between time s and time t > s. Lévy process simulation is
based on time-homogeneity of the jump process: the characteristic function of an increment is
the same as the characteristic function of the process itself at time t = 1, re-scaled by the time
interval (t− s) of interest.
In this chapter, we extend the preceding analysis on Lévy processes by i) presenting an explicit
method for additive processes from their characteristic function and ii) analyzing the explicit
bound for the total estimation bias. In the Lévy case, thanks to process time homogeneity, the
properties of the process characteristic function are immediately extended to its increments. For
example, the characteristic function (also of increments) is analytic in a horizontal strip and
the purely imaginary points on the boundary of the strip of regularity are singular points (cf.
Lukacs 1972, Th.3.1, p.12). This identification of process characteristic function and increments’
characteristic function is not anymore valid for additive processes. However, this chapter shows
that the analyticity strip depends on time and that it is possible to build, in a simple way, a
numerical scheme for additive processes requiring an additional condition.
Our method is based on three key observations. First, computing a CDF P (x) corresponds to
pricing a digital option: this can be done efficiently in the Fourier space. This step can be crucial,
as already highlighted by Ballotta and Kyriakou (2014), the Fourier formula presents some
numerical instabilities due to the presence of a pole in the origin. They propose a regularization
that leads to an additional numerical error. We propose a different approach that is based on the
Lee (2004) formula which presents two significant advantages. On the one hand, this technique is
exact (thus, no numerical error is associated with it), and, on the other hand, it allows selecting
the integration path that reduces the numerical error in the discretization of the CDF.
Second, the Lewis (2001) formula for the CDF can be viewed as an inverse Fourier transform
method that can be approximated with a fast Fourier transform (FFT) technique: Lewis-FFT
computes multiple values of the CDF simultaneously in a very efficient way.
Finally, knowing CDF approximation P̂ , we can sample from this distribution by inverting the
CDF, i.e. by setting X = P̂−1(U), with U an uniform r.v. in [0, 1]. Thus, simulating a r.v. via
a numerical CDF (i.e. coupling the Fourier transform with a Monte Carlo simulation), requires
a numerical inversion that is realized via an interpolation method. Following Glasserman and
Liu (2010), due to its simplicity a linear interpolation of the CDF is chosen in the existing
financial literature (see e.g., Chen et al. 2012, Feng and Lin 2013). We propose the spline as
interpolation rule because the computational cost is very similar while the bias associated with
the two interpolation rules is significantly different: the upper bound of the bias can be estimated
for a given grid spacing γ, and, as we discuss in section 3.3, it should be at least γ2 smaller for
the spline interpolation. In extensive numerical experiments we observe that, on the one hand,
the error decreases even faster as a power of γ than predicted by the upper bound, thanks to
the additional properties of the interpolated functions, and on the other, it becomes negligible
for the grids that are selected in practice.
Due to these three main ingredients (Lewis formula, FFT, and Spline interpolation) that play a
crucial role in the proposed Monte Carlo simulation technique, we call the method Lewis-FFT-S.
The Lewis-FFT-S method extends the Eberlein and Madan (2009) technique to any additive
process being significantly faster: we show that the proposed Monte Carlo is much faster than
any jump-simulation method even considering the Asmussen and Rosiński (2001) Gaussian ap-
proximation. Analyzing in detail the numerical errors related to the methodology, we design an
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algorithm that increases both accuracy and computational efficiency. To the best of our knowl-
edge, the proposed scheme is the first application in financial engineering of the MC simulation
based on Lewis formula and FFT, when the underlying is governed by an additive process.
In the next subsection, we also recall explicit and computable expressions for the error estimates.

3.2.1 Lewis CDF via FFT

The proposed MC method simulates from the characteristic function of the additive increments.
Due to the Lévy-Khintchine formula, the characteristic function

φt(u) := E ei u ft

of an additive process ft admits a closed-form expression. Furthermore, as already mentioned in
the Introduction, according to Lukacs (1972, Th.3.1, p.12), process characteristic function is an
analytic function in a horizontal strip delimited on the imaginary axis by two values. Similarly
to Lee (2004), we define these values p−t > 0 and −(p+

t +1) < −1, s.t. the characteristic function
is analytic when =(u) ∈ (−(p+

t + 1), p−t ).
We observe that for Lévy processes, the increment ft−fs has the same distribution as f∆, where
∆ = t−s: the same property does not hold for additive processes, due to the time inhomogeneity.
For an additive process, the characteristic function of an increment ft − fs between times s and
t > s is

φs,t(u) = E ei u (ft−fs) = E ei u ft

E ei u fs
,

due to the independent increment properties of additive processes, then

lnφs,t = lnφt − lnφs .

Assumption 1. p+
t and p−t are non increasing in t and p+

t ≥ p−t > 0 ♣

Thanks to Lukacs theorem and under Assumption 1, we are able to easily identify the strip of
regularity in the case of interest: the characteristic function of an increment ft − fs is analytic
when =(u) ∈ (−(p+

t +1), p−t ). Lewis (2001) obtains the CDF, shifting the integration path within
the characteristic function horizontal analyticity strip. The shift is −i a with a a real constant
s.t. a ∈ (−p−t , 1 + p+

t ). Lewis deduces this formula using the properties of contour integrals in
the complex plane.
If Assumption 1 holds, the CDF P (x) of an additive process increment is (cf. Lee 2004, Th.5.1)

P (x) = Ra −
e−ax

π

∫ ∞
0

duRe

[
e−iuxφs,t(u− ia)

i u+ a

]
(3.2.1)

where

Ra =


1 0 < a < p+

t
1
2 a = 0
0 p−t < a < 0

.

The case with no shift (a = 0) is the Hilbert transform: it has been considered in several studies
in the financial literature on MC pricing (see, e.g., Ballotta and Kyriakou 2014, Chen et al.
2012). In the Hilbert transform case, the singularity in zero in the integration path should be
taken into account as a Cauchy principal value; as already emphasized by Ballotta and Kyriakou
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(2014), the method could be not robust enough for applications in the financial industry: they
have suggested a regularization technique that introduces an additional error source, while the
Lewis method we consider here is exact.

In the following, we focus on a > 0 and we approximate the Fourier transform with a discrete
Fourier transform P̂ (x)

P̂ (x) := 1− e−ax

π

N−1∑
l=0

Re

[
e−i(l+1/2)hxφs,t((l + 1/2)h− i a)

i (l + 1/2)h+ a

]
,

where h is the step size in the Fourier domain and N is the number of points in the grid. In
subsection 3.2.2, we will discuss how the choice of a > 0 improves the CDF error.

We wish to obtain the CDF function for a large number of values in a regular grid with step size
γ. A computationally efficient algorithm is the fast Fourier transform (see Lee 2004, for a detailed
analysis of the method in derivative pricing): it involves Toeplitz matrix-vector multiplication
(see e.g., Press et al. 1992, Ch.12) and relies on an additional requirement for N , whose simplest
choice is N = 2M with M ∈ N; hereinafter, we consider an N within this set.
The main advantage of the method is that the computational complexity of the FFT method
is O(N log2N) when computing one time-increment. Moreover, with an FFT, it holds the
relationship

γ h = 2π
N

;

i.e., for a given number N of grid points, the step size in the Fourier domain h fixes the step size
γ.1

3.2.2 CDF error sources

The numerical Fourier inversion is subject i) to a discretization error, because the integrand is
evaluated only at the grid points, and ii) to a range error, because we approximate with a finite
sum.

Assumption 2. ∀ t > s ≥ 0 there exists B > 0, b > 0 and ω > 0 such that, for sufficiently large
u, the following bound for the absolute value of the characteristic function holds

|φs,t(u− i a)| < Be−b u
ω

, ∀a ∈ (0, p+
t ) ♣

Leveraging on Assumption 2, we can estimate the explicit bound for the bias in terms of the step
size h and the number of grid points N , as shown in the next proposition. This result improves
the known bounds for numerical errors when computing the CDF (3.2.1), via a discrete Fourier
transform, and indicates an integration path that minimizes this error bound.

Proposition 3.2.1. If Assumptions 1 and 2 hold, then

1. the numerical error |P (x)− P̂ (x)| for the CDF is bounded by

ECDFh,M (x) = e−x p
+
t /2

ω b1/ω
1
Nh

Γ
[

1
ω
, b (N h)ω

]
+ e−πp

+
t /h + e−πp

+
t /h−p

+
t xφs,t(−i p+

t )
1− e−2πp+

t /h
, (3.2.2)

1To avoid this constraint, one can consider the fractional fast Fourier transform (Chourdakis 2005) instead of
the standard FFT. We have verified that the additional computational costs of the former method do not look
justified in the CDF simulation described in this chapter.
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where Γ(z, u) is the upper incomplete gamma function and

1
N h

Γ [1/ω, b (N h)ω] = O
(

(N h)−ωe−b (N h)ω
)

;

2. the (optimal) bound holds selecting the shift a in (3.2.1) equal to p+
t /2.

Proof. See Appendix .6

The first term of ECDFh,M (x) accounts for the range error in the numerical inversion, while the
second one accounts for the discretization error.2
In the financial literature, error estimations have been proposed when approximating a CDF
via a discrete Fourier Transform (see e.g., Lee 2004, Chen et al. 2012, Ballotta and Kyriakou
2014). The bound in Proposition 3.2.1 extends these results to the Lewis-FFT case, showing
how to select the optimal integration path in Lewis formula (3.2.1) to minimize the exponential
decay of the error. Selecting the optimal path, CDF error is even better than the one proposed
by Chen et al. (2012)3 deduced via the sinc expansion technique.

We wish to get a small approximation error increasing N and decreasing h. However, let us
observe that, if one takes the limit h → 0 and N → ∞ keeping Nh fixed, then the range error
bound does not decrease. Thus, our interest is to select h = h(N) so that the discretization
and range errors are of the same order. Expression (3.2.2) allows us to determine the size h
and the number N such that the two sources of CDF error are comparable: we can impose that
exp(−πp+

t /h) = exp(−b (N h)ω), i.e. we select

h(N) =
(
π p+

t

b

1
Nω

)1/ω + 1
.

We define
ECDFM (x) := ECDFh(2M ),M (x) (3.2.3)

the error in this case. ECDFM (x) in (3.2.3), is the relevant estimation of the CDF
error that we use in practice: with this selection of h, the total CDF error is
O(N−ω/(1+ω)) exp(−bNω/(1+ω)) and decays almost exponentially as we increase N ; more-
over, the step size γ = 2π/(hN) = O(N−1/(1+ω)).

From this result, it is possible to understand the reason why we choose a > 0. It is possible to
prove, following the same steps of Proposition 3.2.1, that in the a < 0 case the leading term
in ECDFM (x) is exp(−πp−t /h). Thanks to Assumption 1, the discretization error for the same
discretization step h, is better in the a > 0 case.

2It is possible also to obtain an error bound even when Assumption 2 does not hold. Equation (3.2.2) can
be extended to the case where the characteristic function has an asymptotical polynomial decay |φs,t(u− i a)| ≤
B |u|−b, with b > 0: in this case the range error decays only polynomialy due to the polynomial decay of the
characteristic function (see e.g., Ballotta and Kyriakou 2014, eq.(14), p.1099). However, in practice, when pricing
exotic derivatives, the exponential decay of the characteristic function is a good reason for model selection.

3In theorem 2.1. of Chen et al. (2012) the leading term in the discretization error goes as
max(e−π p−

t
/h, e−π (p+

t
+1)/h). Thanks to Assumption 1, the discretization error in (3.2.2), that goes as e−π p+

t
/h

is better than the one proposed by Chen et al. (2012).
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3.3 The simulation method

Knowing the CDF approximation P̂ , we can sample from this distribution by inverting P̂ , i.e.
by setting X = P̂−1(U), with U an uniform r.v. in [0, 1].
From the Fourier inversion, we have an estimate of P̂ on a grid of N points with step γ.
As pointed out by Glasserman and Liu (2010, sec.3, pp.1614-1615) an adequate inversion requires
to impose that P̂ is increasing and inside the interval [0,1].
It is convenient to work with a subset of this grid. We truncate the CDF between x0 < 0 and
xK > 0 and consider the equally spaced grid (with step γ) x0 < x1 < ... < xK with K < N .
Simulating a r.v. via a numerical CDF (i.e. coupling the Fourier transform with a MC simula-
tion), requires a numerical inversion that is realized via an interpolation method.
As already discussed in section 3.2, differently from the existing financial literature (see e.g.,
Glasserman and Liu 2010, Chen et al. 2012, Feng and Lin 2013) the proposed method is based
on spline interpolation. In the next subsection, we discuss the key idea behind this choice of the
interpolation method.

3.3.1 Simulation error sources: truncation and interpolation

Besides the numerical inversion error, there are other two error sources: truncation and interpo-
lation of the CDF.
Let us consider the expected value EV (ft − fs), with V (x) a derivative contract with a pay-off
differentiable everywhere except in nV points. It can be proven, similarly to Chen et al. (2012,
Th.4.3, p.14:11), that the pricing error4 using the Lewis-FFT method with linear interpolation
is

E :=
∫ ∞
−∞

dxV (x) [p(x)− p̂(x)] (3.3.1)

<

(
|V (x0)|+ |V (xK)|+ (2K + nV ) sup

x∈(x0,xK)
|V (x)|+ 2 sup

x∈(x0,xK)
|V ′(x)|

)
ECDFM (x0) (3.3.2)

+
φ−s,t
2π

(
|V (xK)|exKp−t

|p−t |
+
∫ ∞
xK

dxV (x)ex p
−
t

)
+
φ+
s,t

2π

(
V (x0)ex0(p+

t +1)

p+
t + 1

+
∫ x0

−∞
dxV (x)ex (p+

t +1)

)
(3.3.3)

+ γ2

2π (xK − x0) sup
x∈(x0,xK)

|V ′(x)|
∫
R

|duuφs,t(u)| , (3.3.4)

where p(x) is the probability density function of ft − fs, p̂ its estimation and

φ−s,t := lim
a→p−

∫
R

du |φs,t(u− ia)| & φ+
s,t := lim

a→p+

∫
R

du |φs,t(u− ia)| .

The components of the bias error (3.3.1) when pricing a derivative are three: an error related to
the numerical approximation of the CDF (3.3.2), a truncation error (3.3.3) and an interpolation
error (3.3.4). Let us consider each error source separately.

First, the error related to the numerical approximation of the CDF in (3.3.2) is proportional to
ECDFM (x0): we have discussed in the previous section how to select h in order to minimize it.

4The upper bound on the bias E can be trivially extended to a payoff with a finite number n of monitoring
times. The most relevant case, for n = 1, will be discussed in detail in subsection 3.4.1.
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Second, we can always choose x0 and xK s.t. the truncation error is negligible.
We select a symmetric interval (xK = −x0), a standard choice in the literature, and x0 the
nearest point to −D

√
t− s on the grid in which the CDF P̂ is estimated, with D > 0.

Why do we select an x0 that depends on the time-interval t− s? It can be easily explained with
a graph. In Figure 3.1, as an example, we plot the one-day and one-year normalized probability
density functions of the additive process used in the numerical experiments of section 3.4. As
expected, the one-day density is significantly more concentrated around zero than the one-year
density when considering a constant x (on the right). Conversely, the ranges of the two densities
look similar when considering the rescaled moneyness x/

√
t− s. Thus, the range of probability

densities scales approximately with
√
t− s.

Moreover, we choose D = 5. In extensive numerical experiments, we observe that for values below
x0 (or above xK) the probability density function is lower than 10−9 whatever time horizon is
considered and its contribution to the price is negligible for all practical purposes.
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Figure 3.1: One-day and one-year normalized probability density functions of the additive process that
we use in the numerical experiments of section 3.4 with s = 0. On the right, we see that, as expected, the
one-day density is significantly more concentrated around zero than the one-year density. Conversely,
on the left, we see that the ranges of the two densities are the same w.r.t. to the rescaled moneyness
x/
√
t− s. Note that both probability density functions have been divided by their respective maximum

for visualization purposes.

Finally, the bias associated with the linear interpolation, when computing the option value, is
quadratic in the grid spacing γ; this turns out to be the most significant source of error, in most
cases, as shown in the next section. It is well known that linear interpolation error goes as γ2

(see e.g., Quarteroni et al. 2007, eq.(8.26), p.339). For this reason, in this chapter, we propose a
spline interpolation method. In this latter case, it is known that the bias goes, at least, as γ4 as
shown in Hall and Meyer (1976).

As already emphasized by Glasserman and Liu (2010, sec.3, p.1615), to sample X from P̂ (x)
with a linear interpolation, after having generated U , a r.v. uniformly distributed in (0,1), one
should
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1. select the index j for which P̂ (xj−1) ≤ U < P̂ (xj);

2. for each j determine the linear interpolation coefficients cL0,j and cL1,j

cL0,j := xj P̂ (xj)− xj−1 P̂ (xj−1)
P̂ (xj)− P̂ (xj−1)

and cL1,j := γ

P̂ (xj)− P̂ (xj−1)

3. compute
X = cL0,j + cL1,j U .

We discuss the computational cost of each step when sampling Nsim observations. The first step
relies on a nearest neighborhood algorithm with an average computational cost proportional to
Nsim × log2Nsim (see, e.g., Cormen et al. 2001, p.11)5. The second step cost is proportional to
6×K. Finally the last step is proportional to Nsim.
Whereas step 1 is shared by both interpolation methods steps 2 and 3 differ between spline
and linear interpolations. In step 2, the additional computational cost of considering spline
interpolation instead boils down to the cost of solving a K + 1-dimensional linear system with
a tridiagonal matrix to determine the spline coefficients {cSq,j}3q=0, cf. Quarteroni et al. (2007,
Ch.8), i.e. the cost is 8 × K − 7 (Quarteroni et al. 2007, Ch.7, p.391). As for step 3, the
cost of computing the spline interpolation of U is still proportional to Nsim. It is clear that
for a sufficiently large number of simulations Nsim and for Nsim >> K, for both methods,
the most relevant contribution in the computational cost is the one due to step 1, the nearest
neighborhood algorithm.

We perform numerical experiments to compare linear and spline interpolation. We observe that,
if the number of simulations is significantly above the grid dimension K, the spline interpolation
is as expensive as the linear interpolation. Moreover, in table 3.1, we compare the computational
cost of linear interpolation and spline interpolation. We consider a grid of size K = 104 and
Nsim = 105 simulations. In this case, spline simulation’s cost is just 10% more than linear simu-
lation’s. The case considered in table 3.1 is a particularly unfavorable situation when comparing
spline interpolation with linear interpolation: a large grid size K = 104 and a small number
of simulations Nsim = 105. In this case steps 1, 2 and 3 computational times are comparable
while, in practice, most of the computational costs are absorbed by the nearest neighborhood
algorithm. For reasonable values of M (e.g. for M ≤ 15), the dimension of the grid K is always
well below 104. Thus, for all values of K and Nsim used in practice the incremental cost between
Lewis-FFT (with linear interpolation) and Lewis-FFT-S (with spline interpolation) is negligible.

3.3.2 A simulation benchmark: the Gaussian approximation

In this subsection, we show how to generalize the GA method for additive processes in an efficient
way when a monotonicity property holds for the Lévy measure and then the Ziggurat method
(Marsaglia et al. 2000) can be applied.
A generic additive process may have an infinite number of jumps, most of them being small,
over an arbitrary finite time horizon, making the simulation of such a process often nontrivial.
Defining νt the additive process jump measure Sato (as in 1999a, Def.8.2, p.38), the jump

5The computational cost estimation is for the merge sort algorithm. Since merge sort is a recursive algorithm
it could be necessary, for memory efficiency, to recur to an insertion sort algorithm which computational cost is
roughly proportional to N2

sim (see, e.g., Cormen et al. 2001, p.11).
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Algorithm Nearest neighborhood Linear interpolation Spline interpolation
time [ms] 1.08 1.13 1.27

Table 3.1: Computational cost in milliseconds [ms] for nearest neighborhood, linear interpolation,
and spline interpolation. We consider a grid size K = 104 and Nsim = 105 simulations. Even
considering a low number of simulations and a grid size K one order of magnitude above what is
used in practice (in the Lewis-FFT-S case K is of order 103) spline simulation’s cost is just 10%
more than linear simulation’s.

measure of the additive process increment ft − fs is νt − νs.

Eberlein and Madan (2009), in their study on simulation of additive processes, consider only
a class of additive processes (Sato processes): their approach consists in discarding the small
jumps that in absolute value are below a given threshold ε. It is well known, in the Lévy case,
that such an approach is accurate only if there are not too many small jumps (see e.g., Cont
and Tankov 2003). Alternatively, the small jump component of an additive process may be
approximated by a Brownian motion (Asmussen and Rosiński 2001).

Once the jump measure of the increment (between time s and time t > s) is truncated, we have i)
to draw a Poisson number of positive and negative jumps and ii) to simulate separately positive
jumps from the probability density m+

s,t and negative jumps from the probability density m−s,t,
where

m+
s,t(x) := Ix>ε

νt(x)− νs(x)∫∞
ε
dz(νt(z)− νs(z))

& m−s,t(x) := Ix<−ε
νt(x)− νs(x)∫∞

ε
dz(νt(z)− νs(z))

.

To sample positive and negative jumps is extremely costly because often it is not possible to
compute explicitly the integrals of m+

s,t and m−s,t.

Assumption 3. m+
s,t(x) is non increasing in x and m−s,t(x) is non decreasing in x ∀s, t s.t.

0 < s < t ♣

A faster methodology -for sampling from a known distribution without inverting numerically its
integrals- is based on the Ziggurat method of Marsaglia et al. (2000). This method is applicable
to probability density functions that are bounded and monotonic. We can apply the algorithm
separately to negative and positive jumps. Having truncated small jumps the density functions
are bounded, we need to ask the conditions of monotonicity listed in Assumption 3. The
Ziggurat method covers a probability density with Nret rectangles with equal area and a base
strip. The base strip contains the tail of the probability density, it is built s.t. it has the same
area of the rectangles. The method is composed of two building blocks: first, the rectangles
with equal area are identified; second, the random variable is simulated either from a rectangle
or from the base strip. Only in the latter case, an inversion of the integral is needed. Nret is a
key parameter because it controls the trade-off, in terms of computational time, between this
inversion and building the rectangles.

With respect to Eberlein and Madan (2009), to reduce the bias of the method, we also consider
the Gaussian approximation of Asmussen and Rosiński (2001).
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β δ k η̄ σ̄
1 -1/2 1 1 0.2

Table 3.2: ATS parameters used in all numerical simulations. These selected parameters are
consistent with the ones observed in market data.

3.4 Numerical results

Financial applications provide an important motivation for this study. We show that the pro-
posed Monte Carlo technique for additive processes can price path-dependent options fast and
accurately. The computational time is comparable to the case with simple Brownian motion
dynamics.
We are interested in simulating a discrete sample path of the process over a finite time horizon:
we are only concerned about the values of an additive process on such a discrete-time grid. This
arises from situations where only discrete values of the process are concerned as in Chen et al.
(2012), Ballotta and Kyriakou (2014) (e.g., they consider discrete barrier, lookback, and Asian
options).
The case of an additive normal tempered stable (ATS) is discussed in detail. ATS processes
present several advantages: they calibrate accurately equity implied volatility surfaces and, in
particular, they capture volatility skews, cf. chapter 1.
The Lewis-FFT-S method and the GA benchmark can be used for the ATS because, in the next
proposition, we prove that Assumptions 1, 2, and 3 hold for this additive process.

Proposition 3.4.1. For an ATS process with α ∈ (0, 1), Assumptions 1, 2 and 3 hold.

Proof. See appendix .6

In particular, for the numerical example, we focus on the power-law scaling ATS, cf. Theorem
1.2.3, that is characterized by the parameters

kt = k̄ tβ , ηt = η̄ tδ, σt = σ̄ ,

where σ̄, k̄, η̄ ∈ R+, and β, δ ∈ R. For all numerical experiments, we use the parameters reported
in table 3.2: these parameters are consistent with the ones observed in market data.

To evaluate the Lewis-FFT-S performances we consider plain vanilla and exotic derivatives
at different moneyness x and at different times-to-maturity. Deeply out-of-the-money and
in-the-money options are less informative on the method performances, as the option value is
close to the intrinsic value. In the rest of the section, to ensure that we verify the performance
of the method on options in a relevant range of moneyness x, we consider x in the range√
t(−0.2, 0.2), where t is the option time-to-maturity.

In subsection 3.4.1, we show how the Lewis-FFT-S (with spline interpolation) method signifi-
cantly outperforms the method with linear interpolation for European options.
In subsection 3.4.2, we provide evidence that Lewis-FFT-S is extremely fast and it is less com-
putationally expensive, by at least 1.5 orders of magnitude than the GA method.
In subsection 3.4.3, we price discretely monitored Asian options, lookback options, and Down-
and-In options with a time-to-maturity of five years. We also show that the Lewis-FFT-S is
particularly efficient. The computational time needed to price path-dependent options with this
method is just three times the computational time needed when using standard MC techniques
for a geometric Brownian motion.
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3.4.1 European options: accuracy

In the following, the Lewis-FFT-S performances are assessed for the ATS process. First, we show
that, when using linear interpolation the leading term in (3.3.1) goes as γ2. Then, we improve
the bound by considering spline interpolation (Lewis-FFT-S) and we discuss the excellent
performances of the method for the ATS case. Thanks to the FFT approach, Lewis-FFT-S is
particularly fast: computational time has the same orders of magnitude of standard algorithm
that simulate Brownian motions). Thanks to the spline interpolation, Lewis-FFT-S is also par-
ticularly accurate, for 107 simulations, and for any M > 9 the maximum error is 0.03 bp or below.

We do not desire a method that performs well either only OTM or only ITM. We want a MC
that prices accurately options with generic moneyness: for this reason, we consider the 30
European call options with moneyness in a regular grid with range

√
t(−0.2, 0.2). The numerical

error arising from the MC can be estimated easily in the European call case having a closed
formula for option’s prices in equation1.3.1. The method’s error is assessed in terms of the
maximum error in absolute value (MAX) and the average over the 30 MC standard deviation
(SD).
Monte Carlo error is often decomposed into bias and variance. In this chapter, we aim to reduce
the bias error, but it is relevant to take into account also the variance. For a large number of
simulations, confidence intervals estimated via a MC are directly linked to this quantity (see,
e.g., Glasserman 2004, Ch.1, eq.(1.10), p.10). In our case, since we are considering the average
error over 30 call options, we consider the average standard deviation SD as a rough estimate of
the variance error in the estimated prices. When the maximum error is below SD we can infer
that the error on bias has been dealt with correctly. In all considered cases, SD is of the order
of 0.1 basis points.

In Figure 3.2, we plot the three terms that appear in the bias bound of equation (3.3.1) for an
ATS with α = 2/3 over a one-month time interval. The bound is for Lewis-FFT simulation with
linear interpolation varying the number of grid points in the FFT via M s.t. N = 2M . We plot
the bounds on the error i) due to the truncation of the CDF (blue circles) in expression (3.3.3),
ii) due to the linear interpolation of the CDF (red squares) in expression (3.3.4), and iii) due
to the range and discretization error of the FFT inversion (green triangles) in expression (3.3.2).
As we have already anticipated in subsection 3.3.1, two are the most relevant error sources: the
error originating from the CDF approximation and the one due to the interpolation. The error
originating from the truncation is always negligible: at least ten orders of magnitude lower than
interpolation error for every M . For the CDF approximation error, as explained in section 3.2,
we have suggested an optimal selection of the shift a in the Lewis-FFT approach. The term that
we need to tackle is the interpolation one: for M > 8 the unique relevant bound is the one on the
interpolation error (e.g. for M=10 it is 10 orders of magnitude above all other errors). Similar
results holds ∀α ∈ (0, 1).
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Figure 3.2: One-month European call options error bounds for an ATS (α = 2/3) simulated with Lewis-
FFT and linear interpolation. We plot the bounds on the three error sources: i) the truncation error
(3.3.3) (blue circles), ii) the error (3.3.4) due to the linear interpolation of the CDF (red squares) and
iii) the error (3.3.2) related to numerical CDF (green triangles). Let us emphasize that the truncation
error is always negligible w.r.t. the linear interpolation error (at least 10 orders of magnitude smaller for
every M). Notice that, for M > 8, the unique significant term is the bound on the linear interpolation
error (e.g. for M = 10 it is at least 10 orders of magnitude above all other errors).

As discussed in subsection 3.3.1, to reduce the CDF interpolation error, we consider the
spline interpolation for the numerical inversion instead of the linear interpolation. With spline
interpolation E should scale as γ4 instead of γ2. In Figure 3.3 and 3.4, we plot the Lewis-FFT
maximum error for two different times-to-maturity: the error is for 30 European call options
for different values of M using spline (blue circles) and linear (red squares) interpolation. We
also plot SD, the average MC standard deviation with a dashed green line. Notice that, for
M > 7 the spline interpolation error is significantly below the linear interpolation error. Spline
interpolation’s error improves significantly faster than the linear interpolation’s error: for M in
the interval (7,10) the maximum error scales as γ6 for the spline interpolation, this is probably
due to the monotonicity and boundness of the CDF, and as γ2 for the linear interpolation.
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Figure 3.3: Maximum error for different values of M using Lewis-FFT-S (blue circles) and Lewis-
FFT with linear interpolation (red squares). The maximum is computed over 30 call options (one-week
maturity), with moneyness in the range

√
t(-0.2,0.2). We consider 107 simulations and α = 2/3. Notice

that, for M > 9 the spline interpolation error is significantly below the linear interpolation error. Spline
interpolation’s error improves significantly faster than the linear interpolation’s error: for M in the
interval (7,10) the maximum error scales, on average, as γ6 for the spline interpolation and as γ2 for
the linear interpolation. Moreover, the maximum error becomes significantly lower than the average MC
standard deviation in a dashed green line.
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M 7 8 9 10 11 12 13
α = 1/3 MAX [bp] 5.89 0.27 0.02 0.03 0.03 0.03 0.03

RMSE [bp] 2.92 0.24 0.01 0.02 0.02 0.02 0.02
MAPE [%] 1.88 0.18 0.01 0.01 0.01 0.01 0.01
SD [bp] 0.12 0.12 0.12 0.12 0.12 0.12 0.12

α = 2/3 MAX [bp] 42.91 0.20 0.05 0.01 0.02 0.03 0.03
RMSE [bp] 27.38 0.17 0.03 0.01 0.01 0.02 0.02
MAPE [%] 11.45 0.12 0.02 0.01 0.01 0.01 0.01
SD [bp] 0.13 0.11 0.11 0.11 0.11 0.11 0.11

Table 3.3: Lewis-FFT-S algorithm (with spline) performances w.r.t. different metrics using 107

trials for α = 1/3 and α = 2/3: maximum error [bp], RMSE [bp], MAPE [%], SD [bp]. The
process is simulated for M that goes from 7 to 13. The metrics are computed for 30 call options
(one-month maturity), with moneyness in the range

√
t(-0.2,0.2). We observe that for all M ≥ 9

the maximum error is 0.03 basis points or below.
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Figure 3.4: As Figure 3.3 but for one-month maturity. Notice that, for M > 7 the spline interpolation
error is significantly below the linear interpolation error. Spline interpolation’s error improves signifi-
cantly faster than the linear interpolation’s error: for M in the interval (7,10) the maximum error scales,
on average, as γ6 for the spline interpolation and as γ2 for the linear interpolation.

We also desire to estimate the method’s error with different metrics: besides MAX we consider
the root mean squared error (RMSE) and the mean absolute percentage error (MAPE). In table
3.3, we report the performances of the Lewis-FFT-S algorithm for 107 simulations. We consider
two values of α for the ATS: α = 1/3 and α = 2/3. The metrics are computed for 30 call options
(one-month maturity) and moneyness in the range

√
t(-0.2,0.2). We observe that for M ≥ 9 the

error is 0.03 basis points or below whatever metric we consider.

The main result of this subsection is that, in the Lewis-FFT-S framework, a Monte Carlo with 107

simulations and M = 13 provides an accurate pricing tool whatever time-horizon and α ∈ (0, 1)
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M 7 8 9 10 11 12 13
α = 1/3 Time [s] 0.23 0.27 0.28 0.28 0.28 0.28 0.29
α = 2/3 Time [s] 0.25 0.27 0.28 0.28 0.28 0.28 0.28

Table 3.4: Lewis-FFT-S computational time in MATLAB for simulating the ATS (with α = 1/3
and α = 2/3) over a one-month time-interval.

we consider.

3.4.2 European options: computational time

In this subsection, we emphasize that the proposed MC method is fast. We compare
the Lewis-FFT-S computational cost both with the simplest possible dynamic for the un-
derlying (geometric Brownian motion) and with the methodology that is often considered a
benchmark for simulating jump processes (the simulation of jumps via Gaussian approximation).

In table 3.4, we report the performances of the Lewis-FFT-S algorithm for 107 simulations.
We consider the ATS with α = 1/3 and α = 2/3. For every choice of M, we have the
maximum error [bp], the RMSE [bp],the MAPE [%], the SD [bp], and the computational time
[s]. The metrics are computed for 30 call options (one-month maturity), with moneyness in the
range

√
t(-0.2,0.2). We observe that for M ≥ 10 the maximum error is 0.03 basis points or below.

We point out, that Lewis-FFT-S is considerably efficient. In our machine6, sampling 107

observation of a geometric Brownian motion takes approximately 0.08 seconds which is just
one-third of the Lewis-FFT-S’s computational cost (reported in table 3.4).

In Figure 3.5, we plot the computational time w.r.t. the time-to-maturity in log-log scale for
107 simulations with Gaussian Approximation (blue squares) and Lewis-FFT-S (red circles).
Time-to-maturity goes from one day to two years. To compare the two methods fairly we need
to select M for the Lewis-FFT-S and ε for the Gaussian approximation s.t. the two methods
provide similar errors. As above, for both methods, we price the 30 call options, with moneyness
in the range

√
t(-0.2,0.2). For each time-to-maturity, we select M and ε s.t. the maximum error

(MAX) is between 1 basis point and 0.1 basis points, and s.t. the Lewis-FFT-S error is always
below the Gaussian approximation error. Lewis-FFT-S computational time appears constant as
the time-to-maturity increases. While GA computational time improves as the time-to-maturity
reduces. However, Gaussian approximation is always more computationally expensive than
Lewis-FFT-S by at least 1.75 orders of magnitude. This difference appears remarkable consid-
ering that we have verified that Lewis-FFT-S error is always below Gaussian approximation error.

6We use MATLAB 2021a on an AMD Ryzen 7 5800H, with 3.2 GHz.
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Figure 3.5: Computational time w.r.t. the time-to-maturity in log-log scale for 107 simulations with
GA (blue squares) and Lewis-FFT-S (red circles) techniques. We price 30 European call options, with
moneyness in the range

√
t(−0.2, 0.2) with GA and Lewis-FFT-S. For each time-to-maturity, between

one day to two years, we select M and the threshold ε s.t. the maximum error is between 1 basis point
and 0.1 basis points and we require that the Lewis-FFT-S error is always below the GA error. The
GA computational time improves as the time-to-maturity reduces because a lower number of jumps is
involved, while the Lewis-FFT-S simulation depends weakly on the time horizon. We observe that GA
is always more computationally expensive than Lewis-FFT-S by at least 1.75 orders of magnitude.

3.4.3 Discretely monitoring options

In this subsection, we price discretely monitored (quarterly) Asian options, lookback options,
and Down-and-In options with a time-to-maturity of five years.

For simplicity, we consider the case with no interest rates and dividends: these two deterministic
quantities can be easily added to simulated prices without any computational effort.
The Asian call options, the lookback put options and the Down-and-In put options we consider
are respectively (

n∑
i=0

efti − e−x
)+

,

(
e−x −min

i
efti
)+

and(
e−x − efti

)+
Imini efti≥L ,

where 0 = t0 < t1 < ... < ti < ... < tn with n = 20 the monitoring times, fti is the ATS price
at time ti, and x is the option moneyness and L is the Down-and-In barrier. We simulate the
paths of ft by simulating the increments fti − fti−1 .

In table 3.5, we report prices and MC standard deviation of Asian call options and lookback put
options. We simulate 107 paths of the ATS with α = 2/3 and price the discretely monitored
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Moneyness Asian [%] SD [%] Lookback [%] SD [%] Down-and-In [%] SD [%]
-0.5 39.79 0.01 3.31 0.00 2.31 0.00
-0.25 24.36 0.01 8.72 0.00 3.98 0.00

0 10.04 0.01 23.07 0.01 6.15 0.01
0.25 2.57 0.00 50.53 0.01 8.95 0.01
0.5 0.55 0.00 86.98 0.01 12.55 0.01

Table 3.5: Prices and MC standard deviation of Asian calls, lookback puts, and Down-and-In
put options for different moneyness. We simulate 107 paths of the ATS with α = 2/3 and price
the discretely monitored (quarterly) path-dependent options with time-to-maturity of five years.
SD errors are always lower than 1 basis point.

(quarterly) Asian options and lookback options with time-to-maturity five years. We consider
options with different moneyness in the range (-0.5,0.5), where 0.5 ≈ 0.2

√
t. The Down-and-In

barrier strike is L = 0.6. We use M = 13 for the numerical CDF inversion. As pointed out
in the previous subsection, the Lewis-FFT-S is extremely efficient: the computational cost of
simulating the ATS path is just three times the computational cost of simulating a standard
geometric Brownian motion.

3.5 Conclusion

In this chapter, we propose a new Monte Carlo simulation technique for additive processes that
leverages on the numerical efficiency of the FFT applied to the Lewis formula for a CDF and on
the spline interpolation properties when inverting the CDF. We call Lewis-FFT-S this Monte
Carlo simulation. We propose an application to the Additive normal tempered stable (ATS)
process introduced in chapter 1 and we show that the Lewis-FFT-S significantly outperforms
the GA method. This simulation technique is accurate and fast.

We discuss in detail the accuracy of the method. In Figure 3.2 we discuss the three-components
of the bias error in (3.3.1). To accelerate convergence we improve the two main sources of
numerical error in (3.3.1): the CDF error in equation (3.3.2), and the interpolation error in
equation (3.3.4). First, we consider the Lewis formula, see equation (3.2.1), for the Fourier
transform inversion. This eliminates the source of error originating from the pole in the origin
(see, e.g., Ballotta and Kyriakou 2014, eq.(4)). Second, we substitute linear interpolation with
spline interpolation. In this way, the leading term in the interpolation error improves from γ2 to
at least γ4. This improvement is particularly evident in Figures 3.3-3.4, where, for M > 7, the
Lewis-FFT-S (with spline interpolation) maximum error is significantly below the Lewis-FFT
version of the method with linear interpolation and it appears to decrease as γ6 in numerical
experiments.

The Lewis-FFT-S is accurate but also fast. As discussed in subsection 3.3.1, for a sufficiently
large number of simulations, the increment in computational time due to spline interpolation
is negligible. Moreover, as shown in Figure 3.5, the proposed method is at least one and a
half orders of magnitude faster than the traditional GA simulations whatever time horizon we
consider. We also observe that, when pricing some discretely monitoring path-dependent options,
the computational time is of the same order of magnitude as standard algorithms for Brownian
motions.
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A brief description of the Lewis-FFT algorithm follows.

procedure Lewis-FFT(M,Nsim,FlagSpline)

COMPUTE h(M), N , γ
COMPUTE P̂ with FFT . z0, zN−1 fixed by FFT

FIX xK nearest point to 5
√
t− s and x0 = −xK

#»x = x0 : γ : xK . Grid dimension: K + 1

SAMPLE a vector U of Nsim uniform r.v. in [0,1]
J = NearestNeighborhood(U , P̂ ( #»x )) . Find next element in the grid

if FlagSpline = True then
COMPUTE spline interpolation coefficients {cSq,J}3q=0 . Solve tridiagonal linear sistem
X = spline(P̂ ( #»x ), #»x , U ,J) . Interpolate on U

else
COMPUTE linear interpolation coefficients {cLq,J}1q=0
X = cL0,J + U cL1,J . Interpolate on U

72



Chapter 4

The equity derivatives market: Synthetic for-
wards and cost-of-funding

This chapter presents the equity market dataset and introduces a new technique to recover the
implicit discount factor in the derivative market using only European put and call prices: this
discount is grounded in actual transactions in active markets. Moreover, this chapter identifies
the implied cost-of-funding, over OIS, of major market players.

Does a liquid equity market allow arbitrage? The key idea is that the (unique) forward contract
-built using the put-call parity relation- contains information about the market discount factor:
by no-arbitrage conditions we identify the implicit interest rate such that the forward contract
value does not depend on the strike.

The procedure is applied to options on S&P 500 and EURO STOXX 50 indices. There is
statistical evidence that, in the EURO STOXX 50 market, the implicit interest rate curve
coincides with the EUR OIS one, while, in the S&P 500 market, a cost-of-funding of, on average,
34 basis points is added on top of the USD OIS curve.

We use the market implicit interest rates and forward prices to calibrate the ATS on a large
dataset. We discuss the excellent calibration performances and the power scaling behavior of
the ATS, over a dataset of nine-year length. We show that ATS calibrates the EURO STOXX
50 and S&P 500 implied volatility surfaces significantly better than the Lévy case (more than
two order of magnitude).

Part of this chapter has already been published in Azzone and Baviera (2021d).

4.1 Introduction

The term structure of interest rates is a crucial input in the derivative market. It is used for
determining the discount rate for expected payoffs in a given currency.
The main research question we consider in this is: when dealing with liquid exchange-traded
derivatives, which is the interest rate term structure used by market makers?
In general, interest rates used in derivative pricing are not “risk-free” because contingent claim
evaluation should depend on the risks of the investment and in particular, on the funding risk
and on the risk of default of one of the two counterparties in the derivative contract.1

1For a dealer, the expected loss due to a possible default by the counterparty is related to the credit value
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When dealing with exchange-traded derivatives the situation should be simpler: the presence of
a clearinghouse with margin calls allows neglecting the market participants’ default risk. Before
the Great Financial Crisis of 2007, the answer was to consider the Libor curve as the discounting
term structure (see e.g., Hull and White 2013, p.14). After the crisis, the difference between Libor
rates with different tenors enlarged to several tenths of basis points (see, e.g., Henrard 2014, and
references therein) making this answer less obvious; more recently the situation has become even
more complicated, in particular after July 2017, when the Chief Executive of U.K. Financial
Conduct Authority (FCA) in a famous speech (Bailey 2017) increased market expectation that
Libor benchmarks will be discontinued within a few years (see, e.g., Henrard 2019, for a clear
and exciting discussion on the Libor fallout from a quantitative perspective).

The Overnight Index Swap (OIS) curve has emerged as a possible candidate for the risk-free
curve for derivative discounting in the aftermath of the crisis. The OIS is a swap derived from
the unsecured interbank overnight rate (OR), which is, for example, the EONIA rate for Euros2

and the Effective Federal Fund Rate (EFFR) for US dollars3. This OR can be considered a good
proxy of a risk-free rate and it is the interest rate most commonly paid on margins. Moreover,
the OIS curve presents several advantages: it is a curve based on liquid swaps. The bootstrap of
the discounting curve is as simple as the well-established pre-crisis methodology (see, e.g., Ron
2000).

The approach of selecting the interest rate term structure from a practitioner perspective appears
relatively clear. We are particularly interested in market makers that operate in a given exchange-
traded derivative market. Often they consider the OIS curve for discounting, allowing for a spread
that accounts for other risks or costs not included in the “risk-free” rate.
We call this spread “cost-of-funding” because it can be seen as the implicit additional cost in
operating in this derivative market. We reformulate our research question for these market
makers: which is the cost-of-funding (if any) of operating in a liquid exchange-traded derivative
market?
The answer to this question has both operational and management implications. On the one
side, for their daily activity, the market makers should build and monitor an indicator on this
spread, to use a discounting curve in line with other market participants; on the other side, this
spread has relevant consequences on the management of a financial firm. If, within a financial
institution, the cost-of-funding of a given business unit of market-making is larger than the
market, it is rather difficult that this unit can be competitive in the derivative market where
it operates. Determine at which cost-of-funding each business unit should operate is a relevant
management decision within a financial firm. This chapter introduces an elementary indicator
that can monitor in real-time the funding cost and point out a possible stress in funding liquidity.

We consider all options on the EURO STOXX 50 and the S&P 500, respectively the most liquid
equity index in the Euro area and in the U.S.A. (see e.g., Dash and Liu 2009, Bai et al. 2019, Vo
and Daly 2008, Ñı́guez 2016).
This study builds over the put-call parity of European options. The idea of using put-call
parity to obtain the implied interest rates dates back to Brenner and Galai (1986), who consider

adjustment and the expected gain due to a possible default by the dealer itself is referred to as the debt value
adjustment; the funding risk is associated with the funding valuation adjustment. This pricing approach can be
found in excellent textbooks (see, e.g., Gregory 2012, Brigo et al. 2013).

2Substituted by the Euro short-term rate (€STR) starting from the 2nd of October 2019, i.e. after the period
of analysis considered in this chapter.

3USD OIS market is mainly based on this rate. The OIS swap trading volumes based on the Secured Overnight
Financing Rate (SOFR) is negligible w.r.t. the total OIS volume at the time of writing.
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underlyings that do not pay dividends. Frankfurter and Leung (1991) and Naranjo (2009)
extended this methodology to options on an underlying that pays dividends. To apply their
techniques it is necessary to know both the forward prices and the forward dividends. They
infer future dividends from realized ones and discuss the differences between the discount factor
observed in the market and the discount factor obtained from the LIBOR and Treasury curves.

This study presents an alternative approach that allows us to obtain the implicit interest rates
using only option prices and a no-arbitrage condition on an option portfolio known as synthetic
forward.4 The implicit interest rates of the S&P 500 and EURO STOXX 50 option markets are
computed with a simple technique. Together with OIS discounting term structure, this technique
allows a market maker to build an elementary measure of the cost-of-funding that can be obtained
instantly from option prices. Moreover, from the market implicit interest rate it is possible to
build the underlying forward prices. We will use this technique to calibrate the ATS to a big
dataset of option prices (nine-year length) in section 4.4.
In chapter 1, we introduced a new broad family of stochastic processes that we call additive
normal tempered stable processes (ATS). An interesting subcase of ATS presents a power-law
scaling of the time-dependent parameters.
The model is calibrated on market data on a choosen maturity. In chapter 1, we considered
all quoted options on S&P 500 and EURO STOXX 50 at 11:00 am NT on the 30th of May
2013. The dataset contains options with a time-to-maturity starting from three weeks and up
to several years. We calibrate the ATS processes on the options of both indices, showing that
ATS processes present better calibration features than LTS and Sato processes (Sato 1991). The
observed improvement of ATS is even of two orders of magnitude in terms of MSE, as reported
in Table 1.1. ATS replicates accurately market implied volatility term structure and skew as
observed in Figures 1.5 and 1.6.
The quality of ATS calibration results are stunning. In subsection 1.3.3, we have shown that once
the volatility term structure has been taken into account, the whole implied volatility surface is
calibrated accurately with only two free parameters.
We employ the market implied interest rates and forward prices to calibrate the ATS over a
nine-year time interval.
We consider a dataset on options on the S&P 500 and EURO STOXX 50 indexes of 9 years
length, of closing market prices. The calibration results are stunning. First, for both indexes
the ATS outperforms the Lévy process by at least two orders of magnitude in terms of mean
squared error (MSE) and one order of magnitude mean absolute percentage error (MAPE). ATS
also outperforms significantly Sato processes in all cases.

The rest of the chapter is organized as follows. Section 4.2 shows the methodology to find the
implicit interest rates using only option prices and describes the dataset. Section 4.3 infers the
S&P 500 and the EURO STOXX 50 implicit discount factor and the corresponding cost-of-
funding. Section 4.4 presents the results of the ATS calibrations on a nine-year dataset. Section
4.5 concludes.

4.2 The methodology and the dataset

This section shows how to obtain the discount factor from market data using only call and put
prices. We present the dataset and discuss the data preprocessing techniques.

4Synthetic forwards are perfectly synchronized with option prices. There is empirical evidence that, in some
markets, they are more reliable than quoted futures (see e.g., Muravyev et al. 2013, Hao et al. 2020).
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The absence of arbitrage condition allows us to write, at value date t0 and at a fixed maturity
T , the put-call parity for European options (see, e.g., Hull 2003, Ch.8 p.174) w.r.t. the forward
price Ft0(T ) and the strike price K

CT (K)− PT (K) = BT (Ft0(T )−K) , (4.2.1)

where CT (K) and PT (K) are respectively the European call and put option prices and BT is
the market discount factor between value date and T .
Instead of considering a standard forward contract, a trader in this market can mimic this position
using call and put options with the same strike price and the same maturity to create a forward
position: this position is called synthetic forward. The synthetic forwards are frequently traded
in the equity derivative markets: they identify –for several maturities– the most liquid forwards
in the market.
A synthetic forward GT (K) with maturity T is a portfolio that comprises of a long call and
a short put at a given strike price K. Forward prices in t0 with the same maturity T are all
equivalent whatever strike K is considered and, due to the no-arbitrage condition, they should
have the same price.5 The market implied discount factor BT is the (unique) factor such that
the forward price

Ft0(T ) = GT (K)
BT

+K (4.2.2)

does not depend on the strike K: this is the main idea of the chapter. This is a linear problem
in B and F . We discuss its solution in section 4.2.

We consider all quoted S&P 500 and EURO STOXX 50 option prices6 observed at 11:00 am
NT each business day from the 1st of November 2018 to the 19th of July 2019 excluding days
from the 20th of December 2018 to the 6th of January 2019 and from the 13th of April 2019 to
the 2nd of May 2019. For both indices, the most liquid options expire on the third Friday of
the first six months after the value date and then on March, June, September, and December
in the front year and June and December in the next year. In the EURO STOXX 50 case also
June and December contracts for the following years are available.7 In Table 4.1 we provide the
descriptive statistics of some relevant quantities in the options’ dataset. We report the number
of strike for each maturity, the straddle position, CT (K) + PT (K), and the synthetic forward
plus the strike, GT (K) +K.

5We could build an arbitrage position on synthetic forwards with the same maturity and different strikes via
the so-called box strategy: i.e. a position composed by a long synthetic forward at a given strike and a short
synthetic forward at a different one. For this strategy -that is equivalent to a long or short cash position- we can
neglect margin (MVA) and capital (KVA) adjustment.

6We consider the CBOE European options on the S&P 500 index (option prices are reported by the U.S.A.
Options Price Reporting Authority) and the Eurex European options on the EURO STOXX 50 index. Eikon
Reuters option chains are respectively 0#SPX*.U and 0#STXE*.EX.

7For each value date t0 we observe 10 to 13 liquid synthetic forward maturities in the S&P 500 market and 18
to 19 contracts’ maturities in the EURO STOXX 50.
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market quantity mean median std q0.05 q0.95

S&P 500 #Strikes 131 95 67 77 250
S&P 500 C+P 585.70 488.00 396.56 130.02 1389.42
S&P 500 GT+K 2794.00 2796.75 118.61 2583.45 2991.30

EURO STOXX 50 #Strikes 44 46 19 16 73
EURO STOXX 50 C+P 584.59 533.55 331.27 172.90 1226.35
EURO STOXX 50 GT+K 3201.73 3202.50 170.15 2918.05 3485.50

Table 4.1: Descriptive statistics. Mean, median, standard deviation (std), and quantiles (q) 5%, 95%
of some relevant quantities in the options’ dataset we analyze. We report the number of strikes for each
maturity and value date, the straddle position, CT (K) + PT (K), and the synthetic forward plus the
strike, GT (K) +K.

The dataset also includes the OIS rates at 11:00 am NT (USD and EUR) with a time-to-maturity
equal to 1-12, 15, 18, and 21 months and 2, 3, 4 and 5 years. The OIS interest rate curve is
bootstrapped following the standard methodology (see, e.g., Henrard 2014, Baviera and Cassaro
2015). Eikon Reuters provides all financial data.
The dataset provides call/put bid and ask prices for each available maturity. Data pre-processing
criteria are simple: we filter out the options that do not satisfy two basic liquidity criteria and we
discard maturities with just one or two strikes. As first liquidity criterion, we filter the so-called
“penny options”, i.e. options at a very low price. All options, whose value is less than 0.1 (S&P
500 or EURO STOXX 50) index points, fall within this class. Then, options with a wide bid-ask
spread are discarded. We filter out options with a ratio ask-bid/ask larger than 60%. This second
liquidity criterion excludes strikes for which either bid or ask prices for call and put options are
not available.

4.3 S&P 500 and EURO STOXX 50 implicit interest rates

In this section, we infer the market discount factor from option prices and analyze it for the two
option markets. We verify whether the market discount factor corresponds to the EUR or USD
OIS curve and find statistical evidence that a cost-of-funding of 34 basis points is added to the
OIS curve in the S&P 500 case.

In the market, we observe bid and ask prices for every different strike and a fixed maturity. The
bid synthetic forward is obtained by selling the call and buying the corresponding put, vice-versa
for the ask price. Mid prices are the arithmetic average of bid and ask prices.

GbidT (K) := Cbid (K)− P ask (K)

GaskT (K) := Cask (K)− P bid (K)

GT (K) := G
bid
T (K) + GaskT (K)

2 .

(4.3.1)
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Figure 4.1: S&P 500 forward prices observed at 11:00 am NT of the 1st of April 2019 with maturity
on the 21st of March 2020. Forward prices are obtained via synthetic forwards in (4.2.2) for different
strikes: we assume BT = BT , the USD OIS discount factor. We plot in red the bid prices, in blue the
ask prices, and in green the mid prices. Notice that the mid prices are linear w.r.t. the strike. This fact
denotes a market implied discount factor B(t0, T ) lower than the USD OIS one, as explained in the text.

In Figure 4.1, we plot an example of one year S&P 500 forward prices Ft0(T ) in (4.2.2) using
the discount factor BT of the USD OIS curve obtained via the bootstrap. We can notice a linear
behavior w.r.t. the strikes.
By non-arbitrage principle, the forward Ft0(T ) should be constant in K. Thanks to equation
(4.2.2), we observe from Figure 4.1 that also the ratio GT (K)/BT is a decreasing linear function
of K, but with an angular coefficient greater than −1, because it cannot compensate the linear
term K in (4.2.2). Hence, in absolute value, the actual angular coefficient of GT (K)/BT should
be larger that the one of GT (K)/BT : we infer that the actual discount BT is lower than the OIS
one BT .

The discount factor used in the market BT can be obtained as the angular coefficient in the
linear regression

Gi,T = −BT Ki +BT Ft0(T ) + εi i = 1, .., N (4.3.2)

for the different strikes {Ki}i=1,..,N available at value date t0 and maturity T , where εi are some
error variables. Its least squares estimation is

BT = −
∑N
i=1(Ki − K̂)(Gi,T − ĜT )∑N

i=1(Ki − K̂)2
(4.3.3)

where

ĜT := 1
N

N∑
i=1
Gi,T , K̂ := 1

N

N∑
i=1

Ki . (4.3.4)

We observe that the regressions are very precise with an R2 above 0.9995 for all value dates t0
and all maturities T in the dataset analyzed.
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This result is equivalent to state that a spread is added to the USD OIS curve. The funding
spread (or cost-of-funding) can be defined in several ways; the simplest one is

s̄ := 1
T − t0

ln BT
BT

(4.3.5)

where BT has been obtained from the bootstrap of the OIS curve and time intervals are measured
according to an Act/365 convention.8 The elementary indicator (4.3.5) allows the market makers
to monitor in real-time the cost of funding in the derivative market where they operate; it allows
also to detect possible situations of stress in funding liquidity.

We measure this spread for all value dates t0 and all maturities T in the whole options’ dataset.
In Figure 4.2 we plot the spread over the USD OIS curve w.r.t. the synthetic forward time-to-
maturity (ttm) T − t0. It seems that a spread of 34 basis points is applied to the USD OIS curve
for maturities higher than one month.
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Figure 4.2: Spread over USD OIS in the S&P 500 case. The spread (4.3.5) is plotted against the time-
to-maturity (ttm), for ttm longer than one month. The average spread of 34 basis points over the OIS
curve seems constant over the different maturities (continuous red line). We observe a higher variance
for short term maturities.

We fit the spread s̄ as a function of the ttm and we test the statistical significance of the results.
We can accept the null hypothesis of no slope with a p-value of 11% and we reject the null
hypothesis of zero intercept with a p-value below 10−16. The intercept estimated assuming no
slope is of 34 basis points.

We follow the same procedure for the EURO STOXX 50 forward prices, the spread over the
EUR OIS curve is reported in Figure 4.3.

8This is equivalent –up to a fraction of basis point– to consider a cost-of-funding s̄ over the overnight rate OR.
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Figure 4.3: Spread over the EUR OIS curve in the EURO STOXX 50 case. The spread (4.3.5) is plotted
against the ttm, for ttm larger than one month. The average spread seems to be zero over the different
maturities (continuous red line).

We accept the null hypothesis of no intercept with a p-value of 23% and we accept the null
hypothesis of no slope with a p-value of 81%. In Table 4.2 we report a summary of the estimated
slope and intercept parameters together with the statistical test p-values for both option markets.
We can conclude that dealers in the S&P 500 market are subjected to a cost-of-funding, constant
w.r.t. the ttm, on average of 34 basis points, the same does not apply for dealers in the EURO
STOXX 50 market.

market parameter estimate p-value
S&P 500 Intercept 33 < 10−16

S&P 500 Slope 1 0.11
EURO STOXX 50 Intercept −1 0.23
EURO STOXX 50 Slope 0 0.81

Table 4.2: Spread over OIS. Estimated intercept and slope of the spread over the OIS curve in basis
points (USD OIS curve for S&P 500 and EUR OIS curve for EURO STOXX 50). We accept the null
hypotheses of no slope for both markets. We refuse the null hypothesis of zero intercept only for the S&P
500 market. There is statistical evidence that dealers in the S&P 500 are subjected to a cost-of-funding,
constant w.r.t. the ttm: the intercept estimated assuming no slope is of 34 basis points. No spread is
observed for the EURO STOXX 50.

We observe in both Figure 4.2 and 4.3 a higher variance for short maturities. This is due to the
fact that only the product of the spread and the time-to-maturity is relevant for the forward: for
shorter maturities, the no-arbitrage condition is granted by a larger range of values for the spread.

Four robustness tests are performed. (i) We fit a weighted linear regression (see, e.g., Strutz
2010, Ch.3, p.51) to tackle heteroskedasticity problems. The weights are selected as one over
the square of the linear regression residuals. (ii) We change the penny-option and the bid-ask
spread thresholds respectively in the range (0, 1) and (30%, 90%) to verify the robustness w.r.t.
the excluded strikes. (iii) We extend the analysis window up to the 1st of October 2019 (the
last date before the EONIA is discontinued2) and limit the analysis to ttm larger than either 6
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or 12 months. (iv) We do not discard the maturities with less than three valid strikes. In all
robustness tests, results do not change up to a single basis point.

Let us underline that this methodology allows us to determine also the forward price obtained
via synthetic forwards. We will use it, in section 4.4, to calibrate the volatility surfaces (on a
time range of nine years) with the ATS process. This forward price is obtained from the put-call
parity relation (4.2.2) using the BT that includes the cost-of-funding: at a given maturity T , the
forward ask price is the lowest forward ask in (4.2.2) and the forward bid price is the highest
forward bid. In Figure 4.4 we show an example of the forward bid and ask prices obtained in
this way.
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Figure 4.4: Example of the construction of the forward price via synthetic forwards. We show bid (in
red) and ask (in blue) forward prices (4.2.2) of the EURO STOXX 50 at the 1st of April 2019 for the
21st of June 2019 maturity. Only prices not discarded by the two liquidity criteria described in the text
are considered. We also plot the forward ask price (continuous light blue) and bid price (continuous
light red) obtained as the lowest and highest values respectively. Notice that the length of the bid-ask
interval changes with the strikes signaling different liquidity for different strikes.

4.4 ATS calibration on multiple volatility surfaces

In this section, we consider a dataset of closing market prices that goes from January 2012
to December 2020. The dataset comprises of options on the S&P 500 and EURO STOXX 50
indexes. The data is provided by Eikons Datastream. Let us observe that close prices are, in
general, less accurate than open market prices (the ones used for the analysis in section 1.3).

For both indices, the most liquid options expire on the third Friday of the first six months
after the value date and then on March, June, September, and December in the front year and
June and December in the next year. In the EURO STOXX 50 case also June and December
contracts for the following years are available. For each value date, we have 9 to 13 maturities
in the S&P 500 market and 18 to 19 maturities in the EURO STOXX 50.

We filter out the options that do not satisfy the two basic liquidity criteria explained in
section 4.2. We filter the so-called “penny options” and options with a ratio ask-bid/ask
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larger than 60%. This second liquidity criterion excludes strikes for which either bid or ask
prices for call and put options are not available. Moreover, we do not consider maturities with
less than four valid strikes and we discard options with B&S delta outside of the range (0.25,0.75).

The ATS is introduced through its characteristic function in equation (1.2.4)

E
[
eiuft

]
= Lt

(
iu

(
1
2 + ηt

)
σ2
t + u2σ2

t

2 ; kt, α
)
eiuϕtt , (4.4.1)

where σt, kt are continuous on [0,∞) and ηt, ϕt are continuous on (0,∞) with σt > 0, kt ≥ 0
and ϕt t goes to zero as t goes to zero. α ∈ [0, 1) as in the LTS case and

lnLt (u; k, α) :=


t

k

1− α
α

{
1−

(
1 + u k

1− α

)α}
if 0 < α < 1

− t
k

ln (1 + u k) if α = 0
.

Moreover, we impose the martingality of the ATS by setting

tϕt := − logLt
(
ηtσ

2
t ; kt, α

)
.

We calibrate the ATS following the procedure discussed in subsection 1.3.2. We cut the volatility
surface into slices, each one containing options with the same maturity, and calibrate each slice
separately. Also, in this case, we focus on α = 1/2 (NIG) and α = 0 (VG), which are the two
ATS generalizations of the two most frequently used LTS processes. The three time-dependent
parameters kT , ηT , σT are calibrated separately for each maturity but the calibration is performed
imposing the conditions of monotonicity of Theorem 1.2.1.
As in chapter 1, we consider also the calibration of the standard Lévy processes and the (four
parameters) Sato processes proposed by Carr et al. (2007). We remind that the latter are additive
and self-similar processes (see, e.g., Sato 1991). Call option prices, with strike K and maturity
T , are computed using the Lewis (2001) formula

CT (x) = BT F0(T )
{

1− ex/2
∫ ∞
−∞

dz

2π e
iz xφc

(
−z − i

2

)
1

z2 + 1
4

}
, (4.4.2)

where φc(u) is the characteristic function of fT , x := lnK/F0(T ) is the moneyness, and BT is
the discount factor between value date and T .
The calibration is performed by minimizing the distance between model and market prices. The
simplex method is used to calibrate every maturity of the ATS process. For Lévy processes and
Sato processes, because standard routines for global minimum algorithms are not satisfactory,
we consider a multi-start trust-region-reflective method.

In tables 4.3 and 4.4 we report the average calibration performance for the S&P 500 and EURO
STOXX 50 in terms, respectively, of MSE and MAPE for the Lévy process, the Sato process,
and the ATS process. The period of analysis goes from January 2012 to December 2020. The
results are for closing option prices. In the NIG (α = 1/2) and VG (α = 0) cases, we consider
the standard Lévy process, the Sato process, and the corresponding ATS process. Sato processes
perform better than Lévy processes but ATS improvement is far more significant: more than two
orders of magnitude of MSE and more than one order of magnitude of MAPE.
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Index Model Lévy Sato ATS
S&P 500 NIG 108.37 7.39 0.56
S&P 500 VG 120.20 7.24 0.64

Euro Stoxx 50 NIG 200.25 22.77 4.11
Euro Stoxx 50 VG 214.86 23.51 4.91

Table 4.3: Average calibration performance for the S&P 500 and EURO STOXX 50 in terms of MSE
for the Lévy process, the Sato process, and the ATS process. The period of analysis goes from January
2012 to December 2020. In the NIG (α = 1/2) and VG (α = 0) cases, we consider the standard Lévy
process, the Sato process, and the corresponding ATS process. Sato processes perform better than Lévy
processes but ATS improvement is far more significant: more than two orders of magnitude of MSE.

Index Model Lévy Sato ATS
S&P 500 NIG 9.59% 5.05% 0.43%
S&P 500 VG 12.07% 4.91% 0.89%

Euro Stoxx 50 NIG 11.04% 3.98% 0.31%
Euro Stoxx 50 VG 9.87% 4.00% 0.59%

Table 4.4: Average calibration performance for the S&P 500 and EURO STOXX 50 in terms of MAPE
for the Lévy process, the Sato process, and the ATS process. The period of analysis goes from January
2012 to December 2020. In the NIG (α = 1/2) and VG (α = 0) cases, we consider the standard Lévy
process, the Sato process, and the corresponding ATS process. Sato processes perform better than Lévy
processes but ATS improvement is far more significant: the MAPE is almost two orders of magnitude
below the Lévy case.

In Figure 4.5, we report MSE for the ATS (red circles), the self-similar process (green ex) and
the Lévy process (black squares) for S&P 500 closing option prices. The MSE are reported in
log10 scale. The period of analysis goes from January 2012 to December 2020. We observe that
both in the NIG (on the left) and VG (on the right) case the MSE of the ATS calibrated slice by
slice are, on average, more than two orders of magnitude better than the Lévy and more than
one order of magnitude better than the self-similar case.
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Figure 4.5: MSE for the ATS (red circles), the self-similar process (green ex) and the Lévy process
(black squares) for S&P 500 closing option prices. The MSE are reported in log10 scale. The period
of analysis goes from from January 2012 to December 2020. We observe that both in the NIG (on the
left) and VG (on the right) case the MSE of the ATS calibrated slice by slice are, on average, more than
two orders of magnitude better than the Lévy and more than one order of magnitude better that the
self-similar case.

In Figure 4.6, we report the MSE for the ATS (red circles), the self-similar process (green ex),
and the Lévy process (black squares) for EURO STOXX 50 closing option prices. The MSE are
reported in log10 scale. The period of analysis goes from January 2012 to December 2020. We
observe that both in the NIG (on the left) and VG (on the right) case the MSE of the ATS
calibrated slice by slice are, on average, more than two orders of magnitude better than the Lévy
and more than one order of magnitude better that the self-similar case.
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Figure 4.6: MSE for the ATS (red circles), the self-similar process (green ex) and the Lévy process
(black squares) for EURO STOXX 50 closing option prices. The MSE are reported in log10 scale. The
period of analysis goes from from January 2012 to December 2020. We observe that both in the NIG
(on the left) and VG (on the right) case the MSE of the ATS calibrated slice by slice are, on average,
more than two orders of magnitude better than the Lévy and more than one order of magnitude better
that the self-similar case.

4.5 Conclusions

Which discount factor should be used in exchange-traded derivatives? This study exploits
the implications of the put-call parity to develop a methodology that allows us to recover the
discount factor implied by option prices on S&P 500 and EURO STOXX 50 indices. A dealer
in the option market can use this technique to real-time monitor the funding spreads of market
players. The implicit discount factor is the one such that a forward contract, built using the
put-call parity relation, does not depend on the strike. We compute the S&P 500 and EURO
STOXX 50 option markets’ implicit discount factors and evaluate the cost-of-funding over the
curve obtained bootstrapping OIS derivatives. We have statistical evidence of a cost-of-funding
of, on average, 34 basis points on top of the USD OIS curve in the S&P 500 case and no
cost-of-funding for the EURO STOXX 50 case. This cost-of-funding is constant for all liquid
maturities up to several years for both markets.

Hence, the natural question is: why do we observe a spread over USD and no spread over
EUR OIS? The reason should be sought in the differences between the two underlying money
markets. Let us remind that the FED Target range indicates only some target rates, while in
Europe the corridor system denotes the real rates at which ECB serves as lender of last resort
to the financial system. In the USD market the two rates, the collateralized one (SOFR) and
the uncollateralized one (EFFR), differ for a spread that can be significant in several days. A
dysfunctional repo market, indicated by a sharp spike in the SOFR, has been observed several
days in the analyzed period;9 besides, a disruption in the repo market has been signaled by

9For example, during the period of analysis starting from the 1st of November 2018 and ending on the 1st of
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the well-known repo blow-up of the 17th of September 2019, when the spread between the two
fixings (SOFR and EFFR) topped to almost 3 percent and prompted the Federal Reserve to
inject tens of billions of dollars of reserves into money markets (see e.g., Barrett and Hamilton
2020, Tilford et al. 2019). While, as we have already underlined in the introduction, the OIS
market is mainly based on the EFFR, the volumes in the money market are mostly concentrated
on the repo rate, with SOFR volumes more than ten times larger than EFFR ones (see, e.g.,
Schrimpf and Sushko 2019). These funding disruptions in the USD money market, not observed
in the EUR market, suggest that market players could require a spread over OIS as a premium
for the additional liquidity risk observed in this market. As for future research, one main
promising direction is evident: it could be interesting to understand whether this funding spread
is connected to the implied/historical volatility on the two indices.

The implied discount factor and the synthetic forward prices are used to calibrate the ATS over a
nine-year dataset. The excellent calibration performance presented in chapter 1 can be observed
also for every date of this nine-year dataset (c.f. tables 4.3-4.4 and figures 4.5-4.6)

October 2018, apart from the end of months (and, in particular, the End-of-Year), spikes outside the FED Fund
range are observed in 15 days. Let us notice that, in all these days, SOFR is always larger than the upper side of
the range.
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Chapter 5

Conclusions

In this thesis, we introduce a new broad family of stochastic processes that we call additive
normal tempered stable processes (ATS). This is a family of pure jump additive processes
that has excellent calibrations features and reproduces the short-time equity skew. The ATS
maintains several properties (both analytic and numerical) of the LTS processes. Among these,
we have the simple and fast Lewis formula for European pay-off in (1.3.1); this formula allows
an efficient calibration. We discuss the four key advantages of ATS when modeling the implied
volatility in equity markets.

The first argument in favor of the ATS is a high calibration quality.
We consider a dataset of closing market prices that goes from January 2012 to December
2020. The dataset comprises of options on the S&P 500 and EURO STOXX 50 indexes with a
time-to-maturity starting from one day and up to several years. The observed improvement of
ATS calibration, w.r.t. to LTS (Lévy) and Sato alternatives, is stunning: at least two orders
of magnitude in terms of MSE and one order of magnitude of MAPE, as reported in tables
4.3-4.4 and Figures 4.5-4.6. Moreover, ATS perfectly reproduces market implied volatility term
structure and skew as observed in Figures 1.5-1.6.

The second argument in favor of the ATS is that it is a parsimonious pure jump process.
A pure jump process, by construction, describes underlying dynamics more parsimoniously (see,
e.g., Asmussen and Rosiński 2001) than a standard jump diffusion process. For this reason, in
general, a pure jump process calibration performances are not extraordinary (see, e.g., Cont and
Tankov 2003, Ch.14). The ATS is parsimonious also because a power-law scaling characteristic
arises in calibrated parameters as we can observe in Figures 1.7-1.8 and 1.14-1.15 . Market
data are consistent with β = 1 (linked to the variance of jumps) and δ = −1/2 (linked to
the skew). Surprisingly, this characteristic holds both for short and long maturities: different
players characterize option markets on short and long maturities. By considering a power-law
scaling ATS with fixed β and δ, after the volatility term structure is taken into account, the
surface is calibrated with just two free parameters.

The third argument in favor of the ATS is that a pure jump process, differently from the
Lévy case, reproduces the equity short time implied volatility thanks to the scaling properties
observed in market data.
We discover that this power-law scaling characteristic is linked to the ATS short time asymptotic
behavior.
We investigate the short-time ATM implied volatility and skew over the region of admissible
power-law scaling parameters (cf. Theorem 1.2.3). As discussed in the introduction of chapter
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2, in the short time, the equity market is characterized by a positive and finite ATM implied
volatility and a negative skew that goes as t−1/2. We prove that only the scaling parameters
estimated from market data (β = 1 and δ = −1/2) are compatible with the implied volatility
observed in the equity market (cf. Theorem 2.5.1). We can link the ATS parsimony to the
short-time behavior under this light. The parameters β = 1 and δ = −1/2 are observed in
market data because they are the unique configuration that is compatible with the equity short
time characteristics.

Finally, the fourth element in favor of the ATS is that a fast and accurate Monte Carlo method
exists for path-dependent exotics.
Since the probability density function of ATS increments is not explicit, we have to design a
simulation algorithm to price path-dependent exotics. We propose a new technique for additive
processes that builds upon the efficiency of the FFT, the Lewis formula for a CDF, and the
spline interpolation properties when inverting the CDF. We call Lewis-FFT-S this Monte Carlo
simulation.
In Figure 3.2 we analyze the three-components of the bias error in (3.3.1). We improve the
method’s convergence by using spline interpolation for the numerical inversion. In this way, the
leading term in the bias improves from γ2 to at least γ4, where γ is the step of the interpolation
grid. We emphasize this improvement in Figures 3.3-3.4, where, for M > 7, the Lewis-FFT-S
(with spline interpolation) clearly outperforms the Lewis-FFT version of the method with linear
interpolation. The bias appears to decrease as γ6 in numerical experiments. The Lewis-FFT-S
is accurate but also fast. As discussed in subsection 3.3.1, the additional computational time
due to spline interpolation is negligible. Moreover, the method computational time is of the
same order of magnitude as standard algorithms for Brownian motions.

This thesis is a modeling breakthrough in equity derivatives that could change significantly the
financial engineering and the risk management of this sector in the near future.
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Schoutens, W., 2003. Lévy processes in finance, Wiley.

Schoutens, W., Simons, E., and Tistaert, J., 2003. A perfect calibration! now what?, The best
of Wilmott, 281.

Schrimpf, A. and Sushko, V., 2019. Beyond libor: a primer on the new benchmark rates, BIS
Quarterly Review, (March), 29–52.

Seber, G. and Wild, C., 1989. Nonlinear regression, 768 pp, Wiley, New York.

Shiraya, K. and Takahashi, A., 2011. Pricing average options on commodities, Journal of Futures
Markets, 31 (5), 407–439.
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Notation & Shorthands

Symbol Description
At diffusion term of the additive process {Xt}t≥0
BT discount factor between value date and T
BT market implied discount factor between value date and T
B(R) Borel sigma algebra on R

cBt (It(y), y)) Black call option price
ct(St, t) quantity inside the ATS call expected value
Ct (x) call option price at value date with maturity t and moneyness x
Ct (K) call option price at value date with maturity t and strike K
D FFT simulation regularization parameter

{ft}t≥0 ATS process that models the forward exponent
E total error when pricing the derivative with payoff V
ECDFh,M CDF error bound as a function of the grid size h and of M
ECDFM CDF error bound when h is s.t. the two sources of error are comparable{
f̂θ

}
θ≥0

re-scaled ATS process w.r.t. the time θ = σ2
T T

Ft(T ) price at time t of a Forward contract with maturity T
g standard normal random variable

Gt(K) Synthetic forward with maturity t and strike K
h grid size in the Fourier domain

It(x) Black implied volatility with maturity t and moneyness x
It(y) Black implied volatility with maturity t and moneyness degree y
1∗ indicator function of the set ∗
k variance of jumps of LTS
kt variance of jumps of ATS
k̂θ re-scaled variance of jumps of ATS
k̄ constant part of variance of jumps of ATS
K option strike price
K dimension of the CDF interpolation grid
lzt quantity defined in equation (2.2.6)
M integer number s.t. N is the number of grid points
Lt Laplace transform of the subordinator Zt in (1.2.3)
L Down-and-In barrier strike
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Symbol Description
m+
s,t probability density of positive jumps

m−s,t probability density of negative jumps
M integer number s.t. N is the number of grid points
N number of grid points (N = 2M )
n number of monitoring time in path dependent derivatives
nv number of points in which V (x) is not differentiable

Nsim Number of MC simulation
N(∗) standard normal cumulative distribution function evaluated in ∗

pBt (It(y), y)) Black put option price
pt(St, t) quantity inside the ATS put expected value
p−t upper bound of φs,t strip of regularity
p+
t −(p+

t + 1) is the lower bound of φs,t strip of regularity
P (x) model CDF of the increment between the times s and t

P̂ (x) numerical approximation of the CDF of the increment between the times s and t
Pt (x) put option price at value date with maturity t and moneyness x
Pt (K) put option price at value date with maturity t and strike K
PSt probability density function of St
s̄ market implied cost-of-funding
St random variable s.t. tSt has Laplace transform Lt
T option time-to-maturity
V derivative payoff
Wt Brownian motion
x option moneyness

(x0, xK) interval in which the CDF is interpolated
{Zt}t≥0 Lévy subordinator

α Index of stability: tempered stable parameter of ATS, α ∈ [0, 1)]
β scaling parameter of kθ
γt drift term of additive process {Xt}t≥0
γ length of CDF interpolation grid

Γ(∗) Gamma function evaluated in ∗
δ scaling parameter of ηθ
ε jump simulation small jump truncation parameter
ϕ deterministic drift term of LTS
ϕt deterministic drift term of ATS
φc characteristic function of the forward exponent
φs,t characteristic function of ATS increment between time s and t
η skew parameter of LTS
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Symbol Description
ηt skew parameter of ATS
η̂θ re-scaled skew parameter of ATS
η̄ constant part of the ATS skew parameter
νt Lévy measure of the additive process {Xt}t≥0
ξ̂t implied volatility skew term
ξ̂0 short-time skew term, i.e. limit for t that goes to zero of ξ̂t
σ diffusion parameter of LTS
σt diffusion parameter of ATS
σ̂t ATM implied volatility, equal to It(0)
σ̂0 short-time ATM implied volatility, i.e. limit for t that goes to zero of σ̂t
σ̂θ re-scaled diffusion parameter of ATS, equal to one
σ̄ constant diffusion parameter of ATS
θ re-scaled maturity, defined as σ2

T T

Shorthands

Symbol Description
a.s. almost surely
ATS additive normal tempered stable process
ATM at-the-money

bp basis points
CDF cumulative distribution function

EFFR effective federal fund rate
EONIA Euro overnight indexed average rate

FFT fast Fourier transform
GA Gaussian approximation technique
ITM in-the-money
LTS Lévy normal tempered stable process
MSE mean squared errors

MAPE mean absolute percentage error
MAX maximum error
MC Monte Carlo
ms milliseconds

NIG Normal inverse Gaussian process
OIS overnight indexed swap

OTM out-of-the-money
OR overnight rate
r.v. random variable

RMSE root mean squared errors
SD average MC prices standard deviation

SOFR secured overnight financing rate
STR Euro short term rate
TSS additive tempered stable subordinator
VG Variance Gamma process

w.r.t. with respect to
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.1 Proofs of Chapter 1

We start proving a technical Lemma that we use in the proof of Theorem 1.2.1.

Lemma .1.1.
If limt→0 t σ

2
t ηt = 0, then

lim
t→0

∞∫
0

ds
t

Γ(1− α)

(
1− α
kt

)1−α(
e−(1−α) s/kt

s1+α

) ∫
|x|<1

dx
x√

2πsσt
e
−
(
x+sσ2

t
(ηt+1/2)
√
sσt

)2

= 0 .

Proof.

∣∣∣∣∣∣∣
∫
|x|<1

dx
x√

2πsσt
e
−
(
x+sσ2

t
(ηt+1/2)
√
sσt

)2
∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
∫
|x|<1

dx
x√

2πsσt
e
−
(
x+sσ2

t
(ηt+1/2)
√
sσt

)2

+
∞∫
1

dx
x√

2πsσt

e−
(
x+sσ2

t
(ηt+1/2)
√
sσt

)2

− e
−
(
−x+sσ2

t
(ηt+1/2)

√
sσt

)2

∣∣∣∣∣∣∣

=σ2
t s

∣∣∣∣12 + ηt

∣∣∣∣ .

The inequality is due to the fact that both terms inside the right-hand side absolute value are
positive if (1/2 + ηt) is positive and are negative if (1/2 + ηt) is negative. Now it is possible to
write the following bound∣∣∣∣∣∣∣

∞∫
0

ds
t

Γ(1− α)

(
1− α
kt

)1−α(
e−(1−α) s/kt

s1+α

) ∫
|x|<1

dx
x√

2πsσt
e
−
(
x+sσ2

t
(ηt+1/2)
√
sσt

)2
∣∣∣∣∣∣∣

≤ σ2
t

∣∣∣∣12 + ηt

∣∣∣∣
∞∫
0

ds
t

Γ(1− α)

(
1− α
kt

)1−α(
e−(1−α) s/kt

sα

)
= tσ2

t

∣∣∣∣12 + ηt

∣∣∣∣ ,

where the last equality is due to the definition of Γ(1− α). We prove the thesis by the squeeze
theorem

Proof of Theorem 1.2.1
The idea of this proof is to show that there exists an additive process with the characteristic
function in (1.2.4) using the result in Sato (1999a, Th.9.8, p.52).
At any given time t > 0 the characteristic function in (1.2.4) is the characteristic function of a
LTS (1.2.2), at time t, with parameters k = kt, η = ηt, σ = σt and ϕ = ϕt. Hence, we have an
expression for the generating triplet of (1.2.4) (see, e.g., Cont and Tankov 2003, eq. 4.24, p.130)

At = 0

γt =
∫ ∞

0
ds

t

Γ(1− α)

(
1− α
kt

)1−α(
e−(1−α) s/kt

s1+α

)∫
|x|<1

dx
x√

2πsσt
e
−
(
x+sσ2

t
(ηt+1/2)
√
sσt

)2

+ tϕt

νt(x) = tC (α, kt, σt, ηt)
|x|1/2+α e−(ηt+1/2)xKα+1/2

(
|x|
√

(1/2 + ηt)2 + 2(1− α)/(kt σ2
t )
) ,
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with

C (α, kt, σt, ηt) := 2
Γ(1− α)

√
2π

(
1− α
kt

)1−α
σ2α
t

(
(1/2 + ηt)2 + 2(1− α)/(kt σ2

t )
)α/2+1/4

,

and
Kν(z) := e−z

Γ
(
ν + 1

2
)√ π

2z

∫ ∞
0

e−ssν−1/2
( s

2z + 1
)ν−1/2

ds

is the modified Bessel function of the second kind (see, e.g., Abramowitz and Stegun 1948, Ch.9
p.376). For t = 0, as usual in additive processes, we set γ0 = 0, A0 = 0 and ν0 = 0.

First, we verify that νt(x) is a non decreasing function of t. It is possible to identify two
expressions in the jump measure νt(x)

e−x(1/2+ηt)−|x|
√

(1/2+ηt)2+2(1−α)/(σ2
t kt) (.1.1)

t1/ασ2
t

k
(1−α)/α
t

(
s

|x|
+
√

(1/2 + ηt)2 + 2(1− α)/(σ2
t kt)

)
. (.1.2)

We point out that expression (.1.2) is inside the integral and depends on the integration variable
s ≥ 0. If these two expressions, (.1.1) and (.1.2), are non decreasing w.r.t. t for any t, x and
s ≥ 0 then the jump measure is non decreasing. Expression .1.1 is non decreasing because g1 and
g2 are non decreasing by hypothesis 1. Hypothesis 1 on g1 and g2 also implied that the squared
root in (.1.2) is non increasing for any t and then, because condition 1 on g3 holds, the prefactor
t1/ασ2

t

k
(1−α)/α
t

is non decreasing (even multiplied by s/|x|). Thus, (.1.2) is non decreasing for any t, x
and s ≥ 0 because it is the sum of a non decreasing function and g3, a non decreasing function
by hypothesis. This proves that νt(x) is non decreasing in t.

Second, we prove that limt→0 νt(x) = 0 for x 6= 0; this is equivalent to demonstrate that (.1.1)
or (.1.2) go to zero as t goes to zero. We show that this happens in all possible cases. We first
consider the case where

lim
t→0

kt > 0 and lim
t→0
|(1/2 + ηt)| <∞ . (.1.3)

In this case is evident that expression (.1.2) goes to zero for small t. Otherwise, when (.1.3) is
not true, we have to distinguish two further cases depending on whether

lim
t→0

(1/2 + ηt) ktσ2
t = 0 (.1.4)

holds. If (.1.4) is true expression (.1.1) goes to zero, otherwise, because of condition 2 on
t ηαt σ

2α
t /k1−α

t , expression (.1.2) goes to zero. This proves that limt→0 νt(x) = 0 for any x 6= 0.

We can now check whether the triplet satisfies the conditions in Sato (1999a, Th.9.8, p.52).

1. The triplet has no diffusion term.

2. νt is not decreasing in t.
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3. The continuity of νt(B) and γt , where B ∈ B (R+) and B ⊂ {x : |x| > ε > 0}, is obvious
for t > 0: it is a natural consequence of the composition of continuous functions. For t = 0
we have to prove that the limits of νt(B) and γt are 0. We have already proven that νt(x)
is non decreasing in t and that limt→0 νt(x) = 0, ∀x 6= 0. The convergence of νt(B) to 0 is
due to the dominated convergence theorem. The convergence of γt is because of Lemma
.1.1 and because tϕt goes to zero by definition of ATS.

Proof of Proposition 1.2.2
A forward contract, valued in t with delivery in T , is Ft (T ) = F0 (T ) eft , also for an ATS, as in
(1.2.1) for the LTS.
Let us prove the sufficient condition. If the forward is martingale

E [Ft(T )|F0] = F0 (T ) .

This is equivalent to impose that
E
[
eft
∣∣F0
]

= 1 , (.1.5)

that is, the characteristic function of ft computed in −i is equal to one. From equation (1.2.4)

E[eft |F0] = Lt
((

ηt + 1
2

)
σ2
t −

σ2
t

2 ; kt, α
)
eϕtt = Lt

(
σ2
t ηt; kt, α

)
eϕtt . (.1.6)

Imposing the condition (.1.5), we get ϕt.
Let us prove the necessary condition in two steps. First, given ϕt by equation (1.2.5) we prove
that E[eft |F0] = 1,∀t ≥ 0. This fact is a consequence of equation (.1.6).
Second, we check the martingale condition; that is, ∀s, t s.t 0 ≤ s ≤ t

E [Ft(T )|Fs] = F0 (T )E
[
eft−fs+fs

∣∣Fs] = efsF0 (T )E
[
eft−fs

]
= Fs(T )E

[
eft−fs

]
.

The proposition is proven once we prove that E
[
eft−fs

]
= 1.

This equality holds because ft is additive; that is, process increments are independent

E
[
eft |F0

]
= E

[
eft−fs |F0

]
E
[
efs |F0

]
,

then
E
[
eft−fs

]
= E

[
eft−fs |F0

]
=
E
[
eft |F0

]
E [efs |F0] = 1

Proof of Theorem 1.2.3
We check that the power-law sub-case of ATS satisfies the two conditions of Theorem 1.2.1.
First, we verify that g1(t), g2(t), and g3(t) are non decreasing.

1.
g1(t) = (1/2 + η̄tδ)−

√
(1/2 + η̄tδ)2 + 2σ̄2(1− α)/(k̄tβ)

is non decreasing because its derivative w.r.t. t is always greater or equal than zero for any
t ≥ 0.

d

dt

(1/2 + η̄tδ)−

√
(1/2 + η̄tδ)2 + 2(1− α)t−β

σ̄2k̄

 ≥ 0
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1− α
2σ̄2k̄

(
βt−δ−β/2

η̄δ

)2

− βt−δ

2η̄δ −
β

δ
≥ 1 .

The last inequality is verified for any t if and only if β ≥ −δ. The inequality holds due to
the hypotheses δ ≤ 0 and β > −δ.

2.
g2(t) = −(1/2 + η̄tδ)−

√
(1/2 + η̄tδ)2 + 2σ̄2(1− α)/(k̄tβ)

is non decreasing for any t ≥ 0: it is the sum of two non decreasing functions because of
the conditions β ≥ 0 and δ ≤ 0.

3.

g3(t) =

√
σ̄4t2/α−2β(1−α)/α (1/2 + η̄tδ)2 + 2t−β+2/α−2β(1−α)/ασ̄2(1− α)/(k̄)

k̄(1−α)/α

is non decreasing for any t ≥ 0: it is the sum of three non decreasing functions of t (positive
powers) elevated to a positive power because of the conditions β ≤ 1

1−α/2 and δ > β(1−α)−1
α .

Second, we verify that t σ2
t ηt and t σ2α

t ηαt /k
1−α
t go to zero. The expressions t1+δ σ̄2 η̄

and t1+δα−β(1−α) σ̄2α η̄α/k̄1−α go to zero as t goes to zero because of the conditions δ >

−min
(
β, 1−β(1−α)

α

)
and β ≤ 1

1−α/2

Proof of Proposition 1.2.4
We prove the thesis using the definition of additive process (Cont and Tankov 2003, Def.14.1
p.455).

1. By hypothesis r0 = 0 and by definition of additive process X0 = 0 almost surely. Thus,
Xr0 = 0 almost surely.

2. Independence of increments follows from the monotonicity of rt.

3. Stochastic continuity w.r.t. time follows from stochastic continuity of the additive process
and continuity of the function rt
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.2 ATS Parameter estimation

In physics and engineering, all measurements are subject to some uncertainties or “errors”. Error
analysis is a vital part of any quantitative study (see, e.g., Taylor 1997). In this appendix, we
estimate pricing errors and “propagate” them to model parameters. This is a crucial passage to
verify the quality of the proposed model.

First, we estimate pricing errors. In finance, the idea of considering the bid-ask spread in market
prices as a sort of measurement error of “true” prices is well known and goes back to the seminal
paper of Roll (1984). He considers the price y = y∗ + q(yask − ybid)/2, where y is the observed
price, y∗ the unobserved true price, and q a binomial r.v. that takes value in {−1, 1} with
equal probability, where −1 corresponds to the bid price and +1 to the ask price. Modeling
the uncertainty with such a distribution, the relation between bid-ask spread and price standard
deviation Σy is Σy = (yask − ybid)/2. More recently, George et al. (1991) propose an extended
formulation of the price y = y∗ + πq(yask − ybid)/2, where π is the unobserved proportion of
the spread due to the so-called order processing cost; π is estimated from market data as a
value 0.8 and in all cases analyzed in George et al. (1991) is observed a value greater than 0.5.
Conservatively, π can be chosen as 0.5, obtaining the relation Σy = (yask − ybid)/4.
Another possibility, in the plain vanilla option market for equity indices that we consider in
this study, is to model the true price y as a Gaussian random variable with a mean equal to
the mid-market price (yask + ybid)/2 and bid and ask prices chosen as symmetric quantiles.
This represents more closely what is observed in this derivative market. On the one hand, it is
standard for a market player to pass through an options broker to work the order. Generally,
real trades are closer to the mid-market than to bid/ask prices (see, e.g., Petersen and Fialkowski
1994). On the other hand, it is not sure that a market player trades within the bid-ask spread.
In some rare cases, a trade can take place at a price higher (lower) than the ask (bid) price:
it can happen because the bid-ask enlarges due to sudden movements in the underlying or in
presence of a very large trade, such as the hedging of a large exposure. It is rather difficult to
estimate how rare these events are. They can happen roughly around the 5% of the cases (i.e.
yask − ybid ' 2× 1.96 Σy).
For this reason, in this thesis, we consider the measurement error in prices as Gaussian and
related to the bid-ask spread via Σy = (yask − ybid)/4. With this choice, the relation between
prices standard deviation and the bid-ask spread is equal to the one obtained by George et al.
(1991).

Second, we “propagate” to model parameters this measurement error in prices. In applied statis-
tics, the propagation of uncertainties is a standard technique (see, e.g., Taylor 1997, Ryan 2008).
We briefly recall some main results present in the literature for the models (.2.1), (.2.3) and
(.2.5) considered; then we describe the calibration procedure adopted in the thesis.
Consider the linear model

y = Zg + ε , (.2.1)

where y ∈ R
n is the response vector, Z ∈ R

n×(r+1) is the explanatory variables matrix, ε ∼
Nn (0,Σ), Σ ∈ Rn×n is the diagonal response vector variance-covariance matrix, g ∈ Rr+1 is the
unobserved coefficient vector. We indicate with Nn (µ,Σ) an n-dimensional Gaussian distribution
with mean µ and variance Σ. We perform a weighted linear regression with weights W ∈ Rn×n,
a diagonal matrix. The least square solution is

ĝ = (Z ′WZ)−1
Z ′WY ,
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where Y ∈ Rn is the observed response vector (see, e.g., Ryan 2008, Ch.3, pp.115-116). Thus, ĝ
is the Gaussian linear combination of Gaussian random variables:

ĝ ∼ Nr+1

(
g, (Z ′WZ)−1

Z ′WΣWZ ′(Z ′WZ)−1
)

. (.2.2)

In the weighted non-linear regression case, it is possible to obtain a similar result (see, e.g., Seber
and Wild 1989, Ch.2, pp.21-24). Consider the model

yi = f(g, zi) + εi (.2.3)

where yi is the ith component of the response vector y ∈ R
n, εi is the ith component of the

error vector ε ∼ Nn (0,Σ), zi is the ith row of the explanatory variables’ matrix. Similarly, the
coefficients of a non-linear regression are:

ĝ ∼ Nr+1

(
g, (F ′WF )−1

F ′WΣW ′F (F ′WF )−1
)

, (.2.4)

where F ∈ Rn×(r+1) is s.t. its (i, j) element is

F i,j = ∂f

∂gj
|g,zi

and gj is the jth component of g.

In the literature, the case that takes into account Gaussian correlated errors on both the response
vector and the explanatory variables is available for the fitting of a straight line (see, e.g., York
1968). Consider the model

yi = a+ b(zi + εzi) + εyi , (.2.5)
with yi and zi subjected to Gaussian errors with variance Σzi and Σyi and covariance Σzi,yi .
The estimated slope and intercept â and b̂ can be obtained through a fast iterative procedure.
In the first order approximation

â ∼ N (a,Σa)
b̂ ∼ N (b,Σb) ,

(.2.6)

where the expressions of Σa and Σb are reported in York (1968, 1st equation in p.324).

In this thesis, the calibration procedure is divided into two steps.
First, for a given maturity T , we deal with the non-linear problem and we calibrate from market
data the three time-dependent parameters kT , σT and ηT on options with different strikes. The
distribution of the estimated parameters can be obtained using equation (.2.4). We construct
Σ through all observed bid and ask prices at the given maturity: the diagonal value is equal to
(yask − ybid)2

/16. The matrix of weights W , as standard in the option market, is chosen as the
identity matrix because the bid-ask spread does not differ significantly in the market prices in
the calibration dataset. Consequently, the calibration results of different models can be easily
compared as shown in section 1.3, where we compare ATS with LTS and Sato models. As result
of this step, we obtain a variance-covariance matrix ΣT ∈ R

3×3 of the estimated parameters
(kT , σ2

T , ηT ) for every maturity T .
Then, to estimate the scaling parameters of model (1.3.2), we rewrite the parameters definition
w.r.t. θ := Tσ2

T in log-log scale as

ln k̂θ = ln k̄ + β ln θ
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ln η̂θ = ln η̄ + δ ln θ .

The estimated variance and covariance of ln k̂θ, ln η̂θ and ln θ are obtained by a first-order
expansion

V ar
(

ln k̂θ
)

= Σ1,1
T

k2
T

+ Σ2,2
T

σ4
T

+ 2 Σ2,1
T

kTσ2
T

V ar (ln η̂θ) = Σ3,3
T

η2
T

V ar (ln θ) = Σ2,2
T

σ4
T


Cov

(
ln k̂θ, ln θ

)
= Σ2,2

T

σ4
T

+ Σ2,1
T

kTσ2
T

Cov (ln η̂θ, ln θ) = Σ2,3
T

ηTσ2
T

,

where T is the maturity corresponding to the θ of interest. The distributions of the estimated
parameters β, δ, k̄, and η̄ are the one identified in equation (.2.6). The weights selected in the
minimization procedure (see York 1968, equation (1), p.320) are 1/V ar(ln k̂θ) in the regression
on ln k̂θ and 1/V ar(ln η̂θ) in the regression on ln η̂θ. The weights of the explanatory variable ln θ
are 1/V ar(ln θ).
Finally, from the confidence intervals for kT and ηT we can also get the confidence intervals of
the skewness and the excess kurtosis at a given maturity. We are able to obtain skewness and
excess kurtosis of ATS thanks to the identity in law with LTS (for the moments of LTS see,
e.g., Cont and Tankov 2003, p.129). The linear regression of these two higher moments, w.r.t.
the squared root of time, is realized by computing the Gaussian errors (.2.2), in the first-order
approximations, of skewness and excess kurtosis.
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.3 Additive subordination

In this appendix we give an equivalent definition of additive subordinator (see Li et al. 2016).
We prove that it is possible to obtain an ATS process via additive subordination if and only if
ηt is constant. The additive process is a generalization of the Lévy process. For an accurate
description, from a probabilistic point of view, see Sato (1999a). Li et al. (2016) introduce the
theoretical foundation of additive subordination. They show that it is possible to subordinate a
Lévy process with an additive subordinator (a non-decreasing additive process) obtaining a new
additive process.
The ATS have excellent performances in applications to equity market modelling (cf. chapters 1
and 4). This class of processes has been introduced through its characteristic function in equation
(1.2.4):

E
[
eiuft

]
= Lt

(
iu

(
1
2 + ηt

)
σ2
t + u2σ2

t

2 ; kt, α
)
eiuϕtt ,

where σt, kt are continuous on [0,∞) and ηt, ϕt are continuous on (0,∞) with σt > 0, kt ≥ 0
and ϕt t goes to zero as t goes to zero. lnLt is defined as

lnLt (u; k, α) :=


t

k

1− α
α

{
1−

(
1 + u k

1− α

)α}
if 0 < α < 1

− t
k

ln (1 + u k) if α = 0
,

with α ∈ [0, 1). There are strong evidences that, in the equity market, kt and ηt are non-constant,
cf. chapters 1, and 2.
Lévy normal tempered stable process (LTS) is usually built through Lévy subordination (see
e.g., Cont and Tankov 2003, Ch.4). Two notorious examples of the Lévy normal tempered
stable family are the Normal Inverse Gaussian (NIG) (Barndorff-Nielsen 1997) and the Variance
Gamma (VG) (Madan et al. 1998), which are obtained via two different Lévy subordinators.
The Lévy normal tempered stable processes ft are usually introduced as

ft = −
(
η + 1

2

)
σ2 Zt + σ WZt + ϕt ∀t ∈ [0, T ] , (.3.1)

where η, σ are two real parameters (η ∈ R, σ ∈ R
+), while the ϕ is obtained by imposing the

martingale condition on the forward price. Wt is a Brownian motion and Zt is a Lévy tempered
stable subordinator independent from the Brownian motion, such as an Inverse Gaussian process
for NIG or a Gamma process for VG.

We would desire to build the LTS extension also via a subordinator (cf. equation (.3.1) for the
LTS); i.e.

ft = −
(
ηt + 1

2

)
σ2
t Zt + σtWZt + ϕtt (.3.2)

where σ2
tZt is an additive subordinator independent from the Brownian motion path.

In this appendix (i)we give an equivalent definition of additive subordinator (that links the
properties of the subordinators to its characteristic function) (ii)we define the additive tempered
stable subordinator (TSS), a natural extension of the Lévy tempered stable subordinator (iii) we
prove that it is possible to define an ATS via additive subordination, as in (2.2.3) if and only if
ηt is constant.
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In this section we give the definition of additive process and additive subordinator, we define
the TSS and we prove the main result of the appendix in Theorem .3.8.

We consider again the standard definition of additive process.

Definition .3.1. Additive process (see, e.g., Cont and Tankov 2003, Def.14.1 p.455).
A càdlàg stochastic process on R {Xt}t≥0, X0 = 0 a.s. is an additive process if and only if it
satisfies the following conditions:

1. Independent increments: for every positive real increasing sequence t0, ......, tn the random
variables Xt1 −Xt0 , ....., Xtn −Xtn−1 are independent;

2. Stochastic continuity:
∀ε > 0, lim

h→0
P [|Xt+h −Xt| > ε] = 0

(At, νt, γt) are the generating triplets that characterize the additive process {Xt}t≥0. At , νt
and γt are known respectively as the diffusion term, the Lévy measure and the drift term (see
Sato 1999a, pp.38-39).

We recall the important result of Sato (1999a) that links the existence of an additive process with
appropriate conditions on its generating triplets. We use these results to prove the existence of
the TSS.

Theorem .3.2. Main additive property.
Let {gt}t≥0 be a system of infinitely divisible probability measures on R with generating triplets
(At, νt, γt) satisfying the following conditions. Then, there exists, uniquely up to identity in law,
an additive process {Xt}t≥0 on R s.t. Xt has law gt for t ≥ 0.

1. A0 = 0, ν0 = 0, γ0 = 0;

2. Given t, s s.t. 0 ≤ s ≤ t then As ≤ At and νs(B) ≤ νt(B), B ∈ B (R);

3. Given t, s s.t. 0 ≤ s ≤ t then as s → t, As → At, νs(B) → νt(B) and γs → γt, where
B ∈ B (R) and B ⊂ {x : |x| > ε > 0}.

Conversely, suppose that {Xt}t≥0 is an additive process in law on R. Let (At, νt, γt) be the
generating triplet of its infinitely divisible distribution {gt}t≥0. Then, conditions 1, 2 and 3 are
satisfied.

Proof. See Sato (1999a), Th.9.8 p.52.

We introduce the additive subordinator as is standard in the literature (see e.g., Li et al. 2016,
p.3). In Proposition .3.4 we present an equivalent definition of an additive subordinator that
links its properties to its generating triplet. This definition is the extension for additive process
of the equivalent definition for Lévy subordinator (see, e.g., Cont and Tankov 2003, Prop.3.10
p. 100)

Definition .3.3. Additive subordinator.
An additive subordinator is an a.s. positive and a.s. non decreasing additive process.

As is done in chapter 1 (see e.g., Cont and Tankov 2003), we consider νt a Lévy measure defined
on R that can be identified with the Lévy density νt(x) s.t.

∫
B
νt(x)dx = νt(B) ∀B ∈ B(R) and

B ⊂ {x : |x| > ε > 0}.
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Proposition .3.4. Equivalent characterization of additive subordinator.
An additive process {Zt}t≥0 is an additive subordinator if and only it is infinitely divisible dis-
tribution is s.t., for every fixed time t, At = 0, bt := γt −

∫
0≤x≤1 x νt(dx) ≥ 0 non decreasing

and νt s.t. i)
∫
R

(|x| ∧ 1) νt(dx) < ∞, ii) νt((−∞, 0]) = 0. Moreover {Zt}t≥0 has characteristic
function

lnE
[
eiuZt

]
= ibtu+

∫
x>0

(
eiux − 1

)
νt(x)dx . (.3.3)

Proof. This proof reminds the ones in Cont and Tankov (2003) for Lévy subordination (Cor.3.1
and Prop.3.10, pp.84-85). The only if part is proven by Li et al. (2016, proof of Prop. 2.1).
We prove the if part. We show that given the conditions on the characteristic triplet equation
(.3.3) holds.
Define L(x) := 1|x|≤1xνt(x) and M(x) :=

(
eiux − 1

)
νt(x). We have that

lnE
[
eiuZt

]
= iγtu+

∫
R

(
eiux − 1− 1|x|≤1iux

)
νt(x) dx = iγtu+

∫
R

(iuL(x) +M(x)) dx .

The first equality is due to the definition of the characteristic function of an additive process
with no diffusion. L(x) is integrable w.r.t. x thanks to the conditions on νt. The sum of iuL(x)
and M(x) is integrable, because E

[
eiuZt

]
is a well defined characteristic function, thus M(x) is

integrable too. We can split the integral and check the thesis defining bt := γt −
∫

0≤x≤1 xνt(dx).
This proves equation (.3.3).
Given r, t s.t. 0 ≤ r < t we prove that Zt − Zr is an a.s. non negative random variable. By
definition of additive process we can easily compute the characteristic function of Zt − Zr

E
[
eiuZr)

]
E
[
eiu(Zt−Zr)

]
= E

[
eiuZt

]
or equivalently

E
[
eiu(Zt−Zr)

]
= E

[
eiuZt

]
/E
[
eiuZr

]
and using equation (.3.3) we obtain an explicit formula for its exponent

lnE
[
eiu(Zt−Zr)

]
= ib̄u+

∫
x>0

(
eiux − 1

)
ν̄(x)dx ,

where b̄ := bt − br and ν̄(x) := νt(x) − νr(x). We observe that, by definition of bt, b̄ is non
negative and that ν̄ is a jump measure with no negative jumps (νt(x)− νr(x) is a non negative
function with value on [0,∞) thanks to Theorem .3.2). The random variable Zt − Zr is a.s.
non negative because it has the same characteristic function of a Lévy subordinator with drift b̄
and jump measure ν̄ at time t = 1 (cf. Cont and Tankov 2003, p.84); thus, Zt is non decreasing
in time. A non decreasing additive process satisfies the conditions of Definition .3.3.

We prove that it is possible to define a new additive process via additive subordination; a general
version of this result is given by Li et al. (2016, Th. 3.1).

Theorem .3.5. Additive subordination. Given {Xt}t≥0 a Lévy process and {Zt}t≥0 an
additive subordinator, then {XZt}t≥0 is an additive process

Proof. We prove the thesis verifying the three conditions of an additive process in Definition
.3.1. The proof extends the one in Cont and Tankov (2003, Th.4.2, p.120) on Lévy subordination.
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1. Condition 1 holds by Definition .3.1. For the processes {Zt}t≥0 and {Xt}t≥0, Z0 = X0 =
0 almost surely. Thus, XZ0 = 0 almost surely.

2. We prove the independence of increments. Let FZ be the sigma-algebra generated by the
process {Zt}t≥0; for any increasing time sequence t0, t1, . . . , tN , let us write the character-
istic function of the vector of increments:

E

[
e
i
∑N

i=1
uj
(
XSt(j)−XSt(j−1)

)]
= E

E
 N∏
j=1

e
iuj
(
XSt(j)−XSt(j−1)

)∣∣∣∣∣∣FZ


= E

 N∏
j=1

E

[
e
iuj
(
XSt(j)−XSt(j−1)

)∣∣∣∣Fs]
 = E

 N∏
j=1

e(St(j)−St(j−1))ψ(uj)

 (.3.4)

=
N∏
j=1

E
[
e(St(j)−St(j−1))ψ(uj)

]
=

N∏
j=1

E

[
e
iuj
(
XSt(j)−XSt(j−1)

)]
, (.3.5)

where equality (.3.4) is due to the independence of {Xt}t≥0 increments and to the char-
acteristic function of the Lévy process; equality (.3.5) to the independence of {Zt}t≥0
increments.

3. Stochastic continuity w.r.t. time follows from stochastic continuity of the two processes.

We define the TSS through its generating triplets and we prove its existence. The selected
characteristic function is the one of a Lévy tempered stable subordinator (see e.g., Cont and
Tankov 2003, p.127) but with a time-dependent parameter kt and multiplied by σ2

t .

Definition .3.6. The process σ2
tZt.

The TSS is an additive subordinator
{
σ2
tZt
}
t≥0 characterized by the triplets (0,Vt,Γt)

Vt (x) := tσ2α
t

Γ(1− α)

(
1− α
kt

)1−α
(
e−(1−α) x/(σ2

t kt)

x1+α

)
1x>0

Γt :=
∫ 1

0
x Vt(x) dx ,

(.3.6)

where α ∈ [0, 1), t ∈ R+. σt and kt are positive continuous functions of time s.t.

1. t σ2
t is o (1) for small t;

2. t

k1−α
t

σ2α
t is o (1) for small t and non-decreasing;

3. σ2
t kt is non-decreasing;

Theorem .3.7. σ2
t Zt is an additive subordinator.

The additive tempered stable subordinator exists and has bt = 0.

Proof. We check whether the conditions of Proposition .3.4 on the generating triplet of an
additive subordinator are satisfied by {σtZt}t≥0 . Let us observe that there is no diffusion term
and
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∫ ∞
0

(|x| ∧ 1)Vt (x) dx ≤
∫ ∞

0
xVt (x) dx

= tσ2α
t

∫ ∞
0

1
Γ(1− α)

(
1− α
kt

)1−α
e
−(1−α) x

σ2
t
kt

xα
dx = tσ2

t , (.3.7)

where the last equality is due to the definition of Γ(1 − α). Moreover Vt(−∞, 0) = 0 and bt is
null by direct substitution of Γt in the formula of Proposition .3.4.

We show that
{
σ2
tZt
}
t≥0 is an additive process using Theorem .3.2; that is, we check whether

the triplet introduced in Definition .3.6 satisfies the theorem conditions.

1. The triplet has no diffusion term.

2. Vt is not decreasing in t because σ2α
t t/k1−α

t and σtkt are non-decreasing functions of t (see
Definition .3.6).

3. For t > 0 the continuity of Vt(B), where B ∈ B (R+) and B ⊂ {x : |x| > ε > 0}, is due to
the composition of continuous functions. For t = 0 we can extend Vt(B) and Γt to 0 since
both converge to 0 as t → 0. The convergence of Γt to 0 is due to Γt positiveness and to
the condition Γt ≤ t (see equation (.3.7)). The convergence of Vt(B) to 0 is due to the
dominated convergence theorem. We observe that, ∀x ∈ R+ s.t. |x| > ε > 0, Vt(x) is finite
and a decreasing function in t.

An additive process that satisfies the conditions on the triplet of Proposition .3.4 is a subor-
dinator.

Theorem .3.8. Main result.
It is possible to construct via additive subordination an additive process with characteristic

function (1.2.4) if and only if ηt is constant.

Proof. Consider the process

ft = W
(
σ2
tZt
)
−
(

1
2 + ηt

)
σ2
t ,

where W (t) is a standard Brownian motion. We can compute ft characteristic function condi-
tioning w.r.t. σ2

tZt

E
[
eiuft

]
= E

[
e−u

2σ2
tZt−iu(ηt+1/2)σ2

tZt
]
eiuϕtt = L

(
kt, t, α, iu

(
1
2 + ηt

)
σ2
t + u2σ2

t

2

)
eiuϕtt

Notice that the characteristic function matches the expression of the ATS characteristic function
(1.2.4). If ηt is constant the process {ft}t≥0 is additive by Theorem .3.5 . It is obtained
subordinating the Lévy process W (t)− (1/2 + η̄)t with the additive subordinator σ2

tZt. If ηt is
non constant we select t, r s.t. t > r and ηt 6= ηr and show that ft − fr is not independent from
fr.

E
[
eiu1(ft−fr)+u2fr

]
eiu1(tφt−rφr)+iu2rφr

= E
[
e−(u2

1/2+iu1/2)(σ2
tZt−σ

2
rZr)−iu1(ηtσtZt−ηrσrZr)−(u2

2/2+iu2/2)σ2
rZr−iu2ηrσ

2
rZr
]

= E
[
e−(u2

1/2+iu1/2+iu1ηt)(σ2
tZt−σ

2
rZr)

]
E
[
e−(u2

2/2+iu2/2)σ2
rZr−iu2ηrσ

2
rZr−iu1σ

2
rZr(ηt−ηr)

]
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=
L
(
kt, t, α, iu1

( 1
2 + ηt

)
σ2
t + u2

1σ
2
t

2

)
L
(
kr, r, α, iu1

( 1
2 + ηt

)
σ2
r + u2

1σ
2
r

2

)L(kr, r, α, iu2

(
1
2 + ηr

)
σ2
r + u2

2σ
2
r

2 − iu1σ
2
r(ηt − ηr)

)

6=
L
(
kt, t, α, iu1

( 1
2 + ηt

)
σ2
t + u2

1σ
2
t

2

)
L
(
kr, r, α, iu1

( 1
2 + ηr

)
σ2
r + u2σ2

t

2

)L(kr, r, α, iu2

(
1
2 + ηr

)
σ2
r + u2

2σ
2
r

2

)

=
E
[
eiu1(ft−fr)]E [eu2fr

]
eiu1(tφt−rφr)+iu2rφr

,

where the first inequality is obtained conditioning w.r.t. σtZt and σrZr, the second one to the
fact that {σ2

tZt}t≥0 is an additive process and the last two to the property of the characteristic
function of an additive process increments. This proves the thesis.
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.4 Basic properties of ATS

We report some useful results for the proofs in section 2.3. In the following lemmas we consider
St of Definition 2.2.1 with Laplace transform Lt(u; kt; α), at a given time t > 0. The proofs
that follow are for the α ∈ (0, 1) case. Similar proofs hold in the α = 0 case.

Lemma .4.1. Let s ∈ (0, 1), then

E [Sst ] =
∫ ∞

0

Lt(u; kt; α)− 1
Γ(−s)us+1 du , (.4.1)

where Γ is the Gamma function.

Proof. By elementary calculus and Fubini’s Theorem (see, e.g., Urbanik 1993, Lemma 4, p.325)

Lemma .4.2. Let n be a positive integer, then

E[S−nt ] = Γ(n)−1
∫ ∞

0
un−1Lt(u; kt; α)du .

Proof. By elementary calculus and Fubini’s Theorem (see, e.g., Cressie et al. 1981, Ch.2, p.148)

Lemma .4.3.

1. For all t > 0, c ≥ 1 and u ≥ 0

1− Lt(u; kt, α) ≤ 1− e−cu .

2. If β ≥ 1, Lt(u; kt, α) is non decreasing in t.

Proof. Let us observe that

1− Lt(u; kt, α) ≤ 1− e−cu

t

kt

1− α
α

{(
1 + u kt

(1− α)t

)α
− 1
}
− cu ≤ 0 .

The last inequality is true for any c ≥ 1 and u ≥ 0 because the left hand side is null in u = 0
and its first order derivative w.r.t. u is negative:

1(
1 + ktu

t(1−α)

)1−α − c < 0 .

This proves the first point.

We demonstrate that the logarithm of Lt(u; kt, α) is not decreasing. Consider a positive t,
s ∈ (0, t) and

h(u; s, t) := t

kt

{
1−

(
1 + u kt

(1− α)t

)α}
− s

kr

{
1−

(
1 + u kr

(1− α)s

)α}
.
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We observe that h(0; s, t) = 0 and the first order derivative

∂h(u; s, t)
∂u

= 1(
1 + kru

s(1−α)

)1−α −
1(

1 + ktu
t(1−α)

)1−α

is non negative ∀u > 0 because kt/t is non decreasing in t, if β > 1, and is constant in t, if β = 1.
Thus, h(u; s, t) ≥ 0, ∀u ≥ 0, and Lt(u; kt, α) is non decreasing w.r.t. t. This proves point
2

Lemma .4.4.

1. If β < 1 St goes to zero in distribution as t goes to zero.

2. If β > 1 St goes to one in distribution as t goes to zero.

3. If β = 1 the distribution of St does not depend from t.

Proof. Recall that convergence in the Laplace transform implies convergence in distribution (see,
e.g., Kijima 1997, Th.B.9, p.308).
We compute the limit of St Laplace transform for β < 1. By using the fact that kt/t goes to
infinity as t goes to zero we obtain

lim
t→0
Lt(u; kt, α) = lim

t→0
e
t
kt

1−α
α

{
1−
(

1+ u kt
(1−α)t

)α}
= 1 .

Thus, St converges in distribution to the constant zero. This proves point 1.

We compute the limit of St Laplace transform for β > 1. By using the fact that kt/t goes to
zero as t goes to zero we obtain

lim
t→0
Lt(u; kt, α) = lim

t→0
e
t
kt

1−α
α

{
1−
(

1+ u kt
(1−α)t

)α}
= e−u .

Thus, St converges in distribution to the constant one. This proves point 2.

Point 3 follows from the fact that, if β = 1, Lt(u; kt, α) is constant in t

Lemma .4.5.

lim
t→0

E[
√
St] =


0 if β < 1
1 if β > 1
D if β = 1

, (.4.2)

where D is a positive constant.

Proof. Recall that St is a positive r.v. and E[St] = 1. Then, its moment of order 1/2 is finite.
By Lemma .4.1

E

[√
St

]
=
∫ ∞

0

Lt(u; kt, α)− 1
Γ(−1/2)u3/2 du ,

where −1
Γ(−1/2) ≈ 3.45. By Lemma .4.3 point 1 with c = 2, the positive quantity (1 −

Lt(u; kt, α))/u3/2 is lower or equal than (1− e−2u)/u3/2. Thus,

0 ≤ E

[√
St

]
≤ −1

Γ(−1/2)

∫ ∞
0

1− e−2u

u3/2 du = −4
Γ(−1/2)

∫ ∞
0

e−2u

u1/2 du =
√

2 , (.4.3)
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where the first equality is obtained from integration by parts and the second from the definition
of Γ. Inequality (.4.3) has two consequences. First, if β = 1,

lim
t→0

E[
√
St] = E[

√
St] := D ≤

√
2 , (.4.4)

because, by Lemma .4.4 point 3, E[
√
St] is constant w.r.t. to time. Second, we can apply the

dominated convergence theorem to (.4.2) for all values of β. Recall that the limits for t that goes
to zero of Lt(u; kt, α) for β < 1 and for β > 1 are computed in the proof of Lemma .4.4.
If β < 1

lim
t→0

E[
√
St] = lim

t→0

−1
Γ(−1/2)

∫ ∞
0

1− Lt(u; kt, α)
u3/2 du = 0 . (.4.5)

If β > 1

lim
t→0

E[
√
St] = lim

t→0

−1
Γ(−1/2)

∫ ∞
0

1− Lt(u; kt, α)
Γ(−1/2)u3/2 du

= −1
Γ(−1/2)

∫ ∞
0

1− e−u

u3/2 du = −2
Γ(−1/2)

∫ ∞
0

e−u

u1/2 du = 1 , (.4.6)

where the third equality is obtained from integration by parts and the third by the definition of
Γ. Equalities (.4.4), (.4.5) and (.4.6) prove the thesis

Lemma .4.6.
Consider ϕt in (2.2.2). For every β and δ in the additive process boundaries of Theorem 1.2.3

1.
ϕtt = tσ̄2ηt − tσ̄4η2

t kt/2 +O
(
tη3
t k

2
t

)
, (.4.7)

where the second term tσ̄4η2
t kt/2 goes to zero faster than tσ̄2ηt as t goes to zero.

2.
ϕt
σ̄2ηt

≤ 1 .

3.
lim
t→0

ϕt
σ̄2ηt

= 1 , for δ > −min(1, β) .

Proof. We prove the asymptotic expansion (.4.7). In the additive process boundaries of Theo-
rem 1.2.3 at least either β = δ = 0 or δ > −min(1, β). In the former case (.4.7) is trivial. In
the latter, thanks to (2.2.2), both tηt = t1+δ η̄ and ηtkt = tβ+δ η̄k̄ go to zero as t goes to zero.
Using the Taylor series expansion

ϕtt = t(1− α)
kt

{
σ̄2 ηt kt
1− α −

σ̄4 η2
t k

2
t

2(1− α) +O
(
η3
t k

3
t

)}
= t σ̄2 ηt − t σ̄4 η2

t kt/2 +O
(
t η3
t κ

2
t

)
.

This proves point 1.
We prove that ϕt/(σ̄2ηt) ≤ 1. We substitute the definition of ϕt in (2.2.2), for α > 0, in (.4.7)
and we get

ϕt/(σ̄2ηt) = (1− α)
ασ̄2ηtkt

((
1 + σ̄2ηtkt

1− α

)α
− 1
)
≤ 1 . (.4.8)

116



We define z := σ̄2ηtkt
1−α . Then, (.4.8) is equivalent to

(1 + z)α ≤ 1 + αz ,

which is a well known inequality. This proves point 2.

Point 3 is straightforward, given point 1, because, if δ > −min(1, β), ηtkt goes to zero as t goes
to zero

.5 Short-time limits

Lemma .5.1. Consider a family of positive random variables Xt s.t. limt→0Xt = X in distri-
bution and a sequence of functions gt(z) ≥ 0 and uniformly bounded s.t. limt→0 gt(z) = g(z).
If ∃ τ > 0 s.t. for t ∈ (0, τ)

[i)]

1. gt(z) is Lipschitz continuous with bounded Lipschitz constant,

2. |gt(z)− g(z)| < h(z) with limz→∞ h(z) = 0,

then
lim
t→0

E[gt(Xt)] = E[g(X)] .

Proof. It is possible to apply the Ascoli-Arzelá theorem (see, e.g.„ Rudin 1976, Th.7.25, p.158)
on every compact set [0,K], K > 0, because a sequence of Lipschitz continuous functions with
bounded Lipschitz constant is equicontinous on any compact set. Thus, a sub-sequence of gt(z)
converges uniformly to g(z) in any [0,K]. For every ε > 0, ∃K s.t.

lim
t→0

E[|gt(Xt)− g(Xt)|] = lim
t→0

E [|gt(Xt)− g(Xt)| 1Xt<K ] + lim
t→0

E [|gt(Xt)− g(Xt)| 1Xt>K ] < ε .

The first expected value goes to zero because gt(z) converges uniformly to g(z) on [0,K], as
proven above via Ascoli-Arzelá theorem. There exists K s.t. it is possible to bound the second
with ε because h(z) goes to zero as z goes to infinity.
Moreover, g(z) is bounded because it is the limit of a uniformly bounded sequence and

lim
t→0

E [|g(Xt)− g(X)|] = 0 .

by definition of convergence in distribution, because g(z) is bounded. We have that

0 ≤ lim
t→0

E[|gt(Xt)− g(X)|] ≤ lim
t→0
{E[|gt(Xt)− g(Xt)|] + E [|g(Xt)− g(X)|]} = 0 ,

this proves the thesis

Lemma .5.2. For δ = −1/2, let Xt be a sequence of positive random variable s.t. Xt → X in
distribution for t that goes to zero.
Then,

lim
t→0

E

[
N
(
σ̄η̄
(
−
√
Xt + ϕt/(σ̄2

√
Xtηt)

)
− σ̄

√
tXt/2

)]
= E

[
N(σ̄η̄(−

√
X + 1/

√
X))

]
.
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Proof. Define

gt(z) := N
(
σ̄η̄
(
−
√
z + ϕt/(σ̄2√zηt)

)
− σ̄
√
t z/2

)
and g(z) := N(σ̄η̄(−

√
z + 1/

√
z)) .

We emphasize that gt(z) is uniformly bounded by one and gt(z) converges point-wise to g(z)
because, thanks to Lemma .4.6 point 3, limt→0 ϕt/(σ̄2ηt) = 1.
We prove that ∃ τ ∈ (0, 1) s.t. the derivative of gt(z) is uniformly bounded, if t ∈ (0, τ). Fix
τ ∈ (0, 1) s.t. 

ϕτ
σ̄2 ητ

> 2
3

σ̄η̄

σ̄η̄ + σ̄
√
τ/2

> 3
4

.

The following hold for t < τ ,∣∣∣∣∂gt∂z
∣∣∣∣

= N ′
(
σ̄η̄
(
−
√
z + ϕt/(σ̄2ηt

√
z)
)
− σ̄
√
zt/2

) ∣∣∣σ̄η̄ (−1/(2
√
z)− ϕt/(2σ̄2ηt z

3/2)
)
− σ̄
√
t/(4
√
z)
∣∣∣

= N ′
(
σ̄η̄
(
−
√
z + ϕt/(σ̄2ηt

√
z)
)
− σ̄
√
zt/2

)(
1 + ϕt/(σ̄2ηtz) +

√
t/(2η̄)

)
σ̄η̄/

(
2
√
z
)

≤ N ′
(
σ̄η̄
(
−
√
z + ϕt/(σ̄2ηt

√
z)
)
− σ̄
√
zt/2

)
(1 + 1/z + 1/(2η̄)) σ̄η̄/

(
2
√
z
)

(.5.1)

≤
[

1√
2π

1D2 +N ′
(
σ̄η̄
(
−
√
z + 2/(3

√
z)
)
− τ σ̄

√
z/2
)
1D1 +N ′

(
σ̄η̄
(
−
√
z + 1/

√
z
))
1D3

]
·

(1 + 1/z + 1/(2η̄)) σ̄η̄/
(
2
√
z
)

:= M(z) . (.5.2)

Inequality (.5.1) holds because, by Lemma .4.6 point 2, ϕt/(σ̄2ηt) < 1 and τ ∈ (0, 1). Let us
observe that (.5.1) is the product of positive quantities. In (.5.2) we bound from above only the
first factor, the only one that still depends from t. Inequality (.5.2) is deduced by dividing the
domain of z ∈ R+ in the three sets D1 ≡ (0, 1/2], D2 ≡ (1/2, 3/2] and D3 ≡ (3/2,∞).
For z ∈ D2, we bound the first factor with its maximum 1√

2π .
For z ∈ D1, we observe that for t < τ

σ̄η̄
(
−
√
z + ϕt/(σ̄2ηt

√
z)
)
− σ̄
√
zt/2 > σ̄η̄

(
−
√
z + 2/(3

√
z)
)
− τ σ̄

√
z/2 > 0 .

Hence, because N ′ is a decreasing function of its argument in R
+,

N ′
(
σ̄η̄
(
−
√
z + ϕt/(σ̄2ηt

√
z)
)
− σ̄
√
zt/2

)
≤ N ′

(
σ̄η̄
(
−
√
z + 2/(3

√
z)
)
− τ σ̄

√
z/2
)
, z ∈ D1 .

Finally, for z ∈ D3

σ̄η̄
(
−
√
z + ϕt/(σ̄2ηt

√
z)
)
− σ̄
√
tz/2 < σ̄η̄

(
−
√
z + 1/

√
z
)
< 0 . (.5.3)

Thus, because N ′ is an increasing function of its argument in R
−

N ′
(
σ̄η̄
(
−
√
z + ϕt/(σ̄2ηt

√
z)
)
− σ̄
√
tz/2

)
< N ′

(
σ̄η̄
(
−
√
z + 1/

√
z
))

, z ∈ D3 .

Notice that M(z) is positive and bounded on R
+; this implies that the derivatives of gt(z) is

uniformly bounded. Thus, the sequence gt(z) is Lipschitz continuous in z with bounded Lipschitz

118



constant on (0, τ).
Moreover, for t < τ < 1 we have that

|gt(z)− g(z)| ≤ 1z∈(0,1] +N ′
(
σ̄η̄
(
−
√
z + 1/

√
z
))

(σ̄
√
zt/2 + σ̄η̄(1− ϕt/(σ̄2ηt))/

√
z)1z∈(1,∞)

≤ 1z∈(0,1] +N ′
(
σ̄η̄
(
−
√
z + 1/

√
z
))

(σ̄
√
z/2 + σ̄η̄/

√
z)1z∈(1,∞) := h(z) .

In the first inequality we divide the domain of z ∈ R+ in two sets, D1 ≡ (0, 1] and D2 ≡ (1,∞).
In the first domain the difference is bounded by one. In the second set, notice that (.5.3) is still
valid for z > 1; then, the difference is lower than N ′ computed on the max of the arguments
of N multiplied by the positive difference of the arguments of N . The second inequality holds
because ϕt/(σ̄2ηt) is positive and t < 1. We observe that h(z) goes to zero as z goes to infinity.
Notice that Xt converges to X in distribution, gt(z) is a sequence of positive function uniformly
bounded, Lipschitz continuous with bounded Lipschitz constant on (0, τ), and limz→∞ h(z)=0.
Thus, we prove the thesis via Lemma .5.1

Lemma .5.3. For t > 0,

sup
z

∣∣∣∣P(St < z)−N
(

(z − 1)
√

t

kt

)∣∣∣∣ ≤ 2− α
1− α

√
kt
t
, (.5.4)

where St is the random variable of Definition 2.2.1 with Laplace transform Lt (u; kt, α).
Moreover, if β > 1,

1.
lim
t→0

P(St < 1) = lim
t→0

P(St ≥ 1) = lim
t→0

P

(
St ≤

ϕt
σ̄2ηt

)
= 1

2 .

2.

lim
t→0

P(St ≤ 1− tq) =


1/2 if q > β−1

2
N(−1/

√
k̄) if q = β−1

2
0 if q < β−1

2

.

3.

lim
t→0

P(St ≤ 1 + tq) =


1/2 if q > β−1

2
N(1/

√
k̄) if q = β−1

2
1 if q < β−1

2

.

Proof. We use an approach similar to Küchler and Tappe (2013, Th.4.7, p.4271). Given t > 0,
n ∈ N we define Xi

t := Sit − 1 for i = 1, 2, ..., n with Sit independent positive random variables
with Laplace transform Lt (u; kt n, α). The standard deviation of Sit is Σnt :=

√
ktn/t. We

define
Qnt :=

∑n
i=1X

i
t/(
√
nΣnt ). Notice that Qnt +

√
n/Σnt has the same law of

√
t/ktSt by identity in

Laplace transform because

E

[
e−u(P

n
t +
√
n/Σnt )

]
= E

[
e−u

∑n

i=1
Sit/(
√
nΣnt )

]
= e

∑n

i=1
t(1−α)
ktαn

(
1−
(

1+ u
√
kt√

t(1−α)

)α)
= E

[
e
−u
√

t
kt
St

]
.

Thus,
√
kt/t Q

n
t + 1 is equal in distribution to St. Moreover, for any t > 0

sup
z
|P(Qnt < z)−N(z)| ≤

E

[∣∣Xi
t

∣∣3]
(Σnt )3√

n
<
E
[
(Sit)3]+ 1

(Σnt )3√n
= t3/2

2 + 3ktnt + (2−α)k2
tn

2

(1−α)t2

k
3/2
t n2

= 2− α
1− α

√
kt
t

+O
(

1
n

)
.
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The first inequality holds thanks to the Berry-Esseen theorem (see, e.g., Durrett 2019, Th.3.4.17,
p.136). The first equality is obtained by substituting the third moment of Sit and in the last
equality we emphasize the leading term in 1/n. Thus, ∀ ε > 0 it exists n such that

sup
z
|P(Qnt < z)−N(z)| < 2− α

1− α

√
kt
t

+ ε .

By definition of cumulative distribution function, we get (.5.4).
Equation (.5.4) allow us to prove the limits of the probability.

1.
P(St ≤ 1) = N(0) +O

(
t(β−1)/2

)
= 1/2 +O

(
t(β−1)/2

)
,

where the first equality is due to (.5.4) and second term goes to zero because β > 1.
Moreover,

P

(
St ≤

ϕt
σ̄2ηt

)
= N

(
ϕt − σ̄2ηt
σ̄2ηt

√
t

kt

)
+O

(
t(β−1)/2

)
,

where limt→0N
(
ϕt−σ̄2ηt
σ̄2ηt

√
t
kt

)
= 1

2 thanks to Lemma .4.6 point 3 observing that

(
ϕt
σ̄2ηt

− 1
)√

t

kt
=
√
tσ̄2ηt

√
kt +O

(
t2δ+(3β+1)/2

)
= o(1) ,

because, in the additive process boundaries, for β > 1, δ + (β + 1)/2 > δ + 1 > 0.

2.
P(St ≤ 1− tq) = N

(
−tq
√

t

kt

)
+O

(
t(β−1)/2

)
,

where N
(
−tq
√

t
kt

)
goes to 1/2 if q > (β − 1)/2, to N(−1/(

√
k̄) if q = (β − 1)/2, and to

0 if q < (β − 1)/2. We emphasize that the second term goes to zero as O
(
t(β−1)/2).

3.
P(St ≤ 1 + tq) = N

(
tq
√

t

kt

)
+O

(
t(β−1)/2

)
,

where N
(
tq
√

t
kt

)
goes to 1/2 if q > (β − 1)/2, to N(1/(

√
k̄) if q = (β − 1)/2, and to 1 if

q < (β − 1)/2. We emphasize that the second term goes to zero as O
(
t(β−1)/2).

Lemma .5.4. If δ = −1/2, ∃H > 1 s.t.

m(z) := N ′
(
−lzt + σ̄

√
zt

2

)
σ̄
√
z , z > 0 ,

is increasing for z ∈ [1, H] for sufficiently small t, where lzt is the quantity defined in equation
(2.2.6).
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Proof. We compute the derivative w.r.t. z of m(z) and study its sign at short-time.

∂m(z)
∂z

=
∂N ′
(
−lzt+ σ̄

√
zt

2

)
σ̄
√
z

∂z

N ′
(
σ̄η̄
(√

z − ϕt
σ̄2ηt

√
z

)
+ σ̄

√
tz

2

)
σ̄

= 1
2
√
z
− 2

(
σ̄η̄

(√
z − ϕt

σ̄2√zηt

)
+ σ̄
√
tz

2

)(
σ̄η̄

(
1
2 + ϕt

2σ̄2ηtz

)
+ σ̄
√
t

4

)
= 1
z3/2

(
z

2 − z
2
(
σ̄η̄ + σ̄

√
t

2

)2

+ σ̄2η̄2 ϕ2
t

σ̄4η2
t

)
.

The derivative is positive if

0 < z <
1/2 +

√
1/4 + 4

(
σ̄η̄ + σ̄

√
t

2

)2
σ̄2η̄2 ϕt

σ̄4η2
t

2
(
σ̄η̄ + σ̄

√
t

2

)2 .

Notice that ∃ τ and H > 1 such that for every t < τ the derivative is positive if z < H because
for sufficiently small time

1/2 +
√

1/4 + 4
(
σ̄η̄ + σ̄

√
t

2

)2
σ̄2η̄2 ϕ2

t

σ̄4η2
t

2
(
σ̄η̄ + σ̄

√
t

2

)2 >
1/2

2(σ̄η̄ + σ̄
√
t/2)

+ η̄

η̄ +
√
t/2

ϕt
σ̄2ηt

> H > 1 ,

where the first inequality is obtained by bounding from below 1/4 with 0 inside the square root
and the second holds because, by Lemma .4.6 point 3,

lim
t→0

1/2
2(σ̄η̄ + σ̄

√
t/2)

+ η̄

η̄ +
√
t/2

ϕt
σ̄2ηt

= 1
4σ̄4η̄2 + 1 .

Thus, m(z) is increasing in [1,H] for sufficiently small t
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.6 Proofs of Chapter 3

Proof of Proposition 3.2.1
We bound the range and the discretization error separately.
First, we bound the CDF range error, i.e. the error we introduce considering the integral (3.2.1)
in the range (0, Nh). Fix h, it exists N ∈ N s.t.∣∣∣∣∣P (x)−

(
1− e−ax

π

∫ N h

0
du Re

[
e−iux

φs,t(u− ia)
iu+ a

)]∣∣∣∣∣
≤ e−ax

π

∫ ∞
N h

du
B e−b u

ω

u
<
e−ax

N h

1
π

∫ ∞
N h

du Be−b u
ω

(.6.1)

= e−axB

N h

1
ω b1/ω

Γ
[

1
ω
, b (N h)ω

]
= O

(
(N h)−ωe−b (N h)ω

)
, (.6.2)

where Γ(ε, u) is the upper incomplete gamma function.
The first inequality is due to |iu + a| > u and to the fact that |φs,t(u − ia)| ≤ Be−b u

ω for
sufficiently large values of u, thanks to Assumption 2.

Second, we bound the discretization error.
By theorem 6.2 of Lee (2004), we have that∣∣∣∣∣∣e

−ax

2π

∫
R

du e−iux
φs,t(u− ia)
iu+ a

− e−ax

2π

M∑
j=1

e−iujxφs,t(uj − ia)
iuj + a

∣∣∣∣∣∣
≤ e−2πa/h

1− e−4πa/h + e−2π(p−a)/h−p x

1− e−4π(p−a)/hφs,t(−ip) ∀p < p+
t . (.6.3)

Notice that φs,t(−i p) is well defined because p < p+
t .

We select a and p to minimize the discretization error. Notice that, for a sufficiently large M ,
the leading terms in (.6.3) are e−2πa/h and e−2π(p−a)/h−p x. Hence, for a given p the best choice
of a is

â = p

2

(
1− x

π
h
)

.

This last quantity, for a sufficiently small h, is close to p/2, whatever x we consider. Thus, to
minimize the discretization error, we select a = p/2. Then p can be chosen to its maximum value
p+
t and obtain∣∣∣∣∣∣e
−ax

2π

∫
R

du e−iux
φs,t(u− ia)
iu+ a

− e−ax

2π

M∑
j=1

e−iujxφs,t(uj − ia)
iuj + a

∣∣∣∣∣∣ ≤ e−πp
+
t /h + e−πp

+
t /h−p

+
t xφs,t(−ip+

t )
1− e−2πp+

t /h
.

(.6.4)

By combining equations (.6.2,.6.4), we obtain the thesis

To prove proposition 3.4.1, we report the ATS characteristic function in (1.2.4) and the ATS
jump measure.

φt(u) = Lt
(
iu

(
1
2 + ηt

)
σ2
t + u2σ2

t

2 ; kt, α
)
e−iu logLt(ηtσ2

t ; kt, α) , α ∈ (0, 1) .
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σt, kt are continuous on [0,∞) and ηt, ϕt are continuous on (0,∞) with σt > 0, kt ≥ 0 and

lnLt (u; k, α) := t

k

1− α
α

{
1−

(
1 + u k

1− α

)α}
.

Moreover, we recall a sufficient condition for the existence of ATS is provided in Theorem 1.2.1.
The ATS jump measure is

νt(x) = tC (α, kt, σt, ηt)
|x|1/2+α e−(1/2+ηt)xKα+1/2

(
|x|
√

(1/2 + ηt)2 + 2(1− α)/(kt σ2
t )
)

,

with

C (α, kt, σt, ηt) := 2
Γ(1− α)

√
2π

(
1− α
kt

)1−α
σ2α
t

(
(1/2 + ηt)2 + 2(1− α)/(kt σ2

t )
)α/2+1/4

,

Kν(z) the modified Bessel function of the second kind (see e.g., Abramowitz and Stegun 1948,
Ch.9 p.376).

Theorem .6.1. Sufficient conditions for existence of ATS
There exists an additive process {ft}t≥0 with the characteristic function (1.2.4) if the following
two conditions hold.

1. g1(t), g2(t), and g3(t) are non decreasing, where

g1(t) := (1/2 + ηt)−
√

(1/2 + ηt)2 + 2(1− α)/(σ2
t kt)

g2(t) := −(1/2 + ηt)−
√

(1/2 + ηt)2 + 2(1− α)/(σ2
t kt)

g3(t) := t1/ασ2
t

k
(1−α)/α
t

√
(1/2 + ηt)2 + 2(1− α)/(σ2

t kt) ;

2. Both t σ2
t ηt and t σ2α

t ηαt /k
1−α
t go to zero as t goes to zero.

Proof of Proposition 3.4.1 We prove that Assumption 1 holds.
This entails showing that p+

t is non increasing for the ATS.
At time t, the ATS characteristic function in equation (1.2.4) is analytic on the imaginary axis
u = i a, a ∈ R iff

1 + kt
1− α

(
a

(
1
2 + ηt

)
σ2
t −

a2σ2
t

2

)
> 0 .

By solving the second order inequality, we get

g1(t) < a < −g2(t)− 1 .

Hence, p+
t = −g2(t) − 1 and p−t = −g1(t). Notice that −g2(t) and −g1(t) are non increasing

w.r.t. t because of condition 1 in Theorem 1.2.1 and p−t and p+
t are positive through direct

inspection. Moreover, p+
t ≥ p−t because

p−t ≥ p−t = ηt ≥ 0 .

We prove that Assumption 2 holds. We have to show that, given s and t > s, there exists B > 0,
b > 0 and ω > 0 such that, for sufficiently large u, Assumption 2 holds for the characteristic
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function of ATS.

We choose log(B) > 1−α
α

(
t
kt
− s

ks

)
, 0 < b < 1−α

α

(
t

k1−α
t

(
σ2
t

2(1−α)

)α
− s

k1−α
s

(
σ2
s

2(1−α)

)α)
, ω < 2α.

Notice that it is possible to fix b > 0 because if g3(t) > g3(s) by condition 1 of theorem 1.2.1
t

k1−α
t

(
σ2
t

2(1−α)

)α
is increasing in t. For sufficiently large u, |φt,s(u− i a)| goes to zero faster than

Be−b u
ω because logφt,s(u− i a) is asymptotic to

−1− α
α

(
t

k1−α
t

(
σ2
t

2(1− α)

)α
− s

k1−α
s

(
σ2
s

2(1− α)

)α)
u2α .

We prove that Assumption 3 holds. We have to demonstrate that m+
s,t(x) is non increasing in x

and m−s,t(x) is non decreasing.
We prove the thesis by showing that the derivative of νt(x) w.r.t. x is non increasing w.r.t. t for
any x > 0. Notice that if this holds then

m+
s,t(x) = Ix>ε

νt(x)− νs(x)∫∞
ε
dz(νt(z)− νs(z))

is non increasing in x.
We observe that by the condition on g1(t) and g2(t) of theorem 1.2.1 we have that that

gt :=
√

(1/2 + ηt)2 + 2(1− α)/(kt σ2
t )

is non increasing w.r.t. t.

∂νt(x)
∂x

= −C2

∫ ∞
0

dz
e−zzαg3(t) exg2(t)

x2+α

(
α+ z

z/2 + xht
+ 1− x g2(t)

)
,

where C2 is a positive constant. The derivative of νt(x) is non increasing for any x > 0 because

1. g3(t) is positive and non decreasing in t by condition 1 of Theorem 1.2.1.

2. ex g2(t)
(
α+ s

s/2+x gt

)
is the combination of two non decreasing function of t for any x > 0.

3. g2(t) is non decreasing and (1− cx)ec x is non decreasing for c < 0.

This proves the thesis for x > 0.
The same holds true for x < 0. Mutatis mutandis, by substituting g2(t) with g1(t), the proof is
the same
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.7 An application to commodities

We analyze all quoted NYMEX WTI future and american option prices observed at 11:00 am
NT on the 23rd of June 2021. The dataset is composed of real market quotes (no smoothing
or interpolation). Let us recall that volume of crude oil futures and options is more of 50% of
the total energy contracts traded on NYMEX. Option and futures data is provided by Eikon
Reuters (chain 0#CL+). Futures stop trading three business days prior to the 25th of each
delivery month (if the 25th is not a business day trading ceases three business days prior to
the first business day before the 25th). Options expire three business days before the futures
termination dates. We follow Kyriakou et al. (2016) and consider only options expiring on the
first six months, on March, June, September and December of the front year and on December
of the next year.
The dataset contains all bid/ask prices for both call and put. The strikes are in a regular grid for
each available maturity. We exclude options that do not satisfy two simple liquidity thresholds.
We discard options whose price is less than 10% the minimum difference in the grid of market
strikes (the so-called penny options) and options with bid-ask over bid bigger than 60%. The
last condition filters out strikes for which either a bid or an ask price is missing.

We calibrate the ATS following the procedure discussed in chapter 1. We cut the volatility
surface into slices, each one containing options with the same maturity, and calibrate each slice
separately. Hereinafter, we focus on α = 1/2 (NIG) and α = 0 (VG), which are the two (ATS and
Sato) generalizations of the two most frequently used LTS processes. For every fixed maturity
T , it is possible to define a new Lévy normal tempered stable process such that, at time T , its
marginal distribution is equal to the marginal distribution of an ATS. A different Lévy NIG and
VG is calibrated for every different maturity and the three time-dependent parameters kT , ηT , σT
are obtained. The calibration is performed imposing the ATS conditions of monotonicity.
Beneath the ATS processes, we consider the calibration of the standard Lévy processes and of
the (four parameters) Sato processes proposed by Carr et al. (2007).1 We remind that the latter
are additive and self-similar processes (see, e.g., Sato 1991). Call option prices, with strike K
and maturity T , are computed using the Lewis (2001) formula.
The calibration is performed by minimizing the Euclidean distance between model and market
prices. The simplex method is used to calibrate every maturity of the ATS process. For Lévy
processes and Sato processes, because standard routines for global minimum algorithms are not
satisfactory, we consider a differential evolution algorithm together with a multi-start simplex
method.
The calibration performance is reported in Table .4 in terms of Mean Squared Error (MSE) and
Mean Absolute Percentage Error (MAPE).2 It is possible to observe that Sato processes slightly
improve Lévy performance, as reported in the literature (see, e.g Carr et al. 2007), while the
ATS processes improvement is, on average, above two orders of magnitude. Although we present
the results for VG and NIG, similar results can be obtained for all ATS processes with α ∈ [0, 1).
The worst results are observed in the VG case.

MSE MAPE
Model Lévy Sato ATS Lévy Sato ATS
NIG 0.02 5 ∗ 10−3 7 ∗ 10−5 3.16% 1.78% 0.19%
VG 0.02 5 ∗ 10−3 10−3 3.23% 1.77% 0.84%

1We underline that, in both cases (LTS and Sato), model parameters are obtained through a global calibration
of the whole volatility surface.

2Calibrated model parameters are available upon request.
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Table .4: Calibration performance for the WTI options in terms of MSE and MAPE. In the NIG and
VG cases, we consider the standard Lévy process, the Sato process, and the corresponding ATS process.
Sato processes perform better than Lévy processes but ATS improvement is far more significant: two
orders of magnitude for MSE and one order of magnitude for MAPE.

Figure .1 shows the differences of MSE w.r.t. the different times-to-maturity for WTI volatility
surface calibrated with a NIG process. Sato and Lévy LTS have a MSE of the same order of
magnitude, while the improvement of ATS is of two orders of magnitude and particularly signif-
icant at short-time. The short time improvement in implied volatility calibration is particularly
evident, as shown in Figure .2.

Figure .1: MSE w.r.t. the different times-to-maturity (in years) for S&P 500 volatility surface calibrated
with a NIG process. Sato (circles) and Lévy (triangles) have a MSE of the same order of magnitude,
while the improvement of ATS (squares) is of two orders of magnitude and particularly significant at
short-time.

In Figure 1.5, we plot the market implied volatility and the volatility replicated via ATS, LTS,
and Sato processes at the 1 month and 24 days (on the left) and 9 months and 24 days (on the
right) maturities. We observe that the ATS implied volatility is the closest to the market implied
volatility in any case and it significantly improves both LTS and Sato processes, particularly for
small maturities. Similar results hold for all other ATS.
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Figure .2: Implied volatility smile for WTI options for a given time-to-maturity: 1 month and 24
days (on the left) and 9 months and 24 days (on the right). The NIG ATS process, Sato process, and
LTS process implied volatilities are plotted together with the market-implied volatility. ATS reproduces
the smile significantly better then the alternatives, the improvement is particularly evident for small
maturities.

In Figure .3, we plot the market and the ATS implied volatility skew w.r.t. the times-to-maturity.
We observe that the calibrated ATS replicates accurately the market implied volatility skew.

Figure .3: The market and the NIG ATS implied volatility skew w.r.t. the times-to-maturity. ATS
replicates the market implied volatility skew behavior.

Hereinafter, we show that power-law scaling parameters are observed in market data. This styl-
ized fact is extremely relevant: we observe statistical evidence that the market-implied volatility
surface is compatible with a power-law scaling ATS.

We introduce a new ATS process, w.r.t. the time θ := Tσ2
T .

We define k̂θ := kTσ
2
T and η̂θ := ηT . We call f̂θ the ATS with parameters k̂θ, η̂θ and σθ := 1.
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Notice that for every maturity f̂θ has the same characteristic function of the calibrated ATS fT .
We analyze the re-scaled parameters. We observe a self-similar behavior of k̂θ and η̂θ; that is
reported in equation equations (1.3.2) , {

k̂θ = k̄θβ

η̂θ = η̄θδ
,

where k̄, η̄ are positive constants and β, δ are real constant parameters. To investigate this
behavior and to infer the value of the scaling parameters we consider equations (1.3.2) in the
log-log scale.
In Figures .4 and .5 we plot the weighted regression lines and the observed time-dependent
parameters ln k̂θ and ln η̂θ with their confidence intervals . The confidence intervals are two
times the standard deviations of ln k̂θ, of ln η̂θ and of ln θ.

Figure .4: Weighted regression line and the observed time-dependent parameters ln k̂θ and ln η̂θ w.r.t.
ln θ for the NIG calibrated model for WTI. We plot a confidence interval equal to two times the cor-
responding standard deviation. Notice that confidence intervals on ln k̂θ and ln η̂θ are one order of
magnitude wider than confidence intervals on ln θ.
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Figure .5: Weighted regression line and the observed time-dependent parameters ln k̂θ and ln η̂θ w.r.t.
ln θ for the VG model calibrated on WTI. We plot a confidence interval equal to two times the cor-
responding standard deviation. Notice that confidence intervals on ln k̂θ and ln η̂θ are one order of
magnitude wider than confidence intervals on ln θ.

Moreover, let us emphasize that the scaling parameters appear qualitatively compatible to β = 1
and δ = − 1

2 in all observed cases but the tests p-values are always below 10%. It seems that
in the commodity case a different scaling is observed in market data. This deserves further
investigations.

Model Parameter Parameter’s Value p-value
NIG β 1.44 0.00
NIG δ −0.68 0.00
VG β 1.03 0.10
VG δ −0.38 0.00

Table .5: Scaling parameters calibrated from WTI volatility surfaces. Parameter estimates are provided
together with the p-values of the statistical tests that verify whether it is possible to accept the null
hypotheses β = 1 and δ = − 1

2 .

In Table .6 we report an estimation of the parameter k̄ and η̄.

Model Parameter Parameter’s Value p-value
NIG k̄ 4.65 0.002
NIG η̄ 0.21 0.000
VG k̄ 1.12 0.000
VG η̄ 0.41 0.001

Table .6: k̄ and η̄ calibrated from WTI volatility surfaces. Parameter estimates are provided together
with the p-values of the statistical tests that verify whether it is possible to accept the null hypothesis
k̄ = 0 and η̄ = 0.
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We have statistical evidence that in all cases k̄ and η̄ are positive (we reject the null hypotheses
of k̄ = 0 and η̄ = 0 with a 5% confidence level). From these results and from Figure .3 it is
possible to infer a connection between a positive η̄ and the observed negative skew.
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