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Abstract

The optimization of pulse patterns is a crucial problem in the field of modulation tech-
niques in electrical drives. This problem is challenging due to its high dimensionality and
non-convexity. Set Membership Global Optimization (SMGO) is an innovative optimiza-
tion method that is characterized by its global nature. Its functioning is black-box and
data-driven, hence an explicit model of the cost function is unnecessary.

This work explores the application of SMGO to the optimization of pulse patterns. The
objective of the optimization consists in the minimization of the distortion of the currents
flowing in the coils of the electric motor.
To enhance the performance of SMGO, modifications are introduced, including a novel
trust region strategy, an adaptive tuning in the exploration-exploitation trade-off, and a
smart generation of candidate points. These changes aim to improve the efficiency and
robustness of the SMGO method, in its most general application.

After conducting a thorough analysis, it is found that the state-of-the-art method, em-
ploying gradient-based optimization and randomized multiple starting points, is a better
solution to obtain an Optimal Pulse Pattern. However, the thesis concludes that SMGO
is still an effective method and could be useful for similar problems, especially when
non-differentiable models are taken into account.

Moreover, the developed modifications to the algorithm are found to be effective in several
benchmarks, thus ultimately improving the global optimizer.

Keywords: Optimization, Global, Set membership, SMGO, Black-box, Data-driven,
Modulation, Optimal Pulse Pattern, OPP, Electrical drive.





Abstract in lingua italiana

L’ottimizzazione dei pulse patterns (noti anche come angoli memorizzati) è un problema
cruciale nell’ambito delle tecniche di modulazione degli azionamenti elettrici. Questa
ottimizzazione è particolarmente impegnativa, a causa della elevata dimensionalità e non
convessità della specifica applicazione. Il Set Membership Global Optimization (SMGO) è
un algoritmo di ottimizzazione innovativo che si caratterizza per la sua natura globale. Il
suo funzionamento è black-box e basato sui dati, quindi indipendente dalla formulazione
della funzione di costo.

Questa tesi esplora l’applicazione di SMGO per l’ottimizzazione dei pulse patterns.
L’obiettivo considerato in questo lavoro consiste nella minimizzazione della distorsione
delle correnti che scorrono nelle bobine del motore elettrico.
Per migliorare le prestazioni di SMGO, sono state introdotte diverse modifiche, tra cui
una nuova strategia per la regione di fiducia, una regolazione adattiva del trade-off tra
sfuttamento-esplorazione e una generazione intelligente di punti candidati. Questi cambi-
amenti mirano a migliorare l’efficienza e la robustezza di SMGO nella sua implementazione
più generale.

Dopo aver condotto un’analisi approfondita, è emerso che il metodo correntemente us-
ato in industria, che consiste nell’utilizzo di un’ottimizazione basata sul gradiente con
molteplici inizializzazioni randomiche, è una soluzione migliore per ottenere dei pulse pat-
terns ottimali. Tuttavia, la tesi conclude che SMGO è comunque un metodo efficace e
potrebbe essere utile nello stesso ambito, specialmente se vengono integrati al problema
nuovi fattori, come l’introduzione di un modello non differenziabile, in grado di rendere i
metodi correnti inutilizzabili.

In aggiunta, le modifiche implementate all’algoritmo sono risultate efficaci su numerose
funzioni di benchmark, comprovando un generale miglioramento del suddetto solver glob-
ale.

Parole chiave: Ottimizzazione, Globale, Set Membership, SMGO, Pulse pattern, Black-
box, OPP, Pulse pattern ottimale, Angoli memorizzati, Azionamenti elettrici.
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1| Context and introduction

The technological advancement and the commitment to decarbonization of recent years
brought new challenges of electromobility into focus. Among them, increasingly tight
requirements on efficiency play a crucial role. In addition to optimal electric machine
design, it is fundamental to apply an optimal control technique. The components and
systems which convert electricity into power in the drive system of an electric vehicle are
known as electric drive.
Electric drives have been extensively studied for decades, and they often involve the
use of a phase current controller. This controller operates in continuous time and outputs
voltage signals that are then translated into a series of voltage steps, by means of a certain
modulation scheme. The actuation of these voltage steps is finally exerted through the
inverter switches. However, traditional modulations are not considered to be optimal in
terms of minimizing losses and maximizing efficiency across the entire operating range of
the machine.
Optimal Pulse Pattern (OPP) is an advanced control technique that entails a synchronous
modulation scheme; the sequence of switching instants is fixed on each motor revolution.
The use of OPP in the automotive field has significant potential. By implementing these
patterns, losses in the WLTC (Worldwide harmonized Light vehicles Test Cycle) can be
greatly reduced. Additionally, OPP provides a flexible modulation method that can be
used across a wide range of operating conditions, eliminating the need to switch between
multiple modulation methods.
The optimal control problem of determining an optimal pulse pattern is a non-convex
global one, and its formulation and solution is topic of research. In this thesis, we approach
the problem with the Set Membership Global Optimization (SMGO), an innovative method
characterized by its data-driven, global, and model-free nature. The lack of dependence on
explicit mathematical models makes it a powerful tool for real-world applications, where
the objective function is absent or too complex to be explicitly employed in optimization.
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1.1. State of the art

Among modulation techniques, OPP is a well established method in industrial applications
with constant speed. It is used to achieve very low current distortions during steady-state
operation of medium-voltage applications. However, recently OPP has grasped the inter-
est of the automotive industry. In this field, the most commonly used control methods are
the Direct Torque Control (DTC) and Field Oriented Control (FOC) in conjunction with
asynchronous Pulse Width Modulation (PWM) [5]. These methods can guarantee good
dynamic performance, which is vital for the electric motors of vehicles; however, they are
not intended to be optimal in terms of loss. The advantages that can be obtained through
OPP have been already presented in [1]. In [11] it is shown how the implementation of a
Model Predictive Controller that interpolates optimal pulse patterns across the operating
region can provide good dynamic performances. A comparison between this Model Pre-
dictive Pulse Pattern Control (MP3C) and established methods is offered also in [10]. In
[5] the combination of OPP with different modulation techniques in an adaptive PWM
control shows good efficiency. Similar results are confirmed also by [15], in a different
setting.
In all these works, OPP controllers involve the offline computation of an optimal pulse
pattern. The optimal pulse pattern is different at each operating point and it is obtained
as the solution of a challenging optimization problem. It is a constrained optimization
with a multi-objective, non-convex and black-box cost function. This cost function is
characterized by many local minima and it could be expensive in terms of time. At the
state of the art, the optimal pulse pattern problem is solved through traditional methods,
namely a multistart gradient-based approach. With this approach a local gradient-based
optimization is initialized in different regions of the search space, approximating the value
of the gradient with the finite difference method. However, this method requires a high
number of function evaluations; these function evaluations are not fully utilized, since
they do not lead to the choice of the next initialization.

In this thesis, the optimization problem is tackled with Set Membership Global Opti-
mization, which is anticipated to be an efficient strategy for data-driven optimizations
[22, 23]. SMGO is designed to find the global optimum of a function without requiring
any knowledge of the function’s derivatives. It is particularly useful in situations where
the function is complex or expensive to evaluate. In [21, 22], the method is contextual-
ized in the global optimization framework. Summarizing [21], the approaches to similar
problems are divided into five different classes: swarm-based, generation-based, direct
search, model-based and Lipschitz-based. SMGO belongs to the last class. This class of
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methods is composed by sequential algorithms that make use of the information provided
by an estimate of the Lipschitz constant of the cost function in order to choose the next
sampling point. The lack of dependence on explicit mathematical models makes them
a powerful tool for real-world applications, where the objective function may be poorly
understood or difficult to model [24]. This method applies well to the problem at hand
for different reasons:

1. The cost function is highly non-convex and contains many local minima; the quest
for the global one is crucial.

2. It can deal with a medium/high number of optimization variables.

3. Since the optimization is run offline, memory issues can be neglected.

4. The presence of different tuning parameters allows wise use of the budget of function
evaluations.

5. It can be easily upgraded to real-time applications.

6. It can deal with non-smooth cost functions.

7. It can be used for problems with expensive cost functions.

Since it is a newly developed optimization algorithm, the application of SMGO algorithm
is still in a flexible, experimental phase. Some of its components can be adapted to better
suit the specific problem. As a consequence, the application to the OPP problem can
result in valuable insights into the algorithm’s mechanics. The findings of this study have
the potential to enhance and refine the optimization process.
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1.2. Contribution of the thesis

The objective of the thesis is twofold. On the one hand, the application of SMGO offers
a new global solution for OPP computation. On the other hand, it allows us to assess the
performance of this method on an active industrial problem. Moreover, it is customary for
the OPP to be solved for different numbers of optimization variables [1]. Therefore, this
study offers insight into the quality of SMGO on different dimensions, without requiring
a reformulation of the main structure of the problem.
The analysis that we conduct on the combination of SMGO with the OPP problem leads
to the development of new components of the algorithm. Such components enhance the
overall behavior of SMGO.

The thesis is structured as follows:

- Chapter 2: We introduce the general theory behind the model of the motor, the
electric drive and the pulse pattern modulation technique. We then formalize the
optimal problem at hand. We define the optimization variables, the cost function
and the constraints involved.

- Chapter 3: We introduce SMGO, with an overview of both the theoretical principle
and the practical implementation.

- Chapter 4: We extend and modify SMGO to account for linear constraints. Thanks
to the innovative modifications adopted in this chapter, SMGO can be profitably
applied to the class of pulse pattern optimization problems.

- Chapter 5: The main contribution to SMGO provided by this thesis is presented
here. We introduce some changes to the method that consistently improve its per-
formance. The advances provided by these alternative mechanisms are commented
especially for the OPP case, but proved to be effective also on a set of 14 different
benchmark functions. The results of this support study are reported in Appendix
A.

- Chapter 6: We offer a novel study on the application of SMGO to the OPP
problem, and we compare its results and performance with those of two commonly
used optimization methods. This comparison provides a deeper understanding of
the strengths and weaknesses of SMGO with respect to state-of-the-art methods.

- Chapter 7: We collect here the main conclusions of this study and gather the most
promising outlooks.



5

2| Model of the control problem

This chapter describes the mathematical model of the optimization under study, i.e. the
control of an electrical drive. An electrical drive typically consists of three main compo-
nents: the power supply, the electric motor, and the control system. While the power
supply is out of the scope of this thesis, the motor and the control system need to be
properly described, to allow the formulation of the OPP control problem.

In Section 2.1 we introduce the dynamical model of the electric machine, with further
insight into the simulation technique that is implemented. In Section 2.2 we offer a brief
introduction to the control system, with a focus on the pulse pattern technique in an
inverter synchronous modulation scheme. In Section 2.3 we report the results of the
simulation of the complete model. Finally, in Section 2.4 the optimal control problem
behind the computation of an OPP is formulated.

2.1. PMSM machine

Figure 2.1: Diagram of a brushless motor.

The term Permanent Magnet Synchronous Machine (PMSM) refers to an Alternating
Current (AC) electric machine constituted by a cylindric stator with symmetric three-
phase windings and a rotor provided with a permanent magnet, that generates the rotating
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magnetic flux. In the past, the scope of these drives was mainly low-power applications
(e.g. drone propellers, CD players, ...) due to the limitations imposed by the high cost and
size of the permanent magnets. However, given the high reliability and the ideal absence
of rotor losses, their importance is growing in many fields like numerically controlled
machine tools, industrial automation, robotics, light traction, heavy traction, and wind
generation [4]. Compared to other machines that present coils on the rotor to generate the
magnetic flux, PMSMs have a higher specific power and lower inertia due to the simpler
rotor structure.

2.1.1. Fundamentals

Let t ∈ R be the continuous time variable. Variables va(t), vb(t), vc(t) and ia(t), ib(t), ic(t)
represent respectively voltages and currents applied to the stator windings.
The stator equations of a PMSM are

va(t) = Raia(t) +
dΨa(t)

dt

vb(t) = Rbib(t) +
dΨb(t)

dt

vc(t) = Rcic(t) +
dΨc(t)

dt
.

(2.1a)

(2.1b)

(2.1c)

Variables Ψa, Ψb, Ψc are the magnetic fluxes concatenated to each coil.
In this thesis, we assume the stator to be symmetric, so that the phase resistances
Ra, Rb, Rc are identical for each coil. Moreover, we limit our study to the steady-state
condition of a single operating point. For this reason, all the resistances are set equal to
the same constant Rs (where s stands for stator).
The current-flux relationship, in the case of a general anisotropic PMSM, are

Ψa(t) = Lss (θm) ia +Mss (θm) ib +Mss

(
θm −

2

3
π

)
ic

+ ψpm (θm)

Ψb(t) = Lss

(
θm −

2

3
π

)
ib +Mss (θm) ia +Mss

(
θm +

2

3
π

)
ic

+ ψpm

(
θm −

2

3
π

)
Ψc(t) = Lss

(
θm −

4

3
π

)
ic +Mss

(
θm −

2

3
π

)
ia +Mss

(
θm +

2

3
π

)
ib

+ ψpm

(
θm −

4

3
π

)
,

(2.2a)

(2.2b)

(2.2c)
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where θm(t) is the rotor position, Lss is the auto inductance and Mss is the mutual induc-
tance.
The flux linked with the stator windings varies accordingly to:

Ψpm(θm(t)) = Ψ̂pmcos(θm(t)). (2.3)

It is sinusoidal with respect to the rotor position θm(t) and its amplitude is given by the
flux of the permanent magnet Ψ̂pm.

For analysis and control of the electric motors, it is standard to convert a balanced
three-phase winding machine into a fictitious one with two-phase quadrature electric
quantities, represented in Figure 2.1. This conversion involves the so-called Park and
Clarke transformation, also known as Space Phasor Formula [20]. There are two different
conventions of this transformation: amplitude/magnitude invariant or power invariant.
In this work, an amplitude invariant convention is adopted, since it is more common
in industrial practice. Therefore, from the combination of equations (2.1), (2.2) and
(2.3), one can derive the simpler model 2.4, as presented in [4, 17]. It is conventional
to characterize the two-phase reference system with the letters d and q, with the axis d
aligned and rotating with the North of the permanent magnets. This gives the name to
the well-known dq-model of the machine described below:



vd(t) = Rsid(t) + Ldi̇d(t)− ωsLqiq(t)

vq(t) = Rsiq(t) + Lq i̇q(t) + ωs

(
Ldid(t) + Ψ̂pm

)
Ψd(t) = Ldid(t) + Ψ̂pm

Ψq(t) = Lqiq(t),

(2.4a)

(2.4b)

(2.4c)

(2.4d)

where the dot operator indicates the time derivative operation and ωs is the electrical
speed, which does not depend on time, according to the steady-state hypothesis.
The winding d with magnetic axis in the direction d is crossed by the current id and
supports the flux Ψd through a self-inductance Ld, that is constant and different from the
self-inductance Lq of the winding q, because the PMSM under study is not isotropic. A
remarkable advantage of the dq-model is that the inductances are no longer functions of
the mechanical angle.
From the power balance of the machine, completely described in [4], the expression

Te(t) =
3

2
Np

[
(Ld − Lq) id(t)iq(t) + Ψ̂pmiq(t)

]
(2.5)
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of the electrical torque can be retrieved. The value Np defines the number of pole pairs
of the machine and the coefficient 3/2 is due to the amplitude invariant transformation.

2.1.2. Dynamical model

Equations (2.4) are rearranged to obtain the state space representation of the system:

Ψ̇d(t) = −
Rs

Ld

Ψd(t) + ωΨq(t) + vd(t) +
Rs

Ld

Ψ̂pm

Ψ̇q(t) = −ωΨd(t)−
Rs

Lq

Ψq(t) + vq(t)

id(t) =
1

Ld

Ψd(t)−
1

Ld

Ψ̂pm

iq(t) =
1

Lq

Ψq(t).

(2.6a)

(2.6b)

(2.6c)

(2.6d)

We define the state vector ξ, the input vector u and the output vector y:

ξ(t) =

[
Ψd(t)

Ψq(t)

]
u(t) =

ud(t)uq(t)

Ψ̂pm

 y(t) =

[
id(t)

iq(t)

]
. (2.7)

The state space model of the system can now be written as

{
ξ̇(t) = Aξ(t) +Bu(t)

y(t) = Cξ(t) +Du(t),

(2.8a)

(2.8b)

with the matrices

A =

[
−Rs/Ld ω

−ω −Rs/Ld

]

B =

[
1 0 Rs/Ld

0 1 0

]

C =

[
1/Ld 0

0 1/Lq

]

D =

[
0 0 −1/Ld

0 0 0

]

(2.9)

(2.10)

(2.11)

(2.12)

The system turns out to be a second-order linear time-invariant system.
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The input-output relationship G(s) is obtained as

G(s) = C(sI − A)−1B +D, (2.13)

where s is the Laplace operator [2]. We can write

y(t) = G(s)u(t), (2.14)

where the transfer function is

G(s) =

[
g11(s) g12(s) g13(s)

g21(s) g22(s) g23(s)

]
(2.15)

and gik is the scalar transfer function from input k to output i.

Figure 2.2: Schematic diagram of input-output relationship.

2.1.3. Multivariable frequency response

The steady-state condition allows to easily use the input-output relationship to simulate
the dynamical model. Compared to the numerical integration, the frequency analysis
shortens the computational time, avoiding the transient simulation of the state variables.

The fundamental theorem of the frequency response can be extended in a multivariable
case as follows [25]. Replacing the Laplace operator s with jω, gik(jω) represents the
sinusoidal response from input k to output i. To be more specific, imagine that we apply
to input channel k a scalar sinusoidal signal given by

uk(t) = uk0 sin (ωt+ αk) . (2.16)

If the input signal is persistent, then the corresponding persistent output signal in channel
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i is also a sinusoid with the same frequency

yi(t) = yi0 sin (ωt+ βi) . (2.17)

The amplification (gain) and the phase shift may be obtained from the complex number
gik(jω) as follows

yi0
uk0

= |gik(jω)| ,

βi − αk = ∠gik(jω).

(2.18)

(2.19)

In phasor notation, using Euler’s formula for complex numbers, we may compactly rep-
resent the sinusoidal time response described in (2.16) - (2.18) by

yi(ω) = gik(jω)uk(ω), (2.20)

where
uk(ω) = uk0e

jαk (2.21)

and
yi(ω) = yi0e

jβi . (2.22)

Here, the use of ω (and not jω) as the argument of uk(ω) and yi(ω) implies that these
are complex numbers, representing at each frequency ω the magnitude and phase of the
sinusoidal signals in (2.16) and (2.17). The overall response to simultaneous input signals
of the same frequency in several input channels is, by the superposition principle for linear
systems, equal to the sum of the individual responses, and we have from (2.20)

yi(ω) = gi1(jω)u1(ω) + gi2(jω)u2(ω) + · · · =
∑
k

gik(jω)dk(ω) (2.23)

or in matrix form
y(ω) = G(jω)u(ω). (2.24)

In this application, the elements of (2.24) are

u(ω) =

 u1(ω)

u2(ω)

u3(ω)

 =

 vd(ω)

vq(ω)

Ψ̂pm(ω)

 (2.25)
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and

y(ω) =

[
y1(ω)

y2(ω)

]
=

[
id(ω)

iq(ω)

]
. (2.26)

In order to have a simplified notation later, for a generic frequency ωi the previous vectors
are written as

u(ωi) = U i =

 U i
1

U i
2

U i
3

 (2.27)

and

y(ωi) = Y i =

[
Y i
1

Y i
2

]
(2.28)

Given the linearity of the system, the superimposition principle holds.
We can now define the fundamental frequency as

ω0 =
2π

T
, (2.29)

where T is the relative period. Under the mild assumption of periodic signals, every entry
of the vector u(t) can be decomposed as the sum of N harmonic signals:

u(t) =

 u1(t)

u2(t)

u3(t)

 =


∑N

n=1 U
n
1 e

jnω0t∑N
n=1 U

n
2 e

jnω0t∑N
n=1 U

n
3 e

jnω0t

 . (2.30)

The index n indicates the n-multiple of the fundamental frequency. The entries of the
second right-hand term of (2.30) are a truncation of the theoretical infinite series. The
equation (2.30) holds under the assumption of a large N .
The three sequences of complex coefficients U1...N

1 , U1...N
2 , U1...N

3 are the frequency spectra
of the input u1(t), u2(t), u3(t). They are obtained by means of the Fourier Transform.
We remark that every single coefficient in these spectra represents the contribution of the
harmonic of order n. The sum of all the elements of these spectra corresponds to the
original signal.
In the MATLAB simulation, the function fft (Fast Fourier Transform) is adopted [3].
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Therefore, in order to get the spectrum of the output vector y(t), the equation (2.24) has
to be repeated N times, one for every multiple of the fundamental frequency ω0:

Y 1

Y 2

...
Y N


T

=


G(jω0)U

1

G(j2ω0)U
2

...
G(jNω0)U

N


T

. (2.31)

Starting from the spectrum Y 1, . . . , Y N , the inverse Fourier transform (command ifft in
MATLAB) is used to reconstruct the output signal in the time domain:

y(t) =

[
y1(t)

y2(t)

]
=

[ ∑N
n=1 Y

n
1 e

jnω0t∑N
n=1 Y

n
2 e

jnω0t

]
. (2.32)

On a side note, the operation (2.31) is implemented using matrices of dimension 3: The
function pagemtimes combines matrix and element-wise products resulting in a remark-
able speed up of the frequency response computation.

2.1.4. Parameters of the model

The framework of this thesis will be limited to a single steady-state condition of the
machine. In the electrical drive field, we refer to each steady-state condition as an oper-
ating point or operating condition. Each operating point is univocally determined by the
mechanical speed Ωm and the electrical torque Te.

The electrical speed ωs of the dq-model (2.4) is directly linked to the mechanical speed
Ωm by the relationship

ωs =
2πΩm

60Np

, (2.33)

with Ωm expressed in rpm. Notice that ωs corresponds to the fundamental frequency ω0

treated in Section 2.1.3.

For a given operating point, the parameters Ld, Lq, and Ψ̂pm of the dq-model (2.4) can
be considered known. Indeed, there exists vast documentation in the industry, and very
accurate models of the PMSM in the automotive field are already available. On top of
that, the influence of temperature, aging and any other factors can be neglected, and we
assume the parameters to be functions of the operating conditions only.

In this thesis, we deal only with continuous and periodic signals. The latter feature allows
us to limit our analysis to a single period. Nevertheless, in the simulation of a model,
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the continuous signal must be discretized with a sampling time Ts. Also in this case,
there exists a data sheet of sampling times commonly used. This sampling time is an
important knob since it compromised the accuracy of the model with the computational
and memory burden.
In our study, this choice influences the cost function of the optimal control problem, which
is based on the model simulation. Further details on this consequence are given in Section
2.4.2.

2.2. Modulation techniques

The actuation of PMSM is realized through voltage signals applied to the coils. In order
to control the input voltage for the machine, a power electronic device is needed. The
device under study is a two-level DC-AC (Direct Current - Alternate Current) inverter;
This means that it can provide two different values of voltage as output [19]. A schematic
of the inverter is shown in Figure 2.3.

Figure 2.3: Typical topology of three-phase voltage source inverter. Credits to [28].

The key components of an inverter are the semiconductor devices, typically transistors,
which act as controllable switches. They are used to control the flow of current through
the inverter. A sequence of switches determines the output waveform of the voltage at
the inverter legs. We remark here that two consecutive switches on the same transistor
cannot happen arbitrarily close, but some time is needed, namely the minimum switching
time tmin. This is a physical limitation of the semiconductor device of the inverter. This
parameter is important for the constraints of the optimal control problem and it is further
treated in Section 2.4. The process that controls these switches is named modulation.
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Every modulation technique involves a specific rationale that determines whether the
switch is open or closed at any given time; the basic principles are explained in [14].

Among the most used modulation techniques, the old-fashioned Carrier-Based PWM
(CBPWM) is not applicable to high-power applications like load traction: At high speed,
a large number of inverter switches is required, causing a prohibitive power loss.

Nowadays, the state of the art for an electrical drive in automotive applications is the
so-called Space-Vector PWM (SVPWM), an asynchronous modulation method that is
strictly related to an outer control, e.g. the Field Oriented Control (FOC) [5]. However,
SVPWM cannot exploit the maximum potential of the input voltage on the output.
This concept is quantitatively represented by a low modulation index, namely the ratio
between the fundamental frequency of the generated waveform and the input DC voltage.
In addition, this modulation is far away from having a small Total Harmonic Distortion
(THD), feature that is vastly treated in Section 2.4.2. To overcome the limitations of
these well-established modulation techniques, in this paper, the problem is tackled by the
use of Optimal Pulse Patterns modulation.

2.2.1. Optimal pulse pattern

The optimal pulse pattern technique is based on the assumption that there is a unique
mathematical relationship between the amplitude of the fundamental frequency and the
various harmonics, and the switching angles or instants. The sequence of switches forms
a pattern of pulses, that gives the name to the method.
Unlike CBPWM and SVPWM, OPPs abandon more general switching criteria in favor of
a specific choice of each switching instant. OPPs belong to the class of synchronous mod-
ulation schemes. The sequence of switching angles over an electrical rotation is obtained
as the solution of an optimal control problem; The formulation of such a problem for our
case study will be treated in Section 2.4.

The implementation of OPP is already an established method in steady-state medium
voltage applications. The application of this method in the case of different speeds has
to face the following practical limitations [12]:

1. The online computation of OPPs is demanding and time-consuming.

2. The implementation of OPPs computed offline requires a significant amount of stor-
age capacity in the controller memory.

3. At high pulse numbers, the incentive to use OPPs diminishes since the harmonic
benefit of OPPs over established modulation methods is significantly reduced.
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Nevertheless, in recent publications [5, 15], the OPP has been validated as an interesting
possibility for the automotive industry, especially for certain regions of the operating
space [1]. The most promising control structure is the implementation of OPPs computed
offline for different steady states, where the transition from one steady state to another
is managed by an outer controller [11].

In a synchronous modulation scheme, the switching signal in each electrical rotation is
identical, therefore it is sufficient to define it over one electrical period. The number of
switches per period is an integer number.
In this work, we opted for an angle-based representation of the pulse pattern. Therefore,
in all the representations of the pulse patterns, we put on the x-axis the electric rotor
angle φel and we represent the single electrical period as an interval of length 2π. We
remark here that a similar characterization could be made with respect to the time.

Before entering the description of the waveform, it is necessary to specify what is the
voltage level after the first switch. This voltage can take two values:

Uinit ∈ {−0.5UDC, 0.5UDC} (2.34)

where UDC is the constant DC voltage that supplies the power converter.

We define now as precommutation angle σ0 a shift of the whole sequence of switching
angles in the electric period. Therefore, the sequence of pulses that characterizes each
specific pulse pattern is now contained in the interval [σ0, σ0 + π).

When it comes to the computation of an optimal pulse pattern, the quarter- and half-wave
symmetry over the single electric period is exploited [1]. In this way, only a fourth of the
period of each pulse pattern has to be optimized.

• Half-period symmetry: The synchronous switching signal for one period can
be divided into quarter 1 for the interval [σ0, σ0 + π) and quarter 2 for the interval
[σ0 + π, σ0 + 2π). In quarter 2 the switching signal is the switching signal of quarter
1 inverted in the voltage, i.e.,

u (φel) = −u (σ0 + π + φel) , for φel ∈ [σ0, σ0 + π) , (2.35)

Notice that the enforcement of this symmetry establishes two fixed switches in the
pulse pattern, one at σ0 and the second one at σ0 + π.
In Figure 2.4 quarter 1 is highlighted by the green boxes and quarter 2 by the blue
boxes.
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• Quarter-period symmetry: The first and second period of a half-period sym-
metric switching signal are axially symmetric to σ = σ0 + π/2 and σ = σ0 + 3π/2,
respectively, i.e.,

u (φel) = u (σ0 + π − φel) , for φel ∈ [σ0, σ0 + π/2) , (2.36)

Figure 2.4: Half and quarter period symmetry of the three inverter voltages with l = 2.
They are obtained through symmetry from the pattern in the green box.

A pulse pattern is then completely described by the voltage level Uinit, a precommutation
angle σ0, and a sequence of l switching angles, all defined in the first quarter phase. Each
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pulse pattern corresponds to the voltage signal of a single terminal of the inverter. In the
other two terminals, the sequence of switching angles is the same, but one is delayed of
2
3
π and the other is anticipated of the same quantity. An example of three pulse patterns

built exploiting these symmetries is represented in Figure 2.4.
The three voltages of the terminals are combined in the star center of the inverter, pro-
ducing a star center voltage. For the pulse pattern of Figure 2.4, the value of the star
center voltage over the electric rotation is represented in Figure 2.5.

Figure 2.5: Star center voltage over an electric period.

Each coil of the PMSM is then connected to one of the terminals and to the star center.
Given the shifts of 2

3
π applied in the definition of the three terminal voltages, the resulting

phase signals are properly shifted, so that they preserve the three-phase structure. Figure
2.6 shows the phase voltage corresponding to the pulse pattern of two switches represented
so far. Notice that it is obtained as the sum of the voltages in the first plot of Figure 2.4
and the one in Figure 2.5.

Figure 2.6: Voltage and first harmonic (red dashed line) of phase a over an electric period.
The green box starts at the zero voltage crossing of the first harmonic and highlights the
quarter-phase symmetry of the signal.
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We remark now that the precommutation angle offers a useful degree of freedom in the
formulation of the problem since it can be physically interpreted as the phase shift of the
fundamental voltage generated by the circuit, as shown in Figure 2.6.

2.3. Simulation of the electric motor and drive

This Section shows how the electrical drive is simulated given a specific pulse pattern, in
combination with some simulation results. In Figure 2.7 the main computational flow is
provided in a block diagram representation, denoting by square the algebraic relationships
and by a circle the dynamical ones. The following graphs are obtained by applying the
Optimal Pulse Pattern depicted in 2.4.

Figure 2.7: Application of the model of the machine and the electrical drive. The diagram
depicts the non-linear dynamical relation from the pulse pattern to the mean electric
torque T̄e and the harmonic content of the phase current h1...N .

Firstly, the synchronous modulation recreates the phase voltage signals from the pulse
pattern. It can be seen as the simulation of the inverter device.

After, an interface for the dynamical model of the machine is built, using the dq direct
and inverse transformations to obtain phase currents. The dq-framework is very valuable
for understanding the behavior of the machine and its control, which is traditionally
decoupled for axis d and axis q in FOC. An insight into the electrical quantities in this
framework is revealed in Figure 2.8. In particular, the upper plots report the dq-voltages
and the lower plots report the dq-current and the relative first harmonic components.
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Figure 2.8: [Voltages and currents in the rotating dq reference frame, over an electric
period. Red lines represent the first sinusoidal harmonic of the dq currents, that in this
reference frame are constants.

In addition, the currents in the dq frame are used to compute the dispensed electrical
torque Te, depicted in Figure 2.9, according to the torque relationship 2.5. Then, the
average of the torque over the electrical period T̄e can be used as a constraint to ensure
the operating point requirement.
In the end, the currents flowing in the machine windings are presented in 2.10. These
signals are analyzed with a Fourier Transform, in order to obtain the harmonic spectrum
magnitude.
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Figure 2.9: Electrical torque over an electric period. The red line represents the average
value.

Figure 2.10: Three-phase currents flowing in the machine coils over an electric period.
2/3π phase shift can be easily seen from the red dotted lines representing the first har-
monics for each coil.
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Similar to the already stated notation used for (2.30), the phase current spectrum can be
written as:

i(t) =

 ia(t)

ib(t)

ic(t)

 =


∑N

n=1H
n
1 e

jnω0t∑N
n=1H

n
2 e

jnω0t∑N
n=1H

n
3 e

jnω0t

 , (2.37)

where H1...N
1 , H1...N

2 , H1...N
3 are the complex coefficients of the frequency spectra of the

current and h1...N1 , h1...N2 , h1...N3 are the relative magnitudes. This frequency domain analy-
sis of the three-phase currents will be useful later in Section 2.4.2 to build the cost function
for the optimization problem. For this specific purpose, only the spectrum amplitude will
be considered. Moreover, the amplitude content is equal for all the phases

h1...N1 = h1...N2 = h1...N3 = h1...N , (2.38)

and it is presented in Figure 2.11.

Figure 2.11: Simulated phase current harmonic spectrum.
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2.3.1. The dynamical behavior of the machine

The phase voltages va, vb, vc display a standard inverter harmonic content and in Figure
2.12 just one among the three phases is presented (for symmetry reasons, the three spec-
tra are identical). The even-order harmonics and the harmonics with an order multiple
of three are not present, because of the periodic synchronous modulation and the three-
phase configuration.
Notice that the objective of the power converter is to realize an ideal sinusoidal voltage,
that would have just a first harmonic. However, the true realization, that must undergo a
modulation technique, produces additional high harmonics, which have to be considered
as pollution.

Figure 2.12: Simulated phase voltage harmonic spectrum.

The phase voltages and the phase currents correspond respectively to the input and
the output of the PMSM. Comparing the relative spectra of Figures 2.11 and 2.12, it
can be concluded that overall the motor acts as a classic low-pass filter. The system
linearity preserves the actual values of the frequencies and the current amplitude is reduced
according to the frequency response described in Section 2.1.3.
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2.4. Optimization problem formulation

In order to formulate the optimal control problem, first we define in Section 2.4.1 the
optimization variables, then in Section 2.4.2 we define the cost function of the problem.
In Section 2.4.3 we introduce the constraints of the problem. The complete optimization
problem is then assembled in Section 2.4.4.

2.4.1. Optimization variables

The optimization variables of the optimal control problem that we are formulating need
to be chosen carefully. They have to cover comprehensively the whole set of possible
pulse patterns, but they must be limited to keep the dimension of the problem low. As
discussed in Section 2.2.1, to define OPPs we construct a switching signal over the first
quarter of one of the pulse patterns. Then, to define the complete electrical rotation in
all phases it is sufficient to define:

1. The precommutation angle σ0 determines also the first switching angle of the se-
quence.

2. The sequence of switching angles on the quarter period.

3. The voltage level after the precommutation angle Uinit.

The first element of this list has already been defined in Section 2.2.1. For what concerns
the second element, different approaches are available.
It is possible to use a sequence with the angles defined with respect to the zero of the
electric rotation. In this case, we should limit their values to the interval [σ0, σ0 + π/2),
and they must be in increasing order.
Alternatively, each angle can be defined as an increment with respect to the previous one.
In this case, the sequence does not have to be in increasing order, but we should apply a
constraint to the sum of the increment angles so that it is less than π/2.
Finally, it is possible to define each switching angle as the increment from the precommu-
tation angle. In this case, their value must be limited to the interval [0, π/2) and they
must be in increasing order.
Out of these three possible approaches, the third shows the good advantage of constant
bounds on each switching angle. This feature is appealing for optimization methods where
the search space must be constant and previously defined, like SMGO. Another advantage
of this formulation stands in the fact that σ0 is the phase delay of the phase voltage. In
fact, if one wants to keep the same shape of the phase voltage, but with a different phase,
it is possible to simply change σ0, instead of re-optimizing the whole pulse pattern.
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Therefore, we define the l switching angles in the quarter phase after the precommutation
σ0 as σ̄1, . . . , σ̄l. We can equivalently represent the sequence of switching angles using
the variables

σi = σ̄i − σ0 for i = 1, . . . , l. (2.39)

Notice that the first switch occurs at σ0. We can then collect these continuous variables
in the vector

σ = [σ0, σ1, . . . , σf ] . (2.40)

The initial voltage Uinit could be introduced as an additional boolean optimization vari-
able, such that Uinit ∈ {−0.5UDC, 0.5UDC}. This structure essentially requires solving
twice the optimization problem, using only σ as optimization variable.
Differently, in this work, the optimization problem is solved just one time, fixing

Uinit = 0.5UDC (2.41)

and bounding the precommutation angle in the interval

σ0 ∈ [−π,+π) . (2.42)

This is equivalent to the solution of two optimization problems. Indeed, the following
proposition is valid:

Proposition 2.1. A shift by π of the whole pulse pattern, possible thanks to the precom-
mutation angle, is equivalent to a change in the sign of the starting voltage Uinit.

Proof. This property is due to the half-period symmetry and the periodicity of the pulse
pattern. Let consider φel ∈ [0, 2π) and the pulse pattern us(φel). For the sake of simplicity,
we assume σ0 = 0, but the proof holds also for different values.
A change of Uinit in the pulse pattern leads to the pulse pattern

uf1(φel) = −us(φel).

Instead, if we apply to us the shift σ0 = π, the new pulse pattern is

uf2(φel) = us(σ0 + φel) = us(π + φel) = −us(2π + φel)

where the last step is due to symmetry (2.35). Since the signal is periodic with period
2π, we can rewrite it as −us(φel), proving the equivalence.
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In order to take into account all the possible pulse patterns, either the first optimization
variable must cover an interval of at least 2π or both signs for the starting voltage must
be taken into account. In the last case, σ0 can be limited to a stricter interval, thanks to
a priori knowledge on the specific operating condition.
Thanks to Proposition 2.1, the optimization variables of the problem at hand are limited
to the entries of the vector σ.

In this work, the optimization problem is formulated with a fixed number of l switches,
and therefore a fixed number of optimization variables. The number of switching angles
l could also be considered an optimization variable. Under the assumption that the cost
function is decreasing with respect to the number of the optimization variables (further
detail in Section 2.4.2), the problem is iteratively solved with an increasing value of l, in
order to improve the solution. Moreover, this approach allows to directly test how the
optimization algorithm in use behaves with increasing dimensions. In Chapter 6, we will
see that a big number of optimization variables on such a high non-linear problem turns
out to be impracticable to be solved with global methods.

2.4.2. Cost Function

The cost function composition is the most interesting and creative task in the formulation
of any kind of optimization problem because it has to be representative of the objective
behavior we want to optimize and at the same time compliant with the optimization
method used to solve the problem.

The goal of OPPs is to minimize the total losses of the electric drive system. Some of
the sources of powertrain losses are the switching losses, incurred by electronic power
converters, and the copper and iron losses, associated with higher-order harmonics of the
rotating magnetic field in the electric machine. These are contingent upon the operating
conditions of the vehicles. Nevertheless, a relevant contribution is given by the devia-
tion of the realized physical electrical quantities (currents, voltages, and fluxes) from the
desired fundamental ones. As a matter of fact, the harmonic pollution introduced by a
component can seriously spread into the electric network, producing a cascading pollution
distribution.

For this reason, the cost function in this work is based on theTotal Harmonic Distortion
(THD) concept. This methodological choice follows the literature on this topic [7, 10], as
much as recent trails of research [1], and even if it is a simplified approach, still represents
a valid and relevant starting point. The resulting framework can then be easily extended
to a more complex loss model.
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Figure 2.13: Examples of different harmonic distortions.

The THD is a performance criterion computed with the spectrum of a signal. In particular,
it compares the magnitude of the first harmonic with the magnitude of the higher harmonic
content. One of the possible mathematical formulations of such a concept is

THD =

√∑N
i=2(h

i)2

h1
, (2.43)

where hi is the amplitude of the i-th spectrum harmonic of the signal under exam.

In this work, we apply this index to the signal of the phase current, since the current
distortion plays a fundamental role in the functioning of a PMSM. Note that a different
choice could have been to apply it to the dq-model currents Id and Iq, but we opted for
the phase current because it has a physical meaning. From now on, we indicate with
hi(σ) the magnitude of the i-th order harmonic component of the phase current.

We abandon formulation (2.43) in favor of the multi-objective cost function

F (σ) =

√√√√ N∑
i=2

(hi(σ))2 +Qh1(σ) (2.44)

and we do this for a double reason. First of all, to avoid numerical issues related to the
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denominator approaching zero value. In the second instance, the second term enforces a
soft constraint on the upper limit of the torque, as explained in Section 2.4.3. In fact,
leveraging on h1 at the denominator, the solver encourages h1 to high values. This implies
a high value of the torque, far from the desired one, especially for working points with
low torque and hence low current. The weight parameter Q is empirically tuned to have
the same order of magnitude for both terms, but still express the first term, which is the
primary objective, as bigger than the second.

It is possible to see that the cost function (2.44) does not account in any way for the
switching losses. For this reason, an increasing number of switching l can be considered
beneficial for the minimization at hand. This consideration is corroborated by the best
value found in the resolution of the optimal problem for dimension D = l+1 going up to
20, as shown below.

Figure 2.14: Optima of the cost function for different D = l+1. These results are obtained
using multistart gradient-based optimization.

On the shape of the cost function

The cost function (2.44) is a continuous function defined on the domain of continuous
variables [σ0, σ1, . . . , σf ] ∈ Rl+1. However, the model of the system is simulated with a
sampling time Ts. This means that a change in one of the optimization variables lower
than Ts does not affect the simulation, and consequently does not affect the cost function.
As a result, the cost function is a piecewise constant function, with a more or less finer
partition, according to the discrete-time step Ts used to sample the input signal during a



28 2| Model of the control problem

single electric rotation (see Section 2.1.4).

2.4.3. Constraints

This optimal control problem is characterized by constraints of different nature. First,
there are linear constraints on the optimization variables. These are due to the specific
formulation chosen in 2.4.1, but also to a physical constraint due to the inverter nature,
which is the minimum pulse time tmin. The semiconductors in each phase of the inverter
cannot switch arbitrarily fast, but they need some time after every switch before they can
be switched again. To account for this, this minimum pulse time is translated into a proper
minimal pulse angle width σmin (expressed in rad) and is accounted in the constraints of
the problem.
Therefore, the bounds on the optimization variables are

σ0 ∈ [−π,+π),

σi ∈
[
i σmin,

π

2
− (l + 1− i)σmin

2

]
for i = 1, ..., l.

(2.45a)

(2.45b)

Notice that (2.45b) ensures the pulse pattern to be within a quarter-period since we take
advantage of the symmetries. Moreover, the difference between the lower bound on σ1

σ1 > σmin (2.46)

and the upper bound on σf

σf <
π

2
− σmin

2
(2.47)

is due to the quarter phase symmetry. Indeed, if (2.47) is strictly respected, in the full
pattern σf differs of σmin from the following switching.
The formulation chosen in 2.4.3 requires also that the switching angles must be in increas-
ing order. We simply write

σi + σmin ≤ σi+1 for i = 1, . . . , l − 1 (2.48)

Notice that this set of constraints does not involve the precommutation angle σ0, which
can be freely chosen within the bounds (2.45a). The presence of σmin ensures that no
switching occurs too close to another one.

The OPP control problem is a versatile formulation. For what concerns the non-linear
constraints, it is possible to account for a variety of different physical issues, e.g. the
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maximum current flowing in the coils or a limit on the voltage ripple [1].
In this study, the only non-linear constraint explicitly applied is the one on the operating
condition. In fact, we want to optimize the pulse pattern for a specific steady state, given
by the couple Ωm and Treq. While the speed is implicitly defined in the model of the
PMSM, the torque is imposed.
Enforcing a restriction on torque for every time instant requires a big number of con-
straints. Therefore, we opt for imposing a constraint on the mean torque value T̄e(σ).
The choice of the cost function in Section 2.4.2 supports this choice, since the minimiza-
tion of the current harmonic distortion leads to a small torque ripple.
The most accurate idea to maintain the desired steady-state condition would be to enforce
an equality constraint on the mean torque T̄e(σ) that the model outputs. However, the
equality constraint compromises the performance of the solver. Therefore, we opt for a
non-linear inequality constraint on the mean torque

T̄e(σ) ≥ Treq (2.49)

Notice that (2.49) enforce only a lower limit on the mean torque. The upper limit is
compelled as a soft constraint, thanks to the second term of (2.44).

From a formal point of view, the fact that the cost function (2.44) depends on the optimiza-
tion variables can be considered as a non-linear constraint. To point out this dependency,
we first define

h =
[
h1, . . . , hN

]
(2.50)

as the vector that contains all the amplitude of the N -truncated series of current harmon-
ics. We can now write

h(σ) = Fed(σ), (2.51)

where the Fed function basically entails the complete electrical drive model, that relates
the amplitude current hi with the optimization variables σ. The function Fed(σ) is an
articulated algebraic and dynamic relationship, described in detail in Figure 2.7.
Notice that, in the solution of the optimization problem, this constraint is implicitly
respected in the computation of the cost function. Hence, it does not have to be taken
into account by the solver.
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2.4.4. Optimization problem

The overall optimal control problem turns out to be a continuous non-convex constrained
optimization. The nature of OPP is to find an optimal modulation to a given steady-state
working point, therefore the problem can be solved offline and the result can be stored
and used during online control. The offline computation ensures the necessary time to
explore the multiple local minima that affect this problem.

min
σ=[σ0, σ1, ...,σf ]

F (σ) =

√√√√ N∑
i=2

(hi(σ))2 +Qh1(σ)

subject to

h(σ) = Fed(σ)

σ0 ≥ −π

σ0 ≤ π

σ1 ≥ σmin

σf ≤
π

2
− σmin

2

σj + σmin ≤ σj+1 for j = 1, . . . , l − 1

T̄e(σ) ≥ Treq

(2.52a)

(2.52b)

(2.52c)

(2.52d)

(2.52e)

(2.52f)

(2.52g)

(2.52h)
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Optimization

The Set Membership Global Optimization (SMGO) is an innovative method characterized
by its data-driven, global, and derivative-free nature. The following description is a
summary as close as possible to the dissertation [21], included here for self-consistency.

3.1. Problem statement

The objective is to minimize a scalar cost function f(x) : X → R, where X ⊂ RD is
assumed to be a compact and convex search set, from now referred as search space. The
points in the search space are subject to the inequality constraints gs, s = 1, ..., S. The
functions f and gs, s = 1, ..., S are unknown, but the following assumptions hold:

Assumption 1. Functions f and gs, s = 1, ..., S are Lipschitz continuous over X , with
unknown Lipschitz constants γ, ρ1, ..., ρS:

f ∈ F(γ)

g1 ∈ F(ρ1)
...

gS ∈ F(ρS)

(3.1)

where
F(γ) .= {h : |h(x1)− h(x2)| ≤ γ∥x1 − x2∥,∀x1,x2 ∈ X}. (3.2)

In other words, a function is Lipschitz continuous if its rate of change is bounded by a
constant multiple of the norm of the distance between any two points in its domain. In
this work, ∥·∥ symbolizes the 2-norm (Euclidean norm).
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Assumption 2. Functions f and gs, s = 1, ..., S are not known in closed form, but can
be evaluated at any point x(n) ∈ X without noise or disturbance (exact evaluation):

z(n) = f(x(n))

c
(n)
1 = g1(x

(n))

...

c
(n)
S = gS(x

(n)).

(3.3)

Using the convention that a constraint gs is satisfied at a point x if gs(x) ≥ 0, we define
the set of points that fulfill gs:

Gs
.
= {x ∈ X | gs(x) ≥ 0} . (3.4)

The existence of a finite feasible region is guaranteed:

Assumption 3. Considering the feasible set G .
= X ∩

{
∩Ss=1Gs

}
, we have

L(G) > 0, (3.5)

where L stands for the Lebesgue measure.

The last assumption states that there is a finite non-zero measure (Lebesgue measure) for
the feasible set. The Lebesgue measure is also known as "D volume"; e.g., for D = 2 it is
the area, while for D = 3 it is the three-dimensional volume.
The combination of these assumptions ensures that at least one global minimizer x∗ exists
in X :

x∗ ∈ X .
= {x ∈ G | ∀x′ ∈ G, f (x′) ≥ f(x)} , (3.6)

with the corresponding minimum cost z∗ = f (x∗).
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3.2. Algorithm

SMGO is implemented through a sequential algorithm: The algorithm performs a well-
defined sequence of tasks upon the arrival of a new data point from evaluation. Each
function evaluation produces the tuple

(
x(i), z(i), c(i)

)
, so we take for granted that the

evaluations of the constraint functions are coupled, i.e. they are performed simultaneously
to the evaluation of the cost. Each data point can be referred to as sample. The collection
of the points sampled by the optimization algorithm is defined as

X⟨n⟩ .=
{(

x(1), z(1), c(1)
)
;
(
x(2), z(2), c(2)

)
; . . . ;

(
x(n), z(n), c(n)

)}
, (3.7)

where n ∈ N is the number of data points, which corresponds to the number of total
function evaluations. With a slight abuse of notation, the notation x(i) ∈ X⟨n⟩ means
that the tuple

(
x(i), z(i), c(i)

)
is contained in the data set X⟨n⟩.

The tasks performed by the algorithm are enumerated as follows:

1. Set membership model update: The information provided by the new sample
is used to refine the current surrogates of the cost and constraint functions.

2. Candidate points generation: New points of the search space are added to the
candidate points.

3. Exploitation: Investigates the candidate points that could correspond to the op-
timum.

4. Exploration: Investigates the candidate points belonging to a region of the search
space where the cost is uncertain.

These steps are revised one by one in the following sections.

3.2.1. Set membership model update

The optimization at hand is based on Set Membership (SM) nonlinear function approxi-
mation [18]. This approximation can be seen as a cheap surrogate model of the black-box
function. In this model, each point of the search space is associated with a lower and
upper bound: These represent the tightest bounds, on the basis of the available data
and prior assumptions, on the possible values of the underlying function. The difference
between these two bounds can be considered an uncertainty measure.
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Figure 3.1: Set Membership-based bounds on a 1D function. Credits to [21].

At every iteration n = 1, . . . , Nmax, a point x(n) ∈ X is sampled, resulting in a tuple(
x(n), z(n), c(n)

)
. This tuple is appended to the existing data set:

X⟨n⟩ = X⟨n−1⟩ ∪
(
x(n), z(n), c(n)

)
. (3.8)

Using the updated data set X⟨n⟩, we compute the estimates of the Lipschitz constants γ
and ρs, respectively denoted as γ̃⟨n⟩ and ρ̃⟨n⟩s , s = 1, . . . , S accordingly to (3.2):

γ̃⟨n⟩ = max
x(i),x(j)∈X⟨n⟩

( ∣∣z(i) − z(j)∣∣
∥x(i) − x(j)∥

, γ̃⟨n−1⟩

)
,

ρ̃⟨n⟩s = max
x(i),x(j)∈X⟨n⟩


∣∣∣c(i)s − c(j)s

∣∣∣
∥x(i) − x(j)∥

, ρ̃⟨n−1⟩
s

 .

(3.9)

(3.10)

These formulas are applicable starting from n = 2, i.e. the second iteration; γ̃⟨1⟩ > 0 and
ρ̃
⟨1⟩
s > 0 are small but finite initial values for the respective Lipschitz constants, which

can be available from initial information or estimated. These update laws establish that
the estimates of the Lipschitz constants are monotonously increasing.
The new sampled point allows updating also the lower and upper bounds of the estimated
cost function on a general point x ∈ X :

f̄ ⟨n⟩(x) = min
k∈{1,...,n}

(
z(k) + γ̄⟨n⟩

∥∥x− x(k)
∥∥) (3.11)
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as upper bound and

f ⟨n⟩(x) = max
k∈{1,...,n}

(
z(k) − γ̄⟨n⟩

∥∥x− x(k)
∥∥) (3.12)

as lower bound. We also obtain a central approximation of the cost function

f̃ ⟨n⟩(x) =
1

2

(
f̄ ⟨n⟩(x) + f ⟨n⟩(x)

)
(3.13)

and its corresponding uncertainty measure

λ
⟨n⟩
f (x) = f̄ ⟨n⟩(x)− f ⟨n⟩(x). (3.14)

Analogous bounds can be computed for each constraint gs, resulting in the quantities
ḡ
⟨n⟩
s (x), g⟨n⟩

s
(x), g̃⟨n⟩s (x), and λ

⟨n⟩
g,s (x). If the estimated constraint function g̃

⟨n⟩
s (x) > 0,

the constraint is considered satisfied. The region where all the constraints are satisfied
provides an estimate of the feasible region, as depicted in Figure 3.2.

Figure 3.2: SM-based bounds on a 1D function with two constraints. The regions where
the constraints are greater than 0 (horizontal line) are highlighted. Credits to [21].



36 3| Set Membership Global Optimization

3.2.2. Candidate points generation

The SM-bounds are computed for a set of candidate points E⟨n⟩ ⊂ X . This set can be
either initialized or not, but after the first iteration is systematically updated based on the
existing data. The generation technique is flexible: The standard and most tested tech-
nique is the spider web generation, introduced in [24] as an alternative to the midpoints-
based generation [23].

Initialization

At the beginning of the optimization, it is possible (but not necessary) to populate the set
E⟨n⟩ with some initial candidate points. In [21] the case of hyperrectangular X is treated.
In order to have a uniform distribution in the search space, the points are selected from
the Sobol distribution [26]. The Sobol distribution is a quasi-random low-discrepancy
sequence of points in a unit hypercube of dimension D. This method preserves the
repeatability of the algorithm and confers a good coverage of X .

Midpoints-based generation

For this simple candidate points generation, X is assumed to be a polytope, with vertex
set V

.
= {v1,v2, . . . ,vV }, where V > D. In this case, the candidate points are all the

midpoints between any pair of samples and/or vertices, i.e.

E⟨n⟩ =

{
x(i) + x(j)

2
| x(i),x(j) ∈X⟨n⟩ ∪ V

}
. (3.15)

This candidate points generation method is simple in concept and implementation. How-
ever, it is restricted only to polytopic X . The number of candidate points that will be
generated is V n + n(n−1)

2
, being V the number of vertices. This highlights the drawback

of the method: For hyperrectangle search spaces, the number of vertices V grows expo-
nentially w.r.t. D. This issue limits the method to use cases with relatively low D (up to
around 10).
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Spider web generation

This points generation technique is a modified version of the midpoints-based one and is
applicable for a generalized convex search space X . For each sample x(i), we generate the
candidate points:

1. by gridding along each segment to other samples x(j) ∈X(n) \x(i);

2. by gridding from x(i), along the coordinate directions to the bounds of X .

The first criterion is similar to the midpoints-based one, except that the generation on
the segments linking to the vertices is no longer involved. We define Y

(i)
◦ as the set of

candidate points generated at iteration i from x(i) to each other sample x(j). We can
write

Y (i)
◦ =

{
x(i) +

k

B̄
x(j) | k ∈ {1, . . . , B̄ − 1}

}
, (3.16)

with 1/B̄ being the gridding granularity of the points generation.
For the second points generation criterion, we denote the coordinate directions±âd with d =

1, . . . , D, and define
b
(i)
+d = max

b∈[0,∞)
b

s.t. x(i) + bâd ∈ X ,

b
(i)
−d = max

b∈[0,∞)
b

s.t. x(i) − bâd ∈ X .

(3.17)

(3.18)

The formulas above describe the lengths of the segments emanating from x(i) towards the
borders of X along dimension d, in the positive and negative coordinate directions. This is
a convex constrained optimization, but in the case X is a hyperbox, it can be circumvented.
The candidate points generated along the coordinate direction are described as

Y
(i)
+d =

{
x(i) +

k

B̄
b
(n)
+d âd | k ∈ {1, . . . , B̄ − 1}

}
,

Y
(i)
−d =

{
x(i) − k

B̄
b
(n)
−d âd | k ∈ {1, . . . , B̄ − 1}

}
.

(3.19)

(3.20)

Hence, for each sampled point x(i), we generate a set of candidate points as follows:

Y (i) =

(
D⋃

d=1

{
Y

(i)
+d ,Y

(i)
−d

})
∪ Y (i)

◦ . (3.21)
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Finally, the overall set of candidate points is

E⟨n⟩ =
n⋃

i=1

Y (i). (3.22)

A 2D example of a spider web generation is shown in Figure 3.3.
This method results in a total of n(B̄ − 1)

(
2D + n−1

2

)
candidate points. The growth of

generated candidate points is polynomial w.r.t. n, but is linear w.r.t. D. Compared to the
midpoints-based generation, this method is computationally advantageous for higher D,
especially for hyperrectangular X . Furthermore, the spider web generation holds broader
applicability, because it does not require a polytopic X , but can be applied to any convex
and compact space.

Figure 3.3: Spider web candidate points generation in a 2D case. Credits to [21].

3.2.3. Exploitation

During exploitation, the algorithm tries to improve the current optimum z∗⟨n⟩. We define
the current best feasible sample as

(
x∗⟨n⟩, z∗⟨n⟩, c∗⟨n⟩

)
= arg min

x(i)∈X⟨n⟩
z(i)

s.t. c(i) ≥ 0.

(3.23a)

(3.23b)

In other words, it is the sample in X⟨n⟩ with the lowest objective value z(i) among the
feasible ones. We can also define the optimality gap δ, which is basically the difference
between the current best-sampled value and the true optimal value:

δ⟨n⟩ = z∗⟨n⟩ − z∗. (3.24)
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The quest for a better optimum is influenced by the following ideas:

• During exploitation, we expect to find a better optimum close to the current one.
For this reason, the search is limited to a small trust region T ⟨n⟩.

• The SM-based model carries information about how low the cost function could
possibly be at a certain candidate point. The combination of f̃ ⟨n⟩(x) and λ

⟨n⟩
f

provides a metric of the expected improvement.

• The feasibility at a certain candidate point can be inferred by the SM-based model
of the constraint functions gs. The combination of g⟨n⟩

s
(x) and g̃

⟨n⟩
s (x) indicates

whether the point is predicted to fulfill gs upon sampling.

Therefore, the selection of a new sample x
⟨n⟩
θ is formulated as

x
⟨n⟩
θ = arg min

x∈E⟨n⟩∩T ⟨n⟩

(
f̃ ⟨n⟩(x)− βλ⟨n⟩f (x)

)
s.t. ∆g̃⟨n⟩s (x) + (1−∆)g⟨n⟩

s
(x) ≥ 0, s = 1, . . . , S.

(3.25a)

(3.25b)

The user-defined weighting β introduces a trade-off between minimizing the central ap-
proximation f̃ ⟨n⟩, and maximizing the uncertainty λ

⟨n⟩
f , to gain more information about

the hidden function.
The exploitation aims to sample a feasible point. For this reason, the constraint (3.25b)
is included in the surrogate problem. The left-hand expression in (3.25b) is a metric
designed to predict the satisfaction of any unsampled point x w.r.t. constraint gs. This
metric entails the parameter ∆. Firstly introduced in [24], this parameter is named risk
factor and it affects the cautiousness of the algorithm w.r.t. feasibility. This tuning of-
fers a useful feature for real-time optimization that always needs to be provided with a
feasible point. When ∆ = 0, the candidate points considered feasible are limited to the
points where the lower bounds g⟨n⟩

s
(x), s = 1, . . . , S are all greater than 0: This is the

most stringent condition. Instead, ∆ = 1 is the more risky condition, in the sense that
it’s easier to find unfeasible points as a result of the exploitation.

If there exists a solution x
⟨n⟩
θ to the surrogate problem (3.25), before being sampled, it

undergoes an expected improvement test. This test assesses if the lower bound of the cost
function f ⟨n⟩ is lower than the current optimum z∗⟨n⟩ by a certain threshold:

f ⟨n⟩
(
x
⟨n⟩
θ

)
≤ z∗⟨n⟩ − η, (3.26)

where η = αγ̃⟨n⟩ is referred to as the expected improvement threshold, and α > 0 is a
tuning parameter. Figure 3.4 offers a visualization of (3.26).
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Figure 3.4: Expected improvement threshold η in a 1D case. Credits to [21].

On the one hand, if the exploitation candidate x⟨n⟩θ satisfies (3.26), it will be assigned for
evaluation at the next iteration n+ 1:

x(n+1) = x
⟨n⟩
θ . (3.27)

On the other hand, if the exploitation optimization (3.25) is unfeasible or if x⟨n⟩
θ fails the

expected improvement test (3.26), the algorithm will proceed to attempt an exploration
of the search space. This means that the criterion for selecting the next sampling point
changes. The expected improvement test is necessary to ensure the theoretical properties
of the algorithm, as we recall in Section 3.3.

Trust region

The trust region is a ball T ⟨n⟩ centered at the current optimal point x∗⟨n⟩ with radius
v⟨n⟩. A trust region exists as soon as x∗⟨n⟩ exists:

T ⟨n⟩ =
{
x ∈ X |

∥∥x− x∗⟨n⟩∥∥
∞ ≤ v⟨n⟩

}
. (3.28)

Any norm can be used to declare (3.28), e.g. 1- or 2-norm, as to adapt to the shape of
the search set X . The size of T ⟨n+1⟩ is updated according to the resulting sampled value
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z(n+1), as follows:

v⟨n+1⟩ =

max
(
v, κv⟨n⟩

)
if exploitation on n failed,

min
(
v̄, 1

κ
v⟨n⟩
)

if exploitation on n was successful.
(3.29)

where κ < 1 is a shrinking factor. In summary, T ⟨n+1⟩ is shrunk (until a very small radius
v), if no better optimum was found, i.e., there is no improvement w.r.t. current best z∗⟨n⟩,
or if exploration was done instead. Conversely, T ⟨n+1⟩ is enlarged (up to v̄) when the
new sample from exploitation has a posteriori returned a new best point. This definition
slightly differs from the theoretical one provided in [21, 24], but it describes accurately
the implementation.
The size change of the trust region T ⟨n⟩ imitates the level of confidence that we have in
a certain region. If the region provides good samples, the trust region is kept large to
avoid cutting too many candidate points out of the exploitation phase. Conversely, when
the exploitation fails, a shrinkage of the trust region facilitates the conversion into an
exploration.
We remark that the trust region serves two purposes:

1. It filters the candidate point set E⟨n⟩ in order to exploit just a neighborhood of the
current optimum.

2. It casts a set of additional points, namely the cloud points. These points need to
be characterized by the bounds of the SM-based model, so they add some computa-
tional burden. However, they introduce a higher variety of search directions in the
exploitation phase.

In the standard implementation, the cloud points are obtained as elements of a Sobol
distribution. The Sobol distribution is a good coverage of the neighborhood of the current
best sample, but it limits the trust region to a D-hyperrectangular shape. Since it is not
guaranteed that the cloud points belong to X , this condition must be checked on every
member of the cloud.
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3.2.4. Exploration

To acquire more information regarding the shape of the unknown functions in the whole
search space, the SM-based model is used to perform exploration. In this case, we want to
sample the point x⟨n⟩

ϕ with the highest uncertainty, such that upon sampling at iteration

n + 1, the uncertainty λ⟨n+1⟩
f

(
x
⟨n⟩
ϕ

)
sets to zero, and the uncertainty in its vicinity also

decreases. In the exploration routine, we select x
⟨n⟩
ϕ as the solution of the optimization

problem

x
⟨n⟩
ϕ = arg max

x∈E⟨n⟩
Φ⟨n⟩(x). (3.30)

The function Φ⟨n⟩(x) is referred to as the exploration merit function. It is composed by
the terms

Φ⟨n⟩(x)
.
= ϕ⟨n⟩(x) + k

(
τ ⟨n⟩(x)

)
, (3.31)

where the first term on the right-hand part of the equation is responsible for the explo-
ration behavior, while the second term guarantees the global convergence of the proposed
algorithm, as will be shown in Section 3.3. The term τ ⟨n⟩(x) is an iteration count initial-
ized at the generation of the candidate point, i.e. the age of the candidate point. Function
k(·) is any is continuous and strictly increasing function, with limτ→∞ k(τ) = +∞ and
k(0) = 0.

The design of ϕ⟨n⟩(x) is flexible. We opted for the one developed in [24]. It tries to take
into consideration the following factors:

• The importance of prioritizing the most remote candidate points with respect to
the existing samples.

• When exploring, it is crucial to choose areas where uncertainty with respect to the
objective is higher. This approach is applied only in regions that are estimated
feasible.

• When no feasible points are found, the algorithm should focus on searching in re-
gions where feasible solutions are more likely to be found. For instance, in the
case of multiple constraints, the algorithm should prioritize regions in which more
constraints have already been fulfilled.

These factors are combined in

ϕ⟨n⟩(x)
.
= ζ(x) ((1−∆)wλ(x) + ∆wπ(x)wg(x)) , (3.32)
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where

ζ = min
(x⟨n⟩,z(n),c(n))∈X⟨n⟩

∥∥x(i) − x
∥∥ ,

wλ(x) =

λ
⟨n⟩
f (x) if ∆g̃⟨n⟩s (x) + (1−∆)g⟨n⟩

s
(x) ≥ 0, s = 1, . . . , S

0 otherwise,

wπ(x) =
S∑

s=1

λ
⟨n⟩
g,s (x)

ρ̃
⟨n⟩
s

,

wg(x) = 2
∑

12(x),

1s(x) =

1 if g̃⟨n⟩s (x) ≥ 0

0 otherwise.

(3.33a)

(3.33b)

(3.33c)

(3.33d)

(3.33e)

At the end of the exploration, the selected sample is assigned for evaluation at the next
iteration n+ 1:

x(n+1) = x
⟨n⟩
ϕ . (3.34)

3.3. Theoretical Analysis

In this section, the convergence of SMGO is treated. The convergence of a global op-
timization is achieved if, given a required sub-optimality measure ε > 0, it produces a
ε-suboptimal cost w.r.t. the global one z∗, and does it in a finite number of evaluations.
The global convergence property is defined in [21] as follows:

Definition 1. An optimization algorithm is globally convergent, if

∀ε > 0, x(1) ∈ X , ∃nε <∞ : z∗⟨nε⟩ ≤ z∗ + ε.

The definition above asserts that given any initial starting point x(1) within the search
space X , the algorithm will attain an ε-suboptimal point in a finite number of evalua-
tions nε. However, in the absence of knowledge regarding the true Lipschitz constants,
it is impossible to determine an upper bound on the evaluations required to ensure ε-
suboptimality. The foundation of this theoretical convergence is the ability of the algo-
rithm to generate a progressively dense distribution of samples in the search space. The
argument of a dense points generation will be the object of Theorem 3.1.
Before proceeding with it, we introduce a preliminary lemma that deals with the behavior
of the exploitation routine.
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Lemma 1. SMGO will switch to the exploration routine after a finite number of successive
exploitation evaluations.

We clarify that the aforementioned lemma is established not based on the location of the
exploitation point, but rather on the condition of expected improvement, based on a finite
α. Therefore, the proximity of the exploitation point to the optimum is irrelevant, as long
as it falls within the estimated feasible region and its sampling results in the removal of
a finite volume from E⟨n⟩.
Moreover, the lemma demonstrates how a higher (lower) improvement threshold factor
α leads to larger (smaller) hyperballs being removed from E⟨n⟩ at every exploitation
sampling, resulting in a decreased (increased) upper bound on the number of iterations
required to switch to exploration.
As a result of the mechanism of the algorithm, exploration is performed if exploitation
fails. As n→∞, the exploration routine will run infinitely often. Thus, the convergence
properties of SMGO depend on whether the exploration routine can satisfy Definition 1,
given that there are no guarantees on exploitation convergence.
We present a theorem outlining the conditions required for a candidate points generation
scheme, with an exploration merit function (3.31), to guarantee convergence.

Theorem 3.1. Consider at any iteration n the set of unsampled candidate points E⟨n⟩

generated by SMGO, given the set of sampled points X⟨n⟩. With Assumption 1, SMGO
is globally convergent (Definition 1), if E⟨n⟩ satisfies both of the following conditions:

1. For any x(i) ∈X⟨n⟩ and any half-space H with x(i) on its boundary,

(H ∩ X ) ∩E⟨n⟩ ̸= ∅

2. Consider any half-space H, with x(i) ∈ X⟨n⟩ on its boundary. Now take a sample
x(j) such that

x(j) = arg min
x∈X⟨n⟩∩H

∥∥x− x(i)
∥∥

If x(j) exists, then it should happen that

(
B
(
x(i),

∥∥x(i) − x(j)
∥∥) ∩H) ∩E⟨n⟩ ̸= ∅,

where B
(
x(i),

∥∥x(i) − x(j)
∥∥) is the ball centered in x(i) with radius

∥∥x(i) − x(j)
∥∥.

The readers interested in the proof are redirected to [21].
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Algorithm 3.1 Set Membership Global Optimization
Input: Initial point x(1), search space X , Lipschitz constants estimates
γ̃⟨1⟩ = γ, ρ̃

⟨1⟩
s = ρ, maximum number of iteration Nmax, parameters α, β,

∆, B̄.
1: while iteration n within the budget Nmax do
2: Evaluate the objective f and constraints gs at x(n), add the resulting sample(

x(n), z(n), c(n)
)

to the set X⟨n⟩

3: Update the SM-model
Update the Lipschitz constants γ̃⟨n⟩, ρ̃⟨n⟩1 , . . . , ρ̃

⟨n⟩
S according to (3.9)-(3.10),

update the current best sample
(
x∗⟨n⟩, z∗⟨n⟩, c∗⟨n⟩

)
from X⟨n⟩ (3.23a),

update the candidate points E⟨n⟩ (3.22).
4: Exploitation routine

Update the trust region size v⟨n⟩ (3.29) and cast the cloud points in the trust region
T ⟨n⟩, solve (3.25) to choose the candidate exploitation point x

⟨n⟩
θ .

5: if x
⟨n⟩
θ exists and expected improvement condition (3.26) is met then

6: Assign test point for next iteration x(n+1) ← x
⟨n⟩
θ .

7: else
8: Exploration routine

Solve (3.30) to compute x
⟨n⟩
ϕ .

9: Assign test point for next iteration x(n+1) ← x
⟨n⟩
θ .

10: end if
11: Go to next iteration n← n+ 1.
12: end while

Output: Final optimal point and value: return the best sample(
x∗⟨Nmax⟩, z∗⟨Nmax⟩, c∗⟨Nmax⟩

)
from the set X⟨Nmax⟩.
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Pattern

In this Chapter, we detail the modifications made to SMGO to suit the industrial opti-
mization problem presented and formulated in Section 2.4. In Section 4.1, we investigate
how to enforce the linear constraints that ensure an increasing sequence of properly spaced
angles. After that, we treat some precautions that must be integrated into the SMGO
algorithm. In Section 4.2, the tuning of SMGO is described.

4.1. Enforcement of linear constraints

The optimization variables of such a problem are collected as

σ
.
= [σ0, σ1, ..., σf ] . (4.1)

The dimensionality of our optimization problem is D = l + 1, where l is the number
of switching angles that we are considering. The bounds on each single optimization
variable have been treated in Section 2.4.3 and are reported in (2.45). However, these
bounds guarantee neither the ordering of the switching angles nor the minimum pulse
width σmin between them, formally required by constraint (2.52g).
The enforcement of these restrictions as black-box constraints gi would be a poor choice:
It would lead to a significant increase in computational burden and could also compromise
the performance of the algorithm, e.g. influencing its exploration with the uncertainty of
too many functions. On top of that, the search space described by the hyperbox (2.45) is
avoidably large and includes redundant pulse patterns.

The acknowledgment of the linear nature of said constraints paves the way to a more
efficient solution. With the definition of σsa

.
= [σ1, ..., σf ] as the sequence of merely

switching angles (ruling out the precommutation) and σmin as the column vector obtained
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stacking l − 1 times the value σmin, constraint (2.52g) is rewritten as:

M σsa ≤ σmin with M =


1 −1

. . . . . .

1 −1

 ∈ R(l−1)×l. (4.2)

The set of feasible switching angle sequences can then be written as

Psa =
{
σsa ∈ Rl|M σsa ≤ σmin

}
. (4.3)

Combining this writing with the knowledge that each switching angle is bounded, we
obtain the definition of polytope contained in [13]. Moreover, the introduction of a new
switching angle introduces only one new vertex to the set of vertices.

Remark. The polytope Psa is a simplex by construction: In fact, it is contained in Rl and
is characterized by l + 1 linearly independent vertices. It can be described as the convex
hull of said vertices [13].

The extension of (4.3) to include the precommutation angle σ0 is straightforward:

P =
{
σ ∈ Rl+1|M e σ ≤ σe

min

}
,

where M e =

[
0 0T

0 M

]
∈ Rl×(l+1) and σe

min =

[
0

σmin

]
∈ Rl.

(4.4)

The resulting polytope is a prism, i.e. the product of a polytope with an interval. More
precisely, the prism P is the result of the product of the l-simplex Psa and the interval
[−π, π], where the precommutation angle σ0 is defined. As a consequence, it has 2(l + 1)

vertices. A visualization of such prism in the case D = 3 is offered in Figure 4.1.

The prism P is a convex and compact set. It is a subpolytope of the D-hyperbox defined
by (2.45). This means that its 2D vertices are a subset of the 2D vertices of the hyperbox.
Limiting the search space of SMGO to the prism P would implicitly enforce the linear
constraints (4.2), but also reduce the Lebesgue measure of the search space [13]. In order
to do that, it is sufficient to account for candidate points that are only inside P . Checking
all the candidate and cloud points generated throughout the algorithm and filtering out
the points that are generated outside of P is cumbersome and impractical, especially for
the cloud of initial points and for the points cast in the trust region. This consideration,
in conjunction with the properties of the prismatic search space P , motivated some slight
modifications of the algorithm mechanics.
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Figure 4.1: Plot of the prism for a normalized 3D search space.

4.1.1. Generation along coordinate directions

According to the spider web generation described in Section 3.2.2, the generation of
new candidate points along coordinate direction requires the solution of the optimization
problems described by equations (3.17) and (3.18). Thanks to the structure of the search
space, this optimization problem can be circumvented.
Given a sample σ(n) =

[
σ
(n)
0 , σ

(n)
1 , ..., σ

(n)
f

]
, the lengths of the segments starting from

σ(n) and finishing on the border of X along the coordinate direction i can be written as

b
(i)
+d =


π − σ(n)

0 for i = 0

σ
(n)
i+1 − σ

(n)
i for i = 1, . . . , l − 1

π
2
− σmin

2
− σ(n)

f for i = l,

b
(i)
−d =


σ
(n)
0 + π for i = 0

σ
(n)
1 − σmin for i = 1

σ
(n)
i − σ

(n)
i−1 for i = 2, . . . , l.

(4.5)

(4.6)
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4.1.2. Initialization and trust region

The original technique to generate the initial points or the cloud of points for the trust
region makes use of the Sobol distribution. As mentioned in Section 3.2.2, these points are
generated inside a unitary hyperbox and do not respect the linear constraints described
by (4.2).
Filtering out the points of a Sobol sequence is extremely expensive, especially for high
dimensions. For example, out of the first million points of the 10-dimensional Sobol
sequence, only 7 respect the constraints.

An alternative approach leverages the structure of the search space. As per the definition
of polytopes [13], it is possible to express the search set with vertices {v1,v2, . . . ,vV } as
a convex combination of its vertices:

P :=

{
V∑
i=1

qivi | q1, . . . , qV ≥ 0,
V∑
i=1

qi = 1

}
. (4.7)

We can then univocally map each point of the search space into a precise vector of weights
q = [q1, . . . , qV ]. The problem of finding a uniform distribution is then shifted into the
weights space.
A first approach would be to sample the weights from a univariate and uniform probability
distribution in [0, 1] and then normalize them with respect to their sum, to obtain a unitary
sum. Nonetheless, due to the central limit theorem, the outcome of this procedure is a
multivariate Gaussian distribution. As a result, the distribution no longer provides good
coverage of the search space. On the contrary, it concentrates at its center, especially as
the dimensionality increases.

A better idea would be to generate the weights using a multivariate probability distribu-
tion, such that the condition of a unitary sum is a priori satisfied. For this reason, we
consider the symmetric Dirichlet distribution. As described in [9], its density function
can be written as

Dir(q, a) =
Γ(V a)

Γ(a)V

V∏
i=1

qa−1
i , (4.8)

where Γ(a) is the gamma distribution with shape parameter a.
A single set of weights q sampled from a Dirichlet distribution describes a point that
belongs to a standard simplex, i.e. the V − 1 simplex that has as vertices the standard
unit vectors of RV . When a = 1, if we sample multiple q from the Dirichlet distribu-
tion, we cover the standard simplex homogeneously. This can be seen in Figure 4.2; the
points obtained through Dirichlet offer better coverage of the standard simplex than those
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obtained from a univariate distribution and normalized with respect to their sum.

Now that we have a method to obtain a set of weights distributed uniformly on a standard
simplex, we can use the linear combination of these weights with the vertices of a simplex
to obtain a uniform distribution of points inside the latter.
This method is relevant for the prismatic search space P , as it is obtained by taking the
product polytope of a simplex and an interval, and can therefore be applied to both of
these components as per equation (4.7).

Additionally, the Dirichlet distribution provides a set of cloud points centered around the
current optimum. In doing so, we use instead of the corners, a fraction of the vectors
linking the current sample to the corners. The size of these generating vectors can be
adjusted to increase or decrease the size of the trust region as needed.
The number of points Ncld is set as a tuning parameter of the algorithm. It specifies
both the number of points to be cast during the initialization and the number of points
contained by every single instance of the trust region.
We remark that the points obtained through the Dirichlet distribution are no longer
deterministic, as emphasized in [21] for the Sobol distribution. Similarly to what is done
with the Sobol sequence in MATLAB, it is possible to save in the memory a set of weights
and always use it, or fix the seed of the gamma distribution involved. This feature is
neglected since it is of no interest to the case study.

(a) Weights sampled from uniform distribution. (b) Weights sampled from Dirichlet distribution.

Figure 4.2: Comparison of the distribution of 500 samples on the standard simplex.
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4.2. Tuning of SMGO

In this Section, we explain the criteria followed in the tuning of SMGO for the OPP
problem.

4.2.1. Risk factor

The OPP computation is an offline optimization where the major achievement is finding
the global minimum among all the local ones. Indeed, at the end of the optimization, it
is not important the number of feasible points that we have. Differently from a real-time
scenario [21, 24], it is also not relevant to always find a feasible solution throughout the
optimization. These considerations on the application of our problem lead to the choice
of a risky algorithm, with ∆ = 1.
This means that the algorithm explores more, and does not limit itself to a single region in
the case of a search set where the set of feasible points is not complex. From the analysis
of the cost delivered in Chapter 5, we see that this is relevant to our problem, at least for
the 3D case.

4.2.2. Minimum distance

As already mentioned in Section 2.4.2, the cost function is piecewise constant. As a
consequence, the sampling of a new point x⟨n⟩ that is too close to a point already sampled
is useless since simply wastes a cost evaluation. For this reason, a minimum distance d
should be set, so that if the new point does not satisfy the criterion

∥∥x⟨n⟩ − x(i)
∥∥ ≤ d ∀x(i) ∈X⟨n⟩, (4.9)

it should not be sampled.
The concept of a minimum distance and the check (4.9) are already present in the algo-
rithm, but d is set to a default value of 10−9.
To better suit the algorithm to our specific problem, we set d as a tuning parameter.
In addition to that, the generation of new candidate points is properly limited, to avoid
clusters that clutter regions where the cost function is constant by construction.
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To do so, we compute the sampling angular distance

σs = Ts ωs, (4.10)

which is simply the angle traveled in Ts.
Now one can set the minimum distance

d =
σs
2
. (4.11)

We then perform a check similar to (4.9) on the points that are being added to the set of
candidates.
Also, the minimum radius of the trust region v is adapted to the value of d so that the
radius of the smallest trust region is still bigger than the minimum distance.

4.2.3. Other parameters

The choice of the parameter α regulates the trade-off between exploitation and explo-
ration. The tuning of this parameter is object of further discussion in Chapter 5.
The value B̄ controls the number of candidate points introduced on a certain iteration of
the optimization. Notice that this amount is not fixed, but increases with the iteration.
For the first trials of the algorithm, it is left to the default value of B̄ = 4. However, a
new candidate point generation, which is introduced in 5, replaces this tuning parameter
with a more direct one.
Parameter β is left to the default value of 0.1.
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This Chapter evaluates the basic setup of the OPP optimization problem and discusses
the initial findings in Section 5.1. The study leads to some general observations about
certain aspects of SMGO. In Section 5.2, the trust region concept is investigated and
enhanced. In Section 5.3, a new approach to adjust the exploration-exploitation trade-
off is introduced and tested. Section 5.4 presents a new candidate point mechanism that
achieves the same results in significantly less time. Finally, we provide a brief commentary
on the general applicability of these enhancements, supported by the results in Appendix
A.

5.1. Early results

The set-up of SMGO for the OPP computation introduced in Chapter 4 is now tested on
the simplest case that preserves the prismatic search space, i.e. the optimization of two
switching angles (D = 3). In this case, it is easy to find the global minimum through
a large number of different gradient-based optimization. The value of the optimum and
the optimal point are reported in Table 5.1. A visualization of the cost function in the
normalized space can be seen in Figure 5.1.

z σ0 σ1 σ2

32.373 2.796 1.203 1.436

Table 5.1: Best feasible point in the 3D OPP problem.

The testing procedure involves selecting different values of the tuning parameter, α, which
governs the exploration-exploitation trade-off. When α is low we prioritize exploitation,
while when α is high we favor exploration. We conduct 10 trials for each α value to assess
the consistency of the optimizer, with a budget of 500 evaluations that can be allocated
according to α. On the first tests, SMGO delivered poor results. Table 5.2 reports the
best, worst and mean optimum found by the ten trials, the mean number of exploited
points, the number of trials that converged in the neighborhood of the global optimum,
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Figure 5.1: Colormap of the cost function in the feasible regions. The red cross is the
global optimum.

and the mean self-time required by one trial. The self-time is the amount of time required
by the computations of the algorithm itself, ignoring the time spent to evaluate the cost
function.

α Best Worst Mean Exploitation Converged Time[s]

0.0005 32.379 45.129 36.240 369.1/500 6/10 65.2

0.001 32.397 40.821 36.563 293.5/500 5/10 66.6
0.005 32.528 41.289 37.646 108.4/500 4/10 69.4

0.01 33.265 42.850 38.339 66.8/500 4/10 68.8
0.05 34.016 45.331 41.175 13.9/500 7/10 67.8

Table 5.2: Original SMGO with different tuning of α.

Table 5.2 provides valuable insights into the optimization results. Firstly, none of the
settings of α resulted in consistent convergence across all 10 trials. For each α value, at
least three trials failed to reach the region containing the optimum. In other words, they
converged to suboptimal local minima. This suggests that the effectiveness of the method
is heavily dependent on the choice of the initial point, or alternatively, it could be said
that the convergence rate is inadequate.
Secondly, the effects of the tuning of α can be observed. The obvious effect is that the
number of exploited points within the budget of 500 function evaluations decreases as α
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increases. Additionally, we notice that the best optimum value worsens. This is due to
a drawback of the definition of α as the tuning parameter responsible for the trade-off.
In fact, when we increase the value of α we not only favor exploration over exploitation,
but also exclude from the search space a certain ball around the current best point. This
issue is tackled in Section 5.3.

5.2. Extended trust region

Among the failed trials, the following behavior is observed: The algorithm keeps exploiting
a small region around the first feasible point, eventually reaching one local minimum, but
wasting too many iterations doing so. This misbehavior is known in optimization as
over-expoloitation. Before entering the details of this issue, a remark on the nature of the
exploitation and the exploration is due.

Remark. during exploitation, the only aim of the algorithm is to find a better minimum;
during exploration, the only aim of the algorithm is to reduce the overall uncertainty of
the SM-model.

As a direct consequence, one can infer that the optimum cannot be found using only
exploration, because the exploration merit function does not advocate points with a lower
cost function.
The rationale of the shrinkage of the trust region, as explained in Section 3.2.3, limits
the exploitation mode to a small ball around the current optimum. If the global one
is on a different region of the search space, as it could happen in the case study of
D = 3, the algorithm can get closer to the right region only through exploration. This
implies that the probability of locating the global minimum is solely reliant on the level
of uncertainty present in the area where it is situated. Only when an exploration-based
sampling discovers a better solution in that area, the trust region will encompass the zone
containing the global minimum. This feature deeply affects the rate of convergence of the
algorithm.

In this study, we adopt a new approach for the trust region. In order to facilitate the
ability of the algorithm to transition from a local minimum to a better one, we eliminate
the idea of a trust region serving as a restriction on the exploitation area. Consequently,
during the entire course of the optimization, the algorithm performs exploitation selecting
points that can improve the current optimum from among all candidate points, as well
as an additional set of cloud points created around the optimum. The cloud points are
contained within a ball that expands and contracts based on the criteria of the trust region
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as defined in the original SMGO formulation. This approach enhances the algorithm’s
ability to move from a local minimum to an improved solution.
Moreover, the computation of the cloud of points around the optimum is suspended when
the size of the trust region is minimal. This indicates that the algorithm has already
sufficiently exploited the current optimum region and should shift its focus to other areas.
By implementing this measure, the algorithm can save computational effort.

α Best Worst Mean Exploitation Converged Time[s]

0.0005 32.378 40.825 33.541 268.9/500 9/10 48.9

0.001 32.394 40.881 35.141 250.5/500 7/10 48.7
0.005 32.462 42.625 36.322 82.5/500 6/10 50.6

0.01 33.027 43.626 36.341 49.1/500 8/10 49.3

0.05 35.732 50.681 39.824 14.9/500 9/10 49.2

Table 5.3: SMGO with extended trust region, for different tuning of α.

The effects of the extended trust region are shown in Table 5.3. We notice how the number
of converged trials is generally increased, as well as the mean optimum. Nevertheless, the
influence of alpha is still clearly visible, both in the refinement of the best optimum and
in the number of exploited points. Finally, the column corresponding to the time shows
a significant decrease.
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Algorithm 5.1 Exploitation with extended trust region
1: while iteration n within the budget Nmax do
2: Perform steps prior to exploitation, as stated in Algorithm 3.1
3: if the new best sample x∗⟨n⟩ is updated then
4: Activate trust region T ⟨n⟩ with maximum size v̄ around x∗⟨n⟩.
5: end if
6: if The trust region T ⟨n⟩ is not active then
7: Exploitation (or exploration) on E⟨n⟩.

8: Assign test point for next iteration x(n+1) ← x
⟨n⟩
θ

(
or x

⟨n⟩
ϕ

)
.

9: else
10: if the current size v⟨n⟩ > v then
11: if exploitation on n was successful then
12: The size of T ⟨n+1⟩ is increased v⟨n+1⟩ = min

(
v̄, 1

κ
v⟨n⟩
)
.

13: else
14: The size of T ⟨n+1⟩ is decreased v⟨n+1⟩ = max

(
v, κv⟨n⟩

)
.

15: end if
16: Exploitation (or exploration) on T ⟨n⟩ ∪E⟨n⟩.
17: Assign test point for next iteration x(n+1) ← x

⟨n⟩
θ

(
or x

⟨n⟩
ϕ

)
.

18: else
19: Deactivate trust region T ⟨n⟩.
20: end if
21: end if
22: Go to next iteration n← n+ 1.
23: end while
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5.3. Adaptive alpha

The trade-off between exploitation and exploration constitutes a crucial feature when it
comes to the rate of convergence of SMGO.

Remark. The exploration-exploitation trade-off depends on the user’s objectives. If the
goal is to obtain a refined solution, the algorithm should prioritize exploitation and use
its budget accordingly. Instead, if the aim is to ensure that the search space has been
thoroughly explored, the compromise should lean towards exploration. The nature of this
trade-off has been extensively studied in the literature on global optimization. An overview
of the topic is offered in [27].

The tuning parameter that gives control over this issue is α. Combined with the estimated
Lipschitz constant γ̃, it provides a threshold for the exploitation, as stated in (3.26). The
thresholds for two different SM-models of the same cost function are represented by the red
region in Figure 5.2. The points that can be sampled through exploitation are those with
a lower bound which is beneath the value of the current optimum minus the threshold.
In other words, only the point with a lower bound in the green region of Figure 5.2.

(a) Threshold with γ̃1. (b) Threshold with γ̃2 > γ̃1.

Figure 5.2: Expected improvement threshold for two SM-models of the same cost function.
The points with lower bound in the green region can be exploited.

Always from the same Figure, we see that the lower bound in the neighborhood of the
current minimum cannot overcome the threshold. This happens because the lower bounds
of the candidate points in the neighborhood of the optimum belong all to the optimum
hypercone [24]. For whatever Lipschitz constant γ̃, a value below the threshold can be
achieved only starting from a distance α, ruling out from the exploitation all the points



5| Enhancing SMGO 61

inside such ball.

Remark. The value of α sets a limit for exploitation. More precisely, it sets a limit on
the proximity to the current optimum.

As a result, an increase of α prevents the optimization from properly refining the optimum,
even when the SM-model is confident that the global optimum is near the current best
point.
Another drawback of the original implementation of the tuning parameter α is that is
not clear how many iterations of exploitation will be performed out of the full budget.
Moreover, this relationship is highly dependent on the specific cost function. For these
reasons, the tuning of α could require a trial and error procedure, before the user finds
the value that better suits his purpose.

In this thesis, a new approach is proposed. Instead of using a fixed α, we could define a
different criterion to balance exploitation and exploration. By selecting a different tuning
parameter, we can control more directly the trade-off between the two, and at the same
time decoupling the side effect of the fixed α, which sets a limit on the precision of the
optimum.

5.3.1. Ratio PI controller

A balanced trade-off between exploitation and exploration makes fair use of the budget
that we have, be it a limit on time or on the number of cost function evaluations. Thus,
we can consider the exploration-to-exploitation ratio as an alternative metric to evaluate
this trade-off:

R =
Nϕ

Nθ

, (5.1)

where Nϕ is the number of exploration performed and Nθ is the number of exploitation.
We can define a desirable ratio Rref which represents a use of the budget that reflects the
objectives of the optimization. Notice that we do not want to enforce to the algorithm
an exploitation every Rref exploration. This would be inappropriate since it would not
account for the specific situation in which the algorithm finds itself. For example, it would
be useless to enforce an exploitation when the whole set of candidate points appears to
have lower bounds higher than the current optimum. Instead, we want α to settle on a
value that is good for the current SM model and the current set of candidate points.

Remark. With this technique, we substituted the degree of freedom provided by α with a
reference for the ratio Rref. This reference ratio is now responsible for the exploration-
to-exploitation trade-off. A higher value prioritizes finding the global minimum, while a
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lower one prioritizes obtaining a more refined local optimum.

We define the error e at iteration n as

e(n) = Rref −R(n), (5.2)

where R(n) is the ratio obtained from the number of iterations spent in exploration and
exploitation, until iteration n. The value of α(n) is then obtained from the law

α(n) = max (KP e(n) +KI Σe(n), αmin) , (5.3)

where

Σe(n) =

Σe(n− 1), if α(n− 1) = αmin,

Σe(n− 1) + e(n− 1) otherwise.
(5.4)

Equation (5.3) can be seen as a discrete PI controller with a lower saturation. The
following elements are a part of it:

1. KP and KI , that are the proportional and the integral gain, and they are empirically
tuned.

2. Σe(n), that is the integral error.

3. αmin, which corresponds to the lower saturation of the controller. It must be greater
than 0, otherwise, the exploitation could sample points that, according to the current
SM-model, can only be worse than the current optimum. It can also be user-defined,
especially if there is no need for a very well refined global optimum, but is sufficient
to find the region where it lies.

We remark that in this ratio controller we did not define an upper saturation αmax.
However, the implementation of an upper saturation would amend the overshooting of
the control variable α. Therefore, αmax should be set to the lowest value of α that excludes
all the candidate points from exploitation. such value changes with the iteration, since it
depends on the candidate points currently available, and should be updated accordingly.

When the output of the controller reaches the lower saturation limit, the error between
the set-point Rref and the actual value may continue to accumulate in Σe(n), leading to
what is called windup.
Notice that, since the rationale behind α adaptive is assigned to be a PI controller, the
general issues concerning control theory are reflected in the optimization problem. In this
case, the windup would heavily delay the exploration phase, falling back into the over-
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exploitation and affecting the rate of convergence. An anti-windup technique is needed
to address this issue, by preventing the integrator term from accumulating further when
the output is saturated. This can be achieved by clamping the integrator term, as it is
done in the update law (5.4).

Figure 5.3: Reference tracking and output of the R PI controller.

Figure 5.4: Colormap of exploration and exploitation throughout the whole optimization.

Figure 5.3 offers the plots of the reference tracking and the output variable of such con-
troller. We can see how when the value of R overcomes the reference value, the value of α
is decreased, to favor an exploitation - viceversa when the value of R is below Rref. One
can notice also that the effect of α on the ratio R is neither straightforward nor immediate.
For example, on some iterations R decreases (i.e. an exploitation is performed) despite
the increasing α; on others R keeps increasing despite the decreasing α. This happens
because none of the candidate points currently available satisfies the threshold.

Remark. The quality of the reference tracking of R is not relevant to the success of the
trial. A bad tracking could mean that the choice of the reference Rref is poor or that the
candidate points set is not populated enough, but also that the global minimum was found
early.
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Indeed, the primary purpose of this structure is not to achieve good tracking, but to adapt
to varying situations in terms of the estimate of the Lipschitz constant and the availability
of candidate points. The reason why we define it adaptive α is now evident. In Figure
5.4 we can see how the adaptive α technique prevents over-exploitation. The number of
iterations on which exploitation is performed is distributed over the entire budget. Table
5.4 contains the results of the same performance test of the previous sections. Each row
corresponds to a different setting of the tuning parameter Rref. For clarity, in the table
we use the indicator

Ξ =
1

Rref + 1
(5.5)

that symbolizes the percentage of the budget of iterations that is reserved for exploitation.

Ξ[%] Best Worst Mean Exploitation Converged Time[s]

50% 32.391 45.864 34.417 191.8/500 9/10 44.8

33% 32.379 32.525 32.459 157.2/500 10/10 45.6

17% 32.458 34.454 32.988 70.8/500 10/10 46.8

9% 32.507 41.413 34.960 38.2/500 9/10 47.9

Table 5.4: SMGO with extended trust region and adaptive α, for different values of Ξ.

We can list the following observations:

• The consistency is generally increased: in the second and third rows the optimization
converges to the optimal region on all ten trials.

• For all settings, the optimization is capable of finding the optimum with sufficient
accuracy. There is no longer a limit on the accuracy of the optimum.

• The value of the ratio R is close to the reference one, but not exactly equal (from
top to bottom, the theoretical value should be: 250/500, 166/500, 83/500, 45/500).
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Threshold as optimality gap

Figure 5.5: Best point (upper plot) and improvement threshold (lower plot) over iteration.
The red dotted line is the true optimum.

Figure 5.5 illustrates the optimization trial corresponding to the PI realization discussed
in the previous section. The upper plot marks the descent of the best point towards the
true optimum, while the lower tracks and threshold over iteration. We can notice that
the second plot appears to be a scaled plot of α of Figure 5.3, but not identical. Recalling
that the threshold is defined as αγ̃, the difference is due to the update of γ̃. The updates
happen mainly in the first 70 iterations.

The value of the threshold over iteration n offers an insightful metric. It could be consid-
ered as an upper bound to the optimality gap δ⟨n⟩ from (3.24), but two conditions must
be met.

1. The value of the estimate γ̃ must correspond to the real Lipschitz constant γ.

2. The set of candidate points must include the coordinate of the optimum x∗.

Nevertheless, even when these two conditions are not met, the threshold is a useful in-
dicator when assessing the overall performance of the optimization. By looking at it, we
can see how convinced SMGO is about the current optimum, given the current candidate
point set E⟨n⟩. We can use this piece of information to understand if the tuning of Rref

is adequate, or we can gauge the quality of the candidate points generation mechanism.
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5.4. Sunburst point generation

The default candidate point generation technique is the spider web generation. A draw-
back of this technique is that the number of candidate points is polynomial with the
number of iterations n, as stated in Section 3.2.2. This increase is mirrored also in the
memory demand. This is not very suited for the offline computation of the OPP, since we
want to perform as much sampling as possible, to inject as much information as possible
into the SM-model.
In this thesis, we provide a new generation technique, that takes into account the following
considerations:

• The new points that are added to the data set of candidate points must differ from
the candidate points that already are inside it.

• The number of candidate points should increase linearly with the iteration.

• The cloud of candidate points should get finer with the iteration, but just in the
interesting regions.

• The generation mechanism should be compliant with Theorem 3.1.

Keeping in mind these principles, we can define a new rationale for the candidate point
generation. At every iteration, we add the midpoints of the segments linking the last
sample x(n) to a fixed number of other points.
The database E⟨n⟩ is enlarged at each iteration with

Y (n)
s =

{
x(n) + p(j)

2
∀ p ∈ W(n)

}
, (5.6)

so that

E⟨n⟩ = E⟨n−1⟩ ∪ Y (n)
s . (5.7)

The set of points W(n) contains two kinds of endpoint p:

1. Endpoints along the coordinate directions.

2. The Ncdpt closest candidate points.

The first kind depends on the mode used to sample x(n), according to the implementation
explained in Algorithm 5.2.
This generation technique allows also to easily integrate into the algorithm a check on
the minimum distance, as explained in 4.2.2. In fact, it is enough to remove from the
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endpoint set W(n) all the endpoints p that do not respect the condition

∥∥x(n) − p
∥∥ ≤ d. (5.8)

A comparison of this candidate point mechanism with the spider web is offered in Figures
5.6 and 5.7. The name Sunburst point generation is inspired by the shape of the segments
linking the new point to the closest one.

The number of candidate points added at each iteration is now fixed and it is equal to
2D + Ncdpt. The tuning parameter Ncdpt substitutes the parameter B̄, offering to the
user a degree of freedom: A higher value of Ncdpt makes the algorithm more memory
demanding and time consuming, but allows to choose the new sample from a denser set
of candidates.

Figure 5.6: Two consecutive iterations of spider web generation. Candidate points are
generated on the orange segments.

Figure 5.7: Two consecutive iterations of sunburst generation. Candidate points are
generated on the orange segments.
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The presence of endpoints along the coordinate direction makes this generation mechanism
compliant with Theorem 3.1, guaranteeing that the whole search space will be eventually
covered.
On top of that, the distribution of candidate points in the search space gets finer only in
the regions that are repeatedly sampled, which correspond to the most interesting ones.

From Table 5.5, we see that with the new candidate points generation technique the time
consumed by the algorithm is greatly reduced, and the quality of the results is only slightly
compromised. For example, in the last row, the number of trials that converge within the
budget is reduced. Nevertheless, this reduction of the time consumed proves to be vital
in the offline optimization of pulse patterns with more than 5 switches.

Ξ[%] Best Worst Mean Exploitation Converged Time[s]

50% 32.380 40.870 33.627 179.7/500 9/10 2.1

33% 32.382 40.828 33.358 151.0/500 9/10 2.0

17% 32.389 33.019 32.574 69.5/500 10/10 2.0

9% 32.845 47.571 38.481 27.0/500 7/10 1.7

Table 5.5: SMGO with extended trust region, adaptive α and sunburst generation.

Algorithm 5.2 Sunburst candidate point generation
1: while iteration n within the budget Nmax do
2: if the sample x(n) was found in exploitation mode then
3: Find the Ncdpt closest point and collect them in W(n).
4: Compute along the coordinate directions ±âd with d = 1, . . . , D the points at

distance v⟨n⟩ (3.29) and add them to W(n).
5: else
6: Find the Ncdpt closest point and collect them in W(n).
7: Compute along the coordinate directions ±âd with d = 1, . . . , D the points at

distance b
(i)
±d

2
with (4.5) and (4.6), add them to W(n).

8: end if
9: Remove identical points, points closer than d and points equal to x(n) from W(n).

10: Generate new candidate points (5.6).
11: end while
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5.5. On the generality of the enhancement

Despite being developed on the OPP problem, the three improvements of the previous
Sections are valid for any application. To check if the enhancement they can bring into
the algorithm is general, they have been tested one by one on a set of 14 benchmark
functions, taken from [24].
The summary of each test and the changes in performance are documented in Appendix
A. All the tests are initialized from the same points. The other features of the algorithm
are kept identical. The test has been run for two different settings of the risk factor.

• For ∆ = 1: The new version of SMGO, i.e. SMGO with all the new components,
performs as well as the original algorithm in almost all tests except three, but in
way less time.

• For ∆ = 0.2: This is the default value of ∆. The new version of SMGO performs
better than the original algorithm in seven tests, and it performs worse in just one.

We remark that in the tests where the performance of the new version of SMGO is worse,
the original algorithm uses a large fraction of the budget for exploitation. The intro-
duction of the new components favor exploration, but for some function using the whole
budget in exploitation could be a better choice. This information can still be considered
in the tuning of the new SMGO.
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6| Comparative study and

performance tests

This Chapter presents some comparative results of SMGO against other optimization al-
gorithms. In Section 6.1, we report the results of the application of SMGO to the 6D
optimization. This is useful to get a better idea of the rate of convergence and the
robustness of this optimization method for dimensions higher than three. In the following
Sections, the results of the same problem obtained with other methods are reported.
In particular, SMGO is compared with gradient-based multistart and Bayesian optimiza-
tion. The former represents the state-of-the-art in the industry, and its set-up in the OPP
framework is explained in Section 6.2. The latter is a well-established black-box global
optimization method, and it is introduced in Section 6.3.
All the computations are performed on a 24-core AMD Epyc 7402 2.8GHz, 1024GB.

6.1. SMGO

The principles and settings of this method have been largely discussed in the previous
Chapters. In this Section, we simply want to report the results obtained on the six
dimensions optimization problem, i.e., the quest for an optimal pulse pattern with five
switching angles.

6.1.1. Results

Figure 6.1 offers an interesting overview of the rate of convergence of the optimizer,
following the descent of the optimum on the ten trials, represented by the ten different
lines.
This overview is paired with Figure 6.2, which gives an idea of the time required by this
method. As expected, the time increases polynomially with the iterations [24].
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Figure 6.1: Optimum of ten trials of SMGO for the OPP computation with D = 6.

Figure 6.2: Total time of ten trials of SMGO for the OPP computation with D = 6.

test σ0 σ1 σ2 σ3 σ4 σ5 cost const

1 -0.349 0.186 0.893 0.983 1.345 1.479 21.53 0.216
2 -0.344 0.082 0.191 0.428 0.620 0.847 27.40 0.086
3 -0.357 0.092 1.177 1.268 1.394 1.509 23.71 0.004
4 2.798 0.065 0.315 0.781 0.962 1.491 28.05 0.303
5 -0.347 0.228 0.851 0.976 1.409 1.512 22.06 0.196
6 -0.347 0.100 1.179 1.324 1.415 1.498 23.72 0.060
7 -0.349 0.098 1.184 1.300 1.379 1.487 23.08 0.211
8 -0.347 0.075 0.437 0.588 1.188 1.342 22.96 0.058
9 2.792 0.066 0.115 1.210 1.387 1.529 22.86 0.050
10 -0.349 0.085 1.153 1.263 1.384 1.499 23.68 0.125

Table 6.1: Optimal points of SMGO for OPP with D = 6.



6| Comparative study and performance tests 73

The consistency of the optimum found over the ten trials can be inferred from Table 6.1.
It is easy to see that not all the trials converge to the same optimum, especially because
there exist multiple minima with a similar cost.

Note that the optimal pulse patterns obtained in Table 6.1 can be grouped in two sets,
according to their precommutation angle, which assumes mainly two values that differ by
roughly π. The optimal pulse patterns of these two groups provide similar results, but
cannot be identical.

6.2. Gradient-based multistart

With the name gradient-based methods we refer to a family of methods that make use of
the first- and second-order optimality conditions. They are very powerful, but they exploit
only local information in the quest for a minimum. This means that if they are applied
to non-convex optimization problems, they could get stuck in local minima. If we want
to use this approach to find the global optimum of a non-convex cost function, we must
repeat the gradient-based optimization multiple times, with different initial conditions.
This structure gives the name multistart to the method.

The starting points could be chosen randomly or using prior knowledge of the problem. In
the case of an electrical drive problem, for example, a suitable initial point can be chosen
according to the pulse pattern of traditional modulation techniques.
In this thesis, the initialization point is drawn from the Dirichlet random distribution, dis-
cussed in Chapter 4. This distribution guarantees that every gradient-based is initialized
on a pulse pattern with switching angles in increasing order, so that the linear constraints
on the initial point are respected.

The optimizer is fmincon of MATLAB. Among the manifold of gradient-based methods,
this is a Sequentially Quadratic Programming (SQP) that makes use of the quasi-newton
method Broyden–Fletcher–Goldfarb–Shanno (BFGS) [16]. The cost function is black-
box, so Exact Newton or Gauss-Newton cannot be taken into account. BFGS tries to
approximate the Hessian matrix using only information on the gradient, in order to check
if the best point meets the second-order optimality condition. For this reason, it is the
easiest and most straightforward method to be applied, and also the default for the MATLAB
function fmincon.

The computation of the gradient is done with the central difference approach. This
method approximates the value of the components of the gradient of the cost function in
a slightly more expensive way, using two function evaluations for each coordinate direction,
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but this is usually compensated by a faster rate of convergence, due to the accuracy of the
gradient [6]. Therefore, given a cost function f(x), the computation of the component
along direction âd of the gradient ∇xf(x)

T is executed as

∇xf(x)
T âd ≈

f(x+ µâd)− f(x− µâd)

2µ
, (6.1)

where µ is the step size of the perturbation applied to compute the gradient.
We recall here that in the OPP problem we have a piecewise constant function. For this
reason, when we define the step size µ in (6.1), it is necessary to account for the partition
of the search space. If µ is too low, the first optimality condition is met in every point of
the search space. Hence, recalling the definition of σs introduced in Section 4.2, we define

µ = σs. (6.2)

With the perturbation set according to (6.2), the THD-based cost function proves to be
quasi-smooth. Indeed, the discontinuities due to the nature of the cost function do not
affect the computation of the gradient, which proves to be quasi-continuous.

6.2.1. Results

In this study, the multistart optimization is executed up to a search space of dimension
twenty. In Figure 6.3 is presented an example of ten trials of multistart, in the case of
six optimization variables. One trial of the multistart optimization algorithm consists
of a sequential execution of fmincon with different initial condition. When the previous
instance of fmincon ends for a stopping condition, a new one is prompted. The test
collects ten trials, each colored line corresponding to one of these.

Figure 6.3 depicts how the cost function optimum is improved over the budget of function
calls. This plot gives an idea of the rate of convergence of the algorithm with respect to
the number of iterations and it is useful for a comparison with the other global methods,
but this interpretation must be evaluated with some warnings. Indeed, in the sequence
of optima only the minima found at the end of each instance of fmincon are considered.
This gives each trial the shape of a linear interpolation. This justifies also the fact that
each trial begins at around 500 function calls: This is the first minimum available, i.e.
the optimum found on the first instance of fmincon for each one of the ten trials.
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Figure 6.3: Optimum of ten trials of gradient-based multistart for the OPP computation
with D = 6.

Figure 6.4: Total time of ten trials of gradient-based multistart for the OPP computation
with D = 6.

test σ0 σ1 σ2 σ3 σ4 σ5 cost const

1 2.791 0.243 0.293 1.127 1.252 1.485 21.64 -0.012
2 -0.349 0.092 1.194 1.335 1.465 1.545 23.03 -0.003
3 -0.349 0.228 0.422 0.609 0.853 0.978 23.71 -0.002
4 -0.350 0.091 1.191 1.315 1.412 1.507 22.53 -0.000
5 -0.352 0.047 0.106 0.144 1.238 1.447 24.90 -0.002
6 -0.350 0.091 1.174 1.271 1.359 1.482 22.94 -0.016
7 -0.350 0.091 1.189 1.313 1.411 1.507 22.53 -0.007
8 -0.349 0.090 1.191 1.325 1.422 1.510 22.59 -0.084
9 2.790 0.070 0.124 1.208 1.363 1.512 22.38 -0.004
10 -0.349 0.190 0.900 0.989 1.362 1.492 21.00 -0.007

Table 6.2: Optimal points of gradient-based multistart for OPP with D = 6.
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It is important to note that a negative slope gives only an intuition on the overall im-
provement given by that iteration of the local optimization, but it is not representative
of the intermediate function evaluations. In other words, a negative slope says that the
previously found minimum is improved in the following initialization. It is also worth
noticing that a flat line means that the optimum is not improved: this could mean that
the following initializations ended up in a worse local minimum, or an unfeasible point.
For this reason, is not possible to infer from the graph how many initial conditions are
used in every single run.

As expected, the total running time (Figure 6.4) grows linearly with the number of func-
tion calls. The time represented in this plot is the sum of the time required to evaluate
the cost function, together with the algorithm self-time. This last one is almost constant
for every iteration. The number of iterations is proportional to the number of function
calls. On a side note, fmincon evaluates the cost function and constraint function sepa-
rately. Both require, as the most relevant computational effort, the electrical drive model
simulation. This implies making the same simulation twice. We notice that this limit is
intrinsic of the MATLAB implementation, and could be avoided in a different application.
Later, in Section 6.4, the function evaluation time is halved, so that the comparison of
the time is fair.

Table 6.2 summarizes the outcome of the OPP computation for D = 6 with a budget
of 5000 function evaluations. For every trial, the best optimal point is reported. Notice
that, differently from SMGO, the MATLAB function fmincon considers the point feasible if
the entry of the column const is negative. We see from Table 6.1 that the optima found
are generally more accurate than the one found by SMGO. Nevertheless, not all trials
converge to the same minimum.
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6.3. Bayesian optimization

Bayesian optimization is a well-established global black-box optimization method, like
SMGO. Nevertheless, they approximate the value of the cost function with two different
surrogate models. SMGO uses the SM-model, based on the Lipschitz constant, while
Bayesian fits a Gaussian process on the evaluated samples.
An overview of the solver and the principles behind is presented in [8]. Notice that
MATLAB bayesopt can take into account linear constraints, so that a reformulation of
such constraints is not required.

6.3.1. Results

Extremely consistent results are obtained on the three optimization variables test, with a
very fast convergence rate, shown in Figure 6.5. These graphs represent the evolution of
ten trials of Bayesian optimization. Differently from the multistart case, on every iteration
the plot is representative of the best point up to that iteration.

Table 6.3 shows the results of the 3D Bayesian optimization. The convergence to the global
optimum is reached in all trials. The same conclusions on the value of the cost function
and on the feasibility of the result can be drawn as in the previous paragraph. However,
the computational time for this method is polynomial with respect to the number of
function calls. Indeed, more function calls mean more sampled points, which makes the
fitting of the Gaussian process iteratively harder. As a consequence, going up with the
iterations, the constant time for the function evaluation sum up to a dramatically high
algorithm self-time. This keeps happening, even if the number of points involved in the
fitting is limited to a certain budget, which is an option offered by bayesopt. Apparently,
no Kriging schemes, that could make the fitting problem lighter, are implemented in the
official MATLAB function.

From a theoretical point of view, documentation on bayesopt states that is possible to
reach up to twenty optimization variables. Nevertheless, the application to the 6D OPP
computation highlights the limits of the method. Indeed, in Figure 6.7 and Table 6.4, we
can see that 2000 function calls are still not enough to have all the trials converge to the
same result. However, already at this stage, the time required is prohibitive (about 50
hours per trial, as visible in Figure 6.8).
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Figure 6.5: Optimum of ten trials of Bayesian for the OPP computation with D = 3.

Figure 6.6: Total time of ten trials of Bayesian for the OPP computation with D = 3.

test σ0 σ1 σ2 cost const

1 2.794 1.200 1.428 32.66 -0.454
2 2.792 1.198 1.436 32.81 -0.731
3 2.792 1.198 1.431 32.66 -0.454
4 2.794 1.205 1.433 32.67 -0.124
5 2.793 1.196 1.427 32.66 -0.454
6 2.790 1.195 1.428 32.66 -0.454
7 2.791 1.196 1.428 32.66 -0.454
8 2.793 1.195 1.427 32.66 -0.454
9 2.792 1.193 1.425 32.70 -0.447
10 2.793 1.190 1.422 32.70 -0.447

Table 6.3: Optimal points of Bayesian optimization for OPP with D = 3.
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Figure 6.7: Optimum of ten trials of Bayesian for the OPP computation with D = 6.

Figure 6.8: Total time of ten trials of Bayesian for the OPP computation with D = 6.

test σ0 σ1 σ2 σ3 σ4 σ5 cost const

1 2.730 0.074 0.114 1.203 1.347 1.509 24.98 -7.127
2 2.774 0.068 0.120 1.183 1.311 1.499 24.32 -0.503
3 2.792 0.297 0.316 1.140 1.298 1.482 26.30 -0.927
4 2.789 0.164 0.200 1.185 1.295 1.468 26.84 -0.547
5 2.758 0.085 0.227 0.840 0.928 1.458 25.08 -3.538
6 2.749 0.093 0.135 1.222 1.371 1.512 24.56 -5.201
7 -0.403 0.102 1.210 1.285 1.340 1.467 25.92 -6.452
8 2.758 0.221 0.262 1.126 1.278 1.503 25.86 -4.785
9 2.750 0.244 0.288 1.130 1.251 1.472 23.90 -6.214
10 2.749 0.236 0.295 1.118 1.229 1.490 23.70 -4.033

Table 6.4: Optimal points of Bayesian optimization for OPP with D = 6.
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On top of that, the mechanism to enforce linear constraints meets some issues when
dealing with the OPP problem for dimensions higher than six: At the beginning, the
algorithm tests a distribution of points on the whole search space. Among these, the ones
that satisfy the linear constraints are chosen for the following iterations. However, if the
region that is feasible for the linear constraints is small, it is tough to get enough feasible
points to initialize the algorithm. This leads bayesopt to abort the optimization.
Unfortunately, this is the case in the OPP search space. As seen in Chapter 4, the feasible
region is a prism, contained in the hyperbox defined by the bounds of the variables. The
fraction of space occupied by this prism with respect to the full hyperbox search space
gets exponentially smaller with the increase of D [13].

The combination of bayesopt with the technique introduced in Section 4.1, as much as
the modification of some parts of the algorithm to circumvent this implementation limit,
have been explored but later abandoned, since incidental for the topic of the thesis.

For this reason, and also for the impracticable demand of time, the Bayesian optimization
shows inadequacy for the OPP optimization problem, especially when dealing with a large
number of switching angles. It still offers a good comparison up to D = 6.

6.4. Comparison of the methods

In order to assess the competitiveness of SMGO in the OPP framework, this Section
compares it to the previously described methods, i.e., Bayesian optimization and gradient-
based multistart. As a characteristic of the OPP problem, the study is conducted on
different dimensions D.

In this comparative study, every algorithm is tested for ten trials, with a given number
of function evaluations. The first chart that we report summarizes in a synthetic way
the results obtained with the different methods. The square represents the mean value
of the optima found over all the trials, with the bracket delimited by the largest and the
smallest optimum. The blue numbers tell the average amount of local gradient-based
optimizations carried out in the multistart optimization.
The second chart helps visualize the performance of each method in terms of time. Each
bar represents the time of one of the three methods compared. For bars out of scale, the
number is reported on top.

Remark. The study of the performance of these three methods for a given budget of cost
evaluations, allows us to draw conclusions on the computational burden of the optimization
independently from the time requested by a single cost evaluation.
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6.4.1. Comparison in 3 dimensions

Figure 6.9: Comparison charts of different optimizer for D = 3. On the first chart, the
square is the mean, the bracket is the range and the blue number is average the number
of multistart initializations.

Figure 6.9 contains the results for the 3D case. All the solvers reach the same global
minimum, with a reasonable budget of function evaluations. SMGO converges with a
smaller number of function evaluations compared to multistart. Bayesian employs even
fewer evaluations, but it requires way more computational time, one order of magnitude
higher than SMGO. Overall, SMGO for this low dimensional case can be considered the
best one, in the trade-off between computational burden and convergence rate.

The blue numbers of the first chart bring to the following remark.
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Remark. In multistart optimization, the whole budget is just sufficient to initialize the
gradient-based optimization in a few different points.

One can argue that, for this reason, the convergence to the global optimum is com-
promised. However, in this work, it is preferred to leave enough budget for each local
gradient-based optimization. We point out also that using central difference method, a
substantial number of function evaluations are employed to estimate the gradient at each
iteration.

6.4.2. Comparison in 6 dimensions

Figure 6.10: Comparison charts of different optimizer for D = 6. On the first chart, the
square is the mean, the bracket is the range and the blue number is the average number
of multistart initializations.
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It Is known that the OPP problem requires more than three optimization variables to
have interesting results, especially for higher motor speed. Up to five switching angles,
SMGO maintains a good quality-efficiency trade-off and result. However, starting from
D = 6, SMGO performance deteriorates. In the following are presented the comparative
charts with σ ∈ R6.

In this framework, all the solvers struggle to converge consistently to the same final
optimum, as was shown in the previous Sections.
The range of optima found by SMGO is comparable to the range of multistart for small
budget (2000 function calls), but with larger budgets the performance of SMGO does not
improve. The right half of the first chart shows how at least one of the trials cannot
improve its best result. For large budgets, multistart provides a lower average of found
minima.

In the second chart, the break-even point for the computational time can be seen. After
that, SMGO starts to be computationally more demanding than multistart.
Nevertheless, in the class of global methods, SMGO is still able to deal with high dimen-
sionality, while Bayesian has to stop on a smaller budget of function evaluations, for the
reasons explained in 6.3.
Therefore, despite performing not as well as multistart in the THD OPP problem, SMGO
can still be considered as a viable global optimizer in high dimensional problems, for the
simple fact that is still able to provide results.

6.4.3. Comparison in 20 dimensions

In this study, the number of optimization variables has been brought up to twenty op-
timization variables. The two usual charts are reported in Figure 6.11. The conclusions
that can be drawn are the same in the 6D case. Firstly, notice that Bayesian optimiza-
tion is not even applied for this dimension. For budgets of a few hundred cost function
evaluations, SMGO provides slightly better performance in terms of mean and variability
of the resulting optima, and also in terms of computational burden. Nonetheless, with
larger budgets, the roles are reversed: multistart can converge very reliably to a better
minimum, in short time.

In the end, the gap between SMGO and multistart results can be appreciated in terms
of electrical drive performance. Figures 6.12 and 6.13 compare the current distortion and
the torque ripple obtained with SMGO, on the left, and multistart, on the right. The
OPP producing these results are chosen as the result of the trials with a cost value close
to the mean one.
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Figure 6.11: Comparison charts of different optimizer for D = 20. On the first chart, the
square is the mean, the bracket is the range and the blue number is the average number
of multistart initializations.

In order to obtain the same average torque, multistart solution requires a lower current
amplitude with respect to the SMGO solution, and it provides also a restrained THD.
Moreover, the OPP found with multistart has a smaller torque ripple.

Looking at Figure 6.11, we notice that multistart can converge with just between 5 and
6 random initializations of local gradient-based optimization.
Therefore, the problem at hand can be considered smooth enough. Normally, for this
kind of problem, gradient-based methods are the best choice.

All the observations elaborated so far concern the THD-based problem introduced in Sec-
tion 2.4. Nevertheless, the OPP can be computed starting from different problems.
A cost function with a more accurate loss model or different constraints can lead to the
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Figure 6.12: Distortion of SMGO OPP (on the left) vs distortion of the multistart OPP
(on the right) in the 20D case.

Figure 6.13: Torque ripple of SMGO OPP (on the left) vs ripple of the multistart OPP
(on the right) in the 20D case.

failure of gradient-based methods, due to higher non-convexity and more discontinuity.
Hence, SMGO could still be a superior method with respect to gradient-based for different
formulations of the OPP problem.
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6.4.4. On the time for the cost evaluation

The main drawback of the application of gradient-based multistart optimization in the
case of high dimensional black-box cost functions is a large amount of function evaluation
that this method requires. However, for cheap cost function, this disadvantage can be
neglected.
The cost function of the THD OPP problem is very cheap to evaluate since it requires
about 40 ms. This feature, together with the quasi-smoothness of the problem, makes
multistart the ideal solver for this problem.
In light of these facts, pure SMGO is not suited to solve THD-based OPPs.
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developments

The Optimal Pulse Patterns are specific drive modulations able to dramatically reduce
the harmonic distortion introduced by the power converters in the electrical machines
for steady-state operating points. They can also be used as starting points to build up
dynamic controls (e.g. MP3C) that manage to deal with transients between different
steady-state motor operations.

The OPP optimization problem at hand is based on a THD-based cost function and
enforces a single inequality constraint on torque. We combine it with a new solver, the
Set Membership Global Optimization. SMGO is a black box global optimization method,
which is tested for the first time on the OPP problem. In this thesis, new ideas for
the SMGO algorithm are proposed and analyzed. Thanks to the extended trust region,
the adaptive alpha and the sunburst candidate points generation mechanisms, the solver
becomes faster and less memory demanding. These components proved to be a general
enhancement and will be soon implemented in the MATLAB toolbox.

For low dimensions of this specific problem, SMGO appears to be a good option. It is
faster than Bayesian and multistart, and the budget of function evaluations it requires is
in-between the two methods.
However, in practical terms, Optimal Pulse Patterns require a high number of switch-
ing angles, that correspond to a high number of optimization variables. In this case,
SMGO does not perform better than traditional gradient-based multistart, because the
formulated problem is quasi-smooth.

Nevertheless, SMGO remains appealing for two branches of optimization:

• offline optimization in case of few optimization variables, expensive and long cost
function evaluation or highly non-smooth problems.

• online optimization where the real bottleneck is a low budget of available cost
and constraint function evaluations.
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The work described in this thesis offers a stimulating insight into SMGO, and highlights
some interesting topics that could be objective of further research.
The main outlooks are the following:

• Hybridization with gradient-based method. It can be approached in different
ways. The most intuitive could be to use SMGO for exploration, and then use
the points it finds to initialize a local gradient-based optimization. In this way,
instead of using a random distribution, the points will be chosen based on the
surrogate model. This can be seen as a smart initialization of multistart, that takes
into account all the information previously retrieved. It combines the convergence
property of SMGO with a very efficient exploitation stage, where we make use of
knowledge of the gradient.

• More complex OPP problem formulation. The THD minimization confirmed
to be an improvement for the functioning of the motor, also on the test bench. How-
ever, it is not the only efficiency criterion that can be accounted for when treating
optimal pulse patterns. There exist more accurate loss models and functional con-
straints that can be integrated into the model of the electrical drive. As already
mentioned, this change in the structure of the optimization brings non-smoothness
into the problem. The non-smoothness can disrupt the efficacy of gradient-based
methods. In this case, SMGO could still be a viable solution.

• Algorithm parallelization. SMGO is a sequential algorithm that makes use of a
large database. In the algorithm, some mechanisms depend on the points already
sampled, while some others are independent. Therefore, the algorithm could be
enhanced to be executed on parallel cores. Parallelization could increase its speed
and make it more competitive.
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A| Enhanced SMGO on test

functions

In this Appendix, the algorithmic components introduced in Chapter 5 are tested on a
set of benchmark optimization problems. The different settings that are tested are:

• old - Original SMGO, with default tuning.

• ETR - SMGO with Extended Trust Region.

• SCG - SMGO with Sunburst Candidate points Generation.

• Aα - SMGO with Adaptive Alpha.

• new - SMGO with all the new components.

By differentiating the effects given by each component, it is easy to understand the main
contribution of every edit.
Each row shows the performance metrics of a method, and each column represents a
different metric. The used metrics are:

1. Best opt: the best objective value found by the method over ten trials.

2. Worst opt: the worst objective value found by the method over ten trials.

3. Mean opt: the mean of the best objective values found by the method over ten
trials.

4. Explts: the mean number of exploited points over ten trials.

5. Feas: the mean number of feasible points found by the method over ten trials.

6. Time[s]: the self-time in seconds needed for the method to complete one trial. The
time required for the evaluation of the objective is not accounted.

all the tests have been initialized on the same points. The other features of the algorithm
are kept identical, and set to the default value. The values of the parameters are collected
in the table A.1.
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When an entry of the three first columns is reported to be equal to Inf, it means that

α B̄ Rref Ncdpt β αmin

0.005 4 5 50 0.1 0.0005

Table A.1: Parameters adopted on the benchmark functions.

no feasible value was found. Out of the set of tests in [24], functions G06 and G08 are
particularly challenging, since the feasible region is very small.
The performance is evaluated according to the Mean opt. The other columns are avail-
able for further insight. The different settings of SMGO have been tested for two different
risk factors. We can collect the observations for the two values of ∆.

• For ∆ = 1: In the majority of tests, the new SMGO performs similarly to the
original, but in much less time. It provides worse results in just three tests. However,
out of these three, the test on STYB_D10 can be neglected. Indeed, this benchmark
function is unconstrained: Since ∆ is set equal to 1, the exploration merit function
is equal to 0 on all points. Therefore, the exploration is obviously less performing
than the exploitation, because it does not follow any useful criterion.

• For ∆ = 0.2: The new version of SMGO outperforms the original algorithm in
seven tests, and it performs worse in just one.

In the following tables, when the performance of the new SMGO and the performance of
the old one are consistently different, the best method out of the two is highlighted.

Table A.2: Results for T1 (D = 2) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old 6.02e-01 6.14e-01 6.07e-01 21.6/500 273.1/500 68.9

ETR 6.02e-01 6.11e-01 6.05e-01 20.9/500 271.2/500 63.3

SCG 6.03e-01 6.23e-01 6.10e-01 21.6/500 277.0/500 8.0

Aα 6.00e-01 6.07e-01 6.01e-01 23.7/500 272.9/500 68.9

new 6.00e-01 6.03e-01 6.01e-01 23.7/500 273.4/500 5.0
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Table A.3: Results for T2 (D = 2) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old 2.54e-01 2.68e-01 2.61e-01 22.1/500 36.6/500 54.6

ETR 2.54e-01 2.74e-01 2.64e-01 22.9/500 34.6/500 48.3

SCG 2.56e-01 2.80e-01 2.65e-01 20.9/500 35.3/500 6.6

Aα 2.53e-01 2.55e-01 2.54e-01 45.1/500 45.8/500 54.9

new 2.53e-01 2.57e-01 2.55e-01 30.5/500 40.2/500 4.1

Table A.4: Results for T3 (D = 2) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -2.00e+00 -2.00e+00 -2.00e+00 56.3/500 357.8/500 52.5

ETR -2.00e+00 -2.00e+00 -2.00e+00 57.6/500 358.6/500 47.0

SCG -2.00e+00 -2.00e+00 -2.00e+00 55.5/500 358.6/500 6.7

Aα -2.00e+00 -2.00e+00 -2.00e+00 83.3/500 366.9/500 51.0

new -2.00e+00 -1.98e+00 -2.00e+00 47.2/500 354.8/500 4.3

Table A.5: Results for STYB (D = 2) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -7.83e+01 -7.83e+01 -7.83e+01 124.0/500 269.0/500 68.4

ETR -7.83e+01 -7.81e+01 -7.83e+01 205.6/500 285.2/500 59.0

SCG -7.83e+01 -7.83e+01 -7.83e+01 115.5/500 273.7/500 7.8

Aα -7.83e+01 -7.83e+01 -7.83e+01 82.8/500 254.3/500 66.3

new -7.83e+01 -7.80e+01 -7.83e+01 64.4/500 245.4/500 4.9

Table A.6: Results for STYB (D = 10) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -3.21e+02 -3.20e+02 -3.21e+02 263.2/500 500.0/500 58.1

ETR -3.61e+02 -3.00e+02 -3.24e+02 409.4/500 500.0/500 42.1

SCG -3.21e+02 -3.21e+02 -3.21e+02 252.5/500 500.0/500 16.1

Aα -3.19e+02 -3.15e+02 -3.17e+02 83.3/500 500.0/500 61.1

new -3.11e+02 -3.05e+02 -3.05e+02 67.0/500 500.0/500 5.3
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Table A.7: Results for G04 (D = 5) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -3.07e+04 -3.02e+04 -3.04e+04 221.8/500 248.5/500 128.8

ETR -3.08e+04 -3.06e+04 -3.07e+04 329.3/500 197.7/500 122.7

SCG -3.06e+04 -3.02e+04 -3.04e+04 228.3/500 255.6/500 19.2

Aα -3.05e+04 -3.00e+04 -3.03e+04 81.6/500 276.9/500 138.3

new -3.05e+04 -3.03e+04 -3.05e+04 75.4/500 295.5/500 13.5

Table A.8: Results for G05 (D = 4) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old 5.21e+03 5.53e+03 5.36e+03 75.1/500 20.0/500 126.9

ETR 5.13e+03 5.43e+03 5.26e+03 33.4/500 13.7/500 119.0

SCG 5.13e+03 5.38e+03 5.25e+03 68.0/500 18.3/500 17.2

Aα 5.27e+03 5.45e+03 5.35e+03 83.5/500 23.5/500 124.5

new 5.14e+03 5.47e+03 5.27e+03 44.9/500 17.8/500 12.6

Table A.9: Results for G06 (D = 2) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -2.66e+03 Inf Inf 2.6/500 0.1/500 65.3

ETR -5.26e+03 Inf Inf 2.2/500 0.4/500 60.9

SCG Inf Inf Inf 0.0/500 0.0/500 7.4

Aα -6.27e+03 Inf Inf 8.2/500 1.7/500 69.0

new Inf Inf Inf 0.0/500 0.0/500 5.9

Table A.10: Results for G08 (D = 2) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -9.55e-02 -9.12e-02 -9.40e-02 108.9/500 88.4/500 64.5

ETR -9.57e-02 -8.71e-02 -9.24e-02 203.6/500 138.6/500 58.0

SCG -9.55e-02 -9.31e-02 -9.46e-02 104.4/500 89.5/500 7.6

Aα -9.55e-02 -8.51e-02 -9.13e-02 82.7/500 64.0/500 64.2

new -9.25e-02 -7.84e-02 -8.65e-02 82.8/500 51.7/500 4.9
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Table A.11: Results for G09 (D = 7) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old 7.08e+02 2.69e+03 1.18e+03 218.8/500 189.4/500 114.5

ETR 9.27e+02 1.33e+03 1.10e+03 390.7/500 133.4/500 98.2

SCG 7.72e+02 2.28e+03 1.18e+03 199.5/500 170.3/500 19.3

Aα 7.50e+02 1.46e+03 1.03e+03 75.9/500 102.3/500 122.7

new 1.08e+03 8.12e+03 3.30e+03 90.5/500 79.6/500 12.8

Table A.12: Results for G10 (D = 8) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old 1.22e+04 Inf Inf 15.3/500 5.2/500 162.1

ETR 9.18e+03 Inf Inf 18.0/500 1.0/500 146.9

SCG 1.24e+04 Inf Inf 24.0/500 6.3/500 25.9

Aα 1.08e+04 Inf Inf 20.2/500 8.5/500 163.2

new 1.01e+04 Inf Inf 18.5/500 7.0/500 16.0

Table A.13: Results for G12 (D = 3) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -9.86e-01 -9.23e-01 -9.70e-01 109.3/500 74.8/500 55.3

ETR -9.94e-01 -9.24e-01 -9.71e-01 124.1/500 57.1/500 49.5

SCG -9.86e-01 -9.23e-01 -9.61e-01 94.1/500 57.2/500 7.9

Aα -9.94e-01 -9.48e-01 -9.70e-01 82.3/500 64.9/500 57.1

new -1.00e+00 -8.81e-01 -9.52e-01 67.1/500 34.2/500 4.8

Table A.14: Results for G23 (D = 9) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -4.13e+03 -3.89e+03 -4.09e+03 101.0/500 306.3/500 89.6

ETR -5.61e+03 -3.89e+03 -5.13e+03 424.3/500 426.9/500 70.3

SCG -4.11e+03 -3.37e+03 -3.88e+03 90.7/500 199.5/500 19.0

Aα -4.13e+03 -3.61e+03 -3.99e+03 73.3/500 278.9/500 92.3

new -5.20e+03 -2.13e+03 -4.56e+03 48.2/500 226.5/500 9.3
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Table A.15: Results for G24 (D = 2) with ∆ = 1.00.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -5.49e+00 -5.35e+00 -5.44e+00 44.1/500 284.1/500 69.9

ETR -5.50e+00 -5.43e+00 -5.48e+00 30.9/500 280.6/500 63.7

SCG -5.48e+00 -5.31e+00 -5.41e+00 45.0/500 292.6/500 8.7

Aα -5.51e+00 -5.47e+00 -5.50e+00 36.0/500 280.4/500 68.2

new -5.51e+00 -5.45e+00 -5.49e+00 30.3/500 289.4/500 4.9

Table A.16: Results for T1 (D = 2) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old 6.08e-01 6.41e-01 6.26e-01 13.9/500 290.6/500 68.1

ETR 6.12e-01 6.43e-01 6.31e-01 14.3/500 290.7/500 60.7

SCG 6.29e-01 6.49e-01 6.37e-01 13.6/500 291.2/500 8.3

Aα 6.03e-01 6.30e-01 6.08e-01 25.2/500 296.9/500 69.0

new 6.00e-01 6.15e-01 6.04e-01 21.2/500 281.0/500 5.0

Table A.17: Results for T2 (D = 2) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old 2.89e-01 3.56e-01 3.21e-01 6.8/500 54.9/500 53.6

ETR 2.70e-01 3.74e-01 3.31e-01 6.1/500 53.6/500 47.5

SCG 2.78e-01 3.41e-01 3.12e-01 9.0/500 38.8/500 6.7

Aα 2.59e-01 3.44e-01 2.78e-01 23.8/500 66.5/500 54.4

new 2.53e-01 2.55e-01 2.55e-01 30.0/500 77.5/500 4.0

Table A.18: Results for T3 (D = 2) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -2.00e+00 -2.00e+00 -2.00e+00 56.1/500 459.8/500 52.4

ETR -2.00e+00 -1.97e+00 -1.99e+00 42.7/500 458.2/500 47.4

SCG -2.00e+00 -2.00e+00 -2.00e+00 53.6/500 469.5/500 6.6

Aα -2.00e+00 -2.00e+00 -2.00e+00 83.2/500 462.2/500 50.4

new -2.00e+00 -1.98e+00 -1.99e+00 42.0/500 426.0/500 4.2
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Table A.19: Results for STYB (D = 2) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -7.83e+01 -7.83e+01 -7.83e+01 118.6/500 410.4/500 66.9

ETR -7.83e+01 -7.82e+01 -7.83e+01 184.2/500 418.1/500 58.5

SCG -7.83e+01 -7.83e+01 -7.83e+01 108.6/500 425.1/500 7.9

Aα -7.83e+01 -7.83e+01 -7.83e+01 83.1/500 398.6/500 65.6

new -7.83e+01 -7.82e+01 -7.83e+01 71.0/500 348.2/500 4.7

Table A.20: Results for STYBD (D = 10) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -3.35e+02 -3.20e+02 -3.22e+02 262.8/500 500.0/500 58.2

ETR -3.41e+02 -2.36e+02 -3.01e+02 361.7/500 500.0/500 42.8

SCG -3.44e+02 -2.77e+02 -3.16e+02 271.0/500 500.0/500 16.3

Aα -3.19e+02 -2.77e+02 -3.08e+02 84.6/500 500.0/500 60.8

new -3.05e+02 -2.38e+02 -2.63e+02 93.1/500 500.0/500 5.6

Table A.21: Results for G04 (D = 5) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -3.03e+04 -2.99e+04 -3.02e+04 96.4/500 445.7/500 143.8

ETR -3.06e+04 -2.99e+04 -3.03e+04 117.4/500 450.8/500 128.7

SCG -3.05e+04 -2.97e+04 -3.01e+04 106.9/500 435.3/500 21.0

Aα -3.05e+04 -3.01e+04 -3.03e+04 84.0/500 446.9/500 142.8

new -3.07e+04 -3.03e+04 -3.05e+04 82.8/500 291.8/500 14.4

Table A.22: Results for G05 (D = 4) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old 5.59e+03 6.64e+03 5.90e+03 16.3/500 20.2/500 136.2

ETR 5.53e+03 6.23e+03 5.85e+03 17.2/500 21.2/500 123.1

SCG 5.53e+03 7.54e+03 6.10e+03 11.8/500 14.1/500 18.6

Aα 5.29e+03 6.19e+03 5.71e+03 54.8/500 57.4/500 131.4

new 5.14e+03 5.32e+03 5.20e+03 40.2/500 23.4/500 13.3
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Table A.23: Results for G06 (D = 2) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old Inf Inf Inf 0.0/500 0.0/500 66.0

ETR Inf Inf Inf 0.0/500 0.0/500 60.4

SCG Inf Inf Inf 0.0/500 0.0/500 8.0

Aα Inf Inf Inf 0.0/500 0.0/500 75.9

new Inf Inf Inf 0.0/500 0.0/500 5.5

Table A.24: Results for G08 (D = 2) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -9.20e-02 -3.24e-03 -3.94e-02 4.1/500 8.7/500 67.0

ETR -9.33e-02 -1.44e-02 -4.61e-02 2.1/500 6.8/500 62.0

SCG -9.41e-02 -2.18e-03 -3.63e-02 2.1/500 5.7/500 8.4

Aα -9.58e-02 -2.64e-02 -6.44e-02 83.3/500 85.1/500 66.5

new -9.44e-02 -7.13e-02 -8.69e-02 82.3/500 60.3/500 5.1

Table A.25: Results for G09 (D = 7) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old 2.51e+03 Inf Inf 0.0/500 1.6/500 129.4

ETR 2.51e+03 Inf Inf 0.0/500 1.6/500 113.9

SCG 7.40e+03 Inf Inf 0.0/500 1.2/500 21.4

Aα 7.66e+03 Inf Inf 50.2/500 51.6/500 127.5

new 9.41e+02 3.83e+04 6.35e+03 86.1/500 125.3/500 12.0

Table A.26: Results for G10 (D = 8) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old Inf Inf Inf 0.0/500 0.0/500 159.4

ETR Inf Inf Inf 0.0/500 0.0/500 143.8

SCG Inf Inf Inf 0.0/500 0.0/500 27.8

Aα Inf Inf Inf 0.0/500 0.0/500 174.2

new 1.05e+04 Inf Inf 25.2/500 9.5/500 18.3
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Table A.27: Results for G12 (D = 3) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -9.94e-01 -9.42e-01 -9.73e-01 13.1/500 42.2/500 57.8

ETR -9.93e-01 -9.14e-01 -9.71e-01 9.5/500 37.8/500 50.7

SCG -9.99e-01 -8.89e-01 -9.59e-01 9.4/500 29.5/500 8.3

Aα -9.94e-01 -9.51e-01 -9.74e-01 81.1/500 107.1/500 56.9

new -9.93e-01 -9.24e-01 -9.60e-01 60.5/500 37.4/500 4.8

Table A.28: Results for G23 (D = 9) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -4.13e+03 -4.07e+03 -4.13e+03 80.5/500 456.3/500 90.9

ETR -5.61e+03 -4.52e+03 -5.31e+03 422.0/500 465.1/500 75.6

SCG -4.13e+03 -3.37e+03 -3.88e+03 74.7/500 327.5/500 20.2

Aα -4.13e+03 -4.08e+03 -4.13e+03 68.0/500 454.7/500 90.6

new -5.08e+03 -4.60e+03 -4.88e+03 52.8/500 262.2/500 9.3

Table A.29: Results for G24 (D = 2) with ∆ = 0.20.

Mode Best opt Worst opt Mean opt Explts Feas Time[s]

old -5.39e+00 -4.96e+00 -5.24e+00 21.6/500 255.1/500 69.1

ETR -5.46e+00 -4.98e+00 -5.17e+00 18.3/500 255.6/500 60.7

SCG -5.40e+00 -4.97e+00 -5.17e+00 17.8/500 251.9/500 8.4

Aα -5.46e+00 -5.17e+00 -5.28e+00 52.3/500 273.4/500 67.7

new -5.50e+00 -5.45e+00 -5.48e+00 28.7/500 295.9/500 5.4
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